goboard8.miz
begin
reserve i,j,k,i1,j1 for
Nat,
p for
Point of (
TOP-REAL 2),
x for
set;
reserve f for non
constant
standard
special_circular_sequence;
theorem ::
GOBOARD8:1
for k st 1
<= k & (k
+ 2)
<= (
len f) holds for i, j st 1
<= i & (i
+ 1)
<= (
len (
GoB f)) & 1
<= j & (j
+ 2)
<= (
width (
GoB f)) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 2))) or (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. k)
= ((
GoB f)
* ((i
+ 1),(j
+ 2)))) holds (
LSeg (((1
/ 2)
* (((
GoB f)
* (i,j))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1))))),((1
/ 2)
* (((
GoB f)
* (i,(j
+ 1)))
+ ((
GoB f)
* ((i
+ 1),(j
+ 2)))))))
misses (
L~ f)
proof
let k such that
A1: k
>= 1 and
A2: (k
+ 2)
<= (
len f);
A3: ((k
+ 1)
+ 1)
= (k
+ (1
+ 1));
then (k
+ 1)
< (
len f) by
A2,
NAT_1: 13;
then
A4: (
LSeg (f,(k
+ 1)))
c= (
L~ f) & (
LSeg (f,k))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A1,
TOPREAL1:def 3,
TOPREAL3: 19;
1
<= (k
+ 1) by
NAT_1: 11;
then
A5: (
LSeg (f,(k
+ 1)))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A2,
A3,
TOPREAL1:def 3;
let i, j such that
A6: 1
<= i and
A7: (i
+ 1)
<= (
len (
GoB f)) and
A8: 1
<= j and
A9: (j
+ 2)
<= (
width (
GoB f)) and
A10: (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) and
A11: (f
/. k)
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 2))) or (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. k)
= ((
GoB f)
* ((i
+ 1),(j
+ 2)));
A12: i
< (
len (
GoB f)) by
A7,
NAT_1: 13;
j
< (j
+ 2) by
XREAL_1: 29;
then j
<= (
width (
GoB f)) by
A9,
XXREAL_0: 2;
then
A13: (
L~ f)
misses (
Int (
cell ((
GoB f),i,j))) by
A12,
GOBOARD7: 12;
(j
+ 1)
<= (j
+ 2) by
XREAL_1: 6;
then
A14: (j
+ 1)
<= (
width (
GoB f)) by
A9,
XXREAL_0: 2;
then (
L~ f)
misses (
Int (
cell ((
GoB f),i,(j
+ 1)))) by
A12,
GOBOARD7: 12;
then
A15: (
L~ f)
misses ((
Int (
cell ((
GoB f),i,j)))
\/ (
Int (
cell ((
GoB f),i,(j
+ 1))))) by
A13,
XBOOLE_1: 70;
((j
+ 1)
+ 1)
= (j
+ (1
+ 1));
then
A16: (j
+ 1)
< (
width (
GoB f)) by
A9,
NAT_1: 13;
assume (
LSeg (((1
/ 2)
* (((
GoB f)
* (i,j))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1))))),((1
/ 2)
* (((
GoB f)
* (i,(j
+ 1)))
+ ((
GoB f)
* ((i
+ 1),(j
+ 2)))))))
meets (
L~ f);
then (
L~ f)
meets (((
Int (
cell ((
GoB f),i,j)))
\/ (
Int (
cell ((
GoB f),i,(j
+ 1)))))
\/
{((1
/ 2)
* (((
GoB f)
* (i,(j
+ 1)))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1)))))}) by
A6,
A8,
A16,
A12,
GOBOARD6: 64,
XBOOLE_1: 63;
then 1
<= (j
+ 1) & (
L~ f)
meets
{((1
/ 2)
* (((
GoB f)
* (i,(j
+ 1)))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1)))))} by
A15,
NAT_1: 11,
XBOOLE_1: 70;
then
consider k0 be
Nat such that 1
<= k0 and (k0
+ 1)
<= (
len f) and
A17: (
LSeg ((f
/. (k
+ 1)),((
GoB f)
* (i,(j
+ 1)))))
= (
LSeg (f,k0)) by
A6,
A7,
A10,
A14,
GOBOARD7: 40,
ZFMISC_1: 50;
(
LSeg (f,k0))
c= (
L~ f) & (
LSeg (f,k))
c= (
L~ f) by
TOPREAL3: 19;
hence contradiction by
A6,
A8,
A10,
A11,
A16,
A12,
A17,
A4,
A5,
GOBOARD7: 60;
end;
theorem ::
GOBOARD8:2
for k st 1
<= k & (k
+ 2)
<= (
len f) holds for i, j st 1
<= i & (i
+ 2)
<= (
len (
GoB f)) & 1
<= j & (j
+ 2)
<= (
width (
GoB f)) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* ((i
+ 2),(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 2))) or (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 2),(j
+ 1))) & (f
/. k)
= ((
GoB f)
* ((i
+ 1),(j
+ 2)))) holds (
LSeg (((1
/ 2)
* (((
GoB f)
* (i,j))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1))))),((1
/ 2)
* (((
GoB f)
* (i,(j
+ 1)))
+ ((
GoB f)
* ((i
+ 1),(j
+ 2)))))))
misses (
L~ f)
proof
let k such that
A1: k
>= 1 and
A2: (k
+ 2)
<= (
len f);
A3: ((k
+ 1)
+ 1)
= (k
+ (1
+ 1));
then (k
+ 1)
< (
len f) by
A2,
NAT_1: 13;
then
A4: (
LSeg (f,(k
+ 1)))
c= (
L~ f) & (
LSeg (f,k))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A1,
TOPREAL1:def 3,
TOPREAL3: 19;
1
<= (k
+ 1) by
NAT_1: 11;
then
A5: (
LSeg (f,(k
+ 1)))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A2,
A3,
TOPREAL1:def 3;
let i, j such that
A6: 1
<= i and
A7: (i
+ 2)
<= (
len (
GoB f)) and
A8: 1
<= j and
A9: (j
+ 2)
<= (
width (
GoB f)) and
A10: (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) and
A11: (f
/. k)
= ((
GoB f)
* ((i
+ 2),(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 2))) or (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 2),(j
+ 1))) & (f
/. k)
= ((
GoB f)
* ((i
+ 1),(j
+ 2)));
((i
+ 1)
+ 1)
= (i
+ (1
+ 1));
then
A12: (i
+ 1)
< (
len (
GoB f)) by
A7,
NAT_1: 13;
then
A13: i
< (
len (
GoB f)) by
NAT_1: 13;
j
< (j
+ 2) by
XREAL_1: 29;
then j
< (
width (
GoB f)) by
A9,
XXREAL_0: 2;
then
A14: (
L~ f)
misses (
Int (
cell ((
GoB f),i,j))) by
A13,
GOBOARD7: 12;
(j
+ 1)
<= (j
+ 2) by
XREAL_1: 6;
then
A15: (j
+ 1)
<= (
width (
GoB f)) by
A9,
XXREAL_0: 2;
then (
L~ f)
misses (
Int (
cell ((
GoB f),i,(j
+ 1)))) by
A13,
GOBOARD7: 12;
then
A16: (
L~ f)
misses ((
Int (
cell ((
GoB f),i,j)))
\/ (
Int (
cell ((
GoB f),i,(j
+ 1))))) by
A14,
XBOOLE_1: 70;
A17: 1
<= (j
+ 1) by
NAT_1: 11;
A18: ((j
+ 1)
+ 1)
= (j
+ (1
+ 1));
then
A19: (j
+ 1)
< (
width (
GoB f)) by
A9,
NAT_1: 13;
assume (
LSeg (((1
/ 2)
* (((
GoB f)
* (i,j))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1))))),((1
/ 2)
* (((
GoB f)
* (i,(j
+ 1)))
+ ((
GoB f)
* ((i
+ 1),(j
+ 2)))))))
meets (
L~ f);
then (
L~ f)
meets (((
Int (
cell ((
GoB f),i,j)))
\/ (
Int (
cell ((
GoB f),i,(j
+ 1)))))
\/
{((1
/ 2)
* (((
GoB f)
* (i,(j
+ 1)))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1)))))}) by
A6,
A8,
A19,
A13,
GOBOARD6: 64,
XBOOLE_1: 63;
then (
L~ f)
meets
{((1
/ 2)
* (((
GoB f)
* (i,(j
+ 1)))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1)))))} by
A16,
XBOOLE_1: 70;
then
consider k0 be
Nat such that 1
<= k0 and (k0
+ 1)
<= (
len f) and
A20: (
LSeg ((f
/. (k
+ 1)),((
GoB f)
* (i,(j
+ 1)))))
= (
LSeg (f,k0)) by
A6,
A10,
A17,
A15,
A12,
GOBOARD7: 40,
ZFMISC_1: 50;
(
LSeg (f,k0))
c= (
L~ f) & (
LSeg (f,k))
c= (
L~ f) by
TOPREAL3: 19;
hence contradiction by
A6,
A10,
A11,
A17,
A12,
A18,
A19,
A20,
A4,
A5,
GOBOARD7: 61;
end;
theorem ::
GOBOARD8:3
for k st 1
<= k & (k
+ 2)
<= (
len f) holds for i, j st 1
<= i & (i
+ 2)
<= (
len (
GoB f)) & 1
<= j & (j
+ 2)
<= (
width (
GoB f)) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* ((i
+ 2),(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),j)) or (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 2),(j
+ 1))) & (f
/. k)
= ((
GoB f)
* ((i
+ 1),j))) holds (
LSeg (((1
/ 2)
* (((
GoB f)
* (i,j))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1))))),((1
/ 2)
* (((
GoB f)
* (i,(j
+ 1)))
+ ((
GoB f)
* ((i
+ 1),(j
+ 2)))))))
misses (
L~ f)
proof
let k such that
A1: k
>= 1 and
A2: (k
+ 2)
<= (
len f);
A3: ((k
+ 1)
+ 1)
= (k
+ (1
+ 1));
then (k
+ 1)
< (
len f) by
A2,
NAT_1: 13;
then
A4: (
LSeg (f,(k
+ 1)))
c= (
L~ f) & (
LSeg (f,k))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A1,
TOPREAL1:def 3,
TOPREAL3: 19;
1
<= (k
+ 1) by
NAT_1: 11;
then
A5: (
LSeg (f,(k
+ 1)))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A2,
A3,
TOPREAL1:def 3;
let i, j such that
A6: 1
<= i and
A7: (i
+ 2)
<= (
len (
GoB f)) and
A8: 1
<= j and
A9: (j
+ 2)
<= (
width (
GoB f)) and
A10: (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) and
A11: (f
/. k)
= ((
GoB f)
* ((i
+ 2),(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),j)) or (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 2),(j
+ 1))) & (f
/. k)
= ((
GoB f)
* ((i
+ 1),j));
((i
+ 1)
+ 1)
= (i
+ (1
+ 1));
then
A12: (i
+ 1)
< (
len (
GoB f)) by
A7,
NAT_1: 13;
then
A13: i
< (
len (
GoB f)) by
NAT_1: 13;
(j
+ 1)
<= (j
+ 2) by
XREAL_1: 6;
then
A14: (j
+ 1)
<= (
width (
GoB f)) by
A9,
XXREAL_0: 2;
then
A15: (
L~ f)
misses (
Int (
cell ((
GoB f),i,(j
+ 1)))) by
A13,
GOBOARD7: 12;
((j
+ 1)
+ 1)
= (j
+ (1
+ 1));
then
A16: (j
+ 1)
< (
width (
GoB f)) by
A9,
NAT_1: 13;
assume (
LSeg (((1
/ 2)
* (((
GoB f)
* (i,j))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1))))),((1
/ 2)
* (((
GoB f)
* (i,(j
+ 1)))
+ ((
GoB f)
* ((i
+ 1),(j
+ 2)))))))
meets (
L~ f);
then
A17: (
L~ f)
meets (((
Int (
cell ((
GoB f),i,j)))
\/ (
Int (
cell ((
GoB f),i,(j
+ 1)))))
\/
{((1
/ 2)
* (((
GoB f)
* (i,(j
+ 1)))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1)))))}) by
A6,
A8,
A16,
A13,
GOBOARD6: 64,
XBOOLE_1: 63;
j
< (j
+ 2) by
XREAL_1: 29;
then
A18: j
< (
width (
GoB f)) by
A9,
XXREAL_0: 2;
then (
L~ f)
misses (
Int (
cell ((
GoB f),i,j))) by
A13,
GOBOARD7: 12;
then (
L~ f)
misses ((
Int (
cell ((
GoB f),i,j)))
\/ (
Int (
cell ((
GoB f),i,(j
+ 1))))) by
A15,
XBOOLE_1: 70;
then 1
<= (j
+ 1) & (
L~ f)
meets
{((1
/ 2)
* (((
GoB f)
* (i,(j
+ 1)))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1)))))} by
A17,
NAT_1: 11,
XBOOLE_1: 70;
then
consider k0 be
Nat such that 1
<= k0 and (k0
+ 1)
<= (
len f) and
A19: (
LSeg ((f
/. (k
+ 1)),((
GoB f)
* (i,(j
+ 1)))))
= (
LSeg (f,k0)) by
A6,
A10,
A14,
A12,
GOBOARD7: 40,
ZFMISC_1: 50;
(
LSeg (f,k0))
c= (
L~ f) & (
LSeg (f,k))
c= (
L~ f) by
TOPREAL3: 19;
hence contradiction by
A6,
A8,
A10,
A11,
A18,
A12,
A19,
A4,
A5,
GOBOARD7: 62;
end;
theorem ::
GOBOARD8:4
for k st 1
<= k & (k
+ 2)
<= (
len f) holds for i, j st 1
<= i & (i
+ 1)
<= (
len (
GoB f)) & 1
<= j & (j
+ 2)
<= (
width (
GoB f)) & (f
/. (k
+ 1))
= ((
GoB f)
* (i,(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* (i,j)) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,(j
+ 2))) or (f
/. (k
+ 2))
= ((
GoB f)
* (i,j)) & (f
/. k)
= ((
GoB f)
* (i,(j
+ 2)))) holds (
LSeg (((1
/ 2)
* (((
GoB f)
* (i,j))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1))))),((1
/ 2)
* (((
GoB f)
* (i,(j
+ 1)))
+ ((
GoB f)
* ((i
+ 1),(j
+ 2)))))))
misses (
L~ f)
proof
let k such that
A1: k
>= 1 and
A2: (k
+ 2)
<= (
len f);
A3: ((k
+ 1)
+ 1)
= (k
+ (1
+ 1));
then (k
+ 1)
< (
len f) by
A2,
NAT_1: 13;
then
A4: (
LSeg (f,(k
+ 1)))
c= (
L~ f) & (
LSeg (f,k))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A1,
TOPREAL1:def 3,
TOPREAL3: 19;
1
<= (k
+ 1) by
NAT_1: 11;
then
A5: (
LSeg (f,(k
+ 1)))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A2,
A3,
TOPREAL1:def 3;
let i, j such that
A6: 1
<= i and
A7: (i
+ 1)
<= (
len (
GoB f)) and
A8: 1
<= j and
A9: (j
+ 2)
<= (
width (
GoB f)) and
A10: (f
/. (k
+ 1))
= ((
GoB f)
* (i,(j
+ 1))) and
A11: (f
/. k)
= ((
GoB f)
* (i,j)) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,(j
+ 2))) or (f
/. (k
+ 2))
= ((
GoB f)
* (i,j)) & (f
/. k)
= ((
GoB f)
* (i,(j
+ 2)));
A12: i
< (
len (
GoB f)) by
A7,
NAT_1: 13;
j
< (j
+ 2) by
XREAL_1: 29;
then j
<= (
width (
GoB f)) by
A9,
XXREAL_0: 2;
then
A13: (
L~ f)
misses (
Int (
cell ((
GoB f),i,j))) by
A12,
GOBOARD7: 12;
(j
+ 1)
<= (j
+ 2) by
XREAL_1: 6;
then
A14: (j
+ 1)
<= (
width (
GoB f)) by
A9,
XXREAL_0: 2;
then (
L~ f)
misses (
Int (
cell ((
GoB f),i,(j
+ 1)))) by
A12,
GOBOARD7: 12;
then
A15: (
L~ f)
misses ((
Int (
cell ((
GoB f),i,j)))
\/ (
Int (
cell ((
GoB f),i,(j
+ 1))))) by
A13,
XBOOLE_1: 70;
((j
+ 1)
+ 1)
= (j
+ (1
+ 1));
then
A16: (j
+ 1)
< (
width (
GoB f)) by
A9,
NAT_1: 13;
assume (
LSeg (((1
/ 2)
* (((
GoB f)
* (i,j))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1))))),((1
/ 2)
* (((
GoB f)
* (i,(j
+ 1)))
+ ((
GoB f)
* ((i
+ 1),(j
+ 2)))))))
meets (
L~ f);
then (
L~ f)
meets (((
Int (
cell ((
GoB f),i,j)))
\/ (
Int (
cell ((
GoB f),i,(j
+ 1)))))
\/
{((1
/ 2)
* (((
GoB f)
* (i,(j
+ 1)))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1)))))}) by
A6,
A8,
A16,
A12,
GOBOARD6: 64,
XBOOLE_1: 63;
then 1
<= (j
+ 1) & (
L~ f)
meets
{((1
/ 2)
* (((
GoB f)
* (i,(j
+ 1)))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1)))))} by
A15,
NAT_1: 11,
XBOOLE_1: 70;
then
consider k0 be
Nat such that 1
<= k0 and (k0
+ 1)
<= (
len f) and
A17: (
LSeg ((f
/. (k
+ 1)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,k0)) by
A6,
A7,
A10,
A14,
GOBOARD7: 40,
ZFMISC_1: 50;
(
LSeg (f,k0))
c= (
L~ f) & (
LSeg (f,k))
c= (
L~ f) by
TOPREAL3: 19;
hence contradiction by
A6,
A8,
A10,
A11,
A16,
A12,
A17,
A4,
A5,
GOBOARD7: 59;
end;
theorem ::
GOBOARD8:5
for k st 1
<= k & (k
+ 2)
<= (
len f) holds for i, j st 1
<= i & (i
+ 2)
<= (
len (
GoB f)) & 1
<= j & (j
+ 2)
<= (
width (
GoB f)) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 2))) or (f
/. (k
+ 2))
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. k)
= ((
GoB f)
* ((i
+ 1),(j
+ 2)))) holds (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i
+ 1),j))
+ ((
GoB f)
* ((i
+ 2),(j
+ 1))))),((1
/ 2)
* (((
GoB f)
* ((i
+ 1),(j
+ 1)))
+ ((
GoB f)
* ((i
+ 2),(j
+ 2)))))))
misses (
L~ f)
proof
let k such that
A1: k
>= 1 and
A2: (k
+ 2)
<= (
len f);
A3: ((k
+ 1)
+ 1)
= (k
+ (1
+ 1));
then (k
+ 1)
< (
len f) by
A2,
NAT_1: 13;
then
A4: (
LSeg (f,(k
+ 1)))
c= (
L~ f) & (
LSeg (f,k))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A1,
TOPREAL1:def 3,
TOPREAL3: 19;
1
<= (k
+ 1) by
NAT_1: 11;
then
A5: (
LSeg (f,(k
+ 1)))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A2,
A3,
TOPREAL1:def 3;
