measure9.miz
    
    begin
    
    theorem :: 
    
    MEASURE9:1
    
    
    
    
    
    Th52: for K be 
    Relation st ( 
    rng K) is 
    empty-membered holds ( 
    union ( 
    rng K)) 
    =  
    {}  
    
    proof
    
      let K be
    Relation;
    
      assume
    
      
    
    A2: ( 
    rng K) is 
    empty-membered;
    
      now
    
        let x be
    object;
    
        assume x
    in ( 
    union ( 
    rng K)); 
    
        then ex A be
    set st x 
    in A & A 
    in ( 
    rng K) by 
    TARSKI:def 4;
    
        hence x
    in  
    {} by 
    A2;
    
      end;
    
      then (
    union ( 
    rng K)) 
    c=  
    {} by 
    TARSKI:def 3;
    
      hence (
    union ( 
    rng K)) 
    =  
    {} ; 
    
    end;
    
    theorem :: 
    
    MEASURE9:2
    
    for K be
    Function holds ( 
    rng K) is 
    empty-membered iff (for x be 
    object holds (K 
    . x) 
    =  
    {} ) 
    
    proof
    
      let K be
    Function;
    
      hereby
    
        assume
    
        
    
    A1: ( 
    rng K) is 
    empty-membered;
    
        let x be
    object;
    
        per cases ;
    
          suppose x
    in ( 
    dom K); 
    
          hence (K
    . x) 
    =  
    {} by 
    A1,
    FUNCT_1: 3;
    
        end;
    
          suppose not x
    in ( 
    dom K); 
    
          hence (K
    . x) 
    =  
    {} by 
    FUNCT_1:def 2;
    
        end;
    
      end;
    
      assume
    
      
    
    A2: for x be 
    object holds (K 
    . x) 
    =  
    {} ; 
    
      now
    
        assume ex y be non
    empty  
    set st y 
    in ( 
    rng K); 
    
        then
    
        consider y be non
    empty  
    set such that 
    
        
    
    A3: y 
    in ( 
    rng K); 
    
        ex a be
    object st a 
    in ( 
    dom K) & y 
    = (K 
    . a) by 
    A3,
    FUNCT_1:def 3;
    
        hence contradiction by
    A2;
    
      end;
    
      hence (
    rng K) is 
    empty-membered;
    
    end;
    
    definition
    
      let D be
    set, F be 
    FinSequenceSet of D, f be 
    FinSequence of F, n be 
    Nat;
    
      :: original:
    .
    
      redefine
    
      func f
    
    . n -> 
    FinSequence of D ; 
    
      correctness
    
      proof
    
        per cases ;
    
          suppose n
    in ( 
    dom f); 
    
          then (f
    . n) 
    in ( 
    rng f) by 
    FUNCT_1: 3;
    
          hence (f
    . n) is 
    FinSequence of D by 
    FINSEQ_2:def 3;
    
        end;
    
          suppose not n
    in ( 
    dom f); 
    
          then (f
    . n) 
    = ( 
    <*> D) by 
    FUNCT_1:def 2;
    
          hence (f
    . n) is 
    FinSequence of D; 
    
        end;
    
      end;
    
    end
    
    definition
    
      let D be
    set, Y be 
    FinSequenceSet of D, F be 
    FinSequence of Y; 
    
      :: 
    
    MEASURE9:def1
    
      func
    
    Length F -> 
    FinSequence of 
    NAT means 
    
      :
    
    Def1: ( 
    dom it ) 
    = ( 
    dom F) & for n be 
    Nat st n 
    in ( 
    dom it ) holds (it 
    . n) 
    = ( 
    len (F 
    . n)); 
    
      existence
    
      proof
    
        defpred
    
    P[
    Nat, 
    object] means $2
    = ( 
    len (F 
    . $1)); 
    
        
    
        
    
    A1: for k be 
    Nat st k 
    in ( 
    Seg ( 
    len F)) holds ex x be 
    Element of 
    NAT st 
    P[k, x];
    
        consider IT be
    FinSequence of 
    NAT such that 
    
        
    
