limfunc3.miz
begin
reserve r,r1,r2,g,g1,g2,x0,t for
Real;
reserve n,k,m for
Element of
NAT ;
reserve seq for
Real_Sequence;
reserve f,f1,f2 for
PartFunc of
REAL ,
REAL ;
Lm1: for g,r,r1 be
Real holds
0
< g & r
<= r1 implies (r
- g)
< r1 & r
< (r1
+ g)
proof
let g,r,r1 be
Real;
assume that
A1:
0
< g and
A2: r
<= r1;
(r
- g)
< (r1
-
0 ) by
A1,
A2,
XREAL_1: 15;
hence (r
- g)
< r1;
(r
+
0 )
< (r1
+ g) by
A1,
A2,
XREAL_1: 8;
hence thesis;
end;
Lm2: for X be
set st (
rng seq)
c= ((
dom (f1
(#) f2))
\ X) holds (
rng seq)
c= (
dom (f1
(#) f2)) & (
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) & (
rng seq)
c= (
dom f1) & (
rng seq)
c= (
dom f2) & (
rng seq)
c= ((
dom f1)
\ X) & (
rng seq)
c= ((
dom f2)
\ X)
proof
let X be
set;
assume
A1: (
rng seq)
c= ((
dom (f1
(#) f2))
\ X);
hence
A2: (
rng seq)
c= (
dom (f1
(#) f2)) by
XBOOLE_1: 1;
thus
A3: (
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) by
VALUED_1:def 4;
then
A4: (
dom (f1
(#) f2))
c= (
dom f2) by
XBOOLE_1: 17;
(
dom (f1
(#) f2))
c= (
dom f1) by
A3,
XBOOLE_1: 17;
hence (
rng seq)
c= (
dom f1) & (
rng seq)
c= (
dom f2) by
A2,
A4;
A5: ((
dom (f1
(#) f2))
\ X)
c= ((
dom f2)
\ X) by
A3,
XBOOLE_1: 17,
XBOOLE_1: 33;
((
dom (f1
(#) f2))
\ X)
c= ((
dom f1)
\ X) by
A3,
XBOOLE_1: 17,
XBOOLE_1: 33;
hence thesis by
A1,
A5;
end;
Lm3: (r
- (1
/ (n
+ 1)))
< r & r
< (r
+ (1
/ (n
+ 1)))
proof
0
< (1
/ (n
+ 1)) by
XREAL_1: 139;
hence thesis by
Lm1;
end;
Lm4: for X be
set st (
rng seq)
c= ((
dom (f1
+ f2))
\ X) holds (
rng seq)
c= (
dom (f1
+ f2)) & (
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) & (
rng seq)
c= (
dom f1) & (
rng seq)
c= (
dom f2) & (
rng seq)
c= ((
dom f1)
\ X) & (
rng seq)
c= ((
dom f2)
\ X)
proof
let X be
set;
assume
A1: (
rng seq)
c= ((
dom (f1
+ f2))
\ X);
hence
A2: (
rng seq)
c= (
dom (f1
+ f2)) by
XBOOLE_1: 1;
thus
A3: (
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) by
VALUED_1:def 1;
then
A4: (
dom (f1
+ f2))
c= (
dom f2) by
XBOOLE_1: 17;
(
dom (f1
+ f2))
c= (
dom f1) by
A3,
XBOOLE_1: 17;
hence (
rng seq)
c= (
dom f1) & (
rng seq)
c= (
dom f2) by
A2,
A4;
A5: ((
dom (f1
+ f2))
\ X)
c= ((
dom f2)
\ X) by
A3,
XBOOLE_1: 17,
XBOOLE_1: 33;
((
dom (f1
+ f2))
\ X)
c= ((
dom f1)
\ X) by
A3,
XBOOLE_1: 17,
XBOOLE_1: 33;
hence thesis by
A1,
A5;
end;
theorem ::
LIMFUNC3:1
Th1: ((
rng seq)
c= ((
dom f)
/\ (
left_open_halfline x0)) or (
rng seq)
c= ((
dom f)
/\ (
right_open_halfline x0))) implies (
rng seq)
c= ((
dom f)
\
{x0})
proof
assume
A1: (
rng seq)
c= ((
dom f)
/\ (
left_open_halfline x0)) or (
rng seq)
c= ((
dom f)
/\ (
right_open_halfline x0));
let x be
object;
assume
A2: x
in (
rng seq);
then
consider n such that
A3: (seq
. n)
= x by
FUNCT_2: 113;
now
per cases by
A1;
suppose
A4: (
rng seq)
c= ((
dom f)
/\ (
left_open_halfline x0));
then (seq
. n)
in (
left_open_halfline x0) by
A2,
A3,
XBOOLE_0:def 4;
then (seq
. n)
in { g1 : g1
< x0 } by
XXREAL_1: 229;
then ex g1 st g1
= (seq
. n) & g1
< x0;
then
A5: not x
in
{x0} by
A3,
TARSKI:def 1;
(seq
. n)
in (
dom f) by
A2,
A3,
A4,
XBOOLE_0:def 4;
hence thesis by
A3,
A5,
XBOOLE_0:def 5;
end;
suppose
A6: (
rng seq)
c= ((
dom f)
/\ (
right_open_halfline x0));
then (seq
. n)
in (
right_open_halfline x0) by
A2,
A3,
XBOOLE_0:def 4;
then (seq
. n)
in { g1 : x0
< g1 } by
XXREAL_1: 230;
then ex g1 st g1
= (seq
. n) & x0
< g1;
then
A7: not x
in
{x0} by
A3,
TARSKI:def 1;
(seq
. n)
in (
dom f) by
A2,
A3,
A6,
XBOOLE_0:def 4;
hence thesis by
A3,
A7,
XBOOLE_0:def 5;
end;
end;
hence thesis;
end;
theorem ::
LIMFUNC3:2
Th2: (for n holds
0
<
|.(x0
- (seq
. n)).| &
|.(x0
- (seq
. n)).|
< (1
/ (n
+ 1)) & (seq
. n)
in (
dom f)) implies seq is
convergent & (
lim seq)
= x0 & (
rng seq)
c= (
dom f) & (
rng seq)
c= ((
dom f)
\
{x0})
proof
assume
A1: for n holds
0
<
|.(x0
- (seq
. n)).| &
|.(x0
- (seq
. n)).|
< (1
/ (n
+ 1)) & (seq
. n)
in (
dom f);
A2:
now
let r be
Real such that
A3:
0
< r;
consider n be
Nat such that
A4: (r
" )
< n by
SEQ_4: 3;
take n;
let k be
Nat;
assume n
<= k;
then (n
+ 1)
<= (k
+ 1) by
XREAL_1: 6;
then
A5: (1
/ (k
+ 1))
<= (1
/ (n
+ 1)) by
XREAL_1: 118;
n
<= (n
+ 1) by
NAT_1: 12;
then (r
" )
< (n
+ 1) by
A4,
XXREAL_0: 2;
then (1
/ (n
+ 1))
< (1
/ (r
" )) by
A3,
XREAL_1: 76;
then (1
/ (k
+ 1))
< (1
/ (r
" )) by
A5,
XXREAL_0: 2;
then
A6: (1
/ (k
+ 1))
< r by
XCMPLX_1: 216;
k
in
NAT by
ORDINAL1:def 12;
then
|.(x0
- (seq
. k)).|
< (1
/ (k
+ 1)) by
A1;
then
|.(
- ((seq
. k)
- x0)).|
< r by
A6,
XXREAL_0: 2;
hence
|.((seq
. k)
- x0).|
< r by
COMPLEX1: 52;
end;
hence seq is
convergent by
SEQ_2:def 6;
hence (
lim seq)
= x0 by
A2,
SEQ_2:def 7;
thus
A7: (
rng seq)
c= (
dom f)
proof
let x be
object;
assume x
in (
rng seq);
then ex n st (seq
. n)
= x by
FUNCT_2: 113;
hence thesis by
A1;
end;
let x be
object;
assume
A8: x
in (
rng seq);
then
consider n such that
A9: (seq
. n)
= x by
FUNCT_2: 113;
0
<>
|.(x0
- (seq
. n)).| by
A1;
then ((x0
- (seq
. n))
+ (seq
. n))
<> (
0
+ (seq
. n)) by
ABSVALUE: 2;
then not x
in
{x0} by
A9,
TARSKI:def 1;
hence thesis by
A7,
A8,
XBOOLE_0:def 5;
end;
theorem ::
LIMFUNC3:3
Th3: seq is
convergent & (
lim seq)
= x0 & (
rng seq)
c= ((
dom f)
\
{x0}) implies for r st
0
< r holds ex n st for k st n
<= k holds
0
<
|.(x0
- (seq
. k)).| &
|.(x0
- (seq
. k)).|
< r & (seq
. k)
in (
dom f)
proof
assume that
A1: seq is
convergent and
A2: (
lim seq)
= x0 and
A3: (
rng seq)
c= ((
dom f)
\
{x0});
let r;
assume
0
< r;
then
consider n be
Nat such that
A4: for k be
Nat st n
<= k holds
|.((seq
. k)
- x0).|
< r by
A1,
A2,
SEQ_2:def 7;
reconsider n as
Element of
NAT by
ORDINAL1:def 12;
take n;
let k;
assume n
<= k;
then
|.((seq
. k)
- x0).|
< r by
A4;
then
A5:
|.(
- (x0
- (seq
. k))).|
< r;
now
let n;
(seq
. n)
in (
rng seq) by
VALUED_0: 28;
then not (seq
. n)
in
{x0} by
A3,
XBOOLE_0:def 5;
hence ((seq
. n)
- x0)
<>
0 by
TARSKI:def 1;
end;
then ((seq
. k)
- x0)
<>
0 ;
then
0
<
|.(
- (x0
- (seq
. k))).| by
COMPLEX1: 47;
hence
0
<
|.(x0
- (seq
. k)).| by
COMPLEX1: 52;
thus
|.(x0
- (seq
. k)).|
< r by
A5,
COMPLEX1: 52;
(seq
. k)
in (
rng seq) by
VALUED_0: 28;
hence thesis by
A3,
XBOOLE_0:def 5;
end;
theorem ::
LIMFUNC3:4
Th4:
0
< r implies (
].(x0
- r), (x0
+ r).[
\
{x0})
= (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)
proof
assume
A1:
0
< r;
thus (
].(x0
- r), (x0
+ r).[
\
{x0})
c= (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)
proof
let x be
object;
assume
A2: x
in (
].(x0
- r), (x0
+ r).[
\
{x0});
then
consider r1 such that
A3: r1
= x;
x
in
].(x0
- r), (x0
+ r).[ by
A2,
XBOOLE_0:def 5;
then x
in { g2 : (x0
- r)
< g2 & g2
< (x0
+ r) } by
RCOMP_1:def 2;
then
A4: ex g2 st g2
= x & (x0
- r)
< g2 & g2
< (x0
+ r);
not x
in
{x0} by
A2,
XBOOLE_0:def 5;
then
A5: r1
<> x0 by
A3,
TARSKI:def 1;
now
per cases by
A5,
XXREAL_0: 1;
suppose r1
< x0;
then r1
in { g1 : (x0
- r)
< g1 & g1
< x0 } by
A3,
A4;
then x
in
].(x0
- r), x0.[ by
A3,
RCOMP_1:def 2;
hence thesis by
XBOOLE_0:def 3;
end;
suppose x0
< r1;
then r1
in { g1 : x0
< g1 & g1
< (x0
+ r) } by
A3,
A4;
then x
in
].x0, (x0
+ r).[ by
A3,
RCOMP_1:def 2;
hence thesis by
XBOOLE_0:def 3;
end;
end;
hence thesis;
end;
let x be
object such that
A6: x
in (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[);
now
per cases by
A6,
XBOOLE_0:def 3;
suppose x
in
].(x0
- r), x0.[;
then x
in { g1 : (x0
- r)
< g1 & g1
< x0 } by
RCOMP_1:def 2;
then
consider g1 such that
A7: g1
= x and
A8: (x0
- r)
< g1 and
A9: g1
< x0;
g1
< (x0
+ r) by
A1,
A9,
Lm1;
then x
in { g2 : (x0
- r)
< g2 & g2
< (x0
+ r) } by
A7,
A8;
then
A10: x
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
not x
in
{x0} by
A7,
A9,
TARSKI:def 1;
hence thesis by
A10,
XBOOLE_0:def 5;
end;
suppose x
in
].x0, (x0
+ r).[;
then x
in { g1 : x0
< g1 & g1
< (x0
+ r) } by
RCOMP_1:def 2;
then
consider g1 such that
A11: g1
= x and
A12: x0
< g1 and
A13: g1
< (x0
+ r);
(x0
- r)
< g1 by
A1,
A12,
Lm1;
then x
in { g2 : (x0
- r)
< g2 & g2
< (x0
+ r) } by
A11,
A13;
then
A14: x
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
not x
in
{x0} by
A11,
A12,
TARSKI:def 1;
hence thesis by
A14,
XBOOLE_0:def 5;
end;
end;
hence thesis;
end;
theorem ::
LIMFUNC3:5
Th5:
0
< r2 & (
].(x0
- r2), x0.[
\/
].x0, (x0
+ r2).[)
c= (
dom f) implies for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f)
proof
assume that
A1:
0
< r2 and
A2: (
].(x0
- r2), x0.[
\/
].x0, (x0
+ r2).[)
c= (
dom f);
A3:
].(x0
- r2), x0.[
c= (
].(x0
- r2), x0.[
\/
].x0, (x0
+ r2).[) by
XBOOLE_1: 7;
A4:
].x0, (x0
+ r2).[
c= (
].(x0
- r2), x0.[
\/
].x0, (x0
+ r2).[) by
XBOOLE_1: 7;
let r1, r2;
assume that
A5: r1
< x0 and
A6: x0
< r2;
consider g1 such that
A7: r1
< g1 and
A8: g1
< x0 and
A9: g1
in (
dom f) by
A1,
A2,
A3,
A5,
LIMFUNC2: 3,
XBOOLE_1: 1;
consider g2 such that
A10: g2
< r2 and
A11: x0
< g2 and
A12: g2
in (
dom f) by
A1,
A2,
A4,
A6,
LIMFUNC2: 4,
XBOOLE_1: 1;
take g1;
take g2;
thus thesis by
A7,
A8,
A9,
A10,
A11,
A12;
end;
theorem ::
LIMFUNC3:6
Th6: (for n holds (x0
- (1
/ (n
+ 1)))
< (seq
. n) & (seq
. n)
< x0 & (seq
. n)
in (
dom f)) implies seq is
convergent & (
lim seq)
= x0 & (
rng seq)
c= ((
dom f)
\
{x0})
proof
assume
A1: for n holds (x0
- (1
/ (n
+ 1)))
< (seq
. n) & (seq
. n)
< x0 & (seq
. n)
in (
dom f);
A2: for n be
Nat holds (x0
- (1
/ (n
+ 1)))
< (seq
. n) & (seq
. n)
< x0 & (seq
. n)
in (
dom f)
proof
let n be
Nat;
n
in
NAT by
ORDINAL1:def 12;
hence thesis by
A1;
end;
hence seq is
convergent & (
lim seq)
= x0 by
LIMFUNC2: 5;
(
rng seq)
c= ((
dom f)
/\ (
left_open_halfline x0)) by
LIMFUNC2: 5,
A2;
hence thesis by
Th1;
end;
theorem ::
LIMFUNC3:7
Th7: seq is
convergent & (
lim seq)
= x0 &
0
< g implies ex k st for n st k
<= n holds (x0
- g)
< (seq
. n) & (seq
. n)
< (x0
+ g)
proof
assume that
A1: seq is
convergent and
A2: (
lim seq)
= x0 and
A3:
0
< g;
(x0
- g)
< (
lim seq) by
A2,
A3,
Lm1;
then
consider k1 be
Nat such that
A4: for n be
Nat st k1
<= n holds (x0
- g)
< (seq
. n) by
A1,
LIMFUNC2: 1;
(
lim seq)
< (x0
+ g) by
A2,
A3,
Lm1;
then
consider k2 be
Nat such that
A5: for n be
Nat st k2
<= n holds (seq
. n)
< (x0
+ g) by
A1,
LIMFUNC2: 2;
reconsider k = (
max (k1,k2)) as
Element of
NAT by
ORDINAL1:def 12;
take k;
let n;
assume
A6: k
<= n;
k1
<= k by
XXREAL_0: 25;
then k1
<= n by
A6,
XXREAL_0: 2;
hence (x0
- g)
< (seq
. n) by
A4;
k2
<= k by
XXREAL_0: 25;
then k2
<= n by
A6,
XXREAL_0: 2;
hence thesis by
A5;
end;
theorem ::
LIMFUNC3:8
Th8: (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f)) iff (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f)) & for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f)
proof
thus (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f)) implies (for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f)) & for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f)
proof
assume
A1: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f);
thus for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f)
proof
A2: x0
< (x0
+ 1) by
Lm1;
let r;
assume r
< x0;
then
consider g1, g2 such that
A3: r
< g1 and
A4: g1
< x0 and
A5: g1
in (
dom f) and g2
< (x0
+ 1) and x0
< g2 and g2
in (
dom f) by
A1,
A2;
take g1;
thus thesis by
A3,
A4,
A5;
end;
A6: (x0
- 1)
< x0 by
Lm1;
let r;
assume x0
< r;
then
consider g1, g2 such that (x0
- 1)
< g1 and g1
< x0 and g1
in (
dom f) and
A7: g2
< r and
A8: x0
< g2 and
A9: g2
in (
dom f) by
A1,
A6;
take g2;
thus thesis by
A7,
A8,
A9;
end;
assume that
A10: for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f) and
A11: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f);
let r1, r2;
assume that
A12: r1
< x0 and
A13: x0
< r2;
consider g2 such that
A14: g2
< r2 and
A15: x0
< g2 and
A16: g2
in (
dom f) by
A11,
A13;
consider g1 such that
A17: r1
< g1 and
A18: g1
< x0 and
A19: g1
in (
dom f) by
A10,
A12;
take g1;
take g2;
thus thesis by
A17,
A18,
A19,
A14,
A15,
A16;
end;
definition
let f, x0;
::
LIMFUNC3:def1
pred f
is_convergent_in x0 means (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f)) & ex g st for seq st seq is
convergent & (
lim seq)
= x0 & (
rng seq)
c= ((
dom f)
\
{x0}) holds (f
/* seq) is
convergent & (
lim (f
/* seq))
= g;
::
LIMFUNC3:def2
pred f
is_divergent_to+infty_in x0 means (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f)) & for seq st seq is
convergent & (
lim seq)
= x0 & (
rng seq)
c= ((
dom f)
\
{x0}) holds (f
/* seq) is
divergent_to+infty;
::
LIMFUNC3:def3
pred f
is_divergent_to-infty_in x0 means (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f)) & for seq st seq is
convergent & (
lim seq)
= x0 & (
rng seq)
c= ((
dom f)
\
{x0}) holds (f
/* seq) is
divergent_to-infty;
end
theorem ::
LIMFUNC3:9
f
is_convergent_in x0 iff (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f)) & ex g st for g1 st
0
< g1 holds ex g2 st
0
< g2 & for r1 st
0
<
|.(x0
- r1).| &
|.(x0
- r1).|
< g2 & r1
in (
dom f) holds
|.((f
. r1)
- g).|
< g1
proof
thus f
is_convergent_in x0 implies (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f)) & ex g st for g1 st
0
< g1 holds ex g2 st
0
< g2 & for r1 st
0
<
|.(x0
- r1).| &
|.(x0
- r1).|
< g2 & r1
in (
dom f) holds
|.((f
. r1)
- g).|
< g1
proof
assume that
A1: f
is_convergent_in x0 and
A2: ( not for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f)) or for g holds ex g1 st
0
< g1 & for g2 st
0
< g2 holds ex r1 st
0
<
|.(x0
- r1).| &
|.(x0
- r1).|
< g2 & r1
in (
dom f) &
|.((f
. r1)
- g).|
>= g1;
consider g such that
A3: for seq st seq is
convergent & (
lim seq)
= x0 & (
rng seq)
c= ((
dom f)
\
{x0}) holds (f
/* seq) is
convergent & (
lim (f
/* seq))
= g by
A1;
consider g1 such that
A4:
0
< g1 and
A5: for g2 st
0
< g2 holds ex r1 st
0
<
|.(x0
- r1).| &
|.(x0
- r1).|
< g2 & r1
in (
dom f) &
|.((f
. r1)
- g).|
>= g1 by
A1,
A2;
defpred
X[
Element of
NAT ,
Real] means
0
<
|.(x0
- $2).| &
|.(x0
- $2).|
< (1
/ ($1
+ 1)) & $2
in (
dom f) &
|.((f
. $2)
- g).|
>= g1;
A6: for n holds ex r1 be
Element of
REAL st
X[n, r1]
proof
let n;
consider r1 such that
A7:
X[n, r1] by
A5,
XREAL_1: 139;
reconsider r1 as
Element of
REAL by
XREAL_0:def 1;
take r1;
thus thesis by
A7;
end;
consider s be
Real_Sequence such that
A8: for n holds
X[n, (s
. n)] from
FUNCT_2:sch 3(
A6);
A9: (
rng s)
c= ((
dom f)
\
{x0}) by
A8,
Th2;
A10: (
lim s)
= x0 by
A8,
Th2;
A11: s is
convergent by
A8,
Th2;
then
A12: (
lim (f
/* s))
= g by
A3,
A10,
A9;
(f
/* s) is
convergent by
A3,
A11,
A10,
A9;
then
consider n be
Nat such that
A13: for k be
Nat st n
<= k holds
|.(((f
/* s)
. k)
- g).|
< g1 by
A4,
A12,
SEQ_2:def 7;
A14:
|.(((f
/* s)
. n)
- g).|
< g1 by
A13;
A15: n
in
NAT by
ORDINAL1:def 12;
(
rng s)
c= (
dom f) by
A8,
Th2;
then
|.((f
. (s
. n))
- g).|
< g1 by
A14,
FUNCT_2: 108,
A15;
hence contradiction by
A8,
A15;
end;
assume
A16: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f);
given g such that
A17: for g1 st
0
< g1 holds ex g2 st
0
< g2 & for r1 st
0
<
|.(x0
- r1).| &
|.(x0
- r1).|
< g2 & r1
in (
dom f) holds
|.((f
. r1)
- g).|
< g1;
now
let s be
Real_Sequence;
assume that
A18: s is
convergent and
A19: (
lim s)
= x0 and
A20: (
rng s)
c= ((
dom f)
\
{x0});
A21:
now
let g1 be
Real;
assume
A22:
0
< g1;
consider g2 such that
A23:
0
< g2 and
A24: for r1 st
0
<
|.(x0
- r1).| &
|.(x0
- r1).|
< g2 & r1
in (
dom f) holds
|.((f
. r1)
- g).|
< g1 by
A17,
A22;
consider n such that
A25: for k st n
<= k holds
0
<
|.(x0
- (s
. k)).| &
|.(x0
- (s
. k)).|
< g2 & (s
. k)
in (
dom f) by
A18,
A19,
A20,
A23,
Th3;
reconsider n as
Nat;
take n;
let k be
Nat;
A26: k
in
NAT by
ORDINAL1:def 12;
assume
A27: n
<= k;
then
A28:
|.(x0
- (s
. k)).|
< g2 by
A25,
A26;
A29: (s
. k)
in (
dom f) by
A25,
A27,
A26;
0
<
|.(x0
- (s
. k)).| by
A25,
A27,
A26;
then
|.((f
. (s
. k))
- g).|
< g1 by
A24,
A28,
A29;
hence
|.(((f
/* s)
. k)
- g).|
< g1 by
A20,
FUNCT_2: 108,
XBOOLE_1: 1,
A26;
end;
hence (f
/* s) is
convergent by
SEQ_2:def 6;
hence (
lim (f
/* s))
= g by
A21,
SEQ_2:def 7;
end;
hence thesis by
A16;
end;
theorem ::
LIMFUNC3:10
f
is_divergent_to+infty_in x0 iff (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f)) & for g1 holds ex g2 st
0
< g2 & for r1 st
0
<
|.(x0
- r1).| &
|.(x0
- r1).|
< g2 & r1
in (
dom f) holds g1
< (f
. r1)
proof
thus f
is_divergent_to+infty_in x0 implies (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f)) & for g1 holds ex g2 st
0
< g2 & for r1 st
0
<
|.(x0
- r1).| &
|.(x0
- r1).|
< g2 & r1
in (
dom f) holds g1
< (f
. r1)
proof
assume that
A1: f
is_divergent_to+infty_in x0 and
A2: ( not for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f)) or ex g1 st for g2 st
0
< g2 holds ex r1 st
0
<
|.(x0
- r1).| &
|.(x0
- r1).|
< g2 & r1
in (
dom f) & (f
. r1)
<= g1;
consider g1 such that
A3: for g2 st
0
< g2 holds ex r1 st
0
<
|.(x0
- r1).| &
|.(x0
- r1).|
< g2 & r1
in (
dom f) & (f
. r1)
<= g1 by
A1,
A2;
defpred
X[
Element of
NAT ,
Real] means
0
<
|.(x0
- $2).| &
|.(x0
- $2).|
< (1
/ ($1
+ 1)) & $2
in (
dom f) & (f
. $2)
<= g1;
A4: for n holds ex r1 be
Element of
REAL st
X[n, r1]
proof
let n;
consider r1 such that
A5:
X[n, r1] by
A3,
XREAL_1: 139;
reconsider r1 as
Element of
REAL by
XREAL_0:def 1;
take r1;
thus thesis by
A5;
end;
consider s be
Real_Sequence such that
A6: for n holds
X[n, (s
. n)] from
FUNCT_2:sch 3(
A4);
A7: (
rng s)
c= ((
dom f)
\
{x0}) by
A6,
Th2;
A8: (
lim s)
= x0 by
A6,
Th2;
s is
convergent by
A6,
Th2;
then (f
/* s) is
divergent_to+infty by
A1,
A8,
A7;
then
consider n be
Nat such that
A9: for k be
Nat st n
<= k holds g1
< ((f
/* s)
. k);
A10: g1
< ((f
/* s)
. n) by
A9;
A11: n
in
NAT by
ORDINAL1:def 12;
(
rng s)
c= (
dom f) by
A6,
Th2;
then g1
< (f
. (s
. n)) by
A10,
FUNCT_2: 108,
A11;
hence contradiction by
A6,
A11;
end;
assume that
A12: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f) and
A13: for g1 holds ex g2 st
0
< g2 & for r1 st
0
<
|.(x0
- r1).| &
|.(x0
- r1).|
< g2 & r1
in (
dom f) holds g1
< (f
. r1);
now
let s be
Real_Sequence;
assume that
A14: s is
convergent and
A15: (
lim s)
= x0 and
A16: (
rng s)
c= ((
dom f)
\
{x0});
now
let g1;
consider g2 such that
A17:
0
< g2 and
A18: for r1 st
0
<
|.(x0
- r1).| &
|.(x0
- r1).|
< g2 & r1
in (
dom f) holds g1
< (f
. r1) by
A13;
consider n such that
A19: for k st n
<= k holds
0
<
|.(x0
- (s
. k)).| &
|.(x0
- (s
. k)).|
< g2 & (s
. k)
in (
dom f) by
A14,
A15,
A16,
A17,
Th3;
reconsider n as
Nat;
take n;
let k be
Nat;
A20: k
in
NAT by
ORDINAL1:def 12;
assume
A21: n
<= k;
then
A22:
|.(x0
- (s
. k)).|
< g2 by
A19,
A20;
A23: (s
. k)
in (
dom f) by
A19,
A21,
A20;
0
<
|.(x0
- (s
. k)).| by
A19,
A21,
A20;
then g1
< (f
. (s
. k)) by
A18,
A22,
A23;
hence g1
< ((f
/* s)
. k) by
A16,
FUNCT_2: 108,
XBOOLE_1: 1,
A20;
end;
hence (f
/* s) is
divergent_to+infty;
end;
hence thesis by
A12;
end;
theorem ::
LIMFUNC3:11
f
is_divergent_to-infty_in x0 iff (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f)) & for g1 holds ex g2 st
0
< g2 & for r1 st
0
<
|.(x0
- r1).| &
|.(x0
- r1).|
< g2 & r1
in (
dom f) holds (f
. r1)
< g1
proof
thus f
is_divergent_to-infty_in x0 implies (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f)) & for g1 holds ex g2 st
0
< g2 & for r1 st
0
<
|.(x0
- r1).| &
|.(x0
- r1).|
< g2 & r1
in (
dom f) holds (f
. r1)
< g1
proof
assume that
A1: f
is_divergent_to-infty_in x0 and
A2: ( not for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f)) or ex g1 st for g2 st
0
< g2 holds ex r1 st
0
<
|.(x0
- r1).| &
|.(x0
- r1).|
< g2 & r1
in (
dom f) & g1
<= (f
. r1);
consider g1 such that
A3: for g2 st
0
< g2 holds ex r1 st
0
<
|.(x0
- r1).| &
|.(x0
- r1).|
< g2 & r1
in (
dom f) & g1
<= (f
. r1) by
A1,
A2;
defpred
X[
Element of
NAT ,
Real] means
0
<
|.(x0
- $2).| &
|.(x0
- $2).|
< (1
/ ($1
+ 1)) & $2
in (
dom f) & g1
<= (f
. $2);
A4: for n holds ex r1 be
Element of
REAL st
X[n, r1]
proof
let n;
consider r1 such that
A5:
X[n, r1] by
A3,
XREAL_1: 139;
reconsider r1 as
Element of
REAL by
XREAL_0:def 1;
take r1;
thus thesis by
A5;
end;
consider s be
Real_Sequence such that
A6: for n holds
X[n, (s
. n)] from
FUNCT_2:sch 3(
A4);
A7: (
rng s)
c= ((
dom f)
\
{x0}) by
A6,
Th2;
A8: (
lim s)
= x0 by
A6,
Th2;
s is
convergent by
A6,
Th2;
then (f
/* s) is
divergent_to-infty by
A1,
A8,
A7;
then
consider n be
Nat such that
A9: for k be
Nat st n
<= k holds ((f
/* s)
. k)