let i, j such that
A6: 1
<= i and
A7: (i
+ 2)
<= (
len (
GoB f)) and
A8: 1
<= j and
A9: (j
+ 2)
<= (
width (
GoB f)) and
A10: (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) and
A11: (f
/. k)
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 2))) or (f
/. (k
+ 2))
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. k)
= ((
GoB f)
* ((i
+ 1),(j
+ 2)));
A12: ((i
+ 1)
+ 1)
= (i
+ (1
+ 1));
then
A13: (i
+ 1)
< (
len (
GoB f)) by
A7,
NAT_1: 13;
j
< (j
+ 2) by
XREAL_1: 29;
then j
< (
width (
GoB f)) by
A9,
XXREAL_0: 2;
then
A14: (
L~ f)
misses (
Int (
cell ((
GoB f),(i
+ 1),j))) by
A13,
GOBOARD7: 12;
(j
+ 1)
<= (j
+ 2) by
XREAL_1: 6;
then
A15: (j
+ 1)
<= (
width (
GoB f)) by
A9,
XXREAL_0: 2;
then (
L~ f)
misses (
Int (
cell ((
GoB f),(i
+ 1),(j
+ 1)))) by
A13,
GOBOARD7: 12;
then
A16: (
L~ f)
misses ((
Int (
cell ((
GoB f),(i
+ 1),j)))
\/ (
Int (
cell ((
GoB f),(i
+ 1),(j
+ 1))))) by
A14,
XBOOLE_1: 70;
A17: 1
<= (j
+ 1) by
NAT_1: 11;
A18: ((j
+ 1)
+ 1)
= (j
+ (1
+ 1));
then
A19: (j
+ 1)
< (
width (
GoB f)) by
A9,
NAT_1: 13;
A20: 1
<= (i
+ 1) by
NAT_1: 11;
assume (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i
+ 1),j))
+ ((
GoB f)
* ((i
+ 2),(j
+ 1))))),((1
/ 2)
* (((
GoB f)
* ((i
+ 1),(j
+ 1)))
+ ((
GoB f)
* ((i
+ 2),(j
+ 2)))))))
meets (
L~ f);
then (
L~ f)
meets (((
Int (
cell ((
GoB f),(i
+ 1),j)))
\/ (
Int (
cell ((
GoB f),(i
+ 1),(j
+ 1)))))
\/
{((1
/ 2)
* (((
GoB f)
* ((i
+ 1),(j
+ 1)))
+ ((
GoB f)
* ((i
+ 2),(j
+ 1)))))}) by
A8,
A12,
A13,
A19,
A20,
GOBOARD6: 64,
XBOOLE_1: 63;
then (
L~ f)
meets
{((1
/ 2)
* (((
GoB f)
* ((i
+ 1),(j
+ 1)))
+ ((
GoB f)
* ((i
+ 2),(j
+ 1)))))} by
A16,
XBOOLE_1: 70;
then
consider k0 be
Nat such that 1
<= k0 and (k0
+ 1)
<= (
len f) and
A21: (
LSeg ((f
/. (k
+ 1)),((
GoB f)
* ((i
+ 2),(j
+ 1)))))
= (
LSeg (f,k0)) by
A7,
A10,
A17,
A15,
A12,
A20,
GOBOARD7: 40,
ZFMISC_1: 50;
(
LSeg (f,k0))
c= (
L~ f) & (
LSeg (f,k))
c= (
L~ f) by
TOPREAL3: 19;
hence contradiction by
A6,
A10,
A11,
A17,
A13,
A18,
A19,
A21,
A4,
A5,
GOBOARD7: 61;
end;
theorem ::
GOBOARD8:6
for k st 1
<= k & (k
+ 2)
<= (
len f) holds for i, j st 1
<= i & (i
+ 2)
<= (
len (
GoB f)) & 1
<= j & (j
+ 2)
<= (
width (
GoB f)) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),j)) or (f
/. (k
+ 2))
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. k)
= ((
GoB f)
* ((i
+ 1),j))) holds (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i
+ 1),j))
+ ((
GoB f)
* ((i
+ 2),(j
+ 1))))),((1
/ 2)
* (((
GoB f)
* ((i
+ 1),(j
+ 1)))
+ ((
GoB f)
* ((i
+ 2),(j
+ 2)))))))
misses (
L~ f)
proof
let k such that
A1: k
>= 1 and
A2: (k
+ 2)
<= (
len f);
A3: ((k
+ 1)
+ 1)
= (k
+ (1
+ 1));
then (k
+ 1)
< (
len f) by
A2,
NAT_1: 13;
then
A4: (
LSeg (f,(k
+ 1)))
c= (
L~ f) & (
LSeg (f,k))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A1,
TOPREAL1:def 3,
TOPREAL3: 19;
1
<= (k
+ 1) by
NAT_1: 11;
then
A5: (
LSeg (f,(k
+ 1)))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A2,
A3,
TOPREAL1:def 3;
let i, j such that
A6: 1
<= i and
A7: (i
+ 2)
<= (
len (
GoB f)) and
A8: 1
<= j and
A9: (j
+ 2)
<= (
width (
GoB f)) and
A10: (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) and
A11: (f
/. k)
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),j)) or (f
/. (k
+ 2))
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. k)
= ((
GoB f)
* ((i
+ 1),j));
A12: ((i
+ 1)
+ 1)
= (i
+ (1
+ 1));
then
A13: (i
+ 1)
< (
len (
GoB f)) by
A7,
NAT_1: 13;
(j
+ 1)
<= (j
+ 2) by
XREAL_1: 6;
then
A14: (j
+ 1)
<= (
width (
GoB f)) by
A9,
XXREAL_0: 2;
then
A15: (
L~ f)
misses (
Int (
cell ((
GoB f),(i
+ 1),(j
+ 1)))) by
A13,
GOBOARD7: 12;
((j
+ 1)
+ 1)
= (j
+ (1
+ 1));
then
A16: (j
+ 1)
< (
width (
GoB f)) by
A9,
NAT_1: 13;
A17: 1
<= (i
+ 1) by
NAT_1: 11;
j
< (j
+ 2) by
XREAL_1: 29;
then
A18: j
< (
width (
GoB f)) by
A9,
XXREAL_0: 2;
then (
L~ f)
misses (
Int (
cell ((
GoB f),(i
+ 1),j))) by
A13,
GOBOARD7: 12;
then
A19: (
L~ f)
misses ((
Int (
cell ((
GoB f),(i
+ 1),j)))
\/ (
Int (
cell ((
GoB f),(i
+ 1),(j
+ 1))))) by
A15,
XBOOLE_1: 70;
assume (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i
+ 1),j))
+ ((
GoB f)
* ((i
+ 2),(j
+ 1))))),((1
/ 2)
* (((
GoB f)
* ((i
+ 1),(j
+ 1)))
+ ((
GoB f)
* ((i
+ 2),(j
+ 2)))))))
meets (
L~ f);
then (
L~ f)
meets (((
Int (
cell ((
GoB f),(i
+ 1),j)))
\/ (
Int (
cell ((
GoB f),(i
+ 1),(j
+ 1)))))
\/
{((1
/ 2)
* (((
GoB f)
* ((i
+ 1),(j
+ 1)))
+ ((
GoB f)
* ((i
+ 2),(j
+ 1)))))}) by
A8,
A12,
A13,
A16,
A17,
GOBOARD6: 64,
XBOOLE_1: 63;
then 1
<= (j
+ 1) & (
L~ f)
meets
{((1
/ 2)
* (((
GoB f)
* ((i
+ 1),(j
+ 1)))
+ ((
GoB f)
* ((i
+ 2),(j
+ 1)))))} by
A19,
NAT_1: 11,
XBOOLE_1: 70;
then
consider k0 be
Nat such that 1
<= k0 and (k0
+ 1)
<= (
len f) and
A20: (
LSeg ((f
/. (k
+ 1)),((
GoB f)
* ((i
+ 2),(j
+ 1)))))
= (
LSeg (f,k0)) by
A7,
A10,
A14,
A12,
A17,
GOBOARD7: 40,
ZFMISC_1: 50;
(
LSeg (f,k0))
c= (
L~ f) & (
LSeg (f,k))
c= (
L~ f) by
TOPREAL3: 19;
hence contradiction by
A6,
A8,
A10,
A11,
A18,
A13,
A20,
A4,
A5,
GOBOARD7: 62;
end;
theorem ::
GOBOARD8:7
for k st 1
<= k & (k
+ 2)
<= (
len f) holds for i st 1
<= i & (i
+ 2)
<= (
len (
GoB f)) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),1)) & ((f
/. k)
= ((
GoB f)
* ((i
+ 2),1)) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),2)) or (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 2),1)) & (f
/. k)
= ((
GoB f)
* ((i
+ 1),2))) holds (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i,1))
+ ((
GoB f)
* ((i
+ 1),1))))
-
|[
0 , 1]|),((1
/ 2)
* (((
GoB f)
* (i,1))
+ ((
GoB f)
* ((i
+ 1),2))))))
misses (
L~ f)
proof
let k such that
A1: k
>= 1 and
A2: (k
+ 2)
<= (
len f);
A3: ((k
+ 1)
+ 1)
= (k
+ (1
+ 1));
then (k
+ 1)
< (
len f) by
A2,
NAT_1: 13;
then
A4: (
LSeg (f,k))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A1,
TOPREAL1:def 3;
1
<= (k
+ 1) by
NAT_1: 11;
then
A5: (
LSeg (f,(k
+ 1)))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A2,
A3,
TOPREAL1:def 3;
A6: 1
< (
width (
GoB f)) by
GOBOARD7: 33;
let i such that
A7: 1
<= i and
A8: (i
+ 2)
<= (
len (
GoB f)) and
A9: (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),1)) and
A10: (f
/. k)
= ((
GoB f)
* ((i
+ 2),1)) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),2)) or (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 2),1)) & (f
/. k)
= ((
GoB f)
* ((i
+ 1),2));
((i
+ 1)
+ 1)
= (i
+ (1
+ 1));
then
A11: (i
+ 1)
< (
len (
GoB f)) by
A8,
NAT_1: 13;
then
A12: i
< (
len (
GoB f)) by
NAT_1: 13;
(
width (
GoB f))
<>
0 by
MATRIX_0:def 10;
then
A13: (
0
+ 1)
<= (
width (
GoB f)) by
NAT_1: 14;
then
A14: (
L~ f)
misses (
Int (
cell ((
GoB f),i,1))) by
A12,
GOBOARD7: 12;
0
< (
width (
GoB f)) by
A13;
then (
L~ f)
misses (
Int (
cell ((
GoB f),i,
0 ))) by
A12,
GOBOARD7: 12;
then
A15: (
L~ f)
misses ((
Int (
cell ((
GoB f),i,
0 )))
\/ (
Int (
cell ((
GoB f),i,1)))) by
A14,
XBOOLE_1: 70;
assume (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i,1))
+ ((
GoB f)
* ((i
+ 1),1))))
-
|[
0 , 1]|),((1
/ 2)
* (((
GoB f)
* (i,1))
+ ((
GoB f)
* ((i
+ 1),2))))))
meets (
L~ f);
then (
L~ f)
meets (((
Int (
cell ((
GoB f),i,
0 )))
\/ (
Int (
cell ((
GoB f),i,1))))
\/
{((1
/ 2)
* (((
GoB f)
* (i,1))
+ ((
GoB f)
* ((i
+ 1),1))))}) by
A7,
A6,
A12,
GOBOARD6: 66,
XBOOLE_1: 63;
then (
L~ f)
meets
{((1
/ 2)
* (((
GoB f)
* (i,1))
+ ((
GoB f)
* ((i
+ 1),1))))} by
A15,
XBOOLE_1: 70;
then
consider k0 be
Nat such that 1
<= k0 and (k0
+ 1)
<= (
len f) and
A16: (
LSeg ((f
/. (k
+ 1)),((
GoB f)
* (i,1))))
= (
LSeg (f,k0)) by
A7,
A9,
A13,
A11,
GOBOARD7: 40,
ZFMISC_1: 50;
A17: (
LSeg (f,(k
+ 1)))
c= (
L~ f) & (1
+ 1)
= 2 by
TOPREAL3: 19;
(
LSeg (f,k0))
c= (
L~ f) & (
LSeg (f,k))
c= (
L~ f) by
TOPREAL3: 19;
hence contradiction by
A7,
A9,
A10,
A11,
A6,
A16,
A17,
A4,
A5,
GOBOARD7: 61;
end;
theorem ::
GOBOARD8:8
for k st 1
<= k & (k
+ 2)
<= (
len f) holds for i st 1
<= i & (i
+ 2)
<= (
len (
GoB f)) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),1)) & ((f
/. k)
= ((
GoB f)
* (i,1)) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),2)) or (f
/. (k
+ 2))
= ((
GoB f)
* (i,1)) & (f
/. k)
= ((
GoB f)
* ((i
+ 1),2))) holds (
LSeg ((((1
/ 2)
* (((
GoB f)
* ((i
+ 1),1))
+ ((
GoB f)
* ((i
+ 2),1))))
-
|[
0 , 1]|),((1
/ 2)
* (((
GoB f)
* ((i
+ 1),1))
+ ((
GoB f)
* ((i
+ 2),2))))))
misses (
L~ f)
proof
let k such that
A1: k
>= 1 and
A2: (k
+ 2)
<= (
len f);
A3: ((k
+ 1)
+ 1)
= (k
+ (1
+ 1));
then (k
+ 1)
< (
len f) by
A2,
NAT_1: 13;
then
A4: (
LSeg (f,k))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A1,
TOPREAL1:def 3;
1
<= (k
+ 1) by
NAT_1: 11;
then
A5: (
LSeg (f,(k
+ 1)))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A2,
A3,
TOPREAL1:def 3;
A6: 1
< (
width (
GoB f)) by
GOBOARD7: 33;
let i such that
A7: 1
<= i and
A8: (i
+ 2)
<= (
len (
GoB f)) and
A9: (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),1)) and
A10: (f
/. k)
= ((
GoB f)
* (i,1)) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),2)) or (f
/. (k
+ 2))
= ((
GoB f)
* (i,1)) & (f
/. k)
= ((
GoB f)
* ((i
+ 1),2));
A11: ((i
+ 1)
+ 1)
= (i
+ (1
+ 1));
then
A12: (i
+ 1)
< (
len (
GoB f)) by
A8,
NAT_1: 13;
(
width (
GoB f))
<>
0 by
MATRIX_0:def 10;
then
A13: (
0
+ 1)
<= (
width (
GoB f)) by
NAT_1: 14;
then
A14: (
L~ f)
misses (
Int (
cell ((
GoB f),(i
+ 1),1))) by
A12,
GOBOARD7: 12;
0
< (
width (
GoB f)) by
A13;
then (
L~ f)
misses (
Int (
cell ((
GoB f),(i
+ 1),
0 ))) by
A12,
GOBOARD7: 12;
then
A15: (
L~ f)
misses ((
Int (
cell ((
GoB f),(i
+ 1),
0 )))
\/ (
Int (
cell ((
GoB f),(i
+ 1),1)))) by
A14,
XBOOLE_1: 70;
A16: 1
<= (i
+ 1) by
NAT_1: 11;
assume (
LSeg ((((1
/ 2)
* (((
GoB f)
* ((i
+ 1),1))
+ ((
GoB f)
* ((i
+ 2),1))))
-
|[
0 , 1]|),((1
/ 2)
* (((
GoB f)
* ((i
+ 1),1))
+ ((
GoB f)
* ((i
+ 2),2))))))
meets (
L~ f);
then (
L~ f)
meets (((
Int (
cell ((
GoB f),(i
+ 1),
0 )))
\/ (
Int (
cell ((
GoB f),(i
+ 1),1))))
\/
{((1
/ 2)
* (((
GoB f)
* ((i
+ 1),1))
+ ((
GoB f)
* ((i
+ 2),1))))}) by
A11,
A12,
A6,
A16,
GOBOARD6: 66,
XBOOLE_1: 63;
then (
L~ f)
meets
{((1
/ 2)
* (((
GoB f)
* ((i
+ 1),1))
+ ((
GoB f)
* ((i
+ 2),1))))} by
A15,
XBOOLE_1: 70;
then
consider k0 be
Nat such that 1
<= k0 and (k0
+ 1)
<= (
len f) and
A17: (
LSeg ((f
/. (k
+ 1)),((
GoB f)
* ((i
+ 2),1))))
= (
LSeg (f,k0)) by
A8,
A9,
A13,
A11,
A16,
GOBOARD7: 40,
ZFMISC_1: 50;
A18: (
LSeg (f,(k
+ 1)))
c= (
L~ f) & (1
+ 1)
= 2 by
TOPREAL3: 19;
(
LSeg (f,k0))
c= (
L~ f) & (
LSeg (f,k))
c= (
L~ f) by
TOPREAL3: 19;
hence contradiction by
A7,
A9,
A10,
A12,
A6,
A17,
A4,
A18,
A5,
GOBOARD7: 61;
end;
theorem ::
GOBOARD8:9
for k st 1
<= k & (k
+ 2)
<= (
len f) holds for i st 1
<= i & (i
+ 2)
<= (
len (
GoB f)) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(
width (
GoB f)))) & ((f
/. k)
= ((
GoB f)
* ((i
+ 2),(
width (
GoB f)))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),((
width (
GoB f))
-' 1))) or (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 2),(
width (
GoB f)))) & (f
/. k)
= ((
GoB f)
* ((i
+ 1),((
width (
GoB f))
-' 1)))) holds (
LSeg (((1
/ 2)
* (((
GoB f)
* (i,((
width (
GoB f))
-' 1)))
+ ((
GoB f)
* ((i
+ 1),(
width (
GoB f)))))),(((1
/ 2)
* (((
GoB f)
* (i,(
width (
GoB f))))
+ ((
GoB f)
* ((i
+ 1),(
width (
GoB f))))))
+
|[
0 , 1]|)))
misses (
L~ f)
proof
let k such that
A1: k
>= 1 and
A2: (k
+ 2)
<= (
len f);
A3: ((k
+ 1)
+ 1)
= (k
+ (1
+ 1));
then (k
+ 1)
< (
len f) by
A2,
NAT_1: 13;
then
A4: (
LSeg (f,(k
+ 1)))
c= (
L~ f) & (
LSeg (f,k))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A1,
TOPREAL1:def 3,
TOPREAL3: 19;
1
<= (k
+ 1) by
NAT_1: 11;
then
A5: (
LSeg (f,(k
+ 1)))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A2,
A3,
TOPREAL1:def 3;
let i such that
A6: 1
<= i and
A7: (i
+ 2)
<= (
len (
GoB f)) and
A8: (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(
width (
GoB f)))) and
A9: (f
/. k)
= ((
GoB f)
* ((i
+ 2),(
width (
GoB f)))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),((
width (
GoB f))
-' 1))) or (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 2),(
width (
GoB f)))) & (f
/. k)
= ((
GoB f)
* ((i
+ 1),((
width (
GoB f))
-' 1)));
((i
+ 1)
+ 1)
= (i
+ (1
+ 1));
then
A10: (i
+ 1)
< (
len (
GoB f)) by
A7,
NAT_1: 13;
then
A11: i
< (
len (
GoB f)) by
NAT_1: 13;
then
A12: (
L~ f)
misses (
Int (
cell ((
GoB f),i,(
width (
GoB f))))) by
GOBOARD7: 12;
assume
A13: (
LSeg (((1
/ 2)
* (((
GoB f)
* (i,((
width (
GoB f))
-' 1)))
+ ((
GoB f)
* ((i
+ 1),(
width (
GoB f)))))),(((1
/ 2)
* (((
GoB f)
* (i,(
width (
GoB f))))
+ ((
GoB f)
* ((i
+ 1),(
width (
GoB f))))))
+
|[
0 , 1]|)))
meets (
L~ f);
A14: 1
< (
width (
GoB f)) by
GOBOARD7: 33;
then
A15: (((
width (
GoB f))
-' 1)
+ 1)
= (
width (
GoB f)) by
XREAL_1: 235;
then
A16: ((
width (
GoB f))
-' 1)
< (
width (
GoB f)) by
NAT_1: 13;
then (
L~ f)
misses (
Int (
cell ((
GoB f),i,((
width (
GoB f))
-' 1)))) by
A11,
GOBOARD7: 12;
then
A17: (
L~ f)
misses ((
Int (
cell ((
GoB f),i,((
width (
GoB f))
-' 1))))
\/ (
Int (
cell ((
GoB f),i,(
width (
GoB f)))))) by
A12,
XBOOLE_1: 70;
A18: 1
