gobrd12.miz
begin
reserve i,j,k,k1,k2,i1,i2,j1,j2 for
Nat,
r,s for
Real,
x for
set,
f for non
constant
standard
special_circular_sequence;
Lm1: ((
L~ f)
` )
= the
carrier of ((
TOP-REAL 2)
| ((
L~ f)
` ))
proof
((
L~ f)
` )
= (
[#] ((
TOP-REAL 2)
| ((
L~ f)
` ))) by
PRE_TOPC:def 5
.= the
carrier of ((
TOP-REAL 2)
| ((
L~ f)
` ));
hence thesis;
end;
Lm2: the
carrier of (
TOP-REAL 2)
= (
REAL 2) by
EUCLID: 22;
theorem ::
GOBRD12:1
Th1: for i, j st i
<= (
len (
GoB f)) & j
<= (
width (
GoB f)) holds (
Int (
cell ((
GoB f),i,j)))
c= ((
L~ f)
` ) by
GOBOARD7: 12,
SUBSET_1: 23;
theorem ::
GOBRD12:2
Th2: for i, j st i
<= (
len (
GoB f)) & j
<= (
width (
GoB f)) holds (
Cl (
Down ((
Int (
cell ((
GoB f),i,j))),((
L~ f)
` ))))
= ((
cell ((
GoB f),i,j))
/\ ((
L~ f)
` ))
proof
let i, j;
reconsider V = (
Int (
cell ((
GoB f),i,j))) as
Subset of (
TOP-REAL 2);
reconsider B = ((
L~ f)
` ) as
Subset of (
TOP-REAL 2);
assume
A1: i
<= (
len (
GoB f)) & j
<= (
width (
GoB f));
then (
Cl (
Down (V,B)))
= ((
Cl V)
/\ B) by
Th1,
CONNSP_3: 29;
hence thesis by
A1,
GOBRD11: 35;
end;
theorem ::
GOBRD12:3
Th3: for i, j st i
<= (
len (
GoB f)) & j
<= (
width (
GoB f)) holds (
Cl (
Down ((
Int (
cell ((
GoB f),i,j))),((
L~ f)
` )))) is
connected & (
Down ((
Int (
cell ((
GoB f),i,j))),((
L~ f)
` )))
= (
Int (
cell ((
GoB f),i,j)))
proof
let i, j;
assume
A1: i
<= (
len (
GoB f)) & j
<= (
width (
GoB f));
then (
Int (
cell ((
GoB f),i,j))) is
convex & (
Down ((
Int (
cell ((
GoB f),i,j))),((
L~ f)
` )))
= (
Int (
cell ((
GoB f),i,j))) by
Th1,
GOBOARD9: 17,
XBOOLE_1: 28;
then (
Down ((
Int (
cell ((
GoB f),i,j))),((
L~ f)
` ))) is
connected by
CONNSP_1: 23;
hence (
Cl (
Down ((
Int (
cell ((
GoB f),i,j))),((
L~ f)
` )))) is
connected by
CONNSP_1: 19;
thus thesis by
A1,
Th1,
XBOOLE_1: 28;
end;
Lm3: (
Cl (
Down ((
LeftComp f),((
L~ f)
` )))) is
connected & (
Down ((
LeftComp f),((
L~ f)
` )))
= (
LeftComp f) & (
Down ((
LeftComp f),((
L~ f)
` ))) is
a_component
proof
(
LeftComp f)
is_a_component_of ((
L~ f)
` ) by
GOBOARD9:def 1;
then
A1: ex B1 be
Subset of ((
TOP-REAL 2)
| ((
L~ f)
` )) st B1
= (
LeftComp f) & B1 is
a_component by
CONNSP_1:def 6;
A2: the
carrier of ((
TOP-REAL 2)
| ((
L~ f)
` ))
= ((
L~ f)
` ) by
PRE_TOPC: 8;
then (
Down ((
LeftComp f),((
L~ f)
` )))
= (
LeftComp f) by
A1,
XBOOLE_1: 28;
then (
Down ((
LeftComp f),((
L~ f)
` ))) is
connected by
A1,
CONNSP_1:def 5;
hence (
Cl (
Down ((
LeftComp f),((
L~ f)
` )))) is
connected by
CONNSP_1: 19;
thus thesis by
A1,
A2,
XBOOLE_1: 28;
end;
Lm4: (
Cl (
Down ((
RightComp f),((
L~ f)
` )))) is
connected & (
Down ((
RightComp f),((
L~ f)
` )))
= (
RightComp f) & (
Down ((
RightComp f),((
L~ f)
` ))) is
a_component
proof
(
RightComp f)
is_a_component_of ((
L~ f)
` ) by
GOBOARD9:def 2;
then
A1: ex B1 be
Subset of ((
TOP-REAL 2)
| ((
L~ f)
` )) st B1
= (
RightComp f) & B1 is
a_component by
CONNSP_1:def 6;
A2: the
carrier of ((
TOP-REAL 2)
| ((
L~ f)
` ))
= ((
L~ f)
` ) by
PRE_TOPC: 8;
then (
Down ((
RightComp f),((
L~ f)
` )))
= (
RightComp f) by
A1,
XBOOLE_1: 28;
then (
Down ((
RightComp f),((
L~ f)
` ))) is
connected by
A1,
CONNSP_1:def 5;
hence (
Cl (
Down ((
RightComp f),((
L~ f)
` )))) is
connected by
CONNSP_1: 19;
thus thesis by
A1,
A2,
XBOOLE_1: 28;
end;
theorem ::
GOBRD12:4
Th4: ((
L~ f)
` )
= (
union { (
Cl (
Down ((
Int (
cell ((
GoB f),i,j))),((
L~ f)
` )))) : i
<= (
len (
GoB f)) & j
<= (
width (
GoB f)) })
proof
A1: the
carrier of (
TOP-REAL 2)
= (
union { (
cell ((
GoB f),i,j)) : i
<= (
len (
GoB f)) & j
<= (
width (
GoB f)) }) by
GOBRD11: 7;
A2: ((
L~ f)
` )
c= (
union { (
Cl (
Down ((
Int (
cell ((
GoB f),i,j))),((
L~ f)
` )))) : i
<= (
len (
GoB f)) & j
<= (
width (
GoB f)) })
proof
let x be
object;
assume
A3: x
in ((
L~ f)
` );
then
consider Y be
set such that
A4: x
in Y & Y
in { (
cell ((
GoB f),i,j)) : i
<= (
len (
GoB f)) & j
<= (
width (
GoB f)) } by
A1,
TARSKI:def 4;
consider i, j such that
A5: Y
= (
cell ((
GoB f),i,j)) and
A6: i
<= (
len (
GoB f)) & j
<= (
width (
GoB f)) by
A4;
reconsider Y0 = (
Cl (
Down ((
Int (
cell ((
GoB f),i,j))),((
L~ f)
` )))) as
set;
x
in ((
cell ((
GoB f),i,j))
/\ ((
L~ f)
` )) by
A3,
A4,
A5,
XBOOLE_0:def 4;
then
A7: x
in Y0 by
A6,
Th2;
Y0
in { (
Cl (
Down ((
Int (
cell ((
GoB f),i1,j1))),((
L~ f)
` )))) : i1
<= (
len (
GoB f)) & j1
<= (
width (
GoB f)) } by
A6;
hence thesis by
A7,
TARSKI:def 4;
end;
(
union { (
Cl (
Down ((
Int (
cell ((
GoB f),i,j))),((
L~ f)
` )))) : i
<= (
len (
GoB f)) & j
<= (
width (
GoB f)) })
c= ((
L~ f)
` )
proof
let x be
object;
assume x
in (
union { (
Cl (
Down ((
Int (
cell ((
GoB f),i,j))),((
L~ f)
` )))) : i
<= (
len (
GoB f)) & j
<= (
width (
GoB f)) });
then
consider Y be
set such that
A8: x
in Y & Y
in { (
Cl (
Down ((
Int (
cell ((
GoB f),i,j))),((
L~ f)
` )))) : i
<= (
len (
GoB f)) & j
<= (
width (
GoB f)) } by
TARSKI:def 4;
consider i, j such that
A9: Y
= (
Cl (
Down ((
Int (
cell ((
GoB f),i,j))),((
L~ f)
` )))) and i
<= (
len (
GoB f)) and j
<= (
width (
GoB f)) by
A8;
(
Cl (
Down ((
Int (
cell ((
GoB f),i,j))),((
L~ f)
` ))))
c= the
carrier of ((
TOP-REAL 2)
| ((
L~ f)
` ));
then Y
c= ((
L~ f)
` ) by
A9,
Lm1;
hence thesis by
A8;
end;
hence thesis by
A2,
XBOOLE_0:def 10;
end;
theorem ::
GOBRD12:5
Th5: ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) is
a_union_of_components of ((
TOP-REAL 2)
| ((
L~ f)
` )) & (
Down ((
LeftComp f),((
L~ f)
` )))
= (
LeftComp f) & (
Down ((
RightComp f),((
L~ f)
` )))
= (
RightComp f)
proof
(
LeftComp f)
is_a_component_of ((
L~ f)
` ) by
GOBOARD9:def 1;
then
consider B1 be
Subset of ((
TOP-REAL 2)
| ((
L~ f)
` )) such that
A1: B1
= (
LeftComp f) and
A2: B1 is
a_component by
CONNSP_1:def 6;
(
RightComp f)
is_a_component_of ((
L~ f)
` ) by
GOBOARD9:def 2;
then
consider B2 be
Subset of ((
TOP-REAL 2)
| ((
L~ f)
` )) such that
A3: B2
= (
RightComp f) and
A4: B2 is
a_component by
CONNSP_1:def 6;
A5: B2 is
Subset of ((
L~ f)
` ) by
Lm1;
then
A6: (
Down ((
RightComp f),((
L~ f)
` ))) is
a_component by
A3,
A4,
XBOOLE_1: 28;
A7: B1 is
Subset of ((
L~ f)
` ) by
Lm1;
then (
Down ((
LeftComp f),((
L~ f)
` ))) is
a_component by
A1,
A2,
XBOOLE_1: 28;
hence thesis by
A1,
A7,
A3,
A5,
A6,
GOBRD11: 3,
XBOOLE_1: 28;
end;
Lm5: for i1, j1, i2, j2 st i1
<= (
len (
GoB f)) & j1
<= (
width (
GoB f)) & i2
<= (
len (
GoB f)) & j2
<= (
width (
GoB f)) & (i2
= (i1
+ 1) or i1
= (i2
+ 1)) & j1
= j2 holds (
Int (
cell ((
GoB f),i1,j1)))
c= ((
LeftComp f)
\/ (
RightComp f)) implies (
Int (
cell ((
GoB f),i2,j2)))
c= ((
LeftComp f)
\/ (
RightComp f))
proof
let i1, j1, i2, j2;
assume that
A1: i1
<= (
len (
GoB f)) and
A2: j1
<= (
width (
GoB f)) and
A3: i2
<= (
len (
GoB f)) and
A4: j2
<= (
width (
GoB f)) and
A5: i2
= (i1
+ 1) or i1
= (i2
+ 1) and
A6: j1
= j2;
now
assume
A7: (
Int (
cell ((
GoB f),i1,j1)))
c= ((
LeftComp f)
\/ (
RightComp f));
now
per cases by
A5;
case
A8: i2
= (i1
+ 1);
now
per cases ;
case ex k st 1
<= k & (k
+ 1)
<= (
len f) & j2
<>
0 & j2
<> (
width (
GoB f)) & (
LSeg ((f
/. k),(f
/. (k
+ 1))))
= (
LSeg (((
GoB f)
* ((i1
+ 1),j2)),((
GoB f)
* ((i1
+ 1),(j2
+ 1)))));
then
consider k such that
A9: 1
<= k & (k
+ 1)
<= (
len f) and
A10: j2
<>
0 and
A11: j2
<> (
width (
GoB f)) and
A12: (
LSeg ((f
/. k),(f
/. (k
+ 1))))
= (
LSeg (((
GoB f)
* ((i1
+ 1),j2)),((
GoB f)
* ((i1
+ 1),(j2
+ 1)))));
now
per cases by
A12,
SPPOL_1: 8;
case
A13: (f
/. k)
= ((
GoB f)
* ((i1
+ 1),j2)) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i1
+ 1),(j2
+ 1)));
A14: (
Int (
right_cell (f,k)))
c= (
RightComp f) & (
RightComp f)
c= ((
LeftComp f)
\/ (
RightComp f)) by
A9,
GOBOARD9: 25,
XBOOLE_1: 7;
j2
< (
width (
GoB f)) by
A4,
A11,
XXREAL_0: 1;
then
A15: (j2
+ 1)
<= (
width (
GoB f)) by
NAT_1: 13;
(
0
+ 1)
<= (i1
+ 1) by
XREAL_1: 6;
then
A16: (
Indices (
GoB f))
=
[:(
dom (
GoB f)), (
Seg (
width (
GoB f))):] & (i1
+ 1)
in (
dom (
GoB f)) by
A3,
A8,
FINSEQ_3: 25,
MATRIX_0:def 4;
1
<= (j2
+ 1) by
NAT_1: 11;
then (j2
+ 1)
in (
Seg (
width (
GoB f))) by
A15,
FINSEQ_1: 1;
then
A17:
[(i1
+ 1), (j2
+ 1)]
in (
Indices (
GoB f)) by
A16,
ZFMISC_1: 87;
j2
>= (
0
+ 1) by
A10,
NAT_1: 13;
then j2
in (
Seg (
width (
GoB f))) by
A4,
FINSEQ_1: 1;
then
[(i1
+ 1), j2]
in (
Indices (
GoB f)) by
A16,
ZFMISC_1: 87;
then (
right_cell (f,k))
= (
cell ((
GoB f),(i1
+ 1),j2)) by
A9,
A13,
A17,
GOBOARD5: 27;
hence (
Int (
cell ((
GoB f),(i1
+ 1),j2)))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A14;
end;
case
A18: (f
/. k)
= ((
GoB f)
* ((i1
+ 1),(j2
+ 1))) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i1
+ 1),j2));
A19: (
Int (
left_cell (f,k)))
c= (
LeftComp f) & (
LeftComp f)
c= ((
LeftComp f)
\/ (
RightComp f)) by
A9,
GOBOARD9: 21,
XBOOLE_1: 7;
j2
< (
width (
GoB f)) by
A4,
A11,
XXREAL_0: 1;
then
A20: (j2
+ 1)
<= (
width (
GoB f)) by
NAT_1: 13;
(
0
+ 1)
<= (i1
+ 1) by
XREAL_1: 6;
then
A21: (
Indices (
GoB f))
=
[:(
dom (
GoB f)), (
Seg (
width (
GoB f))):] & (i1
+ 1)
in (
dom (
GoB f)) by
A3,
A8,
FINSEQ_3: 25,
MATRIX_0:def 4;
1
<= (j2
+ 1) by
NAT_1: 11;
then (j2
+ 1)
in (
Seg (
width (
GoB f))) by
A20,
FINSEQ_1: 1;
then
A22:
[(i1
+ 1), (j2
+ 1)]
in (
Indices (
GoB f)) by
A21,
ZFMISC_1: 87;
j2
>= (
0
+ 1) by
A10,
NAT_1: 13;
then j2
in (
Seg (
width (
GoB f))) by
A4,
FINSEQ_1: 1;
then
[(i1
+ 1), j2]
in (
Indices (
GoB f)) by
A21,
ZFMISC_1: 87;
then (
left_cell (f,k))
= (
cell ((
GoB f),(i1
+ 1),j2)) by
A9,
A18,
A22,
GOBOARD5: 30;
hence (
Int (
cell ((
GoB f),(i1
+ 1),j2)))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A19;
end;
end;
hence (
Int (
cell ((
GoB f),(i1
+ 1),j2)))
c= ((
LeftComp f)
\/ (
RightComp f));
end;
case
A23: not ex k st 1
<= k & (k
+ 1)
<= (
len f) & j2
<>
0 & j2
<> (
width (
GoB f)) & (
LSeg ((f
/. k),(f
/. (k
+ 1))))
= (
LSeg (((
GoB f)
* ((i1
+ 1),j2)),((
GoB f)
* ((i1
+ 1),(j2
+ 1)))));
now
per cases by
A23;
case
A24: j2
=
0 ;
reconsider p =
|[(((
GoB f)
* ((i1
+ 1),1))
`1 ), ((((
GoB f)
* ((i1
+ 1),1))
`2 )
- 1)]| as
Point of (
TOP-REAL 2);
A25: 1
< (
width (
GoB f)) by
GOBOARD7: 33;
A26: 1
< (
len (
GoB f)) by
GOBOARD7: 32;
reconsider P =
{p} as
Subset of (
TOP-REAL 2);
A27: (p
`2 )
< ((p
`2 )
+ 1) by
XREAL_1: 29;
A28: 1
<= (i1
+ 1) by
NAT_1: 11;
then (((
GoB f)
* ((i1
+ 1),1))
`2 )
= (((
GoB f)
* (1,1))
`2 ) by
A3,
A8,
A25,
GOBOARD5: 1;
then
A29: (p
`2 )
= ((((
GoB f)
* (1,1))
`2 )
- 1) by
EUCLID: 52;
p
in {
|[r, s]| : s
<= (((
GoB f)
* (1,1))
`2 ) }
proof
p
=
|[(p
`1 ), (p
`2 )]| by
EUCLID: 53;
hence thesis by
A29,
A27;
end;
then
A30: p
in (
h_strip ((
GoB f),j2)) by
A24,
A26,
GOBOARD5: 7;
(for q be
Point of (
TOP-REAL 2) st q
in P holds (q
`2 )
< (((
GoB f)
* (1,1))
`2 )) implies P
misses (
L~ f) by
GOBOARD8: 23;
then
A31: p
in
{p} &
{p}
c= ((
L~ f)
` ) by
A29,
A27,
SUBSET_1: 23,
TARSKI:def 1;
then
reconsider p1 = p as
Point of ((
TOP-REAL 2)
| ((
L~ f)
` )) by
PRE_TOPC: 8;
A32: i1
=
0 or i1
>= (
0
+ 1) by
NAT_1: 13;
A33:
now
per cases by
A3,
A8,
A32,
XXREAL_0: 1;
case
A34: i1
>= 1 & (i1
+ 1)
< (
len (
GoB f));
then
A35: ((i1
+ 1)
+ 1)
<= (
len (
GoB f)) by
NAT_1: 13;
A36: p
in {
|[r, s]| : (((
GoB f)
* ((i1
+ 1),1))
`1 )
<= r & r
<= (((
GoB f)
* (((i1
+ 1)
+ 1),1))
`1 ) }
proof
(i1
+ 1)
< ((i1
+ 1)
+ 1) by
NAT_1: 13;
then (((
GoB f)
* ((i1
+ 1),1))
`1 )
<= (((
GoB f)
* (((i1
+ 1)
+ 1),1))
`1 ) by
A25,
A28,
A35,
GOBOARD5: 3;
hence thesis;
end;
1
<= (i1
+ 1) by
NAT_1: 11;
then p
in (
v_strip ((
GoB f),(i1
+ 1))) by
A25,
A34,
A36,
GOBOARD5: 8;
then p
in ((
v_strip ((
GoB f),(i1
+ 1)))
/\ (
h_strip ((
GoB f),j2))) by
A30,
XBOOLE_0:def 4;
then
A37: p
in (
cell ((
GoB f),(i1
+ 1),j2)) by
GOBOARD5:def 3;
A38: p
in {
|[r, s]| : (((
GoB f)
* (i1,1))
`1 )
<= r & r
<= (((
GoB f)
* ((i1
+ 1),1))
`1 ) }
proof
i1
< (i1
+ 1) by
NAT_1: 13;
then (((
GoB f)
* (i1,1))
`1 )
< (((
GoB f)
* ((i1
+ 1),1))
`1 ) by
A25,
A34,
GOBOARD5: 3;
hence thesis;
end;
i1
< (
len (
GoB f)) by
A34,
NAT_1: 13;
then p
in (
v_strip ((
GoB f),i1)) by
A25,
A34,
A38,
GOBOARD5: 8;
then p
in ((
v_strip ((
GoB f),i1))
/\ (
h_strip ((
GoB f),j2))) by
A30,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i1,j2)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),(i1
+ 1),j2))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i1,j2))
/\ ((
L~ f)
` )) by
A31,
A37,
XBOOLE_0:def 4;
end;
case
A39: i1
>= 1 & (i1
+ 1)
= (
len (
GoB f));
A40: i1
< (i1
+ 1) by
NAT_1: 13;
A41: p
in {
|[r, s]| : (((
GoB f)
* (i1,1))
`1 )
<= r & r
<= (((
GoB f)
* ((i1
+ 1),1))
`1 ) }
proof
(((
GoB f)
* (i1,1))
`1 )
< (((
GoB f)
* ((i1
+ 1),1))
`1 ) by
A25,
A39,
A40,
GOBOARD5: 3;
hence thesis;
end;
p
in {
|[r, s]| : (((
GoB f)
* ((i1
+ 1),1))
`1 )
<= r };
then p
in (
v_strip ((
GoB f),(i1
+ 1))) by
A25,
A39,
GOBOARD5: 9;
then p
in ((
v_strip ((
GoB f),(i1
+ 1)))
/\ (
h_strip ((
GoB f),j2))) by
A30,
XBOOLE_0:def 4;
then
A42: p
in (
cell ((
GoB f),(i1
+ 1),j2)) by
GOBOARD5:def 3;
i1
< (
len (
GoB f)) by
A39,
NAT_1: 13;
then p
in (
v_strip ((
GoB f),i1)) by
A25,
A39,
A41,
GOBOARD5: 8;
then p
in ((
v_strip ((
GoB f),i1))
/\ (
h_strip ((
GoB f),j2))) by
A30,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i1,j2)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),(i1
+ 1),j2))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i1,j2))
/\ ((
L~ f)
` )) by
A31,
A42,
XBOOLE_0:def 4;
end;
case
A43: i1
=
0 & (i1
+ 1)
< (
len (
GoB f));
then
A44: ((i1
+ 1)
+ 1)
<= (
len (
GoB f)) by
NAT_1: 13;
p
in {
|[r, s]| : (((
GoB f)
* ((i1
+ 1),1))
`1 )
<= r & r
<= (((
GoB f)
* (((i1
+ 1)
+ 1),1))
`1 ) }
proof
(i1
+ 1)
< ((i1
+ 1)
+ 1) by
NAT_1: 13;
then (((
GoB f)
* ((i1
+ 1),1))
`1 )
<= (((
GoB f)
* (((i1
+ 1)
+ 1),1))
`1 ) by
A25,
A28,
A44,
GOBOARD5: 3;
hence thesis;
end;
then p
in (
v_strip ((
GoB f),(i1
+ 1))) by
A25,
A43,
GOBOARD5: 8;
then p
in ((
v_strip ((
GoB f),(i1
+ 1)))
/\ (
h_strip ((
GoB f),j2))) by
A30,
XBOOLE_0:def 4;
then
A45: p
in (
cell ((
GoB f),(i1
+ 1),j2)) by
GOBOARD5:def 3;
p
in {
|[r, s]| : r
<= (((
GoB f)
* (1,1))
`1 ) } by
A43;
then p
in (
v_strip ((
GoB f),i1)) by
A25,
A43,
GOBOARD5: 10;
then p
in ((
v_strip ((
GoB f),i1))
/\ (
h_strip ((
GoB f),j2))) by
A30,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i1,j2)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),(i1
+ 1),j2))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i1,j2))
/\ ((
L~ f)
` )) by
A31,
A45,
XBOOLE_0:def 4;
end;
case
A46: i1
=
0 & (i1
+ 1)
= (
len (
GoB f));
p
in {
|[r, s]| : (((
GoB f)
* ((i1
+ 1),1))
`1 )
<= r };
then p
in (
v_strip ((
GoB f),(i1
+ 1))) by
A25,
A46,
GOBOARD5: 9;
then p
in ((
v_strip ((
GoB f),(i1
+ 1)))
/\ (
h_strip ((
GoB f),j2))) by
A30,
XBOOLE_0:def 4;
then
A47: p
in (
cell ((
GoB f),(i1
+ 1),j2)) by
GOBOARD5:def 3;
p
in {
|[r, s]| : r
<= (((
GoB f)
* (1,1))
`1 ) } by
A46;
then p
in (
v_strip ((
GoB f),i1)) by
A25,
A46,
GOBOARD5: 10;
then p
in ((
v_strip ((
GoB f),i1))
/\ (
h_strip ((
GoB f),j2))) by
A30,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i1,j2)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),(i1
+ 1),j2))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i1,j2))
/\ ((
L~ f)
` )) by
A31,
A47,
XBOOLE_0:def 4;
end;
end;
then p
in (
Cl (
Down ((
Int (
cell ((
GoB f),(i1
+ 1),j2))),((
L~ f)
` )))) by
A4,
Th2;
then
A48: (
Cl (
Down ((
Int (
cell ((
GoB f),(i1
+ 1),j2))),((
L~ f)
` ))))
c= (
Component_of p1) by
A3,
A4,
A8,
Th3,
GOBRD11: 1;
(
Down ((
RightComp f),((
L~ f)
` ))) is
closed by
Lm4,
CONNSP_1: 33;
then
A49: (
Cl (
Down ((
RightComp f),((
L~ f)
` ))))
= (
Down ((
RightComp f),((
L~ f)
` ))) by
PRE_TOPC: 22;
(
Down ((
LeftComp f),((
L~ f)
` ))) is
closed by
Lm3,
CONNSP_1: 33;
then
A50: (
Cl (
Down ((
LeftComp f),((
L~ f)
` ))))
= (
Down ((
LeftComp f),((
L~ f)
` ))) by
PRE_TOPC: 22;
((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` ))))
= (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))) by
GOBRD11: 4;
then
A51: (
Cl (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))))
= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A50,
A49,
PRE_TOPC: 20;
A52: (
Down ((
Int (
cell ((
GoB f),(i1
+ 1),j2))),((
L~ f)
` )))
c= (
Cl (
Down ((
Int (
cell ((
GoB f),(i1
+ 1),j2))),((
L~ f)
` )))) & (
Down ((
Int (
cell ((
GoB f),(i1
+ 1),j2))),((
L~ f)
` )))
= (
Int (
cell ((
GoB f),(i1
+ 1),j2))) by
A3,
A4,
A8,
Th3,
PRE_TOPC: 18;
A53: (
Down ((
LeftComp f),((
L~ f)
` )))
= (
LeftComp f) & (
Down ((
RightComp f),((
L~ f)
` )))
= (
RightComp f) by
Th5;
(
Down ((
Int (
cell ((
GoB f),i1,j2))),((
L~ f)
` )))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A1,
A2,
A6,
A7,
Th3;
then (
Down ((
Int (
cell ((
GoB f),i1,j2))),((
L~ f)
` )))
c= (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))) by
A53,
GOBRD11: 4;
then
A54: (
Cl (
Down ((
Int (
cell ((
GoB f),i1,j2))),((
L~ f)
` ))))
c= (
Cl (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` )))) by
PRE_TOPC: 19;
p
in (
Cl (
Down ((
Int (
cell ((
GoB f),i1,j2))),((
L~ f)
` )))) by
A1,
A4,
A33,
Th2;
then (
Component_of p1)
c= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A54,
A51,
Th5,
CONNSP_3: 21;
then (
Cl (
Down ((
Int (
cell ((
GoB f),(i1
+ 1),j2))),((
L~ f)
` ))))
c= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A48;
