limfunc4.miz
begin
reserve r,r1,r2,g,g1,g2,x0 for
Real;
reserve f1,f2 for
PartFunc of
REAL ,
REAL ;
Lm1:
0
< g implies (r
- g)
< r & r
< (r
+ g)
proof
assume
A1:
0
< g;
then (r
- g)
< (r
-
0 ) by
XREAL_1: 15;
hence (r
- g)
< r;
(r
+
0 )
< (r
+ g) by
A1,
XREAL_1: 8;
hence thesis;
end;
Lm2: for s be
Real_Sequence st (
rng s)
c= (
dom (f2
* f1)) holds (
rng s)
c= (
dom f1) & (
rng (f1
/* s))
c= (
dom f2)
proof
let s be
Real_Sequence such that
A1: (
rng s)
c= (
dom (f2
* f1));
A2: (
dom (f2
* f1))
c= (
dom f1) by
RELAT_1: 25;
hence (
rng s)
c= (
dom f1) by
A1;
let x be
object;
assume x
in (
rng (f1
/* s));
then
consider n be
Element of
NAT such that
A3: ((f1
/* s)
. n)
= x by
FUNCT_2: 113;
(s
. n)
in (
rng s) by
VALUED_0: 28;
then (f1
. (s
. n))
in (
dom f2) by
A1,
FUNCT_1: 11;
hence thesis by
A1,
A2,
A3,
FUNCT_2: 108,
XBOOLE_1: 1;
end;
theorem ::
LIMFUNC4:1
Th1: for s be
Real_Sequence, X be
set st (
rng s)
c= ((
dom (f2
* f1))
/\ X) holds (
rng s)
c= (
dom (f2
* f1)) & (
rng s)
c= X & (
rng s)
c= (
dom f1) & (
rng s)
c= ((
dom f1)
/\ X) & (
rng (f1
/* s))
c= (
dom f2)
proof
let s be
Real_Sequence, X be
set;
assume (
rng s)
c= ((
dom (f2
* f1))
/\ X);
hence
A1: (
rng s)
c= (
dom (f2
* f1)) & (
rng s)
c= X by
XBOOLE_1: 18;
A2: (
dom (f2
* f1))
c= (
dom f1) by
RELAT_1: 25;
hence (
rng s)
c= (
dom f1) by
A1;
hence (
rng s)
c= ((
dom f1)
/\ X) by
A1,
XBOOLE_1: 19;
let x be
object;
assume x
in (
rng (f1
/* s));
then
consider n be
Element of
NAT such that
A3: ((f1
/* s)
. n)
= x by
FUNCT_2: 113;
(s
. n)
in (
rng s) by
VALUED_0: 28;
then (f1
. (s
. n))
in (
dom f2) by
A1,
FUNCT_1: 11;
hence thesis by
A1,
A2,
A3,
FUNCT_2: 108,
XBOOLE_1: 1;
end;
theorem ::
LIMFUNC4:2
Th2: for s be
Real_Sequence, X be
set st (
rng s)
c= ((
dom (f2
* f1))
\ X) holds (
rng s)
c= (
dom (f2
* f1)) & (
rng s)
c= (
dom f1) & (
rng s)
c= ((
dom f1)
\ X) & (
rng (f1
/* s))
c= (
dom f2)
proof
let s be
Real_Sequence, X be
set such that
A1: (
rng s)
c= ((
dom (f2
* f1))
\ X);
((
dom (f2
* f1))
\ X)
c= (
dom (f2
* f1)) by
XBOOLE_1: 36;
hence
A2: (
rng s)
c= (
dom (f2
* f1)) by
A1;
A3: (
dom (f2
* f1))
c= (
dom f1) by
RELAT_1: 25;
hence
A4: (
rng s)
c= (
dom f1) by
A2;
thus (
rng s)
c= ((
dom f1)
\ X)
proof
let x be
object;
assume
A5: x
in (
rng s);
then not x
in X by
A1,
XBOOLE_0:def 5;
hence thesis by
A4,
A5,
XBOOLE_0:def 5;
end;
let x be
object;
assume x
in (
rng (f1
/* s));
then
consider n be
Element of
NAT such that
A6: ((f1
/* s)
. n)
= x by
FUNCT_2: 113;
(s
. n)
in (
rng s) by
VALUED_0: 28;
then (f1
. (s
. n))
in (
dom f2) by
A2,
FUNCT_1: 11;
hence thesis by
A2,
A3,
A6,
FUNCT_2: 108,
XBOOLE_1: 1;
end;
theorem ::
LIMFUNC4:3
f1 is
divergent_in+infty_to+infty & f2 is
divergent_in+infty_to+infty & (for r holds ex g st r
< g & g
in (
dom (f2
* f1))) implies (f2
* f1) is
divergent_in+infty_to+infty
proof
assume that
A1: f1 is
divergent_in+infty_to+infty and
A2: f2 is
divergent_in+infty_to+infty and
A3: for r holds ex g st r
< g & g
in (
dom (f2
* f1));
now
let s be
Real_Sequence;
assume that
A4: s is
divergent_to+infty and
A5: (
rng s)
c= (
dom (f2
* f1));
(
rng s)
c= (
dom f1) by
A5,
Lm2;
then
A6: (f1
/* s) is
divergent_to+infty by
A1,
A4;
(
rng (f1
/* s))
c= (
dom f2) by
A5,
Lm2;
then (f2
/* (f1
/* s)) is
divergent_to+infty by
A2,
A6;
hence ((f2
* f1)
/* s) is
divergent_to+infty by
A5,
VALUED_0: 31;
end;
hence thesis by
A3;
end;
theorem ::
LIMFUNC4:4
f1 is
divergent_in+infty_to+infty & f2 is
divergent_in+infty_to-infty & (for r holds ex g st r
< g & g
in (
dom (f2
* f1))) implies (f2
* f1) is
divergent_in+infty_to-infty
proof
assume that
A1: f1 is
divergent_in+infty_to+infty and
A2: f2 is
divergent_in+infty_to-infty and
A3: for r holds ex g st r
< g & g
in (
dom (f2
* f1));
now
let s be
Real_Sequence;
assume that
A4: s is
divergent_to+infty and
A5: (
rng s)
c= (
dom (f2
* f1));
(
rng s)
c= (
dom f1) by
A5,
Lm2;
then
A6: (f1
/* s) is
divergent_to+infty by
A1,
A4;
(
rng (f1
/* s))
c= (
dom f2) by
A5,
Lm2;
then (f2
/* (f1
/* s)) is
divergent_to-infty by
A2,
A6;
hence ((f2
* f1)
/* s) is
divergent_to-infty by
A5,
VALUED_0: 31;
end;
hence thesis by
A3;
end;
theorem ::
LIMFUNC4:5
f1 is
divergent_in+infty_to-infty & f2 is
divergent_in-infty_to+infty & (for r holds ex g st r
< g & g
in (
dom (f2
* f1))) implies (f2
* f1) is
divergent_in+infty_to+infty
proof
assume that
A1: f1 is
divergent_in+infty_to-infty and
A2: f2 is
divergent_in-infty_to+infty and
A3: for r holds ex g st r
< g & g
in (
dom (f2
* f1));
now
let s be
Real_Sequence;
assume that
A4: s is
divergent_to+infty and
A5: (
rng s)
c= (
dom (f2
* f1));
(
rng s)
c= (
dom f1) by
A5,
Lm2;
then
A6: (f1
/* s) is
divergent_to-infty by
A1,
A4;
(
rng (f1
/* s))
c= (
dom f2) by
A5,
Lm2;
then (f2
/* (f1
/* s)) is
divergent_to+infty by
A2,
A6;
hence ((f2
* f1)
/* s) is
divergent_to+infty by
A5,
VALUED_0: 31;
end;
hence thesis by
A3;
end;
theorem ::
LIMFUNC4:6
f1 is
divergent_in+infty_to-infty & f2 is
divergent_in-infty_to-infty & (for r holds ex g st r
< g & g
in (
dom (f2
* f1))) implies (f2
* f1) is
divergent_in+infty_to-infty
proof
assume that
A1: f1 is
divergent_in+infty_to-infty and
A2: f2 is
divergent_in-infty_to-infty and
A3: for r holds ex g st r
< g & g
in (
dom (f2
* f1));
now
let s be
Real_Sequence;
assume that
A4: s is
divergent_to+infty and
A5: (
rng s)
c= (
dom (f2
* f1));
(
rng s)
c= (
dom f1) by
A5,
Lm2;
then
A6: (f1
/* s) is
divergent_to-infty by
A1,
A4;
(
rng (f1
/* s))
c= (
dom f2) by
A5,
Lm2;
then (f2
/* (f1
/* s)) is
divergent_to-infty by
A2,
A6;
hence ((f2
* f1)
/* s) is
divergent_to-infty by
A5,
VALUED_0: 31;
end;
hence thesis by
A3;
end;
theorem ::
LIMFUNC4:7
f1 is
divergent_in-infty_to+infty & f2 is
divergent_in+infty_to+infty & (for r holds ex g st g
< r & g
in (
dom (f2
* f1))) implies (f2
* f1) is
divergent_in-infty_to+infty
proof
assume that
A1: f1 is
divergent_in-infty_to+infty and
A2: f2 is
divergent_in+infty_to+infty and
A3: for r holds ex g st g
< r & g
in (
dom (f2
* f1));
now
let s be
Real_Sequence;
assume that
A4: s is
divergent_to-infty and
A5: (
rng s)
c= (
dom (f2
* f1));
(
rng s)
c= (
dom f1) by
A5,
Lm2;
then
A6: (f1
/* s) is
divergent_to+infty by
A1,
A4;
(
rng (f1
/* s))
c= (
dom f2) by
A5,
Lm2;
then (f2
/* (f1
/* s)) is
divergent_to+infty by
A2,
A6;
hence ((f2
* f1)
/* s) is
divergent_to+infty by
A5,
VALUED_0: 31;
end;
hence thesis by
A3;
end;
theorem ::
LIMFUNC4:8
f1 is
divergent_in-infty_to+infty & f2 is
divergent_in+infty_to-infty & (for r holds ex g st g
< r & g
in (
dom (f2
* f1))) implies (f2
* f1) is
divergent_in-infty_to-infty
proof
assume that
A1: f1 is
divergent_in-infty_to+infty and
A2: f2 is
divergent_in+infty_to-infty and
A3: for r holds ex g st g
< r & g
in (
dom (f2
* f1));
now
let s be
Real_Sequence;
assume that
A4: s is
divergent_to-infty and
A5: (
rng s)
c= (
dom (f2
* f1));
(
rng s)
c= (
dom f1) by
A5,
Lm2;
then
A6: (f1
/* s) is
divergent_to+infty by
A1,
A4;
(
rng (f1
/* s))
c= (
dom f2) by
A5,
Lm2;
then (f2
/* (f1
/* s)) is
divergent_to-infty by
A2,
A6;
hence ((f2
* f1)
/* s) is
divergent_to-infty by
A5,
VALUED_0: 31;
end;
hence thesis by
A3;
end;
theorem ::
LIMFUNC4:9
f1 is
divergent_in-infty_to-infty & f2 is
divergent_in-infty_to+infty & (for r holds ex g st g
< r & g
in (
dom (f2
* f1))) implies (f2
* f1) is
divergent_in-infty_to+infty
proof
assume that
A1: f1 is
divergent_in-infty_to-infty and
A2: f2 is
divergent_in-infty_to+infty and
A3: for r holds ex g st g
< r & g
in (
dom (f2
* f1));
now
let s be
Real_Sequence;
assume that
A4: s is
divergent_to-infty and
A5: (
rng s)
c= (
dom (f2
* f1));
(
rng s)
c= (
dom f1) by
A5,
Lm2;
then
A6: (f1
/* s) is
divergent_to-infty by
A1,
A4;
(
rng (f1
/* s))
c= (
dom f2) by
A5,
Lm2;
then (f2
/* (f1
/* s)) is
divergent_to+infty by
A2,
A6;
hence ((f2
* f1)
/* s) is
divergent_to+infty by
A5,
VALUED_0: 31;
end;
hence thesis by
A3;
end;
theorem ::
LIMFUNC4:10
f1 is
divergent_in-infty_to-infty & f2 is
divergent_in-infty_to-infty & (for r holds ex g st g
< r & g
in (
dom (f2
* f1))) implies (f2
* f1) is
divergent_in-infty_to-infty
proof
assume that
A1: f1 is
divergent_in-infty_to-infty and
A2: f2 is
divergent_in-infty_to-infty and
A3: for r holds ex g st g
< r & g
in (
dom (f2
* f1));
now
let s be
Real_Sequence;
assume that
A4: s is
divergent_to-infty and
A5: (
rng s)
c= (
dom (f2
* f1));
(
rng s)
c= (
dom f1) by
A5,
Lm2;
then
A6: (f1
/* s) is
divergent_to-infty by
A1,
A4;
(
rng (f1
/* s))
c= (
dom f2) by
A5,
Lm2;
then (f2
/* (f1
/* s)) is
divergent_to-infty by
A2,
A6;
hence ((f2
* f1)
/* s) is
divergent_to-infty by
A5,
VALUED_0: 31;
end;
hence thesis by
A3;
end;
theorem ::
LIMFUNC4:11
f1
is_left_divergent_to+infty_in x0 & f2 is
divergent_in+infty_to+infty & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f2
* f1))) implies (f2
* f1)
is_left_divergent_to+infty_in x0
proof
assume that
A1: f1
is_left_divergent_to+infty_in x0 and
A2: f2 is
divergent_in+infty_to+infty and
A3: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f2
* f1));
now
let s be
Real_Sequence;
assume that
A4: s is
convergent & (
lim s)
= x0 and
A5: (
rng s)
c= ((
dom (f2
* f1))
/\ (
left_open_halfline x0));
A6: (
rng s)
c= (
dom (f2
* f1)) by
A5,
Th1;
(
rng s)
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A5,
Th1;
then
A7: (f1
/* s) is
divergent_to+infty by
A1,
A4,
LIMFUNC2:def 2;
(
rng (f1
/* s))
c= (
dom f2) by
A5,
Th1;
then (f2
/* (f1
/* s)) is
divergent_to+infty by
A2,
A7;
hence ((f2
* f1)
/* s) is
divergent_to+infty by
A6,
VALUED_0: 31;
end;
hence thesis by
A3,
LIMFUNC2:def 2;
end;
theorem ::
LIMFUNC4:12
f1
is_left_divergent_to+infty_in x0 & f2 is
divergent_in+infty_to-infty & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f2
* f1))) implies (f2
* f1)
is_left_divergent_to-infty_in x0
proof
assume that
A1: f1
is_left_divergent_to+infty_in x0 and
A2: f2 is
divergent_in+infty_to-infty and
A3: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f2
* f1));
now
let s be
Real_Sequence;
assume that
A4: s is
convergent & (
lim s)
= x0 and
A5: (
rng s)
c= ((
dom (f2
* f1))
/\ (
left_open_halfline x0));
A6: (
rng s)
c= (
dom (f2
* f1)) by
A5,
Th1;
(
rng s)
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A5,
Th1;
then
A7: (f1
/* s) is
divergent_to+infty by
A1,
A4,
LIMFUNC2:def 2;
(
rng (f1
/* s))
c= (
dom f2) by
A5,
Th1;
then (f2
/* (f1
/* s)) is
divergent_to-infty by
A2,
A7;
hence ((f2
* f1)
/* s) is
divergent_to-infty by
A6,
VALUED_0: 31;
end;
hence thesis by
A3,
LIMFUNC2:def 3;
end;
theorem ::
LIMFUNC4:13
f1
is_left_divergent_to-infty_in x0 & f2 is
divergent_in-infty_to+infty & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f2
* f1))) implies (f2
* f1)
is_left_divergent_to+infty_in x0
proof
assume that
A1: f1
is_left_divergent_to-infty_in x0 and
A2: f2 is
divergent_in-infty_to+infty and
A3: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f2
* f1));
now
let s be
Real_Sequence;
assume that
A4: s is
convergent & (
lim s)
= x0 and
A5: (
rng s)
c= ((
dom (f2
* f1))
/\ (
left_open_halfline x0));
A6: (
rng s)
c= (
dom (f2
* f1)) by
A5,
Th1;
(
rng s)
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A5,
Th1;
then
A7: (f1
/* s) is
divergent_to-infty by
A1,
A4,
LIMFUNC2:def 3;
(
rng (f1
/* s))
c= (
dom f2) by
A5,
Th1;
then (f2
/* (f1
/* s)) is
divergent_to+infty by
A2,
A7;
hence ((f2
* f1)
/* s) is
divergent_to+infty by
A6,
VALUED_0: 31;
end;
hence thesis by
A3,
LIMFUNC2:def 2;
end;
theorem ::
LIMFUNC4:14
f1
is_left_divergent_to-infty_in x0 & f2 is
divergent_in-infty_to-infty & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f2
* f1))) implies (f2
* f1)
is_left_divergent_to-infty_in x0
proof
assume that
A1: f1
is_left_divergent_to-infty_in x0 and
A2: f2 is
divergent_in-infty_to-infty and
A3: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f2
* f1));
now
let s be
Real_Sequence;
assume that
A4: s is
convergent & (
lim s)
= x0 and
A5: (
rng s)
c= ((
dom (f2
* f1))
/\ (
left_open_halfline x0));
A6: (
rng s)
c= (
dom (f2
* f1)) by
A5,
Th1;
(
rng s)
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A5,
Th1;
then
A7: (f1
/* s) is
divergent_to-infty by
A1,
A4,
LIMFUNC2:def 3;
(
rng (f1
/* s))
c= (
dom f2) by
A5,
Th1;
then (f2
/* (f1
/* s)) is
divergent_to-infty by
A2,
A7;
hence ((f2
* f1)
/* s) is
divergent_to-infty by
A6,
VALUED_0: 31;
end;
hence thesis by
A3,
LIMFUNC2:def 3;
end;
theorem ::
LIMFUNC4:15
f1
is_right_divergent_to+infty_in x0 & f2 is
divergent_in+infty_to+infty & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f2
* f1))) implies (f2
* f1)
is_right_divergent_to+infty_in x0
proof
assume that
A1: f1
is_right_divergent_to+infty_in x0 and
A2: f2 is
divergent_in+infty_to+infty and
A3: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f2
* f1));
now
let s be
Real_Sequence;
assume that
A4: s is
convergent & (
lim s)
= x0 and
A5: (
rng s)
c= ((
dom (f2
* f1))
/\ (
right_open_halfline x0));
A6: (
rng s)
c= (
dom (f2
* f1)) by
A5,
Th1;
(
rng s)
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A5,
Th1;
then
A7: (f1
/* s) is
divergent_to+infty by
A1,
A4,
LIMFUNC2:def 5;
(
rng (f1
/* s))
c= (
dom f2) by
A5,
Th1;
then (f2
/* (f1
/* s)) is
divergent_to+infty by
A2,
A7;
hence ((f2
* f1)
/* s) is
divergent_to+infty by
A6,
VALUED_0: 31;
end;
hence thesis by
A3,
LIMFUNC2:def 5;
end;
theorem ::
LIMFUNC4:16
f1
is_right_divergent_to+infty_in x0 & f2 is
divergent_in+infty_to-infty & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f2
* f1))) implies (f2
* f1)
is_right_divergent_to-infty_in x0
proof
assume that
A1: f1
is_right_divergent_to+infty_in x0 and
A2: f2 is
divergent_in+infty_to-infty and
A3: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f2
* f1));
now
let s be
Real_Sequence;
assume that
A4: s is
convergent & (
lim s)
= x0 and
A5: (
rng s)
c= ((
dom (f2
* f1))
/\ (
right_open_halfline x0));
A6: (
rng s)
c= (
dom (f2
* f1)) by
A5,
Th1;
(
rng s)
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A5,
Th1;
then
A7: (f1
/* s) is
divergent_to+infty by
A1,
A4,
LIMFUNC2:def 5;
(
rng (f1
/* s))
c= (
dom f2) by
A5,
Th1;
then (f2
/* (f1
/* s)) is
divergent_to-infty by
A2,
A7;
hence ((f2
* f1)
/* s) is
divergent_to-infty by
A6,
VALUED_0: 31;
end;
hence thesis by
A3,
LIMFUNC2:def 6;
end;
theorem ::
LIMFUNC4:17
f1
is_right_divergent_to-infty_in x0 & f2 is
divergent_in-infty_to+infty & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f2
* f1))) implies (f2
* f1)
is_right_divergent_to+infty_in x0
proof
assume that
A1: f1
is_right_divergent_to-infty_in x0 and
A2: f2 is
divergent_in-infty_to+infty and
A3: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f2
* f1));
now
let s be
Real_Sequence;
assume that
A4: s is
convergent & (
lim s)
= x0 and
A5: (
rng s)
c= ((
dom (f2
* f1))
/\ (
right_open_halfline x0));
A6: (
rng s)
c= (
dom (f2
* f1)) by
A5,
Th1;
(
rng s)
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A5,
Th1;
then
A7: (f1
/* s) is
divergent_to-infty by
A1,
A4,
LIMFUNC2:def 6;
(
rng (f1
/* s))
c= (
dom f2) by
A5,
Th1;
then (f2
/* (f1
/* s)) is
divergent_to+infty by
A2,
A7;
hence ((f2
* f1)
/* s) is
divergent_to+infty by
A6,
VALUED_0: 31;
end;
hence thesis by
A3,
LIMFUNC2:def 5;
end;
theorem ::
LIMFUNC4:18
f1
is_right_divergent_to-infty_in x0 & f2 is
divergent_in-infty_to-infty & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f2
* f1))) implies (f2
* f1)
is_right_divergent_to-infty_in x0
proof
assume that
A1: f1
is_right_divergent_to-infty_in x0 and
A2: f2 is
divergent_in-infty_to-infty and
A3: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f2
* f1));
now
let s be
Real_Sequence;
assume that
A4: s is
convergent & (
lim s)
= x0 and
A5: (
rng s)
c= ((
dom (f2
* f1))
/\ (
right_open_halfline x0));
A6: (
rng s)
c= (
dom (f2
* f1)) by
A5,
Th1;
(
rng s)
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A5,
Th1;
then
A7: (f1
/* s) is
divergent_to-infty by
A1,
A4,
LIMFUNC2:def 6;
(
rng (f1
/* s))
c= (
dom f2) by
A5,
Th1;
then (f2
/* (f1
/* s)) is
divergent_to-infty by
A2,
A7;
hence ((f2
* f1)
/* s) is
divergent_to-infty by
A6,
VALUED_0: 31;
end;
hence thesis by
A3,
LIMFUNC2:def 6;
end;
theorem ::
LIMFUNC4:19
f1
is_left_convergent_in x0 & f2
is_left_divergent_to+infty_in (
lim_left (f1,x0)) & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f2
* f1))) & (ex g st
0
< g & for r st r
in ((
dom f1)
/\
].(x0
- g), x0.[) holds (f1
. r)
< (
lim_left (f1,x0))) implies (f2
* f1)
is_left_divergent_to+infty_in x0
proof
assume that
A1: f1
is_left_convergent_in x0 and
A2: f2
is_left_divergent_to+infty_in (
lim_left (f1,x0)) and
A3: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f2
* f1));
given g such that
A4:
0
< g and
A5: for r st r
in ((
dom f1)
/\
].(x0
- g), x0.[) holds (f1
. r)
< (
lim_left (f1,x0));
now
let s be
Real_Sequence;
assume that
A6: s is
convergent & (
lim s)
= x0 and
A7: (
rng s)
c= ((
dom (f2
* f1))
/\ (
left_open_halfline x0));
consider k be
Nat such that
A8: for n be
Nat st k
<= n holds (x0
- g)
< (s
. n) by
A4,
A6,
Lm1,
LIMFUNC2: 1;
set q = ((f1
/* s)
^\ k);
A9: (
rng s)
c= (
dom (f2
* f1)) by
A7,
Th1;
(
rng (f1
/* s))
c= (
dom f2) by
A7,
Th1;
then
A10: (f2
/* q)
= ((f2
/* (f1
/* s))
^\ k) by
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A9,
VALUED_0: 31;
A11: (
rng s)
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A7,
Th1;
then
A12: (f1
/* s) is
convergent by
A1,
A2,
A6,
LIMFUNC2:def 7;
A13: (
rng s)
c= (
dom f1) by
A7,
Th1;
A14: (
rng s)
c= (
left_open_halfline x0) by
A7,
Th1;
now
let x be
object;
assume x
in (
rng q);
then
consider n be
Element of
NAT such that
A15: (q
. n)
= x by
FUNCT_2: 113;
A16: (n
+ k)
in
NAT by
ORDINAL1:def 12;
A17: (f1
. (s
. (n
+ k)))
= ((f1
/* s)
. (n
+ k)) by
A13,
FUNCT_2: 108,
A16
.= x by
A15,
NAT_1:def 3;
A18: (x0
- g)
< (s
. (n
+ k)) by
A8,
NAT_1: 12;
A19: (s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in (
left_open_halfline x0) by
A14;
then (s
. (n
+ k))
in { g1 : g1
< x0 } by
XXREAL_1: 229;
then ex g1 st g1
= (s
. (n
+ k)) & g1
< x0;
then (s
. (n
+ k))
in { g2 : (x0
- g)
< g2 & g2
< x0 } by
A18;
then (s
. (n
+ k))
in
].(x0
- g), x0.[ by
RCOMP_1:def 2;
then (s
. (n
+ k))
in ((
dom f1)
/\
].(x0
- g), x0.[) by
A13,
A19,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
< (
lim_left (f1,x0)) by
A5;
then (f1
. (s
. (n
+ k)))
in { r1 : r1
< (
lim_left (f1,x0)) };
then
A20: (f1
. (s
. (n
+ k)))
in (
left_open_halfline (
lim_left (f1,x0))) by
XXREAL_1: 229;
(f1
. (s
. (n
+ k)))
in (
dom f2) by
A9,
A19,
FUNCT_1: 11;
hence x
in ((
dom f2)
/\ (
left_open_halfline (
lim_left (f1,x0)))) by
A20,
A17,
XBOOLE_0:def 4;
end;
then
A21: (
rng q)
c= ((
dom f2)
/\ (
left_open_halfline (
lim_left (f1,x0))));
(
lim (f1
/* s))
= (
lim_left (f1,x0)) by
A1,
A6,
A11,
LIMFUNC2:def 7;
then (
lim q)
= (
lim_left (f1,x0)) by
A12,
SEQ_4: 20;
then (f2
/* q) is
divergent_to+infty by
A2,
A12,
A21,
LIMFUNC2:def 2;
hence ((f2
* f1)
/* s) is
divergent_to+infty by
A10,
LIMFUNC1: 7;
end;
hence thesis by
A3,
LIMFUNC2:def 2;
end;
theorem ::
LIMFUNC4:20
f1
is_left_convergent_in x0 & f2
is_left_divergent_to-infty_in (
lim_left (f1,x0)) & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f2
* f1))) & (ex g st
0
< g & for r st r
in ((
dom f1)
/\
].(x0
- g), x0.[) holds (f1
. r)
< (
lim_left (f1,x0))) implies (f2
* f1)
is_left_divergent_to-infty_in x0
proof
assume that
A1: f1
is_left_convergent_in x0 and
A2: f2
is_left_divergent_to-infty_in (
lim_left (f1,x0)) and
A3: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f2
* f1));
given g such that
A4:
0
< g and
A5: for r st r
in ((
dom f1)
/\
].(x0
- g), x0.[) holds (f1
. r)
< (
lim_left (f1,x0));
now
let s be
Real_Sequence;
assume that
A6: s is
convergent & (
lim s)
= x0 and
A7: (
rng s)
c= ((
dom (f2
* f1))
/\ (
left_open_halfline x0));
consider k be
Nat such that
A8: for n be
Nat st k