<= ((
width (
GoB f))
-' 1) by
A14,
A15,
NAT_1: 13;
then ((1
/ 2)
* (((
GoB f)
* (i,((
width (
GoB f))
-' 1)))
+ ((
GoB f)
* ((i
+ 1),(
width (
GoB f))))))
= ((1
/ 2)
* (((
GoB f)
* (i,(
width (
GoB f))))
+ ((
GoB f)
* ((i
+ 1),((
width (
GoB f))
-' 1))))) by
A6,
A15,
A10,
GOBOARD7: 9;
then (
L~ f)
meets (((
Int (
cell ((
GoB f),i,((
width (
GoB f))
-' 1))))
\/ (
Int (
cell ((
GoB f),i,(
width (
GoB f))))))
\/
{((1
/ 2)
* (((
GoB f)
* (i,(
width (
GoB f))))
+ ((
GoB f)
* ((i
+ 1),(
width (
GoB f))))))}) by
A6,
A14,
A11,
A13,
GOBOARD6: 67,
XBOOLE_1: 63;
then (
L~ f)
meets
{((1
/ 2)
* (((
GoB f)
* (i,(
width (
GoB f))))
+ ((
GoB f)
* ((i
+ 1),(
width (
GoB f))))))} by
A17,
XBOOLE_1: 70;
then
consider k0 be
Nat such that 1
<= k0 and (k0
+ 1)
<= (
len f) and
A19: (
LSeg ((f
/. (k
+ 1)),((
GoB f)
* (i,(
width (
GoB f))))))
= (
LSeg (f,k0)) by
A6,
A8,
A14,
A10,
GOBOARD7: 40,
ZFMISC_1: 50;
(
LSeg (f,k0))
c= (
L~ f) & (
LSeg (f,k))
c= (
L~ f) by
TOPREAL3: 19;
hence contradiction by
A6,
A8,
A9,
A15,
A18,
A16,
A10,
A19,
A4,
A5,
GOBOARD7: 62;
end;
theorem ::
GOBOARD8:10
for k st 1
<= k & (k
+ 2)
<= (
len f) holds for i st 1
<= i & (i
+ 2)
<= (
len (
GoB f)) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(
width (
GoB f)))) & ((f
/. k)
= ((
GoB f)
* (i,(
width (
GoB f)))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),((
width (
GoB f))
-' 1))) or (f
/. (k
+ 2))
= ((
GoB f)
* (i,(
width (
GoB f)))) & (f
/. k)
= ((
GoB f)
* ((i
+ 1),((
width (
GoB f))
-' 1)))) holds (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i
+ 1),((
width (
GoB f))
-' 1)))
+ ((
GoB f)
* ((i
+ 2),(
width (
GoB f)))))),(((1
/ 2)
* (((
GoB f)
* ((i
+ 1),(
width (
GoB f))))
+ ((
GoB f)
* ((i
+ 2),(
width (
GoB f))))))
+
|[
0 , 1]|)))
misses (
L~ f)
proof
let k such that
A1: k
>= 1 and
A2: (k
+ 2)
<= (
len f);
A3: ((k
+ 1)
+ 1)
= (k
+ (1
+ 1));
then (k
+ 1)
< (
len f) by
A2,
NAT_1: 13;
then
A4: (
LSeg (f,(k
+ 1)))
c= (
L~ f) & (
LSeg (f,k))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A1,
TOPREAL1:def 3,
TOPREAL3: 19;
1
<= (k
+ 1) by
NAT_1: 11;
then
A5: (
LSeg (f,(k
+ 1)))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A2,
A3,
TOPREAL1:def 3;
let i such that
A6: 1
<= i and
A7: (i
+ 2)
<= (
len (
GoB f)) and
A8: (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(
width (
GoB f)))) and
A9: (f
/. k)
= ((
GoB f)
* (i,(
width (
GoB f)))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),((
width (
GoB f))
-' 1))) or (f
/. (k
+ 2))
= ((
GoB f)
* (i,(
width (
GoB f)))) & (f
/. k)
= ((
GoB f)
* ((i
+ 1),((
width (
GoB f))
-' 1)));
A10: ((i
+ 1)
+ 1)
= (i
+ (1
+ 1));
then
A11: (i
+ 1)
< (
len (
GoB f)) by
A7,
NAT_1: 13;
then
A12: (
L~ f)
misses (
Int (
cell ((
GoB f),(i
+ 1),(
width (
GoB f))))) by
GOBOARD7: 12;
A13: 1
<= (
width (
GoB f)) by
GOBOARD7: 33;
then
A14: (((
width (
GoB f))
-' 1)
+ 1)
= (
width (
GoB f)) by
XREAL_1: 235;
then
A15: ((
width (
GoB f))
-' 1)
< (
width (
GoB f)) by
NAT_1: 13;
then (
L~ f)
misses (
Int (
cell ((
GoB f),(i
+ 1),((
width (
GoB f))
-' 1)))) by
A11,
GOBOARD7: 12;
then
A16: (
L~ f)
misses ((
Int (
cell ((
GoB f),(i
+ 1),((
width (
GoB f))
-' 1))))
\/ (
Int (
cell ((
GoB f),(i
+ 1),(
width (
GoB f)))))) by
A12,
XBOOLE_1: 70;
assume
A17: (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i
+ 1),((
width (
GoB f))
-' 1)))
+ ((
GoB f)
* ((i
+ 2),(
width (
GoB f)))))),(((1
/ 2)
* (((
GoB f)
* ((i
+ 1),(
width (
GoB f))))
+ ((
GoB f)
* ((i
+ 2),(
width (
GoB f))))))
+
|[
0 , 1]|)))
meets (
L~ f);
A18: 1
<= (i
+ 1) by
NAT_1: 11;
A19: 1
< (
width (
GoB f)) by
GOBOARD7: 33;
then
A20: 1
<= ((
width (
GoB f))
-' 1) by
A14,
NAT_1: 13;
then ((1
/ 2)
* (((
GoB f)
* ((i
+ 1),((
width (
GoB f))
-' 1)))
+ ((
GoB f)
* ((i
+ 2),(
width (
GoB f))))))
= ((1
/ 2)
* (((
GoB f)
* ((i
+ 1),(
width (
GoB f))))
+ ((
GoB f)
* ((i
+ 2),((
width (
GoB f))
-' 1))))) by
A7,
A14,
A10,
A18,
GOBOARD7: 9;
then (
L~ f)
meets (((
Int (
cell ((
GoB f),(i
+ 1),((
width (
GoB f))
-' 1))))
\/ (
Int (
cell ((
GoB f),(i
+ 1),(
width (
GoB f))))))
\/
{((1
/ 2)
* (((
GoB f)
* ((i
+ 1),(
width (
GoB f))))
+ ((
GoB f)
* ((i
+ 2),(
width (
GoB f))))))}) by
A19,
A10,
A11,
A18,
A17,
GOBOARD6: 67,
XBOOLE_1: 63;
then (
L~ f)
meets
{((1
/ 2)
* (((
GoB f)
* ((i
+ 1),(
width (
GoB f))))
+ ((
GoB f)
* ((i
+ 2),(
width (
GoB f))))))} by
A16,
XBOOLE_1: 70;
then
consider k0 be
Nat such that 1
<= k0 and (k0
+ 1)
<= (
len f) and
A21: (
LSeg ((f
/. (k
+ 1)),((
GoB f)
* ((i
+ 2),(
width (
GoB f))))))
= (
LSeg (f,k0)) by
A7,
A8,
A13,
A10,
A18,
GOBOARD7: 40,
ZFMISC_1: 50;
(
LSeg (f,k0))
c= (
L~ f) & (
LSeg (f,k))
c= (
L~ f) by
TOPREAL3: 19;
hence contradiction by
A6,
A8,
A9,
A14,
A20,
A15,
A11,
A21,
A4,
A5,
GOBOARD7: 62;
end;
theorem ::
GOBOARD8:11
for k st 1
<= k & (k
+ 2)
<= (
len f) holds for i, j st 1
<= j & (j
+ 1)
<= (
width (
GoB f)) & 1
<= i & (i
+ 2)
<= (
len (
GoB f)) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 2),(j
+ 1))) or (f
/. (k
+ 2))
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. k)
= ((
GoB f)
* ((i
+ 2),(j
+ 1)))) holds (
LSeg (((1
/ 2)
* (((
GoB f)
* (i,j))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1))))),((1
/ 2)
* (((
GoB f)
* ((i
+ 1),j))
+ ((
GoB f)
* ((i
+ 2),(j
+ 1)))))))
misses (
L~ f)
proof
let k such that
A1: k
>= 1 and
A2: (k
+ 2)
<= (
len f);
A3: ((k
+ 1)
+ 1)
= (k
+ (1
+ 1));
then (k
+ 1)
< (
len f) by
A2,
NAT_1: 13;
then
A4: (
LSeg (f,(k
+ 1)))
c= (
L~ f) & (
LSeg (f,k))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A1,
TOPREAL1:def 3,
TOPREAL3: 19;
1
<= (k
+ 1) by
NAT_1: 11;
then
A5: (
LSeg (f,(k
+ 1)))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A2,
A3,
TOPREAL1:def 3;
let i, j such that
A6: 1
<= j and
A7: (j
+ 1)
<= (
width (
GoB f)) and
A8: 1
<= i and
A9: (i
+ 2)
<= (
len (
GoB f)) and
A10: (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) and
A11: (f
/. k)
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 2),(j
+ 1))) or (f
/. (k
+ 2))
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. k)
= ((
GoB f)
* ((i
+ 2),(j
+ 1)));
A12: j
< (
width (
GoB f)) by
A7,
NAT_1: 13;
i
< (i
+ 2) by
XREAL_1: 29;
then i
<= (
len (
GoB f)) by
A9,
XXREAL_0: 2;
then
A13: (
L~ f)
misses (
Int (
cell ((
GoB f),i,j))) by
A12,
GOBOARD7: 12;
(i
+ 1)
<= (i
+ 2) by
XREAL_1: 6;
then
A14: (i
+ 1)
<= (
len (
GoB f)) by
A9,
XXREAL_0: 2;
then (
L~ f)
misses (
Int (
cell ((
GoB f),(i
+ 1),j))) by
A12,
GOBOARD7: 12;
then
A15: (
L~ f)
misses ((
Int (
cell ((
GoB f),i,j)))
\/ (
Int (
cell ((
GoB f),(i
+ 1),j)))) by
A13,
XBOOLE_1: 70;
((i
+ 1)
+ 1)
= (i
+ (1
+ 1));
then
A16: (i
+ 1)
< (
len (
GoB f)) by
A9,
NAT_1: 13;
assume (
LSeg (((1
/ 2)
* (((
GoB f)
* (i,j))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1))))),((1
/ 2)
* (((
GoB f)
* ((i
+ 1),j))
+ ((
GoB f)
* ((i
+ 2),(j
+ 1)))))))
meets (
L~ f);
then (
L~ f)
meets (((
Int (
cell ((
GoB f),i,j)))
\/ (
Int (
cell ((
GoB f),(i
+ 1),j))))
\/
{((1
/ 2)
* (((
GoB f)
* ((i
+ 1),j))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1)))))}) by
A6,
A8,
A16,
A12,
GOBOARD6: 65,
XBOOLE_1: 63;
then 1
<= (i
+ 1) & (
L~ f)
meets
{((1
/ 2)
* (((
GoB f)
* ((i
+ 1),j))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1)))))} by
A15,
NAT_1: 11,
XBOOLE_1: 70;
then
consider k0 be
Nat such that 1
<= k0 and (k0
+ 1)
<= (
len f) and
A17: (
LSeg ((f
/. (k
+ 1)),((
GoB f)
* ((i
+ 1),j))))
= (
LSeg (f,k0)) by
A6,
A7,
A10,
A14,
GOBOARD7: 39,
ZFMISC_1: 50;
(
LSeg (f,k0))
c= (
L~ f) & (
LSeg (f,k))
c= (
L~ f) by
TOPREAL3: 19;
hence contradiction by
A6,
A8,
A10,
A11,
A16,
A12,
A17,
A4,
A5,
GOBOARD7: 62;
end;
theorem ::
GOBOARD8:12
for k st 1
<= k & (k
+ 2)
<= (
len f) holds for j, i st 1
<= j & (j
+ 2)
<= (
width (
GoB f)) & 1
<= i & (i
+ 2)
<= (
len (
GoB f)) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* ((i
+ 1),(j
+ 2))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 2),(j
+ 1))) or (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 2))) & (f
/. k)
= ((
GoB f)
* ((i
+ 2),(j
+ 1)))) holds (
LSeg (((1
/ 2)
* (((
GoB f)
* (i,j))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1))))),((1
/ 2)
* (((
GoB f)
* ((i
+ 1),j))
+ ((
GoB f)
* ((i
+ 2),(j
+ 1)))))))
misses (
L~ f)
proof
let k such that
A1: k
>= 1 and
A2: (k
+ 2)
<= (
len f);
A3: ((k
+ 1)
+ 1)
= (k
+ (1
+ 1));
then (k
+ 1)
< (
len f) by
A2,
NAT_1: 13;
then
A4: (
LSeg (f,(k
+ 1)))
c= (
L~ f) & (
LSeg (f,k))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A1,
TOPREAL1:def 3,
TOPREAL3: 19;
1
<= (k
+ 1) by
NAT_1: 11;
then
A5: (
LSeg (f,(k
+ 1)))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A2,
A3,
TOPREAL1:def 3;
let j, i such that
A6: 1
<= j and
A7: (j
+ 2)
<= (
width (
GoB f)) and
A8: 1
<= i and
A9: (i
+ 2)
<= (
len (
GoB f)) and
A10: (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) and
A11: (f
/. k)
= ((
GoB f)
* ((i
+ 1),(j
+ 2))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 2),(j
+ 1))) or (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 2))) & (f
/. k)
= ((
GoB f)
* ((i
+ 2),(j
+ 1)));
((j
+ 1)
+ 1)
= (j
+ (1
+ 1));
then
A12: (j
+ 1)
< (
width (
GoB f)) by
A7,
NAT_1: 13;
then
A13: j
< (
width (
GoB f)) by
NAT_1: 13;
i
< (i
+ 2) by
XREAL_1: 29;
then i
< (
len (
GoB f)) by
A9,
XXREAL_0: 2;
then
A14: (
L~ f)
misses (
Int (
cell ((
GoB f),i,j))) by
A13,
GOBOARD7: 12;
(i
+ 1)
<= (i
+ 2) by
XREAL_1: 6;
then
A15: (i
+ 1)
<= (
len (
GoB f)) by
A9,
XXREAL_0: 2;
then (
L~ f)
misses (
Int (
cell ((
GoB f),(i
+ 1),j))) by
A13,
GOBOARD7: 12;
then
A16: (
L~ f)
misses ((
Int (
cell ((
GoB f),i,j)))
\/ (
Int (
cell ((
GoB f),(i
+ 1),j)))) by
A14,
XBOOLE_1: 70;
A17: 1
<= (i
+ 1) by
NAT_1: 11;
A18: ((i
+ 1)
+ 1)
= (i
+ (1
+ 1));
then
A19: (i
+ 1)
< (
len (
GoB f)) by
A9,
NAT_1: 13;
assume (
LSeg (((1
/ 2)
* (((
GoB f)
* (i,j))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1))))),((1
/ 2)
* (((
GoB f)
* ((i
+ 1),j))
+ ((
GoB f)
* ((i
+ 2),(j
+ 1)))))))
meets (
L~ f);
then (
L~ f)
meets (((
Int (
cell ((
GoB f),i,j)))
\/ (
Int (
cell ((
GoB f),(i
+ 1),j))))
\/
{((1
/ 2)
* (((
GoB f)
* ((i
+ 1),j))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1)))))}) by
A6,
A8,
A19,
A13,
GOBOARD6: 65,
XBOOLE_1: 63;
then (
L~ f)
meets
{((1
/ 2)
* (((
GoB f)
* ((i
+ 1),j))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1)))))} by
A16,
XBOOLE_1: 70;
then
consider k0 be
Nat such that 1
<= k0 and (k0
+ 1)
<= (
len f) and
A20: (
LSeg ((f
/. (k
+ 1)),((
GoB f)
* ((i
+ 1),j))))
= (
LSeg (f,k0)) by
A6,
A10,
A17,
A15,
A12,
GOBOARD7: 39,
ZFMISC_1: 50;
(
LSeg (f,k0))
c= (
L~ f) & (
LSeg (f,k))
c= (
L~ f) by
TOPREAL3: 19;
hence contradiction by
A6,
A10,
A11,
A17,
A12,
A18,
A19,
A20,
A4,
A5,
GOBOARD7: 59;
end;
theorem ::
GOBOARD8:13
for k st 1
<= k & (k
+ 2)
<= (
len f) holds for j, i st 1
<= j & (j
+ 2)
<= (
width (
GoB f)) & 1
<= i & (i
+ 2)
<= (
len (
GoB f)) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* ((i
+ 1),(j
+ 2))) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,(j
+ 1))) or (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 2))) & (f
/. k)
= ((
GoB f)
* (i,(j
+ 1)))) holds (
LSeg (((1
/ 2)
* (((
GoB f)
* (i,j))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1))))),((1
/ 2)
* (((
GoB f)
* ((i
+ 1),j))
+ ((
GoB f)
* ((i
+ 2),(j
+ 1)))))))
misses (
L~ f)
proof
let k such that
A1: k
>= 1 and
A2: (k
+ 2)
<= (
len f);
A3: ((k
+ 1)
+ 1)
= (k
+ (1
+ 1));
then (k
+ 1)
< (
len f) by
A2,
NAT_1: 13;
then
A4: (
LSeg (f,(k
+ 1)))
c= (
L~ f) & (
LSeg (f,k))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A1,
TOPREAL1:def 3,
TOPREAL3: 19;
1
<= (k
+ 1) by
NAT_1: 11;
then
A5: (
LSeg (f,(k
+ 1)))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A2,
A3,
TOPREAL1:def 3;
let j, i such that
A6: 1
<= j and
A7: (j
+ 2)
<= (
width (
GoB f)) and
A8: 1
<= i and
A9: (i
+ 2)
<= (
len (
GoB f)) and
A10: (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) and
A11: (f
/. k)
= ((
GoB f)
* ((i
+ 1),(j
+ 2))) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,(j
+ 1))) or (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 2))) & (f
/. k)
= ((
GoB f)
* (i,(j
+ 1)));
((j
+ 1)
+ 1)
= (j
+ (1
+ 1));
then
A12: (j
+ 1)
< (
width (
GoB f)) by
A7,
NAT_1: 13;
then
A13: j
< (
width (
GoB f)) by
NAT_1: 13;
(i
+ 1)
<= (i
+ 2) by
XREAL_1: 6;
then
A14: (i
+ 1)
<= (
len (
GoB f)) by
A9,
XXREAL_0: 2;
then
A15: (
L~ f)
misses (
Int (
cell ((
GoB f),(i
+ 1),j))) by
A13,
GOBOARD7: 12;
((i
+ 1)
+ 1)
= (i
+ (1
+ 1));
then
A16: (i
+ 1)
< (
len (
GoB f)) by
A9,
NAT_1: 13;
assume (
LSeg (((1
/ 2)
* (((
GoB f)
* (i,j))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1))))),((1
/ 2)
* (((
GoB f)
* ((i
+ 1),j))
+ ((
GoB f)
* ((i
+ 2),(j
+ 1)))))))
meets (
L~ f);
then
A17: (
L~ f)
meets (((
Int (
cell ((
GoB f),i,j)))
\/ (
Int (
cell ((
GoB f),(i
+ 1),j))))
\/
{((1
/ 2)
* (((
GoB f)
* ((i
+ 1),j))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1)))))}) by
A6,
A8,
A16,
A13,
GOBOARD6: 65,
XBOOLE_1: 63;
i
< (i