hence (
Int (
cell ((
GoB f),(i1
+ 1),j2)))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A53,
A52;
end;
case
A55: j2
= (
width (
GoB f));
reconsider p =
|[(((
GoB f)
* ((i1
+ 1),(
width (
GoB f))))
`1 ), ((((
GoB f)
* ((i1
+ 1),(
width (
GoB f))))
`2 )
+ 1)]| as
Point of (
TOP-REAL 2);
A56: 1
< (
width (
GoB f)) by
GOBOARD7: 33;
reconsider P =
{p} as
Subset of (
TOP-REAL 2);
A57: (for q be
Point of (
TOP-REAL 2) st q
in P holds (((
GoB f)
* (1,(
width (
GoB f))))
`2 )
< (q
`2 )) implies P
misses (
L~ f) by
GOBOARD8: 24;
A58: 1
< (
len (
GoB f)) by
GOBOARD7: 32;
A59: 1
<= (1
+ i1) by
NAT_1: 11;
then (((
GoB f)
* ((i1
+ 1),(
width (
GoB f))))
`2 )
= (((
GoB f)
* (1,(
width (
GoB f))))
`2 ) by
A3,
A8,
A56,
GOBOARD5: 1;
then
A60: (p
`2 )
= ((((
GoB f)
* (1,(
width (
GoB f))))
`2 )
+ 1) by
EUCLID: 52;
then
A61: (((
GoB f)
* (1,(
width (
GoB f))))
`2 )
< (p
`2 ) by
XREAL_1: 29;
p
in {
|[r, s]| : (((
GoB f)
* (1,(
width (
GoB f))))
`2 )
<= s }
proof
p
=
|[(p
`1 ), (p
`2 )]| by
EUCLID: 53;
hence thesis by
A61;
end;
then
A62: p
in (
h_strip ((
GoB f),j2)) by
A55,
A58,
GOBOARD5: 6;
(((
GoB f)
* (1,(
width (
GoB f))))
`2 )
< ((((
GoB f)
* (1,(
width (
GoB f))))
`2 )
+ 1) by
XREAL_1: 29;
then
A63: p
in
{p} &
{p}
c= ((
L~ f)
` ) by
A60,
A57,
SUBSET_1: 23,
TARSKI:def 1;
then
reconsider p1 = p as
Point of ((
TOP-REAL 2)
| ((
L~ f)
` )) by
PRE_TOPC: 8;
A64: i1
=
0 or i1
>= (
0
+ 1) by
NAT_1: 13;
A65:
now
per cases by
A3,
A8,
A64,
XXREAL_0: 1;
case
A66: i1
>= 1 & (i1
+ 1)
< (
len (
GoB f));
then
A67: ((i1
+ 1)
+ 1)
<= (
len (
GoB f)) by
NAT_1: 13;
A68: p
in {
|[r, s]| : (((
GoB f)
* ((i1
+ 1),(
width (
GoB f))))
`1 )
<= r & r
<= (((
GoB f)
* (((i1
+ 1)
+ 1),(
width (
GoB f))))
`1 ) }
proof
(i1
+ 1)
< ((i1
+ 1)
+ 1) by
NAT_1: 13;
then (((
GoB f)
* ((i1
+ 1),(
width (
GoB f))))
`1 )
<= (((
GoB f)
* (((i1
+ 1)
+ 1),(
width (
GoB f))))
`1 ) by
A56,
A59,
A67,
GOBOARD5: 3;
hence thesis;
end;
1
<= (i1
+ 1) by
NAT_1: 11;
then p
in (
v_strip ((
GoB f),(i1
+ 1))) by
A56,
A66,
A68,
GOBOARD5: 8;
then p
in ((
v_strip ((
GoB f),(i1
+ 1)))
/\ (
h_strip ((
GoB f),j2))) by
A62,
XBOOLE_0:def 4;
then
A69: p
in (
cell ((
GoB f),(i1
+ 1),j2)) by
GOBOARD5:def 3;
A70: p
in {
|[r, s]| : (((
GoB f)
* (i1,(
width (
GoB f))))
`1 )
<= r & r
<= (((
GoB f)
* ((i1
+ 1),(
width (
GoB f))))
`1 ) }
proof
i1
< (i1
+ 1) by
NAT_1: 13;
then (((
GoB f)
* (i1,(
width (
GoB f))))
`1 )
< (((
GoB f)
* ((i1
+ 1),(
width (
GoB f))))
`1 ) by
A56,
A66,
GOBOARD5: 3;
hence thesis;
end;
i1
< (
len (
GoB f)) by
A66,
NAT_1: 13;
then p
in (
v_strip ((
GoB f),i1)) by
A56,
A66,
A70,
GOBOARD5: 8;
then p
in ((
v_strip ((
GoB f),i1))
/\ (
h_strip ((
GoB f),j2))) by
A62,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i1,j2)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),(i1
+ 1),j2))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i1,j2))
/\ ((
L~ f)
` )) by
A63,
A69,
XBOOLE_0:def 4;
end;
case
A71: i1
>= 1 & (i1
+ 1)
= (
len (
GoB f));
A72: i1
< (i1
+ 1) by
NAT_1: 13;
A73: p
in {
|[r, s]| : (((
GoB f)
* (i1,(
width (
GoB f))))
`1 )
<= r & r
<= (((
GoB f)
* ((i1
+ 1),(
width (
GoB f))))
`1 ) }
proof
(((
GoB f)
* (i1,(
width (
GoB f))))
`1 )
< (((
GoB f)
* ((i1
+ 1),(
width (
GoB f))))
`1 ) by
A56,
A71,
A72,
GOBOARD5: 3;
hence thesis;
end;
p
in {
|[r, s]| : (((
GoB f)
* ((i1
+ 1),(
width (
GoB f))))
`1 )
<= r };
then p
in (
v_strip ((
GoB f),(i1
+ 1))) by
A56,
A71,
GOBOARD5: 9;
then p
in ((
v_strip ((
GoB f),(i1
+ 1)))
/\ (
h_strip ((
GoB f),j2))) by
A62,
XBOOLE_0:def 4;
then
A74: p
in (
cell ((
GoB f),(i1
+ 1),j2)) by
GOBOARD5:def 3;
i1
< (
len (
GoB f)) by
A71,
NAT_1: 13;
then p
in (
v_strip ((
GoB f),i1)) by
A56,
A71,
A73,
GOBOARD5: 8;
then p
in ((
v_strip ((
GoB f),i1))
/\ (
h_strip ((
GoB f),j2))) by
A62,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i1,j2)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),(i1
+ 1),j2))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i1,j2))
/\ ((
L~ f)
` )) by
A63,
A74,
XBOOLE_0:def 4;
end;
case
A75: i1
=
0 & (i1
+ 1)
< (
len (
GoB f));
then
A76: ((i1
+ 1)
+ 1)
<= (
len (
GoB f)) by
NAT_1: 13;
p
in {
|[r, s]| : (((
GoB f)
* ((i1
+ 1),(
width (
GoB f))))
`1 )
<= r & r
<= (((
GoB f)
* (((i1
+ 1)
+ 1),(
width (
GoB f))))
`1 ) }
proof
(i1
+ 1)
< ((i1
+ 1)
+ 1) by
NAT_1: 13;
then (((
GoB f)
* ((i1
+ 1),(
width (
GoB f))))
`1 )
<= (((
GoB f)
* (((i1
+ 1)
+ 1),(
width (
GoB f))))
`1 ) by
A56,
A59,
A76,
GOBOARD5: 3;
hence thesis;
end;
then p
in (
v_strip ((
GoB f),(i1
+ 1))) by
A56,
A75,
GOBOARD5: 8;
then p
in ((
v_strip ((
GoB f),(i1
+ 1)))
/\ (
h_strip ((
GoB f),j2))) by
A62,
XBOOLE_0:def 4;
then
A77: p
in (
cell ((
GoB f),(i1
+ 1),j2)) by
GOBOARD5:def 3;
p
in {
|[r, s]| : r
<= (((
GoB f)
* (1,(
width (
GoB f))))
`1 ) } by
A75;
then p
in (
v_strip ((
GoB f),i1)) by
A56,
A75,
GOBOARD5: 10;
then p
in ((
v_strip ((
GoB f),i1))
/\ (
h_strip ((
GoB f),j2))) by
A62,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i1,j2)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),(i1
+ 1),j2))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i1,j2))
/\ ((
L~ f)
` )) by
A63,
A77,
XBOOLE_0:def 4;
end;
case i1
=
0 & (i1
+ 1)
= (
len (
GoB f));
hence contradiction by
GOBOARD7: 32;
end;
end;
then p
in (
Cl (
Down ((
Int (
cell ((
GoB f),(i1
+ 1),j2))),((
L~ f)
` )))) by
A4,
Th2;
then
A78: (
Cl (
Down ((
Int (
cell ((
GoB f),(i1
+ 1),j2))),((
L~ f)
` ))))
c= (
Component_of p1) by
A3,
A4,
A8,
Th3,
GOBRD11: 1;
(
Down ((
RightComp f),((
L~ f)
` ))) is
closed by
Lm4,
CONNSP_1: 33;
then
A79: (
Cl (
Down ((
RightComp f),((
L~ f)
` ))))
= (
Down ((
RightComp f),((
L~ f)
` ))) by
PRE_TOPC: 22;
(
Down ((
LeftComp f),((
L~ f)
` ))) is
closed by
Lm3,
CONNSP_1: 33;
then
A80: (
Cl (
Down ((
LeftComp f),((
L~ f)
` ))))
= (
Down ((
LeftComp f),((
L~ f)
` ))) by
PRE_TOPC: 22;
((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` ))))
= (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))) by
GOBRD11: 4;
then
A81: (
Cl (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))))
= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A80,
A79,
PRE_TOPC: 20;
A82: (
Down ((
Int (
cell ((
GoB f),(i1
+ 1),j2))),((
L~ f)
` )))
c= (
Cl (
Down ((
Int (
cell ((
GoB f),(i1
+ 1),j2))),((
L~ f)
` )))) & (
Down ((
Int (
cell ((
GoB f),(i1
+ 1),j2))),((
L~ f)
` )))
= (
Int (
cell ((
GoB f),(i1
+ 1),j2))) by
A3,
A4,
A8,
Th3,
PRE_TOPC: 18;
A83: (
Down ((
LeftComp f),((
L~ f)
` )))
= (
LeftComp f) & (
Down ((
RightComp f),((
L~ f)
` )))
= (
RightComp f) by
Th5;
(
Down ((
Int (
cell ((
GoB f),i1,j2))),((
L~ f)
` )))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A1,
A2,
A6,
A7,
Th3;
then (
Down ((
Int (
cell ((
GoB f),i1,j2))),((
L~ f)
` )))
c= (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))) by
A83,
GOBRD11: 4;
then
A84: (
Cl (
Down ((
Int (
cell ((
GoB f),i1,j2))),((
L~ f)
` ))))
c= (
Cl (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` )))) by
PRE_TOPC: 19;
p
in (
Cl (
Down ((
Int (
cell ((
GoB f),i1,j2))),((
L~ f)
` )))) by
A1,
A4,
A65,
Th2;
then (
Component_of p1)
c= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A84,
A81,
Th5,
CONNSP_3: 21;
then (
Cl (
Down ((
Int (
cell ((
GoB f),(i1
+ 1),j2))),((
L~ f)
` ))))
c= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A78;
hence (
Int (
cell ((
GoB f),(i1
+ 1),j2)))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A83,
A82;
end;
case
A85: j2
<>
0 & j2
<> (
width (
GoB f)) & not ex k st 1
<= k & (k
+ 1)
<= (
len f) & (
LSeg ((f
/. k),(f
/. (k
+ 1))))
= (
LSeg (((
GoB f)
* ((i1
+ 1),j2)),((
GoB f)
* ((i1
+ 1),(j2
+ 1)))));
then
A86: j2
< (
width (
GoB f)) by
A4,
XXREAL_0: 1;
then
A87: (j2
+ 1)
<= (
width (
GoB f)) by
NAT_1: 13;
for k st 1
<= k & (k
+ 1)
<= (
len f) holds (
LSeg (((
GoB f)
* ((i1
+ 1),j2)),((
GoB f)
* ((i1
+ 1),(j2
+ 1)))))
<> (
LSeg (f,k))
proof
let k;
assume
A88: 1
<= k & (k
+ 1)
<= (
len f);
then (
LSeg (f,k))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
TOPREAL1:def 3;
hence thesis by
A85,
A88;
end;
then
A89: 1
<= (i1
+ 1) & (i1
+ 1)
<= (
len (
GoB f)) & 1
<= j2 & (j2
+ 1)
<= (
width (
GoB f)) implies not ((1
/ 2)
* (((
GoB f)
* ((i1
+ 1),j2))
+ ((
GoB f)
* ((i1
+ 1),(j2
+ 1)))))
in (
L~ f) by
GOBOARD7: 39;
reconsider p = ((1
/ 2)
* (((
GoB f)
* ((i1
+ 1),j2))
+ ((
GoB f)
* ((i1
+ 1),(j2
+ 1))))) as
Point of (
TOP-REAL 2);
A90: (p
`2 )
= ((1
/ 2)
* ((((
GoB f)
* ((i1
+ 1),j2))
+ ((
GoB f)
* ((i1
+ 1),(j2
+ 1))))
`2 )) by
TOPREAL3: 4
.= ((1
/ 2)
* ((((
GoB f)
* ((i1
+ 1),j2))
`2 )
+ (((
GoB f)
* ((i1
+ 1),(j2
+ 1)))
`2 ))) by
TOPREAL3: 2;
reconsider P =
{p} as
Subset of (
TOP-REAL 2);
A91: 1
< (
width (
GoB f)) by
GOBOARD7: 33;
(
Down ((
RightComp f),((
L~ f)
` ))) is
closed by
Lm4,
CONNSP_1: 33;
then
A92: (
Cl (
Down ((
RightComp f),((
L~ f)
` ))))
= (
Down ((
RightComp f),((
L~ f)
` ))) by
PRE_TOPC: 22;
(
Down ((
LeftComp f),((
L~ f)
` ))) is
closed by
Lm3,
CONNSP_1: 33;
then
A93: (
Cl (
Down ((
LeftComp f),((
L~ f)
` ))))
= (
Down ((
LeftComp f),((
L~ f)
` ))) by
PRE_TOPC: 22;
((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` ))))
= (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))) by
GOBRD11: 4;
then
A94: (
Cl (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))))
= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A93,
A92,
PRE_TOPC: 20;
A95: (
Down ((
LeftComp f),((
L~ f)
` )))
= (
LeftComp f) & (
Down ((
RightComp f),((
L~ f)
` )))
= (
RightComp f) by
Th5;
(
Down ((
Int (
cell ((
GoB f),i1,j2))),((
L~ f)
` )))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A1,
A2,
A6,
A7,
Th3;
then (
Down ((
Int (
cell ((
GoB f),i1,j2))),((
L~ f)
` )))
c= (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))) by
A95,
GOBRD11: 4;
then
A96: (
Cl (
Down ((
Int (
cell ((
GoB f),i1,j2))),((
L~ f)
` ))))
c= (
Cl (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` )))) by
PRE_TOPC: 19;
A97: (
Down ((
Int (
cell ((
GoB f),(i1
+ 1),j2))),((
L~ f)
` )))
c= (
Cl (
Down ((
Int (
cell ((
GoB f),(i1
+ 1),j2))),((
L~ f)
` )))) & (
Down ((
Int (
cell ((
GoB f),(i1
+ 1),j2))),((
L~ f)
` )))
= (
Int (
cell ((
GoB f),(i1
+ 1),j2))) by
A3,
A4,
A8,
Th3,
PRE_TOPC: 18;
A98: 1
<= (i1
+ 1) by
NAT_1: 11;
A99: (
0
+ 1)
<= j2 by
A85,
NAT_1: 13;
then
A100: 1
< (j2
+ 1) by
NAT_1: 13;
(for x be
object st x
in P holds not x
in (
L~ f)) implies P
misses (
L~ f) by
XBOOLE_0: 3;
then
A101: p
in
{p} &
{p}
c= ((
L~ f)
` ) by
A3,
A8,
A99,
A86,
A89,
NAT_1: 13,
SUBSET_1: 23,
TARSKI:def 1;
then
reconsider p1 = p as
Point of ((
TOP-REAL 2)
| ((
L~ f)
` )) by
PRE_TOPC: 8;
A102: 1
<= (1
+ i1) by
NAT_1: 11;
(p
`1 )
= ((1
/ 2)
* ((((
GoB f)
* ((i1
+ 1),j2))
+ ((
GoB f)
* ((i1
+ 1),(j2
+ 1))))
`1 )) by
TOPREAL3: 4
.= ((1
/ 2)
* ((((
GoB f)
* ((i1
+ 1),j2))
`1 )
+ (((
GoB f)
* ((i1
+ 1),(j2
+ 1)))
`1 ))) by
TOPREAL3: 2;
then
A103: p
=
|[((1
/ 2)
* ((((
GoB f)
* ((i1
+ 1),j2))
`1 )
+ (((
GoB f)
* ((i1
+ 1),(j2
+ 1)))
`1 ))), ((1
/ 2)
* ((((
GoB f)
* ((i1
+ 1),j2))
`2 )
+ (((
GoB f)
* ((i1
+ 1),(j2
+ 1)))
`2 )))]| by
A90,
EUCLID: 53;
j2
< (j2
+ 1) by
NAT_1: 13;
then
A104: (((
GoB f)
* ((i1
+ 1),j2))
`2 )
< (((
GoB f)
* ((i1
+ 1),(j2
+ 1)))
`2 ) by
A3,
A8,
A99,
A87,
A102,
GOBOARD5: 4;
then ((((
GoB f)
* ((i1
+ 1),j2))
`2 )
+ (((
GoB f)
* ((i1
+ 1),(j2
+ 1)))
`2 ))
< ((((
GoB f)
* ((i1
+ 1),(j2
+ 1)))
`2 )
+ (((
GoB f)
* ((i1
+ 1),(j2
+ 1)))
`2 )) by
XREAL_1: 8;
then
A105: (((((
GoB f)
* ((i1
+ 1),j2))
`2 )
+ (((
GoB f)
* ((i1
+ 1),(j2
+ 1)))
`2 ))
/ 2)
< (((((
GoB f)
* ((i1
+ 1),(j2
+ 1)))
`2 )
+ (((
GoB f)
* ((i1
+ 1),(j2
+ 1)))
`2 ))
/ 2) by
XREAL_1: 74;
((((
GoB f)
* ((i1
+ 1),j2))
`2 )
+ (((
GoB f)
* ((i1
+ 1),j2))
`2 ))
< ((((
GoB f)
* ((i1
+ 1),j2))
`2 )
+ (((
GoB f)
* ((i1
+ 1),(j2
+ 1)))
`2 )) by
A104,
XREAL_1: 8;
then
A106: (((((
GoB f)
* ((i1
+ 1),j2))
`2 )
+ (((
GoB f)
* ((i1
+ 1),j2))
`2 ))
/ 2)
< (((((
GoB f)
* ((i1
+ 1),j2))
`2 )
+ (((
GoB f)
* ((i1
+ 1),(j2
+ 1)))
`2 ))
/ 2) by
XREAL_1: 74;
p
in {
|[r, s]| : (((
GoB f)
* ((i1
+ 1),j2))
`2 )
<= s & s
<= (((
GoB f)
* ((i1
+ 1),(j2
+ 1)))
`2 ) }
proof
p
=
|[(p
`1 ), (p
`2 )]| by
EUCLID: 53;
hence thesis by
A90,
A106,
A105;
end;
then
A107: p
in (
h_strip ((
GoB f),j2)) by
A3,
A8,
A99,
A86,
A98,
GOBOARD5: 5;
A108: i1
=
0 or i1
>= (
0
+ 1) by
NAT_1: 13;
A109:
now
per cases by
A3,
A8,
A108,
XXREAL_0: 1;
case
A110: i1
>= 1 & (i1
+ 1)
< (
len (
GoB f));
then
A111: ((i1
+ 1)
+ 1)
<= (
len (
GoB f)) by
NAT_1: 13;
A112: p
in {
|[r, s]| : (((
GoB f)
* ((i1
+ 1),1))
`1 )
<= r & r
<= (((
GoB f)
* (((i1
+ 1)
+ 1),1))
`1 ) }
proof
(i1
+ 1)
< ((i1
+ 1)
+ 1) by
NAT_1: 13;
then
A113: (((
GoB f)
* ((i1
+ 1),1))
`1 )
< (((
GoB f)
* (((i1
+ 1)
+ 1),1))
`1 ) by
A91,
A102,
A111,
GOBOARD5: 3;
(((
GoB f)
* ((i1
+ 1),j2))
`1 )
= (((
GoB f)
* ((i1
+ 1),1))
`1 ) & (((
GoB f)
* ((i1
+ 1),(j2
+ 1)))
`1 )
= (((
GoB f)
* ((i1
+ 1),1))
`1 ) by
A3,
A4,
A8,
A99,
A87,
A102,
A100,
GOBOARD5: 2;
hence thesis by
A103,
A113;
end;
1
<= (i1
+ 1) by
NAT_1: 11;
then p
in (
v_strip ((
GoB f),(i1
+ 1))) by
A91,
A110,
A112,
GOBOARD5: 8;
then p
in ((
v_strip ((
GoB f),(i1
+ 1)))
/\ (
h_strip ((
GoB f),j2))) by
A107,
XBOOLE_0:def 4;
then
A114: p
in (
cell ((
GoB f),(i1
+ 1),j2)) by
GOBOARD5:def 3;
A115: p
in {
|[r, s]| : (((
GoB f)
* (i1,1))
`1 )
<= r & r
<= (((
GoB f)
* ((i1
+ 1),1))
`1 ) }
proof
i1
< (i1
+ 1) by
NAT_1: 13;
then
A116: (((
GoB f)
* (i1,1))
`1 )
< (((
GoB f)
* ((i1
+ 1),1))
`1 ) by
A91,
A110,
GOBOARD5: 3;
(((
GoB f)
* ((i1
+ 1),j2))
`1 )
= (((
GoB f)
* ((i1
+ 1),1))
`1 ) & (((
GoB f)
* ((i1
+ 1),(j2
+ 1)))
`1 )
= (((
GoB f)
* ((i1
+ 1),1))
`1 ) by
A3,
A4,
A8,
A99,
A87,
A102,
A100,
GOBOARD5: 2;
hence thesis by
A103,
A116;
end;
i1
< (
len (
GoB f)) by
A110,
NAT_1: 13;
then p
in (
v_strip ((
GoB f),i1)) by
A91,
A110,
A115,
GOBOARD5: 8;
then p
in ((
v_strip ((
GoB f),i1))
/\ (
h_strip ((
GoB f),j2))) by
A107,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i1,j2)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),(i1
+ 1),j2))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i1,j2))
/\ ((
L~ f)
` )) by
A101,
A114,
XBOOLE_0:def 4;
end;
case
A117: i1
>= 1 & (i1
+ 1)
= (
len (
GoB f));
A118: i1
< (i1
+ 1) by
NAT_1: 13;
p
in {
|[r, s]| : (((
GoB f)
* (i1,1))
`1 )
<= r & r
<= (((
GoB f)
* ((i1
+ 1),1))
`1 ) }
proof
A119: (((
GoB f)
* (i1,1))
`1 )
< (((
GoB f)
* ((i1
+ 1),1))
`1 ) by
A91,
A117,
A118,
GOBOARD5: 3;
(((
GoB f)
* ((i1
+ 1),j2))
`1 )
= (((
GoB f)
* ((i1
+ 1),1))
`1 ) & (((
GoB f)
* ((i1
+ 1),(j2
+ 1)))
`1 )
= (((
GoB f)
* ((i1
+ 1),1))
`1 ) by
A3,
A4,
A8,
A99,
A87,
A102,
A100,
GOBOARD5: 2;
hence thesis by
A103,
A119;
end;
then p
in (
v_strip ((
GoB f),i1)) by
A91,
A117,
A118,
GOBOARD5: 8;
then p
in ((
v_strip ((
GoB f),i1))
/\ (
h_strip ((
GoB f),j2))) by
A107,
XBOOLE_0:def 4;
then
A120: p
in (
cell ((
GoB f),i1,j2)) by
GOBOARD5:def 3;
p
in {
|[r, s]| : (((
GoB f)
* ((i1
+ 1),1))
`1 )
<= r }
proof
(((
GoB f)
* ((i1
+ 1),j2))
`1 )
= (((
GoB f)
* ((i1
+ 1),1))
`1 ) & (((
GoB f)
* ((i1
+ 1),(j2
+ 1)))
`1 )
= (((
GoB f)
* ((i1
+ 1),1))
`1 ) by
A3,
A4,
A8,
A99,
A87,
A102,
A100,
GOBOARD5: 2;
hence thesis by
A103;
end;
then p
in (
v_strip ((
GoB f),(i1
+ 1))) by
A91,
A117,
GOBOARD5: 9;
then p
in ((
v_strip ((
GoB f),(i1
+ 1)))
/\ (
h_strip ((
GoB f),j2))) by
A107,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),(i1
+ 1),j2)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),(i1
+ 1),j2))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i1,j2))
/\ ((
L~ f)
` )) by
A101,
A120,
XBOOLE_0:def 4;
end;
case
A121: i1
=
0 & (i1
+ 1)
< (
len (
GoB f));
then
A122: ((i1
+ 1)
+ 1)
<= (
len (
GoB f)) by
NAT_1: 13;
p
in {
|[r, s]| : (((
GoB f)
* ((i1
+ 1),1))
`1 )
<= r & r
<= (((
GoB f)
* (((i1
+ 1)
+ 1),1))
`1 ) }
proof
(i1
+ 1)
< ((i1
+ 1)
+ 1) by
NAT_1: 13;
then
A123: (((
GoB f)
* ((i1
+ 1),1))
`1 )
< (((
GoB f)
* (((i1
+ 1)
+ 1),1))
`1 ) by
A91,
A102,
A122,
GOBOARD5: 3;
(((
GoB f)
* ((i1
+ 1),j2))
`1 )
= (((
GoB f)
* ((i1
+ 1),1))
`1 ) & (((
GoB f)
* ((i1
+ 1),(j2
+ 1)))
`1 )
= (((
GoB f)
* ((i1
+ 1),1))
`1 ) by
A3,
A4,
A8,
A99,
A87,
A102,
A100,
GOBOARD5: 2;
hence thesis by
A103,
A123;
end;
then p
in (
v_strip ((
GoB f),(i1
+ 1))) by
A91,
A121,
GOBOARD5: 8;
then p
in ((
v_strip ((
GoB f),(i1
+ 1)))
/\ (
h_strip ((
GoB f),j2))) by
A107,
XBOOLE_0:def 4;
then
A124: p
in (
cell ((
GoB f),(i1
+ 1),j2)) by
GOBOARD5:def 3;
p
in {
|[r, s]| : r
<= (((
GoB f)
* (1,1))
`1 ) }
proof
(((
GoB f)
* ((i1
+ 1),j2))
`1 )
= (((
GoB f)
* ((i1
+ 1),1))
`1 ) & (((
GoB f)
* ((i1
+ 1),(j2
+ 1)))
`1 )
= (((
GoB f)
* ((i1
+ 1),1))
`1 ) by
A3,
A4,
A8,
A99,
A87,
A102,
A100,
GOBOARD5: 2;
hence thesis by
A103,
A121;
end;
then p
in (
v_strip ((
GoB f),i1)) by
A91,
A121,
GOBOARD5: 10;
then p
in ((
v_strip ((
GoB f),i1))
/\ (
h_strip ((
GoB f),j2))) by
A107,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i1,j2)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),(i1
+ 1),j2))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i1,j2))
/\ ((
L~ f)
` )) by
A101,
A124,
XBOOLE_0:def 4;
end;
case i1
=
0 & (i1
+ 1)
= (
len (
GoB f));
hence contradiction by
GOBOARD7: 32;
end;
end;
then p
in (
Cl (
Down ((
Int (
cell ((
GoB f),(i1
+ 1),j2))),((
L~ f)
` )))) by
