goboard9.miz
begin
reserve f for non
constant
standard
special_circular_sequence,
i,j,k,i1,i2,j1,j2 for
Nat,
r,s,r1,s1,r2,s2 for
Real,
p,q for
Point of (
TOP-REAL 2),
G for
Go-board;
theorem ::
GOBOARD9:1
Th1: for GX be
TopSpace, A1,A2,B be
Subset of GX st A1
is_a_component_of B & A2
is_a_component_of B holds A1
= A2 or A1
misses A2
proof
let GX be
TopSpace, A1,A2,B be
Subset of GX;
assume A1
is_a_component_of B;
then
A1: ex B1 be
Subset of (GX
| B) st B1
= A1 & B1 is
a_component by
CONNSP_1:def 6;
assume A2
is_a_component_of B;
then ex B2 be
Subset of (GX
| B) st B2
= A2 & B2 is
a_component by
CONNSP_1:def 6;
hence thesis by
A1,
CONNSP_1: 35;
end;
theorem ::
GOBOARD9:2
Th2: for GX be
TopSpace, A,B be
Subset of GX, AA be
Subset of (GX
| B) st A
= AA holds (GX
| A)
= ((GX
| B)
| AA)
proof
let GX be
TopSpace, A,B be
Subset of GX;
let AA be
Subset of (GX
| B);
assume
A1: A
= AA;
the
carrier of (GX
| A)
= (
[#] (GX
| A))
.= A by
PRE_TOPC:def 5;
then
reconsider GY = (GX
| A) as
strict
SubSpace of (GX
| B) by
A1,
TSEP_1: 4;
(
[#] GY)
= AA by
A1,
PRE_TOPC:def 5;
hence thesis by
PRE_TOPC:def 5;
end;
theorem ::
GOBOARD9:3
Th3: for GX be non
empty
TopSpace, A,B be non
empty
Subset of GX st A
c= B & A is
connected holds ex C be
Subset of GX st C
is_a_component_of B & A
c= C
proof
let GX be non
empty
TopSpace, A,B be non
empty
Subset of GX such that
A1: A
c= B and
A2: A is
connected;
consider p be
object such that
A3: p
in A by
XBOOLE_0:def 1;
A4: B
= (
[#] (GX
| B)) by
PRE_TOPC:def 5
.= the
carrier of (GX
| B);
then
reconsider p as
Point of (GX
| B) by
A1,
A3;
reconsider C = (
Component_of p) as
Subset of GX by
PRE_TOPC: 11;
take C;
A5: (
Component_of p) is
a_component by
CONNSP_1: 40;
hence C
is_a_component_of B by
CONNSP_1:def 6;
reconsider AA = A as
Subset of (GX
| B) by
A1,
A4;
(GX
| A) is
connected by
A2,
CONNSP_1:def 3;
then ((GX
| B)
| AA) is
connected by
Th2;
then
A6: AA is
connected by
CONNSP_1:def 3;
p
in (
Component_of p) by
CONNSP_1: 38;
then (AA
/\ (
Component_of p))
<> (
{} (GX
| B)) by
A3,
XBOOLE_0:def 4;
then AA
meets (
Component_of p);
hence thesis by
A5,
A6,
CONNSP_1: 36;
end;
theorem ::
GOBOARD9:4
Th4: for GX be non
empty
TopSpace, A,B,C,D be
Subset of GX st B is
connected & C
is_a_component_of D & A
c= C & A
meets B & B
c= D holds B
c= C
proof
let GX be non
empty
TopSpace, A,B,C,D be
Subset of GX such that
A1: B is
connected and
A2: C
is_a_component_of D and
A3: A
c= C and
A4: A
meets B and
A5: B
c= D;
A6: A
<>
{} by
A4;
A7: B
<>
{} by
A4;
reconsider A, B as non
empty
Subset of GX by
A4;
reconsider C, D as non
empty
Subset of GX by
A3,
A5,
A6,
A7,
XBOOLE_1: 3;
consider CC be
Subset of GX such that
A8: CC
is_a_component_of D and
A9: B
c= CC by
A1,
A5,
Th3;
A10: A
meets CC by
A4,
A9,
XBOOLE_1: 63;
A11: ex C1 be
Subset of (GX
| D) st C1
= C & C1 is
a_component by
A2,
CONNSP_1:def 6;
ex CC1 be
Subset of (GX
| D) st CC1
= CC & CC1 is
a_component by
A8,
CONNSP_1:def 6;
hence thesis by
A3,
A9,
A10,
A11,
CONNSP_1: 35,
XBOOLE_1: 63;
end;
registration
cluster
convex non
empty for
Subset of (
TOP-REAL 2);
existence
proof
set p = the
Point of (
TOP-REAL 2);
take (
LSeg (p,p));
thus thesis;
end;
end
::$Canceled
theorem ::
GOBOARD9:6
Th5: for P,Q be
convex
Subset of (
TOP-REAL 2) holds (P
/\ Q) is
convex
proof
let P,Q be
convex
Subset of (
TOP-REAL 2);
let p, q;
assume that
A1: p
in (P
/\ Q) and
A2: q
in (P
/\ Q);
A3: p
in P by
A1,
XBOOLE_0:def 4;
q
in P by
A2,
XBOOLE_0:def 4;
then
A4: (
LSeg (p,q))
c= P by
A3,
JORDAN1:def 1;
A5: p
in Q by
A1,
XBOOLE_0:def 4;
q
in Q by
A2,
XBOOLE_0:def 4;
then (
LSeg (p,q))
c= Q by
A5,
JORDAN1:def 1;
hence thesis by
A4,
XBOOLE_1: 19;
end;
theorem ::
GOBOARD9:7
Th6: for f be
FinSequence of (
TOP-REAL 2) holds (
Rev (
X_axis f))
= (
X_axis (
Rev f))
proof
let f be
FinSequence of (
TOP-REAL 2);
A1: (
len (
Rev (
X_axis f)))
= (
len (
X_axis f)) by
FINSEQ_5:def 3
.= (
len f) by
GOBOARD1:def 1
.= (
len (
Rev f)) by
FINSEQ_5:def 3;
(
len (
X_axis f))
= (
len f) by
GOBOARD1:def 1;
then
A2: (
dom (
X_axis f))
= (
dom f) by
FINSEQ_3: 29;
A3: (
len f)
= (
len (
Rev f)) by
FINSEQ_5:def 3;
now
let k such that
A4: k
in (
dom (
Rev (
X_axis f)));
set l = (((
len f)
+ 1)
-' k);
A5: k
<= (
len f) by
A1,
A3,
A4,
FINSEQ_3: 25;
(
len f)
< ((
len f)
+ 1) by
NAT_1: 13;
then
A6: (l
+ k)
= ((
len f)
+ 1) by
A5,
XREAL_1: 235,
XXREAL_0: 2;
A7: (
Rev (
Rev (
X_axis f)))
= (
X_axis f);
then
A8: l
in (
dom (
X_axis f)) by
A1,
A3,
A4,
A6,
FINSEQ_5: 59;
thus ((
Rev (
X_axis f))
. k)
= ((
Rev (
X_axis f))
/. k) by
A4,
PARTFUN1:def 6
.= ((
X_axis f)
/. l) by
A1,
A3,
A4,
A6,
A7,
FINSEQ_5: 66
.= ((
X_axis f)
. l) by
A8,
PARTFUN1:def 6
.= ((f
/. l)
`1 ) by
A8,
GOBOARD1:def 1
.= (((
Rev f)
/. k)
`1 ) by
A1,
A2,
A3,
A4,
A6,
A7,
FINSEQ_5: 59,
FINSEQ_5: 66;
end;
hence thesis by
A1,
GOBOARD1:def 1;
end;
theorem ::
GOBOARD9:8
Th7: for f be
FinSequence of (
TOP-REAL 2) holds (
Rev (
Y_axis f))
= (
Y_axis (
Rev f))
proof
let f be
FinSequence of (
TOP-REAL 2);
A1: (
len (
Rev (
Y_axis f)))
= (
len (
Y_axis f)) by
FINSEQ_5:def 3
.= (
len f) by
GOBOARD1:def 2
.= (
len (
Rev f)) by
FINSEQ_5:def 3;
(
len (
Y_axis f))
= (
len f) by
GOBOARD1:def 2;
then
A2: (
dom (
Y_axis f))
= (
dom f) by
FINSEQ_3: 29;
A3: (
len f)
= (
len (
Rev f)) by
FINSEQ_5:def 3;
now
let k such that
A4: k
in (
dom (
Rev (
Y_axis f)));
set l = (((
len f)
+ 1)
-' k);
A5: k
<= (
len f) by
A1,
A3,
A4,
FINSEQ_3: 25;
(
len f)
< ((
len f)
+ 1) by
NAT_1: 13;
then
A6: (l
+ k)
= ((
len f)
+ 1) by
A5,
XREAL_1: 235,
XXREAL_0: 2;
A7: (
Rev (
Rev (
Y_axis f)))
= (
Y_axis f);
then
A8: l
in (
dom (
Y_axis f)) by
A1,
A3,
A4,
A6,
FINSEQ_5: 59;
thus ((
Rev (
Y_axis f))
. k)
= ((
Rev (
Y_axis f))
/. k) by
A4,
PARTFUN1:def 6
.= ((
Y_axis f)
/. l) by
A1,
A3,
A4,
A6,
A7,
FINSEQ_5: 66
.= ((
Y_axis f)
. l) by
A8,
PARTFUN1:def 6
.= ((f
/. l)
`2 ) by
A8,
GOBOARD1:def 2
.= (((
Rev f)
/. k)
`2 ) by
A1,
A2,
A3,
A4,
A6,
A7,
FINSEQ_5: 59,
FINSEQ_5: 66;
end;
hence thesis by
A1,
GOBOARD1:def 2;
end;
Lm1: for f,ff be non
empty
FinSequence of (
TOP-REAL 2) st ff
= (
Rev f) holds (
GoB ff)
= (
GoB f)
proof
let f,ff be non
empty
FinSequence of (
TOP-REAL 2);
assume
A1: ff
= (
Rev f);
then
A2: (
Rev (
X_axis f))
= (
X_axis ff) by
Th6;
A3: (
rng (
Incr (
X_axis ff)))
= (
rng (
X_axis ff)) by
SEQ_4:def 21
.= (
rng (
X_axis f)) by
A2,
FINSEQ_5: 57;
(
len (
Incr (
X_axis ff)))
= (
card (
rng (
X_axis ff))) by
SEQ_4:def 21
.= (
card (
rng (
X_axis f))) by
A2,
FINSEQ_5: 57;
then
A4: (
Incr (
X_axis f))
= (
Incr (
X_axis ff)) by
A3,
SEQ_4:def 21;
A5: (
Rev (
Y_axis f))
= (
Y_axis ff) by
A1,
Th7;
A6: (
rng (
Incr (
Y_axis ff)))
= (
rng (
Y_axis ff)) by
SEQ_4:def 21
.= (
rng (
Y_axis f)) by
A5,
FINSEQ_5: 57;
(
len (
Incr (
Y_axis ff)))
= (
card (
rng (
Y_axis ff))) by
SEQ_4:def 21
.= (
card (
rng (
Y_axis f))) by
A5,
FINSEQ_5: 57;
then (
Incr (
Y_axis f))
= (
Incr (
Y_axis ff)) by
A6,
SEQ_4:def 21;
hence (
GoB ff)
= (
GoB ((
Incr (
X_axis f)),(
Incr (
Y_axis f)))) by
A4,
GOBOARD2:def 2
.= (
GoB f) by
GOBOARD2:def 2;
end;
registration
cluster non
constant for
FinSequence;
existence
proof
take
<*1, 2*>, 1, 2;
A1: 1
in
{1, 2} by
TARSKI:def 2;
2
in
{1, 2} by
TARSKI:def 2;
hence 1
in (
dom
<*1, 2*>) & 2
in (
dom
<*1, 2*>) by
A1,
FINSEQ_1: 2,
FINSEQ_1: 89;
(
<*1, 2*>
. 1)
= 1 by
FINSEQ_1: 44;
hence thesis by
FINSEQ_1: 44;
end;
end
registration
let f be non
constant
FinSequence;
cluster (
Rev f) -> non
constant;
coherence
proof
consider i, j such that
A1: i
in (
dom f) and
A2: j
in (
dom f) and
A3: (f
. i)
<> (f
. j) by
SEQM_3:def 10;
A4: i
<= (
len f) by
A1,
FINSEQ_3: 25;
j
<= (
len f) by
A2,
FINSEQ_3: 25;
then
reconsider k1 = ((
len f)
- i), l1 = ((
len f)
- j) as
Element of
NAT by
A4,
INT_1: 5;
take k = (k1
+ 1), l = (l1
+ 1);
(k
+ i)
= ((
len f)
+ 1);
hence k
in (
dom (
Rev f)) by
A1,
FINSEQ_5: 59;
then
A5: ((
Rev f)
. k)
= (f
. (((
len f)
- k)
+ 1)) by
FINSEQ_5:def 3
.= (f
. (
0
+ i));
(l
+ j)
= ((
len f)
+ 1);
hence l
in (
dom (
Rev f)) by
A2,
FINSEQ_5: 59;
then ((
Rev f)
. l)
= (f
. (((
len f)
- l)
+ 1)) by
FINSEQ_5:def 3
.= (f
. (
0
+ j));
hence thesis by
A3,
A5;
end;
end
definition
let f be
standard
special_circular_sequence;
:: original:
Rev
redefine
func
Rev f ->
standard
special_circular_sequence ;
coherence
proof
reconsider ff = (
Rev f) as non
empty
FinSequence of (
TOP-REAL 2);
A1: (
Rev ff)
= f;
A2: (
GoB ff)
= (
GoB f) by
Lm1;
A3: f
is_sequence_on (
GoB f) by
GOBOARD5:def 5;
A4: (
len f)
= (
len ff) by
FINSEQ_5:def 3;
A5: ff is
standard
proof
hereby
let k such that
A6: k
in (
dom ff);
set l = (((
len f)
+ 1)
-' k);
A7: k
<= (
len f) by
A4,
A6,
FINSEQ_3: 25;
(
len f)
< ((
len f)
+ 1) by
NAT_1: 13;
then
A8: (l
+ k)
= ((
len f)
+ 1) by
A7,
XREAL_1: 235,
XXREAL_0: 2;
then l
in (
dom f) by
A1,
A4,
A6,
FINSEQ_5: 59;
then
consider i, j such that
A9:
[i, j]
in (
Indices (
GoB f)) and
A10: (f
/. l)
= ((
GoB f)
* (i,j)) by
A3;
take i, j;
thus
[i, j]
in (
Indices (
GoB ff)) by
A9,
Lm1;
thus (ff
/. k)
= ((
GoB ff)
* (i,j)) by
A1,
A2,
A4,
A6,
A8,
A10,
FINSEQ_5: 66;
end;
let k such that
A11: k
in (
dom ff) and
A12: (k
+ 1)
in (
dom ff);
set l = (((
len f)
+ 1)
-' (k
+ 1));
k
<= (
len f) by
A4,
A11,
FINSEQ_3: 25;
then (k
+ 1)
<= ((
len f)
+ 1) by
XREAL_1: 6;
then
A13: (l
+ (k
+ 1))
= ((
len f)
+ 1) by
XREAL_1: 235;
then
A14: l
in (
dom f) by
A1,
A4,
A12,
FINSEQ_5: 59;
A15: ((l
+ 1)
+ k)
= ((
len f)
+ 1) by
A13;
then
A16: (l
+ 1)
in (
dom f) by
A1,
A4,
A11,
FINSEQ_5: 59;
let i1, j1, i2, j2 such that
A17:
[i1, j1]
in (
Indices (
GoB ff)) and
A18:
[i2, j2]
in (
Indices (
GoB ff)) and
A19: (ff
/. k)
= ((
GoB ff)
* (i1,j1)) and
A20: (ff
/. (k
+ 1))
= ((
GoB ff)
* (i2,j2));
A21:
|.(i2
- i1).|
=
|.(
- (i1
- i2)).|
.=
|.(i1
- i2).| by
COMPLEX1: 52;
A22:
|.(j2
- j1).|
=
|.(
- (j1
- j2)).|
.=
|.(j1
- j2).| by
COMPLEX1: 52;
A23: (f
/. l)
= ((
GoB f)
* (i2,j2)) by
A1,
A2,
A4,
A12,
A13,
A20,
FINSEQ_5: 66;
(f
/. (l
+ 1))
= ((
GoB f)
* (i1,j1)) by
A1,
A2,
A4,
A11,
A15,
A19,
FINSEQ_5: 66;
hence (
|.(i1
- i2).|
+
|.(j1
- j2).|)
= 1 by
A2,
A3,
A14,
A16,
A17,
A18,
A21,
A22,
A23;
end;
A24: (ff
/. 1)
= (f
/. (
len f)) by
FINSEQ_5: 65
.= (f
/. 1) by
FINSEQ_6:def 1
.= (ff
/. (
len ff)) by
A4,
FINSEQ_5: 65;
ff is
s.c.c.