<= n holds (x0
- g)
< (s
. n) by
A4,
A6,
Lm1,
LIMFUNC2: 1;
set q = ((f1
/* s)
^\ k);
A9: (
rng s)
c= (
dom (f2
* f1)) by
A7,
Th1;
(
rng (f1
/* s))
c= (
dom f2) by
A7,
Th1;
then
A10: (f2
/* q)
= ((f2
/* (f1
/* s))
^\ k) by
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A9,
VALUED_0: 31;
A11: (
rng s)
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A7,
Th1;
then
A12: (f1
/* s) is
convergent by
A1,
A2,
A6,
LIMFUNC2:def 7;
A13: (
rng s)
c= (
dom f1) by
A7,
Th1;
A14: (
rng s)
c= (
left_open_halfline x0) by
A7,
Th1;
now
let x be
object;
assume x
in (
rng q);
then
consider n be
Element of
NAT such that
A15: (q
. n)
= x by
FUNCT_2: 113;
A16: (n
+ k)
in
NAT by
ORDINAL1:def 12;
A17: (f1
. (s
. (n
+ k)))
= ((f1
/* s)
. (n
+ k)) by
A13,
FUNCT_2: 108,
A16
.= x by
A15,
NAT_1:def 3;
A18: (x0
- g)
< (s
. (n
+ k)) by
A8,
NAT_1: 12;
A19: (s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in (
left_open_halfline x0) by
A14;
then (s
. (n
+ k))
in { g1 : g1
< x0 } by
XXREAL_1: 229;
then ex g1 st g1
= (s
. (n
+ k)) & g1
< x0;
then (s
. (n
+ k))
in { g2 : (x0
- g)
< g2 & g2
< x0 } by
A18;
then (s
. (n
+ k))
in
].(x0
- g), x0.[ by
RCOMP_1:def 2;
then (s
. (n
+ k))
in ((
dom f1)
/\
].(x0
- g), x0.[) by
A13,
A19,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
< (
lim_left (f1,x0)) by
A5;
then (f1
. (s
. (n
+ k)))
in { r1 : r1
< (
lim_left (f1,x0)) };
then
A20: (f1
. (s
. (n
+ k)))
in (
left_open_halfline (
lim_left (f1,x0))) by
XXREAL_1: 229;
(f1
. (s
. (n
+ k)))
in (
dom f2) by
A9,
A19,
FUNCT_1: 11;
hence x
in ((
dom f2)
/\ (
left_open_halfline (
lim_left (f1,x0)))) by
A20,
A17,
XBOOLE_0:def 4;
end;
then
A21: (
rng q)
c= ((
dom f2)
/\ (
left_open_halfline (
lim_left (f1,x0))));
(
lim (f1
/* s))
= (
lim_left (f1,x0)) by
A1,
A6,
A11,
LIMFUNC2:def 7;
then (
lim q)
= (
lim_left (f1,x0)) by
A12,
SEQ_4: 20;
then (f2
/* q) is
divergent_to-infty by
A2,
A12,
A21,
LIMFUNC2:def 3;
hence ((f2
* f1)
/* s) is
divergent_to-infty by
A10,
LIMFUNC1: 7;
end;
hence thesis by
A3,
LIMFUNC2:def 3;
end;
theorem ::
LIMFUNC4:21
f1
is_left_convergent_in x0 & f2
is_right_divergent_to+infty_in (
lim_left (f1,x0)) & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f2
* f1))) & (ex g st
0
< g & for r st r
in ((
dom f1)
/\
].(x0
- g), x0.[) holds (
lim_left (f1,x0))
< (f1
. r)) implies (f2
* f1)
is_left_divergent_to+infty_in x0
proof
assume that
A1: f1
is_left_convergent_in x0 and
A2: f2
is_right_divergent_to+infty_in (
lim_left (f1,x0)) and
A3: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f2
* f1));
given g such that
A4:
0
< g and
A5: for r st r
in ((
dom f1)
/\
].(x0
- g), x0.[) holds (
lim_left (f1,x0))
< (f1
. r);
now
let s be
Real_Sequence;
assume that
A6: s is
convergent & (
lim s)
= x0 and
A7: (
rng s)
c= ((
dom (f2
* f1))
/\ (
left_open_halfline x0));
consider k be
Nat such that
A8: for n be
Nat st k
<= n holds (x0
- g)
< (s
. n) by
A4,
A6,
Lm1,
LIMFUNC2: 1;
set q = ((f1
/* s)
^\ k);
A9: (
rng s)
c= (
dom (f2
* f1)) by
A7,
Th1;
(
rng (f1
/* s))
c= (
dom f2) by
A7,
Th1;
then
A10: (f2
/* q)
= ((f2
/* (f1
/* s))
^\ k) by
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A9,
VALUED_0: 31;
A11: (
rng s)
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A7,
Th1;
then
A12: (f1
/* s) is
convergent by
A1,
A2,
A6,
LIMFUNC2:def 7;
A13: (
rng s)
c= (
dom f1) by
A7,
Th1;
A14: (
rng s)
c= (
left_open_halfline x0) by
A7,
Th1;
now
let x be
object;
assume x
in (
rng q);
then
consider n be
Element of
NAT such that
A15: (q
. n)
= x by
FUNCT_2: 113;
A16: (n
+ k)
in
NAT by
ORDINAL1:def 12;
A17: (f1
. (s
. (n
+ k)))
= ((f1
/* s)
. (n
+ k)) by
A13,
FUNCT_2: 108,
A16
.= x by
A15,
NAT_1:def 3;
A18: (x0
- g)
< (s
. (n
+ k)) by
A8,
NAT_1: 12;
A19: (s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in (
left_open_halfline x0) by
A14;
then (s
. (n
+ k))
in { g1 : g1
< x0 } by
XXREAL_1: 229;
then ex g1 st g1
= (s
. (n
+ k)) & g1
< x0;
then (s
. (n
+ k))
in { g2 : (x0
- g)
< g2 & g2
< x0 } by
A18;
then (s
. (n
+ k))
in
].(x0
- g), x0.[ by
RCOMP_1:def 2;
then (s
. (n
+ k))
in ((
dom f1)
/\
].(x0
- g), x0.[) by
A13,
A19,
XBOOLE_0:def 4;
then (
lim_left (f1,x0))
< (f1
. (s
. (n
+ k))) by
A5;
then (f1
. (s
. (n
+ k)))
in { r1 : (
lim_left (f1,x0))
< r1 };
then
A20: (f1
. (s
. (n
+ k)))
in (
right_open_halfline (
lim_left (f1,x0))) by
XXREAL_1: 230;
(f1
. (s
. (n
+ k)))
in (
dom f2) by
A9,
A19,
FUNCT_1: 11;
hence x
in ((
dom f2)
/\ (
right_open_halfline (
lim_left (f1,x0)))) by
A20,
A17,
XBOOLE_0:def 4;
end;
then
A21: (
rng q)
c= ((
dom f2)
/\ (
right_open_halfline (
lim_left (f1,x0))));
(
lim (f1
/* s))
= (
lim_left (f1,x0)) by
A1,
A6,
A11,
LIMFUNC2:def 7;
then (
lim q)
= (
lim_left (f1,x0)) by
A12,
SEQ_4: 20;
then (f2
/* q) is
divergent_to+infty by
A2,
A12,
A21,
LIMFUNC2:def 5;
hence ((f2
* f1)
/* s) is
divergent_to+infty by
A10,
LIMFUNC1: 7;
end;
hence thesis by
A3,
LIMFUNC2:def 2;
end;
theorem ::
LIMFUNC4:22
f1
is_left_convergent_in x0 & f2
is_right_divergent_to-infty_in (
lim_left (f1,x0)) & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f2
* f1))) & (ex g st
0
< g & for r st r
in ((
dom f1)
/\
].(x0
- g), x0.[) holds (
lim_left (f1,x0))
< (f1
. r)) implies (f2
* f1)
is_left_divergent_to-infty_in x0
proof
assume that
A1: f1
is_left_convergent_in x0 and
A2: f2
is_right_divergent_to-infty_in (
lim_left (f1,x0)) and
A3: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f2
* f1));
given g such that
A4:
0
< g and
A5: for r st r
in ((
dom f1)
/\
].(x0
- g), x0.[) holds (
lim_left (f1,x0))
< (f1
. r);
now
let s be
Real_Sequence;
assume that
A6: s is
convergent & (
lim s)
= x0 and
A7: (
rng s)
c= ((
dom (f2
* f1))
/\ (
left_open_halfline x0));
consider k be
Nat such that
A8: for n be
Nat st k
<= n holds (x0
- g)
< (s
. n) by
A4,
A6,
Lm1,
LIMFUNC2: 1;
set q = ((f1
/* s)
^\ k);
A9: (
rng s)
c= (
dom (f2
* f1)) by
A7,
Th1;
(
rng (f1
/* s))
c= (
dom f2) by
A7,
Th1;
then
A10: (f2
/* q)
= ((f2
/* (f1
/* s))
^\ k) by
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A9,
VALUED_0: 31;
A11: (
rng s)
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A7,
Th1;
then
A12: (f1
/* s) is
convergent by
A1,
A2,
A6,
LIMFUNC2:def 7;
A13: (
rng s)
c= (
dom f1) by
A7,
Th1;
A14: (
rng s)
c= (
left_open_halfline x0) by
A7,
Th1;
now
let x be
object;
assume x
in (
rng q);
then
consider n be
Element of
NAT such that
A15: (q
. n)
= x by
FUNCT_2: 113;
A16: (n
+ k)
in
NAT by
ORDINAL1:def 12;
A17: (f1
. (s
. (n
+ k)))
= ((f1
/* s)
. (n
+ k)) by
A13,
FUNCT_2: 108,
A16
.= x by
A15,
NAT_1:def 3;
A18: (x0
- g)
< (s
. (n
+ k)) by
A8,
NAT_1: 12;
A19: (s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in (
left_open_halfline x0) by
A14;
then (s
. (n
+ k))
in { g1 : g1
< x0 } by
XXREAL_1: 229;
then ex g1 st g1
= (s
. (n
+ k)) & g1
< x0;
then (s
. (n
+ k))
in { g2 : (x0
- g)
< g2 & g2
< x0 } by
A18;
then (s
. (n
+ k))
in
].(x0
- g), x0.[ by
RCOMP_1:def 2;
then (s
. (n
+ k))
in ((
dom f1)
/\
].(x0
- g), x0.[) by
A13,
A19,
XBOOLE_0:def 4;
then (
lim_left (f1,x0))
< (f1
. (s
. (n
+ k))) by
A5;
then (f1
. (s
. (n
+ k)))
in { r1 : (
lim_left (f1,x0))
< r1 };
then
A20: (f1
. (s
. (n
+ k)))
in (
right_open_halfline (
lim_left (f1,x0))) by
XXREAL_1: 230;
(f1
. (s
. (n
+ k)))
in (
dom f2) by
A9,
A19,
FUNCT_1: 11;
hence x
in ((
dom f2)
/\ (
right_open_halfline (
lim_left (f1,x0)))) by
A20,
A17,
XBOOLE_0:def 4;
end;
then
A21: (
rng q)
c= ((
dom f2)
/\ (
right_open_halfline (
lim_left (f1,x0))));
(
lim (f1
/* s))
= (
lim_left (f1,x0)) by
A1,
A6,
A11,
LIMFUNC2:def 7;
then (
lim q)
= (
lim_left (f1,x0)) by
A12,
SEQ_4: 20;
then (f2
/* q) is
divergent_to-infty by
A2,
A12,
A21,
LIMFUNC2:def 6;
hence ((f2
* f1)
/* s) is
divergent_to-infty by
A10,
LIMFUNC1: 7;
end;
hence thesis by
A3,
LIMFUNC2:def 3;
end;
theorem ::
LIMFUNC4:23
f1
is_right_convergent_in x0 & f2
is_right_divergent_to+infty_in (
lim_right (f1,x0)) & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f2
* f1))) & (ex g st
0
< g & for r st r
in ((
dom f1)
/\
].x0, (x0
+ g).[) holds (
lim_right (f1,x0))
< (f1
. r)) implies (f2
* f1)
is_right_divergent_to+infty_in x0
proof
assume that
A1: f1
is_right_convergent_in x0 and
A2: f2
is_right_divergent_to+infty_in (
lim_right (f1,x0)) and
A3: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f2
* f1));
given g such that
A4:
0
< g and
A5: for r st r
in ((
dom f1)
/\
].x0, (x0
+ g).[) holds (
lim_right (f1,x0))
< (f1
. r);
now
let s be
Real_Sequence;
assume that
A6: s is
convergent & (
lim s)
= x0 and
A7: (
rng s)
c= ((
dom (f2
* f1))
/\ (
right_open_halfline x0));
consider k be
Nat such that
A8: for n be
Nat st k
<= n holds (s
. n)
< (x0
+ g) by
A4,
A6,
Lm1,
LIMFUNC2: 2;
set q = ((f1
/* s)
^\ k);
A9: (
rng s)
c= (
dom (f2
* f1)) by
A7,
Th1;
(
rng (f1
/* s))
c= (
dom f2) by
A7,
Th1;
then
A10: (f2
/* q)
= ((f2
/* (f1
/* s))
^\ k) by
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A9,
VALUED_0: 31;
A11: (
rng s)
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A7,
Th1;
then
A12: (f1
/* s) is
convergent by
A1,
A2,
A6,
LIMFUNC2:def 8;
A13: (
rng s)
c= (
dom f1) by
A7,
Th1;
A14: (
rng s)
c= (
right_open_halfline x0) by
A7,
Th1;
now
let x be
object;
assume x
in (
rng q);
then
consider n be
Element of
NAT such that
A15: (q
. n)
= x by
FUNCT_2: 113;
A16: (n
+ k)
in
NAT by
ORDINAL1:def 12;
A17: (f1
. (s
. (n
+ k)))
= ((f1
/* s)
. (n
+ k)) by
A13,
FUNCT_2: 108,
A16
.= x by
A15,
NAT_1:def 3;
A18: (s
. (n
+ k))
< (x0
+ g) by
A8,
NAT_1: 12;
A19: (s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in (
right_open_halfline x0) by
A14;
then (s
. (n
+ k))
in { g1 : x0
< g1 } by
XXREAL_1: 230;
then ex g1 st g1
= (s
. (n
+ k)) & x0
< g1;
then (s
. (n
+ k))
in { g2 : x0
< g2 & g2
< (x0
+ g) } by
A18;
then (s
. (n
+ k))
in
].x0, (x0
+ g).[ by
RCOMP_1:def 2;
then (s
. (n
+ k))
in ((
dom f1)
/\
].x0, (x0
+ g).[) by
A13,
A19,
XBOOLE_0:def 4;
then (
lim_right (f1,x0))
< (f1
. (s
. (n
+ k))) by
A5;
then (f1
. (s
. (n
+ k)))
in { r1 : (
lim_right (f1,x0))
< r1 };
then
A20: (f1
. (s
. (n
+ k)))
in (
right_open_halfline (
lim_right (f1,x0))) by
XXREAL_1: 230;
(f1
. (s
. (n
+ k)))
in (
dom f2) by
A9,
A19,
FUNCT_1: 11;
hence x
in ((
dom f2)
/\ (
right_open_halfline (
lim_right (f1,x0)))) by
A20,
A17,
XBOOLE_0:def 4;
end;
then
A21: (
rng q)
c= ((
dom f2)
/\ (
right_open_halfline (
lim_right (f1,x0))));
(
lim (f1
/* s))
= (
lim_right (f1,x0)) by
A1,
A6,
A11,
LIMFUNC2:def 8;
then (
lim q)
= (
lim_right (f1,x0)) by
A12,
SEQ_4: 20;
then (f2
/* q) is
divergent_to+infty by
A2,
A12,
A21,
LIMFUNC2:def 5;
hence ((f2
* f1)
/* s) is
divergent_to+infty by
A10,
LIMFUNC1: 7;
end;
hence thesis by
A3,
LIMFUNC2:def 5;
end;
theorem ::
LIMFUNC4:24
f1
is_right_convergent_in x0 & f2
is_right_divergent_to-infty_in (
lim_right (f1,x0)) & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f2
* f1))) & (ex g st
0
< g & for r st r
in ((
dom f1)
/\
].x0, (x0
+ g).[) holds (
lim_right (f1,x0))
< (f1
. r)) implies (f2
* f1)
is_right_divergent_to-infty_in x0
proof
assume that
A1: f1
is_right_convergent_in x0 and
A2: f2
is_right_divergent_to-infty_in (
lim_right (f1,x0)) and
A3: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f2
* f1));
given g such that
A4:
0
< g and
A5: for r st r
in ((
dom f1)
/\
].x0, (x0
+ g).[) holds (
lim_right (f1,x0))
< (f1
. r);
now
let s be
Real_Sequence;
assume that
A6: s is
convergent & (
lim s)
= x0 and
A7: (
rng s)
c= ((
dom (f2
* f1))
/\ (
right_open_halfline x0));
consider k be
Nat such that
A8: for n be
Nat st k
<= n holds (s
. n)
< (x0
+ g) by
A4,
A6,
Lm1,
LIMFUNC2: 2;
set q = ((f1
/* s)
^\ k);
A9: (
rng s)
c= (
dom (f2
* f1)) by
A7,
Th1;
(
rng (f1
/* s))
c= (
dom f2) by
A7,
Th1;
then
A10: (f2
/* q)
= ((f2
/* (f1
/* s))
^\ k) by
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A9,
VALUED_0: 31;
A11: (
rng s)
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A7,
Th1;
then
A12: (f1
/* s) is
convergent by
A1,
A2,
A6,
LIMFUNC2:def 8;
A13: (
rng s)
c= (
dom f1) by
A7,
Th1;
A14: (
rng s)
c= (
right_open_halfline x0) by
A7,
Th1;
now
let x be
object;
assume x
in (
rng q);
then
consider n be
Element of
NAT such that
A15: (q
. n)
= x by
FUNCT_2: 113;
A16: (n
+ k)
in
NAT by
ORDINAL1:def 12;
A17: (f1
. (s
. (n
+ k)))
= ((f1
/* s)
. (n
+ k)) by
A13,
FUNCT_2: 108,
A16
.= x by
A15,
NAT_1:def 3;
A18: (s
. (n
+ k))
< (x0
+ g) by
A8,
NAT_1: 12;
A19: (s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in (
right_open_halfline x0) by
A14;
then (s
. (n
+ k))
in { g1 : x0
< g1 } by
XXREAL_1: 230;
then ex g1 st g1
= (s
. (n
+ k)) & x0
< g1;
then (s
. (n
+ k))
in { g2 : x0
< g2 & g2
< (x0
+ g) } by
A18;
then (s
. (n
+ k))
in
].x0, (x0
+ g).[ by
RCOMP_1:def 2;
then (s
. (n
+ k))
in ((
dom f1)
/\
].x0, (x0
+ g).[) by
A13,
A19,
XBOOLE_0:def 4;
then (
lim_right (f1,x0))
< (f1
. (s
. (n
+ k))) by
A5;
then (f1
. (s
. (n
+ k)))
in { r1 : (
lim_right (f1,x0))
< r1 };
then
A20: (f1
. (s
. (n
+ k)))
in (
right_open_halfline (
lim_right (f1,x0))) by
XXREAL_1: 230;
(f1
. (s
. (n
+ k)))
in (
dom f2) by
A9,
A19,
FUNCT_1: 11;
hence x
in ((
dom f2)
/\ (
right_open_halfline (
lim_right (f1,x0)))) by
A20,
A17,
XBOOLE_0:def 4;
end;
then
A21: (
rng q)
c= ((
dom f2)
/\ (
right_open_halfline (
lim_right (f1,x0))));
(
lim (f1
/* s))
= (
lim_right (f1,x0)) by
A1,
A6,
A11,
LIMFUNC2:def 8;
then (
lim q)
= (
lim_right (f1,x0)) by
A12,
SEQ_4: 20;
then (f2
/* q) is
divergent_to-infty by
A2,
A12,
A21,
LIMFUNC2:def 6;
hence ((f2
* f1)
/* s) is
divergent_to-infty by
A10,
LIMFUNC1: 7;
end;
hence thesis by
A3,
LIMFUNC2:def 6;
end;
theorem ::
LIMFUNC4:25
f1
is_right_convergent_in x0 & f2
is_left_divergent_to+infty_in (
lim_right (f1,x0)) & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f2
* f1))) & (ex g st
0
< g & for r st r
in ((
dom f1)
/\
].x0, (x0
+ g).[) holds (f1
. r)
< (
lim_right (f1,x0))) implies (f2
* f1)
is_right_divergent_to+infty_in x0
proof
assume that
A1: f1
is_right_convergent_in x0 and
A2: f2
is_left_divergent_to+infty_in (
lim_right (f1,x0)) and
A3: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f2
* f1));
given g such that
A4:
0
< g and
A5: for r st r
in ((
dom f1)
/\
].x0, (x0
+ g).[) holds (f1
. r)
< (
lim_right (f1,x0));
now
let s be
Real_Sequence;
assume that
A6: s is
convergent & (
lim s)
= x0 and
A7: (
rng s)
c= ((
dom (f2
* f1))
/\ (
right_open_halfline x0));
consider k be
Nat such that
A8: for n be
Nat st k
<= n holds (s
. n)
< (x0
+ g) by
A4,
A6,
Lm1,
LIMFUNC2: 2;
set q = ((f1
/* s)
^\ k);
A9: (
rng s)
c= (
dom (f2
* f1)) by
A7,
Th1;
(
rng (f1
/* s))
c= (
dom f2) by
A7,
Th1;
then
A10: (f2
/* q)
= ((f2
/* (f1
/* s))
^\ k) by
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A9,
VALUED_0: 31;
A11: (
rng s)
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A7,
Th1;
then
A12: (f1
/* s) is
convergent by
A1,
A2,
A6,
LIMFUNC2:def 8;
A13: (
rng s)
c= (
dom f1) by
A7,
Th1;
A14: (
rng s)
c= (
right_open_halfline x0) by
A7,
Th1;
now
let x be
object;
assume x
in (
rng q);
then
consider n be
Element of
NAT such that
A15: (q
. n)
= x by
FUNCT_2: 113;
A16: (n
+ k)
in
NAT by
ORDINAL1:def 12;
A17: (f1
. (s
. (n
+ k)))
= ((f1
/* s)
. (n
+ k)) by
A13,
FUNCT_2: 108,
A16
.= x by
A15,
NAT_1:def 3;
A18: (s
. (n
+ k))
< (x0
+ g) by
A8,
NAT_1: 12;
A19: (s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in (
right_open_halfline x0) by
A14;
then (s
. (n
+ k))
in { g1 : x0
< g1 } by
XXREAL_1: 230;
then ex g1 st g1
= (s
. (n
+ k)) & x0
< g1;
then (s
. (n
+ k))
in { g2 : x0
< g2 & g2
< (x0
+ g) } by
A18;
then (s
. (n
+ k))
in
].x0, (x0
+ g).[ by
RCOMP_1:def 2;
then (s
. (n
+ k))
in ((
dom f1)
/\
].x0, (x0
+ g).[) by
A13,
A19,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
< (
lim_right (f1,x0)) by
A5;
then (f1
. (s
. (n
+ k)))
in { r1 : r1
< (
lim_right (f1,x0)) };
then
A20: (f1
. (s
. (n
+ k)))
in (
left_open_halfline (
lim_right (f1,x0))) by
XXREAL_1: 229;
(f1
. (s
. (n
+ k)))
in (
dom f2) by
A9,
A19,
FUNCT_1: 11;
hence x
in ((
dom f2)
/\ (
left_open_halfline (
lim_right (f1,x0)))) by
A20,
A17,
XBOOLE_0:def 4;
end;
then
A21: (
rng q)
c= ((
dom f2)
/\ (
left_open_halfline (
lim_right (f1,x0))));
(
lim (f1
/* s))
= (
lim_right (f1,x0)) by
A1,
A6,
A11,
LIMFUNC2:def 8;
then (
lim q)
= (
lim_right (f1,x0)) by
A12,
SEQ_4: 20;
then (f2
/* q) is
divergent_to+infty by
A2,
A12,
A21,
LIMFUNC2:def 2;
hence ((f2
* f1)
/* s) is
divergent_to+infty by
A10,
LIMFUNC1: 7;
end;
hence thesis by
A3,
LIMFUNC2:def 5;
end;
theorem ::
LIMFUNC4:26
f1
is_right_convergent_in x0 & f2
is_left_divergent_to-infty_in (
lim_right (f1,x0)) & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f2
* f1))) & (ex g st
0
< g & for r st r
in ((
dom f1)
/\
].x0, (x0
+ g).[) holds (f1
. r)
< (
lim_right (f1,x0))) implies (f2
* f1)
is_right_divergent_to-infty_in x0
proof
assume that
A1: f1
is_right_convergent_in x0 and
A2: f2
is_left_divergent_to-infty_in (
lim_right (f1,x0)) and
A3: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f2
* f1));
given g such that
A4:
0
< g and
A5: for r st r
in ((
dom f1)
/\
].x0, (x0
+ g).[) holds (f1
. r)
< (
lim_right (f1,x0));
now
let s be
Real_Sequence;
assume that
A6: s is
convergent & (
lim s)
= x0 and
A7: (
rng s)
c= ((
dom (f2
* f1))
/\ (
right_open_halfline x0));
consider k be
Nat such that
A8: for n be
Nat st k
<= n holds (s
. n)
< (x0
+ g) by
A4,
A6,
Lm1,
LIMFUNC2: 2;
set q = ((f1
/* s)
^\ k);
A9: (
rng s)
c= (
dom (f2
* f1)) by
A7,
Th1;
(
rng (f1
/* s))
c= (
dom f2) by
A7,
Th1;
then
A10: (f2
/* q)
= ((f2
/* (f1
/* s))
^\ k) by
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A9,
VALUED_0: 31;
A11: (
rng s)
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A7,
Th1;
then
A12: (f1
/* s) is
convergent by
A1,
A2,
A6,
LIMFUNC2:def 8;
A13: (
rng s)
c= (
dom f1) by
A7,
Th1;
A14: (
rng s)
c= (
right_open_halfline x0) by
A7,
Th1;
now
let x be
object;
assume x
in (
rng q);
then
consider n be
Element of
NAT such that
A15: (q
. n)
= x by
FUNCT_2: 113;
A16: (n
+ k)
in
NAT by
ORDINAL1:def 12;
A17: (f1
. (s
. (n
+ k)))
= ((f1
/* s)
. (n
+ k)) by
A13,
FUNCT_2: 108,
A16
.= x by
A15,
NAT_1:def 3;
A18: (s
. (n
+ k))
< (x0
+ g) by
A8,
NAT_1: 12;
A19: (s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in (
right_open_halfline x0) by
A14;
then (s
. (n
+ k))
in { g1 : x0
< g1 } by
XXREAL_1: 230;
then ex g1 st g1
= (s
. (n
+ k)) & x0
< g1;
then (s
. (n
+ k))
in { g2 : x0
< g2 & g2
< (x0
+ g) } by
A18;
then (s
. (n
+ k))
in
].x0, (x0
+ g).[ by
RCOMP_1:def 2;
then (s
. (n
+ k))
in ((
dom f1)
/\
].x0, (x0
+ g).[) by
A13,
A19,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
< (
lim_right (f1,x0)) by
A5;
then (f1
. (s
. (n
+ k)))
in { r1 : r1
< (
lim_right (f1,x0)) };
then
A20: (f1
. (s
. (n
+ k)))
in (
left_open_halfline (
lim_right (f1,x0))) by
XXREAL_1: 229;
(f1
. (s
. (n
+ k)))
in (
dom f2) by
A9,
A19,
FUNCT_1: 11;
hence x
in ((
dom f2)
/\ (
left_open_halfline (
lim_right (f1,x0)))) by
A20,
A17,
XBOOLE_0:def 4;
end;
then
A21: (
rng q)
c= ((
dom f2)
/\ (
left_open_halfline (
lim_right (f1,x0))));
(
lim (f1
/* s))
= (
lim_right (f1,x0)) by
A1,
A6,
A11,
LIMFUNC2:def 8;
then (
lim q)
= (
lim_right (f1,x0)) by
A12,
SEQ_4: 20;
then (f2
/* q) is
divergent_to-infty by
A2,
A12,
A21,
LIMFUNC2:def 3;
hence ((f2
* f1)
/* s) is
divergent_to-infty by
A10,
LIMFUNC1: 7;
end;
hence thesis by
A3,
LIMFUNC2:def 6;
end;
theorem ::
LIMFUNC4:27
f1 is
convergent_in+infty & f2
is_left_divergent_to+infty_in (
lim_in+infty f1) & (for r holds ex g st r
< g & g
in (
dom (f2
* f1))) & (ex r st for g st g
in ((
dom f1)
/\ (
right_open_halfline r)) holds (f1
. g)
< (
lim_in+infty f1)) implies (f2
* f1) is
divergent_in+infty_to+infty
proof
assume that
A1: f1 is
convergent_in+infty and
A2: f2
is_left_divergent_to+infty_in (
lim_in+infty f1) and
A3: for r holds ex g st r
< g & g
in (
dom (f2
* f1));
given r such that