    A2: ( 
    dom IT) 
    = ( 
    Seg ( 
    len F)) & for k be 
    Nat st k 
    in ( 
    Seg ( 
    len F)) holds 
    P[k, (IT
    . k)] from 
    FINSEQ_1:sch 5(
    A1);
    
        take IT;
    
        thus (
    dom IT) 
    = ( 
    dom F) by 
    A2,
    FINSEQ_1:def 3;
    
        thus for n be
    Nat st n 
    in ( 
    dom IT) holds (IT 
    . n) 
    = ( 
    len (F 
    . n)) by 
    A2;
    
      end;
    
      uniqueness
    
      proof
    
        let IT1,IT2 be
    FinSequence of 
    NAT ; 
    
        assume that
    
        
    
    A1: ( 
    dom IT1) 
    = ( 
    dom F) & for n be 
    Nat st n 
    in ( 
    dom IT1) holds (IT1 
    . n) 
    = ( 
    len (F 
    . n)) and 
    
        
    
    A2: ( 
    dom IT2) 
    = ( 
    dom F) & for n be 
    Nat st n 
    in ( 
    dom IT2) holds (IT2 
    . n) 
    = ( 
    len (F 
    . n)); 
    
        
    
        
    
    A3: ( 
    len IT1) 
    = ( 
    len IT2) by 
    A1,
    A2,
    FINSEQ_3: 29;
    
        now
    
          let k be
    Nat;
    
          assume k
    in ( 
    dom IT1); 
    
          then (IT1
    . k) 
    = ( 
    len (F 
    . k)) & (IT2 
    . k) 
    = ( 
    len (F 
    . k)) by 
    A1,
    A2;
    
          hence (IT1
    . k) 
    = (IT2 
    . k); 
    
        end;
    
        hence IT1
    = IT2 by 
    A3,
    FINSEQ_2: 9;
    
      end;
    
    end
    
    theorem :: 
    
    MEASURE9:3
    
    for D be
    set, Y be 
    FinSequenceSet of D, F be 
    FinSequence of Y st (for n be 
    Nat st n 
    in ( 
    dom F) holds (F 
    . n) 
    = ( 
    <*> D)) holds ( 
    Sum ( 
    Length F)) 
    =  
    0  
    
    proof
    
      let D be
    set, Y be 
    FinSequenceSet of D, F be 
    FinSequence of Y; 
    
      assume
    
      
    
    A1: for n be 
    Nat st n 
    in ( 
    dom F) holds (F 
    . n) 
    = ( 
    <*> D); 
    
      
    
      
    
    A2: ( 
    dom ( 
    Length F)) 
    = ( 
    dom F) by 
    Def1
    
      .= (
    Seg ( 
    len F)) by 
    FINSEQ_1:def 3;
    
      
    
      
    
    A6: (( 
    len F) 
    |->  
    0 qua 
    Real)
    = (( 
    Seg ( 
    len F)) 
    -->  
    0 qua 
    Real) by
    FINSEQ_2:def 2;
    
      then
    
      
    
    A3: ( 
    dom (( 
    len F) 
    |->  
    0 qua 
    Real))
    = ( 
    Seg ( 
    len F)) by 
    FUNCT_2:def 1;
    
      now
    
        let k be
    Nat;
    
        assume
    
        
    
    A4: k 
    in ( 
    dom ( 
    Length F)); 
    
        then k
    in ( 
    dom F) by 
    Def1;
    
        then (F
    . k) 
    = ( 
    <*> D) by 
    A1;
    
        then ((
    Length F) 
    . k) 
    =  
    0 by 
    A4,
    Def1;
    
        hence ((
    Length F) 
    . k) 
    = ((( 
    len F) 
    |->  
    0 qua 
    Real)
    . k) by 
    A2,
    A4,
    A6,
    FUNCOP_1: 7;
    
      end;
    
      then (
    Length F) 
    = (( 
    len F) 
    |->  
    0 qua 
    Real) by
    A2,
    A3,
    FINSEQ_1: 13;
    
      hence (
    Sum ( 
    Length F)) 
    =  
    0 by 
    RVSUM_1: 81;
    
    end;
    
    theorem :: 
    
    MEASURE9:4
    
    
    
    
    