proof
let i, j such that
A25: (i
+ 1)
< j and
A26: i
> 1 & j
< (
len ff) or (j
+ 1)
< (
len ff);
set k = ((
len f)
-' i), l = ((
len f)
-' j);
A27: j
<= (
len f) by
A4,
A26,
NAT_1: 13;
then
A28: (l
+ j)
= (
len f) by
XREAL_1: 235;
i
< j by
A25,
NAT_1: 13;
then
A29: (k
+ i)
= (
len f) by
A27,
XREAL_1: 235,
XXREAL_0: 2;
then ((i
+ 1)
+ k)
= ((l
+ 1)
+ j) by
A28;
then ((l
+ 1)
+ j)
< (j
+ k) by
A25,
XREAL_1: 6;
then
A30: (l
+ 1)
< k by
XREAL_1: 6;
A31: (j
+ 1)
<= (
len f) by
A4,
A26,
NAT_1: 13;
per cases by
A31,
NAT_1: 14,
XXREAL_0: 1;
suppose (j
+ 1)
= (
len f);
then (k
+ 1)
< (
len f) by
A26,
A29,
FINSEQ_5:def 3,
XREAL_1: 6;
then (
LSeg (f,k))
misses (
LSeg (f,l)) by
A30,
GOBOARD5:def 4;
then
A32: ((
LSeg (f,k))
/\ (
LSeg (f,l)))
=
{} ;
(
LSeg (f,k))
= (
LSeg (ff,i)) by
A29,
SPPOL_2: 2;
hence ((
LSeg (ff,i))
/\ (
LSeg (ff,j)))
=
{} by
A28,
A32,
SPPOL_2: 2;
end;
suppose that
A33: i
>= 1 and
A34: (j
+ 1)
< (
len f);
A35: l
> 1 by
A28,
A34,
XREAL_1: 6;
(k
+ 1)
<= (
len f) by
A29,
A33,
XREAL_1: 6;
then k
< (
len f) by
NAT_1: 13;
then (
LSeg (f,k))
misses (
LSeg (f,l)) by
A30,
A35,
GOBOARD5:def 4;
then
A36: ((
LSeg (f,k))
/\ (
LSeg (f,l)))
=
{} ;
(
LSeg (f,k))
= (
LSeg (ff,i)) by
A29,
SPPOL_2: 2;
hence ((
LSeg (ff,i))
/\ (
LSeg (ff,j)))
=
{} by
A28,
A36,
SPPOL_2: 2;
end;
suppose i
=
0 ;
then (
LSeg (ff,i))
=
{} by
TOPREAL1:def 3;
hence ((
LSeg (ff,i))
/\ (
LSeg (ff,j)))
=
{} ;
end;
end;
hence thesis by
A5,
A24,
FINSEQ_6:def 1,
SPPOL_2: 28,
SPPOL_2: 40;
end;
end
theorem ::
GOBOARD9:9
Th8: i
>= 1 & j
>= 1 & (i
+ j)
= (
len f) implies (
left_cell (f,i))
= (
right_cell ((
Rev f),j))
proof
assume that
A1: i
>= 1 and
A2: j
>= 1 and
A3: (i
+ j)
= (
len f);
A4: (i
+ 1)
<= (
len f) by
A2,
A3,
XREAL_1: 6;
(
len f)
= (
len (
Rev f)) by
FINSEQ_5:def 3;
then
A5: (j
+ 1)
<= (
len (
Rev f)) by
A1,
A3,
XREAL_1: 6;
A6: (
GoB (
Rev f))
= (
GoB f) by
Lm1;
now
let i1,j1,i2,j2 be
Nat such that
A7:
[i1, j1]
in (
Indices (
GoB f)) and
A8:
[i2, j2]
in (
Indices (
GoB f)) and
A9: (f
/. i)
= ((
GoB f)
* (i1,j1)) and
A10: (f
/. (i
+ 1))
= ((
GoB f)
* (i2,j2));
1
<= (i
+ 1) by
NAT_1: 11;
then
A11: (i
+ 1)
in (
dom f) by
A4,
FINSEQ_3: 25;
((i
+ 1)
+ j)
= ((
len f)
+ 1) by
A3;
then
A12: ((
Rev f)
/. j)
= ((
GoB f)
* (i2,j2)) by
A10,
A11,
FINSEQ_5: 66;
i
<= (
len f) by
A4,
NAT_1: 13;
then
A13: i
in (
dom f) by
A1,
FINSEQ_3: 25;
((j
+ 1)
+ i)
= ((
len f)
+ 1) by
A3;
then
A14: ((
Rev f)
/. (j
+ 1))
= ((
GoB f)
* (i1,j1)) by
A9,
A13,
FINSEQ_5: 66;
1
<= i1 by
A7,
MATRIX_0: 32;
then
A15: ((i1
-' 1)
+ 1)
= i1 by
XREAL_1: 235;
1
<= j1 by
A7,
MATRIX_0: 32;
then
A16: ((j1
-' 1)
+ 1)
= j1 by
XREAL_1: 235;
reconsider i19 = i1, i29 = i2, j19 = j1, j29 = j2 as
Element of
REAL by
XREAL_0:def 1;
f
is_sequence_on (
GoB f) by
GOBOARD5:def 5;
then (
|.(i1
- i2).|
+
|.(j1
- j2).|)
= 1 by
A7,
A8,
A9,
A10,
A11,
A13;
then
A17:
|.(i19
- i29).|
= 1 & j1
= j2 or
|.(j19
- j29).|
= 1 & i1
= i2 by
SEQM_3: 42;
per cases by
A17,
SEQM_3: 41;
case i1
= i2 & (j1
+ 1)
= j2;
hence (
right_cell ((
Rev f),j))
= (
cell ((
GoB f),(i1
-' 1),j1)) by
A2,
A5,
A6,
A7,
A8,
A12,
A14,
A15,
GOBOARD5: 30;
end;
case (i1
+ 1)
= i2 & j1
= j2;
hence (
right_cell ((
Rev f),j))
= (
cell ((
GoB f),i1,j1)) by
A2,
A5,
A6,
A7,
A8,
A12,
A14,
A16,
GOBOARD5: 29;
end;
case i1
= (i2
+ 1) & j1
= j2;
hence (
right_cell ((
Rev f),j))
= (
cell ((
GoB f),i2,(j2
-' 1))) by
A2,
A5,
A6,
A7,
A8,
A12,
A14,
A16,
GOBOARD5: 28;
end;
case i1
= i2 & j1
= (j2
+ 1);
hence (
right_cell ((
Rev f),j))
= (
cell ((
GoB f),i1,j2)) by
A2,
A5,
A6,
A7,
A8,
A12,
A14,
A15,
GOBOARD5: 27;
end;
end;
hence thesis by
A1,
A4,
GOBOARD5:def 7;
end;
theorem ::
GOBOARD9:10
Th9: i
>= 1 & j
>= 1 & (i
+ j)
= (
len f) implies (
left_cell ((
Rev f),i))
= (
right_cell (f,j))
proof
A1: (
len (
Rev f))
= (
len f) by
FINSEQ_5:def 3;
(
Rev (
Rev f))
= f;
hence thesis by
A1,
Th8;
end;
theorem ::
GOBOARD9:11
Th10: 1
<= k & (k
+ 1)
<= (
len f) implies ex i, j st i
<= (
len (
GoB f)) & j
<= (
width (
GoB f)) & (
cell ((
GoB f),i,j))
= (
left_cell (f,k))
proof
assume that
A1: 1
<= k and
A2: (k
+ 1)
<= (
len f);
A3: f
is_sequence_on (
GoB f) by
GOBOARD5:def 5;
k
<= (
len f) by
A2,
NAT_1: 13;
then
A4: k
in (
dom f) by
A1,
FINSEQ_3: 25;
then
consider i1,j1 be
Nat such that
A5:
[i1, j1]
in (
Indices (
GoB f)) and
A6: (f
/. k)
= ((
GoB f)
* (i1,j1)) by
A3;
1
<= (k
+ 1) by
NAT_1: 11;
then
A7: (k
+ 1)
in (
dom f) by
A2,
FINSEQ_3: 25;
then
consider i2,j2 be
Nat such that
A8:
[i2, j2]
in (
Indices (
GoB f)) and
A9: (f
/. (k
+ 1))
= ((
GoB f)
* (i2,j2)) by
A3;
1
<= i1 by
A5,
MATRIX_0: 32;
then
A10: ((i1
-' 1)
+ 1)
= i1 by
XREAL_1: 235;
1
<= j1 by
A5,
MATRIX_0: 32;
then
A11: ((j1
-' 1)
+ 1)
= j1 by
XREAL_1: 235;
reconsider i19 = i1, i29 = i2, j19 = j1, j29 = j2 as
Element of
REAL by
XREAL_0:def 1;
(
|.(i1
- i2).|
+
|.(j1
- j2).|)
= 1 by
A3,
A4,
A5,
A6,
A7,
A8,
A9;
then
A12:
|.(i19
- i29).|
= 1 & j1
= j2 or
|.(j19
- j29).|
= 1 & i1
= i2 by
SEQM_3: 42;
A13: i1
<= (
len (
GoB f)) by
A5,
MATRIX_0: 32;
A14: j1
<= (
width (
GoB f)) by
A5,
MATRIX_0: 32;
per cases by
A12,
SEQM_3: 41;
suppose
A15: i1
= i2 & (j1
+ 1)
= j2;
take (i1
-' 1), j1;
(i1
-' 1)
<= i1 by
NAT_D: 35;
hence (i1
-' 1)
<= (
len (
GoB f)) by
A13,
XXREAL_0: 2;
thus j1
<= (
width (
GoB f)) by
A5,
MATRIX_0: 32;
thus thesis by
A1,
A2,
A5,
A6,
A8,
A9,
A10,
A15,
GOBOARD5: 27;
end;
suppose
A16: (i1
+ 1)
= i2 & j1
= j2;
take i1, j1;
thus i1
<= (
len (
GoB f)) by
A5,
MATRIX_0: 32;
thus j1
<= (
width (
GoB f)) by
A5,
MATRIX_0: 32;
thus thesis by
A1,
A2,
A5,
A6,
A8,
A9,
A11,
A16,
GOBOARD5: 28;
end;
suppose
A17: i1
= (i2
+ 1) & j1
= j2;
take i2, (j1
-' 1);
thus i2
<= (
len (
GoB f)) by
A8,
MATRIX_0: 32;
(j1
-' 1)
<= j1 by
NAT_D: 35;
hence (j1
-' 1)
<= (
width (
GoB f)) by
A14,
XXREAL_0: 2;
thus thesis by
A1,
A2,
A5,
A6,
A8,
A9,
A11,
A17,
GOBOARD5: 29;
end;
suppose
A18: i1
= i2 & j1
= (j2
+ 1);
take i1, j2;
thus i1
<= (
len (
GoB f)) by
A5,
MATRIX_0: 32;
thus j2
<= (
width (
GoB f)) by
A8,
MATRIX_0: 32;
thus thesis by
A1,
A2,
A5,
A6,
A8,
A9,
A10,
A18,
GOBOARD5: 30;
end;
end;
theorem ::
GOBOARD9:12
Th11: j
<= (
width G) implies (
Int (
h_strip (G,j))) is
convex
proof
assume
A1: j
<= (
width G);
per cases by
A1,
NAT_1: 14,
XXREAL_0: 1;
suppose j
=
0 ;
then (
Int (
h_strip (G,j)))
= {
|[r, s]| : s
< ((G
* (1,1))
`2 ) } by
GOBOARD6: 15;
hence thesis by
JORDAN1: 17;
end;
suppose j
= (
width G);
then (
Int (
h_strip (G,j)))
= {
|[r, s]| : ((G
* (1,(
width G)))
`2 )
< s } by
GOBOARD6: 16;
hence thesis by
JORDAN1: 15;
end;
suppose 1
<= j & j
< (
width G);
then
A2: (
Int (
h_strip (G,j)))
= {
|[r, s]| : ((G
* (1,j))
`2 )
< s & s
< ((G
* (1,(j
+ 1)))
`2 ) } by
GOBOARD6: 17;
A3: {
|[r, s]| : ((G
* (1,j))
`2 )
< s }
c= the
carrier of (
TOP-REAL 2)
proof
let x be
object;
assume x
in {
|[r, s]| : ((G
* (1,j))
`2 )
< s };
then ex r, s st x
=
|[r, s]| & ((G
* (1,j))
`2 )
< s;
hence thesis;
end;
{
|[r, s]| : s
< ((G
* (1,(j
+ 1)))
`2 ) }
c= the
carrier of (
TOP-REAL 2)
proof
let x be
object;
assume x
in {
|[r, s]| : s
< ((G
* (1,(j
+ 1)))
`2 ) };
then ex r, s st x
=
|[r, s]| & s
< ((G
* (1,(j
+ 1)))
`2 );
hence thesis;
end;
then
reconsider P = {
|[r, s]| : ((G
* (1,j))
`2 )
< s }, Q = {
|[r, s]| : s
< ((G
* (1,(j
+ 1)))
`2 ) } as
Subset of (
TOP-REAL 2) by
A3;
A4: (
Int (
h_strip (G,j)))
= (P
/\ Q)
proof
hereby
let x be
object;
assume x
in (
Int (
h_strip (G,j)));
then
A5: ex r, s st x
=
|[r, s]| & ((G
* (1,j))
`2 )
< s & s
< ((G
* (1,(j
+ 1)))
`2 ) by
A2;
then
A6: x
in P;
x
in Q by
A5;
hence x
in (P
/\ Q) by
A6,
XBOOLE_0:def 4;
end;
let x be
object;
assume
A7: x
in (P
/\ Q);
then x
in P by
XBOOLE_0:def 4;
then
consider r1, s1 such that
A8: x
=
|[r1, s1]| and
A9: ((G
* (1,j))
`2 )
< s1;
x
in Q by
A7,
XBOOLE_0:def 4;
then
consider r2, s2 such that
A10: x
=
|[r2, s2]| and
A11: s2
< ((G
* (1,(j
+ 1)))
`2 );
s1
= s2 by
A8,
A10,
SPPOL_2: 1;
hence thesis by
A2,
A8,
A9,
A11;
end;
A12: P is
convex by
JORDAN1: 15;
Q is
convex by
JORDAN1: 17;
hence thesis by
A4,
A12,
Th5;
end;
end;
theorem ::
GOBOARD9:13
Th12: i
<= (
len G) implies (
Int (
v_strip (G,i))) is
convex
proof
assume
A1: i
<= (
len G);
per cases by
A1,
NAT_1: 14,
XXREAL_0: 1;
suppose i
=
0 ;
then (
Int (
v_strip (G,i)))
= {
|[r, s]| : r
< ((G
* (1,1))
`1 ) } by
GOBOARD6: 12;
hence thesis by
JORDAN1: 13;
end;
suppose i
= (
len G);
then (
Int (
v_strip (G,i)))
= {
|[r, s]| : ((G
* ((
len G),1))
`1 )
< r } by
GOBOARD6: 13;
hence thesis by
JORDAN1: 11;
end;
suppose 1
<= i & i
< (
len G);
then
A2: (
Int (
v_strip (G,i)))
= {
|[r, s]| : ((G
* (i,1))
`1 )
< r & r
< ((G
* ((i
+ 1),1))
`1 ) } by
GOBOARD6: 14;
A3: {
|[r, s]| : ((G
* (i,1))
`1 )
< r }
c= the
carrier of (
TOP-REAL 2)
proof
let x be
object;
assume x
in {
|[r, s]| : ((G
* (i,1))
`1 )
< r };
then ex r, s st x
=
|[r, s]| & ((G
* (i,1))
`1 )
< r;
hence thesis;
end;
{
|[r, s]| : r
< ((G
* ((i
+ 1),1))
`1 ) }
c= the
carrier of (
TOP-REAL 2)
proof
let x be
object;
assume x
in {
|[r, s]| : r
< ((G
* ((i
+ 1),1))
`1 ) };
then ex r, s st x
=
|[r, s]| & r
< ((G
* ((i
+ 1),1))
`1 );
hence thesis;
end;
then
reconsider P = {
|[r, s]| : ((G
* (i,1))
`1 )
< r }, Q = {
|[r, s]| : r
< ((G
* ((i
+ 1),1))
`1 ) } as
Subset of (
TOP-REAL 2) by
A3;
A4: (
Int (
v_strip (G,i)))
= (P
/\ Q)
proof
hereby
let x be
object;
assume x
in (
Int (
v_strip (G,i)));
then
A5: ex r, s st x
=
|[r, s]| & ((G
* (i,1))
`1 )
< r & r
< ((G
* ((i
+ 1),1))
`1 ) by
A2;
then
A6: x
in P;
x
in Q by
A5;
hence x
in (P
/\ Q) by
A6,
XBOOLE_0:def 4;
end;
let x be
object;
assume
A7: x
in (P
/\ Q);
then x
in P by
XBOOLE_0:def 4;
then
consider r1, s1 such that
A8: x
=
|[r1, s1]| and
A9: ((G
* (i,1))
`1 )
< r1;
x
in Q by
A7,
XBOOLE_0:def 4;
then
consider r2, s2 such that
A10: x
=
|[r2, s2]| and
A11: r2
< ((G
* ((i
+ 1),1))
`1 );
r1
= r2 by
A8,
A10,
SPPOL_2: 1;
hence thesis by
A2,
A8,
A9,
A11;
end;
A12: P is
convex by
JORDAN1: 11;
Q is
convex by
JORDAN1: 13;
hence thesis by
A4,
A12,
Th5;
end;
end;
theorem ::
GOBOARD9:14
Th13: i
<= (
len G) & j
<= (
width G) implies (
Int (
cell (G,i,j)))
<>
{}
proof
assume that
A1: i
<= (
len G) and
A2: j
<= (
width G);
A3: j
= (
width G) or j
< (
width G) by
A2,
XXREAL_0: 1;
A4: i
= (
len G) or i
< (
len G) by
A1,
XXREAL_0: 1;
set p = the
Point of (
TOP-REAL 2);
per cases by
A3,
A4,
NAT_1: 13,
NAT_1: 14;
suppose 1
<= i & (i
+ 1)
<= (
len G) & 1
<= j & (j
+ 1)
<= (
width G);
then (
LSeg (((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1))))),p))
meets (
Int (
cell (G,i,j))) by
GOBOARD6: 82;
hence thesis;
end;
suppose 1
<= i & (i
+ 1)
<= (
len G) & j
= (
width G);
then (
LSeg (p,(((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),j))))
+
|[
0 , 1]|)))
meets (
Int (
cell (G,i,j))) by
GOBOARD6: 83;
hence thesis;
end;
suppose 1
<= i & (i
+ 1)
<= (
len G) & j
=
0 ;
then (
LSeg ((((1
/ 2)
* ((G
* (i,(j
+ 1)))
+ (G
* ((i
+ 1),(j
+ 1)))))
-
|[
0 , 1]|),p))
meets (
Int (
cell (G,i,j))) by
GOBOARD6: 84;
hence thesis;
end;
suppose 1
<= j & (j
+ 1)
<= (
width G) & i
=
0 ;
then (
LSeg ((((1
/ 2)
* ((G
* ((i
+ 1),j))
+ (G
* ((i
+ 1),(j
+ 1)))))
-
|[1,
0 ]|),p))
meets (
Int (
cell (G,i,j))) by
GOBOARD6: 85;
hence thesis;
end;
suppose 1
<= j & (j
+ 1)
<= (
width G) & i
= (
len G);
then (
LSeg (p,(((1
/ 2)
* ((G
* (i,j))
+ (G
* (i,(j
+ 1)))))
+
|[1,
0 ]|)))
meets (
Int (
cell (G,i,j))) by
GOBOARD6: 86;
hence thesis;
end;
suppose i
=
0 & j
=
0 ;
then (
LSeg (p,((G
* ((i
+ 1),(j
+ 1)))
-
|[1, 1]|)))
meets (
Int (
cell (G,i,j))) by
GOBOARD6: 87;
hence thesis;
end;
suppose i
= (
len G) & j
= (
width G);
then (
LSeg (p,((G
* (i,j))
+
|[1, 1]|)))
meets (
Int (
cell (G,i,j))) by
GOBOARD6: 88;
hence thesis;
end;
suppose i
=
0 & j
= (
width G);
then (
LSeg (p,((G
* ((i
+ 1),j))
+
|[(
- 1), 1]|)))
meets (
Int (
cell (G,i,j))) by
GOBOARD6: 89;
hence thesis;
end;
suppose i
= (
len G) & j
=
0 ;
then (
LSeg (p,((G
* (i,(j
+ 1)))
+
|[1, (
- 1)]|)))
meets (
Int (
cell (G,i,j))) by
GOBOARD6: 90;
hence thesis;
end;
end;
theorem ::
GOBOARD9:15
Th14: 1
<= k & (k
+ 1)
<= (
len f) implies (
Int (
left_cell (f,k)))
<>
{}
proof
assume that
A1: 1
<= k and
A2: (k
+ 1)
<= (
len f);
ex i, j st i
<= (
len (
GoB f)) & j
<= (
width (
GoB f)) & (
cell ((
GoB f),i,j))
= (
left_cell (f,k)) by
A1,
A2,
Th10;
hence thesis by
Th13;
end;
theorem ::
GOBOARD9:16
Th15: 1
<= k & (k
+ 1)
<= (
len f) implies (
Int (
right_cell (f,k)))
<>
{}
proof
assume that
A1: 1
<= k and
A2: (k
+ 1)
<= (
len f);
A3: (
len f)
= (
len (
Rev f)) by
FINSEQ_5:def 3;
k
<= (
len f) by
A2,
NAT_1: 13;
then
A4: (((
len f)
-' k)
+ k)
= (
len f) by
XREAL_1: 235;