< g1;
A10: ((f
/* s)
. n)
< g1 by
A9;
A11: n
in
NAT by
ORDINAL1:def 12;
(
rng s)
c= (
dom f) by
A6,
Th2;
then (f
. (s
. n))
< g1 by
A10,
FUNCT_2: 108,
A11;
hence contradiction by
A6,
A11;
end;
assume that
A12: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f) and
A13: for g1 holds ex g2 st
0
< g2 & for r1 st
0
<
|.(x0
- r1).| &
|.(x0
- r1).|
< g2 & r1
in (
dom f) holds (f
. r1)
< g1;
now
let s be
Real_Sequence;
assume that
A14: s is
convergent and
A15: (
lim s)
= x0 and
A16: (
rng s)
c= ((
dom f)
\
{x0});
now
let g1;
consider g2 such that
A17:
0
< g2 and
A18: for r1 st
0
<
|.(x0
- r1).| &
|.(x0
- r1).|
< g2 & r1
in (
dom f) holds (f
. r1)
< g1 by
A13;
consider n such that
A19: for k st n
<= k holds
0
<
|.(x0
- (s
. k)).| &
|.(x0
- (s
. k)).|
< g2 & (s
. k)
in (
dom f) by
A14,
A15,
A16,
A17,
Th3;
reconsider n as
Nat;
take n;
let k be
Nat;
A20: k
in
NAT by
ORDINAL1:def 12;
assume
A21: n
<= k;
then
A22:
|.(x0
- (s
. k)).|
< g2 by
A19,
A20;
A23: (s
. k)
in (
dom f) by
A19,
A21,
A20;
0
<
|.(x0
- (s
. k)).| by
A19,
A21,
A20;
then (f
. (s
. k))
< g1 by
A18,
A22,
A23;
hence ((f
/* s)
. k)
< g1 by
A16,
FUNCT_2: 108,
XBOOLE_1: 1,
A20;
end;
hence (f
/* s) is
divergent_to-infty;
end;
hence thesis by
A12;
end;
theorem ::
LIMFUNC3:12
Th12: f
is_divergent_to+infty_in x0 iff f
is_left_divergent_to+infty_in x0 & f
is_right_divergent_to+infty_in x0
proof
thus f
is_divergent_to+infty_in x0 implies f
is_left_divergent_to+infty_in x0 & f
is_right_divergent_to+infty_in x0
proof
assume
A1: f
is_divergent_to+infty_in x0;
A2:
now
let s be
Real_Sequence;
assume that
A3: s is
convergent and
A4: (
lim s)
= x0 and
A5: (
rng s)
c= ((
dom f)
/\ (
left_open_halfline x0));
(
rng s)
c= ((
dom f)
\
{x0}) by
A5,
Th1;
hence (f
/* s) is
divergent_to+infty by
A1,
A3,
A4;
end;
A6:
now
let s be
Real_Sequence;
assume that
A7: s is
convergent and
A8: (
lim s)
= x0 and
A9: (
rng s)
c= ((
dom f)
/\ (
right_open_halfline x0));
(
rng s)
c= ((
dom f)
\
{x0}) by
A9,
Th1;
hence (f
/* s) is
divergent_to+infty by
A1,
A7,
A8;
end;
A10: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f) by
A1;
then for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f) by
Th8;
hence f
is_left_divergent_to+infty_in x0 by
A2,
LIMFUNC2:def 2;
for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f) by
A10,
Th8;
hence thesis by
A6,
LIMFUNC2:def 5;
end;
assume that
A11: f
is_left_divergent_to+infty_in x0 and
A12: f
is_right_divergent_to+infty_in x0;
A13: for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f) by
A12,
LIMFUNC2:def 5;
A14:
now
let s be
Real_Sequence such that
A15: s is
convergent and
A16: (
lim s)
= x0 and
A17: (
rng s)
c= ((
dom f)
\
{x0});
now
per cases ;
suppose ex k st for n st k
<= n holds (s
. n)
< x0;
then
consider k such that
A18: for n st k
<= n holds (s
. n)
< x0;
A19: (
rng s)
c= (
dom f) by
A17,
XBOOLE_1: 1;
A20: (
rng (s
^\ k))
c= ((
dom f)
/\ (
left_open_halfline x0))
proof
let x be
object;
assume x
in (
rng (s
^\ k));
then
consider n such that
A21: ((s
^\ k)
. n)
= x by
FUNCT_2: 113;
(s
. (n
+ k))
< x0 by
A18,
NAT_1: 12;
then (s
. (n
+ k))
in { g1 : g1
< x0 };
then (s
. (n
+ k))
in (
left_open_halfline x0) by
XXREAL_1: 229;
then
A22: x
in (
left_open_halfline x0) by
A21,
NAT_1:def 3;
(s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then x
in (
rng s) by
A21,
NAT_1:def 3;
hence thesis by
A19,
A22,
XBOOLE_0:def 4;
end;
A23: (f
/* (s
^\ k))
= ((f
/* s)
^\ k) by
A17,
VALUED_0: 27,
XBOOLE_1: 1;
(
lim (s
^\ k))
= x0 by
A15,
A16,
SEQ_4: 20;
then (f
/* (s
^\ k)) is
divergent_to+infty by
A11,
A15,
A20,
LIMFUNC2:def 2;
hence (f
/* s) is
divergent_to+infty by
A23,
LIMFUNC1: 7;
end;
suppose
A24: for k holds ex n st k
<= n & (s
. n)
>= x0;
now
per cases ;
suppose ex k st for n st k
<= n holds x0
< (s
. n);
then
consider k such that
A25: for n st k
<= n holds (s
. n)
> x0;
A26: (
rng s)
c= (
dom f) by
A17,
XBOOLE_1: 1;
A27: (
rng (s
^\ k))
c= ((
dom f)
/\ (
right_open_halfline x0))
proof
let x be
object;
assume x
in (
rng (s
^\ k));
then
consider n such that
A28: ((s
^\ k)
. n)
= x by
FUNCT_2: 113;
x0
< (s
. (n
+ k)) by
A25,
NAT_1: 12;
then (s
. (n
+ k))
in { g1 : x0
< g1 };
then (s
. (n
+ k))
in (
right_open_halfline x0) by
XXREAL_1: 230;
then
A29: x
in (
right_open_halfline x0) by
A28,
NAT_1:def 3;
(s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then x
in (
rng s) by
A28,
NAT_1:def 3;
hence thesis by
A26,
A29,
XBOOLE_0:def 4;
end;
A30: (f
/* (s
^\ k))
= ((f
/* s)
^\ k) by
A17,
VALUED_0: 27,
XBOOLE_1: 1;
(
lim (s
^\ k))
= x0 by
A15,
A16,
SEQ_4: 20;
then (f
/* (s
^\ k)) is
divergent_to+infty by
A12,
A15,
A27,
LIMFUNC2:def 5;
hence (f
/* s) is
divergent_to+infty by
A30,
LIMFUNC1: 7;
end;
suppose
A31: for k holds ex n st k
<= n & x0
>= (s
. n);
defpred
X[
Nat] means (s
. $1)
< x0;
A32:
now
let k;
consider n such that
A33: k
<= n and
A34: (s
. n)
<= x0 by
A31;
take n;
thus k
<= n by
A33;
(s
. n)
in (
rng s) by
VALUED_0: 28;
then not (s
. n)
in
{x0} by
A17,
XBOOLE_0:def 5;
then (s
. n)
<> x0 by
TARSKI:def 1;
hence (s
. n)
< x0 by
A34,
XXREAL_0: 1;
end;
then ex m1 be
Element of
NAT st
0
<= m1 & (s
. m1)
< x0;
then
A35: ex m be
Nat st
X[m];
consider M be
Nat such that
A36:
X[M] & for n be
Nat st
X[n] holds M
<= n from
NAT_1:sch 5(
A35);
defpred
X[
Nat] means (s
. $1)
> x0;
defpred
P[
set,
set] means for n, m st $1
= n & $2
= m holds n
< m & (s
. m)
< x0 & for k st n
< k & (s
. k)
< x0 holds m
<= k;
defpred
X[
Nat,
set,
set] means
P[$2, $3];
reconsider M9 = M as
Element of
NAT by
ORDINAL1:def 12;
A37:
now
let n;
consider m such that
A38: (n
+ 1)
<= m and
A39: (s
. m)
< x0 by
A32;
take m;
thus n
< m & (s
. m)
< x0 by
A38,
A39,
NAT_1: 13;
end;
A40: for n be
Nat holds for x be
Element of
NAT holds ex y be
Element of
NAT st
X[n, x, y]
proof
let n be
Nat;
let x be
Element of
NAT ;
defpred
X[
Nat] means x
< $1 & (s
. $1)
< x0;
ex m st
X[m] by
A37;
then
A41: ex m be
Nat st
X[m];
consider l be
Nat such that
A42:
X[l] & for k be
Nat st
X[k] holds l
<= k from
NAT_1:sch 5(
A41);
take l;
l
in
NAT by
ORDINAL1:def 12;
hence thesis by
A42;
end;
consider F be
sequence of
NAT such that
A43: (F
.
0 )
= M9 & for n be
Nat holds
X[n, (F
. n), (F
. (n
+ 1))] from
RECDEF_1:sch 2(
A40);
A44: (
rng F)
c=
NAT by
RELAT_1:def 19;
then
A45: (
rng F)
c=
REAL by
NUMBERS: 19;
A46: (
dom F)
=
NAT by
FUNCT_2:def 1;
then
reconsider F as
Real_Sequence by
A45,
RELSET_1: 4;
A47:
now
let n;
(F
. n)
in (
rng F) by
A46,
FUNCT_1:def 3;
hence (F
. n) is
Element of
NAT by
A44;
end;
now
let n be
Nat;
A48: (F
. (n
+ 1)) is
Element of
NAT by
A47;
A49: n
in
NAT by
ORDINAL1:def 12;
(F
. n) is
Element of
NAT by
A47,
A49;
hence (F
. n)
< (F
. (n
+ 1)) by
A43,
A48;
end;
then
reconsider F as
increasing
sequence of
NAT by
SEQM_3:def 6;
A50: (s
* F) is
subsequence of s by
VALUED_0:def 17;
then (
rng (s
* F))
c= (
rng s) by
VALUED_0: 21;
then
A51: (
rng (s
* F))
c= ((
dom f)
\
{x0}) by
A17;
A52: for n st (s
. n)
< x0 holds ex m st (F
. m)
= n
proof
defpred
X[
Nat] means (s
. $1)
< x0 & for m holds (F
. m)
<> $1;
assume ex n st
X[n];
then
A53: ex n be
Nat st
X[n];
consider M1 be
Nat such that
A54:
X[M1] & for n be
Nat st
X[n] holds M1
<= n from
NAT_1:sch 5(
A53);
defpred
X[
Nat] means $1
< M1 & (s
. $1)
< x0 & ex m st (F
. m)
= $1;
A55: ex n be
Nat st
X[n]
proof
take M;
A56: M
<> M1 by
A43,
A54;
M
<= M1 by
A36,
A54;
hence M
< M1 by
A56,
XXREAL_0: 1;
thus (s
. M)
< x0 by
A36;
take
0 ;
thus thesis by
A43;
end;
A57: for n be
Nat st
X[n] holds n
<= M1;
consider MX be
Nat such that
A58:
X[MX] & for n be
Nat st
X[n] holds n
<= MX from
NAT_1:sch 6(
A57,
A55);
A59: for k st MX
< k & k
< M1 holds (s
. k)
>= x0
proof
given k such that
A60: MX
< k and
A61: k
< M1 and
A62: (s
. k)
< x0;
now
per cases ;
suppose ex m st (F
. m)
= k;
hence contradiction by
A58,
A60,
A61,
A62;
end;
suppose for m holds (F
. m)
<> k;
hence contradiction by
A54,
A61,
A62;
end;
end;
hence contradiction;
end;
consider m such that
A63: (F
. m)
= MX by
A58;
M1
in
NAT by
ORDINAL1:def 12;
then
A64: (F
. (m
+ 1))
<= M1 by
A43,
A54,
A58,
A63;
A65: (s
. (F
. (m
+ 1)))
< x0 by
A43,
A63;
A66: MX
< (F
. (m
+ 1)) by
A43,
A63;
now
assume (F
. (m
+ 1))
<> M1;
then (F
. (m
+ 1))
< M1 by
A64,
XXREAL_0: 1;
hence contradiction by
A59,
A66,
A65;
end;
hence contradiction by
A54;
end;
A67:
now
let k;
consider n such that
A68: k
<= n and
A69: (s
. n)
>= x0 by
A24;
take n;
thus k
<= n by
A68;
(s
. n)
in (
rng s) by
VALUED_0: 28;
then not (s
. n)
in
{x0} by
A17,
XBOOLE_0:def 5;
then (s
. n)
<> x0 by
TARSKI:def 1;
hence (s
. n)
> x0 by
A69,
XXREAL_0: 1;
end;
then ex mn be
Element of
NAT st
0
<= mn & (s
. mn)
> x0;
then
A70: ex m be
Nat st
X[m];
consider N be
Nat such that
A71:
X[N] & for n be
Nat st
X[n] holds N
<= n from
NAT_1:sch 5(
A70);
defpred
X[
Nat] means ((s
* F)
. $1)
< x0;
A72: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat such that ((s
* F)
. k)
< x0;
P[(F
. k), (F
. (k
+ 1))] by
A43;
then (s
. (F
. (k
+ 1)))
< x0;
hence thesis by
FUNCT_2: 15;
end;
A73:
X[
0 ] by
A36,
A43,
FUNCT_2: 15;
A74: for k be
Nat holds
X[k] from
NAT_1:sch 2(
A73,
A72);
A75: (
rng (s
* F))
c= ((
dom f)
/\ (
left_open_halfline x0))
proof
let x be
object;
assume
A76: x
in (
rng (s
* F));
then
consider n such that
A77: ((s
* F)
. n)
= x by
FUNCT_2: 113;
((s
* F)
. n)
< x0 by
A74;
then x
in { g1 : g1
< x0 } by
A77;
then
A78: x
in (
left_open_halfline x0) by
XXREAL_1: 229;
x
in (
dom f) by
A51,
A76,
XBOOLE_0:def 5;
hence thesis by
A78,
XBOOLE_0:def 4;
end;
defpred
P[
set,
set] means for n, m st $1
= n & $2
= m holds n
< m & (s
. m)
> x0 & for k st n
< k & (s
. k)
> x0 holds m
<= k;
defpred
X[
Nat,
set,
set] means
P[$2, $3];
A79: (s
* F) is
convergent by
A15,
A50,
SEQ_4: 16;
reconsider N9 = N as
Element of
NAT by
ORDINAL1:def 12;
A80:
now
let n;
consider m such that
A81: (n
+ 1)
<= m and
A82: (s
. m)
> x0 by
A67;
take m;
thus n
< m & (s
. m)
> x0 by
A81,
A82,
NAT_1: 13;
end;
A83: for n be
Nat holds for x be
Element of
NAT holds ex y be
Element of
NAT st
X[n, x, y]
proof
let n be
Nat;
let x be
Element of
NAT ;
defpred
X[
Nat] means x
< $1 & (s
. $1)
> x0;
ex m st
X[m] by
A80;
then
A84: ex m be
Nat st
X[m];
consider l be
Nat such that
A85:
X[l] & for k be
Nat st
X[k] holds l
<= k from
NAT_1:sch 5(
A84);
reconsider l as
Element of
NAT by
ORDINAL1:def 12;
take l;
thus thesis by
A85;
end;
consider G be
sequence of
NAT such that
A86: (G
.
0 )
= N9 & for n be
Nat holds
X[n, (G
. n), (G
. (n
+ 1))] from
RECDEF_1:sch 2(
A83);
A87: (
rng G)
c=
NAT by
RELAT_1:def 19;
then
A88: (
rng G)
c=
REAL by
NUMBERS: 19;
A89: (
dom G)
=
NAT by
FUNCT_2:def 1;
then
reconsider G as
Real_Sequence by
A88,
RELSET_1: 4;
A90:
now
let n;
(G
. n)
in (
rng G) by
A89,
FUNCT_1:def 3;
hence (G
. n) is
Element of
NAT by
A87;
end;
now
let n be
Nat;
A91: n
in
NAT by
ORDINAL1:def 12;
A92: (G
. (n
+ 1)) is
Element of
NAT by
A90;
(G
. n) is
Element of
NAT by
A90,
A91;
hence (G
. n)
< (G
. (n
+ 1)) by
A86,
A92;
end;
then
reconsider G as
increasing
sequence of
NAT by
SEQM_3:def 6;
A93: (s
* G) is
subsequence of s by
VALUED_0:def 17;
then (
rng (s
* G))
c= (
rng s) by
VALUED_0: 21;
then
A94: (
rng (s
* G))
c= ((
dom f)
\
{x0}) by
A17;
defpred
X[
Nat] means (s
. $1)
> x0 & for m holds (G
. m)
<> $1;
A95: for n st (s
. n)
> x0 holds ex m st (G
. m)
= n
proof
assume ex n st
X[n];
then
A96: ex n be
Nat st
X[n];
consider N1 be
Nat such that
A97:
X[N1] & for n be
Nat st
X[n] holds N1
<= n from
NAT_1:sch 5(
A96);
defpred
X[
Nat] means $1
< N1 & (s
. $1)
> x0 & ex m st (G
. m)
= $1;
A98: ex n be
Nat st
X[n]
proof
take N;
A99: N
<> N1 by
A86,
A97;
N
<= N1 by
A71,
A97;
hence N
< N1 by
A99,
XXREAL_0: 1;
thus (s
. N)
> x0 by
A71;
take
0 ;
thus thesis by
A86;
end;
A100: for n be
Nat st
X[n] holds n
<= N1;
consider NX be
Nat such that
A101:
X[NX] & for n be
Nat st
X[n] holds n
<= NX from
NAT_1:sch 6(
A100,
A98);
A102: for k st NX
< k & k
< N1 holds (s
. k)
<= x0
proof
given k such that
A103: NX
< k and
A104: k
< N1 and
A105: (s
. k)
> x0;
now
per cases ;
suppose ex m st (G
. m)
= k;
hence contradiction by
A101,
A103,
A104,
A105;
end;
suppose for m holds (G
. m)
<> k;
hence contradiction by
A97,
A104,
A105;
end;
end;
hence contradiction;
end;
consider m such that
A106: (G
. m)
= NX by
A101;
N1
in
NAT by
ORDINAL1:def 12;
then
A107: (G
. (m
+ 1))
<= N1 by
A86,
A97,
A101,
A106;
A108: (s
. (G
. (m
+ 1)))
> x0 by
A86,
A106;
A109: NX
< (G
. (m
+ 1)) by
A86,
A106;
now
assume (G
. (m
+ 1))
<> N1;
then (G
. (m
+ 1))
< N1 by
A107,
XXREAL_0: 1;
hence contradiction by
A102,
A109,
A108;
end;
hence contradiction by
A97;
end;
defpred
X[
Nat] means ((s
* G)
. $1)
> x0;
A110: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat such that ((s
* G)
. k)
> x0;
P[(G
. k), (G
. (k
+ 1))] by
A86;
then (s
. (G
. (k
+ 1)))
> x0;
hence thesis by
FUNCT_2: 15;
end;
A111:
X[
0 ] by
A71,
A86,
FUNCT_2: 15;
A112: for k be
Nat holds
X[k] from
NAT_1:sch 2(
A111,
A110);
A113: (
rng (s
* G))
c= ((
dom f)
/\ (
right_open_halfline x0))
proof
let x be
object;
assume
A114: x
in (
rng (s
* G));
then
consider n such that
A115: ((s
* G)
. n)
= x by
FUNCT_2: 113;
((s
* G)
. n)
> x0 by
A112;
then x
in { g1 : x0
< g1 } by
A115;
then
A116: x
in (
right_open_halfline x0) by
XXREAL_1: 230;
x
in (
dom f) by
A94,
A114,
XBOOLE_0:def 5;
hence thesis by
A116,
XBOOLE_0:def 4;
end;
A117: (s
* G) is
convergent by
A15,
A93,
SEQ_4: 16;
(
lim (s
* G))
= x0 by
A15,
A16,
A93,
SEQ_4: 17;
then
A118: (f
/* (s
* G)) is
divergent_to+infty by
A12,
A117,
A113,
LIMFUNC2:def 5;
(
lim (s
* F))
= x0 by
A15,
A16,
A50,
SEQ_4: 17;
then
A119: (f
/* (s
* F)) is
divergent_to+infty by
A11,
A79,
A75,
LIMFUNC2:def 2;
now
let r;
consider n1 be
Nat such that
A120: for k be
Nat st n1
<= k holds r
< ((f
/* (s
* F))
. k) by
A119;
consider n2 be
Nat such that
A121: for k be
Nat st n2
<= k holds r
< ((f
/* (s
* G))
. k) by
A118;
reconsider n = (
max ((F
. n1),(G
. n2))) as
Nat;
take n;
let k be
Nat;
A122: k
in
NAT by
ORDINAL1:def 12;
assume
A123: n
<= k;
(s
. k)
in (
rng s) by
VALUED_0: 28;
then not (s
. k)
in
{x0} by
A17,
XBOOLE_0:def 5;
then
A124: (s
. k)
<> x0 by
TARSKI:def 1;
now
per cases by
A124,
XXREAL_0: 1;
suppose (s
. k)
< x0;
then
consider l be
Element of
NAT such that
A125: k
= (F
. l) by
A52,
A122;
(F
. n1)
<= n by
XXREAL_0: 25;
then (F
. n1)
<= k by
A123,
XXREAL_0: 2;
then l
>= n1 by
A125,
SEQM_3: 1;
then r
< ((f
/* (s
* F))
. l) by
A120;
then r
< (f
. ((s
* F)
. l)) by
A51,
FUNCT_2: 108,
XBOOLE_1: 1;
then r
< (f
. (s
. k)) by
A125,
FUNCT_2: 15;
hence r
< ((f
/* s)
. k) by
A17,
FUNCT_2: 108,
XBOOLE_1: 1,
A122;
end;
suppose (s
. k)
> x0;
then
consider l be
Element of
NAT such that
A126: k
= (G
. l) by
A95,
A122;
(G
. n2)
<= n by
XXREAL_0: 25;
then (G
. n2)
<= k by
A123,
XXREAL_0: 2;
then l
>= n2 by
A126,
SEQM_3: 1;
then r
< ((f
/* (s
* G))
. l) by
A121;
then r
< (f
. ((s
* G)
. l)) by
A94,
FUNCT_2: 108,
XBOOLE_1: 1;
then r
< (f
. (s
. k)) by
A126,
FUNCT_2: 15;
hence r
< ((f
/* s)
. k) by
A17,
FUNCT_2: 108,
XBOOLE_1: 1,
A122;
end;
end;
hence r
< ((f
/* s)
. k);
end;
hence (f
/* s) is
divergent_to+infty;
end;
end;
hence (f
/* s) is
divergent_to+infty;
end;
end;
hence (f
/* s) is
divergent_to+infty;
end;
for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f) by
A11,
LIMFUNC2:def 2;
then for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f) by
A13,
Th8;
hence thesis by
A14;
end;
theorem ::
LIMFUNC3:13
Th13: f
is_divergent_to-infty_in x0 iff f
is_left_divergent_to-infty_in x0 & f
is_right_divergent_to-infty_in x0
proof
thus f
is_divergent_to-infty_in x0 implies f
is_left_divergent_to-infty_in x0 & f
is_right_divergent_to-infty_in x0
proof
assume
A1: f
is_divergent_to-infty_in x0;
A2:
now
let s be
Real_Sequence;
assume that
A3: s is
convergent and
A4: (
lim s)
= x0 and
A5: (
rng s)
c= ((
dom f)
/\ (
left_open_halfline x0));
(
rng s)
c= ((
dom f)
\
{x0}) by
A5,
Th1;
hence (f
/* s) is
divergent_to-infty by
A1,
A3,
A4;
end;
A6:
now
let s be
Real_Sequence;
assume that
A7: s is
convergent and
A8: (
lim s)
= x0 and
A9: (
rng s)
c= ((
dom f)
/\ (
right_open_halfline x0));
(
rng s)
c= ((
dom f)
\
{x0}) by
A9,
Th1;
hence (f
/* s) is
divergent_to-infty by
A1,
A7,
A8;
end;
A10: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f) by
A1;
then for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f) by
Th8;
hence f
is_left_divergent_to-infty_in x0 by
A2,
LIMFUNC2:def 3;
for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f) by
A10,
Th8;
hence thesis by
A6,
LIMFUNC2:def 6;
end;
assume that
A11: f
is_left_divergent_to-infty_in x0 and
A12: f
is_right_divergent_to-infty_in x0;
A13:
now
let s be
Real_Sequence such that
A14: s is
convergent and
A15: (
lim s)
= x0 and
A16: (
rng s)
c= ((
dom f)
\
{x0});
now
per cases ;
suppose ex k st for n st k
<= n holds (s
. n)
< x0;
then
consider k such that
A17: for n st k
<= n holds (s
. n)
< x0;
A18: (
rng s)
c= (
dom f) by
A16,
XBOOLE_1: 1;
A19: (
rng (s
^\ k))
c= ((
dom f)
/\ (
left_open_halfline x0))
proof
let x be
object;
assume x
in (
rng (s
^\ k));
then
consider n such that
A20: ((s
^\ k)
. n)
= x by
FUNCT_2: 113;
(s
. (n
+ k))
< x0 by
A17,
NAT_1: 12;
then (s
. (n
+ k))
in { g1 : g1
< x0 };
then (s
. (n
+ k))
in (
left_open_halfline x0) by
XXREAL_1: 229;
then
A21: x
in (
left_open_halfline x0) by
A20,
NAT_1:def 3;
(s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then x
in (
rng s) by
A20,
NAT_1:def 3;
hence thesis by
A18,
A21,
XBOOLE_0:def 4;
end;
A22: (f
/* (s
^\ k))
= ((f
/* s)
^\ k) by
A16,
VALUED_0: 27,
XBOOLE_1: 1;
(
lim (s
^\ k))
= x0 by
A14,
A15,
SEQ_4: 20;
then (f
/* (s
^\ k)) is
divergent_to-infty by
A11,
A14,
A19,
LIMFUNC2:def 3;
hence (f
/* s) is
divergent_to-infty by
A22,
LIMFUNC1: 7;
end;
suppose
A23: for k holds ex n st k
<= n & (s
. n)
>= x0;
now
per cases ;
suppose ex k st for n st k
<= n holds x0
< (s
. n);
then
consider k such that
A24: for n st k
<= n holds (s
. n)
> x0;
A25: (
rng s)
c= (
dom f) by
A16,
XBOOLE_1: 1;
A26: (
rng (s
^\ k))
c= ((
dom f)
/\ (
right_open_halfline x0))
proof
let x be
object;
assume x
in (
rng (s
^\ k));
then
consider n such that
A27: ((s
^\ k)
. n)
= x by
FUNCT_2: 113;
x0
< (s
. (n
+ k)) by
A24,
NAT_1: 12;
then (s
. (n
+ k))
in { g1 : x0
< g1 };
then (s
. (n
+ k))
in (
right_open_halfline x0) by
XXREAL_1: 230;
then
A28: x
in (
right_open_halfline x0) by
A27,
NAT_1:def 3;
(s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then x
in (
rng s) by
A27,
NAT_1:def 3;
hence thesis by
A25,
A28,
XBOOLE_0:def 4;
end;
A29: (f
/* (s
^\ k))
= ((f
/* s)
^\ k) by
A16,
VALUED_0: 27,
XBOOLE_1: 1;
(
lim (s
^\ k))
= x0 by
A14,
A15,
SEQ_4: 20;
then (f
/* (s
^\ k)) is
divergent_to-infty by
A12,
A14,
A26,
LIMFUNC2:def 6;
hence (f
/* s) is
divergent_to-infty by
A29,
LIMFUNC1: 7;
end;
suppose
A30: for k holds ex n st k
<= n & x0
>= (s
. n);
defpred
P[
set,
set] means for n, m st $1
= n & $2
= m holds n
< m & (s
. m)
< x0 & for k st n
< k & (s
. k)
< x0 holds m
<= k;
defpred
X[
Nat,
set,
set] means
P[$2, $3];
defpred
X[
Nat] means (s
. $1)
< x0;
A31:
now
let k;
consider n such that
A32: k
<= n and
A33: (s
. n)
<= x0 by
A30;
take n;
thus k
<= n by
A32;
(s
. n)
in (
rng s) by
VALUED_0: 28;
then not (s
. n)
in
{x0} by
A16,
XBOOLE_0:def 5;
then (s
. n)
<> x0 by
TARSKI:def 1;
hence (s
. n)
< x0 by
A33,
XXREAL_0: 1;
end;
then ex m1 be
Element of
NAT st
0
<= m1 & (s
. m1)
< x0;
then
A34: ex m be
Nat st
X[m];
consider M be
Nat such that
A35:
X[M] & for n be
Nat st
X[n] holds M
<= n from
NAT_1:sch 5(
A34);
reconsider M9 = M as
Element of
NAT by
ORDINAL1:def 12;
A36:
now
let n;
consider m such that
A37: (n
+ 1)
<= m and
A38: (s
. m)
< x0 by
A31;
take m;
thus n
< m & (s
. m)
< x0 by
A37,
A38,
NAT_1: 13;
end;
A39: for n be
Nat holds for x be
Element of
NAT holds ex y be
Element of
NAT st
X[n, x, y]
proof
let n be
Nat;
let x be
Element of
NAT ;
defpred
X[
Nat] means x
< $1 & (s
. $1)
< x0;
ex m st
X[m] by
A36;
then
A40: ex m be
Nat st
X[m];
consider l be
Nat such that
A41:
X[l] & for k be
Nat st
X[k] holds l
<= k from
NAT_1:sch 5(
A40);
take l;
l
in
NAT by
ORDINAL1:def 12;
hence thesis by
A41;
end;
consider F be
sequence of
NAT such that
A42: (F
.