A4: for g st g
in ((
dom f1)
/\ (
right_open_halfline r)) holds (f1
. g)
< (
lim_in+infty f1);
now
let s be
Real_Sequence;
assume that
A5: s is
divergent_to+infty and
A6: (
rng s)
c= (
dom (f2
* f1));
consider k be
Nat such that
A7: for n be
Nat st k
<= n holds r
< (s
. n) by
A5;
A8: (
rng (f1
/* s))
c= (
dom f2) by
A6,
Lm2;
set q = (s
^\ k);
A9: q is
divergent_to+infty by
A5,
LIMFUNC1: 26;
A10: (
rng s)
c= (
dom f1) by
A6,
Lm2;
A11: (
rng q)
c= (
rng s) by
VALUED_0: 21;
A12: (
rng (f1
/* q))
c= ((
dom f2)
/\ (
left_open_halfline (
lim_in+infty f1)))
proof
let x be
object;
assume x
in (
rng (f1
/* q));
then
consider n be
Element of
NAT such that
A13: ((f1
/* q)
. n)
= x by
FUNCT_2: 113;
A14: x
= (f1
. (q
. n)) by
A10,
A11,
A13,
FUNCT_2: 108,
XBOOLE_1: 1
.= (f1
. (s
. (n
+ k))) by
NAT_1:def 3;
r
< (s
. (n
+ k)) by
A7,
NAT_1: 12;
then (s
. (n
+ k))
in { r2 : r
< r2 };
then
A15: (s
. (n
+ k))
in (
right_open_halfline r) by
XXREAL_1: 230;
(s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in ((
dom f1)
/\ (
right_open_halfline r)) by
A10,
A15,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
< (
lim_in+infty f1) by
A4;
then x
in { g1 : g1
< (
lim_in+infty f1) } by
A14;
then
A16: x
in (
left_open_halfline (
lim_in+infty f1)) by
XXREAL_1: 229;
A17: (n
+ k)
in
NAT by
ORDINAL1:def 12;
((f1
/* s)
. (n
+ k))
in (
rng (f1
/* s)) by
VALUED_0: 28;
then ((f1
/* s)
. (n
+ k))
in (
dom f2) by
A8;
then x
in (
dom f2) by
A10,
A14,
FUNCT_2: 108,
A17;
hence thesis by
A16,
XBOOLE_0:def 4;
end;
(
rng q)
c= (
dom f1) by
A10,
A11;
then (f1
/* q) is
convergent & (
lim (f1
/* q))
= (
lim_in+infty f1) by
A1,
A9,
LIMFUNC1:def 12;
then
A18: (f2
/* (f1
/* q)) is
divergent_to+infty by
A2,
A12,
LIMFUNC2:def 2;
(f2
/* (f1
/* q))
= (f2
/* ((f1
/* s)
^\ k)) by
A10,
VALUED_0: 27
.= ((f2
/* (f1
/* s))
^\ k) by
A8,
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A6,
VALUED_0: 31;
hence ((f2
* f1)
/* s) is
divergent_to+infty by
A18,
LIMFUNC1: 7;
end;
hence thesis by
A3;
end;
theorem ::
LIMFUNC4:28
f1 is
convergent_in+infty & f2
is_left_divergent_to-infty_in (
lim_in+infty f1) & (for r holds ex g st r
< g & g
in (
dom (f2
* f1))) & (ex r st for g st g
in ((
dom f1)
/\ (
right_open_halfline r)) holds (f1
. g)
< (
lim_in+infty f1)) implies (f2
* f1) is
divergent_in+infty_to-infty
proof
assume that
A1: f1 is
convergent_in+infty and
A2: f2
is_left_divergent_to-infty_in (
lim_in+infty f1) and
A3: for r holds ex g st r
< g & g
in (
dom (f2
* f1));
given r such that
A4: for g st g
in ((
dom f1)
/\ (
right_open_halfline r)) holds (f1
. g)
< (
lim_in+infty f1);
now
let s be
Real_Sequence;
assume that
A5: s is
divergent_to+infty and
A6: (
rng s)
c= (
dom (f2
* f1));
consider k be
Nat such that
A7: for n be
Nat st k
<= n holds r
< (s
. n) by
A5;
A8: (
rng (f1
/* s))
c= (
dom f2) by
A6,
Lm2;
set q = (s
^\ k);
A9: q is
divergent_to+infty by
A5,
LIMFUNC1: 26;
A10: (
rng s)
c= (
dom f1) by
A6,
Lm2;
A11: (
rng q)
c= (
rng s) by
VALUED_0: 21;
A12: (
rng (f1
/* q))
c= ((
dom f2)
/\ (
left_open_halfline (
lim_in+infty f1)))
proof
let x be
object;
assume x
in (
rng (f1
/* q));
then
consider n be
Element of
NAT such that
A13: ((f1
/* q)
. n)
= x by
FUNCT_2: 113;
A14: x
= (f1
. (q
. n)) by
A10,
A11,
A13,
FUNCT_2: 108,
XBOOLE_1: 1
.= (f1
. (s
. (n
+ k))) by
NAT_1:def 3;
r
< (s
. (n
+ k)) by
A7,
NAT_1: 12;
then (s
. (n
+ k))
in { r2 : r
< r2 };
then
A15: (s
. (n
+ k))
in (
right_open_halfline r) by
XXREAL_1: 230;
(s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in ((
dom f1)
/\ (
right_open_halfline r)) by
A10,
A15,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
< (
lim_in+infty f1) by
A4;
then x
in { g1 : g1
< (
lim_in+infty f1) } by
A14;
then
A16: x
in (
left_open_halfline (
lim_in+infty f1)) by
XXREAL_1: 229;
A17: (n
+ k)
in
NAT by
ORDINAL1:def 12;
((f1
/* s)
. (n
+ k))
in (
rng (f1
/* s)) by
VALUED_0: 28;
then ((f1
/* s)
. (n
+ k))
in (
dom f2) by
A8;
then x
in (
dom f2) by
A10,
A14,
FUNCT_2: 108,
A17;
hence thesis by
A16,
XBOOLE_0:def 4;
end;
(
rng q)
c= (
dom f1) by
A10,
A11;
then (f1
/* q) is
convergent & (
lim (f1
/* q))
= (
lim_in+infty f1) by
A1,
A9,
LIMFUNC1:def 12;
then
A18: (f2
/* (f1
/* q)) is
divergent_to-infty by
A2,
A12,
LIMFUNC2:def 3;
(f2
/* (f1
/* q))
= (f2
/* ((f1
/* s)
^\ k)) by
A10,
VALUED_0: 27
.= ((f2
/* (f1
/* s))
^\ k) by
A8,
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A6,
VALUED_0: 31;
hence ((f2
* f1)
/* s) is
divergent_to-infty by
A18,
LIMFUNC1: 7;
end;
hence thesis by
A3;
end;
theorem ::
LIMFUNC4:29
f1 is
convergent_in+infty & f2
is_right_divergent_to+infty_in (
lim_in+infty f1) & (for r holds ex g st r
< g & g
in (
dom (f2
* f1))) & (ex r st for g st g
in ((
dom f1)
/\ (
right_open_halfline r)) holds (
lim_in+infty f1)
< (f1
. g)) implies (f2
* f1) is
divergent_in+infty_to+infty
proof
assume that
A1: f1 is
convergent_in+infty and
A2: f2
is_right_divergent_to+infty_in (
lim_in+infty f1) and
A3: for r holds ex g st r
< g & g
in (
dom (f2
* f1));
given r such that
A4: for g st g
in ((
dom f1)
/\ (
right_open_halfline r)) holds (
lim_in+infty f1)
< (f1
. g);
now
let s be
Real_Sequence;
assume that
A5: s is
divergent_to+infty and
A6: (
rng s)
c= (
dom (f2
* f1));
consider k be
Nat such that
A7: for n be
Nat st k
<= n holds r
< (s
. n) by
A5;
A8: (
rng (f1
/* s))
c= (
dom f2) by
A6,
Lm2;
set q = (s
^\ k);
A9: q is
divergent_to+infty by
A5,
LIMFUNC1: 26;
A10: (
rng s)
c= (
dom f1) by
A6,
Lm2;
A11: (
rng q)
c= (
rng s) by
VALUED_0: 21;
A12: (
rng (f1
/* q))
c= ((
dom f2)
/\ (
right_open_halfline (
lim_in+infty f1)))
proof
let x be
object;
assume x
in (
rng (f1
/* q));
then
consider n be
Element of
NAT such that
A13: ((f1
/* q)
. n)
= x by
FUNCT_2: 113;
A14: x
= (f1
. (q
. n)) by
A10,
A11,
A13,
FUNCT_2: 108,
XBOOLE_1: 1
.= (f1
. (s
. (n
+ k))) by
NAT_1:def 3;
r
< (s
. (n
+ k)) by
A7,
NAT_1: 12;
then (s
. (n
+ k))
in { r2 : r
< r2 };
then
A15: (s
. (n
+ k))
in (
right_open_halfline r) by
XXREAL_1: 230;
(s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in ((
dom f1)
/\ (
right_open_halfline r)) by
A10,
A15,
XBOOLE_0:def 4;
then (
lim_in+infty f1)
< (f1
. (s
. (n
+ k))) by
A4;
then x
in { g1 : (
lim_in+infty f1)
< g1 } by
A14;
then
A16: x
in (
right_open_halfline (
lim_in+infty f1)) by
XXREAL_1: 230;
A17: (n
+ k)
in
NAT by
ORDINAL1:def 12;
((f1
/* s)
. (n
+ k))
in (
rng (f1
/* s)) by
VALUED_0: 28;
then ((f1
/* s)
. (n
+ k))
in (
dom f2) by
A8;
then x
in (
dom f2) by
A10,
A14,
FUNCT_2: 108,
A17;
hence thesis by
A16,
XBOOLE_0:def 4;
end;
(
rng q)
c= (
dom f1) by
A10,
A11;
then (f1
/* q) is
convergent & (
lim (f1
/* q))
= (
lim_in+infty f1) by
A1,
A9,
LIMFUNC1:def 12;
then
A18: (f2
/* (f1
/* q)) is
divergent_to+infty by
A2,
A12,
LIMFUNC2:def 5;
(f2
/* (f1
/* q))
= (f2
/* ((f1
/* s)
^\ k)) by
A10,
VALUED_0: 27
.= ((f2
/* (f1
/* s))
^\ k) by
A8,
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A6,
VALUED_0: 31;
hence ((f2
* f1)
/* s) is
divergent_to+infty by
A18,
LIMFUNC1: 7;
end;
hence thesis by
A3;
end;
theorem ::
LIMFUNC4:30
f1 is
convergent_in+infty & f2
is_right_divergent_to-infty_in (
lim_in+infty f1) & (for r holds ex g st r
< g & g
in (
dom (f2
* f1))) & (ex r st for g st g
in ((
dom f1)
/\ (
right_open_halfline r)) holds (
lim_in+infty f1)
< (f1
. g)) implies (f2
* f1) is
divergent_in+infty_to-infty
proof
assume that
A1: f1 is
convergent_in+infty and
A2: f2
is_right_divergent_to-infty_in (
lim_in+infty f1) and
A3: for r holds ex g st r
< g & g
in (
dom (f2
* f1));
given r such that
A4: for g st g
in ((
dom f1)
/\ (
right_open_halfline r)) holds (
lim_in+infty f1)
< (f1
. g);
now
let s be
Real_Sequence;
assume that
A5: s is
divergent_to+infty and
A6: (
rng s)
c= (
dom (f2
* f1));
consider k be
Nat such that
A7: for n be
Nat st k
<= n holds r
< (s
. n) by
A5;
A8: (
rng (f1
/* s))
c= (
dom f2) by
A6,
Lm2;
set q = (s
^\ k);
A9: q is
divergent_to+infty by
A5,
LIMFUNC1: 26;
A10: (
rng s)
c= (
dom f1) by
A6,
Lm2;
A11: (
rng q)
c= (
rng s) by
VALUED_0: 21;
A12: (
rng (f1
/* q))
c= ((
dom f2)
/\ (
right_open_halfline (
lim_in+infty f1)))
proof
let x be
object;
assume x
in (
rng (f1
/* q));
then
consider n be
Element of
NAT such that
A13: ((f1
/* q)
. n)
= x by
FUNCT_2: 113;
A14: x
= (f1
. (q
. n)) by
A10,
A11,
A13,
FUNCT_2: 108,
XBOOLE_1: 1
.= (f1
. (s
. (n
+ k))) by
NAT_1:def 3;
r
< (s
. (n
+ k)) by
A7,
NAT_1: 12;
then (s
. (n
+ k))
in { r2 : r
< r2 };
then
A15: (s
. (n
+ k))
in (
right_open_halfline r) by
XXREAL_1: 230;
(s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in ((
dom f1)
/\ (
right_open_halfline r)) by
A10,
A15,
XBOOLE_0:def 4;
then (
lim_in+infty f1)
< (f1
. (s
. (n
+ k))) by
A4;
then x
in { g1 : (
lim_in+infty f1)
< g1 } by
A14;
then
A16: x
in (
right_open_halfline (
lim_in+infty f1)) by
XXREAL_1: 230;
A17: (n
+ k)
in
NAT by
ORDINAL1:def 12;
((f1
/* s)
. (n
+ k))
in (
rng (f1
/* s)) by
VALUED_0: 28;
then ((f1
/* s)
. (n
+ k))
in (
dom f2) by
A8;
then x
in (
dom f2) by
A10,
A14,
FUNCT_2: 108,
A17;
hence thesis by
A16,
XBOOLE_0:def 4;
end;
(
rng q)
c= (
dom f1) by
A10,
A11;
then (f1
/* q) is
convergent & (
lim (f1
/* q))
= (
lim_in+infty f1) by
A1,
A9,
LIMFUNC1:def 12;
then
A18: (f2
/* (f1
/* q)) is
divergent_to-infty by
A2,
A12,
LIMFUNC2:def 6;
(f2
/* (f1
/* q))
= (f2
/* ((f1
/* s)
^\ k)) by
A10,
VALUED_0: 27
.= ((f2
/* (f1
/* s))
^\ k) by
A8,
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A6,
VALUED_0: 31;
hence ((f2
* f1)
/* s) is
divergent_to-infty by
A18,
LIMFUNC1: 7;
end;
hence thesis by
A3;
end;
theorem ::
LIMFUNC4:31
f1 is
convergent_in-infty & f2
is_left_divergent_to+infty_in (
lim_in-infty f1) & (for r holds ex g st g
< r & g
in (
dom (f2
* f1))) & (ex r st for g st g
in ((
dom f1)
/\ (
left_open_halfline r)) holds (f1
. g)
< (
lim_in-infty f1)) implies (f2
* f1) is
divergent_in-infty_to+infty
proof
assume that
A1: f1 is
convergent_in-infty and
A2: f2
is_left_divergent_to+infty_in (
lim_in-infty f1) and
A3: for r holds ex g st g
< r & g
in (
dom (f2
* f1));
given r such that
A4: for g st g
in ((
dom f1)
/\ (
left_open_halfline r)) holds (f1
. g)
< (
lim_in-infty f1);
now
let s be
Real_Sequence;
assume that
A5: s is
divergent_to-infty and
A6: (
rng s)
c= (
dom (f2
* f1));
consider k be
Nat such that
A7: for n be
Nat st k
<= n holds (s
. n)
< r by
A5;
A8: (
rng (f1
/* s))
c= (
dom f2) by
A6,
Lm2;
set q = (s
^\ k);
A9: q is
divergent_to-infty by
A5,
LIMFUNC1: 27;
A10: (
rng s)
c= (
dom f1) by
A6,
Lm2;
A11: (
rng q)
c= (
rng s) by
VALUED_0: 21;
A12: (
rng (f1
/* q))
c= ((
dom f2)
/\ (
left_open_halfline (
lim_in-infty f1)))
proof
let x be
object;
assume x
in (
rng (f1
/* q));
then
consider n be
Element of
NAT such that
A13: ((f1
/* q)
. n)
= x by
FUNCT_2: 113;
A14: x
= (f1
. (q
. n)) by
A10,
A11,
A13,
FUNCT_2: 108,
XBOOLE_1: 1
.= (f1
. (s
. (n
+ k))) by
NAT_1:def 3;
(s
. (n
+ k))
< r by
A7,
NAT_1: 12;
then (s
. (n
+ k))
in { r2 : r2
< r };
then
A15: (s
. (n
+ k))
in (
left_open_halfline r) by
XXREAL_1: 229;
(s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in ((
dom f1)
/\ (
left_open_halfline r)) by
A10,
A15,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
< (
lim_in-infty f1) by
A4;
then x
in { g1 : g1
< (
lim_in-infty f1) } by
A14;
then
A16: x
in (
left_open_halfline (
lim_in-infty f1)) by
XXREAL_1: 229;
A17: (n
+ k)
in
NAT by
ORDINAL1:def 12;
((f1
/* s)
. (n
+ k))
in (
rng (f1
/* s)) by
VALUED_0: 28;
then ((f1
/* s)
. (n
+ k))
in (
dom f2) by
A8;
then x
in (
dom f2) by
A10,
A14,
FUNCT_2: 108,
A17;
hence thesis by
A16,
XBOOLE_0:def 4;
end;
(
rng q)
c= (
dom f1) by
A10,
A11;
then (f1
/* q) is
convergent & (
lim (f1
/* q))
= (
lim_in-infty f1) by
A1,
A9,
LIMFUNC1:def 13;
then
A18: (f2
/* (f1
/* q)) is
divergent_to+infty by
A2,
A12,
LIMFUNC2:def 2;
(f2
/* (f1
/* q))
= (f2
/* ((f1
/* s)
^\ k)) by
A10,
VALUED_0: 27
.= ((f2
/* (f1
/* s))
^\ k) by
A8,
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A6,
VALUED_0: 31;
hence ((f2
* f1)
/* s) is
divergent_to+infty by
A18,
LIMFUNC1: 7;
end;
hence thesis by
A3;
end;
theorem ::
LIMFUNC4:32
f1 is
convergent_in-infty & f2
is_left_divergent_to-infty_in (
lim_in-infty f1) & (for r holds ex g st g
< r & g
in (
dom (f2
* f1))) & (ex r st for g st g
in ((
dom f1)
/\ (
left_open_halfline r)) holds (f1
. g)
< (
lim_in-infty f1)) implies (f2
* f1) is
divergent_in-infty_to-infty
proof
assume that
A1: f1 is
convergent_in-infty and
A2: f2
is_left_divergent_to-infty_in (
lim_in-infty f1) and
A3: for r holds ex g st g
< r & g
in (
dom (f2
* f1));
given r such that
A4: for g st g
in ((
dom f1)
/\ (
left_open_halfline r)) holds (f1
. g)
< (
lim_in-infty f1);
now
let s be
Real_Sequence;
assume that
A5: s is
divergent_to-infty and
A6: (
rng s)
c= (
dom (f2
* f1));
consider k be
Nat such that
A7: for n be
Nat st k
<= n holds (s
. n)
< r by
A5;
A8: (
rng (f1
/* s))
c= (
dom f2) by
A6,
Lm2;
set q = (s
^\ k);
A9: q is
divergent_to-infty by
A5,
LIMFUNC1: 27;
A10: (
rng s)
c= (
dom f1) by
A6,
Lm2;
A11: (
rng q)
c= (
rng s) by
VALUED_0: 21;
A12: (
rng (f1
/* q))
c= ((
dom f2)
/\ (
left_open_halfline (
lim_in-infty f1)))
proof
let x be
object;
assume x
in (
rng (f1
/* q));
then
consider n be
Element of
NAT such that
A13: ((f1
/* q)
. n)
= x by
FUNCT_2: 113;
A14: x
= (f1
. (q
. n)) by
A10,
A11,
A13,
FUNCT_2: 108,
XBOOLE_1: 1
.= (f1
. (s
. (n
+ k))) by
NAT_1:def 3;
(s
. (n
+ k))
< r by
A7,
NAT_1: 12;
then (s
. (n
+ k))
in { r2 : r2
< r };
then
A15: (s
. (n
+ k))
in (
left_open_halfline r) by
XXREAL_1: 229;
(s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in ((
dom f1)
/\ (
left_open_halfline r)) by
A10,
A15,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
< (
lim_in-infty f1) by
A4;
then x
in { g1 : g1
< (
lim_in-infty f1) } by
A14;
then
A16: x
in (
left_open_halfline (
lim_in-infty f1)) by
XXREAL_1: 229;
A17: (n
+ k)
in
NAT by
ORDINAL1:def 12;
((f1
/* s)
. (n
+ k))
in (
rng (f1
/* s)) by
VALUED_0: 28;
then ((f1
/* s)
. (n
+ k))
in (
dom f2) by
A8;
then x
in (
dom f2) by
A10,
A14,
FUNCT_2: 108,
A17;
hence thesis by
A16,
XBOOLE_0:def 4;
end;
(
rng q)
c= (
dom f1) by
A10,
A11;
then (f1
/* q) is
convergent & (
lim (f1
/* q))
= (
lim_in-infty f1) by
A1,
A9,
LIMFUNC1:def 13;
then
A18: (f2
/* (f1
/* q)) is
divergent_to-infty by
A2,
A12,
LIMFUNC2:def 3;
(f2
/* (f1
/* q))
= (f2
/* ((f1
/* s)
^\ k)) by
A10,
VALUED_0: 27
.= ((f2
/* (f1
/* s))
^\ k) by
A8,
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A6,
VALUED_0: 31;
hence ((f2
* f1)
/* s) is
divergent_to-infty by
A18,
LIMFUNC1: 7;
end;
hence thesis by
A3;
end;
theorem ::
LIMFUNC4:33
f1 is
convergent_in-infty & f2
is_right_divergent_to+infty_in (
lim_in-infty f1) & (for r holds ex g st g
< r & g
in (
dom (f2
* f1))) & (ex r st for g st g
in ((
dom f1)
/\ (
left_open_halfline r)) holds (
lim_in-infty f1)
< (f1
. g)) implies (f2
* f1) is
divergent_in-infty_to+infty
proof
assume that
A1: f1 is
convergent_in-infty and
A2: f2
is_right_divergent_to+infty_in (
lim_in-infty f1) and
A3: for r holds ex g st g
< r & g
in (
dom (f2
* f1));
given r such that
A4: for g st g
in ((
dom f1)
/\ (
left_open_halfline r)) holds (
lim_in-infty f1)
< (f1
. g);
now
let s be
Real_Sequence;
assume that
A5: s is
divergent_to-infty and
A6: (
rng s)
c= (
dom (f2
* f1));
consider k be
Nat such that
A7: for n be
Nat st k
<= n holds (s
. n)
< r by
A5;
A8: (
rng (f1
/* s))
c= (
dom f2) by
A6,
Lm2;
set q = (s
^\ k);
A9: q is
divergent_to-infty by
A5,
LIMFUNC1: 27;
A10: (
rng s)
c= (
dom f1) by
A6,
Lm2;
A11: (
rng q)
c= (
rng s) by
VALUED_0: 21;
A12: (
rng (f1
/* q))
c= ((
dom f2)
/\ (
right_open_halfline (
lim_in-infty f1)))
proof
let x be
object;
assume x
in (
rng (f1
/* q));
then
consider n be
Element of
NAT such that
A13: ((f1
/* q)
. n)
= x by
FUNCT_2: 113;
A14: x
= (f1
. (q
. n)) by
A10,
A11,
A13,
FUNCT_2: 108,
XBOOLE_1: 1
.= (f1
. (s
. (n
+ k))) by
NAT_1:def 3;
(s
. (n
+ k))
< r by
A7,
NAT_1: 12;
then (s
. (n
+ k))
in { r2 : r2
< r };
then
A15: (s
. (n
+ k))
in (
left_open_halfline r) by
XXREAL_1: 229;
(s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in ((
dom f1)
/\ (
left_open_halfline r)) by
A10,
A15,
XBOOLE_0:def 4;
then (
lim_in-infty f1)
< (f1
. (s
. (n
+ k))) by
A4;
then x
in { g1 : (
lim_in-infty f1)
< g1 } by
A14;
then
A16: x
in (
right_open_halfline (
lim_in-infty f1)) by
XXREAL_1: 230;
A17: (n
+ k)
in
NAT by
ORDINAL1:def 12;
((f1
/* s)
. (n
+ k))
in (
rng (f1
/* s)) by
VALUED_0: 28;
then ((f1
/* s)
. (n
+ k))
in (
dom f2) by
A8;
then x
in (
dom f2) by
A10,
A14,
FUNCT_2: 108,
A17;
hence thesis by
A16,
XBOOLE_0:def 4;
end;
(
rng q)
c= (
dom f1) by
A10,
A11;
then (f1
/* q) is
convergent & (
lim (f1
/* q))
= (
lim_in-infty f1) by
A1,
A9,
LIMFUNC1:def 13;
then
A18: (f2
/* (f1
/* q)) is
divergent_to+infty by
A2,
A12,
LIMFUNC2:def 5;
(f2
/* (f1
/* q))
= (f2
/* ((f1
/* s)
^\ k)) by
A10,
VALUED_0: 27
.= ((f2
/* (f1
/* s))
^\ k) by
A8,
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A6,
VALUED_0: 31;
hence ((f2
* f1)
/* s) is
divergent_to+infty by
A18,
LIMFUNC1: 7;
end;
hence thesis by
A3;
end;
theorem ::
LIMFUNC4:34
f1 is
convergent_in-infty & f2
is_right_divergent_to-infty_in (
lim_in-infty f1) & (for r holds ex g st g
< r & g
in (
dom (f2
* f1))) & (ex r st for g st g
in ((
dom f1)
/\ (
left_open_halfline r)) holds (
lim_in-infty f1)
< (f1
. g)) implies (f2
* f1) is
divergent_in-infty_to-infty
proof
assume that
A1: f1 is
convergent_in-infty and
A2: f2
is_right_divergent_to-infty_in (
lim_in-infty f1) and
A3: for r holds ex g st g
< r & g
in (
dom (f2
* f1));
given r such that
A4: for g st g
in ((
dom f1)
/\ (
left_open_halfline r)) holds (
lim_in-infty f1)
< (f1
. g);
now
let s be
Real_Sequence;
assume that
A5: s is
divergent_to-infty and
A6: (
rng s)
c= (
dom (f2
* f1));
consider k be
Nat such that
A7: for n be
Nat st k
<= n holds (s
. n)
< r by
A5;
A8: (
rng (f1
/* s))
c= (
dom f2) by
A6,
Lm2;
set q = (s
^\ k);
A9: q is
divergent_to-infty by
A5,
LIMFUNC1: 27;
A10: (
rng s)
c= (
dom f1) by
A6,
Lm2;
A11: (
rng q)
c= (
rng s) by
VALUED_0: 21;
A12: (
rng (f1
/* q))
c= ((
dom f2)
/\ (
right_open_halfline (
lim_in-infty f1)))
proof
let x be
object;
assume x
in (
rng (f1
/* q));
then
consider n be
Element of
NAT such that
A13: ((f1
/* q)
. n)
= x by
FUNCT_2: 113;
A14: x
= (f1
. (q
. n)) by
A10,
A11,
A13,
FUNCT_2: 108,
XBOOLE_1: 1
.= (f1
. (s
. (n
+ k))) by
NAT_1:def 3;
(s
. (n
+ k))
< r by
A7,
NAT_1: 12;
then (s
. (n
+ k))
in { r2 : r2
< r };
then
A15: (s
. (n
+ k))
in (
left_open_halfline r) by
XXREAL_1: 229;
(s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in ((
dom f1)
/\ (
left_open_halfline r)) by
A10,
A15,
XBOOLE_0:def 4;
then (
lim_in-infty f1)
< (f1
. (s
. (n
+ k))) by
A4;
then x
in { g1 : (
lim_in-infty f1)
< g1 } by
A14;
then
A16: x
in (
right_open_halfline (
lim_in-infty f1)) by
XXREAL_1: 230;
A17: (n
+ k)
in
NAT by
ORDINAL1:def 12;
((f1
/* s)
. (n
+ k))
in (
rng (f1
/* s)) by
VALUED_0: 28;
then ((f1
/* s)
. (n
+ k))
in (
dom f2) by
A8;
then x
in (
dom f2) by
A10,
A14,
FUNCT_2: 108,
A17;
hence thesis by
A16,
XBOOLE_0:def 4;
end;
(
rng q)
c= (
dom f1) by
A10,
A11;
then (f1
/* q) is
convergent & (
lim (f1
/* q))
= (
lim_in-infty f1) by
A1,
A9,
LIMFUNC1:def 13;
then
A18: (f2
/* (f1
/* q)) is
divergent_to-infty by
A2,
A12,
LIMFUNC2:def 6;
(f2
/* (f1
/* q))
= (f2
/* ((f1
/* s)
^\ k)) by
A10,
VALUED_0: 27
.= ((f2
/* (f1
/* s))
^\ k) by
A8,
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A6,
VALUED_0: 31;
hence ((f2
* f1)
/* s) is
divergent_to-infty by
A18,
LIMFUNC1: 7;
end;
hence thesis by
A3;
end;
theorem ::
LIMFUNC4:35
f1
is_divergent_to+infty_in x0 & f2 is
divergent_in+infty_to+infty & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f2
* f1)) & g2
< r2 & x0
< g2 & g2
in (
dom (f2
* f1))) implies (f2
* f1)
is_divergent_to+infty_in x0
proof
assume that
A1: f1
