limfunc2.miz
begin
reserve r,r1,r2,g,g1,g2,x0,t for
Real;
reserve n,k for
Nat;
reserve seq for
Real_Sequence;
reserve f,f1,f2 for
PartFunc of
REAL ,
REAL ;
Lm1: for r,g,r1 be
Real holds
0
< g & r
<= r1 implies (r
- g)
< r1 & r
< (r1
+ g)
proof
let r,g,r1 be
Real;
assume that
A1:
0
< g and
A2: r
<= r1;
(r
- g)
< (r1
-
0 ) by
A1,
A2,
XREAL_1: 15;
hence (r
- g)
< r1;
(r
+
0 )
< (r1
+ g) by
A1,
A2,
XREAL_1: 8;
hence thesis;
end;
Lm2: for X be
Subset of
REAL st (
rng seq)
c= ((
dom (f1
(#) f2))
/\ X) holds (
rng seq)
c= (
dom (f1
(#) f2)) & (
rng seq)
c= X & (
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) & (
rng seq)
c= (
dom f1) & (
rng seq)
c= (
dom f2) & (
rng seq)
c= ((
dom f1)
/\ X) & (
rng seq)
c= ((
dom f2)
/\ X)
proof
let X be
Subset of
REAL such that
A1: (
rng seq)
c= ((
dom (f1
(#) f2))
/\ X);
A2: ((
dom (f1
(#) f2))
/\ X)
c= X by
XBOOLE_1: 17;
((
dom (f1
(#) f2))
/\ X)
c= (
dom (f1
(#) f2)) by
XBOOLE_1: 17;
hence
A3: (
rng seq)
c= (
dom (f1
(#) f2)) & (
rng seq)
c= X by
A1,
A2,
XBOOLE_1: 1;
thus
A4: (
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) by
VALUED_1:def 4;
then
A5: (
dom (f1
(#) f2))
c= (
dom f2) by
XBOOLE_1: 17;
(
dom (f1
(#) f2))
c= (
dom f1) by
A4,
XBOOLE_1: 17;
hence (
rng seq)
c= (
dom f1) & (
rng seq)
c= (
dom f2) by
A3,
A5,
XBOOLE_1: 1;
hence thesis by
A3,
XBOOLE_1: 19;
end;
Lm3: (r
- (1
/ (n
+ 1)))
< r & r
< (r
+ (1
/ (n
+ 1)))
proof
0
< (1
/ (n
+ 1)) by
XREAL_1: 139;
hence thesis by
Lm1;
end;
Lm4: for X be
Subset of
REAL st (
rng seq)
c= ((
dom (f1
+ f2))
/\ X) holds (
rng seq)
c= (
dom (f1
+ f2)) & (
rng seq)
c= X & (
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) & (
rng seq)
c= ((
dom f1)
/\ X) & (
rng seq)
c= ((
dom f2)
/\ X)
proof
let X be
Subset of
REAL such that
A1: (
rng seq)
c= ((
dom (f1
+ f2))
/\ X);
A2: ((
dom (f1
+ f2))
/\ X)
c= X by
XBOOLE_1: 17;
((
dom (f1
+ f2))
/\ X)
c= (
dom (f1
+ f2)) by
XBOOLE_1: 17;
hence
A3: (
rng seq)
c= (
dom (f1
+ f2)) & (
rng seq)
c= X by
A1,
A2,
XBOOLE_1: 1;
thus
A4: (
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) by
VALUED_1:def 1;
then (
dom (f1
+ f2))
c= (
dom f2) by
XBOOLE_1: 17;
then
A5: (
rng seq)
c= (
dom f2) by
A3,
XBOOLE_1: 1;
(
dom (f1
+ f2))
c= (
dom f1) by
A4,
XBOOLE_1: 17;
then (
rng seq)
c= (
dom f1) by
A3,
XBOOLE_1: 1;
hence thesis by
A3,
A5,
XBOOLE_1: 19;
end;
theorem ::
LIMFUNC2:1
Th1: seq is
convergent & r
< (
lim seq) implies ex n st for k st n
<= k holds r
< (seq
. k)
proof
assume that
A1: seq is
convergent and
A2: r
< (
lim seq);
reconsider rr = r as
Element of
REAL by
XREAL_0:def 1;
set s = (
seq_const r);
A3: (seq
- s) is
convergent by
A1;
(s
.
0 )
= r by
SEQ_1: 57;
then (
lim s)
= r by
SEQ_4: 25;
then (
lim (seq
- s))
= ((
lim seq)
- r) by
A1,
SEQ_2: 12;
then
consider n such that
A4: for k st n
<= k holds
0
< ((seq
- s)
. k) by
A2,
A3,
LIMFUNC1: 4,
XREAL_1: 50;
take n;
let k;
assume n
<= k;
then
0
< ((seq
- s)
. k) by
A4;
then
0
< ((seq
. k)
- (s
. k)) by
RFUNCT_2: 1;
then
0
< ((seq
. k)
- r) by
SEQ_1: 57;
then (
0
+ r)
< (seq
. k) by
XREAL_1: 20;
hence thesis;
end;
theorem ::
LIMFUNC2:2
Th2: seq is
convergent & (
lim seq)
< r implies ex n st for k st n
<= k holds (seq
. k)
< r
proof
assume that
A1: seq is
convergent and
A2: (
lim seq)
< r;
reconsider rr = r as
Element of
REAL by
XREAL_0:def 1;
set s = (
seq_const r);
A3: (s
- seq) is
convergent by
A1;
(s
.
0 )
= r by
SEQ_1: 57;
then (
lim s)
= r by
SEQ_4: 25;
then (
lim (s
- seq))
= (r
- (
lim seq)) by
A1,
SEQ_2: 12;
then
consider n such that
A4: for k st n
<= k holds
0
< ((s
- seq)
. k) by
A2,
A3,
LIMFUNC1: 4,
XREAL_1: 50;
take n;
let k;
assume n
<= k;
then
0
< ((s
- seq)
. k) by
A4;
then
0
< ((s
. k)
- (seq
. k)) by
RFUNCT_2: 1;
then
0
< (r
- (seq
. k)) by
SEQ_1: 57;
then (
0
+ (seq
. k))
< r by
XREAL_1: 20;
hence thesis;
end;
Lm5: (for g1 holds ex r st x0
< r & for r1 st r1
< r & x0
< r1 & r1
in (
dom f) holds (f
. r1)
< g1) & seq is
convergent & (
lim seq)
= x0 & (
rng seq)
c= ((
dom f)
/\ (
right_open_halfline x0)) implies (f
/* seq) is
divergent_to-infty
proof
assume that
A1: for g1 holds ex r st x0
< r & for r1 st r1
< r & x0
< r1 & r1
in (
dom f) holds (f
. r1)
< g1 and
A2: seq is
convergent and
A3: (
lim seq)
= x0 and
A4: (
rng seq)
c= ((
dom f)
/\ (
right_open_halfline x0));
A5: ((
dom f)
/\ (
right_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
now
let g1;
consider r such that
A6: x0
< r and
A7: for r1 st r1
< r & x0
< r1 & r1
in (
dom f) holds (f
. r1)
< g1 by
A1;
consider n such that
A8: for k st n
<= k holds (seq
. k)
< r by
A2,
A3,
A6,
Th2;
take n;
let k;
assume
A9: n
<= k;
A10: (seq
. k)
in (
rng seq) by
VALUED_0: 28;
then (seq
. k)
in (
right_open_halfline x0) by
A4,
XBOOLE_0:def 4;
then (seq
. k)
in { g2 : x0
< g2 } by
XXREAL_1: 230;
then
A11: ex g2 st g2
= (seq
. k) & x0
< g2;
A12: k
in
NAT by
ORDINAL1:def 12;
(seq
. k)
in (
dom f) by
A4,
A10,
XBOOLE_0:def 4;
then (f
. (seq
. k))
< g1 by
A7,
A8,
A9,
A11;
hence ((f
/* seq)
. k)
< g1 by
A4,
A5,
FUNCT_2: 108,
XBOOLE_1: 1,
A12;
end;
hence thesis;
end;
theorem ::
LIMFUNC2:3
Th3:
0
< r2 &
].(r1
- r2), r1.[
c= (
dom f) implies for r st r
< r1 holds ex g st r
< g & g
< r1 & g
in (
dom f)
proof
assume that
A1:
0
< r2 and
A2:
].(r1
- r2), r1.[
c= (
dom f);
let r such that
A3: r
< r1;
now
per cases ;
suppose
A4: (r1
- r2)
<= r;
consider g be
Real such that
A5: r
< g and
A6: g
< r1 by
A3,
XREAL_1: 5;
reconsider g as
Real;
take g;
thus r
< g & g
< r1 by
A5,
A6;
(r1
- r2)
< g by
A4,
A5,
XXREAL_0: 2;
then g
in { g2 : (r1
- r2)
< g2 & g2
< r1 } by
A6;
then g
in
].(r1
- r2), r1.[ by
RCOMP_1:def 2;
hence g
in (
dom f) by
A2;
end;
suppose
A7: r
<= (r1
- r2);
(r1
- r2)
< r1 by
A1,
Lm1;
then
consider g be
Real such that
A8: (r1
- r2)
< g and
A9: g
< r1 by
XREAL_1: 5;
reconsider g as
Real;
take g;
thus r
< g & g
< r1 by
A7,
A8,
A9,
XXREAL_0: 2;
g
in { g2 : (r1
- r2)
< g2 & g2
< r1 } by
A8,
A9;
then g
in
].(r1
- r2), r1.[ by
RCOMP_1:def 2;
hence g
in (
dom f) by
A2;
end;
end;
hence thesis;
end;
theorem ::
LIMFUNC2:4
Th4:
0
< r2 &
].r1, (r1
+ r2).[
c= (
dom f) implies for r st r1
< r holds ex g st g
< r & r1
< g & g
in (
dom f)
proof
assume that
A1:
0
< r2 and
A2:
].r1, (r1
+ r2).[
c= (
dom f);
let r such that
A3: r1
< r;
now
per cases ;
suppose
A4: (r1
+ r2)
<= r;
r1
< (r1
+ r2) by
A1,
Lm1;
then
consider g be
Real such that
A5: r1
< g and
A6: g
< (r1
+ r2) by
XREAL_1: 5;
reconsider g as
Real;
take g;
thus g
< r & r1
< g by
A4,
A5,
A6,
XXREAL_0: 2;
g
in { g2 : r1
< g2 & g2
< (r1
+ r2) } by
A5,
A6;
then g
in
].r1, (r1
+ r2).[ by
RCOMP_1:def 2;
hence g
in (
dom f) by
A2;
end;
suppose
A7: r
<= (r1
+ r2);
consider g be
Real such that
A8: r1
< g and
A9: g
< r by
A3,
XREAL_1: 5;
reconsider g as
Real;
take g;
thus g
< r & r1
< g by
A8,
A9;
g
< (r1
+ r2) by
A7,
A9,
XXREAL_0: 2;
then g
in { g2 : r1
< g2 & g2
< (r1
+ r2) } by
A8;
then g
in
].r1, (r1
+ r2).[ by
RCOMP_1:def 2;
hence g
in (
dom f) by
A2;
end;
end;
hence thesis;
end;
theorem ::
LIMFUNC2:5
Th5: (for n holds (x0
- (1
/ (n
+ 1)))
< (seq
. n) & (seq
. n)
< x0 & (seq
. n)
in (
dom f)) implies seq is
convergent & (
lim seq)
= x0 & (
rng seq)
c= (
dom f) & (
rng seq)
c= ((
dom f)
/\ (
left_open_halfline x0))
proof
deffunc
U(
Nat) = (1
/ ($1
+ 1));
consider s1 be
Real_Sequence such that
A1: for n holds (s1
. n)
=
U(n) from
SEQ_1:sch 1;
reconsider xx0 = x0 as
Element of
REAL by
XREAL_0:def 1;
set s2 = (
seq_const x0);
A2: s1 is
convergent by
A1,
SEQ_4: 31;
then
A3: (s2
- s1) is
convergent;
assume
A4: for n holds (x0
- (1
/ (n
+ 1)))
< (seq
. n) & (seq
. n)
< x0 & (seq
. n)
in (
dom f);
A5:
now
let n;
A6: ((s2
- s1)
. n)
= ((s2
. n)
- (s1
. n)) by
RFUNCT_2: 1
.= (x0
- (s1
. n)) by
SEQ_1: 57
.= (x0
- (1
/ (n
+ 1))) by
A1;
(seq
. n)
<= x0 by
A4;
hence ((s2
- s1)
. n)
<= (seq
. n) & (seq
. n)
<= (s2
. n) by
A4,
A6,
SEQ_1: 57;
end;
(s2
.
0 )
= x0 by
SEQ_1: 57;
then
A7: (
lim s2)
= x0 by
SEQ_4: 25;
(
lim s1)
=
0 by
A1,
SEQ_4: 31;
then
A8: (
lim (s2
- s1))
= (x0
-
0 ) by
A7,
A2,
SEQ_2: 12
.= x0;
hence seq is
convergent by
A7,
A3,
A5,
SEQ_2: 19;
thus (
lim seq)
= x0 by
A7,
A3,
A8,
A5,
SEQ_2: 20;
now
let x be
object;
assume x
in (
rng seq);
then ex n be
Element of
NAT st (seq
. n)
= x by
FUNCT_2: 113;
hence x
in (
dom f) by
A4;
end;
hence
A9: (
rng seq)
c= (
dom f) by
TARSKI:def 3;
now
let x be
object;
assume x
in (
rng seq);
then
consider n be
Element of
NAT such that
A10: x
= (seq
. n) by
FUNCT_2: 113;
(seq
. n)
< x0 by
A4;
then (seq
. n)
in { g2 : g2
< x0 };
hence x
in (
left_open_halfline x0) by
A10,
XXREAL_1: 229;
end;
then (
rng seq)
c= (
left_open_halfline x0) by
TARSKI:def 3;
hence thesis by
A9,
XBOOLE_1: 19;
end;
theorem ::
LIMFUNC2:6
Th6: (for n holds x0
< (seq
. n) & (seq
. n)
< (x0
+ (1
/ (n
+ 1))) & (seq
. n)
in (
dom f)) implies seq is
convergent & (
lim seq)
= x0 & (
rng seq)
c= (
dom f) & (
rng seq)
c= ((
dom f)
/\ (
right_open_halfline x0))
proof
deffunc
U(
Nat) = (1
/ ($1
+ 1));
consider s1 be
Real_Sequence such that
A1: for n holds (s1
. n)
=
U(n) from
SEQ_1:sch 1;
reconsider xx0 = x0 as
Element of
REAL by
XREAL_0:def 1;
set s2 = (
seq_const x0);
A2: s1 is
convergent by
A1,
SEQ_4: 31;
then
A3: (s2
+ s1) is
convergent;
assume
A4: for n holds x0
< (seq
. n) & (seq
. n)
< (x0
+ (1
/ (n
+ 1))) & (seq
. n)
in (
dom f);
A5:
now
let n;
A6: ((s2
+ s1)
. n)
= ((s2
. n)
+ (s1
. n)) by
SEQ_1: 7
.= (x0
+ (s1
. n)) by
SEQ_1: 57
.= (x0
+ (1
/ (n
+ 1))) by
A1;
x0
<= (seq
. n) by
A4;
hence (s2
. n)
<= (seq
. n) & (seq
. n)
<= ((s2
+ s1)
. n) by
A4,
A6,
SEQ_1: 57;
end;
(s2
.
0 )
= x0 by
SEQ_1: 57;
then
A7: (
lim s2)
= x0 by
SEQ_4: 25;
(
lim s1)
=
0 by
A1,
SEQ_4: 31;
then
A8: (
lim (s2
+ s1))
= (x0
+
0 ) by
A7,
A2,
SEQ_2: 6
.= x0;
hence seq is
convergent by
A7,
A3,
A5,
SEQ_2: 19;
thus (
lim seq)
= x0 by
A7,
A3,
A8,
A5,
SEQ_2: 20;
now
let x be
object;
assume x
in (
rng seq);
then ex n be
Element of
NAT st (seq
. n)
= x by
FUNCT_2: 113;
hence x
in (
dom f) by
A4;
end;
hence
A9: (
rng seq)
c= (
dom f) by
TARSKI:def 3;
now
let x be
object;
assume x
in (
rng seq);
then
consider n be
Element of
NAT such that
A10: x
= (seq
. n) by
FUNCT_2: 113;
x0
< (seq
. n) by
A4;
then (seq
. n)
in { g2 : x0
< g2 };
hence x
in (
right_open_halfline x0) by
A10,
XXREAL_1: 230;
end;
then (
rng seq)
c= (
right_open_halfline x0) by
TARSKI:def 3;
hence thesis by
A9,
XBOOLE_1: 19;
end;
definition
let f, x0;
::
LIMFUNC2:def1
pred f
is_left_convergent_in x0 means (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f)) & ex g st for seq st seq is
convergent & (
lim seq)
= x0 & (
rng seq)
c= ((
dom f)
/\ (
left_open_halfline x0)) holds (f
/* seq) is
convergent & (
lim (f
/* seq))
= g;
::
LIMFUNC2:def2
pred f
is_left_divergent_to+infty_in x0 means (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f)) & for seq st seq is
convergent & (
lim seq)
= x0 & (
rng seq)
c= ((
dom f)
/\ (
left_open_halfline x0)) holds (f
/* seq) is
divergent_to+infty;
::
LIMFUNC2:def3
pred f
is_left_divergent_to-infty_in x0 means (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f)) & for seq st seq is
convergent & (
lim seq)
= x0 & (
rng seq)
c= ((
dom f)
/\ (
left_open_halfline x0)) holds (f
/* seq) is
divergent_to-infty;
::
LIMFUNC2:def4
pred f
is_right_convergent_in x0 means (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f)) & ex g st for seq st seq is
convergent & (
lim seq)
= x0 & (
rng seq)
c= ((
dom f)
/\ (
right_open_halfline x0)) holds (f
/* seq) is
convergent & (
lim (f
/* seq))
= g;
::
LIMFUNC2:def5
pred f
is_right_divergent_to+infty_in x0 means (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f)) & for seq st seq is
convergent & (
lim seq)
= x0 & (
rng seq)
c= ((
dom f)
/\ (
right_open_halfline x0)) holds (f
/* seq) is
divergent_to+infty;
::
LIMFUNC2:def6
pred f
is_right_divergent_to-infty_in x0 means (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f)) & for seq st seq is
convergent & (
lim seq)
= x0 & (
rng seq)
c= ((
dom f)
/\ (
right_open_halfline x0)) holds (f
/* seq) is
divergent_to-infty;
end
theorem ::
LIMFUNC2:7
f
is_left_convergent_in x0 iff (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f)) & ex g st for g1 st
0
< g1 holds ex r st r
< x0 & for r1 st r
< r1 & r1
< x0 & r1
in (
dom f) holds
|.((f
. r1)
- g).|
< g1
proof
thus f
is_left_convergent_in x0 implies (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f)) & ex g st for g1 st
0
< g1 holds ex r st r
< x0 & for r1 st r
< r1 & r1
< x0 & r1
in (
dom f) holds
|.((f
. r1)
- g).|
< g1
proof
assume that
A1: f
is_left_convergent_in x0 and
A2: ( not for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f)) or for g holds ex g1 st
0
< g1 & for r st r
< x0 holds ex r1 st r
< r1 & r1
< x0 & r1
in (
dom f) &
|.((f
. r1)
- g).|
>= g1;
consider g such that
A3: for seq st seq is
convergent & (
lim seq)
= x0 & (
rng seq)
c= ((
dom f)
/\ (
left_open_halfline x0)) holds (f
/* seq) is
convergent & (
lim (f
/* seq))
= g by
A1;
consider g1 such that
A4:
0
< g1 and
A5: for r st r
< x0 holds ex r1 st r
< r1 & r1
< x0 & r1
in (
dom f) &
|.((f
. r1)
- g).|
>= g1 by
A1,
A2;
defpred
X[
Nat,
Real] means (x0
- (1
/ ($1
+ 1)))
< $2 & $2
< x0 & $2
in (
dom f) &
|.((f
. $2)
- g).|
>= g1;
A6:
now
let n be
Element of
NAT ;
(x0
- (1
/ (n
+ 1)))
< x0 by
Lm3;
then
consider g2 such that
A7: (x0
- (1
/ (n
+ 1)))
< g2 and
A8: g2
< x0 and
A9: g2
in (
dom f) and
A10:
|.((f
. g2)
- g).|
>= g1 by
A5;
reconsider g2 as
Element of
REAL by
XREAL_0:def 1;
take g2;
thus
X[n, g2] by
A7,
A8,
A9,
A10;
end;
consider s be
Real_Sequence such that
A11: for n be
Element of
NAT holds
X[n, (s
. n)] from
FUNCT_2:sch 3(
A6);
A12: for n be
Nat holds
X[n, (s
. n)]
proof
let n;
n
in
NAT by
ORDINAL1:def 12;
hence thesis by
A11;
end;
A13: (
rng s)
c= ((
dom f)
/\ (
left_open_halfline x0)) by
A12,
Th5;
A14: (
lim s)
= x0 by
A12,
Th5;
A15: s is
convergent by
A12,
Th5;
then
A16: (
lim (f
/* s))
= g by
A3,
A14,
A13;
(f
/* s) is
convergent by
A3,
A15,
A14,
A13;
then
consider n such that
A17: for k st n
<= k holds
|.(((f
/* s)
. k)
- g).|
< g1 by
A4,
A16,
SEQ_2:def 7;
A18:
|.(((f
/* s)
. n)
- g).|
< g1 by
A17;
A19: n
in
NAT by
ORDINAL1:def 12;
(
rng s)
c= (
dom f) by
A12,
Th5;
then
|.((f
. (s
. n))
- g).|
< g1 by
A18,
FUNCT_2: 108,
A19;
hence contradiction by
A12;
end;
assume
A20: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f);
given g such that
A21: for g1 st
0
< g1 holds ex r st r
< x0 & for r1 st r
< r1 & r1
< x0 & r1
in (
dom f) holds
|.((f
. r1)
- g).|
< g1;
now
let s be
Real_Sequence such that
A22: s is
convergent and
A23: (
lim s)
= x0 and
A24: (
rng s)
c= ((
dom f)
/\ (
left_open_halfline x0));
A25: ((
dom f)
/\ (
left_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
A26:
now
let g1 be
Real;
assume
A27:
0
< g1;
consider r such that
A28: r
< x0 and
A29: for r1 st r
< r1 & r1
< x0 & r1
in (
dom f) holds
|.((f
. r1)
- g).|
< g1 by
A21,
A27;
consider n such that
A30: for k st n
<= k holds r
< (s
. k) by
A22,
A23,
A28,
Th1;
take n;
let k;
assume
A31: n
<= k;
A32: (s
. k)
in (
rng s) by
VALUED_0: 28;
then (s
. k)
in (
left_open_halfline x0) by
A24,
XBOOLE_0:def 4;
then (s
. k)
in { g2 : g2
< x0 } by
XXREAL_1: 229;
then
A33: ex g2 st g2
= (s
. k) & g2
< x0;
A34: k
in
NAT by
ORDINAL1:def 12;
(s
. k)
in (
dom f) by
A24,
A32,
XBOOLE_0:def 4;
then
|.((f
. (s
. k))
- g).|
< g1 by
A29,
A30,
A31,
A33;
hence
|.(((f
/* s)
. k)
- g).|
< g1 by
A24,
A25,
FUNCT_2: 108,
XBOOLE_1: 1,
A34;
end;
hence (f
/* s) is
convergent by
SEQ_2:def 6;
hence (
lim (f
/* s))
= g by
A26,
SEQ_2:def 7;
end;
hence thesis by
A20;
end;
theorem ::
LIMFUNC2:8
f
is_left_divergent_to+infty_in x0 iff (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f)) & for g1 holds ex r st r
< x0 & for r1 st r
< r1 & r1
< x0 & r1
in (
dom f) holds g1
< (f
. r1)
proof
thus f
is_left_divergent_to+infty_in x0 implies (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f)) & for g1 holds ex r st r
< x0 & for r1 st r
< r1 & r1
< x0 & r1
in (
dom f) holds g1
< (f
. r1)
proof
assume that
A1: f
is_left_divergent_to+infty_in x0 and
A2: ( not for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f)) or ex g1 st for r st r
< x0 holds ex r1 st r
< r1 & r1
< x0 & r1
in (
dom f) & g1
>= (f
. r1);
consider g1 such that
A3: for r st r
< x0 holds ex r1 st r
< r1 & r1
< x0 & r1
in (
dom f) & g1
>= (f
. r1) by
A1,
A2;
defpred
X[
Nat,
Real] means (x0
- (1
/ ($1
+ 1)))
< $2 & $2
< x0 & $2
in (
dom f) & (f
. $2)
<= g1;
A4:
now
let n be
Element of
NAT ;
(x0
- (1
/ (n
+ 1)))
< x0 by
Lm3;
then
consider g2 such that
A5: (x0
- (1
/ (n
+ 1)))
< g2 and
A6: g2
< x0 and
A7: g2
in (
dom f) and
A8: (f
. g2)
<= g1 by
A3;
reconsider g2 as
Element of
REAL by
XREAL_0:def 1;
take g2;
thus
X[n, g2] by
A5,
A6,
A7,
A8;
end;
consider s be
Real_Sequence such that
A9: for n be
Element of
NAT holds
X[n, (s
. n)] from
FUNCT_2:sch 3(
A4);
A10: for n be
Nat holds
X[n, (s
. n)]
proof
let n be
Nat;
n
in
NAT by
ORDINAL1:def 12;
hence thesis by
A9;
end;
A11: (
rng s)
c= ((
dom f)
/\ (
left_open_halfline x0)) by
A10,
Th5;
A12: (
lim s)
= x0 by
A10,
Th5;
s is
convergent by
A10,
Th5;
then (f
/* s) is
divergent_to+infty by
A1,
A12,
A11;
then
consider n such that
A13: for k st n
<= k holds g1
< ((f
/* s)
. k);
A14: g1
< ((f
/* s)
. n) by
A13;
A15: n
in
NAT by
ORDINAL1:def 12;
(
rng s)
c= (
dom f) by
A10,
Th5;
then g1
< (f
. (s
. n)) by
A14,
FUNCT_2: 108,
A15;
hence contradiction by
A10;
end;
assume that
A16: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f) and
A17: for g1 holds ex r st r
< x0 & for r1 st r
< r1 & r1
< x0 & r1
in (
dom f) holds g1
< (f
. r1);
now
let s be
Real_Sequence such that
A18: s is
convergent and
A19: (
lim s)
= x0 and
A20: (
rng s)
c= ((
dom f)
/\ (
left_open_halfline x0));
A21: ((
dom f)
/\ (
left_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
now
let g1;
consider r such that
A22: r
< x0 and
A23: for r1 st r
< r1 & r1
< x0 & r1
in (
dom f) holds g1
< (f
. r1) by
A17;
consider n such that
A24: for k st n
<= k holds r
< (s
. k) by
A18,
A19,
A22,
Th1;
take n;
let k;
assume
A25: n
<= k;
A26: (s
. k)
in (
rng s) by
VALUED_0: 28;
then (s
. k)
in (
left_open_halfline x0) by
A20,
XBOOLE_0:def 4;
then (s
. k)
in { g2 : g2
< x0 } by
XXREAL_1: 229;
then
A27: ex g2 st g2
= (s
. k) & g2
< x0;
A28: k
in
NAT by
ORDINAL1:def 12;
(s
. k)
in (
dom f) by
A20,
A26,
XBOOLE_0:def 4;
then g1
< (f
. (s
. k)) by
A23,
A24,
A25,
A27;
hence g1
< ((f
/* s)
. k) by
A20,
A21,
FUNCT_2: 108,
XBOOLE_1: 1,
A28;
end;
hence (f
/* s) is
divergent_to+infty;
end;
hence thesis by
A16;
end;
theorem ::
LIMFUNC2:9
f
is_left_divergent_to-infty_in x0 iff (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f)) & for g1 holds ex r st r
< x0 & for r1 st r
< r1 & r1
< x0 & r1
in (
dom f) holds (f
. r1)
< g1
proof
thus f
is_left_divergent_to-infty_in x0 implies (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f)) & for g1 holds ex r st r
< x0 & for r1 st r
< r1 & r1
< x0 & r1
in (
dom f) holds (f
. r1)
< g1
proof
assume that
A1: f
is_left_divergent_to-infty_in x0 and
A2: ( not for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f)) or ex g1 st for r st r
< x0 holds ex r1 st r
< r1 & r1
< x0 & r1
in (
dom f) & g1
<= (f
. r1);
consider g1 such that
A3: for r st r
< x0 holds ex r1 st r
< r1 & r1
< x0 & r1
in (
dom f) & g1
<= (f
. r1) by
A1,
A2;
defpred
X[
Nat,
Real] means (x0
- (1
/ ($1
+ 1)))
< $2 & $2
< x0 & $2
in (
dom f) & g1
<= (f
. $2);
A4:
now
let n be
Element of
NAT ;
(x0
- (1
/ (n
+ 1)))
< x0 by
Lm3;
then
consider g2 such that
A5: (x0
- (1
/ (n
+ 1)))
< g2 and
A6: g2
< x0 and
A7: g2
in (
dom f) and
A8: g1
<= (f
. g2) by
A3;
reconsider g2 as
Element of
REAL by
XREAL_0:def 1;
take g2;
thus
X[n, g2] by
A5,
A6,
A7,
A8;
end;
consider s be
Real_Sequence such that
A9: for n be
Element of
NAT holds
X[n, (s
. n)] from
FUNCT_2:sch 3(
A4);
A10: for n be
Nat holds
X[n, (s
. n)]
proof
let n;
n
in
NAT by
ORDINAL1:def 12;
hence thesis by
A9;
end;
A11: (
rng s)
c= ((
dom f)
/\ (
left_open_halfline x0)) by
A10,
Th5;
A12: (
lim s)
= x0 by
A10,
Th5;
s is
convergent by
A10,
Th5;
then (f
/* s) is
divergent_to-infty by
A1,
A12,
A11;
then
consider n such that
A13: for k st n
<= k holds ((f
/* s)
. k)
< g1;
A14: ((f
/* s)
. n)
< g1 by
A13;
A15: n
in
NAT by
ORDINAL1:def 12;
(
rng s)
c= (
dom f) by
A10,
Th5;
then (f
. (s
. n))
< g1 by
A14,
FUNCT_2: 108,
A15;
hence contradiction by
A10;
end;
assume that
A16: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f) and
A17: for g1 holds ex r st r
< x0 & for r1 st r
< r1 & r1
< x0 & r1
in (
dom f) holds (f
. r1)
< g1;
now
let s be
Real_Sequence such that
A18: s is
convergent and
A19: (
lim s)
= x0 and
A20: (
rng s)
c= ((
dom f)
/\ (
left_open_halfline x0));
A21: ((
dom f)
/\ (
left_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
now
let g1;
consider r such that
A22: r
< x0 and
A23: for r1 st r
< r1 & r1
< x0 & r1
in (
dom f) holds (f
. r1)
< g1 by
A17;
consider n such that
A24: for k st n
<= k holds r
< (s
. k) by
A18,
A19,
A22,
Th1;
take n;
let k;
assume
A25: n
<= k;
A26: (s
. k)
in (
rng s) by
VALUED_0: 28;
then (s
. k)
in (
left_open_halfline x0) by
A20,
XBOOLE_0:def 4;
then (s
. k)
in { g2 : g2
< x0 } by
XXREAL_1: 229;
then
A27: ex g2 st g2
= (s
. k) & g2
< x0;
A28: k
in
NAT by
ORDINAL1:def 12;
(s
. k)
in (
dom f) by
A20,
A26,
XBOOLE_0:def 4;
then (f
. (s
. k))
< g1 by
A23,
A24,
A25,
A27;
hence ((f
/* s)
. k)
< g1 by
A20,
A21,
FUNCT_2: 108,
XBOOLE_1: 1,
A28;
end;
hence (f
/* s) is
divergent_to-infty;
end;
hence thesis by
A16;
end;
theorem ::
LIMFUNC2:10
f
is_right_convergent_in x0 iff (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f)) & ex g st for g1 st
0
< g1 holds ex r st x0
< r & for r1 st r1
< r & x0
< r1 & r1
in (
dom f) holds
|.((f
. r1)
- g).|
< g1
proof
thus f
is_right_convergent_in x0 implies (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f)) & ex g st for g1 st
0
< g1 holds ex r st x0
< r & for r1 st r1
< r & x0
< r1 & r1
in (
dom f) holds
|.((f
. r1)
- g).|
< g1
proof
assume that
A1: f
is_right_convergent_in x0 and
A2: ( not for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f)) or for g holds ex g1 st
0
< g1 & for r st x0
< r holds ex r1 st r1
< r & x0
< r1 & r1
in (
dom f) &
|.((f
. r1)
- g).|
>= g1;
consider g such that
A3: for seq st seq is
convergent & (
lim seq)
= x0 & (
rng seq)
c= ((
dom f)
/\ (
right_open_halfline x0)) holds (f
/* seq) is
convergent & (
lim (f
/* seq))
= g by
A1;
consider g1 such that
A4:
0
< g1 and
A5: for r st x0
< r holds ex r1 st r1
< r & x0
< r1 & r1
in (
dom f) &
|.((f
. r1)
- g).|
>= g1 by
A1,
A2;
defpred
X[
Nat,
Real] means x0
< $2 & $2
< (x0
+ (1
/ ($1
+ 1))) & $2
in (
dom f) & g1
<=
|.((f
. $2)
- g).|;
A6:
now
let n be
Element of
NAT ;
x0
< (x0
+ (1
/ (n
+ 1))) by
Lm3;
then
consider r1 such that
A7: r1
< (x0
+ (1
/ (n
+ 1))) and
A8: x0
< r1 and
A9: r1
in (
dom f) and
A10: g1
<=
|.((f
. r1)
- g).| by
A5;
reconsider r1 as
Element of
REAL by
XREAL_0:def 1;
take r1;
thus
X[n, r1] by
A7,
A8,
A9,
A10;
end;
consider s be
Real_Sequence such that
A11: for n be
Element of
NAT holds
X[n, (s
. n)] from
FUNCT_2:sch 3(
A6);
A12: for n be
Nat holds
X[n, (s
. n)]
proof
let n;
n
in
NAT by
ORDINAL1:def 12;
hence thesis by
A11;
end;
A13: (
rng s)
c= ((
dom f)
/\ (
right_open_halfline x0)) by
A12,
Th6;
A14: (
lim s)
= x0 by
A12,
Th6;
A15: s is
convergent by
A12,
Th6;
then
A16: (
lim (f
/* s))
= g by
A3,
A14,
A13;
(f
/* s) is
convergent by
A3,
A15,
A14,
A13;
then
consider n such that
A17: for k st n
<= k holds
|.(((f
/* s)
. k)
- g).|
< g1 by
A4,
A16,
SEQ_2:def 7;
A18:
|.(((f
/* s)
. n)
- g).|
< g1 by
A17;
A19: n
in
NAT by
ORDINAL1:def 12;
(
rng s)
c= (
dom f) by
A12,
Th6;
then
|.((f
. (s
. n))
- g).|
< g1 by
A18,
FUNCT_2: 108,
A19;
hence contradiction by
A12;
end;
assume
A20: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f);
given g such that
A21: for g1 st
0
< g1 holds ex r st x0
< r & for r1 st r1
< r & x0
< r1 & r1
in (
dom f) holds
|.((f
. r1)
- g).|
< g1;
now
let s be
Real_Sequence such that
A22: s is
convergent and
A23: (
lim s)
= x0 and
A24: (
rng s)
c= ((
dom f)
/\ (
right_open_halfline x0));
A25: ((
dom f)
/\ (
right_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
A26:
now
let g1 be
Real;
assume
A27:
0
< g1;
consider r such that
A28: x0
< r and
A29: for r1 st r1
< r & x0
< r1 & r1
in (
dom f) holds
|.((f
. r1)
- g).|
< g1 by
A21,
A27;
consider n such that
A30: for k st n
<= k holds (s
. k)
< r by
A22,
A23,
A28,
Th2;
take n;
let k;
assume
A31: n
<= k;
A32: (s
. k)
in (
rng s) by
VALUED_0: 28;
then (s
. k)
in (
right_open_halfline x0) by
A24,
XBOOLE_0:def 4;
then (s
. k)
in { g2 : x0
< g2 } by
XXREAL_1: 230;
then