A4,
Th2;
then
A125: (
Cl (
Down ((
Int (
cell ((
GoB f),(i1
+ 1),j2))),((
L~ f)
` ))))
c= (
Component_of p1) by
A3,
A4,
A8,
Th3,
GOBRD11: 1;
p
in (
Cl (
Down ((
Int (
cell ((
GoB f),i1,j2))),((
L~ f)
` )))) by
A1,
A4,
A109,
Th2;
then (
Component_of p1)
c= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A96,
A94,
Th5,
CONNSP_3: 21;
then (
Cl (
Down ((
Int (
cell ((
GoB f),(i1
+ 1),j2))),((
L~ f)
` ))))
c= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A125;
hence (
Int (
cell ((
GoB f),(i1
+ 1),j2)))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A95,
A97;
end;
end;
hence (
Int (
cell ((
GoB f),(i1
+ 1),j2)))
c= ((
LeftComp f)
\/ (
RightComp f));
end;
end;
hence (
Int (
cell ((
GoB f),i2,j2)))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A8;
end;
case
A126: i1
= (i2
+ 1);
then i2
< i1 by
NAT_1: 13;
then
A127: (i1
-' 1)
< i1 by
A126,
NAT_D: 34;
A128: i2
< (i2
+ 1) by
NAT_1: 13;
A129: 1
<= ((i1
-' 1)
+ 1) by
NAT_1: 11;
A130: (i2
+ 1)
< ((i2
+ 1)
+ 1) by
NAT_1: 13;
A131: 1
<= i1 & (i1
-' 1)
= (i1
- 1) by
A126,
NAT_1: 11,
XREAL_0:def 2;
A132: 1
<= (i2
+ 1) by
NAT_1: 11;
A133: (i1
-' 1)
= i2 by
A126,
NAT_D: 34;
now
per cases ;
case ex k st 1
<= k & (k
+ 1)
<= (
len f) & j2
<>
0 & j2
<> (
width (
GoB f)) & (
LSeg ((f
/. k),(f
/. (k
+ 1))))
= (
LSeg (((
GoB f)
* ((i2
+ 1),j2)),((
GoB f)
* ((i2
+ 1),(j2
+ 1)))));
then
consider k such that
A134: 1
<= k & (k
+ 1)
<= (
len f) and
A135: j2
<>
0 and
A136: j2
<> (
width (
GoB f)) and
A137: (
LSeg ((f
/. k),(f
/. (k
+ 1))))
= (
LSeg (((
GoB f)
* (((i1
-' 1)
+ 1),j2)),((
GoB f)
* (((i1
-' 1)
+ 1),(j2
+ 1))))) by
A133;
now
per cases by
A137,
SPPOL_1: 8;
case
A138: (f
/. k)
= ((
GoB f)
* (((i1
-' 1)
+ 1),j2)) & (f
/. (k
+ 1))
= ((
GoB f)
* (((i1
-' 1)
+ 1),(j2
+ 1)));
A139: (
Int (
left_cell (f,k)))
c= (
LeftComp f) & (
LeftComp f)
c= ((
LeftComp f)
\/ (
RightComp f)) by
A134,
GOBOARD9: 21,
XBOOLE_1: 7;
j2
< (
width (
GoB f)) by
A4,
A136,
XXREAL_0: 1;
then
A140: (j2
+ 1)
<= (
width (
GoB f)) by
NAT_1: 13;
(i1
-' 1)
< (
len (
GoB f)) by
A1,
A127,
XXREAL_0: 2;
then ((i1
-' 1)
+ 1)
<= (
len (
GoB f)) by
NAT_1: 13;
then
A141: (
Indices (
GoB f))
=
[:(
dom (
GoB f)), (
Seg (
width (
GoB f))):] & ((i1
-' 1)
+ 1)
in (
dom (
GoB f)) by
A129,
FINSEQ_3: 25,
MATRIX_0:def 4;
1
<= (j2
+ 1) by
NAT_1: 11;
then (j2
+ 1)
in (
Seg (
width (
GoB f))) by
A140,
FINSEQ_1: 1;
then
A142:
[((i1
-' 1)
+ 1), (j2
+ 1)]
in (
Indices (
GoB f)) by
A141,
ZFMISC_1: 87;
j2
>= (
0
+ 1) by
A135,
NAT_1: 13;
then j2
in (
Seg (
width (
GoB f))) by
A4,
FINSEQ_1: 1;
then
[((i1
-' 1)
+ 1), j2]
in (
Indices (
GoB f)) by
A141,
ZFMISC_1: 87;
then (
left_cell (f,k))
= (
cell ((
GoB f),(i1
-' 1),j2)) by
A134,
A138,
A142,
GOBOARD5: 27;
hence (
Int (
cell ((
GoB f),(i1
-' 1),j2)))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A139;
end;
case
A143: (f
/. k)
= ((
GoB f)
* (((i1
-' 1)
+ 1),(j2
+ 1))) & (f
/. (k
+ 1))
= ((
GoB f)
* (((i1
-' 1)
+ 1),j2));
A144: (
Int (
right_cell (f,k)))
c= (
RightComp f) & (
RightComp f)
c= ((
LeftComp f)
\/ (
RightComp f)) by
A134,
GOBOARD9: 25,
XBOOLE_1: 7;
j2
< (
width (
GoB f)) by
A4,
A136,
XXREAL_0: 1;
then
A145: (j2
+ 1)
<= (
width (
GoB f)) by
NAT_1: 13;
A146: (
Indices (
GoB f))
=
[:(
dom (
GoB f)), (
Seg (
width (
GoB f))):] & ((i1
-' 1)
+ 1)
in (
dom (
GoB f)) by
A1,
A131,
FINSEQ_3: 25,
MATRIX_0:def 4;
1
<= (j2
+ 1) by
NAT_1: 11;
then (j2
+ 1)
in (
Seg (
width (
GoB f))) by
A145,
FINSEQ_1: 1;
then
A147:
[((i1
-' 1)
+ 1), (j2
+ 1)]
in (
Indices (
GoB f)) by
A146,
ZFMISC_1: 87;
j2
>= (
0
+ 1) by
A135,
NAT_1: 13;
then j2
in (
Seg (
width (
GoB f))) by
A4,
FINSEQ_1: 1;
then
[((i1
-' 1)
+ 1), j2]
in (
Indices (
GoB f)) by
A146,
ZFMISC_1: 87;
then (
right_cell (f,k))
= (
cell ((
GoB f),(i1
-' 1),j2)) by
A134,
A143,
A147,
GOBOARD5: 30;
hence (
Int (
cell ((
GoB f),(i1
-' 1),j2)))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A144;
end;
end;
hence (
Int (
cell ((
GoB f),i2,j2)))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A126,
NAT_D: 34;
end;
case
A148: not ex k st 1
<= k & (k
+ 1)
<= (
len f) & j2
<>
0 & j2
<> (
width (
GoB f)) & (
LSeg ((f
/. k),(f
/. (k
+ 1))))
= (
LSeg (((
GoB f)
* ((i2
+ 1),j2)),((
GoB f)
* ((i2
+ 1),(j2
+ 1)))));
now
per cases by
A148;
case
A149: j2
=
0 ;
reconsider p =
|[(((
GoB f)
* ((i2
+ 1),1))
`1 ), ((((
GoB f)
* ((i2
+ 1),1))
`2 )
- 1)]| as
Point of (
TOP-REAL 2);
A150: 1
< (
width (
GoB f)) by
GOBOARD7: 33;
A151: 1
< (
len (
GoB f)) by
GOBOARD7: 32;
reconsider P =
{p} as
Subset of (
TOP-REAL 2);
A152: (p
`2 )
< ((p
`2 )
+ 1) by
XREAL_1: 29;
A153: 1
<= (i2
+ 1) by
NAT_1: 11;
then (((
GoB f)
* ((i2
+ 1),1))
`2 )
= (((
GoB f)
* (1,1))
`2 ) by
A1,
A126,
A150,
GOBOARD5: 1;
then
A154: (p
`2 )
= ((((
GoB f)
* (1,1))
`2 )
- 1) by
EUCLID: 52;
p
in {
|[r, s]| : s
<= (((
GoB f)
* (1,1))
`2 ) }
proof
p
=
|[(p
`1 ), (p
`2 )]| by
EUCLID: 53;
hence thesis by
A154,
A152;
end;
then
A155: p
in (
h_strip ((
GoB f),j2)) by
A149,
A151,
GOBOARD5: 7;
(for q be
Point of (
TOP-REAL 2) st q
in P holds (q
`2 )
< (((
GoB f)
* (1,1))
`2 )) implies P
misses (
L~ f) by
GOBOARD8: 23;
then
A156: p
in
{p} &
{p}
c= ((
L~ f)
` ) by
A154,
A152,
SUBSET_1: 23,
TARSKI:def 1;
then
reconsider p1 = p as
Point of ((
TOP-REAL 2)
| ((
L~ f)
` )) by
PRE_TOPC: 8;
A157:
now
per cases by
A1,
A126,
XXREAL_0: 1;
case
A158: (i2
+ 1)
< (
len (
GoB f)) & i2
>
0 ;
then
A159: ((i2
+ 1)
+ 1)
<= (
len (
GoB f)) by
NAT_1: 13;
A160: p
in {
|[r, s]| : (((
GoB f)
* ((i2
+ 1),1))
`1 )
<= r & r
<= (((
GoB f)
* (((i2
+ 1)
+ 1),1))
`1 ) }
proof
(i2
+ 1)
< ((i2
+ 1)
+ 1) by
NAT_1: 13;
then (((
GoB f)
* ((i2
+ 1),1))
`1 )
<= (((
GoB f)
* (((i2
+ 1)
+ 1),1))
`1 ) by
A150,
A153,
A159,
GOBOARD5: 3;
hence thesis;
end;
A161: (
0
+ 1)
<= i2 by
A158,
NAT_1: 13;
A162: p
in {
|[r, s]| : (((
GoB f)
* (i2,1))
`1 )
<= r & r
<= (((
GoB f)
* ((i2
+ 1),1))
`1 ) }
proof
i2
< (i2
+ 1) by
NAT_1: 13;
then (((
GoB f)
* (i2,1))
`1 )
< (((
GoB f)
* ((i2
+ 1),1))
`1 ) by
A1,
A126,
A150,
A161,
GOBOARD5: 3;
hence thesis;
end;
i2
< (
len (
GoB f)) by
A158,
NAT_1: 13;
then p
in (
v_strip ((
GoB f),i2)) by
A150,
A161,
A162,
GOBOARD5: 8;
then p
in ((
v_strip ((
GoB f),i2))
/\ (
h_strip ((
GoB f),j2))) by
A155,
XBOOLE_0:def 4;
then
A163: p
in (
cell ((
GoB f),i2,j2)) by
GOBOARD5:def 3;
1
<= (i2
+ 1) by
A161,
NAT_1: 13;
then p
in (
v_strip ((
GoB f),(i2
+ 1))) by
A150,
A158,
A160,
GOBOARD5: 8;
then p
in ((
v_strip ((
GoB f),(i2
+ 1)))
/\ (
h_strip ((
GoB f),j2))) by
A155,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),(i2
+ 1),j2)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),(i2
+ 1),j2))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i2,j2))
/\ ((
L~ f)
` )) by
A156,
A163,
XBOOLE_0:def 4;
end;
case
A164: (i2
+ 1)
< (
len (
GoB f)) & i2
=
0 ;
A165: (i2
+ 1)
< ((i2
+ 1)
+ 1) by
NAT_1: 13;
A166: ((i2
+ 1)
+ 1)
<= (
len (
GoB f)) by
A164,
NAT_1: 13;
p
in {
|[r, s]| : (((
GoB f)
* ((i2
+ 1),1))
`1 )
<= r & r
<= (((
GoB f)
* (((i2
+ 1)
+ 1),1))
`1 ) }
proof
(((
GoB f)
* ((i2
+ 1),1))
`1 )
< (((
GoB f)
* (((i2
+ 1)
+ 1),1))
`1 ) by
A132,
A150,
A166,
A165,
GOBOARD5: 3;
hence thesis;
end;
then p
in (
v_strip ((
GoB f),(i2
+ 1))) by
A150,
A164,
GOBOARD5: 8;
then p
in ((
v_strip ((
GoB f),(i2
+ 1)))
/\ (
h_strip ((
GoB f),j2))) by
A155,
XBOOLE_0:def 4;
then
A167: p
in (
cell ((
GoB f),(i2
+ 1),j2)) by
GOBOARD5:def 3;
p
in {
|[r, s]| : r
<= (((
GoB f)
* ((i2
+ 1),1))
`1 ) };
then p
in (
v_strip ((
GoB f),i2)) by
A150,
A164,
GOBOARD5: 10;
then p
in ((
v_strip ((
GoB f),i2))
/\ (
h_strip ((
GoB f),j2))) by
A155,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i2,j2)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),(i2
+ 1),j2))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i2,j2))
/\ ((
L~ f)
` )) by
A156,
A167,
XBOOLE_0:def 4;
end;
case
A168: (i2
+ 1)
= (
len (
GoB f)) & i2
>
0 ;
then
A169: (
0
+ 1)
<= i2 by
NAT_1: 13;
A170: p
in {
|[r, s]| : (((
GoB f)
* (i2,1))
`1 )
<= r & r
<= (((
GoB f)
* ((i2
+ 1),1))
`1 ) }
proof
(((
GoB f)
* (i2,1))
`1 )
< (((
GoB f)
* ((i2
+ 1),1))
`1 ) by
A128,
A150,
A168,
A169,
GOBOARD5: 3;
hence thesis;
end;
p
in {
|[r, s]| : (((
GoB f)
* ((i2
+ 1),1))
`1 )
<= r };
then p
in (
v_strip ((
GoB f),(i2
+ 1))) by
A150,
A168,
GOBOARD5: 9;
then p
in ((
v_strip ((
GoB f),(i2
+ 1)))
/\ (
h_strip ((
GoB f),j2))) by
A155,
XBOOLE_0:def 4;
then
A171: p
in (
cell ((
GoB f),(i2
+ 1),j2)) by
GOBOARD5:def 3;
i2
< (
len (
GoB f)) by
A168,
NAT_1: 13;
then p
in (
v_strip ((
GoB f),i2)) by
A150,
A169,
A170,
GOBOARD5: 8;
then p
in ((
v_strip ((
GoB f),i2))
/\ (
h_strip ((
GoB f),j2))) by
A155,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i2,j2)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),(i2
+ 1),j2))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i2,j2))
/\ ((
L~ f)
` )) by
A156,
A171,
XBOOLE_0:def 4;
end;
case
A172: (i2
+ 1)
= (
len (
GoB f)) & i2
=
0 ;
p
in {
|[r, s]| : (((
GoB f)
* ((i2
+ 1),1))
`1 )
<= r };
then p
in (
v_strip ((
GoB f),(i2
+ 1))) by
A150,
A172,
GOBOARD5: 9;
then p
in ((
v_strip ((
GoB f),(i2
+ 1)))
/\ (
h_strip ((
GoB f),j2))) by
A155,
XBOOLE_0:def 4;
then
A173: p
in (
cell ((
GoB f),(i2
+ 1),j2)) by
GOBOARD5:def 3;
p
in {
|[r, s]| : r
<= (((
GoB f)
* (1,1))
`1 ) } by
A172;
then p
in (
v_strip ((
GoB f),i2)) by
A150,
A172,
GOBOARD5: 10;
then p
in ((
v_strip ((
GoB f),i2))
/\ (
h_strip ((
GoB f),j2))) by
A155,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i2,j2)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),(i2
+ 1),j2))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i2,j2))
/\ ((
L~ f)
` )) by
A156,
A173,
XBOOLE_0:def 4;
end;
end;
then p
in (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` )))) by
A3,
A4,
Th2;
then
A174: (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` ))))
c= (
Component_of p1) by
A3,
A4,
Th3,
GOBRD11: 1;
(
Down ((
RightComp f),((
L~ f)
` ))) is
closed by
Lm4,
CONNSP_1: 33;
then
A175: (
Cl (
Down ((
RightComp f),((
L~ f)
` ))))
= (
Down ((
RightComp f),((
L~ f)
` ))) by
PRE_TOPC: 22;
(
Down ((
LeftComp f),((
L~ f)
` ))) is
closed by
Lm3,
CONNSP_1: 33;
then
A176: (
Cl (
Down ((
LeftComp f),((
L~ f)
` ))))
= (
Down ((
LeftComp f),((
L~ f)
` ))) by
PRE_TOPC: 22;
A177: (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` )))
c= (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` )))) & (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` )))
= (
Int (
cell ((
GoB f),i2,j2))) by
A3,
A4,
Th3,
PRE_TOPC: 18;
((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` ))))
= (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))) by
GOBRD11: 4;
then
A178: (
Cl (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))))
= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A176,
A175,
PRE_TOPC: 20;
A179: (
Down ((
LeftComp f),((
L~ f)
` )))
= (
LeftComp f) & (
Down ((
RightComp f),((
L~ f)
` )))
= (
RightComp f) by
Th5;
(
Down ((
Int (
cell ((
GoB f),i1,j2))),((
L~ f)
` )))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A1,
A2,
A6,
A7,
Th3;
then (
Down ((
Int (
cell ((
GoB f),i1,j2))),((
L~ f)
` )))
c= (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))) by
A179,
GOBRD11: 4;
then
A180: (
Cl (
Down ((
Int (
cell ((
GoB f),i1,j2))),((
L~ f)
` ))))
c= (
Cl (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` )))) by
PRE_TOPC: 19;
p
in (
Cl (
Down ((
Int (
cell ((
GoB f),(i2
+ 1),j2))),((
L~ f)
` )))) by
A4,
A157,
Th2;
then (
Component_of p1)
c= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A126,
A180,
A178,
Th5,
CONNSP_3: 21;
then (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` ))))
c= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A174;
hence (
Int (
cell ((
GoB f),i2,j2)))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A179,
A177;
end;
case
A181: j2
= (
width (
GoB f));
reconsider p =
|[(((
GoB f)
* ((i2
+ 1),(
width (
GoB f))))
`1 ), ((((
GoB f)
* ((i2
+ 1),(
width (
GoB f))))
`2 )
+ 1)]| as
Point of (
TOP-REAL 2);
A182: 1
< (
width (
GoB f)) by
GOBOARD7: 33;
reconsider P =
{p} as
Subset of (
TOP-REAL 2);
A183: (for q be
Point of (
TOP-REAL 2) st q
in P holds (((
GoB f)
* (1,(
width (
GoB f))))
`2 )
< (q
`2 )) implies P
misses (
L~ f) by
GOBOARD8: 24;
A184: 1
< (
len (
GoB f)) by
GOBOARD7: 32;
A185: 1
<= (i2
+ 1) by
NAT_1: 11;
then (((
GoB f)
* ((i2
+ 1),(
width (
GoB f))))
`2 )
= (((
GoB f)
* (1,(
width (
GoB f))))
`2 ) by
A1,
A126,
A182,
GOBOARD5: 1;
then
A186: (p
`2 )
= ((((
GoB f)
* (1,(
width (
GoB f))))
`2 )
+ 1) by
EUCLID: 52;
p
in {
|[r, s]| : (((
GoB f)
* (1,(
width (
GoB f))))
`2 )
<= s }
proof
p
=
|[(p
`1 ), (p
`2 )]| & (((
GoB f)
* (1,(
width (
GoB f))))
`2 )
<= (p
`2 ) by
A186,
EUCLID: 53,
XREAL_1: 29;
hence thesis;
end;
then
A187: p
in (
h_strip ((
GoB f),j2)) by
A181,
A184,
GOBOARD5: 6;
(((
GoB f)
* (1,(
width (
GoB f))))
`2 )
< ((((
GoB f)
* (1,(
width (
GoB f))))
`2 )
+ 1) by
XREAL_1: 29;
then
A188: p
in
{p} &
{p}
c= ((
L~ f)
` ) by
A186,
A183,
SUBSET_1: 23,
TARSKI:def 1;
then
reconsider p1 = p as
Point of ((
TOP-REAL 2)
| ((
L~ f)
` )) by
PRE_TOPC: 8;
A189:
now
per cases by
A1,
A126,
XXREAL_0: 1;
case
A190: (i2
+ 1)
< (
len (
GoB f)) & i2
>
0 ;
then
A191: ((i2
+ 1)
+ 1)
<= (
len (
GoB f)) by
NAT_1: 13;
A192: p
in {
|[r, s]| : (((
GoB f)
* ((i2
+ 1),(
width (
GoB f))))
`1 )
<= r & r
<= (((
GoB f)
* (((i2
+ 1)
+ 1),(
width (
GoB f))))
`1 ) }
proof
(i2
+ 1)
< ((i2
+ 1)
+ 1) by
NAT_1: 13;
then (((
GoB f)
* ((i2
+ 1),(
width (
GoB f))))
`1 )
<= (((
GoB f)
* (((i2
+ 1)
+ 1),(
width (
GoB f))))
`1 ) by
A182,
A185,
A191,
GOBOARD5: 3;
hence thesis;
end;
1
<= (i2
+ 1) by
NAT_1: 11;
then p
in (
v_strip ((
GoB f),(i2
+ 1))) by
A182,
A190,
A192,
GOBOARD5: 8;
then p
in ((
v_strip ((
GoB f),(i2
+ 1)))
/\ (
h_strip ((
GoB f),j2))) by
A187,
XBOOLE_0:def 4;
then
A193: p
in (
cell ((
GoB f),(i2
+ 1),j2)) by
GOBOARD5:def 3;
A194: (
0
+ 1)
<= i2 by
A190,
NAT_1: 13;
A195: i2
< (i2
+ 1) by
NAT_1: 13;
A196: p
in {
|[r, s]| : (((
GoB f)
* (i2,(
width (
GoB f))))
`1 )
<= r & r
<= (((
GoB f)
* ((i2
+ 1),(
width (
GoB f))))
`1 ) }
proof
(((
GoB f)
* (i2,(
width (
GoB f))))
`1 )
< (((
GoB f)
* ((i2
+ 1),(
width (
GoB f))))
`1 ) by
A1,
A126,
A182,
A194,
A195,
GOBOARD5: 3;
hence thesis;
end;
i2
< (
len (
GoB f)) by
A190,
NAT_1: 13;
then p
in (
v_strip ((
GoB f),i2)) by
A182,
A194,
A196,
GOBOARD5: 8;
then p
in ((
v_strip ((
GoB f),i2))
/\ (
h_strip ((
GoB f),j2))) by
A187,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i2,j2)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),(i2
+ 1),j2))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i2,j2))
/\ ((
L~ f)
` )) by
A188,
A193,
XBOOLE_0:def 4;
end;
case
A197: (i2
+ 1)
< (
len (
GoB f)) & i2
=
0 ;
then
A198: ((i2
+ 1)
+ 1)
<= (
len (
GoB f)) by
NAT_1: 13;
p
in {
|[r, s]| : (((
GoB f)
* ((i2
+ 1),(
width (
GoB f))))
`1 )
<= r & r
<= (((
GoB f)
* (((i2
+ 1)
+ 1),(
width (
GoB f))))
`1 ) }
proof
(((
GoB f)
* ((i2
+ 1),(
width (
GoB f))))
`1 )
< (((
GoB f)
* (((i2
+ 1)
+ 1),(
width (
GoB f))))
`1 ) by
A132,
A130,
A182,
A198,
GOBOARD5: 3;
hence thesis;
end;
then p
in (
v_strip ((
GoB f),(i2
+ 1))) by
A182,
A197,
GOBOARD5: 8;
then p
in ((
v_strip ((
GoB f),(i2
+ 1)))
/\ (
h_strip ((
GoB f),j2))) by
A187,
XBOOLE_0:def 4;
then
A199: p
in (
cell ((
GoB f),(i2
+ 1),j2)) by
GOBOARD5:def 3;
p
in {
|[r, s]| : r
<= (((
GoB f)
* (1,(
width (
GoB f))))
`1 ) } by
A197;
then p
in (
v_strip ((
GoB f),i2)) by
A182,
A197,
GOBOARD5: 10;
then p
in ((
v_strip ((
GoB f),i2))
/\ (
h_strip ((
GoB f),j2))) by
A187,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i2,j2)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),(i2
+ 1),j2))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i2,j2))
/\ ((
L~ f)
` )) by
A188,
A199,
XBOOLE_0:def 4;
end;
case
A200: (i2
+ 1)
= (
len (
GoB f)) & i2
>
0 ;
then
A201: (
0
+ 1)
<= i2 by
NAT_1: 13;
A202: p
in {
|[r, s]| : (((
GoB f)
* (i2,(
width (
GoB f))))
`1 )
<= r & r
<= (((
GoB f)
* ((i2
+ 1),(
width (
GoB f))))
`1 ) }
proof
(((
GoB f)
* (i2,(
width (
GoB f))))
`1 )
<= (((
GoB f)
* ((i2
+ 1),(
width (
GoB f))))
`1 ) by
A128,
A182,
A200,
A201,
GOBOARD5: 3;
hence thesis;
end;
p
in {
|[r, s]| : (((
GoB f)
* ((
len (
GoB f)),(
width (
GoB f))))
`1 )
<= r } by
A200;
then p
in (
v_strip ((
GoB f),(i2
+ 1))) by
A182,
A200,
GOBOARD5: 9;
then p
in ((
v_strip ((
GoB f),(i2
+ 1)))
/\ (
h_strip ((
GoB f),j2))) by
A187,
XBOOLE_0:def 4;
then
A203: p
in (
cell ((
GoB f),(i2
+ 1),j2)) by
GOBOARD5:def 3;
i2
< (
len (
GoB f)) by
A200,
NAT_1: 13;
then p
in (
v_strip ((
GoB f),i2)) by
A182,
A201,
A202,
GOBOARD5: 8;
then p
in ((
v_strip ((
GoB f),i2))
/\ (
h_strip ((
GoB f),j2))) by
A187,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i2,j2)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),(i2
+ 1),j2))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i2,j2))
/\ ((
L~ f)
` )) by
A188,
A203,
XBOOLE_0:def 4;
end;
case (i2
+ 1)
= (
len (
GoB f)) & i2
=
0 ;
hence contradiction by
GOBOARD7: 32;
end;
end;
then p
in (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` )))) by
A3,
A4,
Th2;
then
A204: (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` ))))
c= (
Component_of p1) by
A3,
A4,
Th3,