then
A5: (((
len f)
-' k)
+ 1)
<= (
len f) by
A1,
XREAL_1: 6;
A6: ((
len f)
-' k)
>= 1 by
A2,
A4,
XREAL_1: 6;
then (
right_cell (f,k))
= (
left_cell ((
Rev f),((
len f)
-' k))) by
A1,
A4,
Th9;
hence thesis by
A3,
A5,
A6,
Th14;
end;
theorem ::
GOBOARD9:17
Th16: i
<= (
len G) & j
<= (
width G) implies (
Int (
cell (G,i,j))) is
convex
proof
assume that
A1: i
<= (
len G) and
A2: j
<= (
width G);
set P = (
Int (
cell (G,i,j)));
A3: P
= ((
Int (
v_strip (G,i)))
/\ (
Int (
h_strip (G,j)))) by
TOPS_1: 17;
A4: (
Int (
v_strip (G,i))) is
convex by
A1,
Th12;
(
Int (
h_strip (G,j))) is
convex by
A2,
Th11;
hence thesis by
A3,
A4,
Th5;
end;
::$Canceled
theorem ::
GOBOARD9:19
Th17: 1
<= k & (k
+ 1)
<= (
len f) implies (
Int (
left_cell (f,k))) is
convex
proof
assume that
A1: 1
<= k and
A2: (k
+ 1)
<= (
len f);
ex i, j st i
<= (
len (
GoB f)) & j
<= (
width (
GoB f)) & (
cell ((
GoB f),i,j))
= (
left_cell (f,k)) by
A1,
A2,
Th10;
hence thesis by
Th16;
end;
theorem ::
GOBOARD9:20
Th18: 1
<= k & (k
+ 1)
<= (
len f) implies (
Int (
right_cell (f,k))) is
convex
proof
assume that
A1: 1
<= k and
A2: (k
+ 1)
<= (
len f);
A3: (
len f)
= (
len (
Rev f)) by
FINSEQ_5:def 3;
k
<= (
len f) by
A2,
NAT_1: 13;
then
A4: (((
len f)
-' k)
+ k)
= (
len f) by
XREAL_1: 235;
then
A5: (((
len f)
-' k)
+ 1)
<= (
len f) by
A1,
XREAL_1: 6;
A6: ((
len f)
-' k)
>= 1 by
A2,
A4,
XREAL_1: 6;
then (
right_cell (f,k))
= (
left_cell ((
Rev f),((
len f)
-' k))) by
A1,
A4,
Th9;
hence thesis by
A3,
A5,
A6,
Th17;
end;
definition
let f;
A1: (1
+ 1)
< (
len f) by
GOBOARD7: 34,
XXREAL_0: 2;
then
A2: (
Int (
left_cell (f,1)))
<>
{} by
Th14;
A3: (
Int (
right_cell (f,1)))
<>
{} by
A1,
Th15;
::
GOBOARD9:def1
func
LeftComp f ->
Subset of (
TOP-REAL 2) means
:
Def1: it
is_a_component_of ((
L~ f)
` ) & (
Int (
left_cell (f,1)))
c= it ;
existence
proof
A4: (
Int (
left_cell (f,1))) is
convex by
A1,
Th17;
(
Int (
left_cell (f,1)))
misses (
L~ f) by
A1,
GOBOARD8: 37;
then
A5: (
Int (
left_cell (f,1)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then ((
L~ f)
` )
<>
{} by
A1,
Th14,
XBOOLE_1: 3;
hence thesis by
A2,
A4,
A5,
Th3;
end;
uniqueness by
A2,
Th1,
XBOOLE_1: 67;
::
GOBOARD9:def2
func
RightComp f ->
Subset of (
TOP-REAL 2) means
:
Def2: it
is_a_component_of ((
L~ f)
` ) & (
Int (
right_cell (f,1)))
c= it ;
existence
proof
A6: (
Int (
right_cell (f,1))) is
convex by
A1,
Th18;
(
Int (
right_cell (f,1)))
misses (
L~ f) by
A1,
GOBOARD8: 38;
then
A7: (
Int (
right_cell (f,1)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then ((
L~ f)
` )
<>
{} by
A1,
Th15,
XBOOLE_1: 3;
hence thesis by
A3,
A6,
A7,
Th3;
end;
uniqueness by
A3,
Th1,
XBOOLE_1: 67;
end
theorem ::
GOBOARD9:21
Th19: for k st 1
<= k & (k
+ 1)
<= (
len f) holds (
Int (
left_cell (f,k)))
c= (
LeftComp f)
proof
defpred
P[
Nat] means 1
<= $1 & ($1
+ 1)
<= (
len f) implies (
Int (
left_cell (f,$1)))
c= (
LeftComp f);
A1:
P[
0 ];
A2:
now
let k such that
A3:
P[k];
thus
P[(k
+ 1)]
proof
assume that
A4: 1
<= (k
+ 1) and
A5: ((k
+ 1)
+ 1)
<= (
len f);
per cases by
NAT_1: 14;
suppose k
=
0 ;
hence thesis by
Def1;
end;
suppose
A6: k
>= 1;
A7: (k
+ 1)
<= (
len f) by
A5,
NAT_1: 13;
A8: k
<= (k
+ 1) by
NAT_1: 11;
then k
<= (
len f) by
A7,
XXREAL_0: 2;
then
A9: k
in (
dom f) by
A6,
FINSEQ_3: 25;
then
consider i0,j0 be
Nat such that
A10:
[i0, j0]
in (
Indices (
GoB f)) and
A11: (f
/. k)
= ((
GoB f)
* (i0,j0)) by
GOBOARD2: 14;
A12: (k
+ 1)
in (
dom f) by
A4,
A7,
FINSEQ_3: 25;
then
consider i1,j1 be
Nat such that
A13:
[i1, j1]
in (
Indices (
GoB f)) and
A14: (f
/. (k
+ 1))
= ((
GoB f)
* (i1,j1)) by
GOBOARD2: 14;
((k
+ 1)
+ 1)
>= 1 by
NAT_1: 11;
then
A15: ((k
+ 1)
+ 1)
in (
dom f) by
A5,
FINSEQ_3: 25;
then
consider i2,j2 be
Nat such that
A16:
[i2, j2]
in (
Indices (
GoB f)) and
A17: (f
/. ((k
+ 1)
+ 1))
= ((
GoB f)
* (i2,j2)) by
GOBOARD2: 14;
A18: 1
<= i0 by
A10,
MATRIX_0: 32;
A19: i0
<= (
len (
GoB f)) by
A10,
MATRIX_0: 32;
A20: 1
<= i1 by
A13,
MATRIX_0: 32;
A21: i1
<= (
len (
GoB f)) by
A13,
MATRIX_0: 32;
A22: 1
<= i2 by
A16,
MATRIX_0: 32;
A23: i2
<= (
len (
GoB f)) by
A16,
MATRIX_0: 32;
A24: 1
<= j0 by
A10,
MATRIX_0: 32;
A25: j0
<= (
width (
GoB f)) by
A10,
MATRIX_0: 32;
A26: 1
<= j1 by
A13,
MATRIX_0: 32;
A27: j1
<= (
width (
GoB f)) by
A13,
MATRIX_0: 32;
A28: 1
<= j2 by
A16,
MATRIX_0: 32;
A29: j2
<= (
width (
GoB f)) by
A16,
MATRIX_0: 32;
A30: i0
= i1 or j0
= j1 by
A9,
A10,
A11,
A12,
A13,
A14,
GOBOARD2: 11;
A31: i1
= i2 or j1
= j2 by
A12,
A13,
A14,
A15,
A16,
A17,
GOBOARD2: 11;
reconsider i19 = i1, i09 = i0, i29 = i2, j19 = j1, j09 = j0, j29 = j2 as
Element of
REAL by
XREAL_0:def 1;
A32: f
is_sequence_on (
GoB f) by
GOBOARD5:def 5;
then (
|.(i0
- i1).|
+
|.(j0
- j1).|)
= 1 by
A9,
A10,
A11,
A12,
A13,
A14;
then
A33:
|.(i09
- i19).|
= 1 & j0
= j1 or
|.(j09
- j19).|
= 1 & i0
= i1 by
SEQM_3: 42;
then
A34: i0
= i1 or i0
= (i1
+ 1) or (i0
+ 1)
= i1 by
SEQM_3: 41;
(
|.(i1
- i2).|
+
|.(j1
- j2).|)
= 1 by
A12,
A13,
A14,
A15,
A16,
A17,
A32;
then
A35:
|.(i19
- i29).|
= 1 & j1
= j2 or
|.(j19
- j29).|
= 1 & i1
= i2 by
SEQM_3: 42;
then
A36: i1
= i2 or i1
= (i2
+ 1) or (i1
+ 1)
= i2 by
SEQM_3: 41;
A37: j0
= j1 or j0
= (j1
+ 1) or (j0
+ 1)
= j1 by
A33,
SEQM_3: 41;
A38: j1
= j2 or j1
= (j2
+ 1) or (j1
+ 1)
= j2 by
A35,
SEQM_3: 41;
A39:
now
assume that
A40: i0
= i2 and
A41: j0
= j2;
A42:
now
assume k
<= 1;
then
A43: k
= 1 by
A6,
XXREAL_0: 1;
assume ((k
+ 1)
+ 1)
>= (
len f);
then ((k
+ 1)
+ 1)
= (
len f) by
A5,
XXREAL_0: 1;
hence contradiction by
A43,
GOBOARD7: 34;
end;
A44: k
< ((k
+ 1)
+ 1) by
A8,
NAT_1: 13;
per cases by
A42;
suppose k
> 1;
hence contradiction by
A5,
A11,
A17,
A40,
A41,
A44,
GOBOARD7: 37;
end;
suppose ((k
+ 1)
+ 1)
< (
len f);
hence contradiction by
A6,
A11,
A17,
A40,
A41,
A44,
GOBOARD7: 36;
end;
end;
i1
>= 1 by
A13,
MATRIX_0: 32;
then
A45: i1
= ((i1
-' 1)
+ 1) by
XREAL_1: 235;
j1
>= 1 by
A13,
MATRIX_0: 32;
then
A46: j1
= ((j1
-' 1)
+ 1) by
XREAL_1: 235;
then (j1
-' 1)
<= j1 by
NAT_1: 11;
then
A47: (j1
-' 1)
<= (
width (
GoB f)) by
A27,
XXREAL_0: 2;
(
len (
GoB f))
> 1 by
GOBOARD7: 32;
then
A48: (((
len (
GoB f))
-' 1)
+ 1)
= (
len (
GoB f)) by
XREAL_1: 235;
(
width (
GoB f))
>= 1 by
GOBOARD7: 33;
then
A49: (((
width (
GoB f))
-' 1)
+ 1)
= (
width (
GoB f)) by
XREAL_1: 235;
A50: ((k
+ 1)
+ 1)
= (k
+ (1
+ 1));
A51: ((i0
+ 1)
+ 1)
= (i0
+ (1
+ 1));
A52: ((i2
+ 1)
+ 1)
= (i2
+ (1
+ 1));
A53: ((j0
+ 1)
+ 1)
= (j0
+ (1
+ 1));
A54: ((j2
+ 1)
+ 1)
= (j2
+ (1
+ 1));
A55: (
LeftComp f)
is_a_component_of ((
L~ f)
` ) by
Def1;
A56: (
0
+ 1)
= 1;
now
per cases by
A9,
A11,
A12,
A14,
A15,
A17,
A34,
A36,
A37,
A38,
A39,
GOBOARD7: 29;
suppose that
A57: i0
= (i1
+ 1) and
A58: i1
= (i2
+ 1) and
A59: j0
= 1;
A60: (
left_cell (f,k))
= (
cell ((
GoB f),i1,
0 )) by
A6,
A7,
A10,
A11,
A13,
A14,
A30,
A56,
A57,
A59,
GOBOARD5: 29;
(
0
+ 1)
= j2 by
A30,
A31,
A57,
A58,
A59;
then
A61: (
left_cell (f,(k
+ 1)))
= (
cell ((
GoB f),i2,
0 )) by
A4,
A5,
A13,
A14,
A16,
A17,
A30,
A57,
A58,
A59,
GOBOARD5: 29;
A62: (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i1,1))
+ ((
GoB f)
* (i0,1))))
-
|[
0 , 1]|),(((1
/ 2)
* (((
GoB f)
* (i2,1))
+ ((
GoB f)
* (i1,1))))
-
|[
0 , 1]|)))
meets (
Int (
cell ((
GoB f),i1,
0 ))) by
A19,
A20,
A57,
GOBOARD6: 84;
(
LSeg ((((1
/ 2)
* (((
GoB f)
* (i1,1))
+ ((
GoB f)
* (i0,1))))
-
|[
0 , 1]|),(((1
/ 2)
* (((
GoB f)
* (i2,1))
+ ((
GoB f)
* (i1,1))))
-
|[
0 , 1]|)))
misses (
L~ f) by
A19,
A22,
A52,
A57,
A58,
GOBOARD8: 25;
then (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i1,1))
+ ((
GoB f)
* (i0,1))))
-
|[
0 , 1]|),(((1
/ 2)
* (((
GoB f)
* (i2,1))
+ ((
GoB f)
* (i1,1))))
-
|[
0 , 1]|)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A63: (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i1,1))
+ ((
GoB f)
* (i0,1))))
-
|[
0 , 1]|),(((1
/ 2)
* (((
GoB f)
* (i2,1))
+ ((
GoB f)
* (i1,1))))
-
|[
0 , 1]|)))
c= (
LeftComp f) by
A3,
A5,
A6,
A55,
A60,
A62,
Th4,
NAT_1: 13;
A64: (
Int (
left_cell (f,(k
+ 1)))) is
convex by
A4,
A5,
Th17;
(
Int (
left_cell (f,(k
+ 1))))
misses (
L~ f) by
A4,
A5,
GOBOARD8: 37;
then (
Int (
left_cell (f,(k
+ 1))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
hence thesis by
A55,
A61,
A63,
A21,
A22,
A58,
Th4,
A64,
GOBOARD6: 84;
end;
suppose that
A65: i0
= (i1
+ 1) and
A66: i1
= (i2
+ 1) and
A67: j0
<> 1;
A68: (
left_cell (f,k))
= (
cell ((
GoB f),i1,(j1
-' 1))) by
A6,
A7,
A10,
A11,
A13,
A14,
A30,
A46,
A65,
GOBOARD5: 29;
1
< j0 by
A24,
A67,
XXREAL_0: 1;
then
A69: 1
<= (j0
-' 1) by
A30,
A46,
A65,
NAT_1: 13;
A70: (
left_cell (f,(k
+ 1)))
= (
cell ((
GoB f),i2,(j1
-' 1))) by
A4,
A5,
A13,
A14,
A16,
A17,
A31,
A46,
A66,
GOBOARD5: 29;
A71: (
LSeg (((1
/ 2)
* (((
GoB f)
* (i1,(j0
-' 1)))
+ ((
GoB f)
* (i0,j0)))),((1
/ 2)
* (((
GoB f)
* (i2,(j0
-' 1)))
+ ((
GoB f)
* (i1,j0))))))
meets (
Int (
cell ((
GoB f),i1,(j1
-' 1)))) by
A19,
A20,
A27,
A30,
A46,
A65,
A69,
GOBOARD6: 82;
(
LSeg (((1
/ 2)
* (((
GoB f)
* (i1,(j0
-' 1)))
+ ((
GoB f)
* (i0,j0)))),((1
/ 2)
* (((
GoB f)
* (i2,(j0
-' 1)))
+ ((
GoB f)
* (i1,j0))))))
misses (
L~ f) by
A5,
A6,
A11,
A14,
A17,
A19,
A22,
A25,
A30,
A31,
A46,
A50,
A52,
A65,
A66,
A69,
GOBOARD8: 11;
then (
LSeg (((1
/ 2)
* (((
GoB f)
* (i1,(j0
-' 1)))
+ ((
GoB f)
* (i0,j0)))),((1
/ 2)
* (((
GoB f)
* (i2,(j0
-' 1)))
+ ((
GoB f)
* (i1,j0))))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A72: (
LSeg (((1
/ 2)
* (((
GoB f)
* (i1,(j0
-' 1)))
+ ((
GoB f)
* (i0,j0)))),((1
/ 2)
* (((
GoB f)
* (i2,(j0
-' 1)))
+ ((
GoB f)
* (i1,j0))))))
c= (
LeftComp f) by
A3,
A5,
A6,
A55,
A68,
A71,
Th4,
NAT_1: 13;
A73: (
Int (
left_cell (f,(k
+ 1)))) is
convex by
A4,
A5,
Th17;
(
Int (
left_cell (f,(k
+ 1))))
misses (
L~ f) by
A4,
A5,
GOBOARD8: 37;
then (
Int (
left_cell (f,(k
+ 1))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
hence thesis by
A30,
A55,
A65,
A66,
A70,
A72,
A21,
A22,
A25,
A46,
A69,
Th4,
A73,
GOBOARD6: 82;
end;
suppose that
A74: i0
= (i1
+ 1) and
A75: j1
= (j2
+ 1);
(
left_cell (f,k))
= (
cell ((
GoB f),i1,j2)) by
A6,
A7,
A10,
A11,
A13,
A14,
A30,
A74,
A75,
GOBOARD5: 29
.= (
left_cell (f,(k
+ 1))) by
A4,
A5,
A13,
A14,
A16,
A17,
A31,
A45,
A75,
GOBOARD5: 30;
hence thesis by
A3,
A5,
A6,
NAT_1: 13;
end;
suppose that
A76: j0
= (j1
+ 1) and
A77: i1
= (i2
+ 1) and
A78: i0
= (
len (
GoB f)) and
A79: j1
= 1;
A80: (
left_cell (f,k))
= (
cell ((
GoB f),i0,j1)) by
A6,
A7,
A10,
A11,
A13,
A14,
A30,
A45,
A76,
GOBOARD5: 30;
A81: (
LSeg ((((
GoB f)
* ((
len (
GoB f)),1))
+
|[1, (
- 1)]|),(((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),1))
+ ((
GoB f)
* ((
len (
GoB f)),2))))
+
|[1,
0 ]|)))
meets (
Int (
cell ((
GoB f),i0,j1))) by
A25,
A76,
A78,
A79,
GOBOARD6: 86;
(
LSeg ((((
GoB f)
* ((
len (
GoB f)),1))
+
|[1, (
- 1)]|),(((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),1))
+ ((
GoB f)
* ((
len (
GoB f)),2))))
+
|[1,
0 ]|)))
misses (
L~ f) by
GOBOARD8: 35;
then (
LSeg ((((
GoB f)
* ((
len (
GoB f)),1))
+
|[1, (
- 1)]|),(((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),1))
+ ((
GoB f)
* ((
len (
GoB f)),2))))
+
|[1,
0 ]|)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A82: (
LSeg ((((
GoB f)
* ((
len (
GoB f)),1))
+
|[1, (
- 1)]|),(((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),1))
+ ((
GoB f)
* ((
len (
GoB f)),2))))
+
|[1,
0 ]|)))
c= (
LeftComp f) by
A3,
A5,
A6,
A55,
A80,
A81,
Th4,
NAT_1: 13;
A83: (
Int (
cell ((
GoB f),i1,
0 ))) is
convex by
A21,
A26,
A27,
Th16;
(
Int (
cell ((
GoB f),i1,
0 )))
misses (
L~ f) by
A21,
A26,
A27,
GOBOARD7: 12;
then (
Int (
cell ((
GoB f),i1,
0 )))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A84: (
Int (
cell ((
GoB f),i1,
0 )))
c= (
LeftComp f) by
A55,
A82,
A30,
A76,
A78,
Th4,
A83,
GOBOARD6: 90;
A85: (
left_cell (f,(k
+ 1)))
= (
cell ((
GoB f),i2,
0 )) by
A4,
A5,
A13,
A14,
A16,
A17,
A31,
A46,
A77,
A79,
GOBOARD5: 29;
A86: (
LSeg ((((1
/ 2)
* (((
GoB f)
* (((
len (
GoB f))
-' 1),1))
+ ((
GoB f)
* ((
len (
GoB f)),1))))
-
|[
0 , 1]|),(((
GoB f)
* ((
len (
GoB f)),1))
+
|[1, (
- 1)]|)))
meets (
Int (
cell ((
GoB f),i1,
0 ))) by
A30,
A76,
A78,
GOBOARD6: 90;
(
LSeg ((((1
/ 2)
* (((
GoB f)
* (((
len (
GoB f))
-' 1),1))
+ ((
GoB f)
* ((
len (
GoB f)),1))))
-
|[
0 , 1]|),(((
GoB f)
* ((
len (
GoB f)),1))
+
|[1, (
- 1)]|)))
misses (
L~ f) by
GOBOARD8: 27;
then (
LSeg ((((1
/ 2)
* (((
GoB f)
* (((
len (
GoB f))
-' 1),1))
+ ((
GoB f)
* ((
len (
GoB f)),1))))
-
|[
0 , 1]|),(((
GoB f)
* ((
len (
GoB f)),1))
+
|[1, (
- 1)]|)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A87: (
LSeg ((((1
/ 2)
* (((
GoB f)
* (((
len (
GoB f))
-' 1),1))
+ ((