A33: ex g2 st g2
= (s
. k) & x0
< g2;
A34: k
in
NAT by
ORDINAL1:def 12;
(s
. k)
in (
dom f) by
A24,
A32,
XBOOLE_0:def 4;
then
|.((f
. (s
. k))
- g).|
< g1 by
A29,
A30,
A31,
A33;
hence
|.(((f
/* s)
. k)
- g).|
< g1 by
A24,
A25,
FUNCT_2: 108,
XBOOLE_1: 1,
A34;
end;
hence (f
/* s) is
convergent by
SEQ_2:def 6;
hence (
lim (f
/* s))
= g by
A26,
SEQ_2:def 7;
end;
hence thesis by
A20;
end;
theorem ::
LIMFUNC2:11
f
is_right_divergent_to+infty_in x0 iff (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f)) & for g1 holds ex r st x0
< r & for r1 st r1
< r & x0
< r1 & r1
in (
dom f) holds g1
< (f
. r1)
proof
thus f
is_right_divergent_to+infty_in x0 implies (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f)) & for g1 holds ex r st x0
< r & for r1 st r1
< r & x0
< r1 & r1
in (
dom f) holds g1
< (f
. r1)
proof
assume that
A1: f
is_right_divergent_to+infty_in x0 and
A2: ( not for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f)) or ex g1 st for r st x0
< r holds ex r1 st r1
< r & x0
< r1 & r1
in (
dom f) & (f
. r1)
<= g1;
consider g1 such that
A3: for r st x0
< r holds ex r1 st r1
< r & x0
< r1 & r1
in (
dom f) & (f
. r1)
<= g1 by
A1,
A2;
defpred
X[
Nat,
Real] means x0
< $2 & $2
< (x0
+ (1
/ ($1
+ 1))) & $2
in (
dom f) & (f
. $2)
<= g1;
A4:
now
let n be
Element of
NAT ;
x0
< (x0
+ (1
/ (n
+ 1))) by
Lm3;
then
consider r1 such that
A5: r1
< (x0
+ (1
/ (n
+ 1))) and
A6: x0
< r1 and
A7: r1
in (
dom f) and
A8: (f
. r1)
<= g1 by
A3;
reconsider r1 as
Element of
REAL by
XREAL_0:def 1;
take r1;
thus
X[n, r1] by
A5,
A6,
A7,
A8;
end;
consider s be
Real_Sequence such that
A9: for n be
Element of
NAT holds
X[n, (s
. n)] from
FUNCT_2:sch 3(
A4);
A10: for n be
Nat holds
X[n, (s
. n)]
proof
let n;
n
in
NAT by
ORDINAL1:def 12;
hence thesis by
A9;
end;
A11: (
rng s)
c= ((
dom f)
/\ (
right_open_halfline x0)) by
A10,
Th6;
A12: (
lim s)
= x0 by
A10,
Th6;
s is
convergent by
A10,
Th6;
then (f
/* s) is
divergent_to+infty by
A1,
A12,
A11;
then
consider n such that
A13: for k st n
<= k holds g1
< ((f
/* s)
. k);
A14: g1
< ((f
/* s)
. n) by
A13;
A15: n
in
NAT by
ORDINAL1:def 12;
(
rng s)
c= (
dom f) by
A10,
Th6;
then g1
< (f
. (s
. n)) by
A14,
FUNCT_2: 108,
A15;
hence contradiction by
A10;
end;
assume that
A16: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f) and
A17: for g1 holds ex r st x0
< r & for r1 st r1
< r & x0
< r1 & r1
in (
dom f) holds g1
< (f
. r1);
now
let s be
Real_Sequence such that
A18: s is
convergent and
A19: (
lim s)
= x0 and
A20: (
rng s)
c= ((
dom f)
/\ (
right_open_halfline x0));
A21: ((
dom f)
/\ (
right_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
now
let g1;
consider r such that
A22: x0
< r and
A23: for r1 st r1
< r & x0
< r1 & r1
in (
dom f) holds g1
< (f
. r1) by
A17;
consider n such that
A24: for k st n
<= k holds (s
. k)
< r by
A18,
A19,
A22,
Th2;
take n;
let k;
assume
A25: n
<= k;
A26: (s
. k)
in (
rng s) by
VALUED_0: 28;
then (s
. k)
in (
right_open_halfline x0) by
A20,
XBOOLE_0:def 4;
then (s
. k)
in { g2 : x0
< g2 } by
XXREAL_1: 230;
then
A27: ex g2 st g2
= (s
. k) & x0
< g2;
A28: k
in
NAT by
ORDINAL1:def 12;
(s
. k)
in (
dom f) by
A20,
A26,
XBOOLE_0:def 4;
then g1
< (f
. (s
. k)) by
A23,
A24,
A25,
A27;
hence g1
< ((f
/* s)
. k) by
A20,
A21,
FUNCT_2: 108,
XBOOLE_1: 1,
A28;
end;
hence (f
/* s) is
divergent_to+infty;
end;
hence thesis by
A16;
end;
theorem ::
LIMFUNC2:12
f
is_right_divergent_to-infty_in x0 iff (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f)) & for g1 holds ex r st x0
< r & for r1 st r1
< r & x0
< r1 & r1
in (
dom f) holds (f
. r1)
< g1
proof
thus f
is_right_divergent_to-infty_in x0 implies (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f)) & for g1 holds ex r st x0
< r & for r1 st r1
< r & x0
< r1 & r1
in (
dom f) holds (f
. r1)
< g1
proof
assume that
A1: f
is_right_divergent_to-infty_in x0 and
A2: ( not for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f)) or ex g1 st for r st x0
< r holds ex r1 st r1
< r & x0
< r1 & r1
in (
dom f) & g1
<= (f
. r1);
consider g1 such that
A3: for r st x0
< r holds ex r1 st r1
< r & x0
< r1 & r1
in (
dom f) & g1
<= (f
. r1) by
A1,
A2;
defpred
X[
Nat,
Real] means x0
< $2 & $2
< (x0
+ (1
/ ($1
+ 1))) & $2
in (
dom f) & g1
<= (f
. $2);
A4:
now
let n be
Element of
NAT ;
x0
< (x0
+ (1
/ (n
+ 1))) by
Lm3;
then
consider r1 such that
A5: r1
< (x0
+ (1
/ (n
+ 1))) and
A6: x0
< r1 and
A7: r1
in (
dom f) and
A8: g1
<= (f
. r1) by
A3;
reconsider r1 as
Element of
REAL by
XREAL_0:def 1;
take r1;
thus
X[n, r1] by
A5,
A6,
A7,
A8;
end;
consider s be
Real_Sequence such that
A9: for n be
Element of
NAT holds
X[n, (s
. n)] from
FUNCT_2:sch 3(
A4);
A10: for n be
Nat holds
X[n, (s
. n)]
proof
let n;
n
in
NAT by
ORDINAL1:def 12;
hence thesis by
A9;
end;
A11: (
rng s)
c= ((
dom f)
/\ (
right_open_halfline x0)) by
A10,
Th6;
A12: (
lim s)
= x0 by
A10,
Th6;
s is
convergent by
A10,
Th6;
then (f
/* s) is
divergent_to-infty by
A1,
A12,
A11;
then
consider n such that
A13: for k st n
<= k holds ((f
/* s)
. k)
< g1;
A14: ((f
/* s)
. n)
< g1 by
A13;
A15: n
in
NAT by
ORDINAL1:def 12;
(
rng s)
c= (
dom f) by
A10,
Th6;
then (f
. (s
. n))
< g1 by
A14,
FUNCT_2: 108,
A15;
hence contradiction by
A10;
end;
assume that
A16: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f) and
A17: for g1 holds ex r st x0
< r & for r1 st r1
< r & x0
< r1 & r1
in (
dom f) holds (f
. r1)
< g1;
for s be
Real_Sequence holds s is
convergent & (
lim s)
= x0 & (
rng s)
c= ((
dom f)
/\ (
right_open_halfline x0)) implies (f
/* s) is
divergent_to-infty by
A17,
Lm5;
hence thesis by
A16;
end;
theorem ::
LIMFUNC2:13
f1
is_left_divergent_to+infty_in x0 & f2
is_left_divergent_to+infty_in x0 & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in ((
dom f1)
/\ (
dom f2))) implies (f1
+ f2)
is_left_divergent_to+infty_in x0 & (f1
(#) f2)
is_left_divergent_to+infty_in x0
proof
assume that
A1: f1
is_left_divergent_to+infty_in x0 and
A2: f2
is_left_divergent_to+infty_in x0 and
A3: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in ((
dom f1)
/\ (
dom f2));
A4:
now
let seq;
assume that
A5: seq is
convergent and
A6: (
lim seq)
= x0 and
A7: (
rng seq)
c= ((
dom (f1
+ f2))
/\ (
left_open_halfline x0));
(
rng seq)
c= ((
dom f2)
/\ (
left_open_halfline x0)) by
A7,
Lm4;
then
A8: (f2
/* seq) is
divergent_to+infty by
A2,
A5,
A6;
(
rng seq)
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A7,
Lm4;
then (f1
/* seq) is
divergent_to+infty by
A1,
A5,
A6;
then
A9: ((f1
/* seq)
+ (f2
/* seq)) is
divergent_to+infty by
A8,
LIMFUNC1: 8;
A10: (
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) by
A7,
Lm4;
(
rng seq)
c= (
dom (f1
+ f2)) by
A7,
Lm4;
hence ((f1
+ f2)
/* seq) is
divergent_to+infty by
A10,
A9,
RFUNCT_2: 8;
end;
A11:
now
let seq;
assume that
A12: seq is
convergent and
A13: (
lim seq)
= x0 and
A14: (
rng seq)
c= ((
dom (f1
(#) f2))
/\ (
left_open_halfline x0));
(
rng seq)
c= ((
dom f2)
/\ (
left_open_halfline x0)) by
A14,
Lm2;
then
A15: (f2
/* seq) is
divergent_to+infty by
A2,
A12,
A13;
(
rng seq)
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A14,
Lm2;
then (f1
/* seq) is
divergent_to+infty by
A1,
A12,
A13;
then
A16: ((f1
/* seq)
(#) (f2
/* seq)) is
divergent_to+infty by
A15,
LIMFUNC1: 10;
A17: (
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) by
A14,
Lm2;
(
rng seq)
c= (
dom (f1
(#) f2)) by
A14,
Lm2;
hence ((f1
(#) f2)
/* seq) is
divergent_to+infty by
A17,
A16,
RFUNCT_2: 8;
end;
now
let r;
assume r
< x0;
then
consider g such that
A18: r
< g and
A19: g
< x0 and
A20: g
in ((
dom f1)
/\ (
dom f2)) by
A3;
take g;
thus r
< g & g
< x0 & g
in (
dom (f1
+ f2)) by
A18,
A19,
A20,
VALUED_1:def 1;
end;
hence (f1
+ f2)
is_left_divergent_to+infty_in x0 by
A4;
now
let r;
assume r
< x0;
then
consider g such that
A21: r
< g and
A22: g
< x0 and
A23: g
in ((
dom f1)
/\ (
dom f2)) by
A3;
take g;
thus r
< g & g
< x0 & g
in (
dom (f1
(#) f2)) by
A21,
A22,
A23,
VALUED_1:def 4;
end;
hence thesis by
A11;
end;
theorem ::
LIMFUNC2:14
f1
is_left_divergent_to-infty_in x0 & f2
is_left_divergent_to-infty_in x0 & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in ((
dom f1)
/\ (
dom f2))) implies (f1
+ f2)
is_left_divergent_to-infty_in x0 & (f1
(#) f2)
is_left_divergent_to+infty_in x0
proof
assume that
A1: f1
is_left_divergent_to-infty_in x0 and
A2: f2
is_left_divergent_to-infty_in x0 and
A3: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in ((
dom f1)
/\ (
dom f2));
A4:
now
let seq;
assume that
A5: seq is
convergent and
A6: (
lim seq)
= x0 and
A7: (
rng seq)
c= ((
dom (f1
+ f2))
/\ (
left_open_halfline x0));
(
rng seq)
c= ((
dom f2)
/\ (
left_open_halfline x0)) by
A7,
Lm4;
then
A8: (f2
/* seq) is
divergent_to-infty by
A2,
A5,
A6;
(
rng seq)
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A7,
Lm4;
then (f1
/* seq) is
divergent_to-infty by
A1,
A5,
A6;
then
A9: ((f1
/* seq)
+ (f2
/* seq)) is
divergent_to-infty by
A8,
LIMFUNC1: 11;
A10: (
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) by
A7,
Lm4;
(
rng seq)
c= (
dom (f1
+ f2)) by
A7,
Lm4;
hence ((f1
+ f2)
/* seq) is
divergent_to-infty by
A10,
A9,
RFUNCT_2: 8;
end;
A11:
now
let seq;
assume that
A12: seq is
convergent and
A13: (
lim seq)
= x0 and
A14: (
rng seq)
c= ((
dom (f1
(#) f2))
/\ (
left_open_halfline x0));
(
rng seq)
c= ((
dom f2)
/\ (
left_open_halfline x0)) by
A14,
Lm2;
then
A15: (f2
/* seq) is
divergent_to-infty by
A2,
A12,
A13;
(
rng seq)
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A14,
Lm2;
then (f1
/* seq) is
divergent_to-infty by
A1,
A12,
A13;
then
A16: ((f1
/* seq)
(#) (f2
/* seq)) is
divergent_to+infty by
A15,
LIMFUNC1: 24;
A17: (
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) by
A14,
Lm2;
(
rng seq)
c= (
dom (f1
(#) f2)) by
A14,
Lm2;
hence ((f1
(#) f2)
/* seq) is
divergent_to+infty by
A17,
A16,
RFUNCT_2: 8;
end;
now
let r;
assume r
< x0;
then
consider g such that
A18: r
< g and
A19: g
< x0 and
A20: g
in ((
dom f1)
/\ (
dom f2)) by
A3;
take g;
thus r
< g & g
< x0 & g
in (
dom (f1
+ f2)) by
A18,
A19,
A20,
VALUED_1:def 1;
end;
hence (f1
+ f2)
is_left_divergent_to-infty_in x0 by
A4;
now
let r;
assume r
< x0;
then
consider g such that
A21: r
< g and
A22: g
< x0 and
A23: g
in ((
dom f1)
/\ (
dom f2)) by
A3;
take g;
thus r
< g & g
< x0 & g
in (
dom (f1
(#) f2)) by
A21,
A22,
A23,
VALUED_1:def 4;
end;
hence thesis by
A11;
end;
theorem ::
LIMFUNC2:15
f1
is_right_divergent_to+infty_in x0 & f2
is_right_divergent_to+infty_in x0 & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in ((
dom f1)
/\ (
dom f2))) implies (f1
+ f2)
is_right_divergent_to+infty_in x0 & (f1
(#) f2)
is_right_divergent_to+infty_in x0
proof
assume that
A1: f1
is_right_divergent_to+infty_in x0 and
A2: f2
is_right_divergent_to+infty_in x0 and
A3: for r st x0
< r holds ex g st g
< r & x0
< g & g
in ((
dom f1)
/\ (
dom f2));
A4:
now
let seq;
assume that
A5: seq is
convergent and
A6: (
lim seq)
= x0 and
A7: (
rng seq)
c= ((
dom (f1
+ f2))
/\ (
right_open_halfline x0));
(
rng seq)
c= ((
dom f2)
/\ (
right_open_halfline x0)) by
A7,
Lm4;
then
A8: (f2
/* seq) is
divergent_to+infty by
A2,
A5,
A6;
(
rng seq)
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A7,
Lm4;
then (f1
/* seq) is
divergent_to+infty by
A1,
A5,
A6;
then
A9: ((f1
/* seq)
+ (f2
/* seq)) is
divergent_to+infty by
A8,
LIMFUNC1: 8;
A10: (
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) by
A7,
Lm4;
(
rng seq)
c= (
dom (f1
+ f2)) by
A7,
Lm4;
hence ((f1
+ f2)
/* seq) is
divergent_to+infty by
A10,
A9,
RFUNCT_2: 8;
end;
A11:
now
let seq;
assume that
A12: seq is
convergent and
A13: (
lim seq)
= x0 and
A14: (
rng seq)
c= ((
dom (f1
(#) f2))
/\ (
right_open_halfline x0));
(
rng seq)
c= ((
dom f2)
/\ (
right_open_halfline x0)) by
A14,
Lm2;
then
A15: (f2
/* seq) is
divergent_to+infty by
A2,
A12,
A13;
(
rng seq)
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A14,
Lm2;
then (f1
/* seq) is
divergent_to+infty by
A1,
A12,
A13;
then
A16: ((f1
/* seq)
(#) (f2
/* seq)) is
divergent_to+infty by
A15,
LIMFUNC1: 10;
A17: (
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) by
A14,
Lm2;
(
rng seq)
c= (
dom (f1
(#) f2)) by
A14,
Lm2;
hence ((f1
(#) f2)
/* seq) is
divergent_to+infty by
A17,
A16,
RFUNCT_2: 8;
end;
now
let r;
assume x0
< r;
then
consider g such that
A18: g
< r and
A19: x0
< g and
A20: g
in ((
dom f1)
/\ (
dom f2)) by
A3;
take g;
thus g
< r & x0
< g & g
in (
dom (f1
+ f2)) by
A18,
A19,
A20,
VALUED_1:def 1;
end;
hence (f1
+ f2)
is_right_divergent_to+infty_in x0 by
A4;
now
let r;
assume x0
< r;
then
consider g such that
A21: g
< r and
A22: x0
< g and
A23: g
in ((
dom f1)
/\ (
dom f2)) by
A3;
take g;
thus g
< r & x0
< g & g
in (
dom (f1
(#) f2)) by
A21,
A22,
A23,
VALUED_1:def 4;
end;
hence thesis by
A11;
end;
theorem ::
LIMFUNC2:16
f1
is_right_divergent_to-infty_in x0 & f2
is_right_divergent_to-infty_in x0 & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in ((
dom f1)
/\ (
dom f2))) implies (f1
+ f2)
is_right_divergent_to-infty_in x0 & (f1
(#) f2)
is_right_divergent_to+infty_in x0
proof
assume that
A1: f1
is_right_divergent_to-infty_in x0 and
A2: f2
is_right_divergent_to-infty_in x0 and
A3: for r st x0
< r holds ex g st g
< r & x0
< g & g
in ((
dom f1)
/\ (
dom f2));
A4:
now
let seq;
assume that
A5: seq is
convergent and
A6: (
lim seq)
= x0 and
A7: (
rng seq)
c= ((
dom (f1
+ f2))
/\ (
right_open_halfline x0));
(
rng seq)
c= ((
dom f2)
/\ (
right_open_halfline x0)) by
A7,
Lm4;
then
A8: (f2
/* seq) is
divergent_to-infty by
A2,
A5,
A6;
(
rng seq)
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A7,
Lm4;
then (f1
/* seq) is
divergent_to-infty by
A1,
A5,
A6;
then
A9: ((f1
/* seq)
+ (f2
/* seq)) is
divergent_to-infty by
A8,
LIMFUNC1: 11;
A10: (
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) by
A7,
Lm4;
(
rng seq)
c= (
dom (f1
+ f2)) by
A7,
Lm4;
hence ((f1
+ f2)
/* seq) is
divergent_to-infty by
A10,
A9,
RFUNCT_2: 8;
end;
A11:
now
let seq;
assume that
A12: seq is
convergent and
A13: (
lim seq)
= x0 and
A14: (
rng seq)
c= ((
dom (f1
(#) f2))
/\ (
right_open_halfline x0));
(
rng seq)
c= ((
dom f2)
/\ (
right_open_halfline x0)) by
A14,
Lm2;
then
A15: (f2
/* seq) is
divergent_to-infty by
A2,
A12,
A13;
(
rng seq)
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A14,
Lm2;
then (f1
/* seq) is
divergent_to-infty by
A1,
A12,
A13;
then
A16: ((f1
/* seq)
(#) (f2
/* seq)) is
divergent_to+infty by
A15,
LIMFUNC1: 24;
A17: (
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) by
A14,
Lm2;
(
rng seq)
c= (
dom (f1
(#) f2)) by
A14,
Lm2;
hence ((f1
(#) f2)
/* seq) is
divergent_to+infty by
A17,
A16,
RFUNCT_2: 8;
end;
now
let r;
assume x0
< r;
then
consider g such that
A18: g
< r and
A19: x0
< g and
A20: g
in ((
dom f1)
/\ (
dom f2)) by
A3;
take g;
thus g
< r & x0
< g & g
in (
dom (f1
+ f2)) by
A18,
A19,
A20,
VALUED_1:def 1;
end;
hence (f1
+ f2)
is_right_divergent_to-infty_in x0 by
A4;
now
let r;
assume x0
< r;
then
consider g such that
A21: g
< r and
A22: x0
< g and
A23: g
in ((
dom f1)
/\ (
dom f2)) by
A3;
take g;
thus g
< r & x0
< g & g
in (
dom (f1
(#) f2)) by
A21,
A22,
A23,
VALUED_1:def 4;
end;
hence thesis by
A11;
end;
theorem ::
LIMFUNC2:17
f1
is_left_divergent_to+infty_in x0 & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f1
+ f2))) & (ex r st
0
< r & (f2
|
].(x0
- r), x0.[) is
bounded_below) implies (f1
+ f2)
is_left_divergent_to+infty_in x0
proof
assume that
A1: f1
is_left_divergent_to+infty_in x0 and
A2: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f1
+ f2));
given r such that
A3:
0
< r and
A4: (f2
|
].(x0
- r), x0.[) is
bounded_below;
now
let seq such that
A5: seq is
convergent and
A6: (
lim seq)
= x0 and
A7: (
rng seq)
c= ((
dom (f1
+ f2))
/\ (
left_open_halfline x0));
(x0
- r)
< x0 by
A3,
Lm1;
then
consider k such that
A8: for n st k
<= n holds (x0
- r)
< (seq
. n) by
A5,
A6,
Th1;
A9: ((
dom (f1
+ f2))
/\ (
left_open_halfline x0))
c= (
dom (f1
+ f2)) by
XBOOLE_1: 17;
(
rng (seq
^\ k))
c= (
rng seq) by
VALUED_0: 21;
then
A10: (
rng (seq
^\ k))
c= ((
dom (f1
+ f2))
/\ (
left_open_halfline x0)) by
A7,
XBOOLE_1: 1;
then
A11: (
rng (seq
^\ k))
c= (
dom (f1
+ f2)) by
A9,
XBOOLE_1: 1;
A12: (
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) by
VALUED_1:def 1;
then
A13: (
dom (f1
+ f2))
c= (
dom f2) by
XBOOLE_1: 17;
then
A14: (
rng (seq
^\ k))
c= (
dom f2) by
A11,
XBOOLE_1: 1;
(
dom (f1
+ f2))
c= (
dom f1) by
A12,
XBOOLE_1: 17;
then
A15: (
rng (seq
^\ k))
c= (
dom f1) by
A11,
XBOOLE_1: 1;
then (
rng (seq
^\ k))
c= ((
dom f1)
/\ (
dom f2)) by
A14,
XBOOLE_1: 19;
then
A16: ((f1
/* (seq
^\ k))
+ (f2
/* (seq
^\ k)))
= ((f1
+ f2)
/* (seq
^\ k)) by
RFUNCT_2: 8
.= (((f1
+ f2)
/* seq)
^\ k) by
A7,
A9,
VALUED_0: 27,
XBOOLE_1: 1;
((
dom (f1
+ f2))
/\ (
left_open_halfline x0))
c= (
left_open_halfline x0) by
XBOOLE_1: 17;
then
A17: (
rng (seq
^\ k))
c= (
left_open_halfline x0) by
A10,
XBOOLE_1: 1;
then
A18: (
rng (seq
^\ k))
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A15,
XBOOLE_1: 19;
now
consider r1 be
Real such that
A19: for g be
object st g
in (
].(x0
- r), x0.[
/\ (
dom f2)) holds r1
<= (f2
. g) by
A4,
RFUNCT_1: 71;
take r2 = (r1
- 1);
let n;
A20: n
in
NAT by
ORDINAL1:def 12;
(x0
- r)
< (seq
. (n
+ k)) by
A8,
NAT_1: 12;
then
A21: (x0
- r)
< ((seq
^\ k)
. n) by
NAT_1:def 3;
A22: ((seq
^\ k)
. n)
in (
rng (seq
^\ k)) by
VALUED_0: 28;
then ((seq
^\ k)
. n)
in (
left_open_halfline x0) by
A17;
then ((seq
^\ k)
. n)
in { g1 : g1
< x0 } by
XXREAL_1: 229;
then ex g st g
= ((seq
^\ k)
. n) & g
< x0;
then ((seq
^\ k)
. n)
in { g2 : (x0
- r)
< g2 & g2
< x0 } by
A21;
then ((seq
^\ k)
. n)
in
].(x0
- r), x0.[ by
RCOMP_1:def 2;
then ((seq
^\ k)
. n)
in (
].(x0
- r), x0.[
/\ (
dom f2)) by
A14,
A22,
XBOOLE_0:def 4;
then (r1
- 1)
< ((f2
. ((seq
^\ k)
. n))
-
0 ) by
A19,
XREAL_1: 15;
hence r2
< ((f2
/* (seq
^\ k))
. n) by
A11,
A13,
FUNCT_2: 108,
XBOOLE_1: 1,
A20;
end;
then
A23: (f2
/* (seq
^\ k)) is
bounded_below by
SEQ_2:def 4;
(
lim (seq
^\ k))
= x0 by
A5,
A6,
SEQ_4: 20;
then (f1
/* (seq
^\ k)) is
divergent_to+infty by
A1,
A5,
A18;
then ((f1
/* (seq
^\ k))
+ (f2
/* (seq
^\ k))) is
divergent_to+infty by
A23,
LIMFUNC1: 9;
hence ((f1
+ f2)
/* seq) is
divergent_to+infty by
A16,
LIMFUNC1: 7;
end;
hence thesis by
A2;
end;
theorem ::
LIMFUNC2:18
f1
is_left_divergent_to+infty_in x0 & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f1
(#) f2))) & (ex r, r1 st
0
< r &
0
< r1 & for g st g
in ((
dom f2)
/\
].(x0
- r), x0.[) holds r1
<= (f2
. g)) implies (f1
(#) f2)
is_left_divergent_to+infty_in x0
proof
assume that
A1: f1
is_left_divergent_to+infty_in x0 and
A2: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f1
(#) f2));
given r, t such that
A3:
0
< r and
A4:
0
< t and
A5: for g st g
in ((
dom f2)
/\
].(x0
- r), x0.[) holds t
<= (f2
. g);
now
let seq such that
A6: seq is
convergent and
A7: (
lim seq)
= x0 and
A8: (
rng seq)
c= ((
dom (f1
(#) f2))
/\ (
left_open_halfline x0));
(x0
- r)
< x0 by
A3,
Lm1;
then
consider k such that
A9: for n st k
<= n holds (x0
- r)
< (seq
. n) by
A6,
A7,
Th1;
A10: (
rng seq)
c= (
dom (f1
(#) f2)) by
A8,
Lm2;
A11: (
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) by
A8,
Lm2;
(
rng (seq
^\ k))
c= (
rng seq) by
VALUED_0: 21;
then
A12: (
rng (seq
^\ k))
c= ((
dom (f1
(#) f2))
/\ (
left_open_halfline x0)) by
A8,
XBOOLE_1: 1;
then
A13: (
rng (seq
^\ k))
c= (
dom f2) by
Lm2;
A14: (
rng (seq
^\ k))
c= (
left_open_halfline x0) by
A12,
Lm2;
A15:
now
thus
0
< t by
A4;
let n;
A16: n
in
NAT by
ORDINAL1:def 12;
(x0
- r)
< (seq
. (n
+ k)) by
A9,
NAT_1: 12;
then
A17: (x0
- r)
< ((seq
^\ k)
. n) by
NAT_1:def 3;
A18: ((seq
^\ k)
. n)
in (
rng (seq
^\ k)) by
VALUED_0: 28;
then ((seq
^\ k)
. n)
in (
left_open_halfline x0) by
A14;
then ((seq
^\ k)
. n)
in { g1 : g1
< x0 } by
XXREAL_1: 229;
then ex g st g
= ((seq
^\ k)
. n) & g
< x0;
then ((seq
^\ k)
. n)
in { g2 : (x0
- r)
< g2 & g2
< x0 } by
A17;
then ((seq
^\ k)
. n)
in
].(x0
- r), x0.[ by
RCOMP_1:def 2;
then ((seq
^\ k)
. n)
in ((
dom f2)
/\
].(x0
- r), x0.[) by
A13,
A18,
XBOOLE_0:def 4;
then t
<= (f2
. ((seq
^\ k)
. n)) by
A5;
hence t
<= ((f2
/* (seq
^\ k))
. n) by
A13,
FUNCT_2: 108,
A16;
end;
A19: (
rng (seq
^\ k))
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A12,
Lm2;
(
lim (seq
^\ k))
= x0 by
A6,
A7,
SEQ_4: 20;
then (f1
/* (seq
^\ k)) is
divergent_to+infty by
A1,
A6,
A19;
then
A20: ((f1
/* (seq
^\ k))
(#) (f2
/* (seq
^\ k))) is
divergent_to+infty by
A15,
LIMFUNC1: 22;
(
rng (seq
^\ k))
c= (
dom (f1
(#) f2)) by
A12,
Lm2;
then ((f1
/* (seq
^\ k))
(#) (f2
/* (seq
^\ k)))
= ((f1
(#) f2)
/* (seq
^\ k)) by
A11,
RFUNCT_2: 8
.= (((f1
(#) f2)
/* seq)
^\ k) by
A10,
VALUED_0: 27;
hence ((f1
(#) f2)
/* seq) is
divergent_to+infty by
A20,
LIMFUNC1: 7;
end;
hence thesis by
A2;
end;
theorem ::
LIMFUNC2:19
f1
is_right_divergent_to+infty_in x0 & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f1
+ f2))) & (ex r st
0
< r & (f2
|
].x0, (x0
+ r).[) is
bounded_below) implies (f1
+ f2)
is_right_divergent_to+infty_in x0
proof
assume that
A1: f1
is_right_divergent_to+infty_in x0 and
A2: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f1
+ f2));
given r such that
A3:
0
< r and
A4: (f2
|
].x0, (x0
+ r).[) is
bounded_below;
now
let seq such that
A5: seq is
convergent and
A6: (
lim seq)
= x0 and
A7: (
rng seq)
c= ((
dom (f1
+ f2))
/\ (
right_open_halfline x0));
x0
< (x0
+ r) by
A3,
Lm1;
then
consider k such that
A8: for n st k
<= n holds (seq
. n)
< (x0
+ r) by
A5,
A6,
Th2;
A9: ((
dom (f1
+ f2))
/\ (
right_open_halfline x0))
c= (
dom (f1
+ f2)) by
XBOOLE_1: 17;
(
rng (seq
^\ k))
c= (
rng seq) by
VALUED_0: 21;
then
A10: (
rng (seq
^\ k))
c= ((
dom (f1
+ f2))
/\ (
right_open_halfline x0)) by
A7,
XBOOLE_1: 1;
then
A11: (
rng (seq
^\ k))
c= (
dom (f1
+ f2)) by
A9,
XBOOLE_1: 1;
A12: (
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) by
VALUED_1:def 1;
then
A13: (
dom (f1
+ f2))
c= (
dom f2) by
XBOOLE_1: 17;
then
A14: (
rng (seq
^\ k))
c= (
dom f2) by
A11,
XBOOLE_1: 1;
(
dom (f1
+ f2))
c= (
dom f1) by
A12,
XBOOLE_1: 17;
then
A15: (
rng (seq
^\ k))
c= (
dom f1) by
A11,
XBOOLE_1: 1;
then (
rng (seq
^\ k))
c= ((
dom f1)
/\ (
dom f2)) by
A14,
XBOOLE_1: 19;
then
A16: ((f1
/* (seq
^\ k))
+ (f2
/* (seq
^\ k)))
= ((f1
+ f2)
/* (seq
^\ k)) by
RFUNCT_2: 8
.= (((f1
+ f2)
/* seq)
^\ k) by
A7,
A9,
VALUED_0: 27,
XBOOLE_1: 1;
((
dom (f1
+ f2))
/\ (
right_open_halfline x0))
c= (
right_open_halfline x0) by
XBOOLE_1: 17;
then
A17: (
rng (seq
^\ k))
c= (
right_open_halfline x0) by
A10,
XBOOLE_1: 1;
then
A18: (
rng (seq
^\ k))
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A15,
XBOOLE_1: 19;
now
consider r1 be
Real such that
A19: for g be
object st g
in (
].x0, (x0
+ r).[
/\ (
dom f2)) holds r1
<= (f2
. g) by
A4,
RFUNCT_1: 71;
take r2 = (r1
- 1);
let n;
A20: n
in
NAT by
ORDINAL1:def 12;
(seq
. (n
+ k))
< (x0
+ r) by
A8,
NAT_1: 12;
then
A21: ((seq
^\ k)
. n)
< (x0
+ r) by
NAT_1:def 3;
A22: ((seq
^\ k)
. n)
in (
rng (seq
^\ k)) by
VALUED_0: 28;
then ((seq
^\ k)
. n)
in (
right_open_halfline x0) by
A17;
then ((seq
^\ k)
. n)
in { g1 : x0
< g1 } by
XXREAL_1: 230;
then ex g st g
= ((seq
^\ k)
. n) & x0
< g;
then ((seq
^\ k)
. n)
in { g2 : x0
< g2 & g2
< (x0
+ r) } by
A21;
then ((seq
^\ k)
. n)
in
].x0, (x0
+ r).[ by
RCOMP_1:def 2;
then ((seq
^\ k)
. n)
in (
].x0, (x0
+ r).[
/\ (
dom f2)) by
A14,
A22,
XBOOLE_0:def 4;
then (r1
- 1)
< ((f2
. ((seq
^\ k)
. n))
-
0 ) by
A19,
XREAL_1: 15;
hence r2
< ((f2
/* (seq
^\ k))
. n) by
A11,
A13,
FUNCT_2: 108,
XBOOLE_1: 1,
A20;
end;
then
A23: (f2
/* (seq
^\ k)) is
bounded_below by
SEQ_2:def 4;
(
lim (seq
^\ k))
= x0 by
A5,
A6,
SEQ_4: 20;
then (f1
/* (seq
^\ k)) is
divergent_to+infty by
A1,
A5,
A18;
then ((f1
/* (seq
^\ k))
+ (f2
/* (seq
^\ k))) is
divergent_to+infty by
A23,
LIMFUNC1: 9;
hence ((f1
+ f2)
/* seq) is
divergent_to+infty by
A16,
LIMFUNC1: 7;
end;
hence thesis by
A2;
end;
theorem ::
LIMFUNC2:20
f1
is_right_divergent_to+infty_in x0 & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f1
(#) f2))) & (ex r, r1 st
0
< r &
0
< r1 & for g st g
in ((
dom f2)
/\
].x0, (x0
+ r).[) holds r1
<= (f2
. g)) implies (f1
(#) f2)
is_right_divergent_to+infty_in x0
proof
assume that
A1: f1
is_right_divergent_to+infty_in x0 and
A2: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f1
(#) f2));
given r, t such that
A3:
0
< r and
A4:
0
< t and
A5: for g st g
in ((
dom f2)
/\
].x0, (x0
+ r).[) holds t
<= (f2
. g);
now
let seq such that
A6: seq is
convergent and
A7: (
lim seq)
= x0 and
A8: (
rng seq)
c= ((
dom (f1
(#) f2))
/\ (
right_open_halfline x0));
x0
< (x0
+ r) by
A3,
Lm1;
then
consider k such that
A9: for n st k
<= n holds (seq
. n)
< (x0
+ r) by
A6,
A7,
Th2;
A10: (
rng seq)