GOBRD11: 1;
(
Down ((
RightComp f),((
L~ f)
` ))) is
closed by
Lm4,
CONNSP_1: 33;
then
A205: (
Cl (
Down ((
RightComp f),((
L~ f)
` ))))
= (
Down ((
RightComp f),((
L~ f)
` ))) by
PRE_TOPC: 22;
(
Down ((
LeftComp f),((
L~ f)
` ))) is
closed by
Lm3,
CONNSP_1: 33;
then
A206: (
Cl (
Down ((
LeftComp f),((
L~ f)
` ))))
= (
Down ((
LeftComp f),((
L~ f)
` ))) by
PRE_TOPC: 22;
A207: (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` )))
c= (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` )))) & (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` )))
= (
Int (
cell ((
GoB f),i2,j2))) by
A3,
A4,
Th3,
PRE_TOPC: 18;
((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` ))))
= (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))) by
GOBRD11: 4;
then
A208: (
Cl (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))))
= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A206,
A205,
PRE_TOPC: 20;
A209: (
Down ((
LeftComp f),((
L~ f)
` )))
= (
LeftComp f) & (
Down ((
RightComp f),((
L~ f)
` )))
= (
RightComp f) by
Th5;
(
Down ((
Int (
cell ((
GoB f),i1,j2))),((
L~ f)
` )))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A1,
A2,
A6,
A7,
Th3;
then (
Down ((
Int (
cell ((
GoB f),i1,j2))),((
L~ f)
` )))
c= (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))) by
A209,
GOBRD11: 4;
then
A210: (
Cl (
Down ((
Int (
cell ((
GoB f),i1,j2))),((
L~ f)
` ))))
c= (
Cl (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` )))) by
PRE_TOPC: 19;
p
in (
Cl (
Down ((
Int (
cell ((
GoB f),(i2
+ 1),j2))),((
L~ f)
` )))) by
A4,
A189,
Th2;
then (
Component_of p1)
c= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A126,
A210,
A208,
Th5,
CONNSP_3: 21;
then (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` ))))
c= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A204;
hence (
Int (
cell ((
GoB f),i2,j2)))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A209,
A207;
end;
case
A211: j2
<>
0 & j2
<> (
width (
GoB f)) & not ex k st 1
<= k & (k
+ 1)
<= (
len f) & (
LSeg ((f
/. k),(f
/. (k
+ 1))))
= (
LSeg (((
GoB f)
* ((i2
+ 1),j2)),((
GoB f)
* ((i2
+ 1),(j2
+ 1)))));
then
A212: j2
< (
width (
GoB f)) by
A4,
XXREAL_0: 1;
then
A213: (j2
+ 1)
<= (
width (
GoB f)) by
NAT_1: 13;
for k st 1
<= k & (k
+ 1)
<= (
len f) holds (
LSeg (((
GoB f)
* ((i2
+ 1),j2)),((
GoB f)
* ((i2
+ 1),(j2
+ 1)))))
<> (
LSeg (f,k))
proof
let k;
assume
A214: 1
<= k & (k
+ 1)
<= (
len f);
then (
LSeg (f,k))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
TOPREAL1:def 3;
hence thesis by
A211,
A214;
end;
then
A215: 1
<= (i2
+ 1) & (i2
+ 1)
<= (
len (
GoB f)) & 1
<= j2 & (j2
+ 1)
<= (
width (
GoB f)) implies not ((1
/ 2)
* (((
GoB f)
* ((i2
+ 1),j2))
+ ((
GoB f)
* ((i2
+ 1),(j2
+ 1)))))
in (
L~ f) by
GOBOARD7: 39;
reconsider p = ((1
/ 2)
* (((
GoB f)
* ((i2
+ 1),j2))
+ ((
GoB f)
* ((i2
+ 1),(j2
+ 1))))) as
Point of (
TOP-REAL 2);
A216: (p
`2 )
= ((1
/ 2)
* ((((
GoB f)
* ((i2
+ 1),j2))
+ ((
GoB f)
* ((i2
+ 1),(j2
+ 1))))
`2 )) by
TOPREAL3: 4
.= ((1
/ 2)
* ((((
GoB f)
* ((i2
+ 1),j2))
`2 )
+ (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`2 ))) by
TOPREAL3: 2;
reconsider P =
{p} as
Subset of (
TOP-REAL 2);
A217: 1
< (
width (
GoB f)) by
GOBOARD7: 33;
(
Down ((
RightComp f),((
L~ f)
` ))) is
closed by
Lm4,
CONNSP_1: 33;
then
A218: (
Cl (
Down ((
RightComp f),((
L~ f)
` ))))
= (
Down ((
RightComp f),((
L~ f)
` ))) by
PRE_TOPC: 22;
(
Down ((
LeftComp f),((
L~ f)
` ))) is
closed by
Lm3,
CONNSP_1: 33;
then
A219: (
Cl (
Down ((
LeftComp f),((
L~ f)
` ))))
= (
Down ((
LeftComp f),((
L~ f)
` ))) by
PRE_TOPC: 22;
((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` ))))
= (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))) by
GOBRD11: 4;
then
A220: (
Cl (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))))
= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A219,
A218,
PRE_TOPC: 20;
A221: 1
<= (i2
+ 1) by
NAT_1: 11;
(p
`1 )
= ((1
/ 2)
* ((((
GoB f)
* ((i2
+ 1),j2))
+ ((
GoB f)
* ((i2
+ 1),(j2
+ 1))))
`1 )) by
TOPREAL3: 4
.= ((1
/ 2)
* ((((
GoB f)
* ((i2
+ 1),j2))
`1 )
+ (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`1 ))) by
TOPREAL3: 2;
then
A222: p
=
|[((1
/ 2)
* ((((
GoB f)
* ((i2
+ 1),j2))
`1 )
+ (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`1 ))), ((1
/ 2)
* ((((
GoB f)
* ((i2
+ 1),j2))
`2 )
+ (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`2 )))]| by
A216,
EUCLID: 53;
A223: (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` )))
c= (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` )))) & (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` )))
= (
Int (
cell ((
GoB f),i2,j2))) by
A3,
A4,
Th3,
PRE_TOPC: 18;
A224: (
Down ((
LeftComp f),((
L~ f)
` )))
= (
LeftComp f) & (
Down ((
RightComp f),((
L~ f)
` )))
= (
RightComp f) by
Th5;
(
Down ((
Int (
cell ((
GoB f),i1,j2))),((
L~ f)
` )))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A1,
A2,
A6,
A7,
Th3;
then (
Down ((
Int (
cell ((
GoB f),i1,j2))),((
L~ f)
` )))
c= (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))) by
A224,
GOBRD11: 4;
then
A225: (
Cl (
Down ((
Int (
cell ((
GoB f),i1,j2))),((
L~ f)
` ))))
c= (
Cl (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` )))) by
PRE_TOPC: 19;
A226: (
0
+ 1)
<= j2 by
A211,
NAT_1: 13;
then
A227: 1
< (j2
+ 1) by
NAT_1: 13;
(for x be
object st x
in P holds not x
in (
L~ f)) implies P
misses (
L~ f) by
XBOOLE_0: 3;
then
A228: p
in
{p} &
{p}
c= ((
L~ f)
` ) by
A1,
A126,
A226,
A212,
A215,
NAT_1: 13,
SUBSET_1: 23,
TARSKI:def 1;
then
reconsider p1 = p as
Point of ((
TOP-REAL 2)
| ((
L~ f)
` )) by
PRE_TOPC: 8;
A229: 1
<= (1
+ i2) by
NAT_1: 11;
j2
< (j2
+ 1) by
NAT_1: 13;
then
A230: (((
GoB f)
* ((i2
+ 1),j2))
`2 )
< (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`2 ) by
A1,
A126,
A226,
A213,
A229,
GOBOARD5: 4;
then ((((
GoB f)
* ((i2
+ 1),j2))
`2 )
+ (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`2 ))
< ((((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`2 )
+ (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`2 )) by
XREAL_1: 8;
then
A231: (((((
GoB f)
* ((i2
+ 1),j2))
`2 )
+ (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`2 ))
/ 2)
< (((((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`2 )
+ (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`2 ))
/ 2) by
XREAL_1: 74;
((((
GoB f)
* ((i2
+ 1),j2))
`2 )
+ (((
GoB f)
* ((i2
+ 1),j2))
`2 ))
< ((((
GoB f)
* ((i2
+ 1),j2))
`2 )
+ (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`2 )) by
A230,
XREAL_1: 8;
then
A232: (((((
GoB f)
* ((i2
+ 1),j2))
`2 )
+ (((
GoB f)
* ((i2
+ 1),j2))
`2 ))
/ 2)
< (((((
GoB f)
* ((i2
+ 1),j2))
`2 )
+ (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`2 ))
/ 2) by
XREAL_1: 74;
p
in {
|[r, s]| : (((
GoB f)
* ((i2
+ 1),j2))
`2 )
<= s & s
<= (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`2 ) }
proof
p
=
|[(p
`1 ), (p
`2 )]| by
EUCLID: 53;
hence thesis by
A216,
A232,
A231;
end;
then
A233: p
in (
h_strip ((
GoB f),j2)) by
A1,
A126,
A226,
A212,
A221,
GOBOARD5: 5;
A234: i2
=
0 or i2
>= (
0
+ 1) by
NAT_1: 13;
A235:
now
per cases by
A1,
A126,
A234,
XXREAL_0: 1;
case
A236: i2
>= 1 & (i2
+ 1)
< (
len (
GoB f));
then
A237: ((i2
+ 1)
+ 1)
<= (
len (
GoB f)) by
NAT_1: 13;
A238: p
in {
|[r, s]| : (((
GoB f)
* ((i2
+ 1),1))
`1 )
<= r & r
<= (((
GoB f)
* (((i2
+ 1)
+ 1),1))
`1 ) }
proof
(i2
+ 1)
< ((i2
+ 1)
+ 1) by
NAT_1: 13;
then
A239: (((
GoB f)
* ((i2
+ 1),1))
`1 )
< (((
GoB f)
* (((i2
+ 1)
+ 1),1))
`1 ) by
A217,
A229,
A237,
GOBOARD5: 3;
(((
GoB f)
* ((i2
+ 1),j2))
`1 )
= (((
GoB f)
* ((i2
+ 1),1))
`1 ) & (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`1 )
= (((
GoB f)
* ((i2
+ 1),1))
`1 ) by
A1,
A4,
A126,
A226,
A213,
A229,
A227,
GOBOARD5: 2;
hence thesis by
A222,
A239;
end;
1
<= (i2
+ 1) by
NAT_1: 11;
then p
in (
v_strip ((
GoB f),(i2
+ 1))) by
A217,
A236,
A238,
GOBOARD5: 8;
then p
in ((
v_strip ((
GoB f),(i2
+ 1)))
/\ (
h_strip ((
GoB f),j2))) by
A233,
XBOOLE_0:def 4;
then
A240: p
in (
cell ((
GoB f),(i2
+ 1),j2)) by
GOBOARD5:def 3;
A241: p
in {
|[r, s]| : (((
GoB f)
* (i2,1))
`1 )
<= r & r
<= (((
GoB f)
* ((i2
+ 1),1))
`1 ) }
proof
i2
< (i2
+ 1) by
NAT_1: 13;
then
A242: (((
GoB f)
* (i2,1))
`1 )
< (((
GoB f)
* ((i2
+ 1),1))
`1 ) by
A217,
A236,
GOBOARD5: 3;
(((
GoB f)
* ((i2
+ 1),j2))
`1 )
= (((
GoB f)
* ((i2
+ 1),1))
`1 ) & (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`1 )
= (((
GoB f)
* ((i2
+ 1),1))
`1 ) by
A1,
A4,
A126,
A226,
A213,
A229,
A227,
GOBOARD5: 2;
hence thesis by
A222,
A242;
end;
i2
< (
len (
GoB f)) by
A236,
NAT_1: 13;
then p
in (
v_strip ((
GoB f),i2)) by
A217,
A236,
A241,
GOBOARD5: 8;
then p
in ((
v_strip ((
GoB f),i2))
/\ (
h_strip ((
GoB f),j2))) by
A233,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i2,j2)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),(i2
+ 1),j2))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i2,j2))
/\ ((
L~ f)
` )) by
A228,
A240,
XBOOLE_0:def 4;
end;
case
A243: i2
>= 1 & (i2
+ 1)
= (
len (
GoB f));
A244: i2
< (i2
+ 1) by
NAT_1: 13;
p
in {
|[r, s]| : (((
GoB f)
* (i2,1))
`1 )
<= r & r
<= (((
GoB f)
* ((i2
+ 1),1))
`1 ) }
proof
A245: (((
GoB f)
* (i2,1))
`1 )
< (((
GoB f)
* ((i2
+ 1),1))
`1 ) by
A217,
A243,
A244,
GOBOARD5: 3;
(((
GoB f)
* ((i2
+ 1),j2))
`1 )
= (((
GoB f)
* ((i2
+ 1),1))
`1 ) & (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`1 )
= (((
GoB f)
* ((i2
+ 1),1))
`1 ) by
A1,
A4,
A126,
A226,
A213,
A229,
A227,
GOBOARD5: 2;
hence thesis by
A222,
A245;
end;
then p
in (
v_strip ((
GoB f),i2)) by
A217,
A243,
A244,
GOBOARD5: 8;
then p
in ((
v_strip ((
GoB f),i2))
/\ (
h_strip ((
GoB f),j2))) by
A233,
XBOOLE_0:def 4;
then
A246: p
in (
cell ((
GoB f),i2,j2)) by
GOBOARD5:def 3;
p
in {
|[r, s]| : (((
GoB f)
* ((i2
+ 1),1))
`1 )
<= r }
proof
(((
GoB f)
* ((i2
+ 1),j2))
`1 )
= (((
GoB f)
* ((i2
+ 1),1))
`1 ) & (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`1 )
= (((
GoB f)
* ((i2
+ 1),1))
`1 ) by
A1,
A4,
A126,
A226,
A213,
A229,
A227,
GOBOARD5: 2;
hence thesis by
A222;
end;
then p
in (
v_strip ((
GoB f),(i2
+ 1))) by
A217,
A243,
GOBOARD5: 9;
then p
in ((
v_strip ((
GoB f),(i2
+ 1)))
/\ (
h_strip ((
GoB f),j2))) by
A233,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),(i2
+ 1),j2)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),(i2
+ 1),j2))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i2,j2))
/\ ((
L~ f)
` )) by
A228,
A246,
XBOOLE_0:def 4;
end;
case
A247: i2
=
0 & (i2
+ 1)
< (
len (
GoB f));
then
A248: ((i2
+ 1)
+ 1)
<= (
len (
GoB f)) by
NAT_1: 13;
p
in {
|[r, s]| : (((
GoB f)
* ((i2
+ 1),1))
`1 )
<= r & r
<= (((
GoB f)
* (((i2
+ 1)
+ 1),1))
`1 ) }
proof
(i2
+ 1)
< ((i2
+ 1)
+ 1) by
NAT_1: 13;
then
A249: (((
GoB f)
* ((i2
+ 1),1))
`1 )
< (((
GoB f)
* (((i2
+ 1)
+ 1),1))
`1 ) by
A217,
A229,
A248,
GOBOARD5: 3;
(((
GoB f)
* ((i2
+ 1),j2))
`1 )
= (((
GoB f)
* ((i2
+ 1),1))
`1 ) & (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`1 )
= (((
GoB f)
* ((i2
+ 1),1))
`1 ) by
A1,
A4,
A126,
A226,
A213,
A229,
A227,
GOBOARD5: 2;
hence thesis by
A222,
A249;
end;
then p
in (
v_strip ((
GoB f),i1)) by
A126,
A217,
A247,
GOBOARD5: 8;
then p
in ((
v_strip ((
GoB f),(i2
+ 1)))
/\ (
h_strip ((
GoB f),j2))) by
A126,
A233,
XBOOLE_0:def 4;
then
A250: p
in (
cell ((
GoB f),(i2
+ 1),j2)) by
GOBOARD5:def 3;
p
in {
|[r, s]| : r
<= (((
GoB f)
* (1,1))
`1 ) }
proof
(((
GoB f)
* ((i2
+ 1),j2))
`1 )
= (((
GoB f)
* ((i2
+ 1),1))
`1 ) & (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`1 )
= (((
GoB f)
* ((i2
+ 1),1))
`1 ) by
A1,
A4,
A126,
A226,
A213,
A229,
A227,
GOBOARD5: 2;
hence thesis by
A222,
A247;
end;
then p
in (
v_strip ((
GoB f),i2)) by
A217,
A247,
GOBOARD5: 10;
then p
in ((
v_strip ((
GoB f),i2))
/\ (
h_strip ((
GoB f),j2))) by
A233,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i2,j2)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),(i2
+ 1),j2))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i2,j2))
/\ ((
L~ f)
` )) by
A228,
A250,
XBOOLE_0:def 4;
end;
case i2
=
0 & (i2
+ 1)
= (
len (
GoB f));
hence contradiction by
GOBOARD7: 32;
end;
end;
then p
in (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` )))) by
A3,
A4,
Th2;
then
A251: (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` ))))
c= (
Component_of p1) by
A3,
A4,
Th3,
GOBRD11: 1;
p
in (
Cl (
Down ((
Int (
cell ((
GoB f),i1,j2))),((
L~ f)
` )))) by
A4,
A126,
A235,
Th2;
then (
Component_of p1)
c= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A225,
A220,
Th5,
CONNSP_3: 21;
then (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` ))))
c= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A251;
hence (
Int (
cell ((
GoB f),i2,j2)))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A224,
A223;
end;
end;
hence (
Int (
cell ((
GoB f),i2,j2)))
c= ((
LeftComp f)
\/ (
RightComp f));
end;
end;
hence (
Int (
cell ((
GoB f),i2,j2)))
c= ((
LeftComp f)
\/ (
RightComp f));
end;
end;
hence (
Int (
cell ((
GoB f),i2,j2)))
c= ((
LeftComp f)
\/ (
RightComp f));
end;
hence thesis;
end;
Lm6: for i1, j1, i2, j2 st i1
<= (
len (
GoB f)) & j1
<= (
width (
GoB f)) & i2
<= (
len (
GoB f)) & j2
<= (
width (
GoB f)) & (j2
= (j1
+ 1) or j1
= (j2
+ 1)) & i1
= i2 holds (
Int (
cell ((
GoB f),i1,j1)))
c= ((
LeftComp f)
\/ (
RightComp f)) implies (
Int (
cell ((
GoB f),i2,j2)))
c= ((
LeftComp f)
\/ (
RightComp f))
proof
let i1, j1, i2, j2;
assume that
A1: i1
<= (
len (
GoB f)) and
A2: j1
<= (
width (
GoB f)) and
A3: i2
<= (
len (
GoB f)) and
A4: j2
<= (
width (
GoB f)) and
A5: j2
= (j1
+ 1) or j1
= (j2
+ 1) and
A6: i1
= i2;
now
assume
A7: (
Int (
cell ((
GoB f),i1,j1)))
c= ((
LeftComp f)
\/ (
RightComp f));
now
per cases by
A5;
case
A8: j2
= (j1
+ 1);
now
per cases ;
case ex k st 1
<= k & (k
+ 1)
<= (
len f) & i2
<>
0 & i2
<> (
len (
GoB f)) & (
LSeg ((f
/. k),(f
/. (k
+ 1))))
= (
LSeg (((
GoB f)
* (i2,(j1
+ 1))),((
GoB f)
* ((i2
+ 1),(j1
+ 1)))));
then
consider k such that
A9: 1
<= k & (k
+ 1)
<= (
len f) and
A10: i2
<>
0 and
A11: i2
<> (
len (
GoB f)) and
A12: (
LSeg ((f
/. k),(f
/. (k
+ 1))))
= (
LSeg (((
GoB f)
* (i2,(j1
+ 1))),((
GoB f)
* ((i2
+ 1),(j1
+ 1)))));
now
per cases by
A12,
SPPOL_1: 8;
case
A13: (f
/. k)
= ((
GoB f)
* (i2,(j1
+ 1))) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i2
+ 1),(j1
+ 1)));
A14: (
Int (
left_cell (f,k)))
c= (
LeftComp f) & (
LeftComp f)
c= ((
LeftComp f)
\/ (
RightComp f)) by
A9,
GOBOARD9: 21,
XBOOLE_1: 7;
i2
< (
len (
GoB f)) by
A3,
A11,
XXREAL_0: 1;
then
A15: (i2
+ 1)
<= (
len (
GoB f)) by
NAT_1: 13;
(
0
+ 1)
<= (j1
+ 1) by
XREAL_1: 6;
then
A16: (
Indices (
GoB f))
=
[:(
dom (
GoB f)), (
Seg (
width (
GoB f))):] & (j1
+ 1)
in (
Seg (
width (
GoB f))) by
A4,
A8,
FINSEQ_1: 1,
MATRIX_0:def 4;
1
<= (i2
+ 1) by
NAT_1: 11;
then (i2
+ 1)
in (
dom (
GoB f)) by
A15,
FINSEQ_3: 25;
then
A17:
[(i2
+ 1), (j1
+ 1)]
in (
Indices (
GoB f)) by
A16,
ZFMISC_1: 87;
i2
>= (
0
+ 1) by
A10,
NAT_1: 13;
then i2
in (
dom (
GoB f)) by
A3,
FINSEQ_3: 25;
then
[i2, (j1
+ 1)]
in (
Indices (
GoB f)) by
A16,
ZFMISC_1: 87;
then (
left_cell (f,k))
= (
cell ((
GoB f),i2,(j1
+ 1))) by
A9,
A13,
A17,
GOBOARD5: 28;
hence (
Int (
cell ((
GoB f),i2,(j1
+ 1))))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A14;
end;
case
A18: (f
/. k)
= ((
GoB f)
* ((i2
+ 1),(j1
+ 1))) & (f
/. (k
+ 1))
= ((
GoB f)
* (i2,(j1
+ 1)));
A19: (
Int (
right_cell (f,k)))
c= (
RightComp f) & (
RightComp f)
c= ((
LeftComp f)
\/ (
RightComp f)) by
A9,
GOBOARD9: 25,
XBOOLE_1: 7;
i2
< (
len (
GoB f)) by
A3,
A11,
XXREAL_0: 1;
then
A20: (i2
+ 1)
<= (
len (
GoB f)) by
NAT_1: 13;
(
0
+ 1)
<= (j1
+ 1) by
XREAL_1: 6;
then
A21: (
Indices (
GoB f))
=
[:(
dom (
GoB f)), (
Seg (
width (
GoB f))):] & (j1
+ 1)
in (
Seg (
width (
GoB f))) by
A4,
A8,
FINSEQ_1: 1,
MATRIX_0:def 4;
1
<= (i2
+ 1) by
NAT_1: 11;
then (i2
+ 1)
in (
dom (
GoB f)) by
A20,
FINSEQ_3: 25;
then
A22:
[(i2
+ 1), (j1
+ 1)]
in (
Indices (
GoB f)) by
A21,
ZFMISC_1: 87;
i2
>= (
0
+ 1) by
A10,
NAT_1: 13;
then i2
in (
dom (
GoB f)) by
A3,
FINSEQ_3: 25;
then
[i2, (j1
+ 1)]
in (
Indices (
GoB f)) by
A21,
ZFMISC_1: 87;
then (
right_cell (f,k))
= (
cell ((
GoB f),i2,(j1
+ 1))) by
A9,
A18,
A22,
GOBOARD5: 29;
hence (
Int (
cell ((
GoB f),i2,(j1
+ 1))))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A19;
end;
end;
hence (
Int (
cell ((
GoB f),i2,(j1
+ 1))))
c= ((
LeftComp f)
\/ (
RightComp f));
end;
case
A23: not ex k st 1
<= k & (k
+ 1)
<= (
len f) & i2
<>
0 & i2
<> (
len (
GoB f)) & (
LSeg ((f
/. k),(f
/. (k
+ 1))))
= (
LSeg (((
GoB f)
* (i2,(j1
+ 1))),((
GoB f)
* ((i2
+ 1),(j1
+ 1)))));
now
per cases by
A23;
case
A24: i2
=
0 ;
reconsider p =
|[((((
GoB f)
* (1,(j1
+ 1)))
`1 )
- 1), (((
GoB f)
* (1,(j1
+ 1)))
`2 )]| as
Point of (
TOP-REAL 2);
A25: 1
< (
len (
GoB f)) by
GOBOARD7: 32;
A26: 1
< (
width (
GoB f)) by
GOBOARD7: 33;
reconsider P =
{p} as
Subset of (
TOP-REAL 2);
A27: (p
`1 )
< ((p
`1 )
+ 1) by
XREAL_1: 29;
A28: 1
<= (1
+ j1) by
NAT_1: 11;
then (((
GoB f)
* (1,(j1
+ 1)))
`1 )
= (((
GoB f)
* (1,1))
`1 ) by
A4,
A8,
A25,
GOBOARD5: 2;
then
A29: (p
`1 )
= ((((
GoB f)
* (1,1))
`1 )
- 1) by
EUCLID: 52;
p
in {
|[s, r]| where s,r be
Real : s
<= (((
GoB f)
* (1,1))
`1 ) }
proof
p