GoB f)
* ((
len (
GoB f)),1))))
-
|[
0 , 1]|),(((
GoB f)
* ((
len (
GoB f)),1))
+
|[1, (
- 1)]|)))
c= (
LeftComp f) by
A55,
A84,
A86,
Th4;
A88: (
Int (
left_cell (f,(k
+ 1)))) is
convex by
A4,
A5,
Th17;
(
Int (
left_cell (f,(k
+ 1))))
misses (
L~ f) by
A4,
A5,
GOBOARD8: 37;
then (
Int (
left_cell (f,(k
+ 1))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
hence thesis by
A55,
A85,
A87,
A22,
A30,
A45,
A76,
A77,
A78,
Th4,
A88,
GOBOARD6: 84;
end;
suppose that
A89: j0
= (j1
+ 1) and
A90: i1
= (i2
+ 1) and
A91: i0
<> (
len (
GoB f)) and
A92: j1
= 1;
A93: (
left_cell (f,k))
= (
cell ((
GoB f),i0,j1)) by
A6,
A7,
A10,
A11,
A13,
A14,
A30,
A45,
A89,
GOBOARD5: 30;
(
len (
GoB f))
> i0 by
A19,
A91,
XXREAL_0: 1;
then
A94: (
len (
GoB f))
>= (i0
+ 1) by
NAT_1: 13;
A95: (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i0,1))
+ ((
GoB f)
* ((i0
+ 1),1))))
-
|[
0 , 1]|),((1
/ 2)
* (((
GoB f)
* (i1,1))
+ ((
GoB f)
* ((i1
+ 1),(1
+ 1)))))))
meets (
Int (
cell ((
GoB f),i0,j1))) by
A20,
A25,
A30,
A89,
A92,
A94,
GOBOARD6: 82;
(
LSeg ((((1
/ 2)
* (((
GoB f)
* (i0,1))
+ ((
GoB f)
* ((i0
+ 1),1))))
-
|[
0 , 1]|),((1
/ 2)
* (((
GoB f)
* (i1,1))
+ ((
GoB f)
* ((i1
+ 1),2))))))
misses (
L~ f) by
A5,
A6,
A11,
A14,
A17,
A22,
A30,
A31,
A50,
A52,
A89,
A90,
A92,
A94,
GOBOARD8: 8;
then (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i0,1))
+ ((
GoB f)
* ((i0
+ 1),1))))
-
|[
0 , 1]|),((1
/ 2)
* (((
GoB f)
* (i1,1))
+ ((
GoB f)
* ((i1
+ 1),2))))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A96: (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i0,1))
+ ((
GoB f)
* ((i0
+ 1),1))))
-
|[
0 , 1]|),((1
/ 2)
* (((
GoB f)
* (i1,1))
+ ((
GoB f)
* ((i1
+ 1),2))))))
c= (
LeftComp f) by
A3,
A5,
A6,
A55,
A93,
A95,
Th4,
NAT_1: 13;
A97: (
Int (
cell ((
GoB f),i1,
0 ))) is
convex by
A21,
A26,
A27,
Th16;
(
Int (
cell ((
GoB f),i1,
0 )))
misses (
L~ f) by
A21,
A26,
A27,
GOBOARD7: 12;
then (
Int (
cell ((
GoB f),i1,
0 )))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A98: (
Int (
cell ((
GoB f),i1,
0 )))
c= (
LeftComp f) by
A55,
A96,
A20,
A30,
A89,
A94,
Th4,
A97,
GOBOARD6: 84;
A99: (
left_cell (f,(k
+ 1)))
= (
cell ((
GoB f),i2,
0 )) by
A4,
A5,
A13,
A14,
A16,
A17,
A31,
A46,
A90,
A92,
GOBOARD5: 29;
A100: (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i2,1))
+ ((
GoB f)
* ((i2
+ 1),1))))
-
|[
0 , 1]|),(((1
/ 2)
* (((
GoB f)
* ((i2
+ 1),1))
+ ((
GoB f)
* ((i2
+ 2),1))))
-
|[
0 , 1]|)))
meets (
Int (
cell ((
GoB f),i1,
0 ))) by
A20,
A30,
A89,
A90,
A94,
GOBOARD6: 84;
(
LSeg ((((1
/ 2)
* (((
GoB f)
* (i2,1))
+ ((
GoB f)
* ((i2
+ 1),1))))
-
|[
0 , 1]|),(((1
/ 2)
* (((
GoB f)
* ((i2
+ 1),1))
+ ((
GoB f)
* ((i2
+ 2),1))))
-
|[
0 , 1]|)))
misses (
L~ f) by
A22,
A30,
A89,
A90,
A94,
GOBOARD8: 25;
then (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i2,1))
+ ((
GoB f)
* ((i2
+ 1),1))))
-
|[
0 , 1]|),(((1
/ 2)
* (((
GoB f)
* ((i2
+ 1),1))
+ ((
GoB f)
* ((i2
+ 2),1))))
-
|[
0 , 1]|)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A101: (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i2,1))
+ ((
GoB f)
* ((i2
+ 1),1))))
-
|[
0 , 1]|),(((1
/ 2)
* (((
GoB f)
* ((i2
+ 1),1))
+ ((
GoB f)
* ((i2
+ 2),1))))
-
|[
0 , 1]|)))
c= (
LeftComp f) by
A55,
A98,
A100,
Th4;
A102: (
Int (
left_cell (f,(k
+ 1)))) is
convex by
A4,
A5,
Th17;
(
Int (
left_cell (f,(k
+ 1))))
misses (
L~ f) by
A4,
A5,
GOBOARD8: 37;
then (
Int (
left_cell (f,(k
+ 1))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
hence thesis by
A55,
A99,
A101,
A21,
A22,
A90,
Th4,
A102,
GOBOARD6: 84;
end;
suppose that
A103: j0
= (j1
+ 1) and
A104: i1
= (i2
+ 1) and
A105: i0
= (
len (
GoB f)) and
A106: j1
<> 1;
A107: (
left_cell (f,k))
= (
cell ((
GoB f),i0,j1)) by
A6,
A7,
A10,
A11,
A13,
A14,
A30,
A45,
A103,
GOBOARD5: 30;
1
< j1 by
A26,
A106,
XXREAL_0: 1;
then
A108: 1
<= (j1
-' 1) by
A46,
NAT_1: 13;
A109: (j1
+ 1)
= ((j1
-' 1)
+ (1
+ 1)) by
A46;
A110: (
LSeg ((((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),(j1
-' 1)))
+ ((
GoB f)
* ((
len (
GoB f)),j1))))
+
|[1,
0 ]|),(((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),j1))
+ ((
GoB f)
* ((
len (
GoB f)),(j1
+ 1)))))
+
|[1,
0 ]|)))
meets (
Int (
cell ((
GoB f),i0,j1))) by
A25,
A26,
A103,
A105,
GOBOARD6: 86;
(
LSeg ((((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),(j1
-' 1)))
+ ((
GoB f)
* ((
len (
GoB f)),j1))))
+
|[1,
0 ]|),(((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),j1))
+ ((
GoB f)
* ((
len (
GoB f)),(j1
+ 1)))))
+
|[1,
0 ]|)))
misses (
L~ f) by
A25,
A46,
A103,
A108,
A109,
GOBOARD8: 34;
then (
LSeg ((((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),(j1
-' 1)))
+ ((
GoB f)
* ((
len (
GoB f)),j1))))
+
|[1,
0 ]|),(((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),j1))
+ ((
GoB f)
* ((
len (
GoB f)),(j1
+ 1)))))
+
|[1,
0 ]|)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A111: (
LSeg ((((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),(j1
-' 1)))
+ ((
GoB f)
* ((
len (
GoB f)),j1))))
+
|[1,
0 ]|),(((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),j1))
+ ((
GoB f)
* ((
len (
GoB f)),(j1
+ 1)))))
+
|[1,
0 ]|)))
c= (
LeftComp f) by
A3,
A5,
A6,
A55,
A107,
A110,
Th4,
NAT_1: 13;
j1
> 1 by
A26,
A106,
XXREAL_0: 1;
then
A112: 1
<= (j1
-' 1) by
A46,
NAT_1: 13;
A113: (
Int (
cell ((
GoB f),i1,(j1
-' 1)))) is
convex by
A21,
A47,
Th16;
(
Int (
cell ((
GoB f),i1,(j1
-' 1))))
misses (
L~ f) by
A21,
A47,
GOBOARD7: 12;
then (
Int (
cell ((
GoB f),i1,(j1
-' 1))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A114: (
Int (
cell ((
GoB f),i1,(j1
-' 1))))
c= (
LeftComp f) by
A55,
A111,
A27,
A30,
A46,
A103,
A105,
Th4,
A113,
A112,
GOBOARD6: 86;
A115: (
left_cell (f,(k
+ 1)))
= (
cell ((
GoB f),i2,(j1
-' 1))) by
A4,
A5,
A13,
A14,
A16,
A17,
A31,
A46,
A104,
GOBOARD5: 29;
A116: (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),(j1
-' 1)))
+ ((
GoB f)
* (i1,j1)))),(((1
/ 2)
* (((
GoB f)
* (i1,(j1
-' 1)))
+ ((
GoB f)
* (i1,j1))))
+
|[1,
0 ]|)))
meets (
Int (
cell ((
GoB f),i1,(j1
-' 1)))) by
A27,
A30,
A46,
A103,
A105,
A108,
GOBOARD6: 86;
A117: (i1
-' 1)
= i2 by
A104,
NAT_D: 34;
then (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),(j1
-' 1)))
+ ((
GoB f)
* (i1,j1)))),(((1
/ 2)
* (((
GoB f)
* (i1,(j1
-' 1)))
+ ((
GoB f)
* (i1,j1))))
+
|[1,
0 ]|)))
misses (
L~ f) by
A5,
A6,
A11,
A14,
A17,
A25,
A30,
A31,
A46,
A50,
A103,
A104,
A105,
A108,
A109,
GOBOARD8: 19;
then (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),(j1
-' 1)))
+ ((
GoB f)
* (i1,j1)))),(((1
/ 2)
* (((
GoB f)
* (i1,(j1
-' 1)))
+ ((
GoB f)
* (i1,j1))))
+
|[1,
0 ]|)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A118: (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),(j1
-' 1)))
+ ((
GoB f)
* (i1,j1)))),(((1
/ 2)
* (((
GoB f)
* (i1,(j1
-' 1)))
+ ((
GoB f)
* (i1,j1))))
+
|[1,
0 ]|)))
c= (
LeftComp f) by
A55,
A114,
A116,
Th4;
A119: (
Int (
left_cell (f,(k
+ 1)))) is
convex by
A4,
A5,
Th17;
(
Int (
left_cell (f,(k
+ 1))))
misses (
L~ f) by
A4,
A5,
GOBOARD8: 37;
then (
Int (
left_cell (f,(k
+ 1))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
hence thesis by
A55,
A115,
A118,
A21,
A22,
A27,
A46,
A104,
A108,
A117,
Th4,
A119,
GOBOARD6: 82;
end;
suppose that
A120: j0
= (j1
+ 1) and
A121: i1
= (i2
+ 1) and
A122: i0
<> (
len (
GoB f)) and
A123: j1
<> 1;
A124: (
left_cell (f,k))
= (
cell ((
GoB f),i0,j1)) by
A6,
A7,
A10,
A11,
A13,
A14,
A30,
A45,
A120,
GOBOARD5: 30;
1
< j1 by
A26,
A123,
XXREAL_0: 1;
then
A125: 1
<= (j1
-' 1) by
A46,
NAT_1: 13;
(
len (
GoB f))
> i0 by
A19,
A122,
XXREAL_0: 1;
then
A126: (
len (
GoB f))
>= (i0
+ 1) by
NAT_1: 13;
A127: (j1
+ 1)
= ((j1
-' 1)
+ (1
+ 1)) by
A46;
A128: (
LSeg (((1
/ 2)
* (((
GoB f)
* (i0,(j1
-' 1)))
+ ((
GoB f)
* ((i0
+ 1),j1)))),((1
/ 2)
* (((
GoB f)
* (i1,j1))
+ ((
GoB f)
* ((i1
+ 1),(j1
+ 1)))))))
meets (
Int (
cell ((
GoB f),i0,j1))) by
A20,
A25,
A26,
A30,
A120,
A126,
GOBOARD6: 82;
(
LSeg (((1
/ 2)
* (((
GoB f)
* (i0,(j1
-' 1)))
+ ((
GoB f)
* ((i0
+ 1),j1)))),((1
/ 2)
* (((
GoB f)
* (i1,j1))
+ ((
GoB f)
* ((i1
+ 1),(j1
+ 1)))))))
misses (
L~ f) by
A5,
A6,
A11,
A14,
A17,
A22,
A25,
A30,
A31,
A46,
A50,
A52,
A120,
A121,
A125,
A126,
A127,
GOBOARD8: 5;
then (
LSeg (((1
/ 2)
* (((
GoB f)
* (i0,(j1
-' 1)))
+ ((
GoB f)
* ((i0
+ 1),j1)))),((1
/ 2)
* (((
GoB f)
* (i1,j1))
+ ((
GoB f)
* ((i1
+ 1),(j1
+ 1)))))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A129: (
LSeg (((1
/ 2)
* (((
GoB f)
* (i0,(j1
-' 1)))
+ ((
GoB f)
* ((i0
+ 1),j1)))),((1
/ 2)
* (((
GoB f)
* (i1,j1))
+ ((
GoB f)
* ((i1
+ 1),(j1
+ 1)))))))
c= (
LeftComp f) by
A3,
A5,
A6,
A55,
A124,
A128,
Th4,
NAT_1: 13;
j1
> 1 by
A26,
A123,
XXREAL_0: 1;
then
A130: 1
<= (j1
-' 1) by
A46,
NAT_1: 13;
A131: (
Int (
cell ((
GoB f),i1,(j1
-' 1)))) is
convex by
A21,
A47,
Th16;
(
Int (
cell ((
GoB f),i1,(j1
-' 1))))
misses (
L~ f) by
A21,
A47,
GOBOARD7: 12;
then (
Int (
cell ((
GoB f),i1,(j1
-' 1))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A132: (
Int (
cell ((
GoB f),i1,(j1
-' 1))))
c= (
LeftComp f) by
A30,
A55,
A120,
A129,
A20,
A27,
A46,
A126,
Th4,
A131,
A130,
GOBOARD6: 82;
A133: (
left_cell (f,(k
+ 1)))
= (
cell ((
GoB f),i2,(j1
-' 1))) by
A4,
A5,
A13,
A14,
A16,
A17,
A31,
A46,
A121,
GOBOARD5: 29;
A134: (
LSeg (((1
/ 2)
* (((
GoB f)
* (i1,(j1
-' 1)))
+ ((
GoB f)
* ((i1
+ 1),j1)))),((1
/ 2)
* (((
GoB f)
* (i2,(j1
-' 1)))
+ ((
GoB f)
* (i1,j1))))))
meets (
Int (
cell ((
GoB f),i1,(j1
-' 1)))) by
A20,
A27,
A30,
A46,
A120,
A125,
A126,
GOBOARD6: 82;
i1
< (
len (
GoB f)) by
A21,
A30,
A120,
A122,
XXREAL_0: 1;
then (i1
+ 1)
<= (
len (
GoB f)) by
NAT_1: 13;
then (
LSeg (((1
/ 2)
* (((
GoB f)
* (i1,(j1
-' 1)))
+ ((
GoB f)
* ((i1
+ 1),j1)))),((1
/ 2)
* (((
GoB f)
* (i2,(j1
-' 1)))
+ ((
GoB f)
* (i1,j1))))))
misses (
L~ f) by
A5,
A6,
A11,
A14,
A17,
A22,
A25,
A30,
A31,
A46,
A50,
A52,
A120,
A121,
A125,
A127,
GOBOARD8: 13;
then (
LSeg (((1
/ 2)
* (((
GoB f)
* (i1,(j1
-' 1)))
+ ((
GoB f)
* ((i1
+ 1),j1)))),((1
/ 2)
* (((
GoB f)
* (i2,(j1
-' 1)))
+ ((
GoB f)
* (i1,j1))))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A135: (
LSeg (((1
/ 2)
* (((
GoB f)
* (i1,(j1
-' 1)))
+ ((
GoB f)
* ((i1
+ 1),j1)))),((1
/ 2)
* (((
GoB f)
* (i2,(j1
-' 1)))
+ ((
GoB f)
* (i1,j1))))))
c= (
LeftComp f) by
A55,
A132,
A134,
Th4;
A136: (
Int (
left_cell (f,(k
+ 1)))) is
convex by
A4,
A5,
Th17;
(
Int (
left_cell (f,(k
+ 1))))
misses (
L~ f) by
A4,
A5,
GOBOARD8: 37;
then (
Int (
left_cell (f,(k
+ 1))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
hence thesis by
A55,
A121,
A133,
A135,
A21,
A22,
A27,
A46,
A125,
Th4,
A136,
GOBOARD6: 82;
end;
suppose that
A137: j0
= (j1
+ 1) and
A138: j1
= (j2
+ 1) and
A139: i0
= (
len (
GoB f));
A140: (
left_cell (f,k))
= (
cell ((
GoB f),(
len (
GoB f)),j1)) by
A6,
A7,
A10,
A11,
A13,
A14,
A30,
A48,
A137,
A139,
GOBOARD5: 30;
A141: (
left_cell (f,(k
+ 1)))
= (
cell ((
GoB f),(
len (
GoB f)),j2)) by
A4,
A5,
A13,
A14,
A16,
A17,
A30,
A31,
A48,
A137,
A138,
A139,
GOBOARD5: 30;
A142: (
LSeg ((((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),j2))
+ ((
GoB f)
* ((
len (
GoB f)),(j2
+ 1)))))
+
|[1,
0 ]|),(((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),(j2
+ 1)))
+ ((
GoB f)
* ((
len (
GoB f)),(j2
+ 2)))))
+
|[1,
0 ]|)))
meets (
Int (
cell ((
GoB f),(
len (
GoB f)),j1))) by
A25,
A26,
A137,
A138,
GOBOARD6: 86;
(
LSeg ((((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),j2))
+ ((
GoB f)
* ((
len (
GoB f)),(j2
+ 1)))))
+
|[1,
0 ]|),(((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),(j2
+ 1)))
+ ((
GoB f)
* ((
len (
GoB f)),(j2
+ 2)))))
+
|[1,
0 ]|)))
misses (
L~ f) by
A25,
A28,
A137,
A138,
GOBOARD8: 34;
then (
LSeg ((((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),j2))
+ ((
GoB f)
* ((
len (
GoB f)),(j2
+ 1)))))
+
|[1,
0 ]|),(((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),(j2
+ 1)))
+ ((
GoB f)
* ((
len (
GoB f)),(j2
+ 2)))))
+
|[1,
0 ]|)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A143: (
LSeg ((((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),j2))
+ ((
GoB f)
* ((
len (
GoB f)),(j2
+ 1)))))
+
|[1,
0 ]|),(((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),(j2
+ 1)))
+ ((
GoB f)
* ((
len (
GoB f)),(j2
+ 2)))))
+
|[1,
0 ]|)))
c= (
LeftComp f) by
A3,
A5,
A6,
A55,
A140,
A142,
Th4,
NAT_1: 13;
A144: (
Int (
left_cell (f,(k
+ 1)))) is
convex by
A4,
A5,
Th17;
(
Int (
left_cell (f,(k
+ 1))))
misses (
L~ f) by
A4,
A5,
GOBOARD8: 37;
then (
Int (
left_cell (f,(k
+ 1))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
hence thesis by
A55,
A141,
A143,
A27,
A28,
A138,
Th4,
A144,