c= (
dom (f1
(#) f2)) by
A8,
Lm2;
A11: (
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) by
A8,
Lm2;
(
rng (seq
^\ k))
c= (
rng seq) by
VALUED_0: 21;
then
A12: (
rng (seq
^\ k))
c= ((
dom (f1
(#) f2))
/\ (
right_open_halfline x0)) by
A8,
XBOOLE_1: 1;
then
A13: (
rng (seq
^\ k))
c= (
dom f2) by
Lm2;
A14: (
rng (seq
^\ k))
c= (
right_open_halfline x0) by
A12,
Lm2;
A15:
now
thus
0
< t by
A4;
let n;
A16: n
in
NAT by
ORDINAL1:def 12;
(seq
. (n
+ k))
< (x0
+ r) by
A9,
NAT_1: 12;
then
A17: ((seq
^\ k)
. n)
< (x0
+ r) by
NAT_1:def 3;
A18: ((seq
^\ k)
. n)
in (
rng (seq
^\ k)) by
VALUED_0: 28;
then ((seq
^\ k)
. n)
in (
right_open_halfline x0) by
A14;
then ((seq
^\ k)
. n)
in { g1 : x0
< g1 } by
XXREAL_1: 230;
then ex g st g
= ((seq
^\ k)
. n) & x0
< g;
then ((seq
^\ k)
. n)
in { g2 : x0
< g2 & g2
< (x0
+ r) } by
A17;
then ((seq
^\ k)
. n)
in
].x0, (x0
+ r).[ by
RCOMP_1:def 2;
then ((seq
^\ k)
. n)
in ((
dom f2)
/\
].x0, (x0
+ r).[) by
A13,
A18,
XBOOLE_0:def 4;
then t
<= (f2
. ((seq
^\ k)
. n)) by
A5;
hence t
<= ((f2
/* (seq
^\ k))
. n) by
A13,
FUNCT_2: 108,
A16;
end;
A19: (
rng (seq
^\ k))
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A12,
Lm2;
(
lim (seq
^\ k))
= x0 by
A6,
A7,
SEQ_4: 20;
then (f1
/* (seq
^\ k)) is
divergent_to+infty by
A1,
A6,
A19;
then
A20: ((f1
/* (seq
^\ k))
(#) (f2
/* (seq
^\ k))) is
divergent_to+infty by
A15,
LIMFUNC1: 22;
(
rng (seq
^\ k))
c= (
dom (f1
(#) f2)) by
A12,
Lm2;
then ((f1
/* (seq
^\ k))
(#) (f2
/* (seq
^\ k)))
= ((f1
(#) f2)
/* (seq
^\ k)) by
A11,
RFUNCT_2: 8
.= (((f1
(#) f2)
/* seq)
^\ k) by
A10,
VALUED_0: 27;
hence ((f1
(#) f2)
/* seq) is
divergent_to+infty by
A20,
LIMFUNC1: 7;
end;
hence thesis by
A2;
end;
theorem ::
LIMFUNC2:21
(f
is_left_divergent_to+infty_in x0 & r
>
0 implies (r
(#) f)
is_left_divergent_to+infty_in x0) & (f
is_left_divergent_to+infty_in x0 & r
<
0 implies (r
(#) f)
is_left_divergent_to-infty_in x0) & (f
is_left_divergent_to-infty_in x0 & r
>
0 implies (r
(#) f)
is_left_divergent_to-infty_in x0) & (f
is_left_divergent_to-infty_in x0 & r
<
0 implies (r
(#) f)
is_left_divergent_to+infty_in x0)
proof
A1: ((
dom f)
/\ (
left_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
thus f
is_left_divergent_to+infty_in x0 & r
>
0 implies (r
(#) f)
is_left_divergent_to+infty_in x0
proof
assume that
A2: f
is_left_divergent_to+infty_in x0 and
A3: r
>
0 ;
thus for r1 st r1
< x0 holds ex g st r1
< g & g
< x0 & g
in (
dom (r
(#) f))
proof
let r1;
assume r1
< x0;
then
consider g such that
A4: r1
< g and
A5: g
< x0 and
A6: g
in (
dom f) by
A2;
take g;
thus thesis by
A4,
A5,
A6,
VALUED_1:def 5;
end;
let seq;
assume that
A7: seq is
convergent and
A8: (
lim seq)
= x0 and
A9: (
rng seq)
c= ((
dom (r
(#) f))
/\ (
left_open_halfline x0));
A10: ((
dom f)
/\ (
left_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
A11: (
rng seq)
c= ((
dom f)
/\ (
left_open_halfline x0)) by
A9,
VALUED_1:def 5;
then (f
/* seq) is
divergent_to+infty by
A2,
A7,
A8;
then (r
(#) (f
/* seq)) is
divergent_to+infty by
A3,
LIMFUNC1: 13;
hence thesis by
A11,
A10,
RFUNCT_2: 9,
XBOOLE_1: 1;
end;
thus f
is_left_divergent_to+infty_in x0 & r
<
0 implies (r
(#) f)
is_left_divergent_to-infty_in x0
proof
assume that
A12: f
is_left_divergent_to+infty_in x0 and
A13: r
<
0 ;
thus for r1 st r1
< x0 holds ex g st r1
< g & g
< x0 & g
in (
dom (r
(#) f))
proof
let r1;
assume r1
< x0;
then
consider g such that
A14: r1
< g and
A15: g
< x0 and
A16: g
in (
dom f) by
A12;
take g;
thus thesis by
A14,
A15,
A16,
VALUED_1:def 5;
end;
let seq;
assume that
A17: seq is
convergent and
A18: (
lim seq)
= x0 and
A19: (
rng seq)
c= ((
dom (r
(#) f))
/\ (
left_open_halfline x0));
A20: ((
dom f)
/\ (
left_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
A21: (
rng seq)
c= ((
dom f)
/\ (
left_open_halfline x0)) by
A19,
VALUED_1:def 5;
then (f
/* seq) is
divergent_to+infty by
A12,
A17,
A18;
then (r
(#) (f
/* seq)) is
divergent_to-infty by
A13,
LIMFUNC1: 13;
hence thesis by
A21,
A20,
RFUNCT_2: 9,
XBOOLE_1: 1;
end;
thus f
is_left_divergent_to-infty_in x0 & r
>
0 implies (r
(#) f)
is_left_divergent_to-infty_in x0
proof
assume that
A22: f
is_left_divergent_to-infty_in x0 and
A23: r
>
0 ;
thus for r1 st r1
< x0 holds ex g st r1
< g & g
< x0 & g
in (
dom (r
(#) f))
proof
let r1;
assume r1
< x0;
then
consider g such that
A24: r1
< g and
A25: g
< x0 and
A26: g
in (
dom f) by
A22;
take g;
thus thesis by
A24,
A25,
A26,
VALUED_1:def 5;
end;
let seq;
assume that
A27: seq is
convergent and
A28: (
lim seq)
= x0 and
A29: (
rng seq)
c= ((
dom (r
(#) f))
/\ (
left_open_halfline x0));
A30: ((
dom f)
/\ (
left_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
A31: (
rng seq)
c= ((
dom f)
/\ (
left_open_halfline x0)) by
A29,
VALUED_1:def 5;
then (f
/* seq) is
divergent_to-infty by
A22,
A27,
A28;
then (r
(#) (f
/* seq)) is
divergent_to-infty by
A23,
LIMFUNC1: 14;
hence thesis by
A31,
A30,
RFUNCT_2: 9,
XBOOLE_1: 1;
end;
assume that
A32: f
is_left_divergent_to-infty_in x0 and
A33: r
<
0 ;
thus for r1 st r1
< x0 holds ex g st r1
< g & g
< x0 & g
in (
dom (r
(#) f))
proof
let r1;
assume r1
< x0;
then
consider g such that
A34: r1
< g and
A35: g
< x0 and
A36: g
in (
dom f) by
A32;
take g;
thus thesis by
A34,
A35,
A36,
VALUED_1:def 5;
end;
let seq;
assume that
A37: seq is
convergent and
A38: (
lim seq)
= x0 and
A39: (
rng seq)
c= ((
dom (r
(#) f))
/\ (
left_open_halfline x0));
A40: (
rng seq)
c= ((
dom f)
/\ (
left_open_halfline x0)) by
A39,
VALUED_1:def 5;
then (f
/* seq) is
divergent_to-infty by
A32,
A37,
A38;
then (r
(#) (f
/* seq)) is
divergent_to+infty by
A33,
LIMFUNC1: 14;
hence thesis by
A40,
A1,
RFUNCT_2: 9,
XBOOLE_1: 1;
end;
theorem ::
LIMFUNC2:22
(f
is_right_divergent_to+infty_in x0 & r
>
0 implies (r
(#) f)
is_right_divergent_to+infty_in x0) & (f
is_right_divergent_to+infty_in x0 & r
<
0 implies (r
(#) f)
is_right_divergent_to-infty_in x0) & (f
is_right_divergent_to-infty_in x0 & r
>
0 implies (r
(#) f)
is_right_divergent_to-infty_in x0) & (f
is_right_divergent_to-infty_in x0 & r
<
0 implies (r
(#) f)
is_right_divergent_to+infty_in x0)
proof
A1: ((
dom f)
/\ (
right_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
thus f
is_right_divergent_to+infty_in x0 & r
>
0 implies (r
(#) f)
is_right_divergent_to+infty_in x0
proof
assume that
A2: f
is_right_divergent_to+infty_in x0 and
A3: r
>
0 ;
thus for r1 st x0
< r1 holds ex g st g
< r1 & x0
< g & g
in (
dom (r
(#) f))
proof
let r1;
assume x0
< r1;
then
consider g such that
A4: g
< r1 and
A5: x0
< g and
A6: g
in (
dom f) by
A2;
take g;
thus thesis by
A4,
A5,
A6,
VALUED_1:def 5;
end;
let seq;
assume that
A7: seq is
convergent and
A8: (
lim seq)
= x0 and
A9: (
rng seq)
c= ((
dom (r
(#) f))
/\ (
right_open_halfline x0));
A10: ((
dom f)
/\ (
right_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
A11: (
rng seq)
c= ((
dom f)
/\ (
right_open_halfline x0)) by
A9,
VALUED_1:def 5;
then (f
/* seq) is
divergent_to+infty by
A2,
A7,
A8;
then (r
(#) (f
/* seq)) is
divergent_to+infty by
A3,
LIMFUNC1: 13;
hence thesis by
A11,
A10,
RFUNCT_2: 9,
XBOOLE_1: 1;
end;
thus f
is_right_divergent_to+infty_in x0 & r
<
0 implies (r
(#) f)
is_right_divergent_to-infty_in x0
proof
assume that
A12: f
is_right_divergent_to+infty_in x0 and
A13: r
<
0 ;
thus for r1 st x0
< r1 holds ex g st g
< r1 & x0
< g & g
in (
dom (r
(#) f))
proof
let r1;
assume x0
< r1;
then
consider g such that
A14: g
< r1 and
A15: x0
< g and
A16: g
in (
dom f) by
A12;
take g;
thus thesis by
A14,
A15,
A16,
VALUED_1:def 5;
end;
let seq;
assume that
A17: seq is
convergent and
A18: (
lim seq)
= x0 and
A19: (
rng seq)
c= ((
dom (r
(#) f))
/\ (
right_open_halfline x0));
A20: ((
dom f)
/\ (
right_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
A21: (
rng seq)
c= ((
dom f)
/\ (
right_open_halfline x0)) by
A19,
VALUED_1:def 5;
then (f
/* seq) is
divergent_to+infty by
A12,
A17,
A18;
then (r
(#) (f
/* seq)) is
divergent_to-infty by
A13,
LIMFUNC1: 13;
hence thesis by
A21,
A20,
RFUNCT_2: 9,
XBOOLE_1: 1;
end;
thus f
is_right_divergent_to-infty_in x0 & r
>
0 implies (r
(#) f)
is_right_divergent_to-infty_in x0
proof
assume that
A22: f
is_right_divergent_to-infty_in x0 and
A23: r
>
0 ;
thus for r1 st x0
< r1 holds ex g st g
< r1 & x0
< g & g
in (
dom (r
(#) f))
proof
let r1;
assume x0
< r1;
then
consider g such that
A24: g
< r1 and
A25: x0
< g and
A26: g
in (
dom f) by
A22;
take g;
thus thesis by
A24,
A25,
A26,
VALUED_1:def 5;
end;
let seq;
assume that
A27: seq is
convergent and
A28: (
lim seq)
= x0 and
A29: (
rng seq)
c= ((
dom (r
(#) f))
/\ (
right_open_halfline x0));
A30: ((
dom f)
/\ (
right_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
A31: (
rng seq)
c= ((
dom f)
/\ (
right_open_halfline x0)) by
A29,
VALUED_1:def 5;
then (f
/* seq) is
divergent_to-infty by
A22,
A27,
A28;
then (r
(#) (f
/* seq)) is
divergent_to-infty by
A23,
LIMFUNC1: 14;
hence thesis by
A31,
A30,
RFUNCT_2: 9,
XBOOLE_1: 1;
end;
assume that
A32: f
is_right_divergent_to-infty_in x0 and
A33: r
<
0 ;
thus for r1 st x0
< r1 holds ex g st g
< r1 & x0
< g & g
in (
dom (r
(#) f))
proof
let r1;
assume x0
< r1;
then
consider g such that
A34: g
< r1 and
A35: x0
< g and
A36: g
in (
dom f) by
A32;
take g;
thus thesis by
A34,
A35,
A36,
VALUED_1:def 5;
end;
let seq;
assume that
A37: seq is
convergent and
A38: (
lim seq)
= x0 and
A39: (
rng seq)
c= ((
dom (r
(#) f))
/\ (
right_open_halfline x0));
A40: (
rng seq)
c= ((
dom f)
/\ (
right_open_halfline x0)) by
A39,
VALUED_1:def 5;
then (f
/* seq) is
divergent_to-infty by
A32,
A37,
A38;
then (r
(#) (f
/* seq)) is
divergent_to+infty by
A33,
LIMFUNC1: 14;
hence thesis by
A40,
A1,
RFUNCT_2: 9,
XBOOLE_1: 1;
end;
theorem ::
LIMFUNC2:23
(f
is_left_divergent_to+infty_in x0 or f
is_left_divergent_to-infty_in x0) implies (
abs f)
is_left_divergent_to+infty_in x0
proof
assume
A1: f
is_left_divergent_to+infty_in x0 or f
is_left_divergent_to-infty_in x0;
now
per cases by
A1;
suppose
A2: f
is_left_divergent_to+infty_in x0;
A3:
now
let seq;
assume that
A4: seq is
convergent and
A5: (
lim seq)
= x0 and
A6: (
rng seq)
c= ((
dom (
abs f))
/\ (
left_open_halfline x0));
A7: (
rng seq)
c= ((
dom f)
/\ (
left_open_halfline x0)) by
A6,
VALUED_1:def 11;
then (f
/* seq) is
divergent_to+infty by
A2,
A4,
A5;
then
A8: (
abs (f
/* seq)) is
divergent_to+infty by
LIMFUNC1: 25;
((
dom f)
/\ (
left_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
then (
rng seq)
c= (
dom f) by
A7,
XBOOLE_1: 1;
hence ((
abs f)
/* seq) is
divergent_to+infty by
A8,
RFUNCT_2: 10;
end;
now
let r;
assume r
< x0;
then
consider g such that
A9: r
< g and
A10: g
< x0 and
A11: g
in (
dom f) by
A2;
take g;
thus r
< g & g
< x0 & g
in (
dom (
abs f)) by
A9,
A10,
A11,
VALUED_1:def 11;
end;
hence thesis by
A3;
end;
suppose
A12: f
is_left_divergent_to-infty_in x0;
A13:
now
let seq;
assume that
A14: seq is
convergent and
A15: (
lim seq)
= x0 and
A16: (
rng seq)
c= ((
dom (
abs f))
/\ (
left_open_halfline x0));
A17: (
rng seq)
c= ((
dom f)
/\ (
left_open_halfline x0)) by
A16,
VALUED_1:def 11;
then (f
/* seq) is
divergent_to-infty by
A12,
A14,
A15;
then
A18: (
abs (f
/* seq)) is
divergent_to+infty by
LIMFUNC1: 25;
((
dom f)
/\ (
left_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
then (
rng seq)
c= (
dom f) by
A17,
XBOOLE_1: 1;
hence ((
abs f)
/* seq) is
divergent_to+infty by
A18,
RFUNCT_2: 10;
end;
now
let r;
assume r
< x0;
then
consider g such that
A19: r
< g and
A20: g
< x0 and
A21: g
in (
dom f) by
A12;
take g;
thus r
< g & g
< x0 & g
in (
dom (
abs f)) by
A19,
A20,
A21,
VALUED_1:def 11;
end;
hence thesis by
A13;
end;
end;
hence thesis;
end;
theorem ::
LIMFUNC2:24
(f
is_right_divergent_to+infty_in x0 or f
is_right_divergent_to-infty_in x0) implies (
abs f)
is_right_divergent_to+infty_in x0
proof
assume
A1: f
is_right_divergent_to+infty_in x0 or f
is_right_divergent_to-infty_in x0;
now
per cases by
A1;
suppose
A2: f
is_right_divergent_to+infty_in x0;
A3:
now
let seq;
assume that
A4: seq is
convergent and
A5: (
lim seq)
= x0 and
A6: (
rng seq)
c= ((
dom (
abs f))
/\ (
right_open_halfline x0));
A7: (
rng seq)
c= ((
dom f)
/\ (
right_open_halfline x0)) by
A6,
VALUED_1:def 11;
then (f
/* seq) is
divergent_to+infty by
A2,
A4,
A5;
then
A8: (
abs (f
/* seq)) is
divergent_to+infty by
LIMFUNC1: 25;
((
dom f)
/\ (
right_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
then (
rng seq)
c= (
dom f) by
A7,
XBOOLE_1: 1;
hence ((
abs f)
/* seq) is
divergent_to+infty by
A8,
RFUNCT_2: 10;
end;
now
let r;
assume x0
< r;
then
consider g such that
A9: g
< r and
A10: x0
< g and
A11: g
in (
dom f) by
A2;
take g;
thus g
< r & x0
< g & g
in (
dom (
abs f)) by
A9,
A10,
A11,
VALUED_1:def 11;
end;
hence thesis by
A3;
end;
suppose
A12: f
is_right_divergent_to-infty_in x0;
A13:
now
let seq;
assume that
A14: seq is
convergent and
A15: (
lim seq)
= x0 and
A16: (
rng seq)
c= ((
dom (
abs f))
/\ (
right_open_halfline x0));
A17: (
rng seq)
c= ((
dom f)
/\ (
right_open_halfline x0)) by
A16,
VALUED_1:def 11;
then (f
/* seq) is
divergent_to-infty by
A12,
A14,
A15;
then
A18: (
abs (f
/* seq)) is
divergent_to+infty by
LIMFUNC1: 25;
((
dom f)
/\ (
right_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
then (
rng seq)
c= (
dom f) by
A17,
XBOOLE_1: 1;
hence ((
abs f)
/* seq) is
divergent_to+infty by
A18,
RFUNCT_2: 10;
end;
now
let r;
assume x0
< r;
then
consider g such that
A19: g
< r and
A20: x0
< g and
A21: g
in (
dom f) by
A12;
take g;
thus g
< r & x0
< g & g
in (
dom (
abs f)) by
A19,
A20,
A21,
VALUED_1:def 11;
end;
hence thesis by
A13;
end;
end;
hence thesis;
end;
theorem ::
LIMFUNC2:25
Th25: (ex r st (f
|
].(x0
- r), x0.[) is
non-decreasing & not (f
|
].(x0
- r), x0.[) is
bounded_above) & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f)) implies f
is_left_divergent_to+infty_in x0
proof
given r such that
A1: (f
|
].(x0
- r), x0.[) is
non-decreasing and
A2: not (f
|
].(x0
- r), x0.[) is
bounded_above;
assume for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f);
hence for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f);
let seq such that
A3: seq is
convergent and
A4: (
lim seq)
= x0 and
A5: (
rng seq)
c= ((
dom f)
/\ (
left_open_halfline x0));
now
let t;
A6: ((
dom f)
/\ (
left_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
consider g1 be
object such that
A7: g1
in (
].(x0
- r), x0.[
/\ (
dom f)) and
A8: t
< (f
. g1) by
A2,
RFUNCT_1: 70;
reconsider g1 as
Real by
A7;
g1
in
].(x0
- r), x0.[ by
A7,
XBOOLE_0:def 4;
then g1
in { r1 : (x0
- r)
< r1 & r1
< x0 } by
RCOMP_1:def 2;
then
A9: ex r1 st r1
= g1 & (x0
- r)
< r1 & r1
< x0;
then
consider n such that
A10: for k st n
<= k holds g1
< (seq
. k) by
A3,
A4,
Th1;
take n;
let k;
A11: k
in
NAT by
ORDINAL1:def 12;
(seq
. k)
in (
rng seq) by
VALUED_0: 28;
then
A12: (seq
. k)
in ((
dom f)
/\ (
left_open_halfline x0)) by
A5;
((
dom f)
/\ (
left_open_halfline x0))
c= (
left_open_halfline x0) by
XBOOLE_1: 17;
then (seq
. k)
in (
left_open_halfline x0) by
A12;
then (seq
. k)
in { r2 : r2
< x0 } by
XXREAL_1: 229;
then
A13: ex r2 st r2
= (seq
. k) & r2
< x0;
assume n
<= k;
then
A14: g1
< (seq
. k) by
A10;
then (x0
- r)
< (seq
. k) by
A9,
XXREAL_0: 2;
then (seq
. k)
in { g2 : (x0
- r)
< g2 & g2
< x0 } by
A13;
then (seq
. k)
in
].(x0
- r), x0.[ by
RCOMP_1:def 2;
then (seq
. k)
in (
].(x0
- r), x0.[
/\ (
dom f)) by
A12,
A6,
XBOOLE_0:def 4;
then (f
. g1)
<= (f
. (seq
. k)) by
A1,
A7,
A14,
RFUNCT_2: 22;
then t
< (f
. (seq
. k)) by
A8,
XXREAL_0: 2;
hence t
< ((f
/* seq)
. k) by
A5,
A6,
FUNCT_2: 108,
XBOOLE_1: 1,
A11;
end;
hence thesis;
end;
theorem ::
LIMFUNC2:26
(ex r st
0
< r & (f
|
].(x0
- r), x0.[) is
increasing & not (f
|
].(x0
- r), x0.[) is
bounded_above) & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f)) implies f
is_left_divergent_to+infty_in x0 by
Th25;
theorem ::
LIMFUNC2:27
Th27: (ex r st (f
|
].(x0
- r), x0.[) is
non-increasing & not (f
|
].(x0
- r), x0.[) is
bounded_below) & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f)) implies f
is_left_divergent_to-infty_in x0
proof
given r such that
A1: (f
|
].(x0
- r), x0.[) is
non-increasing and
A2: not (f
|
].(x0
- r), x0.[) is
bounded_below;
assume for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f);
hence for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f);
let seq such that
A3: seq is
convergent and
A4: (
lim seq)
= x0 and
A5: (
rng seq)
c= ((
dom f)
/\ (
left_open_halfline x0));
now
let t;
A6: ((
dom f)
/\ (
left_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
consider g1 be
object such that
A7: g1
in (
].(x0
- r), x0.[
/\ (
dom f)) and
A8: (f
. g1)
< t by
A2,
RFUNCT_1: 71;
reconsider g1 as
Real by
A7;
g1
in
].(x0
- r), x0.[ by
A7,
XBOOLE_0:def 4;
then g1
in { r1 : (x0
- r)
< r1 & r1
< x0 } by
RCOMP_1:def 2;
then
A9: ex r1 st r1
= g1 & (x0
- r)
< r1 & r1
< x0;
then
consider n such that
A10: for k st n
<= k holds g1
< (seq
. k) by
A3,
A4,
Th1;
take n;
let k;
A11: k
in
NAT by
ORDINAL1:def 12;
(seq
. k)
in (
rng seq) by
VALUED_0: 28;
then
A12: (seq
. k)
in ((
dom f)
/\ (
left_open_halfline x0)) by
A5;
((
dom f)
/\ (
left_open_halfline x0))
c= (
left_open_halfline x0) by
XBOOLE_1: 17;
then (seq
. k)
in (
left_open_halfline x0) by
A12;
then (seq
. k)
in { r2 : r2
< x0 } by
XXREAL_1: 229;
then
A13: ex r2 st r2
= (seq
. k) & r2
< x0;
assume n
<= k;
then
A14: g1
< (seq
. k) by
A10;
then (x0
- r)
< (seq
. k) by
A9,
XXREAL_0: 2;
then (seq
. k)
in { g2 : (x0
- r)
< g2 & g2
< x0 } by
A13;
then (seq
. k)
in
].(x0
- r), x0.[ by
RCOMP_1:def 2;
then (seq
. k)
in (
].(x0
- r), x0.[
/\ (
dom f)) by
A12,
A6,
XBOOLE_0:def 4;
then (f
. (seq
. k))
<= (f
. g1) by
A1,
A7,
A14,
RFUNCT_2: 23;
then (f
. (seq
. k))
< t by
A8,
XXREAL_0: 2;
hence ((f
/* seq)
. k)
< t by
A5,
A6,
FUNCT_2: 108,
XBOOLE_1: 1,
A11;
end;
hence thesis;
end;
theorem ::
LIMFUNC2:28
(ex r st
0
< r & (f
|
].(x0
- r), x0.[) is
decreasing & not (f
|
].(x0
- r), x0.[) is
bounded_below) & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f)) implies f
is_left_divergent_to-infty_in x0 by
Th27;
theorem ::
LIMFUNC2:29
Th29: (ex r st (f
|
].x0, (x0
+ r).[) is
non-increasing & not (f
|
].x0, (x0
+ r).[) is
bounded_above) & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f)) implies f
is_right_divergent_to+infty_in x0
proof
given r such that
A1: (f
|
].x0, (x0
+ r).[) is
non-increasing and
A2: not (f
|
].x0, (x0
+ r).[) is
bounded_above;
assume for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f);
hence for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f);
let seq such that
A3: seq is
convergent and
A4: (
lim seq)
= x0 and
A5: (
rng seq)
c= ((
dom f)
/\ (
right_open_halfline x0));
now
let t;
A6: ((
dom f)
/\ (
right_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
consider g1 be
object such that
A7: g1
in (
].x0, (x0
+ r).[
/\ (
dom f)) and
A8: t
< (f
. g1) by
A2,
RFUNCT_1: 70;
reconsider g1 as
Real by
A7;
g1
in
].x0, (x0
+ r).[ by
A7,
XBOOLE_0:def 4;
then g1
in { r1 : x0
< r1 & r1
< (x0
+ r) } by
RCOMP_1:def 2;
then
A9: ex r1 st r1
= g1 & x0
< r1 & r1
< (x0
+ r);
then
consider n such that
A10: for k st n
<= k holds (seq
. k)
< g1 by
A3,
A4,
Th2;
take n;
let k;
(seq
. k)
in (
rng seq) by
VALUED_0: 28;
then
A11: (seq
. k)
in ((
dom f)
/\ (
right_open_halfline x0)) by
A5;
((
dom f)
/\ (
right_open_halfline x0))
c= (
right_open_halfline x0) by
XBOOLE_1: 17;
then (seq
. k)
in (
right_open_halfline x0) by
A11;
then (seq
. k)
in { r2 : x0
< r2 } by
XXREAL_1: 230;
then
A12: ex r2 st r2
= (seq
. k) & x0
< r2;
A13: k
in
NAT by
ORDINAL1:def 12;
assume n
<= k;
then
A14: (seq
. k)
< g1 by
A10;
then (seq
. k)
< (x0
+ r) by
A9,
XXREAL_0: 2;
then (seq
. k)
in { g2 : x0
< g2 & g2
< (x0
+ r) } by
A12;
then (seq
. k)
in
].x0, (x0
+ r).[ by
RCOMP_1:def 2;
then (seq
. k)
in (
].x0, (x0
+ r).[
/\ (
dom f)) by
A11,
A6,
XBOOLE_0:def 4;
then (f
. g1)
<= (f
. (seq
. k)) by
A1,
A7,
A14,
RFUNCT_2: 23;
then t
< (f
. (seq
. k)) by
A8,
XXREAL_0: 2;
hence t
< ((f
/* seq)
. k) by
A5,
A6,
FUNCT_2: 108,
XBOOLE_1: 1,
A13;
end;
hence thesis;
end;
theorem ::
LIMFUNC2:30
(ex r st
0
< r & (f
|
].x0, (x0
+ r).[) is
decreasing & not (f
|
].x0, (x0
+ r).[) is
bounded_above) & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f)) implies f
is_right_divergent_to+infty_in x0 by
Th29;
theorem ::
LIMFUNC2:31
Th31: (ex r st (f
|
].x0, (x0
+ r).[) is
non-decreasing & not (f
|
].x0, (x0
+ r).[) is
bounded_below) & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f)) implies f
is_right_divergent_to-infty_in x0
proof
given r such that
A1: (f
|
].x0, (x0
+ r).[) is
non-decreasing and
A2: not (f
|
].x0, (x0
+ r).[) is
bounded_below;
assume for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f);
hence for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f);
let seq such that
A3: seq is
convergent and
A4: (
lim seq)
= x0 and
A5: (
rng seq)
c= ((
dom f)
/\ (
right_open_halfline x0));
now
let t;
A6: ((
dom f)
/\ (
right_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
consider g1 be
object such that
A7: g1
in (
].x0, (x0
+ r).[
/\ (
dom f)) and
A8: (f
. g1)
< t by
A2,
RFUNCT_1: 71;
reconsider g1 as
Real by
A7;
g1
in
].x0, (x0
+ r).[ by
A7,
XBOOLE_0:def 4;
then g1
in { r1 : x0
< r1 & r1
< (x0
+ r) } by
RCOMP_1:def 2;
then
A9: ex r1 st r1
= g1 & x0
< r1 & r1
< (x0
+ r);
then
consider n such that
A10: for k st n
<= k holds (seq
. k)
< g1 by
A3,
A4,
Th2;
take n;
let k;
(seq
. k)
in (
rng seq) by
VALUED_0: 28;
then
A11: (seq
. k)
in ((
dom f)
/\ (
right_open_halfline x0)) by
A5;
((
dom f)
/\ (
right_open_halfline x0))
c= (
right_open_halfline x0) by
XBOOLE_1: 17;
then (seq
. k)
in (
right_open_halfline x0) by
A11;
then (seq
. k)
in { r2 : x0
< r2 } by
XXREAL_1: 230;
then
A12: ex r2 st r2
= (seq
. k) & x0
< r2;
A13: k
in
NAT by
ORDINAL1:def 12;
assume n
<= k;
then
A14: (seq
. k)
< g1 by
A10;
then (seq
. k)
< (x0
+ r) by
A9,
XXREAL_0: 2;
then (seq
. k)
in { g2 : x0
< g2 & g2
< (x0
+ r) } by
A12;
then (seq
. k)
in
].x0, (x0
+ r).[ by
RCOMP_1:def 2;
then (seq
. k)
in (
].x0, (x0
+ r).[
/\ (
dom f)) by
A11,
A6,
XBOOLE_0:def 4;
then (f
. (seq
. k))
<= (f
. g1) by
A1,
A7,
A14,
RFUNCT_2: 22;
then (f
. (seq
. k))
< t by
A8,
XXREAL_0: 2;
hence ((f
/* seq)
. k)
< t by
A5,
A6,
FUNCT_2: 108,
XBOOLE_1: 1,
A13;
end;
hence thesis;
end;
theorem ::
LIMFUNC2:32
(ex r st
0
< r & (f
|
].x0, (x0
+ r).[) is
increasing & not (f
|
].x0, (x0
+ r).[) is
bounded_below) & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f)) implies f
is_right_divergent_to-infty_in x0 by
Th31;
theorem ::
LIMFUNC2:33
Th33: f1
is_left_divergent_to+infty_in x0 & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f)) & (ex r st
0
< r & ((
dom f)
/\
].(x0
- r), x0.[)
c= ((
dom f1)
/\
].(x0
- r), x0.[) & for g st g
in ((
dom f)
/\
].(x0
- r), x0.[) holds (f1
. g)
<= (f
. g)) implies f
is_left_divergent_to+infty_in x0
proof
assume that
A1: f1
is_left_divergent_to+infty_in x0 and
A2: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f);
given r such that
A3:
0
< r and
A4: ((
dom f)
/\
].(x0
- r), x0.[)
c= ((
dom f1)
/\
].(x0
- r), x0.[) and
A5: for g st g
in ((
dom f)
/\
].(x0
- r), x0.[) holds (f1
. g)
<= (f
. g);
thus for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f) by
A2;
let seq such that
A6: seq is
convergent and
A7: (
lim seq)
= x0 and
A8: (
rng seq)
c= ((
dom f)
/\ (
left_open_halfline x0));
(x0
- r)
< x0 by
A3,
Lm1;
then
consider k such that
A9: for n st k
<= n holds (x0
- r)
< (seq
. n) by
A6,
A7,
Th1;
A10: (
rng (seq
^\ k))
c= (
rng seq) by
VALUED_0: 21;
((
dom f)
/\ (
left_open_halfline x0))
c= (
left_open_halfline x0) by
XBOOLE_1: 17;
then (
rng seq)
c= (
left_open_halfline x0) by
A8,
XBOOLE_1: 1;
then
A11: (
rng (seq
^\ k))
c= (
left_open_halfline x0) by
A10,
XBOOLE_1: 1;
now
let x be
object;
assume
A12: x
in (
rng (seq
^\ k));
then
consider n be
Element of
NAT such that
A13: ((seq
^\ k)
. n)
= x by
FUNCT_2: 113;
((seq
^\ k)
. n)
in (
left_open_halfline x0) by
A11,
A12,
A13;
then ((seq
^\ k)
. n)
in { g : g
< x0 } by
XXREAL_1: 229;
then
A14: ex r1 st r1
= ((seq
^\ k)
. n) & r1
< x0;
(x0
- r)
< (seq
. (n
+ k)) by
A9,
NAT_1: 12;
then (x0
- r)
< ((seq
^\ k)
. n) by
NAT_1:def 3;
then x
in { g1 : (x0
- r)
< g1 & g1
< x0 } by
A13,
A14;
hence x
in
].(x0
- r), x0.[ by
RCOMP_1:def 2;
end;
then
A15: (
rng (seq
^\ k))
c=
].(x0
- r), x0.[ by
TARSKI:def 3;
A16: ((
dom f)
/\ (
left_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
then
A17: (
rng seq)
c= (
dom f) by
A8,
XBOOLE_1: 1;
then (
rng (seq
^\ k))
c= (
dom f) by
A10,
XBOOLE_1: 1;
then
A18: (
rng (seq
^\ k))
c= ((
dom f)
/\
].(x0
- r), x0.[) by
A15,
XBOOLE_1: 19;
then
A19: (
rng (seq
^\ k))
c= ((
dom f1)
/\
].(x0