is_divergent_to+infty_in x0 and
A2: f2 is
divergent_in+infty_to+infty and
A3: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f2
* f1)) & g2
< r2 & x0
< g2 & g2
in (
dom (f2
* f1));
now
let s be
Real_Sequence;
assume that
A4: s is
convergent & (
lim s)
= x0 and
A5: (
rng s)
c= ((
dom (f2
* f1))
\
{x0});
A6: (
rng s)
c= (
dom (f2
* f1)) by
A5,
Th2;
(
rng s)
c= ((
dom f1)
\
{x0}) by
A5,
Th2;
then
A7: (f1
/* s) is
divergent_to+infty by
A1,
A4,
LIMFUNC3:def 2;
(
rng (f1
/* s))
c= (
dom f2) by
A5,
Th2;
then (f2
/* (f1
/* s)) is
divergent_to+infty by
A2,
A7;
hence ((f2
* f1)
/* s) is
divergent_to+infty by
A6,
VALUED_0: 31;
end;
hence thesis by
A3,
LIMFUNC3:def 2;
end;
theorem ::
LIMFUNC4:36
f1
is_divergent_to+infty_in x0 & f2 is
divergent_in+infty_to-infty & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f2
* f1)) & g2
< r2 & x0
< g2 & g2
in (
dom (f2
* f1))) implies (f2
* f1)
is_divergent_to-infty_in x0
proof
assume that
A1: f1
is_divergent_to+infty_in x0 and
A2: f2 is
divergent_in+infty_to-infty and
A3: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f2
* f1)) & g2
< r2 & x0
< g2 & g2
in (
dom (f2
* f1));
now
let s be
Real_Sequence;
assume that
A4: s is
convergent & (
lim s)
= x0 and
A5: (
rng s)
c= ((
dom (f2
* f1))
\
{x0});
A6: (
rng s)
c= (
dom (f2
* f1)) by
A5,
Th2;
(
rng s)
c= ((
dom f1)
\
{x0}) by
A5,
Th2;
then
A7: (f1
/* s) is
divergent_to+infty by
A1,
A4,
LIMFUNC3:def 2;
(
rng (f1
/* s))
c= (
dom f2) by
A5,
Th2;
then (f2
/* (f1
/* s)) is
divergent_to-infty by
A2,
A7;
hence ((f2
* f1)
/* s) is
divergent_to-infty by
A6,
VALUED_0: 31;
end;
hence thesis by
A3,
LIMFUNC3:def 3;
end;
theorem ::
LIMFUNC4:37
f1
is_divergent_to-infty_in x0 & f2 is
divergent_in-infty_to+infty & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f2
* f1)) & g2
< r2 & x0
< g2 & g2
in (
dom (f2
* f1))) implies (f2
* f1)
is_divergent_to+infty_in x0
proof
assume that
A1: f1
is_divergent_to-infty_in x0 and
A2: f2 is
divergent_in-infty_to+infty and
A3: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f2
* f1)) & g2
< r2 & x0
< g2 & g2
in (
dom (f2
* f1));
now
let s be
Real_Sequence;
assume that
A4: s is
convergent & (
lim s)
= x0 and
A5: (
rng s)
c= ((
dom (f2
* f1))
\
{x0});
A6: (
rng s)
c= (
dom (f2
* f1)) by
A5,
Th2;
(
rng s)
c= ((
dom f1)
\
{x0}) by
A5,
Th2;
then
A7: (f1
/* s) is
divergent_to-infty by
A1,
A4,
LIMFUNC3:def 3;
(
rng (f1
/* s))
c= (
dom f2) by
A5,
Th2;
then (f2
/* (f1
/* s)) is
divergent_to+infty by
A2,
A7;
hence ((f2
* f1)
/* s) is
divergent_to+infty by
A6,
VALUED_0: 31;
end;
hence thesis by
A3,
LIMFUNC3:def 2;
end;
theorem ::
LIMFUNC4:38
f1
is_divergent_to-infty_in x0 & f2 is
divergent_in-infty_to-infty & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f2
* f1)) & g2
< r2 & x0
< g2 & g2
in (
dom (f2
* f1))) implies (f2
* f1)
is_divergent_to-infty_in x0
proof
assume that
A1: f1
is_divergent_to-infty_in x0 and
A2: f2 is
divergent_in-infty_to-infty and
A3: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f2
* f1)) & g2
< r2 & x0
< g2 & g2
in (
dom (f2
* f1));
now
let s be
Real_Sequence;
assume that
A4: s is
convergent & (
lim s)
= x0 and
A5: (
rng s)
c= ((
dom (f2
* f1))
\
{x0});
A6: (
rng s)
c= (
dom (f2
* f1)) by
A5,
Th2;
(
rng s)
c= ((
dom f1)
\
{x0}) by
A5,
Th2;
then
A7: (f1
/* s) is
divergent_to-infty by
A1,
A4,
LIMFUNC3:def 3;
(
rng (f1
/* s))
c= (
dom f2) by
A5,
Th2;
then (f2
/* (f1
/* s)) is
divergent_to-infty by
A2,
A7;
hence ((f2
* f1)
/* s) is
divergent_to-infty by
A6,
VALUED_0: 31;
end;
hence thesis by
A3,
LIMFUNC3:def 3;
end;
theorem ::
LIMFUNC4:39
f1
is_convergent_in x0 & f2
is_divergent_to+infty_in (
lim (f1,x0)) & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f2
* f1)) & g2
< r2 & x0
< g2 & g2
in (
dom (f2
* f1))) & (ex g st
0
< g & for r st r
in ((
dom f1)
/\ (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[)) holds (f1
. r)
<> (
lim (f1,x0))) implies (f2
* f1)
is_divergent_to+infty_in x0
proof
assume that
A1: f1
is_convergent_in x0 and
A2: f2
is_divergent_to+infty_in (
lim (f1,x0)) and
A3: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f2
* f1)) & g2
< r2 & x0
< g2 & g2
in (
dom (f2
* f1));
given g such that
A4:
0
< g and
A5: for r st r
in ((
dom f1)
/\ (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[)) holds (f1
. r)
<> (
lim (f1,x0));
now
let s be
Real_Sequence;
assume that
A6: s is
convergent & (
lim s)
= x0 and
A7: (
rng s)
c= ((
dom (f2
* f1))
\
{x0});
consider k be
Element of
NAT such that
A8: for n be
Element of
NAT st k
<= n holds (x0
- g)
< (s
. n) & (s
. n)
< (x0
+ g) by
A4,
A6,
LIMFUNC3: 7;
set q = ((f1
/* s)
^\ k);
A9: (
rng s)
c= (
dom (f2
* f1)) by
A7,
Th2;
(
rng (f1
/* s))
c= (
dom f2) by
A7,
Th2;
then
A10: (f2
/* q)
= ((f2
/* (f1
/* s))
^\ k) by
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A9,
VALUED_0: 31;
A11: (
rng s)
c= ((
dom f1)
\
{x0}) by
A7,
Th2;
then
A12: (f1
/* s) is
convergent by
A1,
A2,
A6,
LIMFUNC3:def 4;
A13: (
rng s)
c= (
dom f1) by
A7,
Th2;
now
let x be
object;
assume x
in (
rng q);
then
consider n be
Element of
NAT such that
A14: (q
. n)
= x by
FUNCT_2: 113;
A15: (f1
. (s
. (n
+ k)))
= ((f1
/* s)
. (n
+ k)) by
A13,
FUNCT_2: 108
.= x by
A14,
NAT_1:def 3;
k
<= (n
+ k) by
NAT_1: 12;
then (x0
- g)
< (s
. (n
+ k)) & (s
. (n
+ k))
< (x0
+ g) by
A8;
then (s
. (n
+ k))
in { g1 : (x0
- g)
< g1 & g1
< (x0
+ g) };
then
A16: (s
. (n
+ k))
in
].(x0
- g), (x0
+ g).[ by
RCOMP_1:def 2;
A17: (s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then not (s
. (n
+ k))
in
{x0} by
A7,
XBOOLE_0:def 5;
then (s
. (n
+ k))
in (
].(x0
- g), (x0
+ g).[
\
{x0}) by
A16,
XBOOLE_0:def 5;
then (s
. (n
+ k))
in (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[) by
A4,
LIMFUNC3: 4;
then (s
. (n
+ k))
in ((
dom f1)
/\ (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[)) by
A13,
A17,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
<> (
lim (f1,x0)) by
A5;
then
A18: not (f1
. (s
. (n
+ k)))
in
{(
lim (f1,x0))} by
TARSKI:def 1;
(f1
. (s
. (n
+ k)))
in (
dom f2) by
A9,
A17,
FUNCT_1: 11;
hence x
in ((
dom f2)
\
{(
lim (f1,x0))}) by
A18,
A15,
XBOOLE_0:def 5;
end;
then
A19: (
rng q)
c= ((
dom f2)
\
{(
lim (f1,x0))});
(
lim (f1
/* s))
= (
lim (f1,x0)) by
A1,
A6,
A11,
LIMFUNC3:def 4;
then (
lim q)
= (
lim (f1,x0)) by
A12,
SEQ_4: 20;
then (f2
/* q) is
divergent_to+infty by
A2,
A12,
A19,
LIMFUNC3:def 2;
hence ((f2
* f1)
/* s) is
divergent_to+infty by
A10,
LIMFUNC1: 7;
end;
hence thesis by
A3,
LIMFUNC3:def 2;
end;
theorem ::
LIMFUNC4:40
f1
is_convergent_in x0 & f2
is_divergent_to-infty_in (
lim (f1,x0)) & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f2
* f1)) & g2
< r2 & x0
< g2 & g2
in (
dom (f2
* f1))) & (ex g st
0
< g & for r st r
in ((
dom f1)
/\ (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[)) holds (f1
. r)
<> (
lim (f1,x0))) implies (f2
* f1)
is_divergent_to-infty_in x0
proof
assume that
A1: f1
is_convergent_in x0 and
A2: f2
is_divergent_to-infty_in (
lim (f1,x0)) and
A3: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f2
* f1)) & g2
< r2 & x0
< g2 & g2
in (
dom (f2
* f1));
given g such that
A4:
0
< g and
A5: for r st r
in ((
dom f1)
/\ (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[)) holds (f1
. r)
<> (
lim (f1,x0));
now
let s be
Real_Sequence;
assume that
A6: s is
convergent & (
lim s)
= x0 and
A7: (
rng s)
c= ((
dom (f2
* f1))
\
{x0});
consider k be
Element of
NAT such that
A8: for n be
Element of
NAT st k
<= n holds (x0
- g)
< (s
. n) & (s
. n)
< (x0
+ g) by
A4,
A6,
LIMFUNC3: 7;
set q = ((f1
/* s)
^\ k);
A9: (
rng s)
c= (
dom (f2
* f1)) by
A7,
Th2;
(
rng (f1
/* s))
c= (
dom f2) by
A7,
Th2;
then
A10: (f2
/* q)
= ((f2
/* (f1
/* s))
^\ k) by
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A9,
VALUED_0: 31;
A11: (
rng s)
c= ((
dom f1)
\
{x0}) by
A7,
Th2;
then
A12: (f1
/* s) is
convergent by
A1,
A2,
A6,
LIMFUNC3:def 4;
A13: (
rng s)
c= (
dom f1) by
A7,
Th2;
now
let x be
object;
assume x
in (
rng q);
then
consider n be
Element of
NAT such that
A14: (q
. n)
= x by
FUNCT_2: 113;
A15: (f1
. (s
. (n
+ k)))
= ((f1
/* s)
. (n
+ k)) by
A13,
FUNCT_2: 108
.= x by
A14,
NAT_1:def 3;
k
<= (n
+ k) by
NAT_1: 12;
then (x0
- g)
< (s
. (n
+ k)) & (s
. (n
+ k))
< (x0
+ g) by
A8;
then (s
. (n
+ k))
in { g1 : (x0
- g)
< g1 & g1
< (x0
+ g) };
then
A16: (s
. (n
+ k))
in
].(x0
- g), (x0
+ g).[ by
RCOMP_1:def 2;
A17: (s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then not (s
. (n
+ k))
in
{x0} by
A7,
XBOOLE_0:def 5;
then (s
. (n
+ k))
in (
].(x0
- g), (x0
+ g).[
\
{x0}) by
A16,
XBOOLE_0:def 5;
then (s
. (n
+ k))
in (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[) by
A4,
LIMFUNC3: 4;
then (s
. (n
+ k))
in ((
dom f1)
/\ (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[)) by
A13,
A17,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
<> (
lim (f1,x0)) by
A5;
then
A18: not (f1
. (s
. (n
+ k)))
in
{(
lim (f1,x0))} by
TARSKI:def 1;
(f1
. (s
. (n
+ k)))
in (
dom f2) by
A9,
A17,
FUNCT_1: 11;
hence x
in ((
dom f2)
\
{(
lim (f1,x0))}) by
A18,
A15,
XBOOLE_0:def 5;
end;
then
A19: (
rng q)
c= ((
dom f2)
\
{(
lim (f1,x0))});
(
lim (f1
/* s))
= (
lim (f1,x0)) by
A1,
A6,
A11,
LIMFUNC3:def 4;
then (
lim q)
= (
lim (f1,x0)) by
A12,
SEQ_4: 20;
then (f2
/* q) is
divergent_to-infty by
A2,
A12,
A19,
LIMFUNC3:def 3;
hence ((f2
* f1)
/* s) is
divergent_to-infty by
A10,
LIMFUNC1: 7;
end;
hence thesis by
A3,
LIMFUNC3:def 3;
end;
theorem ::
LIMFUNC4:41
f1
is_convergent_in x0 & f2
is_right_divergent_to+infty_in (
lim (f1,x0)) & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f2
* f1)) & g2
< r2 & x0
< g2 & g2
in (
dom (f2
* f1))) & (ex g st
0
< g & for r st r
in ((
dom f1)
/\ (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[)) holds (f1
. r)
> (
lim (f1,x0))) implies (f2
* f1)
is_divergent_to+infty_in x0
proof
assume that
A1: f1
is_convergent_in x0 and
A2: f2
is_right_divergent_to+infty_in (
lim (f1,x0)) and
A3: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f2
* f1)) & g2
< r2 & x0
< g2 & g2
in (
dom (f2
* f1));
given g such that
A4:
0
< g and
A5: for r st r
in ((
dom f1)
/\ (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[)) holds (
lim (f1,x0))
< (f1
. r);
now
let s be
Real_Sequence;
assume that
A6: s is
convergent & (
lim s)
= x0 and
A7: (
rng s)
c= ((
dom (f2
* f1))
\
{x0});
consider k be
Element of
NAT such that
A8: for n be
Element of
NAT st k
<= n holds (x0
- g)
< (s
. n) & (s
. n)
< (x0
+ g) by
A4,
A6,
LIMFUNC3: 7;
set q = ((f1
/* s)
^\ k);
A9: (
rng s)
c= (
dom (f2
* f1)) by
A7,
Th2;
(
rng (f1
/* s))
c= (
dom f2) by
A7,
Th2;
then
A10: (f2
/* q)
= ((f2
/* (f1
/* s))
^\ k) by
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A9,
VALUED_0: 31;
A11: (
rng s)
c= ((
dom f1)
\
{x0}) by
A7,
Th2;
then
A12: (f1
/* s) is
convergent by
A1,
A2,
A6,
LIMFUNC3:def 4;
A13: (
rng s)
c= (
dom f1) by
A7,
Th2;
now
let x be
object;
assume x
in (
rng q);
then
consider n be
Element of
NAT such that
A14: (q
. n)
= x by
FUNCT_2: 113;
A15: (f1
. (s
. (n
+ k)))
= ((f1
/* s)
. (n
+ k)) by
A13,
FUNCT_2: 108
.= x by
A14,
NAT_1:def 3;
k
<= (n
+ k) by
NAT_1: 12;
then (x0
- g)
< (s
. (n
+ k)) & (s
. (n
+ k))
< (x0
+ g) by
A8;
then (s
. (n
+ k))
in { g1 : (x0
- g)
< g1 & g1
< (x0
+ g) };
then
A16: (s
. (n
+ k))
in
].(x0
- g), (x0
+ g).[ by
RCOMP_1:def 2;
A17: (s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then not (s
. (n
+ k))
in
{x0} by
A7,
XBOOLE_0:def 5;
then (s
. (n
+ k))
in (
].(x0
- g), (x0
+ g).[
\
{x0}) by
A16,
XBOOLE_0:def 5;
then (s
. (n
+ k))
in (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[) by
A4,
LIMFUNC3: 4;
then (s
. (n
+ k))
in ((
dom f1)
/\ (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[)) by
A13,
A17,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
> (
lim (f1,x0)) by
A5;
then (f1
. (s
. (n
+ k)))
in { g2 : (
lim (f1,x0))
< g2 };
then
A18: (f1
. (s
. (n
+ k)))
in (
right_open_halfline (
lim (f1,x0))) by
XXREAL_1: 230;
(f1
. (s
. (n
+ k)))
in (
dom f2) by
A9,
A17,
FUNCT_1: 11;
hence x
in ((
dom f2)
/\ (
right_open_halfline (
lim (f1,x0)))) by
A18,
A15,
XBOOLE_0:def 4;
end;
then
A19: (
rng q)
c= ((
dom f2)
/\ (
right_open_halfline (
lim (f1,x0))));
(
lim (f1
/* s))
= (
lim (f1,x0)) by
A1,
A6,
A11,
LIMFUNC3:def 4;
then (
lim q)
= (
lim (f1,x0)) by
A12,
SEQ_4: 20;
then (f2
/* q) is
divergent_to+infty by
A2,
A12,
A19,
LIMFUNC2:def 5;
hence ((f2
* f1)
/* s) is
divergent_to+infty by
A10,
LIMFUNC1: 7;
end;
hence thesis by
A3,
LIMFUNC3:def 2;
end;
theorem ::
LIMFUNC4:42
f1
is_convergent_in x0 & f2
is_right_divergent_to-infty_in (
lim (f1,x0)) & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f2
* f1)) & g2
< r2 & x0
< g2 & g2
in (
dom (f2
* f1))) & (ex g st
0
< g & for r st r
in ((
dom f1)
/\ (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[)) holds (f1
. r)
> (
lim (f1,x0))) implies (f2
* f1)
is_divergent_to-infty_in x0
proof
assume that
A1: f1
is_convergent_in x0 and
A2: f2
is_right_divergent_to-infty_in (
lim (f1,x0)) and
A3: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f2
* f1)) & g2
< r2 & x0
< g2 & g2
in (
dom (f2
* f1));
given g such that
A4:
0
< g and
A5: for r st r
in ((
dom f1)
/\ (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[)) holds (
lim (f1,x0))
< (f1
. r);
now
let s be
Real_Sequence;
assume that
A6: s is
convergent & (
lim s)
= x0 and
A7: (
rng s)
c= ((
dom (f2
* f1))
\
{x0});
consider k be
Element of
NAT such that
A8: for n be
Element of
NAT st k
<= n holds (x0
- g)
< (s
. n) & (s
. n)
< (x0
+ g) by
A4,
A6,
LIMFUNC3: 7;
set q = ((f1
/* s)
^\ k);
A9: (
rng s)
c= (
dom (f2
* f1)) by
A7,
Th2;
(
rng (f1
/* s))
c= (
dom f2) by
A7,
Th2;
then
A10: (f2
/* q)
= ((f2
/* (f1
/* s))
^\ k) by
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A9,
VALUED_0: 31;
A11: (
rng s)
c= ((
dom f1)
\
{x0}) by
A7,
Th2;
then
A12: (f1
/* s) is
convergent by
A1,
A2,
A6,
LIMFUNC3:def 4;
A13: (
rng s)
c= (
dom f1) by
A7,
Th2;
now
let x be
object;
assume x
in (
rng q);
then
consider n be
Element of
NAT such that
A14: (q
. n)
= x by
FUNCT_2: 113;
A15: (f1
. (s
. (n
+ k)))
= ((f1
/* s)
. (n
+ k)) by
A13,
FUNCT_2: 108
.= x by
A14,
NAT_1:def 3;
k
<= (n
+ k) by
NAT_1: 12;
then (x0
- g)
< (s
. (n
+ k)) & (s
. (n
+ k))
< (x0
+ g) by
A8;
then (s
. (n
+ k))
in { g1 : (x0
- g)
< g1 & g1
< (x0
+ g) };
then
A16: (s
. (n
+ k))
in
].(x0
- g), (x0
+ g).[ by
RCOMP_1:def 2;
A17: (s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then not (s
. (n
+ k))
in
{x0} by
A7,
XBOOLE_0:def 5;
then (s
. (n
+ k))
in (
].(x0
- g), (x0
+ g).[
\
{x0}) by
A16,
XBOOLE_0:def 5;
then (s
. (n
+ k))
in (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[) by
A4,
LIMFUNC3: 4;
then (s
. (n
+ k))
in ((
dom f1)
/\ (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[)) by
A13,
A17,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
> (
lim (f1,x0)) by
A5;
then (f1
. (s
. (n
+ k)))
in { g2 : (
lim (f1,x0))
< g2 };
then
A18: (f1
. (s
. (n
+ k)))
in (
right_open_halfline (
lim (f1,x0))) by
XXREAL_1: 230;
(f1
. (s
. (n
+ k)))
in (
dom f2) by
A9,
A17,
FUNCT_1: 11;
hence x
in ((
dom f2)
/\ (
right_open_halfline (
lim (f1,x0)))) by
A18,
A15,
XBOOLE_0:def 4;
end;
then
A19: (
rng q)
c= ((
dom f2)
/\ (
right_open_halfline (
lim (f1,x0))));
(
lim (f1
/* s))
= (
lim (f1,x0)) by
A1,
A6,
A11,
LIMFUNC3:def 4;
then (
lim q)
= (
lim (f1,x0)) by
A12,
SEQ_4: 20;
then (f2
/* q) is
divergent_to-infty by
A2,
A12,
A19,
LIMFUNC2:def 6;
hence ((f2
* f1)
/* s) is
divergent_to-infty by
A10,
LIMFUNC1: 7;
end;
hence thesis by
A3,
LIMFUNC3:def 3;
end;
theorem ::
LIMFUNC4:43
f1
is_right_convergent_in x0 & f2
is_divergent_to+infty_in (
lim_right (f1,x0)) & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f2
* f1))) & (ex g st
0
< g & for r st r
in ((
dom f1)
/\
].x0, (x0
+ g).[) holds (f1
. r)
<> (
lim_right (f1,x0))) implies (f2
* f1)
is_right_divergent_to+infty_in x0
proof
assume that
A1: f1
is_right_convergent_in x0 and
A2: f2
is_divergent_to+infty_in (
lim_right (f1,x0)) and
A3: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f2
* f1));
given g such that
A4:
0
< g and
A5: for r st r
in ((
dom f1)
/\
].x0, (x0
+ g).[) holds (f1
. r)
<> (
lim_right (f1,x0));
now
let s be
Real_Sequence;
assume that
A6: s is
convergent & (
lim s)
= x0 and
A7: (
rng s)
c= ((
dom (f2
* f1))
/\ (
right_open_halfline x0));
consider k be
Nat such that
A8: for n be
Nat st k
<= n holds (s
. n)
< (x0
+ g) by
A4,
A6,
Lm1,
LIMFUNC2: 2;
set q = ((f1
/* s)
^\ k);
A9: (
rng s)
c= (
dom (f2
* f1)) by
A7,
Th1;
(
rng (f1
/* s))
c= (
dom f2) by
A7,
Th1;
then
A10: (f2
/* q)
= ((f2
/* (f1
/* s))
^\ k) by
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A9,
VALUED_0: 31;
A11: (
rng s)
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A7,
Th1;
then
A12: (f1
/* s) is
convergent by
A1,
A2,
A6,
LIMFUNC2:def 8;
A13: (
rng s)
c= (
dom f1) by
A7,
Th1;
A14: (
rng s)
c= (
right_open_halfline x0) by
A7,
Th1;
now
let x be
object;
assume x
in (
rng q);
then
consider n be
Element of
NAT such that
A15: (q
. n)
= x by
FUNCT_2: 113;
A16: (n
+ k)
in
NAT by
ORDINAL1:def 12;
A17: (f1
. (s
. (n
+ k)))
= ((f1
/* s)
. (n
+ k)) by
A13,
FUNCT_2: 108,
A16
.= x by
A15,
NAT_1:def 3;
A18: (s
. (n
+ k))
< (x0
+ g) by
A8,
NAT_1: 12;
A19: (s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in (
right_open_halfline x0) by
A14;
then (s
. (n
+ k))
in { g1 : x0
< g1 } by
XXREAL_1: 230;
then ex g1 st g1
= (s
. (n
+ k)) & x0
< g1;
then (s
. (n
+ k))
in { g2 : x0
< g2 & g2
< (x0
+ g) } by
A18;
then (s
. (n
+ k))
in
].x0, (x0
+ g).[ by
RCOMP_1:def 2;
then (s
. (n
+ k))
in ((
dom f1)
/\
].x0, (x0
+ g).[) by
A13,
A19,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
<> (
lim_right (f1,x0)) by
A5;
then
A20: not (f1
. (s
. (n
+ k)))
in
{(
lim_right (f1,x0))} by
TARSKI:def 1;
(f1
. (s
. (n
+ k)))
in (
dom f2) by
A9,
A19,
FUNCT_1: 11;
hence x
in ((
dom f2)
\
{(
lim_right (f1,x0))}) by
A20,
A17,
XBOOLE_0:def 5;
end;
then
A21: (
rng q)
c= ((
dom f2)
\
{(
lim_right (f1,x0))});
(
lim (f1
/* s))
= (
lim_right (f1,x0)) by
A1,
A6,
A11,
LIMFUNC2:def 8;
then (
lim q)
= (
lim_right (f1,x0)) by
A12,
SEQ_4: 20;
then (f2
/* q) is
divergent_to+infty by
A2,
A12,
A21,
LIMFUNC3:def 2;
hence ((f2
* f1)
/* s) is
divergent_to+infty by
A10,
LIMFUNC1: 7;
end;
hence thesis by
A3,
LIMFUNC2:def 5;
end;
theorem ::
LIMFUNC4:44
f1
is_right_convergent_in x0 & f2
is_divergent_to-infty_in (
lim_right (f1,x0)) & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f2
* f1))) & (ex g st
0
< g & for r st r
in ((
dom f1)
/\
].x0, (x0
+ g).[) holds (f1
. r)
<> (
lim_right (f1,x0))) implies (f2
* f1)
is_right_divergent_to-infty_in x0
proof
assume that
A1: f1
is_right_convergent_in x0 and
A2: f2
is_divergent_to-infty_in (
lim_right (f1,x0)) and
A3: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f2
* f1));
given g such that
A4:
0
< g and
A5: for r st r
in ((
dom f1)
/\
].x0, (x0
+ g).[) holds (f1
. r)
<> (
lim_right (f1,x0));
now
let s be
Real_Sequence;
assume that
A6: s is
convergent & (
lim s)
= x0 and
A7: (
rng s)
c= ((
dom (f2
* f1))
/\ (
right_open_halfline x0));
consider k be
Nat such that
A8: for n be
Nat st k
<= n holds (s
. n)
< (x0
+ g) by
A4,
A6,
Lm1,
LIMFUNC2: 2;
set q = ((f1
/* s)
^\ k);
A9: (
rng s)
c= (
dom (f2
* f1)) by
A7,
Th1;
(
rng (f1
/* s))
c= (
dom f2) by
A7,
Th1;
then
A10: (f2
/* q)
= ((f2
/* (f1
/* s))
^\ k) by
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A9,
VALUED_0: 31;
A11: (
rng s)
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A7,
Th1;
then
A12: (f1
/* s) is
convergent by
A1,
A2,
A6,
LIMFUNC2:def 8;
A13: (
rng s)
c= (
dom f1) by
A7,
Th1;
A14: (
rng s)
c= (
right_open_halfline x0) by
A7,
Th1;
now
let x be
object;
assume x
in (
rng q);
then
consider n be
Element of
NAT such that
A15: (q
. n)
= x by
FUNCT_2: 113;
A16: (n
+ k)
in
NAT by
ORDINAL1:def 12;