=
|[(p
`1 ), (p
`2 )]| by
EUCLID: 53;
hence thesis by
A29,
A27;
end;
then
A30: p
in (
v_strip ((
GoB f),i2)) by
A24,
A26,
GOBOARD5: 10;
(for q be
Point of (
TOP-REAL 2) st q
in P holds (q
`1 )
< (((
GoB f)
* (1,1))
`1 )) implies P
misses (
L~ f) by
GOBOARD8: 21;
then
A31: p
in
{p} &
{p}
c= ((
L~ f)
` ) by
A29,
A27,
SUBSET_1: 23,
TARSKI:def 1;
then
reconsider p1 = p as
Point of ((
TOP-REAL 2)
| ((
L~ f)
` )) by
PRE_TOPC: 8;
A32: j1
=
0 or j1
>= (
0
+ 1) by
NAT_1: 13;
A33:
now
per cases by
A4,
A8,
A32,
XXREAL_0: 1;
case
A34: j1
>= 1 & (j1
+ 1)
< (
width (
GoB f));
then
A35: ((j1
+ 1)
+ 1)
<= (
width (
GoB f)) by
NAT_1: 13;
A36: p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* (1,(j1
+ 1)))
`2 )
<= r & r
<= (((
GoB f)
* (1,((j1
+ 1)
+ 1)))
`2 ) }
proof
(j1
+ 1)
< ((j1
+ 1)
+ 1) by
NAT_1: 13;
then (((
GoB f)
* (1,(j1
+ 1)))
`2 )
<= (((
GoB f)
* (1,((j1
+ 1)
+ 1)))
`2 ) by
A25,
A28,
A35,
GOBOARD5: 4;
hence thesis;
end;
1
<= (j1
+ 1) by
NAT_1: 11;
then p
in (
h_strip ((
GoB f),(j1
+ 1))) by
A25,
A34,
A36,
GOBOARD5: 5;
then p
in ((
h_strip ((
GoB f),(j1
+ 1)))
/\ (
v_strip ((
GoB f),i2))) by
A30,
XBOOLE_0:def 4;
then
A37: p
in (
cell ((
GoB f),i2,(j1
+ 1))) by
GOBOARD5:def 3;
A38: p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* (1,j1))
`2 )
<= r & r
<= (((
GoB f)
* (1,(j1
+ 1)))
`2 ) }
proof
j1
< (j1
+ 1) by
NAT_1: 13;
then (((
GoB f)
* (1,j1))
`2 )
< (((
GoB f)
* (1,(j1
+ 1)))
`2 ) by
A25,
A34,
GOBOARD5: 4;
hence thesis;
end;
j1
< (
width (
GoB f)) by
A34,
NAT_1: 13;
then p
in (
h_strip ((
GoB f),j1)) by
A25,
A34,
A38,
GOBOARD5: 5;
then p
in ((
h_strip ((
GoB f),j1))
/\ (
v_strip ((
GoB f),i2))) by
A30,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i2,j1)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),i2,(j1
+ 1)))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i2,j1))
/\ ((
L~ f)
` )) by
A31,
A37,
XBOOLE_0:def 4;
end;
case
A39: j1
>= 1 & (j1
+ 1)
= (
width (
GoB f));
A40: j1
< (j1
+ 1) by
NAT_1: 13;
A41: p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* (1,j1))
`2 )
<= r & r
<= (((
GoB f)
* (1,(j1
+ 1)))
`2 ) }
proof
(((
GoB f)
* (1,j1))
`2 )
< (((
GoB f)
* (1,(j1
+ 1)))
`2 ) by
A25,
A39,
A40,
GOBOARD5: 4;
hence thesis;
end;
p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* (1,(j1
+ 1)))
`2 )
<= r };
then p
in (
h_strip ((
GoB f),(j1
+ 1))) by
A25,
A39,
GOBOARD5: 6;
then p
in ((
h_strip ((
GoB f),(j1
+ 1)))
/\ (
v_strip ((
GoB f),i2))) by
A30,
XBOOLE_0:def 4;
then
A42: p
in (
cell ((
GoB f),i2,(j1
+ 1))) by
GOBOARD5:def 3;
j1
< (
width (
GoB f)) by
A39,
NAT_1: 13;
then p
in (
h_strip ((
GoB f),j1)) by
A25,
A39,
A41,
GOBOARD5: 5;
then p
in ((
h_strip ((
GoB f),j1))
/\ (
v_strip ((
GoB f),i2))) by
A30,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i2,j1)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),i2,(j1
+ 1)))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i2,j1))
/\ ((
L~ f)
` )) by
A31,
A42,
XBOOLE_0:def 4;
end;
case
A43: j1
=
0 & (j1
+ 1)
< (
width (
GoB f));
then
A44: ((j1
+ 1)
+ 1)
<= (
width (
GoB f)) by
NAT_1: 13;
p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* (1,(j1
+ 1)))
`2 )
<= r & r
<= (((
GoB f)
* (1,((j1
+ 1)
+ 1)))
`2 ) }
proof
(j1
+ 1)
< ((j1
+ 1)
+ 1) by
NAT_1: 13;
then (((
GoB f)
* (1,(j1
+ 1)))
`2 )
<= (((
GoB f)
* (1,((j1
+ 1)
+ 1)))
`2 ) by
A25,
A28,
A44,
GOBOARD5: 4;
hence thesis;
end;
then p
in (
h_strip ((
GoB f),(j1
+ 1))) by
A25,
A43,
GOBOARD5: 5;
then p
in ((
h_strip ((
GoB f),(j1
+ 1)))
/\ (
v_strip ((
GoB f),i2))) by
A30,
XBOOLE_0:def 4;
then
A45: p
in (
cell ((
GoB f),i2,(j1
+ 1))) by
GOBOARD5:def 3;
p
in {
|[s, r]| where s,r be
Real : r
<= (((
GoB f)
* (1,1))
`2 ) } by
A43;
then p
in (
h_strip ((
GoB f),j1)) by
A25,
A43,
GOBOARD5: 7;
then p
in ((
h_strip ((
GoB f),j1))
/\ (
v_strip ((
GoB f),i2))) by
A30,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i2,j1)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),i2,(j1
+ 1)))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i2,j1))
/\ ((
L~ f)
` )) by
A31,
A45,
XBOOLE_0:def 4;
end;
case
A46: j1
=
0 & (j1
+ 1)
= (
width (
GoB f));
p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* (1,(j1
+ 1)))
`2 )
<= r };
then p
in (
h_strip ((
GoB f),(j1
+ 1))) by
A25,
A46,
GOBOARD5: 6;
then p
in ((
h_strip ((
GoB f),(j1
+ 1)))
/\ (
v_strip ((
GoB f),i2))) by
A30,
XBOOLE_0:def 4;
then
A47: p
in (
cell ((
GoB f),i2,(j1
+ 1))) by
GOBOARD5:def 3;
p
in {
|[s, r]| where s,r be
Real : r
<= (((
GoB f)
* (1,1))
`2 ) } by
A46;
then p
in (
h_strip ((
GoB f),j1)) by
A25,
A46,
GOBOARD5: 7;
then p
in ((
h_strip ((
GoB f),j1))
/\ (
v_strip ((
GoB f),i2))) by
A30,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i2,j1)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),i2,(j1
+ 1)))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i2,j1))
/\ ((
L~ f)
` )) by
A31,
A47,
XBOOLE_0:def 4;
end;
end;
then p
in (
Cl (
Down ((
Int (
cell ((
GoB f),i2,(j1
+ 1)))),((
L~ f)
` )))) by
A3,
Th2;
then
A48: (
Cl (
Down ((
Int (
cell ((
GoB f),i2,(j1
+ 1)))),((
L~ f)
` ))))
c= (
Component_of p1) by
A3,
A4,
A8,
Th3,
GOBRD11: 1;
(
Down ((
RightComp f),((
L~ f)
` ))) is
closed by
Lm4,
CONNSP_1: 33;
then
A49: (
Cl (
Down ((
RightComp f),((
L~ f)
` ))))
= (
Down ((
RightComp f),((
L~ f)
` ))) by
PRE_TOPC: 22;
(
Down ((
LeftComp f),((
L~ f)
` ))) is
closed by
Lm3,
CONNSP_1: 33;
then
A50: (
Cl (
Down ((
LeftComp f),((
L~ f)
` ))))
= (
Down ((
LeftComp f),((
L~ f)
` ))) by
PRE_TOPC: 22;
((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` ))))
= (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))) by
GOBRD11: 4;
then
A51: (
Cl (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))))
= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A50,
A49,
PRE_TOPC: 20;
A52: (
Down ((
Int (
cell ((
GoB f),i2,(j1
+ 1)))),((
L~ f)
` )))
c= (
Cl (
Down ((
Int (
cell ((
GoB f),i2,(j1
+ 1)))),((
L~ f)
` )))) & (
Down ((
Int (
cell ((
GoB f),i2,(j1
+ 1)))),((
L~ f)
` )))
= (
Int (
cell ((
GoB f),i2,(j1
+ 1)))) by
A3,
A4,
A8,
Th3,
PRE_TOPC: 18;
A53: (
Down ((
LeftComp f),((
L~ f)
` )))
= (
LeftComp f) & (
Down ((
RightComp f),((
L~ f)
` )))
= (
RightComp f) by
Th5;
(
Down ((
Int (
cell ((
GoB f),i2,j1))),((
L~ f)
` )))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A1,
A2,
A6,
A7,
Th3;
then (
Down ((
Int (
cell ((
GoB f),i2,j1))),((
L~ f)
` )))
c= (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))) by
A53,
GOBRD11: 4;
then
A54: (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j1))),((
L~ f)
` ))))
c= (
Cl (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` )))) by
PRE_TOPC: 19;
p
in (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j1))),((
L~ f)
` )))) by
A2,
A3,
A33,
Th2;
then (
Component_of p1)
c= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A54,
A51,
Th5,
CONNSP_3: 21;
then (
Cl (
Down ((
Int (
cell ((
GoB f),i2,(j1
+ 1)))),((
L~ f)
` ))))
c= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A48;
hence (
Int (
cell ((
GoB f),i2,(j1
+ 1))))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A53,
A52;
end;
case
A55: i2
= (
len (
GoB f));
reconsider p =
|[((((
GoB f)
* ((
len (
GoB f)),(j1
+ 1)))
`1 )
+ 1), (((
GoB f)
* ((
len (
GoB f)),(j1
+ 1)))
`2 )]| as
Point of (
TOP-REAL 2);
A56: 1
< (
len (
GoB f)) by
GOBOARD7: 32;
reconsider P =
{p} as
Subset of (
TOP-REAL 2);
A57: (for q be
Point of (
TOP-REAL 2) st q
in P holds (((
GoB f)
* ((
len (
GoB f)),1))
`1 )
< (q
`1 )) implies P
misses (
L~ f) by
GOBOARD8: 22;
A58: 1
< (
width (
GoB f)) by
GOBOARD7: 33;
A59: 1
<= (1
+ j1) by
NAT_1: 11;
then (((
GoB f)
* ((
len (
GoB f)),(j1
+ 1)))
`1 )
= (((
GoB f)
* ((
len (
GoB f)),1))
`1 ) by
A4,
A8,
A56,
GOBOARD5: 2;
then
A60: (p
`1 )
= ((((
GoB f)
* ((
len (
GoB f)),1))
`1 )
+ 1) by
EUCLID: 52;
then
A61: (((
GoB f)
* ((
len (
GoB f)),1))
`1 )
< (p
`1 ) by
XREAL_1: 29;
p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* ((
len (
GoB f)),1))
`1 )
<= s }
proof
p
=
|[(p
`1 ), (p
`2 )]| by
EUCLID: 53;
hence thesis by
A61;
end;
then
A62: p
in (
v_strip ((
GoB f),i2)) by
A55,
A58,
GOBOARD5: 9;
(((
GoB f)
* ((
len (
GoB f)),1))
`1 )
< ((((
GoB f)
* ((
len (
GoB f)),1))
`1 )
+ 1) by
XREAL_1: 29;
then
A63: p
in
{p} &
{p}
c= ((
L~ f)
` ) by
A60,
A57,
SUBSET_1: 23,
TARSKI:def 1;
then
reconsider p1 = p as
Point of ((
TOP-REAL 2)
| ((
L~ f)
` )) by
PRE_TOPC: 8;
A64: j1
=
0 or j1
>= (
0
+ 1) by
NAT_1: 13;
A65:
now
per cases by
A4,
A8,
A64,
XXREAL_0: 1;
case
A66: j1
>= 1 & (j1
+ 1)
< (
width (
GoB f));
then
A67: ((j1
+ 1)
+ 1)
<= (
width (
GoB f)) by
NAT_1: 13;
A68: p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* ((
len (
GoB f)),(j1
+ 1)))
`2 )
<= r & r
<= (((
GoB f)
* ((
len (
GoB f)),((j1
+ 1)
+ 1)))
`2 ) }
proof
(j1
+ 1)
< ((j1
+ 1)
+ 1) by
NAT_1: 13;
then (((
GoB f)
* ((
len (
GoB f)),(j1
+ 1)))
`2 )
<= (((
GoB f)
* ((
len (
GoB f)),((j1
+ 1)
+ 1)))
`2 ) by
A56,
A59,
A67,
GOBOARD5: 4;
hence thesis;
end;
1
<= (j1
+ 1) by
NAT_1: 11;
then p
in (
h_strip ((
GoB f),(j1
+ 1))) by
A56,
A66,
A68,
GOBOARD5: 5;
then p
in ((
h_strip ((
GoB f),(j1
+ 1)))
/\ (
v_strip ((
GoB f),i2))) by
A62,
XBOOLE_0:def 4;
then
A69: p
in (
cell ((
GoB f),i2,(j1
+ 1))) by
GOBOARD5:def 3;
A70: p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* ((
len (
GoB f)),j1))
`2 )
<= r & r
<= (((
GoB f)
* ((
len (
GoB f)),(j1
+ 1)))
`2 ) }
proof
j1
< (j1
+ 1) by
NAT_1: 13;
then (((
GoB f)
* ((
len (
GoB f)),j1))
`2 )
< (((
GoB f)
* ((
len (
GoB f)),(j1
+ 1)))
`2 ) by
A56,
A66,
GOBOARD5: 4;
hence thesis;
end;
j1
< (
width (
GoB f)) by
A66,
NAT_1: 13;
then p
in (
h_strip ((
GoB f),j1)) by
A56,
A66,
A70,
GOBOARD5: 5;
then p
in ((
h_strip ((
GoB f),j1))
/\ (
v_strip ((
GoB f),i2))) by
A62,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i2,j1)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),i2,(j1
+ 1)))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i2,j1))
/\ ((
L~ f)
` )) by
A63,
A69,
XBOOLE_0:def 4;
end;
case
A71: j1
>= 1 & (j1
+ 1)
= (
width (
GoB f));
A72: j1
< (j1
+ 1) by
NAT_1: 13;
A73: p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* ((
len (
GoB f)),j1))
`2 )
<= r & r
<= (((
GoB f)
* ((
len (
GoB f)),(j1
+ 1)))
`2 ) }
proof
(((
GoB f)
* ((
len (
GoB f)),j1))
`2 )
< (((
GoB f)
* ((
len (
GoB f)),(j1
+ 1)))
`2 ) by
A56,
A71,
A72,
GOBOARD5: 4;
hence thesis;
end;
p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* ((
len (
GoB f)),(j1
+ 1)))
`2 )
<= r };
then p
in (
h_strip ((
GoB f),(j1
+ 1))) by
A56,
A71,
GOBOARD5: 6;
then p
in ((
h_strip ((
GoB f),(j1
+ 1)))
/\ (
v_strip ((
GoB f),i2))) by
A62,
XBOOLE_0:def 4;
then
A74: p
in (
cell ((
GoB f),i2,(j1
+ 1))) by
GOBOARD5:def 3;
j1
< (
width (
GoB f)) by
A71,
NAT_1: 13;
then p
in (
h_strip ((
GoB f),j1)) by
A56,
A71,
A73,
GOBOARD5: 5;
then p
in ((
h_strip ((
GoB f),j1))
/\ (
v_strip ((
GoB f),i2))) by
A62,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i2,j1)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),i2,(j1
+ 1)))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i2,j1))
/\ ((
L~ f)
` )) by
A63,
A74,
XBOOLE_0:def 4;
end;
case
A75: j1
=
0 & (j1
+ 1)
< (
width (
GoB f));
then
A76: ((j1
+ 1)
+ 1)
<= (
width (
GoB f)) by
NAT_1: 13;
p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* ((
len (
GoB f)),(j1
+ 1)))
`2 )
<= r & r
<= (((
GoB f)
* ((
len (
GoB f)),((j1
+ 1)
+ 1)))
`2 ) }
proof
(j1
+ 1)
< ((j1
+ 1)
+ 1) by
NAT_1: 13;
then (((
GoB f)
* ((
len (
GoB f)),(j1
+ 1)))
`2 )
<= (((
GoB f)
* ((
len (
GoB f)),((j1
+ 1)
+ 1)))
`2 ) by
A56,
A59,
A76,
GOBOARD5: 4;
hence thesis;
end;
then p
in (
h_strip ((
GoB f),(j1
+ 1))) by
A56,
A75,
GOBOARD5: 5;
then p
in ((
h_strip ((
GoB f),(j1
+ 1)))
/\ (
v_strip ((
GoB f),i2))) by
A62,
XBOOLE_0:def 4;
then
A77: p
in (
cell ((
GoB f),i2,(j1
+ 1))) by
GOBOARD5:def 3;
p
in {
|[s, r]| where s,r be
Real : r
<= (((
GoB f)
* ((
len (
GoB f)),1))
`2 ) } by
A75;
then p
in (
h_strip ((
GoB f),j1)) by
A56,
A75,
GOBOARD5: 7;
then p
in ((
h_strip ((
GoB f),j1))
/\ (
v_strip ((
GoB f),i2))) by
A62,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i2,j1)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),i2,(j1
+ 1)))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i2,j1))
/\ ((
L~ f)
` )) by
A63,
A77,
XBOOLE_0:def 4;
end;
case j1
=
0 & (j1
+ 1)
= (
width (
GoB f));
hence contradiction by
GOBOARD7: 33;
end;
end;
then p
in (
Cl (
Down ((
Int (
cell ((
GoB f),i2,(j1
+ 1)))),((
L~ f)
` )))) by
A3,
Th2;
then
A78: (
Cl (
Down ((
Int (
cell ((
GoB f),i2,(j1
+ 1)))),((
L~ f)
` ))))
c= (
Component_of p1) by
A3,
A4,
A8,
Th3,
GOBRD11: 1;
(
Down ((
RightComp f),((
L~ f)
` ))) is
closed by
Lm4,
CONNSP_1: 33;
then
A79: (
Cl (
Down ((
RightComp f),((
L~ f)
` ))))
= (
Down ((
RightComp f),((
L~ f)
` ))) by
PRE_TOPC: 22;
(
Down ((
LeftComp f),((
L~ f)
` ))) is
closed by
Lm3,
CONNSP_1: 33;
then
A80: (
Cl (
Down ((
LeftComp f),((
L~ f)
` ))))
= (
Down ((
LeftComp f),((
L~ f)
` ))) by
PRE_TOPC: 22;
((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` ))))
= (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))) by
GOBRD11: 4;
then
A81: (
Cl (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))))
= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A80,
A79,
PRE_TOPC: 20;
A82: (
Down ((
Int (
cell ((
GoB f),i2,(j1
+ 1)))),((
L~ f)
` )))
c= (
Cl (
Down ((
Int (
cell ((
GoB f),i2,(j1
+ 1)))),((
L~ f)
` )))) & (
Down ((
Int (
cell ((
GoB f),i2,(j1
+ 1)))),((
L~ f)
` )))
= (
Int (
cell ((
GoB f),i2,(j1
+ 1)))) by
A3,
A4,
A8,
Th3,
PRE_TOPC: 18;
A83: (
Down ((
LeftComp f),((
L~ f)
` )))
= (
LeftComp f) & (
Down ((
RightComp f),((
L~ f)
` )))
= (
RightComp f) by
Th5;
(
Down ((
Int (
cell ((
GoB f),i2,j1))),((
L~ f)
` )))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A1,
A2,
A6,
A7,
Th3;
then (
Down ((
Int (
cell ((
GoB f),i2,j1))),((
L~ f)
` )))
c= (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))) by
A83,
GOBRD11: 4;
then
A84: (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j1))),((
L~ f)
` ))))
c= (
Cl (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` )))) by
PRE_TOPC: 19;
p
in (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j1))),((
L~ f)
` )))) by
A2,
A3,
A65,
Th2;
then (
Component_of p1)
c= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A84,
A81,
Th5,
CONNSP_3: 21;
then (
Cl (
Down ((
Int (
cell ((
GoB f),i2,(j1
+ 1)))),((
L~ f)
` ))))
c= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A78;
hence (
Int (
cell ((
GoB f),i2,(j1
+ 1))))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A83,
A82;
end;
case
A85: i2
<>
0 & i2
<> (
len (
GoB f)) & not ex k st 1
<= k & (k
+ 1)
<= (
len f) & (
LSeg ((f
/. k),(f
/. (k
+ 1))))
= (
LSeg (((
GoB f)
* (i2,(j1
+ 1))),((
GoB f)
* ((i2
+ 1),(j1
+ 1)))));
then
A86: i2
< (
len (
GoB f)) by
A3,
XXREAL_0: 1;
then
A87: (i2
+ 1)
<= (
len (
GoB f)) by
NAT_1: 13;
for k st 1
<= k & (k
+ 1)
<= (
len f) holds (
LSeg (((
GoB f)
* (i2,(j1
+ 1))),((
GoB f)
* ((i2
+ 1),(j1
+ 1)))))
<> (
LSeg (f,k))
proof
let k;
assume
A88: 1
<= k & (k
+ 1)
<= (
len f);
then (
LSeg (f,k))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
TOPREAL1:def 3;
hence thesis by
A85,
A88;
end;
then
A89: 1
<= (j1
+ 1) & (j1
+ 1)
<= (
width (
GoB f)) & 1
<= i2 & (i2
+ 1)
<= (
len (
GoB f)) implies not ((1
/ 2)
* (((
GoB f)
* (i2,(j1
+ 1)))
+ ((
GoB f)
* ((i2
+ 1),(j1
+ 1)))))
in (
L~ f) by
GOBOARD7: 40;
reconsider p = ((1
/ 2)
* (((
GoB f)
* (i2,(j1
+ 1)))
+ ((
GoB f)
* ((i2
+ 1),(j1
+ 1))))) as
Point of (
TOP-REAL 2);
A90: (p
`1 )
= ((1
/ 2)
* ((((
GoB f)
* (i2,(j1
+ 1)))
+ ((
GoB f)
* ((i2
+ 1),(j1
+ 1))))
`1 )) by
TOPREAL3: 4
.= ((1
/ 2)
* ((((
GoB f)
* (i2,(j1
+ 1)))
`1 )
+ (((
GoB f)
* ((i2
+ 1),(j1
+ 1)))
`1 ))) by
TOPREAL3: 2;
reconsider P =
{p} as
Subset of (
TOP-REAL 2);
A91: 1
< (
len (
GoB f)) by
GOBOARD7: 32;
(
Down ((
RightComp f),((
L~ f)
` ))) is
closed by
Lm4,
CONNSP_1: 33;
then
A92: (
Cl (
Down ((
RightComp f),((
L~ f)
` ))))
= (
Down ((
RightComp f),((
L~ f)
` ))) by
PRE_TOPC: 22;
(
Down ((
LeftComp f),((
L~ f)
` ))) is
closed by
Lm3,
CONNSP_1: 33;
then
A93: (
Cl (
Down ((
LeftComp f),((
L~ f)
` ))))
= (
Down ((
LeftComp f),((
L~ f)
` ))) by
PRE_TOPC: 22;
((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` ))))
= (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))) by
GOBRD11: 4;
then
A94: (
Cl (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))))
= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A93,
A92,
PRE_TOPC: 20;
A95: (
Down ((
LeftComp f),((
L~ f)
` )))
= (
LeftComp f) & (
Down ((
RightComp f),((
L~ f)
` )))
= (
RightComp f) by
Th5;
(
Down ((
Int (
cell ((
GoB f),i2,j1))),((
L~ f)
` )))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A1,
A2,
A6,
A7,
Th3;
then (
Down ((
Int (
cell ((
GoB f),i2,j1))),((
L~ f)
` )))
c= (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))) by
A95,
GOBRD11: 4;
then
A96: (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j1))),((
L~ f)
` ))))
c= (
Cl (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` )))) by
PRE_TOPC: 19;
A97: (
Down ((
Int (
cell ((
GoB f),i2,(j1
+ 1)))),((
L~ f)
` )))
c= (
Cl (
Down ((
Int (
cell ((
GoB f),i2,(j1
+ 1)))),((
L~ f)
` )))) & (
Down ((