    Th2: for D be 
    set, Y be 
    FinSequenceSet of D, F be 
    FinSequence of Y, k be 
    Nat st k 
    < ( 
    len F) holds ( 
    Length (F 
    | (k 
    + 1))) 
    = (( 
    Length (F 
    | k)) 
    ^  
    <*(
    len (F 
    . (k 
    + 1)))*>) 
    
    proof
    
      let D be
    set, Y be 
    FinSequenceSet of D, F be 
    FinSequence of Y, k be 
    Nat;
    
      assume
    
      
    
    A1: k 
    < ( 
    len F); 
    
      then (k
    + 1) 
    <= ( 
    len F) by 
    NAT_1: 13;
    
      then
    
      
    
    A3: ( 
    len (F 
    | (k 
    + 1))) 
    = (k 
    + 1) by 
    FINSEQ_1: 59;
    
      
    
      
    
    A6: ( 
    len (F 
    | k)) 
    = k by 
    A1,
    FINSEQ_1: 59;
    
      
    
      
    
    A5: ( 
    dom ( 
    Length (F 
    | (k 
    + 1)))) 
    = ( 
    dom (F 
    | (k 
    + 1))) & ( 
    dom ( 
    Length (F 
    | k))) 
    = ( 
    dom (F 
    | k)) by 
    Def1;
    
      then
    
      
    
    A7: ( 
    len ( 
    Length (F 
    | (k 
    + 1)))) 
    = (k 
    + 1) & ( 
    len ( 
    Length (F 
    | k))) 
    = k by 
    A3,
    A6,
    FINSEQ_3: 29;
    
      
    
      then
    
      
    
    A8: ( 
    len (( 
    Length (F 
    | k)) 
    ^  
    <*(
    len (F 
    . (k 
    + 1)))*>)) 
    = (k 
    + ( 
    len  
    <*(
    len (F 
    . (k 
    + 1)))*>)) by 
    FINSEQ_1: 22
    
      .= (k
    + 1) by 
    FINSEQ_1: 40;
    
      now
    
        let n be
    Nat;
    
        assume
    
        
    
    A9: 1 
    <= n & n 
    <= ( 
    len ( 
    Length (F 
    | (k 
    + 1)))); 
    
        then n
    in ( 
    dom ( 
    Length (F 
    | (k 
    + 1)))) by 
    FINSEQ_3: 25;
    
        
    
        then
    
        
    
    A10: (( 
    Length (F 
    | (k 
    + 1))) 
    . n) 
    = ( 
    len ((F 
    | (k 
    + 1)) 
    . n)) by 
    Def1
    
        .= (
    len (F 
    . n)) by 
    A7,
    A9,
    FINSEQ_3: 112;
    
        per cases ;
    
          suppose n
    = ( 
    len ( 
    Length (F 
    | (k 
    + 1)))); 
    
          hence ((
    Length (F 
    | (k 
    + 1))) 
    . n) 
    = ((( 
    Length (F 
    | k)) 
    ^  
    <*(
    len (F 
    . (k 
    + 1)))*>) 
    . n) by 
    A7,
    A10,
    FINSEQ_1: 42;
    
        end;
    
          suppose n
    <> ( 
    len ( 
    Length (F 
    | (k 
    + 1)))); 
    
          then n
    < (k 
    + 1) by 
    A7,
    A9,
    XXREAL_0: 1;
    
          then
    
          
    
    A11: n 
    <= k by 
    NAT_1: 13;
    
          
    
          then (((
    Length (F 
    | k)) 
    ^  
    <*(
    len (F 
    . (k 
    + 1)))*>) 
    . n) 
    = (( 
    Length (F 
    | k)) 
    . n) by 
    A9,
    A7,
    FINSEQ_1: 64
    
          .= (
    len ((F 
    | k) 
    . n)) by 
    A11,
    Def1,
    A9,
    A5,
    A6,
    FINSEQ_3: 25
    
          .= (
    len (F 
    . n)) by 
    A11,
    FINSEQ_3: 112;
    
          hence ((
    Length (F 
    | (k 
    + 1))) 
    . n) 
    = ((( 
    Length (F 
    | k)) 
    ^  
    <*(
    len (F 
    . (k 
    + 1)))*>) 
    . n) by 
    A10;
    
        end;
    
      end;
    
      hence thesis by
    A5,
    A8,
    A3,
    FINSEQ_3: 29;
    
    end;
    
    theorem :: 
    