A17: (f1
. (s
. (n
+ k)))
= ((f1
/* s)
. (n
+ k)) by
A13,
FUNCT_2: 108,
A16
.= x by
A15,
NAT_1:def 3;
A18: (s
. (n
+ k))
< (x0
+ g) by
A8,
NAT_1: 12;
A19: (s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in (
right_open_halfline x0) by
A14;
then (s
. (n
+ k))
in { g1 : x0
< g1 } by
XXREAL_1: 230;
then ex g1 st g1
= (s
. (n
+ k)) & x0
< g1;
then (s
. (n
+ k))
in { g2 : x0
< g2 & g2
< (x0
+ g) } by
A18;
then (s
. (n
+ k))
in
].x0, (x0
+ g).[ by
RCOMP_1:def 2;
then (s
. (n
+ k))
in ((
dom f1)
/\
].x0, (x0
+ g).[) by
A13,
A19,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
<> (
lim_right (f1,x0)) by
A5;
then
A20: not (f1
. (s
. (n
+ k)))
in
{(
lim_right (f1,x0))} by
TARSKI:def 1;
(f1
. (s
. (n
+ k)))
in (
dom f2) by
A9,
A19,
FUNCT_1: 11;
hence x
in ((
dom f2)
\
{(
lim_right (f1,x0))}) by
A20,
A17,
XBOOLE_0:def 5;
end;
then
A21: (
rng q)
c= ((
dom f2)
\
{(
lim_right (f1,x0))});
(
lim (f1
/* s))
= (
lim_right (f1,x0)) by
A1,
A6,
A11,
LIMFUNC2:def 8;
then (
lim q)
= (
lim_right (f1,x0)) by
A12,
SEQ_4: 20;
then (f2
/* q) is
divergent_to-infty by
A2,
A12,
A21,
LIMFUNC3:def 3;
hence ((f2
* f1)
/* s) is
divergent_to-infty by
A10,
LIMFUNC1: 7;
end;
hence thesis by
A3,
LIMFUNC2:def 6;
end;
theorem ::
LIMFUNC4:45
f1 is
convergent_in+infty & f2
is_divergent_to+infty_in (
lim_in+infty f1) & (for r holds ex g st r
< g & g
in (
dom (f2
* f1))) & (ex r st for g st g
in ((
dom f1)
/\ (
right_open_halfline r)) holds (f1
. g)
<> (
lim_in+infty f1)) implies (f2
* f1) is
divergent_in+infty_to+infty
proof
assume that
A1: f1 is
convergent_in+infty and
A2: f2
is_divergent_to+infty_in (
lim_in+infty f1) and
A3: for r holds ex g st r
< g & g
in (
dom (f2
* f1));
given r such that
A4: for g st g
in ((
dom f1)
/\ (
right_open_halfline r)) holds (f1
. g)
<> (
lim_in+infty f1);
now
let s be
Real_Sequence;
assume that
A5: s is
divergent_to+infty and
A6: (
rng s)
c= (
dom (f2
* f1));
consider k be
Nat such that
A7: for n be
Nat st k
<= n holds r
< (s
. n) by
A5;
A8: (
rng (f1
/* s))
c= (
dom f2) by
A6,
Lm2;
set q = (s
^\ k);
A9: q is
divergent_to+infty by
A5,
LIMFUNC1: 26;
A10: (
rng s)
c= (
dom f1) by
A6,
Lm2;
A11: (
rng q)
c= (
rng s) by
VALUED_0: 21;
A12: (
rng (f1
/* q))
c= ((
dom f2)
\
{(
lim_in+infty f1)})
proof
let x be
object;
assume x
in (
rng (f1
/* q));
then
consider n be
Element of
NAT such that
A13: ((f1
/* q)
. n)
= x by
FUNCT_2: 113;
A14: x
= (f1
. (q
. n)) by
A10,
A11,
A13,
FUNCT_2: 108,
XBOOLE_1: 1
.= (f1
. (s
. (n
+ k))) by
NAT_1:def 3;
r
< (s
. (n
+ k)) by
A7,
NAT_1: 12;
then (s
. (n
+ k))
in { r2 : r
< r2 };
then
A15: (s
. (n
+ k))
in (
right_open_halfline r) by
XXREAL_1: 230;
(s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in ((
dom f1)
/\ (
right_open_halfline r)) by
A10,
A15,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
<> (
lim_in+infty f1) by
A4;
then
A16: not (f1
. (s
. (n
+ k)))
in
{(
lim_in+infty f1)} by
TARSKI:def 1;
A17: (n
+ k)
in
NAT by
ORDINAL1:def 12;
((f1
/* s)
. (n
+ k))
in (
rng (f1
/* s)) by
VALUED_0: 28;
then ((f1
/* s)
. (n
+ k))
in (
dom f2) by
A8;
then x
in (
dom f2) by
A10,
A14,
FUNCT_2: 108,
A17;
hence thesis by
A14,
A16,
XBOOLE_0:def 5;
end;
(
rng q)
c= (
dom f1) by
A10,
A11;
then (f1
/* q) is
convergent & (
lim (f1
/* q))
= (
lim_in+infty f1) by
A1,
A9,
LIMFUNC1:def 12;
then
A18: (f2
/* (f1
/* q)) is
divergent_to+infty by
A2,
A12,
LIMFUNC3:def 2;
(f2
/* (f1
/* q))
= (f2
/* ((f1
/* s)
^\ k)) by
A10,
VALUED_0: 27
.= ((f2
/* (f1
/* s))
^\ k) by
A8,
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A6,
VALUED_0: 31;
hence ((f2
* f1)
/* s) is
divergent_to+infty by
A18,
LIMFUNC1: 7;
end;
hence thesis by
A3;
end;
theorem ::
LIMFUNC4:46
f1 is
convergent_in+infty & f2
is_divergent_to-infty_in (
lim_in+infty f1) & (for r holds ex g st r
< g & g
in (
dom (f2
* f1))) & (ex r st for g st g
in ((
dom f1)
/\ (
right_open_halfline r)) holds (f1
. g)
<> (
lim_in+infty f1)) implies (f2
* f1) is
divergent_in+infty_to-infty
proof
assume that
A1: f1 is
convergent_in+infty and
A2: f2
is_divergent_to-infty_in (
lim_in+infty f1) and
A3: for r holds ex g st r
< g & g
in (
dom (f2
* f1));
given r such that
A4: for g st g
in ((
dom f1)
/\ (
right_open_halfline r)) holds (f1
. g)
<> (
lim_in+infty f1);
now
let s be
Real_Sequence;
assume that
A5: s is
divergent_to+infty and
A6: (
rng s)
c= (
dom (f2
* f1));
consider k be
Nat such that
A7: for n be
Nat st k
<= n holds r
< (s
. n) by
A5;
A8: (
rng (f1
/* s))
c= (
dom f2) by
A6,
Lm2;
set q = (s
^\ k);
A9: q is
divergent_to+infty by
A5,
LIMFUNC1: 26;
A10: (
rng s)
c= (
dom f1) by
A6,
Lm2;
A11: (
rng q)
c= (
rng s) by
VALUED_0: 21;
A12: (
rng (f1
/* q))
c= ((
dom f2)
\
{(
lim_in+infty f1)})
proof
let x be
object;
assume x
in (
rng (f1
/* q));
then
consider n be
Element of
NAT such that
A13: ((f1
/* q)
. n)
= x by
FUNCT_2: 113;
A14: x
= (f1
. (q
. n)) by
A10,
A11,
A13,
FUNCT_2: 108,
XBOOLE_1: 1
.= (f1
. (s
. (n
+ k))) by
NAT_1:def 3;
r
< (s
. (n
+ k)) by
A7,
NAT_1: 12;
then (s
. (n
+ k))
in { r2 : r
< r2 };
then
A15: (s
. (n
+ k))
in (
right_open_halfline r) by
XXREAL_1: 230;
(s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in ((
dom f1)
/\ (
right_open_halfline r)) by
A10,
A15,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
<> (
lim_in+infty f1) by
A4;
then
A16: not (f1
. (s
. (n
+ k)))
in
{(
lim_in+infty f1)} by
TARSKI:def 1;
A17: (n
+ k)
in
NAT by
ORDINAL1:def 12;
((f1
/* s)
. (n
+ k))
in (
rng (f1
/* s)) by
VALUED_0: 28;
then ((f1
/* s)
. (n
+ k))
in (
dom f2) by
A8;
then x
in (
dom f2) by
A10,
A14,
FUNCT_2: 108,
A17;
hence thesis by
A14,
A16,
XBOOLE_0:def 5;
end;
(
rng q)
c= (
dom f1) by
A10,
A11;
then (f1
/* q) is
convergent & (
lim (f1
/* q))
= (
lim_in+infty f1) by
A1,
A9,
LIMFUNC1:def 12;
then
A18: (f2
/* (f1
/* q)) is
divergent_to-infty by
A2,
A12,
LIMFUNC3:def 3;
(f2
/* (f1
/* q))
= (f2
/* ((f1
/* s)
^\ k)) by
A10,
VALUED_0: 27
.= ((f2
/* (f1
/* s))
^\ k) by
A8,
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A6,
VALUED_0: 31;
hence ((f2
* f1)
/* s) is
divergent_to-infty by
A18,
LIMFUNC1: 7;
end;
hence thesis by
A3;
end;
theorem ::
LIMFUNC4:47
f1 is
convergent_in-infty & f2
is_divergent_to+infty_in (
lim_in-infty f1) & (for r holds ex g st g
< r & g
in (
dom (f2
* f1))) & (ex r st for g st g
in ((
dom f1)
/\ (
left_open_halfline r)) holds (f1
. g)
<> (
lim_in-infty f1)) implies (f2
* f1) is
divergent_in-infty_to+infty
proof
assume that
A1: f1 is
convergent_in-infty and
A2: f2
is_divergent_to+infty_in (
lim_in-infty f1) and
A3: for r holds ex g st g
< r & g
in (
dom (f2
* f1));
given r such that
A4: for g st g
in ((
dom f1)
/\ (
left_open_halfline r)) holds (f1
. g)
<> (
lim_in-infty f1);
now
let s be
Real_Sequence;
assume that
A5: s is
divergent_to-infty and
A6: (
rng s)
c= (
dom (f2
* f1));
consider k be
Nat such that
A7: for n be
Nat st k
<= n holds (s
. n)
< r by
A5;
A8: (
rng (f1
/* s))
c= (
dom f2) by
A6,
Lm2;
set q = (s
^\ k);
A9: q is
divergent_to-infty by
A5,
LIMFUNC1: 27;
A10: (
rng s)
c= (
dom f1) by
A6,
Lm2;
A11: (
rng q)
c= (
rng s) by
VALUED_0: 21;
A12: (
rng (f1
/* q))
c= ((
dom f2)
\
{(
lim_in-infty f1)})
proof
let x be
object;
assume x
in (
rng (f1
/* q));
then
consider n be
Element of
NAT such that
A13: ((f1
/* q)
. n)
= x by
FUNCT_2: 113;
A14: x
= (f1
. (q
. n)) by
A10,
A11,
A13,
FUNCT_2: 108,
XBOOLE_1: 1
.= (f1
. (s
. (n
+ k))) by
NAT_1:def 3;
(s
. (n
+ k))
< r by
A7,
NAT_1: 12;
then (s
. (n
+ k))
in { r2 : r2
< r };
then
A15: (s
. (n
+ k))
in (
left_open_halfline r) by
XXREAL_1: 229;
(s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in ((
dom f1)
/\ (
left_open_halfline r)) by
A10,
A15,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
<> (
lim_in-infty f1) by
A4;
then
A16: not (f1
. (s
. (n
+ k)))
in
{(
lim_in-infty f1)} by
TARSKI:def 1;
A17: (n
+ k)
in
NAT by
ORDINAL1:def 12;
((f1
/* s)
. (n
+ k))
in (
rng (f1
/* s)) by
VALUED_0: 28;
then ((f1
/* s)
. (n
+ k))
in (
dom f2) by
A8;
then x
in (
dom f2) by
A10,
A14,
FUNCT_2: 108,
A17;
hence thesis by
A14,
A16,
XBOOLE_0:def 5;
end;
(
rng q)
c= (
dom f1) by
A10,
A11;
then (f1
/* q) is
convergent & (
lim (f1
/* q))
= (
lim_in-infty f1) by
A1,
A9,
LIMFUNC1:def 13;
then
A18: (f2
/* (f1
/* q)) is
divergent_to+infty by
A2,
A12,
LIMFUNC3:def 2;
(f2
/* (f1
/* q))
= (f2
/* ((f1
/* s)
^\ k)) by
A10,
VALUED_0: 27
.= ((f2
/* (f1
/* s))
^\ k) by
A8,
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A6,
VALUED_0: 31;
hence ((f2
* f1)
/* s) is
divergent_to+infty by
A18,
LIMFUNC1: 7;
end;
hence thesis by
A3;
end;
theorem ::
LIMFUNC4:48
f1 is
convergent_in-infty & f2
is_divergent_to-infty_in (
lim_in-infty f1) & (for r holds ex g st g
< r & g
in (
dom (f2
* f1))) & (ex r st for g st g
in ((
dom f1)
/\ (
left_open_halfline r)) holds (f1
. g)
<> (
lim_in-infty f1)) implies (f2
* f1) is
divergent_in-infty_to-infty
proof
assume that
A1: f1 is
convergent_in-infty and
A2: f2
is_divergent_to-infty_in (
lim_in-infty f1) and
A3: for r holds ex g st g
< r & g
in (
dom (f2
* f1));
given r such that
A4: for g st g
in ((
dom f1)
/\ (
left_open_halfline r)) holds (f1
. g)
<> (
lim_in-infty f1);
now
let s be
Real_Sequence;
assume that
A5: s is
divergent_to-infty and
A6: (
rng s)
c= (
dom (f2
* f1));
consider k be
Nat such that
A7: for n be
Nat st k
<= n holds (s
. n)
< r by
A5;
A8: (
rng (f1
/* s))
c= (
dom f2) by
A6,
Lm2;
set q = (s
^\ k);
A9: q is
divergent_to-infty by
A5,
LIMFUNC1: 27;
A10: (
rng s)
c= (
dom f1) by
A6,
Lm2;
A11: (
rng q)
c= (
rng s) by
VALUED_0: 21;
A12: (
rng (f1
/* q))
c= ((
dom f2)
\
{(
lim_in-infty f1)})
proof
let x be
object;
assume x
in (
rng (f1
/* q));
then
consider n be
Element of
NAT such that
A13: ((f1
/* q)
. n)
= x by
FUNCT_2: 113;
A14: x
= (f1
. (q
. n)) by
A10,
A11,
A13,
FUNCT_2: 108,
XBOOLE_1: 1
.= (f1
. (s
. (n
+ k))) by
NAT_1:def 3;
(s
. (n
+ k))
< r by
A7,
NAT_1: 12;
then (s
. (n
+ k))
in { r2 : r2
< r };
then
A15: (s
. (n
+ k))
in (
left_open_halfline r) by
XXREAL_1: 229;
(s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in ((
dom f1)
/\ (
left_open_halfline r)) by
A10,
A15,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
<> (
lim_in-infty f1) by
A4;
then
A16: not (f1
. (s
. (n
+ k)))
in
{(
lim_in-infty f1)} by
TARSKI:def 1;
A17: (n
+ k)
in
NAT by
ORDINAL1:def 12;
((f1
/* s)
. (n
+ k))
in (
rng (f1
/* s)) by
VALUED_0: 28;
then ((f1
/* s)
. (n
+ k))
in (
dom f2) by
A8;
then x
in (
dom f2) by
A10,
A14,
FUNCT_2: 108,
A17;
hence thesis by
A14,
A16,
XBOOLE_0:def 5;
end;
(
rng q)
c= (
dom f1) by
A10,
A11;
then (f1
/* q) is
convergent & (
lim (f1
/* q))
= (
lim_in-infty f1) by
A1,
A9,
LIMFUNC1:def 13;
then
A18: (f2
/* (f1
/* q)) is
divergent_to-infty by
A2,
A12,
LIMFUNC3:def 3;
(f2
/* (f1
/* q))
= (f2
/* ((f1
/* s)
^\ k)) by
A10,
VALUED_0: 27
.= ((f2
/* (f1
/* s))
^\ k) by
A8,
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A6,
VALUED_0: 31;
hence ((f2
* f1)
/* s) is
divergent_to-infty by
A18,
LIMFUNC1: 7;
end;
hence thesis by
A3;
end;
theorem ::
LIMFUNC4:49
f1
is_convergent_in x0 & f2
is_left_divergent_to+infty_in (
lim (f1,x0)) & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f2
* f1)) & g2
< r2 & x0
< g2 & g2
in (
dom (f2
* f1))) & (ex g st
0
< g & for r st r
in ((
dom f1)
/\ (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[)) holds (f1
. r)
< (
lim (f1,x0))) implies (f2
* f1)
is_divergent_to+infty_in x0
proof
assume that
A1: f1
is_convergent_in x0 and
A2: f2
is_left_divergent_to+infty_in (
lim (f1,x0)) and
A3: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f2
* f1)) & g2
< r2 & x0
< g2 & g2
in (
dom (f2
* f1));
given g such that
A4:
0
< g and
A5: for r st r
in ((
dom f1)
/\ (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[)) holds (
lim (f1,x0))
> (f1
. r);
now
let s be
Real_Sequence;
assume that
A6: s is
convergent & (
lim s)
= x0 and
A7: (
rng s)
c= ((
dom (f2
* f1))
\
{x0});
consider k be
Element of
NAT such that
A8: for n be
Element of
NAT st k
<= n holds (x0
- g)
< (s
. n) & (s
. n)
< (x0
+ g) by
A4,
A6,
LIMFUNC3: 7;
set q = ((f1
/* s)
^\ k);
A9: (
rng s)
c= (
dom (f2
* f1)) by
A7,
Th2;
(
rng (f1
/* s))
c= (
dom f2) by
A7,
Th2;
then
A10: (f2
/* q)
= ((f2
/* (f1
/* s))
^\ k) by
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A9,
VALUED_0: 31;
A11: (
rng s)
c= ((
dom f1)
\
{x0}) by
A7,
Th2;
then
A12: (f1
/* s) is
convergent by
A1,
A2,
A6,
LIMFUNC3:def 4;
A13: (
rng s)
c= (
dom f1) by
A7,
Th2;
now
let x be
object;
assume x
in (
rng q);
then
consider n be
Element of
NAT such that
A14: (q
. n)
= x by
FUNCT_2: 113;
A15: (f1
. (s
. (n
+ k)))
= ((f1
/* s)
. (n
+ k)) by
A13,
FUNCT_2: 108
.= x by
A14,
NAT_1:def 3;
k
<= (n
+ k) by
NAT_1: 12;
then (x0
- g)
< (s
. (n
+ k)) & (s
. (n
+ k))
< (x0
+ g) by
A8;
then (s
. (n
+ k))
in { g1 : (x0
- g)
< g1 & g1
< (x0
+ g) };
then
A16: (s
. (n
+ k))
in
].(x0
- g), (x0
+ g).[ by
RCOMP_1:def 2;
A17: (s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then not (s
. (n
+ k))
in
{x0} by
A7,
XBOOLE_0:def 5;
then (s
. (n
+ k))
in (
].(x0
- g), (x0
+ g).[
\
{x0}) by
A16,
XBOOLE_0:def 5;
then (s
. (n
+ k))
in (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[) by
A4,
LIMFUNC3: 4;
then (s
. (n
+ k))
in ((
dom f1)
/\ (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[)) by
A13,
A17,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
< (
lim (f1,x0)) by
A5;
then (f1
. (s
. (n
+ k)))
in { g2 : g2
< (
lim (f1,x0)) };
then
A18: (f1
. (s
. (n
+ k)))
in (
left_open_halfline (
lim (f1,x0))) by
XXREAL_1: 229;
(f1
. (s
. (n
+ k)))
in (
dom f2) by
A9,
A17,
FUNCT_1: 11;
hence x
in ((
dom f2)
/\ (
left_open_halfline (
lim (f1,x0)))) by
A18,
A15,
XBOOLE_0:def 4;
end;
then
A19: (
rng q)
c= ((
dom f2)
/\ (
left_open_halfline (
lim (f1,x0))));
(
lim (f1
/* s))
= (
lim (f1,x0)) by
A1,
A6,
A11,
LIMFUNC3:def 4;
then (
lim q)
= (
lim (f1,x0)) by
A12,
SEQ_4: 20;
then (f2
/* q) is
divergent_to+infty by
A2,
A12,
A19,
LIMFUNC2:def 2;
hence ((f2
* f1)
/* s) is
divergent_to+infty by
A10,
LIMFUNC1: 7;
end;
hence thesis by
A3,
LIMFUNC3:def 2;
end;
theorem ::
LIMFUNC4:50
f1
is_convergent_in x0 & f2
is_left_divergent_to-infty_in (
lim (f1,x0)) & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f2
* f1)) & g2
< r2 & x0
< g2 & g2
in (
dom (f2
* f1))) & (ex g st
0
< g & for r st r
in ((
dom f1)
/\ (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[)) holds (f1
. r)
< (
lim (f1,x0))) implies (f2
* f1)
is_divergent_to-infty_in x0
proof
assume that
A1: f1
is_convergent_in x0 and
A2: f2
is_left_divergent_to-infty_in (
lim (f1,x0)) and
A3: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f2
* f1)) & g2
< r2 & x0
< g2 & g2
in (
dom (f2
* f1));
given g such that
A4:
0
< g and
A5: for r st r
in ((
dom f1)
/\ (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[)) holds (
lim (f1,x0))
> (f1
. r);
now
let s be
Real_Sequence;
assume that
A6: s is
convergent & (
lim s)
= x0 and
A7: (
rng s)
c= ((
dom (f2
* f1))
\
{x0});
consider k be
Element of
NAT such that
A8: for n be
Element of
NAT st k
<= n holds (x0
- g)
< (s
. n) & (s
. n)
< (x0
+ g) by
A4,
A6,
LIMFUNC3: 7;
set q = ((f1
/* s)
^\ k);
A9: (
rng s)
c= (
dom (f2
* f1)) by
A7,
Th2;
(
rng (f1
/* s))
c= (
dom f2) by
A7,
Th2;
then
A10: (f2
/* q)
= ((f2
/* (f1
/* s))
^\ k) by
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A9,
VALUED_0: 31;
A11: (
rng s)
c= ((
dom f1)
\
{x0}) by
A7,
Th2;
then
A12: (f1
/* s) is
convergent by
A1,
A2,
A6,
LIMFUNC3:def 4;
A13: (
rng s)
c= (
dom f1) by
A7,
Th2;
now
let x be
object;
assume x
in (
rng q);
then
consider n be
Element of
NAT such that
A14: (q
. n)
= x by
FUNCT_2: 113;
A15: (f1
. (s
. (n
+ k)))
= ((f1
/* s)
. (n
+ k)) by
A13,
FUNCT_2: 108
.= x by
A14,
NAT_1:def 3;
k
<= (n
+ k) by
NAT_1: 12;
then (x0
- g)
< (s
. (n
+ k)) & (s
. (n
+ k))
< (x0
+ g) by
A8;
then (s
. (n
+ k))
in { g1 : (x0
- g)
< g1 & g1
< (x0
+ g) };
then
A16: (s
. (n
+ k))
in
].(x0
- g), (x0
+ g).[ by
RCOMP_1:def 2;
A17: (s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then not (s
. (n
+ k))
in
{x0} by
A7,
XBOOLE_0:def 5;
then (s
. (n
+ k))
in (
].(x0
- g), (x0
+ g).[
\
{x0}) by
A16,
XBOOLE_0:def 5;
then (s
. (n
+ k))
in (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[) by
A4,
LIMFUNC3: 4;
then (s
. (n
+ k))
in ((
dom f1)
/\ (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[)) by
A13,
A17,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
< (
lim (f1,x0)) by
A5;
then (f1
. (s
. (n
+ k)))
in { g2 : g2
< (
lim (f1,x0)) };
then
A18: (f1
. (s
. (n
+ k)))
in (
left_open_halfline (
lim (f1,x0))) by
XXREAL_1: 229;
(f1
. (s
. (n
+ k)))
in (
dom f2) by
A9,
A17,
FUNCT_1: 11;
hence x
in ((
dom f2)
/\ (
left_open_halfline (
lim (f1,x0)))) by
A18,
A15,
XBOOLE_0:def 4;
end;
then
A19: (
rng q)
c= ((
dom f2)
/\ (
left_open_halfline (
lim (f1,x0))));
(
lim (f1
/* s))
= (
lim (f1,x0)) by
A1,
A6,
A11,
LIMFUNC3:def 4;
then (
lim q)
= (
lim (f1,x0)) by
A12,
SEQ_4: 20;
then (f2
/* q) is
divergent_to-infty by
A2,
A12,
A19,
LIMFUNC2:def 3;
hence ((f2
* f1)
/* s) is
divergent_to-infty by
A10,
LIMFUNC1: 7;
end;
hence thesis by
A3,
LIMFUNC3:def 3;
end;
theorem ::
LIMFUNC4:51
f1
is_left_convergent_in x0 & f2
is_divergent_to+infty_in (
lim_left (f1,x0)) & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f2
* f1))) & (ex g st
0
< g & for r st r
in ((
dom f1)
/\
].(x0
- g), x0.[) holds (f1
. r)
<> (
lim_left (f1,x0))) implies (f2
* f1)
is_left_divergent_to+infty_in x0
proof
assume that
A1: f1
is_left_convergent_in x0 and
A2: f2
is_divergent_to+infty_in (
lim_left (f1,x0)) and
A3: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f2
* f1));
given g such that
A4:
0
< g and
A5: for r st r
in ((
dom f1)
/\
].(x0
- g), x0.[) holds (f1
. r)
<> (
lim_left (f1,x0));
now
let s be
Real_Sequence;
assume that
A6: s is
convergent & (
lim s)
= x0 and
A7: (
rng s)
c= ((
dom (f2
* f1))
/\ (
left_open_halfline x0));
consider k be
Nat such that
A8: for n be
Nat st k
<= n holds (x0
- g)
< (s
. n) by
A4,
A6,
Lm1,
LIMFUNC2: 1;
set q = ((f1
/* s)
^\ k);
A9: (
rng s)
c= (
dom (f2
* f1)) by
A7,
Th1;
(
rng (f1
/* s))
c= (
dom f2) by
A7,
Th1;
then
A10: (f2
/* q)
= ((f2
/* (f1
/* s))
^\ k) by
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A9,
VALUED_0: 31;
A11: (
rng s)
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A7,
Th1;
then
A12: (f1
/* s) is
convergent by
A1,
A2,
A6,
LIMFUNC2:def 7;
A13: (
rng s)
c= (
dom f1) by
A7,
Th1;
A14: (
rng s)
c= (
left_open_halfline x0) by
A7,
Th1;
now
let x be
object;
assume x
in (
rng q);
then
consider n be
Element of
NAT such that
A15: (q
. n)
= x by
FUNCT_2: 113;
A16: (n
+ k)
in
NAT by
ORDINAL1:def 12;
A17: (f1
. (s
. (n
+ k)))
= ((f1
/* s)
. (n
+ k)) by
A13,
FUNCT_2: 108,
A16
.= x by
A15,
NAT_1:def 3;
A18: (x0
- g)
< (s
. (n
+ k)) by
A8,
NAT_1: 12;
A19: (s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in (
left_open_halfline x0) by
A14;
then (s
. (n
+ k))
in { g1 : g1
< x0 } by
XXREAL_1: 229;
then ex g1 st g1
= (s
. (n
+ k)) & g1
< x0;
then (s
. (n
+ k))
in { g2 : (x0
- g)
< g2 & g2
< x0 } by
A18;
then (s
. (n
+ k))
in
].(x0
- g), x0.[ by
RCOMP_1:def 2;
then (s
. (n
+ k))
in ((
dom f1)
/\
].(x0
- g), x0.[) by
A13,
A19,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
<> (
lim_left (f1,x0)) by
A5;
then
A20: not (f1
. (s
. (n
+ k)))
in
{(
lim_left (f1,x0))} by
TARSKI:def 1;
(f1
. (s
. (n
+ k)))
in (
dom f2) by
A9,
A19,
FUNCT_1: 11;
hence x
in ((
dom f2)
\
{(
lim_left (f1,x0))}) by
A20,
A17,
XBOOLE_0:def 5;
end;
then
A21: (
rng q)
c= ((
dom f2)
\
{(
lim_left (f1,x0))});
(
lim (f1
/* s))
= (
lim_left (f1,x0)) by
A1,
A6,
A11,
LIMFUNC2:def 7;
then (
lim q)
= (
lim_left (f1,x0)) by
A12,
SEQ_4: 20;
then (f2
/* q) is
divergent_to+infty by
A2,
A12,
A21,
LIMFUNC3:def 2;
hence ((f2
* f1)
/* s) is
divergent_to+infty by
A10,
LIMFUNC1: 7;
end;
hence thesis by
A3,
LIMFUNC2:def 2;
end;