- r), x0.[) by
A4,
XBOOLE_1: 1;
A20: ((
dom f1)
/\
].(x0
- r), x0.[)
c= (
dom f1) by
XBOOLE_1: 17;
then (
rng (seq
^\ k))
c= (
dom f1) by
A19,
XBOOLE_1: 1;
then
A21: (
rng (seq
^\ k))
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A11,
XBOOLE_1: 19;
A22:
now
let n;
A23: n
in
NAT by
ORDINAL1:def 12;
((seq
^\ k)
. n)
in (
rng (seq
^\ k)) by
VALUED_0: 28;
then (f1
. ((seq
^\ k)
. n))
<= (f
. ((seq
^\ k)
. n)) by
A5,
A18;
then ((f1
/* (seq
^\ k))
. n)
<= (f
. ((seq
^\ k)
. n)) by
A19,
A20,
FUNCT_2: 108,
XBOOLE_1: 1,
A23;
hence ((f1
/* (seq
^\ k))
. n)
<= ((f
/* (seq
^\ k))
. n) by
A17,
A10,
FUNCT_2: 108,
XBOOLE_1: 1,
A23;
end;
(
lim (seq
^\ k))
= x0 by
A6,
A7,
SEQ_4: 20;
then (f1
/* (seq
^\ k)) is
divergent_to+infty by
A1,
A6,
A21;
then (f
/* (seq
^\ k)) is
divergent_to+infty by
A22,
LIMFUNC1: 42;
then ((f
/* seq)
^\ k) is
divergent_to+infty by
A8,
A16,
VALUED_0: 27,
XBOOLE_1: 1;
hence thesis by
LIMFUNC1: 7;
end;
theorem ::
LIMFUNC2:34
Th34: f1
is_left_divergent_to-infty_in x0 & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f)) & (ex r st
0
< r & ((
dom f)
/\
].(x0
- r), x0.[)
c= ((
dom f1)
/\
].(x0
- r), x0.[) & for g st g
in ((
dom f)
/\
].(x0
- r), x0.[) holds (f
. g)
<= (f1
. g)) implies f
is_left_divergent_to-infty_in x0
proof
assume that
A1: f1
is_left_divergent_to-infty_in x0 and
A2: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f);
given r such that
A3:
0
< r and
A4: ((
dom f)
/\
].(x0
- r), x0.[)
c= ((
dom f1)
/\
].(x0
- r), x0.[) and
A5: for g st g
in ((
dom f)
/\
].(x0
- r), x0.[) holds (f
. g)
<= (f1
. g);
thus for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f) by
A2;
let seq such that
A6: seq is
convergent and
A7: (
lim seq)
= x0 and
A8: (
rng seq)
c= ((
dom f)
/\ (
left_open_halfline x0));
(x0
- r)
< x0 by
A3,
Lm1;
then
consider k such that
A9: for n st k
<= n holds (x0
- r)
< (seq
. n) by
A6,
A7,
Th1;
A10: (
rng (seq
^\ k))
c= (
rng seq) by
VALUED_0: 21;
((
dom f)
/\ (
left_open_halfline x0))
c= (
left_open_halfline x0) by
XBOOLE_1: 17;
then (
rng seq)
c= (
left_open_halfline x0) by
A8,
XBOOLE_1: 1;
then
A11: (
rng (seq
^\ k))
c= (
left_open_halfline x0) by
A10,
XBOOLE_1: 1;
now
let x be
object;
assume
A12: x
in (
rng (seq
^\ k));
then
consider n be
Element of
NAT such that
A13: ((seq
^\ k)
. n)
= x by
FUNCT_2: 113;
((seq
^\ k)
. n)
in (
left_open_halfline x0) by
A11,
A12,
A13;
then ((seq
^\ k)
. n)
in { g : g
< x0 } by
XXREAL_1: 229;
then
A14: ex r1 st r1
= ((seq
^\ k)
. n) & r1
< x0;
(x0
- r)
< (seq
. (n
+ k)) by
A9,
NAT_1: 12;
then (x0
- r)
< ((seq
^\ k)
. n) by
NAT_1:def 3;
then x
in { g1 : (x0
- r)
< g1 & g1
< x0 } by
A13,
A14;
hence x
in
].(x0
- r), x0.[ by
RCOMP_1:def 2;
end;
then
A15: (
rng (seq
^\ k))
c=
].(x0
- r), x0.[ by
TARSKI:def 3;
A16: ((
dom f)
/\ (
left_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
then
A17: (
rng seq)
c= (
dom f) by
A8,
XBOOLE_1: 1;
then (
rng (seq
^\ k))
c= (
dom f) by
A10,
XBOOLE_1: 1;
then
A18: (
rng (seq
^\ k))
c= ((
dom f)
/\
].(x0
- r), x0.[) by
A15,
XBOOLE_1: 19;
then
A19: (
rng (seq
^\ k))
c= ((
dom f1)
/\
].(x0
- r), x0.[) by
A4,
XBOOLE_1: 1;
A20: ((
dom f1)
/\
].(x0
- r), x0.[)
c= (
dom f1) by
XBOOLE_1: 17;
then (
rng (seq
^\ k))
c= (
dom f1) by
A19,
XBOOLE_1: 1;
then
A21: (
rng (seq
^\ k))
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A11,
XBOOLE_1: 19;
A22:
now
let n;
A23: n
in
NAT by
ORDINAL1:def 12;
((seq
^\ k)
. n)
in (
rng (seq
^\ k)) by
VALUED_0: 28;
then (f
. ((seq
^\ k)
. n))
<= (f1
. ((seq
^\ k)
. n)) by
A5,
A18;
then ((f
/* (seq
^\ k))
. n)
<= (f1
. ((seq
^\ k)
. n)) by
A17,
A10,
FUNCT_2: 108,
XBOOLE_1: 1,
A23;
hence ((f
/* (seq
^\ k))
. n)
<= ((f1
/* (seq
^\ k))
. n) by
A19,
A20,
FUNCT_2: 108,
XBOOLE_1: 1,
A23;
end;
(
lim (seq
^\ k))
= x0 by
A6,
A7,
SEQ_4: 20;
then (f1
/* (seq
^\ k)) is
divergent_to-infty by
A1,
A6,
A21;
then (f
/* (seq
^\ k)) is
divergent_to-infty by
A22,
LIMFUNC1: 43;
then ((f
/* seq)
^\ k) is
divergent_to-infty by
A8,
A16,
VALUED_0: 27,
XBOOLE_1: 1;
hence thesis by
LIMFUNC1: 7;
end;
theorem ::
LIMFUNC2:35
Th35: f1
is_right_divergent_to+infty_in x0 & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f)) & (ex r st
0
< r & ((
dom f)
/\
].x0, (x0
+ r).[)
c= ((
dom f1)
/\
].x0, (x0
+ r).[) & for g st g
in ((
dom f)
/\
].x0, (x0
+ r).[) holds (f1
. g)
<= (f
. g)) implies f
is_right_divergent_to+infty_in x0
proof
assume that
A1: f1
is_right_divergent_to+infty_in x0 and
A2: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f);
given r such that
A3:
0
< r and
A4: ((
dom f)
/\
].x0, (x0
+ r).[)
c= ((
dom f1)
/\
].x0, (x0
+ r).[) and
A5: for g st g
in ((
dom f)
/\
].x0, (x0
+ r).[) holds (f1
. g)
<= (f
. g);
thus for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f) by
A2;
let seq such that
A6: seq is
convergent and
A7: (
lim seq)
= x0 and
A8: (
rng seq)
c= ((
dom f)
/\ (
right_open_halfline x0));
x0
< (x0
+ r) by
A3,
Lm1;
then
consider k such that
A9: for n st k
<= n holds (seq
. n)
< (x0
+ r) by
A6,
A7,
Th2;
A10: (
rng (seq
^\ k))
c= (
rng seq) by
VALUED_0: 21;
((
dom f)
/\ (
right_open_halfline x0))
c= (
right_open_halfline x0) by
XBOOLE_1: 17;
then (
rng seq)
c= (
right_open_halfline x0) by
A8,
XBOOLE_1: 1;
then
A11: (
rng (seq
^\ k))
c= (
right_open_halfline x0) by
A10,
XBOOLE_1: 1;
now
let x be
object;
assume
A12: x
in (
rng (seq
^\ k));
then
consider n be
Element of
NAT such that
A13: ((seq
^\ k)
. n)
= x by
FUNCT_2: 113;
((seq
^\ k)
. n)
in (
right_open_halfline x0) by
A11,
A12,
A13;
then ((seq
^\ k)
. n)
in { g : x0
< g } by
XXREAL_1: 230;
then
A14: ex r1 st r1
= ((seq
^\ k)
. n) & x0
< r1;
(seq
. (n
+ k))
< (x0
+ r) by
A9,
NAT_1: 12;
then ((seq
^\ k)
. n)
< (x0
+ r) by
NAT_1:def 3;
then x
in { g1 : x0
< g1 & g1
< (x0
+ r) } by
A13,
A14;
hence x
in
].x0, (x0
+ r).[ by
RCOMP_1:def 2;
end;
then
A15: (
rng (seq
^\ k))
c=
].x0, (x0
+ r).[ by
TARSKI:def 3;
A16: ((
dom f)
/\ (
right_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
then
A17: (
rng seq)
c= (
dom f) by
A8,
XBOOLE_1: 1;
then (
rng (seq
^\ k))
c= (
dom f) by
A10,
XBOOLE_1: 1;
then
A18: (
rng (seq
^\ k))
c= ((
dom f)
/\
].x0, (x0
+ r).[) by
A15,
XBOOLE_1: 19;
then
A19: (
rng (seq
^\ k))
c= ((
dom f1)
/\
].x0, (x0
+ r).[) by
A4,
XBOOLE_1: 1;
A20: ((
dom f1)
/\
].x0, (x0
+ r).[)
c= (
dom f1) by
XBOOLE_1: 17;
then (
rng (seq
^\ k))
c= (
dom f1) by
A19,
XBOOLE_1: 1;
then
A21: (
rng (seq
^\ k))
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A11,
XBOOLE_1: 19;
A22:
now
let n;
A23: n
in
NAT by
ORDINAL1:def 12;
((seq
^\ k)
. n)
in (
rng (seq
^\ k)) by
VALUED_0: 28;
then (f1
. ((seq
^\ k)
. n))
<= (f
. ((seq
^\ k)
. n)) by
A5,
A18;
then ((f1
/* (seq
^\ k))
. n)
<= (f
. ((seq
^\ k)
. n)) by
A19,
A20,
FUNCT_2: 108,
XBOOLE_1: 1,
A23;
hence ((f1
/* (seq
^\ k))
. n)
<= ((f
/* (seq
^\ k))
. n) by
A17,
A10,
FUNCT_2: 108,
XBOOLE_1: 1,
A23;
end;
(
lim (seq
^\ k))
= x0 by
A6,
A7,
SEQ_4: 20;
then (f1
/* (seq
^\ k)) is
divergent_to+infty by
A1,
A6,
A21;
then (f
/* (seq
^\ k)) is
divergent_to+infty by
A22,
LIMFUNC1: 42;
then ((f
/* seq)
^\ k) is
divergent_to+infty by
A8,
A16,
VALUED_0: 27,
XBOOLE_1: 1;
hence thesis by
LIMFUNC1: 7;
end;
theorem ::
LIMFUNC2:36
Th36: f1
is_right_divergent_to-infty_in x0 & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f)) & (ex r st
0
< r & ((
dom f)
/\
].x0, (x0
+ r).[)
c= ((
dom f1)
/\
].x0, (x0
+ r).[) & for g st g
in ((
dom f)
/\
].x0, (x0
+ r).[) holds (f
. g)
<= (f1
. g)) implies f
is_right_divergent_to-infty_in x0
proof
assume that
A1: f1
is_right_divergent_to-infty_in x0 and
A2: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f);
given r such that
A3:
0
< r and
A4: ((
dom f)
/\
].x0, (x0
+ r).[)
c= ((
dom f1)
/\
].x0, (x0
+ r).[) and
A5: for g st g
in ((
dom f)
/\
].x0, (x0
+ r).[) holds (f
. g)
<= (f1
. g);
thus for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f) by
A2;
let seq such that
A6: seq is
convergent and
A7: (
lim seq)
= x0 and
A8: (
rng seq)
c= ((
dom f)
/\ (
right_open_halfline x0));
x0
< (x0
+ r) by
A3,
Lm1;
then
consider k such that
A9: for n st k
<= n holds (seq
. n)
< (x0
+ r) by
A6,
A7,
Th2;
A10: (
rng (seq
^\ k))
c= (
rng seq) by
VALUED_0: 21;
((
dom f)
/\ (
right_open_halfline x0))
c= (
right_open_halfline x0) by
XBOOLE_1: 17;
then (
rng seq)
c= (
right_open_halfline x0) by
A8,
XBOOLE_1: 1;
then
A11: (
rng (seq
^\ k))
c= (
right_open_halfline x0) by
A10,
XBOOLE_1: 1;
now
let x be
object;
assume
A12: x
in (
rng (seq
^\ k));
then
consider n be
Element of
NAT such that
A13: ((seq
^\ k)
. n)
= x by
FUNCT_2: 113;
((seq
^\ k)
. n)
in (
right_open_halfline x0) by
A11,
A12,
A13;
then ((seq
^\ k)
. n)
in { g : x0
< g } by
XXREAL_1: 230;
then
A14: ex r1 st r1
= ((seq
^\ k)
. n) & x0
< r1;
(seq
. (n
+ k))
< (x0
+ r) by
A9,
NAT_1: 12;
then ((seq
^\ k)
. n)
< (x0
+ r) by
NAT_1:def 3;
then x
in { g1 : x0
< g1 & g1
< (x0
+ r) } by
A13,
A14;
hence x
in
].x0, (x0
+ r).[ by
RCOMP_1:def 2;
end;
then
A15: (
rng (seq
^\ k))
c=
].x0, (x0
+ r).[ by
TARSKI:def 3;
A16: ((
dom f)
/\ (
right_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
then
A17: (
rng seq)
c= (
dom f) by
A8,
XBOOLE_1: 1;
then (
rng (seq
^\ k))
c= (
dom f) by
A10,
XBOOLE_1: 1;
then
A18: (
rng (seq
^\ k))
c= ((
dom f)
/\
].x0, (x0
+ r).[) by
A15,
XBOOLE_1: 19;
then
A19: (
rng (seq
^\ k))
c= ((
dom f1)
/\
].x0, (x0
+ r).[) by
A4,
XBOOLE_1: 1;
A20: ((
dom f1)
/\
].x0, (x0
+ r).[)
c= (
dom f1) by
XBOOLE_1: 17;
then (
rng (seq
^\ k))
c= (
dom f1) by
A19,
XBOOLE_1: 1;
then
A21: (
rng (seq
^\ k))
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A11,
XBOOLE_1: 19;
A22:
now
let n;
A23: n
in
NAT by
ORDINAL1:def 12;
((seq
^\ k)
. n)
in (
rng (seq
^\ k)) by
VALUED_0: 28;
then (f
. ((seq
^\ k)
. n))
<= (f1
. ((seq
^\ k)
. n)) by
A5,
A18;
then ((f
/* (seq
^\ k))
. n)
<= (f1
. ((seq
^\ k)
. n)) by
A17,
A10,
FUNCT_2: 108,
XBOOLE_1: 1,
A23;
hence ((f
/* (seq
^\ k))
. n)
<= ((f1
/* (seq
^\ k))
. n) by
A19,
A20,
FUNCT_2: 108,
XBOOLE_1: 1,
A23;
end;
(
lim (seq
^\ k))
= x0 by
A6,
A7,
SEQ_4: 20;
then (f1
/* (seq
^\ k)) is
divergent_to-infty by
A1,
A6,
A21;
then (f
/* (seq
^\ k)) is
divergent_to-infty by
A22,
LIMFUNC1: 43;
then ((f
/* seq)
^\ k) is
divergent_to-infty by
A8,
A16,
VALUED_0: 27,
XBOOLE_1: 1;
hence thesis by
LIMFUNC1: 7;
end;
theorem ::
LIMFUNC2:37
f1
is_left_divergent_to+infty_in x0 & (ex r st
0
< r &
].(x0
- r), x0.[
c= ((
dom f)
/\ (
dom f1)) & for g st g
in
].(x0
- r), x0.[ holds (f1
. g)
<= (f
. g)) implies f
is_left_divergent_to+infty_in x0
proof
assume
A1: f1
is_left_divergent_to+infty_in x0;
given r such that
A2:
0
< r and
A3:
].(x0
- r), x0.[
c= ((
dom f)
/\ (
dom f1)) and
A4: for g st g
in
].(x0
- r), x0.[ holds (f1
. g)
<= (f
. g);
A5: ((
dom f)
/\ (
dom f1))
c= (
dom f) by
XBOOLE_1: 17;
then
A6:
].(x0
- r), x0.[
= ((
dom f)
/\
].(x0
- r), x0.[) by
A3,
XBOOLE_1: 1,
XBOOLE_1: 28;
((
dom f)
/\ (
dom f1))
c= (
dom f1) by
XBOOLE_1: 17;
then
A7:
].(x0
- r), x0.[
= ((
dom f1)
/\
].(x0
- r), x0.[) by
A3,
XBOOLE_1: 1,
XBOOLE_1: 28;
for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f) by
A2,
A3,
A5,
Th3,
XBOOLE_1: 1;
hence thesis by
A1,
A2,
A4,
A6,
A7,
Th33;
end;
theorem ::
LIMFUNC2:38
f1
is_left_divergent_to-infty_in x0 & (ex r st
0
< r &
].(x0
- r), x0.[
c= ((
dom f)
/\ (
dom f1)) & for g st g
in
].(x0
- r), x0.[ holds (f
. g)
<= (f1
. g)) implies f
is_left_divergent_to-infty_in x0
proof
assume
A1: f1
is_left_divergent_to-infty_in x0;
given r such that
A2:
0
< r and
A3:
].(x0
- r), x0.[
c= ((
dom f)
/\ (
dom f1)) and
A4: for g st g
in
].(x0
- r), x0.[ holds (f
. g)
<= (f1
. g);
A5: ((
dom f)
/\ (
dom f1))
c= (
dom f) by
XBOOLE_1: 17;
then
A6:
].(x0
- r), x0.[
= ((
dom f)
/\
].(x0
- r), x0.[) by
A3,
XBOOLE_1: 1,
XBOOLE_1: 28;
((
dom f)
/\ (
dom f1))
c= (
dom f1) by
XBOOLE_1: 17;
then
A7:
].(x0
- r), x0.[
= ((
dom f1)
/\
].(x0
- r), x0.[) by
A3,
XBOOLE_1: 1,
XBOOLE_1: 28;
for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f) by
A2,
A3,
A5,
Th3,
XBOOLE_1: 1;
hence thesis by
A1,
A2,
A4,
A6,
A7,
Th34;
end;
theorem ::
LIMFUNC2:39
f1
is_right_divergent_to+infty_in x0 & (ex r st
0
< r &
].x0, (x0
+ r).[
c= ((
dom f)
/\ (
dom f1)) & for g st g
in
].x0, (x0
+ r).[ holds (f1
. g)
<= (f
. g)) implies f
is_right_divergent_to+infty_in x0
proof
assume
A1: f1
is_right_divergent_to+infty_in x0;
given r such that
A2:
0
< r and
A3:
].x0, (x0
+ r).[
c= ((
dom f)
/\ (
dom f1)) and
A4: for g st g
in
].x0, (x0
+ r).[ holds (f1
. g)
<= (f
. g);
A5: ((
dom f)
/\ (
dom f1))
c= (
dom f) by
XBOOLE_1: 17;
then
A6:
].x0, (x0
+ r).[
= ((
dom f)
/\
].x0, (x0
+ r).[) by
A3,
XBOOLE_1: 1,
XBOOLE_1: 28;
((
dom f)
/\ (
dom f1))
c= (
dom f1) by
XBOOLE_1: 17;
then
A7:
].x0, (x0
+ r).[
= ((
dom f1)
/\
].x0, (x0
+ r).[) by
A3,
XBOOLE_1: 1,
XBOOLE_1: 28;
for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f) by
A2,
A3,
A5,
Th4,
XBOOLE_1: 1;
hence thesis by
A1,
A2,
A4,
A6,
A7,
Th35;
end;
theorem ::
LIMFUNC2:40
f1
is_right_divergent_to-infty_in x0 & (ex r st
0
< r &
].x0, (x0
+ r).[
c= ((
dom f)
/\ (
dom f1)) & for g st g
in
].x0, (x0
+ r).[ holds (f
. g)
<= (f1
. g)) implies f
is_right_divergent_to-infty_in x0
proof
assume
A1: f1
is_right_divergent_to-infty_in x0;
given r such that
A2:
0
< r and
A3:
].x0, (x0
+ r).[
c= ((
dom f)
/\ (
dom f1)) and
A4: for g st g
in
].x0, (x0
+ r).[ holds (f
. g)
<= (f1
. g);
A5: ((
dom f)
/\ (
dom f1))
c= (
dom f) by
XBOOLE_1: 17;
then
A6:
].x0, (x0
+ r).[
= ((
dom f)
/\
].x0, (x0
+ r).[) by
A3,
XBOOLE_1: 1,
XBOOLE_1: 28;
((
dom f)
/\ (
dom f1))
c= (
dom f1) by
XBOOLE_1: 17;
then
A7:
].x0, (x0
+ r).[
= ((
dom f1)
/\
].x0, (x0
+ r).[) by
A3,
XBOOLE_1: 1,
XBOOLE_1: 28;
for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f) by
A2,
A3,
A5,
Th4,
XBOOLE_1: 1;
hence thesis by
A1,
A2,
A4,
A6,
A7,
Th36;
end;
definition
let f, x0;
assume
A1: f
is_left_convergent_in x0;
::
LIMFUNC2:def7
func
lim_left (f,x0) ->
Real means
:
Def7: for seq st seq is
convergent & (
lim seq)
= x0 & (
rng seq)
c= ((
dom f)
/\ (
left_open_halfline x0)) holds (f
/* seq) is
convergent & (
lim (f
/* seq))
= it ;
existence by
A1;
uniqueness
proof
defpred
X[
Nat,
Real] means (x0
- (1
/ ($1
+ 1)))
< $2 & $2
< x0 & $2
in (
dom f);
let g1,g2 be
Real such that
A2: for seq st seq is
convergent & (
lim seq)
= x0 & (
rng seq)
c= ((
dom f)
/\ (
left_open_halfline x0)) holds (f
/* seq) is
convergent & (
lim (f
/* seq))
= g1 and
A3: for seq st seq is
convergent & (
lim seq)
= x0 & (
rng seq)
c= ((
dom f)
/\ (
left_open_halfline x0)) holds (f
/* seq) is
convergent & (
lim (f
/* seq))
= g2;
A4:
now
let n be
Element of
NAT ;
(x0
- (1
/ (n
+ 1)))
< x0 by
Lm3;
then
consider g such that
A5: (x0
- (1
/ (n
+ 1)))
< g and
A6: g
< x0 and
A7: g
in (
dom f) by
A1;
reconsider g as
Element of
REAL by
XREAL_0:def 1;
take g;
thus
X[n, g] by
A5,
A6,
A7;
end;
consider s be
Real_Sequence such that
A8: for n be
Element of
NAT holds
X[n, (s
. n)] from
FUNCT_2:sch 3(
A4);
A9: for n be
Nat holds
X[n, (s
. n)]
proof
let n;
n
in
NAT by
ORDINAL1:def 12;
hence thesis by
A8;
end;
A10: (
rng s)
c= ((
dom f)
/\ (
left_open_halfline x0)) by
A9,
Th5;
A11: (
lim s)
= x0 by
A9,
Th5;
A12: s is
convergent by
A9,
Th5;
then (
lim (f
/* s))
= g1 by
A11,
A10,
A2;
hence thesis by
A12,
A11,
A10,
A3;
end;
end
definition
let f, x0;
assume
A1: f
is_right_convergent_in x0;
::
LIMFUNC2:def8
func
lim_right (f,x0) ->
Real means
:
Def8: for seq st seq is
convergent & (
lim seq)
= x0 & (
rng seq)
c= ((
dom f)
/\ (
right_open_halfline x0)) holds (f
/* seq) is
convergent & (
lim (f
/* seq))
= it ;
existence by
A1;
uniqueness
proof
defpred
X[
Nat,
Real] means x0
< $2 & $2
< (x0
+ (1
/ ($1
+ 1))) & $2
in (
dom f);
let g1,g2 be
Real such that
A2: for seq st seq is
convergent & (
lim seq)
= x0 & (
rng seq)
c= ((
dom f)
/\ (
right_open_halfline x0)) holds (f
/* seq) is
convergent & (
lim (f
/* seq))
= g1 and
A3: for seq st seq is
convergent & (
lim seq)
= x0 & (
rng seq)
c= ((
dom f)
/\ (
right_open_halfline x0)) holds (f
/* seq) is
convergent & (
lim (f
/* seq))
= g2;
A4:
now
let n be
Element of
NAT ;
x0
< (x0
+ (1
/ (n
+ 1))) by
Lm3;
then
consider g such that
A5: g
< (x0
+ (1
/ (n
+ 1))) and
A6: x0
< g and
A7: g
in (
dom f) by
A1;
reconsider g as
Element of
REAL by
XREAL_0:def 1;
take g;
thus
X[n, g] by
A5,
A6,
A7;
end;
consider s be
Real_Sequence such that
A8: for n be
Element of
NAT holds
X[n, (s
. n)] from
FUNCT_2:sch 3(
A4);
A9: for n be
Nat holds
X[n, (s
. n)]
proof
let n;
n
in
NAT by
ORDINAL1:def 12;
hence thesis by
A8;
end;
A10: (
rng s)
c= ((
dom f)
/\ (
right_open_halfline x0)) by
A9,
Th6;
A11: (
lim s)
= x0 by
A9,
Th6;
A12: s is
convergent by
A9,
Th6;
then (
lim (f
/* s))
= g1 by
A11,
A10,
A2;
hence thesis by
A12,
A11,
A10,
A3;
end;
end
theorem ::
LIMFUNC2:41
f
is_left_convergent_in x0 implies ((
lim_left (f,x0))
= g iff for g1 st
0
< g1 holds ex r st r
< x0 & for r1 st r
< r1 & r1
< x0 & r1
in (
dom f) holds
|.((f
. r1)
- g).|
< g1)
proof
assume
A1: f
is_left_convergent_in x0;
thus (
lim_left (f,x0))
= g implies for g1 st
0
< g1 holds ex r st r
< x0 & for r1 st r
< r1 & r1
< x0 & r1
in (
dom f) holds
|.((f
. r1)
- g).|
< g1
proof
assume that
A2: (
lim_left (f,x0))
= g and
A3: ex g1 st
0
< g1 & for r st r
< x0 holds ex r1 st r
< r1 & r1
< x0 & r1
in (
dom f) &
|.((f
. r1)
- g).|
>= g1;
consider g1 such that
A4:
0
< g1 and
A5: for r st r
< x0 holds ex r1 st r
< r1 & r1
< x0 & r1
in (
dom f) &
|.((f
. r1)
- g).|
>= g1 by
A3;
defpred
X[
Nat,
Real] means (x0
- (1
/ ($1
+ 1)))
< $2 & $2
< x0 & $2
in (
dom f) &
|.((f
. $2)
- g).|
>= g1;
A6:
now
let n be
Element of
NAT ;
(x0
- (1
/ (n
+ 1)))
< x0 by
Lm3;
then
consider g2 such that
A7: (x0
- (1
/ (n
+ 1)))
< g2 and
A8: g2
< x0 and
A9: g2
in (
dom f) and
A10:
|.((f
. g2)
- g).|
>= g1 by
A5;
reconsider g2 as
Element of
REAL by
XREAL_0:def 1;
take g2;
thus
X[n, g2] by
A7,
A8,
A9,
A10;
end;
consider s be
Real_Sequence such that
A11: for n be
Element of
NAT holds
X[n, (s
. n)] from
FUNCT_2:sch 3(
A6);
A12: for n be
Nat holds
X[n, (s
. n)]
proof
let n;
n
in
NAT by
ORDINAL1:def 12;
hence thesis by
A11;
end;
A13: (
rng s)
c= ((
dom f)
/\ (
left_open_halfline x0)) by
A12,
Th5;
A14: (
lim s)
= x0 by
A12,
Th5;
A15: s is
convergent by
A12,
Th5;
then
A16: (
lim (f
/* s))
= g by
A1,
A2,
A14,
A13,
Def7;
(f
/* s) is
convergent by
A1,
A15,
A14,
A13;
then
consider n such that
A17: for k st n
<= k holds
|.(((f
/* s)
. k)
- g).|
< g1 by
A4,
A16,
SEQ_2:def 7;
A18:
|.(((f
/* s)
. n)
- g).|
< g1 by
A17;
A19: n
in
NAT by
ORDINAL1:def 12;
(
rng s)
c= (
dom f) by
A12,
Th5;
then
|.((f
. (s
. n))
- g).|
< g1 by
A18,
FUNCT_2: 108,
A19;
hence contradiction by
A12;
end;
assume
A20: for g1 st
0
< g1 holds ex r st r
< x0 & for r1 st r
< r1 & r1
< x0 & r1
in (
dom f) holds
|.((f
. r1)
- g).|
< g1;
reconsider g as
Real;
now
let s be
Real_Sequence such that
A21: s is
convergent and
A22: (
lim s)
= x0 and
A23: (
rng s)
c= ((
dom f)
/\ (
left_open_halfline x0));
A24: ((
dom f)
/\ (
left_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
A25:
now
let g1 be
Real;
assume
A26:
0
< g1;
consider r such that
A27: r
< x0 and
A28: for r1 st r
< r1 & r1
< x0 & r1
in (
dom f) holds
|.((f
. r1)
- g).|
< g1 by
A20,
A26;
consider n such that
A29: for k st n
<= k holds r
< (s
. k) by
A21,
A22,
A27,
Th1;
take n;
let k;
assume
A30: n
<= k;
A31: (s
. k)
in (
rng s) by
VALUED_0: 28;
then (s
. k)
in (
left_open_halfline x0) by
A23,
XBOOLE_0:def 4;
then (s
. k)
in { g2 : g2
< x0 } by
XXREAL_1: 229;
then
A32: ex g2 st g2
= (s
. k) & g2
< x0;
A33: k
in
NAT by
ORDINAL1:def 12;
(s
. k)
in (
dom f) by
A23,
A31,
XBOOLE_0:def 4;
then
|.((f
. (s
. k))
- g).|
< g1 by
A28,
A29,
A30,
A32;
hence
|.(((f
/* s)
. k)
- g).|
< g1 by
A23,
A24,
FUNCT_2: 108,
XBOOLE_1: 1,
A33;
end;
hence (f
/* s) is
convergent by
SEQ_2:def 6;
hence (
lim (f
/* s))
= g by
A25,
SEQ_2:def 7;
end;
hence thesis by
A1,
Def7;
end;
theorem ::
LIMFUNC2:42
f
is_right_convergent_in x0 implies ((
lim_right (f,x0))
= g iff for g1 st
0
< g1 holds ex r st x0
< r & for r1 st r1
< r & x0
< r1 & r1
in (
dom f) holds
|.((f
. r1)
- g).|
< g1)
proof
assume
A1: f
is_right_convergent_in x0;
thus (
lim_right (f,x0))
= g implies for g1 st
0
< g1 holds ex r st x0
< r & for r1 st r1
< r & x0
< r1 & r1
in (
dom f) holds
|.((f
. r1)
- g).|
< g1
proof
assume that
A2: (
lim_right (f,x0))
= g and
A3: ex g1 st
0
< g1 & for r st x0
< r holds ex r1 st r1
< r & x0
< r1 & r1
in (
dom f) &
|.((f
. r1)
- g).|
>= g1;
consider g1 such that
A4:
0
< g1 and
A5: for r st x0
< r holds ex r1 st r1
< r & x0
< r1 & r1
in (
dom f) &
|.((f
. r1)
- g).|
>= g1 by
A3;
defpred
X[
Nat,
Real] means x0
< $2 & $2
< (x0
+ (1
/ ($1
+ 1))) & $2
in (
dom f) & g1
<=
|.((f
. $2)
- g).|;
A6:
now
let n be
Element of
NAT ;
x0
< (x0
+ (1
/ (n
+ 1))) by
Lm3;
then
consider r1 such that
A7: r1
< (x0
+ (1
/ (n
+ 1))) and
A8: x0
< r1 and
A9: r1
in (
dom f) and
A10: g1
<=
|.((f
. r1)
- g).| by
A5;
reconsider r1 as
Element of
REAL by
XREAL_0:def 1;
take r1;
thus
X[n, r1] by
A7,
A8,
A9,
A10;
end;
consider s be
Real_Sequence such that
A11: for n be
Element of
NAT holds
X[n, (s
. n)] from
FUNCT_2:sch 3(
A6);
A12: for n be
Nat holds
X[n, (s
. n)]
proof
let n;
n
in
NAT by
ORDINAL1:def 12;
hence thesis by
A11;
end;
A13: (
rng s)
c= ((
dom f)
/\ (
right_open_halfline x0)) by
A12,
Th6;
A14: (
lim s)
= x0 by
A12,
Th6;
A15: s is
convergent by
A12,
Th6;
then
A16: (
lim (f
/* s))
= g by
A1,
A2,
A14,
A13,
Def8;
(f
/* s) is
convergent by
A1,
A15,
A14,
A13;
then
consider n such that
A17: for k st n
<= k holds
|.(((f
/* s)
. k)
- g).|
< g1 by
A4,
A16,
SEQ_2:def 7;
A18:
|.(((f
/* s)
. n)
- g).|
< g1 by
A17;
A19: n
in
NAT by
ORDINAL1:def 12;
(
rng s)
c= (
dom f) by
A12,
Th6;
then
|.((f
. (s
. n))
- g).|
< g1 by
A18,
FUNCT_2: 108,
A19;
hence contradiction by
A12;
end;
assume
A20: for g1 st
0
< g1 holds ex r st x0
< r & for r1 st r1
< r & x0
< r1 & r1
in (
dom f) holds
|.((f
. r1)
- g).|
< g1;
reconsider g as
Real;
now
let s be
Real_Sequence such that
A21: s is
convergent and
A22: (
lim s)
= x0 and
A23: (
rng s)
c= ((
dom f)
/\ (
right_open_halfline x0));
A24: ((
dom f)
/\ (
right_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
A25:
now
let g1 be
Real;
assume
A26:
0
< g1;
consider r such that
A27: x0
< r and
A28: for r1 st r1
< r & x0
< r1 & r1
in (
dom f) holds
|.((f
. r1)
- g).|
< g1 by
A20,
A26;
consider n such that
A29: for k st n
<= k holds (s
. k)
< r by
A21,
A22,
A27,
Th2;
take n;
let k;
assume
A30: n
<= k;
A31: (s
. k)
in (
rng s) by
VALUED_0: 28;
then (s
. k)
in (
right_open_halfline x0) by
A23,
XBOOLE_0:def 4;
then (s
. k)
in { g2 : x0
< g2 } by
XXREAL_1: 230;
then
A32: ex g2 st g2
= (s
. k) & x0
< g2;
A33: k
in
NAT by
ORDINAL1:def 12;
(s
. k)
in (
dom f) by
A23,
A31,
XBOOLE_0:def 4;
then
|.((f
. (s
. k))
- g).|
< g1 by
A28,
A29,
A30,
A32;
hence
|.(((f
/* s)
. k)
- g).|
< g1 by
A23,
A24,
FUNCT_2: 108,
XBOOLE_1: 1,
A33;
end;
hence (f
/* s) is
convergent by
SEQ_2:def 6;
hence (
lim (f
/* s))
= g by
A25,
SEQ_2:def 7;
end;
hence thesis by
A1,
Def8;
end;
theorem ::
LIMFUNC2:43
Th43: f
is_left_convergent_in x0 implies (r
(#) f)
is_left_convergent_in x0 & (
lim_left ((r
(#) f),x0))
= (r
* (
lim_left (f,x0)))
proof
assume
A1: f
is_left_convergent_in x0;
A2:
now
let seq;
assume that
A3: seq is
convergent and
A4: (
lim seq)
= x0 and
A5: (
rng seq)
c= ((
dom (r
(#) f))
/\ (
left_open_halfline x0));
A6: (
rng seq)
c= ((
dom f)
/\ (
left_open_halfline x0)) by
A5,
VALUED_1:def 5;
A7: ((
dom f)
/\ (
left_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
then
A8: (r
(#) (f
/* seq))
= ((r
(#) f)
/* seq) by
A6,
RFUNCT_2: 9,
XBOOLE_1: 1;
A9: (f
/* seq) is
convergent by
A1,
A3,
A4,
A6;
then (r
(#) (f
/* seq)) is
convergent;
hence ((r
(#) f)
/* seq) is
convergent by
A6,
A7,
RFUNCT_2: 9,
XBOOLE_1: 1;
(
lim (f
/* seq))
= (
lim_left (f,x0)) by
A1,
A3,
A4,
A6,
Def7;
hence (
lim ((r
(#) f)
/* seq))
= (r
* (
lim_left (f,x0))) by
A9,
A8,
SEQ_2: 8;
end;
now
let r1;
assume r1
< x0;
then
consider g such that
A10: r1
< g and
A11: g
< x0 and
A12: g
in (
dom f) by
A1;
take g;
thus r1
< g & g
< x0 & g
in (
dom (r
(#) f)) by
A10,
A11,
A12,
VALUED_1:def 5;
end;
hence (r
(#) f)
is_left_convergent_in x0 by
A2;
hence thesis by
A2,
Def7;
end;
theorem ::
LIMFUNC2:44
Th44: f
is_left_convergent_in x0 implies (
- f)
is_left_convergent_in x0 & (
lim_left ((
- f),x0))
= (
- (
lim_left (f,x0)))
proof
assume
A1: f
is_left_convergent_in x0;
thus (
- f)
is_left_convergent_in x0 by
A1,
Th43;
thus (
lim_left ((
- f),x0))
= ((
- 1)
* (
lim_left (f,x0))) by
A1,
Th43
.= (
- (
lim_left (f,x0)));
end;
theorem ::
LIMFUNC2:45
Th45: f1
is_left_convergent_in x0 & f2
is_left_convergent_in x0 & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f1