+ 2) by
XREAL_1: 29;
then
A18: i
< (
len (
GoB f)) by
A9,
XXREAL_0: 2;
then (
L~ f)
misses (
Int (
cell ((
GoB f),i,j))) by
A13,
GOBOARD7: 12;
then (
L~ f)
misses ((
Int (
cell ((
GoB f),i,j)))
\/ (
Int (
cell ((
GoB f),(i
+ 1),j)))) by
A15,
XBOOLE_1: 70;
then 1
<= (i
+ 1) & (
L~ f)
meets
{((1
/ 2)
* (((
GoB f)
* ((i
+ 1),j))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1)))))} by
A17,
NAT_1: 11,
XBOOLE_1: 70;
then
consider k0 be
Nat such that 1
<= k0 and (k0
+ 1)
<= (
len f) and
A19: (
LSeg ((f
/. (k
+ 1)),((
GoB f)
* ((i
+ 1),j))))
= (
LSeg (f,k0)) by
A6,
A10,
A14,
A12,
GOBOARD7: 39,
ZFMISC_1: 50;
(
LSeg (f,k0))
c= (
L~ f) & (
LSeg (f,k))
c= (
L~ f) by
TOPREAL3: 19;
hence contradiction by
A6,
A8,
A10,
A11,
A18,
A12,
A19,
A4,
A5,
GOBOARD7: 60;
end;
theorem ::
GOBOARD8:14
for k st 1
<= k & (k
+ 2)
<= (
len f) holds for j, i st 1
<= j & (j
+ 1)
<= (
width (
GoB f)) & 1
<= i & (i
+ 2)
<= (
len (
GoB f)) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),j)) & ((f
/. k)
= ((
GoB f)
* (i,j)) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 2),j)) or (f
/. (k
+ 2))
= ((
GoB f)
* (i,j)) & (f
/. k)
= ((
GoB f)
* ((i
+ 2),j))) holds (
LSeg (((1
/ 2)
* (((
GoB f)
* (i,j))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1))))),((1
/ 2)
* (((
GoB f)
* ((i
+ 1),j))
+ ((
GoB f)
* ((i
+ 2),(j
+ 1)))))))
misses (
L~ f)
proof
let k such that
A1: k
>= 1 and
A2: (k
+ 2)
<= (
len f);
A3: ((k
+ 1)
+ 1)
= (k
+ (1
+ 1));
then (k
+ 1)
< (
len f) by
A2,
NAT_1: 13;
then
A4: (
LSeg (f,(k
+ 1)))
c= (
L~ f) & (
LSeg (f,k))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A1,
TOPREAL1:def 3,
TOPREAL3: 19;
1
<= (k
+ 1) by
NAT_1: 11;
then
A5: (
LSeg (f,(k
+ 1)))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A2,
A3,
TOPREAL1:def 3;
let j, i such that
A6: 1
<= j and
A7: (j
+ 1)
<= (
width (
GoB f)) and
A8: 1
<= i and
A9: (i
+ 2)
<= (
len (
GoB f)) and
A10: (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),j)) and
A11: (f
/. k)
= ((
GoB f)
* (i,j)) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 2),j)) or (f
/. (k
+ 2))
= ((
GoB f)
* (i,j)) & (f
/. k)
= ((
GoB f)
* ((i
+ 2),j));
A12: j
< (
width (
GoB f)) by
A7,
NAT_1: 13;
i
< (i
+ 2) by
XREAL_1: 29;
then i
<= (
len (
GoB f)) by
A9,
XXREAL_0: 2;
then
A13: (
L~ f)
misses (
Int (
cell ((
GoB f),i,j))) by
A12,
GOBOARD7: 12;
(i
+ 1)
<= (i
+ 2) by
XREAL_1: 6;
then
A14: (i
+ 1)
<= (
len (
GoB f)) by
A9,
XXREAL_0: 2;
then (
L~ f)
misses (
Int (
cell ((
GoB f),(i
+ 1),j))) by
A12,
GOBOARD7: 12;
then
A15: (
L~ f)
misses ((
Int (
cell ((
GoB f),i,j)))
\/ (
Int (
cell ((
GoB f),(i
+ 1),j)))) by
A13,
XBOOLE_1: 70;
((i
+ 1)
+ 1)
= (i
+ (1
+ 1));
then
A16: (i
+ 1)
< (
len (
GoB f)) by
A9,
NAT_1: 13;
assume (
LSeg (((1
/ 2)
* (((
GoB f)
* (i,j))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1))))),((1
/ 2)
* (((
GoB f)
* ((i
+ 1),j))
+ ((
GoB f)
* ((i
+ 2),(j
+ 1)))))))
meets (
L~ f);
then (
L~ f)
meets (((
Int (
cell ((
GoB f),i,j)))
\/ (
Int (
cell ((
GoB f),(i
+ 1),j))))
\/
{((1
/ 2)
* (((
GoB f)
* ((i
+ 1),j))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1)))))}) by
A6,
A8,
A16,
A12,
GOBOARD6: 65,
XBOOLE_1: 63;
then 1
<= (i
+ 1) & (
L~ f)
meets
{((1
/ 2)
* (((
GoB f)
* ((i
+ 1),j))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1)))))} by
A15,
NAT_1: 11,
XBOOLE_1: 70;
then
consider k0 be
Nat such that 1
<= k0 and (k0
+ 1)
<= (
len f) and
A17: (
LSeg ((f
/. (k
+ 1)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,k0)) by
A6,
A7,
A10,
A14,
GOBOARD7: 39,
ZFMISC_1: 50;
(
LSeg (f,k0))
c= (
L~ f) & (
LSeg (f,k))
c= (
L~ f) by
TOPREAL3: 19;
hence contradiction by
A6,
A8,
A10,
A11,
A16,
A12,
A17,
A4,
A5,
GOBOARD7: 61;
end;
theorem ::
GOBOARD8:15
for k st 1
<= k & (k
+ 2)
<= (
len f) holds for j, i st 1
<= j & (j
+ 2)
<= (
width (
GoB f)) & 1
<= i & (i
+ 2)
<= (
len (
GoB f)) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 2),(j
+ 1))) or (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. k)
= ((
GoB f)
* ((i
+ 2),(j
+ 1)))) holds (
LSeg (((1
/ 2)
* (((
GoB f)
* (i,(j
+ 1)))
+ ((
GoB f)
* ((i
+ 1),(j
+ 2))))),((1
/ 2)
* (((
GoB f)
* ((i
+ 1),(j
+ 1)))
+ ((
GoB f)
* ((i
+ 2),(j
+ 2)))))))
misses (
L~ f)
proof
let k such that
A1: k
>= 1 and
A2: (k
+ 2)
<= (
len f);
A3: ((k
+ 1)
+ 1)
= (k
+ (1
+ 1));
then (k
+ 1)
< (
len f) by
A2,
NAT_1: 13;
then
A4: (
LSeg (f,(k
+ 1)))
c= (
L~ f) & (
LSeg (f,k))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A1,
TOPREAL1:def 3,
TOPREAL3: 19;
1
<= (k
+ 1) by
NAT_1: 11;
then
A5: (
LSeg (f,(k
+ 1)))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A2,
A3,
TOPREAL1:def 3;
let j, i such that
A6: 1
<= j and
A7: (j
+ 2)
<= (
width (
GoB f)) and
A8: 1
<= i and
A9: (i
+ 2)
<= (
len (
GoB f)) and
A10: (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) and
A11: (f
/. k)
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 2),(j
+ 1))) or (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. k)
= ((
GoB f)
* ((i
+ 2),(j
+ 1)));
A12: ((j
+ 1)
+ 1)
= (j
+ (1
+ 1));
then
A13: (j
+ 1)
< (
width (
GoB f)) by
A7,
NAT_1: 13;
i
< (i
+ 2) by
XREAL_1: 29;
then i
< (
len (
GoB f)) by
A9,
XXREAL_0: 2;
then
A14: (
L~ f)
misses (
Int (
cell ((
GoB f),i,(j
+ 1)))) by
A13,
GOBOARD7: 12;
(i
+ 1)
<= (i
+ 2) by
XREAL_1: 6;
then
A15: (i
+ 1)
<= (
len (
GoB f)) by
A9,
XXREAL_0: 2;
then (
L~ f)
misses (
Int (
cell ((
GoB f),(i
+ 1),(j
+ 1)))) by
A13,
GOBOARD7: 12;
then
A16: (
L~ f)
misses ((
Int (
cell ((
GoB f),i,(j
+ 1))))
\/ (
Int (
cell ((
GoB f),(i
+ 1),(j
+ 1))))) by
A14,
XBOOLE_1: 70;
A17: 1
<= (i
+ 1) by
NAT_1: 11;
A18: ((i
+ 1)
+ 1)
= (i
+ (1
+ 1));
then
A19: (i
+ 1)
< (
len (
GoB f)) by
A9,
NAT_1: 13;
A20: 1
<= (j
+ 1) by
NAT_1: 11;
assume (
LSeg (((1
/ 2)
* (((
GoB f)
* (i,(j
+ 1)))
+ ((
GoB f)
* ((i
+ 1),(j
+ 2))))),((1
/ 2)
* (((
GoB f)
* ((i
+ 1),(j
+ 1)))
+ ((
GoB f)
* ((i
+ 2),(j
+ 2)))))))
meets (
L~ f);
then (
L~ f)
meets (((
Int (
cell ((
GoB f),i,(j
+ 1))))
\/ (
Int (
cell ((
GoB f),(i
+ 1),(j
+ 1)))))
\/
{((1
/ 2)
* (((
GoB f)
* ((i
+ 1),(j
+ 1)))
+ ((
GoB f)
* ((i
+ 1),(j
+ 2)))))}) by
A8,
A12,
A13,
A19,
A20,
GOBOARD6: 65,
XBOOLE_1: 63;
then (
L~ f)
meets
{((1
/ 2)
* (((
GoB f)
* ((i
+ 1),(j
+ 1)))
+ ((
GoB f)
* ((i
+ 1),(j
+ 2)))))} by
A16,
XBOOLE_1: 70;
then
consider k0 be
Nat such that 1
<= k0 and (k0
+ 1)
<= (
len f) and
A21: (
LSeg ((f
/. (k
+ 1)),((
GoB f)
* ((i
+ 1),(j
+ 2)))))
= (
LSeg (f,k0)) by
A7,
A10,
A17,
A15,
A12,
A20,
GOBOARD7: 39,
ZFMISC_1: 50;
(
LSeg (f,k0))
c= (
L~ f) & (
LSeg (f,k))
c= (
L~ f) by
TOPREAL3: 19;
hence contradiction by
A6,
A10,
A11,
A17,
A13,
A18,
A19,
A21,
A4,
A5,
GOBOARD7: 59;
end;
theorem ::
GOBOARD8:16
for k st 1
<= k & (k
+ 2)
<= (
len f) holds for j, i st 1
<= j & (j
+ 2)
<= (
width (
GoB f)) & 1
<= i & (i
+ 2)
<= (
len (
GoB f)) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,(j
+ 1))) or (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. k)
= ((
GoB f)
* (i,(j
+ 1)))) holds (
LSeg (((1
/ 2)
* (((
GoB f)
* (i,(j
+ 1)))
+ ((
GoB f)
* ((i
+ 1),(j
+ 2))))),((1
/ 2)
* (((
GoB f)
* ((i
+ 1),(j
+ 1)))
+ ((
GoB f)
* ((i
+ 2),(j
+ 2)))))))
misses (
L~ f)
proof
let k such that
A1: k
>= 1 and
A2: (k
+ 2)
<= (
len f);
A3: ((k
+ 1)
+ 1)
= (k
+ (1
+ 1));
then (k
+ 1)
< (
len f) by
A2,
NAT_1: 13;
then
A4: (
LSeg (f,(k
+ 1)))
c= (
L~ f) & (
LSeg (f,k))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A1,
TOPREAL1:def 3,
TOPREAL3: 19;
1
<= (k
+ 1) by
NAT_1: 11;
then
A5: (
LSeg (f,(k
+ 1)))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A2,
A3,
TOPREAL1:def 3;
let j, i such that
A6: 1
<= j and
A7: (j
+ 2)
<= (
width (
GoB f)) and
A8: 1
<= i and
A9: (i
+ 2)
<= (
len (
GoB f)) and
A10: (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) and
A11: (f
/. k)
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,(j
+ 1))) or (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. k)
= ((
GoB f)
* (i,(j
+ 1)));
A12: ((j
+ 1)
+ 1)
= (j
+ (1
+ 1));
then
A13: (j
+ 1)
< (
width (
GoB f)) by
A7,
NAT_1: 13;
(i
+ 1)
<= (i
+ 2) by
XREAL_1: 6;
then
A14: (i
+ 1)
<= (
len (
GoB f)) by
A9,
XXREAL_0: 2;
then
A15: (
L~ f)
misses (
Int (
cell ((
GoB f),(i
+ 1),(j
+ 1)))) by
A13,
GOBOARD7: 12;
((i
+ 1)
+ 1)
= (i
+ (1
+ 1));
then
A16: (i
+ 1)
< (
len (
GoB f)) by
A9,
NAT_1: 13;
A17: 1
<= (j
+ 1) by
NAT_1: 11;
i
< (i
+ 2) by
XREAL_1: 29;
then
A18: i
< (
len (
GoB f)) by
A9,
XXREAL_0: 2;
then (
L~ f)
misses (
Int (
cell ((
GoB f),i,(j
+ 1)))) by
A13,
GOBOARD7: 12;
then
A19: (
L~ f)
misses ((
Int (
cell ((
GoB f),i,(j
+ 1))))
\/ (
Int (
cell ((
GoB f),(i
+ 1),(j
+ 1))))) by
A15,
XBOOLE_1: 70;
assume (
LSeg (((1
/ 2)
* (((
GoB f)
* (i,(j
+ 1)))
+ ((
GoB f)
* ((i
+ 1),(j
+ 2))))),((1
/ 2)
* (((
GoB f)
* ((i
+ 1),(j
+ 1)))
+ ((
GoB f)
* ((i
+ 2),(j
+ 2)))))))
meets (
L~ f);
then (
L~ f)
meets (((
Int (
cell ((
GoB f),i,(j
+ 1))))
\/ (
Int (
cell ((
GoB f),(i
+ 1),(j
+ 1)))))
\/
{((1
/ 2)
* (((
GoB f)
* ((i
+ 1),(j
+ 1)))
+ ((
GoB f)
* ((i
+ 1),(j
+ 2)))))}) by
A8,
A12,
A13,
A16,
A17,
GOBOARD6: 65,
XBOOLE_1: 63;
then 1
<= (i
+ 1) & (
L~ f)
meets
{((1
/ 2)
* (((
GoB f)
* ((i
+ 1),(j
+ 1)))
+ ((
GoB f)
* ((i
+ 1),(j
+ 2)))))} by
A19,
NAT_1: 11,
XBOOLE_1: 70;
then
consider k0 be
Nat such that 1
<= k0 and (k0
+ 1)
<= (
len f) and
A20: (
LSeg ((f
/. (k
+ 1)),((
GoB f)
* ((i
+ 1),(j
+ 2)))))
= (
LSeg (f,k0)) by
A7,
A10,
A14,
A12,
A17,
GOBOARD7: 39,
ZFMISC_1: 50;
(
LSeg (f,k0))
c= (
L~ f) & (
LSeg (f,k))
c= (
L~ f) by
TOPREAL3: 19;
hence contradiction by
A6,
A8,
A10,
A11,
A18,
A13,
A20,
A4,
A5,
GOBOARD7: 60;
end;
theorem ::
GOBOARD8:17
for k st 1
<= k & (k
+ 2)
<= (
len f) holds for j st 1
<= j & (j
+ 2)
<= (
width (
GoB f)) & (f
/. (k
+ 1))
= ((
GoB f)
* (1,(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* (1,(j
+ 2))) & (f
/. (k
+ 2))
= ((
GoB f)
* (2,(j
+ 1))) or (f
/. (k
+ 2))
= ((
GoB f)
* (1,(j
+ 2))) & (f
/. k)
= ((
GoB f)
* (2,(j
+ 1)))) holds (
LSeg ((((1
/ 2)
* (((
GoB f)
* (1,j))
+ ((
GoB f)
* (1,(j
+ 1)))))
-
|[1,
0 ]|),((1
/ 2)
* (((
GoB f)
* (1,j))
+ ((
GoB f)
* (2,(j
+ 1)))))))
misses (
L~ f)
proof
let k such that
A1: k
>= 1 and
A2: (k
+ 2)
<= (
len f);
A3: ((k
+ 1)
+ 1)
= (k
+ (1
+ 1));
then (k
+ 1)
< (
len f) by
A2,
NAT_1: 13;
then
A4: (
LSeg (f,k))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A1,
TOPREAL1:def 3;
1
<= (k
+ 1) by
NAT_1: 11;
then
A5: (
LSeg (f,(k
+ 1)))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A2,
A3,
TOPREAL1:def 3;
A6: 1
< (
len (
GoB f)) by
GOBOARD7: 32;
let j such that
A7: 1
<= j and
A8: (j
+ 2)
<= (
width (
GoB f)) and
A9: (f
/. (k
+ 1))
= ((
GoB f)
* (1,(j
+ 1))) and
A10: (f
/. k)
= ((
GoB f)
* (1,(j
+ 2))) & (f
/. (k
+ 2))
= ((
GoB f)
* (2,(j
+ 1))) or (f
/. (k
+ 2))
= ((
GoB f)
* (1,(j
+ 2))) & (f
/. k)
= ((
GoB f)
* (2,(j
+ 1)));
((j
+ 1)
+ 1)
= (j
+ (1
+ 1));
then
A11: (j
+ 1)
< (
width (
GoB f)) by
A8,
NAT_1: 13;
then
A12: j
< (
width (
GoB f)) by
NAT_1: 13;
(
len (
GoB f))
<>
0 by
MATRIX_0:def 10;
then
A13: (
0
+ 1)
<= (
len (
GoB f)) by
NAT_1: 14;
then
A14: (
L~ f)
misses (
Int (
cell ((
GoB f),1,j))) by
A12,
GOBOARD7: 12;
0
< (
len (
GoB f)) by
A13;
then (
L~ f)
misses (
Int (
cell ((
GoB f),
0 ,j))) by
A12,
GOBOARD7: 12;
then
A15: (
L~ f)
misses ((
Int (
cell ((
GoB f),
0 ,j)))
\/ (
Int (
cell ((
GoB f),1,j)))) by
A14,
XBOOLE_1: 70;
assume (
LSeg ((((1
/ 2)
* (((
GoB f)
* (1,j))
+ ((
GoB f)
* (1,(j
+ 1)))))
-
|[1,
0 ]|),((1
/ 2)
* (((
GoB f)
* (1,j))
+ ((
GoB f)
* (2,(j
+ 1)))))))
meets (
L~ f);
then (
L~ f)
meets (((
Int (
cell ((
GoB f),
0 ,j)))
\/ (
Int (
cell ((
GoB f),1,j))))
\/
{((1
/ 2)
* (((
GoB f)
* (1,j))
+ ((
GoB f)
* (1,(j
+ 1)))))}) by
A7,
A6,
A12,
GOBOARD6: 68,
XBOOLE_1: 63;
then (
L~ f)
meets
{((1
/ 2)
* (((
GoB f)
* (1,j))
+ ((
GoB f)
* (1,(j
+ 1)))))} by
A15,
XBOOLE_1: 70;
then
consider k0 be
Nat such that 1
<= k0 and (k0
+ 1)
<= (
len f) and
A16: (
LSeg ((f
/. (k
+ 1)),((
GoB f)
* (1,j))))
= (
LSeg (f,k0)) by
A7,
A9,
A13,
A11,
GOBOARD7: 39,
ZFMISC_1: 50;
A17: (
LSeg (f,(k
+ 1)))
c= (
L~ f) & (1
+ 1)
= 2 by
TOPREAL3: 19;
(
LSeg (f,k0))
c= (
L~ f) & (
LSeg (f,k))
c= (
L~ f) by
TOPREAL3: 19;
hence contradiction by
A7,
A9,
A10,
A11,
A6,
A16,
A17,
A4,
A5,
GOBOARD7: 59;
end;
theorem ::
GOBOARD8:18
for k st 1
<= k & (k
+ 2)
<= (
len f) holds for j st 1
<= j & (j
+ 2)
<= (
width (
GoB f)) & (f
/. (k
+ 1))
= ((
GoB f)
* (1,(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* (1,j)) & (f
/. (k
+ 2))
= ((
GoB f)
* (2,(j
+ 1))) or (f
/. (k
+ 2))
= ((
GoB f)
* (1,j)) & (f
/. k)
= ((
GoB f)
* (2,(j
+ 1)))) holds (
LSeg ((((1
/ 2)
* (((
GoB f)
* (1,(j
+ 1)))
+ ((
GoB f)
* (1,(j
+ 2)))))
-
|[1,
0 ]|),((1
/ 2)
* (((
GoB f)
* (1,(j
+ 1)))
+ ((
GoB f)
* (2,(j
+ 2)))))))
misses (
L~ f)
proof
let k such that
A1: k
>= 1 and
A2: (k
+ 2)
<= (
len f);
A3: ((k
+ 1)
+ 1)
= (k
+ (1
+ 1));
then (k
+ 1)
< (
len f) by
A2,
NAT_1: 13;
then
A4: (
LSeg (f,k))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A1,
TOPREAL1:def 3;
1
<= (k
+ 1) by
NAT_1: 11;
then
A5: (