    MEASURE9:5
    
    
    
    
    
    Th3: for D be 
    set, Y be 
    FinSequenceSet of D, F be 
    FinSequence of Y, n be 
    Nat st 1 
    <= n & n 
    <= ( 
    Sum ( 
    Length F)) holds ex k,m be 
    Nat st 1 
    <= m & m 
    <= ( 
    len (F 
    . (k 
    + 1))) & k 
    < ( 
    len F) & (m 
    + ( 
    Sum ( 
    Length (F 
    | k)))) 
    = n & n 
    <= ( 
    Sum ( 
    Length (F 
    | (k 
    + 1)))) 
    
    proof
    
      let D be
    set, Y be 
    FinSequenceSet of D, F be 
    FinSequence of Y, n be 
    Nat;
    
      assume
    
      
    
    A1: 1 
    <= n & n 
    <= ( 
    Sum ( 
    Length F)); 
    
      now
    
        assume
    
        
    
    A2: for k be 
    Nat holds n 
    <= ( 
    Sum ( 
    Length (F 
    | k))) or n 
    > ( 
    Sum ( 
    Length (F 
    | (k 
    + 1)))); 
    
        defpred
    
    P[
    Nat] means n
    > ( 
    Sum ( 
    Length (F 
    | ($1 
    + 1)))); 
    
        (
    dom ( 
    Length (F 
    |  
    0 ))) 
    = ( 
    dom  
    {} ) by 
    Def1;
    
        then (
    Length (F 
    |  
    0 )) 
    =  
    {} ; 
    
        then
    
        
    
    A3: 
    P[
    0 ] by 
    A2,
    A1,
    RVSUM_1: 72;
    
        
    
        
    
    A4: for k be 
    Nat st 
    P[k] holds
    P[(k
    + 1)] by 
    A2;
    
        for k be
    Nat holds 
    P[k] from
    NAT_1:sch 2(
    A3,
    A4);
    
        then n
    > ( 
    Sum ( 
    Length (F 
    | (( 
    len F) 
    + 1)))); 
    
        hence contradiction by
    A1,
    FINSEQ_1: 58,
    NAT_1: 11;
    
      end;
    
      then
    
      consider k be
    Nat such that 
    
      
    
    A6: ( 
    Sum ( 
    Length (F 
    | k))) 
    < n & n 
    <= ( 
    Sum ( 
    Length (F 
    | (k 
    + 1)))); 
    
      consider m be
    Nat such that 
    
      
    
    A7: n 
    = (( 
    Sum ( 
    Length (F 
    | k))) 
    + m) by 
    A6,
    NAT_1: 10;
    
      take k, m;
    
      
    
    A8: 
    
      now
    
        assume
    
        
    
    A9: ( 
    len F) 
    <= k; 
    
        k
    <= (k 
    + 1) by 
    NAT_1: 11;
    
        then (F
    | (k 
    + 1)) 
    = F & (F 
    | k) 
    = F by 
    A9,
    XXREAL_0: 2,
    FINSEQ_1: 58;
    
        hence contradiction by
    A6;
    
      end;
    
      then (
    Length (F 
    | (k 
    + 1))) 
    = (( 
    Length (F 
    | k)) 
    ^  
    <*(
    len (F 
    . (k 
    + 1)))*>) by 
    Th2;
    
      then (m
    + ( 
    Sum ( 
    Length (F 
    | k)))) 
    <= (( 
    Sum ( 
    Length (F 
    | k))) 
    + ( 
    len (F 
    . (k 
    + 1)))) by 
    A6,
    A7,
    RVSUM_1: 74;
    
      hence thesis by
    A6,
    A7,
    NAT_1: 19,
    A8,
    XREAL_1: 6;
    
    end;
    
    
    
    
    
    RFINSEQlm3: for n be 
    Nat, D be 
    set, f be 
    FinSequence of D st ( 
    len f) 
    <= n holds (f 
    | n) 
    = f 
    
    proof
    
      let n be
    Nat, D be 
    set, f be 
    FinSequence of D; 
    