Int (
cell ((
GoB f),i2,(j1
+ 1)))),((
L~ f)
` )))
= (
Int (
cell ((
GoB f),i2,(j1
+ 1)))) by
A3,
A4,
A8,
Th3,
PRE_TOPC: 18;
A98: 1
<= (j1
+ 1) by
NAT_1: 11;
A99: (
0
+ 1)
<= i2 by
A85,
NAT_1: 13;
then
A100: 1
< (i2
+ 1) by
NAT_1: 13;
(for x be
object st x
in P holds not x
in (
L~ f)) implies P
misses (
L~ f) by
XBOOLE_0: 3;
then
A101: p
in
{p} &
{p}
c= ((
L~ f)
` ) by
A4,
A8,
A99,
A86,
A89,
NAT_1: 13,
SUBSET_1: 23,
TARSKI:def 1;
then
reconsider p1 = p as
Point of ((
TOP-REAL 2)
| ((
L~ f)
` )) by
PRE_TOPC: 8;
A102: 1
<= (1
+ j1) by
NAT_1: 11;
(p
`2 )
= ((1
/ 2)
* ((((
GoB f)
* (i2,(j1
+ 1)))
+ ((
GoB f)
* ((i2
+ 1),(j1
+ 1))))
`2 )) by
TOPREAL3: 4
.= ((1
/ 2)
* ((((
GoB f)
* (i2,(j1
+ 1)))
`2 )
+ (((
GoB f)
* ((i2
+ 1),(j1
+ 1)))
`2 ))) by
TOPREAL3: 2;
then
A103: p
=
|[((1
/ 2)
* ((((
GoB f)
* (i2,(j1
+ 1)))
`1 )
+ (((
GoB f)
* ((i2
+ 1),(j1
+ 1)))
`1 ))), ((1
/ 2)
* ((((
GoB f)
* (i2,(j1
+ 1)))
`2 )
+ (((
GoB f)
* ((i2
+ 1),(j1
+ 1)))
`2 )))]| by
A90,
EUCLID: 53;
i2
< (i2
+ 1) by
NAT_1: 13;
then
A104: (((
GoB f)
* (i2,(j1
+ 1)))
`1 )
< (((
GoB f)
* ((i2
+ 1),(j1
+ 1)))
`1 ) by
A4,
A8,
A99,
A87,
A102,
GOBOARD5: 3;
then ((((
GoB f)
* (i2,(j1
+ 1)))
`1 )
+ (((
GoB f)
* ((i2
+ 1),(j1
+ 1)))
`1 ))
< ((((
GoB f)
* ((i2
+ 1),(j1
+ 1)))
`1 )
+ (((
GoB f)
* ((i2
+ 1),(j1
+ 1)))
`1 )) by
XREAL_1: 8;
then
A105: (((((
GoB f)
* (i2,(j1
+ 1)))
`1 )
+ (((
GoB f)
* ((i2
+ 1),(j1
+ 1)))
`1 ))
/ 2)
< (((((
GoB f)
* ((i2
+ 1),(j1
+ 1)))
`1 )
+ (((
GoB f)
* ((i2
+ 1),(j1
+ 1)))
`1 ))
/ 2) by
XREAL_1: 74;
((((
GoB f)
* (i2,(j1
+ 1)))
`1 )
+ (((
GoB f)
* (i2,(j1
+ 1)))
`1 ))
< ((((
GoB f)
* (i2,(j1
+ 1)))
`1 )
+ (((
GoB f)
* ((i2
+ 1),(j1
+ 1)))
`1 )) by
A104,
XREAL_1: 8;
then
A106: (((((
GoB f)
* (i2,(j1
+ 1)))
`1 )
+ (((
GoB f)
* (i2,(j1
+ 1)))
`1 ))
/ 2)
< (((((
GoB f)
* (i2,(j1
+ 1)))
`1 )
+ (((
GoB f)
* ((i2
+ 1),(j1
+ 1)))
`1 ))
/ 2) by
XREAL_1: 74;
p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* (i2,(j1
+ 1)))
`1 )
<= s & s
<= (((
GoB f)
* ((i2
+ 1),(j1
+ 1)))
`1 ) }
proof
p
=
|[(p
`1 ), (p
`2 )]| by
EUCLID: 53;
hence thesis by
A90,
A106,
A105;
end;
then
A107: p
in (
v_strip ((
GoB f),i2)) by
A4,
A8,
A99,
A86,
A98,
GOBOARD5: 8;
A108: j1
=
0 or j1
>= (
0
+ 1) by
NAT_1: 13;
A109:
now
per cases by
A4,
A8,
A108,
XXREAL_0: 1;
case
A110: j1
>= 1 & (j1
+ 1)
< (
width (
GoB f));
then
A111: ((j1
+ 1)
+ 1)
<= (
width (
GoB f)) by
NAT_1: 13;
A112: p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* (1,(j1
+ 1)))
`2 )
<= r & r
<= (((
GoB f)
* (1,((j1
+ 1)
+ 1)))
`2 ) }
proof
(j1
+ 1)
< ((j1
+ 1)
+ 1) by
NAT_1: 13;
then
A113: (((
GoB f)
* (1,(j1
+ 1)))
`2 )
< (((
GoB f)
* (1,((j1
+ 1)
+ 1)))
`2 ) by
A91,
A102,
A111,
GOBOARD5: 4;
(((
GoB f)
* (i2,(j1
+ 1)))
`2 )
= (((
GoB f)
* (1,(j1
+ 1)))
`2 ) & (((
GoB f)
* ((i2
+ 1),(j1
+ 1)))
`2 )
= (((
GoB f)
* (1,(j1
+ 1)))
`2 ) by
A3,
A4,
A8,
A99,
A87,
A102,
A100,
GOBOARD5: 1;
hence thesis by
A103,
A113;
end;
1
<= (j1
+ 1) by
NAT_1: 11;
then p
in (
h_strip ((
GoB f),(j1
+ 1))) by
A91,
A110,
A112,
GOBOARD5: 5;
then p
in ((
h_strip ((
GoB f),(j1
+ 1)))
/\ (
v_strip ((
GoB f),i2))) by
A107,
XBOOLE_0:def 4;
then
A114: p
in (
cell ((
GoB f),i2,(j1
+ 1))) by
GOBOARD5:def 3;
A115: p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* (1,j1))
`2 )
<= r & r
<= (((
GoB f)
* (1,(j1
+ 1)))
`2 ) }
proof
j1
< (j1
+ 1) by
NAT_1: 13;
then
A116: (((
GoB f)
* (1,j1))
`2 )
< (((
GoB f)
* (1,(j1
+ 1)))
`2 ) by
A91,
A110,
GOBOARD5: 4;
(((
GoB f)
* (i2,(j1
+ 1)))
`2 )
= (((
GoB f)
* (1,(j1
+ 1)))
`2 ) & (((
GoB f)
* ((i2
+ 1),(j1
+ 1)))
`2 )
= (((
GoB f)
* (1,(j1
+ 1)))
`2 ) by
A3,
A4,
A8,
A99,
A87,
A102,
A100,
GOBOARD5: 1;
hence thesis by
A103,
A116;
end;
j1
< (
width (
GoB f)) by
A110,
NAT_1: 13;
then p
in (
h_strip ((
GoB f),j1)) by
A91,
A110,
A115,
GOBOARD5: 5;
then p
in ((
h_strip ((
GoB f),j1))
/\ (
v_strip ((
GoB f),i2))) by
A107,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i2,j1)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),i2,(j1
+ 1)))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i2,j1))
/\ ((
L~ f)
` )) by
A101,
A114,
XBOOLE_0:def 4;
end;
case
A117: j1
>= 1 & (j1
+ 1)
= (
width (
GoB f));
A118: j1
< (j1
+ 1) by
NAT_1: 13;
p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* (1,j1))
`2 )
<= r & r
<= (((
GoB f)
* (1,(j1
+ 1)))
`2 ) }
proof
A119: (((
GoB f)
* (1,j1))
`2 )
< (((
GoB f)
* (1,(j1
+ 1)))
`2 ) by
A91,
A117,
A118,
GOBOARD5: 4;
(((
GoB f)
* (i2,(j1
+ 1)))
`2 )
= (((
GoB f)
* (1,(j1
+ 1)))
`2 ) & (((
GoB f)
* ((i2
+ 1),(j1
+ 1)))
`2 )
= (((
GoB f)
* (1,(j1
+ 1)))
`2 ) by
A3,
A4,
A8,
A99,
A87,
A102,
A100,
GOBOARD5: 1;
hence thesis by
A103,
A119;
end;
then p
in (
h_strip ((
GoB f),j1)) by
A91,
A117,
A118,
GOBOARD5: 5;
then p
in ((
h_strip ((
GoB f),j1))
/\ (
v_strip ((
GoB f),i2))) by
A107,
XBOOLE_0:def 4;
then
A120: p
in (
cell ((
GoB f),i2,j1)) by
GOBOARD5:def 3;
p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* (1,(j1
+ 1)))
`2 )
<= r }
proof
(((
GoB f)
* (i2,(j1
+ 1)))
`2 )
= (((
GoB f)
* (1,(j1
+ 1)))
`2 ) & (((
GoB f)
* ((i2
+ 1),(j1
+ 1)))
`2 )
= (((
GoB f)
* (1,(j1
+ 1)))
`2 ) by
A3,
A4,
A8,
A99,
A87,
A102,
A100,
GOBOARD5: 1;
hence thesis by
A103;
end;
then p
in (
h_strip ((
GoB f),(j1
+ 1))) by
A91,
A117,
GOBOARD5: 6;
then p
in ((
h_strip ((
GoB f),(j1
+ 1)))
/\ (
v_strip ((
GoB f),i2))) by
A107,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i2,(j1
+ 1))) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),i2,(j1
+ 1)))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i2,j1))
/\ ((
L~ f)
` )) by
A101,
A120,
XBOOLE_0:def 4;
end;
case
A121: j1
=
0 & (j1
+ 1)
< (
width (
GoB f));
then
A122: ((j1
+ 1)
+ 1)
<= (
width (
GoB f)) by
NAT_1: 13;
p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* (1,(j1
+ 1)))
`2 )
<= r & r
<= (((
GoB f)
* (1,((j1
+ 1)
+ 1)))
`2 ) }
proof
(j1
+ 1)
< ((j1
+ 1)
+ 1) by
NAT_1: 13;
then
A123: (((
GoB f)
* (1,(j1
+ 1)))
`2 )
< (((
GoB f)
* (1,((j1
+ 1)
+ 1)))
`2 ) by
A91,
A102,
A122,
GOBOARD5: 4;
(((
GoB f)
* (i2,(j1
+ 1)))
`2 )
= (((
GoB f)
* (1,(j1
+ 1)))
`2 ) & (((
GoB f)
* ((i2
+ 1),(j1
+ 1)))
`2 )
= (((
GoB f)
* (1,(j1
+ 1)))
`2 ) by
A3,
A4,
A8,
A99,
A87,
A102,
A100,
GOBOARD5: 1;
hence thesis by
A103,
A123;
end;
then p
in (
h_strip ((
GoB f),(j1
+ 1))) by
A91,
A121,
GOBOARD5: 5;
then p
in ((
h_strip ((
GoB f),(j1
+ 1)))
/\ (
v_strip ((
GoB f),i2))) by
A107,
XBOOLE_0:def 4;
then
A124: p
in (
cell ((
GoB f),i2,(j1
+ 1))) by
GOBOARD5:def 3;
p
in {
|[s, r]| where s,r be
Real : r
<= (((
GoB f)
* (1,1))
`2 ) }
proof
(((
GoB f)
* (i2,(j1
+ 1)))
`2 )
= (((
GoB f)
* (1,(j1
+ 1)))
`2 ) & (((
GoB f)
* ((i2
+ 1),(j1
+ 1)))
`2 )
= (((
GoB f)
* (1,(j1
+ 1)))
`2 ) by
A3,
A4,
A8,
A99,
A87,
A102,
A100,
GOBOARD5: 1;
hence thesis by
A103,
A121;
end;
then p
in (
h_strip ((
GoB f),j1)) by
A91,
A121,
GOBOARD5: 7;
then p
in ((
h_strip ((
GoB f),j1))
/\ (
v_strip ((
GoB f),i2))) by
A107,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i2,j1)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),i2,(j1
+ 1)))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i2,j1))
/\ ((
L~ f)
` )) by
A101,
A124,
XBOOLE_0:def 4;
end;
case j1
=
0 & (j1
+ 1)
= (
width (
GoB f));
hence contradiction by
GOBOARD7: 33;
end;
end;
then p
in (
Cl (
Down ((
Int (
cell ((
GoB f),i2,(j1
+ 1)))),((
L~ f)
` )))) by
A3,
Th2;
then
A125: (
Cl (
Down ((
Int (
cell ((
GoB f),i2,(j1
+ 1)))),((
L~ f)
` ))))
c= (
Component_of p1) by
A3,
A4,
A8,
Th3,
GOBRD11: 1;
p
in (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j1))),((
L~ f)
` )))) by
A2,
A3,
A109,
Th2;
then (
Component_of p1)
c= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A96,
A94,
Th5,
CONNSP_3: 21;
then (
Cl (
Down ((
Int (
cell ((
GoB f),i2,(j1
+ 1)))),((
L~ f)
` ))))
c= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A125;
hence (
Int (
cell ((
GoB f),i2,(j1
+ 1))))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A95,
A97;
end;
end;
hence (
Int (
cell ((
GoB f),i2,(j1
+ 1))))
c= ((
LeftComp f)
\/ (
RightComp f));
end;
end;
hence (
Int (
cell ((
GoB f),i2,j2)))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A8;
end;
case
A126: j1
= (j2
+ 1);
then j2
< j1 by
NAT_1: 13;
then
A127: (j1
-' 1)
< j1 by
A126,
NAT_D: 34;
A128: j2
< (j2
+ 1) by
NAT_1: 13;
A129: 1
<= ((j1
-' 1)
+ 1) by
NAT_1: 11;
A130: (j2
+ 1)
< ((j2
+ 1)
+ 1) by
NAT_1: 13;
A131: 1
<= j1 & (j1
-' 1)
= (j1
- 1) by
A126,
NAT_1: 11,
XREAL_0:def 2;
A132: 1
<= (j2
+ 1) by
NAT_1: 11;
A133: (j1
-' 1)
= j2 by
A126,
NAT_D: 34;
now
per cases ;
case ex k st 1
<= k & (k
+ 1)
<= (
len f) & i2
<>
0 & i2
<> (
len (
GoB f)) & (
LSeg ((f
/. k),(f
/. (k
+ 1))))
= (
LSeg (((
GoB f)
* (i2,(j2
+ 1))),((
GoB f)
* ((i2
+ 1),(j2
+ 1)))));
then
consider k such that
A134: 1
<= k & (k
+ 1)
<= (
len f) and
A135: i2
<>
0 and
A136: i2
<> (
len (
GoB f)) and
A137: (
LSeg ((f
/. k),(f
/. (k
+ 1))))
= (
LSeg (((
GoB f)
* (i2,((j1
-' 1)
+ 1))),((
GoB f)
* ((i2
+ 1),((j1
-' 1)
+ 1))))) by
A133;
now
per cases by
A137,
SPPOL_1: 8;
case
A138: (f
/. k)
= ((
GoB f)
* (i2,((j1
-' 1)
+ 1))) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i2
+ 1),((j1
-' 1)
+ 1)));
A139: (
Int (
right_cell (f,k)))
c= (
RightComp f) & (
RightComp f)
c= ((
LeftComp f)
\/ (
RightComp f)) by
A134,
GOBOARD9: 25,
XBOOLE_1: 7;
i2
< (
len (
GoB f)) by
A3,
A136,
XXREAL_0: 1;
then
A140: (i2
+ 1)
<= (
len (
GoB f)) by
NAT_1: 13;
(j1
-' 1)
< (
width (
GoB f)) by
A2,
A127,
XXREAL_0: 2;
then ((j1
-' 1)
+ 1)
<= (
width (
GoB f)) by
NAT_1: 13;
then
A141: (
Indices (
GoB f))
=
[:(
dom (
GoB f)), (
Seg (
width (
GoB f))):] & ((j1
-' 1)
+ 1)
in (
Seg (
width (
GoB f))) by
A129,
FINSEQ_1: 1,
MATRIX_0:def 4;
1
<= (i2
+ 1) by
NAT_1: 11;
then (i2
+ 1)
in (
dom (
GoB f)) by
A140,
FINSEQ_3: 25;
then
A142:
[(i2
+ 1), ((j1
-' 1)
+ 1)]
in (
Indices (
GoB f)) by
A141,
ZFMISC_1: 87;
i2
>= (
0
+ 1) by
A135,
NAT_1: 13;
then i2
in (
dom (
GoB f)) by
A3,
FINSEQ_3: 25;
then
[i2, ((j1
-' 1)
+ 1)]
in (
Indices (
GoB f)) by
A141,
ZFMISC_1: 87;
then (
right_cell (f,k))
= (
cell ((
GoB f),i2,(j1
-' 1))) by
A134,
A138,
A142,
GOBOARD5: 28;
hence (
Int (
cell ((
GoB f),i2,(j1
-' 1))))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A139;
end;
case
A143: (f
/. k)
= ((
GoB f)
* ((i2
+ 1),((j1
-' 1)
+ 1))) & (f
/. (k
+ 1))
= ((
GoB f)
* (i2,((j1
-' 1)
+ 1)));
A144: (
Int (
left_cell (f,k)))
c= (
LeftComp f) & (
LeftComp f)
c= ((
LeftComp f)
\/ (
RightComp f)) by
A134,
GOBOARD9: 21,
XBOOLE_1: 7;
i2
< (
len (
GoB f)) by
A3,
A136,
XXREAL_0: 1;
then
A145: (i2
+ 1)
<= (
len (
GoB f)) by
NAT_1: 13;
A146: (
Indices (
GoB f))
=
[:(
dom (
GoB f)), (
Seg (
width (
GoB f))):] & ((j1
-' 1)
+ 1)
in (
Seg (
width (
GoB f))) by
A2,
A131,
FINSEQ_1: 1,
MATRIX_0:def 4;
1
<= (i2
+ 1) by
NAT_1: 11;
then (i2
+ 1)
in (
dom (
GoB f)) by
A145,
FINSEQ_3: 25;
then
A147:
[(i2
+ 1), ((j1
-' 1)
+ 1)]
in (
Indices (
GoB f)) by
A146,
ZFMISC_1: 87;
i2
>= (
0
+ 1) by
A135,
NAT_1: 13;
then i2
in (
dom (
GoB f)) by
A3,
FINSEQ_3: 25;
then
[i2, ((j1
-' 1)
+ 1)]
in (
Indices (
GoB f)) by
A146,
ZFMISC_1: 87;
then (
left_cell (f,k))
= (
cell ((
GoB f),i2,(j1
-' 1))) by
A134,
A143,
A147,
GOBOARD5: 29;
hence (
Int (
cell ((
GoB f),i2,(j1
-' 1))))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A144;
end;
end;
hence (
Int (
cell ((
GoB f),i2,j2)))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A126,
NAT_D: 34;
end;
case
A148: not ex k st 1
<= k & (k
+ 1)
<= (
len f) & i2
<>
0 & i2
<> (
len (
GoB f)) & (
LSeg ((f
/. k),(f
/. (k
+ 1))))
= (
LSeg (((
GoB f)
* (i2,(j2
+ 1))),((
GoB f)
* ((i2
+ 1),(j2
+ 1)))));
now
per cases by
A148;
case
A149: i2
=
0 ;
reconsider p =
|[((((
GoB f)
* (1,(j2
+ 1)))
`1 )
- 1), (((
GoB f)
* (1,(j2
+ 1)))
`2 )]| as
Point of (
TOP-REAL 2);
A150: 1
< (
len (
GoB f)) by
GOBOARD7: 32;
A151: 1
< (
width (
GoB f)) by
GOBOARD7: 33;
reconsider P =
{p} as
Subset of (
TOP-REAL 2);
A152: (p
`1 )
< ((p
`1 )
+ 1) by
XREAL_1: 29;
A153: 1
<= (j2
+ 1) by
NAT_1: 11;
then (((
GoB f)
* (1,(j2
+ 1)))
`1 )
= (((
GoB f)
* (1,1))
`1 ) by
A2,
A126,
A150,
GOBOARD5: 2;
then
A154: (p
`1 )
= ((((
GoB f)
* (1,1))
`1 )
- 1) by
EUCLID: 52;
p
in {
|[s, r]| where s,r be
Real : s
<= (((
GoB f)
* (1,1))
`1 ) }
proof
p
=
|[(p
`1 ), (p
`2 )]| by
EUCLID: 53;
hence thesis by
A154,
A152;
end;
then
A155: p
in (
v_strip ((
GoB f),i2)) by
A149,
A151,
GOBOARD5: 10;
(for q be
Point of (
TOP-REAL 2) st q
in P holds (q
`1 )
< (((
GoB f)
* (1,1))
`1 )) implies P
misses (
L~ f) by
GOBOARD8: 21;
then
A156: p
in
{p} &
{p}
c= ((
L~ f)
` ) by
A154,
A152,
SUBSET_1: 23,
TARSKI:def 1;
then
reconsider p1 = p as
Point of ((
TOP-REAL 2)
| ((
L~ f)
` )) by
PRE_TOPC: 8;
A157:
now
per cases by
A2,
A126,
XXREAL_0: 1;
case
A158: (j2
+ 1)
< (
width (
GoB f)) & j2
>
0 ;
then
A159: ((j2
+ 1)
+ 1)
<= (
width (
GoB f)) by
NAT_1: 13;
A160: p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* (1,(j2
+ 1)))
`2 )
<= r & r
<= (((
GoB f)
* (1,((j2
+ 1)
+ 1)))
`2 ) }
proof
(j2
+ 1)
< ((j2
+ 1)
+ 1) by
NAT_1: 13;
then (((
GoB f)
* (1,(j2
+ 1)))
`2 )
<= (((
GoB f)
* (1,((j2
+ 1)
+ 1)))
`2 ) by
A150,
A153,
A159,
GOBOARD5: 4;
hence thesis;
end;
A161: (
0
+ 1)
<= j2 by
A158,
NAT_1: 13;
A162: p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* (1,j2))
`2 )
<= r & r
<= (((
GoB f)
* (1,(j2
+ 1)))
`2 ) }
proof
j2
< (j2
+ 1) by
NAT_1: 13;
then (((
GoB f)
* (1,j2))
`2 )
< (((
GoB f)
* (1,(j2
+ 1)))
`2 ) by
A2,
A126,
A150,
A161,
GOBOARD5: 4;
hence thesis;
end;
j2
< (
width (
GoB f)) by
A158,
NAT_1: 13;
then p
in (
h_strip ((
GoB f),j2)) by
A150,
A161,
A162,
GOBOARD5: 5;
then p
in ((
h_strip ((
GoB f),j2))
/\ (
v_strip ((
GoB f),i2))) by
A155,
XBOOLE_0:def 4;
then
A163: p
in (
cell ((
GoB f),i2,j2)) by
GOBOARD5:def 3;
1
<= (j2
+ 1) by
A161,
NAT_1: 13;
then p
in (
h_strip ((
GoB f),(j2
+ 1))) by
A150,
A158,
A160,
GOBOARD5: 5;
then p
in ((
h_strip ((
GoB f),(j2
+ 1)))
/\ (
v_strip ((
GoB f),i2))) by
A155,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i2,(j2
+ 1))) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),i2,(j2
+ 1)))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i2,j2))
/\ ((
L~ f)
` )) by
A156,
A163,
XBOOLE_0:def 4;
end;
case
A164: (j2
+ 1)
< (
width (
GoB f)) & j2
=
0 ;
A165: (j2
+ 1)
< ((j2
+ 1)
+ 1) by
NAT_1: 13;
A166: ((j2
+ 1)
+ 1)
<= (
width (
GoB f)) by
A164,
NAT_1: 13;
p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* (1,(j2
+ 1)))
`2 )
<= r & r
<= (((
GoB f)
* (1,((j2
+ 1)
+ 1)))
`2 ) }
proof
(((
GoB f)
* (1,(j2
+ 1)))
`2 )
< (((
GoB f)
* (1,((j2
+ 1)
+ 1)))
`2 ) by
A132,
A150,
A166,
A165,
GOBOARD5: 4;
hence thesis;
end;
then p
in (
h_strip ((
GoB f),(j2
+ 1))) by
A150,
A164,
GOBOARD5: 5;
then p
in ((
h_strip ((
GoB f),(j2
+ 1)))
/\ (
v_strip ((
GoB f),i2))) by
A155,
XBOOLE_0:def 4;
then
A167: p
in (
cell ((
GoB f),i2,(j2
+ 1))) by
GOBOARD5:def 3;
p
in {
|[s, r]| where s,r be
Real : r
<= (((
GoB f)
* (1,(j2
+ 1)))
`2 ) };
then p
in (
h_strip ((
GoB f),j2)) by
A150,
A164,
GOBOARD5: 7;
then p
in ((
h_strip ((
GoB f),j2))
/\ (
v_strip ((
GoB f),i2))) by
A155,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i2,j2)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),i2,(j2
+ 1)))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i2,j2))
/\ ((
L~ f)
` )) by
A156,
A167,
XBOOLE_0:def 4;
end;
case
A168: (j2
+ 1)
= (
width (
GoB f)) & j2
>
0 ;
then
A169: (
0
+ 1)
<= j2 by
NAT_1: 13;
A170: p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* (1,j2))
`2 )
<= r & r
<= (((
GoB f)
* (1,(j2
+ 1)))
`2 ) }
proof
(((
GoB f)
* (1,j2))
`2 )
< (((
GoB f)
* (1,(j2
+ 1)))
`2 ) by
A128,
A150,
A168,
A169,
GOBOARD5: 4;
hence thesis;
end;
p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* (1,(j2
+ 1)))
`2 )
<= r };
then p
in (
h_strip ((
GoB f),(j2
+ 1))) by
A150,
A168,
GOBOARD5: 6;
then p
in ((
h_strip ((
GoB f),(j2
+ 1)))
/\ (
v_strip ((
GoB f),i2))) by
A155,
XBOOLE_0:def 4;
then
A171: p
in (
cell ((
GoB f),i2,(j2
+ 1))) by
GOBOARD5:def 3;
j2
< (
width (
GoB f)) by
A168,
NAT_1: 13;
then p
in (
h_strip ((
GoB f),j2)) by
A150,
A169,
A170,
GOBOARD5: 5;
then p
in ((
h_strip ((
GoB f),j2))
/\ (
v_strip ((
GoB f),i2))) by
A155,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i2,j2)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),i2,(j2
+ 1)))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i2,j2))
/\ ((
L~ f)
` )) by
A156,
A171,
XBOOLE_0:def 4;
end;
case
A172: (j2
+ 1)
= (
width (
GoB f)) & j2
=
0 ;
p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* (1,(j2
+ 1)))
`2 )
<= r };
then p
in (
h_strip ((
GoB f),(j2
+ 1))) by
A150,
A172,
GOBOARD5: 6;
then p
in ((
h_strip ((
GoB f),(j2
+ 1)))
/\ (
v_strip ((
GoB f),i2))) by
A155,
XBOOLE_0:def 4;
then
A173: p
in (
cell ((
GoB f),i2,(j2
+ 1))) by
GOBOARD5:def 3;
p
in {
|[s, r]| where s,r be
Real : r
<= (((
GoB f)
* (1,1))
`2 ) } by
A172;
then p
in (
h_strip ((
GoB f),j2)) by
A150,
A172,
GOBOARD5: 7;
then p
in ((
h_strip ((
GoB f),j2))
/\ (
v_strip ((
GoB f),i2))) by
A155,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i2,j2)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),i2,(j2
+ 1)))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i2,j2))
/\ ((
L~ f)
` )) by
A156,
A173,
XBOOLE_0:def 4;
end;
end;