LSeg (f,(k
+ 1)))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A2,
A3,
TOPREAL1:def 3;
A6: 1
< (
len (
GoB f)) by
GOBOARD7: 32;
let j such that
A7: 1
<= j and
A8: (j
+ 2)
<= (
width (
GoB f)) and
A9: (f
/. (k
+ 1))
= ((
GoB f)
* (1,(j
+ 1))) and
A10: (f
/. k)
= ((
GoB f)
* (1,j)) & (f
/. (k
+ 2))
= ((
GoB f)
* (2,(j
+ 1))) or (f
/. (k
+ 2))
= ((
GoB f)
* (1,j)) & (f
/. k)
= ((
GoB f)
* (2,(j
+ 1)));
A11: ((j
+ 1)
+ 1)
= (j
+ (1
+ 1));
then
A12: (j
+ 1)
< (
width (
GoB f)) by
A8,
NAT_1: 13;
(
len (
GoB f))
<>
0 by
MATRIX_0:def 10;
then
A13: (
0
+ 1)
<= (
len (
GoB f)) by
NAT_1: 14;
then
A14: (
L~ f)
misses (
Int (
cell ((
GoB f),1,(j
+ 1)))) by
A12,
GOBOARD7: 12;
0
< (
len (
GoB f)) by
A13;
then (
L~ f)
misses (
Int (
cell ((
GoB f),
0 ,(j
+ 1)))) by
A12,
GOBOARD7: 12;
then
A15: (
L~ f)
misses ((
Int (
cell ((
GoB f),
0 ,(j
+ 1))))
\/ (
Int (
cell ((
GoB f),1,(j
+ 1))))) by
A14,
XBOOLE_1: 70;
A16: 1
<= (j
+ 1) by
NAT_1: 11;
assume (
LSeg ((((1
/ 2)
* (((
GoB f)
* (1,(j
+ 1)))
+ ((
GoB f)
* (1,(j
+ 2)))))
-
|[1,
0 ]|),((1
/ 2)
* (((
GoB f)
* (1,(j
+ 1)))
+ ((
GoB f)
* (2,(j
+ 2)))))))
meets (
L~ f);
then (
L~ f)
meets (((
Int (
cell ((
GoB f),
0 ,(j
+ 1))))
\/ (
Int (
cell ((
GoB f),1,(j
+ 1)))))
\/
{((1
/ 2)
* (((
GoB f)
* (1,(j
+ 1)))
+ ((
GoB f)
* (1,(j
+ 2)))))}) by
A11,
A12,
A6,
A16,
GOBOARD6: 68,
XBOOLE_1: 63;
then (
L~ f)
meets
{((1
/ 2)
* (((
GoB f)
* (1,(j
+ 1)))
+ ((
GoB f)
* (1,(j
+ 2)))))} by
A15,
XBOOLE_1: 70;
then
consider k0 be
Nat such that 1
<= k0 and (k0
+ 1)
<= (
len f) and
A17: (
LSeg ((f
/. (k
+ 1)),((
GoB f)
* (1,(j
+ 2)))))
= (
LSeg (f,k0)) by
A8,
A9,
A13,
A11,
A16,
GOBOARD7: 39,
ZFMISC_1: 50;
A18: (
LSeg (f,(k
+ 1)))
c= (
L~ f) & (1
+ 1)
= 2 by
TOPREAL3: 19;
(
LSeg (f,k0))
c= (
L~ f) & (
LSeg (f,k))
c= (
L~ f) by
TOPREAL3: 19;
hence contradiction by
A7,
A9,
A10,
A12,
A6,
A17,
A4,
A18,
A5,
GOBOARD7: 59;
end;
theorem ::
GOBOARD8:19
for k st 1
<= k & (k
+ 2)
<= (
len f) holds for j st 1
<= j & (j
+ 2)
<= (
width (
GoB f)) & (f
/. (k
+ 1))
= ((
GoB f)
* ((
len (
GoB f)),(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* ((
len (
GoB f)),(j
+ 2))) & (f
/. (k
+ 2))
= ((
GoB f)
* (((
len (
GoB f))
-' 1),(j
+ 1))) or (f
/. (k
+ 2))
= ((
GoB f)
* ((
len (
GoB f)),(j
+ 2))) & (f
/. k)
= ((
GoB f)
* (((
len (
GoB f))
-' 1),(j
+ 1)))) holds (
LSeg (((1
/ 2)
* (((
GoB f)
* (((
len (
GoB f))
-' 1),j))
+ ((
GoB f)
* ((
len (
GoB f)),(j
+ 1))))),(((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),j))
+ ((
GoB f)
* ((
len (
GoB f)),(j
+ 1)))))
+
|[1,
0 ]|)))
misses (
L~ f)
proof
let k such that
A1: k
>= 1 and
A2: (k
+ 2)
<= (
len f);
A3: ((k
+ 1)
+ 1)
= (k
+ (1
+ 1));
then (k
+ 1)
< (
len f) by
A2,
NAT_1: 13;
then
A4: (
LSeg (f,(k
+ 1)))
c= (
L~ f) & (
LSeg (f,k))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A1,
TOPREAL1:def 3,
TOPREAL3: 19;
1
<= (k
+ 1) by
NAT_1: 11;
then
A5: (
LSeg (f,(k
+ 1)))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A2,
A3,
TOPREAL1:def 3;
let j such that
A6: 1
<= j and
A7: (j
+ 2)
<= (
width (
GoB f)) and
A8: (f
/. (k
+ 1))
= ((
GoB f)
* ((
len (
GoB f)),(j
+ 1))) and
A9: (f
/. k)
= ((
GoB f)
* ((
len (
GoB f)),(j
+ 2))) & (f
/. (k
+ 2))
= ((
GoB f)
* (((
len (
GoB f))
-' 1),(j
+ 1))) or (f
/. (k
+ 2))
= ((
GoB f)
* ((
len (
GoB f)),(j
+ 2))) & (f
/. k)
= ((
GoB f)
* (((
len (
GoB f))
-' 1),(j
+ 1)));
((j
+ 1)
+ 1)
= (j
+ (1
+ 1));
then
A10: (j
+ 1)
< (
width (
GoB f)) by
A7,
NAT_1: 13;
then
A11: j
< (
width (
GoB f)) by
NAT_1: 13;
then
A12: (
L~ f)
misses (
Int (
cell ((
GoB f),(
len (
GoB f)),j))) by
GOBOARD7: 12;
assume
A13: (
LSeg (((1
/ 2)
* (((
GoB f)
* (((
len (
GoB f))
-' 1),j))
+ ((
GoB f)
* ((
len (
GoB f)),(j
+ 1))))),(((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),j))
+ ((
GoB f)
* ((
len (
GoB f)),(j
+ 1)))))
+
|[1,
0 ]|)))
meets (
L~ f);
A14: 1
< (
len (
GoB f)) by
GOBOARD7: 32;
then
A15: (((
len (
GoB f))
-' 1)
+ 1)
= (
len (
GoB f)) by
XREAL_1: 235;
then
A16: ((
len (
GoB f))
-' 1)
< (
len (
GoB f)) by
NAT_1: 13;
then (
L~ f)
misses (
Int (
cell ((
GoB f),((
len (
GoB f))
-' 1),j))) by
A11,
GOBOARD7: 12;
then
A17: (
L~ f)
misses ((
Int (
cell ((
GoB f),((
len (
GoB f))
-' 1),j)))
\/ (
Int (
cell ((
GoB f),(
len (
GoB f)),j)))) by
A12,
XBOOLE_1: 70;
A18: 1
<= ((
len (
GoB f))
-' 1) by
A14,
A15,
NAT_1: 13;
then ((1
/ 2)
* (((
GoB f)
* (((
len (
GoB f))
-' 1),j))
+ ((
GoB f)
* ((
len (
GoB f)),(j
+ 1)))))
= ((1
/ 2)
* (((
GoB f)
* (((
len (
GoB f))
-' 1),(j
+ 1)))
+ ((
GoB f)
* ((
len (
GoB f)),j)))) by
A6,
A15,
A10,
GOBOARD7: 9;
then (
L~ f)
meets (((
Int (
cell ((
GoB f),((
len (
GoB f))
-' 1),j)))
\/ (
Int (
cell ((
GoB f),(
len (
GoB f)),j))))
\/
{((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),j))
+ ((
GoB f)
* ((
len (
GoB f)),(j
+ 1)))))}) by
A6,
A14,
A11,
A13,
GOBOARD6: 69,
XBOOLE_1: 63;
then (
L~ f)
meets
{((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),j))
+ ((
GoB f)
* ((
len (
GoB f)),(j
+ 1)))))} by
A17,
XBOOLE_1: 70;
then
consider k0 be
Nat such that 1
<= k0 and (k0
+ 1)
<= (
len f) and
A19: (
LSeg ((f
/. (k
+ 1)),((
GoB f)
* ((
len (
GoB f)),j))))
= (
LSeg (f,k0)) by
A6,
A8,
A14,
A10,
GOBOARD7: 39,
ZFMISC_1: 50;
(
LSeg (f,k0))
c= (
L~ f) & (
LSeg (f,k))
c= (
L~ f) by
TOPREAL3: 19;
hence contradiction by
A6,
A8,
A9,
A15,
A18,
A16,
A10,
A19,
A4,
A5,
GOBOARD7: 60;
end;
theorem ::
GOBOARD8:20
for k st 1
<= k & (k
+ 2)
<= (
len f) holds for j st 1
<= j & (j
+ 2)
<= (
width (
GoB f)) & (f
/. (k
+ 1))
= ((
GoB f)
* ((
len (
GoB f)),(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* ((
len (
GoB f)),j)) & (f
/. (k
+ 2))
= ((
GoB f)
* (((
len (
GoB f))
-' 1),(j
+ 1))) or (f
/. (k
+ 2))
= ((
GoB f)
* ((
len (
GoB f)),j)) & (f
/. k)
= ((
GoB f)
* (((
len (
GoB f))
-' 1),(j
+ 1)))) holds (
LSeg (((1
/ 2)
* (((
GoB f)
* (((
len (
GoB f))
-' 1),(j
+ 1)))
+ ((
GoB f)
* ((
len (
GoB f)),(j
+ 2))))),(((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),(j
+ 1)))
+ ((
GoB f)
* ((
len (
GoB f)),(j
+ 2)))))
+
|[1,
0 ]|)))
misses (
L~ f)
proof
let k such that
A1: k
>= 1 and
A2: (k
+ 2)
<= (
len f);
A3: ((k
+ 1)
+ 1)
= (k
+ (1
+ 1));
then (k
+ 1)
< (
len f) by
A2,
NAT_1: 13;
then
A4: (
LSeg (f,(k
+ 1)))
c= (
L~ f) & (
LSeg (f,k))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A1,
TOPREAL1:def 3,
TOPREAL3: 19;
1
<= (k
+ 1) by
NAT_1: 11;
then
A5: (
LSeg (f,(k
+ 1)))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A2,
A3,
TOPREAL1:def 3;
let j such that
A6: 1
<= j and
A7: (j
+ 2)
<= (
width (
GoB f)) and
A8: (f
/. (k
+ 1))
= ((
GoB f)
* ((
len (
GoB f)),(j
+ 1))) and
A9: (f
/. k)
= ((
GoB f)
* ((
len (
GoB f)),j)) & (f
/. (k
+ 2))
= ((
GoB f)
* (((
len (
GoB f))
-' 1),(j
+ 1))) or (f
/. (k
+ 2))
= ((
GoB f)
* ((
len (
GoB f)),j)) & (f
/. k)
= ((
GoB f)
* (((
len (
GoB f))
-' 1),(j
+ 1)));
A10: ((j
+ 1)
+ 1)
= (j
+ (1
+ 1));
then
A11: (j
+ 1)
< (
width (
GoB f)) by
A7,
NAT_1: 13;
then
A12: (
L~ f)
misses (
Int (
cell ((
GoB f),(
len (
GoB f)),(j
+ 1)))) by
GOBOARD7: 12;
A13: 1
<= (
len (
GoB f)) by
GOBOARD7: 32;
then
A14: (((
len (
GoB f))
-' 1)
+ 1)
= (
len (
GoB f)) by
XREAL_1: 235;
then
A15: ((
len (
GoB f))
-' 1)
< (
len (
GoB f)) by
NAT_1: 13;
then (
L~ f)
misses (
Int (
cell ((
GoB f),((
len (
GoB f))
-' 1),(j
+ 1)))) by
A11,
GOBOARD7: 12;
then
A16: (
L~ f)
misses ((
Int (
cell ((
GoB f),((
len (
GoB f))
-' 1),(j
+ 1))))
\/ (
Int (
cell ((
GoB f),(
len (
GoB f)),(j
+ 1))))) by
A12,
XBOOLE_1: 70;
assume
A17: (
LSeg (((1
/ 2)
* (((
GoB f)
* (((
len (
GoB f))
-' 1),(j
+ 1)))
+ ((
GoB f)
* ((
len (
GoB f)),(j
+ 2))))),(((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),(j
+ 1)))
+ ((
GoB f)
* ((
len (
GoB f)),(j
+ 2)))))
+
|[1,
0 ]|)))
meets (
L~ f);
A18: 1
<= (j
+ 1) by
NAT_1: 11;
A19: 1
< (
len (
GoB f)) by
GOBOARD7: 32;
then
A20: 1
<= ((
len (
GoB f))
-' 1) by
A14,
NAT_1: 13;
then ((1
/ 2)
* (((
GoB f)
* (((
len (
GoB f))
-' 1),(j
+ 1)))
+ ((
GoB f)
* ((
len (
GoB f)),(j
+ 2)))))
= ((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),(j
+ 1)))
+ ((
GoB f)
* (((
len (
GoB f))
-' 1),(j
+ 2))))) by
A7,
A14,
A10,
A18,
GOBOARD7: 9;
then (
L~ f)
meets (((
Int (
cell ((
GoB f),((
len (
GoB f))
-' 1),(j
+ 1))))
\/ (
Int (
cell ((
GoB f),(
len (
GoB f)),(j
+ 1)))))
\/
{((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),(j
+ 1)))
+ ((
GoB f)
* ((
len (
GoB f)),(j
+ 2)))))}) by
A19,
A10,
A11,
A18,
A17,
GOBOARD6: 69,
XBOOLE_1: 63;
then (
L~ f)
meets
{((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),(j
+ 1)))
+ ((
GoB f)
* ((
len (
GoB f)),(j
+ 2)))))} by
A16,
XBOOLE_1: 70;
then
consider k0 be
Nat such that 1
<= k0 and (k0
+ 1)
<= (
len f) and
A21: (
LSeg ((f
/. (k
+ 1)),((
GoB f)
* ((
len (
GoB f)),(j
+ 2)))))
= (
LSeg (f,k0)) by
A7,
A8,
A13,
A10,
A18,
GOBOARD7: 39,
ZFMISC_1: 50;
(
LSeg (f,k0))
c= (
L~ f) & (
LSeg (f,k))
c= (
L~ f) by
TOPREAL3: 19;
hence contradiction by
A6,
A8,
A9,
A14,
A20,
A15,
A11,
A21,
A4,
A5,
GOBOARD7: 60;
end;
reserve P for
Subset of (
TOP-REAL 2);
theorem ::
GOBOARD8:21
Th21: (for p st p
in P holds (p
`1 )
< (((
GoB f)
* (1,1))
`1 )) implies P
misses (
L~ f)
proof
assume
A1: for p st p
in P holds (p
`1 )
< (((
GoB f)
* (1,1))
`1 );
assume P
meets (
L~ f);
then
consider x be
object such that
A2: x
in P and
A3: x
in (
L~ f) by
XBOOLE_0: 3;
reconsider x as
Point of (
TOP-REAL 2) by
A2;
A4: (x
`1 )
< (((
GoB f)
* (1,1))
`1 ) by
A1,
A2;
A5: 1
< (
width (
GoB f)) by
GOBOARD7: 33;
A6: f
is_sequence_on (
GoB f) by
GOBOARD5:def 5;
consider i such that
A7: 1
<= i and
A8: (i
+ 1)
<= (
len f) and
A9: x
in (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
A3,
SPPOL_2: 14;
per cases ;
suppose ((f
/. i)
`1 )
<= ((f
/. (i
+ 1))
`1 );
then
A10: ((f
/. i)
`1 )
<= (x
`1 ) by
A9,
TOPREAL1: 3;
i
<= (
len f) by
A8,
NAT_1: 13;
then i
in (
dom f) by
A7,
FINSEQ_3: 25;
then
consider i1, j1 such that
A11:
[i1, j1]
in (
Indices (
GoB f)) and
A12: (f
/. i)
= ((
GoB f)
* (i1,j1)) by
A6,
GOBOARD1:def 9;
A13: 1
<= i1 by
A11,
MATRIX_0: 32;
A14: i1
<= (
len (
GoB f)) by
A11,
MATRIX_0: 32;
1
<= j1 & j1
<= (
width (
GoB f)) by
A11,
MATRIX_0: 32;
then
A15: ((f
/. i)
`1 )
= (((
GoB f)
* (i1,1))
`1 ) by
A12,
A13,
A14,
GOBOARD5: 2;
then 1
< i1 by
A4,
A10,
A13,
XXREAL_0: 1;
then (((
GoB f)
* (1,1))
`1 )
< ((f
/. i)
`1 ) by
A5,
A14,
A15,
GOBOARD5: 3;
hence contradiction by
A1,
A2,
A10,
XXREAL_0: 2;
end;
suppose ((f
/. i)
`1 )
>= ((f
/. (i
+ 1))
`1 );
then
A16: ((f
/. (i
+ 1))
`1 )
<= (x
`1 ) by
A9,
TOPREAL1: 3;
1
<= (i
+ 1) by
NAT_1: 11;
then (i
+ 1)
in (
dom f) by
A8,
FINSEQ_3: 25;
then
consider i1, j1 such that
A17:
[i1, j1]
in (
Indices (
GoB f)) and
A18: (f
/. (i
+ 1))
= ((
GoB f)
* (i1,j1)) by
A6,
GOBOARD1:def 9;
A19: 1
<= i1 by
A17,
MATRIX_0: 32;
A20: i1
<= (
len (
GoB f)) by
A17,
MATRIX_0: 32;
1
<= j1 & j1
<= (
width (
GoB f)) by
A17,
MATRIX_0: 32;
then
A21: ((f
/. (i
+ 1))
`1 )
= (((
GoB f)
* (i1,1))
`1 ) by
A18,
A19,
A20,
GOBOARD5: 2;
then 1
< i1 by
A4,
A16,
A19,
XXREAL_0: 1;
then (((
GoB f)
* (1,1))
`1 )
< ((f
/. (i
+ 1))
`1 ) by
A5,
A20,
A21,
GOBOARD5: 3;
hence contradiction by
A1,
A2,
A16,
XXREAL_0: 2;
end;
end;
theorem ::
GOBOARD8:22
Th22: (for p st p
in P holds (p
`1 )
> (((
GoB f)
* ((
len (
GoB f)),1))
`1 )) implies P
misses (
L~ f)
proof
assume
A1: for p st p
in P holds (p
`1 )
> (((
GoB f)
* ((
len (
GoB f)),1))
`1 );
assume P
meets (
L~ f);
then
consider x be
object such that
A2: x
in P and
A3: x
in (
L~ f) by
XBOOLE_0: 3;
reconsider x as
Point of (
TOP-REAL 2) by
A2;
A4: (x
`1 )
> (((
GoB f)
* ((
len (
GoB f)),1))
`1 ) by
A1,
A2;
A5: 1
< (
width (
GoB f)) by
GOBOARD7: 33;
A6: f
is_sequence_on (
GoB f) by
GOBOARD5:def 5;
consider i such that
A7: 1
<= i and
A8: (i
+ 1)
<= (
len f) and
A9: x
in (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
A3,
SPPOL_2: 14;
per cases ;
suppose ((f
/. i)
`1 )
>= ((f
/. (i
+ 1))
`1 );
then
A10: ((f
/. i)
`1 )
>= (x
`1 ) by
A9,
TOPREAL1: 3;
i
<= (
len f) by
A8,
NAT_1: 13;
then i
in (
dom f) by
A7,
FINSEQ_3: 25;
then
consider i1, j1 such that
A11:
[i1, j1]
in (
Indices (
GoB f)) and
A12: (f
/. i)
= ((
GoB f)
* (i1,j1)) by
A6,
GOBOARD1:def 9;
A13: 1
<= i1 by
A11,
MATRIX_0: 32;
A14: i1
<= (
len (
GoB f)) by
A11,
MATRIX_0: 32;
1
<= j1 & j1
<= (
width (
GoB f)) by
A11,
MATRIX_0: 32;
then
A15: ((f
/. i)
`1 )
= (((
GoB f)
* (i1,1))
`1 ) by
A12,
A13,
A14,
GOBOARD5: 2;
then i1
< (
len (
GoB f)) by
A4,
A10,
A14,
XXREAL_0: 1;
then (((
GoB f)
* ((
len (
GoB f)),1))
`1 )
> ((f
/. i)
`1 ) by
A5,
A13,
A15,
GOBOARD5: 3;
hence contradiction by
A1,
A2,
A10,
XXREAL_0: 2;
end;
suppose ((f
/. i)
`1 )
<= ((f
/. (i
+ 1))
`1 );
then
A16: ((f
/. (i
+ 1))
`1 )
>= (x
`1 ) by
A9,
TOPREAL1: 3;
1
<= (i
+ 1) by
NAT_1: 11;
then (i
+ 1)
in (
dom f) by
A8,
FINSEQ_3: 25;
then
consider i1, j1 such that
A17:
[i1, j1]
in (
Indices (
GoB f)) and
A18: (f
/. (i
+ 1))
= ((
GoB f)
* (i1,j1)) by
A6,
GOBOARD1:def 9;
A19: 1
<= i1 by
A17,
MATRIX_0: 32;
A20: i1
<= (
len (
GoB f)) by
A17,
MATRIX_0: 32;
1
<= j1 & j1