      
    
      
    
    A1: ( 
    dom f) 
    = ( 
    Seg ( 
    len f)) by 
    FINSEQ_1:def 3;
    
      assume (
    len f) 
    <= n; 
    
      hence thesis by
    A1,
    FINSEQ_1: 5,
    RELAT_1: 68;
    
    end;
    
    
    
    
    
    RFINSEQ6: for D be 
    set, f be 
    FinSequence of D, n,m be 
    Nat holds n 
    in ( 
    dom f) & m 
    in ( 
    Seg n) implies ((f 
    | n) 
    . m) 
    = (f 
    . m) & m 
    in ( 
    dom f) 
    
    proof
    
      let D be
    set, f be 
    FinSequence of D, n,m be 
    Nat;
    
      assume that
    
      
    
    A1: n 
    in ( 
    dom f) and 
    
      
    
    A2: m 
    in ( 
    Seg n); 
    
      
    
      
    
    A3: ( 
    dom f) 
    = ( 
    Seg ( 
    len f)) & n 
    <= ( 
    len f) by 
    A1,
    FINSEQ_1:def 3,
    FINSEQ_3: 25;
    
      then
    
      
    
    A4: ( 
    Seg n) 
    c= ( 
    dom f) by 
    FINSEQ_1: 5;
    
      (
    Seg n) 
    = (( 
    dom f) 
    /\ ( 
    Seg n)) by 
    A3,
    FINSEQ_1: 5,
    XBOOLE_1: 28
    
      .= (
    dom (f 
    | n)) by 
    RELAT_1: 61;
    
      hence thesis by
    A2,
    A4,
    FUNCT_1: 47;
    
    end;
    
    
    
    
    
    RFINSEQ8: for D be 
    set, f be 
    FinSequence of D, n be 
    Nat holds ((f 
    | n) 
    ^ (f 
    /^ n)) 
    = f 
    
    proof
    
      let D be
    set, f be 
    FinSequence of D, n be 
    Nat;
    
      set fn = (f
    /^ n); 
    
      per cases ;
    
        suppose (
    len f) 
    < n; 
    
        then (f
    /^ n) 
    = ( 
    <*> D) & (f 
    | n) 
    = f by 
    RFINSEQ:def 1,
    RFINSEQlm3;
    
        hence thesis by
    FINSEQ_1: 34;
    
      end;
    
        suppose
    
        
    
    A1: n 
    <= ( 
    len f); 
    
        then
    
        
    
    A3: ( 
    len (f 
    | n)) 
    = n by 
    FINSEQ_1: 59;
    
        
    
        
    
    A4: ( 
    len fn) 
    = (( 
    len f) 
    - n) by 
    A1,
    RFINSEQ:def 1;
    
        then
    
        
    
    A5: ( 
    len ((f 
    | n) 
    ^ (f 
    /^ n))) 
    = (n 
    + (( 
    len f) 
    - n)) by 
    A3,
    FINSEQ_1: 22;
    
        
    
        
    
    A6: ( 
    dom (f 
    | n)) 
    = ( 
    Seg n) by 
    A3,
    FINSEQ_1:def 3;
    
        now
    
          let m be
    Nat;
    
          assume m
    in ( 
    dom f); 
    
          then
    
          
    
    A8: 1 
    <= m & m 
    <= ( 
    len f) by 
    FINSEQ_3: 25;
    
          per cases ;
    
            suppose
    
            
    
    A10: m 
    <= n; 
    
            then 1
    <= n by 
    A8,
    XXREAL_0: 2;
    
            then
    
            
    
    A11: n 
    in ( 
    dom f) by 
    A1,
    FINSEQ_3: 25;
    
            
    
            
    
    A12: m 
    in ( 
    Seg n) by 
    A8,
    A10;
    
            
    
            hence (((f
    | n) 
    ^ (f 
    /^ n)) 
    . m) 
    = ((f 
    | n) 
    . m) by 
    A6,
    FINSEQ_1:def 7
    
            .= (f
    . m) by 
    A12,
    A11,
    RFINSEQ6;
    
          end;
    
            suppose
    
            
    