0 )
= M9 & for n be
Nat holds
X[n, (F
. n), (F
. (n
+ 1))] from
RECDEF_1:sch 2(
A39);
A43: (
rng F)
c=
NAT by
RELAT_1:def 19;
then
A44: (
rng F)
c=
REAL by
NUMBERS: 19;
A45: (
dom F)
=
NAT by
FUNCT_2:def 1;
then
reconsider F as
Real_Sequence by
A44,
RELSET_1: 4;
A46:
now
let n;
(F
. n)
in (
rng F) by
A45,
FUNCT_1:def 3;
hence (F
. n) is
Element of
NAT by
A43;
end;
now
let n be
Nat;
A47: n
in
NAT by
ORDINAL1:def 12;
A48: (F
. (n
+ 1)) is
Element of
NAT by
A46;
(F
. n) is
Element of
NAT by
A46,
A47;
hence (F
. n)
< (F
. (n
+ 1)) by
A42,
A48;
end;
then
reconsider F as
increasing
sequence of
NAT by
SEQM_3:def 6;
A49: (s
* F) is
subsequence of s by
VALUED_0:def 17;
then (
rng (s
* F))
c= (
rng s) by
VALUED_0: 21;
then
A50: (
rng (s
* F))
c= ((
dom f)
\
{x0}) by
A16;
defpred
X[
Nat] means (s
. $1)
< x0 & for m holds (F
. m)
<> $1;
A51: for n st (s
. n)
< x0 holds ex m st (F
. m)
= n
proof
assume ex n st
X[n];
then
A52: ex n be
Nat st
X[n];
consider M1 be
Nat such that
A53:
X[M1] & for n be
Nat st
X[n] holds M1
<= n from
NAT_1:sch 5(
A52);
defpred
X[
Nat] means $1
< M1 & (s
. $1)
< x0 & ex m st (F
. m)
= $1;
A54: ex n be
Nat st
X[n]
proof
take M;
A55: M
<> M1 by
A42,
A53;
M
<= M1 by
A35,
A53;
hence M
< M1 by
A55,
XXREAL_0: 1;
thus (s
. M)
< x0 by
A35;
take
0 ;
thus thesis by
A42;
end;
A56: for n be
Nat st
X[n] holds n
<= M1;
consider MX be
Nat such that
A57:
X[MX] & for n be
Nat st
X[n] holds n
<= MX from
NAT_1:sch 6(
A56,
A54);
A58: for k st MX
< k & k
< M1 holds (s
. k)
>= x0
proof
given k such that
A59: MX
< k and
A60: k
< M1 and
A61: (s
. k)
< x0;
now
per cases ;
suppose ex m st (F
. m)
= k;
hence contradiction by
A57,
A59,
A60,
A61;
end;
suppose for m holds (F
. m)
<> k;
hence contradiction by
A53,
A60,
A61;
end;
end;
hence contradiction;
end;
consider m such that
A62: (F
. m)
= MX by
A57;
M1
in
NAT by
ORDINAL1:def 12;
then
A63: (F
. (m
+ 1))
<= M1 by
A42,
A53,
A57,
A62;
A64: (s
. (F
. (m
+ 1)))
< x0 by
A42,
A62;
A65: MX
< (F
. (m
+ 1)) by
A42,
A62;
now
assume (F
. (m
+ 1))
<> M1;
then (F
. (m
+ 1))
< M1 by
A63,
XXREAL_0: 1;
hence contradiction by
A58,
A65,
A64;
end;
hence contradiction by
A53;
end;
defpred
X[
Nat] means (s
. $1)
> x0;
A66:
now
let k;
consider n such that
A67: k
<= n and
A68: (s
. n)
>= x0 by
A23;
take n;
thus k
<= n by
A67;
(s
. n)
in (
rng s) by
VALUED_0: 28;
then not (s
. n)
in
{x0} by
A16,
XBOOLE_0:def 5;
then (s
. n)
<> x0 by
TARSKI:def 1;
hence (s
. n)
> x0 by
A68,
XXREAL_0: 1;
end;
then ex mn be
Element of
NAT st
0
<= mn & (s
. mn)
> x0;
then
A69: ex m be
Nat st
X[m];
consider N be
Nat such that
A70:
X[N] & for n be
Nat st
X[n] holds N
<= n from
NAT_1:sch 5(
A69);
defpred
X[
Nat] means ((s
* F)
. $1)
< x0;
A71: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat such that ((s
* F)
. k)
< x0;
P[(F
. k), (F
. (k
+ 1))] by
A42;
then (s
. (F
. (k
+ 1)))
< x0;
hence thesis by
FUNCT_2: 15;
end;
A72:
X[
0 ] by
A35,
A42,
FUNCT_2: 15;
A73: for k be
Nat holds
X[k] from
NAT_1:sch 2(
A72,
A71);
A74: (
rng (s
* F))
c= ((
dom f)
/\ (
left_open_halfline x0))
proof
let x be
object;
assume
A75: x
in (
rng (s
* F));
then
consider n such that
A76: ((s
* F)
. n)
= x by
FUNCT_2: 113;
((s
* F)
. n)
< x0 by
A73;
then x
in { g1 : g1
< x0 } by
A76;
then
A77: x
in (
left_open_halfline x0) by
XXREAL_1: 229;
x
in (
dom f) by
A50,
A75,
XBOOLE_0:def 5;
hence thesis by
A77,
XBOOLE_0:def 4;
end;
defpred
P[
set,
set] means for n, m st $1
= n & $2
= m holds n
< m & (s
. m)
> x0 & for k st n
< k & (s
. k)
> x0 holds m
<= k;
defpred
X[
Nat,
set,
set] means
P[$2, $3];
A78: (s
* F) is
convergent by
A14,
A49,
SEQ_4: 16;
(
lim (s
* F))
= x0 by
A14,
A15,
A49,
SEQ_4: 17;
then
A79: (f
/* (s
* F)) is
divergent_to-infty by
A11,
A78,
A74,
LIMFUNC2:def 3;
reconsider N9 = N as
Element of
NAT by
ORDINAL1:def 12;
A80:
now
let n;
consider m such that
A81: (n
+ 1)
<= m and
A82: (s
. m)
> x0 by
A66;
take m;
thus n
< m & (s
. m)
> x0 by
A81,
A82,
NAT_1: 13;
end;
A83: for n be
Nat holds for x be
Element of
NAT holds ex y be
Element of
NAT st
X[n, x, y]
proof
let n be
Nat;
let x be
Element of
NAT ;
defpred
X[
Nat] means x
< $1 & (s
. $1)
> x0;
ex m st
X[m] by
A80;
then
A84: ex m be
Nat st
X[m];
consider l be
Nat such that
A85:
X[l] & for k be
Nat st
X[k] holds l
<= k from
NAT_1:sch 5(
A84);
take l;
l
in
NAT by
ORDINAL1:def 12;
hence thesis by
A85;
end;
consider G be
sequence of
NAT such that
A86: (G
.
0 )
= N9 & for n be
Nat holds
X[n, (G
. n), (G
. (n
+ 1))] from
RECDEF_1:sch 2(
A83);
A87: (
rng G)
c=
NAT by
RELAT_1:def 19;
then
A88: (
rng G)
c=
REAL by
NUMBERS: 19;
A89: (
dom G)
=
NAT by
FUNCT_2:def 1;
then
reconsider G as
Real_Sequence by
A88,
RELSET_1: 4;
A90:
now
let n;
(G
. n)
in (
rng G) by
A89,
FUNCT_1:def 3;
hence (G
. n) is
Element of
NAT by
A87;
end;
now
let n be
Nat;
A91: n
in
NAT by
ORDINAL1:def 12;
A92: (G
. (n
+ 1)) is
Element of
NAT by
A90;
(G
. n) is
Element of
NAT by
A90,
A91;
hence (G
. n)
< (G
. (n
+ 1)) by
A86,
A92;
end;
then
reconsider G as
increasing
sequence of
NAT by
SEQM_3:def 6;
A93: (s
* G) is
subsequence of s by
VALUED_0:def 17;
then (
rng (s
* G))
c= (
rng s) by
VALUED_0: 21;
then
A94: (
rng (s
* G))
c= ((
dom f)
\
{x0}) by
A16;
defpred
X[
Nat] means (s
. $1)
> x0 & for m holds (G
. m)
<> $1;
A95: for n st (s
. n)
> x0 holds ex m st (G
. m)
= n
proof
assume ex n st
X[n];
then
A96: ex n be
Nat st
X[n];
consider N1 be
Nat such that
A97:
X[N1] & for n be
Nat st
X[n] holds N1
<= n from
NAT_1:sch 5(
A96);
defpred
X[
Nat] means $1
< N1 & (s
. $1)
> x0 & ex m st (G
. m)
= $1;
A98: ex n be
Nat st
X[n]
proof
take N;
A99: N
<> N1 by
A86,
A97;
N
<= N1 by
A70,
A97;
hence N
< N1 by
A99,
XXREAL_0: 1;
thus (s
. N)
> x0 by
A70;
take
0 ;
thus thesis by
A86;
end;
A100: for n be
Nat st
X[n] holds n
<= N1;
consider NX be
Nat such that
A101:
X[NX] & for n be
Nat st
X[n] holds n
<= NX from
NAT_1:sch 6(
A100,
A98);
A102: for k st NX
< k & k
< N1 holds (s
. k)
<= x0
proof
given k such that
A103: NX
< k and
A104: k
< N1 and
A105: (s
. k)
> x0;
now
per cases ;
suppose ex m st (G
. m)
= k;
hence contradiction by
A101,
A103,
A104,
A105;
end;
suppose for m holds (G
. m)
<> k;
hence contradiction by
A97,
A104,
A105;
end;
end;
hence contradiction;
end;
consider m such that
A106: (G
. m)
= NX by
A101;
N1
in
NAT by
ORDINAL1:def 12;
then
A107: (G
. (m
+ 1))
<= N1 by
A86,
A97,
A101,
A106;
A108: (s
. (G
. (m
+ 1)))
> x0 by
A86,
A106;
A109: NX
< (G
. (m
+ 1)) by
A86,
A106;
now
assume (G
. (m
+ 1))
<> N1;
then (G
. (m
+ 1))
< N1 by
A107,
XXREAL_0: 1;
hence contradiction by
A102,
A109,
A108;
end;
hence contradiction by
A97;
end;
defpred
X[
Nat] means ((s
* G)
. $1)
> x0;
A110: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat such that ((s
* G)
. k)
> x0;
P[(G
. k), (G
. (k
+ 1))] by
A86;
then (s
. (G
. (k
+ 1)))
> x0;
hence thesis by
FUNCT_2: 15;
end;
A111:
X[
0 ] by
A70,
A86,
FUNCT_2: 15;
A112: for k be
Nat holds
X[k] from
NAT_1:sch 2(
A111,
A110);
A113: (
rng (s
* G))
c= ((
dom f)
/\ (
right_open_halfline x0))
proof
let x be
object;
assume
A114: x
in (
rng (s
* G));
then
consider n such that
A115: ((s
* G)
. n)
= x by
FUNCT_2: 113;
((s
* G)
. n)
> x0 by
A112;
then x
in { g1 : x0
< g1 } by
A115;
then
A116: x
in (
right_open_halfline x0) by
XXREAL_1: 230;
x
in (
dom f) by
A94,
A114,
XBOOLE_0:def 5;
hence thesis by
A116,
XBOOLE_0:def 4;
end;
A117: (s
* G) is
convergent by
A14,
A93,
SEQ_4: 16;
(
lim (s
* G))
= x0 by
A14,
A15,
A93,
SEQ_4: 17;
then
A118: (f
/* (s
* G)) is
divergent_to-infty by
A12,
A117,
A113,
LIMFUNC2:def 6;
now
let r;
consider n1 be
Nat such that
A119: for k be
Nat st n1
<= k holds ((f
/* (s
* F))
. k)
< r by
A79;
consider n2 be
Nat such that
A120: for k be
Nat st n2
<= k holds ((f
/* (s
* G))
. k)
< r by
A118;
reconsider n = (
max ((F
. n1),(G
. n2))) as
Nat;
take n;
let k be
Nat;
A121: k
in
NAT by
ORDINAL1:def 12;
assume
A122: n
<= k;
(s
. k)
in (
rng s) by
VALUED_0: 28;
then not (s
. k)
in
{x0} by
A16,
XBOOLE_0:def 5;
then
A123: (s
. k)
<> x0 by
TARSKI:def 1;
now
per cases by
A123,
XXREAL_0: 1;
suppose (s
. k)
< x0;
then
consider l be
Element of
NAT such that
A124: k
= (F
. l) by
A51,
A121;
(F
. n1)
<= n by
XXREAL_0: 25;
then (F
. n1)
<= k by
A122,
XXREAL_0: 2;
then l
>= n1 by
A124,
SEQM_3: 1;
then ((f
/* (s
* F))
. l)
< r by
A119;
then (f
. ((s
* F)
. l))
< r by
A50,
FUNCT_2: 108,
XBOOLE_1: 1;
then (f
. (s
. k))
< r by
A124,
FUNCT_2: 15;
hence ((f
/* s)
. k)
< r by
A16,
FUNCT_2: 108,
XBOOLE_1: 1,
A121;
end;
suppose (s
. k)
> x0;
then
consider l be
Element of
NAT such that
A125: k
= (G
. l) by
A95,
A121;
(G
. n2)
<= n by
XXREAL_0: 25;
then (G
. n2)
<= k by
A122,
XXREAL_0: 2;
then l
>= n2 by
A125,
SEQM_3: 1;
then ((f
/* (s
* G))
. l)
< r by
A120;
then (f
. ((s
* G)
. l))
< r by
A94,
FUNCT_2: 108,
XBOOLE_1: 1;
then (f
. (s
. k))
< r by
A125,
FUNCT_2: 15;
hence ((f
/* s)
. k)
< r by
A16,
FUNCT_2: 108,
XBOOLE_1: 1,
A121;
end;
end;
hence ((f
/* s)
. k)
< r;
end;
hence (f
/* s) is
divergent_to-infty;
end;
end;
hence (f
/* s) is
divergent_to-infty;
end;
end;
hence (f
/* s) is
divergent_to-infty;
end;
now
let r1, r2;
assume that
A126: r1
< x0 and
A127: x0
< r2;
consider g1 such that
A128: r1
< g1 and
A129: g1
< x0 and
A130: g1
in (
dom f) by
A11,
A126,
LIMFUNC2:def 3;
consider g2 such that
A131: g2
< r2 and
A132: x0
< g2 and
A133: g2
in (
dom f) by
A12,
A127,
LIMFUNC2:def 6;
take g1;
take g2;
thus r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f) by
A128,
A129,
A130,
A131,
A132,
A133;
end;
hence thesis by
A13;
end;
theorem ::
LIMFUNC3:14
f1
is_divergent_to+infty_in x0 & f2
is_divergent_to+infty_in x0 & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in ((
dom f1)
/\ (
dom f2)) & g2
< r2 & x0
< g2 & g2
in ((
dom f1)
/\ (
dom f2))) implies (f1
+ f2)
is_divergent_to+infty_in x0 & (f1
(#) f2)
is_divergent_to+infty_in x0
proof
assume that
A1: f1
is_divergent_to+infty_in x0 and
A2: f2
is_divergent_to+infty_in x0 and
A3: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in ((
dom f1)
/\ (
dom f2)) & g2
< r2 & x0
< g2 & g2
in ((
dom f1)
/\ (
dom f2));
A4:
now
let s be
Real_Sequence;
assume that
A5: s is
convergent and
A6: (
lim s)
= x0 and
A7: (
rng s)
c= ((
dom (f1
+ f2))
\
{x0});
(
rng s)
c= ((
dom f2)
\
{x0}) by
A7,
Lm4;
then
A8: (f2
/* s) is
divergent_to+infty by
A2,
A5,
A6;
(
rng s)
c= ((
dom f1)
\
{x0}) by
A7,
Lm4;
then (f1
/* s) is
divergent_to+infty by
A1,
A5,
A6;
then
A9: ((f1
/* s)
+ (f2
/* s)) is
divergent_to+infty by
A8,
LIMFUNC1: 8;
A10: (
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) by
A7,
Lm4;
(
rng s)
c= (
dom (f1
+ f2)) by
A7,
Lm4;
hence ((f1
+ f2)
/* s) is
divergent_to+infty by
A10,
A9,
RFUNCT_2: 8;
end;
A11:
now
let s be
Real_Sequence;
assume that
A12: s is
convergent and
A13: (
lim s)
= x0 and
A14: (
rng s)
c= ((
dom (f1
(#) f2))
\
{x0});
(
rng s)
c= ((
dom f2)
\
{x0}) by
A14,
Lm2;
then
A15: (f2
/* s) is
divergent_to+infty by
A2,
A12,
A13;
(
rng s)
c= ((
dom f1)
\
{x0}) by
A14,
Lm2;
then (f1
/* s) is
divergent_to+infty by
A1,
A12,
A13;
then
A16: ((f1
/* s)
(#) (f2
/* s)) is
divergent_to+infty by
A15,
LIMFUNC1: 10;
A17: (
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) by
A14,
Lm2;
(
rng s)
c= (
dom (f1
(#) f2)) by
A14,
Lm2;
hence ((f1
(#) f2)
/* s) is
divergent_to+infty by
A17,
A16,
RFUNCT_2: 8;
end;
now
let r1, r2;
assume that
A18: r1
< x0 and
A19: x0
< r2;
consider g1, g2 such that
A20: r1
< g1 and
A21: g1
< x0 and
A22: g1
in ((
dom f1)
/\ (
dom f2)) and
A23: g2
< r2 and
A24: x0
< g2 and
A25: g2
in ((
dom f1)
/\ (
dom f2)) by
A3,
A18,
A19;
take g1;
take g2;
thus r1
< g1 & g1
< x0 & g1
in (
dom (f1
+ f2)) & g2
< r2 & x0
< g2 & g2
in (
dom (f1
+ f2)) by
A20,
A21,
A22,
A23,
A24,
A25,
VALUED_1:def 1;
end;
hence (f1
+ f2)
is_divergent_to+infty_in x0 by
A4;
now
let r1, r2;
assume that
A26: r1
< x0 and
A27: x0
< r2;
consider g1, g2 such that
A28: r1
< g1 and
A29: g1
< x0 and
A30: g1
in ((
dom f1)
/\ (
dom f2)) and
A31: g2
< r2 and
A32: x0
< g2 and
A33: g2
in ((
dom f1)
/\ (
dom f2)) by
A3,
A26,
A27;
take g1;
take g2;
thus r1
< g1 & g1
< x0 & g1
in (
dom (f1
(#) f2)) & g2
< r2 & x0
< g2 & g2
in (
dom (f1
(#) f2)) by
A28,
A29,
A30,
A31,
A32,
A33,
VALUED_1:def 4;
end;
hence thesis by
A11;
end;
theorem ::
LIMFUNC3:15
f1
is_divergent_to-infty_in x0 & f2
is_divergent_to-infty_in x0 & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in ((
dom f1)
/\ (
dom f2)) & g2
< r2 & x0
< g2 & g2
in ((
dom f1)
/\ (
dom f2))) implies (f1
+ f2)
is_divergent_to-infty_in x0 & (f1
(#) f2)
is_divergent_to+infty_in x0
proof
assume that
A1: f1
is_divergent_to-infty_in x0 and
A2: f2
is_divergent_to-infty_in x0 and
A3: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in ((
dom f1)
/\ (
dom f2)) & g2
< r2 & x0
< g2 & g2
in ((
dom f1)
/\ (
dom f2));
A4:
now
let s be
Real_Sequence;
assume that
A5: s is
convergent and
A6: (
lim s)
= x0 and
A7: (
rng s)
c= ((
dom (f1
+ f2))
\
{x0});
(
rng s)
c= ((
dom f2)
\
{x0}) by
A7,
Lm4;
then
A8: (f2
/* s) is
divergent_to-infty by
A2,
A5,
A6;
(
rng s)
c= ((
dom f1)
\
{x0}) by
A7,
Lm4;
then (f1
/* s) is
divergent_to-infty by
A1,
A5,
A6;
then
A9: ((f1
/* s)
+ (f2
/* s)) is
divergent_to-infty by
A8,
LIMFUNC1: 11;
A10: (
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) by
A7,
Lm4;
(
rng s)
c= (
dom (f1
+ f2)) by
A7,
Lm4;
hence ((f1
+ f2)
/* s) is
divergent_to-infty by
A10,
A9,
RFUNCT_2: 8;
end;
A11:
now
let s be
Real_Sequence;
assume that
A12: s is
convergent and
A13: (
lim s)
= x0 and
A14: (
rng s)
c= ((
dom (f1
(#) f2))
\
{x0});
(
rng s)
c= ((
dom f2)
\
{x0}) by
A14,
Lm2;
then
A15: (f2
/* s) is
divergent_to-infty by
A2,
A12,
A13;
(
rng s)
c= ((
dom f1)
\
{x0}) by
A14,
Lm2;
then (f1
/* s) is
divergent_to-infty by
A1,
A12,
A13;
then
A16: ((f1
/* s)
(#) (f2
/* s)) is
divergent_to+infty by
A15,
LIMFUNC1: 24;
A17: (
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) by
A14,
Lm2;
(
rng s)
c= (
dom (f1
(#) f2)) by
A14,
Lm2;
hence ((f1
(#) f2)
/* s) is
divergent_to+infty by
A17,
A16,
RFUNCT_2: 8;
end;
now
let r1, r2;
assume that
A18: r1
< x0 and
A19: x0
< r2;
consider g1, g2 such that
A20: r1
< g1 and
A21: g1
< x0 and
A22: g1
in ((
dom f1)
/\ (
dom f2)) and
A23: g2
< r2 and
A24: x0
< g2 and
A25: g2
in ((
dom f1)
/\ (
dom f2)) by
A3,
A18,
A19;
take g1;
take g2;
thus r1
< g1 & g1
< x0 & g1
in (
dom (f1
+ f2)) & g2
< r2 & x0
< g2 & g2
in (
dom (f1
+ f2)) by
A20,
A21,
A22,
A23,
A24,
A25,
VALUED_1:def 1;
end;
hence (f1
+ f2)
is_divergent_to-infty_in x0 by
A4;
now
let r1, r2;
assume that
A26: r1
< x0 and
A27: x0
< r2;
consider g1, g2 such that
A28: r1
< g1 and
A29: g1
< x0 and
A30: g1
in ((
dom f1)
/\ (
dom f2)) and
A31: g2
< r2 and
A32: x0
< g2 and
A33: g2
in ((
dom f1)
/\ (
dom f2)) by
A3,
A26,
A27;
take g1;
take g2;
thus r1
< g1 & g1
< x0 & g1
in (
dom (f1
(#) f2)) & g2
< r2 & x0
< g2 & g2
in (
dom (f1
(#) f2)) by
A28,
A29,
A30,
A31,
A32,
A33,
VALUED_1:def 4;
end;
hence thesis by
A11;
end;
theorem ::
LIMFUNC3:16
f1
is_divergent_to+infty_in x0 & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f1
+ f2)) & g2
< r2 & x0
< g2 & g2
in (
dom (f1
+ f2))) & (ex r st
0
< r & (f2
| (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) is
bounded_below) implies (f1
+ f2)
is_divergent_to+infty_in x0
proof
assume that
A1: f1
is_divergent_to+infty_in x0 and
A2: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f1
+ f2)) & g2
< r2 & x0
< g2 & g2
in (
dom (f1
+ f2));
given r such that
A3:
0
< r and
A4: (f2
| (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) is
bounded_below;
now
let s be
Real_Sequence;
assume that
A5: s is
convergent and
A6: (
lim s)
= x0 and
A7: (
rng s)
c= ((
dom (f1
+ f2))
\
{x0});
consider k such that
A8: for n st k
<= n holds (x0
- r)
< (s
. n) & (s
. n)
< (x0
+ r) by
A3,
A5,
A6,
Th7;
(
rng (s
^\ k))
c= (
rng s) by
VALUED_0: 21;
then
A9: (
rng (s
^\ k))
c= ((
dom (f1
+ f2))
\
{x0}) by
A7;
then
A10: (
rng (s
^\ k))
c= ((
dom f1)
\
{x0}) by
Lm4;
A11: (
rng (s
^\ k))
c= (
dom f2) by
A9,
Lm4;
now
consider r1 be
Real such that
A12: for g be
object st g
in ((
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)
/\ (
dom f2)) holds r1
<= (f2
. g) by
A4,
RFUNCT_1: 71;
take r2 = (r1
- 1);
let n be
Nat;
A13: n
in
NAT by
ORDINAL1:def 12;
A14: k
<= (n
+ k) by
NAT_1: 12;
then (s
. (n
+ k))
< (x0
+ r) by
A8;
then
A15: ((s
^\ k)
. n)
< (x0
+ r) by
NAT_1:def 3;
(x0
- r)
< (s
. (n
+ k)) by
A8,
A14;
then (x0
- r)
< ((s
^\ k)
. n) by
NAT_1:def 3;
then ((s
^\ k)
. n)
in { g2 : (x0
- r)
< g2 & g2
< (x0
+ r) } by
A15;
then
A16: ((s
^\ k)
. n)
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
A17: ((s
^\ k)
. n)
in (
rng (s
^\ k)) by
VALUED_0: 28;
then not ((s
^\ k)
. n)
in
{x0} by
A9,
XBOOLE_0:def 5;
then ((s
^\ k)
. n)
in (
].(x0
- r), (x0
+ r).[
\
{x0}) by
A16,
XBOOLE_0:def 5;
then ((s
^\ k)
. n)
in (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[) by
A3,
Th4;
then ((s
^\ k)
. n)
in ((
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)
/\ (
dom f2)) by
A11,
A17,
XBOOLE_0:def 4;
then (r1
- 1)
< ((f2
. ((s
^\ k)
. n))
-
0 ) by
A12,
XREAL_1: 15;
hence r2
< ((f2
/* (s
^\ k))
. n) by
A11,
FUNCT_2: 108,
A13;
end;
then
A18: (f2
/* (s
^\ k)) is
bounded_below by
SEQ_2:def 4;
(
lim (s
^\ k))
= x0 by
A5,
A6,
SEQ_4: 20;
then (f1
/* (s
^\ k)) is
divergent_to+infty by