GOBOARD6: 86;
end;
suppose that
A145: j0
= (j1
+ 1) and
A146: j1
= (j2
+ 1) and
A147: i0
<> (
len (
GoB f));
A148: (
left_cell (f,k))
= (
cell ((
GoB f),i0,j1)) by
A6,
A7,
A10,
A11,
A13,
A14,
A30,
A45,
A145,
GOBOARD5: 30;
(
len (
GoB f))
> i0 by
A19,
A147,
XXREAL_0: 1;
then
A149: (
len (
GoB f))
>= (i0
+ 1) by
NAT_1: 13;
A150: (
left_cell (f,(k
+ 1)))
= (
cell ((
GoB f),i1,j2)) by
A4,
A5,
A13,
A14,
A16,
A17,
A31,
A45,
A146,
GOBOARD5: 30;
A151: (
LSeg (((1
/ 2)
* (((
GoB f)
* (i0,j2))
+ ((
GoB f)
* ((i0
+ 1),(j2
+ 1))))),((1
/ 2)
* (((
GoB f)
* (i1,(j2
+ 1)))
+ ((
GoB f)
* ((i1
+ 1),(j2
+ 2)))))))
meets (
Int (
cell ((
GoB f),i0,j1))) by
A20,
A25,
A26,
A30,
A145,
A146,
A149,
GOBOARD6: 82;
(
LSeg (((1
/ 2)
* (((
GoB f)
* (i0,j2))
+ ((
GoB f)
* ((i0
+ 1),(j2
+ 1))))),((1
/ 2)
* (((
GoB f)
* (i1,(j2
+ 1)))
+ ((
GoB f)
* ((i1
+ 1),(j2
+ 2)))))))
misses (
L~ f) by
A5,
A6,
A11,
A14,
A17,
A18,
A25,
A28,
A30,
A31,
A50,
A145,
A146,
A149,
GOBOARD8: 4;
then (
LSeg (((1
/ 2)
* (((
GoB f)
* (i0,j2))
+ ((
GoB f)
* ((i0
+ 1),(j2
+ 1))))),((1
/ 2)
* (((
GoB f)
* (i1,(j2
+ 1)))
+ ((
GoB f)
* ((i1
+ 1),(j2
+ 2)))))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A152: (
LSeg (((1
/ 2)
* (((
GoB f)
* (i0,j2))
+ ((
GoB f)
* ((i0
+ 1),(j2
+ 1))))),((1
/ 2)
* (((
GoB f)
* (i1,(j2
+ 1)))
+ ((
GoB f)
* ((i1
+ 1),(j2
+ 2)))))))
c= (
LeftComp f) by
A3,
A5,
A6,
A55,
A148,
A151,
Th4,
NAT_1: 13;
A153: (
Int (
left_cell (f,(k
+ 1)))) is
convex by
A4,
A5,
Th17;
(
Int (
left_cell (f,(k
+ 1))))
misses (
L~ f) by
A4,
A5,
GOBOARD8: 37;
then (
Int (
left_cell (f,(k
+ 1))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
hence thesis by
A55,
A150,
A152,
A20,
A27,
A28,
A30,
A145,
A146,
A149,
Th4,
A153,
GOBOARD6: 82;
end;
suppose that
A154: (i0
+ 1)
= i1 and
A155: j1
= (j2
+ 1) and
A156: i1
= (
len (
GoB f)) and
A157: j0
= (
width (
GoB f));
A158: (
left_cell (f,k))
= (
cell ((
GoB f),i0,j1)) by
A6,
A7,
A10,
A11,
A13,
A14,
A30,
A46,
A154,
GOBOARD5: 28;
A159: (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i0,j0))
+ ((
GoB f)
* (i1,j0))))
+
|[
0 , 1]|),(((
GoB f)
* (i1,j0))
+
|[1, 1]|)))
meets (
Int (
cell ((
GoB f),i0,j1))) by
A18,
A21,
A30,
A154,
A157,
GOBOARD6: 83;
(
LSeg ((((1
/ 2)
* (((
GoB f)
* (i0,j0))
+ ((
GoB f)
* (i1,j0))))
+
|[
0 , 1]|),(((
GoB f)
* (i1,j0))
+
|[1, 1]|)))
misses (
L~ f) by
A48,
A154,
A156,
A157,
GOBOARD8: 30;
then (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i0,j0))
+ ((
GoB f)
* (i1,j0))))
+
|[
0 , 1]|),(((
GoB f)
* (i1,j0))
+
|[1, 1]|)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A160: (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i0,j0))
+ ((
GoB f)
* (i1,j0))))
+
|[
0 , 1]|),(((
GoB f)
* (i1,j0))
+
|[1, 1]|)))
c= (
LeftComp f) by
A3,
A5,
A6,
A55,
A158,
A159,
Th4,
NAT_1: 13;
A161: (
Int (
cell ((
GoB f),i1,j1))) is
convex by
A21,
A27,
Th16;
(
Int (
cell ((
GoB f),i1,j1)))
misses (
L~ f) by
A21,
A27,
GOBOARD7: 12;
then (
Int (
cell ((
GoB f),i1,j1)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A162: (
Int (
cell ((
GoB f),i1,j1)))
c= (
LeftComp f) by
A55,
A160,
A30,
A154,
A156,
A157,
Th4,
A161,
GOBOARD6: 88;
A163: (
left_cell (f,(k
+ 1)))
= (
cell ((
GoB f),i1,j2)) by
A4,
A5,
A13,
A14,
A16,
A17,
A31,
A45,
A155,
GOBOARD5: 30;
A164: (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i1,j2))
+ ((
GoB f)
* (i1,j1))))
+
|[1,
0 ]|),(((
GoB f)
* (i1,j1))
+
|[1, 1]|)))
meets (
Int (
cell ((
GoB f),i1,j1))) by
A30,
A154,
A156,
A157,
GOBOARD6: 88;
(
LSeg ((((1
/ 2)
* (((
GoB f)
* (i1,j2))
+ ((
GoB f)
* (i1,j1))))
+
|[1,
0 ]|),(((
GoB f)
* (i1,j1))
+
|[1, 1]|)))
misses (
L~ f) by
A30,
A49,
A154,
A155,
A156,
A157,
GOBOARD8: 36;
then (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i1,j2))
+ ((
GoB f)
* (i1,j1))))
+
|[1,
0 ]|),(((
GoB f)
* (i1,j1))
+
|[1, 1]|)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A165: (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i1,j2))
+ ((
GoB f)
* (i1,j1))))
+
|[1,
0 ]|),(((
GoB f)
* (i1,j1))
+
|[1, 1]|)))
c= (
LeftComp f) by
A55,
A162,
A164,
Th4;
A166: (
Int (
left_cell (f,(k
+ 1)))) is
convex by
A4,
A5,
Th17;
(
Int (
left_cell (f,(k
+ 1))))
misses (
L~ f) by
A4,
A5,
GOBOARD8: 37;
then (
Int (
left_cell (f,(k
+ 1))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
hence thesis by
A55,
A163,
A165,
A27,
A28,
A155,
A156,
Th4,
A166,
GOBOARD6: 86;
end;
suppose that
A167: (i0
+ 1)
= i1 and
A168: j1
= (j2
+ 1) and
A169: i1
<> (
len (
GoB f)) and
A170: j0
= (
width (
GoB f));
A171: (
left_cell (f,k))
= (
cell ((
GoB f),i0,j1)) by
A6,
A7,
A10,
A11,
A13,
A14,
A30,
A46,
A167,
GOBOARD5: 28;
(
len (
GoB f))
> i1 by
A21,
A169,
XXREAL_0: 1;
then
A172: (i1
+ 1)
<= (
len (
GoB f)) by
NAT_1: 13;
A173: (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i0,j0))
+ ((
GoB f)
* ((i0
+ 1),j0))))
+
|[
0 , 1]|),(((1
/ 2)
* (((
GoB f)
* ((i0
+ 1),j0))
+ ((
GoB f)
* ((i0
+ 2),j0))))
+
|[
0 , 1]|)))
meets (
Int (
cell ((
GoB f),i0,j1))) by
A18,
A21,
A30,
A167,
A170,
GOBOARD6: 83;
(
LSeg ((((1
/ 2)
* (((
GoB f)
* (i0,j0))
+ ((
GoB f)
* ((i0
+ 1),j0))))
+
|[
0 , 1]|),(((1
/ 2)
* (((
GoB f)
* ((i0
+ 1),j0))
+ ((
GoB f)
* ((i0
+ 2),j0))))
+
|[
0 , 1]|)))
misses (
L~ f) by
A18,
A167,
A170,
A172,
GOBOARD8: 28;
then (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i0,j0))
+ ((
GoB f)
* ((i0
+ 1),j0))))
+
|[
0 , 1]|),(((1
/ 2)
* (((
GoB f)
* ((i0
+ 1),j0))
+ ((
GoB f)
* ((i0
+ 2),j0))))
+
|[
0 , 1]|)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A174: (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i0,j0))
+ ((
GoB f)
* ((i0
+ 1),j0))))
+
|[
0 , 1]|),(((1
/ 2)
* (((
GoB f)
* ((i0
+ 1),j0))
+ ((
GoB f)
* ((i0
+ 2),j0))))
+
|[
0 , 1]|)))
c= (
LeftComp f) by
A3,
A5,
A6,
A55,
A171,
A173,
Th4,
NAT_1: 13;
A175: (
Int (
cell ((
GoB f),i1,j1))) is
convex by
A21,
A27,
Th16;
(
Int (
cell ((
GoB f),i1,j1)))
misses (
L~ f) by
A21,
A27,
GOBOARD7: 12;
then (
Int (
cell ((
GoB f),i1,j1)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A176: (
Int (
cell ((
GoB f),i1,j1)))
c= (
LeftComp f) by
A55,
A174,
A20,
A30,
A167,
A170,
A172,
Th4,
A175,
GOBOARD6: 83;
A177: (
left_cell (f,(k
+ 1)))
= (
cell ((
GoB f),i1,j2)) by
A4,
A5,
A13,
A14,
A16,
A17,
A31,
A45,
A168,
GOBOARD5: 30;
A178: (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i0
+ 1),j2))
+ ((
GoB f)
* ((i1
+ 1),j0)))),(((1
/ 2)
* (((
GoB f)
* ((i0
+ 1),j0))
+ ((
GoB f)
* ((i1
+ 1),j0))))
+
|[
0 , 1]|)))
meets (
Int (
cell ((
GoB f),i1,j1))) by
A20,
A30,
A167,
A170,
A172,
GOBOARD6: 83;
(
LSeg (((1
/ 2)
* (((
GoB f)
* ((i0
+ 1),j2))
+ ((
GoB f)
* ((i1
+ 1),j0)))),(((1
/ 2)
* (((
GoB f)
* ((i0
+ 1),j0))
+ ((
GoB f)
* ((i1
+ 1),j0))))
+
|[
0 , 1]|)))
misses (
L~ f) by
A5,
A6,
A11,
A14,
A17,
A18,
A30,
A31,
A49,
A50,
A51,
A167,
A168,
A170,
A172,
GOBOARD8: 10;
then (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i0
+ 1),j2))
+ ((
GoB f)
* ((i1
+ 1),j0)))),(((1
/ 2)
* (((
GoB f)
* ((i0
+ 1),j0))
+ ((
GoB f)
* ((i1
+ 1),j0))))
+
|[
0 , 1]|)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A179: (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i0
+ 1),j2))
+ ((
GoB f)
* ((i1
+ 1),j0)))),(((1
/ 2)
* (((
GoB f)
* ((i0
+ 1),j0))
+ ((
GoB f)
* ((i1
+ 1),j0))))
+
|[
0 , 1]|)))
c= (
LeftComp f) by
A55,
A176,
A178,
Th4;
A180: (
Int (
left_cell (f,(k
+ 1)))) is
convex by
A4,
A5,
Th17;
(
Int (
left_cell (f,(k
+ 1))))
misses (
L~ f) by
A4,
A5,
GOBOARD8: 37;
then (
Int (
left_cell (f,(k
+ 1))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
hence thesis by
A55,
A177,
A179,
A20,
A28,
A30,
A167,
A168,
A170,
A172,
Th4,
A180,
GOBOARD6: 82;
end;
suppose that
A181: (i0
+ 1)
= i1 and
A182: j1
= (j2
+ 1) and
A183: i1
= (
len (
GoB f)) and
A184: j0
<> (
width (
GoB f));
A185: (
left_cell (f,k))
= (
cell ((
GoB f),i0,j1)) by
A6,
A7,
A10,
A11,
A13,
A14,
A30,
A46,
A181,
GOBOARD5: 28;
(
width (
GoB f))
> j0 by
A25,
A184,
XXREAL_0: 1;
then
A186: (
width (
GoB f))
>= (j0
+ 1) by
NAT_1: 13;
A187: (
LSeg (((1
/ 2)
* (((
GoB f)
* (i0,j1))
+ ((
GoB f)
* (i1,(j1
+ 1))))),(((1
/ 2)
* (((
GoB f)
* (i1,j1))
+ ((
GoB f)
* (i1,(j1
+ 1)))))
+
|[1,
0 ]|)))
meets (
Int (
cell ((
GoB f),i0,j1))) by
A18,
A21,
A26,
A30,
A181,
A186,
GOBOARD6: 82;
(
LSeg (((1
/ 2)
* (((
GoB f)
* (i0,j1))
+ ((
GoB f)
* (i1,(j1
+ 1))))),(((1
/ 2)
* (((
GoB f)
* (i1,j1))
+ ((
GoB f)
* (i1,(j1
+ 1)))))
+
|[1,
0 ]|)))
misses (
L~ f) by
A5,
A6,
A11,
A14,
A17,
A28,
A30,
A31,
A48,
A50,
A54,
A181,
A182,
A183,
A186,
GOBOARD8: 20;
then (
LSeg (((1
/ 2)
* (((
GoB f)
* (i0,j1))
+ ((
GoB f)
* (i1,(j1
+ 1))))),(((1
/ 2)
* (((
GoB f)
* (i1,j1))
+ ((
GoB f)
* (i1,(j1
+ 1)))))
+
|[1,
0 ]|)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A188: (
LSeg (((1
/ 2)
* (((
GoB f)
* (i0,j1))
+ ((
GoB f)
* (i1,(j1
+ 1))))),(((1
/ 2)
* (((
GoB f)
* (i1,j1))
+ ((
GoB f)
* (i1,(j1
+ 1)))))
+
|[1,
0 ]|)))
c= (
LeftComp f) by
A3,
A5,
A6,
A55,
A185,
A187,
Th4,
NAT_1: 13;
A189: (
Int (
cell ((
GoB f),i1,j1))) is
convex by
A21,
A27,
Th16;
(
Int (
cell ((
GoB f),i1,j1)))
misses (
L~ f) by
A21,
A27,
GOBOARD7: 12;
then (
Int (
cell ((
GoB f),i1,j1)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A190: (
Int (
cell ((
GoB f),i1,j1)))
c= (
LeftComp f) by
A55,
A188,
A26,
A30,
A181,
A183,
A186,
Th4,
A189,
GOBOARD6: 86;
A191: (
left_cell (f,(k
+ 1)))
= (
cell ((
GoB f),i1,j2)) by
A4,
A5,
A13,
A14,
A16,
A17,
A31,
A45,
A182,
GOBOARD5: 30;
A192: (
LSeg ((((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),j2))
+ ((
GoB f)
* ((
len (
GoB f)),j1))))
+
|[1,
0 ]|),(((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),j1))
+ ((
GoB f)
* ((
len (
GoB f)),(j1
+ 1)))))
+
|[1,
0 ]|)))
meets (
Int (
cell ((
GoB f),i1,j1))) by
A26,
A30,
A181,
A183,
A186,
GOBOARD6: 86;
(
LSeg ((((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),j2))
+ ((
GoB f)
* ((
len (
GoB f)),j1))))
+
|[1,
0 ]|),(((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),j1))
+ ((
GoB f)
* ((
len (
GoB f)),(j1
+ 1)))))
+
|[1,
0 ]|)))
misses (
L~ f) by
A28,
A30,
A54,
A181,
A182,
A186,
GOBOARD8: 34;
then (
LSeg ((((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),j2))
+ ((
GoB f)
* ((
len (
GoB f)),j1))))
+
|[1,
0 ]|),(((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),j1))
+ ((
GoB f)
* ((
len (
GoB f)),(j1
+ 1)))))
+
|[1,
0 ]|)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A193: (
LSeg ((((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),j2))
+ ((
GoB f)
* ((
len (
GoB f)),j1))))
+
|[1,
0 ]|),(((1
/ 2)
* (((
GoB f)
* ((
len (
GoB f)),j1))
+ ((
GoB f)
* ((
len (
GoB f)),(j1
+ 1)))))
+
|[1,
0 ]|)))
c= (
LeftComp f) by
A55,
A190,
A192,
Th4;
A194: (
Int (
left_cell (f,(k
+ 1)))) is
convex by
A4,
A5,
Th17;
(
Int (
left_cell (f,(k
+ 1))))
misses (
L~ f) by
A4,
A5,
GOBOARD8: 37;
then (
Int (
left_cell (f,(k
+ 1))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
hence thesis by
A55,
A191,
A193,
A27,
A28,
A182,
A183,
Th4,
A194,
GOBOARD6: 86;
end;
suppose that
A195: (i0
+ 1)
= i1 and
A196: j1
= (j2
+ 1) and
A197: i1
<> (
len (
GoB f)) and
A198: j0
<> (
width (
GoB f));
A199: (
left_cell (f,k))
= (
cell ((
GoB f),i0,j1)) by
A6,
A7,
A10,
A11,
A13,
A14,
A30,
A46,
A195,
GOBOARD5: 28;
(
len (
GoB f))
> i1 by
A21,
A197,
XXREAL_0: 1;
then
A200: (i1
+ 1)
<= (
len (
GoB f)) by
NAT_1: 13;
(
width (
GoB f))
> j0 by
A25,
A198,
XXREAL_0: 1;
then
A201: (
width (
GoB f))
>= (j0
+ 1) by
NAT_1: 13;
A202: (
LSeg (((1
/ 2)
* (((
GoB f)
* (i0,(j2
+ 1)))
+ ((
GoB f)
* ((i0
+ 1),(j1
+ 1))))),((1
/ 2)
* (((
GoB f)
* ((i0
+ 1),(j2
+ 1)))
+ ((
GoB f)
* ((i1
+ 1),(j1
+ 1)))))))
meets (
Int (
cell ((
GoB f),i0,j1))) by
A18,
A21,
A26,
A30,
A195,
A196,
A201,
GOBOARD6: 82;
(
LSeg (((1
/ 2)
* (((
GoB f)
* (i0,(j2
+ 1)))
+ ((
GoB f)
* ((i0
+ 1),(j1
+ 1))))),((1
/ 2)
* (((
GoB f)
* ((i0
+ 1),(j2
+ 1)))
+ ((
GoB f)
* ((i1
+ 1),(j1
+ 1)))))))
misses (
L~ f) by
A5,
A6,
A11,
A14,
A17,
A18,
A28,
A30,
A31,
A50,
A51,
A54,
A195,
A196,
A200,
A201,
GOBOARD8: 16;
then (
LSeg (((1
/ 2)
* (((
GoB f)
* (i0,(j2
+ 1)))
+ ((
GoB f)
* ((i0
+ 1),(j1
+ 1))))),((1
/ 2)
* (((
GoB f)
* ((i0
+ 1),(j2
+ 1)))
+ ((
GoB f)
* ((i1
+ 1),(j1
+ 1)))))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A203: (
LSeg (((1
/ 2)
* (((
GoB f)
* (i0,(j2
+ 1)))
+ ((
GoB f)
* ((i0
+ 1),(j1
+ 1))))),((1
/ 2)
* (((
GoB f)
* ((i0
+ 1),(j2
+ 1)))
+ ((
GoB f)
* ((i1
+ 1),(j1
+ 1)))))))
c= (
LeftComp f) by
A3,
A5,
A6,
A55,
A199,
A202,
Th4,
NAT_1: 13;
A204: (
Int (
cell ((
GoB f),i1,j1))) is
convex by
A21,
A27,
Th16;
(
Int (
cell ((
GoB f),i1,j1)))
misses (
L~ f) by
A21,
A27,
GOBOARD7: 12;
then (
Int (
cell ((