then p
in (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` )))) by
A3,
A4,
Th2;
then
A174: (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` ))))
c= (
Component_of p1) by
A3,
A4,
Th3,
GOBRD11: 1;
(
Down ((
RightComp f),((
L~ f)
` ))) is
closed by
Lm4,
CONNSP_1: 33;
then
A175: (
Cl (
Down ((
RightComp f),((
L~ f)
` ))))
= (
Down ((
RightComp f),((
L~ f)
` ))) by
PRE_TOPC: 22;
(
Down ((
LeftComp f),((
L~ f)
` ))) is
closed by
Lm3,
CONNSP_1: 33;
then
A176: (
Cl (
Down ((
LeftComp f),((
L~ f)
` ))))
= (
Down ((
LeftComp f),((
L~ f)
` ))) by
PRE_TOPC: 22;
A177: (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` )))
c= (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` )))) & (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` )))
= (
Int (
cell ((
GoB f),i2,j2))) by
A3,
A4,
Th3,
PRE_TOPC: 18;
((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` ))))
= (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))) by
GOBRD11: 4;
then
A178: (
Cl (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))))
= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A176,
A175,
PRE_TOPC: 20;
A179: (
Down ((
LeftComp f),((
L~ f)
` )))
= (
LeftComp f) & (
Down ((
RightComp f),((
L~ f)
` )))
= (
RightComp f) by
Th5;
(
Down ((
Int (
cell ((
GoB f),i2,j1))),((
L~ f)
` )))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A1,
A2,
A6,
A7,
Th3;
then (
Down ((
Int (
cell ((
GoB f),i2,j1))),((
L~ f)
` )))
c= (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))) by
A179,
GOBRD11: 4;
then
A180: (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j1))),((
L~ f)
` ))))
c= (
Cl (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` )))) by
PRE_TOPC: 19;
p
in (
Cl (
Down ((
Int (
cell ((
GoB f),i2,(j2
+ 1)))),((
L~ f)
` )))) by
A3,
A157,
Th2;
then (
Component_of p1)
c= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A126,
A180,
A178,
Th5,
CONNSP_3: 21;
then (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` ))))
c= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A174;
hence (
Int (
cell ((
GoB f),i2,j2)))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A179,
A177;
end;
case
A181: i2
= (
len (
GoB f));
reconsider p =
|[((((
GoB f)
* ((
len (
GoB f)),(j2
+ 1)))
`1 )
+ 1), (((
GoB f)
* ((
len (
GoB f)),(j2
+ 1)))
`2 )]| as
Point of (
TOP-REAL 2);
A182: 1
< (
len (
GoB f)) by
GOBOARD7: 32;
reconsider P =
{p} as
Subset of (
TOP-REAL 2);
A183: (for q be
Point of (
TOP-REAL 2) st q
in P holds (((
GoB f)
* ((
len (
GoB f)),1))
`1 )
< (q
`1 )) implies P
misses (
L~ f) by
GOBOARD8: 22;
A184: 1
< (
width (
GoB f)) by
GOBOARD7: 33;
1
<= (j2
+ 1) by
NAT_1: 11;
then (((
GoB f)
* ((
len (
GoB f)),(j2
+ 1)))
`1 )
= (((
GoB f)
* ((
len (
GoB f)),1))
`1 ) by
A2,
A126,
A182,
GOBOARD5: 2;
then
A185: (p
`1 )
= ((((
GoB f)
* ((
len (
GoB f)),1))
`1 )
+ 1) by
EUCLID: 52;
then
A186: (((
GoB f)
* ((
len (
GoB f)),1))
`1 )
< (p
`1 ) by
XREAL_1: 29;
p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* ((
len (
GoB f)),1))
`1 )
<= s }
proof
p
=
|[(p
`1 ), (p
`2 )]| by
EUCLID: 53;
hence thesis by
A186;
end;
then
A187: p
in (
v_strip ((
GoB f),i2)) by
A181,
A184,
GOBOARD5: 9;
(((
GoB f)
* ((
len (
GoB f)),1))
`1 )
< ((((
GoB f)
* ((
len (
GoB f)),1))
`1 )
+ 1) by
XREAL_1: 29;
then
A188: p
in
{p} &
{p}
c= ((
L~ f)
` ) by
A185,
A183,
SUBSET_1: 23,
TARSKI:def 1;
then
reconsider p1 = p as
Point of ((
TOP-REAL 2)
| ((
L~ f)
` )) by
PRE_TOPC: 8;
A189:
now
per cases by
A2,
A126,
XXREAL_0: 1;
case
A190: (j2
+ 1)
< (
width (
GoB f)) & j2
>
0 ;
then
A191: ((j2
+ 1)
+ 1)
<= (
width (
GoB f)) by
NAT_1: 13;
A192: p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* ((
len (
GoB f)),(j2
+ 1)))
`2 )
<= r & r
<= (((
GoB f)
* ((
len (
GoB f)),((j2
+ 1)
+ 1)))
`2 ) }
proof
(j2
+ 1)
< ((j2
+ 1)
+ 1) by
NAT_1: 13;
then (((
GoB f)
* ((
len (
GoB f)),(j2
+ 1)))
`2 )
<= (((
GoB f)
* ((
len (
GoB f)),((j2
+ 1)
+ 1)))
`2 ) by
A132,
A182,
A191,
GOBOARD5: 4;
hence thesis;
end;
1
<= (j2
+ 1) by
NAT_1: 11;
then p
in (
h_strip ((
GoB f),(j2
+ 1))) by
A182,
A190,
A192,
GOBOARD5: 5;
then p
in ((
h_strip ((
GoB f),(j2
+ 1)))
/\ (
v_strip ((
GoB f),i2))) by
A187,
XBOOLE_0:def 4;
then
A193: p
in (
cell ((
GoB f),i2,(j2
+ 1))) by
GOBOARD5:def 3;
A194: (
0
+ 1)
<= j2 by
A190,
NAT_1: 13;
A195: j2
< (j2
+ 1) by
NAT_1: 13;
A196: p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* ((
len (
GoB f)),j2))
`2 )
<= r & r
<= (((
GoB f)
* ((
len (
GoB f)),(j2
+ 1)))
`2 ) }
proof
(((
GoB f)
* ((
len (
GoB f)),j2))
`2 )
< (((
GoB f)
* ((
len (
GoB f)),(j2
+ 1)))
`2 ) by
A2,
A126,
A182,
A194,
A195,
GOBOARD5: 4;
hence thesis;
end;
j2
< (
width (
GoB f)) by
A190,
NAT_1: 13;
then p
in (
h_strip ((
GoB f),j2)) by
A182,
A194,
A196,
GOBOARD5: 5;
then p
in ((
h_strip ((
GoB f),j2))
/\ (
v_strip ((
GoB f),i2))) by
A187,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i2,j2)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),i2,(j2
+ 1)))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i2,j2))
/\ ((
L~ f)
` )) by
A188,
A193,
XBOOLE_0:def 4;
end;
case
A197: (j2
+ 1)
< (
width (
GoB f)) & j2
=
0 ;
then
A198: ((j2
+ 1)
+ 1)
<= (
width (
GoB f)) by
NAT_1: 13;
p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* ((
len (
GoB f)),(j2
+ 1)))
`2 )
<= r & r
<= (((
GoB f)
* ((
len (
GoB f)),((j2
+ 1)
+ 1)))
`2 ) }
proof
(((
GoB f)
* ((
len (
GoB f)),(j2
+ 1)))
`2 )
< (((
GoB f)
* ((
len (
GoB f)),((j2
+ 1)
+ 1)))
`2 ) by
A132,
A130,
A182,
A198,
GOBOARD5: 4;
hence thesis;
end;
then p
in (
h_strip ((
GoB f),(j2
+ 1))) by
A182,
A197,
GOBOARD5: 5;
then p
in ((
h_strip ((
GoB f),(j2
+ 1)))
/\ (
v_strip ((
GoB f),i2))) by
A187,
XBOOLE_0:def 4;
then
A199: p
in (
cell ((
GoB f),i2,(j2
+ 1))) by
GOBOARD5:def 3;
p
in {
|[s, r]| where s,r be
Real : r
<= (((
GoB f)
* ((
len (
GoB f)),1))
`2 ) } by
A197;
then p
in (
h_strip ((
GoB f),j2)) by
A182,
A197,
GOBOARD5: 7;
then p
in ((
h_strip ((
GoB f),j2))
/\ (
v_strip ((
GoB f),i2))) by
A187,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i2,j2)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),i2,(j2
+ 1)))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i2,j2))
/\ ((
L~ f)
` )) by
A188,
A199,
XBOOLE_0:def 4;
end;
case
A200: (j2
+ 1)
= (
width (
GoB f)) & j2
>
0 ;
then
A201: (
0
+ 1)
<= j2 & j2
< (
width (
GoB f)) by
NAT_1: 13;
p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* ((
len (
GoB f)),j2))
`2 )
<= r & r
<= (((
GoB f)
* ((
len (
GoB f)),(j2
+ 1)))
`2 ) }
proof
(((
GoB f)
* ((
len (
GoB f)),j2))
`2 )
<= (((
GoB f)
* ((
len (
GoB f)),(j2
+ 1)))
`2 ) by
A182,
A200,
A201,
GOBOARD5: 4;
hence thesis;
end;
then p
in (
h_strip ((
GoB f),j2)) by
A182,
A201,
GOBOARD5: 5;
then p
in ((
h_strip ((
GoB f),j2))
/\ (
v_strip ((
GoB f),i2))) by
A187,
XBOOLE_0:def 4;
then
A202: p
in (
cell ((
GoB f),i2,j2)) by
GOBOARD5:def 3;
p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* ((
len (
GoB f)),(
width (
GoB f))))
`2 )
<= r } by
A200;
then p
in (
h_strip ((
GoB f),(j2
+ 1))) by
A182,
A200,
GOBOARD5: 6;
then p
in ((
h_strip ((
GoB f),(j2
+ 1)))
/\ (
v_strip ((
GoB f),i2))) by
A187,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i2,(j2
+ 1))) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),i2,(j2
+ 1)))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i2,j2))
/\ ((
L~ f)
` )) by
A188,
A202,
XBOOLE_0:def 4;
end;
case (j2
+ 1)
= (
width (
GoB f)) & j2
=
0 ;
hence contradiction by
GOBOARD7: 33;
end;
end;
then p
in (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` )))) by
A3,
A4,
Th2;
then
A203: (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` ))))
c= (
Component_of p1) by
A3,
A4,
Th3,
GOBRD11: 1;
(
Down ((
RightComp f),((
L~ f)
` ))) is
closed by
Lm4,
CONNSP_1: 33;
then
A204: (
Cl (
Down ((
RightComp f),((
L~ f)
` ))))
= (
Down ((
RightComp f),((
L~ f)
` ))) by
PRE_TOPC: 22;
(
Down ((
LeftComp f),((
L~ f)
` ))) is
closed by
Lm3,
CONNSP_1: 33;
then
A205: (
Cl (
Down ((
LeftComp f),((
L~ f)
` ))))
= (
Down ((
LeftComp f),((
L~ f)
` ))) by
PRE_TOPC: 22;
A206: (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` )))
c= (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` )))) & (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` )))
= (
Int (
cell ((
GoB f),i2,j2))) by
A3,
A4,
Th3,
PRE_TOPC: 18;
((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` ))))
= (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))) by
GOBRD11: 4;
then
A207: (
Cl (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))))
= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A205,
A204,
PRE_TOPC: 20;
A208: (
Down ((
LeftComp f),((
L~ f)
` )))
= (
LeftComp f) & (
Down ((
RightComp f),((
L~ f)
` )))
= (
RightComp f) by
Th5;
(
Down ((
Int (
cell ((
GoB f),i2,j1))),((
L~ f)
` )))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A1,
A2,
A6,
A7,
Th3;
then (
Down ((
Int (
cell ((
GoB f),i2,j1))),((
L~ f)
` )))
c= (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))) by
A208,
GOBRD11: 4;
then
A209: (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j1))),((
L~ f)
` ))))
c= (
Cl (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` )))) by
PRE_TOPC: 19;
p
in (
Cl (
Down ((
Int (
cell ((
GoB f),i2,(j2
+ 1)))),((
L~ f)
` )))) by
A3,
A189,
Th2;
then (
Component_of p1)
c= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A126,
A209,
A207,
Th5,
CONNSP_3: 21;
then (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` ))))
c= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A203;
hence (
Int (
cell ((
GoB f),i2,j2)))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A208,
A206;
end;
case
A210: i2
<>
0 & i2
<> (
len (
GoB f)) & not ex k st 1
<= k & (k
+ 1)
<= (
len f) & (
LSeg ((f
/. k),(f
/. (k
+ 1))))
= (
LSeg (((
GoB f)
* (i2,(j2
+ 1))),((
GoB f)
* ((i2
+ 1),(j2
+ 1)))));
then
A211: i2
< (
len (
GoB f)) by
A3,
XXREAL_0: 1;
then
A212: (i2
+ 1)
<= (
len (
GoB f)) by
NAT_1: 13;
for k st 1
<= k & (k
+ 1)
<= (
len f) holds (
LSeg (((
GoB f)
* (i2,(j2
+ 1))),((
GoB f)
* ((i2
+ 1),(j2
+ 1)))))
<> (
LSeg (f,k))
proof
let k;
assume
A213: 1
<= k & (k
+ 1)
<= (
len f);
then (
LSeg (f,k))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
TOPREAL1:def 3;
hence thesis by
A210,
A213;
end;
then
A214: 1
<= (j2
+ 1) & (j2
+ 1)
<= (
width (
GoB f)) & 1
<= i2 & (i2
+ 1)
<= (
len (
GoB f)) implies not ((1
/ 2)
* (((
GoB f)
* (i2,(j2
+ 1)))
+ ((
GoB f)
* ((i2
+ 1),(j2
+ 1)))))
in (
L~ f) by
GOBOARD7: 40;
reconsider p = ((1
/ 2)
* (((
GoB f)
* (i2,(j2
+ 1)))
+ ((
GoB f)
* ((i2
+ 1),(j2
+ 1))))) as
Point of (
TOP-REAL 2);
A215: (p
`1 )
= ((1
/ 2)
* ((((
GoB f)
* (i2,(j2
+ 1)))
+ ((
GoB f)
* ((i2
+ 1),(j2
+ 1))))
`1 )) by
TOPREAL3: 4
.= ((1
/ 2)
* ((((
GoB f)
* (i2,(j2
+ 1)))
`1 )
+ (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`1 ))) by
TOPREAL3: 2;
reconsider P =
{p} as
Subset of (
TOP-REAL 2);
A216: 1
< (
len (
GoB f)) by
GOBOARD7: 32;
(
Down ((
RightComp f),((
L~ f)
` ))) is
closed by
Lm4,
CONNSP_1: 33;
then
A217: (
Cl (
Down ((
RightComp f),((
L~ f)
` ))))
= (
Down ((
RightComp f),((
L~ f)
` ))) by
PRE_TOPC: 22;
(
Down ((
LeftComp f),((
L~ f)
` ))) is
closed by
Lm3,
CONNSP_1: 33;
then
A218: (
Cl (
Down ((
LeftComp f),((
L~ f)
` ))))
= (
Down ((
LeftComp f),((
L~ f)
` ))) by
PRE_TOPC: 22;
((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` ))))
= (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))) by
GOBRD11: 4;
then
A219: (
Cl (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))))
= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A218,
A217,
PRE_TOPC: 20;
A220: 1
<= (j2
+ 1) by
NAT_1: 11;
A221: (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` )))
c= (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` )))) & (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` )))
= (
Int (
cell ((
GoB f),i2,j2))) by
A3,
A4,
Th3,
PRE_TOPC: 18;
A222: (
Down ((
LeftComp f),((
L~ f)
` )))
= (
LeftComp f) & (
Down ((
RightComp f),((
L~ f)
` )))
= (
RightComp f) by
Th5;
(
Down ((
Int (
cell ((
GoB f),i2,j1))),((
L~ f)
` )))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A1,
A2,
A6,
A7,
Th3;
then (
Down ((
Int (
cell ((
GoB f),i2,j1))),((
L~ f)
` )))
c= (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` ))) by
A222,
GOBRD11: 4;
then
A223: (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j1))),((
L~ f)
` ))))
c= (
Cl (
Down (((
LeftComp f)
\/ (
RightComp f)),((
L~ f)
` )))) by
PRE_TOPC: 19;
A224: (
0
+ 1)
<= i2 by
A210,
NAT_1: 13;
then
A225: 1
< (i2
+ 1) by
NAT_1: 13;
(for x be
object st x
in P holds not x
in (
L~ f)) implies P
misses (
L~ f) by
XBOOLE_0: 3;
then
A226: p
in
{p} &
{p}
c= ((
L~ f)
` ) by
A2,
A126,
A224,
A211,
A214,
NAT_1: 13,
SUBSET_1: 23,
TARSKI:def 1;
then
reconsider p1 = p as
Point of ((
TOP-REAL 2)
| ((
L~ f)
` )) by
PRE_TOPC: 8;
A227: 1
<= (1
+ j2) by
NAT_1: 11;
i2
< (i2
+ 1) by
NAT_1: 13;
then
A228: (((
GoB f)
* (i2,(j2
+ 1)))
`1 )
< (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`1 ) by
A2,
A126,
A224,
A212,
A220,
GOBOARD5: 3;
then ((((
GoB f)
* (i2,(j2
+ 1)))
`1 )
+ (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`1 ))
< ((((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`1 )
+ (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`1 )) by
XREAL_1: 8;
then
A229: (((((
GoB f)
* (i2,(j2
+ 1)))
`1 )
+ (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`1 ))
/ 2)
< (((((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`1 )
+ (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`1 ))
/ 2) by
XREAL_1: 74;
((((
GoB f)
* (i2,(j2
+ 1)))
`1 )
+ (((
GoB f)
* (i2,(j2
+ 1)))
`1 ))
< ((((
GoB f)
* (i2,(j2
+ 1)))
`1 )
+ (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`1 )) by
A228,
XREAL_1: 8;
then
A230: (((((
GoB f)
* (i2,(j2
+ 1)))
`1 )
+ (((
GoB f)
* (i2,(j2
+ 1)))
`1 ))
/ 2)
< (((((
GoB f)
* (i2,(j2
+ 1)))
`1 )
+ (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`1 ))
/ 2) by
XREAL_1: 74;
p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* (i2,(j2
+ 1)))
`1 )
<= s & s
<= (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`1 ) }
proof
p
=
|[(p
`1 ), (p
`2 )]| by
EUCLID: 53;
hence thesis by
A215,
A230,
A229;
end;
then
A231: p
in (
v_strip ((
GoB f),i2)) by
A2,
A126,
A224,
A211,
A227,
GOBOARD5: 8;
(p
`2 )
= ((1
/ 2)
* ((((
GoB f)
* (i2,(j2
+ 1)))
+ ((
GoB f)
* ((i2
+ 1),(j2
+ 1))))
`2 )) by
TOPREAL3: 4
.= ((1
/ 2)
* ((((
GoB f)
* (i2,(j2
+ 1)))
`2 )
+ (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`2 ))) by
TOPREAL3: 2;
then
A232: p
=
|[((1
/ 2)
* ((((
GoB f)
* (i2,(j2
+ 1)))
`1 )
+ (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`1 ))), ((1
/ 2)
* ((((
GoB f)
* (i2,(j2
+ 1)))
`2 )
+ (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`2 )))]| by
A215,
EUCLID: 53;
A233: j2
=
0 or j2
>= (
0
+ 1) by
NAT_1: 13;
A234:
now
per cases by
A2,
A126,
A233,
XXREAL_0: 1;
case
A235: j2
>= 1 & (j2
+ 1)
< (
width (
GoB f));
then
A236: ((j2
+ 1)
+ 1)
<= (
width (
GoB f)) by
NAT_1: 13;
p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* (1,(j2
+ 1)))
`2 )
<= r & r
<= (((
GoB f)
* (1,((j2
+ 1)
+ 1)))
`2 ) }
proof
(j2
+ 1)
< ((j2
+ 1)
+ 1) by
NAT_1: 13;
then
A237: (((
GoB f)
* (1,(j2
+ 1)))
`2 )
< (((
GoB f)
* (1,((j2
+ 1)
+ 1)))
`2 ) by
A216,
A220,
A236,
GOBOARD5: 4;
(((
GoB f)
* (i2,(j2
+ 1)))
`2 )
= (((
GoB f)
* (1,(j2
+ 1)))
`2 ) & (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`2 )
= (((
GoB f)
* (1,(j2
+ 1)))
`2 ) by
A2,
A3,
A126,
A224,
A212,
A220,
A225,
GOBOARD5: 1;
hence thesis by
A232,
A237;
end;
then p
in (
h_strip ((
GoB f),(j2
+ 1))) by
A216,
A227,
A235,
GOBOARD5: 5;
then p
in ((
h_strip ((
GoB f),(j2
+ 1)))
/\ (
v_strip ((
GoB f),i2))) by
A231,
XBOOLE_0:def 4;
then
A238: p
in (
cell ((
GoB f),i2,(j2
+ 1))) by
GOBOARD5:def 3;
A239: p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* (1,j2))
`2 )
<= r & r
<= (((
GoB f)
* (1,(j2
+ 1)))
`2 ) }
proof
j2
< (j2
+ 1) by
NAT_1: 13;
then
A240: (((
GoB f)
* (1,j2))
`2 )
< (((
GoB f)
* (1,(j2
+ 1)))
`2 ) by
A216,
A235,
GOBOARD5: 4;
(((
GoB f)
* (i2,(j2
+ 1)))
`2 )
= (((
GoB f)
* (1,(j2
+ 1)))
`2 ) & (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`2 )
= (((
GoB f)
* (1,(j2
+ 1)))
`2 ) by
A2,
A3,
A126,
A224,
A212,
A220,
A225,
GOBOARD5: 1;
hence thesis by
A232,
A240;
end;
j2
< (
width (
GoB f)) by
A235,
NAT_1: 13;
then p
in (
h_strip ((
GoB f),j2)) by
A216,
A235,
A239,
GOBOARD5: 5;
then p
in ((
h_strip ((
GoB f),j2))
/\ (
v_strip ((
GoB f),i2))) by
A231,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i2,j2)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),i2,(j2
+ 1)))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i2,j2))
/\ ((
L~ f)
` )) by
A226,
A238,
XBOOLE_0:def 4;
end;
case
A241: j2
>= 1 & (j2
+ 1)
= (
width (
GoB f));
A242: j2
< (j2
+ 1) by
NAT_1: 13;
p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* (1,j2))
`2 )
<= r & r
<= (((
GoB f)
* (1,(j2
+ 1)))
`2 ) }
proof
A243: (((
GoB f)
* (1,j2))
`2 )
< (((
GoB f)
* (1,(j2
+ 1)))
`2 ) by
A216,
A241,
A242,
GOBOARD5: 4;
(((
GoB f)
* (i2,(j2
+ 1)))
`2 )
= (((
GoB f)
* (1,(j2
+ 1)))
`2 ) & (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`2 )
= (((
GoB f)
* (1,(j2
+ 1)))
`2 ) by
A2,
A3,