    A13: n 
    < m; 
    
            then (
    max ( 
    0 ,(m 
    - n))) 
    = (m 
    - n) by 
    FINSEQ_2: 4;
    
            then
    
            reconsider k = (m
    - n) as 
    Element of 
    NAT by 
    FINSEQ_2: 5;
    
            (n
    + 1) 
    <= m by 
    A13,
    NAT_1: 13;
    
            then 1
    <= k by 
    XREAL_1: 19;
    
            then
    
            
    
    A15: k 
    in ( 
    dom fn) by 
    A4,
    A8,
    XREAL_1: 9,
    FINSEQ_3: 25;
    
            (((f
    | n) 
    ^ (f 
    /^ n)) 
    . m) 
    = (fn 
    . k) by 
    A3,
    A5,
    A8,
    A13,
    FINSEQ_1: 24;
    
            then (((f
    | n) 
    ^ (f 
    /^ n)) 
    . m) 
    = (f 
    . (k 
    + n)) by 
    A1,
    A15,
    RFINSEQ:def 1;
    
            hence (((f
    | n) 
    ^ (f 
    /^ n)) 
    . m) 
    = (f 
    . m); 
    
          end;
    
        end;
    
        hence thesis by
    A5,
    FINSEQ_2: 9;
    
      end;
    
    end;
    
    theorem :: 
    
    MEASURE9:6
    
    
    
    
    
    Th4: for D be 
    set, Y be 
    FinSequenceSet of D, F1,F2 be 
    FinSequence of Y holds ( 
    Length (F1 
    ^ F2)) 
    = (( 
    Length F1) 
    ^ ( 
    Length F2)) 
    
    proof
    
      let D be
    set, Y be 
    FinSequenceSet of D, F1,F2 be 
    FinSequence of Y; 
    
      
    
      
    
    B1: ( 
    dom ( 
    Length (F1 
    ^ F2))) 
    = ( 
    dom (F1 
    ^ F2)) & ( 
    dom ( 
    Length F1)) 
    = ( 
    dom F1) & ( 
    dom ( 
    Length F2)) 
    = ( 
    dom F2) by 
    Def1;
    
      then
    
      
    
    A1: ( 
    len ( 
    Length (F1 
    ^ F2))) 
    = ( 
    len (F1 
    ^ F2)) & ( 
    len ( 
    Length F1)) 
    = ( 
    len F1) & ( 
    len ( 
    Length F2)) 
    = ( 
    len F2) by 
    FINSEQ_3: 29;
    
      
    
      
    
    B2: ( 
    len (( 
    Length F1) 
    ^ ( 
    Length F2))) 
    = (( 
    len ( 
    Length F1)) 
    + ( 
    len ( 
    Length F2))) by 
    FINSEQ_1: 22;
    
      then
    
      
    
    A2: ( 
    len ( 
    Length (F1 
    ^ F2))) 
    = ( 
    len (( 
    Length F1) 
    ^ ( 
    Length F2))) by 
    A1,
    FINSEQ_1: 22;
    
      now
    
        let k be
    Nat;
    
        assume
    
        
    
    A3: 1 
    <= k & k 
    <= ( 
    len ( 
    Length (F1 
    ^ F2))); 
    
        then k
    in ( 
    dom ( 
    Length (F1 
    ^ F2))) by 
    FINSEQ_3: 25;
    
        then
    
        
    
    A4: (( 
    Length (F1 
    ^ F2)) 
    . k) 
    = ( 
    len ((F1 
    ^ F2) 
    . k)) by 
    Def1;
    
        per cases ;
    
          suppose
    
          
    
    B5: k 
    <= ( 
    len ( 
    Length F1)); 
    
          then
    
          
    
    A5: k 
    in ( 
    dom F1) & k 
    in ( 
    dom ( 
    Length F1)) by 
    B1,
    A3,
    FINSEQ_3: 25;
    
          
    
          then (((
    Length F1) 
    ^ ( 
    Length F2)) 
    . k) 
    = (( 
    Length F1) 
    . k) by 
    FINSEQ_1:def 7
    