+ f2))) implies (f1
+ f2)
is_left_convergent_in x0 & (
lim_left ((f1
+ f2),x0))
= ((
lim_left (f1,x0))
+ (
lim_left (f2,x0)))
proof
assume that
A1: f1
is_left_convergent_in x0 and
A2: f2
is_left_convergent_in x0 and
A3: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f1
+ f2));
A4:
now
let seq;
assume that
A5: seq is
convergent and
A6: (
lim seq)
= x0 and
A7: (
rng seq)
c= ((
dom (f1
+ f2))
/\ (
left_open_halfline x0));
A8: (
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) by
A7,
Lm4;
A9: (
rng seq)
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A7,
Lm4;
A10: (
rng seq)
c= ((
dom f2)
/\ (
left_open_halfline x0)) by
A7,
Lm4;
then
A11: (
lim (f2
/* seq))
= (
lim_left (f2,x0)) by
A2,
A5,
A6,
Def7;
A12: (f2
/* seq) is
convergent by
A2,
A5,
A6,
A10;
(
rng seq)
c= (
dom (f1
+ f2)) by
A7,
Lm4;
then
A13: ((f1
/* seq)
+ (f2
/* seq))
= ((f1
+ f2)
/* seq) by
A8,
RFUNCT_2: 8;
A14: (f1
/* seq) is
convergent by
A1,
A5,
A6,
A9;
hence ((f1
+ f2)
/* seq) is
convergent by
A12,
A13;
(
lim (f1
/* seq))
= (
lim_left (f1,x0)) by
A1,
A5,
A6,
A9,
Def7;
hence (
lim ((f1
+ f2)
/* seq))
= ((
lim_left (f1,x0))
+ (
lim_left (f2,x0))) by
A14,
A12,
A11,
A13,
SEQ_2: 6;
end;
hence (f1
+ f2)
is_left_convergent_in x0 by
A3;
hence thesis by
A4,
Def7;
end;
theorem ::
LIMFUNC2:46
f1
is_left_convergent_in x0 & f2
is_left_convergent_in x0 & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f1
- f2))) implies (f1
- f2)
is_left_convergent_in x0 & (
lim_left ((f1
- f2),x0))
= ((
lim_left (f1,x0))
- (
lim_left (f2,x0)))
proof
assume that
A1: f1
is_left_convergent_in x0 and
A2: f2
is_left_convergent_in x0 and
A3: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f1
- f2));
A4: (
- f2)
is_left_convergent_in x0 by
A2,
Th44;
hence (f1
- f2)
is_left_convergent_in x0 by
A1,
A3,
Th45;
thus (
lim_left ((f1
- f2),x0))
= ((
lim_left (f1,x0))
+ (
lim_left ((
- f2),x0))) by
A1,
A3,
A4,
Th45
.= ((
lim_left (f1,x0))
+ (
- (
lim_left (f2,x0)))) by
A2,
Th44
.= ((
lim_left (f1,x0))
- (
lim_left (f2,x0)));
end;
theorem ::
LIMFUNC2:47
f
is_left_convergent_in x0 & (f
"
{
0 })
=
{} & (
lim_left (f,x0))
<>
0 implies (f
^ )
is_left_convergent_in x0 & (
lim_left ((f
^ ),x0))
= ((
lim_left (f,x0))
" )
proof
assume that
A1: f
is_left_convergent_in x0 and
A2: (f
"
{
0 })
=
{} and
A3: (
lim_left (f,x0))
<>
0 ;
A4: (
dom f)
= ((
dom f)
\ (f
"
{
0 })) by
A2
.= (
dom (f
^ )) by
RFUNCT_1:def 2;
A5:
now
let seq;
assume that
A6: seq is
convergent and
A7: (
lim seq)
= x0 and
A8: (
rng seq)
c= ((
dom (f
^ ))
/\ (
left_open_halfline x0));
A9: (
lim (f
/* seq))
= (
lim_left (f,x0)) by
A1,
A4,
A6,
A7,
A8,
Def7;
A10: ((
dom f)
/\ (
left_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
then
A11: (
rng seq)
c= (
dom f) by
A4,
A8,
XBOOLE_1: 1;
A12: (f
/* seq) is
convergent by
A1,
A4,
A6,
A7,
A8;
A13: ((f
/* seq)
" )
= ((f
^ )
/* seq) by
A4,
A8,
A10,
RFUNCT_2: 12,
XBOOLE_1: 1;
hence ((f
^ )
/* seq) is
convergent by
A3,
A4,
A12,
A9,
A11,
RFUNCT_2: 11,
SEQ_2: 21;
thus (
lim ((f
^ )
/* seq))
= ((
lim_left (f,x0))
" ) by
A3,
A4,
A12,
A9,
A11,
A13,
RFUNCT_2: 11,
SEQ_2: 22;
end;
for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f
^ )) by
A1,
A4;
hence (f
^ )
is_left_convergent_in x0 by
A5;
hence thesis by
A5,
Def7;
end;
theorem ::
LIMFUNC2:48
f
is_left_convergent_in x0 implies (
abs f)
is_left_convergent_in x0 & (
lim_left ((
abs f),x0))
=
|.(
lim_left (f,x0)).|
proof
assume
A1: f
is_left_convergent_in x0;
A2:
now
let seq;
assume that
A3: seq is
convergent and
A4: (
lim seq)
= x0 and
A5: (
rng seq)
c= ((
dom (
abs f))
/\ (
left_open_halfline x0));
A6: (
rng seq)
c= ((
dom f)
/\ (
left_open_halfline x0)) by
A5,
VALUED_1:def 11;
((
dom f)
/\ (
left_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
then (
rng seq)
c= (
dom f) by
A6,
XBOOLE_1: 1;
then
A7: (
abs (f
/* seq))
= ((
abs f)
/* seq) by
RFUNCT_2: 10;
A8: (f
/* seq) is
convergent by
A1,
A3,
A4,
A6;
hence ((
abs f)
/* seq) is
convergent by
A7;
(
lim (f
/* seq))
= (
lim_left (f,x0)) by
A1,
A3,
A4,
A6,
Def7;
hence (
lim ((
abs f)
/* seq))
=
|.(
lim_left (f,x0)).| by
A8,
A7,
SEQ_4: 14;
end;
now
let r;
assume r
< x0;
then
consider g such that
A9: r
< g and
A10: g
< x0 and
A11: g
in (
dom f) by
A1;
take g;
thus r
< g & g
< x0 & g
in (
dom (
abs f)) by
A9,
A10,
A11,
VALUED_1:def 11;
end;
hence (
abs f)
is_left_convergent_in x0 by
A2;
hence thesis by
A2,
Def7;
end;
theorem ::
LIMFUNC2:49
Th49: f
is_left_convergent_in x0 & (
lim_left (f,x0))
<>
0 & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f) & (f
. g)
<>
0 ) implies (f
^ )
is_left_convergent_in x0 & (
lim_left ((f
^ ),x0))
= ((
lim_left (f,x0))
" )
proof
assume that
A1: f
is_left_convergent_in x0 and
A2: (
lim_left (f,x0))
<>
0 and
A3: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f) & (f
. g)
<>
0 ;
A4: ((
dom f)
\ (f
"
{
0 }))
= (
dom (f
^ )) by
RFUNCT_1:def 2;
A5:
now
A6: (
dom (f
^ ))
c= (
dom f) by
A4,
XBOOLE_1: 36;
let seq such that
A7: seq is
convergent and
A8: (
lim seq)
= x0 and
A9: (
rng seq)
c= ((
dom (f
^ ))
/\ (
left_open_halfline x0));
A10: ((
dom (f
^ ))
/\ (
left_open_halfline x0))
c= (
dom (f
^ )) by
XBOOLE_1: 17;
then
A11: (f
/* seq) is
non-zero by
A9,
RFUNCT_2: 11,
XBOOLE_1: 1;
(
rng seq)
c= (
dom (f
^ )) by
A9,
A10,
XBOOLE_1: 1;
then
A12: (
rng seq)
c= (
dom f) by
A6,
XBOOLE_1: 1;
((
dom (f
^ ))
/\ (
left_open_halfline x0))
c= (
left_open_halfline x0) by
XBOOLE_1: 17;
then (
rng seq)
c= (
left_open_halfline x0) by
A9,
XBOOLE_1: 1;
then
A13: (
rng seq)
c= ((
dom f)
/\ (
left_open_halfline x0)) by
A12,
XBOOLE_1: 19;
then
A14: (
lim (f
/* seq))
= (
lim_left (f,x0)) by
A1,
A7,
A8,
Def7;
A15: ((f
/* seq)
" )
= ((f
^ )
/* seq) by
A9,
A10,
RFUNCT_2: 12,
XBOOLE_1: 1;
A16: (f
/* seq) is
convergent by
A1,
A7,
A8,
A13;
hence ((f
^ )
/* seq) is
convergent by
A2,
A14,
A11,
A15,
SEQ_2: 21;
thus (
lim ((f
^ )
/* seq))
= ((
lim_left (f,x0))
" ) by
A2,
A16,
A14,
A11,
A15,
SEQ_2: 22;
end;
now
let r;
assume r
< x0;
then
consider g such that
A17: r
< g and
A18: g
< x0 and
A19: g
in (
dom f) and
A20: (f
. g)
<>
0 by
A3;
take g;
not (f
. g)
in
{
0 } by
A20,
TARSKI:def 1;
then not g
in (f
"
{
0 }) by
FUNCT_1:def 7;
hence r
< g & g
< x0 & g
in (
dom (f
^ )) by
A4,
A17,
A18,
A19,
XBOOLE_0:def 5;
end;
hence (f
^ )
is_left_convergent_in x0 by
A5;
hence thesis by
A5,
Def7;
end;
theorem ::
LIMFUNC2:50
Th50: f1
is_left_convergent_in x0 & f2
is_left_convergent_in x0 & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f1
(#) f2))) implies (f1
(#) f2)
is_left_convergent_in x0 & (
lim_left ((f1
(#) f2),x0))
= ((
lim_left (f1,x0))
* (
lim_left (f2,x0)))
proof
assume that
A1: f1
is_left_convergent_in x0 and
A2: f2
is_left_convergent_in x0 and
A3: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f1
(#) f2));
A4:
now
let seq;
assume that
A5: seq is
convergent and
A6: (
lim seq)
= x0 and
A7: (
rng seq)
c= ((
dom (f1
(#) f2))
/\ (
left_open_halfline x0));
A8: (
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) by
A7,
Lm2;
A9: (
rng seq)
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A7,
Lm2;
A10: (
rng seq)
c= ((
dom f2)
/\ (
left_open_halfline x0)) by
A7,
Lm2;
then
A11: (
lim (f2
/* seq))
= (
lim_left (f2,x0)) by
A2,
A5,
A6,
Def7;
A12: (f2
/* seq) is
convergent by
A2,
A5,
A6,
A10;
(
rng seq)
c= (
dom (f1
(#) f2)) by
A7,
Lm2;
then
A13: ((f1
/* seq)
(#) (f2
/* seq))
= ((f1
(#) f2)
/* seq) by
A8,
RFUNCT_2: 8;
A14: (f1
/* seq) is
convergent by
A1,
A5,
A6,
A9;
hence ((f1
(#) f2)
/* seq) is
convergent by
A12,
A13;
(
lim (f1
/* seq))
= (
lim_left (f1,x0)) by
A1,
A5,
A6,
A9,
Def7;
hence (
lim ((f1
(#) f2)
/* seq))
= ((
lim_left (f1,x0))
* (
lim_left (f2,x0))) by
A14,
A12,
A11,
A13,
SEQ_2: 15;
end;
hence (f1
(#) f2)
is_left_convergent_in x0 by
A3;
hence thesis by
A4,
Def7;
end;
theorem ::
LIMFUNC2:51
f1
is_left_convergent_in x0 & f2
is_left_convergent_in x0 & (
lim_left (f2,x0))
<>
0 & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f1
/ f2))) implies (f1
/ f2)
is_left_convergent_in x0 & (
lim_left ((f1
/ f2),x0))
= ((
lim_left (f1,x0))
/ (
lim_left (f2,x0)))
proof
assume that
A1: f1
is_left_convergent_in x0 and
A2: f2
is_left_convergent_in x0 and
A3: (
lim_left (f2,x0))
<>
0 and
A4: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f1
/ f2));
A5:
now
let r;
assume r
< x0;
then
consider g such that
A6: r
< g and
A7: g
< x0 and
A8: g
in (
dom (f1
/ f2)) by
A4;
take g;
thus r
< g & g
< x0 by
A6,
A7;
(
dom (f1
/ f2))
= ((
dom f1)
/\ ((
dom f2)
\ (f2
"
{
0 }))) by
RFUNCT_1:def 1;
then
A9: g
in ((
dom f2)
\ (f2
"
{
0 })) by
A8,
XBOOLE_0:def 4;
then
A10: not g
in (f2
"
{
0 }) by
XBOOLE_0:def 5;
g
in (
dom f2) by
A9,
XBOOLE_0:def 5;
then not (f2
. g)
in
{
0 } by
A10,
FUNCT_1:def 7;
hence g
in (
dom f2) & (f2
. g)
<>
0 by
A9,
TARSKI:def 1,
XBOOLE_0:def 5;
end;
then
A11: (f2
^ )
is_left_convergent_in x0 by
A2,
A3,
Th49;
A12: (f1
/ f2)
= (f1
(#) (f2
^ )) by
RFUNCT_1: 31;
hence (f1
/ f2)
is_left_convergent_in x0 by
A1,
A4,
A11,
Th50;
(
lim_left ((f2
^ ),x0))
= ((
lim_left (f2,x0))
" ) by
A2,
A3,
A5,
Th49;
hence (
lim_left ((f1
/ f2),x0))
= ((
lim_left (f1,x0))
* ((
lim_left (f2,x0))
" )) by
A1,
A4,
A12,
A11,
Th50
.= ((
lim_left (f1,x0))
/ (
lim_left (f2,x0))) by
XCMPLX_0:def 9;
end;
theorem ::
LIMFUNC2:52
Th52: f
is_right_convergent_in x0 implies (r
(#) f)
is_right_convergent_in x0 & (
lim_right ((r
(#) f),x0))
= (r
* (
lim_right (f,x0)))
proof
assume
A1: f
is_right_convergent_in x0;
A2:
now
let seq;
assume that
A3: seq is
convergent and
A4: (
lim seq)
= x0 and
A5: (
rng seq)
c= ((
dom (r
(#) f))
/\ (
right_open_halfline x0));
A6: (
rng seq)
c= ((
dom f)
/\ (
right_open_halfline x0)) by
A5,
VALUED_1:def 5;
A7: ((
dom f)
/\ (
right_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
then
A8: (r
(#) (f
/* seq))
= ((r
(#) f)
/* seq) by
A6,
RFUNCT_2: 9,
XBOOLE_1: 1;
A9: (f
/* seq) is
convergent by
A1,
A3,
A4,
A6;
then (r
(#) (f
/* seq)) is
convergent;
hence ((r
(#) f)
/* seq) is
convergent by
A6,
A7,
RFUNCT_2: 9,
XBOOLE_1: 1;
(
lim (f
/* seq))
= (
lim_right (f,x0)) by
A1,
A3,
A4,
A6,
Def8;
hence (
lim ((r
(#) f)
/* seq))
= (r
* (
lim_right (f,x0))) by
A9,
A8,
SEQ_2: 8;
end;
now
let r1;
assume x0
< r1;
then
consider g such that
A10: g
< r1 and
A11: x0
< g and
A12: g
in (
dom f) by
A1;
take g;
thus g
< r1 & x0
< g & g
in (
dom (r
(#) f)) by
A10,
A11,
A12,
VALUED_1:def 5;
end;
hence (r
(#) f)
is_right_convergent_in x0 by
A2;
hence thesis by
A2,
Def8;
end;
theorem ::
LIMFUNC2:53
Th53: f
is_right_convergent_in x0 implies (
- f)
is_right_convergent_in x0 & (
lim_right ((
- f),x0))
= (
- (
lim_right (f,x0)))
proof
assume
A1: f
is_right_convergent_in x0;
thus (
- f)
is_right_convergent_in x0 by
A1,
Th52;
thus (
lim_right ((
- f),x0))
= ((
- 1)
* (
lim_right (f,x0))) by
A1,
Th52
.= (
- (
lim_right (f,x0)));
end;
theorem ::
LIMFUNC2:54
Th54: f1
is_right_convergent_in x0 & f2
is_right_convergent_in x0 & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f1
+ f2))) implies (f1
+ f2)
is_right_convergent_in x0 & (
lim_right ((f1
+ f2),x0))
= ((
lim_right (f1,x0))
+ (
lim_right (f2,x0)))
proof
assume that
A1: f1
is_right_convergent_in x0 and
A2: f2
is_right_convergent_in x0 and
A3: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f1
+ f2));
A4:
now
let seq;
assume that
A5: seq is
convergent and
A6: (
lim seq)
= x0 and
A7: (
rng seq)
c= ((
dom (f1
+ f2))
/\ (
right_open_halfline x0));
A8: (
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) by
A7,
Lm4;
A9: (
rng seq)
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A7,
Lm4;
A10: (
rng seq)
c= ((
dom f2)
/\ (
right_open_halfline x0)) by
A7,
Lm4;
then
A11: (
lim (f2
/* seq))
= (
lim_right (f2,x0)) by
A2,
A5,
A6,
Def8;
A12: (f2
/* seq) is
convergent by
A2,
A5,
A6,
A10;
(
rng seq)
c= (
dom (f1
+ f2)) by
A7,
Lm4;
then
A13: ((f1
/* seq)
+ (f2
/* seq))
= ((f1
+ f2)
/* seq) by
A8,
RFUNCT_2: 8;
A14: (f1
/* seq) is
convergent by
A1,
A5,
A6,
A9;
hence ((f1
+ f2)
/* seq) is
convergent by
A12,
A13;
(
lim (f1
/* seq))
= (
lim_right (f1,x0)) by
A1,
A5,
A6,
A9,
Def8;
hence (
lim ((f1
+ f2)
/* seq))
= ((
lim_right (f1,x0))
+ (
lim_right (f2,x0))) by
A14,
A12,
A11,
A13,
SEQ_2: 6;
end;
hence (f1
+ f2)
is_right_convergent_in x0 by
A3;
hence thesis by
A4,
Def8;
end;
theorem ::
LIMFUNC2:55
f1
is_right_convergent_in x0 & f2
is_right_convergent_in x0 & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f1
- f2))) implies (f1
- f2)
is_right_convergent_in x0 & (
lim_right ((f1
- f2),x0))
= ((
lim_right (f1,x0))
- (
lim_right (f2,x0)))
proof
assume that
A1: f1
is_right_convergent_in x0 and
A2: f2
is_right_convergent_in x0 and
A3: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f1
- f2));
A4: (
- f2)
is_right_convergent_in x0 by
A2,
Th53;
hence (f1
- f2)
is_right_convergent_in x0 by
A1,
A3,
Th54;
thus (
lim_right ((f1
- f2),x0))
= ((
lim_right (f1,x0))
+ (
lim_right ((
- f2),x0))) by
A1,
A3,
A4,
Th54
.= ((
lim_right (f1,x0))
+ (
- (
lim_right (f2,x0)))) by
A2,
Th53
.= ((
lim_right (f1,x0))
- (
lim_right (f2,x0)));
end;
theorem ::
LIMFUNC2:56
f
is_right_convergent_in x0 & (f
"
{
0 })
=
{} & (
lim_right (f,x0))
<>
0 implies (f
^ )
is_right_convergent_in x0 & (
lim_right ((f
^ ),x0))
= ((
lim_right (f,x0))
" )
proof
assume that
A1: f
is_right_convergent_in x0 and
A2: (f
"
{
0 })
=
{} and
A3: (
lim_right (f,x0))
<>
0 ;
A4: (
dom f)
= ((
dom f)
\ (f
"
{
0 })) by
A2
.= (
dom (f
^ )) by
RFUNCT_1:def 2;
A5:
now
let seq;
assume that
A6: seq is
convergent and
A7: (
lim seq)
= x0 and
A8: (
rng seq)
c= ((
dom (f
^ ))
/\ (
right_open_halfline x0));
A9: (
lim (f
/* seq))
= (
lim_right (f,x0)) by
A1,
A4,
A6,
A7,
A8,
Def8;
A10: ((
dom f)
/\ (
right_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
then
A11: (
rng seq)
c= (
dom f) by
A4,
A8,
XBOOLE_1: 1;
A12: (f
/* seq) is
convergent by
A1,
A4,
A6,
A7,
A8;
A13: ((f
/* seq)
" )
= ((f
^ )
/* seq) by
A4,
A8,
A10,
RFUNCT_2: 12,
XBOOLE_1: 1;
hence ((f
^ )
/* seq) is
convergent by
A3,
A4,
A12,
A9,
A11,
RFUNCT_2: 11,
SEQ_2: 21;
thus (
lim ((f
^ )
/* seq))
= ((
lim_right (f,x0))
" ) by
A3,
A4,
A12,
A9,
A11,
A13,
RFUNCT_2: 11,
SEQ_2: 22;
end;
for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f
^ )) by
A1,
A4;
hence (f
^ )
is_right_convergent_in x0 by
A5;
hence thesis by
A5,
Def8;
end;
theorem ::
LIMFUNC2:57
f
is_right_convergent_in x0 implies (
abs f)
is_right_convergent_in x0 & (
lim_right ((
abs f),x0))
=
|.(
lim_right (f,x0)).|
proof
assume
A1: f
is_right_convergent_in x0;
A2:
now
let seq;
assume that
A3: seq is
convergent and
A4: (
lim seq)
= x0 and
A5: (
rng seq)
c= ((
dom (
abs f))
/\ (
right_open_halfline x0));
A6: (
rng seq)
c= ((
dom f)
/\ (
right_open_halfline x0)) by
A5,
VALUED_1:def 11;
((
dom f)
/\ (
right_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
then (
rng seq)
c= (
dom f) by
A6,
XBOOLE_1: 1;
then
A7: (
abs (f
/* seq))
= ((
abs f)
/* seq) by
RFUNCT_2: 10;
A8: (f
/* seq) is
convergent by
A1,
A3,
A4,
A6;
hence ((
abs f)
/* seq) is
convergent by
A7;
(
lim (f
/* seq))
= (
lim_right (f,x0)) by
A1,
A3,
A4,
A6,
Def8;
hence (
lim ((
abs f)
/* seq))
=
|.(
lim_right (f,x0)).| by
A8,
A7,
SEQ_4: 14;
end;
now
let r;
assume x0
< r;
then
consider g such that
A9: g
< r and
A10: x0
< g and
A11: g
in (
dom f) by
A1;
take g;
thus g
< r & x0
< g & g
in (
dom (
abs f)) by
A9,
A10,
A11,
VALUED_1:def 11;
end;
hence (
abs f)
is_right_convergent_in x0 by
A2;
hence thesis by
A2,
Def8;
end;
theorem ::
LIMFUNC2:58
Th58: f
is_right_convergent_in x0 & (
lim_right (f,x0))
<>
0 & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f) & (f
. g)
<>
0 ) implies (f
^ )
is_right_convergent_in x0 & (
lim_right ((f
^ ),x0))
= ((
lim_right (f,x0))
" )
proof
assume that
A1: f
is_right_convergent_in x0 and
A2: (
lim_right (f,x0))
<>
0 and
A3: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f) & (f
. g)
<>
0 ;
A4: ((
dom f)
\ (f
"
{
0 }))
= (
dom (f
^ )) by
RFUNCT_1:def 2;
A5:
now
A6: (
dom (f
^ ))
c= (
dom f) by
A4,
XBOOLE_1: 36;
let seq such that
A7: seq is
convergent and
A8: (
lim seq)
= x0 and
A9: (
rng seq)
c= ((
dom (f
^ ))
/\ (
right_open_halfline x0));
A10: ((
dom (f
^ ))
/\ (
right_open_halfline x0))
c= (
dom (f
^ )) by
XBOOLE_1: 17;
then
A11: (f
/* seq) is
non-zero by
A9,
RFUNCT_2: 11,
XBOOLE_1: 1;
(
rng seq)
c= (
dom (f
^ )) by
A9,
A10,
XBOOLE_1: 1;
then
A12: (
rng seq)
c= (
dom f) by
A6,
XBOOLE_1: 1;
((
dom (f
^ ))
/\ (
right_open_halfline x0))
c= (
right_open_halfline x0) by
XBOOLE_1: 17;
then (
rng seq)
c= (
right_open_halfline x0) by
A9,
XBOOLE_1: 1;
then
A13: (
rng seq)
c= ((
dom f)
/\ (
right_open_halfline x0)) by
A12,
XBOOLE_1: 19;
then
A14: (
lim (f
/* seq))
= (
lim_right (f,x0)) by
A1,
A7,
A8,
Def8;
A15: ((f
/* seq)
" )
= ((f
^ )
/* seq) by
A9,
A10,
RFUNCT_2: 12,
XBOOLE_1: 1;
A16: (f
/* seq) is
convergent by
A1,
A7,
A8,
A13;
hence ((f
^ )
/* seq) is
convergent by
A2,
A14,
A11,
A15,
SEQ_2: 21;
thus (
lim ((f
^ )
/* seq))
= ((
lim_right (f,x0))
" ) by
A2,
A16,
A14,
A11,
A15,
SEQ_2: 22;
end;
now
let r;
assume x0
< r;
then
consider g such that
A17: g
< r and
A18: x0
< g and
A19: g
in (
dom f) and
A20: (f
. g)
<>
0 by
A3;
take g;
not (f
. g)
in
{
0 } by
A20,
TARSKI:def 1;
then not g
in (f
"
{
0 }) by
FUNCT_1:def 7;
hence g
< r & x0
< g & g
in (
dom (f
^ )) by
A4,
A17,
A18,
A19,
XBOOLE_0:def 5;
end;
hence (f
^ )
is_right_convergent_in x0 by
A5;
hence thesis by
A5,
Def8;
end;
theorem ::
LIMFUNC2:59
Th59: f1
is_right_convergent_in x0 & f2
is_right_convergent_in x0 & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f1
(#) f2))) implies (f1
(#) f2)
is_right_convergent_in x0 & (
lim_right ((f1
(#) f2),x0))
= ((
lim_right (f1,x0))
* (
lim_right (f2,x0)))
proof
assume that
A1: f1
is_right_convergent_in x0 and
A2: f2
is_right_convergent_in x0 and
A3: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f1
(#) f2));
A4:
now
let seq;
assume that
A5: seq is
convergent and
A6: (
lim seq)
= x0 and
A7: (
rng seq)
c= ((
dom (f1
(#) f2))
/\ (
right_open_halfline x0));
A8: (
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) by
A7,
Lm2;
A9: (
rng seq)
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A7,
Lm2;
A10: (
rng seq)
c= ((
dom f2)
/\ (
right_open_halfline x0)) by
A7,
Lm2;
then
A11: (
lim (f2
/* seq))
= (
lim_right (f2,x0)) by
A2,
A5,
A6,
Def8;
A12: (f2
/* seq) is
convergent by
A2,
A5,
A6,
A10;
(
rng seq)
c= (
dom (f1
(#) f2)) by
A7,
Lm2;
then
A13: ((f1
/* seq)
(#) (f2
/* seq))
= ((f1
(#) f2)
/* seq) by
A8,
RFUNCT_2: 8;
A14: (f1
/* seq) is
convergent by
A1,
A5,
A6,
A9;
hence ((f1
(#) f2)
/* seq) is
convergent by
A12,
A13;
(
lim (f1
/* seq))
= (
lim_right (f1,x0)) by
A1,
A5,
A6,
A9,
Def8;
hence (
lim ((f1
(#) f2)
/* seq))
= ((
lim_right (f1,x0))
* (
lim_right (f2,x0))) by
A14,
A12,
A11,
A13,
SEQ_2: 15;
end;
hence (f1
(#) f2)
is_right_convergent_in x0 by
A3;
hence thesis by
A4,
Def8;
end;
theorem ::
LIMFUNC2:60
f1
is_right_convergent_in x0 & f2
is_right_convergent_in x0 & (
lim_right (f2,x0))
<>
0 & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f1
/ f2))) implies (f1
/ f2)
is_right_convergent_in x0 & (
lim_right ((f1
/ f2),x0))
= ((
lim_right (f1,x0))
/ (
lim_right (f2,x0)))
proof
assume that
A1: f1
is_right_convergent_in x0 and
A2: f2
is_right_convergent_in x0 and
A3: (
lim_right (f2,x0))
<>
0 and
A4: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f1
/ f2));
A5:
now
let r;
assume x0
< r;
then
consider g such that
A6: g
< r and
A7: x0
< g and
A8: g
in (
dom (f1
/ f2)) by
A4;
take g;
thus g
< r & x0
< g by
A6,
A7;
(
dom (f1
/ f2))
= ((
dom f1)
/\ ((
dom f2)
\ (f2
"
{
0 }))) by
RFUNCT_1:def 1;
then
A9: g
in ((
dom f2)
\ (f2
"
{
0 })) by
A8,
XBOOLE_0:def 4;
then
A10: not g
in (f2
"
{
0 }) by
XBOOLE_0:def 5;
g
in (
dom f2) by
A9,
XBOOLE_0:def 5;
then not (f2
. g)
in
{
0 } by
A10,
FUNCT_1:def 7;
hence g
in (
dom f2) & (f2
. g)
<>
0 by
A9,
TARSKI:def 1,
XBOOLE_0:def 5;
end;
then
A11: (f2
^ )
is_right_convergent_in x0 by
A2,
A3,
Th58;
A12: (f1
/ f2)
= (f1
(#) (f2
^ )) by
RFUNCT_1: 31;
hence (f1
/ f2)
is_right_convergent_in x0 by
A1,
A4,
A11,
Th59;
(
lim_right ((f2
^ ),x0))
= ((
lim_right (f2,x0))
" ) by
A2,
A3,
A5,
Th58;
hence (
lim_right ((f1
/ f2),x0))
= ((
lim_right (f1,x0))
* ((
lim_right (f2,x0))
" )) by
A1,
A4,
A12,
A11,
Th59
.= ((
lim_right (f1,x0))
/ (
lim_right (f2,x0))) by
XCMPLX_0:def 9;
end;
theorem ::
LIMFUNC2:61
f1
is_left_convergent_in x0 & (
lim_left (f1,x0))
=
0 & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f1
(#) f2))) & (ex r st
0
< r & (f2
|
].(x0
- r), x0.[) is
bounded) implies (f1
(#) f2)
is_left_convergent_in x0 & (
lim_left ((f1
(#) f2),x0))
=
0
proof
assume that
A1: f1
is_left_convergent_in x0 and
A2: (
lim_left (f1,x0))
=
0 and
A3: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f1
(#) f2));
given r such that
A4:
0
< r and
A5: (f2
|
].(x0
- r), x0.[) is
bounded;
consider g be
Real such that
A6: for r1 be
object st r1
in (
].(x0
- r), x0.[
/\ (
dom f2)) holds
|.(f2
. r1).|
<= g by
A5,
RFUNCT_1: 73;
A7:
now
set L = (
left_open_halfline x0);
let s be
Real_Sequence;
assume that
A8: s is
convergent and
A9: (
lim s)
= x0 and
A10: (
rng s)
c= ((
dom (f1
(#) f2))
/\ (
left_open_halfline x0));
(x0
- r)
< x0 by
A4,
Lm1;
then
consider k such that
A11: for n st k
<= n holds (x0
- r)
< (s
. n) by
A8,
A9,
Th1;
A12: (
rng (s
^\ k))
c= (
rng s) by
VALUED_0: 21;
A13: (
rng s)
c= (
dom (f1
(#) f2)) by
A10,
Lm2;
(
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) by
A10,
Lm2;
then (
rng (s
^\ k))
c= ((
dom f1)
/\ (
dom f2)) by
A13,
A12,
XBOOLE_1: 1;
then
A14: ((f1
/* (s
^\ k))
(#) (f2
/* (s
^\ k)))
= ((f1
(#) f2)
/* (s
^\ k)) by
RFUNCT_2: 8
.= (((f1
(#) f2)
/* s)
^\ k) by
A13,
VALUED_0: 27;
(
rng s)
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A10,
Lm2;
then
A15: (
rng (s
^\ k))
c= ((
dom f1)
/\ L) by
A12,
XBOOLE_1: 1;
A16: (
lim (s
^\ k))
= x0 by
A8,
A9,
SEQ_4: 20;
then
A17: (f1
/* (s
^\ k)) is
convergent by
A1,
A8,
A15;
(
rng s)
c= (
left_open_halfline x0) by
A10,
Lm2;
then
A18: (
rng (s
^\ k))
c= L by
A12,
XBOOLE_1: 1;
A19: (
rng s)
c= (
dom f2) by
A10,
Lm2;
then
A20: (
rng (s
^\ k))
c= (
dom f2) by
A12,
XBOOLE_1: 1;
now
set t = (
|.g.|
+ 1);
0
<=
|.g.| by
COMPLEX1: 46;
hence
0
< t;
let n;
A21: n
in
NAT by
ORDINAL1:def 12;
(x0
- r)
< (s
. (n
+ k)) by
A11,
NAT_1: 12;
then
A22: (x0
- r)
< ((s
^\ k)
. n) by
NAT_1:def 3;
A23: ((s
^\ k)
. n)
in (
rng (s
^\ k)) by
VALUED_0: 28;
then ((s
^\ k)
. n)
in L by
A18;
then ((s
^\ k)
. n)
in { g1 : g1
< x0 } by
XXREAL_1: 229;
then ex g1 st g1
= ((s
^\ k)
. n) & g1
< x0;
then ((s
^\ k)
. n)
in { g2 : (x0
- r)
< g2 & g2
< x0 } by
A22;
then ((s
^\ k)
. n)
in
].(x0
- r), x0.[ by
RCOMP_1:def 2;
then ((s
^\ k)
. n)
in (
].(x0
- r), x0.[
/\ (
dom f2)) by
A20,
A23,
XBOOLE_0:def 4;
then
|.(f2
. ((s
^\ k)
. n)).|
<= g by
A6;
then
A24:
|.((f2
/* (s
^\ k))
. n).|
<= g by
A19,
A12,
FUNCT_2: 108,
XBOOLE_1: 1,
A21;
g
<=
|.g.| by
ABSVALUE: 4;
then g
< t by
Lm1;
hence
|.((f2
/* (s
^\ k))
. n).|
< t by
A24,
XXREAL_0: 2;
end;
then
A25: (f2
/* (s
^\ k)) is
bounded by
SEQ_2: 3;
A26: (
lim (f1
/* (s
^\ k)))
=
0 by
A1,
A2,
A8,
A16,
A15,
Def7;
then
A27: ((f1
/* (s
^\ k))
(#) (f2
/* (s
^\ k))) is
convergent by
A17,
A25,
SEQ_2: 25;
hence ((f1
(#) f2)
/* s) is
convergent by
A14,
SEQ_4: 21;
(
lim ((f1
/* (s
^\ k))
(#) (f2
/* (s
^\ k))))
=
0 by
A17,
A26,
A25,
SEQ_2: 26;
hence (
lim ((f1
(#) f2)
/* s))
=
0 by
A27,
A14,
SEQ_4: 22;
end;
hence (f1
(#) f2)
is_left_convergent_in x0 by
A3;
hence thesis by
A7,
Def7;
end;
theorem ::
LIMFUNC2:62
f1
is_right_convergent_in x0 & (
lim_right (f1,x0))
=
0 & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f1
(#) f2))) & (ex r st
0
< r & (f2
|
].x0, (x0
+ r).[) is
bounded) implies (f1
(#) f2)
is_right_convergent_in x0 & (
lim_right ((f1
(#) f2),x0))
=
0
proof
assume that
A1: f1
is_right_convergent_in x0 and
A2: (
lim_right (f1,x0))
=
0 and
A3: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f1
(#) f2));
given r such that
A4:
0
< r and
A5: (f2
|
].x0, (x0
+ r).[) is
bounded;
consider g be
Real such that
A6: for r1 be
object st r1
in (
].x0, (x0
+ r).[
/\ (
dom f2)) holds
|.(f2
. r1).|
<= g by
A5,
RFUNCT_1: 73;
A7:
now
set L = (
right_open_halfline x0);
let s be
Real_Sequence;
assume that
A8: s is
convergent and
A9: (
lim s)
= x0 and
A10: (
rng s)
c= ((
dom (f1
(#) f2))
/\ (
right_open_halfline x0));
x0
< (x0
+ r) by
A4,
Lm1;
then
consider k such that
A11: for n st k
<= n holds (s
. n)
< (x0
+ r) by
A8,
A9,
Th2;
A12: (
rng (s
^\ k))
c= (
rng s) by
VALUED_0: 21;
A13: (
rng s)
c= (
dom (f1
(#) f2)) by
A10,
Lm2;
(
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) by
A10,
Lm2;
then (
rng (s
^\ k))
c= ((
dom f1)
/\ (
dom f2)) by
A13,
A12,
XBOOLE_1: 1;
then
A14: ((f1
/* (s
^\ k))
(#) (f2
/* (s