GoB f),i1,j1)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A205: (
Int (
cell ((
GoB f),i1,j1)))
c= (
LeftComp f) by
A55,
A203,
A20,
A26,
A30,
A195,
A196,
A200,
A201,
Th4,
A204,
GOBOARD6: 82;
A206: (
left_cell (f,(k
+ 1)))
= (
cell ((
GoB f),i1,j2)) by
A4,
A5,
A13,
A14,
A16,
A17,
A31,
A45,
A196,
GOBOARD5: 30;
A207: (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i0
+ 1),j2))
+ ((
GoB f)
* ((i1
+ 1),(j2
+ 1))))),((1
/ 2)
* (((
GoB f)
* ((i0
+ 1),(j2
+ 1)))
+ ((
GoB f)
* ((i1
+ 1),(j1
+ 1)))))))
meets (
Int (
cell ((
GoB f),i1,j1))) by
A20,
A26,
A30,
A195,
A196,
A200,
A201,
GOBOARD6: 82;
(
LSeg (((1
/ 2)
* (((
GoB f)
* ((i0
+ 1),j2))
+ ((
GoB f)
* ((i1
+ 1),(j2
+ 1))))),((1
/ 2)
* (((
GoB f)
* ((i0
+ 1),(j2
+ 1)))
+ ((
GoB f)
* ((i1
+ 1),(j1
+ 1)))))))
misses (
L~ f) by
A5,
A6,
A11,
A14,
A17,
A18,
A28,
A30,
A31,
A50,
A51,
A54,
A195,
A196,
A200,
A201,
GOBOARD8: 6;
then (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i0
+ 1),j2))
+ ((
GoB f)
* ((i1
+ 1),(j2
+ 1))))),((1
/ 2)
* (((
GoB f)
* ((i0
+ 1),(j2
+ 1)))
+ ((
GoB f)
* ((i1
+ 1),(j1
+ 1)))))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A208: (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i0
+ 1),j2))
+ ((
GoB f)
* ((i1
+ 1),(j2
+ 1))))),((1
/ 2)
* (((
GoB f)
* ((i0
+ 1),(j2
+ 1)))
+ ((
GoB f)
* ((i1
+ 1),(j1
+ 1)))))))
c= (
LeftComp f) by
A55,
A205,
A207,
Th4;
A209: (
Int (
left_cell (f,(k
+ 1)))) is
convex by
A4,
A5,
Th17;
(
Int (
left_cell (f,(k
+ 1))))
misses (
L~ f) by
A4,
A5,
GOBOARD8: 37;
then (
Int (
left_cell (f,(k
+ 1))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
hence thesis by
A55,
A206,
A208,
A20,
A27,
A28,
A195,
A196,
A200,
Th4,
A209,
GOBOARD6: 82;
end;
suppose that
A210: (j0
+ 1)
= j1 and
A211: i1
= (i2
+ 1);
(
left_cell (f,k))
= (
cell ((
GoB f),i2,j0)) by
A6,
A7,
A10,
A11,
A13,
A14,
A30,
A210,
A211,
GOBOARD5: 27
.= (
left_cell (f,(k
+ 1))) by
A4,
A5,
A13,
A14,
A16,
A17,
A31,
A210,
A211,
GOBOARD5: 29;
hence thesis by
A3,
A5,
A6,
NAT_1: 13;
end;
suppose that
A212: i0
= (i1
+ 1) and
A213: (j1
+ 1)
= j2 and
A214: i1
= 1 and
A215: j1
= 1;
A216: (
left_cell (f,k))
= (
cell ((
GoB f),i1,(j1
-' 1))) by
A6,
A7,
A10,
A11,
A13,
A14,
A30,
A46,
A212,
GOBOARD5: 29;
(i1
-' 1)
<= i1 by
NAT_D: 35;
then
A217: (i1
-' 1)
<= (
len (
GoB f)) by
A21,
XXREAL_0: 2;
A218: (j1
-' 1)
=
0 by
A215,
XREAL_1: 232;
A219: (i1
-' 1)
=
0 by
A214,
XREAL_1: 232;
(j1
-' 1)
<= j1 by
NAT_D: 35;
then
A220: (j1
-' 1)
<= (
width (
GoB f)) by
A27,
XXREAL_0: 2;
A221: (
LSeg ((((
GoB f)
* (i1,j1))
-
|[1, 1]|),(((1
/ 2)
* (((
GoB f)
* (i1,j1))
+ ((
GoB f)
* (i0,j1))))
-
|[
0 , 1]|)))
meets (
Int (
cell ((
GoB f),i1,(j1
-' 1)))) by
A19,
A20,
A212,
A215,
A218,
GOBOARD6: 84;
(
LSeg ((((
GoB f)
* (i1,j1))
-
|[1, 1]|),(((1
/ 2)
* (((
GoB f)
* (i1,j1))
+ ((
GoB f)
* (i0,j1))))
-
|[
0 , 1]|)))
misses (
L~ f) by
A212,
A214,
A215,
GOBOARD8: 26;
then (
LSeg ((((
GoB f)
* (i1,j1))
-
|[1, 1]|),(((1
/ 2)
* (((
GoB f)
* (i1,j1))
+ ((
GoB f)
* (i0,j1))))
-
|[
0 , 1]|)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A222: (
LSeg ((((
GoB f)
* (i1,j1))
-
|[1, 1]|),(((1
/ 2)
* (((
GoB f)
* (i1,j1))
+ ((
GoB f)
* (i0,j1))))
-
|[
0 , 1]|)))
c= (
LeftComp f) by
A3,
A5,
A6,
A55,
A216,
A221,
Th4,
NAT_1: 13;
A223: (
Int (
cell ((
GoB f),(i1
-' 1),(j1
-' 1)))) is
convex by
A217,
A220,
Th16;
(
Int (
cell ((
GoB f),(i1
-' 1),(j1
-' 1))))
misses (
L~ f) by
A217,
A220,
GOBOARD7: 12;
then (
Int (
cell ((
GoB f),(i1
-' 1),(j1
-' 1))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A224: (
Int (
cell ((
GoB f),(i1
-' 1),(j1
-' 1))))
c= (
LeftComp f) by
A55,
A222,
A214,
A215,
A218,
Th4,
A223,
GOBOARD6: 87;
A225: (
left_cell (f,(k
+ 1)))
= (
cell ((
GoB f),(i1
-' 1),j1)) by
A4,
A5,
A13,
A14,
A16,
A17,
A31,
A45,
A213,
GOBOARD5: 27;
A226: (
LSeg ((((
GoB f)
* (i1,j1))
-
|[1, 1]|),(((1
/ 2)
* (((
GoB f)
* (i1,j1))
+ ((
GoB f)
* (i1,j2))))
-
|[1,
0 ]|)))
meets (
Int (
cell ((
GoB f),(i1
-' 1),(j1
-' 1)))) by
A214,
A215,
A218,
GOBOARD6: 87;
(
LSeg ((((
GoB f)
* (i1,j1))
-
|[1, 1]|),(((1
/ 2)
* (((
GoB f)
* (i1,j1))
+ ((
GoB f)
* (i1,j2))))
-
|[1,
0 ]|)))
misses (
L~ f) by
A213,
A214,
A215,
GOBOARD8: 32;
then (
LSeg ((((
GoB f)
* (i1,j1))
-
|[1, 1]|),(((1
/ 2)
* (((
GoB f)
* (i1,j1))
+ ((
GoB f)
* (i1,j2))))
-
|[1,
0 ]|)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A227: (
LSeg ((((
GoB f)
* (i1,j1))
-
|[1, 1]|),(((1
/ 2)
* (((
GoB f)
* (i1,j1))
+ ((
GoB f)
* (i1,j2))))
-
|[1,
0 ]|)))
c= (
LeftComp f) by
A55,
A224,
A226,
Th4;
A228: (
Int (
left_cell (f,(k
+ 1)))) is
convex by
A4,
A5,
Th17;
(
Int (
left_cell (f,(k
+ 1))))
misses (
L~ f) by
A4,
A5,
GOBOARD8: 37;
then (
Int (
left_cell (f,(k
+ 1))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
hence thesis by
A55,
A225,
A227,
A26,
A29,
A213,
A214,
A219,
Th4,
A228,
GOBOARD6: 85;
end;
suppose that
A229: i0
= (i1
+ 1) and
A230: (j1
+ 1)
= j2 and
A231: i1
<> 1 and
A232: j1
= 1;
A233: (
left_cell (f,k))
= (
cell ((
GoB f),i1,(j1
-' 1))) by
A6,
A7,
A10,
A11,
A13,
A14,
A30,
A46,
A229,
GOBOARD5: 29;
1
< i1 by
A20,
A231,
XXREAL_0: 1;
then
A234: 1
<= (i1
-' 1) by
A45,
NAT_1: 13;
A235: ((i1
-' 1)
+ (1
+ 1))
= i0 by
A45,
A229;
(i1
-' 1)
<= i1 by
NAT_D: 35;
then
A236: (i1
-' 1)
<= (
len (
GoB f)) by
A21,
XXREAL_0: 2;
A237: (j1
-' 1)
=
0 by
A232,
XREAL_1: 232;
(j1
-' 1)
<= j1 by
NAT_D: 35;
then
A238: (j1
-' 1)
<= (
width (
GoB f)) by
A27,
XXREAL_0: 2;
A239: (
LSeg ((((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),1))
+ ((
GoB f)
* (i1,1))))
-
|[
0 , 1]|),(((1
/ 2)
* (((
GoB f)
* (i1,1))
+ ((
GoB f)
* (i0,1))))
-
|[
0 , 1]|)))
meets (
Int (
cell ((
GoB f),i1,(j1
-' 1)))) by
A19,
A20,
A229,
A237,
GOBOARD6: 84;
(
LSeg ((((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),1))
+ ((
GoB f)
* (i1,1))))
-
|[
0 , 1]|),(((1
/ 2)
* (((
GoB f)
* (i1,1))
+ ((
GoB f)
* (i0,1))))
-
|[
0 , 1]|)))
misses (
L~ f) by
A19,
A45,
A234,
A235,
GOBOARD8: 25;
then (
LSeg ((((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),1))
+ ((
GoB f)
* (i1,1))))
-
|[
0 , 1]|),(((1
/ 2)
* (((
GoB f)
* (i1,1))
+ ((
GoB f)
* (i0,1))))
-
|[
0 , 1]|)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A240: (
LSeg ((((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),1))
+ ((
GoB f)
* (i1,1))))
-
|[
0 , 1]|),(((1
/ 2)
* (((
GoB f)
* (i1,1))
+ ((
GoB f)
* (i0,1))))
-
|[
0 , 1]|)))
c= (
LeftComp f) by
A3,
A5,
A6,
A55,
A233,
A239,
Th4,
NAT_1: 13;
A241: (
Int (
cell ((
GoB f),(i1
-' 1),(j1
-' 1)))) is
convex by
A236,
A238,
Th16;
(
Int (
cell ((
GoB f),(i1
-' 1),(j1
-' 1))))
misses (
L~ f) by
A236,
A238,
GOBOARD7: 12;
then (
Int (
cell ((
GoB f),(i1
-' 1),(j1
-' 1))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A242: (
Int (
cell ((
GoB f),(i1
-' 1),(j1
-' 1))))
c= (
LeftComp f) by
A55,
A240,
A21,
A45,
A234,
A237,
Th4,
A241,
GOBOARD6: 84;
A243: (
left_cell (f,(k
+ 1)))
= (
cell ((
GoB f),(i1
-' 1),j1)) by
A4,
A5,
A13,
A14,
A16,
A17,
A31,
A45,
A230,
GOBOARD5: 27;
A244: (
LSeg ((((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),1))
+ ((
GoB f)
* (i1,1))))
-
|[
0 , 1]|),((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),1))
+ ((
GoB f)
* (i1,2))))))
meets (
Int (
cell ((
GoB f),(i1
-' 1),(j1
-' 1)))) by
A21,
A45,
A234,
A237,
GOBOARD6: 84;
(
LSeg ((((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),1))
+ ((
GoB f)
* (i1,1))))
-
|[
0 , 1]|),((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),1))
+ ((
GoB f)
* (i1,2))))))
misses (
L~ f) by
A5,
A6,
A11,
A14,
A17,
A19,
A30,
A31,
A45,
A50,
A230,
A232,
A234,
A235,
GOBOARD8: 7;
then (
LSeg ((((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),1))
+ ((
GoB f)
* (i1,1))))
-
|[
0 , 1]|),((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),1))
+ ((
GoB f)
* (i1,2))))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A245: (
LSeg ((((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),1))
+ ((
GoB f)
* (i1,1))))
-
|[
0 , 1]|),((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),1))
+ ((
GoB f)
* (i1,2))))))
c= (
LeftComp f) by
A55,
A242,
A244,
Th4;
A246: (
Int (
left_cell (f,(k
+ 1)))) is
convex by
A4,
A5,
Th17;
(
Int (
left_cell (f,(k
+ 1))))
misses (
L~ f) by
A4,
A5,
GOBOARD8: 37;
then (
Int (
left_cell (f,(k
+ 1))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
hence thesis by
A55,
A243,
A245,
A21,
A29,
A45,
A230,
A232,
A234,
Th4,
A246,
GOBOARD6: 82;
end;
suppose that
A247: i0
= (i1
+ 1) and
A248: (j1
+ 1)
= j2 and
A249: i1
= 1 and
A250: j1
<> 1;
A251: (
left_cell (f,k))
= (
cell ((
GoB f),i1,(j1
-' 1))) by
A6,
A7,
A10,
A11,
A13,
A14,
A30,
A46,
A247,
GOBOARD5: 29;
1
< j0 by
A24,
A30,
A247,
A250,
XXREAL_0: 1;
then
A252: 1
<= (j0
-' 1) by
A30,
A46,
A247,
NAT_1: 13;
A253: ((j0
-' 1)
+ (1
+ 1))
= j2 by
A30,
A46,
A247,
A248;
A254: (
LSeg ((((1
/ 2)
* (((
GoB f)
* (1,(j1
-' 1)))
+ ((
GoB f)
* (1,((j1
-' 1)
+ 1)))))
-
|[1,
0 ]|),((1
/ 2)
* (((
GoB f)
* (1,(j1
-' 1)))
+ ((
GoB f)
* (2,((j1
-' 1)
+ 1)))))))
meets (
Int (
cell ((
GoB f),i1,(j1
-' 1)))) by
A19,
A27,
A30,
A46,
A247,
A249,
A252,
GOBOARD6: 82;
(
LSeg ((((1
/ 2)
* (((
GoB f)
* (1,(j1
-' 1)))
+ ((
GoB f)
* (1,((j1
-' 1)
+ 1)))))
-
|[1,
0 ]|),((1
/ 2)
* (((
GoB f)
* (1,(j1
-' 1)))
+ ((
GoB f)
* (2,((j1
-' 1)
+ 1)))))))
misses (
L~ f) by
A5,
A6,
A11,
A14,
A17,
A29,
A30,
A31,
A46,
A50,
A247,
A248,
A249,
A252,
A253,
GOBOARD8: 17;
then (
LSeg ((((1
/ 2)
* (((
GoB f)
* (1,(j1
-' 1)))
+ ((
GoB f)
* (1,((j1
-' 1)
+ 1)))))
-
|[1,
0 ]|),((1
/ 2)
* (((
GoB f)
* (1,(j1
-' 1)))
+ ((
GoB f)
* (2,((j1
-' 1)
+ 1)))))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A255: (
LSeg ((((1
/ 2)
* (((
GoB f)
* (1,(j1
-' 1)))
+ ((
GoB f)
* (1,((j1
-' 1)
+ 1)))))
-
|[1,
0 ]|),((1
/ 2)
* (((
GoB f)
* (1,(j1
-' 1)))
+ ((
GoB f)
* (2,((j1
-' 1)
+ 1)))))))
c= (
LeftComp f) by
A3,
A5,
A6,
A55,
A251,
A254,
Th4,
NAT_1: 13;
(i1
-' 1)
<= i1 by
NAT_D: 35;
then
A256: (i1
-' 1)
<= (
len (
GoB f)) by
A21,
XXREAL_0: 2;
A257: (i1
-' 1)
=
0 by
A249,
XREAL_1: 232;
(j1
-' 1)
<= j1 by
NAT_D: 35;
then
A258: (j1
-' 1)
<= (
width (
GoB f)) by
A27,
XXREAL_0: 2;
A259: (
Int (
cell ((
GoB f),(i1
-' 1),(j1
-' 1)))) is
convex by
A256,
A258,
Th16;
(
Int (
cell ((
GoB f),(i1
-' 1),(j1
-' 1))))
misses (
L~ f) by
A256,
A258,
GOBOARD7: 12;
then (
Int (
cell ((
GoB f),(i1
-' 1),(j1
-' 1))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A260: (
Int (
cell ((
GoB f),(i1
-' 1),(j1
-' 1))))
c= (
LeftComp f) by
A30,
A55,
A247,
A255,
A27,
A46,
A252,
A257,
Th4,
A259,
GOBOARD6: 85;
A261: (
left_cell (f,(k
+ 1)))
= (
cell ((
GoB f),(i1
-' 1),j1)) by
A4,
A5,
A13,
A14,
A16,
A17,
A31,
A45,
A248,
GOBOARD5: 27;
A262: (
LSeg ((((1
/ 2)
* (((
GoB f)
* (1,(j1
-' 1)))
+ ((
GoB f)
* (1,((j1
-' 1)
+ 1)))))
-
|[1,
0 ]|),(((1
/ 2)
* (((
GoB f)
* (1,((j1
-' 1)
+ 1)))
+ ((
GoB f)
* (1,((j1
-' 1)
+ 2)))))
-
|[1,
0 ]|)))
meets (
Int (
cell ((
GoB f),(i1
-' 1),(j1
-' 1)))) by
A27,
A30,
A46,
A247,
A252,
A257,
GOBOARD6: 85;
(
LSeg ((((1
/ 2)
* (((
GoB f)
* (1,(j1
-' 1)))
+ ((
GoB f)
* (1,((j1
-' 1)
+ 1)))))
-
|[1,
0 ]|),(((1
/ 2)
* (((
GoB f)
* (1,((j1
-' 1)
+ 1)))
+ ((
GoB f)
* (1,((j1
-' 1)
+ 2)))))
-
|[1,
0 ]|)))
misses (
L~ f) by
A29,
A30,
A46,
A247,
A248,
A252,
GOBOARD8: 31;
then (
LSeg ((((1
/ 2)
* (((
GoB f)
* (1,(j1
-' 1)))
+ ((
GoB f)
* (1,((j1
-' 1)
+ 1)))))
-
|[1,
0 ]|),(((1
/ 2)
* (((
GoB f)
* (1,((j1
-' 1)
+ 1)))
+ ((
GoB f)
* (1,((j1
-' 1)
+ 2)))))
-
|[1,
0 ]|)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A263: (
LSeg ((((1
/ 2)
* (((
GoB f)
* (1,(j1
-' 1)))
+ ((
GoB f)
* (1,((j1
-' 1)
+ 1)))))
-
|[1,
0 ]|),(((1
/ 2)
* (((
GoB f)
* (1,((j1
-' 1)
+ 1)))
+ ((
GoB f)
* (1,((j1
-' 1)
+ 2)))))
-
|[1,
0 ]|)))
c= (
LeftComp f) by
A55,
A260,
A262,
Th4;
A264: (
Int (
left_cell (f,(k
+ 1)))) is
convex by
A4,
A5,
Th17;
(
Int (
left_cell (f,(k
+ 1))))
misses (
L~ f) by
A4,
A5,
GOBOARD8: 37;
then (
Int (
left_cell (f,(k
+ 1))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
hence thesis by
A55,
A261,
A263,
A26,
A29,
A46,
A248,
A257,
Th4,
A264,
GOBOARD6: 85;
end;
suppose that
A265: i0
= (i1
+ 1) and
A266: (j1
+ 1)
= j2 and
A267: i1
<> 1 and
A268: j1
<> 1;
A269: (
left_cell (f,k))
= (
cell ((
GoB f),i1,(j1
-' 1))) by
A6,
A7,
A10,
A11,
A13,
A14,
A30,
A46,
A265,
GOBOARD5: 29;
1
< j0 by
A24,
A30,
A265,
A268,
XXREAL_0: 1;
then
A270: 1
<= (j0
-' 1) by
A30,
A46,
A265,
NAT_1: 13;
1
< i1 by
A20,
A267,
XXREAL_0: 1;
then
A271: 1
<= (i1
-' 1) by
A45,
NAT_1: 13;
A272: ((i1
-' 1)
+ (1
+ 1))
= i0 by
A45,
A265;
A273: ((j0
-' 1)
+ (1
+ 1))
= j2 by
A30,
A46,
A265,
A266;
A274: (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),(j0