theorem ::
LIMFUNC4:52
f1
is_left_convergent_in x0 & f2
is_divergent_to-infty_in (
lim_left (f1,x0)) & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f2
* f1))) & (ex g st
0
< g & for r st r
in ((
dom f1)
/\
].(x0
- g), x0.[) holds (f1
. r)
<> (
lim_left (f1,x0))) implies (f2
* f1)
is_left_divergent_to-infty_in x0
proof
assume that
A1: f1
is_left_convergent_in x0 and
A2: f2
is_divergent_to-infty_in (
lim_left (f1,x0)) and
A3: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f2
* f1));
given g such that
A4:
0
< g and
A5: for r st r
in ((
dom f1)
/\
].(x0
- g), x0.[) holds (f1
. r)
<> (
lim_left (f1,x0));
now
let s be
Real_Sequence;
assume that
A6: s is
convergent & (
lim s)
= x0 and
A7: (
rng s)
c= ((
dom (f2
* f1))
/\ (
left_open_halfline x0));
consider k be
Nat such that
A8: for n be
Nat st k
<= n holds (x0
- g)
< (s
. n) by
A4,
A6,
Lm1,
LIMFUNC2: 1;
set q = ((f1
/* s)
^\ k);
A9: (
rng s)
c= (
dom (f2
* f1)) by
A7,
Th1;
(
rng (f1
/* s))
c= (
dom f2) by
A7,
Th1;
then
A10: (f2
/* q)
= ((f2
/* (f1
/* s))
^\ k) by
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A9,
VALUED_0: 31;
A11: (
rng s)
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A7,
Th1;
then
A12: (f1
/* s) is
convergent by
A1,
A2,
A6,
LIMFUNC2:def 7;
A13: (
rng s)
c= (
dom f1) by
A7,
Th1;
A14: (
rng s)
c= (
left_open_halfline x0) by
A7,
Th1;
now
let x be
object;
assume x
in (
rng q);
then
consider n be
Element of
NAT such that
A15: (q
. n)
= x by
FUNCT_2: 113;
A16: (n
+ k)
in
NAT by
ORDINAL1:def 12;
A17: (f1
. (s
. (n
+ k)))
= ((f1
/* s)
. (n
+ k)) by
A13,
FUNCT_2: 108,
A16
.= x by
A15,
NAT_1:def 3;
A18: (x0
- g)
< (s
. (n
+ k)) by
A8,
NAT_1: 12;
A19: (s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in (
left_open_halfline x0) by
A14;
then (s
. (n
+ k))
in { g1 : g1
< x0 } by
XXREAL_1: 229;
then ex g1 st g1
= (s
. (n
+ k)) & g1
< x0;
then (s
. (n
+ k))
in { g2 : (x0
- g)
< g2 & g2
< x0 } by
A18;
then (s
. (n
+ k))
in
].(x0
- g), x0.[ by
RCOMP_1:def 2;
then (s
. (n
+ k))
in ((
dom f1)
/\
].(x0
- g), x0.[) by
A13,
A19,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
<> (
lim_left (f1,x0)) by
A5;
then
A20: not (f1
. (s
. (n
+ k)))
in
{(
lim_left (f1,x0))} by
TARSKI:def 1;
(f1
. (s
. (n
+ k)))
in (
dom f2) by
A9,
A19,
FUNCT_1: 11;
hence x
in ((
dom f2)
\
{(
lim_left (f1,x0))}) by
A20,
A17,
XBOOLE_0:def 5;
end;
then
A21: (
rng q)
c= ((
dom f2)
\
{(
lim_left (f1,x0))});
(
lim (f1
/* s))
= (
lim_left (f1,x0)) by
A1,
A6,
A11,
LIMFUNC2:def 7;
then (
lim q)
= (
lim_left (f1,x0)) by
A12,
SEQ_4: 20;
then (f2
/* q) is
divergent_to-infty by
A2,
A12,
A21,
LIMFUNC3:def 3;
hence ((f2
* f1)
/* s) is
divergent_to-infty by
A10,
LIMFUNC1: 7;
end;
hence thesis by
A3,
LIMFUNC2:def 3;
end;
theorem ::
LIMFUNC4:53
f1 is
divergent_in+infty_to+infty & f2 is
convergent_in+infty & (for r holds ex g st r
< g & g
in (
dom (f2
* f1))) implies (f2
* f1) is
convergent_in+infty & (
lim_in+infty (f2
* f1))
= (
lim_in+infty f2)
proof
assume that
A1: f1 is
divergent_in+infty_to+infty and
A2: f2 is
convergent_in+infty and
A3: for r holds ex g st r
< g & g
in (
dom (f2
* f1));
A4:
now
let s be
Real_Sequence;
assume that
A5: s is
divergent_to+infty and
A6: (
rng s)
c= (
dom (f2
* f1));
(
rng s)
c= (
dom f1) by
A6,
Lm2;
then
A7: (f1
/* s) is
divergent_to+infty by
A1,
A5;
A8: (
rng (f1
/* s))
c= (
dom f2) by
A6,
Lm2;
then
A9: (
lim (f2
/* (f1
/* s)))
= (
lim_in+infty f2) by
A2,
A7,
LIMFUNC1:def 12;
(f2
/* (f1
/* s)) is
convergent by
A2,
A8,
A7;
hence ((f2
* f1)
/* s) is
convergent & (
lim ((f2
* f1)
/* s))
= (
lim_in+infty f2) by
A6,
A9,
VALUED_0: 31;
end;
hence (f2
* f1) is
convergent_in+infty by
A3;
hence thesis by
A4,
LIMFUNC1:def 12;
end;
theorem ::
LIMFUNC4:54
f1 is
divergent_in+infty_to-infty & f2 is
convergent_in-infty & (for r holds ex g st r
< g & g
in (
dom (f2
* f1))) implies (f2
* f1) is
convergent_in+infty & (
lim_in+infty (f2
* f1))
= (
lim_in-infty f2)
proof
assume that
A1: f1 is
divergent_in+infty_to-infty and
A2: f2 is
convergent_in-infty and
A3: for r holds ex g st r
< g & g
in (
dom (f2
* f1));
A4:
now
let s be
Real_Sequence;
assume that
A5: s is
divergent_to+infty and
A6: (
rng s)
c= (
dom (f2
* f1));
(
rng s)
c= (
dom f1) by
A6,
Lm2;
then
A7: (f1
/* s) is
divergent_to-infty by
A1,
A5;
A8: (
rng (f1
/* s))
c= (
dom f2) by
A6,
Lm2;
then
A9: (
lim (f2
/* (f1
/* s)))
= (
lim_in-infty f2) by
A2,
A7,
LIMFUNC1:def 13;
(f2
/* (f1
/* s)) is
convergent by
A2,
A8,
A7;
hence ((f2
* f1)
/* s) is
convergent & (
lim ((f2
* f1)
/* s))
= (
lim_in-infty f2) by
A6,
A9,
VALUED_0: 31;
end;
hence (f2
* f1) is
convergent_in+infty by
A3;
hence thesis by
A4,
LIMFUNC1:def 12;
end;
theorem ::
LIMFUNC4:55
f1 is
divergent_in-infty_to+infty & f2 is
convergent_in+infty & (for r holds ex g st g
< r & g
in (
dom (f2
* f1))) implies (f2
* f1) is
convergent_in-infty & (
lim_in-infty (f2
* f1))
= (
lim_in+infty f2)
proof
assume that
A1: f1 is
divergent_in-infty_to+infty and
A2: f2 is
convergent_in+infty and
A3: for r holds ex g st g
< r & g
in (
dom (f2
* f1));
A4:
now
let s be
Real_Sequence;
assume that
A5: s is
divergent_to-infty and
A6: (
rng s)
c= (
dom (f2
* f1));
(
rng s)
c= (
dom f1) by
A6,
Lm2;
then
A7: (f1
/* s) is
divergent_to+infty by
A1,
A5;
A8: (
rng (f1
/* s))
c= (
dom f2) by
A6,
Lm2;
then
A9: (
lim (f2
/* (f1
/* s)))
= (
lim_in+infty f2) by
A2,
A7,
LIMFUNC1:def 12;
(f2
/* (f1
/* s)) is
convergent by
A2,
A8,
A7;
hence ((f2
* f1)
/* s) is
convergent & (
lim ((f2
* f1)
/* s))
= (
lim_in+infty f2) by
A6,
A9,
VALUED_0: 31;
end;
hence (f2
* f1) is
convergent_in-infty by
A3;
hence thesis by
A4,
LIMFUNC1:def 13;
end;
theorem ::
LIMFUNC4:56
f1 is
divergent_in-infty_to-infty & f2 is
convergent_in-infty & (for r holds ex g st g
< r & g
in (
dom (f2
* f1))) implies (f2
* f1) is
convergent_in-infty & (
lim_in-infty (f2
* f1))
= (
lim_in-infty f2)
proof
assume that
A1: f1 is
divergent_in-infty_to-infty and
A2: f2 is
convergent_in-infty and
A3: for r holds ex g st g
< r & g
in (
dom (f2
* f1));
A4:
now
let s be
Real_Sequence;
assume that
A5: s is
divergent_to-infty and
A6: (
rng s)
c= (
dom (f2
* f1));
(
rng s)
c= (
dom f1) by
A6,
Lm2;
then
A7: (f1
/* s) is
divergent_to-infty by
A1,
A5;
A8: (
rng (f1
/* s))
c= (
dom f2) by
A6,
Lm2;
then
A9: (
lim (f2
/* (f1
/* s)))
= (
lim_in-infty f2) by
A2,
A7,
LIMFUNC1:def 13;
(f2
/* (f1
/* s)) is
convergent by
A2,
A8,
A7;
hence ((f2
* f1)
/* s) is
convergent & (
lim ((f2
* f1)
/* s))
= (
lim_in-infty f2) by
A6,
A9,
VALUED_0: 31;
end;
hence (f2
* f1) is
convergent_in-infty by
A3;
hence thesis by
A4,
LIMFUNC1:def 13;
end;
theorem ::
LIMFUNC4:57
f1
is_left_divergent_to+infty_in x0 & f2 is
convergent_in+infty & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f2
* f1))) implies (f2
* f1)
is_left_convergent_in x0 & (
lim_left ((f2
* f1),x0))
= (
lim_in+infty f2)
proof
assume that
A1: f1
is_left_divergent_to+infty_in x0 and
A2: f2 is
convergent_in+infty and
A3: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f2
* f1));
A4:
now
let s be
Real_Sequence;
assume that
A5: s is
convergent & (
lim s)
= x0 and
A6: (
rng s)
c= ((
dom (f2
* f1))
/\ (
left_open_halfline x0));
(
rng s)
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A6,
Th1;
then
A7: (f1
/* s) is
divergent_to+infty by
A1,
A5,
LIMFUNC2:def 2;
A8: (
rng (f1
/* s))
c= (
dom f2) by
A6,
Th1;
then
A9: (
lim (f2
/* (f1
/* s)))
= (
lim_in+infty f2) by
A2,
A7,
LIMFUNC1:def 12;
A10: (
rng s)
c= (
dom (f2
* f1)) by
A6,
Th1;
(f2
/* (f1
/* s)) is
convergent by
A2,
A8,
A7;
hence ((f2
* f1)
/* s) is
convergent & (
lim ((f2
* f1)
/* s))
= (
lim_in+infty f2) by
A10,
A9,
VALUED_0: 31;
end;
hence (f2
* f1)
is_left_convergent_in x0 by
A3,
LIMFUNC2:def 1;
hence thesis by
A4,
LIMFUNC2:def 7;
end;
theorem ::
LIMFUNC4:58
f1
is_left_divergent_to-infty_in x0 & f2 is
convergent_in-infty & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f2
* f1))) implies (f2
* f1)
is_left_convergent_in x0 & (
lim_left ((f2
* f1),x0))
= (
lim_in-infty f2)
proof
assume that
A1: f1
is_left_divergent_to-infty_in x0 and
A2: f2 is
convergent_in-infty and
A3: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f2
* f1));
A4:
now
let s be
Real_Sequence;
assume that
A5: s is
convergent & (
lim s)
= x0 and
A6: (
rng s)
c= ((
dom (f2
* f1))
/\ (
left_open_halfline x0));
(
rng s)
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A6,
Th1;
then
A7: (f1
/* s) is
divergent_to-infty by
A1,
A5,
LIMFUNC2:def 3;
A8: (
rng (f1
/* s))
c= (
dom f2) by
A6,
Th1;
then
A9: (
lim (f2
/* (f1
/* s)))
= (
lim_in-infty f2) by
A2,
A7,
LIMFUNC1:def 13;
A10: (
rng s)
c= (
dom (f2
* f1)) by
A6,
Th1;
(f2
/* (f1
/* s)) is
convergent by
A2,
A8,
A7;
hence ((f2
* f1)
/* s) is
convergent & (
lim ((f2
* f1)
/* s))
= (
lim_in-infty f2) by
A10,
A9,
VALUED_0: 31;
end;
hence (f2
* f1)
is_left_convergent_in x0 by
A3,
LIMFUNC2:def 1;
hence thesis by
A4,
LIMFUNC2:def 7;
end;
theorem ::
LIMFUNC4:59
f1
is_right_divergent_to+infty_in x0 & f2 is
convergent_in+infty & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f2
* f1))) implies (f2
* f1)
is_right_convergent_in x0 & (
lim_right ((f2
* f1),x0))
= (
lim_in+infty f2)
proof
assume that
A1: f1
is_right_divergent_to+infty_in x0 and
A2: f2 is
convergent_in+infty and
A3: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f2
* f1));
A4:
now
let s be
Real_Sequence;
assume that
A5: s is
convergent & (
lim s)
= x0 and
A6: (
rng s)
c= ((
dom (f2
* f1))
/\ (
right_open_halfline x0));
(
rng s)
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A6,
Th1;
then
A7: (f1
/* s) is
divergent_to+infty by
A1,
A5,
LIMFUNC2:def 5;
A8: (
rng (f1
/* s))
c= (
dom f2) by
A6,
Th1;
then
A9: (
lim (f2
/* (f1
/* s)))
= (
lim_in+infty f2) by
A2,
A7,
LIMFUNC1:def 12;
A10: (
rng s)
c= (
dom (f2
* f1)) by
A6,
Th1;
(f2
/* (f1
/* s)) is
convergent by
A2,
A8,
A7;
hence ((f2
* f1)
/* s) is
convergent & (
lim ((f2
* f1)
/* s))
= (
lim_in+infty f2) by
A10,
A9,
VALUED_0: 31;
end;
hence (f2
* f1)
is_right_convergent_in x0 by
A3,
LIMFUNC2:def 4;
hence thesis by
A4,
LIMFUNC2:def 8;
end;
theorem ::
LIMFUNC4:60
f1
is_right_divergent_to-infty_in x0 & f2 is
convergent_in-infty & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f2
* f1))) implies (f2
* f1)
is_right_convergent_in x0 & (
lim_right ((f2
* f1),x0))
= (
lim_in-infty f2)
proof
assume that
A1: f1
is_right_divergent_to-infty_in x0 and
A2: f2 is
convergent_in-infty and
A3: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f2
* f1));
A4:
now
let s be
Real_Sequence;
assume that
A5: s is
convergent & (
lim s)
= x0 and
A6: (
rng s)
c= ((
dom (f2
* f1))
/\ (
right_open_halfline x0));
(
rng s)
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A6,
Th1;
then
A7: (f1
/* s) is
divergent_to-infty by
A1,
A5,
LIMFUNC2:def 6;
A8: (
rng (f1
/* s))
c= (
dom f2) by
A6,
Th1;
then
A9: (
lim (f2
/* (f1
/* s)))
= (
lim_in-infty f2) by
A2,
A7,
LIMFUNC1:def 13;
A10: (
rng s)
c= (
dom (f2
* f1)) by
A6,
Th1;
(f2
/* (f1
/* s)) is
convergent by
A2,
A8,
A7;
hence ((f2
* f1)
/* s) is
convergent & (
lim ((f2
* f1)
/* s))
= (
lim_in-infty f2) by
A10,
A9,
VALUED_0: 31;
end;
hence (f2
* f1)
is_right_convergent_in x0 by
A3,
LIMFUNC2:def 4;
hence thesis by
A4,
LIMFUNC2:def 8;
end;
theorem ::
LIMFUNC4:61
f1
is_left_convergent_in x0 & f2
is_left_convergent_in (
lim_left (f1,x0)) & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f2
* f1))) & (ex g st
0
< g & for r st r
in ((
dom f1)
/\
].(x0
- g), x0.[) holds (f1
. r)
< (
lim_left (f1,x0))) implies (f2
* f1)
is_left_convergent_in x0 & (
lim_left ((f2
* f1),x0))
= (
lim_left (f2,(
lim_left (f1,x0))))
proof
assume that
A1: f1
is_left_convergent_in x0 and
A2: f2
is_left_convergent_in (
lim_left (f1,x0)) and
A3: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f2
* f1));
given g such that
A4:
0
< g and
A5: for r st r
in ((
dom f1)
/\
].(x0
- g), x0.[) holds (f1
. r)
< (
lim_left (f1,x0));
A6:
now
let s be
Real_Sequence;
assume that
A7: s is
convergent & (
lim s)
= x0 and
A8: (
rng s)
c= ((
dom (f2
* f1))
/\ (
left_open_halfline x0));
consider k be
Nat such that
A9: for n be
Nat st k
<= n holds (x0
- g)
< (s
. n) by
A4,
A7,
Lm1,
LIMFUNC2: 1;
A10: (
rng s)
c= (
dom f1) by
A8,
Th1;
set q = ((f1
/* s)
^\ k);
A11: (
rng s)
c= (
dom (f2
* f1)) by
A8,
Th1;
A12: (
rng s)
c= (
left_open_halfline x0) by
A8,
Th1;
now
let x be
object;
assume x
in (
rng q);
then
consider n be
Element of
NAT such that
A13: (q
. n)
= x by
FUNCT_2: 113;
A14: (n
+ k)
in
NAT by
ORDINAL1:def 12;
A15: (f1
. (s
. (n
+ k)))
= ((f1
/* s)
. (n
+ k)) by
A10,
FUNCT_2: 108,
A14
.= x by
A13,
NAT_1:def 3;
A16: (x0
- g)
< (s
. (n
+ k)) by
A9,
NAT_1: 12;
A17: (s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in (
left_open_halfline x0) by
A12;
then (s
. (n
+ k))
in { g1 : g1
< x0 } by
XXREAL_1: 229;
then ex g1 st g1
= (s
. (n
+ k)) & g1
< x0;
then (s
. (n
+ k))
in { g2 : (x0
- g)
< g2 & g2
< x0 } by
A16;
then (s
. (n
+ k))
in
].(x0
- g), x0.[ by
RCOMP_1:def 2;
then (s
. (n
+ k))
in ((
dom f1)
/\
].(x0
- g), x0.[) by
A10,
A17,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
< (
lim_left (f1,x0)) by
A5;
then (f1
. (s
. (n
+ k)))
in { r1 : r1
< (
lim_left (f1,x0)) };
then
A18: (f1
. (s
. (n
+ k)))
in (
left_open_halfline (
lim_left (f1,x0))) by
XXREAL_1: 229;
(f1
. (s
. (n
+ k)))
in (
dom f2) by
A11,
A17,
FUNCT_1: 11;
hence x
in ((
dom f2)
/\ (
left_open_halfline (
lim_left (f1,x0)))) by
A18,
A15,
XBOOLE_0:def 4;
end;
then
A19: (
rng q)
c= ((
dom f2)
/\ (
left_open_halfline (
lim_left (f1,x0))));
(
rng (f1
/* s))
c= (
dom f2) by
A8,
Th1;
then
A20: (f2
/* q)
= ((f2
/* (f1
/* s))
^\ k) by
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A11,
VALUED_0: 31;
A21: (
rng s)
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A8,
Th1;
then
A22: (f1
/* s) is
convergent by
A1,
A2,
A7,
LIMFUNC2:def 7;
(
lim (f1
/* s))
= (
lim_left (f1,x0)) by
A1,
A7,
A21,
LIMFUNC2:def 7;
then
A23: (
lim q)
= (
lim_left (f1,x0)) by
A22,
SEQ_4: 20;
(
lim_left (f2,(
lim_left (f1,x0))))
= (
lim_left (f2,(
lim_left (f1,x0))));
then
A24: (f2
/* q) is
convergent by
A2,
A22,
A23,
A19,
LIMFUNC2:def 7;
hence ((f2
* f1)
/* s) is
convergent by
A20,
SEQ_4: 21;
(
lim (f2
/* q))
= (
lim_left (f2,(
lim_left (f1,x0)))) by
A2,
A22,
A23,
A19,
LIMFUNC2:def 7;
hence (
lim ((f2
* f1)
/* s))
= (
lim_left (f2,(
lim_left (f1,x0)))) by
A24,
A20,
SEQ_4: 22;
end;
hence (f2
* f1)
is_left_convergent_in x0 by
A3,
LIMFUNC2:def 1;
hence thesis by
A6,
LIMFUNC2:def 7;
end;
theorem ::
LIMFUNC4:62
f1
is_right_convergent_in x0 & f2
is_right_convergent_in (
lim_right (f1,x0)) & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f2
* f1))) & (ex g st
0
< g & for r st r
in ((
dom f1)
/\
].x0, (x0
+ g).[) holds (
lim_right (f1,x0))
< (f1
. r)) implies (f2
* f1)
is_right_convergent_in x0 & (
lim_right ((f2
* f1),x0))
= (
lim_right (f2,(
lim_right (f1,x0))))
proof
assume that
A1: f1
is_right_convergent_in x0 and
A2: f2
is_right_convergent_in (
lim_right (f1,x0)) and
A3: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f2
* f1));
given g such that
A4:
0
< g and
A5: for r st r
in ((
dom f1)
/\
].x0, (x0
+ g).[) holds (
lim_right (f1,x0))
< (f1
. r);
A6:
now
let s be
Real_Sequence;
assume that
A7: s is
convergent & (
lim s)
= x0 and
A8: (
rng s)
c= ((
dom (f2
* f1))
/\ (
right_open_halfline x0));
consider k be
Nat such that
A9: for n be
Nat st k
<= n holds (s
. n)
< (x0
+ g) by
A4,
A7,
Lm1,
LIMFUNC2: 2;
A10: (
rng s)
c= (
dom f1) by
A8,
Th1;
set q = ((f1
/* s)
^\ k);
A11: (
rng s)
c= (
dom (f2
* f1)) by
A8,
Th1;
A12: (
rng s)
c= (
right_open_halfline x0) by
A8,
Th1;
now
let x be
object;
assume x
in (
rng q);
then
consider n be
Element of
NAT such that
A13: (q
. n)
= x by
FUNCT_2: 113;
A14: (n
+ k)
in
NAT by
ORDINAL1:def 12;
A15: (f1
. (s
. (n
+ k)))
= ((f1
/* s)
. (n
+ k)) by
A10,
FUNCT_2: 108,
A14
.= x by
A13,
NAT_1:def 3;
A16: (s
. (n
+ k))
< (x0
+ g) by
A9,
NAT_1: 12;
A17: (s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in (
right_open_halfline x0) by
A12;
then (s
. (n
+ k))
in { g1 : x0
< g1 } by
XXREAL_1: 230;
then ex g1 st g1
= (s
. (n
+ k)) & x0
< g1;
then (s
. (n
+ k))
in { g2 : x0
< g2 & g2
< (x0
+ g) } by
A16;
then (s
. (n
+ k))
in
].x0, (x0
+ g).[ by
RCOMP_1:def 2;
then (s
. (n
+ k))
in ((
dom f1)
/\
].x0, (x0
+ g).[) by
A10,
A17,
XBOOLE_0:def 4;
then (
lim_right (f1,x0))
< (f1
. (s
. (n
+ k))) by
A5;
then (f1
. (s
. (n
+ k)))
in { r1 : (
lim_right (f1,x0))
< r1 };
then
A18: (f1
. (s
. (n
+ k)))
in (
right_open_halfline (
lim_right (f1,x0))) by
XXREAL_1: 230;
(f1
. (s
. (n
+ k)))
in (
dom f2) by
A11,
A17,
FUNCT_1: 11;
hence x
in ((
dom f2)
/\ (
right_open_halfline (
lim_right (f1,x0)))) by
A18,
A15,
XBOOLE_0:def 4;
end;
then
A19: (
rng q)
c= ((
dom f2)
/\ (
right_open_halfline (
lim_right (f1,x0))));
(
rng (f1
/* s))
c= (
dom f2) by
A8,
Th1;
then
A20: (f2
/* q)
= ((f2
/* (f1
/* s))
^\ k) by
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A11,
VALUED_0: 31;
A21: (
rng s)
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A8,
Th1;
then
A22: (f1
/* s) is
convergent by
A1,
A2,
A7,
LIMFUNC2:def 8;
(
lim (f1
/* s))
= (
lim_right (f1,x0)) by
A1,
A7,
A21,
LIMFUNC2:def 8;
then
A23: (
lim q)
= (
lim_right (f1,x0)) by
A22,
SEQ_4: 20;
(
lim_right (f2,(
lim_right (f1,x0))))
= (
lim_right (f2,(
lim_right (f1,x0))));
then
A24: (f2
/* q) is
convergent by
A2,
A22,
A23,
A19,
LIMFUNC2:def 8;
hence ((f2
* f1)
/* s) is
convergent by
A20,
SEQ_4: 21;
(
lim (f2
/* q))
= (
lim_right (f2,(
lim_right (f1,x0)))) by
A2,
A22,
A23,
A19,
LIMFUNC2:def 8;
hence (
lim ((f2
* f1)
/* s))
= (
lim_right (f2,(
lim_right (f1,x0)))) by
A24,
A20,
SEQ_4: 22;
end;
hence (f2
* f1)
is_right_convergent_in x0 by
A3,
LIMFUNC2:def 4;
hence thesis by
A6,
LIMFUNC2:def 8;
end;
theorem ::
LIMFUNC4:63
f1
is_left_convergent_in x0 & f2
is_right_convergent_in (
lim_left (f1,x0)) & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f2
* f1))) & (ex g st
0
< g & for r st r
in ((
dom f1)
/\
].(x0
- g), x0.[) holds (
lim_left (f1,x0))
< (f1
. r)) implies (f2
* f1)
is_left_convergent_in x0 & (
lim_left ((f2
* f1),x0))
= (
lim_right (f2,(
lim_left (f1,x0))))
proof
assume that
A1: f1
is_left_convergent_in x0 and
A2: f2
is_right_convergent_in (
lim_left (f1,x0)) and
A3: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f2
* f1));
given g such that
A4:
0
< g and
A5: for r st r
in ((
dom f1)
/\
].(x0
- g), x0.[) holds (
lim_left (f1,x0))
< (f1
. r);
A6:
now
let s be
Real_Sequence;
assume that
A7: s is
convergent & (
lim s)
= x0 and
A8: (
rng s)
c= ((
dom (f2
* f1))
/\ (
left_open_halfline x0));
consider k be
Nat such that
A9: for n be
Nat st k
<= n holds (x0
- g)
< (s
. n) by
A4,
A7,
Lm1,
LIMFUNC2: 1;
A10: (
rng s)
c= (
dom f1) by
A8,
Th1;
set q = ((f1
/* s)
^\ k);
A11: (
rng s)
c= (
dom (f2
* f1)) by
A8,
Th1;
A12: (
rng s)
c= (
left_open_halfline x0) by
A8,
Th1;
now
let x be
object;
assume x
in (
rng q);
then
consider n be
Element of
NAT such that
A13: (q
. n)
= x by
FUNCT_2: 113;
A14: (n
+ k)
in
NAT by
ORDINAL1:def 12;
A15: (f1
. (s
. (n
+ k)))
= ((f1
/* s)
. (n
+ k)) by
A10,
FUNCT_2: 108,
A14
.= x by
A13,
NAT_1:def 3;
A16: (x0
- g)
< (s
. (n
+ k)) by
A9,
NAT_1: 12;
A17: (s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in (
left_open_halfline x0) by
A12;
then (s
. (n
+ k))
in { g1 : g1
< x0 } by
XXREAL_1: 229;
then ex g1 st g1
= (s
. (n
+ k)) & g1
< x0;
then (s
. (n
+ k))
in { g2 : (x0
- g)
< g2 & g2
< x0 } by
A16;
then (s
. (n
+ k))
in
].(x0
- g), x0.[ by
RCOMP_1:def 2;
then (s
. (n
+ k))
in ((
dom f1)
/\
].(x0
- g), x0.[) by
A10,
A17,
XBOOLE_0:def 4;
then (
lim_left (f1,x0))
< (f1
. (s
. (n
+ k))) by
A5;
then (f1
. (s
. (n
+ k)))
in { r1 : (
lim_left (f1,x0))
< r1 };
then
A18: (f1
. (s
. (n
+ k)))
in (
right_open_halfline (
lim_left (f1,x0))) by
XXREAL_1: 230;
(f1
. (s
. (n
+ k)))