<= (
width (
GoB f)) by
A17,
MATRIX_0: 32;
then
A21: ((f
/. (i
+ 1))
`1 )
= (((
GoB f)
* (i1,1))
`1 ) by
A18,
A19,
A20,
GOBOARD5: 2;
then i1
< (
len (
GoB f)) by
A4,
A16,
A20,
XXREAL_0: 1;
then (((
GoB f)
* ((
len (
GoB f)),1))
`1 )
> ((f
/. (i
+ 1))
`1 ) by
A5,
A19,
A21,
GOBOARD5: 3;
hence contradiction by
A1,
A2,
A16,
XXREAL_0: 2;
end;
end;
theorem ::
GOBOARD8:23
Th23: (for p st p
in P holds (p
`2 )
< (((
GoB f)
* (1,1))
`2 )) implies P
misses (
L~ f)
proof
assume
A1: for p st p
in P holds (p
`2 )
< (((
GoB f)
* (1,1))
`2 );
assume P
meets (
L~ f);
then
consider x be
object such that
A2: x
in P and
A3: x
in (
L~ f) by
XBOOLE_0: 3;
reconsider x as
Point of (
TOP-REAL 2) by
A2;
A4: (x
`2 )
< (((
GoB f)
* (1,1))
`2 ) by
A1,
A2;
A5: 1
< (
len (
GoB f)) by
GOBOARD7: 32;
A6: f
is_sequence_on (
GoB f) by
GOBOARD5:def 5;
consider j such that
A7: 1
<= j and
A8: (j
+ 1)
<= (
len f) and
A9: x
in (
LSeg ((f
/. j),(f
/. (j
+ 1)))) by
A3,
SPPOL_2: 14;
per cases ;
suppose ((f
/. j)
`2 )
<= ((f
/. (j
+ 1))
`2 );
then
A10: ((f
/. j)
`2 )
<= (x
`2 ) by
A9,
TOPREAL1: 4;
j
<= (
len f) by
A8,
NAT_1: 13;
then j
in (
dom f) by
A7,
FINSEQ_3: 25;
then
consider i1, j1 such that
A11:
[i1, j1]
in (
Indices (
GoB f)) and
A12: (f
/. j)
= ((
GoB f)
* (i1,j1)) by
A6,
GOBOARD1:def 9;
A13: 1
<= j1 by
A11,
MATRIX_0: 32;
A14: j1
<= (
width (
GoB f)) by
A11,
MATRIX_0: 32;
1
<= i1 & i1
<= (
len (
GoB f)) by
A11,
MATRIX_0: 32;
then
A15: ((f
/. j)
`2 )
= (((
GoB f)
* (1,j1))
`2 ) by
A12,
A13,
A14,
GOBOARD5: 1;
then 1
< j1 by
A4,
A10,
A13,
XXREAL_0: 1;
then (((
GoB f)
* (1,1))
`2 )
< ((f
/. j)
`2 ) by
A5,
A14,
A15,
GOBOARD5: 4;
hence contradiction by
A1,
A2,
A10,
XXREAL_0: 2;
end;
suppose ((f
/. j)
`2 )
>= ((f
/. (j
+ 1))
`2 );
then
A16: ((f
/. (j
+ 1))
`2 )
<= (x
`2 ) by
A9,
TOPREAL1: 4;
1
<= (j
+ 1) by
NAT_1: 11;
then (j
+ 1)
in (
dom f) by
A8,
FINSEQ_3: 25;
then
consider i1, j1 such that
A17:
[i1, j1]
in (
Indices (
GoB f)) and
A18: (f
/. (j
+ 1))
= ((
GoB f)
* (i1,j1)) by
A6,
GOBOARD1:def 9;
A19: 1
<= j1 by
A17,
MATRIX_0: 32;
A20: j1
<= (
width (
GoB f)) by
A17,
MATRIX_0: 32;
1
<= i1 & i1
<= (
len (
GoB f)) by
A17,
MATRIX_0: 32;
then
A21: ((f
/. (j
+ 1))
`2 )
= (((
GoB f)
* (1,j1))
`2 ) by
A18,
A19,
A20,
GOBOARD5: 1;
then 1
< j1 by
A4,
A16,
A19,
XXREAL_0: 1;
then (((
GoB f)
* (1,1))
`2 )
< ((f
/. (j
+ 1))
`2 ) by
A5,
A20,
A21,
GOBOARD5: 4;
hence contradiction by
A1,
A2,
A16,
XXREAL_0: 2;
end;
end;
theorem ::
GOBOARD8:24
Th24: (for p st p
in P holds (p
`2 )
> (((
GoB f)
* (1,(
width (
GoB f))))
`2 )) implies P
misses (
L~ f)
proof
assume
A1: for p st p
in P holds (p
`2 )
> (((
GoB f)
* (1,(
width (
GoB f))))
`2 );
assume P
meets (
L~ f);
then
consider x be
object such that
A2: x
in P and
A3: x
in (
L~ f) by
XBOOLE_0: 3;
reconsider x as
Point of (
TOP-REAL 2) by
A2;
A4: (x
`2 )
> (((
GoB f)
* (1,(
width (
GoB f))))
`2 ) by
A1,
A2;
A5: 1
< (
len (
GoB f)) by
GOBOARD7: 32;
A6: f
is_sequence_on (
GoB f) by
GOBOARD5:def 5;
consider j such that
A7: 1
<= j and
A8: (j
+ 1)
<= (
len f) and
A9: x
in (
LSeg ((f
/. j),(f
/. (j
+ 1)))) by
A3,
SPPOL_2: 14;
per cases ;
suppose ((f
/. j)
`2 )
>= ((f
/. (j
+ 1))
`2 );
then
A10: ((f
/. j)
`2 )
>= (x
`2 ) by
A9,
TOPREAL1: 4;
j
<= (
len f) by
A8,
NAT_1: 13;
then j
in (
dom f) by
A7,
FINSEQ_3: 25;
then
consider i1, j1 such that
A11:
[i1, j1]
in (
Indices (
GoB f)) and
A12: (f
/. j)
= ((
GoB f)
* (i1,j1)) by
A6,
GOBOARD1:def 9;
A13: 1
<= j1 by
A11,
MATRIX_0: 32;
A14: j1
<= (
width (
GoB f)) by
A11,
MATRIX_0: 32;
1
<= i1 & i1
<= (
len (
GoB f)) by
A11,
MATRIX_0: 32;
then
A15: ((f
/. j)
`2 )
= (((
GoB f)
* (1,j1))
`2 ) by
A12,
A13,
A14,
GOBOARD5: 1;
then j1
< (
width (
GoB f)) by
A4,
A10,
A14,
XXREAL_0: 1;
then (((
GoB f)
* (1,(
width (
GoB f))))
`2 )
> ((f
/. j)
`2 ) by
A5,
A13,
A15,
GOBOARD5: 4;
hence contradiction by
A1,
A2,
A10,
XXREAL_0: 2;
end;
suppose ((f
/. j)
`2 )
<= ((f
/. (j
+ 1))
`2 );
then
A16: ((f
/. (j
+ 1))
`2 )
>= (x
`2 ) by
A9,
TOPREAL1: 4;
1
<= (j
+ 1) by
NAT_1: 11;
then (j
+ 1)
in (
dom f) by
A8,
FINSEQ_3: 25;
then
consider i1, j1 such that
A17:
[i1, j1]
in (
Indices (
GoB f)) and
A18: (f
/. (j
+ 1))
= ((
GoB f)
* (i1,j1)) by
A6,
GOBOARD1:def 9;
A19: 1
<= j1 by
A17,
MATRIX_0: 32;
A20: j1
<= (
width (
GoB f)) by
A17,
MATRIX_0: 32;
1
<= i1 & i1
<= (
len (
GoB f)) by
A17,
MATRIX_0: 32;
then
A21: ((f
/. (j
+ 1))
`2 )
= (((
GoB f)
* (1,j1))
`2 ) by
A18,
A19,
A20,
GOBOARD5: 1;
then j1
< (
width (
GoB f)) by
A4,
A16,
A20,
XXREAL_0: 1;
then (((
GoB f)
* (1,(
width (
GoB f))))
`2 )
> ((f
/. (j
+ 1))
`2 ) by
A5,
A19,
A21,
GOBOARD5: 4;
hence contradiction by
A1,
A2,
A16,
XXREAL_0: 2;
end;
end;
theorem ::
GOBOARD8:25
for i st 1
<= i & (i
+ 2)
<= (
len (
GoB f)) holds (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i,1))
+ ((
GoB f)
* ((i
+ 1),1))))
-
|[
0 , 1]|),(((1
/ 2)
* (((
GoB f)
* ((i
+ 1),1))
+ ((
GoB f)
* ((i
+ 2),1))))
-
|[
0 , 1]|)))
misses (
L~ f)
proof
let i such that
A1: 1
<= i and
A2: (i
+ 2)
<= (
len (
GoB f));
A3: 1
<= (
width (
GoB f)) by
GOBOARD7: 33;
now
A4: i
<= (i
+ 2) by
NAT_1: 11;
then i
<= (
len (
GoB f)) by
A2,
XXREAL_0: 2;
then
A5: (((
GoB f)
* (i,1))
`2 )
= (((
GoB f)
* (1,1))
`2 ) by
A1,
A3,
GOBOARD5: 1;
(i
+ 1)
<= (i
+ 2) by
XREAL_1: 6;
then 1
<= (i
+ 1) & (i
+ 1)
<= (
len (
GoB f)) by
A2,
NAT_1: 11,
XXREAL_0: 2;
then
A6: (((
GoB f)
* ((i
+ 1),1))
`2 )
= (((
GoB f)
* (1,1))
`2 ) by
A3,
GOBOARD5: 1;
1
<= (i
+ 2) by
A1,
A4,
XXREAL_0: 2;
then
A7: (((
GoB f)
* ((i
+ 2),1))
`2 )
= (((
GoB f)
* (1,1))
`2 ) by
A2,
A3,
GOBOARD5: 1;
((((1
/ 2)
* (((
GoB f)
* ((i
+ 1),1))
+ ((
GoB f)
* ((i
+ 2),1))))
-
|[
0 , 1]|)
`2 )
= ((((1
/ 2)
* (((
GoB f)
* ((i
+ 1),1))
+ ((
GoB f)
* ((i
+ 2),1))))
`2 )
- (
|[
0 , 1]|
`2 )) by
TOPREAL3: 3
.= (((1
/ 2)
* ((((
GoB f)
* ((i
+ 1),1))
+ ((
GoB f)
* ((i
+ 2),1)))
`2 ))
- (
|[
0 , 1]|
`2 )) by
TOPREAL3: 4
.= (((1
/ 2)
* ((((
GoB f)
* (1,1))
`2 )
+ (((
GoB f)
* (1,1))
`2 )))
- (
|[
0 , 1]|
`2 )) by
A6,
A7,
TOPREAL3: 2
.= ((1
* (((
GoB f)
* (1,1))
`2 ))
- 1) by
EUCLID: 52;
then
A8: (((1
/ 2)
* (((
GoB f)
* ((i
+ 1),1))
+ ((
GoB f)
* ((i
+ 2),1))))
-
|[
0 , 1]|)
=
|[((((1
/ 2)
* (((
GoB f)
* ((i
+ 1),1))
+ ((
GoB f)
* ((i
+ 2),1))))
-
|[
0 , 1]|)
`1 ), ((((
GoB f)
* (1,1))
`2 )
- 1)]| by
EUCLID: 53;
((((1
/ 2)
* (((
GoB f)
* (i,1))
+ ((
GoB f)
* ((i
+ 1),1))))
-
|[
0 , 1]|)
`2 )
= ((((1
/ 2)
* (((
GoB f)
* (i,1))
+ ((
GoB f)
* ((i
+ 1),1))))
`2 )
- (
|[
0 , 1]|
`2 )) by
TOPREAL3: 3
.= (((1
/ 2)
* ((((
GoB f)
* (i,1))
+ ((
GoB f)
* ((i
+ 1),1)))
`2 ))
- (
|[
0 , 1]|
`2 )) by
TOPREAL3: 4
.= (((1
/ 2)
* ((((
GoB f)
* (1,1))
`2 )
+ (((
GoB f)
* (1,1))
`2 )))
- (
|[
0 , 1]|
`2 )) by
A5,
A6,
TOPREAL3: 2
.= ((1
* (((
GoB f)
* (1,1))
`2 ))
- 1) by
EUCLID: 52;
then
A9: (((1
/ 2)
* (((
GoB f)
* (i,1))
+ ((
GoB f)
* ((i
+ 1),1))))
-
|[
0 , 1]|)
=
|[((((1
/ 2)
* (((
GoB f)
* (i,1))
+ ((
GoB f)
* ((i
+ 1),1))))
-
|[
0 , 1]|)
`1 ), ((((
GoB f)
* (1,1))
`2 )
- 1)]| by
EUCLID: 53;
let p;
assume p
in (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i,1))
+ ((
GoB f)
* ((i
+ 1),1))))
-
|[
0 , 1]|),(((1
/ 2)
* (((
GoB f)
* ((i
+ 1),1))
+ ((
GoB f)
* ((i
+ 2),1))))
-
|[
0 , 1]|)));
then (p
`2 )
= ((((
GoB f)
* (1,1))
`2 )
- 1) by
A9,
A8,
TOPREAL3: 12;
hence (p
`2 )
< (((
GoB f)
* (1,1))
`2 ) by
XREAL_1: 44;
end;
hence thesis by
Th23;
end;
theorem ::
GOBOARD8:26
(
LSeg ((((
GoB f)
* (1,1))
-
|[1, 1]|),(((1
/ 2)
* (((
GoB f)
* (1,1))
+ ((
GoB f)
* (2,1))))
-
|[
0 , 1]|)))
misses (
L~ f)
proof
A1: 1
<= (
width (
GoB f)) by
GOBOARD7: 33;
now
1
< (
len (
GoB f)) by
GOBOARD7: 32;
then (1
+ 1)
<= (
len (
GoB f)) by
NAT_1: 13;
then
A2: (((
GoB f)
* (2,1))
`2 )
= (((
GoB f)
* (1,1))
`2 ) by
A1,
GOBOARD5: 1;
((((1
/ 2)
* (((
GoB f)
* (1,1))
+ ((
GoB f)
* (2,1))))
-
|[
0 , 1]|)
`2 )
= ((((1
/ 2)
* (((
GoB f)
* (1,1))
+ ((
GoB f)
* (2,1))))
`2 )
- (
|[
0 , 1]|
`2 )) by
TOPREAL3: 3
.= (((1
/ 2)
* ((((
GoB f)
* (1,1))
+ ((
GoB f)
* (2,1)))
`2 ))
- (
|[
0 , 1]|
`2 )) by
TOPREAL3: 4
.= (((1
/ 2)
* ((((
GoB f)
* (1,1))
`2 )
+ (((
GoB f)
* (1,1))
`2 )))
- (
|[
0 , 1]|
`2 )) by
A2,
TOPREAL3: 2
.= ((1
* (((
GoB f)
* (1,1))
`2 ))
- 1) by
EUCLID: 52;
then
A3: (((1
/ 2)
* (((
GoB f)
* (1,1))
+ ((
GoB f)
* (2,1))))
-
|[
0 , 1]|)
=
|[((((1
/ 2)
* (((
GoB f)
* (1,1))
+ ((
GoB f)
* (2,1))))
-
|[
0 , 1]|)
`1 ), ((((
GoB f)
* (1,1))
`2 )
- 1)]| by
EUCLID: 53;
((((
GoB f)
* (1,1))
-
|[1, 1]|)
`2 )
= ((((
GoB f)
* (1,1))
`2 )
- (
|[1, 1]|
`2 )) by
TOPREAL3: 3
.= ((((
GoB f)
* (1,1))
`2 )
- 1) by
EUCLID: 52;
then
A4: (((
GoB f)
* (1,1))
-
|[1, 1]|)
=
|[((((
GoB f)
* (1,1))
-
|[1, 1]|)
`1 ), ((((
GoB f)
* (1,1))
`2 )
- 1)]| by
EUCLID: 53;
let p;
assume p
in (
LSeg ((((
GoB f)
* (1,1))
-
|[1, 1]|),(((1
/ 2)
* (((
GoB f)
* (1,1))
+ ((
GoB f)
* (2,1))))
-
|[
0 , 1]|)));
then (p
`2 )
= ((((
GoB f)
* (1,1))
`2 )
- 1) by
A4,
A3,
TOPREAL3: 12;
hence (p
`2 )
< (((
GoB f)
* (1,1))
`2 ) by
XREAL_1: 44;
end;
hence thesis by
Th23;
end;
theorem ::
GOBOARD8:27
(
LSeg ((((1
/ 2)
* (((
GoB f)
* (((
len (
GoB f))
-' 1),1))
+ ((
GoB f)
* ((
len (
GoB f)),1))))
-
|[
0 , 1]|),(((
GoB f)
* ((
len (
GoB f)),1))
+
|[1, (
- 1)]|)))
misses (
L~ f)
proof
A1: 1
<= (
width (
GoB f)) by
GOBOARD7: 33;
now
A2: 1
< (
len (
GoB f)) by
GOBOARD7: 32;
then
A3: (((
len (
GoB f))
-' 1)
+ 1)
= (
len (
GoB f)) by
XREAL_1: 235;
then
A4: ((
len (
GoB f))
-' 1)
<= (
len (
GoB f)) by
NAT_1: 11;
A5: (((
GoB f)
* ((
len (
GoB f)),1))
`2 )
= (((
GoB f)
* (1,1))
`2 ) by
A1,
A2,
GOBOARD5: 1;
then ((((
GoB f)
* ((
len (
GoB f)),1))
+
|[1, (
- 1)]|)
`2 )
= ((((
GoB f)
* (1,1))
`2 )
+ (
|[1, (
- 1)]|
`2 )) by
TOPREAL3: 2
.= ((((
GoB f)
* (1,1))
`2 )
+ (
- 1)) by
EUCLID: 52
.= ((((
GoB f)
* (1,1))
`2 )
- 1);
then
A6: (((
GoB f)
* ((
len (
GoB f)),1))
+
|[1, (
- 1)]|)
=
|[((((
GoB f)
* ((
len (
GoB f)),1))
+
|[1, (
- 1)]|)
`1 ), ((((
GoB f)
* (1,1))
`2 )
- 1)]| by
EUCLID: 53;
1
<= ((
len (
GoB f))
-' 1) by
A2,
A3,
NAT_1: 13;
then
A7: (((
GoB f)
* (((
len (
GoB f))
-' 1),1))
`2 )
= (((
GoB f)
* (1,1))
`2 ) by
A1,
A4,
GOBOARD5: 1;
((((1
/ 2)
* (((
GoB f)
* (((
len (
GoB f))
-' 1),1))
+ ((
GoB f)
* ((
len (
GoB f)),1))))
-
|[
0 , 1]|)
`2 )
= ((((1
/ 2)
* (((
GoB f)
* (((
len (
GoB f))
-' 1),1))
+ ((
GoB f)
* ((
len (
GoB f)),1))))
`2 )
- (
|[
0 , 1]|
`2 )) by
TOPREAL3: 3
.= (((1
/ 2)
* ((((
GoB f)
* (((
len (
GoB f))
-' 1),1))
+ ((
GoB f)
* ((
len (
GoB f)),1)))
`2 ))
- (
|[
0 , 1]|
`2 )) by
TOPREAL3: 4
.= (((1
/ 2)
* ((((
GoB f)
* (1,1))
`2 )
+ (((
GoB f)
* (1,1))
`2 )))
- (
|[
0 , 1]|
`2 )) by
A7,
A5,
TOPREAL3: 2
.= ((1
* (((
GoB f)
* (1,1))
`2 ))
- 1) by
EUCLID: 52;
then
A8: (((1
/ 2)
* (((
GoB f)
* (((
len (
GoB f))
-' 1),1))
+ ((
GoB f)
* ((
len (
GoB f)),1))))
-
|[
0 , 1]|)
=
|[((((1
/ 2)
* (((
GoB f)
* (((
len (
GoB f))
-' 1),1))
+ ((
GoB f)
* ((
len (
GoB f)),1))))
-
|[
0 , 1]|)
`1 ), ((((
GoB f)
* (1,1))
`2 )
- 1)]| by
EUCLID: 53;
let p;
assume p
in (
LSeg ((((1
/ 2)
* (((
GoB f)
* (((
len (
GoB f))
-' 1),1))
+ ((
GoB f)
* ((
len (
GoB f)),1))))
-
|[
0 , 1]|),(((
GoB f)
* ((
len (
GoB f)),1))
+
|[1, (
- 1)]|)));
then (p
`2 )
= ((((
GoB f)
* (1,1))
`2 )
- 1) by
A8,
A6,
TOPREAL3: 12;
hence (p
`2 )
< (((
GoB f)
* (1,1))
`2 ) by
XREAL_1: 44;
end;
hence thesis by
Th23;
end;
theorem ::
GOBOARD8:28
for i st 1
<= i & (i
+ 2)
<= (
len (
GoB f)) holds (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i,(
width (
GoB f))))
+ ((
GoB f)
* ((i
+ 1),(
width (
GoB f))))))
+
|[
0 , 1]|),(((1
/ 2)
* (((
GoB f)
* ((i
+ 1),(
width (
GoB f))))
+ ((
GoB f)
* ((i
+ 2),(
width (
GoB f))))))
+
|[
0 , 1]|)))
misses (
L~ f)
proof
let i such that
A1: 1
<= i and
A2: (i
+ 2)
<= (
len (
GoB f));
A3: 1
<= (
width (
GoB f)) by
GOBOARD7: 33;
now
A4: i
<= (i
+ 2) by
NAT_1: 11;
then i
<= (
len (
GoB f)) by
A2,
XXREAL_0: 2;
then
A5: (((
GoB f)
* (i,(
width (
GoB f))))
`2 )
= (((
GoB f)
* (1,(
width (
GoB f))))
`2 ) by
A1,
A3,
GOBOARD5: 1;
(i
+ 1)
<= (i
+ 2) by
XREAL_1: 6;
then 1
<= (i
+ 1) & (i
+ 1)
<= (
len (
GoB f)) by
A2,
NAT_1: 11,
XXREAL_0: 2;
then
A6: (((
GoB f)
* ((i
+ 1),(
width (
GoB f))))
`2 )
= (((
GoB f)
* (1,(
width (
GoB f))))
`2 ) by
A3,
GOBOARD5: 1;
1
<= (i
+ 2) by
A1,
A4,
XXREAL_0: 2;
then
A7: (((
GoB f)
* ((i
+ 2),(
width (
GoB f))))
`2 )
= (((
GoB f)
* (1,(
width (
GoB f))))
`2 ) by
A2,
A3,
GOBOARD5: 1;
((((1
/ 2)
* (((
GoB f)
* ((i
+ 1),(
width (
GoB f))))
+ ((
GoB f)
* ((i
+ 2),(
width (
GoB f))))))
+
|[
0 , 1]|)
`2 )
= ((((1
/ 2)
* (((
GoB f)
* ((i
+ 1),(
width (
GoB f))))
+ ((
GoB f)
* ((i
+ 2),(
width (
GoB f))))))
`2 )
+ (
|[
0 , 1]|
`2 )) by
TOPREAL3: 2
.= (((1
/ 2)
* ((((
GoB f)
* ((i
+ 1),(
width (
GoB f))))
+ ((
GoB f)
* ((i
+ 2),(
width (
GoB f)))))
`2 ))
+ (
|[
0 , 1]|
`2 )) by
TOPREAL3: 4
.= (((1
/ 2)
* ((((
GoB f)
* (1,(
width (
GoB f))))
`2 )
+ (((
GoB f)
* (1,(
width (
GoB f))))
`2 )))
+ (
|[
0 , 1]|
`2 )) by
A6,
A7,
TOPREAL3: 2
.= ((1
* (((
GoB f)
* (1,(
width (
GoB f))))
`2 ))
+ 1) by
EUCLID: 52;
then
A8: (((1
/ 2)
* (((
GoB f)
* ((i
+ 1),(
width (
GoB f))))
+ ((