          .= (
    len (F1 
    . k)) by 
    B5,
    Def1,
    B1,
    A3,
    FINSEQ_3: 25;
    
          hence ((
    Length (F1 
    ^ F2)) 
    . k) 
    = ((( 
    Length F1) 
    ^ ( 
    Length F2)) 
    . k) by 
    A5,
    A4,
    FINSEQ_1:def 7;
    
        end;
    
          suppose
    
          
    
    A7: ( 
    len ( 
    Length F1)) 
    < k; 
    
          then ((
    len ( 
    Length F1)) 
    + 1) 
    <= k by 
    NAT_1: 13;
    
          then (k
    - (( 
    len ( 
    Length F1)) 
    + 1)) is 
    Nat by 
    NAT_1: 21;
    
          then
    
          reconsider k1 = ((k
    - ( 
    len ( 
    Length F1))) 
    - 1) as 
    Nat;
    
          k
    <= (( 
    len ( 
    Length F1)) 
    + ( 
    len ( 
    Length F2))) by 
    A3,
    A1,
    FINSEQ_1: 22;
    
          then (k
    - ( 
    len ( 
    Length F1))) 
    <= ( 
    len ( 
    Length F2)) by 
    XREAL_1: 20;
    
          then
    
          
    
    A10: (k1 
    + 1) 
    in ( 
    dom ( 
    Length F2)) by 
    FINSEQ_3: 25,
    NAT_1: 11;
    
          (((
    Length F1) 
    ^ ( 
    Length F2)) 
    . k) 
    = (( 
    Length F2) 
    . (k1 
    + 1)) by 
    A2,
    A3,
    A7,
    FINSEQ_1: 24
    
          .= (
    len (F2 
    . (k1 
    + 1))) by 
    A10,
    Def1;
    
          hence ((
    Length (F1 
    ^ F2)) 
    . k) 
    = ((( 
    Length F1) 
    ^ ( 
    Length F2)) 
    . k) by 
    A4,
    A3,
    A1,
    A7,
    FINSEQ_1: 24;
    
        end;
    
      end;
    
      hence thesis by
    B2,
    A1,
    FINSEQ_1: 22;
    
    end;
    
    theorem :: 
    
    MEASURE9:7
    
    
    
    
    
    Th5: for D be 
    set, Y be 
    FinSequenceSet of D, F be 
    FinSequence of Y, k1,k2 be 
    Nat st k1 
    <= k2 holds ( 
    Sum ( 
    Length (F 
    | k1))) 
    <= ( 
    Sum ( 
    Length (F 
    | k2))) 
    
    proof
    
      let D be
    set, Y be 
    FinSequenceSet of D, F be 
    FinSequence of Y, k1,k2 be 
    Nat;
    
      assume k1
    <= k2; 
    
      then ((F
    | k2) 
    | k1) 
    = (F 
    | k1) by 
    FINSEQ_1: 82;
    
      then (F
    | k2) 
    = ((F 
    | k1) 
    ^ ((F 
    | k2) 
    /^ k1)) by 
    RFINSEQ8;
    
      then (
    Length (F 
    | k2)) 
    = (( 
    Length (F 
    | k1)) 
    ^ ( 
    Length ((F 
    | k2) 
    /^ k1))) by 
    Th4;
    
      then (
    Sum ( 
    Length (F 
    | k2))) 
    = (( 
    Sum ( 
    Length (F 
    | k1))) 
    + ( 
    Sum ( 
    Length ((F 
    | k2) 
    /^ k1)))) by 
    RVSUM_1: 75;
    
      hence thesis by
    NAT_1: 11;
    
    end;
    
    theorem :: 
    
    MEASURE9:8
    
    
    
    
    