A1,
A5,
A10;
then
A19: ((f1
/* (s
^\ k))
+ (f2
/* (s
^\ k))) is
divergent_to+infty by
A18,
LIMFUNC1: 9;
A20: (
rng s)
c= (
dom (f1
+ f2)) by
A7,
Lm4;
(
rng (s
^\ k))
c= (
dom (f1
+ f2)) by
A9,
Lm4;
then (
rng (s
^\ k))
c= ((
dom f1)
/\ (
dom f2)) by
VALUED_1:def 1;
then ((f1
/* (s
^\ k))
+ (f2
/* (s
^\ k)))
= ((f1
+ f2)
/* (s
^\ k)) by
RFUNCT_2: 8
.= (((f1
+ f2)
/* s)
^\ k) by
A20,
VALUED_0: 27;
hence ((f1
+ f2)
/* s) is
divergent_to+infty by
A19,
LIMFUNC1: 7;
end;
hence thesis by
A2;
end;
theorem ::
LIMFUNC3:17
f1
is_divergent_to+infty_in x0 & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f1
(#) f2)) & g2
< r2 & x0
< g2 & g2
in (
dom (f1
(#) f2))) & (ex r, r1 st
0
< r &
0
< r1 & for g st g
in ((
dom f2)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) holds r1
<= (f2
. g)) implies (f1
(#) f2)
is_divergent_to+infty_in x0
proof
assume that
A1: f1
is_divergent_to+infty_in x0 and
A2: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f1
(#) f2)) & g2
< r2 & x0
< g2 & g2
in (
dom (f1
(#) f2));
given r, t such that
A3:
0
< r and
A4:
0
< t and
A5: for g st g
in ((
dom f2)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) holds t
<= (f2
. g);
now
let s be
Real_Sequence;
assume that
A6: s is
convergent and
A7: (
lim s)
= x0 and
A8: (
rng s)
c= ((
dom (f1
(#) f2))
\
{x0});
consider k such that
A9: for n st k
<= n holds (x0
- r)
< (s
. n) & (s
. n)
< (x0
+ r) by
A3,
A6,
A7,
Th7;
A10: (
rng s)
c= (
dom (f1
(#) f2)) by
A8,
Lm2;
A11: (
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) by
A8,
Lm2;
(
rng (s
^\ k))
c= (
rng s) by
VALUED_0: 21;
then
A12: (
rng (s
^\ k))
c= ((
dom (f1
(#) f2))
\
{x0}) by
A8;
then
A13: (
rng (s
^\ k))
c= ((
dom f1)
\
{x0}) by
Lm2;
A14: (
rng (s
^\ k))
c= (
dom f2) by
A12,
Lm2;
A15:
now
thus
0
< t by
A4;
let n be
Nat;
A16: n
in
NAT by
ORDINAL1:def 12;
A17: k
<= (n
+ k) by
NAT_1: 12;
then (s
. (n
+ k))
< (x0
+ r) by
A9;
then
A18: ((s
^\ k)
. n)
< (x0
+ r) by
NAT_1:def 3;
(x0
- r)
< (s
. (n
+ k)) by
A9,
A17;
then (x0
- r)
< ((s
^\ k)
. n) by
NAT_1:def 3;
then ((s
^\ k)
. n)
in { g2 : (x0
- r)
< g2 & g2
< (x0
+ r) } by
A18;
then
A19: ((s
^\ k)
. n)
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
A20: ((s
^\ k)
. n)
in (
rng (s
^\ k)) by
VALUED_0: 28;
then not ((s
^\ k)
. n)
in
{x0} by
A12,
XBOOLE_0:def 5;
then ((s
^\ k)
. n)
in (
].(x0
- r), (x0
+ r).[
\
{x0}) by
A19,
XBOOLE_0:def 5;
then ((s
^\ k)
. n)
in (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[) by
A3,
Th4;
then ((s
^\ k)
. n)
in ((
dom f2)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) by
A14,
A20,
XBOOLE_0:def 4;
then t
<= (f2
. ((s
^\ k)
. n)) by
A5;
hence t
<= ((f2
/* (s
^\ k))
. n) by
A14,
FUNCT_2: 108,
A16;
end;
(
lim (s
^\ k))
= x0 by
A6,
A7,
SEQ_4: 20;
then (f1
/* (s
^\ k)) is
divergent_to+infty by
A1,
A6,
A13;
then
A21: ((f1
/* (s
^\ k))
(#) (f2
/* (s
^\ k))) is
divergent_to+infty by
A15,
LIMFUNC1: 22;
(
rng (s
^\ k))
c= (
dom (f1
(#) f2)) by
A12,
Lm2;
then ((f1
/* (s
^\ k))
(#) (f2
/* (s
^\ k)))
= ((f1
(#) f2)
/* (s
^\ k)) by
A11,
RFUNCT_2: 8
.= (((f1
(#) f2)
/* s)
^\ k) by
A10,
VALUED_0: 27;
hence ((f1
(#) f2)
/* s) is
divergent_to+infty by
A21,
LIMFUNC1: 7;
end;
hence thesis by
A2;
end;
theorem ::
LIMFUNC3:18
(f
is_divergent_to+infty_in x0 & r
>
0 implies (r
(#) f)
is_divergent_to+infty_in x0) & (f
is_divergent_to+infty_in x0 & r
<
0 implies (r
(#) f)
is_divergent_to-infty_in x0) & (f
is_divergent_to-infty_in x0 & r
>
0 implies (r
(#) f)
is_divergent_to-infty_in x0) & (f
is_divergent_to-infty_in x0 & r
<
0 implies (r
(#) f)
is_divergent_to+infty_in x0)
proof
thus f
is_divergent_to+infty_in x0 & r
>
0 implies (r
(#) f)
is_divergent_to+infty_in x0
proof
assume that
A1: f
is_divergent_to+infty_in x0 and
A2: r
>
0 ;
thus for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (r
(#) f)) & g2
< r2 & x0
< g2 & g2
in (
dom (r
(#) f))
proof
let r1, r2;
assume that
A3: r1
< x0 and
A4: x0
< r2;
consider g1, g2 such that
A5: r1
< g1 and
A6: g1
< x0 and
A7: g1
in (
dom f) and
A8: g2
< r2 and
A9: x0
< g2 and
A10: g2
in (
dom f) by
A1,
A3,
A4;
take g1;
take g2;
thus thesis by
A5,
A6,
A7,
A8,
A9,
A10,
VALUED_1:def 5;
end;
let seq;
assume that
A11: seq is
convergent and
A12: (
lim seq)
= x0 and
A13: (
rng seq)
c= ((
dom (r
(#) f))
\
{x0});
A14: (
rng seq)
c= ((
dom f)
\
{x0}) by
A13,
VALUED_1:def 5;
then (f
/* seq) is
divergent_to+infty by
A1,
A11,
A12;
then (r
(#) (f
/* seq)) is
divergent_to+infty by
A2,
LIMFUNC1: 13;
hence thesis by
A14,
RFUNCT_2: 9,
XBOOLE_1: 1;
end;
thus f
is_divergent_to+infty_in x0 & r
<
0 implies (r
(#) f)
is_divergent_to-infty_in x0
proof
assume that
A15: f
is_divergent_to+infty_in x0 and
A16: r
<
0 ;
thus for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (r
(#) f)) & g2
< r2 & x0
< g2 & g2
in (
dom (r
(#) f))
proof
let r1, r2;
assume that
A17: r1
< x0 and
A18: x0
< r2;
consider g1, g2 such that
A19: r1
< g1 and
A20: g1
< x0 and
A21: g1
in (
dom f) and
A22: g2
< r2 and
A23: x0
< g2 and
A24: g2
in (
dom f) by
A15,
A17,
A18;
take g1;
take g2;
thus thesis by
A19,
A20,
A21,
A22,
A23,
A24,
VALUED_1:def 5;
end;
let seq;
assume that
A25: seq is
convergent and
A26: (
lim seq)
= x0 and
A27: (
rng seq)
c= ((
dom (r
(#) f))
\
{x0});
A28: (
rng seq)
c= ((
dom f)
\
{x0}) by
A27,
VALUED_1:def 5;
then (f
/* seq) is
divergent_to+infty by
A15,
A25,
A26;
then (r
(#) (f
/* seq)) is
divergent_to-infty by
A16,
LIMFUNC1: 13;
hence thesis by
A28,
RFUNCT_2: 9,
XBOOLE_1: 1;
end;
thus f
is_divergent_to-infty_in x0 & r
>
0 implies (r
(#) f)
is_divergent_to-infty_in x0
proof
assume that
A29: f
is_divergent_to-infty_in x0 and
A30: r
>
0 ;
thus for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (r
(#) f)) & g2
< r2 & x0
< g2 & g2
in (
dom (r
(#) f))
proof
let r1, r2;
assume that
A31: r1
< x0 and
A32: x0
< r2;
consider g1, g2 such that
A33: r1
< g1 and
A34: g1
< x0 and
A35: g1
in (
dom f) and
A36: g2
< r2 and
A37: x0
< g2 and
A38: g2
in (
dom f) by
A29,
A31,
A32;
take g1;
take g2;
thus thesis by
A33,
A34,
A35,
A36,
A37,
A38,
VALUED_1:def 5;
end;
let seq;
assume that
A39: seq is
convergent and
A40: (
lim seq)
= x0 and
A41: (
rng seq)
c= ((
dom (r
(#) f))
\
{x0});
A42: (
rng seq)
c= ((
dom f)
\
{x0}) by
A41,
VALUED_1:def 5;
then (f
/* seq) is
divergent_to-infty by
A29,
A39,
A40;
then (r
(#) (f
/* seq)) is
divergent_to-infty by
A30,
LIMFUNC1: 14;
hence thesis by
A42,
RFUNCT_2: 9,
XBOOLE_1: 1;
end;
assume that
A43: f
is_divergent_to-infty_in x0 and
A44: r
<
0 ;
thus for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (r
(#) f)) & g2
< r2 & x0
< g2 & g2
in (
dom (r
(#) f))
proof
let r1, r2;
assume that
A45: r1
< x0 and
A46: x0
< r2;
consider g1, g2 such that
A47: r1
< g1 and
A48: g1
< x0 and
A49: g1
in (
dom f) and
A50: g2
< r2 and
A51: x0
< g2 and
A52: g2
in (
dom f) by
A43,
A45,
A46;
take g1;
take g2;
thus thesis by
A47,
A48,
A49,
A50,
A51,
A52,
VALUED_1:def 5;
end;
let seq;
assume that
A53: seq is
convergent and
A54: (
lim seq)
= x0 and
A55: (
rng seq)
c= ((
dom (r
(#) f))
\
{x0});
A56: (
rng seq)
c= ((
dom f)
\
{x0}) by
A55,
VALUED_1:def 5;
then (f
/* seq) is
divergent_to-infty by
A43,
A53,
A54;
then (r
(#) (f
/* seq)) is
divergent_to+infty by
A44,
LIMFUNC1: 14;
hence thesis by
A56,
RFUNCT_2: 9,
XBOOLE_1: 1;
end;
theorem ::
LIMFUNC3:19
(f
is_divergent_to+infty_in x0 or f
is_divergent_to-infty_in x0) implies (
abs f)
is_divergent_to+infty_in x0
proof
assume
A1: f
is_divergent_to+infty_in x0 or f
is_divergent_to-infty_in x0;
now
per cases by
A1;
suppose
A2: f
is_divergent_to+infty_in x0;
A3:
now
let seq;
assume that
A4: seq is
convergent and
A5: (
lim seq)
= x0 and
A6: (
rng seq)
c= ((
dom (
abs f))
\
{x0});
A7: (
rng seq)
c= ((
dom f)
\
{x0}) by
A6,
VALUED_1:def 11;
then (f
/* seq) is
divergent_to+infty by
A2,
A4,
A5;
then
A8: (
abs (f
/* seq)) is
divergent_to+infty by
LIMFUNC1: 25;
(
rng seq)
c= (
dom f) by
A7,
XBOOLE_1: 1;
hence ((
abs f)
/* seq) is
divergent_to+infty by
A8,
RFUNCT_2: 10;
end;
now
let r1, r2;
assume that
A9: r1
< x0 and
A10: x0
< r2;
consider g1, g2 such that
A11: r1
< g1 and
A12: g1
< x0 and
A13: g1
in (
dom f) and
A14: g2
< r2 and
A15: x0
< g2 and
A16: g2
in (
dom f) by
A2,
A9,
A10;
take g1;
take g2;
thus r1
< g1 & g1
< x0 & g1
in (
dom (
abs f)) & g2
< r2 & x0
< g2 & g2
in (
dom (
abs f)) by
A11,
A12,
A13,
A14,
A15,
A16,
VALUED_1:def 11;
end;
hence thesis by
A3;
end;
suppose
A17: f
is_divergent_to-infty_in x0;
A18:
now
let seq;
assume that
A19: seq is
convergent and
A20: (
lim seq)
= x0 and
A21: (
rng seq)
c= ((
dom (
abs f))
\
{x0});
A22: (
rng seq)
c= ((
dom f)
\
{x0}) by
A21,
VALUED_1:def 11;
then (f
/* seq) is
divergent_to-infty by
A17,
A19,
A20;
then
A23: (
abs (f
/* seq)) is
divergent_to+infty by
LIMFUNC1: 25;
(
rng seq)
c= (
dom f) by
A22,
XBOOLE_1: 1;
hence ((
abs f)
/* seq) is
divergent_to+infty by
A23,
RFUNCT_2: 10;
end;
now
let r1, r2;
assume that
A24: r1
< x0 and
A25: x0
< r2;
consider g1, g2 such that
A26: r1
< g1 and
A27: g1
< x0 and
A28: g1
in (
dom f) and
A29: g2
< r2 and
A30: x0
< g2 and
A31: g2
in (
dom f) by
A17,
A24,
A25;
take g1;
take g2;
thus r1
< g1 & g1
< x0 & g1
in (
dom (
abs f)) & g2
< r2 & x0
< g2 & g2
in (
dom (
abs f)) by
A26,
A27,
A28,
A29,
A30,
A31,
VALUED_1:def 11;
end;
hence thesis by
A18;
end;
end;
hence thesis;
end;
theorem ::
LIMFUNC3:20
Th20: (ex r st (f
|
].(x0
- r), x0.[) is
non-decreasing & (f
|
].x0, (x0
+ r).[) is
non-increasing & not (f
|
].(x0
- r), x0.[) is
bounded_above & not (f
|
].x0, (x0
+ r).[) is
bounded_above) & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f)) implies f
is_divergent_to+infty_in x0
proof
given r such that
A1: (f
|
].(x0
- r), x0.[) is
non-decreasing and
A2: (f
|
].x0, (x0
+ r).[) is
non-increasing and
A3: not (f
|
].(x0
- r), x0.[) is
bounded_above and
A4: not (f
|
].x0, (x0
+ r).[) is
bounded_above;
assume
A5: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f);
then for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f) by
Th8;
then
A6: f
is_right_divergent_to+infty_in x0 by
A2,
A4,
LIMFUNC2: 29;
for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f) by
A5,
Th8;
then f
is_left_divergent_to+infty_in x0 by
A1,
A3,
LIMFUNC2: 25;
hence thesis by
A6,
Th12;
end;
theorem ::
LIMFUNC3:21
(ex r st
0
< r & (f
|
].(x0
- r), x0.[) is
increasing & (f
|
].x0, (x0
+ r).[) is
decreasing & not (f
|
].(x0
- r), x0.[) is
bounded_above & not (f
|
].x0, (x0
+ r).[) is
bounded_above) & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f)) implies f
is_divergent_to+infty_in x0 by
Th20;
theorem ::
LIMFUNC3:22
Th22: (ex r st (f
|
].(x0
- r), x0.[) is
non-increasing & (f
|
].x0, (x0
+ r).[) is
non-decreasing & not (f
|
].(x0
- r), x0.[) is
bounded_below & not (f
|
].x0, (x0
+ r).[) is
bounded_below) & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f)) implies f
is_divergent_to-infty_in x0
proof
given r such that
A1: (f
|
].(x0
- r), x0.[) is
non-increasing and
A2: (f
|
].x0, (x0
+ r).[) is
non-decreasing and
A3: not (f
|
].(x0
- r), x0.[) is
bounded_below and
A4: not (f
|
].x0, (x0
+ r).[) is
bounded_below;
assume
A5: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f);
then for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f) by
Th8;
then
A6: f
is_right_divergent_to-infty_in x0 by
A2,
A4,
LIMFUNC2: 31;
for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f) by
A5,
Th8;
then f
is_left_divergent_to-infty_in x0 by
A1,
A3,
LIMFUNC2: 27;
hence thesis by
A6,
Th13;
end;
theorem ::
LIMFUNC3:23
(ex r st
0
< r & (f
|
].(x0
- r), x0.[) is
decreasing & (f
|
].x0, (x0
+ r).[) is
increasing & not (f
|
].(x0
- r), x0.[) is
bounded_below & not (f
|
].x0, (x0
+ r).[) is
bounded_below) & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f)) implies f
is_divergent_to-infty_in x0 by
Th22;
theorem ::
LIMFUNC3:24
Th24: f1
is_divergent_to+infty_in x0 & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f)) & (ex r st
0
< r & ((
dom f)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[))
c= ((
dom f1)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) & for g st g
in ((
dom f)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) holds (f1
. g)
<= (f
. g)) implies f
is_divergent_to+infty_in x0
proof
assume that
A1: f1
is_divergent_to+infty_in x0 and
A2: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f);
given r such that
A3:
0
< r and
A4: ((
dom f)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[))
c= ((
dom f1)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) and
A5: for g st g
in ((
dom f)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) holds (f1
. g)
<= (f
. g);
thus for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f) by
A2;
let s be
Real_Sequence;
assume that
A6: s is
convergent and
A7: (
lim s)
= x0 and
A8: (
rng s)
c= ((
dom f)
\
{x0});
consider k such that
A9: for n st k
<= n holds (x0
- r)
< (s
. n) & (s
. n)
< (x0
+ r) by
A3,
A6,
A7,
Th7;
A10: (
rng (s
^\ k))
c= (
rng s) by
VALUED_0: 21;
then
A11: (
rng (s
^\ k))
c= ((
dom f)
\
{x0}) by
A8;
now
let x be
object;
assume x
in (
rng (s
^\ k));
then
consider n such that
A12: ((s
^\ k)
. n)
= x by
FUNCT_2: 113;
A13: k
<= (n
+ k) by
NAT_1: 12;
then (s
. (n
+ k))
< (x0
+ r) by
A9;
then
A14: ((s
^\ k)
. n)
< (x0
+ r) by
NAT_1:def 3;
(x0
- r)
< (s
. (n
+ k)) by
A9,
A13;
then (x0
- r)
< ((s
^\ k)
. n) by
NAT_1:def 3;
then ((s
^\ k)
. n)
in { g1 : (x0
- r)
< g1 & g1
< (x0
+ r) } by
A14;
then
A15: ((s
^\ k)
. n)
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
((s
^\ k)
. n)
in (
rng (s
^\ k)) by
VALUED_0: 28;
then not ((s
^\ k)
. n)
in
{x0} by
A11,
XBOOLE_0:def 5;
then ((s
^\ k)
. n)
in (
].(x0
- r), (x0
+ r).[
\
{x0}) by
A15,
XBOOLE_0:def 5;
hence x
in (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[) by
A3,
A12,
Th4;
end;
then
A16: (
rng (s
^\ k))
c= (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[);
A17: (
rng s)
c= (
dom f) by
A8,
XBOOLE_1: 1;
then (
rng (s
^\ k))
c= (
dom f) by
A10;
then
A18: (
rng (s
^\ k))
c= ((
dom f)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) by
A16,
XBOOLE_1: 19;
then
A19: (
rng (s
^\ k))
c= ((
dom f1)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) by
A4;
A20:
now
let n be
Nat;
A21: n
in
NAT by
ORDINAL1:def 12;
((s
^\ k)
. n)
in (
rng (s
^\ k)) by
VALUED_0: 28;
then (f1
. ((s
^\ k)
. n))
<= (f
. ((s
^\ k)
. n)) by
A5,
A18;
then ((f1
/* (s
^\ k))
. n)
<= (f
. ((s
^\ k)
. n)) by
A19,
FUNCT_2: 108,
XBOOLE_1: 18,
A21;
hence ((f1
/* (s
^\ k))
. n)
<= ((f
/* (s
^\ k))
. n) by
A17,
A10,
FUNCT_2: 108,
XBOOLE_1: 1,
A21;
end;
A22: (
rng (s
^\ k))
c= (
dom f1) by
A19,
XBOOLE_1: 18;
now
let x be
object;
assume
A23: x
in (
rng (s
^\ k));
then not x
in
{x0} by
A11,
XBOOLE_0:def 5;
hence x
in ((
dom f1)
\
{x0}) by
A22,
A23,
XBOOLE_0:def 5;
end;
then
A24: (
rng (s
^\ k))
c= ((
dom f1)
\
{x0});
(
lim (s
^\ k))
= x0 by
A6,
A7,
SEQ_4: 20;
then (f1
/* (s
^\ k)) is
divergent_to+infty by
A1,
A6,
A24;
then (f
/* (s
^\ k)) is
divergent_to+infty by
A20,
LIMFUNC1: 42;
then ((f
/* s)
^\ k) is
divergent_to+infty by
A8,
VALUED_0: 27,
XBOOLE_1: 1;
hence thesis by
LIMFUNC1: 7;
end;
theorem ::
LIMFUNC3:25
Th25: f1
is_divergent_to-infty_in x0 & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f)) & (ex r st
0
< r & ((
dom f)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[))
c= ((
dom f1)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) & for g st g
in ((
dom f)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) holds (f
. g)
<= (f1
. g)) implies f
is_divergent_to-infty_in x0
proof
assume that
A1: f1
is_divergent_to-infty_in x0 and
A2: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f);
given r such that
A3:
0
< r and
A4: ((
dom f)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[))
c= ((
dom f1)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) and
A5: for g st g
in ((
dom f)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) holds (f
. g)
<= (f1
. g);
thus for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f) by
A2;
let s be
Real_Sequence;
assume that
A6: s is
convergent and
A7: (
lim s)
= x0 and
A8: (
rng s)
c= ((
dom f)
\
{x0});
consider k such that
A9: for n st k
<= n holds (x0
- r)
< (s
. n) & (s
. n)
< (x0
+ r) by
A3,
A6,
A7,
Th7;
A10: (
rng (s
^\ k))
c= (
rng s) by
VALUED_0: 21;
then
A11: (
rng (s
^\ k))
c= ((
dom f)
\
{x0}) by
A8;
now
let x be
object;
assume x
in (
rng (s
^\ k));
then
consider n such that
A12: ((s
^\ k)
. n)
= x by
FUNCT_2: 113;
A13: k
<= (n
+ k) by
NAT_1: 12;
then (s
. (n
+ k))
< (x0
+ r) by
A9;
then
A14: ((s
^\ k)
. n)
< (x0
+ r) by
NAT_1:def 3;
(x0
- r)
< (s
. (n
+ k)) by
A9,
A13;
then (x0
- r)
< ((s
^\ k)
. n) by
NAT_1:def 3;
then ((s
^\ k)
. n)
in { g1 : (x0
- r)
< g1 & g1
< (x0
+ r) } by
A14;
then
A15: ((s
^\ k)
. n)
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
((s
^\ k)
. n)
in (
rng (s
^\ k)) by
VALUED_0: 28;
then not ((s
^\ k)
. n)
in
{x0} by
A11,
XBOOLE_0:def 5;
then ((s
^\ k)
. n)
in (
].(x0
- r), (x0
+ r).[
\
{x0}) by
A15,
XBOOLE_0:def 5;
hence x
in (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[) by
A3,
A12,
Th4;
end;
then
A16: (
rng (s
^\ k))
c= (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[);
A17: (
rng s)
c= (
dom f) by
A8,
XBOOLE_1: 1;
then (
rng (s
^\ k))
c= (
dom f) by
A10;
then