^\ k)))
= ((f1
(#) f2)
/* (s
^\ k)) by
RFUNCT_2: 8
.= (((f1
(#) f2)
/* s)
^\ k) by
A13,
VALUED_0: 27;
(
rng s)
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A10,
Lm2;
then
A15: (
rng (s
^\ k))
c= ((
dom f1)
/\ L) by
A12,
XBOOLE_1: 1;
A16: (
lim (s
^\ k))
= x0 by
A8,
A9,
SEQ_4: 20;
then
A17: (f1
/* (s
^\ k)) is
convergent by
A1,
A8,
A15;
(
rng s)
c= (
right_open_halfline x0) by
A10,
Lm2;
then
A18: (
rng (s
^\ k))
c= L by
A12,
XBOOLE_1: 1;
A19: (
rng s)
c= (
dom f2) by
A10,
Lm2;
then
A20: (
rng (s
^\ k))
c= (
dom f2) by
A12,
XBOOLE_1: 1;
now
set t = (
|.g.|
+ 1);
0
<=
|.g.| by
COMPLEX1: 46;
hence
0
< t;
let n;
A21: n
in
NAT by
ORDINAL1:def 12;
(s
. (n
+ k))
< (x0
+ r) by
A11,
NAT_1: 12;
then
A22: ((s
^\ k)
. n)
< (x0
+ r) by
NAT_1:def 3;
A23: ((s
^\ k)
. n)
in (
rng (s
^\ k)) by
VALUED_0: 28;
then ((s
^\ k)
. n)
in L by
A18;
then ((s
^\ k)
. n)
in { g1 : x0
< g1 } by
XXREAL_1: 230;
then ex g1 st g1
= ((s
^\ k)
. n) & x0
< g1;
then ((s
^\ k)
. n)
in { g2 : x0
< g2 & g2
< (x0
+ r) } by
A22;
then ((s
^\ k)
. n)
in
].x0, (x0
+ r).[ by
RCOMP_1:def 2;
then ((s
^\ k)
. n)
in (
].x0, (x0
+ r).[
/\ (
dom f2)) by
A20,
A23,
XBOOLE_0:def 4;
then
|.(f2
. ((s
^\ k)
. n)).|
<= g by
A6;
then
A24:
|.((f2
/* (s
^\ k))
. n).|
<= g by
A19,
A12,
FUNCT_2: 108,
XBOOLE_1: 1,
A21;
g
<=
|.g.| by
ABSVALUE: 4;
then g
< t by
Lm1;
hence
|.((f2
/* (s
^\ k))
. n).|
< t by
A24,
XXREAL_0: 2;
end;
then
A25: (f2
/* (s
^\ k)) is
bounded by
SEQ_2: 3;
A26: (
lim (f1
/* (s
^\ k)))
=
0 by
A1,
A2,
A8,
A16,
A15,
Def8;
then
A27: ((f1
/* (s
^\ k))
(#) (f2
/* (s
^\ k))) is
convergent by
A17,
A25,
SEQ_2: 25;
hence ((f1
(#) f2)
/* s) is
convergent by
A14,
SEQ_4: 21;
(
lim ((f1
/* (s
^\ k))
(#) (f2
/* (s
^\ k))))
=
0 by
A17,
A26,
A25,
SEQ_2: 26;
hence (
lim ((f1
(#) f2)
/* s))
=
0 by
A27,
A14,
SEQ_4: 22;
end;
hence (f1
(#) f2)
is_right_convergent_in x0 by
A3;
hence thesis by
A7,
Def8;
end;
theorem ::
LIMFUNC2:63
Th63: f1
is_left_convergent_in x0 & f2
is_left_convergent_in x0 & (
lim_left (f1,x0))
= (
lim_left (f2,x0)) & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f)) & (ex r st
0
< r & (for g st g
in ((
dom f)
/\
].(x0
- r), x0.[) holds (f1
. g)
<= (f
. g) & (f
. g)
<= (f2
. g)) & ((((
dom f1)
/\
].(x0
- r), x0.[)
c= ((
dom f2)
/\
].(x0
- r), x0.[) & ((
dom f)
/\
].(x0
- r), x0.[)
c= ((
dom f1)
/\
].(x0
- r), x0.[)) or (((
dom f2)
/\
].(x0
- r), x0.[)
c= ((
dom f1)
/\
].(x0
- r), x0.[) & ((
dom f)
/\
].(x0
- r), x0.[)
c= ((
dom f2)
/\
].(x0
- r), x0.[)))) implies f
is_left_convergent_in x0 & (
lim_left (f,x0))
= (
lim_left (f1,x0))
proof
assume that
A1: f1
is_left_convergent_in x0 and
A2: f2
is_left_convergent_in x0 and
A3: (
lim_left (f1,x0))
= (
lim_left (f2,x0)) and
A4: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f);
given r1 such that
A5:
0
< r1 and
A6: for g st g
in ((
dom f)
/\
].(x0
- r1), x0.[) holds (f1
. g)
<= (f
. g) & (f
. g)
<= (f2
. g) and
A7: ((
dom f1)
/\
].(x0
- r1), x0.[)
c= ((
dom f2)
/\
].(x0
- r1), x0.[) & ((
dom f)
/\
].(x0
- r1), x0.[)
c= ((
dom f1)
/\
].(x0
- r1), x0.[) or ((
dom f2)
/\
].(x0
- r1), x0.[)
c= ((
dom f1)
/\
].(x0
- r1), x0.[) & ((
dom f)
/\
].(x0
- r1), x0.[)
c= ((
dom f2)
/\
].(x0
- r1), x0.[);
now
per cases by
A7;
suppose
A8: ((
dom f1)
/\
].(x0
- r1), x0.[)
c= ((
dom f2)
/\
].(x0
- r1), x0.[) & ((
dom f)
/\
].(x0
- r1), x0.[)
c= ((
dom f1)
/\
].(x0
- r1), x0.[);
A9:
now
let seq;
assume that
A10: seq is
convergent and
A11: (
lim seq)
= x0 and
A12: (
rng seq)
c= ((
dom f)
/\ (
left_open_halfline x0));
(x0
- r1)
< (
lim seq) by
A5,
A11,
Lm1;
then
consider k such that
A13: for n st k
<= n holds (x0
- r1)
< (seq
. n) by
A10,
Th1;
A14: (
rng (seq
^\ k))
c= (
rng seq) by
VALUED_0: 21;
((
dom f)
/\ (
left_open_halfline x0))
c= (
left_open_halfline x0) by
XBOOLE_1: 17;
then (
rng seq)
c= (
left_open_halfline x0) by
A12,
XBOOLE_1: 1;
then
A15: (
rng (seq
^\ k))
c= (
left_open_halfline x0) by
A14,
XBOOLE_1: 1;
now
let x be
object;
assume
A16: x
in (
rng (seq
^\ k));
then
consider n be
Element of
NAT such that
A17: x
= ((seq
^\ k)
. n) by
FUNCT_2: 113;
((seq
^\ k)
. n)
in (
left_open_halfline x0) by
A15,
A16,
A17;
then ((seq
^\ k)
. n)
in { g : g
< x0 } by
XXREAL_1: 229;
then
A18: ex g st g
= ((seq
^\ k)
. n) & g
< x0;
(x0
- r1)
< (seq
. (n
+ k)) by
A13,
NAT_1: 12;
then (x0
- r1)
< ((seq
^\ k)
. n) by
NAT_1:def 3;
then x
in { g1 : (x0
- r1)
< g1 & g1
< x0 } by
A17,
A18;
hence x
in
].(x0
- r1), x0.[ by
RCOMP_1:def 2;
end;
then
A19: (
rng (seq
^\ k))
c=
].(x0
- r1), x0.[ by
TARSKI:def 3;
].(x0
- r1), x0.[
c= (
left_open_halfline x0) by
XXREAL_1: 263;
then
A20: (
rng (seq
^\ k))
c= (
left_open_halfline x0) by
A19,
XBOOLE_1: 1;
A21: ((
dom f)
/\ (
left_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
then
A22: (
rng seq)
c= (
dom f) by
A12,
XBOOLE_1: 1;
then (
rng (seq
^\ k))
c= (
dom f) by
A14,
XBOOLE_1: 1;
then
A23: (
rng (seq
^\ k))
c= ((
dom f)
/\
].(x0
- r1), x0.[) by
A19,
XBOOLE_1: 19;
then
A24: (
rng (seq
^\ k))
c= ((
dom f1)
/\
].(x0
- r1), x0.[) by
A8,
XBOOLE_1: 1;
then
A25: (
rng (seq
^\ k))
c= ((
dom f2)
/\
].(x0
- r1), x0.[) by
A8,
XBOOLE_1: 1;
A26: (
lim (seq
^\ k))
= x0 by
A10,
A11,
SEQ_4: 20;
A27: ((
dom f2)
/\
].(x0
- r1), x0.[)
c= (
dom f2) by
XBOOLE_1: 17;
then (
rng (seq
^\ k))
c= (
dom f2) by
A25,
XBOOLE_1: 1;
then
A28: (
rng (seq
^\ k))
c= ((
dom f2)
/\ (
left_open_halfline x0)) by
A20,
XBOOLE_1: 19;
then
A29: (
lim (f2
/* (seq
^\ k)))
= (
lim_left (f2,x0)) by
A2,
A10,
A26,
Def7;
A30: ((
dom f1)
/\
].(x0
- r1), x0.[)
c= (
dom f1) by
XBOOLE_1: 17;
then (
rng (seq
^\ k))
c= (
dom f1) by
A24,
XBOOLE_1: 1;
then
A31: (
rng (seq
^\ k))
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A20,
XBOOLE_1: 19;
then
A32: (
lim (f1
/* (seq
^\ k)))
= (
lim_left (f1,x0)) by
A1,
A10,
A26,
Def7;
A33:
now
let n;
A34: n
in
NAT by
ORDINAL1:def 12;
A35: ((seq
^\ k)
. n)
in (
rng (seq
^\ k)) by
VALUED_0: 28;
then (f
. ((seq
^\ k)
. n))
<= (f2
. ((seq
^\ k)
. n)) by
A6,
A23;
then
A36: ((f
/* (seq
^\ k))
. n)
<= (f2
. ((seq
^\ k)
. n)) by
A14,
A22,
FUNCT_2: 108,
XBOOLE_1: 1,
A34;
(f1
. ((seq
^\ k)
. n))
<= (f
. ((seq
^\ k)
. n)) by
A6,
A23,
A35;
then (f1
. ((seq
^\ k)
. n))
<= ((f
/* (seq
^\ k))
. n) by
A14,
A22,
FUNCT_2: 108,
A34,
XBOOLE_1: 1;
hence ((f1
/* (seq
^\ k))
. n)
<= ((f
/* (seq
^\ k))
. n) & ((f
/* (seq
^\ k))
. n)
<= ((f2
/* (seq
^\ k))
. n) by
A30,
A27,
A24,
A25,
A36,
FUNCT_2: 108,
XBOOLE_1: 1,
A34;
end;
A37: (f2
/* (seq
^\ k)) is
convergent by
A2,
A10,
A26,
A28;
A38: (f1
/* (seq
^\ k)) is
convergent by
A1,
A10,
A26,
A31;
then (f
/* (seq
^\ k)) is
convergent by
A3,
A32,
A37,
A29,
A33,
SEQ_2: 19;
then
A39: ((f
/* seq)
^\ k) is
convergent by
A12,
A21,
VALUED_0: 27,
XBOOLE_1: 1;
hence (f
/* seq) is
convergent by
SEQ_4: 21;
(
lim (f
/* (seq
^\ k)))
= (
lim_left (f1,x0)) by
A3,
A38,
A32,
A37,
A29,
A33,
SEQ_2: 20;
then (
lim ((f
/* seq)
^\ k))
= (
lim_left (f1,x0)) by
A12,
A21,
VALUED_0: 27,
XBOOLE_1: 1;
hence (
lim (f
/* seq))
= (
lim_left (f1,x0)) by
A39,
SEQ_4: 22;
end;
hence f
is_left_convergent_in x0 by
A4;
hence thesis by
A9,
Def7;
end;
suppose
A40: ((
dom f2)
/\
].(x0
- r1), x0.[)
c= ((
dom f1)
/\
].(x0
- r1), x0.[) & ((
dom f)
/\
].(x0
- r1), x0.[)
c= ((
dom f2)
/\
].(x0
- r1), x0.[);
A41:
now
let seq;
assume that
A42: seq is
convergent and
A43: (
lim seq)
= x0 and
A44: (
rng seq)
c= ((
dom f)
/\ (
left_open_halfline x0));
(x0
- r1)
< (
lim seq) by
A5,
A43,
Lm1;
then
consider k such that
A45: for n st k
<= n holds (x0
- r1)
< (seq
. n) by
A42,
Th1;
A46: (
rng (seq
^\ k))
c= (
rng seq) by
VALUED_0: 21;
((
dom f)
/\ (
left_open_halfline x0))
c= (
left_open_halfline x0) by
XBOOLE_1: 17;
then (
rng seq)
c= (
left_open_halfline x0) by
A44,
XBOOLE_1: 1;
then
A47: (
rng (seq
^\ k))
c= (
left_open_halfline x0) by
A46,
XBOOLE_1: 1;
now
let x be
object;
assume
A48: x
in (
rng (seq
^\ k));
then
consider n be
Element of
NAT such that
A49: x
= ((seq
^\ k)
. n) by
FUNCT_2: 113;
((seq
^\ k)
. n)
in (
left_open_halfline x0) by
A47,
A48,
A49;
then ((seq
^\ k)
. n)
in { g : g
< x0 } by
XXREAL_1: 229;
then
A50: ex g st g
= ((seq
^\ k)
. n) & g
< x0;
(x0
- r1)
< (seq
. (n
+ k)) by
A45,
NAT_1: 12;
then (x0
- r1)
< ((seq
^\ k)
. n) by
NAT_1:def 3;
then x
in { g1 : (x0
- r1)
< g1 & g1
< x0 } by
A49,
A50;
hence x
in
].(x0
- r1), x0.[ by
RCOMP_1:def 2;
end;
then
A51: (
rng (seq
^\ k))
c=
].(x0
- r1), x0.[ by
TARSKI:def 3;
].(x0
- r1), x0.[
c= (
left_open_halfline x0) by
XXREAL_1: 263;
then
A52: (
rng (seq
^\ k))
c= (
left_open_halfline x0) by
A51,
XBOOLE_1: 1;
A53: ((
dom f)
/\ (
left_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
then
A54: (
rng seq)
c= (
dom f) by
A44,
XBOOLE_1: 1;
then (
rng (seq
^\ k))
c= (
dom f) by
A46,
XBOOLE_1: 1;
then
A55: (
rng (seq
^\ k))
c= ((
dom f)
/\
].(x0
- r1), x0.[) by
A51,
XBOOLE_1: 19;
then
A56: (
rng (seq
^\ k))
c= ((
dom f2)
/\
].(x0
- r1), x0.[) by
A40,
XBOOLE_1: 1;
then
A57: (
rng (seq
^\ k))
c= ((
dom f1)
/\
].(x0
- r1), x0.[) by
A40,
XBOOLE_1: 1;
A58: (
lim (seq
^\ k))
= x0 by
A42,
A43,
SEQ_4: 20;
A59: ((
dom f2)
/\
].(x0
- r1), x0.[)
c= (
dom f2) by
XBOOLE_1: 17;
then (
rng (seq
^\ k))
c= (
dom f2) by
A56,
XBOOLE_1: 1;
then
A60: (
rng (seq
^\ k))
c= ((
dom f2)
/\ (
left_open_halfline x0)) by
A52,
XBOOLE_1: 19;
then
A61: (
lim (f2
/* (seq
^\ k)))
= (
lim_left (f2,x0)) by
A2,
A42,
A58,
Def7;
A62: ((
dom f1)
/\
].(x0
- r1), x0.[)
c= (
dom f1) by
XBOOLE_1: 17;
then (
rng (seq
^\ k))
c= (
dom f1) by
A57,
XBOOLE_1: 1;
then
A63: (
rng (seq
^\ k))
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A52,
XBOOLE_1: 19;
then
A64: (
lim (f1
/* (seq
^\ k)))
= (
lim_left (f1,x0)) by
A1,
A42,
A58,
Def7;
A65:
now
let n;
A66: n
in
NAT by
ORDINAL1:def 12;
A67: ((seq
^\ k)
. n)
in (
rng (seq
^\ k)) by
VALUED_0: 28;
then (f
. ((seq
^\ k)
. n))
<= (f2
. ((seq
^\ k)
. n)) by
A6,
A55;
then
A68: ((f
/* (seq
^\ k))
. n)
<= (f2
. ((seq
^\ k)
. n)) by
A46,
A54,
FUNCT_2: 108,
XBOOLE_1: 1,
A66;
(f1
. ((seq
^\ k)
. n))
<= (f
. ((seq
^\ k)
. n)) by
A6,
A55,
A67;
then (f1
. ((seq
^\ k)
. n))
<= ((f
/* (seq
^\ k))
. n) by
A46,
A54,
FUNCT_2: 108,
A66,
XBOOLE_1: 1;
hence ((f1
/* (seq
^\ k))
. n)
<= ((f
/* (seq
^\ k))
. n) & ((f
/* (seq
^\ k))
. n)
<= ((f2
/* (seq
^\ k))
. n) by
A62,
A59,
A56,
A57,
A68,
FUNCT_2: 108,
XBOOLE_1: 1,
A66;
end;
A69: (f2
/* (seq
^\ k)) is
convergent by
A2,
A42,
A58,
A60;
A70: (f1
/* (seq
^\ k)) is
convergent by
A1,
A42,
A58,
A63;
then (f
/* (seq
^\ k)) is
convergent by
A3,
A64,
A69,
A61,
A65,
SEQ_2: 19;
then
A71: ((f
/* seq)
^\ k) is
convergent by
A44,
A53,
VALUED_0: 27,
XBOOLE_1: 1;
hence (f
/* seq) is
convergent by
SEQ_4: 21;
(
lim (f
/* (seq
^\ k)))
= (
lim_left (f1,x0)) by
A3,
A70,
A64,
A69,
A61,
A65,
SEQ_2: 20;
then (
lim ((f
/* seq)
^\ k))
= (
lim_left (f1,x0)) by
A44,
A53,
VALUED_0: 27,
XBOOLE_1: 1;
hence (
lim (f
/* seq))
= (
lim_left (f1,x0)) by
A71,
SEQ_4: 22;
end;
hence f
is_left_convergent_in x0 by
A4;
hence thesis by
A41,
Def7;
end;
end;
hence thesis;
end;
theorem ::
LIMFUNC2:64
f1
is_left_convergent_in x0 & f2
is_left_convergent_in x0 & (
lim_left (f1,x0))
= (
lim_left (f2,x0)) & (ex r st
0
< r &
].(x0
- r), x0.[
c= (((
dom f1)
/\ (
dom f2))
/\ (
dom f)) & for g st g
in
].(x0
- r), x0.[ holds (f1
. g)
<= (f
. g) & (f
. g)
<= (f2
. g)) implies f
is_left_convergent_in x0 & (
lim_left (f,x0))
= (
lim_left (f1,x0))
proof
assume that
A1: f1
is_left_convergent_in x0 and
A2: f2
is_left_convergent_in x0 and
A3: (
lim_left (f1,x0))
= (
lim_left (f2,x0));
given r such that
A4:
0
< r and
A5:
].(x0
- r), x0.[
c= (((
dom f1)
/\ (
dom f2))
/\ (
dom f)) and
A6: for g st g
in
].(x0
- r), x0.[ holds (f1
. g)
<= (f
. g) & (f
. g)
<= (f2
. g);
(((
dom f1)
/\ (
dom f2))
/\ (
dom f))
c= ((
dom f1)
/\ (
dom f2)) by
XBOOLE_1: 17;
then
A7:
].(x0
- r), x0.[
c= ((
dom f1)
/\ (
dom f2)) by
A5,
XBOOLE_1: 1;
A8: (((
dom f1)
/\ (
dom f2))
/\ (
dom f))
c= (
dom f) by
XBOOLE_1: 17;
then
A9:
].(x0
- r), x0.[
c= (
dom f) by
A5,
XBOOLE_1: 1;
A10:
now
let r1 such that
A11: r1
< x0;
now
per cases ;
suppose
A12: r1
<= (x0
- r);
now
(x0
- r)
< x0 by
A4,
Lm1;
then
consider g be
Real such that
A13: (x0
- r)
< g and
A14: g
< x0 by
XREAL_1: 5;
reconsider g as
Real;
take g;
thus r1
< g & g
< x0 by
A12,
A13,
A14,
XXREAL_0: 2;
g
in { g2 : (x0
- r)
< g2 & g2
< x0 } by
A13,
A14;
then g
in
].(x0
- r), x0.[ by
RCOMP_1:def 2;
hence g
in (
dom f) by
A9;
end;
hence ex g st r1
< g & g
< x0 & g
in (
dom f);
end;
suppose
A15: (x0
- r)
<= r1;
now
consider g be
Real such that
A16: r1
< g and
A17: g
< x0 by
A11,
XREAL_1: 5;
reconsider g as
Real;
take g;
thus r1
< g & g
< x0 by
A16,
A17;
(x0
- r)
< g by
A15,
A16,
XXREAL_0: 2;
then g
in { g2 : (x0
- r)
< g2 & g2
< x0 } by
A17;
then g
in
].(x0
- r), x0.[ by
RCOMP_1:def 2;
hence g
in (
dom f) by
A9;
end;
hence ex g st r1
< g & g
< x0 & g
in (
dom f);
end;
end;
hence ex g st r1
< g & g
< x0 & g
in (
dom f);
end;
((
dom f1)
/\ (
dom f2))
c= (
dom f2) by
XBOOLE_1: 17;
then
A18: ((
dom f2)
/\
].(x0
- r), x0.[)
=
].(x0
- r), x0.[ by
A7,
XBOOLE_1: 1,
XBOOLE_1: 28;
((
dom f1)
/\ (
dom f2))
c= (
dom f1) by
XBOOLE_1: 17;
then
A19: ((
dom f1)
/\
].(x0
- r), x0.[)
=
].(x0
- r), x0.[ by
A7,
XBOOLE_1: 1,
XBOOLE_1: 28;
((
dom f)
/\
].(x0
- r), x0.[)
=
].(x0
- r), x0.[ by
A5,
A8,
XBOOLE_1: 1,
XBOOLE_1: 28;
hence thesis by
A1,
A2,
A3,
A4,
A6,
A19,
A18,
A10,
Th63;
end;
theorem ::
LIMFUNC2:65
Th65: f1
is_right_convergent_in x0 & f2
is_right_convergent_in x0 & (
lim_right (f1,x0))
= (
lim_right (f2,x0)) & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f)) & (ex r st
0
< r & (for g st g
in ((
dom f)
/\
].x0, (x0
+ r).[) holds (f1
. g)
<= (f
. g) & (f
. g)
<= (f2
. g)) & ((((
dom f1)
/\
].x0, (x0
+ r).[)
c= ((
dom f2)
/\
].x0, (x0
+ r).[) & ((
dom f)
/\
].x0, (x0
+ r).[)
c= ((
dom f1)
/\
].x0, (x0
+ r).[)) or (((
dom f2)
/\
].x0, (x0
+ r).[)
c= ((
dom f1)
/\
].x0, (x0
+ r).[) & ((
dom f)
/\
].x0, (x0
+ r).[)
c= ((
dom f2)
/\
].x0, (x0
+ r).[)))) implies f
is_right_convergent_in x0 & (
lim_right (f,x0))
= (
lim_right (f1,x0))
proof
assume that
A1: f1
is_right_convergent_in x0 and
A2: f2
is_right_convergent_in x0 and
A3: (
lim_right (f1,x0))
= (
lim_right (f2,x0)) and
A4: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f);
given r1 such that
A5:
0
< r1 and
A6: for g st g
in ((
dom f)
/\
].x0, (x0
+ r1).[) holds (f1
. g)
<= (f
. g) & (f
. g)
<= (f2
. g) and
A7: ((
dom f1)
/\
].x0, (x0
+ r1).[)
c= ((
dom f2)
/\
].x0, (x0
+ r1).[) & ((
dom f)
/\
].x0, (x0
+ r1).[)
c= ((
dom f1)
/\
].x0, (x0
+ r1).[) or ((
dom f2)
/\
].x0, (x0
+ r1).[)
c= ((
dom f1)
/\
].x0, (x0
+ r1).[) & ((
dom f)
/\
].x0, (x0
+ r1).[)
c= ((
dom f2)
/\
].x0, (x0
+ r1).[);
now
per cases by
A7;
suppose
A8: ((
dom f1)
/\
].x0, (x0
+ r1).[)
c= ((
dom f2)
/\
].x0, (x0
+ r1).[) & ((
dom f)
/\
].x0, (x0
+ r1).[)
c= ((
dom f1)
/\
].x0, (x0
+ r1).[);
A9:
now
let seq;
assume that
A10: seq is
convergent and
A11: (
lim seq)
= x0 and
A12: (
rng seq)
c= ((
dom f)
/\ (
right_open_halfline x0));
x0
< ((
lim seq)
+ r1) by
A5,
A11,
Lm1;
then
consider k such that
A13: for n st k
<= n holds (seq
. n)
< (x0
+ r1) by
A10,
A11,
Th2;
A14: (
rng (seq
^\ k))
c= (
rng seq) by
VALUED_0: 21;
((
dom f)
/\ (
right_open_halfline x0))
c= (
right_open_halfline x0) by
XBOOLE_1: 17;
then (
rng seq)
c= (
right_open_halfline x0) by
A12,
XBOOLE_1: 1;
then
A15: (
rng (seq
^\ k))
c= (
right_open_halfline x0) by
A14,
XBOOLE_1: 1;
now
let x be
object;
assume
A16: x
in (
rng (seq
^\ k));
then
consider n be
Element of
NAT such that
A17: x
= ((seq
^\ k)
. n) by
FUNCT_2: 113;
((seq
^\ k)
. n)
in (
right_open_halfline x0) by
A15,
A16,
A17;
then ((seq
^\ k)
. n)
in { g : x0
< g } by
XXREAL_1: 230;
then
A18: ex g st g
= ((seq
^\ k)
. n) & x0
< g;
(seq
. (n
+ k))
< (x0
+ r1) by
A13,
NAT_1: 12;
then ((seq
^\ k)
. n)
< (x0
+ r1) by
NAT_1:def 3;
then x
in { g1 : x0
< g1 & g1
< (x0
+ r1) } by
A17,
A18;
hence x
in
].x0, (x0
+ r1).[ by
RCOMP_1:def 2;
end;
then
A19: (
rng (seq
^\ k))
c=
].x0, (x0
+ r1).[ by
TARSKI:def 3;
].x0, (x0
+ r1).[
c= (
right_open_halfline x0) by
XXREAL_1: 247;
then
A20: (
rng (seq
^\ k))
c= (
right_open_halfline x0) by
A19,
XBOOLE_1: 1;
A21: ((
dom f)
/\ (
right_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
then
A22: (
rng seq)
c= (
dom f) by
A12,
XBOOLE_1: 1;
then (
rng (seq
^\ k))
c= (
dom f) by
A14,
XBOOLE_1: 1;
then
A23: (
rng (seq
^\ k))
c= ((
dom f)
/\
].x0, (x0
+ r1).[) by
A19,
XBOOLE_1: 19;
then
A24: (
rng (seq
^\ k))
c= ((
dom f1)
/\
].x0, (x0
+ r1).[) by
A8,
XBOOLE_1: 1;
then
A25: (
rng (seq
^\ k))
c= ((
dom f2)
/\
].x0, (x0
+ r1).[) by
A8,
XBOOLE_1: 1;
A26: (
lim (seq
^\ k))
= x0 by
A10,
A11,
SEQ_4: 20;
A27: ((
dom f2)
/\
].x0, (x0
+ r1).[)
c= (
dom f2) by
XBOOLE_1: 17;
then (
rng (seq
^\ k))
c= (
dom f2) by
A25,
XBOOLE_1: 1;
then
A28: (
rng (seq
^\ k))
c= ((
dom f2)
/\ (
right_open_halfline x0)) by
A20,
XBOOLE_1: 19;
then
A29: (
lim (f2
/* (seq
^\ k)))
= (
lim_right (f2,x0)) by
A2,
A10,
A26,
Def8;
A30: ((
dom f1)
/\
].x0, (x0
+ r1).[)
c= (
dom f1) by
XBOOLE_1: 17;
then (
rng (seq
^\ k))
c= (
dom f1) by
A24,
XBOOLE_1: 1;
then
A31: (
rng (seq
^\ k))
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A20,
XBOOLE_1: 19;
then
A32: (
lim (f1
/* (seq
^\ k)))
= (
lim_right (f1,x0)) by
A1,
A10,
A26,
Def8;
A33:
now
let n;
A34: n
in
NAT by
ORDINAL1:def 12;
A35: ((seq
^\ k)
. n)
in (
rng (seq
^\ k)) by
VALUED_0: 28;
then (f
. ((seq
^\ k)
. n))
<= (f2
. ((seq
^\ k)
. n)) by
A6,
A23;
then
A36: ((f
/* (seq
^\ k))
. n)
<= (f2
. ((seq
^\ k)
. n)) by
A14,
A22,
FUNCT_2: 108,
XBOOLE_1: 1,
A34;
(f1
. ((seq
^\ k)
. n))
<= (f
. ((seq
^\ k)
. n)) by
A6,
A23,
A35;
then (f1
. ((seq
^\ k)
. n))
<= ((f
/* (seq
^\ k))
. n) by
A14,
A22,
FUNCT_2: 108,
A34,
XBOOLE_1: 1;
hence ((f1
/* (seq
^\ k))
. n)
<= ((f
/* (seq
^\ k))
. n) & ((f
/* (seq
^\ k))
. n)
<= ((f2
/* (seq
^\ k))
. n) by
A30,
A27,
A24,
A25,
A36,
FUNCT_2: 108,
XBOOLE_1: 1,
A34;
end;
A37: (f2
/* (seq
^\ k)) is
convergent by
A2,
A10,
A26,
A28;
A38: (f1
/* (seq
^\ k)) is
convergent by
A1,
A10,
A26,
A31;
then (f
/* (seq
^\ k)) is
convergent by
A3,
A32,
A37,
A29,
A33,
SEQ_2: 19;
then
A39: ((f
/* seq)
^\ k) is
convergent by
A12,
A21,
VALUED_0: 27,
XBOOLE_1: 1;
hence (f
/* seq) is
convergent by
SEQ_4: 21;
(
lim (f
/* (seq
^\ k)))
= (
lim_right (f1,x0)) by
A3,
A38,
A32,
A37,
A29,
A33,
SEQ_2: 20;
then (
lim ((f
/* seq)
^\ k))
= (
lim_right (f1,x0)) by
A12,
A21,
VALUED_0: 27,
XBOOLE_1: 1;
hence (
lim (f
/* seq))
= (
lim_right (f1,x0)) by
A39,
SEQ_4: 22;
end;
hence f
is_right_convergent_in x0 by
A4;
hence thesis by
A9,
Def8;
end;
suppose
A40: ((
dom f2)
/\
].x0, (x0
+ r1).[)
c= ((
dom f1)
/\
].x0, (x0
+ r1).[) & ((
dom f)
/\
].x0, (x0
+ r1).[)
c= ((
dom f2)
/\
].x0, (x0
+ r1).[);
A41:
now
let seq;
assume that
A42: seq is
convergent and
A43: (
lim seq)
= x0 and
A44: (
rng seq)
c= ((
dom f)
/\ (
right_open_halfline x0));
x0
< ((
lim seq)
+ r1) by
A5,
A43,
Lm1;
then
consider k such that
A45: for n st k
<= n holds (seq
. n)
< (x0
+ r1) by
A42,
A43,
Th2;
A46: (
rng (seq
^\ k))
c= (
rng seq) by
VALUED_0: 21;
((
dom f)
/\ (
right_open_halfline x0))
c= (
right_open_halfline x0) by
XBOOLE_1: 17;
then (
rng seq)
c= (
right_open_halfline x0) by
A44,
XBOOLE_1: 1;
then
A47: (
rng (seq
^\ k))
c= (
right_open_halfline x0) by
A46,
XBOOLE_1: 1;
now
let x be
object;
assume
A48: x
in (
rng (seq
^\ k));
then
consider n be
Element of
NAT such that
A49: x
= ((seq
^\ k)
. n) by
FUNCT_2: 113;
((seq
^\ k)
. n)
in (
right_open_halfline x0) by
A47,
A48,
A49;
then ((seq
^\ k)
. n)
in { g : x0
< g } by
XXREAL_1: 230;
then
A50: ex g st g
= ((seq
^\ k)
. n) & x0
< g;
(seq
. (n
+ k))
< (x0
+ r1) by
A45,
NAT_1: 12;
then ((seq
^\ k)
. n)
< (x0
+ r1) by
NAT_1:def 3;
then x
in { g1 : x0
< g1 & g1
< (x0
+ r1) } by
A49,
A50;
hence x
in
].x0, (x0
+ r1).[ by
RCOMP_1:def 2;
end;
then
A51: (
rng (seq
^\ k))
c=
].x0, (x0
+ r1).[ by
TARSKI:def 3;
].x0, (x0
+ r1).[
c= (
right_open_halfline x0) by
XXREAL_1: 247;
then
A52: (
rng (seq
^\ k))
c= (
right_open_halfline x0) by
A51,
XBOOLE_1: 1;
A53: ((
dom f)
/\ (
right_open_halfline x0))
c= (
dom f) by
XBOOLE_1: 17;
then
A54: (
rng seq)
c= (
dom f) by
A44,
XBOOLE_1: 1;
then (
rng (seq
^\ k))
c= (
dom f) by
A46,
XBOOLE_1: 1;
then
A55: (
rng (seq
^\ k))
c= ((
dom f)
/\
].x0, (x0
+ r1).[) by
A51,
XBOOLE_1: 19;
then
A56: (
rng (seq
^\ k))
c= ((
dom f2)
/\
].x0, (x0
+ r1).[) by
A40,
XBOOLE_1: 1;
then
A57: (
rng (seq
^\ k))
c= ((
dom f1)
/\
].x0, (x0
+ r1).[) by
A40,
XBOOLE_1: 1;
A58: (
lim (seq
^\ k))
= x0 by
A42,
A43,
SEQ_4: 20;
A59: ((
dom f2)
/\
].x0, (x0
+ r1).[)
c= (
dom f2) by
XBOOLE_1: 17;
then (
rng (seq
^\ k))
c= (
dom f2) by
A56,
XBOOLE_1: 1;
then
A60: (
rng (seq
^\ k))
c= ((
dom f2)
/\ (
right_open_halfline x0)) by
A52,
XBOOLE_1: 19;
then
A61: (
lim (f2
/* (seq
^\ k)))
= (
lim_right (f2,x0)) by
A2,
A42,
A58,
Def8;
A62: ((
dom f1)
/\
].x0, (x0
+ r1).[)
c= (
dom f1) by
XBOOLE_1: 17;
then (
rng (seq
^\ k))
c= (
dom f1) by
A57,
XBOOLE_1: 1;
then
A63: (
rng (seq
^\ k))
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A52,
XBOOLE_1: 19;
then
A64: (
lim (f1
/* (seq
^\ k)))
= (
lim_right (f1,x0)) by
A1,
A42,
A58,
Def8;
A65:
now
let n;
A66: n
in
NAT by
ORDINAL1:def 12;
A67: ((seq
^\ k)
. n)
in (
rng (seq
^\ k)) by
VALUED_0: 28;
then (f
. ((seq
^\ k)
. n))
<= (f2
. ((seq
^\ k)
. n)) by
A6,
A55;
then
A68: ((f
/* (seq
^\ k))
. n)
<= (f2
. ((seq
^\ k)
. n)) by
A46,
A54,
FUNCT_2: 108,
XBOOLE_1: 1,
A66;
(f1
. ((seq
^\ k)
. n))
<= (f
. ((seq
^\ k)
. n)) by
A6,
A55,
A67;
then (f1
. ((seq
^\ k)
. n))
<= ((f
/* (seq
^\ k))
. n) by
A46,
A54,
FUNCT_2: 108,
A66,
XBOOLE_1: 1;
hence ((f1
/* (seq
^\ k))
. n)
<= ((f
/* (seq
^\ k))
. n) & ((f
/* (seq
^\ k))
. n)
<= ((f2
/* (seq
^\ k))
. n) by
A62,
A59,
A56,
A57,
A68,
FUNCT_2: 108,
XBOOLE_1: 1,
A66;
end;
A69: (f2
/* (seq
^\ k)) is
convergent by
A2,
A42,
A58,
A60;
A70: (f1
/* (seq
^\ k)) is
convergent by
A1,
A42,
A58,
A63;
then (f
/* (seq
^\ k)) is
convergent by
A3,
A64,
A69,
A61,
A65,
SEQ_2: 19;
then
A71: ((f
/* seq)
^\ k) is
convergent by
A44,
A53,
VALUED_0: 27,
XBOOLE_1: 1;
hence (f
/* seq) is
convergent by
SEQ_4: 21;
(
lim (f
/* (seq
^\ k)))
= (
lim_right (f1,x0)) by
A3,
A70,
A64,
A69,
A61,
A65,
SEQ_2: 20;
then (
lim ((f
/* seq)
^\ k))
= (
lim_right (f1,x0)) by
A44,
A53,
VALUED_0: 27,
XBOOLE_1: 1;
hence (
lim (f
/* seq))
= (
lim_right (f1,x0)) by
A71,
SEQ_4: 22;
end;
hence f
is_right_convergent_in x0 by
A4;
hence thesis by
A41,
Def8;
end;
end;
hence thesis;
end;
theorem ::
LIMFUNC2:66
f1
is_right_convergent_in x0 & f2
is_right_convergent_in x0 & (
lim_right (f1,x0))
= (
lim_right (f2,x0)) & (ex r st
0
< r &
].x0, (x0
+ r).[
c= (((
dom f1)
/\ (
dom f2))
/\ (
dom f)) & for g st g
in
].x0, (x0
+ r).[ holds (f1
. g)
<= (f
. g) & (f
. g)
<= (f2
. g)) implies f
is_right_convergent_in x0 & (
lim_right (f,x0))
= (
lim_right (f1,x0))
proof
assume that
A1: f1
is_right_convergent_in x0 and
A2: f2
is_right_convergent_in x0 and
A3: (
lim_right (f1,x0))
= (
lim_right (f2,x0));
given r such that
A4:
0
< r and
A5:
].x0, (x0
+ r).[
c= (((
dom f1)
/\ (
dom f2))
/\ (
dom f)) and
A6: for g st g
in
].x0, (x0
+ r).[ holds (f1
. g)
<= (f
. g) & (f
. g)
<= (f2
. g);
(((
dom f1)
/\ (
dom f2))
/\ (
dom f))
c= ((
dom f1)
/\ (
dom f2)) by
XBOOLE_1: 17;
then
A7:
].x0, (x0
+ r).[
c= ((
dom f1)
/\ (
dom f2)) by
A5,
XBOOLE_1: 1;
A8: (((
dom f1)
/\ (
dom f2))
/\ (
dom f))
c= (
dom f) by
XBOOLE_1: 17;
then
A9:
].x0, (x0
+ r).[
c= (
dom f) by
A5,
XBOOLE_1: 1;
A10:
now
let r1 such that
A11: x0
< r1;
now
per cases ;
suppose
A12: r1
<= (x0
+ r);
now
consider g be
Real such that
A13: x0
< g and
A14: g
< r1 by
A11,
XREAL_1: 5;
reconsider g as
Real;
take g;
thus g
< r1 & x0
< g by
A13,
A14;
g
< (x0
+ r) by
A12,
A14,
XXREAL_0: 2;
then g
in { g2 : x0
< g2 & g2
< (x0
+ r) } by
A13;
then g
in
].x0, (x0
+ r).[ by
RCOMP_1:def 2;
hence g
in (
dom f) by
A9;
end;
hence ex g st g
< r1 & x0
< g & g
in (
dom f);
end;
suppose
A15: (x0
+ r)
<= r1;
now
(x0
+
0 )
< (x0
+ r) by
A4,
XREAL_1: 8;
then
consider g be
Real such that
A16: x0
< g and
A17: g
< (x0
+ r) by
XREAL_1: 5;
reconsider g as
Real;
take g;
thus g
< r1 & x0
< g by
A15,
A16,
A17,
XXREAL_0: 2;
g
in { g2 : x0
< g2 & g2
< (x0
+ r) } by
A16,
A17;
then g
in
].x0, (x0
+ r).[ by
RCOMP_1:def 2;
hence g
in (
dom f) by
A9;
end;
hence ex g st g
< r1 & x0
< g & g
in (
dom f);
end;
end;
hence ex g st g
< r1 & x0
< g & g
in (
dom f);
end;
((
dom f1)
/\ (
dom f2))
c= (
dom f2) by
XBOOLE_1: 17;
then
A18: ((
dom f2)
/\
].x0, (x0
+ r).[)
=
].x0, (x0
+ r).[ by
A7,
XBOOLE_1: 1,
XBOOLE_1: 28;
((
dom f1)
/\ (
dom f2))
c= (
dom f1) by
XBOOLE_1: 17;
then
A19: ((
dom f1)
/\
].x0, (x0
+ r).[)
=
].x0, (x0
+ r).[ by
A7,
XBOOLE_1: 1,
XBOOLE_1: 28;
((
dom f)
/\