-' 1)))
+ ((
GoB f)
* (i1,j1)))),((1
/ 2)
* (((
GoB f)
* (i1,(j0
-' 1)))
+ ((
GoB f)
* (i0,j1))))))
meets (
Int (
cell ((
GoB f),i1,(j1
-' 1)))) by
A19,
A20,
A27,
A30,
A46,
A265,
A270,
GOBOARD6: 82;
(
LSeg (((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),(j0
-' 1)))
+ ((
GoB f)
* (i1,j1)))),((1
/ 2)
* (((
GoB f)
* (i1,(j0
-' 1)))
+ ((
GoB f)
* (i0,j1))))))
misses (
L~ f) by
A5,
A6,
A11,
A14,
A17,
A19,
A29,
A30,
A31,
A45,
A46,
A50,
A266,
A270,
A271,
A272,
A273,
GOBOARD8: 12;
then (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),(j0
-' 1)))
+ ((
GoB f)
* (i1,j1)))),((1
/ 2)
* (((
GoB f)
* (i1,(j0
-' 1)))
+ ((
GoB f)
* (i0,j1))))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A275: (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),(j0
-' 1)))
+ ((
GoB f)
* (i1,j1)))),((1
/ 2)
* (((
GoB f)
* (i1,(j0
-' 1)))
+ ((
GoB f)
* (i0,j1))))))
c= (
LeftComp f) by
A3,
A5,
A6,
A55,
A269,
A274,
Th4,
NAT_1: 13;
(i1
-' 1)
<= i1 by
NAT_D: 35;
then
A276: (i1
-' 1)
<= (
len (
GoB f)) by
A21,
XXREAL_0: 2;
(j1
-' 1)
<= j1 by
NAT_D: 35;
then
A277: (j1
-' 1)
<= (
width (
GoB f)) by
A27,
XXREAL_0: 2;
A278: (
Int (
cell ((
GoB f),(i1
-' 1),(j1
-' 1)))) is
convex by
A276,
A277,
Th16;
(
Int (
cell ((
GoB f),(i1
-' 1),(j1
-' 1))))
misses (
L~ f) by
A276,
A277,
GOBOARD7: 12;
then (
Int (
cell ((
GoB f),(i1
-' 1),(j1
-' 1))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A279: (
Int (
cell ((
GoB f),(i1
-' 1),(j1
-' 1))))
c= (
LeftComp f) by
A30,
A55,
A265,
A275,
A21,
A27,
A45,
A46,
A270,
A271,
Th4,
A278,
GOBOARD6: 82;
A280: (
left_cell (f,(k
+ 1)))
= (
cell ((
GoB f),(i1
-' 1),j1)) by
A4,
A5,
A13,
A14,
A16,
A17,
A31,
A45,
A266,
GOBOARD5: 27;
A281: (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),(j1
-' 1)))
+ ((
GoB f)
* (i1,j1)))),((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),j1))
+ ((
GoB f)
* (i1,j2))))))
meets (
Int (
cell ((
GoB f),(i1
-' 1),(j1
-' 1)))) by
A21,
A27,
A30,
A45,
A46,
A265,
A270,
A271,
GOBOARD6: 82;
(
LSeg (((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),(j1
-' 1)))
+ ((
GoB f)
* (i1,j1)))),((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),j1))
+ ((
GoB f)
* (i1,j2))))))
misses (
L~ f) by
A5,
A6,
A11,
A14,
A17,
A19,
A29,
A30,
A31,
A45,
A46,
A50,
A266,
A270,
A271,
A272,
A273,
GOBOARD8: 2;
then (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),(j1
-' 1)))
+ ((
GoB f)
* (i1,j1)))),((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),j1))
+ ((
GoB f)
* (i1,j2))))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A282: (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),(j1
-' 1)))
+ ((
GoB f)
* (i1,j1)))),((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),j1))
+ ((
GoB f)
* (i1,j2))))))
c= (
LeftComp f) by
A55,
A279,
A281,
Th4;
A283: (
Int (
left_cell (f,(k
+ 1)))) is
convex by
A4,
A5,
Th17;
(
Int (
left_cell (f,(k
+ 1))))
misses (
L~ f) by
A4,
A5,
GOBOARD8: 37;
then (
Int (
left_cell (f,(k
+ 1))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
hence thesis by
A55,
A280,
A282,
A21,
A26,
A29,
A45,
A266,
A271,
Th4,
A283,
GOBOARD6: 82;
end;
suppose that
A284: j0
= (j1
+ 1) and
A285: (i1
+ 1)
= i2;
(
left_cell (f,k))
= (
cell ((
GoB f),i0,j1)) by
A6,
A7,
A10,
A11,
A13,
A14,
A30,
A45,
A284,
GOBOARD5: 30
.= (
left_cell (f,(k
+ 1))) by
A4,
A5,
A13,
A14,
A16,
A17,
A30,
A31,
A46,
A284,
A285,
GOBOARD5: 28;
hence thesis by
A3,
A5,
A6,
NAT_1: 13;
end;
suppose that
A286: (i0
+ 1)
= i1 and
A287: (i1
+ 1)
= i2 and
A288: j0
= (
width (
GoB f));
A289: (
left_cell (f,k))
= (
cell ((
GoB f),i0,(
width (
GoB f)))) by
A6,
A7,
A10,
A11,
A13,
A14,
A30,
A49,
A286,
A288,
GOBOARD5: 28;
A290: (
left_cell (f,(k
+ 1)))
= (
cell ((
GoB f),i1,(
width (
GoB f)))) by
A4,
A5,
A13,
A14,
A16,
A17,
A30,
A31,
A49,
A286,
A287,
A288,
GOBOARD5: 28;
A291: (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i0,(
width (
GoB f))))
+ ((
GoB f)
* ((i0
+ 1),(
width (
GoB f))))))
+
|[
0 , 1]|),(((1
/ 2)
* (((
GoB f)
* (i1,(
width (
GoB f))))
+ ((
GoB f)
* ((i1
+ 1),(
width (
GoB f))))))
+
|[
0 , 1]|)))
meets (
Int (
cell ((
GoB f),i0,(
width (
GoB f))))) by
A18,
A21,
A286,
GOBOARD6: 83;
(
LSeg ((((1
/ 2)
* (((
GoB f)
* (i0,(
width (
GoB f))))
+ ((
GoB f)
* ((i0
+ 1),(
width (
GoB f))))))
+
|[
0 , 1]|),(((1
/ 2)
* (((
GoB f)
* (i1,(
width (
GoB f))))
+ ((
GoB f)
* ((i1
+ 1),(
width (
GoB f))))))
+
|[
0 , 1]|)))
misses (
L~ f) by
A18,
A23,
A51,
A286,
A287,
GOBOARD8: 28;
then (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i0,(
width (
GoB f))))
+ ((
GoB f)
* ((i0
+ 1),(
width (
GoB f))))))
+
|[
0 , 1]|),(((1
/ 2)
* (((
GoB f)
* (i1,(
width (
GoB f))))
+ ((
GoB f)
* ((i1
+ 1),(
width (
GoB f))))))
+
|[
0 , 1]|)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A292: (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i0,(
width (
GoB f))))
+ ((
GoB f)
* ((i0
+ 1),(
width (
GoB f))))))
+
|[
0 , 1]|),(((1
/ 2)
* (((
GoB f)
* (i1,(
width (
GoB f))))
+ ((
GoB f)
* ((i1
+ 1),(
width (
GoB f))))))
+
|[
0 , 1]|)))
c= (
LeftComp f) by
A3,
A5,
A6,
A55,
A289,
A291,
Th4,
NAT_1: 13;
A293: (
Int (
left_cell (f,(k
+ 1)))) is
convex by
A4,
A5,
Th17;
(
Int (
left_cell (f,(k
+ 1))))
misses (
L~ f) by
A4,
A5,
GOBOARD8: 37;
then (
Int (
left_cell (f,(k
+ 1))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
hence thesis by
A55,
A290,
A292,
A20,
A23,
A287,
Th4,
A293,
GOBOARD6: 83;
end;
suppose that
A294: (i0
+ 1)
= i1 and
A295: (i1
+ 1)
= i2 and
A296: j0
<> (
width (
GoB f));
A297: (
left_cell (f,k))
= (
cell ((
GoB f),i0,j1)) by
A6,
A7,
A10,
A11,
A13,
A14,
A30,
A46,
A294,
GOBOARD5: 28;
(
width (
GoB f))
> j0 by
A25,
A296,
XXREAL_0: 1;
then
A298: (
width (
GoB f))
>= (j0
+ 1) by
NAT_1: 13;
A299: (
left_cell (f,(k
+ 1)))
= (
cell ((
GoB f),i1,j1)) by
A4,
A5,
A13,
A14,
A16,
A17,
A31,
A46,
A295,
GOBOARD5: 28;
A300: (
LSeg (((1
/ 2)
* (((
GoB f)
* (i0,j0))
+ ((
GoB f)
* ((i0
+ 1),(j0
+ 1))))),((1
/ 2)
* (((
GoB f)
* (i1,j0))
+ ((
GoB f)
* ((i1
+ 1),(j0
+ 1)))))))
meets (
Int (
cell ((
GoB f),i0,j1))) by
A18,
A21,
A26,
A30,
A294,
A298,
GOBOARD6: 82;
(
LSeg (((1
/ 2)
* (((
GoB f)
* (i0,j0))
+ ((
GoB f)
* ((i0
+ 1),(j0
+ 1))))),((1
/ 2)
* (((
GoB f)
* (i1,j0))
+ ((
GoB f)
* ((i1
+ 1),(j0
+ 1)))))))
misses (
L~ f) by
A5,
A6,
A11,
A14,
A17,
A18,
A23,
A24,
A30,
A31,
A50,
A51,
A294,
A295,
A298,
GOBOARD8: 14;
then (
LSeg (((1
/ 2)
* (((
GoB f)
* (i0,j0))
+ ((
GoB f)
* ((i0
+ 1),(j0
+ 1))))),((1
/ 2)
* (((
GoB f)
* (i1,j0))
+ ((
GoB f)
* ((i1
+ 1),(j0
+ 1)))))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A301: (
LSeg (((1
/ 2)
* (((
GoB f)
* (i0,j0))
+ ((
GoB f)
* ((i0
+ 1),(j0
+ 1))))),((1
/ 2)
* (((
GoB f)
* (i1,j0))
+ ((
GoB f)
* ((i1
+ 1),(j0
+ 1)))))))
c= (
LeftComp f) by
A3,
A5,
A6,
A55,
A297,
A300,
Th4,
NAT_1: 13;
A302: (
Int (
left_cell (f,(k
+ 1)))) is
convex by
A4,
A5,
Th17;
(
Int (
left_cell (f,(k
+ 1))))
misses (
L~ f) by
A4,
A5,
GOBOARD8: 37;
then (
Int (
left_cell (f,(k
+ 1))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
hence thesis by
A55,
A299,
A301,
A20,
A23,
A24,
A30,
A294,
A295,
A298,
Th4,
A302,
GOBOARD6: 82;
end;
suppose that
A303: (i0
+ 1)
= i1 and
A304: (j1
+ 1)
= j2;
(
left_cell (f,k))
= (
cell ((
GoB f),i0,j1)) by
A6,
A7,
A10,
A11,
A13,
A14,
A30,
A46,
A303,
GOBOARD5: 28
.= (
left_cell (f,(k
+ 1))) by
A4,
A5,
A13,
A14,
A16,
A17,
A31,
A303,
A304,
GOBOARD5: 27;
hence thesis by
A3,
A5,
A6,
NAT_1: 13;
end;
suppose that
A305: (j0
+ 1)
= j1 and
A306: (i1
+ 1)
= i2 and
A307: i0
= 1 and
A308: j1
= (
width (
GoB f));
A309: (
left_cell (f,k))
= (
cell ((
GoB f),(i1
-' 1),j0)) by
A6,
A7,
A10,
A11,
A13,
A14,
A30,
A45,
A305,
GOBOARD5: 27;
A310: (i0
-' 1)
=
0 by
A307,
XREAL_1: 232;
A311: (j1
-' 1)
= j0 by
A305,
NAT_D: 34;
A312: (
LSeg ((((1
/ 2)
* (((
GoB f)
* (1,j0))
+ ((
GoB f)
* (1,j1))))
-
|[1,
0 ]|),(((
GoB f)
* (1,j1))
+
|[(
- 1), 1]|)))
meets (
Int (
cell ((
GoB f),(i1
-' 1),j0))) by
A24,
A27,
A30,
A305,
A310,
GOBOARD6: 85;
(
LSeg ((((1
/ 2)
* (((
GoB f)
* (1,j0))
+ ((
GoB f)
* (1,j1))))
-
|[1,
0 ]|),(((
GoB f)
* (1,j1))
+
|[(
- 1), 1]|)))
misses (
L~ f) by
A308,
A311,
GOBOARD8: 33;
then (
LSeg ((((1
/ 2)
* (((
GoB f)
* (1,j0))
+ ((
GoB f)
* (1,j1))))
-
|[1,
0 ]|),(((
GoB f)
* (1,j1))
+
|[(
- 1), 1]|)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A313: (
LSeg ((((1
/ 2)
* (((
GoB f)
* (1,j0))
+ ((
GoB f)
* (1,j1))))
-
|[1,
0 ]|),(((
GoB f)
* (1,j1))
+
|[(
- 1), 1]|)))
c= (
LeftComp f) by
A3,
A5,
A6,
A55,
A309,
A312,
Th4,
NAT_1: 13;
(i1
-' 1)
<= i1 by
NAT_D: 35;
then
A314: (i1
-' 1)
<= (
len (
GoB f)) by
A21,
XXREAL_0: 2;
A315: (
Int (
cell ((
GoB f),(i1
-' 1),j1))) is
convex by
A27,
A314,
Th16;
(
Int (
cell ((
GoB f),(i1
-' 1),j1)))
misses (
L~ f) by
A27,
A314,
GOBOARD7: 12;
then (
Int (
cell ((
GoB f),(i1
-' 1),j1)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A316: (
Int (
cell ((
GoB f),(i1
-' 1),j1)))
c= (
LeftComp f) by
A30,
A55,
A305,
A313,
A308,
A310,
Th4,
A315,
GOBOARD6: 89;
A317: (
left_cell (f,(k
+ 1)))
= (
cell ((
GoB f),i1,j1)) by
A4,
A5,
A13,
A14,
A16,
A17,
A31,
A305,
A306,
GOBOARD5: 28;
A318: (
LSeg ((((
GoB f)
* (1,j1))
+
|[(
- 1), 1]|),(((1
/ 2)
* (((
GoB f)
* (1,j1))
+ ((
GoB f)
* (2,j1))))
+
|[
0 , 1]|)))
meets (
Int (
cell ((
GoB f),(i1
-' 1),j1))) by
A30,
A305,
A308,
A310,
GOBOARD6: 89;
(
LSeg ((((
GoB f)
* (1,j1))
+
|[(
- 1), 1]|),(((1
/ 2)
* (((
GoB f)
* (1,j1))
+ ((
GoB f)
* (2,j1))))
+
|[
0 , 1]|)))
misses (
L~ f) by
A308,
GOBOARD8: 29;
then (
LSeg ((((
GoB f)
* (1,j1))
+
|[(
- 1), 1]|),(((1
/ 2)
* (((
GoB f)
* (1,j1))
+ ((
GoB f)
* (2,j1))))
+
|[
0 , 1]|)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A319: (
LSeg ((((
GoB f)
* (1,j1))
+
|[(
- 1), 1]|),(((1
/ 2)
* (((
GoB f)
* (1,j1))
+ ((
GoB f)
* (2,j1))))
+
|[
0 , 1]|)))
c= (
LeftComp f) by
A55,
A316,
A318,
Th4;
A320: (
Int (
left_cell (f,(k
+ 1)))) is
convex by
A4,
A5,
Th17;
(
Int (
left_cell (f,(k
+ 1))))
misses (
L~ f) by
A4,
A5,
GOBOARD8: 37;
then (
Int (
left_cell (f,(k
+ 1))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
hence thesis by
A55,
A317,
A319,
A23,
A30,
A305,
A306,
A307,
A308,
Th4,
A320,
GOBOARD6: 83;
end;
suppose that
A321: (j0
+ 1)
= j1 and
A322: (i1
+ 1)
= i2 and
A323: i0
<> 1 and
A324: j1
= (
width (
GoB f));
A325: (
left_cell (f,k))
= (
cell ((
GoB f),(i1
-' 1),j0)) by
A6,
A7,
A10,
A11,
A13,
A14,
A30,
A45,
A321,
GOBOARD5: 27;
1
< i0 by
A18,
A323,
XXREAL_0: 1;
then
A326: 1
<= (i0
-' 1) by
A30,
A45,
A321,
NAT_1: 13;
A327: (j1
-' 1)
= j0 by
A321,
NAT_D: 34;
A328: ((i1
-' 1)
+ (1
+ 1))
= i2 by
A45,
A322;
A329: (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),j0))
+ ((
GoB f)
* (i1,j1)))),(((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),j1))
+ ((
GoB f)
* (i1,j1))))
+
|[
0 , 1]|)))
meets (
Int (
cell ((
GoB f),(i1
-' 1),j0))) by
A21,
A24,
A27,
A30,
A45,
A321,
A326,
GOBOARD6: 82;
(
LSeg (((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),j0))
+ ((
GoB f)
* (i1,j1)))),(((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),j1))
+ ((
GoB f)
* (i1,j1))))
+
|[
0 , 1]|)))
misses (
L~ f) by
A5,
A6,
A11,
A14,
A17,
A23,
A30,
A31,
A45,
A50,
A321,
A324,
A326,
A327,
A328,
GOBOARD8: 9;
then (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),j0))
+ ((
GoB f)
* (i1,j1)))),(((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),j1))
+ ((
GoB f)
* (i1,j1))))
+
|[
0 , 1]|)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A330: (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),j0))
+ ((
GoB f)
* (i1,j1)))),(((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),j1))
+ ((
GoB f)
* (i1,j1))))
+
|[
0 , 1]|)))
c= (
LeftComp f) by
A3,
A5,
A6,
A55,
A325,
A329,
Th4,
NAT_1: 13;
(i1
-' 1)
<= i1 by
NAT_D: 35;
then
A331: (i1
-' 1)
<= (
len (
GoB f)) by
A21,
XXREAL_0: 2;
A332: (
Int (
cell ((
GoB f),(i1
-' 1),j1))) is
convex by
A27,
A331,
Th16;
(
Int (
cell ((
GoB f),(i1
-' 1),j1)))
misses (
L~ f) by
A27,
A331,
GOBOARD7: 12;
then (
Int (
cell ((
GoB f),(i1
-' 1),j1)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A333: (
Int (
cell ((
GoB f),(i1
-' 1),j1)))
c= (
LeftComp f) by
A30,
A55,
A321,
A330,
A19,
A45,
A324,
A326,
Th4,
A332,
GOBOARD6: 83;
A334: (
left_cell (f,(k
+ 1)))
= (
cell ((
GoB f),i1,j1)) by
A4,
A5,
A13,
A14,
A16,
A17,
A31,
A321,
A322,
GOBOARD5: 28;
A335: (
LSeg ((((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),j1))
+ ((
GoB f)
* (i1,j1))))
+
|[
0 , 1]|),(((1
/ 2)
* (((
GoB f)
* (i1,j1))
+ ((
GoB f)
* (i2,j1))))
+
|[
0 , 1]|)))
meets (
Int (
cell ((
GoB f),(i1
-' 1),j1))) by
A21,
A30,
A45,
A321,
A324,
A326,
GOBOARD6: 83;
(