A18: (
rng (s
^\ k))
c= ((
dom f)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) by
A16,
XBOOLE_1: 19;
then
A19: (
rng (s
^\ k))
c= ((
dom f1)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) by
A4;
A20:
now
let n be
Nat;
A21: n
in
NAT by
ORDINAL1:def 12;
((s
^\ k)
. n)
in (
rng (s
^\ k)) by
VALUED_0: 28;
then (f
. ((s
^\ k)
. n))
<= (f1
. ((s
^\ k)
. n)) by
A5,
A18;
then ((f
/* (s
^\ k))
. n)
<= (f1
. ((s
^\ k)
. n)) by
A17,
A10,
FUNCT_2: 108,
XBOOLE_1: 1,
A21;
hence ((f
/* (s
^\ k))
. n)
<= ((f1
/* (s
^\ k))
. n) by
A19,
FUNCT_2: 108,
XBOOLE_1: 18,
A21;
end;
A22: (
rng (s
^\ k))
c= (
dom f1) by
A19,
XBOOLE_1: 18;
now
let x be
object;
assume
A23: x
in (
rng (s
^\ k));
then not x
in
{x0} by
A11,
XBOOLE_0:def 5;
hence x
in ((
dom f1)
\
{x0}) by
A22,
A23,
XBOOLE_0:def 5;
end;
then
A24: (
rng (s
^\ k))
c= ((
dom f1)
\
{x0});
(
lim (s
^\ k))
= x0 by
A6,
A7,
SEQ_4: 20;
then (f1
/* (s
^\ k)) is
divergent_to-infty by
A1,
A6,
A24;
then (f
/* (s
^\ k)) is
divergent_to-infty by
A20,
LIMFUNC1: 43;
then ((f
/* s)
^\ k) is
divergent_to-infty by
A8,
VALUED_0: 27,
XBOOLE_1: 1;
hence thesis by
LIMFUNC1: 7;
end;
theorem ::
LIMFUNC3:26
f1
is_divergent_to+infty_in x0 & (ex r st
0
< r & (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)
c= ((
dom f)
/\ (
dom f1)) & for g st g
in (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[) holds (f1
. g)
<= (f
. g)) implies f
is_divergent_to+infty_in x0
proof
assume
A1: f1
is_divergent_to+infty_in x0;
given r such that
A2:
0
< r and
A3: (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)
c= ((
dom f)
/\ (
dom f1)) and
A4: for g st g
in (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[) holds (f1
. g)
<= (f
. g);
A5: (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)
= ((
dom f)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) by
A3,
XBOOLE_1: 18,
XBOOLE_1: 28;
A6: (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)
= ((
dom f1)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) by
A3,
XBOOLE_1: 18,
XBOOLE_1: 28;
for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f) by
A2,
A3,
Th5,
XBOOLE_1: 18;
hence thesis by
A1,
A2,
A4,
A5,
A6,
Th24;
end;
theorem ::
LIMFUNC3:27
f1
is_divergent_to-infty_in x0 & (ex r st
0
< r & (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)
c= ((
dom f)
/\ (
dom f1)) & for g st g
in (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[) holds (f
. g)
<= (f1
. g)) implies f
is_divergent_to-infty_in x0
proof
assume
A1: f1
is_divergent_to-infty_in x0;
given r such that
A2:
0
< r and
A3: (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)
c= ((
dom f)
/\ (
dom f1)) and
A4: for g st g
in (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[) holds (f
. g)
<= (f1
. g);
A5: (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)
= ((
dom f)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) by
A3,
XBOOLE_1: 18,
XBOOLE_1: 28;
A6: (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)
= ((
dom f1)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) by
A3,
XBOOLE_1: 18,
XBOOLE_1: 28;
for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f) by
A2,
A3,
Th5,
XBOOLE_1: 18;
hence thesis by
A1,
A2,
A4,
A5,
A6,
Th25;
end;
definition
let f, x0;
assume
A1: f
is_convergent_in x0;
::
LIMFUNC3:def4
func
lim (f,x0) ->
Real means
:
Def4: for seq st seq is
convergent & (
lim seq)
= x0 & (
rng seq)
c= ((
dom f)
\
{x0}) holds (f
/* seq) is
convergent & (
lim (f
/* seq))
= it ;
existence by
A1;
uniqueness
proof
defpred
X[
Element of
NAT ,
Real] means (x0
- (1
/ ($1
+ 1)))
< $2 & $2
< x0 & $2
in (
dom f);
A2:
now
let n;
A3: (x0
+
0 )
< (x0
+ 1) by
XREAL_1: 8;
(x0
- (1
/ (n
+ 1)))
< x0 by
Lm3;
then
consider g1, g2 such that
A4: (x0
- (1
/ (n
+ 1)))
< g1 and
A5: g1
< x0 and
A6: g1
in (
dom f) and g2
< (x0
+ 1) and x0
< g2 and g2
in (
dom f) by
A1,
A3;
reconsider g1 as
Element of
REAL by
XREAL_0:def 1;
take g1;
thus
X[n, g1] by
A4,
A5,
A6;
end;
consider s be
Real_Sequence such that
A7: for n holds
X[n, (s
. n)] from
FUNCT_2:sch 3(
A2);
A8: (
rng s)
c= ((
dom f)
\
{x0}) by
A7,
Th6;
A9: (
lim s)
= x0 by
A7,
Th6;
let g1,g2 be
Real such that
A10: for seq st seq is
convergent & (
lim seq)
= x0 & (
rng seq)
c= ((
dom f)
\
{x0}) holds (f
/* seq) is
convergent & (
lim (f
/* seq))
= g1 and
A11: for seq st seq is
convergent & (
lim seq)
= x0 & (
rng seq)
c= ((
dom f)
\
{x0}) holds (f
/* seq) is
convergent & (
lim (f
/* seq))
= g2;
A12: s is
convergent by
A7,
Th6;
then (
lim (f
/* s))
= g1 by
A9,
A8,
A10;
hence thesis by
A12,
A9,
A8,
A11;
end;
end
theorem ::
LIMFUNC3:28
f
is_convergent_in x0 implies ((
lim (f,x0))
= g iff for g1 st
0
< g1 holds ex g2 st
0
< g2 & for r1 st
0
<
|.(x0
- r1).| &
|.(x0
- r1).|
< g2 & r1
in (
dom f) holds
|.((f
. r1)
- g).|
< g1)
proof
assume
A1: f
is_convergent_in x0;
thus (
lim (f,x0))
= g implies for g1 st
0
< g1 holds ex g2 st
0
< g2 & for r1 st
0
<
|.(x0
- r1).| &
|.(x0
- r1).|
< g2 & r1
in (
dom f) holds
|.((f
. r1)
- g).|
< g1
proof
assume that
A2: (
lim (f,x0))
= g and
A3: ex g1 st
0
< g1 & for g2 st
0
< g2 holds ex r1 st
0
<
|.(x0
- r1).| &
|.(x0
- r1).|
< g2 & r1
in (
dom f) & g1
<=
|.((f
. r1)
- g).|;
consider g1 such that
A4:
0
< g1 and
A5: for g2 st
0
< g2 holds ex r1 st
0
<
|.(x0
- r1).| &
|.(x0
- r1).|
< g2 & r1
in (
dom f) & g1
<=
|.((f
. r1)
- g).| by
A3;
defpred
X[
Element of
NAT ,
Real] means
0
<
|.(x0
- $2).| &
|.(x0
- $2).|
< (1
/ ($1
+ 1)) & $2
in (
dom f) &
|.((f
. $2)
- g).|
>= g1;
A6: for n holds ex r1 be
Element of
REAL st
X[n, r1]
proof
let n;
consider r1 such that
A7:
X[n, r1] by
A5,
XREAL_1: 139;
reconsider r1 as
Element of
REAL by
XREAL_0:def 1;
take r1;
thus thesis by
A7;
end;
consider s be
Real_Sequence such that
A8: for n holds
X[n, (s
. n)] from
FUNCT_2:sch 3(
A6);
A9: (
rng s)
c= ((
dom f)
\
{x0}) by
A8,
Th2;
A10: (
lim s)
= x0 by
A8,
Th2;
A11: s is
convergent by
A8,
Th2;
then
A12: (
lim (f
/* s))
= g by
A1,
A2,
A10,
A9,
Def4;
(f
/* s) is
convergent by
A1,
A11,
A10,
A9;
then
consider n be
Nat such that
A13: for k be
Nat st n
<= k holds
|.(((f
/* s)
. k)
- g).|
< g1 by
A4,
A12,
SEQ_2:def 7;
A14:
|.(((f
/* s)
. n)
- g).|
< g1 by
A13;
A15: n
in
NAT by
ORDINAL1:def 12;
(
rng s)
c= (
dom f) by
A8,
Th2;
then
|.((f
. (s
. n))
- g).|
< g1 by
A14,
FUNCT_2: 108,
A15;
hence contradiction by
A8,
A15;
end;
assume
A16: for g1 st
0
< g1 holds ex g2 st
0
< g2 & for r1 st
0
<
|.(x0
- r1).| &
|.(x0
- r1).|
< g2 & r1
in (
dom f) holds
|.((f
. r1)
- g).|
< g1;
reconsider g as
Real;
now
let s be
Real_Sequence;
assume that
A17: s is
convergent and
A18: (
lim s)
= x0 and
A19: (
rng s)
c= ((
dom f)
\
{x0});
A20:
now
let g1 be
Real;
assume
A21:
0
< g1;
consider g2 such that
A22:
0
< g2 and
A23: for r1 st
0
<
|.(x0
- r1).| &
|.(x0
- r1).|
< g2 & r1
in (
dom f) holds
|.((f
. r1)
- g).|
< g1 by
A16,
A21;
consider n such that
A24: for k st n
<= k holds
0
<
|.(x0
- (s
. k)).| &
|.(x0
- (s
. k)).|
< g2 & (s
. k)
in (
dom f) by
A17,
A18,
A19,
A22,
Th3;
reconsider n as
Nat;
take n;
let k be
Nat;
A25: k
in
NAT by
ORDINAL1:def 12;
assume
A26: n
<= k;
then
A27:
|.(x0
- (s
. k)).|
< g2 by
A24,
A25;
A28: (s
. k)
in (
dom f) by
A24,
A26,
A25;
0
<
|.(x0
- (s
. k)).| by
A24,
A26,
A25;
then
|.((f
. (s
. k))
- g).|
< g1 by
A23,
A27,
A28;
hence
|.(((f
/* s)
. k)
- g).|
< g1 by
A19,
FUNCT_2: 108,
XBOOLE_1: 1,
A25;
end;
hence (f
/* s) is
convergent by
SEQ_2:def 6;
hence (
lim (f
/* s))
= g by
A20,
SEQ_2:def 7;
end;
hence thesis by
A1,
Def4;
end;
theorem ::
LIMFUNC3:29
Th29: f
is_convergent_in x0 implies f
is_left_convergent_in x0 & f
is_right_convergent_in x0 & (
lim_left (f,x0))
= (
lim_right (f,x0)) & (
lim (f,x0))
= (
lim_left (f,x0)) & (
lim (f,x0))
= (
lim_right (f,x0))
proof
assume
A1: f
is_convergent_in x0;
A2:
now
let s be
Real_Sequence;
assume that
A3: s is
convergent and
A4: (
lim s)
= x0 and
A5: (
rng s)
c= ((
dom f)
/\ (
right_open_halfline x0));
(
rng s)
c= ((
dom f)
\
{x0}) by
A5,
Th1;
hence (f
/* s) is
convergent & (
lim (f
/* s))
= (
lim (f,x0)) by
A1,
A3,
A4,
Def4;
end;
A6:
now
let s be
Real_Sequence;
assume that
A7: s is
convergent and
A8: (
lim s)
= x0 and
A9: (
rng s)
c= ((
dom f)
/\ (
left_open_halfline x0));
(
rng s)
c= ((
dom f)
\
{x0}) by
A9,
Th1;
hence (f
/* s) is
convergent & (
lim (f
/* s))
= (
lim (f,x0)) by
A1,
A7,
A8,
Def4;
end;
A10: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f) by
A1;
then for r st r
< x0 holds ex g st r
< g & g
< x0 & g
in (
dom f) by
Th8;
hence f
is_left_convergent_in x0 by
A6,
LIMFUNC2:def 1;
then
A11: (
lim_left (f,x0))
= (
lim (f,x0)) by
A6,
LIMFUNC2:def 7;
for r st x0
< r holds ex g st g
< r & x0
< g & g
in (
dom f) by
A10,
Th8;
hence f
is_right_convergent_in x0 by
A2,
LIMFUNC2:def 4;
hence thesis by
A11,
A2,
LIMFUNC2:def 8;
end;
theorem ::
LIMFUNC3:30
f
is_left_convergent_in x0 & f
is_right_convergent_in x0 & (
lim_left (f,x0))
= (
lim_right (f,x0)) implies f
is_convergent_in x0 & (
lim (f,x0))
= (
lim_left (f,x0)) & (
lim (f,x0))
= (
lim_right (f,x0))
proof
assume that
A1: f
is_left_convergent_in x0 and
A2: f
is_right_convergent_in x0 and
A3: (
lim_left (f,x0))
= (
lim_right (f,x0));
A4:
now
let s be
Real_Sequence such that
A5: s is
convergent and
A6: (
lim s)
= x0 and
A7: (
rng s)
c= ((
dom f)
\
{x0});
now
per cases ;
suppose ex k st for n st k
<= n holds (s
. n)
< x0;
then
consider k such that
A8: for n st k
<= n holds (s
. n)
< x0;
A9: (
rng s)
c= (
dom f) by
A7,
XBOOLE_1: 1;
A10: (
rng (s
^\ k))
c= ((
dom f)
/\ (
left_open_halfline x0))
proof
let x be
object;
assume x
in (
rng (s
^\ k));
then
consider n such that
A11: ((s
^\ k)
. n)
= x by
FUNCT_2: 113;
(s
. (n
+ k))
< x0 by
A8,
NAT_1: 12;
then (s
. (n
+ k))
in { g1 : g1
< x0 };
then (s
. (n
+ k))
in (
left_open_halfline x0) by
XXREAL_1: 229;
then
A12: x
in (
left_open_halfline x0) by
A11,
NAT_1:def 3;
(s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then x
in (
rng s) by
A11,
NAT_1:def 3;
hence thesis by
A9,
A12,
XBOOLE_0:def 4;
end;
A13: (f
/* (s
^\ k))
= ((f
/* s)
^\ k) by
A7,
VALUED_0: 27,
XBOOLE_1: 1;
A14: (
lim (s
^\ k))
= x0 by
A5,
A6,
SEQ_4: 20;
then
A15: (f
/* (s
^\ k)) is
convergent by
A1,
A3,
A5,
A10,
LIMFUNC2:def 7;
hence (f
/* s) is
convergent by
A13,
SEQ_4: 21;
(
lim (f
/* (s
^\ k)))
= (
lim_left (f,x0)) by
A1,
A5,
A14,
A10,
LIMFUNC2:def 7;
hence (
lim (f
/* s))
= (
lim_left (f,x0)) by
A15,
A13,
SEQ_4: 22;
end;
suppose
A16: for k holds ex n st k
<= n & (s
. n)
>= x0;
now
per cases ;
suppose ex k st for n st k
<= n holds x0
< (s
. n);
then
consider k such that
A17: for n st k
<= n holds (s
. n)
> x0;
A18: (
rng s)
c= (
dom f) by
A7,
XBOOLE_1: 1;
A19: (
rng (s
^\ k))
c= ((
dom f)
/\ (
right_open_halfline x0))
proof
let x be
object;
assume x
in (
rng (s
^\ k));
then
consider n such that
A20: ((s
^\ k)
. n)
= x by
FUNCT_2: 113;
x0
< (s
. (n
+ k)) by
A17,
NAT_1: 12;
then (s
. (n
+ k))
in { g1 : x0
< g1 };
then (s
. (n
+ k))
in (
right_open_halfline x0) by
XXREAL_1: 230;
then
A21: x
in (
right_open_halfline x0) by
A20,
NAT_1:def 3;
(s
. (n
+ k))
in (
rng s) by
VALUED_0: 28;
then x
in (
rng s) by
A20,
NAT_1:def 3;
hence thesis by
A18,
A21,
XBOOLE_0:def 4;
end;
A22: (f
/* (s
^\ k))
= ((f
/* s)
^\ k) by
A7,
VALUED_0: 27,
XBOOLE_1: 1;
A23: (
lim (s
^\ k))
= x0 by
A5,
A6,
SEQ_4: 20;
then
A24: (f
/* (s
^\ k)) is
convergent by
A2,
A3,
A5,
A19,
LIMFUNC2:def 8;
hence (f
/* s) is
convergent by
A22,
SEQ_4: 21;
(
lim (f
/* (s
^\ k)))
= (
lim_left (f,x0)) by
A2,
A3,
A5,
A23,
A19,
LIMFUNC2:def 8;
hence (
lim (f
/* s))
= (
lim_left (f,x0)) by
A24,
A22,
SEQ_4: 22;
end;
suppose
A25: for k holds ex n st k
<= n & x0
>= (s
. n);
set GR = (
lim_left (f,x0));
defpred
P[
set,
set] means for n, m st $1
= n & $2
= m holds n
< m & (s
. m)
< x0 & for k st n
< k & (s
. k)
< x0 holds m
<= k;
defpred
X[
Nat,
set,
set] means
P[$2, $3];
defpred
X[
Nat] means (s
. $1)
< x0;
A26:
now
let k;
consider n such that
A27: k
<= n and
A28: (s
. n)
<= x0 by
A25;
take n;
thus k
<= n by
A27;
(s
. n)
in (
rng s) by
VALUED_0: 28;
then not (s
. n)
in
{x0} by
A7,
XBOOLE_0:def 5;
then (s
. n)
<> x0 by
TARSKI:def 1;
hence (s
. n)
< x0 by
A28,
XXREAL_0: 1;
end;
then ex m1 be
Element of
NAT st
0
<= m1 & (s
. m1)
< x0;
then
A29: ex m be
Nat st
X[m];
consider M be
Nat such that
A30:
X[M] & for n be
Nat st
X[n] holds M
<= n from
NAT_1:sch 5(
A29);
reconsider M9 = M as
Element of
NAT by
ORDINAL1:def 12;
A31:
now
let n;
consider m such that
A32: (n
+ 1)
<= m and
A33: (s
. m)
< x0 by
A26;
take m;
thus n
< m & (s
. m)
< x0 by
A32,
A33,
NAT_1: 13;
end;
A34: for n be
Nat holds for x be
Element of
NAT holds ex y be
Element of
NAT st
X[n, x, y]
proof
let n be
Nat;
let x be
Element of
NAT ;
defpred
X[
Nat] means x
< $1 & (s
. $1)
< x0;
ex m st
X[m] by
A31;
then
A35: ex m be
Nat st
X[m];
consider l be
Nat such that
A36:
X[l] & for k be
Nat st
X[k] holds l
<= k from
NAT_1:sch 5(
A35);
take l;
l
in
NAT by
ORDINAL1:def 12;
hence thesis by
A36;
end;
consider F be
sequence of
NAT such that
A37: (F
.
0 )
= M9 & for n be
Nat holds
X[n, (F
. n), (F
. (n
+ 1))] from
RECDEF_1:sch 2(
A34);
A38: (
rng F)
c=
NAT by
RELAT_1:def 19;
then
A39: (
rng F)
c=
REAL by
NUMBERS: 19;
A40: (
dom F)
=
NAT by
FUNCT_2:def 1;
then
reconsider F as
Real_Sequence by
A39,
RELSET_1: 4;
A41:
now
let n;
(F
. n)
in (
rng F) by
A40,
FUNCT_1:def 3;
hence (F
. n) is
Element of
NAT by
A38;
end;
now
let n be
Nat;
A42: n
in
NAT by
ORDINAL1:def 12;
A43: (F
. (n
+ 1)) is
Element of
NAT by
A41;
(F
. n) is
Element of
NAT by
A41,
A42;
hence (F
. n)
< (F
. (n
+ 1)) by
A37,
A43;
end;
then
reconsider F as
increasing
sequence of
NAT by
SEQM_3:def 6;
A44: (s
* F) is
subsequence of s by
VALUED_0:def 17;
then (
rng (s
* F))
c= (
rng s) by
VALUED_0: 21;
then
A45: (
rng (s
* F))
c= ((
dom f)
\
{x0}) by
A7;
defpred
X[
Nat] means (s
. $1)
< x0 & for m holds (F
. m)
<> $1;
A46: for n st (s
. n)
< x0 holds ex m st (F
. m)
= n
proof
assume ex n st
X[n];
then
A47: ex n be
Nat st
X[n];
consider M1 be
Nat such that
A48:
X[M1] & for n be
Nat st
X[n] holds M1
<= n from
NAT_1:sch 5(
A47);
defpred
X[
Nat] means $1
< M1 & (s
. $1)
< x0 & ex m st (F
. m)
= $1;
A49: ex n be
Nat st
X[n]
proof
take M;
A50: M
<> M1 by
A37,
A48;
M
<= M1 by
A30,
A48;
hence M
< M1 by
A50,
XXREAL_0: 1;
thus (s
. M)
< x0 by
A30;
take
0 ;
thus thesis by
A37;
end;
A51: for n be
Nat st
X[n] holds n
<= M1;
consider MX be
Nat such that
A52:
X[MX] & for n be
Nat st
X[n] holds n
<= MX from
NAT_1:sch 6(
A51,
A49);
A53: for k st MX
< k & k
< M1 holds (s
. k)
>= x0
proof
given k such that
A54: MX
< k and
A55: k
< M1 and
A56: (s
. k)
< x0;
now
per cases ;
suppose ex m st (F
. m)
= k;
hence contradiction by
A52,
A54,
A55,
A56;
end;
suppose for m holds (F
. m)
<> k;
hence contradiction by
A48,
A55,
A56;
end;
end;
hence contradiction;
end;
consider m such that
A57: (F
. m)
= MX by
A52;
M1
in
NAT by
ORDINAL1:def 12;
then
A58: (F
. (m
+ 1))
<= M1 by
A37,
A48,
A52,
A57;
A59: (s
. (F
. (m
+ 1)))
< x0 by
A37,
A57;
A60: MX
< (F
. (m
+ 1)) by
A37,
A57;
now
assume (F
. (m
+ 1))
<> M1;
then (F
. (m
+ 1))
< M1 by
A58,
XXREAL_0: 1;
hence contradiction by
A53,
A60,
A59;
end;
hence contradiction by
A48;
end;
defpred
X[
Nat] means (s
. $1)
> x0;
A61:
now
let k;
consider n such that
A62: k
<= n and
A63: (s
. n)
>= x0 by
A16;
take n;
thus k
<= n by
A62;
(s
. n)
in (
rng s) by
VALUED_0: 28;
then not (s
. n)
in
{x0} by
A7,
XBOOLE_0:def 5;
then (s
. n)
<> x0 by
TARSKI:def 1;
hence (s
. n)
> x0 by
A63,
XXREAL_0: 1;
end;
then ex mn be
Element of
NAT st
0
<= mn & (s
. mn)
> x0;
then
A64: ex m be
Nat st
X[m];
consider N be
Nat such that
A65:
X[N] & for n be
Nat st
X[n] holds N
<= n from
NAT_1:sch 5(
A64);
defpred
X[
Nat] means ((s
* F)
. $1)
< x0;
A66: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat such that ((s
* F)
. k)
< x0;
P[(F
. k), (F
. (k
+ 1))] by
A37;
then (s
. (F
. (k
+ 1)))
< x0;
hence thesis by
FUNCT_2: 15;
end;
A67:
X[
0 ] by
A30,
A37,
FUNCT_2: 15;
A68: for k be
Nat holds
X[k] from
NAT_1:sch 2(
A67,
A66);
A69: (
rng (s
* F))
c= ((
dom f)
/\ (
left_open_halfline x0))
proof
let x be
object;
assume
A70: x
in (
rng (s
* F));
then
consider n such that
A71: ((s
* F)
. n)
= x by
FUNCT_2: 113;
((s
* F)
. n)
< x0 by
A68;
then x
in { g1 : g1
< x0 } by
A71;
then
A72: x
in (
left_open_halfline x0) by
XXREAL_1: 229;
x
in (
dom f) by
A45,
A70,
XBOOLE_0:def 5;
hence thesis by
A72,
XBOOLE_0:def 4;
end;
defpred
P[
set,
set] means for n, m st $1
= n & $2
= m holds n
< m & (s
. m)
> x0 & for k st n
< k & (s
. k)
> x0 holds m
<= k;
defpred
X[
Nat,
set,
set] means
P[$2, $3];
A73: (s
* F) is
convergent by
A5,
A44,
SEQ_4: 16;
reconsider N9 = N as
Element of
NAT by
ORDINAL1:def 12;
A74:
now
let n;
consider m such that
A75: (n
+ 1)
<= m and
A76: (s
. m)
> x0 by
A61;
take m;
thus n
< m & (s
. m)
> x0 by
A75,
A76,
NAT_1: 13;
end;
A77: for n be
Nat holds for x be
Element of
NAT holds ex y be
Element of
NAT st
X[n, x, y]
proof
let n be
Nat;
let x be
Element of
NAT ;
defpred
X[
Nat] means x
< $1 & (s
. $1)
> x0;
ex m st
X[m] by
A74;
then
A78: ex m be
Nat st
X[m];
consider l be
Nat such that
A79:
X[l] & for k be
Nat st
X[k] holds l
<= k from
NAT_1:sch 5(
A78);
take l;
l
in
NAT by
ORDINAL1:def 12;
hence thesis by
A79;
end;
consider G be
sequence of
NAT such that
A80: (G
.