in (
dom f2) by
A11,
A17,
FUNCT_1: 11;
hence x
in ((
dom f2)
/\ (
right_open_halfline (
lim_left (f1,x0)))) by
A18,
A15,
XBOOLE_0:def 4;
end;
then
A19: (
rng q)
c= ((
dom f2)
/\ (
right_open_halfline (
lim_left (f1,x0))));
(
rng (f1
/* s))
c= (
dom f2) by
A8,
Th1;
then
A20: (f2
/* q)
= ((f2
/* (f1
/* s))
^\ k) by
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A11,
VALUED_0: 31;
A21: (
rng s)
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A8,
Th1;
then
A22: (f1
/* s) is
convergent by
A1,
A2,
A7,
LIMFUNC2:def 7;
(
lim (f1
/* s))
= (
lim_left (f1,x0)) by
A1,
A7,
A21,
LIMFUNC2:def 7;
then
A23: (
lim q)
= (
lim_left (f1,x0)) by
A22,
SEQ_4: 20;
(
lim_right (f2,(
lim_left (f1,x0))))
= (
lim_right (f2,(
lim_left (f1,x0))));
then
A24: (f2
/* q) is
convergent by
A2,
A22,
A23,
A19,
LIMFUNC2:def 8;
hence ((f2
* f1)
/* s) is
convergent by
A20,
SEQ_4: 21;
(
lim (f2
/* q))
= (
lim_right (f2,(
lim_left (f1,x0)))) by
A2,
A22,
A23,
A19,
LIMFUNC2:def 8;
hence (
lim ((f2
* f1)
/* s))
= (
lim_right (f2,(
lim_left (f1,x0)))) by
A24,
A20,
SEQ_4: 22;
end;
hence (f2
* f1)
is_left_convergent_in x0 by
A3,
LIMFUNC2:def 1;
hence thesis by
A6,
LIMFUNC2:def 7;
end;
theorem ::
LIMFUNC4:64
f1
is_right_convergent_in x0 & f2
is_left_convergent_in (
lim_right (f1,x0)) & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f2
* f1))) & (ex g st
0
< g & for r st r
in ((
dom f1)
/\
].x0, (x0
+ g).[) holds (f1
. r)
< (
lim_right (f1,x0))) implies (f2
* f1)
is_right_convergent_in x0 & (
lim_right ((f2
* f1),x0))
= (
lim_left (f2,(
lim_right (f1,x0))))
proof
assume that
A1: f1
is_right_convergent_in x0 and
A2: f2
is_left_convergent_in (
lim_right (f1,x0)) and
A3: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f2
* f1));
given g such that
A4:
0
< g and
A5: for r st r
in ((
dom f1)
/\
].x0, (x0
+ g).[) holds (f1
. r)
< (
lim_right (f1,x0));
A6:
now
let s be
Real_Sequence;
assume that
A7: s is
convergent & (
lim s)
= x0 and
A8: (
rng s)
c= ((
dom (f2
* f1))
/\ (
right_open_halfline x0));
consider k be
Nat such that
A9: for n be
Nat st k
<= n holds (s
. n)
< (x0
+ g) by
A4,
A7,
Lm1,
LIMFUNC2: 2;
A10: (
rng s)
c= (
dom f1) by
A8,
Th1;
set q = ((f1
/* s)
^\ k);
A11: (
rng s)
c= (
dom (f2
* f1)) by
A8,
Th1;
A12: (
rng s)
c= (
right_open_halfline x0) by
A8,
Th1;
now
let x be
object;
assume x
in (
rng q);
then
consider n be
Element of
NAT such that
A13: (q
. n)
= x by
FUNCT_2: 113;
A14: (n
+ k)
in
NAT by
ORDINAL1:def 12;
A15: (f1
. (s
. (n
+ k)))
= ((f1
/* s)
. (n
+ k)) by
A10,
FUNCT_2: 108,
A14
.= x by
A13,
NAT_1:def 3;
A16: (s
. (n
+ k))
< (x0
+ g) by
A9,
NAT_1: 12;
A17: (s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in (
right_open_halfline x0) by
A12;
then (s
. (n
+ k))
in { g1 : x0
< g1 } by
XXREAL_1: 230;
then ex g1 st g1
= (s
. (n
+ k)) & x0
< g1;
then (s
. (n
+ k))
in { g2 : x0
< g2 & g2
< (x0
+ g) } by
A16;
then (s
. (n
+ k))
in
].x0, (x0
+ g).[ by
RCOMP_1:def 2;
then (s
. (n
+ k))
in ((
dom f1)
/\
].x0, (x0
+ g).[) by
A10,
A17,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
< (
lim_right (f1,x0)) by
A5;
then (f1
. (s
. (n
+ k)))
in { r1 : r1
< (
lim_right (f1,x0)) };
then
A18: (f1
. (s
. (n
+ k)))
in (
left_open_halfline (
lim_right (f1,x0))) by
XXREAL_1: 229;
(f1
. (s
. (n
+ k)))
in (
dom f2) by
A11,
A17,
FUNCT_1: 11;
hence x
in ((
dom f2)
/\ (
left_open_halfline (
lim_right (f1,x0)))) by
A18,
A15,
XBOOLE_0:def 4;
end;
then
A19: (
rng q)
c= ((
dom f2)
/\ (
left_open_halfline (
lim_right (f1,x0))));
(
rng (f1
/* s))
c= (
dom f2) by
A8,
Th1;
then
A20: (f2
/* q)
= ((f2
/* (f1
/* s))
^\ k) by
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A11,
VALUED_0: 31;
A21: (
rng s)
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A8,
Th1;
then
A22: (f1
/* s) is
convergent by
A1,
A2,
A7,
LIMFUNC2:def 8;
(
lim (f1
/* s))
= (
lim_right (f1,x0)) by
A1,
A7,
A21,
LIMFUNC2:def 8;
then
A23: (
lim q)
= (
lim_right (f1,x0)) by
A22,
SEQ_4: 20;
(
lim_left (f2,(
lim_right (f1,x0))))
= (
lim_left (f2,(
lim_right (f1,x0))));
then
A24: (f2
/* q) is
convergent by
A2,
A22,
A23,
A19,
LIMFUNC2:def 7;
hence ((f2
* f1)
/* s) is
convergent by
A20,
SEQ_4: 21;
(
lim (f2
/* q))
= (
lim_left (f2,(
lim_right (f1,x0)))) by
A2,
A22,
A23,
A19,
LIMFUNC2:def 7;
hence (
lim ((f2
* f1)
/* s))
= (
lim_left (f2,(
lim_right (f1,x0)))) by
A24,
A20,
SEQ_4: 22;
end;
hence (f2
* f1)
is_right_convergent_in x0 by
A3,
LIMFUNC2:def 4;
hence thesis by
A6,
LIMFUNC2:def 8;
end;
theorem ::
LIMFUNC4:65
f1 is
convergent_in+infty & f2
is_left_convergent_in (
lim_in+infty f1) & (for r holds ex g st r
< g & g
in (
dom (f2
* f1))) & (ex r st for g st g
in ((
dom f1)
/\ (
right_open_halfline r)) holds (f1
. g)
< (
lim_in+infty f1)) implies (f2
* f1) is
convergent_in+infty & (
lim_in+infty (f2
* f1))
= (
lim_left (f2,(
lim_in+infty f1)))
proof
assume that
A1: f1 is
convergent_in+infty and
A2: f2
is_left_convergent_in (
lim_in+infty f1) and
A3: for r holds ex g st r
< g & g
in (
dom (f2
* f1));
given r such that
A4: for g st g
in ((
dom f1)
/\ (
right_open_halfline r)) holds (f1
. g)
< (
lim_in+infty f1);
A5:
now
set L = (
lim_left (f2,(
lim_in+infty f1)));
let s be
Real_Sequence;
assume that
A6: s is
divergent_to+infty and
A7: (
rng s)
c= (
dom (f2
* f1));
consider k be
Nat such that
A8: for n be
Nat st k
<= n holds r
< (s
. n) by
A6;
set q = (s
^\ k);
A9: q is
divergent_to+infty by
A6,
LIMFUNC1: 26;
A10: (
rng s)
c= (
dom f1) by
A7,
Lm2;
A11: (
rng q)
c= (
rng s) by
VALUED_0: 21;
then (
rng q)
c= (
dom f1) by
A10;
then
A12: (f1
/* q) is
convergent & (
lim (f1
/* q))
= (
lim_in+infty f1) by
A1,
A9,
LIMFUNC1:def 12;
A13: (
rng (f1
/* s))
c= (
dom f2) by
A7,
Lm2;
A14: (
rng (f1
/* q))
c= ((
dom f2)
/\ (
left_open_halfline (
lim_in+infty f1)))
proof
let x be
object;
assume x
in (
rng (f1
/* q));
then
consider n be
Element of
NAT such that
A15: ((f1
/* q)
. n)
= x by
FUNCT_2: 113;
A16: x
= (f1
. (q
. n)) by
A10,
A11,
A15,
FUNCT_2: 108,
XBOOLE_1: 1
.= (f1
. (s
. (n
+ k))) by
NAT_1:def 3;
r
< (s
. (n
+ k)) by
A8,
NAT_1: 12;
then (s
. (n
+ k))
in { r2 : r
< r2 };
then
A17: (s
. (n
+ k))
in (
right_open_halfline r) by
XXREAL_1: 230;
(s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in ((
dom f1)
/\ (
right_open_halfline r)) by
A10,
A17,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
< (
lim_in+infty f1) by
A4;
then x
in { g1 : g1
< (
lim_in+infty f1) } by
A16;
then
A18: x
in (
left_open_halfline (
lim_in+infty f1)) by
XXREAL_1: 229;
A19: (n
+ k)
in
NAT by
ORDINAL1:def 12;
((f1
/* s)
. (n
+ k))
in (
rng (f1
/* s)) by
VALUED_0: 28;
then ((f1
/* s)
. (n
+ k))
in (
dom f2) by
A13;
then x
in (
dom f2) by
A10,
A16,
FUNCT_2: 108,
A19;
hence thesis by
A18,
XBOOLE_0:def 4;
end;
A20: (f2
/* (f1
/* q))
= (f2
/* ((f1
/* s)
^\ k)) by
A10,
VALUED_0: 27
.= ((f2
/* (f1
/* s))
^\ k) by
A13,
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A7,
VALUED_0: 31;
L
= L;
then
A21: (f2
/* (f1
/* q)) is
convergent by
A2,
A12,
A14,
LIMFUNC2:def 7;
hence ((f2
* f1)
/* s) is
convergent by
A20,
SEQ_4: 21;
(
lim (f2
/* (f1
/* q)))
= L by
A2,
A12,
A14,
LIMFUNC2:def 7;
hence (
lim ((f2
* f1)
/* s))
= L by
A21,
A20,
SEQ_4: 22;
end;
hence (f2
* f1) is
convergent_in+infty by
A3;
hence thesis by
A5,
LIMFUNC1:def 12;
end;
theorem ::
LIMFUNC4:66
f1 is
convergent_in+infty & f2
is_right_convergent_in (
lim_in+infty f1) & (for r holds ex g st r
< g & g
in (
dom (f2
* f1))) & (ex r st for g st g
in ((
dom f1)
/\ (
right_open_halfline r)) holds (
lim_in+infty f1)
< (f1
. g)) implies (f2
* f1) is
convergent_in+infty & (
lim_in+infty (f2
* f1))
= (
lim_right (f2,(
lim_in+infty f1)))
proof
assume that
A1: f1 is
convergent_in+infty and
A2: f2
is_right_convergent_in (
lim_in+infty f1) and
A3: for r holds ex g st r
< g & g
in (
dom (f2
* f1));
given r such that
A4: for g st g
in ((
dom f1)
/\ (
right_open_halfline r)) holds (
lim_in+infty f1)
< (f1
. g);
A5:
now
set L = (
lim_right (f2,(
lim_in+infty f1)));
let s be
Real_Sequence;
assume that
A6: s is
divergent_to+infty and
A7: (
rng s)
c= (
dom (f2
* f1));
consider k be
Nat such that
A8: for n be
Nat st k
<= n holds r
< (s
. n) by
A6;
set q = (s
^\ k);
A9: q is
divergent_to+infty by
A6,
LIMFUNC1: 26;
A10: (
rng s)
c= (
dom f1) by
A7,
Lm2;
A11: (
rng q)
c= (
rng s) by
VALUED_0: 21;
then (
rng q)
c= (
dom f1) by
A10;
then
A12: (f1
/* q) is
convergent & (
lim (f1
/* q))
= (
lim_in+infty f1) by
A1,
A9,
LIMFUNC1:def 12;
A13: (
rng (f1
/* s))
c= (
dom f2) by
A7,
Lm2;
A14: (
rng (f1
/* q))
c= ((
dom f2)
/\ (
right_open_halfline (
lim_in+infty f1)))
proof
let x be
object;
assume x
in (
rng (f1
/* q));
then
consider n be
Element of
NAT such that
A15: ((f1
/* q)
. n)
= x by
FUNCT_2: 113;
A16: x
= (f1
. (q
. n)) by
A10,
A11,
A15,
FUNCT_2: 108,
XBOOLE_1: 1
.= (f1
. (s
. (n
+ k))) by
NAT_1:def 3;
r
< (s
. (n
+ k)) by
A8,
NAT_1: 12;
then (s
. (n
+ k))
in { r2 : r
< r2 };
then
A17: (s
. (n
+ k))
in (
right_open_halfline r) by
XXREAL_1: 230;
(s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in ((
dom f1)
/\ (
right_open_halfline r)) by
A10,
A17,
XBOOLE_0:def 4;
then (
lim_in+infty f1)
< (f1
. (s
. (n
+ k))) by
A4;
then x
in { g1 : (
lim_in+infty f1)
< g1 } by
A16;
then
A18: x
in (
right_open_halfline (
lim_in+infty f1)) by
XXREAL_1: 230;
A19: (n
+ k)
in
NAT by
ORDINAL1:def 12;
((f1
/* s)
. (n
+ k))
in (
rng (f1
/* s)) by
VALUED_0: 28;
then ((f1
/* s)
. (n
+ k))
in (
dom f2) by
A13;
then x
in (
dom f2) by
A10,
A16,
FUNCT_2: 108,
A19;
hence thesis by
A18,
XBOOLE_0:def 4;
end;
A20: (f2
/* (f1
/* q))
= (f2
/* ((f1
/* s)
^\ k)) by
A10,
VALUED_0: 27
.= ((f2
/* (f1
/* s))
^\ k) by
A13,
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A7,
VALUED_0: 31;
L
= L;
then
A21: (f2
/* (f1
/* q)) is
convergent by
A2,
A12,
A14,
LIMFUNC2:def 8;
hence ((f2
* f1)
/* s) is
convergent by
A20,
SEQ_4: 21;
(
lim (f2
/* (f1
/* q)))
= L by
A2,
A12,
A14,
LIMFUNC2:def 8;
hence (
lim ((f2
* f1)
/* s))
= L by
A21,
A20,
SEQ_4: 22;
end;
hence (f2
* f1) is
convergent_in+infty by
A3;
hence thesis by
A5,
LIMFUNC1:def 12;
end;
theorem ::
LIMFUNC4:67
f1 is
convergent_in-infty & f2
is_left_convergent_in (
lim_in-infty f1) & (for r holds ex g st g
< r & g
in (
dom (f2
* f1))) & (ex r st for g st g
in ((
dom f1)
/\ (
left_open_halfline r)) holds (f1
. g)
< (
lim_in-infty f1)) implies (f2
* f1) is
convergent_in-infty & (
lim_in-infty (f2
* f1))
= (
lim_left (f2,(
lim_in-infty f1)))
proof
assume that
A1: f1 is
convergent_in-infty and
A2: f2
is_left_convergent_in (
lim_in-infty f1) and
A3: for r holds ex g st g
< r & g
in (
dom (f2
* f1));
given r such that
A4: for g st g
in ((
dom f1)
/\ (
left_open_halfline r)) holds (f1
. g)
< (
lim_in-infty f1);
A5:
now
set L = (
lim_left (f2,(
lim_in-infty f1)));
let s be
Real_Sequence;
assume that
A6: s is
divergent_to-infty and
A7: (
rng s)
c= (
dom (f2
* f1));
consider k be
Nat such that
A8: for n be
Nat st k
<= n holds (s
. n)
< r by
A6;
set q = (s
^\ k);
A9: q is
divergent_to-infty by
A6,
LIMFUNC1: 27;
A10: (
rng s)
c= (
dom f1) by
A7,
Lm2;
A11: (
rng q)
c= (
rng s) by
VALUED_0: 21;
then (
rng q)
c= (
dom f1) by
A10;
then
A12: (f1
/* q) is
convergent & (
lim (f1
/* q))
= (
lim_in-infty f1) by
A1,
A9,
LIMFUNC1:def 13;
A13: (
rng (f1
/* s))
c= (
dom f2) by
A7,
Lm2;
A14: (
rng (f1
/* q))
c= ((
dom f2)
/\ (
left_open_halfline (
lim_in-infty f1)))
proof
let x be
object;
assume x
in (
rng (f1
/* q));
then
consider n be
Element of
NAT such that
A15: ((f1
/* q)
. n)
= x by
FUNCT_2: 113;
A16: x
= (f1
. (q
. n)) by
A10,
A11,
A15,
FUNCT_2: 108,
XBOOLE_1: 1
.= (f1
. (s
. (n
+ k))) by
NAT_1:def 3;
(s
. (n
+ k))
< r by
A8,
NAT_1: 12;
then (s
. (n
+ k))
in { r2 : r2
< r };
then
A17: (s
. (n
+ k))
in (
left_open_halfline r) by
XXREAL_1: 229;
(s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in ((
dom f1)
/\ (
left_open_halfline r)) by
A10,
A17,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
< (
lim_in-infty f1) by
A4;
then x
in { g1 : g1
< (
lim_in-infty f1) } by
A16;
then
A18: x
in (
left_open_halfline (
lim_in-infty f1)) by
XXREAL_1: 229;
A19: (n
+ k)
in
NAT by
ORDINAL1:def 12;
((f1
/* s)
. (n
+ k))
in (
rng (f1
/* s)) by
VALUED_0: 28;
then ((f1
/* s)
. (n
+ k))
in (
dom f2) by
A13;
then x
in (
dom f2) by
A10,
A16,
FUNCT_2: 108,
A19;
hence thesis by
A18,
XBOOLE_0:def 4;
end;
A20: (f2
/* (f1
/* q))
= (f2
/* ((f1
/* s)
^\ k)) by
A10,
VALUED_0: 27
.= ((f2
/* (f1
/* s))
^\ k) by
A13,
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A7,
VALUED_0: 31;
L
= L;
then
A21: (f2
/* (f1
/* q)) is
convergent by
A2,
A12,
A14,
LIMFUNC2:def 7;
hence ((f2
* f1)
/* s) is
convergent by
A20,
SEQ_4: 21;
(
lim (f2
/* (f1
/* q)))
= L by
A2,
A12,
A14,
LIMFUNC2:def 7;
hence (
lim ((f2
* f1)
/* s))
= L by
A21,
A20,
SEQ_4: 22;
end;
hence (f2
* f1) is
convergent_in-infty by
A3;
hence thesis by
A5,
LIMFUNC1:def 13;
end;
theorem ::
LIMFUNC4:68
f1 is
convergent_in-infty & f2
is_right_convergent_in (
lim_in-infty f1) & (for r holds ex g st g
< r & g
in (
dom (f2
* f1))) & (ex r st for g st g
in ((
dom f1)
/\ (
left_open_halfline r)) holds (
lim_in-infty f1)
< (f1
. g)) implies (f2
* f1) is
convergent_in-infty & (
lim_in-infty (f2
* f1))
= (
lim_right (f2,(
lim_in-infty f1)))
proof
assume that
A1: f1 is
convergent_in-infty and
A2: f2
is_right_convergent_in (
lim_in-infty f1) and
A3: for r holds ex g st g
< r & g
in (
dom (f2
* f1));
given r such that
A4: for g st g
in ((
dom f1)
/\ (
left_open_halfline r)) holds (
lim_in-infty f1)
< (f1
. g);
A5:
now
set L = (
lim_right (f2,(
lim_in-infty f1)));
let s be
Real_Sequence;
assume that
A6: s is
divergent_to-infty and
A7: (
rng s)
c= (
dom (f2
* f1));
consider k be
Nat such that
A8: for n be
Nat st k
<= n holds (s
. n)
< r by
A6;
set q = (s
^\ k);
A9: q is
divergent_to-infty by
A6,
LIMFUNC1: 27;
A10: (
rng s)
c= (
dom f1) by
A7,
Lm2;
A11: (
rng q)
c= (
rng s) by
VALUED_0: 21;
then (
rng q)
c= (
dom f1) by
A10;
then
A12: (f1
/* q) is
convergent & (
lim (f1
/* q))
= (
lim_in-infty f1) by
A1,
A9,
LIMFUNC1:def 13;
A13: (
rng (f1
/* s))
c= (
dom f2) by
A7,
Lm2;
A14: (
rng (f1
/* q))
c= ((
dom f2)
/\ (
right_open_halfline (
lim_in-infty f1)))
proof
let x be
object;
assume x
in (
rng (f1
/* q));
then
consider n be
Element of
NAT such that
A15: ((f1
/* q)
. n)
= x by
FUNCT_2: 113;
A16: x
= (f1
. (q
. n)) by
A10,
A11,
A15,
FUNCT_2: 108,
XBOOLE_1: 1
.= (f1
. (s
. (n
+ k))) by
NAT_1:def 3;
(s
. (n
+ k))
< r by
A8,
NAT_1: 12;
then (s
. (n
+ k))
in { r2 : r2
< r };
then
A17: (s
. (n
+ k))
in (
left_open_halfline r) by
XXREAL_1: 229;
(s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in ((
dom f1)
/\ (
left_open_halfline r)) by
A10,
A17,
XBOOLE_0:def 4;
then (
lim_in-infty f1)
< (f1
. (s
. (n
+ k))) by
A4;
then x
in { g1 : (
lim_in-infty f1)
< g1 } by
A16;
then
A18: x
in (
right_open_halfline (
lim_in-infty f1)) by
XXREAL_1: 230;
A19: (n
+ k)
in
NAT by
ORDINAL1:def 12;
((f1
/* s)
. (n
+ k))
in (
rng (f1
/* s)) by
VALUED_0: 28;
then ((f1
/* s)
. (n
+ k))
in (
dom f2) by
A13;
then x
in (
dom f2) by
A10,
A16,
FUNCT_2: 108,
A19;
hence thesis by
A18,
XBOOLE_0:def 4;
end;
A20: (f2
/* (f1
/* q))
= (f2
/* ((f1
/* s)
^\ k)) by
A10,
VALUED_0: 27
.= ((f2
/* (f1
/* s))
^\ k) by
A13,
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A7,
VALUED_0: 31;
L
= L;
then
A21: (f2
/* (f1
/* q)) is
convergent by
A2,
A12,
A14,
LIMFUNC2:def 8;
hence ((f2
* f1)
/* s) is
convergent by
A20,
SEQ_4: 21;
(
lim (f2
/* (f1
/* q)))
= L by
A2,
A12,
A14,
LIMFUNC2:def 8;
hence (
lim ((f2
* f1)
/* s))
= L by
A21,
A20,
SEQ_4: 22;
end;
hence (f2
* f1) is
convergent_in-infty by
A3;
hence thesis by
A5,
LIMFUNC1:def 13;
end;
theorem ::
LIMFUNC4:69
f1
is_divergent_to+infty_in x0 & f2 is
convergent_in+infty & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f2
* f1)) & g2
< r2 & x0
< g2 & g2
in (
dom (f2
* f1))) implies (f2
* f1)
is_convergent_in x0 & (
lim ((f2
* f1),x0))
= (
lim_in+infty f2)
proof
assume that
A1: f1
is_divergent_to+infty_in x0 and
A2: f2 is
convergent_in+infty and
A3: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f2
* f1)) & g2
< r2 & x0
< g2 & g2
in (
dom (f2
* f1));
A4:
now
let s be
Real_Sequence;
assume that
A5: s is
convergent & (
lim s)
= x0 and
A6: (
rng s)
c= ((
dom (f2
* f1))
\
{x0});
(
rng s)
c= ((
dom f1)
\
{x0}) by
A6,
Th2;
then
A7: (f1
/* s) is
divergent_to+infty by
A1,
A5,
LIMFUNC3:def 2;
A8: (
rng (f1
/* s))
c= (
dom f2) by
A6,
Th2;
then
A9: (
lim (f2
/* (f1
/* s)))
= (
lim_in+infty f2) by
A2,
A7,
LIMFUNC1:def 12;
A10: (
rng s)
c= (
dom (f2
* f1)) by
A6,
Th2;
(f2
/* (f1
/* s)) is
convergent by
A2,
A8,
A7;
hence ((f2
* f1)
/* s) is
convergent & (
lim ((f2
* f1)
/* s))
= (
lim_in+infty f2) by
A10,
A9,
VALUED_0: 31;
end;
hence (f2
* f1)
is_convergent_in x0 by
A3,
LIMFUNC3:def 1;
hence thesis by
A4,
LIMFUNC3:def 4;
end;
theorem ::
LIMFUNC4:70
f1
is_divergent_to-infty_in x0 & f2 is
convergent_in-infty & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f2
* f1)) & g2
< r2 & x0
< g2 & g2
in (
dom (f2
* f1))) implies (f2
* f1)
is_convergent_in x0 & (
lim ((f2
* f1),x0))
= (
lim_in-infty f2)
proof
assume that
A1: f1
is_divergent_to-infty_in x0 and
A2: f2 is
convergent_in-infty and
A3: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f2
* f1)) & g2
< r2 & x0
< g2 & g2
in (
dom (f2
* f1));
A4:
now
let s be
Real_Sequence;
assume that
A5: s is
convergent & (
lim s)
= x0 and
A6: (
rng s)
c= ((
dom (f2
* f1))
\
{x0});
(
rng s)
c= ((
dom f1)
\
{x0}) by
A6,
Th2;
then
A7: (f1
/* s) is
divergent_to-infty by
A1,
A5,
LIMFUNC3:def 3;
A8: (
rng (f1
/* s))
c= (
dom f2) by
A6,
Th2;
then
A9: (
lim (f2
/* (f1
/* s)))
= (
lim_in-infty f2) by
A2,
A7,
LIMFUNC1:def 13;
A10: (
rng s)
c= (
dom (f2
* f1)) by
A6,
Th2;
(f2
/* (f1
/* s)) is
convergent by
A2,
A8,
A7;
hence ((f2
* f1)
/* s) is
convergent & (
lim ((f2
* f1)
/* s))
= (
lim_in-infty f2) by
A10,
A9,
VALUED_0: 31;
end;
hence (f2
* f1)
is_convergent_in x0 by
A3,
LIMFUNC3:def 1;
hence thesis by
A4,
LIMFUNC3:def 4;
end;
theorem ::
LIMFUNC4:71
f1 is
convergent_in+infty & f2
is_convergent_in (
lim_in+infty f1) & (for r holds ex g st r
< g & g
in (
dom (f2
* f1))) & (ex r st for g st g
in ((
dom f1)
/\ (
right_open_halfline r)) holds (f1
. g)
<> (
lim_in+infty f1)) implies (f2
* f1) is
convergent_in+infty & (
lim_in+infty (f2
* f1))
= (
lim (f2,(
lim_in+infty f1)))
proof
assume that
A1: f1 is
convergent_in+infty and
A2: f2
is_convergent_in (
lim_in+infty f1) and
A3: for r holds ex g st r
< g & g
in (
dom (f2
* f1));
given r such that
A4: for g st g
in ((
dom f1)
/\ (
right_open_halfline r)) holds (f1
. g)
<> (
lim_in+infty f1);
A5:
now
set L = (
lim (f2,(
lim_in+infty f1)));
let s be
Real_Sequence;
assume that
A6: s is
divergent_to+infty and
A7: (
rng s)
c= (
dom (f2
* f1));
consider k be
Nat such that
A8: for n be
Nat st k
<= n holds r
< (s
. n) by
A6;
set q = (s
^\ k);
A9: q is
divergent_to+infty by
A6,
LIMFUNC1: 26;
A10: (
rng s)
c= (
dom f1) by
A7,
Lm2;
A11: (
rng q)
c= (
rng s) by
VALUED_0: 21;
then (
rng q)
c= (
dom f1) by
A10;
then
A12: (f1
/* q) is
convergent & (
lim (f1
/* q))
= (
lim_in+infty f1) by
A1,
A9,
LIMFUNC1:def 12;
A13: (
rng (f1
/* s))
c= (
dom f2) by
A7,
Lm2;
A14: (
rng (f1
/* q))
c= ((
dom f2)
\
{(
lim_in+infty f1)})
proof
let x be
object;
assume x
in (
rng (f1
/* q));
then
consider n be
Element of
NAT such that
A15: ((f1
/* q)
. n)
= x by
FUNCT_2: 113;
A16: x
= (f1
. (q
. n)) by
A10,
A11,
A15,
FUNCT_2: 108,
XBOOLE_1: 1
.= (f1
. (s
. (n
+ k))) by
NAT_1:def 3;
r
< (s
. (n
+ k)) by
A8,
NAT_1: 12;
then (s
. (n
+ k))
in { r2 : r
< r2 };
then
A17: (s
. (n
+ k))
in (
right_open_halfline r) by
XXREAL_1: 230;
(s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in ((
dom f1)
/\ (
right_open_halfline r)) by
A10,
A17,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
<> (
lim_in+infty f1) by
A4;