GoB f)
* ((i
+ 2),(
width (
GoB f))))))
+
|[
0 , 1]|)
=
|[((((1
/ 2)
* (((
GoB f)
* ((i
+ 1),(
width (
GoB f))))
+ ((
GoB f)
* ((i
+ 2),(
width (
GoB f))))))
+
|[
0 , 1]|)
`1 ), ((((
GoB f)
* (1,(
width (
GoB f))))
`2 )
+ 1)]| by
EUCLID: 53;
((((1
/ 2)
* (((
GoB f)
* (i,(
width (
GoB f))))
+ ((
GoB f)
* ((i
+ 1),(
width (
GoB f))))))
+
|[
0 , 1]|)
`2 )
= ((((1
/ 2)
* (((
GoB f)
* (i,(
width (
GoB f))))
+ ((
GoB f)
* ((i
+ 1),(
width (
GoB f))))))
`2 )
+ (
|[
0 , 1]|
`2 )) by
TOPREAL3: 2
.= (((1
/ 2)
* ((((
GoB f)
* (i,(
width (
GoB f))))
+ ((
GoB f)
* ((i
+ 1),(
width (
GoB f)))))
`2 ))
+ (
|[
0 , 1]|
`2 )) by
TOPREAL3: 4
.= (((1
/ 2)
* ((((
GoB f)
* (1,(
width (
GoB f))))
`2 )
+ (((
GoB f)
* (1,(
width (
GoB f))))
`2 )))
+ (
|[
0 , 1]|
`2 )) by
A5,
A6,
TOPREAL3: 2
.= ((1
* (((
GoB f)
* (1,(
width (
GoB f))))
`2 ))
+ 1) by
EUCLID: 52;
then
A9: (((1
/ 2)
* (((
GoB f)
* (i,(
width (
GoB f))))
+ ((
GoB f)
* ((i
+ 1),(
width (
GoB f))))))
+
|[
0 , 1]|)
=
|[((((1
/ 2)
* (((
GoB f)
* (i,(
width (
GoB f))))
+ ((
GoB f)
* ((i
+ 1),(
width (
GoB f))))))
+
|[
0 , 1]|)
`1 ), ((((
GoB f)
* (1,(
width (
GoB f))))
`2 )
+ 1)]| by
EUCLID: 53;
let p;
assume p
in (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i,(
width (
GoB f))))
+ ((
GoB f)
* ((i
+ 1),(
width (
GoB f))))))
+
|[
0 , 1]|),(((1
/ 2)
* (((
GoB f)
* ((i
+ 1),(
width (
GoB f))))
+ ((
GoB f)
* ((i
+ 2),(
width (
GoB f))))))
+
|[
0 , 1]|)));
then (p
`2 )
= ((((
GoB f)
* (1,(
width (
GoB f))))
`2 )
+ 1) by
A9,
A8,
TOPREAL3: 12;
hence (p
`2 )
> (((
GoB f)
* (1,(
width (
GoB f))))
`2 ) by
XREAL_1: 29;
end;
hence thesis by
Th24;
end;
theorem ::
GOBOARD8:29
(
LSeg ((((
GoB f)
* (1,(
width (
GoB f))))
+
|[(
- 1), 1]|),(((1
/ 2)
* (((
GoB f)
* (1,(
width (
GoB f))))
+ ((
GoB f)
* (2,(
width (
GoB f))))))
+
|[
0 , 1]|)))
misses (
L~ f)
proof
A1: 1
<= (
width (
GoB f)) by
GOBOARD7: 33;
now
1
< (
len (
GoB f)) by
GOBOARD7: 32;
then (1
+ 1)
<= (
len (
GoB f)) by
NAT_1: 13;
then
A2: (((
GoB f)
* (2,(
width (
GoB f))))
`2 )
= (((
GoB f)
* (1,(
width (
GoB f))))
`2 ) by
A1,
GOBOARD5: 1;
((((1
/ 2)
* (((
GoB f)
* (1,(
width (
GoB f))))
+ ((
GoB f)
* (2,(
width (
GoB f))))))
+
|[
0 , 1]|)
`2 )
= ((((1
/ 2)
* (((
GoB f)
* (1,(
width (
GoB f))))
+ ((
GoB f)
* (2,(
width (
GoB f))))))
`2 )
+ (
|[
0 , 1]|
`2 )) by
TOPREAL3: 2
.= (((1
/ 2)
* ((((
GoB f)
* (1,(
width (
GoB f))))
+ ((
GoB f)
* (2,(
width (
GoB f)))))
`2 ))
+ (
|[
0 , 1]|
`2 )) by
TOPREAL3: 4
.= (((1
/ 2)
* ((((
GoB f)
* (1,(
width (
GoB f))))
`2 )
+ (((
GoB f)
* (1,(
width (
GoB f))))
`2 )))
+ (
|[
0 , 1]|
`2 )) by
A2,
TOPREAL3: 2
.= ((1
* (((
GoB f)
* (1,(
width (
GoB f))))
`2 ))
+ 1) by
EUCLID: 52;
then
A3: (((1
/ 2)
* (((
GoB f)
* (1,(
width (
GoB f))))
+ ((
GoB f)
* (2,(
width (
GoB f))))))
+
|[
0 , 1]|)
=
|[((((1
/ 2)
* (((
GoB f)
* (1,(
width (
GoB f))))
+ ((
GoB f)
* (2,(
width (
GoB f))))))
+
|[
0 , 1]|)
`1 ), ((((
GoB f)
* (1,(
width (
GoB f))))
`2 )
+ 1)]| by
EUCLID: 53;
((((
GoB f)
* (1,(
width (
GoB f))))
+
|[(
- 1), 1]|)
`2 )
= ((((
GoB f)
* (1,(
width (
GoB f))))
`2 )
+ (
|[(
- 1), 1]|
`2 )) by
TOPREAL3: 2
.= ((((
GoB f)
* (1,(
width (
GoB f))))
`2 )
+ 1) by
EUCLID: 52;
then
A4: (((
GoB f)
* (1,(
width (
GoB f))))
+
|[(
- 1), 1]|)
=
|[((((
GoB f)
* (1,(
width (
GoB f))))
+
|[(
- 1), 1]|)
`1 ), ((((
GoB f)
* (1,(
width (
GoB f))))
`2 )
+ 1)]| by
EUCLID: 53;
let p;
assume p
in (
LSeg ((((
GoB f)
* (1,(
width (
GoB f))))
+
|[(
- 1), 1]|),(((1
/ 2)
* (((
GoB f)
* (1,(
width (
GoB f))))
+ ((
GoB f)
* (2,(
width (
GoB f))))))
+
|[
0 , 1]|)));
then (p
`2 )
= ((((
GoB f)
* (1,(
width (
GoB f))))
`2 )
+ 1) by
A4,
A3,
TOPREAL3: 12;
hence (p
`2 )
> (((
GoB f)
* (1,(
width (
GoB f))))
`2 ) by
XREAL_1: 29;
end;
hence thesis by
Th24;
end;
theorem ::
GOBOARD8:30
(
LSeg ((((1
/ 2)
* (((
GoB f)
* (((
len (
GoB f))
-' 1),(
width (
GoB f))))
+ ((
GoB f)
* ((
len (
GoB f)),(
width (
GoB f))))))
+
|[
0 , 1]|),(((
GoB f)
* ((
len (
GoB f)),(
width (
GoB f))))
+
|[1, 1]|)))
misses (
L~ f)
proof
A1: 1
<= (
width (
GoB f)) by
GOBOARD7: 33;
now
A2: 1
< (
len (
GoB f)) by
GOBOARD7: 32;
then
A3: (((
len (
GoB f))
-' 1)
+ 1)
= (
len (
GoB f)) by
XREAL_1: 235;
then
A4: ((
len (
GoB f))
-' 1)
<= (
len (
GoB f)) by
NAT_1: 11;
A5: (((
GoB f)
* ((
len (
GoB f)),(
width (
GoB f))))
`2 )
= (((
GoB f)
* (1,(
width (
GoB f))))
`2 ) by
A1,
A2,
GOBOARD5: 1;
then ((((
GoB f)
* ((
len (
GoB f)),(
width (
GoB f))))
+
|[1, 1]|)
`2 )
= ((((
GoB f)
* (1,(
width (
GoB f))))
`2 )
+ (
|[1, 1]|
`2 )) by
TOPREAL3: 2
.= ((((
GoB f)
* (1,(
width (
GoB f))))
`2 )
+ 1) by
EUCLID: 52;
then
A6: (((
GoB f)
* ((
len (
GoB f)),(
width (
GoB f))))
+
|[1, 1]|)
=
|[((((
GoB f)
* ((
len (
GoB f)),(
width (
GoB f))))
+
|[1, 1]|)
`1 ), ((((
GoB f)
* (1,(
width (
GoB f))))
`2 )
+ 1)]| by
EUCLID: 53;
1
<= ((
len (
GoB f))
-' 1) by
A2,
A3,
NAT_1: 13;
then
A7: (((
GoB f)
* (((
len (
GoB f))
-' 1),(
width (
GoB f))))
`2 )
= (((
GoB f)
* (1,(
width (
GoB f))))
`2 ) by
A1,
A4,
GOBOARD5: 1;
((((1
/ 2)
* (((
GoB f)
* (((
len (
GoB f))
-' 1),(
width (
GoB f))))
+ ((
GoB f)
* ((
len (
GoB f)),(
width (
GoB f))))))
+
|[
0 , 1]|)
`2 )
= ((((1
/ 2)
* (((
GoB f)
* (((
len (
GoB f))
-' 1),(
width (
GoB f))))
+ ((
GoB f)
* ((
len (
GoB f)),(
width (
GoB f))))))
`2 )
+ (
|[
0 , 1]|
`2 )) by
TOPREAL3: 2
.= (((1
/ 2)
* ((((
GoB f)
* (((
len (
GoB f))
-' 1),(
width (
GoB f))))
+ ((
GoB f)
* ((
len (
GoB f)),(
width (
GoB f)))))
`2 ))
+ (
|[
0 , 1]|
`2 )) by
TOPREAL3: 4
.= (((1
/ 2)
* ((((
GoB f)
* (1,(
width (
GoB f))))
`2 )
+ (((
GoB f)
* (1,(
width (
GoB f))))
`2 )))
+ (
|[
0 , 1]|
`2 )) by
A7,
A5,
TOPREAL3: 2
.= ((1
* (((
GoB f)
* (1,(
width (
GoB f))))
`2 ))
+ 1) by
EUCLID: 52;
then
A8: (((1
/ 2)
* (((
GoB f)
* (((
len (
GoB f))
-' 1),(
width (
GoB f))))
+ ((
GoB f)
* ((
len (
GoB f)),(
width (
GoB f))))))
+
|[
0 , 1]|)
=
|[((((1
/ 2)
* (((
GoB f)
* (((
len (
GoB f))
-' 1),(
width (
GoB f))))
+ ((
GoB f)
* ((
len (
GoB f)),(
width (
GoB f))))))
+
|[
0 , 1]|)
`1 ), ((((
GoB f)
* (1,(
width (
GoB f))))
`2 )
+ 1)]| by
EUCLID: 53;
let p;
assume p
in (
LSeg ((((1
/ 2)
* (((
GoB f)
* (((
len (
GoB f))
-' 1),(
width (
GoB f))))
+ ((
GoB f)
* ((
len (
GoB f)),(
width (
GoB f))))))
+
|[
0 , 1]|),(((
GoB f)
* ((
len (
GoB f)),(
width (
GoB f))))
+
|[1, 1]|)));
then (p
`2 )
= ((((
GoB f)
* (1,(
width (
GoB f))))
`2 )
+ 1) by
A8,
A6,
TOPREAL3: 12;
hence (p
`2 )
> (((
GoB f)
* (1,(
width (
GoB f))))
`2 ) by
XREAL_1: 29;
end;
hence thesis by
Th24;
end;
theorem ::
GOBOARD8:31
for j st 1
<= j & (j
+ 2)
<= (
width (
GoB f)) holds (
LSeg ((((1
/ 2)
* (((
GoB f)
* (1,j))
+ ((
GoB f)
* (1,(j
+ 1)))))
-
|[1,
0 ]|),(((1
/ 2)
* (((
GoB f)
* (1,(j
+ 1)))
+ ((
GoB f)
* (1,(j
+ 2)))))
-
|[1,
0 ]|)))
misses (
L~ f)
proof
let j such that
A1: 1
<= j and
A2: (j
+ 2)
<= (
width (
GoB f));
A3: 1
<= (
len (
GoB f)) by
GOBOARD7: 32;
now
A4: j
<= (j
+ 2) by
NAT_1: 11;
then j
<= (
width (
GoB f)) by
A2,
XXREAL_0: 2;
then
A5: (((
GoB f)
* (1,j))
`1 )
= (((
GoB f)
* (1,1))
`1 ) by
A1,
A3,
GOBOARD5: 2;
(j
+ 1)
<= (j
+ 2) by
XREAL_1: 6;
then 1
<= (j
+ 1) & (j
+ 1)
<= (
width (
GoB f)) by
A2,
NAT_1: 11,
XXREAL_0: 2;
then
A6: (((
GoB f)
* (1,(j
+ 1)))
`1 )
= (((
GoB f)
* (1,1))
`1 ) by
A3,
GOBOARD5: 2;
1
<= (j
+ 2) by
A1,
A4,
XXREAL_0: 2;
then
A7: (((
GoB f)
* (1,(j
+ 2)))
`1 )
= (((
GoB f)
* (1,1))
`1 ) by
A2,
A3,
GOBOARD5: 2;
((((1
/ 2)
* (((
GoB f)
* (1,(j
+ 1)))
+ ((
GoB f)
* (1,(j
+ 2)))))
-
|[1,
0 ]|)
`1 )
= ((((1
/ 2)
* (((
GoB f)
* (1,(j
+ 1)))
+ ((
GoB f)
* (1,(j
+ 2)))))
`1 )
- (
|[1,
0 ]|
`1 )) by
TOPREAL3: 3
.= (((1
/ 2)
* ((((
GoB f)
* (1,(j
+ 1)))
+ ((
GoB f)
* (1,(j
+ 2))))
`1 ))
- (
|[1,
0 ]|
`1 )) by
TOPREAL3: 4
.= (((1
/ 2)
* ((((
GoB f)
* (1,1))
`1 )
+ (((
GoB f)
* (1,1))
`1 )))
- (
|[1,
0 ]|
`1 )) by
A6,
A7,
TOPREAL3: 2
.= ((1
* (((
GoB f)
* (1,1))
`1 ))
- 1) by
EUCLID: 52;
then
A8: (((1
/ 2)
* (((
GoB f)
* (1,(j
+ 1)))
+ ((
GoB f)
* (1,(j
+ 2)))))
-
|[1,
0 ]|)
=
|[((((
GoB f)
* (1,1))
`1 )
- 1), ((((1
/ 2)
* (((
GoB f)
* (1,(j
+ 1)))
+ ((
GoB f)
* (1,(j
+ 2)))))
-
|[1,
0 ]|)
`2 )]| by
EUCLID: 53;
((((1
/ 2)
* (((
GoB f)
* (1,j))
+ ((
GoB f)
* (1,(j
+ 1)))))
-
|[1,
0 ]|)
`1 )
= ((((1
/ 2)
* (((
GoB f)
* (1,j))
+ ((
GoB f)
* (1,(j
+ 1)))))
`1 )
- (
|[1,
0 ]|
`1 )) by
TOPREAL3: 3
.= (((1
/ 2)
* ((((
GoB f)
* (1,j))
+ ((
GoB f)
* (1,(j
+ 1))))
`1 ))
- (
|[1,
0 ]|
`1 )) by
TOPREAL3: 4
.= (((1
/ 2)
* ((((
GoB f)
* (1,1))
`1 )
+ (((
GoB f)
* (1,1))
`1 )))
- (
|[1,
0 ]|
`1 )) by
A5,
A6,
TOPREAL3: 2
.= ((1
* (((
GoB f)
* (1,1))
`1 ))
- 1) by
EUCLID: 52;
then
A9: (((1
/ 2)
* (((
GoB f)
* (1,j))
+ ((
GoB f)
* (1,(j
+ 1)))))
-
|[1,
0 ]|)
=
|[((((
GoB f)
* (1,1))
`1 )
- 1), ((((1
/ 2)
* (((
GoB f)
* (1,j))
+ ((
GoB f)
* (1,(j
+ 1)))))
-
|[1,
0 ]|)
`2 )]| by
EUCLID: 53;
let p;
assume p
in (
LSeg ((((1
/ 2)
* (((
GoB f)
* (1,j))
+ ((
GoB f)
* (1,(j
+ 1)))))
-
|[1,
0 ]|),(((1
/ 2)
* (((
GoB f)
* (1,(j
+ 1)))
+ ((
GoB f)
* (1,(j
+ 2)))))
-
|[1,
0 ]|)));
then (p
`1 )
= ((((
GoB f)
* (1,1))
`1 )
- 1) by
A9,
A8,
TOPREAL3: 11;
hence (p
`1 )
< (((
GoB f)
* (1,1))
`1 ) by
XREAL_1: 44;
end;
hence thesis by
Th21;
end;
theorem ::
GOBOARD8:32
(
LSeg ((((
GoB f)
* (1,1))
-
|[1, 1]|),(((1
/ 2)
* (((
GoB f)
* (1,1))
+ ((
GoB f)
* (1,2))))
-
|[1,
0 ]|)))
misses (
L~ f)
proof
A1: 1
<= (
len (
GoB f)) by
GOBOARD7: 32;
now
1
< (
width (
GoB f)) by
GOBOARD7: 33;
then (1
+ 1)
<= (
width (
GoB f)) by
NAT_1: 13;
then
A2: (((
GoB f)
* (1,2))
`1 )
= (((
GoB f)
* (1,1))
`1 ) by
A1,
GOBOARD5: 2;
((((1
/ 2)
* (((
GoB f)
* (1,1))
+ ((
GoB f)
* (1,2))))
-
|[1,
0 ]|)
`1 )
= ((((1
/ 2)
* (((
GoB f)
* (1,1))
+ ((
GoB f)
* (1,2))))
`1 )
- (
|[1,
0 ]|
`1 )) by
TOPREAL3: 3
.= (((1
/ 2)
* ((((
GoB f)
* (1,1))
+ ((
GoB f)
* (1,2)))
`1 ))
- (
|[1,
0 ]|
`1 )) by
TOPREAL3: 4
.= (((1
/ 2)
* ((((
GoB f)
* (1,1))
`1 )
+ (((
GoB f)
* (1,1))
`1 )))
- (
|[1,
0 ]|
`1 )) by
A2,
TOPREAL3: 2
.= ((1
* (((
GoB f)
* (1,1))
`1 ))
- 1) by
EUCLID: 52;
then
A3: (((1
/ 2)
* (((
GoB f)
* (1,1))
+ ((
GoB f)
* (1,2))))
-
|[1,
0 ]|)
=
|[((((
GoB f)
* (1,1))
`1 )
- 1), ((((1
/ 2)
* (((
GoB f)
* (1,1))
+ ((
GoB f)
* (1,2))))
-
|[1,
0 ]|)
`2 )]| by
EUCLID: 53;
((((
GoB f)
* (1,1))
-
|[1, 1]|)
`1 )
= ((((
GoB f)
* (1,1))
`1 )
- (
|[1, 1]|
`1 )) by
TOPREAL3: 3
.= ((((
GoB f)
* (1,1))
`1 )
- 1) by
EUCLID: 52;
then
A4: (((
GoB f)
* (1,1))
-
|[1, 1]|)
=
|[((((
GoB f)
* (1,1))
`1 )
- 1), ((((
GoB f)
* (1,1))
-
|[1, 1]|)
`2 )]| by
EUCLID: 53;
let p;
assume p
in (
LSeg ((((
GoB f)
* (1,1))
-
|[1, 1]|),(((1
/ 2)
* (((
GoB f)
* (1,1))
+ ((
GoB f)
* (1,2))))
-
|[1,
0 ]|)));
then (p
`1 )
= ((((
GoB f)
* (1,1))
`1 )
- 1) by
A4,
A3,
TOPREAL3: 11;
hence (p
`1 )
< (((
GoB f)
* (1,1))
`1 ) by
XREAL_1: 44;
end;
hence thesis by
Th21;
end;
theorem ::
GOBOARD8:33
(
LSeg ((((1
/ 2)
* (((
GoB f)
* (1,((
width (
GoB f))
-' 1)))
+ ((
GoB f)
* (1,(
width (
GoB f))))))
-
|[1,
0 ]|),(((
GoB f)
* (1,(
width (
GoB f))))
+
|[(
- 1), 1]|)))
misses (
L~ f)
proof
A1: 1
<= (
len (
GoB f)) by
GOBOARD7: 32;
now
A2: 1
< (
width (
GoB f)) by
GOBOARD7: 33;
then
A3: (((
width (
GoB f))
-' 1)
+ 1)
= (
width (
GoB f)) by
XREAL_1: 235;
then
A4: ((
width (
GoB f))
-' 1)
<= (
width (
GoB f)) by
NAT_1: 11;
A5: (((
GoB f)
* (1,(
width (
GoB f))))
`1 )
= (((
GoB f)
* (1,1))
`1 ) by
A1,
A2,
GOBOARD5: 2;
then ((((
GoB f)
* (1,(
width (
GoB f))))
+
|[(
- 1), 1]|)
`1 )
= ((((
GoB f)
* (1,1))
`1 )
+ (
|[(
- 1), 1]|
`1 )) by
TOPREAL3: 2
.= ((((
GoB f)
* (1,1))
`1 )
+ (
- 1)) by
EUCLID: 52
.= ((((
GoB f)
* (1,1))
`1 )
- 1);
then
A6: (((
GoB f)
* (1,(
width (
GoB f))))
+
|[(
- 1), 1]|)
=
|[((((
GoB f)
* (1,1))
`1 )
- 1), ((((
GoB f)
* (1,(
width (
GoB f))))
+
|[(
- 1), 1]|)
`2 )]| by
EUCLID: 53;
1
<= ((
width (
GoB f))
-' 1) by
A2,
A3,
NAT_1: 13;
then
A7: (((
GoB f)
* (1,((
width (
GoB f))
-' 1)))
`1 )
= (((
GoB f)
* (1,1))
`1 ) by
A1,
A4,
GOBOARD5: 2;
((((1
/ 2)
* (((
GoB f)
* (1,((
width (
GoB f))
-' 1)))
+ ((
GoB f)
* (1,(
width (
GoB f))))))
-
|[1,
0 ]|)
`1 )
= ((((1
/ 2)
* (((
GoB f)
* (1,((
width (
GoB f))
-' 1)))
+ ((
GoB f)
* (1,(
width (
GoB f))))))
`1 )
- (
|[1,
0 ]|
`1 )) by
TOPREAL3: 3
.= (((1
/ 2)
* ((((
GoB f)
* (1,((
width (
GoB f))
-' 1)))
+ ((
GoB f)
* (1,(
width (
GoB f)))))
`1 ))
- (
|[1,
0 ]|
`1 )) by
TOPREAL3: 4
.= (((1
/ 2)
* ((((
GoB f)
* (1,1))
`1 )
+ (((
GoB f)
* (1,1))
`1 )))
- (
|[1,
0 ]|
`1 )) by
A7,
A5,
TOPREAL3: 2
.= ((1
* (((
GoB f)
* (1,1))
`1 ))
- 1) by
EUCLID: 52;
then
A8: (((1
/ 2)
* (((
GoB f)
* (1,((
width (
GoB f))
-' 1)))
+ ((
GoB f)
* (1,(
width (
GoB f))))))
-
|[1,
0 ]|)
=
|[((((
GoB f)
* (1,1))
`1 )
- 1), ((((1
/ 2)
* (((
GoB f)
* (1,((
width (
GoB f))
-' 1)))
+ ((
GoB f)
* (1,(
width (
GoB f))))))
-
|[1,
0 ]|)
`2 )]| by
EUCLID: 53;
let p;
assume p
in (
LSeg ((((1
/ 2)
* (((
GoB f)
* (1,((
width (
GoB f))
-' 1)))
+ ((
GoB f)
* (1,(
width (
GoB f))))))
-
|[1,
0 ]|),(((
GoB f)
* (1,(
width (
GoB f))))
+
|[(
- 1), 1]|)));
then (p
`1 )
= ((((
GoB f)
* (1,1))
`1 )
- 1) by
A8,
A6,
TOPREAL3: 11;
hence (p
`1 )
< (((
GoB f)