0 )
= N9 & for n be
Nat holds
X[n, (G
. n), (G
. (n
+ 1))] from
RECDEF_1:sch 2(
A77);
A81: (
rng G)
c=
NAT by
RELAT_1:def 19;
then
A82: (
rng G)
c=
REAL by
NUMBERS: 19;
A83: (
dom G)
=
NAT by
FUNCT_2:def 1;
then
reconsider G as
Real_Sequence by
A82,
RELSET_1: 4;
A84:
now
let n;
(G
. n)
in (
rng G) by
A83,
FUNCT_1:def 3;
hence (G
. n) is
Element of
NAT by
A81;
end;
now
let n be
Nat;
A85: n
in
NAT by
ORDINAL1:def 12;
A86: (G
. (n
+ 1)) is
Element of
NAT by
A84;
(G
. n) is
Element of
NAT by
A84,
A85;
hence (G
. n)
< (G
. (n
+ 1)) by
A80,
A86;
end;
then
reconsider G as
increasing
sequence of
NAT by
SEQM_3:def 6;
A87: (s
* G) is
subsequence of s by
VALUED_0:def 17;
then (
rng (s
* G))
c= (
rng s) by
VALUED_0: 21;
then
A88: (
rng (s
* G))
c= ((
dom f)
\
{x0}) by
A7;
A89: (
lim (s
* F))
= x0 by
A5,
A6,
A44,
SEQ_4: 17;
then
A90: (
lim (f
/* (s
* F)))
= (
lim_left (f,x0)) by
A1,
A73,
A69,
LIMFUNC2:def 7;
A91: (f
/* (s
* F)) is
convergent by
A1,
A3,
A73,
A89,
A69,
LIMFUNC2:def 7;
A92: (s
* G) is
convergent by
A5,
A87,
SEQ_4: 16;
defpred
X[
Nat] means (s
. $1)
> x0 & for m holds (G
. m)
<> $1;
A93: for n st (s
. n)
> x0 holds ex m st (G
. m)
= n
proof
assume ex n st
X[n];
then
A94: ex n be
Nat st
X[n];
consider N1 be
Nat such that
A95:
X[N1] & for n be
Nat st
X[n] holds N1
<= n from
NAT_1:sch 5(
A94);
defpred
X[
Nat] means $1
< N1 & (s
. $1)
> x0 & ex m st (G
. m)
= $1;
A96: ex n be
Nat st
X[n]
proof
take N;
A97: N
<> N1 by
A80,
A95;
N
<= N1 by
A65,
A95;
hence N
< N1 by
A97,
XXREAL_0: 1;
thus (s
. N)
> x0 by
A65;
take
0 ;
thus thesis by
A80;
end;
A98: for n be
Nat st
X[n] holds n
<= N1;
consider NX be
Nat such that
A99:
X[NX] & for n be
Nat st
X[n] holds n
<= NX from
NAT_1:sch 6(
A98,
A96);
A100: for k st NX
< k & k
< N1 holds (s
. k)
<= x0
proof
given k such that
A101: NX
< k and
A102: k
< N1 and
A103: (s
. k)
> x0;
now
per cases ;
suppose ex m st (G
. m)
= k;
hence contradiction by
A99,
A101,
A102,
A103;
end;
suppose for m holds (G
. m)
<> k;
hence contradiction by
A95,
A102,
A103;
end;
end;
hence contradiction;
end;
consider m such that
A104: (G
. m)
= NX by
A99;
N1
in
NAT by
ORDINAL1:def 12;
then
A105: (G
. (m
+ 1))
<= N1 by
A80,
A95,
A99,
A104;
A106: (s
. (G
. (m
+ 1)))
> x0 by
A80,
A104;
A107: NX
< (G
. (m
+ 1)) by
A80,
A104;
now
assume (G
. (m
+ 1))
<> N1;
then (G
. (m
+ 1))
< N1 by
A105,
XXREAL_0: 1;
hence contradiction by
A100,
A107,
A106;
end;
hence contradiction by
A95;
end;
defpred
X[
Nat] means ((s
* G)
. $1)
> x0;
A108: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat such that ((s
* G)
. k)
> x0;
P[(G
. k), (G
. (k
+ 1))] by
A80;
then (s
. (G
. (k
+ 1)))
> x0;
hence thesis by
FUNCT_2: 15;
end;
A109:
X[
0 ] by
A65,
A80,
FUNCT_2: 15;
A110: for k be
Nat holds
X[k] from
NAT_1:sch 2(
A109,
A108);
A111: (
rng (s
* G))
c= ((
dom f)
/\ (
right_open_halfline x0))
proof
let x be
object;
assume
A112: x
in (
rng (s
* G));
then
consider n such that
A113: ((s
* G)
. n)
= x by
FUNCT_2: 113;
((s
* G)
. n)
> x0 by
A110;
then x
in { g1 : x0
< g1 } by
A113;
then
A114: x
in (
right_open_halfline x0) by
XXREAL_1: 230;
x
in (
dom f) by
A88,
A112,
XBOOLE_0:def 5;
hence thesis by
A114,
XBOOLE_0:def 4;
end;
A115: (
lim (s
* G))
= x0 by
A5,
A6,
A87,
SEQ_4: 17;
then
A116: (
lim (f
/* (s
* G)))
= (
lim_left (f,x0)) by
A2,
A3,
A92,
A111,
LIMFUNC2:def 8;
A117: (f
/* (s
* G)) is
convergent by
A2,
A3,
A92,
A115,
A111,
LIMFUNC2:def 8;
A118:
now
let r be
Real;
assume
A119:
0
< r;
then
consider n1 be
Nat such that
A120: for k be
Nat st n1
<= k holds
|.(((f
/* (s
* F))
. k)
- GR).|
< r by
A91,
A90,
SEQ_2:def 7;
consider n2 be
Nat such that
A121: for k be
Nat st n2
<= k holds
|.(((f
/* (s
* G))
. k)
- GR).|
< r by
A117,
A116,
A119,
SEQ_2:def 7;
reconsider n = (
max ((F
. n1),(G
. n2))) as
Nat;
take n;
let k be
Nat;
A122: k
in
NAT by
ORDINAL1:def 12;
assume
A123: n
<= k;
(s
. k)
in (
rng s) by
VALUED_0: 28;
then not (s
. k)
in
{x0} by
A7,
XBOOLE_0:def 5;
then
A124: (s
. k)
<> x0 by
TARSKI:def 1;
now
per cases by
A124,
XXREAL_0: 1;
suppose (s
. k)
< x0;
then
consider l be
Element of
NAT such that
A125: k
= (F
. l) by
A46,
A122;
(F
. n1)
<= n by
XXREAL_0: 25;
then (F
. n1)
<= k by
A123,
XXREAL_0: 2;
then l
>= n1 by
A125,
SEQM_3: 1;
then
|.(((f
/* (s
* F))
. l)
- GR).|
< r by
A120;
then
|.((f
. ((s
* F)
. l))
- GR).|
< r by
A45,
FUNCT_2: 108,
XBOOLE_1: 1;
then
|.((f
. (s
. k))
- GR).|
< r by
A125,
FUNCT_2: 15;
hence
|.(((f
/* s)
. k)
- GR).|
< r by
A7,
FUNCT_2: 108,
XBOOLE_1: 1,
A122;
end;
suppose (s
. k)
> x0;
then
consider l be
Element of
NAT such that
A126: k
= (G
. l) by
A93,
A122;
(G
. n2)
<= n by
XXREAL_0: 25;
then (G
. n2)
<= k by
A123,
XXREAL_0: 2;
then l
>= n2 by
A126,
SEQM_3: 1;
then
|.(((f
/* (s
* G))
. l)
- GR).|
< r by
A121;
then
|.((f
. ((s
* G)
. l))
- GR).|
< r by
A88,
FUNCT_2: 108,
XBOOLE_1: 1;
then
|.((f
. (s
. k))
- GR).|
< r by
A126,
FUNCT_2: 15;
hence
|.(((f
/* s)
. k)
- GR).|
< r by
A7,
FUNCT_2: 108,
XBOOLE_1: 1,
A122;
end;
end;
hence
|.(((f
/* s)
. k)
- GR).|
< r;
end;
hence (f
/* s) is
convergent by
SEQ_2:def 6;
hence (
lim (f
/* s))
= (
lim_left (f,x0)) by
A118,
SEQ_2:def 7;
end;
end;
hence (f
/* s) is
convergent & (
lim (f
/* s))
= (
lim_left (f,x0));
end;
end;
hence (f
/* s) is
convergent & (
lim (f
/* s))
= (
lim_left (f,x0));
end;
now
let r1, r2;
assume that
A127: r1
< x0 and
A128: x0
< r2;
consider g1 such that
A129: r1
< g1 and
A130: g1
< x0 and
A131: g1
in (
dom f) by
A1,
A127,
LIMFUNC2:def 1;
consider g2 such that
A132: g2
< r2 and
A133: x0
< g2 and
A134: g2
in (
dom f) by
A2,
A128,
LIMFUNC2:def 4;
take g1;
take g2;
thus r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f) by
A129,
A130,
A131,
A132,
A133,
A134;
end;
hence f
is_convergent_in x0 by
A4;
hence thesis by
A3,
A4,
Def4;
end;
theorem ::
LIMFUNC3:31
Th31: f
is_convergent_in x0 implies (r
(#) f)
is_convergent_in x0 & (
lim ((r
(#) f),x0))
= (r
* (
lim (f,x0)))
proof
assume
A1: f
is_convergent_in x0;
A2:
now
let seq;
assume that
A3: seq is
convergent and
A4: (
lim seq)
= x0 and
A5: (
rng seq)
c= ((
dom (r
(#) f))
\
{x0});
A6: (
rng seq)
c= ((
dom f)
\
{x0}) by
A5,
VALUED_1:def 5;
then
A7: (r
(#) (f
/* seq))
= ((r
(#) f)
/* seq) by
RFUNCT_2: 9,
XBOOLE_1: 1;
A8: (f
/* seq) is
convergent by
A1,
A3,
A4,
A6;
then (r
(#) (f
/* seq)) is
convergent by
SEQ_2: 7;
hence ((r
(#) f)
/* seq) is
convergent by
A6,
RFUNCT_2: 9,
XBOOLE_1: 1;
(
lim (f
/* seq))
= (
lim (f,x0)) by
A1,
A3,
A4,
A6,
Def4;
hence (
lim ((r
(#) f)
/* seq))
= (r
* (
lim (f,x0))) by
A8,
A7,
SEQ_2: 8;
end;
now
let r1, r2;
assume that
A9: r1
< x0 and
A10: x0
< r2;
consider g1, g2 such that
A11: r1
< g1 and
A12: g1
< x0 and
A13: g1
in (
dom f) and
A14: g2
< r2 and
A15: x0
< g2 and
A16: g2
in (
dom f) by
A1,
A9,
A10;
take g1;
take g2;
thus r1
< g1 & g1
< x0 & g1
in (
dom (r
(#) f)) & g2
< r2 & x0
< g2 & g2
in (
dom (r
(#) f)) by
A11,
A12,
A13,
A14,
A15,
A16,
VALUED_1:def 5;
end;
hence (r
(#) f)
is_convergent_in x0 by
A2;
hence thesis by
A2,
Def4;
end;
theorem ::
LIMFUNC3:32
Th32: f
is_convergent_in x0 implies (
- f)
is_convergent_in x0 & (
lim ((
- f),x0))
= (
- (
lim (f,x0)))
proof
assume
A1: f
is_convergent_in x0;
thus (
- f)
is_convergent_in x0 by
A1,
Th31;
thus (
lim ((
- f),x0))
= ((
- 1)
* (
lim (f,x0))) by
A1,
Th31
.= (
- (
lim (f,x0)));
end;
theorem ::
LIMFUNC3:33
Th33: f1
is_convergent_in x0 & f2
is_convergent_in x0 & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f1
+ f2)) & g2
< r2 & x0
< g2 & g2
in (
dom (f1
+ f2))) implies (f1
+ f2)
is_convergent_in x0 & (
lim ((f1
+ f2),x0))
= ((
lim (f1,x0))
+ (
lim (f2,x0)))
proof
assume that
A1: f1
is_convergent_in x0 and
A2: f2
is_convergent_in x0 and
A3: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f1
+ f2)) & g2
< r2 & x0
< g2 & g2
in (
dom (f1
+ f2));
A4:
now
let seq;
assume that
A5: seq is
convergent and
A6: (
lim seq)
= x0 and
A7: (
rng seq)
c= ((
dom (f1
+ f2))
\
{x0});
A8: (
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) by
A7,
Lm4;
A9: (
rng seq)
c= ((
dom f1)
\
{x0}) by
A7,
Lm4;
A10: (
rng seq)
c= ((
dom f2)
\
{x0}) by
A7,
Lm4;
then
A11: (
lim (f2
/* seq))
= (
lim (f2,x0)) by
A2,
A5,
A6,
Def4;
A12: (f2
/* seq) is
convergent by
A2,
A5,
A6,
A10;
(
rng seq)
c= (
dom (f1
+ f2)) by
A7,
Lm4;
then
A13: ((f1
/* seq)
+ (f2
/* seq))
= ((f1
+ f2)
/* seq) by
A8,
RFUNCT_2: 8;
A14: (f1
/* seq) is
convergent by
A1,
A5,
A6,
A9;
hence ((f1
+ f2)
/* seq) is
convergent by
A12,
A13,
SEQ_2: 5;
(
lim (f1
/* seq))
= (
lim (f1,x0)) by
A1,
A5,
A6,
A9,
Def4;
hence (
lim ((f1
+ f2)
/* seq))
= ((
lim (f1,x0))
+ (
lim (f2,x0))) by
A14,
A12,
A11,
A13,
SEQ_2: 6;
end;
hence (f1
+ f2)
is_convergent_in x0 by
A3;
hence thesis by
A4,
Def4;
end;
theorem ::
LIMFUNC3:34
f1
is_convergent_in x0 & f2
is_convergent_in x0 & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f1
- f2)) & g2
< r2 & x0
< g2 & g2
in (
dom (f1
- f2))) implies (f1
- f2)
is_convergent_in x0 & (
lim ((f1
- f2),x0))
= ((
lim (f1,x0))
- (
lim (f2,x0)))
proof
assume that
A1: f1
is_convergent_in x0 and
A2: f2
is_convergent_in x0 and
A3: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f1
- f2)) & g2
< r2 & x0
< g2 & g2
in (
dom (f1
- f2));
A4: (
- f2)
is_convergent_in x0 by
A2,
Th32;
hence (f1
- f2)
is_convergent_in x0 by
A1,
A3,
Th33;
thus (
lim ((f1
- f2),x0))
= ((
lim (f1,x0))
+ (
lim ((
- f2),x0))) by
A1,
A3,
A4,
Th33
.= ((
lim (f1,x0))
+ (
- (
lim (f2,x0)))) by
A2,
Th32
.= ((
lim (f1,x0))
- (
lim (f2,x0)));
end;
theorem ::
LIMFUNC3:35
f
is_convergent_in x0 & (f
"
{
0 })
=
{} & (
lim (f,x0))
<>
0 implies (f
^ )
is_convergent_in x0 & (
lim ((f
^ ),x0))
= ((
lim (f,x0))
" )
proof
assume that
A1: f
is_convergent_in x0 and
A2: (f
"
{
0 })
=
{} and
A3: (
lim (f,x0))
<>
0 ;
A4: (
dom f)
= ((
dom f)
\ (f
"
{
0 })) by
A2
.= (
dom (f
^ )) by
RFUNCT_1:def 2;
A5:
now
let seq;
assume that
A6: seq is
convergent and
A7: (
lim seq)
= x0 and
A8: (
rng seq)
c= ((
dom (f
^ ))
\
{x0});
A9: (
lim (f
/* seq))
= (
lim (f,x0)) by
A1,
A4,
A6,
A7,
A8,
Def4;
A10: ((f
/* seq)
" )
= ((f
^ )
/* seq) by
A8,
RFUNCT_2: 12,
XBOOLE_1: 1;
A11: (
rng seq)
c= (
dom f) by
A4,
A8,
XBOOLE_1: 1;
A12: (f
/* seq) is
convergent by
A1,
A4,
A6,
A7,
A8;
hence ((f
^ )
/* seq) is
convergent by
A3,
A4,
A9,
A11,
A10,
RFUNCT_2: 11,
SEQ_2: 21;
thus (
lim ((f
^ )
/* seq))
= ((
lim (f,x0))
" ) by
A3,
A4,
A12,
A9,
A11,
A10,
RFUNCT_2: 11,
SEQ_2: 22;
end;
for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f
^ )) & g2
< r2 & x0
< g2 & g2
in (
dom (f
^ )) by
A1,
A4;
hence (f
^ )
is_convergent_in x0 by
A5;
hence thesis by
A5,
Def4;
end;
theorem ::
LIMFUNC3:36
f
is_convergent_in x0 implies (
abs f)
is_convergent_in x0 & (
lim ((
abs f),x0))
=
|.(
lim (f,x0)).|
proof
assume
A1: f
is_convergent_in x0;
A2:
now
let seq;
assume that
A3: seq is
convergent and
A4: (
lim seq)
= x0 and
A5: (
rng seq)
c= ((
dom (
abs f))
\
{x0});
A6: (
rng seq)
c= ((
dom f)
\
{x0}) by
A5,
VALUED_1:def 11;
then (
rng seq)
c= (
dom f) by
XBOOLE_1: 1;
then
A7: (
abs (f
/* seq))
= ((
abs f)
/* seq) by
RFUNCT_2: 10;
A8: (f
/* seq) is
convergent by
A1,
A3,
A4,
A6;
hence ((
abs f)
/* seq) is
convergent by
A7;
(
lim (f
/* seq))
= (
lim (f,x0)) by
A1,
A3,
A4,
A6,
Def4;
hence (
lim ((
abs f)
/* seq))
=
|.(
lim (f,x0)).| by
A8,
A7,
SEQ_4: 14;
end;
now
let r1, r2;
assume that
A9: r1
< x0 and
A10: x0
< r2;
consider g1, g2 such that
A11: r1
< g1 and
A12: g1
< x0 and
A13: g1
in (
dom f) and
A14: g2
< r2 and
A15: x0
< g2 and
A16: g2
in (
dom f) by
A1,
A9,
A10;
take g1;
take g2;
thus r1
< g1 & g1
< x0 & g1
in (
dom (
abs f)) & g2
< r2 & x0
< g2 & g2
in (
dom (
abs f)) by
A11,
A12,
A13,
A14,
A15,
A16,
VALUED_1:def 11;
end;
hence (
abs f)
is_convergent_in x0 by
A2;
hence thesis by
A2,
Def4;
end;
theorem ::
LIMFUNC3:37
Th37: f
is_convergent_in x0 & (
lim (f,x0))
<>
0 & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f) & (f
. g1)
<>
0 & (f
. g2)
<>
0 ) implies (f
^ )
is_convergent_in x0 & (
lim ((f
^ ),x0))
= ((
lim (f,x0))
" )
proof
assume that
A1: f
is_convergent_in x0 and
A2: (
lim (f,x0))
<>
0 and
A3: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f) & (f
. g1)
<>
0 & (f
. g2)
<>
0 ;
A4: ((
dom f)
\ (f
"
{
0 }))
= (
dom (f
^ )) by
RFUNCT_1:def 2;
A5:
now
let seq;
assume that
A6: seq is
convergent and
A7: (
lim seq)
= x0 and
A8: (
rng seq)
c= ((
dom (f
^ ))
\
{x0});
A9: (f
/* seq) is
non-zero by
A8,
RFUNCT_2: 11,
XBOOLE_1: 1;
(
rng seq)
c= (
dom (f
^ )) by
A8,
XBOOLE_1: 1;
then
A10: (
rng seq)
c= (
dom f) by
A4,
XBOOLE_1: 1;
now
let x be
object;
assume
A11: x
in (
rng seq);
then not x
in
{x0} by
A8,
XBOOLE_0:def 5;
hence x
in ((
dom f)
\
{x0}) by
A10,
A11,
XBOOLE_0:def 5;
end;
then
A12: (
rng seq)
c= ((
dom f)
\
{x0});
then
A13: (
lim (f
/* seq))
= (
lim (f,x0)) by
A1,
A6,
A7,
Def4;
A14: ((f
/* seq)
" )
= ((f
^ )
/* seq) by
A8,
RFUNCT_2: 12,
XBOOLE_1: 1;
A15: (f
/* seq) is
convergent by
A1,
A6,
A7,
A12;
hence ((f
^ )
/* seq) is
convergent by
A2,
A13,
A9,
A14,
SEQ_2: 21;
thus (
lim ((f
^ )
/* seq))
= ((
lim (f,x0))
" ) by
A2,
A15,
A13,
A9,
A14,
SEQ_2: 22;
end;
now
let r1, r2;
assume that
A16: r1
< x0 and
A17: x0
< r2;
consider g1, g2 such that
A18: r1
< g1 and
A19: g1
< x0 and
A20: g1
in (
dom f) and
A21: g2
< r2 and
A22: x0
< g2 and
A23: g2
in (
dom f) and
A24: (f
. g1)
<>
0 and
A25: (f
. g2)
<>
0 by
A3,
A16,
A17;
take g1, g2;
not (f
. g2)
in
{
0 } by
A25,
TARSKI:def 1;
then
A26: not g2
in (f
"
{
0 }) by
FUNCT_1:def 7;
not (f
. g1)
in
{
0 } by
A24,
TARSKI:def 1;
then not g1
in (f
"
{
0 }) by
FUNCT_1:def 7;
hence r1
< g1 & g1
< x0 & g1
in (
dom (f
^ )) & g2
< r2 & x0
< g2 & g2
in (
dom (f
^ )) by
A4,
A18,
A19,
A20,
A21,
A22,
A23,
A26,
XBOOLE_0:def 5;
end;
hence (f
^ )
is_convergent_in x0 by
A5;
hence thesis by
A5,
Def4;
end;
theorem ::
LIMFUNC3:38
Th38: f1
is_convergent_in x0 & f2
is_convergent_in x0 & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f1
(#) f2)) & g2
< r2 & x0
< g2 & g2
in (
dom (f1
(#) f2))) implies (f1
(#) f2)
is_convergent_in x0 & (
lim ((f1
(#) f2),x0))
= ((
lim (f1,x0))
* (
lim (f2,x0)))
proof
assume that
A1: f1
is_convergent_in x0 and
A2: f2
is_convergent_in x0 and
A3: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f1
(#) f2)) & g2
< r2 & x0
< g2 & g2
in (
dom (f1
(#) f2));
A4:
now
let seq;
assume that
A5: seq is
convergent and
A6: (
lim seq)
= x0 and
A7: (
rng seq)
c= ((
dom (f1
(#) f2))
\
{x0});
A8: (
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) by
A7,
Lm2;
A9: (
rng seq)
c= ((
dom f1)
\
{x0}) by
A7,
Lm2;
A10: (
rng seq)
c= ((
dom f2)
\
{x0}) by
A7,
Lm2;
then
A11: (
lim (f2
/* seq))
= (
lim (f2,x0)) by
A2,
A5,
A6,
Def4;
A12: (f2
/* seq) is
convergent by
A2,
A5,
A6,
A10;
(
rng seq)
c= (
dom (f1
(#) f2)) by
A7,
Lm2;
then
A13: ((f1
/* seq)
(#) (f2
/* seq))
= ((f1
(#) f2)
/* seq) by
A8,
RFUNCT_2: 8;
A14: (f1
/* seq) is
convergent by
A1,
A5,
A6,
A9;
hence ((f1
(#) f2)
/* seq) is
convergent by
A12,
A13,
SEQ_2: 14;
(
lim (f1
/* seq))
= (
lim (f1,x0)) by
A1,
A5,
A6,
A9,
Def4;
hence (
lim ((f1
(#) f2)
/* seq))
= ((
lim (f1,x0))
* (
lim (f2,x0))) by
A14,
A12,
A11,
A13,
SEQ_2: 15;
end;
hence (f1
(#) f2)
is_convergent_in x0 by
A3;
hence thesis by
A4,
Def4;
end;
theorem ::
LIMFUNC3:39
f1
is_convergent_in x0 & f2
is_convergent_in x0 & (
lim (f2,x0))
<>
0 & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f1
/ f2)) & g2
< r2 & x0
< g2 & g2
in (
dom (f1
/ f2))) implies (f1
/ f2)
is_convergent_in x0 & (
lim ((f1
/ f2),x0))
= ((
lim (f1,x0))
/ (
lim (f2,x0)))
proof
assume that
A1: f1
is_convergent_in x0 and
A2: f2
is_convergent_in x0 and
A3: (
lim (f2,x0))
<>
0 and
A4: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f1
/ f2)) & g2
< r2 & x0
< g2 & g2
in (
dom (f1
/ f2));
A5:
now
let r1, r2;
assume that
A6: r1
< x0 and
A7: x0
< r2;
consider g1, g2 such that
A8: r1
< g1 and
A9: g1
< x0 and
A10: g1
in (
dom (f1
/ f2)) and
A11: g2
< r2 and
A12: x0
< g2 and
A13: g2
in (
dom (f1
/ f2)) by
A4,
A6,
A7;
take g1;
take g2;
thus r1
< g1 & g1
< x0 by
A8,
A9;
A14: (
dom (f1
/ f2))
= ((
dom f1)
/\ ((
dom f2)
\ (f2
"
{
0 }))) by
RFUNCT_1:def 1;
then g2
in ((
dom f2)
\ (f2
"
{
0 })) by
A13,
XBOOLE_0:def 4;
then not g2
in (f2
"
{
0 }) by
XBOOLE_0:def 5;
then
A15: not (f2
. g2)
in
{
0 } by
A13,
A14,
FUNCT_1:def 7;
g1
in ((
dom f2)
\ (f2
"
{
0 })) by
A10,
A14,
XBOOLE_0:def 4;
then not g1
in (f2
"
{
0 }) by
XBOOLE_0:def 5;
then not (f2
. g1)
in
{
0 } by
A10,
A14,
FUNCT_1:def 7;
hence g1
in (
dom f2) & g2
< r2 & x0
< g2 & g2
in (
dom f2) & (f2
. g1)
<>
0 & (f2
. g2)
<>
0 by
A10,
A11,
A12,
A13,
A14,
A15,
TARSKI:def 1;
end;
then
A16: (f2
^ )
is_convergent_in x0 by
A2,
A3,
Th37;
A17: (f1
/ f2)
= (f1
(#) (f2
^ )) by
RFUNCT_1: 31;
hence (f1
/ f2)
is_convergent_in x0 by
A1,
A4,
A16,
Th38;
(
lim ((f2
^ ),x0))
= ((
lim (f2,x0))
" ) by
A2,
A3,
A5,
Th37;
hence (
lim ((f1
/ f2),x0))
= ((
lim (f1,x0))
* ((
lim (f2,x0))
" )) by
A1,
A4,
A17,
A16,
Th38
.= ((
lim (f1,x0))
/ (
lim (f2,x0))) by
XCMPLX_0:def 9;
end;
theorem ::
LIMFUNC3:40
f1
is_convergent_in x0 & (
lim (f1,x0))
=
0 & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f1
(#) f2)) & g2
< r2 & x0
< g2 & g2
in (
dom (f1
(#) f2))) & (ex r st
0
< r & (f2
| (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) is
bounded) implies (f1
(#) f2)
is_convergent_in x0 & (
lim ((f1
(#) f2),x0))
=
0
proof
assume that
A1: f1
is_convergent_in x0 and
A2: (
lim (f1,x0))
=
0 and
A3: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f1
(#) f2)) & g2
< r2 & x0
< g2 & g2