A126,
A224,
A212,
A220,
A225,
GOBOARD5: 1;
hence thesis by
A232,
A243;
end;
then p
in (
h_strip ((
GoB f),j2)) by
A216,
A241,
A242,
GOBOARD5: 5;
then p
in ((
h_strip ((
GoB f),j2))
/\ (
v_strip ((
GoB f),i2))) by
A231,
XBOOLE_0:def 4;
then
A244: p
in (
cell ((
GoB f),i2,j2)) by
GOBOARD5:def 3;
p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* (1,(j2
+ 1)))
`2 )
<= r }
proof
(((
GoB f)
* (i2,(j2
+ 1)))
`2 )
= (((
GoB f)
* (1,(j2
+ 1)))
`2 ) & (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`2 )
= (((
GoB f)
* (1,(j2
+ 1)))
`2 ) by
A2,
A3,
A126,
A224,
A212,
A220,
A225,
GOBOARD5: 1;
hence thesis by
A232;
end;
then p
in (
h_strip ((
GoB f),(j2
+ 1))) by
A216,
A241,
GOBOARD5: 6;
then p
in ((
h_strip ((
GoB f),(j2
+ 1)))
/\ (
v_strip ((
GoB f),i2))) by
A231,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i2,(j2
+ 1))) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),i2,(j2
+ 1)))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i2,j2))
/\ ((
L~ f)
` )) by
A226,
A244,
XBOOLE_0:def 4;
end;
case
A245: j2
=
0 & (j2
+ 1)
< (
width (
GoB f));
then
A246: ((j2
+ 1)
+ 1)
<= (
width (
GoB f)) by
NAT_1: 13;
p
in {
|[s, r]| where s,r be
Real : (((
GoB f)
* (1,(j2
+ 1)))
`2 )
<= r & r
<= (((
GoB f)
* (1,((j2
+ 1)
+ 1)))
`2 ) }
proof
(j2
+ 1)
< ((j2
+ 1)
+ 1) by
NAT_1: 13;
then
A247: (((
GoB f)
* (1,(j2
+ 1)))
`2 )
< (((
GoB f)
* (1,((j2
+ 1)
+ 1)))
`2 ) by
A216,
A220,
A246,
GOBOARD5: 4;
(((
GoB f)
* (i2,(j2
+ 1)))
`2 )
= (((
GoB f)
* (1,(j2
+ 1)))
`2 ) & (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`2 )
= (((
GoB f)
* (1,(j2
+ 1)))
`2 ) by
A2,
A3,
A126,
A224,
A212,
A220,
A225,
GOBOARD5: 1;
hence thesis by
A232,
A247;
end;
then p
in (
h_strip ((
GoB f),j1)) by
A126,
A216,
A245,
GOBOARD5: 5;
then p
in ((
h_strip ((
GoB f),(j2
+ 1)))
/\ (
v_strip ((
GoB f),i2))) by
A126,
A231,
XBOOLE_0:def 4;
then
A248: p
in (
cell ((
GoB f),i2,(j2
+ 1))) by
GOBOARD5:def 3;
p
in {
|[s, r]| where s,r be
Real : r
<= (((
GoB f)
* (1,1))
`2 ) }
proof
(((
GoB f)
* (i2,(j2
+ 1)))
`2 )
= (((
GoB f)
* (1,(j2
+ 1)))
`2 ) & (((
GoB f)
* ((i2
+ 1),(j2
+ 1)))
`2 )
= (((
GoB f)
* (1,(j2
+ 1)))
`2 ) by
A2,
A3,
A126,
A224,
A212,
A220,
A225,
GOBOARD5: 1;
hence thesis by
A232,
A245;
end;
then p
in (
h_strip ((
GoB f),j2)) by
A216,
A245,
GOBOARD5: 7;
then p
in ((
h_strip ((
GoB f),j2))
/\ (
v_strip ((
GoB f),i2))) by
A231,
XBOOLE_0:def 4;
then p
in (
cell ((
GoB f),i2,j2)) by
GOBOARD5:def 3;
hence p
in ((
cell ((
GoB f),i2,(j2
+ 1)))
/\ ((
L~ f)
` )) & p
in ((
cell ((
GoB f),i2,j2))
/\ ((
L~ f)
` )) by
A226,
A248,
XBOOLE_0:def 4;
end;
case j2
=
0 & (j2
+ 1)
= (
width (
GoB f));
hence contradiction by
GOBOARD7: 33;
end;
end;
then p
in (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` )))) by
A3,
A4,
Th2;
then
A249: (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` ))))
c= (
Component_of p1) by
A3,
A4,
Th3,
GOBRD11: 1;
p
in (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j1))),((
L~ f)
` )))) by
A3,
A126,
A234,
Th2;
then (
Component_of p1)
c= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A223,
A219,
Th5,
CONNSP_3: 21;
then (
Cl (
Down ((
Int (
cell ((
GoB f),i2,j2))),((
L~ f)
` ))))
c= ((
Down ((
LeftComp f),((
L~ f)
` )))
\/ (
Down ((
RightComp f),((
L~ f)
` )))) by
A249;
hence (
Int (
cell ((
GoB f),i2,j2)))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A222,
A221;
end;
end;
hence (
Int (
cell ((
GoB f),i2,j2)))
c= ((
LeftComp f)
\/ (
RightComp f));
end;
end;
hence (
Int (
cell ((
GoB f),i2,j2)))
c= ((
LeftComp f)
\/ (
RightComp f));
end;
end;
hence (
Int (
cell ((
GoB f),i2,j2)))
c= ((
LeftComp f)
\/ (
RightComp f));
end;
hence thesis;
end;
theorem ::
GOBRD12:6
Th6: for i1, j1, i2, j2 st i1
<= (
len (
GoB f)) & j1
<= (
width (
GoB f)) & i2
<= (
len (
GoB f)) & j2
<= (
width (
GoB f)) & (i1,j1,i2,j2)
are_adjacent holds (
Int (
cell ((
GoB f),i1,j1)))
c= ((
LeftComp f)
\/ (
RightComp f)) iff (
Int (
cell ((
GoB f),i2,j2)))
c= ((
LeftComp f)
\/ (
RightComp f))
proof
let i1, j1, i2, j2;
assume that
A1: i1
<= (
len (
GoB f)) & j1
<= (
width (
GoB f)) and
A2: i2
<= (
len (
GoB f)) and
A3: j2
<= (
width (
GoB f)) and
A4: (i1,j1,i2,j2)
are_adjacent ;
A5: (i1,i2)
are_adjacent & j1
= j2 or i1
= i2 & (j1,j2)
are_adjacent by
A4,
GOBRD10:def 2;
now
per cases by
A5,
GOBRD10:def 1;
case (i2
= (i1
+ 1) or i1
= (i2
+ 1)) & j1
= j2;
hence thesis by
A1,
A2,
Lm5;
end;
case i1
= i2 & (j2
= (j1
+ 1) or j1
= (j2
+ 1));
hence thesis by
A1,
A3,
Lm6;
end;
end;
hence thesis;
end;
theorem ::
GOBRD12:7
Th7: for F1,F2 be
FinSequence of
NAT st (
len F1)
= (
len F2) & (ex i st i
in (
dom F1) & (
Int (
cell ((
GoB f),(F1
/. i),(F2
/. i))))
c= ((
LeftComp f)
\/ (
RightComp f))) & (for i, k1, k2 st i
in (
dom F1) & k1
= (F1
. i) & k2
= (F2
. i) holds k1
<= (
len (
GoB f)) & k2
<= (
width (
GoB f))) holds for i st i
in (
dom F1) holds (
Int (
cell ((
GoB f),(F1
/. i),(F2
/. i))))
c= ((
LeftComp f)
\/ (
RightComp f))
proof
let F1,F2 be
FinSequence of
NAT ;
assume that
A1: (
len F1)
= (
len F2) and
A2: ex i st i
in (
dom F1) & (
Int (
cell ((
GoB f),(F1
/. i),(F2
/. i))))
c= ((
LeftComp f)
\/ (
RightComp f)) and
A3: for i, k1, k2 st i
in (
dom F1) & k1
= (F1
. i) & k2
= (F2
. i) holds k1
<= (
len (
GoB f)) & k2
<= (
width (
GoB f));
consider i1 such that
A4: i1
in (
dom F1) and
A5: (
Int (
cell ((
GoB f),(F1
/. i1),(F2
/. i1))))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A2;
reconsider kw1 = (F1
/. i1), kw2 = (F2
/. i1) as
Element of
NAT ;
reconsider k1 = (kw1
+ 1), k2 = (kw2
+ 1) as
Element of
NAT ;
(
dom F1)
= (
Seg (
len F1)) by
FINSEQ_1:def 3;
then (
dom F1)
= (
dom F2) by
A1,
FINSEQ_1:def 3;
then
A6: (F2
/. i1)
= (F2
. i1) by
A4,
PARTFUN1:def 6;
A7: (F1
/. i1)
= (F1
. i1) by
A4,
PARTFUN1:def 6;
then kw1
<= (
len (
GoB f)) by
A3,
A4,
A6;
then
A8: k1
<= ((
len (
GoB f))
+ 1) by
XREAL_1: 6;
kw2
<= (
width (
GoB f)) by
A3,
A4,
A7,
A6;
then
A9: k2
<= ((
width (
GoB f))
+ 1) by
XREAL_1: 6;
A10: (k1
-' 1)
= (F1
/. i1) & (k2
-' 1)
= (F2
/. i1) by
NAT_D: 34;
set n = (
len (
GoB f)), m = (
width (
GoB f));
defpred
P[
Nat,
Nat,
set] means $3
= (
Int (
cell ((
GoB f),($1
-' 1),($2
-' 1))));
reconsider F = ((
LeftComp f)
\/ (
RightComp f)) as
Subset of (
REAL 2) by
EUCLID: 22;
A11: for i,j be
Nat st
[i, j]
in
[:(
Seg ((
len (
GoB f))
+ 1)), (
Seg ((
width (
GoB f))
+ 1)):] holds ex x be
Subset of (
REAL 2) st
P[i, j, x] by
Lm2;
ex Mm be
Matrix of ((
len (
GoB f))
+ 1), ((
width (
GoB f))
+ 1), (
bool (
REAL 2)) st for i,j be
Nat st
[i, j]
in (
Indices Mm) holds
P[i, j, (Mm
* (i,j))] from
MATRIX_0:sch 2(
A11);
then
consider Mm be
Matrix of ((
len (
GoB f))
+ 1), ((
width (
GoB f))
+ 1), (
bool (
REAL 2)) such that
A12: for i,j be
Nat st
[i, j]
in (
Indices Mm) holds (Mm
* (i,j))
= (
Int (
cell ((
GoB f),(i
-' 1),(j
-' 1))));
A13: (
len Mm)
= ((
len (
GoB f))
+ 1) by
MATRIX_0:def 2;
then
A14: (
dom Mm)
= (
Seg ((
len (
GoB f))
+ 1)) by
FINSEQ_1:def 3;
A15: (
Seg ((
width (
GoB f))
+ 1))
= (
Seg (
width Mm)) by
A13,
MATRIX_0: 20;
A16: ((
width (
GoB f))
+ 1)
= (
width Mm) by
A13,
MATRIX_0: 20;
A17: for i1,j1,i2,j2 be
Element of
NAT st i1
in (
Seg ((
len (
GoB f))
+ 1)) & i2
in (
Seg ((
len (
GoB f))
+ 1)) & j1
in (
Seg ((
width (
GoB f))
+ 1)) & j2
in (
Seg ((
width (
GoB f))
+ 1)) & (i1,j1,i2,j2)
are_adjacent holds (Mm
* (i1,j1))
c= ((
LeftComp f)
\/ (
RightComp f)) iff (Mm
* (i2,j2))
c= ((
LeftComp f)
\/ (
RightComp f))
proof
let i1,j1,i2,j2 be
Element of
NAT ;
assume that
A18: i1
in (
Seg ((
len (
GoB f))
+ 1)) and
A19: i2
in (
Seg ((
len (
GoB f))
+ 1)) and
A20: j1
in (
Seg ((
width (
GoB f))
+ 1)) and
A21: j2
in (
Seg ((
width (
GoB f))
+ 1)) and
A22: (i1,j1,i2,j2)
are_adjacent ;
A23: 1
<= i2 by
A19,
FINSEQ_1: 1;
then
0
<= (i2
- 1) by
XREAL_1: 48;
then
A24: (i2
-' 1)
= (i2
- 1) by
XREAL_0:def 2;
[i2, j2]
in
[:(
dom Mm), (
Seg (
width Mm)):] by
A14,
A15,
A19,
A21,
ZFMISC_1: 87;
then
[i2, j2]
in (
Indices Mm) by
MATRIX_0:def 4;
then
A25: (Mm
* (i2,j2))
= (
Int (
cell ((
GoB f),(i2
-' 1),(j2
-' 1)))) by
A12;
reconsider ii1 = (i1
-' 1), ii2 = (i2
-' 1), jj1 = (j1
-' 1), jj2 = (j2
-' 1) as
Element of
NAT ;
A26: 1
<= i1 by
A18,
FINSEQ_1: 1;
then
0
<= (i1
- 1) by
XREAL_1: 48;
then
A27: (i1
-' 1)
= (i1
- 1) by
XREAL_0:def 2;
[i1, j1]
in
[:(
dom Mm), (
Seg (
width Mm)):] by
A14,
A16,
A18,
A20,
ZFMISC_1: 87;
then
[i1, j1]
in (
Indices Mm) by
MATRIX_0:def 4;
then
A28: (Mm
* (i1,j1))
= (
Int (
cell ((
GoB f),(i1
-' 1),(j1
-' 1)))) by
A12;
A29: 1
<= j2 by
A21,
FINSEQ_1: 1;
then
0
<= (j2
- 1) by
XREAL_1: 48;
then
A30: (j2
-' 1)
= (j2
- 1) by
XREAL_0:def 2;
i2
<= ((
len (
GoB f))
+ 1) by
A19,
FINSEQ_1: 1;
then
A31: (i2
-' 1)
<= (((
len (
GoB f))
+ 1)
- 1) by
A24,
XREAL_1: 9;
A32: 1
<= j1 by
A20,
FINSEQ_1: 1;
then
0
<= (j1
- 1) by
XREAL_1: 48;
then
A33: (j1
-' 1)
= (j1
- 1) by
XREAL_0:def 2;
j2
<= ((
width (
GoB f))
+ 1) by
A21,
FINSEQ_1: 1;
then
A34: (j2
-' 1)
<= (((
width (
GoB f))
+ 1)
- 1) by
A30,
XREAL_1: 9;
j1
<= ((
width (
GoB f))
+ 1) by
A20,
FINSEQ_1: 1;
then
A35: (j1
-' 1)
<= (((
width (
GoB f))
+ 1)
- 1) by
A33,
XREAL_1: 9;
i1
<= ((
len (
GoB f))
+ 1) by
A18,
FINSEQ_1: 1;
then
A36: (i1
-' 1)
<= (((
len (
GoB f))
+ 1)
- 1) by
A27,
XREAL_1: 9;
(ii1,jj1,ii2,jj2)
are_adjacent by
A22,
A26,
A23,
A32,
A29,
GOBRD10: 4;
hence thesis by
A36,
A31,
A35,
A34,
A28,
A25,
Th6;
end;
(
0
+ 1)
<= k2 by
NAT_1: 13;
then
A37: k2
in (
Seg (m
+ 1)) by
A9,
FINSEQ_1: 1;
(
0
+ 1)
<= k1 by
NAT_1: 13;
then
A38: k1
in (
Seg (n
+ 1)) by
A8,
FINSEQ_1: 1;
then
[k1, k2]
in
[:(
dom Mm), (
Seg (
width Mm)):] by
A37,
A14,
A15,
ZFMISC_1: 87;
then
[k1, k2]
in (
Indices Mm) by
MATRIX_0:def 4;
then (Mm
* (k1,k2))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A5,
A12,
A10;
then
A39: for i,j be
Element of
NAT st i
in (
Seg (n
+ 1)) & j
in (
Seg (m
+ 1)) holds (Mm
* (i,j))
c= F by
A38,
A37,
A17,
GOBRD10: 8;
thus for i st i
in (
dom F1) holds (
Int (
cell ((
GoB f),(F1
/. i),(F2
/. i))))
c= ((
LeftComp f)
\/ (
RightComp f))
proof
let i;
assume
A40: i
in (
dom F1);
reconsider kx1 = (F1
/. i), kx2 = (F2
/. i) as
Element of
NAT ;
reconsider kk1 = (kx1
+ 1), kk2 = (kx2
+ 1) as
Element of
NAT ;
(
dom F1)
= (
Seg (
len F1)) by
FINSEQ_1:def 3;
then (
dom F1)
= (
dom F2) by
A1,
FINSEQ_1:def 3;
then
A41: (F2
/. i)
= (F2
. i) by
A40,
PARTFUN1:def 6;
A42: (F1
/. i)
= (F1
. i) by
A40,
PARTFUN1:def 6;
then kx1
<= (
len (
GoB f)) by
A3,
A40,
A41;
then
A43: kk1
<= ((
len (
GoB f))
+ 1) by
XREAL_1: 6;
kx2
<= (
width (
GoB f)) by
A3,
A40,
A42,
A41;
then
A44: kk2
<= ((
width (
GoB f))
+ 1) by
XREAL_1: 6;
(
0
+ 1)
<= kk2 by
NAT_1: 13;
then
A45: kk2
in (
Seg ((
width (
GoB f))
+ 1)) by
A44,
FINSEQ_1: 1;
(
0
+ 1)
<= kk1 by
NAT_1: 13;
then
A46: kk1
in (
Seg ((
len (
GoB f))
+ 1)) by
A43,
FINSEQ_1: 1;
A47: (
len Mm)
= ((
len (
GoB f))
+ 1) by
MATRIX_0:def 2;
(
dom Mm)
= (
Seg ((
len (
GoB f))
+ 1)) & (
Seg ((
width (
GoB f))
+ 1))
= (
Seg (
width Mm)) by
A47,
FINSEQ_1:def 3,
MATRIX_0: 20;
then
[kk1, kk2]
in
[:(
dom Mm), (
Seg (
width Mm)):] by
A46,
A45,
ZFMISC_1: 87;
then
A48:
[kk1, kk2]
in (
Indices Mm) by
MATRIX_0:def 4;
A49: (kk1
-' 1)
= (F1
/. i) & (kk2
-' 1)
= (F2
/. i) by
NAT_D: 34;
(Mm
* (kk1,kk2))
c= ((
LeftComp f)
\/ (
RightComp f)) by
A39,
A46,
A45;
hence thesis by
A12,
A49,
A48;
end;
end;
theorem ::
GOBRD12:8
Th8: ex i, j st i
<= (
len (
GoB f)) & j
<= (
width (
GoB f)) & (
Int (
cell ((
GoB f),i,j)))
c= ((
LeftComp f)
\/ (
RightComp f))
proof
(1
+ 1)
<= (
len f) by
GOBOARD7: 34,
XXREAL_0: 2;
then
A1: (ex i, j st i
<= (
len (
GoB f)) & j
<= (
width (
GoB f)) & (
cell ((
GoB f),i,j))
= (
left_cell (f,1))) & (
Int (
left_cell (f,1)))
c= (
LeftComp f) by
GOBOARD9: 11,
GOBOARD9: 21;
(
LeftComp f)
c= ((
LeftComp f)
\/ (
RightComp f)) by
XBOOLE_1: 7;
hence thesis by
A1,
XBOOLE_1: 1;
end;
theorem ::
GOBRD12:9
Th9: for i, j st i
<= (
len (
GoB f)) & j
<= (
width (
GoB f)) holds (
Int (
cell ((
GoB f),i,j)))
c= ((
LeftComp f)
\/ (
RightComp f))
proof
let i, j;
set n = (
len (
GoB f)), m = (
width (
GoB f));
consider i2, j2 such that
A1: i2
<= n & j2
<= m and
A2: (
Int (
cell ((
GoB f),i2,j2)))
c= ((
LeftComp f)
\/ (
RightComp f)) by
Th8;
A3: i
in
NAT & j
in
NAT & i2
in
NAT & j2
in
NAT & n
in
NAT & m
in
NAT by
ORDINAL1:def 12;
assume i
<= (
len (
GoB f)) & j
<= (
width (
GoB f));
then
consider fs1,fs2 be
FinSequence of
NAT such that
A4: for k,k1,k2 be
Element of
NAT st k
in (
dom fs1) & k1
= (fs1
. k) & k2
= (fs2
. k) holds k1
<= n & k2
<= m and
A5: (fs1
. 1)
= i and
A6: (fs1
. (
len fs1))
= i2 and
A7: (fs2
. 1)
= j and
A8: (fs2
. (
len fs2))
= j2 and
A9: (
len fs1)
= (
len fs2) and
A10: (
len fs1)
= (((((i
-' i2)
+ (i2
-' i))
+ (j
-' j2))
+ (j2
-' j))
+ 1) and for k be
Element of
NAT st 1
<= k & k
< (
len fs1) holds ((fs1
/. k),(fs2
/. k),(fs1
/. (k
+ 1)),(fs2
/. (k
+ 1)))
are_adjacent by
A1,
GOBRD10: 7,
A3;
A11: for k,k1,k2 be
Nat st k
in (
dom fs1) & k1
= (fs1
. k) & k2
= (fs2
. k) holds k1
<= n & k2
<= m
proof
let k,k1,k2 be
Nat;
k
in
NAT & k1
in
NAT & k2
in
NAT by
ORDINAL1:def 12;
hence thesis by
A4;
end;
A12: 1
<= (1
+ ((((i
-' i2)
+ (i2
-' i))
+ (j
-' j2))
+ (j2
-' j))) by
NAT_1: 12;
then
A13: 1
in (
dom fs1) by
A10,
FINSEQ_3: 25;
then
A14: (fs1
/. 1)
= i by
A5,
PARTFUN1:def 6;
A15: 1
<= (1
+ ((((i
-' i2)
+ (i2
-' i))
+ (j
-' j2))
+ (j2
-' j))) by
NAT_1: 12;
then (
len fs2)
in (
dom fs2) by
A9,
A10,
FINSEQ_3: 25;
then
A16: j2
= (fs2
/. (
len fs1)) by
A8,
A9,
PARTFUN1:def 6;
1
in (
dom fs2) by
A9,
A10,
A12,
FINSEQ_3: 25;
then
A17: (fs2
/. 1)
= j by
A7,
PARTFUN1:def 6;
A18: (
len fs1)
in (
dom fs1) by
A10,
A15,
FINSEQ_3: 25;
then i2
= (fs1
/. (
len fs1)) by
A6,
PARTFUN1:def 6;
hence thesis by
A2,
A9,
A18,
A16,
A13,
A14,
A17,
Th7,
A11;
end;
::$Notion-Name
theorem ::
GOBRD12:10
((
L~ f)
` )
= ((
LeftComp f)
\/ (
RightComp f))
proof
(
LeftComp f)
is_a_component_of ((
L~ f)
` ) by
GOBOARD9:def 1;
then
consider B1 be
Subset of ((
TOP-REAL 2)
| ((
L~ f)
` )) such that
A1: B1
= (
LeftComp f) and B1 is
a_component by
CONNSP_1:def 6;
B1
c= the
carrier of ((
TOP-REAL 2)
| ((
L~ f)
` ));
then
A2: (
LeftComp f)
c= ((
L~ f)
` ) by
A1,
Lm1;
(
union { (
Cl (
Down ((
Int (
cell ((
GoB f),i,j))),((
L~ f)
` )))) : i
<= (
len (
GoB f)) & j
<= (
width (
GoB f)) })
c= ((
LeftComp f)
\/ (
RightComp f))
proof
(
RightComp f)
is_a_component_of ((
L~ f)
` ) by
GOBOARD9:def 2;
then
consider B2 be
Subset of ((
TOP-REAL 2)
| ((
L~ f)
` )) such that
A3: B2
= (
RightComp f) and
A4: B2 is
a_component by
CONNSP_1:def 6;
(
Cl B2)
= ((
Cl (
RightComp f))
/\ (
[#] ((
TOP-REAL 2)
| ((
L~ f)
` )))) by
A3,
PRE_TOPC: 17;
then
A5: (
Cl B2)
= ((
Cl (
RightComp f))
/\ ((
L~ f)
` )) by
PRE_TOPC:def 5;
reconsider B2 as
Subset of ((
TOP-REAL 2)
| ((
L~ f)
` ));
B2 is
closed by
A4,
CONNSP_1: 33;
then
A6: ((
Cl (
RightComp f))
/\ ((
L~ f)
` ))
= (
RightComp f) by
A3,
A5,
PRE_TOPC: 22;
(
LeftComp f)
is_a_component_of ((
L~ f)
` ) by
GOBOARD9:def 1;
then
consider B1 be
Subset of ((
TOP-REAL 2)
| ((
L~ f)
` )) such that
A7: B1
= (
LeftComp f) and
A8: B1 is
a_component by
CONNSP_1:def 6;
(
Cl B1)
= ((
Cl (
LeftComp f))
/\ (
[#] ((
TOP-REAL 2)
| ((
L~ f)
` )))) by
A7,
PRE_TOPC: 17;
then
A9: (
Cl B1)
= ((
Cl (
LeftComp f))
/\ ((
L~ f)
` )) by
PRE_TOPC:def 5;
reconsider B1 as
Subset of ((
TOP-REAL 2)
| ((
L~ f)
` ));
B1 is
closed by
A8,
CONNSP_1: 33;
then
A10: (((
Cl (
LeftComp f))
\/ (
Cl (
RightComp f)))
/\ ((
L~ f)
` ))
= (((
Cl (
LeftComp f))
/\ ((
L~ f)
` ))
\/ ((
Cl (
RightComp f))
/\ ((
L~ f)
` ))) & ((
Cl (
LeftComp f))
/\ ((
L~ f)
` ))
= (
LeftComp f) by
A7,
A9,
PRE_TOPC: 22,
XBOOLE_1: 23;
reconsider Q = ((
L~ f)
` ) as
Subset of (
TOP-REAL 2);
let x be
object;
A11: (
Cl ((
LeftComp f)
\/ (
RightComp f)))
= ((
Cl (
LeftComp f))
\/ (
Cl (
RightComp f))) by
PRE_TOPC: 20;
assume x
in (
union { (
Cl (
Down ((
Int (
cell ((
GoB f),i,j))),((
L~ f)
` )))) : i
<= (
len (
GoB f)) & j
<= (
width (
GoB f)) });
then
consider y be
set such that
A12: x
in y & y
in { (
Cl (
Down ((
Int (
cell ((
GoB f),i,j))),((
L~ f)
` )))) : i
<= (
len (
GoB f)) & j
<= (
width (
GoB f)) } by
TARSKI:def 4;
consider i, j such that
A13: y
= (
Cl (
Down ((
Int (
cell ((
GoB f),i,j))),((
L~ f)
` )))) and
A14: i
<= (
len (
GoB f)) & j
<= (
width (
GoB f)) by
A12;
(
Cl (
Int (
cell ((
GoB f),i,j))))
c= (
Cl ((
LeftComp f)
\/ (
RightComp f))) by
A14,
Th9,
PRE_TOPC: 19;
then
A15: ((
Cl (
Int (
cell ((
GoB f),i,j))))
/\ ((
L~ f)
` ))
c= (((
Cl (
LeftComp f))
\/ (
Cl (
RightComp f)))
/\ ((
L~ f)
` )) by
A11,
XBOOLE_1: 26;
reconsider P = (
Int (
cell ((
GoB f),i,j))) as
Subset of (
TOP-REAL 2);
(
Cl (
Down (P,Q)))
= ((
Cl P)
/\ Q) by
A14,
Th1,
CONNSP_3: 29;
hence thesis by
A12,
A13,
A15,
A10,
A6;
end;
then
A16: ((
L~ f)
` )
c= ((
LeftComp f)
\/ (
RightComp f)) by
Th4;
(
RightComp f)
is_a_component_of ((
L~ f)
` ) by
GOBOARD9:def 2;
then
consider B1 be
Subset of ((
TOP-REAL 2)
| ((
L~ f)
` )) such that
A17: B1
= (
RightComp f) and B1 is
a_component by
CONNSP_1:def 6;
B1
c= the
carrier of ((
TOP-REAL 2)
| ((
L~ f)
` ));
then B1
c= ((
L~ f)
` ) by
Lm1;
then ((
LeftComp f)
\/ (
RightComp f))
c= ((
L~ f)
` ) by
A2,
A17,
XBOOLE_1: 8;
hence thesis by
A16,
XBOOLE_0:def 10;
end;