* (1,1))
`1 ) by
XREAL_1: 44;
end;
hence thesis by
Th21;
end;
theorem ::
GOBOARD8:34
for j st 1
<= j & (j
+ 2)
<= (
width (
GoB f)) holds (
LSeg ((((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),j))
+ ((
GoB f)
* ((
len (
GoB f)),(j
+ 1)))))
+
|[1,
0 ]|),(((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),(j
+ 1)))
+ ((
GoB f)
* ((
len (
GoB f)),(j
+ 2)))))
+
|[1,
0 ]|)))
misses (
L~ f)
proof
let j such that
A1: 1
<= j and
A2: (j
+ 2)
<= (
width (
GoB f));
A3: 1
<= (
len (
GoB f)) by
GOBOARD7: 32;
now
A4: j
<= (j
+ 2) by
NAT_1: 11;
then j
<= (
width (
GoB f)) by
A2,
XXREAL_0: 2;
then
A5: (((
GoB f)
* ((
len (
GoB f)),j))
`1 )
= (((
GoB f)
* ((
len (
GoB f)),1))
`1 ) by
A1,
A3,
GOBOARD5: 2;
(j
+ 1)
<= (j
+ 2) by
XREAL_1: 6;
then 1
<= (j
+ 1) & (j
+ 1)
<= (
width (
GoB f)) by
A2,
NAT_1: 11,
XXREAL_0: 2;
then
A6: (((
GoB f)
* ((
len (
GoB f)),(j
+ 1)))
`1 )
= (((
GoB f)
* ((
len (
GoB f)),1))
`1 ) by
A3,
GOBOARD5: 2;
1
<= (j
+ 2) by
A1,
A4,
XXREAL_0: 2;
then
A7: (((
GoB f)
* ((
len (
GoB f)),(j
+ 2)))
`1 )
= (((
GoB f)
* ((
len (
GoB f)),1))
`1 ) by
A2,
A3,
GOBOARD5: 2;
((((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),(j
+ 1)))
+ ((
GoB f)
* ((
len (
GoB f)),(j
+ 2)))))
+
|[1,
0 ]|)
`1 )
= ((((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),(j
+ 1)))
+ ((
GoB f)
* ((
len (
GoB f)),(j
+ 2)))))
`1 )
+ (
|[1,
0 ]|
`1 )) by
TOPREAL3: 2
.= (((1
/ 2)
* ((((
GoB f)
* ((
len (
GoB f)),(j
+ 1)))
+ ((
GoB f)
* ((
len (
GoB f)),(j
+ 2))))
`1 ))
+ (
|[1,
0 ]|
`1 )) by
TOPREAL3: 4
.= (((1
/ 2)
* ((((
GoB f)
* ((
len (
GoB f)),1))
`1 )
+ (((
GoB f)
* ((
len (
GoB f)),1))
`1 )))
+ (
|[1,
0 ]|
`1 )) by
A6,
A7,
TOPREAL3: 2
.= ((1
* (((
GoB f)
* ((
len (
GoB f)),1))
`1 ))
+ 1) by
EUCLID: 52;
then
A8: (((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),(j
+ 1)))
+ ((
GoB f)
* ((
len (
GoB f)),(j
+ 2)))))
+
|[1,
0 ]|)
=
|[((((
GoB f)
* ((
len (
GoB f)),1))
`1 )
+ 1), ((((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),(j
+ 1)))
+ ((
GoB f)
* ((
len (
GoB f)),(j
+ 2)))))
+
|[1,
0 ]|)
`2 )]| by
EUCLID: 53;
((((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),j))
+ ((
GoB f)
* ((
len (
GoB f)),(j
+ 1)))))
+
|[1,
0 ]|)
`1 )
= ((((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),j))
+ ((
GoB f)
* ((
len (
GoB f)),(j
+ 1)))))
`1 )
+ (
|[1,
0 ]|
`1 )) by
TOPREAL3: 2
.= (((1
/ 2)
* ((((
GoB f)
* ((
len (
GoB f)),j))
+ ((
GoB f)
* ((
len (
GoB f)),(j
+ 1))))
`1 ))
+ (
|[1,
0 ]|
`1 )) by
TOPREAL3: 4
.= (((1
/ 2)
* ((((
GoB f)
* ((
len (
GoB f)),1))
`1 )
+ (((
GoB f)
* ((
len (
GoB f)),1))
`1 )))
+ (
|[1,
0 ]|
`1 )) by
A5,
A6,
TOPREAL3: 2
.= ((1
* (((
GoB f)
* ((
len (
GoB f)),1))
`1 ))
+ 1) by
EUCLID: 52;
then
A9: (((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),j))
+ ((
GoB f)
* ((
len (
GoB f)),(j
+ 1)))))
+
|[1,
0 ]|)
=
|[((((
GoB f)
* ((
len (
GoB f)),1))
`1 )
+ 1), ((((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),j))
+ ((
GoB f)
* ((
len (
GoB f)),(j
+ 1)))))
+
|[1,
0 ]|)
`2 )]| by
EUCLID: 53;
let p;
assume p
in (
LSeg ((((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),j))
+ ((
GoB f)
* ((
len (
GoB f)),(j
+ 1)))))
+
|[1,
0 ]|),(((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),(j
+ 1)))
+ ((
GoB f)
* ((
len (
GoB f)),(j
+ 2)))))
+
|[1,
0 ]|)));
then (p
`1 )
= ((((
GoB f)
* ((
len (
GoB f)),1))
`1 )
+ 1) by
A9,
A8,
TOPREAL3: 11;
hence (p
`1 )
> (((
GoB f)
* ((
len (
GoB f)),1))
`1 ) by
XREAL_1: 29;
end;
hence thesis by
Th22;
end;
theorem ::
GOBOARD8:35
(
LSeg ((((
GoB f)
* ((
len (
GoB f)),1))
+
|[1, (
- 1)]|),(((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),1))
+ ((
GoB f)
* ((
len (
GoB f)),2))))
+
|[1,
0 ]|)))
misses (
L~ f)
proof
A1: 1
<= (
len (
GoB f)) by
GOBOARD7: 32;
now
1
< (
width (
GoB f)) by
GOBOARD7: 33;
then (1
+ 1)
<= (
width (
GoB f)) by
NAT_1: 13;
then
A2: (((
GoB f)
* ((
len (
GoB f)),2))
`1 )
= (((
GoB f)
* ((
len (
GoB f)),1))
`1 ) by
A1,
GOBOARD5: 2;
((((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),1))
+ ((
GoB f)
* ((
len (
GoB f)),2))))
+
|[1,
0 ]|)
`1 )
= ((((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),1))
+ ((
GoB f)
* ((
len (
GoB f)),2))))
`1 )
+ (
|[1,
0 ]|
`1 )) by
TOPREAL3: 2
.= (((1
/ 2)
* ((((
GoB f)
* ((
len (
GoB f)),1))
+ ((
GoB f)
* ((
len (
GoB f)),2)))
`1 ))
+ (
|[1,
0 ]|
`1 )) by
TOPREAL3: 4
.= (((1
/ 2)
* ((((
GoB f)
* ((
len (
GoB f)),1))
`1 )
+ (((
GoB f)
* ((
len (
GoB f)),1))
`1 )))
+ (
|[1,
0 ]|
`1 )) by
A2,
TOPREAL3: 2
.= ((1
* (((
GoB f)
* ((
len (
GoB f)),1))
`1 ))
+ 1) by
EUCLID: 52;
then
A3: (((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),1))
+ ((
GoB f)
* ((
len (
GoB f)),2))))
+
|[1,
0 ]|)
=
|[((((
GoB f)
* ((
len (
GoB f)),1))
`1 )
+ 1), ((((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),1))
+ ((
GoB f)
* ((
len (
GoB f)),2))))
+
|[1,
0 ]|)
`2 )]| by
EUCLID: 53;
((((
GoB f)
* ((
len (
GoB f)),1))
+
|[1, (
- 1)]|)
`1 )
= ((((
GoB f)
* ((
len (
GoB f)),1))
`1 )
+ (
|[1, (
- 1)]|
`1 )) by
TOPREAL3: 2
.= ((((
GoB f)
* ((
len (
GoB f)),1))
`1 )
+ 1) by
EUCLID: 52;
then
A4: (((
GoB f)
* ((
len (
GoB f)),1))
+
|[1, (
- 1)]|)
=
|[((((
GoB f)
* ((
len (
GoB f)),1))
`1 )
+ 1), ((((
GoB f)
* ((
len (
GoB f)),1))
+
|[1, (
- 1)]|)
`2 )]| by
EUCLID: 53;
let p;
assume p
in (
LSeg ((((
GoB f)
* ((
len (
GoB f)),1))
+
|[1, (
- 1)]|),(((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),1))
+ ((
GoB f)
* ((
len (
GoB f)),2))))
+
|[1,
0 ]|)));
then (p
`1 )
= ((((
GoB f)
* ((
len (
GoB f)),1))
`1 )
+ 1) by
A4,
A3,
TOPREAL3: 11;
hence (p
`1 )
> (((
GoB f)
* ((
len (
GoB f)),1))
`1 ) by
XREAL_1: 29;
end;
hence thesis by
Th22;
end;
theorem ::
GOBOARD8:36
(
LSeg ((((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),((
width (
GoB f))
-' 1)))
+ ((
GoB f)
* ((
len (
GoB f)),(
width (
GoB f))))))
+
|[1,
0 ]|),(((
GoB f)
* ((
len (
GoB f)),(
width (
GoB f))))
+
|[1, 1]|)))
misses (
L~ f)
proof
A1: 1
<= (
len (
GoB f)) by
GOBOARD7: 32;
now
A2: 1
< (
width (
GoB f)) by
GOBOARD7: 33;
then
A3: (((
width (
GoB f))
-' 1)
+ 1)
= (
width (
GoB f)) by
XREAL_1: 235;
then
A4: ((
width (
GoB f))
-' 1)
<= (
width (
GoB f)) by
NAT_1: 11;
A5: (((
GoB f)
* ((
len (
GoB f)),(
width (
GoB f))))
`1 )
= (((
GoB f)
* ((
len (
GoB f)),1))
`1 ) by
A1,
A2,
GOBOARD5: 2;
then ((((
GoB f)
* ((
len (
GoB f)),(
width (
GoB f))))
+
|[1, 1]|)
`1 )
= ((((
GoB f)
* ((
len (
GoB f)),1))
`1 )
+ (
|[1, 1]|
`1 )) by
TOPREAL3: 2
.= ((((
GoB f)
* ((
len (
GoB f)),1))
`1 )
+ 1) by
EUCLID: 52;
then
A6: (((
GoB f)
* ((
len (
GoB f)),(
width (
GoB f))))
+
|[1, 1]|)
=
|[((((
GoB f)
* ((
len (
GoB f)),1))
`1 )
+ 1), ((((
GoB f)
* ((
len (
GoB f)),(
width (
GoB f))))
+
|[1, 1]|)
`2 )]| by
EUCLID: 53;
1
<= ((
width (
GoB f))
-' 1) by
A2,
A3,
NAT_1: 13;
then
A7: (((
GoB f)
* ((
len (
GoB f)),((
width (
GoB f))
-' 1)))
`1 )
= (((
GoB f)
* ((
len (
GoB f)),1))
`1 ) by
A1,
A4,
GOBOARD5: 2;
((((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),((
width (
GoB f))
-' 1)))
+ ((
GoB f)
* ((
len (
GoB f)),(
width (
GoB f))))))
+
|[1,
0 ]|)
`1 )
= ((((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),((
width (
GoB f))
-' 1)))
+ ((
GoB f)
* ((
len (
GoB f)),(
width (
GoB f))))))
`1 )
+ (
|[1,
0 ]|
`1 )) by
TOPREAL3: 2
.= (((1
/ 2)
* ((((
GoB f)
* ((
len (
GoB f)),((
width (
GoB f))
-' 1)))
+ ((
GoB f)
* ((
len (
GoB f)),(
width (
GoB f)))))
`1 ))
+ (
|[1,
0 ]|
`1 )) by
TOPREAL3: 4
.= (((1
/ 2)
* ((((
GoB f)
* ((
len (
GoB f)),1))
`1 )
+ (((
GoB f)
* ((
len (
GoB f)),1))
`1 )))
+ (
|[1,
0 ]|
`1 )) by
A7,
A5,
TOPREAL3: 2
.= ((1
* (((
GoB f)
* ((
len (
GoB f)),1))
`1 ))
+ 1) by
EUCLID: 52;
then
A8: (((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),((
width (
GoB f))
-' 1)))
+ ((
GoB f)
* ((
len (
GoB f)),(
width (
GoB f))))))
+
|[1,
0 ]|)
=
|[((((
GoB f)
* ((
len (
GoB f)),1))
`1 )
+ 1), ((((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),((
width (
GoB f))
-' 1)))
+ ((
GoB f)
* ((
len (
GoB f)),(
width (
GoB f))))))
+
|[1,
0 ]|)
`2 )]| by
EUCLID: 53;
let p;
assume p
in (
LSeg ((((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),((
width (
GoB f))
-' 1)))
+ ((
GoB f)
* ((
len (
GoB f)),(
width (
GoB f))))))
+
|[1,
0 ]|),(((
GoB f)
* ((
len (
GoB f)),(
width (
GoB f))))
+
|[1, 1]|)));
then (p
`1 )
= ((((
GoB f)
* ((
len (
GoB f)),1))
`1 )
+ 1) by
A8,
A6,
TOPREAL3: 11;
hence (p
`1 )
> (((
GoB f)
* ((
len (
GoB f)),1))
`1 ) by
XREAL_1: 29;
end;
hence thesis by
Th22;
end;
theorem ::
GOBOARD8:37
1
<= k & (k
+ 1)
<= (
len f) implies (
Int (
left_cell (f,k)))
misses (
L~ f)
proof
assume that
A1: 1
<= k and
A2: (k
+ 1)
<= (
len f);
k
<= (k
+ 1) by
NAT_1: 11;
then k
<= (
len f) by
A2,
XXREAL_0: 2;
then
A3: k
in (
dom f) by
A1,
FINSEQ_3: 25;
then
consider i1,j1 be
Nat such that
A4:
[i1, j1]
in (
Indices (
GoB f)) and
A5: (f
/. k)
= ((
GoB f)
* (i1,j1)) by
GOBOARD2: 14;
A6: i1
<= (
len (
GoB f)) by
A4,
MATRIX_0: 32;
j1
<>
0 by
A4,
MATRIX_0: 32;
then
consider j be
Nat such that
A7: j1
= (j
+ 1) by
NAT_1: 6;
i1
<>
0 by
A4,
MATRIX_0: 32;
then
consider i be
Nat such that
A8: i1
= (i
+ 1) by
NAT_1: 6;
i
<= i1 by
A8,
NAT_1: 11;
then
A9: i
<= (
len (
GoB f)) by
A6,
XXREAL_0: 2;
A10: j1
<= (
width (
GoB f)) by
A4,
MATRIX_0: 32;
(k
+ 1)
>= 1 by
NAT_1: 11;
then
A11: (k
+ 1)
in (
dom f) by
A2,
FINSEQ_3: 25;
then
consider i2,j2 be
Nat such that
A12:
[i2, j2]
in (
Indices (
GoB f)) and
A13: (f
/. (k
+ 1))
= ((
GoB f)
* (i2,j2)) by
GOBOARD2: 14;
reconsider i19 = i1, i29 = i2, j19 = j1, j29 = j2 as
Element of
REAL by
XREAL_0:def 1;
(
|.(i1
- i2).|
+
|.(j1
- j2).|)
= 1 by
A3,
A4,
A5,
A11,
A12,
A13,
GOBOARD5: 12;
then
A14:
|.(i19
- i29).|
= 1 & j1
= j2 or
|.(j19
- j29).|
= 1 & i1
= i2 by
SEQM_3: 42;
reconsider i, j as
Nat;
A15: i1
= (i
+ 1) by
A8;
A16: j1
= (j
+ 1) by
A7;
A17: j2
<= (
width (
GoB f)) by
A12,
MATRIX_0: 32;
A18: i2
<= (
len (
GoB f)) by
A12,
MATRIX_0: 32;
j
<= j1 by
A7,
NAT_1: 11;
then
A19: j
<= (
width (
GoB f)) by
A10,
XXREAL_0: 2;
per cases by
A14,
SEQM_3: 41;
suppose i1
= i2 & (j1
+ 1)
= j2;
then (
left_cell (f,k))
= (
cell ((
GoB f),i,j1)) by
A1,
A2,
A4,
A5,
A8,
A12,
A13,
GOBOARD5: 27;
hence thesis by
A10,
A9,
GOBOARD7: 12;
end;
suppose (i1
+ 1)
= i2 & j1
= j2;
then (
left_cell (f,k))
= (
cell ((
GoB f),i1,j1)) by
A1,
A2,
A4,
A5,
A16,
A12,
A13,
GOBOARD5: 28;
hence thesis by
A6,
A10,
GOBOARD7: 12;
end;
suppose i1
= (i2
+ 1) & j1
= j2;
then (
left_cell (f,k))
= (
cell ((
GoB f),i2,j)) by
A1,
A2,
A4,
A5,
A7,
A12,
A13,
GOBOARD5: 29;
hence thesis by
A19,
A18,
GOBOARD7: 12;
end;
suppose i1
= i2 & j1
= (j2
+ 1);
then (
left_cell (f,k))
= (
cell ((
GoB f),i1,j2)) by
A1,
A2,
A4,
A5,
A15,
A12,
A13,
GOBOARD5: 30;
hence thesis by
A6,
A17,
GOBOARD7: 12;
end;
end;
theorem ::
GOBOARD8:38
1
<= k & (k
+ 1)
<= (
len f) implies (
Int (
right_cell (f,k)))
misses (
L~ f)
proof
assume that
A1: 1
<= k and
A2: (k
+ 1)
<= (
len f);
k
<= (k
+ 1) by
NAT_1: 11;
then k
<= (
len f) by
A2,
XXREAL_0: 2;
then
A3: k
in (
dom f) by
A1,
FINSEQ_3: 25;
then
consider i1,j1 be
Nat such that
A4:
[i1, j1]
in (
Indices (
GoB f)) and
A5: (f
/. k)
= ((
GoB f)
* (i1,j1)) by
GOBOARD2: 14;
A6: i1
<= (
len (
GoB f)) by
A4,
MATRIX_0: 32;
j1
<>
0 by
A4,
MATRIX_0: 32;
then
consider j be
Nat such that
A7: j1
= (j
+ 1) by
NAT_1: 6;
i1
<>
0 by
A4,
MATRIX_0: 32;
then
consider i be
Nat such that
A8: i1
= (i
+ 1) by
NAT_1: 6;
i
<= i1 by
A8,
NAT_1: 11;
then
A9: i
<= (
len (
GoB f)) by
A6,
XXREAL_0: 2;
A10: j1
<= (
width (
GoB f)) by
A4,
MATRIX_0: 32;
(k
+ 1)
>= 1 by
NAT_1: 11;
then
A11: (k
+ 1)
in (
dom f) by
A2,
FINSEQ_3: 25;
then
consider i2,j2 be
Nat such that
A12:
[i2, j2]
in (
Indices (
GoB f)) and
A13: (f
/. (k
+ 1))
= ((
GoB f)
* (i2,j2)) by
GOBOARD2: 14;
reconsider i19 = i1, i29 = i2, j19 = j1, j29 = j2 as
Element of
REAL by
XREAL_0:def 1;
(
|.(i1
- i2).|
+
|.(j1
- j2).|)
= 1 by
A3,
A4,
A5,
A11,
A12,
A13,
GOBOARD5: 12;
then
A14:
|.(i19
- i29).|
= 1 & j1
= j2 or
|.(j19
- j29).|
= 1 & i1
= i2 by
SEQM_3: 42;
reconsider i, j as
Nat;
A15: i1
= (i
+ 1) by
A8;
A16: j1
= (j
+ 1) by
A7;
A17: j2
<= (
width (
GoB f)) by
A12,
MATRIX_0: 32;
A18: i2
<= (
len (
GoB f)) by
A12,
MATRIX_0: 32;
j
<= j1 by
A7,
NAT_1: 11;
then
A19: j
<= (
width (
GoB f)) by
A10,
XXREAL_0: 2;
per cases by
A14,
SEQM_3: 41;
suppose i1
= i2 & (j1
+ 1)
= j2;
then (
right_cell (f,k))
= (
cell ((
GoB f),i1,j1)) by
A1,
A2,
A4,
A5,
A15,
A12,
A13,
GOBOARD5: 27;
hence thesis by
A6,
A10,
GOBOARD7: 12;
end;
suppose (i1
+ 1)
= i2 & j1
= j2;
then (
right_cell (f,k))
= (
cell ((
GoB f),i1,j)) by
A1,
A2,
A4,
A5,
A7,
A12,
A13,
GOBOARD5: 28;
hence thesis by
A6,
A19,
GOBOARD7: 12;
end;
suppose i1
= (i2
+ 1) & j1
= j2;
then (
right_cell (f,k))
= (
cell ((
GoB f),i2,j1)) by
A1,
A2,
A4,
A5,
A16,
A12,
A13,
GOBOARD5: 29;
hence thesis by
A10,
A18,
GOBOARD7: 12;
end;
suppose i1
= i2 & j1
= (j2
+ 1);
then (
right_cell (f,k))
= (
cell ((
GoB f),i,j2)) by
A1,
A2,
A4,
A5,
A8,
A12,
A13,
GOBOARD5: 30;
hence thesis by
A9,
A17,
GOBOARD7: 12;
end;
end;