then
A18: not (f1
. (s
. (n
+ k)))
in
{(
lim_in+infty f1)} by
TARSKI:def 1;
A19: (n
+ k)
in
NAT by
ORDINAL1:def 12;
((f1
/* s)
. (n
+ k))
in (
rng (f1
/* s)) by
VALUED_0: 28;
then ((f1
/* s)
. (n
+ k))
in (
dom f2) by
A13;
then x
in (
dom f2) by
A10,
A16,
FUNCT_2: 108,
A19;
hence thesis by
A16,
A18,
XBOOLE_0:def 5;
end;
A20: (f2
/* (f1
/* q))
= (f2
/* ((f1
/* s)
^\ k)) by
A10,
VALUED_0: 27
.= ((f2
/* (f1
/* s))
^\ k) by
A13,
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A7,
VALUED_0: 31;
L
= L;
then
A21: (f2
/* (f1
/* q)) is
convergent by
A2,
A12,
A14,
LIMFUNC3:def 4;
hence ((f2
* f1)
/* s) is
convergent by
A20,
SEQ_4: 21;
(
lim (f2
/* (f1
/* q)))
= L by
A2,
A12,
A14,
LIMFUNC3:def 4;
hence (
lim ((f2
* f1)
/* s))
= L by
A21,
A20,
SEQ_4: 22;
end;
hence (f2
* f1) is
convergent_in+infty by
A3;
hence thesis by
A5,
LIMFUNC1:def 12;
end;
theorem ::
LIMFUNC4:72
f1 is
convergent_in-infty & f2
is_convergent_in (
lim_in-infty f1) & (for r holds ex g st g
< r & g
in (
dom (f2
* f1))) & (ex r st for g st g
in ((
dom f1)
/\ (
left_open_halfline r)) holds (f1
. g)
<> (
lim_in-infty f1)) implies (f2
* f1) is
convergent_in-infty & (
lim_in-infty (f2
* f1))
= (
lim (f2,(
lim_in-infty f1)))
proof
assume that
A1: f1 is
convergent_in-infty and
A2: f2
is_convergent_in (
lim_in-infty f1) and
A3: for r holds ex g st g
< r & g
in (
dom (f2
* f1));
given r such that
A4: for g st g
in ((
dom f1)
/\ (
left_open_halfline r)) holds (f1
. g)
<> (
lim_in-infty f1);
A5:
now
set L = (
lim (f2,(
lim_in-infty f1)));
let s be
Real_Sequence;
assume that
A6: s is
divergent_to-infty and
A7: (
rng s)
c= (
dom (f2
* f1));
consider k be
Nat such that
A8: for n be
Nat st k
<= n holds (s
. n)
< r by
A6;
set q = (s
^\ k);
A9: q is
divergent_to-infty by
A6,
LIMFUNC1: 27;
A10: (
rng s)
c= (
dom f1) by
A7,
Lm2;
A11: (
rng q)
c= (
rng s) by
VALUED_0: 21;
then (
rng q)
c= (
dom f1) by
A10;
then
A12: (f1
/* q) is
convergent & (
lim (f1
/* q))
= (
lim_in-infty f1) by
A1,
A9,
LIMFUNC1:def 13;
A13: (
rng (f1
/* s))
c= (
dom f2) by
A7,
Lm2;
A14: (
rng (f1
/* q))
c= ((
dom f2)
\
{(
lim_in-infty f1)})
proof
let x be
object;
assume x
in (
rng (f1
/* q));
then
consider n be
Element of
NAT such that
A15: ((f1
/* q)
. n)
= x by
FUNCT_2: 113;
A16: x
= (f1
. (q
. n)) by
A10,
A11,
A15,
FUNCT_2: 108,
XBOOLE_1: 1
.= (f1
. (s
. (n
+ k))) by
NAT_1:def 3;
(s
. (n
+ k))
< r by
A8,
NAT_1: 12;
then (s
. (n
+ k))
in { r2 : r2
< r };
then
A17: (s
. (n
+ k))
in (
left_open_halfline r) by
XXREAL_1: 229;
(s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in ((
dom f1)
/\ (
left_open_halfline r)) by
A10,
A17,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
<> (
lim_in-infty f1) by
A4;
then
A18: not (f1
. (s
. (n
+ k)))
in
{(
lim_in-infty f1)} by
TARSKI:def 1;
A19: (n
+ k)
in
NAT by
ORDINAL1:def 12;
((f1
/* s)
. (n
+ k))
in (
rng (f1
/* s)) by
VALUED_0: 28;
then ((f1
/* s)
. (n
+ k))
in (
dom f2) by
A13;
then x
in (
dom f2) by
A10,
A16,
FUNCT_2: 108,
A19;
hence thesis by
A16,
A18,
XBOOLE_0:def 5;
end;
A20: (f2
/* (f1
/* q))
= (f2
/* ((f1
/* s)
^\ k)) by
A10,
VALUED_0: 27
.= ((f2
/* (f1
/* s))
^\ k) by
A13,
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A7,
VALUED_0: 31;
L
= L;
then
A21: (f2
/* (f1
/* q)) is
convergent by
A2,
A12,
A14,
LIMFUNC3:def 4;
hence ((f2
* f1)
/* s) is
convergent by
A20,
SEQ_4: 21;
(
lim (f2
/* (f1
/* q)))
= L by
A2,
A12,
A14,
LIMFUNC3:def 4;
hence (
lim ((f2
* f1)
/* s))
= L by
A21,
A20,
SEQ_4: 22;
end;
hence (f2
* f1) is
convergent_in-infty by
A3;
hence thesis by
A5,
LIMFUNC1:def 13;
end;
theorem ::
LIMFUNC4:73
f1
is_convergent_in x0 & f2
is_left_convergent_in (
lim (f1,x0)) & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f2
* f1)) & g2
< r2 & x0
< g2 & g2
in (
dom (f2
* f1))) & (ex g st
0
< g & for r st r
in ((
dom f1)
/\ (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[)) holds (f1
. r)
< (
lim (f1,x0))) implies (f2
* f1)
is_convergent_in x0 & (
lim ((f2
* f1),x0))
= (
lim_left (f2,(
lim (f1,x0))))
proof
assume that
A1: f1
is_convergent_in x0 and
A2: f2
is_left_convergent_in (
lim (f1,x0)) and
A3: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f2
* f1)) & g2
< r2 & x0
< g2 & g2
in (
dom (f2
* f1));
given g such that
A4:
0
< g and
A5: for r st r
in ((
dom f1)
/\ (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[)) holds (f1
. r)
< (
lim (f1,x0));
A6:
now
let s be
Real_Sequence;
assume that
A7: s is
convergent & (
lim s)
= x0 and
A8: (
rng s)
c= ((
dom (f2
* f1))
\
{x0});
consider k be
Element of
NAT such that
A9: for n be
Element of
NAT st k
<= n holds (x0
- g)
< (s
. n) & (s
. n)
< (x0
+ g) by
A4,
A7,
LIMFUNC3: 7;
set q = ((f1
/* s)
^\ k);
A10: (
rng s)
c= (
dom (f2
* f1)) by
A8,
Th2;
A11: (
rng s)
c= (
dom f1) by
A8,
Th2;
now
let x be
object;
assume x
in (
rng q);
then
consider n be
Element of
NAT such that
A12: (q
. n)
= x by
FUNCT_2: 113;
A13: (f1
. (s
. (n
+ k)))
= ((f1
/* s)
. (n
+ k)) by
A11,
FUNCT_2: 108
.= x by
A12,
NAT_1:def 3;
k
<= (n
+ k) by
NAT_1: 12;
then (x0
- g)
< (s
. (n
+ k)) & (s
. (n
+ k))
< (x0
+ g) by
A9;
then (s
. (n
+ k))
in { g1 : (x0
- g)
< g1 & g1
< (x0
+ g) };
then
A14: (s
. (n
+ k))
in
].(x0
- g), (x0
+ g).[ by
RCOMP_1:def 2;
A15: (s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then not (s
. (n
+ k))
in
{x0} by
A8,
XBOOLE_0:def 5;
then (s
. (n
+ k))
in (
].(x0
- g), (x0
+ g).[
\
{x0}) by
A14,
XBOOLE_0:def 5;
then (s
. (n
+ k))
in (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[) by
A4,
LIMFUNC3: 4;
then (s
. (n
+ k))
in ((
dom f1)
/\ (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[)) by
A11,
A15,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
< (
lim (f1,x0)) by
A5;
then (f1
. (s
. (n
+ k)))
in { g2 : g2
< (
lim (f1,x0)) };
then
A16: (f1
. (s
. (n
+ k)))
in (
left_open_halfline (
lim (f1,x0))) by
XXREAL_1: 229;
(f1
. (s
. (n
+ k)))
in (
dom f2) by
A10,
A15,
FUNCT_1: 11;
hence x
in ((
dom f2)
/\ (
left_open_halfline (
lim (f1,x0)))) by
A16,
A13,
XBOOLE_0:def 4;
end;
then
A17: (
rng q)
c= ((
dom f2)
/\ (
left_open_halfline (
lim (f1,x0))));
(
rng (f1
/* s))
c= (
dom f2) by
A8,
Th2;
then
A18: (f2
/* q)
= ((f2
/* (f1
/* s))
^\ k) by
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A10,
VALUED_0: 31;
A19: (
rng s)
c= ((
dom f1)
\
{x0}) by
A8,
Th2;
then
A20: (f1
/* s) is
convergent by
A1,
A2,
A7,
LIMFUNC3:def 4;
(
lim (f1
/* s))
= (
lim (f1,x0)) by
A1,
A7,
A19,
LIMFUNC3:def 4;
then
A21: (
lim q)
= (
lim (f1,x0)) by
A20,
SEQ_4: 20;
(
lim_left (f2,(
lim (f1,x0))))
= (
lim_left (f2,(
lim (f1,x0))));
then
A22: (f2
/* q) is
convergent by
A2,
A20,
A21,
A17,
LIMFUNC2:def 7;
hence ((f2
* f1)
/* s) is
convergent by
A18,
SEQ_4: 21;
(
lim (f2
/* q))
= (
lim_left (f2,(
lim (f1,x0)))) by
A2,
A20,
A21,
A17,
LIMFUNC2:def 7;
hence (
lim ((f2
* f1)
/* s))
= (
lim_left (f2,(
lim (f1,x0)))) by
A22,
A18,
SEQ_4: 22;
end;
hence (f2
* f1)
is_convergent_in x0 by
A3,
LIMFUNC3:def 1;
hence thesis by
A6,
LIMFUNC3:def 4;
end;
theorem ::
LIMFUNC4:74
f1
is_left_convergent_in x0 & f2
is_convergent_in (
lim_left (f1,x0)) & (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f2
* f1))) & (ex g st
0
< g & for r st r
in ((
dom f1)
/\
].(x0
- g), x0.[) holds (f1
. r)
<> (
lim_left (f1,x0))) implies (f2
* f1)
is_left_convergent_in x0 & (
lim_left ((f2
* f1),x0))
= (
lim (f2,(
lim_left (f1,x0))))
proof
assume that
A1: f1
is_left_convergent_in x0 and
A2: f2
is_convergent_in (
lim_left (f1,x0)) and
A3: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom (f2
* f1));
given g such that
A4:
0
< g and
A5: for r st r
in ((
dom f1)
/\
].(x0
- g), x0.[) holds (f1
. r)
<> (
lim_left (f1,x0));
A6:
now
let s be
Real_Sequence;
assume that
A7: s is
convergent & (
lim s)
= x0 and
A8: (
rng s)
c= ((
dom (f2
* f1))
/\ (
left_open_halfline x0));
consider k be
Nat such that
A9: for n be
Nat st k
<= n holds (x0
- g)
< (s
. n) by
A4,
A7,
Lm1,
LIMFUNC2: 1;
A10: (
rng s)
c= (
dom f1) by
A8,
Th1;
set q = ((f1
/* s)
^\ k);
A11: (
rng s)
c= (
dom (f2
* f1)) by
A8,
Th1;
A12: (
rng s)
c= (
left_open_halfline x0) by
A8,
Th1;
now
let x be
object;
assume x
in (
rng q);
then
consider n be
Element of
NAT such that
A13: (q
. n)
= x by
FUNCT_2: 113;
A14: (n
+ k)
in
NAT by
ORDINAL1:def 12;
A15: (f1
. (s
. (n
+ k)))
= ((f1
/* s)
. (n
+ k)) by
A10,
FUNCT_2: 108,
A14
.= x by
A13,
NAT_1:def 3;
A16: (x0
- g)
< (s
. (n
+ k)) by
A9,
NAT_1: 12;
A17: (s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in (
left_open_halfline x0) by
A12;
then (s
. (n
+ k))
in { g1 : g1
< x0 } by
XXREAL_1: 229;
then ex g1 st g1
= (s
. (n
+ k)) & g1
< x0;
then (s
. (n
+ k))
in { g2 : (x0
- g)
< g2 & g2
< x0 } by
A16;
then (s
. (n
+ k))
in
].(x0
- g), x0.[ by
RCOMP_1:def 2;
then (s
. (n
+ k))
in ((
dom f1)
/\
].(x0
- g), x0.[) by
A10,
A17,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
<> (
lim_left (f1,x0)) by
A5;
then
A18: not (f1
. (s
. (n
+ k)))
in
{(
lim_left (f1,x0))} by
TARSKI:def 1;
(f1
. (s
. (n
+ k)))
in (
dom f2) by
A11,
A17,
FUNCT_1: 11;
hence x
in ((
dom f2)
\
{(
lim_left (f1,x0))}) by
A18,
A15,
XBOOLE_0:def 5;
end;
then
A19: (
rng q)
c= ((
dom f2)
\
{(
lim_left (f1,x0))});
(
rng (f1
/* s))
c= (
dom f2) by
A8,
Th1;
then
A20: (f2
/* q)
= ((f2
/* (f1
/* s))
^\ k) by
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A11,
VALUED_0: 31;
A21: (
rng s)
c= ((
dom f1)
/\ (
left_open_halfline x0)) by
A8,
Th1;
then
A22: (f1
/* s) is
convergent by
A1,
A2,
A7,
LIMFUNC2:def 7;
(
lim (f1
/* s))
= (
lim_left (f1,x0)) by
A1,
A7,
A21,
LIMFUNC2:def 7;
then
A23: (
lim q)
= (
lim_left (f1,x0)) by
A22,
SEQ_4: 20;
(
lim (f2,(
lim_left (f1,x0))))
= (
lim (f2,(
lim_left (f1,x0))));
then
A24: (f2
/* q) is
convergent by
A2,
A22,
A23,
A19,
LIMFUNC3:def 4;
hence ((f2
* f1)
/* s) is
convergent by
A20,
SEQ_4: 21;
(
lim (f2
/* q))
= (
lim (f2,(
lim_left (f1,x0)))) by
A2,
A22,
A23,
A19,
LIMFUNC3:def 4;
hence (
lim ((f2
* f1)
/* s))
= (
lim (f2,(
lim_left (f1,x0)))) by
A24,
A20,
SEQ_4: 22;
end;
hence (f2
* f1)
is_left_convergent_in x0 by
A3,
LIMFUNC2:def 1;
hence thesis by
A6,
LIMFUNC2:def 7;
end;
theorem ::
LIMFUNC4:75
f1
is_convergent_in x0 & f2
is_right_convergent_in (
lim (f1,x0)) & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f2
* f1)) & g2
< r2 & x0
< g2 & g2
in (
dom (f2
* f1))) & (ex g st
0
< g & for r st r
in ((
dom f1)
/\ (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[)) holds (
lim (f1,x0))
< (f1
. r)) implies (f2
* f1)
is_convergent_in x0 & (
lim ((f2
* f1),x0))
= (
lim_right (f2,(
lim (f1,x0))))
proof
assume that
A1: f1
is_convergent_in x0 and
A2: f2
is_right_convergent_in (
lim (f1,x0)) and
A3: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f2
* f1)) & g2
< r2 & x0
< g2 & g2
in (
dom (f2
* f1));
given g such that
A4:
0
< g and
A5: for r st r
in ((
dom f1)
/\ (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[)) holds (
lim (f1,x0))
< (f1
. r);
A6:
now
let s be
Real_Sequence;
assume that
A7: s is
convergent & (
lim s)
= x0 and
A8: (
rng s)
c= ((
dom (f2
* f1))
\
{x0});
consider k be
Element of
NAT such that
A9: for n be
Element of
NAT st k
<= n holds (x0
- g)
< (s
. n) & (s
. n)
< (x0
+ g) by
A4,
A7,
LIMFUNC3: 7;
set q = ((f1
/* s)
^\ k);
A10: (
rng s)
c= (
dom (f2
* f1)) by
A8,
Th2;
A11: (
rng s)
c= (
dom f1) by
A8,
Th2;
now
let x be
object;
assume x
in (
rng q);
then
consider n be
Element of
NAT such that
A12: (q
. n)
= x by
FUNCT_2: 113;
A13: (f1
. (s
. (n
+ k)))
= ((f1
/* s)
. (n
+ k)) by
A11,
FUNCT_2: 108
.= x by
A12,
NAT_1:def 3;
k
<= (n
+ k) by
NAT_1: 12;
then (x0
- g)
< (s
. (n
+ k)) & (s
. (n
+ k))
< (x0
+ g) by
A9;
then (s
. (n
+ k))
in { g1 : (x0
- g)
< g1 & g1
< (x0
+ g) };
then
A14: (s
. (n
+ k))
in
].(x0
- g), (x0
+ g).[ by
RCOMP_1:def 2;
A15: (s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then not (s
. (n
+ k))
in
{x0} by
A8,
XBOOLE_0:def 5;
then (s
. (n
+ k))
in (
].(x0
- g), (x0
+ g).[
\
{x0}) by
A14,
XBOOLE_0:def 5;
then (s
. (n
+ k))
in (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[) by
A4,
LIMFUNC3: 4;
then (s
. (n
+ k))
in ((
dom f1)
/\ (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[)) by
A11,
A15,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
> (
lim (f1,x0)) by
A5;
then (f1
. (s
. (n
+ k)))
in { g2 : (
lim (f1,x0))
< g2 };
then
A16: (f1
. (s
. (n
+ k)))
in (
right_open_halfline (
lim (f1,x0))) by
XXREAL_1: 230;
(f1
. (s
. (n
+ k)))
in (
dom f2) by
A10,
A15,
FUNCT_1: 11;
hence x
in ((
dom f2)
/\ (
right_open_halfline (
lim (f1,x0)))) by
A16,
A13,
XBOOLE_0:def 4;
end;
then
A17: (
rng q)
c= ((
dom f2)
/\ (
right_open_halfline (
lim (f1,x0))));
(
rng (f1
/* s))
c= (
dom f2) by
A8,
Th2;
then
A18: (f2
/* q)
= ((f2
/* (f1
/* s))
^\ k) by
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A10,
VALUED_0: 31;
A19: (
rng s)
c= ((
dom f1)
\
{x0}) by
A8,
Th2;
then
A20: (f1
/* s) is
convergent by
A1,
A2,
A7,
LIMFUNC3:def 4;
(
lim (f1
/* s))
= (
lim (f1,x0)) by
A1,
A7,
A19,
LIMFUNC3:def 4;
then
A21: (
lim q)
= (
lim (f1,x0)) by
A20,
SEQ_4: 20;
(
lim_right (f2,(
lim (f1,x0))))
= (
lim_right (f2,(
lim (f1,x0))));
then
A22: (f2
/* q) is
convergent by
A2,
A20,
A21,
A17,
LIMFUNC2:def 8;
hence ((f2
* f1)
/* s) is
convergent by
A18,
SEQ_4: 21;
(
lim (f2
/* q))
= (
lim_right (f2,(
lim (f1,x0)))) by
A2,
A20,
A21,
A17,
LIMFUNC2:def 8;
hence (
lim ((f2
* f1)
/* s))
= (
lim_right (f2,(
lim (f1,x0)))) by
A22,
A18,
SEQ_4: 22;
end;
hence (f2
* f1)
is_convergent_in x0 by
A3,
LIMFUNC3:def 1;
hence thesis by
A6,
LIMFUNC3:def 4;
end;
theorem ::
LIMFUNC4:76
f1
is_right_convergent_in x0 & f2
is_convergent_in (
lim_right (f1,x0)) & (for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f2
* f1))) & (ex g st
0
< g & for r st r
in ((
dom f1)
/\
].x0, (x0
+ g).[) holds (f1
. r)
<> (
lim_right (f1,x0))) implies (f2
* f1)
is_right_convergent_in x0 & (
lim_right ((f2
* f1),x0))
= (
lim (f2,(
lim_right (f1,x0))))
proof
assume that
A1: f1
is_right_convergent_in x0 and
A2: f2
is_convergent_in (
lim_right (f1,x0)) and
A3: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom (f2
* f1));
given g such that
A4:
0
< g and
A5: for r st r
in ((
dom f1)
/\
].x0, (x0
+ g).[) holds (f1
. r)
<> (
lim_right (f1,x0));
A6:
now
let s be
Real_Sequence;
assume that
A7: s is
convergent & (
lim s)
= x0 and
A8: (
rng s)
c= ((
dom (f2
* f1))
/\ (
right_open_halfline x0));
consider k be
Nat such that
A9: for n be
Nat st k
<= n holds (s
. n)
< (x0
+ g) by
A4,
A7,
Lm1,
LIMFUNC2: 2;
A10: (
rng s)
c= (
dom f1) by
A8,
Th1;
set q = ((f1
/* s)
^\ k);
A11: (
rng s)
c= (
dom (f2
* f1)) by
A8,
Th1;
A12: (
rng s)
c= (
right_open_halfline x0) by
A8,
Th1;
now
let x be
object;
assume x
in (
rng q);
then
consider n be
Element of
NAT such that
A13: (q
. n)
= x by
FUNCT_2: 113;
A14: (n
+ k)
in
NAT by
ORDINAL1:def 12;
A15: (f1
. (s
. (n
+ k)))
= ((f1
/* s)
. (n
+ k)) by
A10,
FUNCT_2: 108,
A14
.= x by
A13,
NAT_1:def 3;
A16: (s
. (n
+ k))
< (x0
+ g) by
A9,
NAT_1: 12;
A17: (s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then (s
. (n
+ k))
in (
right_open_halfline x0) by
A12;
then (s
. (n
+ k))
in { g1 : x0
< g1 } by
XXREAL_1: 230;
then ex g1 st g1
= (s
. (n
+ k)) & x0
< g1;
then (s
. (n
+ k))
in { g2 : x0
< g2 & g2
< (x0
+ g) } by
A16;
then (s
. (n
+ k))
in
].x0, (x0
+ g).[ by
RCOMP_1:def 2;
then (s
. (n
+ k))
in ((
dom f1)
/\
].x0, (x0
+ g).[) by
A10,
A17,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
<> (
lim_right (f1,x0)) by
A5;
then
A18: not (f1
. (s
. (n
+ k)))
in
{(
lim_right (f1,x0))} by
TARSKI:def 1;
(f1
. (s
. (n
+ k)))
in (
dom f2) by
A11,
A17,
FUNCT_1: 11;
hence x
in ((
dom f2)
\
{(
lim_right (f1,x0))}) by
A18,
A15,
XBOOLE_0:def 5;
end;
then
A19: (
rng q)
c= ((
dom f2)
\
{(
lim_right (f1,x0))});
(
rng (f1
/* s))
c= (
dom f2) by
A8,
Th1;
then
A20: (f2
/* q)
= ((f2
/* (f1
/* s))
^\ k) by
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A11,
VALUED_0: 31;
A21: (
rng s)
c= ((
dom f1)
/\ (
right_open_halfline x0)) by
A8,
Th1;
then
A22: (f1
/* s) is
convergent by
A1,
A2,
A7,
LIMFUNC2:def 8;
(
lim (f1
/* s))
= (
lim_right (f1,x0)) by
A1,
A7,
A21,
LIMFUNC2:def 8;
then
A23: (
lim q)
= (
lim_right (f1,x0)) by
A22,
SEQ_4: 20;
(
lim (f2,(
lim_right (f1,x0))))
= (
lim (f2,(
lim_right (f1,x0))));
then
A24: (f2
/* q) is
convergent by
A2,
A22,
A23,
A19,
LIMFUNC3:def 4;
hence ((f2
* f1)
/* s) is
convergent by
A20,
SEQ_4: 21;
(
lim (f2
/* q))
= (
lim (f2,(
lim_right (f1,x0)))) by
A2,
A22,
A23,
A19,
LIMFUNC3:def 4;
hence (
lim ((f2
* f1)
/* s))
= (
lim (f2,(
lim_right (f1,x0)))) by
A24,
A20,
SEQ_4: 22;
end;
hence (f2
* f1)
is_right_convergent_in x0 by
A3,
LIMFUNC2:def 4;
hence thesis by
A6,
LIMFUNC2:def 8;
end;
theorem ::
LIMFUNC4:77
f1
is_convergent_in x0 & f2
is_convergent_in (
lim (f1,x0)) & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f2
* f1)) & g2
< r2 & x0
< g2 & g2
in (
dom (f2
* f1))) & (ex g st
0
< g & for r st r
in ((
dom f1)
/\ (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[)) holds (f1
. r)
<> (
lim (f1,x0))) implies (f2
* f1)
is_convergent_in x0 & (
lim ((f2
* f1),x0))
= (
lim (f2,(
lim (f1,x0))))
proof
assume that
A1: f1
is_convergent_in x0 and
A2: f2
is_convergent_in (
lim (f1,x0)) and
A3: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f2
* f1)) & g2
< r2 & x0
< g2 & g2
in (
dom (f2
* f1));
given g such that
A4:
0
< g and
A5: for r st r
in ((
dom f1)
/\ (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[)) holds (f1
. r)
<> (
lim (f1,x0));
A6:
now
let s be
Real_Sequence;
assume that
A7: s is
convergent & (
lim s)
= x0 and
A8: (
rng s)
c= ((
dom (f2
* f1))
\
{x0});
consider k be
Element of
NAT such that
A9: for n be
Element of
NAT st k
<= n holds (x0
- g)
< (s
. n) & (s
. n)
< (x0
+ g) by
A4,
A7,
LIMFUNC3: 7;
set q = ((f1
/* s)
^\ k);
A10: (
rng s)
c= (
dom (f2
* f1)) by
A8,
Th2;
A11: (
rng s)
c= (
dom f1) by
A8,
Th2;
now
let x be
object;
assume x
in (
rng q);
then
consider n be
Element of
NAT such that
A12: (q
. n)
= x by
FUNCT_2: 113;
A13: (f1
. (s
. (n
+ k)))
= ((f1
/* s)
. (n
+ k)) by
A11,
FUNCT_2: 108
.= x by
A12,
NAT_1:def 3;
k
<= (n
+ k) by
NAT_1: 12;
then (x0
- g)
< (s
. (n
+ k)) & (s
. (n
+ k))
< (x0
+ g) by
A9;
then (s
. (n
+ k))
in { g1 : (x0
- g)
< g1 & g1
< (x0
+ g) };
then
A14: (s
. (n
+ k))
in
].(x0
- g), (x0
+ g).[ by
RCOMP_1:def 2;
A15: (s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then not (s
. (n
+ k))
in
{x0} by
A8,
XBOOLE_0:def 5;
then (s
. (n
+ k))
in (
].(x0
- g), (x0
+ g).[
\
{x0}) by
A14,
XBOOLE_0:def 5;
then (s
. (n
+ k))
in (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[) by
A4,
LIMFUNC3: 4;
then (s
. (n
+ k))
in ((
dom f1)
/\ (
].(x0
- g), x0.[
\/
].x0, (x0
+ g).[)) by
A11,
A15,
XBOOLE_0:def 4;
then (f1
. (s
. (n
+ k)))
<> (
lim (f1,x0)) by
A5;
then
A16: not (f1
. (s
. (n
+ k)))
in
{(
lim (f1,x0))} by
TARSKI:def 1;
(f1
. (s
. (n
+ k)))
in (
dom f2) by
A10,
A15,
FUNCT_1: 11;
hence x
in ((
dom f2)
\
{(
lim (f1,x0))}) by
A16,
A13,
XBOOLE_0:def 5;
end;
then
A17: (
rng q)
c= ((
dom f2)
\
{(
lim (f1,x0))});
(
rng (f1
/* s))
c= (
dom f2) by
A8,
Th2;
then
A18: (f2
/* q)
= ((f2
/* (f1
/* s))
^\ k) by
VALUED_0: 27
.= (((f2
* f1)
/* s)
^\ k) by
A10,
VALUED_0: 31;
A19: (
rng s)
c= ((
dom f1)
\
{x0}) by
A8,
Th2;
then
A20: (f1
/* s) is
convergent by
A1,
A2,
A7,
LIMFUNC3:def 4;
(
lim (f1
/* s))
= (
lim (f1,x0)) by
A1,
A7,
A19,
LIMFUNC3:def 4;
then
A21: (
lim q)
= (
lim (f1,x0)) by
A20,
SEQ_4: 20;
(
lim (f2,(
lim (f1,x0))))
= (
lim (f2,(
lim (f1,x0))));
then
A22: (f2
/* q) is
convergent by
A2,
A20,
A21,
A17,
LIMFUNC3:def 4;
hence ((f2
* f1)
/* s) is
convergent by
A18,
SEQ_4: 21;
(
lim (f2
/* q))
= (
lim (f2,(
lim (f1,x0)))) by
A2,
A20,
A21,
A17,
LIMFUNC3:def 4;
hence (
lim ((f2
* f1)
/* s))
= (
lim (f2,(
lim (f1,x0)))) by
A22,
A18,
SEQ_4: 22;
end;
hence (f2
* f1)
is_convergent_in x0 by
A3,
LIMFUNC3:def 1;
hence thesis by
A6,
LIMFUNC3:def 4;
end;