LSeg ((((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),j1))
+ ((
GoB f)
* (i1,j1))))
+
|[
0 , 1]|),(((1
/ 2)
* (((
GoB f)
* (i1,j1))
+ ((
GoB f)
* (i2,j1))))
+
|[
0 , 1]|)))
misses (
L~ f) by
A23,
A30,
A45,
A321,
A324,
A326,
A328,
GOBOARD8: 28;
then (
LSeg ((((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),j1))
+ ((
GoB f)
* (i1,j1))))
+
|[
0 , 1]|),(((1
/ 2)
* (((
GoB f)
* (i1,j1))
+ ((
GoB f)
* (i2,j1))))
+
|[
0 , 1]|)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A336: (
LSeg ((((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),j1))
+ ((
GoB f)
* (i1,j1))))
+
|[
0 , 1]|),(((1
/ 2)
* (((
GoB f)
* (i1,j1))
+ ((
GoB f)
* (i2,j1))))
+
|[
0 , 1]|)))
c= (
LeftComp f) by
A55,
A333,
A335,
Th4;
A337: (
Int (
left_cell (f,(k
+ 1)))) is
convex by
A4,
A5,
Th17;
(
Int (
left_cell (f,(k
+ 1))))
misses (
L~ f) by
A4,
A5,
GOBOARD8: 37;
then (
Int (
left_cell (f,(k
+ 1))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
hence thesis by
A55,
A334,
A336,
A20,
A23,
A322,
A324,
Th4,
A337,
GOBOARD6: 83;
end;
suppose that
A338: (j0
+ 1)
= j1 and
A339: (i1
+ 1)
= i2 and
A340: i0
= 1 and
A341: j1
<> (
width (
GoB f));
A342: (
left_cell (f,k))
= (
cell ((
GoB f),(i1
-' 1),j0)) by
A6,
A7,
A10,
A11,
A13,
A14,
A30,
A45,
A338,
GOBOARD5: 27;
(
width (
GoB f))
> j1 by
A27,
A341,
XXREAL_0: 1;
then
A343: (
width (
GoB f))
>= (j1
+ 1) by
NAT_1: 13;
A344: (i0
-' 1)
=
0 by
A340,
XREAL_1: 232;
A345: (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i0,j0))
+ ((
GoB f)
* (i0,j1))))
-
|[1,
0 ]|),(((1
/ 2)
* (((
GoB f)
* (i0,j1))
+ ((
GoB f)
* (i0,(j1
+ 1)))))
-
|[1,
0 ]|)))
meets (
Int (
cell ((
GoB f),(i1
-' 1),j0))) by
A24,
A27,
A30,
A338,
A340,
A344,
GOBOARD6: 85;
(
LSeg ((((1
/ 2)
* (((
GoB f)
* (i0,j0))
+ ((
GoB f)
* (i0,j1))))
-
|[1,
0 ]|),(((1
/ 2)
* (((
GoB f)
* (i0,j1))
+ ((
GoB f)
* (i0,(j1
+ 1)))))
-
|[1,
0 ]|)))
misses (
L~ f) by
A24,
A53,
A338,
A340,
A343,
GOBOARD8: 31;
then (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i0,j0))
+ ((
GoB f)
* (i0,j1))))
-
|[1,
0 ]|),(((1
/ 2)
* (((
GoB f)
* (i0,j1))
+ ((
GoB f)
* (i0,(j1
+ 1)))))
-
|[1,
0 ]|)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A346: (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i0,j0))
+ ((
GoB f)
* (i0,j1))))
-
|[1,
0 ]|),(((1
/ 2)
* (((
GoB f)
* (i0,j1))
+ ((
GoB f)
* (i0,(j1
+ 1)))))
-
|[1,
0 ]|)))
c= (
LeftComp f) by
A3,
A5,
A6,
A55,
A342,
A345,
Th4,
NAT_1: 13;
(i1
-' 1)
<= i1 by
NAT_D: 35;
then
A347: (i1
-' 1)
<= (
len (
GoB f)) by
A21,
XXREAL_0: 2;
A348: (
Int (
cell ((
GoB f),(i1
-' 1),j1))) is
convex by
A27,
A347,
Th16;
(
Int (
cell ((
GoB f),(i1
-' 1),j1)))
misses (
L~ f) by
A27,
A347,
GOBOARD7: 12;
then (
Int (
cell ((
GoB f),(i1
-' 1),j1)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A349: (
Int (
cell ((
GoB f),(i1
-' 1),j1)))
c= (
LeftComp f) by
A30,
A55,
A338,
A346,
A26,
A340,
A343,
A344,
Th4,
A348,
GOBOARD6: 85;
A350: (
left_cell (f,(k
+ 1)))
= (
cell ((
GoB f),i1,j1)) by
A4,
A5,
A13,
A14,
A16,
A17,
A31,
A338,
A339,
GOBOARD5: 28;
A351: (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i1,(j0
+ 1)))
+ ((
GoB f)
* (i1,(j0
+ 2)))))
-
|[1,
0 ]|),((1
/ 2)
* (((
GoB f)
* (i1,(j0
+ 1)))
+ ((
GoB f)
* (i2,(j0
+ 2)))))))
meets (
Int (
cell ((
GoB f),(i1
-' 1),j1))) by
A26,
A30,
A338,
A340,
A343,
A344,
GOBOARD6: 85;
(
LSeg ((((1
/ 2)
* (((
GoB f)
* (i1,(j0
+ 1)))
+ ((
GoB f)
* (i1,(j0
+ 2)))))
-
|[1,
0 ]|),((1
/ 2)
* (((
GoB f)
* (i1,(j0
+ 1)))
+ ((
GoB f)
* (i2,(j0
+ 2)))))))
misses (
L~ f) by
A5,
A6,
A11,
A14,
A17,
A24,
A30,
A31,
A50,
A338,
A339,
A340,
A343,
GOBOARD8: 18;
then (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i1,(j0
+ 1)))
+ ((
GoB f)
* (i1,(j0
+ 2)))))
-
|[1,
0 ]|),((1
/ 2)
* (((
GoB f)
* (i1,(j0
+ 1)))
+ ((
GoB f)
* (i2,(j0
+ 2)))))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A352: (
LSeg ((((1
/ 2)
* (((
GoB f)
* (i1,(j0
+ 1)))
+ ((
GoB f)
* (i1,(j0
+ 2)))))
-
|[1,
0 ]|),((1
/ 2)
* (((
GoB f)
* (i1,(j0
+ 1)))
+ ((
GoB f)
* (i2,(j0
+ 2)))))))
c= (
LeftComp f) by
A55,
A349,
A351,
Th4;
A353: (
Int (
left_cell (f,(k
+ 1)))) is
convex by
A4,
A5,
Th17;
(
Int (
left_cell (f,(k
+ 1))))
misses (
L~ f) by
A4,
A5,
GOBOARD8: 37;
then (
Int (
left_cell (f,(k
+ 1))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
hence thesis by
A55,
A350,
A352,
A20,
A23,
A26,
A338,
A339,
A343,
Th4,
A353,
GOBOARD6: 82;
end;
suppose that
A354: (j0
+ 1)
= j1 and
A355: (i1
+ 1)
= i2 and
A356: i0
<> 1 and
A357: j1
<> (
width (
GoB f));
A358: (
left_cell (f,k))
= (
cell ((
GoB f),(i1
-' 1),j0)) by
A6,
A7,
A10,
A11,
A13,
A14,
A30,
A45,
A354,
GOBOARD5: 27;
1
< i0 by
A18,
A356,
XXREAL_0: 1;
then
A359: 1
<= (i0
-' 1) by
A30,
A45,
A354,
NAT_1: 13;
(
width (
GoB f))
> j1 by
A27,
A357,
XXREAL_0: 1;
then
A360: (
width (
GoB f))
>= (j1
+ 1) by
NAT_1: 13;
A361: ((i1
-' 1)
+ (1
+ 1))
= i2 by
A45,
A355;
A362: (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i0
-' 1),j0))
+ ((
GoB f)
* (i0,j1)))),((1
/ 2)
* (((
GoB f)
* ((i0
-' 1),j1))
+ ((
GoB f)
* (i0,(j1
+ 1)))))))
meets (
Int (
cell ((
GoB f),(i1
-' 1),j0))) by
A21,
A24,
A27,
A30,
A45,
A354,
A359,
GOBOARD6: 82;
(
LSeg (((1
/ 2)
* (((
GoB f)
* ((i0
-' 1),j0))
+ ((
GoB f)
* (i0,j1)))),((1
/ 2)
* (((
GoB f)
* ((i0
-' 1),j1))
+ ((
GoB f)
* (i0,(j1
+ 1)))))))
misses (
L~ f) by
A5,
A6,
A11,
A14,
A17,
A23,
A24,
A30,
A31,
A45,
A50,
A53,
A354,
A359,
A360,
A361,
GOBOARD8: 3;
then (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i0
-' 1),j0))
+ ((
GoB f)
* (i0,j1)))),((1
/ 2)
* (((
GoB f)
* ((i0
-' 1),j1))
+ ((
GoB f)
* (i0,(j1
+ 1)))))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A363: (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i0
-' 1),j0))
+ ((
GoB f)
* (i0,j1)))),((1
/ 2)
* (((
GoB f)
* ((i0
-' 1),j1))
+ ((
GoB f)
* (i0,(j1
+ 1)))))))
c= (
LeftComp f) by
A3,
A5,
A6,
A55,
A358,
A362,
Th4,
NAT_1: 13;
(i1
-' 1)
<= i1 by
NAT_D: 35;
then
A364: (i1
-' 1)
<= (
len (
GoB f)) by
A21,
XXREAL_0: 2;
A365: (
Int (
cell ((
GoB f),(i1
-' 1),j1))) is
convex by
A27,
A364,
Th16;
(
Int (
cell ((
GoB f),(i1
-' 1),j1)))
misses (
L~ f) by
A27,
A364,
GOBOARD7: 12;
then (
Int (
cell ((
GoB f),(i1
-' 1),j1)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A366: (
Int (
cell ((
GoB f),(i1
-' 1),j1)))
c= (
LeftComp f) by
A30,
A55,
A354,
A363,
A19,
A26,
A45,
A359,
A360,
Th4,
A365,
GOBOARD6: 82;
A367: (
left_cell (f,(k
+ 1)))
= (
cell ((
GoB f),i1,j1)) by
A4,
A5,
A13,
A14,
A16,
A17,
A31,
A354,
A355,
GOBOARD5: 28;
A368: (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),j1))
+ ((
GoB f)
* (i1,(j1
+ 1))))),((1
/ 2)
* (((
GoB f)
* (i1,j1))
+ ((
GoB f)
* (i2,(j1
+ 1)))))))
meets (
Int (
cell ((
GoB f),(i1
-' 1),j1))) by
A21,
A26,
A30,
A45,
A354,
A359,
A360,
GOBOARD6: 82;
(
LSeg (((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),j1))
+ ((
GoB f)
* (i1,(j1
+ 1))))),((1
/ 2)
* (((
GoB f)
* (i1,j1))
+ ((
GoB f)
* (i2,(j1
+ 1)))))))
misses (
L~ f) by
A5,
A6,
A11,
A14,
A17,
A23,
A24,
A30,
A31,
A45,
A50,
A53,
A354,
A359,
A360,
A361,
GOBOARD8: 15;
then (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),j1))
+ ((
GoB f)
* (i1,(j1
+ 1))))),((1
/ 2)
* (((
GoB f)
* (i1,j1))
+ ((
GoB f)
* (i2,(j1
+ 1)))))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A369: (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i1
-' 1),j1))
+ ((
GoB f)
* (i1,(j1
+ 1))))),((1
/ 2)
* (((
GoB f)
* (i1,j1))
+ ((
GoB f)
* (i2,(j1
+ 1)))))))
c= (
LeftComp f) by
A55,
A366,
A368,
Th4;
A370: (
Int (
left_cell (f,(k
+ 1)))) is
convex by
A4,
A5,
Th17;
(
Int (
left_cell (f,(k
+ 1))))
misses (
L~ f) by
A4,
A5,
GOBOARD8: 37;
then (
Int (
left_cell (f,(k
+ 1))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
hence thesis by
A55,
A367,
A369,
A20,
A23,
A26,
A355,
A360,
Th4,
A370,
GOBOARD6: 82;
end;
suppose that
A371: (j0
+ 1)
= j1 and
A372: (j1
+ 1)
= j2 and
A373: i0
= 1;
A374: (
left_cell (f,k))
= (
cell ((
GoB f),
0 ,j0)) by
A6,
A7,
A10,
A11,
A13,
A14,
A30,
A56,
A371,
A373,
GOBOARD5: 27;
A375: (
left_cell (f,(k
+ 1)))
= (
cell ((
GoB f),
0 ,j1)) by
A4,
A5,
A13,
A14,
A16,
A17,
A30,
A31,
A56,
A371,
A372,
A373,
GOBOARD5: 27;
A376: (
LSeg ((((1
/ 2)
* (((
GoB f)
* (1,j0))
+ ((
GoB f)
* (1,j1))))
-
|[1,
0 ]|),(((1
/ 2)
* (((
GoB f)
* (1,j1))
+ ((
GoB f)
* (1,j2))))
-
|[1,
0 ]|)))
meets (
Int (
cell ((
GoB f),
0 ,j0))) by
A24,
A27,
A371,
GOBOARD6: 85;
(
LSeg ((((1
/ 2)
* (((
GoB f)
* (1,j0))
+ ((
GoB f)
* (1,j1))))
-
|[1,
0 ]|),(((1
/ 2)
* (((
GoB f)
* (1,j1))
+ ((
GoB f)
* (1,j2))))
-
|[1,
0 ]|)))
misses (
L~ f) by
A24,
A29,
A53,
A371,
A372,
GOBOARD8: 31;
then (
LSeg ((((1
/ 2)
* (((
GoB f)
* (1,j0))
+ ((
GoB f)
* (1,j1))))
-
|[1,
0 ]|),(((1
/ 2)
* (((
GoB f)
* (1,j1))
+ ((
GoB f)
* (1,j2))))
-
|[1,
0 ]|)))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A377: (
LSeg ((((1
/ 2)
* (((
GoB f)
* (1,j0))
+ ((
GoB f)
* (1,j1))))
-
|[1,
0 ]|),(((1
/ 2)
* (((
GoB f)
* (1,j1))
+ ((
GoB f)
* (1,j2))))
-
|[1,
0 ]|)))
c= (
LeftComp f) by
A3,
A5,
A6,
A55,
A374,
A376,
Th4,
NAT_1: 13;
A378: (
Int (
left_cell (f,(k
+ 1)))) is
convex by
A4,
A5,
Th17;
(
Int (
left_cell (f,(k
+ 1))))
misses (
L~ f) by
A4,
A5,
GOBOARD8: 37;
then (
Int (
left_cell (f,(k
+ 1))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
hence thesis by
A55,
A375,
A377,
A26,
A29,
A372,
Th4,
A378,
GOBOARD6: 85;
end;
suppose that
A379: (j0
+ 1)
= j1 and
A380: (j1
+ 1)
= j2 and
A381: i0
<> 1;
A382: (
left_cell (f,k))
= (
cell ((
GoB f),(i1
-' 1),j0)) by
A6,
A7,
A10,
A11,
A13,
A14,
A30,
A45,
A379,
GOBOARD5: 27;
1
< i0 by
A18,
A381,
XXREAL_0: 1;
then
A383: 1
<= (i0
-' 1) by
A30,
A45,
A379,
NAT_1: 13;
A384: (
left_cell (f,(k
+ 1)))
= (
cell ((
GoB f),(i1
-' 1),j1)) by
A4,
A5,
A13,
A14,
A16,
A17,
A31,
A45,
A380,
GOBOARD5: 27;
A385: (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i0
-' 1),j0))
+ ((
GoB f)
* (i0,j1)))),((1
/ 2)
* (((
GoB f)
* ((i0
-' 1),j1))
+ ((
GoB f)
* (i0,j2))))))
meets (
Int (
cell ((
GoB f),(i1
-' 1),j0))) by
A21,
A24,
A27,
A30,
A45,
A379,
A383,
GOBOARD6: 82;
(
LSeg (((1
/ 2)
* (((
GoB f)
* ((i0
-' 1),j0))
+ ((
GoB f)
* (i0,j1)))),((1
/ 2)
* (((
GoB f)
* ((i0
-' 1),j1))
+ ((
GoB f)
* (i0,j2))))))
misses (
L~ f) by
A5,
A6,
A11,
A14,
A17,
A19,
A24,
A29,
A30,
A31,
A45,
A50,
A53,
A379,
A380,
A383,
GOBOARD8: 1;
then (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i0
-' 1),j0))
+ ((
GoB f)
* (i0,j1)))),((1
/ 2)
* (((
GoB f)
* ((i0
-' 1),j1))
+ ((
GoB f)
* (i0,j2))))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
then
A386: (
LSeg (((1
/ 2)
* (((
GoB f)
* ((i0
-' 1),j0))
+ ((
GoB f)
* (i0,j1)))),((1
/ 2)
* (((
GoB f)
* ((i0
-' 1),j1))
+ ((
GoB f)
* (i0,j2))))))
c= (
LeftComp f) by
A3,
A5,
A6,
A55,
A382,
A385,
Th4,
NAT_1: 13;
A387: (
Int (
left_cell (f,(k
+ 1)))) is
convex by
A4,
A5,
Th17;
(
Int (
left_cell (f,(k
+ 1))))
misses (
L~ f) by
A4,
A5,
GOBOARD8: 37;
then (
Int (
left_cell (f,(k
+ 1))))
c= ((
L~ f)
` ) by
SUBSET_1: 23;
hence thesis by
A30,
A55,
A379,
A384,
A386,
A19,
A26,
A29,
A45,
A380,
A383,
Th4,
A387,
GOBOARD6: 82;
end;
end;
hence thesis;
end;
end;
end;
thus for k holds
P[k] from
NAT_1:sch 2(
A1,
A2);
end;
theorem ::
GOBOARD9:22
(
GoB (
Rev f))
= (
GoB f) by
Lm1;
theorem ::
GOBOARD9:23
Th21: (
RightComp f)
= (
LeftComp (
Rev f))
proof
(
LeftComp (
Rev f))
is_a_component_of ((
L~ (
Rev f))
` ) by
Def1;
then
A1: (
LeftComp (
Rev f))
is_a_component_of ((
L~ f)
` ) by
SPPOL_2: 22;
A2: (
len f)
>= 4 by
GOBOARD7: 34;
A3: (
len f)
>= (1
+ 1) by
GOBOARD7: 34,
XXREAL_0: 2;
A4: (((
len f)
-' 1)
+ 1)
= (
len f) by
A2,
XREAL_1: 235,
XXREAL_0: 2;
then
A5: 1
<= ((
len f)
-' 1) by
A3,
XREAL_1: 6;
A6: (((
len f)
-' 1)
+ 1)
<= (
len (
Rev f)) by
A4,
FINSEQ_5:def 3;
(
right_cell (f,1))
= (
left_cell ((
Rev f),((
len f)
-' 1))) by
A4,
A5,
Th9;
then (
Int (
right_cell (f,1)))
c= (
LeftComp (
Rev f)) by
A5,
A6,
Th19;
hence thesis by
A1,
Def2;
end;
theorem ::
GOBOARD9:24
(
RightComp (
Rev f))
= (
LeftComp f)
proof
(
Rev (
Rev f))
= f;
hence thesis by
Th21;
end;
theorem ::
GOBOARD9:25
for k st 1
<= k & (k
+ 1)
<= (
len f) holds (
Int (
right_cell (f,k)))
c= (
RightComp f)
proof
let k such that
A1: 1
<= k and
A2: (k
+ 1)
<= (
len f);
A3: (
len f)
= (
len (
Rev f)) by
FINSEQ_5:def 3;
k
<= (
len f) by
A2,
NAT_1: 13;
then
A4: (((
len f)
-' k)
+ k)
= (
len f) by
XREAL_1: 235;
then
A5: 1
<= ((
len f)
-' k) by
A2,
XREAL_1: 6;
A6: (((
len f)
-' k)
+ 1)
<= (
len f) by
A1,
A4,
XREAL_1: 6;
A7: (
right_cell (f,k))
= (
left_cell ((
Rev f),((
len f)
-' k))) by
A1,
A4,
A5,
Th9;
(
RightComp f)
= (
LeftComp (
Rev f)) by
Th21;
hence thesis by
A3,
A5,
A6,
A7,
Th19;
end;