in (
dom (f1
(#) f2));
given r such that
A4:
0
< r and
A5: (f2
| (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) is
bounded;
consider g be
Real such that
A6: for r1 be
object st r1
in ((
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)
/\ (
dom f2)) holds
|.(f2
. r1).|
<= g by
A5,
RFUNCT_1: 73;
A7:
now
let s be
Real_Sequence;
assume that
A8: s is
convergent and
A9: (
lim s)
= x0 and
A10: (
rng s)
c= ((
dom (f1
(#) f2))
\
{x0});
consider k such that
A11: for n st k
<= n holds (x0
- r)
< (s
. n) & (s
. n)
< (x0
+ r) by
A4,
A8,
A9,
Th7;
A12: (
rng (s
^\ k))
c= (
rng s) by
VALUED_0: 21;
(
rng s)
c= ((
dom f1)
\
{x0}) by
A10,
Lm2;
then
A13: (
rng (s
^\ k))
c= ((
dom f1)
\
{x0}) by
A12;
A14: (
lim (s
^\ k))
= x0 by
A8,
A9,
SEQ_4: 20;
then
A15: (f1
/* (s
^\ k)) is
convergent by
A1,
A8,
A13;
A16: (
rng s)
c= (
dom f2) by
A10,
Lm2;
then
A17: (
rng (s
^\ k))
c= (
dom f2) by
A12;
now
set t = (
|.g.|
+ 1);
0
<=
|.g.| by
COMPLEX1: 46;
hence
0
< t;
let n be
Nat;
A18: n
in
NAT by
ORDINAL1:def 12;
A19: k
<= (n
+ k) by
NAT_1: 12;
then (s
. (n
+ k))
< (x0
+ r) by
A11;
then
A20: ((s
^\ k)
. n)
< (x0
+ r) by
NAT_1:def 3;
(x0
- r)
< (s
. (n
+ k)) by
A11,
A19;
then (x0
- r)
< ((s
^\ k)
. n) by
NAT_1:def 3;
then ((s
^\ k)
. n)
in { g1 : (x0
- r)
< g1 & g1
< (x0
+ r) } by
A20;
then
A21: ((s
^\ k)
. n)
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
A22: ((s
^\ k)
. n)
in (
rng (s
^\ k)) by
VALUED_0: 28;
then not ((s
^\ k)
. n)
in
{x0} by
A13,
XBOOLE_0:def 5;
then ((s
^\ k)
. n)
in (
].(x0
- r), (x0
+ r).[
\
{x0}) by
A21,
XBOOLE_0:def 5;
then ((s
^\ k)
. n)
in (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[) by
A4,
Th4;
then ((s
^\ k)
. n)
in ((
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)
/\ (
dom f2)) by
A17,
A22,
XBOOLE_0:def 4;
then
|.(f2
. ((s
^\ k)
. n)).|
<= g by
A6;
then
A23:
|.((f2
/* (s
^\ k))
. n).|
<= g by
A16,
A12,
FUNCT_2: 108,
XBOOLE_1: 1,
A18;
g
<=
|.g.| by
ABSVALUE: 4;
then g
< t by
Lm1;
hence
|.((f2
/* (s
^\ k))
. n).|
< t by
A23,
XXREAL_0: 2;
end;
then
A24: (f2
/* (s
^\ k)) is
bounded by
SEQ_2: 3;
A25: (
rng s)
c= (
dom (f1
(#) f2)) by
A10,
Lm2;
(
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) by
A10,
Lm2;
then (
rng (s
^\ k))
c= ((
dom f1)
/\ (
dom f2)) by
A25,
A12;
then
A26: ((f1
/* (s
^\ k))
(#) (f2
/* (s
^\ k)))
= ((f1
(#) f2)
/* (s
^\ k)) by
RFUNCT_2: 8
.= (((f1
(#) f2)
/* s)
^\ k) by
A25,
VALUED_0: 27;
A27: (
lim (f1
/* (s
^\ k)))
=
0 by
A1,
A2,
A8,
A14,
A13,
Def4;
then
A28: ((f1
/* (s
^\ k))
(#) (f2
/* (s
^\ k))) is
convergent by
A15,
A24,
SEQ_2: 25;
hence ((f1
(#) f2)
/* s) is
convergent by
A26,
SEQ_4: 21;
(
lim ((f1
/* (s
^\ k))
(#) (f2
/* (s
^\ k))))
=
0 by
A15,
A27,
A24,
SEQ_2: 26;
hence (
lim ((f1
(#) f2)
/* s))
=
0 by
A28,
A26,
SEQ_4: 22;
end;
hence (f1
(#) f2)
is_convergent_in x0 by
A3;
hence thesis by
A7,
Def4;
end;
theorem ::
LIMFUNC3:41
Th41: f1
is_convergent_in x0 & f2
is_convergent_in x0 & (
lim (f1,x0))
= (
lim (f2,x0)) & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f)) & (ex r st
0
< r & (for g st g
in ((
dom f)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) holds (f1
. g)
<= (f
. g) & (f
. g)
<= (f2
. g)) & ((((
dom f1)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[))
c= ((
dom f2)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) & ((
dom f)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[))
c= ((
dom f1)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[))) or (((
dom f2)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[))
c= ((
dom f1)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) & ((
dom f)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[))
c= ((
dom f2)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[))))) implies f
is_convergent_in x0 & (
lim (f,x0))
= (
lim (f1,x0))
proof
assume that
A1: f1
is_convergent_in x0 and
A2: f2
is_convergent_in x0 and
A3: (
lim (f1,x0))
= (
lim (f2,x0)) and
A4: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f);
given r1 such that
A5:
0
< r1 and
A6: for g st g
in ((
dom f)
/\ (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[)) holds (f1
. g)
<= (f
. g) & (f
. g)
<= (f2
. g) and
A7: ((
dom f1)
/\ (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[))
c= ((
dom f2)
/\ (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[)) & ((
dom f)
/\ (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[))
c= ((
dom f1)
/\ (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[)) or ((
dom f2)
/\ (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[))
c= ((
dom f1)
/\ (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[)) & ((
dom f)
/\ (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[))
c= ((
dom f2)
/\ (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[));
now
per cases by
A7;
suppose
A8: ((
dom f1)
/\ (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[))
c= ((
dom f2)
/\ (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[)) & ((
dom f)
/\ (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[))
c= ((
dom f1)
/\ (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[));
A9:
now
let s be
Real_Sequence;
assume that
A10: s is
convergent and
A11: (
lim s)
= x0 and
A12: (
rng s)
c= ((
dom f)
\
{x0});
consider k such that
A13: for n st k
<= n holds (x0
- r1)
< (s
. n) & (s
. n)
< (x0
+ r1) by
A5,
A10,
A11,
Th7;
A14: (
rng (s
^\ k))
c= (
rng s) by
VALUED_0: 21;
then
A15: (
rng (s
^\ k))
c= ((
dom f)
\
{x0}) by
A12;
now
let x be
object;
assume
A16: x
in (
rng (s
^\ k));
then
consider n such that
A17: x
= ((s
^\ k)
. n) by
FUNCT_2: 113;
A18: k
<= (n
+ k) by
NAT_1: 12;
then (s
. (n
+ k))
< (x0
+ r1) by
A13;
then
A19: ((s
^\ k)
. n)
< (x0
+ r1) by
NAT_1:def 3;
(x0
- r1)
< (s
. (n
+ k)) by
A13,
A18;
then (x0
- r1)
< ((s
^\ k)
. n) by
NAT_1:def 3;
then ((s
^\ k)
. n)
in { g1 : (x0
- r1)
< g1 & g1
< (x0
+ r1) } by
A19;
then
A20: ((s
^\ k)
. n)
in
].(x0
- r1), (x0
+ r1).[ by
RCOMP_1:def 2;
not ((s
^\ k)
. n)
in
{x0} by
A15,
A16,
A17,
XBOOLE_0:def 5;
then x
in (
].(x0
- r1), (x0
+ r1).[
\
{x0}) by
A17,
A20,
XBOOLE_0:def 5;
hence x
in (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[) by
A5,
Th4;
end;
then
A21: (
rng (s
^\ k))
c= (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[);
A22: (
rng s)
c= (
dom f) by
A12,
XBOOLE_1: 1;
then (
rng (s
^\ k))
c= (
dom f) by
A14;
then
A23: (
rng (s
^\ k))
c= ((
dom f)
/\ (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[)) by
A21,
XBOOLE_1: 19;
then
A24: (
rng (s
^\ k))
c= ((
dom f1)
/\ (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[)) by
A8;
then
A25: (
rng (s
^\ k))
c= ((
dom f2)
/\ (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[)) by
A8;
A26: (
lim (s
^\ k))
= x0 by
A10,
A11,
SEQ_4: 20;
A27: ((
dom f2)
/\ (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[))
c= (
dom f2) by
XBOOLE_1: 17;
then
A28: (
rng (s
^\ k))
c= (
dom f2) by
A25;
A29: (
rng (s
^\ k))
c= ((
dom f2)
\
{x0})
proof
let x be
object;
assume
A30: x
in (
rng (s
^\ k));
then not x
in
{x0} by
A15,
XBOOLE_0:def 5;
hence thesis by
A28,
A30,
XBOOLE_0:def 5;
end;
then
A31: (
lim (f2
/* (s
^\ k)))
= (
lim (f2,x0)) by
A2,
A10,
A26,
Def4;
A32: ((
dom f1)
/\ (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[))
c= (
dom f1) by
XBOOLE_1: 17;
then
A33: (
rng (s
^\ k))
c= (
dom f1) by
A24;
A34: (
rng (s
^\ k))
c= ((
dom f1)
\
{x0})
proof
let x be
object;
assume
A35: x
in (
rng (s
^\ k));
then not x
in
{x0} by
A15,
XBOOLE_0:def 5;
hence thesis by
A33,
A35,
XBOOLE_0:def 5;
end;
then
A36: (
lim (f1
/* (s
^\ k)))
= (
lim (f1,x0)) by
A1,
A10,
A26,
Def4;
A37:
now
let n be
Nat;
A38: n
in
NAT by
ORDINAL1:def 12;
A39: ((s
^\ k)
. n)
in (
rng (s
^\ k)) by
VALUED_0: 28;
then (f
. ((s
^\ k)
. n))
<= (f2
. ((s
^\ k)
. n)) by
A6,
A23;
then
A40: ((f
/* (s
^\ k))
. n)
<= (f2
. ((s
^\ k)
. n)) by
A14,
A22,
FUNCT_2: 108,
XBOOLE_1: 1,
A38;
(f1
. ((s
^\ k)
. n))
<= (f
. ((s
^\ k)
. n)) by
A6,
A23,
A39;
then (f1
. ((s
^\ k)
. n))
<= ((f
/* (s
^\ k))
. n) by
A14,
A22,
FUNCT_2: 108,
XBOOLE_1: 1,
A38;
hence ((f1
/* (s
^\ k))
. n)
<= ((f
/* (s
^\ k))
. n) & ((f
/* (s
^\ k))
. n)
<= ((f2
/* (s
^\ k))
. n) by
A32,
A27,
A24,
A25,
A40,
FUNCT_2: 108,
XBOOLE_1: 1,
A38;
end;
A41: (f2
/* (s
^\ k)) is
convergent by
A2,
A10,
A26,
A29;
A42: (f1
/* (s
^\ k)) is
convergent by
A1,
A10,
A26,
A34;
then (f
/* (s
^\ k)) is
convergent by
A3,
A36,
A41,
A31,
A37,
SEQ_2: 19;
then
A43: ((f
/* s)
^\ k) is
convergent by
A12,
VALUED_0: 27,
XBOOLE_1: 1;
hence (f
/* s) is
convergent by
SEQ_4: 21;
(
lim (f
/* (s
^\ k)))
= (
lim (f1,x0)) by
A3,
A42,
A36,
A41,
A31,
A37,
SEQ_2: 20;
then (
lim ((f
/* s)
^\ k))
= (
lim (f1,x0)) by
A12,
VALUED_0: 27,
XBOOLE_1: 1;
hence (
lim (f
/* s))
= (
lim (f1,x0)) by
A43,
SEQ_4: 22;
end;
hence f
is_convergent_in x0 by
A4;
hence thesis by
A9,
Def4;
end;
suppose
A44: ((
dom f2)
/\ (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[))
c= ((
dom f1)
/\ (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[)) & ((
dom f)
/\ (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[))
c= ((
dom f2)
/\ (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[));
A45:
now
let s be
Real_Sequence;
assume that
A46: s is
convergent and
A47: (
lim s)
= x0 and
A48: (
rng s)
c= ((
dom f)
\
{x0});
consider k such that
A49: for n st k
<= n holds (x0
- r1)
< (s
. n) & (s
. n)
< (x0
+ r1) by
A5,
A46,
A47,
Th7;
A50: (
rng (s
^\ k))
c= (
rng s) by
VALUED_0: 21;
then
A51: (
rng (s
^\ k))
c= ((
dom f)
\
{x0}) by
A48;
now
let x be
object;
assume
A52: x
in (
rng (s
^\ k));
then
consider n such that
A53: x
= ((s
^\ k)
. n) by
FUNCT_2: 113;
A54: k
<= (n
+ k) by
NAT_1: 12;
then (s
. (n
+ k))
< (x0
+ r1) by
A49;
then
A55: ((s
^\ k)
. n)
< (x0
+ r1) by
NAT_1:def 3;
(x0
- r1)
< (s
. (n
+ k)) by
A49,
A54;
then (x0
- r1)
< ((s
^\ k)
. n) by
NAT_1:def 3;
then ((s
^\ k)
. n)
in { g1 : (x0
- r1)
< g1 & g1
< (x0
+ r1) } by
A55;
then
A56: ((s
^\ k)
. n)
in
].(x0
- r1), (x0
+ r1).[ by
RCOMP_1:def 2;
not ((s
^\ k)
. n)
in
{x0} by
A51,
A52,
A53,
XBOOLE_0:def 5;
then x
in (
].(x0
- r1), (x0
+ r1).[
\
{x0}) by
A53,
A56,
XBOOLE_0:def 5;
hence x
in (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[) by
A5,
Th4;
end;
then
A57: (
rng (s
^\ k))
c= (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[);
A58: (
rng s)
c= (
dom f) by
A48,
XBOOLE_1: 1;
then (
rng (s
^\ k))
c= (
dom f) by
A50;
then
A59: (
rng (s
^\ k))
c= ((
dom f)
/\ (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[)) by
A57,
XBOOLE_1: 19;
then
A60: (
rng (s
^\ k))
c= ((
dom f2)
/\ (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[)) by
A44;
then
A61: (
rng (s
^\ k))
c= ((
dom f1)
/\ (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[)) by
A44;
A62: (
lim (s
^\ k))
= x0 by
A46,
A47,
SEQ_4: 20;
A63: ((
dom f2)
/\ (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[))
c= (
dom f2) by
XBOOLE_1: 17;
then
A64: (
rng (s
^\ k))
c= (
dom f2) by
A60;
A65: (
rng (s
^\ k))
c= ((
dom f2)
\
{x0})
proof
let x be
object;
assume
A66: x
in (
rng (s
^\ k));
then not x
in
{x0} by
A51,
XBOOLE_0:def 5;
hence thesis by
A64,
A66,
XBOOLE_0:def 5;
end;
then
A67: (
lim (f2
/* (s
^\ k)))
= (
lim (f2,x0)) by
A2,
A46,
A62,
Def4;
A68: ((
dom f1)
/\ (
].(x0
- r1), x0.[
\/
].x0, (x0
+ r1).[))
c= (
dom f1) by
XBOOLE_1: 17;
then
A69: (
rng (s
^\ k))
c= (
dom f1) by
A61;
A70: (
rng (s
^\ k))
c= ((
dom f1)
\
{x0})
proof
let x be
object;
assume
A71: x
in (
rng (s
^\ k));
then not x
in
{x0} by
A51,
XBOOLE_0:def 5;
hence thesis by
A69,
A71,
XBOOLE_0:def 5;
end;
then
A72: (
lim (f1
/* (s
^\ k)))
= (
lim (f1,x0)) by
A1,
A46,
A62,
Def4;
A73:
now
let n be
Nat;
A74: n
in
NAT by
ORDINAL1:def 12;
A75: ((s
^\ k)
. n)
in (
rng (s
^\ k)) by
VALUED_0: 28;
then (f
. ((s
^\ k)
. n))
<= (f2
. ((s
^\ k)
. n)) by
A6,
A59;
then
A76: ((f
/* (s
^\ k))
. n)
<= (f2
. ((s
^\ k)
. n)) by
A50,
A58,
FUNCT_2: 108,
XBOOLE_1: 1,
A74;
(f1
. ((s
^\ k)
. n))
<= (f
. ((s
^\ k)
. n)) by
A6,
A59,
A75;
then (f1
. ((s
^\ k)
. n))
<= ((f
/* (s
^\ k))
. n) by
A50,
A58,
FUNCT_2: 108,
XBOOLE_1: 1,
A74;
hence ((f1
/* (s
^\ k))
. n)
<= ((f
/* (s
^\ k))
. n) & ((f
/* (s
^\ k))
. n)
<= ((f2
/* (s
^\ k))
. n) by
A68,
A63,
A60,
A61,
A76,
FUNCT_2: 108,
XBOOLE_1: 1,
A74;
end;
A77: (f2
/* (s
^\ k)) is
convergent by
A2,
A46,
A62,
A65;
A78: (f1
/* (s
^\ k)) is
convergent by
A1,
A46,
A62,
A70;
then (f
/* (s
^\ k)) is
convergent by
A3,
A72,
A77,
A67,
A73,
SEQ_2: 19;
then
A79: ((f
/* s)
^\ k) is
convergent by
A48,
VALUED_0: 27,
XBOOLE_1: 1;
hence (f
/* s) is
convergent by
SEQ_4: 21;
(
lim (f
/* (s
^\ k)))
= (
lim (f1,x0)) by
A3,
A78,
A72,
A77,
A67,
A73,
SEQ_2: 20;
then (
lim ((f
/* s)
^\ k))
= (
lim (f1,x0)) by
A48,
VALUED_0: 27,
XBOOLE_1: 1;
hence (
lim (f
/* s))
= (
lim (f1,x0)) by
A79,
SEQ_4: 22;
end;
hence f
is_convergent_in x0 by
A4;
hence thesis by
A45,
Def4;
end;
end;
hence thesis;
end;
theorem ::
LIMFUNC3:42
f1
is_convergent_in x0 & f2
is_convergent_in x0 & (
lim (f1,x0))
= (
lim (f2,x0)) & (ex r st
0
< r & (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)
c= (((
dom f1)
/\ (
dom f2))
/\ (
dom f)) & for g st g
in (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[) holds (f1
. g)
<= (f
. g) & (f
. g)
<= (f2
. g)) implies f
is_convergent_in x0 & (
lim (f,x0))
= (
lim (f1,x0))
proof
assume that
A1: f1
is_convergent_in x0 and
A2: f2
is_convergent_in x0 and
A3: (
lim (f1,x0))
= (
lim (f2,x0));
given r such that
A4:
0
< r and
A5: (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)
c= (((
dom f1)
/\ (
dom f2))
/\ (
dom f)) and
A6: for g st g
in (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[) holds (f1
. g)
<= (f
. g) & (f
. g)
<= (f2
. g);
A7: ((
dom f)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[))
= (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[) by
A5,
XBOOLE_1: 18,
XBOOLE_1: 28;
A8: (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)
c= ((
dom f1)
/\ (
dom f2)) by
A5,
XBOOLE_1: 18;
then
A9: ((
dom f1)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[))
= (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[) by
XBOOLE_1: 18,
XBOOLE_1: 28;
A10: ((
dom f2)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[))
= (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[) by
A8,
XBOOLE_1: 18,
XBOOLE_1: 28;
for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f) by
A4,
A5,
Th5,
XBOOLE_1: 18;
hence thesis by
A1,
A2,
A3,
A4,
A6,
A7,
A9,
A10,
Th41;
end;
theorem ::
LIMFUNC3:43
f1
is_convergent_in x0 & f2
is_convergent_in x0 & (ex r st
0
< r & ((((
dom f1)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[))
c= ((
dom f2)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) & for g st g
in ((
dom f1)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) holds (f1
. g)
<= (f2
. g)) or (((
dom f2)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[))
c= ((
dom f1)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) & for g st g
in ((
dom f2)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) holds (f1
. g)
<= (f2
. g)))) implies (
lim (f1,x0))
<= (
lim (f2,x0))
proof
assume that
A1: f1
is_convergent_in x0 and
A2: f2
is_convergent_in x0;
given r such that
A3:
0
< r and
A4: (((
dom f1)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[))
c= ((
dom f2)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) & for g st g
in ((
dom f1)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) holds (f1
. g)
<= (f2
. g)) or (((
dom f2)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[))
c= ((
dom f1)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) & for g st g
in ((
dom f2)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) holds (f1
. g)
<= (f2
. g));
now
per cases by
A4;
suppose
A5: ((
dom f1)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[))
c= ((
dom f2)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) & for g st g
in ((
dom f1)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) holds (f1
. g)
<= (f2
. g);
defpred
X[
Nat,
Real] means (x0
- (1
/ ($1
+ 1)))
< $2 & $2
< x0 & $2
in (
dom f1);
A6:
now
let n be
Element of
NAT ;
A7: x0
< (x0
+ 1) by
Lm1;
(x0
- (1
/ (n
+ 1)))
< x0 by
Lm3;
then
consider g1, g2 such that
A8: (x0
- (1
/ (n
+ 1)))
< g1 and
A9: g1
< x0 and
A10: g1
in (
dom f1) and g2
< (x0
+ 1) and x0
< g2 and g2
in (
dom f1) by
A1,
A7;
reconsider g1 as
Element of
REAL by
XREAL_0:def 1;
take g1;
thus
X[n, g1] by
A8,
A9,
A10;
end;
consider s be
Real_Sequence such that
A11: for n holds
X[n, (s
. n)] from
FUNCT_2:sch 3(
A6);
A12: (
lim s)
= x0 by
A11,
Th6;
A13: (
rng s)
c= ((
dom f1)
\
{x0}) by
A11,
Th6;
A14: s is
convergent by
A11,
Th6;
(x0
- r)
< x0 by
A3,
Lm1;
then
consider k be
Nat such that
A15: for n be
Nat st k
<= n holds (x0
- r)
< (s
. n) by
A14,
A12,
LIMFUNC2: 1;
A16: (
lim (s
^\ k))
= x0 by
A14,
A12,
SEQ_4: 20;
(
rng (s
^\ k))
c= (
rng s) by
VALUED_0: 21;
then
A17: (
rng (s
^\ k))
c= ((
dom f1)
\
{x0}) by
A13;
then
A18: (
lim (f1
/* (s
^\ k)))
= (
lim (f1,x0)) by
A1,
A14,
A16,
Def4;
now
let x be
object;
assume x
in (
rng (s
^\ k));
then
consider n such that
A19: ((s
^\ k)
. n)
= x by
FUNCT_2: 113;
A20: (n
+ k)
in
NAT by
ORDINAL1:def 12;
(s
. (n
+ k))
< x0 by
A11,
A20;
then
A21: ((s
^\ k)
. n)
< x0 by
NAT_1:def 3;
(x0
- r)
< (s
. (n
+ k)) by
A15,
NAT_1: 12;
then (x0
- r)
< ((s
^\ k)
. n) by
NAT_1:def 3;
then ((s
^\ k)
. n)
in { g2 : (x0
- r)
< g2 & g2
< x0 } by
A21;
then ((s
^\ k)
. n)
in
].(x0
- r), x0.[ by
RCOMP_1:def 2;
then
A22: ((s
^\ k)