].x0, (x0
+ r).[)
=
].x0, (x0
+ r).[ by
A5,
A8,
XBOOLE_1: 1,
XBOOLE_1: 28;
hence thesis by
A1,
A2,
A3,
A4,
A6,
A19,
A18,
A10,
Th65;
end;
theorem ::
LIMFUNC2:67
f1
is_left_convergent_in x0 & f2
is_left_convergent_in x0 & (ex r st
0
< r & ((((
dom f1)
/\
].(x0
- r), x0.[)
c= ((
dom f2)
/\
].(x0
- r), x0.[) & for g st g
in ((
dom f1)
/\
].(x0
- r), x0.[) holds (f1
. g)
<= (f2
. g)) or (((
dom f2)
/\
].(x0
- r), x0.[)
c= ((
dom f1)
/\
].(x0
- r), x0.[) & for g st g
in ((
dom f2)
/\
].(x0
- r), x0.[) holds (f1
. g)
<= (f2
. g)))) implies (
lim_left (f1,x0))
<= (
lim_left (f2,x0))
proof
assume that
A1: f1
is_left_convergent_in x0 and
A2: f2
is_left_convergent_in x0;
given r such that
A3:
0
< r and
A4: (((
dom f1)
/\
].(x0
- r), x0.[)
c= ((
dom f2)
/\
].(x0
- r), x0.[) & for g st g
in ((
dom f1)
/\
].(x0
- r), x0.[) holds (f1
. g)
<= (f2
. g)) or (((
dom f2)
/\
].(x0
- r), x0.[)
c= ((
dom f1)
/\
].(x0
- r), x0.[) & for g st g
in ((
dom f2)
/\
].(x0
- r), x0.[) holds (f1
. g)
<= (f2
. g));
now
per cases by
A4;
suppose
A5: ((
dom f1)
/\
].(x0
- r), x0.[)
c= ((
dom f2)
/\
].(x0
- r), x0.[) & for g st g
in ((
dom f1)
/\
].(x0
- r), x0.[) holds (f1
. g)
<= (f2
. g);
defpred
X[
Nat,
Real] means (x0
- (1
/ ($1
+ 1)))
< $2 & $2
< x0 & $2
in (
dom f1);
A6:
now
let n be
Element of
NAT ;
(x0
- (1
/ (n
+ 1)))
< x0 by
Lm3;
then
consider g such that
A7: (x0
- (1
/ (n
+ 1)))
< g and
A8: g
< x0 and
A9: g
in (
dom f1) by
A1;
reconsider g as
Element of
REAL by
XREAL_0:def 1;
take g;
thus
X[n, g] by
A7,
A8,
A9;
end;
consider s be
Real_Sequence such that
A10: for n be
Element of
NAT holds
X[n, (s
. n)] from
FUNCT_2:sch 3(
A6);
A11: for n be
Nat holds
X[n, (s
. n)]
proof
let n be
Nat;
n
in
NAT by
ORDINAL1:def 12;
hence thesis by
A10;
end;
A12: (
lim s)
= x0 by
A11,
Th5;
A13: (
rng s)
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A11,
Th5;
A14:
].(x0
- r), x0.[
c= (
left_open_halfline x0) by
XXREAL_1: 263;
A15: s is
convergent by
A11,
Th5;
(x0
- r)
< x0 by
A3,
Lm1;
then
consider k such that
A16: for n st k
<= n holds (x0
- r)
< (s
. n) by
A15,
A12,
Th1;
A17: (
lim (s
^\ k))
= x0 by
A15,
A12,
SEQ_4: 20;
now
let x be
object;
assume x
in (
rng (s
^\ k));
then
consider n be
Element of
NAT such that
A18: ((s
^\ k)
. n)
= x by
FUNCT_2: 113;
(s
. (n
+ k))
< x0 by
A11;
then
A19: ((s
^\ k)
. n)
< x0 by
NAT_1:def 3;
(s
. (n
+ k))
in (
dom f1) by
A11;
then
A20: ((s
^\ k)
. n)
in (
dom f1) by
NAT_1:def 3;
(x0
- r)
< (s
. (n
+ k)) by
A16,
NAT_1: 12;
then (x0
- r)
< ((s
^\ k)
. n) by
NAT_1:def 3;
then ((s
^\ k)
. n)
in { g2 : (x0
- r)
< g2 & g2
< x0 } by
A19;
then ((s
^\ k)
. n)
in
].(x0
- r), x0.[ by
RCOMP_1:def 2;
hence x
in ((
dom f1)
/\
].(x0
- r), x0.[) by
A18,
A20,
XBOOLE_0:def 4;
end;
then
A21: (
rng (s
^\ k))
c= ((
dom f1)
/\
].(x0
- r), x0.[) by
TARSKI:def 3;
then
A22: (
rng (s
^\ k))
c= ((
dom f2)
/\
].(x0
- r), x0.[) by
A5,
XBOOLE_1: 1;
((
dom f2)
/\
].(x0
- r), x0.[)
c=
].(x0
- r), x0.[ by
XBOOLE_1: 17;
then (
rng (s
^\ k))
c=
].(x0
- r), x0.[ by
A22,
XBOOLE_1: 1;
then
A23: (
rng (s
^\ k))
c= (
left_open_halfline x0) by
A14,
XBOOLE_1: 1;
A24: ((
dom f2)
/\
].(x0
- r), x0.[)
c= (
dom f2) by
XBOOLE_1: 17;
then (
rng (s
^\ k))
c= (
dom f2) by
A22,
XBOOLE_1: 1;
then
A25: (
rng (s
^\ k))
c= ((
dom f2)
/\ (
left_open_halfline x0)) by
A23,
XBOOLE_1: 19;
then
A26: (
lim (f2
/* (s
^\ k)))
= (
lim_left (f2,x0)) by
A2,
A15,
A17,
Def7;
(
rng (s
^\ k))
c= (
rng s) by
VALUED_0: 21;
then
A27: (
rng (s
^\ k))
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A13,
XBOOLE_1: 1;
then
A28: (
lim (f1
/* (s
^\ k)))
= (
lim_left (f1,x0)) by
A1,
A15,
A17,
Def7;
A29: ((
dom f1)
/\
].(x0
- r), x0.[)
c= (
dom f1) by
XBOOLE_1: 17;
A30:
now
let n;
A31: n
in
NAT by
ORDINAL1:def 12;
((s
^\ k)
. n)
in (
rng (s
^\ k)) by
VALUED_0: 28;
then (f1
. ((s
^\ k)
. n))
<= (f2
. ((s
^\ k)
. n)) by
A5,
A21;
then (f1
. ((s
^\ k)
. n))
<= ((f2
/* (s
^\ k))
. n) by
A22,
A24,
FUNCT_2: 108,
XBOOLE_1: 1,
A31;
hence ((f1
/* (s
^\ k))
. n)
<= ((f2
/* (s
^\ k))
. n) by
A21,
A29,
FUNCT_2: 108,
XBOOLE_1: 1,
A31;
end;
A32: (f2
/* (s
^\ k)) is
convergent by
A2,
A15,
A17,
A25;
(f1
/* (s
^\ k)) is
convergent by
A1,
A15,
A17,
A27;
hence thesis by
A28,
A32,
A26,
A30,
SEQ_2: 18;
end;
suppose
A33: ((
dom f2)
/\
].(x0
- r), x0.[)
c= ((
dom f1)
/\
].(x0
- r), x0.[) & for g st g
in ((
dom f2)
/\
].(x0
- r), x0.[) holds (f1
. g)
<= (f2
. g);
defpred
X[
Nat,
Real] means (x0
- (1
/ ($1
+ 1)))
< $2 & $2
< x0 & $2
in (
dom f2);
A34:
now
let n be
Element of
NAT ;
0
< (1
/ (n
+ 1)) by
XREAL_1: 139;
then (x0
- (1
/ (n
+ 1)))
< (x0
-
0 ) by
XREAL_1: 15;
then
consider g such that
A35: (x0
- (1
/ (n
+ 1)))
< g and
A36: g
< x0 and
A37: g
in (
dom f2) by
A2;
reconsider g as
Element of
REAL by
XREAL_0:def 1;
take g;
thus
X[n, g] by
A35,
A36,
A37;
end;
consider s be
Real_Sequence such that
A38: for n be
Element of
NAT holds
X[n, (s
. n)] from
FUNCT_2:sch 3(
A34);
A39: for n be
Nat holds
X[n, (s
. n)]
proof
let n be
Nat;
n
in
NAT by
ORDINAL1:def 12;
hence thesis by
A38;
end;
A40: (
lim s)
= x0 by
A39,
Th5;
A41: (
rng s)
c= ((
dom f2)
/\ (
left_open_halfline x0)) by
A39,
Th5;
A42:
].(x0
- r), x0.[
c= (
left_open_halfline x0) by
XXREAL_1: 263;
A43: s is
convergent by
A39,
Th5;
(x0
- r)
< x0 by
A3,
Lm1;
then
consider k such that
A44: for n st k
<= n holds (x0
- r)
< (s
. n) by
A43,
A40,
Th1;
A45: (
lim (s
^\ k))
= x0 by
A43,
A40,
SEQ_4: 20;
A46:
now
let x be
object;
assume x
in (
rng (s
^\ k));
then
consider n be
Element of
NAT such that
A47: ((s
^\ k)
. n)
= x by
FUNCT_2: 113;
(s
. (n
+ k))
< x0 by
A39;
then
A48: ((s
^\ k)
. n)
< x0 by
NAT_1:def 3;
(s
. (n
+ k))
in (
dom f2) by
A39;
then
A49: ((s
^\ k)
. n)
in (
dom f2) by
NAT_1:def 3;
(x0
- r)
< (s
. (n
+ k)) by
A44,
NAT_1: 12;
then (x0
- r)
< ((s
^\ k)
. n) by
NAT_1:def 3;
then ((s
^\ k)
. n)
in { g2 : (x0
- r)
< g2 & g2
< x0 } by
A48;
then ((s
^\ k)
. n)
in
].(x0
- r), x0.[ by
RCOMP_1:def 2;
hence x
in ((
dom f2)
/\
].(x0
- r), x0.[) by
A47,
A49,
XBOOLE_0:def 4;
end;
then
A50: (
rng (s
^\ k))
c= ((
dom f2)
/\
].(x0
- r), x0.[) by
TARSKI:def 3;
then
A51: (
rng (s
^\ k))
c= ((
dom f1)
/\
].(x0
- r), x0.[) by
A33,
XBOOLE_1: 1;
((
dom f1)
/\
].(x0
- r), x0.[)
c=
].(x0
- r), x0.[ by
XBOOLE_1: 17;
then (
rng (s
^\ k))
c=
].(x0
- r), x0.[ by
A51,
XBOOLE_1: 1;
then
A52: (
rng (s
^\ k))
c= (
left_open_halfline x0) by
A42,
XBOOLE_1: 1;
A53: ((
dom f1)
/\
].(x0
- r), x0.[)
c= (
dom f1) by
XBOOLE_1: 17;
then (
rng (s
^\ k))
c= (
dom f1) by
A51,
XBOOLE_1: 1;
then
A54: (
rng (s
^\ k))
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A52,
XBOOLE_1: 19;
then
A55: (
lim (f1
/* (s
^\ k)))
= (
lim_left (f1,x0)) by
A1,
A43,
A45,
Def7;
(
rng (s
^\ k))
c= (
rng s) by
VALUED_0: 21;
then
A56: (
rng (s
^\ k))
c= ((
dom f2)
/\ (
left_open_halfline x0)) by
A41,
XBOOLE_1: 1;
then
A57: (
lim (f2
/* (s
^\ k)))
= (
lim_left (f2,x0)) by
A2,
A43,
A45,
Def7;
A58: ((
dom f2)
/\
].(x0
- r), x0.[)
c= (
dom f2) by
XBOOLE_1: 17;
A59:
now
let n;
A60: n
in
NAT by
ORDINAL1:def 12;
((s
^\ k)
. n)
in (
rng (s
^\ k)) by
VALUED_0: 28;
then (f1
. ((s
^\ k)
. n))
<= (f2
. ((s
^\ k)
. n)) by
A33,
A46;
then (f1
. ((s
^\ k)
. n))
<= ((f2
/* (s
^\ k))
. n) by
A50,
A58,
FUNCT_2: 108,
XBOOLE_1: 1,
A60;
hence ((f1
/* (s
^\ k))
. n)
<= ((f2
/* (s
^\ k))
. n) by
A51,
A53,
FUNCT_2: 108,
XBOOLE_1: 1,
A60;
end;
A61: (f1
/* (s
^\ k)) is
convergent by
A1,
A43,
A45,
A54;
(f2
/* (s
^\ k)) is
convergent by
A2,
A43,
A45,
A56;
hence thesis by
A57,
A61,
A55,
A59,
SEQ_2: 18;
end;
end;
hence thesis;
end;
theorem ::
LIMFUNC2:68
f1
is_right_convergent_in x0 & f2
is_right_convergent_in x0 & (ex r st
0
< r & ((((
dom f1)
/\
].x0, (x0
+ r).[)
c= ((
dom f2)
/\
].x0, (x0
+ r).[) & for g st g
in ((
dom f1)
/\
].x0, (x0
+ r).[) holds (f1
. g)
<= (f2
. g)) or (((
dom f2)
/\
].x0, (x0
+ r).[)
c= ((
dom f1)
/\
].x0, (x0
+ r).[) & for g st g
in ((
dom f2)
/\
].x0, (x0
+ r).[) holds (f1
. g)
<= (f2
. g)))) implies (
lim_right (f1,x0))
<= (
lim_right (f2,x0))
proof
assume that
A1: f1
is_right_convergent_in x0 and
A2: f2
is_right_convergent_in x0;
given r such that
A3:
0
< r and
A4: (((
dom f1)
/\
].x0, (x0
+ r).[)
c= ((
dom f2)
/\
].x0, (x0
+ r).[) & for g st g
in ((
dom f1)
/\
].x0, (x0
+ r).[) holds (f1
. g)
<= (f2
. g)) or (((
dom f2)
/\
].x0, (x0
+ r).[)
c= ((
dom f1)
/\
].x0, (x0
+ r).[) & for g st g
in ((
dom f2)
/\
].x0, (x0
+ r).[) holds (f1
. g)
<= (f2
. g));
now
per cases by
A4;
suppose
A5: ((
dom f1)
/\
].x0, (x0
+ r).[)
c= ((
dom f2)
/\
].x0, (x0
+ r).[) & for g st g
in ((
dom f1)
/\
].x0, (x0
+ r).[) holds (f1
. g)
<= (f2
. g);
defpred
X[
Nat,
Real] means x0
< $2 & $2
< (x0
+ (1
/ ($1
+ 1))) & $2
in (
dom f1);
A6:
now
let n be
Element of
NAT ;
x0
< (x0
+ (1
/ (n
+ 1))) by
Lm3;
then
consider g such that
A7: g
< (x0
+ (1
/ (n
+ 1))) and
A8: x0
< g and
A9: g
in (
dom f1) by
A1;
reconsider g as
Element of
REAL by
XREAL_0:def 1;
take g;
thus
X[n, g] by
A7,
A8,
A9;
end;
consider s be
Real_Sequence such that
A10: for n be
Element of
NAT holds
X[n, (s
. n)] from
FUNCT_2:sch 3(
A6);
A11: for n be
Nat holds
X[n, (s
. n)]
proof
let n be
Nat;
n
in
NAT by
ORDINAL1:def 12;
hence thesis by
A10;
end;
A12: (
lim s)
= x0 by
A11,
Th6;
A13: (
rng s)
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A11,
Th6;
A14:
].x0, (x0
+ r).[
c= (
right_open_halfline x0) by
XXREAL_1: 247;
A15: s is
convergent by
A11,
Th6;
x0
< (x0
+ r) by
A3,
Lm1;
then
consider k such that
A16: for n st k
<= n holds (s
. n)
< (x0
+ r) by
A15,
A12,
Th2;
A17: (
lim (s
^\ k))
= x0 by
A15,
A12,
SEQ_4: 20;
now
let x be
object;
assume x
in (
rng (s
^\ k));
then
consider n be
Element of
NAT such that
A18: ((s
^\ k)
. n)
= x by
FUNCT_2: 113;
x0
< (s
. (n
+ k)) by
A11;
then
A19: x0
< ((s
^\ k)
. n) by
NAT_1:def 3;
(s
. (n
+ k))
in (
dom f1) by
A11;
then
A20: ((s
^\ k)
. n)
in (
dom f1) by
NAT_1:def 3;
(s
. (n
+ k))
< (x0
+ r) by
A16,
NAT_1: 12;
then ((s
^\ k)
. n)
< (x0
+ r) by
NAT_1:def 3;
then ((s
^\ k)
. n)
in { g2 : x0
< g2 & g2
< (x0
+ r) } by
A19;
then ((s
^\ k)
. n)
in
].x0, (x0
+ r).[ by
RCOMP_1:def 2;
hence x
in ((
dom f1)
/\
].x0, (x0
+ r).[) by
A18,
A20,
XBOOLE_0:def 4;
end;
then
A21: (
rng (s
^\ k))
c= ((
dom f1)
/\
].x0, (x0
+ r).[) by
TARSKI:def 3;
then
A22: (
rng (s
^\ k))
c= ((
dom f2)
/\
].x0, (x0
+ r).[) by
A5,
XBOOLE_1: 1;
((
dom f2)
/\
].x0, (x0
+ r).[)
c=
].x0, (x0
+ r).[ by
XBOOLE_1: 17;
then (
rng (s
^\ k))
c=
].x0, (x0
+ r).[ by
A22,
XBOOLE_1: 1;
then
A23: (
rng (s
^\ k))
c= (
right_open_halfline x0) by
A14,
XBOOLE_1: 1;
A24: ((
dom f2)
/\
].x0, (x0
+ r).[)
c= (
dom f2) by
XBOOLE_1: 17;
then (
rng (s
^\ k))
c= (
dom f2) by
A22,
XBOOLE_1: 1;
then
A25: (
rng (s
^\ k))
c= ((
dom f2)
/\ (
right_open_halfline x0)) by
A23,
XBOOLE_1: 19;
then
A26: (
lim (f2
/* (s
^\ k)))
= (
lim_right (f2,x0)) by
A2,
A15,
A17,
Def8;
(
rng (s
^\ k))
c= (
rng s) by
VALUED_0: 21;
then
A27: (
rng (s
^\ k))
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A13,
XBOOLE_1: 1;
then
A28: (
lim (f1
/* (s
^\ k)))
= (
lim_right (f1,x0)) by
A1,
A15,
A17,
Def8;
A29: ((
dom f1)
/\
].x0, (x0
+ r).[)
c= (
dom f1) by
XBOOLE_1: 17;
A30:
now
let n;
A31: n
in
NAT by
ORDINAL1:def 12;
((s
^\ k)
. n)
in (
rng (s
^\ k)) by
VALUED_0: 28;
then (f1
. ((s
^\ k)
. n))
<= (f2
. ((s
^\ k)
. n)) by
A5,
A21;
then (f1
. ((s
^\ k)
. n))
<= ((f2
/* (s
^\ k))
. n) by
A22,
A24,
FUNCT_2: 108,
XBOOLE_1: 1,
A31;
hence ((f1
/* (s
^\ k))
. n)
<= ((f2
/* (s
^\ k))
. n) by
A21,
A29,
FUNCT_2: 108,
XBOOLE_1: 1,
A31;
end;
A32: (f2
/* (s
^\ k)) is
convergent by
A2,
A15,
A17,
A25;
(f1
/* (s
^\ k)) is
convergent by
A1,
A15,
A17,
A27;
hence thesis by
A28,
A32,
A26,
A30,
SEQ_2: 18;
end;
suppose
A33: ((
dom f2)
/\
].x0, (x0
+ r).[)
c= ((
dom f1)
/\
].x0, (x0
+ r).[) & for g st g
in ((
dom f2)
/\
].x0, (x0
+ r).[) holds (f1
. g)
<= (f2
. g);
defpred
X[
Nat,
Real] means x0
< $2 & $2
< (x0
+ (1
/ ($1
+ 1))) & $2
in (
dom f2);
A34:
now
let n be
Element of
NAT ;
0
< (1
/ (n
+ 1)) by
XREAL_1: 139;
then (x0
+
0 )
< (x0
+ (1
/ (n
+ 1))) by
XREAL_1: 8;
then
consider g such that
A35: g
< (x0
+ (1
/ (n
+ 1))) and
A36: x0
< g and
A37: g
in (
dom f2) by
A2;
reconsider g as
Element of
REAL by
XREAL_0:def 1;
take g;
thus
X[n, g] by
A35,
A36,
A37;
end;
consider s be
Real_Sequence such that
A38: for n be
Element of
NAT holds
X[n, (s
. n)] from
FUNCT_2:sch 3(
A34);
A39: for n be
Nat holds
X[n, (s
. n)]
proof
let n be
Nat;
n
in
NAT by
ORDINAL1:def 12;
hence thesis by
A38;
end;
A40: (
lim s)
= x0 by
A39,
Th6;
A41: (
rng s)
c= ((
dom f2)
/\ (
right_open_halfline x0)) by
A39,
Th6;
A42:
].x0, (x0
+ r).[
c= (
right_open_halfline x0) by
XXREAL_1: 247;
A43: s is
convergent by
A39,
Th6;
x0
< (x0
+ r) by
A3,
Lm1;
then
consider k such that
A44: for n st k
<= n holds (s
. n)
< (x0
+ r) by
A43,
A40,
Th2;
A45: (
lim (s
^\ k))
= x0 by
A43,
A40,
SEQ_4: 20;
A46:
now
let x be
object;
assume x
in (
rng (s
^\ k));
then
consider n be
Element of
NAT such that
A47: ((s
^\ k)
. n)
= x by
FUNCT_2: 113;
x0
< (s
. (n
+ k)) by
A39;
then
A48: x0
< ((s
^\ k)
. n) by
NAT_1:def 3;
(s
. (n
+ k))
in (
dom f2) by
A39;
then
A49: ((s
^\ k)
. n)
in (
dom f2) by
NAT_1:def 3;
(s
. (n
+ k))
< (x0
+ r) by
A44,
NAT_1: 12;
then ((s
^\ k)
. n)
< (x0
+ r) by
NAT_1:def 3;
then ((s
^\ k)
. n)
in { g2 : x0
< g2 & g2
< (x0
+ r) } by
A48;
then ((s
^\ k)
. n)
in
].x0, (x0
+ r).[ by
RCOMP_1:def 2;
hence x
in ((
dom f2)
/\
].x0, (x0
+ r).[) by
A47,
A49,
XBOOLE_0:def 4;
end;
then
A50: (
rng (s
^\ k))
c= ((
dom f2)
/\
].x0, (x0
+ r).[) by
TARSKI:def 3;
then
A51: (
rng (s
^\ k))
c= ((
dom f1)
/\
].x0, (x0
+ r).[) by
A33,
XBOOLE_1: 1;
((
dom f1)
/\
].x0, (x0
+ r).[)
c=
].x0, (x0
+ r).[ by
XBOOLE_1: 17;
then (
rng (s
^\ k))
c=
].x0, (x0
+ r).[ by
A51,
XBOOLE_1: 1;
then
A52: (
rng (s
^\ k))
c= (
right_open_halfline x0) by
A42,
XBOOLE_1: 1;
A53: ((
dom f1)
/\
].x0, (x0
+ r).[)
c= (
dom f1) by
XBOOLE_1: 17;
then (
rng (s
^\ k))
c= (
dom f1) by
A51,
XBOOLE_1: 1;
then
A54: (
rng (s
^\ k))
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A52,
XBOOLE_1: 19;
then
A55: (
lim (f1
/* (s
^\ k)))
= (
lim_right (f1,x0)) by
A1,
A43,
A45,
Def8;
(
rng (s
^\ k))
c= (
rng s) by
VALUED_0: 21;
then
A56: (
rng (s
^\ k))
c= ((
dom f2)
/\ (
right_open_halfline x0)) by
A41,
XBOOLE_1: 1;
then
A57: (
lim (f2
/* (s
^\ k)))
= (
lim_right (f2,x0)) by
A2,
A43,
A45,
Def8;
A58: ((
dom f2)
/\
].x0, (x0
+ r).[)
c= (
dom f2) by
XBOOLE_1: 17;
A59:
now
let n;
A60: n
in
NAT by
ORDINAL1:def 12;
((s
^\ k)
. n)
in (
rng (s
^\ k)) by
VALUED_0: 28;
then (f1
. ((s
^\ k)
. n))
<= (f2
. ((s
^\ k)
. n)) by
A33,
A46;
then (f1
. ((s
^\ k)
. n))
<= ((f2
/* (s
^\ k))
. n) by
A50,
A58,
FUNCT_2: 108,
XBOOLE_1: 1,
A60;
hence ((f1
/* (s
^\ k))
. n)
<= ((f2
/* (s
^\ k))
. n) by
A51,
A53,
FUNCT_2: 108,
XBOOLE_1: 1,
A60;
end;
A61: (f1
/* (s
^\ k)) is
convergent by
A1,
A43,
A45,
A54;
(f2
/* (s
^\ k)) is
convergent by
A2,
A43,
A45,
A56;
hence thesis by
A57,
A61,
A55,
A59,
SEQ_2: 18;
end;
end;
hence thesis;
end;
theorem ::
LIMFUNC2:69
(f
is_left_divergent_to+infty_in x0 or f
is_left_divergent_to-infty_in x0) & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f) & (f
. g)
<>
0 ) implies (f
^ )
is_left_convergent_in x0 & (
lim_left ((f
^ ),x0))
=
0
proof
assume
A1: f
is_left_divergent_to+infty_in x0 or f
is_left_divergent_to-infty_in x0;
A2:
now
(
dom (f
^ ))
= ((
dom f)
\ (f
"
{
0 })) by
RFUNCT_1:def 2;
then
A3: (
dom (f
^ ))
c= (
dom f) by
XBOOLE_1: 36;
let seq such that
A4: seq is
convergent and
A5: (
lim seq)
= x0 and
A6: (
rng seq)
c= ((
dom (f
^ ))
/\ (
left_open_halfline x0));
((
dom (f
^ ))
/\ (
left_open_halfline x0))
c= (
left_open_halfline x0) by
XBOOLE_1: 17;
then
A7: (
rng seq)
c= (
left_open_halfline x0) by
A6,
XBOOLE_1: 1;
A8: ((
dom (f
^ ))
/\ (
left_open_halfline x0))
c= (
dom (f
^ )) by
XBOOLE_1: 17;
then (
rng seq)
c= (
dom (f
^ )) by
A6,
XBOOLE_1: 1;
then (
rng seq)
c= (
dom f) by
A3,
XBOOLE_1: 1;
then
A9: (
rng seq)
c= ((
dom f)
/\ (
left_open_halfline x0)) by
A7,
XBOOLE_1: 19;
now
per cases by
A1;
suppose f
is_left_divergent_to+infty_in x0;
then
A10: (f
/* seq) is
divergent_to+infty by
A4,
A5,
A9;
then
A11: (
lim ((f
/* seq)
" ))
=
0 by
LIMFUNC1: 34;
((f
/* seq)
" ) is
convergent by
A10,
LIMFUNC1: 34;
hence ((f
^ )
/* seq) is
convergent & (
lim ((f
^ )
/* seq))
=
0 by
A6,
A8,
A11,
RFUNCT_2: 12,
XBOOLE_1: 1;
end;
suppose f
is_left_divergent_to-infty_in x0;
then
A12: (f
/* seq) is
divergent_to-infty by
A4,
A5,
A9;
then
A13: (
lim ((f
/* seq)
" ))
=
0 by
LIMFUNC1: 34;
((f
/* seq)
" ) is
convergent by
A12,
LIMFUNC1: 34;
hence ((f
^ )
/* seq) is
convergent & (
lim ((f
^ )
/* seq))
=
0 by
A6,
A8,
A13,
RFUNCT_2: 12,
XBOOLE_1: 1;
end;
end;
hence ((f
^ )
/* seq) is
convergent & (
lim ((f
^ )
/* seq))
=
0 ;
end;
assume
A14: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f) & (f
. g)
<>
0 ;
now
let r;
assume r
< x0;
then
consider g such that
A15: r
< g and
A16: g
< x0 and
A17: g
in (
dom f) and
A18: (f
. g)
<>
0 by
A14;
take g;
thus r
< g & g
< x0 by
A15,
A16;
not (f
. g)
in
{
0 } by
A18,
TARSKI:def 1;
then not g
in (f
"
{
0 }) by
FUNCT_1:def 7;
then g
in ((
dom f)
\ (f
"
{
0 })) by
A17,
XBOOLE_0:def 5;
hence g
in (
dom (f
^ )) by
RFUNCT_1:def 2;
end;
hence (f
^ )
is_left_convergent_in x0 by
A2;
hence thesis by
A2,
Def7;
end;
theorem ::
LIMFUNC2:70
(f
is_right_divergent_to+infty_in x0 or f
is_right_divergent_to-infty_in x0) & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f) & (f
. g)
<>
0 ) implies (f
^ )
is_right_convergent_in x0 & (
lim_right ((f
^ ),x0))
=
0
proof
assume
A1: f
is_right_divergent_to+infty_in x0 or f
is_right_divergent_to-infty_in x0;
A2:
now
(
dom (f
^ ))
= ((
dom f)
\ (f
"
{
0 })) by
RFUNCT_1:def 2;
then
A3: (
dom (f
^ ))
c= (
dom f) by
XBOOLE_1: 36;
let seq such that
A4: seq is
convergent and
A5: (
lim seq)
= x0 and
A6: (
rng seq)
c= ((
dom (f
^ ))
/\ (
right_open_halfline x0));
((
dom (f
^ ))
/\ (
right_open_halfline x0))
c= (
right_open_halfline x0) by
XBOOLE_1: 17;
then
A7: (
rng seq)
c= (
right_open_halfline x0) by
A6,
XBOOLE_1: 1;
A8: ((
dom (f
^ ))
/\ (
right_open_halfline x0))
c= (
dom (f
^ )) by
XBOOLE_1: 17;
then (
rng seq)
c= (
dom (f
^ )) by
A6,
XBOOLE_1: 1;
then (
rng seq)
c= (
dom f) by
A3,
XBOOLE_1: 1;
then
A9: (
rng seq)
c= ((
dom f)
/\ (
right_open_halfline x0)) by
A7,
XBOOLE_1: 19;
now
per cases by
A1;
suppose f
is_right_divergent_to+infty_in x0;
then
A10: (f
/* seq) is
divergent_to+infty by
A4,
A5,
A9;
then
A11: (
lim ((f
/* seq)
" ))
=
0 by
LIMFUNC1: 34;
((f
/* seq)
" ) is
convergent by
A10,
LIMFUNC1: 34;
hence ((f
^ )
/* seq) is
convergent & (
lim ((f
^ )
/* seq))
=
0 by
A6,
A8,
A11,
RFUNCT_2: 12,
XBOOLE_1: 1;
end;
suppose f
is_right_divergent_to-infty_in x0;
then
A12: (f
/* seq) is
divergent_to-infty by
A4,
A5,
A9;
then
A13: (
lim ((f
/* seq)
" ))
=
0 by
LIMFUNC1: 34;
((f
/* seq)
" ) is
convergent by
A12,
LIMFUNC1: 34;
hence ((f
^ )
/* seq) is
convergent & (
lim ((f
^ )
/* seq))
=
0 by
A6,
A8,
A13,
RFUNCT_2: 12,
XBOOLE_1: 1;
end;
end;
hence ((f
^ )
/* seq) is
convergent & (
lim ((f
^ )
/* seq))
=
0 ;
end;
assume
A14: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f) & (f
. g)
<>
0 ;
now
let r;
assume x0
< r;
then
consider g such that
A15: g
< r and
A16: x0
< g and
A17: g
in (
dom f) and
A18: (f
. g)
<>
0 by
A14;
take g;
thus g
< r & x0
< g by
A15,
A16;
not (f
. g)
in
{
0 } by
A18,
TARSKI:def 1;
then not g
in (f
"
{
0 }) by
FUNCT_1:def 7;
then g
in ((
dom f)
\ (f
"
{
0 })) by
A17,
XBOOLE_0:def 5;
hence g
in (
dom (f
^ )) by
RFUNCT_1:def 2;
end;
hence (f
^ )
is_right_convergent_in x0 by
A2;
hence thesis by
A2,
Def8;
end;
theorem ::
LIMFUNC2:71
f
is_left_convergent_in x0 & (
lim_left (f,x0))
=
0 & (ex r st
0
< r & for g st g
in ((
dom f)
/\
].(x0
- r), x0.[) holds
0
< (f
. g)) implies (f
^ )
is_left_divergent_to+infty_in x0
proof
assume that
A1: f
is_left_convergent_in x0 and
A2: (
lim_left (f,x0))
=
0 ;
given r such that
A3:
0
< r and
A4: for g st g
in ((
dom f)
/\
].(x0
- r), x0.[) holds
0
< (f
. g);
thus for r1 st r1
< x0 holds ex g1 st r1
< g1 & g1
< x0 & g1
in (
dom (f
^ ))
proof
let r1;
assume r1
< x0;
then
consider g1 such that
A5: r1
< g1 and
A6: g1
< x0 and g1
in (
dom f) by
A1;
now
per cases ;
suppose
A7: g1
<= (x0
- r);
(x0
- r)
< x0 by
A3,
Lm1;
then
consider g2 such that
A8: (x0
- r)
< g2 and
A9: g2
< x0 and
A10: g2
in (
dom f) by
A1;
take g2;
g1
< g2 by
A7,
A8,
XXREAL_0: 2;
hence r1
< g2 & g2
< x0 by
A5,
A9,
XXREAL_0: 2;
g2
in { r2 : (x0
- r)
< r2 & r2
< x0 } by
A8,
A9;
then g2
in
].(x0
- r), x0.[ by
RCOMP_1:def 2;
then g2
in ((
dom f)
/\
].(x0
- r), x0.[) by
A10,
XBOOLE_0:def 4;
then
0
<> (f
. g2) by
A4;
then not (f
. g2)
in
{
0 } by
TARSKI:def 1;
then not g2
in (f
"
{
0 }) by
FUNCT_1:def 7;
then g2
in ((
dom f)
\ (f
"
{
0 })) by
A10,
XBOOLE_0:def 5;
hence g2
in (
dom (f
^ )) by
RFUNCT_1:def 2;
end;
suppose
A11: (x0
- r)
<= g1;
consider g2 such that
A12: g1
< g2 and
A13: g2
< x0 and
A14: g2
in (
dom f) by
A1,
A6;
take g2;
thus r1
< g2 & g2
< x0 by
A5,
A12,
A13,
XXREAL_0: 2;
(x0
- r)
< g2 by
A11,
A12,
XXREAL_0: 2;
then g2
in { r2 : (x0
- r)
< r2 & r2
< x0 } by
A13;
then g2
in
].(x0
- r), x0.[ by
RCOMP_1:def 2;
then g2
in ((
dom f)
/\
].(x0
- r), x0.[) by
A14,
XBOOLE_0:def 4;
then
0
<> (f
. g2) by
A4;
then not (f
. g2)
in
{
0 } by
TARSKI:def 1;
then not g2
in (f
"
{
0 }) by
FUNCT_1:def 7;
then g2
in ((
dom f)
\ (f
"
{
0 })) by
A14,
XBOOLE_0:def 5;
hence g2
in (
dom (f
^ )) by
RFUNCT_1:def 2;
end;
end;
hence thesis;
end;
let s be
Real_Sequence such that
A15: s is
convergent and
A16: (
lim s)
= x0 and
A17: (
rng s)
c= ((
dom (f
^ ))
/\ (
left_open_halfline x0));
(x0
- r)
< x0 by
A3,
Lm1;
then
consider k such that
A18: for n st k
<= n holds (x0
- r)
< (s
. n) by
A15,
A16,
Th1;
A19: (
lim (s
^\ k))
= x0 by
A15,
A16,
SEQ_4: 20;
(
dom (f
^ ))
= ((
dom f)
\ (f
"
{
0 })) by
RFUNCT_1:def 2;
then
A20: (
dom (f
^ ))
c= (
dom f) by
XBOOLE_1: 36;
A21: (
rng (s
^\ k))
c= (
rng s) by
VALUED_0: 21;
((
dom (f
^ ))
/\ (
left_open_halfline x0))
c= (
left_open_halfline x0) by
XBOOLE_1: 17;
then (
rng s)
c= (
left_open_halfline x0) by
A17,
XBOOLE_1: 1;
then
A22: (
rng (s
^\ k))
c= (
left_open_halfline x0) by
A21,
XBOOLE_1: 1;
A23: ((
dom (f
^ ))
/\ (
left_open_halfline x0))
c= (
dom (f
^ )) by
XBOOLE_1: 17;
then
A24: (
rng s)
c= (
dom (f
^ )) by
A17,
XBOOLE_1: 1;
then
A25: (
rng s)
c= (
dom f) by
A20,
XBOOLE_1: 1;
then
A26: (
rng (s
^\ k))
c= (
dom f) by
A21,
XBOOLE_1: 1;
then
A27: (
rng (s
^\ k))
c= ((
dom f)
/\ (
left_open_halfline x0)) by
A22,
XBOOLE_1: 19;
then
A28: (
lim (f
/* (s
^\ k)))
=
0 by
A1,
A2,
A15,
A19,
Def7;
now
let n;
A29: n
in
NAT by
ORDINAL1:def 12;
(x0
- r)
< (s
. (n
+ k)) by
A18,
NAT_1: 12;
then
A30: (x0
- r)
< ((s
^\ k)
. n) by
NAT_1:def 3;
A31: ((s
^\ k)
. n)
in (
rng (s
^\ k)) by
VALUED_0: 28;
then ((s
^\ k)
. n)
in (
left_open_halfline x0) by
A22;
then ((s
^\ k)
. n)
in { g1 : g1
< x0 } by
XXREAL_1: 229;
then ex g1 st g1
= ((s
^\ k)
. n) & g1
< x0;
then ((s
^\ k)
. n)
in { g2 : (x0
- r)
< g2 & g2
< x0 } by
A30;
then ((s
^\ k)
. n)
in
].(x0
- r), x0.[ by
RCOMP_1:def 2;
then ((s
^\ k)
. n)
in ((
dom f)
/\
].(x0
- r), x0.[) by
A26,
A31,
XBOOLE_0:def 4;
then
0
< (f
. ((s
^\ k)
. n)) by
A4;
hence
0
< ((f
/* (s
^\ k))
. n) by
A25,
A21,
FUNCT_2: 108,
XBOOLE_1: 1,
A29;
end;
then
A32: for n holds
0
<= n implies
0
< ((f
/* (s
^\ k))
. n);
(f
/* (s
^\ k)) is
convergent by
A1,
A15,
A19,
A27;
then
A33: ((f
/* (s
^\ k))
" ) is
divergent_to+infty by
A28,
A32,
LIMFUNC1: 35;
((f
/* (s
^\ k))
" )
= (((f
/* s)
^\ k)
" ) by
A24,
A20,
VALUED_0: 27,
XBOOLE_1: 1
.= (((f
/* s)
" )
^\ k) by
SEQM_3: 18
.= (((f
^ )
/* s)
^\ k) by
A17,
A23,
RFUNCT_2: 12,
XBOOLE_1: 1;
hence thesis by
A33,
LIMFUNC1: 7;
end;
theorem ::
LIMFUNC2:72
f
is_left_convergent_in x0 & (
lim_left (f,x0))
=
0 & (ex r st
0
< r & for g st g
in ((
dom f)
/\
].(x0
- r), x0.[) holds (f
. g)
<
0 ) implies (f
^ )
is_left_divergent_to-infty_in x0
proof
assume that
A1: f
is_left_convergent_in x0 and
A2: (
lim_left (f,x0))
=
0 ;
given r such that
A3:
0
< r and
A4: for g st g
in ((
dom f)
/\
].(x0
- r), x0.[) holds (f
. g)
<
0 ;
thus for r1 st r1
< x0 holds ex g1 st r1
< g1 & g1
< x0 & g1
in (
dom (f
^ ))
proof
let r1;
assume r1
< x0;
then
consider g1 such that
A5: r1
< g1 and
A6: g1
< x0 and g1
in (
dom f) by
A1;
now
per cases ;
suppose
A7: g1
<= (x0
- r);
(x0
- r)
< x0 by
A3,
Lm1;
then
consider g2 such that
A8: (x0
- r)
< g2 and
A9: g2
< x0 and
A10: g2
in (
dom f) by
A1;
take g2;
g1
< g2 by
A7,
A8,
XXREAL_0: 2;
hence r1
< g2 & g2
< x0 by
A5,
A9,
XXREAL_0: 2;
g2
in { r2 : (x0
- r)
< r2 & r2
< x0 } by
A8,
A9;
then g2
in
].(x0
- r), x0.[ by
RCOMP_1:def 2;
then g2
in ((
dom f)
/\
].(x0
- r), x0.[) by
A10,
XBOOLE_0:def 4;
then not (f
. g2)
in
{
0 } by
A4;
then not g2
in (f
"
{
0 }) by
FUNCT_1:def 7;
then g2
in ((
dom f)
\ (f
"
{
0 })) by
A10,
XBOOLE_0:def 5;
hence g2
in (
dom (f
^ )) by
RFUNCT_1:def 2;
end;
suppose
A11: (x0
- r)
<= g1;
consider g2 such that
A12: g1
< g2 and
A13: g2
< x0 and
A14: g2
in (
dom f) by
A1,
A6;
take g2;
thus r1
< g2 & g2
< x0 by
A5,
A12,
A13,
XXREAL_0: 2;
(x0
- r)
< g2 by
A11,
A12,
XXREAL_0: 2;
then g2
in { r2 : (x0
- r)
< r2 & r2
< x0 } by
A13;
then g2
in
].(x0
- r), x0.[ by
RCOMP_1:def 2;
then g2
in ((
dom f)
/\
].(x0
- r), x0.[) by
A14,
XBOOLE_0:def 4;
then not (f
. g2)
in
{
0 } by
A4;
then not g2
in (f
"
{
0 }) by
FUNCT_1:def 7;
then g2
in ((
dom f)
\ (f
"
{
0 })) by
A14,
XBOOLE_0:def 5;
hence g2
in (
dom (f
^ )) by
RFUNCT_1:def 2;
end;
end;
hence thesis;
end;
let s be
Real_Sequence such that
A15: s is
convergent and
A16: (
lim s)
= x0 and
A17: (
rng s)
c= ((
dom (f
^ ))
/\ (
left_open_halfline x0));
(x0
- r)
< x0 by
A3,
Lm1;
then
consider k such that
A18: for n st k
<= n holds (x0
- r)
< (s
. n) by
A15,
A16,
Th1;
A19: (
lim (s
^\ k))
= x0 by
A15,
A16,
SEQ_4: 20;
(
dom (f
^ ))
= ((
dom f)
\ (f
"
{
0 })) by
RFUNCT_1:def 2;
then
A20: (
dom (f
^ ))
c= (
dom f) by
XBOOLE_1: 36;
A21: (
rng (s
^\ k))
c= (
rng s) by
VALUED_0: 21;
((
dom (f
^ ))
/\ (
left_open_halfline x0))
c= (
left_open_halfline x0) by
XBOOLE_1: 17;
then (
rng s)
c= (
left_open_halfline x0) by
A17,
XBOOLE_1: 1;
then
A22: (
rng (s
^\ k))
c= (
left_open_halfline x0) by
A21,
XBOOLE_1: 1;
A23: ((
dom (f
^ ))
/\ (
left_open_halfline x0))
c= (
dom (f
^ )) by
XBOOLE_1: 17;
then
A24: (
rng s)
c= (
dom (f
^ )) by
A17,
XBOOLE_1: 1;
then
A25: (
rng s)
c= (
dom f) by
A20,
XBOOLE_1: 1;
then
A26: (
rng (s
^\ k))
c= (
dom f) by
A21,
XBOOLE_1: 1;
then
A27: (
rng (s
^\ k))
c= ((
dom f)
/\ (
left_open_halfline x0)) by
A22,
XBOOLE_1: 19;
then
A28: (
lim (f
/* (s
^\ k)))
=
0 by
A1,
A2,
A15,
A19,
Def7;
now
let n;
A29: n
in
NAT by
ORDINAL1:def 12;
(x0
- r)
< (s
. (n
+ k)) by
A18,
NAT_1: 12;
then
A30: (x0
- r)
< ((s
^\ k)
. n) by
NAT_1:def 3;
A31: ((s
^\ k)
. n)
in (
rng (s
^\ k)) by
VALUED_0: 28;
then ((s
^\ k)
. n)
in (
left_open_halfline x0) by
A22;
then ((s
^\ k)
. n)
in { g1 : g1
< x0 } by
XXREAL_1: 229;
then ex g1 st g1
= ((s
^\ k)
. n) & g1
< x0;
then ((s
^\ k)
. n)
in { g2 : (x0
- r)
< g2 & g2
< x0 } by
A30;
then ((s
^\ k)
. n)
in
].(x0
- r), x0.[ by
RCOMP_1:def 2;
then ((s
^\ k)
. n)
in ((
dom f)
/\
].(x0
- r), x0.[) by
A26,
A31,
XBOOLE_0:def 4;
then (f
. ((s
^\ k)
. n))
<
0 by
A4;
hence ((f
/* (s
^\ k))
. n)
<
0 by
A25,
A21,
FUNCT_2: 108,
XBOOLE_1: 1,
A29;
end;
then
A32: for n holds
0
<= n implies ((f
/* (s
^\ k))
. n)
<
0 ;
(f
/* (s
^\ k)) is
convergent by
A1,
A15,
A19,
A27;
then
A33: ((f
/* (s
^\ k))
" ) is
divergent_to-infty by
A28,
A32,
LIMFUNC1: 36;
((f
/* (s
^\ k))
" )
= (((f
/* s)
^\ k)
" ) by
A24,
A20,
VALUED_0: 27,
XBOOLE_1: 1
.= (((f
/* s)
" )
^\ k) by
SEQM_3: 18
.= (((f
^ )
/* s)
^\ k) by
A17,
A23,
RFUNCT_2: 12,
XBOOLE_1: 1;
hence thesis by
A33,
LIMFUNC1: 7;
end;
theorem ::
LIMFUNC2:73
f
is_right_convergent_in x0 & (
lim_right (f,x0))
=
0 & (ex r st
0
< r & for g st g
in ((
dom f)
/\
].x0, (x0
+ r).[) holds
0
< (f
. g)) implies (f
^ )
is_right_divergent_to+infty_in x0
proof
assume that
A1: f
is_right_convergent_in x0 and
A2: (
lim_right (f,x0))
=
0 ;
given r such that
A3:
0
< r and
A4: for g st g
in ((
dom f)
/\
].x0, (x0
+ r).[) holds
0
< (f
. g);
thus for r1 st x0
< r1 holds ex g1 st g1
< r1 & x0
< g1 & g1
in (
dom (f
^ ))
proof
let r1;
assume x0
< r1;
then
consider g1 such that
A5: g1
< r1 and
A6: x0
< g1 and g1
in (
dom f) by
A1;
now
per cases ;
suppose
A7: g1
<= (x0
+ r);
consider g2 such that
A8: g2
< g1 and
A9: x0
< g2 and
A10: g2
in (
dom f) by
A1,
A6;
take g2;
thus g2
< r1 & x0
< g2 by
A5,
A8,
A9,
XXREAL_0: 2;
g2
< (x0
+ r) by
A7,
A8,
XXREAL_0: 2;
then g2
in { r2 : x0
< r2 & r2
< (x0
+ r) } by
A9;
then g2
in
].x0, (x0
+ r).[ by
RCOMP_1:def 2;
then g2
in ((
dom f)
/\
].x0, (x0
+ r).[) by
A10,
XBOOLE_0:def 4;
then
0
<> (f
. g2) by
A4;
then not (f
. g2)
in
{
0 } by
TARSKI:def 1;
then not g2
in (f
"
{
0 }) by
FUNCT_1:def 7;
then g2
in ((
dom f)
\ (f
"
{
0 })) by
A10,
XBOOLE_0:def 5;
hence g2
in (
dom (f
^ )) by
RFUNCT_1:def 2;
end;
suppose
A11: (x0
+ r)
<= g1;
x0
< (x0
+ r) by
A3,
Lm1;
then
consider g2 such that
A12: g2
< (x0
+ r) and
A13: x0
< g2 and
A14: g2
in (
dom f) by
A1;
take g2;
g2
< g1 by
A11,
A12,
XXREAL_0: 2;
hence g2
< r1 & x0
< g2 by
A5,
A13,
XXREAL_0: 2;
g2
in { r2 : x0
< r2 & r2
< (x0
+ r) } by
A12,
A13;
then g2
in
].x0, (x0
+ r).[ by
RCOMP_1:def 2;
then g2
in ((
dom f)
/\
].x0, (x0
+ r).[) by
A14,
XBOOLE_0:def 4;
then
0
<> (f
. g2) by
A4;
then not (f
. g2)
in
{
0 } by
TARSKI:def 1;
then not g2
in (f
"
{
0 }) by
FUNCT_1:def 7;
then g2
in ((
dom f)
\ (f
"
{
0 })) by
A14,
XBOOLE_0:def 5;
hence g2
in (
dom (f
^ )) by
RFUNCT_1:def 2;
end;
end;
hence thesis;
end;
let s be
Real_Sequence such that
A15: s is
convergent and
A16: (
lim s)
= x0 and
A17: (
rng s)
c= ((
dom (f
^ ))
/\ (
right_open_halfline x0));
x0
< (x0
+ r) by
A3,
Lm1;
then
consider k such that
A18: for n st k
<= n holds (s
. n)
< (x0
+ r) by
A15,
A16,
Th2;
A19: (
lim (s
^\ k))
= x0 by
A15,
A16,
SEQ_4: 20;
(
dom (f
^ ))
= ((
dom f)
\ (f
"
{
0 })) by
RFUNCT_1:def 2;
then
A20: (
dom (f
^ ))
c= (
dom f) by
XBOOLE_1: 36;
A21: (
rng (s
^\ k))
c= (
rng s) by
VALUED_0: 21;
((
dom (f
^ ))
/\ (
right_open_halfline x0))
c= (
right_open_halfline x0) by
XBOOLE_1: 17;
then (
rng s)
c= (
right_open_halfline x0) by
A17,
XBOOLE_1: 1;
then
A22: (
rng (s
^\ k))
c= (
right_open_halfline x0) by
A21,
XBOOLE_1: 1;
A23: ((
dom (f
^ ))
/\ (
right_open_halfline x0))
c= (
dom (f
^ )) by
XBOOLE_1: 17;
then
A24: (
rng s)
c= (
dom (f
^ )) by
A17,
XBOOLE_1: 1;
then
A25: (
rng s)
c= (
dom f) by
A20,
XBOOLE_1: 1;
then
A26: (
rng (s
^\ k))
c= (
dom f) by
A21,
XBOOLE_1: 1;
then
A27: (
rng (s
^\ k))
c= ((
dom f)
/\ (
right_open_halfline x0)) by
A22,
XBOOLE_1: 19;
then
A28: (
lim (f
/* (s
^\ k)))
=
0 by
A1,
A2,
A15,
A19,
Def8;
now
let n;
A29: n
in
NAT by
ORDINAL1:def 12;
(s
. (n
+ k))
< (x0
+ r) by
A18,
NAT_1: 12;
then
A30: ((s
^\ k)
. n)
< (x0
+ r) by
NAT_1:def 3;
A31: ((s
^\ k)
. n)
in (
rng (s
^\ k)) by
VALUED_0: 28;
then ((s
^\ k)
. n)
in (
right_open_halfline x0) by
A22;
then ((s
^\ k)
. n)
in { g1 : x0
< g1 } by
XXREAL_1: 230;
then ex g1 st g1
= ((s
^\ k)
. n) & x0
< g1;
then ((s
^\ k)
. n)
in { g2 : x0
< g2 & g2
< (x0
+ r) } by
A30;
then ((s
^\ k)
. n)
in
].x0, (x0
+ r).[ by
RCOMP_1:def 2;
then ((s
^\ k)
. n)
in ((
dom f)
/\
].x0, (x0
+ r).[) by
A26,
A31,
XBOOLE_0:def 4;
then
0
< (f
. ((s
^\ k)
. n)) by
A4;
hence
0
< ((f
/* (s
^\ k))
. n) by
A25,
A21,
FUNCT_2: 108,
XBOOLE_1: 1,
A29;
end;
then
A32: for n holds
0
<= n implies
0
< ((f
/* (s
^\ k))
. n);
(f
/* (s
^\ k)) is
convergent by
A1,
A15,
A19,
A27;
then
A33: ((f
/* (s
^\ k))
" ) is
divergent_to+infty by
A28,
A32,
LIMFUNC1: 35;
((f
/* (s
^\ k))
" )
= (((f
/* s)
^\ k)
" ) by
A24,
A20,
VALUED_0: 27,
XBOOLE_1: 1
.= (((f
/* s)
" )
^\ k) by
SEQM_3: 18
.= (((f
^ )
/* s)
^\ k) by
A17,
A23,
RFUNCT_2: 12,
XBOOLE_1: 1;
hence thesis by
A33,
LIMFUNC1: 7;
end;
theorem ::
LIMFUNC2:74
f
is_right_convergent_in x0 & (
lim_right (f,x0))
=
0 & (ex r st
0
< r & for g st g
in ((
dom f)
/\
].x0, (x0
+ r).[) holds (f
. g)
<
0 ) implies (f
^ )
is_right_divergent_to-infty_in x0
proof
assume that
A1: f
is_right_convergent_in x0 and
A2: (
lim_right (f,x0))
=
0 ;
given r such that
A3:
0
< r and
A4: for g st g
in ((
dom f)
/\
].x0, (x0
+ r).[) holds (f
. g)
<
0 ;
thus for r1 st x0
< r1 holds ex g1 st g1
< r1 & x0
< g1 & g1
in (
dom (f
^ ))
proof
let r1;
assume x0
< r1;
then
consider g1 such that
A5: g1
< r1 and
A6: x0
< g1 and g1
in (
dom f) by
A1;
now
per cases ;
suppose
A7: g1
<= (x0
+ r);
consider g2 such that
A8: g2
< g1 and
A9: x0
< g2 and
A10: g2
in (
dom f) by
A1,
A6;
take g2;
thus g2
< r1 & x0
< g2 by
A5,
A8,
A9,
XXREAL_0: 2;
g2
< (x0
+ r) by
A7,
A8,
XXREAL_0: 2;
then g2
in { r2 : x0
< r2 & r2
< (x0
+ r) } by
A9;
then g2
in
].x0, (x0
+ r).[ by
RCOMP_1:def 2;
then g2
in ((
dom f)
/\
].x0, (x0
+ r).[) by
A10,
XBOOLE_0:def 4;
then not (f
. g2)
in
{
0 } by
A4;
then not g2
in (f
"
{
0 }) by
FUNCT_1:def 7;
then g2
in ((
dom f)
\ (f
"
{
0 })) by
A10,
XBOOLE_0:def 5;
hence g2
in (
dom (f
^ )) by
RFUNCT_1:def 2;
end;
suppose
A11: (x0
+ r)
<= g1;
x0
< (x0
+ r) by
A3,
Lm1;
then
consider g2 such that
A12: g2
< (x0
+ r) and
A13: x0
< g2 and
A14: g2
in (
dom f) by
A1;
take g2;
g2
< g1 by
A11,
A12,
XXREAL_0: 2;
hence g2
< r1 & x0
< g2 by
A5,
A13,
XXREAL_0: 2;
g2
in { r2 : x0
< r2 & r2
< (x0
+ r) } by
A12,
A13;
then g2
in
].x0, (x0
+ r).[ by
RCOMP_1:def 2;
then g2
in ((
dom f)
/\
].x0, (x0
+ r).[) by
A14,
XBOOLE_0:def 4;
then not (f
. g2)
in
{
0 } by
A4;
then not g2
in (f
"
{
0 }) by
FUNCT_1:def 7;
then g2
in ((
dom f)
\ (f
"
{
0 })) by
A14,
XBOOLE_0:def 5;
hence g2
in (
dom (f
^ )) by
RFUNCT_1:def 2;
end;
end;
hence thesis;
end;
let s be
Real_Sequence such that
A15: s is
convergent and
A16: (
lim s)
= x0 and
A17: (
rng s)
c= ((
dom (f
^ ))
/\ (
right_open_halfline x0));
x0
< (x0
+ r) by
A3,
Lm1;
then
consider k such that
A18: for n st k
<= n holds (s
. n)
< (x0
+ r) by
A15,
A16,
Th2;
A19: (
lim (s
^\ k))
= x0 by
A15,
A16,
SEQ_4: 20;
(
dom (f
^ ))
= ((
dom f)
\ (f
"
{
0 })) by
RFUNCT_1:def 2;
then
A20: (
dom (f
^ ))
c= (
dom f) by
XBOOLE_1: 36;
A21: (
rng (s
^\ k))
c= (
rng s) by
VALUED_0: 21;
((
dom (f
^ ))
/\ (
right_open_halfline x0))
c= (
right_open_halfline x0) by
XBOOLE_1: 17;
then (
rng s)
c= (
right_open_halfline x0) by
A17,
XBOOLE_1: 1;
then
A22: (
rng (s
^\ k))
c= (
right_open_halfline x0) by
A21,
XBOOLE_1: 1;
A23: ((
dom (f
^ ))
/\ (
right_open_halfline x0))
c= (
dom (f
^ )) by
XBOOLE_1: 17;
then
A24: (
rng s)
c= (
dom (f
^ )) by
A17,
XBOOLE_1: 1;
then
A25: (
rng s)
c= (
dom f) by
A20,
XBOOLE_1: 1;
then
A26: (
rng (s
^\ k))
c= (
dom f) by
A21,
XBOOLE_1: 1;
then
A27: (
rng (s
^\ k))
c= ((
dom f)
/\ (
right_open_halfline x0)) by
A22,
XBOOLE_1: 19;
then
A28: (
lim (f
/* (s
^\ k)))
=
0 by
A1,
A2,
A15,
A19,
Def8;
now
let n;
A29: n
in
NAT by
ORDINAL1:def 12;
(s
. (n
+ k))
< (x0
+ r) by
A18,
NAT_1: 12;
then
A30: ((s
^\ k)
. n)
< (x0
+ r) by
NAT_1:def 3;
A31: ((s
^\ k)
. n)
in (
rng (s
^\ k)) by
VALUED_0: 28;
then ((s
^\ k)
. n)
in (
right_open_halfline x0) by
A22;
then ((s
^\ k)
. n)
in { g1 : x0
< g1 } by
XXREAL_1: 230;
then ex g1 st g1
= ((s
^\ k)
. n) & x0
< g1;
then ((s
^\ k)
. n)
in { g2 : x0
< g2 & g2
< (x0
+ r) } by
A30;
then ((s
^\ k)
. n)
in
].x0, (x0
+ r).[ by
RCOMP_1:def 2;
then ((s
^\ k)
. n)
in ((
dom f)
/\
].x0, (x0
+ r).[) by
A26,
A31,
XBOOLE_0:def 4;
then (f
. ((s
^\ k)
. n))
<
0 by
A4;
hence ((f
/* (s
^\ k))
. n)
<
0 by
A25,
A21,
FUNCT_2: 108,
XBOOLE_1: 1,
A29;
end;
then
A32: for n holds
0
<= n implies ((f
/* (s
^\ k))
. n)
<
0 ;
(f
/* (s
^\ k)) is
convergent by
A1,
A15,
A19,
A27;
then
A33: ((f
/* (s
^\ k))
" ) is
divergent_to-infty by
A28,
A32,
LIMFUNC1: 36;
((f
/* (s
^\ k))
" )
= (((f
/* s)
^\ k)
" ) by
A24,
A20,
VALUED_0: 27,
XBOOLE_1: 1
.= (((f
/* s)
" )
^\ k) by
SEQM_3: 18
.= (((f
^ )
/* s)
^\ k) by
A17,
A23,
RFUNCT_2: 12,
XBOOLE_1: 1;
hence thesis by
A33,
LIMFUNC1: 7;
end;
theorem ::
LIMFUNC2:75
f
is_left_convergent_in x0 & (
lim_left (f,x0))
=
0 & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f) & (f
. g)
<>
0 ) & (ex r st
0
< r & for g st g
in ((
dom f)
/\
].(x0
- r), x0.[) holds
0
<= (f
. g)) implies (f
^ )
is_left_divergent_to+infty_in x0
proof
assume that
A1: f
is_left_convergent_in x0 and
A2: (
lim_left (f,x0))
=
0 and
A3: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f) & (f
. g)
<>
0 ;
given r such that
A4:
0
< r and
A5: for g st g
in ((
dom f)
/\
].(x0
- r), x0.[) holds
0
<= (f
. g);
thus for r1 st r1
< x0 holds ex g1 st r1
< g1 & g1
< x0 & g1
in (
dom (f
^ ))
proof
let r1;
assume r1
< x0;
then
consider g1 such that
A6: r1
< g1 and
A7: g1
< x0 and
A8: g1
in (
dom f) and
A9: (f
. g1)
<>
0 by
A3;
take g1;
thus r1
< g1 & g1
< x0 by
A6,
A7;
not (f
. g1)
in
{
0 } by
A9,
TARSKI:def 1;
then not g1
in (f
"
{
0 }) by
FUNCT_1:def 7;
then g1
in ((
dom f)
\ (f
"
{
0 })) by
A8,
XBOOLE_0:def 5;
hence thesis by
RFUNCT_1:def 2;
end;
let s be
Real_Sequence such that
A10: s is
convergent and
A11: (
lim s)
= x0 and
A12: (
rng s)
c= ((
dom (f
^ ))
/\ (
left_open_halfline x0));
(x0
- r)
< x0 by
A4,
Lm1;
then
consider k such that
A13: for n st k
<= n holds (x0
- r)
< (s
. n) by
A10,
A11,
Th1;
A14: (
lim (s
^\ k))
= x0 by
A10,
A11,
SEQ_4: 20;
A15: ((
dom (f
^ ))
/\ (
left_open_halfline x0))
c= (
dom (f
^ )) by
XBOOLE_1: 17;
then
A16: (
rng s)
c= (
dom (f
^ )) by
A12,
XBOOLE_1: 1;
A17: (
rng (s
^\ k))
c= (
rng s) by
VALUED_0: 21;
(
dom (f
^ ))
= ((
dom f)
\ (f
"
{
0 })) by
RFUNCT_1:def 2;
then
A18: (
dom (f
^ ))
c= (
dom f) by
XBOOLE_1: 36;
then
A19: (
rng s)
c= (
dom f) by
A16,
XBOOLE_1: 1;
then
A20: (
rng (s
^\ k))
c= (
dom f) by
A17,
XBOOLE_1: 1;
((
dom (f
^ ))
/\ (
left_open_halfline x0))
c= (
left_open_halfline x0) by
XBOOLE_1: 17;
then (
rng s)
c= (
left_open_halfline x0) by
A12,
XBOOLE_1: 1;
then
A21: (
rng (s
^\ k))
c= (
left_open_halfline x0) by
A17,
XBOOLE_1: 1;
then
A22: (
rng (s
^\ k))
c= ((
dom f)
/\ (
left_open_halfline x0)) by
A20,
XBOOLE_1: 19;
then
A23: (
lim (f
/* (s
^\ k)))
=
0 by
A1,
A2,
A10,
A14,
Def7;
A24: (f
/* (s
^\ k)) is
non-zero by
A16,
A17,
RFUNCT_2: 11,
XBOOLE_1: 1;
now
let n;
A25: n
in
NAT by
ORDINAL1:def 12;
(x0
- r)
< (s
. (n
+ k)) by
A13,
NAT_1: 12;
then
A26: (x0
- r)
< ((s
^\ k)
. n) by
NAT_1:def 3;
A27: ((s
^\ k)
. n)
in (
rng (s
^\ k)) by
VALUED_0: 28;
then ((s
^\ k)
. n)
in (
left_open_halfline x0) by
A21;
then ((s
^\ k)
. n)
in { g1 : g1
< x0 } by
XXREAL_1: 229;
then ex g1 st g1
= ((s
^\ k)
. n) & g1
< x0;
then ((s
^\ k)
. n)
in { g2 : (x0
- r)
< g2 & g2
< x0 } by
A26;
then ((s
^\ k)
. n)
in
].(x0
- r), x0.[ by
RCOMP_1:def 2;
then ((s
^\ k)
. n)
in ((
dom f)
/\
].(x0
- r), x0.[) by
A20,
A27,
XBOOLE_0:def 4;
then
A28:
0
<= (f
. ((s
^\ k)
. n)) by
A5;
((f
/* (s
^\ k))
. n)
<>
0 by
A24,
SEQ_1: 5;
hence
0
< ((f
/* (s
^\ k))
. n) by
A19,
A17,
A28,
FUNCT_2: 108,
XBOOLE_1: 1,
A25;
end;
then
A29: for n holds
0
<= n implies
0
< ((f
/* (s
^\ k))
. n);
(f
/* (s
^\ k)) is
convergent by
A1,
A10,
A14,
A22;
then
A30: ((f
/* (s
^\ k))
" ) is
divergent_to+infty by
A23,
A29,
LIMFUNC1: 35;
((f
/* (s
^\ k))
" )
= (((f
/* s)
^\ k)
" ) by
A16,
A18,
VALUED_0: 27,
XBOOLE_1: 1
.= (((f
/* s)
" )
^\ k) by
SEQM_3: 18
.= (((f
^ )
/* s)
^\ k) by
A12,
A15,
RFUNCT_2: 12,
XBOOLE_1: 1;
hence thesis by
A30,
LIMFUNC1: 7;
end;
theorem ::
LIMFUNC2:76
f
is_left_convergent_in x0 & (
lim_left (f,x0))
=
0 & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f) & (f
. g)
<>
0 ) & (ex r st
0
< r & for g st g
in ((
dom f)
/\
].(x0
- r), x0.[) holds (f
. g)
<=
0 ) implies (f
^ )
is_left_divergent_to-infty_in x0
proof
assume that
A1: f
is_left_convergent_in x0 and
A2: (
lim_left (f,x0))
=
0 and
A3: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f) & (f
. g)
<>
0 ;
given r such that
A4:
0
< r and
A5: for g st g
in ((
dom f)
/\
].(x0
- r), x0.[) holds (f
. g)
<=
0 ;
thus for r1 st r1
< x0 holds ex g1 st r1
< g1 & g1
< x0 & g1
in (
dom (f
^ ))
proof
let r1;
assume r1
< x0;
then
consider g1 such that
A6: r1
< g1 and
A7: g1
< x0 and
A8: g1
in (
dom f) and
A9: (f
. g1)
<>
0 by
A3;
take g1;
thus r1
< g1 & g1
< x0 by
A6,
A7;
not (f
. g1)
in
{
0 } by
A9,
TARSKI:def 1;
then not g1
in (f
"
{
0 }) by
FUNCT_1:def 7;
then g1
in ((
dom f)
\ (f
"
{
0 })) by
A8,
XBOOLE_0:def 5;
hence thesis by
RFUNCT_1:def 2;
end;
let s be
Real_Sequence such that
A10: s is
convergent and
A11: (
lim s)
= x0 and
A12: (
rng s)
c= ((
dom (f
^ ))
/\ (
left_open_halfline x0));
(x0
- r)
< x0 by
A4,
Lm1;
then
consider k such that
A13: for n st k
<= n holds (x0
- r)
< (s
. n) by
A10,
A11,
Th1;
A14: (
lim (s
^\ k))
= x0 by
A10,
A11,
SEQ_4: 20;
A15: ((
dom (f
^ ))
/\ (
left_open_halfline x0))
c= (
dom (f
^ )) by
XBOOLE_1: 17;
then
A16: (
rng s)
c= (
dom (f
^ )) by
A12,
XBOOLE_1: 1;
A17: (
rng (s
^\ k))
c= (
rng s) by
VALUED_0: 21;
(
dom (f
^ ))
= ((
dom f)
\ (f
"
{
0 })) by
RFUNCT_1:def 2;
then
A18: (
dom (f
^ ))
c= (
dom f) by
XBOOLE_1: 36;
then
A19: (
rng s)
c= (
dom f) by
A16,
XBOOLE_1: 1;
then
A20: (
rng (s
^\ k))
c= (
dom f) by
A17,
XBOOLE_1: 1;
((
dom (f
^ ))
/\ (
left_open_halfline x0))
c= (
left_open_halfline x0) by
XBOOLE_1: 17;
then (
rng s)
c= (
left_open_halfline x0) by
A12,
XBOOLE_1: 1;
then
A21: (
rng (s
^\ k))
c= (
left_open_halfline x0) by
A17,
XBOOLE_1: 1;
then
A22: (
rng (s
^\ k))
c= ((
dom f)
/\ (
left_open_halfline x0)) by
A20,
XBOOLE_1: 19;
then
A23: (
lim (f
/* (s
^\ k)))
=
0 by
A1,
A2,
A10,
A14,
Def7;
A24: (f
/* (s
^\ k)) is
non-zero by
A16,
A17,
RFUNCT_2: 11,
XBOOLE_1: 1;
now
let n;
A25: n
in
NAT by
ORDINAL1:def 12;
(x0
- r)
< (s
. (n
+ k)) by
A13,
NAT_1: 12;
then
A26: (x0
- r)
< ((s
^\ k)
. n) by
NAT_1:def 3;
A27: ((s
^\ k)
. n)
in (
rng (s
^\ k)) by
VALUED_0: 28;
then ((s
^\ k)
. n)
in (
left_open_halfline x0) by
A21;
then ((s
^\ k)
. n)
in { g1 : g1
< x0 } by
XXREAL_1: 229;
then ex g1 st g1
= ((s
^\ k)
. n) & g1
< x0;
then ((s
^\ k)
. n)
in { g2 : (x0
- r)
< g2 & g2
< x0 } by
A26;
then ((s
^\ k)
. n)
in
].(x0
- r), x0.[ by
RCOMP_1:def 2;
then ((s
^\ k)
. n)
in ((
dom f)
/\
].(x0
- r), x0.[) by
A20,
A27,
XBOOLE_0:def 4;
then
A28: (f
. ((s
^\ k)
. n))
<=
0 by
A5;
((f
/* (s
^\ k))
. n)
<>
0 by
A24,
SEQ_1: 5;
hence ((f
/* (s
^\ k))
. n)
<
0 by
A19,
A17,
A28,
FUNCT_2: 108,
XBOOLE_1: 1,
A25;
end;
then
A29: for n holds
0
<= n implies ((f
/* (s
^\ k))
. n)
<
0 ;
(f
/* (s
^\ k)) is
convergent by
A1,
A10,
A14,
A22;
then
A30: ((f
/* (s
^\ k))
" ) is
divergent_to-infty by
A23,
A29,
LIMFUNC1: 36;
((f
/* (s
^\ k))
" )
= (((f
/* s)
^\ k)
" ) by
A16,
A18,
VALUED_0: 27,
XBOOLE_1: 1
.= (((f
/* s)
" )
^\ k) by
SEQM_3: 18
.= (((f
^ )
/* s)
^\ k) by
A12,
A15,
RFUNCT_2: 12,
XBOOLE_1: 1;
hence thesis by
A30,
LIMFUNC1: 7;
end;
theorem ::
LIMFUNC2:77
f
is_right_convergent_in x0 & (
lim_right (f,x0))
=
0 & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f) & (f
. g)
<>
0 ) & (ex r st
0
< r & for g st g
in ((
dom f)
/\
].x0, (x0
+ r).[) holds
0
<= (f
. g)) implies (f
^ )
is_right_divergent_to+infty_in x0
proof
assume that
A1: f
is_right_convergent_in x0 and
A2: (
lim_right (f,x0))
=
0 and
A3: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f) & (f
. g)
<>
0 ;
given r such that
A4:
0
< r and
A5: for g st g
in ((
dom f)
/\
].x0, (x0
+ r).[) holds
0
<= (f
. g);
thus for r1 st x0
< r1 holds ex g1 st g1
< r1 & x0
< g1 & g1
in (
dom (f
^ ))
proof
let r1;
assume x0
< r1;
then
consider g1 such that
A6: g1
< r1 and
A7: x0
< g1 and
A8: g1
in (
dom f) and
A9: (f
. g1)
<>
0 by
A3;
take g1;
thus g1
< r1 & x0
< g1 by
A6,
A7;
not (f
. g1)
in
{
0 } by
A9,
TARSKI:def 1;
then not g1
in (f
"
{
0 }) by
FUNCT_1:def 7;
then g1
in ((
dom f)
\ (f
"
{
0 })) by
A8,
XBOOLE_0:def 5;
hence thesis by
RFUNCT_1:def 2;
end;
let s be
Real_Sequence such that
A10: s is
convergent and
A11: (
lim s)
= x0 and
A12: (
rng s)
c= ((
dom (f
^ ))
/\ (
right_open_halfline x0));
x0
< (x0
+ r) by
A4,
Lm1;
then
consider k such that
A13: for n st k
<= n holds (s
. n)
< (x0
+ r) by
A10,
A11,
Th2;
A14: (
lim (s
^\ k))
= x0 by
A10,
A11,
SEQ_4: 20;
A15: ((
dom (f
^ ))
/\ (
right_open_halfline x0))
c= (
dom (f
^ )) by
XBOOLE_1: 17;
then
A16: (
rng s)
c= (
dom (f
^ )) by
A12,
XBOOLE_1: 1;
A17: (
rng (s
^\ k))
c= (
rng s) by
VALUED_0: 21;
(
dom (f
^ ))
= ((
dom f)
\ (f
"
{
0 })) by
RFUNCT_1:def 2;
then
A18: (
dom (f
^ ))
c= (
dom f) by
XBOOLE_1: 36;
then
A19: (
rng s)
c= (
dom f) by
A16,
XBOOLE_1: 1;
then
A20: (
rng (s
^\ k))
c= (
dom f) by
A17,
XBOOLE_1: 1;
((
dom (f
^ ))
/\ (
right_open_halfline x0))
c= (
right_open_halfline x0) by
XBOOLE_1: 17;
then (
rng s)
c= (
right_open_halfline x0) by
A12,
XBOOLE_1: 1;
then
A21: (
rng (s
^\ k))
c= (
right_open_halfline x0) by
A17,
XBOOLE_1: 1;
then
A22: (
rng (s
^\ k))
c= ((
dom f)
/\ (
right_open_halfline x0)) by
A20,
XBOOLE_1: 19;
then
A23: (
lim (f
/* (s
^\ k)))
=
0 by
A1,
A2,
A10,
A14,
Def8;
A24: (f
/* (s
^\ k)) is
non-zero by
A16,
A17,
RFUNCT_2: 11,
XBOOLE_1: 1;
now
let n;
A25: n
in
NAT by
ORDINAL1:def 12;
(s
. (n
+ k))
< (x0
+ r) by
A13,
NAT_1: 12;
then
A26: ((s
^\ k)
. n)
< (x0
+ r) by
NAT_1:def 3;
A27: ((s
^\ k)
. n)
in (
rng (s
^\ k)) by
VALUED_0: 28;
then ((s
^\ k)
. n)
in (
right_open_halfline x0) by
A21;
then ((s
^\ k)
. n)
in { g1 : x0
< g1 } by
XXREAL_1: 230;
then ex g1 st g1
= ((s
^\ k)
. n) & x0
< g1;
then ((s
^\ k)
. n)
in { g2 : x0
< g2 & g2
< (x0
+ r) } by
A26;
then ((s
^\ k)
. n)
in
].x0, (x0
+ r).[ by
RCOMP_1:def 2;
then ((s
^\ k)
. n)
in ((
dom f)
/\
].x0, (x0
+ r).[) by
A20,
A27,
XBOOLE_0:def 4;
then
A28:
0
<= (f
. ((s
^\ k)
. n)) by
A5;
0
<> ((f
/* (s
^\ k))
. n) by
A24,
SEQ_1: 5;
hence
0
< ((f
/* (s
^\ k))
. n) by
A19,
A17,
A28,
FUNCT_2: 108,
XBOOLE_1: 1,
A25;
end;
then
A29: for n holds
0
<= n implies
0
< ((f
/* (s
^\ k))
. n);
(f
/* (s
^\ k)) is
convergent by
A1,
A10,
A14,
A22;
then
A30: ((f
/* (s
^\ k))
" ) is
divergent_to+infty by
A23,
A29,
LIMFUNC1: 35;
((f
/* (s
^\ k))
" )
= (((f
/* s)
^\ k)
" ) by
A16,
A18,
VALUED_0: 27,
XBOOLE_1: 1
.= (((f
/* s)
" )
^\ k) by
SEQM_3: 18
.= (((f
^ )
/* s)
^\ k) by
A12,
A15,
RFUNCT_2: 12,
XBOOLE_1: 1;
hence thesis by
A30,
LIMFUNC1: 7;
end;
theorem ::
LIMFUNC2:78
f
is_right_convergent_in x0 & (
lim_right (f,x0))
=
0 & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f) & (f
. g)
<>
0 ) & (ex r st
0
< r & for g st g
in ((
dom f)
/\
].x0, (x0
+ r).[) holds (f
. g)
<=
0 ) implies (f
^ )
is_right_divergent_to-infty_in x0
proof
assume that
A1: f
is_right_convergent_in x0 and
A2: (
lim_right (f,x0))
=
0 and
A3: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f) & (f
. g)
<>
0 ;
given r such that
A4:
0
< r and
A5: for g st g
in ((
dom f)
/\
].x0, (x0
+ r).[) holds (f
. g)
<=
0 ;
thus for r1 st x0
< r1 holds ex g1 st g1
< r1 & x0
< g1 & g1
in (
dom (f
^ ))
proof
let r1;
assume x0
< r1;
then
consider g1 such that
A6: g1
< r1 and
A7: x0
< g1 and
A8: g1
in (
dom f) and
A9: (f
. g1)
<>
0 by
A3;
take g1;
thus g1
< r1 & x0
< g1 by
A6,
A7;
not (f
. g1)
in
{
0 } by
A9,
TARSKI:def 1;
then not g1
in (f
"
{
0 }) by
FUNCT_1:def 7;
then g1
in ((
dom f)
\ (f
"
{
0 })) by
A8,
XBOOLE_0:def 5;
hence thesis by
RFUNCT_1:def 2;
end;
let s be
Real_Sequence such that
A10: s is
convergent and
A11: (
lim s)
= x0 and
A12: (
rng s)
c= ((
dom (f
^ ))
/\ (
right_open_halfline x0));
x0
< (x0
+ r) by
A4,
Lm1;
then
consider k such that
A13: for n st k
<= n holds (s
. n)
< (x0
+ r) by
A10,
A11,
Th2;
A14: (
lim (s
^\ k))
= x0 by
A10,
A11,
SEQ_4: 20;
A15: ((
dom (f
^ ))
/\ (
right_open_halfline x0))
c= (
dom (f
^ )) by
XBOOLE_1: 17;
then
A16: (
rng s)
c= (
dom (f
^ )) by
A12,
XBOOLE_1: 1;
A17: (
rng (s
^\ k))
c= (
rng s) by
VALUED_0: 21;
(
dom (f
^ ))
= ((
dom f)
\ (f
"
{
0 })) by
RFUNCT_1:def 2;
then
A18: (
dom (f
^ ))
c= (
dom f) by
XBOOLE_1: 36;
then
A19: (
rng s)
c= (
dom f) by
A16,
XBOOLE_1: 1;
then
A20: (
rng (s
^\ k))
c= (
dom f) by
A17,
XBOOLE_1: 1;
((
dom (f
^ ))
/\ (
right_open_halfline x0))
c= (
right_open_halfline x0) by
XBOOLE_1: 17;
then (
rng s)
c= (
right_open_halfline x0) by
A12,
XBOOLE_1: 1;
then
A21: (
rng (s
^\ k))
c= (
right_open_halfline x0) by
A17,
XBOOLE_1: 1;
then
A22: (
rng (s
^\ k))
c= ((
dom f)
/\ (
right_open_halfline x0)) by
A20,
XBOOLE_1: 19;
then
A23: (
lim (f
/* (s
^\ k)))
=
0 by
A1,
A2,
A10,
A14,
Def8;
A24: (f
/* (s
^\ k)) is
non-zero by
A16,
A17,
RFUNCT_2: 11,
XBOOLE_1: 1;
now
let n;
A25: n
in
NAT by
ORDINAL1:def 12;
(s
. (n
+ k))
< (x0
+ r) by
A13,
NAT_1: 12;
then
A26: ((s
^\ k)
. n)
< (x0
+ r) by
NAT_1:def 3;
A27: ((s
^\ k)
. n)
in (
rng (s
^\ k)) by
VALUED_0: 28;
then ((s
^\ k)
. n)
in (
right_open_halfline x0) by
A21;
then ((s
^\ k)
. n)
in { g1 : x0
< g1 } by
XXREAL_1: 230;
then ex g1 st g1
= ((s
^\ k)
. n) & x0
< g1;
then ((s
^\ k)
. n)
in { g2 : x0
< g2 & g2
< (x0
+ r) } by
A26;
then ((s
^\ k)
. n)
in
].x0, (x0
+ r).[ by
RCOMP_1:def 2;
then ((s
^\ k)
. n)
in ((
dom f)
/\
].x0, (x0
+ r).[) by
A20,
A27,
XBOOLE_0:def 4;
then
A28: (f
. ((s
^\ k)
. n))
<=
0 by
A5;
((f
/* (s
^\ k))
. n)
<>
0 by
A24,
SEQ_1: 5;
hence ((f
/* (s
^\ k))
. n)
<
0 by
A19,
A17,
A28,
FUNCT_2: 108,
XBOOLE_1: 1,
A25;
end;
then
A29: for n holds
0
<= n implies ((f
/* (s
^\ k))
. n)
<
0 ;
(f
/* (s
^\ k)) is
convergent by
A1,
A10,
A14,
A22;
then
A30: ((f
/* (s
^\ k))
" ) is
divergent_to-infty by
A23,
A29,
LIMFUNC1: 36;
((f
/* (s
^\ k))
" )
= (((f
/* s)
^\ k)
" ) by
A16,
A18,
VALUED_0: 27,
XBOOLE_1: 1
.= (((f
/* s)
" )
^\ k) by
SEQM_3: 18
.= (((f
^ )
/* s)
^\ k) by
A12,
A15,
RFUNCT_2: 12,
XBOOLE_1: 1;
hence thesis by
A30,
LIMFUNC1: 7;
end;