. n)
in (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[) by
XBOOLE_0:def 3;
(s
. (n
+ k))
in (
dom f1) by
A11,
A20;
then ((s
^\ k)
. n)
in (
dom f1) by
NAT_1:def 3;
hence x
in ((
dom f1)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) by
A19,
A22,
XBOOLE_0:def 4;
end;
then
A23: (
rng (s
^\ k))
c= ((
dom f1)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[));
then
A24: (
rng (s
^\ k))
c= ((
dom f2)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) by
A5;
A25:
now
let n be
Nat;
A26: n
in
NAT by
ORDINAL1:def 12;
((s
^\ k)
. n)
in (
rng (s
^\ k)) by
VALUED_0: 28;
then (f1
. ((s
^\ k)
. n))
<= (f2
. ((s
^\ k)
. n)) by
A5,
A23;
then (f1
. ((s
^\ k)
. n))
<= ((f2
/* (s
^\ k))
. n) by
A24,
FUNCT_2: 108,
XBOOLE_1: 18,
A26;
hence ((f1
/* (s
^\ k))
. n)
<= ((f2
/* (s
^\ k))
. n) by
A23,
FUNCT_2: 108,
XBOOLE_1: 18,
A26;
end;
A27: (
rng (s
^\ k))
c= (
dom f2) by
A24,
XBOOLE_1: 18;
A28: (
rng (s
^\ k))
c= ((
dom f2)
\
{x0})
proof
let x be
object;
assume
A29: x
in (
rng (s
^\ k));
then not x
in
{x0} by
A17,
XBOOLE_0:def 5;
hence thesis by
A27,
A29,
XBOOLE_0:def 5;
end;
then
A30: (
lim (f2
/* (s
^\ k)))
= (
lim (f2,x0)) by
A2,
A14,
A16,
Def4;
A31: (f2
/* (s
^\ k)) is
convergent by
A2,
A14,
A16,
A28;
(f1
/* (s
^\ k)) is
convergent by
A1,
A14,
A16,
A17;
hence thesis by
A18,
A31,
A30,
A25,
SEQ_2: 18;
end;
suppose
A32: ((
dom f2)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[))
c= ((
dom f1)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) & for g st g
in ((
dom f2)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) holds (f1
. g)
<= (f2
. g);
defpred
X[
Element of
NAT ,
Real] means (x0
- (1
/ ($1
+ 1)))
< $2 & $2
< x0 & $2
in (
dom f2);
A33:
now
let n;
A34: x0
< (x0
+ 1) by
Lm1;
(x0
- (1
/ (n
+ 1)))
< x0 by
Lm3;
then
consider g1, g2 such that
A35: (x0
- (1
/ (n
+ 1)))
< g1 and
A36: g1
< x0 and
A37: g1
in (
dom f2) and g2
< (x0
+ 1) and x0
< g2 and g2
in (
dom f2) by
A2,
A34;
reconsider g1 as
Element of
REAL by
XREAL_0:def 1;
take g1;
thus
X[n, g1] by
A35,
A36,
A37;
end;
consider s be
Real_Sequence such that
A38: for n holds
X[n, (s
. n)] from
FUNCT_2:sch 3(
A33);
A39: (
lim s)
= x0 by
A38,
Th6;
A40: (
rng s)
c= ((
dom f2)
\
{x0}) by
A38,
Th6;
A41: s is
convergent by
A38,
Th6;
(x0
- r)
< x0 by
A3,
Lm1;
then
consider k be
Nat such that
A42: for n be
Nat st k
<= n holds (x0
- r)
< (s
. n) by
A41,
A39,
LIMFUNC2: 1;
A43: (
lim (s
^\ k))
= x0 by
A41,
A39,
SEQ_4: 20;
(
rng (s
^\ k))
c= (
rng s) by
VALUED_0: 21;
then
A44: (
rng (s
^\ k))
c= ((
dom f2)
\
{x0}) by
A40;
then
A45: (
lim (f2
/* (s
^\ k)))
= (
lim (f2,x0)) by
A2,
A41,
A43,
Def4;
A46:
now
let x be
object;
assume x
in (
rng (s
^\ k));
then
consider n such that
A47: ((s
^\ k)
. n)
= x by
FUNCT_2: 113;
A48: (n
+ k)
in
NAT by
ORDINAL1:def 12;
(s
. (n
+ k))
< x0 by
A38,
A48;
then
A49: ((s
^\ k)
. n)
< x0 by
NAT_1:def 3;
(x0
- r)
< (s
. (n
+ k)) by
A42,
NAT_1: 12;
then (x0
- r)
< ((s
^\ k)
. n) by
NAT_1:def 3;
then ((s
^\ k)
. n)
in { g2 : (x0
- r)
< g2 & g2
< x0 } by
A49;
then ((s
^\ k)
. n)
in
].(x0
- r), x0.[ by
RCOMP_1:def 2;
then
A50: ((s
^\ k)
. n)
in (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[) by
XBOOLE_0:def 3;
(s
. (n
+ k))
in (
dom f2) by
A38,
A48;
then ((s
^\ k)
. n)
in (
dom f2) by
NAT_1:def 3;
hence x
in ((
dom f2)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) by
A47,
A50,
XBOOLE_0:def 4;
end;
then
A51: (
rng (s
^\ k))
c= ((
dom f2)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[));
then
A52: (
rng (s
^\ k))
c= ((
dom f1)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) by
A32;
A53:
now
let n be
Nat;
A54: n
in
NAT by
ORDINAL1:def 12;
((s
^\ k)
. n)
in (
rng (s
^\ k)) by
VALUED_0: 28;
then (f1
. ((s
^\ k)
. n))
<= (f2
. ((s
^\ k)
. n)) by
A32,
A46;
then (f1
. ((s
^\ k)
. n))
<= ((f2
/* (s
^\ k))
. n) by
A51,
FUNCT_2: 108,
XBOOLE_1: 18,
A54;
hence ((f1
/* (s
^\ k))
. n)
<= ((f2
/* (s
^\ k))
. n) by
A52,
FUNCT_2: 108,
XBOOLE_1: 18,
A54;
end;
A55: (
rng (s
^\ k))
c= (
dom f1) by
A52,
XBOOLE_1: 18;
A56: (
rng (s
^\ k))
c= ((
dom f1)
\
{x0})
proof
let x be
object;
assume
A57: x
in (
rng (s
^\ k));
then not x
in
{x0} by
A44,
XBOOLE_0:def 5;
hence thesis by
A55,
A57,
XBOOLE_0:def 5;
end;
then
A58: (
lim (f1
/* (s
^\ k)))
= (
lim (f1,x0)) by
A1,
A41,
A43,
Def4;
A59: (f1
/* (s
^\ k)) is
convergent by
A1,
A41,
A43,
A56;
(f2
/* (s
^\ k)) is
convergent by
A2,
A41,
A43,
A44;
hence thesis by
A45,
A59,
A58,
A53,
SEQ_2: 18;
end;
end;
hence thesis;
end;
theorem ::
LIMFUNC3:44
(f
is_divergent_to+infty_in x0 or f
is_divergent_to-infty_in x0) & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f) & (f
. g1)
<>
0 & (f
. g2)
<>
0 ) implies (f
^ )
is_convergent_in x0 & (
lim ((f
^ ),x0))
=
0
proof
A1: ((
dom f)
\ (f
"
{
0 }))
= (
dom (f
^ )) by
RFUNCT_1:def 2;
assume
A2: f
is_divergent_to+infty_in x0 or f
is_divergent_to-infty_in x0;
A3:
now
let seq;
assume that
A4: seq is
convergent and
A5: (
lim seq)
= x0 and
A6: (
rng seq)
c= ((
dom (f
^ ))
\
{x0});
(
rng seq)
c= (
dom (f
^ )) by
A6,
XBOOLE_1: 1;
then
A7: (
rng seq)
c= (
dom f) by
A1,
XBOOLE_1: 1;
A8: (
rng seq)
c= ((
dom f)
\
{x0})
proof
let x be
object;
assume
A9: x
in (
rng seq);
then not x
in
{x0} by
A6,
XBOOLE_0:def 5;
hence thesis by
A7,
A9,
XBOOLE_0:def 5;
end;
now
per cases by
A2;
suppose f
is_divergent_to+infty_in x0;
then
A10: (f
/* seq) is
divergent_to+infty by
A4,
A5,
A8;
then
A11: (
lim ((f
/* seq)
" ))
=
0 by
LIMFUNC1: 34;
((f
/* seq)
" ) is
convergent by
A10,
LIMFUNC1: 34;
hence ((f
^ )
/* seq) is
convergent & (
lim ((f
^ )
/* seq))
=
0 by
A6,
A11,
RFUNCT_2: 12,
XBOOLE_1: 1;
end;
suppose f
is_divergent_to-infty_in x0;
then
A12: (f
/* seq) is
divergent_to-infty by
A4,
A5,
A8;
then
A13: (
lim ((f
/* seq)
" ))
=
0 by
LIMFUNC1: 34;
((f
/* seq)
" ) is
convergent by
A12,
LIMFUNC1: 34;
hence ((f
^ )
/* seq) is
convergent & (
lim ((f
^ )
/* seq))
=
0 by
A6,
A13,
RFUNCT_2: 12,
XBOOLE_1: 1;
end;
end;
hence ((f
^ )
/* seq) is
convergent & (
lim ((f
^ )
/* seq))
=
0 ;
end;
assume
A14: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f) & (f
. g1)
<>
0 & (f
. g2)
<>
0 ;
now
let r1, r2;
assume that
A15: r1
< x0 and
A16: x0
< r2;
consider g1, g2 such that
A17: r1
< g1 and
A18: g1
< x0 and
A19: g1
in (
dom f) and
A20: g2
< r2 and
A21: x0
< g2 and
A22: g2
in (
dom f) and
A23: (f
. g1)
<>
0 and
A24: (f
. g2)
<>
0 by
A14,
A15,
A16;
take g1, g2;
not (f
. g2)
in
{
0 } by
A24,
TARSKI:def 1;
then
A25: not g2
in (f
"
{
0 }) by
FUNCT_1:def 7;
not (f
. g1)
in
{
0 } by
A23,
TARSKI:def 1;
then not g1
in (f
"
{
0 }) by
FUNCT_1:def 7;
hence r1
< g1 & g1
< x0 & g1
in (
dom (f
^ )) & g2
< r2 & x0
< g2 & g2
in (
dom (f
^ )) by
A1,
A17,
A18,
A19,
A20,
A21,
A22,
A25,
XBOOLE_0:def 5;
end;
hence (f
^ )
is_convergent_in x0 by
A3;
hence thesis by
A3,
Def4;
end;
theorem ::
LIMFUNC3:45
f
is_convergent_in x0 & (
lim (f,x0))
=
0 & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f) & (f
. g1)
<>
0 & (f
. g2)
<>
0 ) & (ex r st
0
< r & for g st g
in ((
dom f)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) holds
0
<= (f
. g)) implies (f
^ )
is_divergent_to+infty_in x0
proof
assume that
A1: f
is_convergent_in x0 and
A2: (
lim (f,x0))
=
0 and
A3: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f) & (f
. g1)
<>
0 & (f
. g2)
<>
0 ;
given r such that
A4:
0
< r and
A5: for g st g
in ((
dom f)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) holds
0
<= (f
. g);
thus for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f
^ )) & g2
< r2 & x0
< g2 & g2
in (
dom (f
^ ))
proof
let r1, r2;
assume that
A6: r1
< x0 and
A7: x0
< r2;
consider g1, g2 such that
A8: r1
< g1 and
A9: g1
< x0 and
A10: g1
in (
dom f) and
A11: g2
< r2 and
A12: x0
< g2 and
A13: g2
in (
dom f) and
A14: (f
. g1)
<>
0 and
A15: (f
. g2)
<>
0 by
A3,
A6,
A7;
not (f
. g2)
in
{
0 } by
A15,
TARSKI:def 1;
then not g2
in (f
"
{
0 }) by
FUNCT_1:def 7;
then
A16: g2
in ((
dom f)
\ (f
"
{
0 })) by
A13,
XBOOLE_0:def 5;
take g1, g2;
not (f
. g1)
in
{
0 } by
A14,
TARSKI:def 1;
then not g1
in (f
"
{
0 }) by
FUNCT_1:def 7;
then g1
in ((
dom f)
\ (f
"
{
0 })) by
A10,
XBOOLE_0:def 5;
hence thesis by
A8,
A9,
A11,
A12,
A16,
RFUNCT_1:def 2;
end;
let s be
Real_Sequence;
assume that
A17: s is
convergent and
A18: (
lim s)
= x0 and
A19: (
rng s)
c= ((
dom (f
^ ))
\
{x0});
consider k such that
A20: for n st k
<= n holds (x0
- r)
< (s
. n) & (s
. n)
< (x0
+ r) by
A4,
A17,
A18,
Th7;
A21: (
rng s)
c= (
dom (f
^ )) by
A19,
XBOOLE_1: 1;
A22: (
dom (f
^ ))
= ((
dom f)
\ (f
"
{
0 })) by
RFUNCT_1:def 2;
then
A23: ((f
/* (s
^\ k))
" )
= (((f
/* s)
^\ k)
" ) by
A21,
VALUED_0: 27,
XBOOLE_1: 1
.= (((f
/* s)
" )
^\ k) by
SEQM_3: 18
.= (((f
^ )
/* s)
^\ k) by
A19,
RFUNCT_2: 12,
XBOOLE_1: 1;
A24: (
rng (s
^\ k))
c= (
rng s) by
VALUED_0: 21;
A25: (
rng s)
c= (
dom f) by
A21,
A22,
XBOOLE_1: 1;
then
A26: (
rng (s
^\ k))
c= (
dom f) by
A24;
A27: (
rng (s
^\ k))
c= ((
dom (f
^ ))
\
{x0}) by
A19,
A24;
A28: (
rng (s
^\ k))
c= ((
dom f)
\
{x0})
proof
let x be
object;
assume
A29: x
in (
rng (s
^\ k));
then not x
in
{x0} by
A27,
XBOOLE_0:def 5;
hence thesis by
A26,
A29,
XBOOLE_0:def 5;
end;
A30: (
lim (s
^\ k))
= x0 by
A17,
A18,
SEQ_4: 20;
then
A31: (
lim (f
/* (s
^\ k)))
=
0 by
A1,
A2,
A17,
A28,
Def4;
A32: (f
/* (s
^\ k)) is
non-zero by
A21,
A24,
RFUNCT_2: 11,
XBOOLE_1: 1;
now
let n be
Nat;
A33: n
in
NAT by
ORDINAL1:def 12;
A34: k
<= (n
+ k) by
NAT_1: 12;
then (s
. (n
+ k))
< (x0
+ r) by
A20;
then
A35: ((s
^\ k)
. n)
< (x0
+ r) by
NAT_1:def 3;
(x0
- r)
< (s
. (n
+ k)) by
A20,
A34;
then (x0
- r)
< ((s
^\ k)
. n) by
NAT_1:def 3;
then ((s
^\ k)
. n)
in { g1 : (x0
- r)
< g1 & g1
< (x0
+ r) } by
A35;
then
A36: ((s
^\ k)
. n)
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
A37: ((s
^\ k)
. n)
in (
rng (s
^\ k)) by
VALUED_0: 28;
then not ((s
^\ k)
. n)
in
{x0} by
A27,
XBOOLE_0:def 5;
then ((s
^\ k)
. n)
in (
].(x0
- r), (x0
+ r).[
\
{x0}) by
A36,
XBOOLE_0:def 5;
then ((s
^\ k)
. n)
in (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[) by
A4,
Th4;
then ((s
^\ k)
. n)
in ((
dom f)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) by
A26,
A37,
XBOOLE_0:def 4;
then
A38:
0
<= (f
. ((s
^\ k)
. n)) by
A5;
((f
/* (s
^\ k))
. n)
<>
0 by
A32,
SEQ_1: 5;
hence
0
< ((f
/* (s
^\ k))
. n) by
A25,
A24,
A38,
FUNCT_2: 108,
XBOOLE_1: 1,
A33;
end;
then
A39: for n be
Nat holds
0
<= n implies
0
< ((f
/* (s
^\ k))
. n);
(f
/* (s
^\ k)) is
convergent by
A1,
A17,
A30,
A28;
then ((f
/* (s
^\ k))
" ) is
divergent_to+infty by
A31,
A39,
LIMFUNC1: 35;
hence thesis by
A23,
LIMFUNC1: 7;
end;
theorem ::
LIMFUNC3:46
f
is_convergent_in x0 & (
lim (f,x0))
=
0 & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f) & (f
. g1)
<>
0 & (f
. g2)
<>
0 ) & (ex r st
0
< r & for g st g
in ((
dom f)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) holds (f
. g)
<=
0 ) implies (f
^ )
is_divergent_to-infty_in x0
proof
assume that
A1: f
is_convergent_in x0 and
A2: (
lim (f,x0))
=
0 and
A3: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f) & (f
. g1)
<>
0 & (f
. g2)
<>
0 ;
given r such that
A4:
0
< r and
A5: for g st g
in ((
dom f)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) holds (f
. g)
<=
0 ;
thus for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f
^ )) & g2
< r2 & x0
< g2 & g2
in (
dom (f
^ ))
proof
let r1, r2;
assume that
A6: r1
< x0 and
A7: x0
< r2;
consider g1, g2 such that
A8: r1
< g1 and
A9: g1
< x0 and
A10: g1
in (
dom f) and
A11: g2
< r2 and
A12: x0
< g2 and
A13: g2
in (
dom f) and
A14: (f
. g1)
<>
0 and
A15: (f
. g2)
<>
0 by
A3,
A6,
A7;
not (f
. g2)
in
{
0 } by
A15,
TARSKI:def 1;
then not g2
in (f
"
{
0 }) by
FUNCT_1:def 7;
then
A16: g2
in ((
dom f)
\ (f
"
{
0 })) by
A13,
XBOOLE_0:def 5;
take g1, g2;
not (f
. g1)
in
{
0 } by
A14,
TARSKI:def 1;
then not g1
in (f
"
{
0 }) by
FUNCT_1:def 7;
then g1
in ((
dom f)
\ (f
"
{
0 })) by
A10,
XBOOLE_0:def 5;
hence thesis by
A8,
A9,
A11,
A12,
A16,
RFUNCT_1:def 2;
end;
let s be
Real_Sequence;
assume that
A17: s is
convergent and
A18: (
lim s)
= x0 and
A19: (
rng s)
c= ((
dom (f
^ ))
\
{x0});
consider k such that
A20: for n st k
<= n holds (x0
- r)
< (s
. n) & (s
. n)
< (x0
+ r) by
A4,
A17,
A18,
Th7;
A21: (
rng s)
c= (
dom (f
^ )) by
A19,
XBOOLE_1: 1;
A22: (
dom (f
^ ))
= ((
dom f)
\ (f
"
{
0 })) by
RFUNCT_1:def 2;
then
A23: ((f
/* (s
^\ k))
" )
= (((f
/* s)
^\ k)
" ) by
A21,
VALUED_0: 27,
XBOOLE_1: 1
.= (((f
/* s)
" )
^\ k) by
SEQM_3: 18
.= (((f
^ )
/* s)
^\ k) by
A19,
RFUNCT_2: 12,
XBOOLE_1: 1;
A24: (
rng (s
^\ k))
c= (
rng s) by
VALUED_0: 21;
A25: (
rng s)
c= (
dom f) by
A21,
A22,
XBOOLE_1: 1;
then
A26: (
rng (s
^\ k))
c= (
dom f) by
A24;
A27: (
rng (s
^\ k))
c= ((
dom (f
^ ))
\
{x0}) by
A19,
A24;
A28: (
rng (s
^\ k))
c= ((
dom f)
\
{x0})
proof
let x be
object;
assume
A29: x
in (
rng (s
^\ k));
then not x
in
{x0} by
A27,
XBOOLE_0:def 5;
hence thesis by
A26,
A29,
XBOOLE_0:def 5;
end;
A30: (
lim (s
^\ k))
= x0 by
A17,
A18,
SEQ_4: 20;
then
A31: (
lim (f
/* (s
^\ k)))
=
0 by
A1,
A2,
A17,
A28,
Def4;
A32: (f
/* (s
^\ k)) is
non-zero by
A21,
A24,
RFUNCT_2: 11,
XBOOLE_1: 1;
A33:
now
let n;
A34: k
<= (n
+ k) by
NAT_1: 12;
then (s
. (n
+ k))
< (x0
+ r) by
A20;
then
A35: ((s
^\ k)
. n)
< (x0
+ r) by
NAT_1:def 3;
(x0
- r)
< (s
. (n
+ k)) by
A20,
A34;
then (x0
- r)
< ((s
^\ k)
. n) by
NAT_1:def 3;
then ((s
^\ k)
. n)
in { g1 : (x0
- r)
< g1 & g1
< (x0
+ r) } by
A35;
then
A36: ((s
^\ k)
. n)
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
A37: ((s
^\ k)
. n)
in (
rng (s
^\ k)) by
VALUED_0: 28;
then not ((s
^\ k)
. n)
in
{x0} by
A27,
XBOOLE_0:def 5;
then ((s
^\ k)
. n)
in (
].(x0
- r), (x0
+ r).[
\
{x0}) by
A36,
XBOOLE_0:def 5;
then ((s
^\ k)
. n)
in (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[) by
A4,
Th4;
then ((s
^\ k)
. n)
in ((
dom f)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) by
A26,
A37,
XBOOLE_0:def 4;
then
A38: (f
. ((s
^\ k)
. n))
<=
0 by
A5;
((f
/* (s
^\ k))
. n)
<>
0 by
A32,
SEQ_1: 5;
hence ((f
/* (s
^\ k))
. n)
<
0 by
A25,
A24,
A38,
FUNCT_2: 108,
XBOOLE_1: 1;
end;
A39: for n be
Nat holds
0
<= n implies ((f
/* (s
^\ k))
. n)
<
0
proof
let n be
Nat;
n
in
NAT by
ORDINAL1:def 12;
hence thesis by
A33;
end;
(f
/* (s
^\ k)) is
convergent by
A1,
A17,
A30,
A28;
then ((f
/* (s
^\ k))
" ) is
divergent_to-infty by
A31,
A39,
LIMFUNC1: 36;
hence thesis by
A23,
LIMFUNC1: 7;
end;
theorem ::
LIMFUNC3:47
f
is_convergent_in x0 & (
lim (f,x0))
=
0 & (ex r st
0
< r & for g st g
in ((
dom f)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) holds
0
< (f
. g)) implies (f
^ )
is_divergent_to+infty_in x0
proof
assume that
A1: f
is_convergent_in x0 and
A2: (
lim (f,x0))
=
0 ;
A3: f
is_right_convergent_in x0 by
A1,
Th29;
given r such that
A4:
0
< r and
A5: for g st g
in ((
dom f)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) holds
0
< (f
. g);
A6:
now
let g;
assume
A7: g
in ((
dom f)
/\
].x0, (x0
+ r).[);
then g
in
].x0, (x0
+ r).[ by
XBOOLE_0:def 4;
then
A8: g
in (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[) by
XBOOLE_0:def 3;
g
in (
dom f) by
A7,
XBOOLE_0:def 4;
then g
in ((
dom f)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) by
A8,
XBOOLE_0:def 4;
hence
0
< (f
. g) by
A5;
end;
A9:
now
let g;
assume
A10: g
in ((
dom f)
/\
].(x0
- r), x0.[);
then g
in
].(x0
- r), x0.[ by
XBOOLE_0:def 4;
then
A11: g
in (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[) by
XBOOLE_0:def 3;
g
in (
dom f) by
A10,
XBOOLE_0:def 4;
then g
in ((
dom f)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) by
A11,
XBOOLE_0:def 4;
hence
0
< (f
. g) by
A5;
end;
(
lim_right (f,x0))
=
0 by
A1,
A2,
Th29;
then
A12: (f
^ )
is_right_divergent_to+infty_in x0 by
A3,
A4,
A6,
LIMFUNC2: 73;
A13: f
is_left_convergent_in x0 by
A1,
Th29;
(
lim_left (f,x0))
=
0 by
A1,
A2,
Th29;
then (f
^ )
is_left_divergent_to+infty_in x0 by
A13,
A4,
A9,
LIMFUNC2: 71;
hence thesis by
A12,
Th12;
end;
theorem ::
LIMFUNC3:48
f
is_convergent_in x0 & (
lim (f,x0))
=
0 & (ex r st
0
< r & for g st g
in ((
dom f)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) holds (f
. g)
<
0 ) implies (f
^ )
is_divergent_to-infty_in x0
proof
assume that
A1: f
is_convergent_in x0 and
A2: (
lim (f,x0))
=
0 ;
A3: f
is_right_convergent_in x0 by
A1,
Th29;
given r such that
A4:
0
< r and
A5: for g st g
in ((
dom f)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) holds (f
. g)
<
0 ;
A6:
now
let g;
assume
A7: g
in ((
dom f)
/\
].x0, (x0
+ r).[);
then g
in
].x0, (x0
+ r).[ by
XBOOLE_0:def 4;
then
A8: g
in (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[) by
XBOOLE_0:def 3;
g
in (
dom f) by
A7,
XBOOLE_0:def 4;
then g
in ((
dom f)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) by
A8,
XBOOLE_0:def 4;
hence (f
. g)
<
0 by
A5;
end;
A9:
now
let g;
assume
A10: g
in ((
dom f)
/\
].(x0
- r), x0.[);
then g
in
].(x0
- r), x0.[ by
XBOOLE_0:def 4;
then
A11: g
in (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[) by
XBOOLE_0:def 3;
g
in (
dom f) by
A10,
XBOOLE_0:def 4;
then g
in ((
dom f)
/\ (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[)) by
A11,
XBOOLE_0:def 4;
hence (f
. g)
<
0 by
A5;
end;
(
lim_right (f,x0))
=
0 by
A1,
A2,
Th29;
then
A12: (f
^ )
is_right_divergent_to-infty_in x0 by
A3,
A4,
A6,
LIMFUNC2: 74;
A13: f
is_left_convergent_in x0 by
A1,
Th29;
(
lim_left (f,x0))
=
0 by
A1,
A2,
Th29;
then (f
^ )
is_left_divergent_to-infty_in x0 by
A13,
A4,
A9,
LIMFUNC2: 72;
hence thesis by
A12,
Th13;
end;