    Th6: for D be 
    set, Y be 
    FinSequenceSet of D, F be 
    FinSequence of Y, m1,m2,k1,k2 be 
    Nat st 1 
    <= m1 & 1 
    <= m2 & (m1 
    + ( 
    Sum ( 
    Length (F 
    | k1)))) 
    = (m2 
    + ( 
    Sum ( 
    Length (F 
    | k2)))) & (m1 
    + ( 
    Sum ( 
    Length (F 
    | k1)))) 
    <= ( 
    Sum ( 
    Length (F 
    | (k1 
    + 1)))) & (m2 
    + ( 
    Sum ( 
    Length (F 
    | k2)))) 
    <= ( 
    Sum ( 
    Length (F 
    | (k2 
    + 1)))) holds m1 
    = m2 & k1 
    = k2 
    
    proof
    
      let D be
    set, Y be 
    FinSequenceSet of D, F be 
    FinSequence of Y, m1,m2,k1,k2 be 
    Nat;
    
      assume that
    
      
    
    A1: 1 
    <= m1 & 1 
    <= m2 and 
    
      
    
    A2: (m1 
    + ( 
    Sum ( 
    Length (F 
    | k1)))) 
    = (m2 
    + ( 
    Sum ( 
    Length (F 
    | k2)))) and 
    
      
    
    A3: (m1 
    + ( 
    Sum ( 
    Length (F 
    | k1)))) 
    <= ( 
    Sum ( 
    Length (F 
    | (k1 
    + 1)))) and 
    
      
    
    A4: (m2 
    + ( 
    Sum ( 
    Length (F 
    | k2)))) 
    <= ( 
    Sum ( 
    Length (F 
    | (k2 
    + 1)))); 
    
      set n = (m1
    + ( 
    Sum ( 
    Length (F 
    | k1)))); 
    
      
    
    A5: 
    
      now
    
        assume
    
        
    
    A6: k1 
    <> k2; 
    
        per cases by
    A6,
    XXREAL_0: 1;
    
          suppose k1
    < k2; 
    
          then (k1
    + 1) 
    <= k2 by 
    NAT_1: 13;
    
          then (
    Sum ( 
    Length (F 
    | (k1 
    + 1)))) 
    <= ( 
    Sum ( 
    Length (F 
    | k2))) by 
    Th5;
    
          then n
    <= ( 
    Sum ( 
    Length (F 
    | k2))) by 
    A3,
    XXREAL_0: 2;
    
          hence contradiction by
    A2,
    A1,
    NAT_1: 19;
    
        end;
    
          suppose k1
    > k2; 
    
          then (k2
    + 1) 
    <= k1 by 
    NAT_1: 13;
    
          then (
    Sum ( 
    Length (F 
    | (k2 
    + 1)))) 
    <= ( 
    Sum ( 
    Length (F 
    | k1))) by 
    Th5;
    
          then n
    <= ( 
    Sum ( 
    Length (F 
    | k1))) by 
    A2,
    A4,
    XXREAL_0: 2;
    
          hence contradiction by
    A1,
    NAT_1: 19;
    
        end;
    
      end;
    
      now
    
        assume m1
    <> m2; 
    
        then ((
    Sum ( 
    Length (F 
    | k1))) 
    - ( 
    Sum ( 
    Length (F 
    | k2)))) 
    <>  
    0 by 
    A2;
    
        hence k1
    <> k2; 
    
      end;
    
      hence thesis by
    A5;
    
    end;
    
    definition
    
      let D be non
    empty  
    set, Y be 
    FinSequenceSet of D, F be 
    FinSequence of Y; 
    
      :: 
    
    MEASURE9:def2
    
      func
    
    joined_FinSeq F -> 
    FinSequence of D means 
    
      :
    
    Def2: ( 
    len it ) 
    = ( 
    Sum ( 
    Length F)) & for n be 
    Nat st n 
    in ( 
    dom it ) holds ex k,m be 
    Nat st 1 
    <= m & m 
    <= ( 
    len (F 
    . (k 
    + 1))) & k 
    < ( 
    len F) & (m 
    + ( 
    Sum ( 
    Length (F 
    | k)))) 
    = n & n 
    <= ( 
    Sum ( 
    Length (F 
    | (k 
    + 1)))) & (it 
    . n) 
    = ((F 
    . (k 
    + 1)) 
    . m); 
    
      existence
    
      proof
    
        defpred
    
    P[
    Nat, 
    object] means ex k,m be
    Nat st 1 
    <= m & m 
    <= ( 
    len (F 
    . (k 
    + 1))) & k 
    < ( 
    len F) & (m 
    + ( 
    Sum ( 
    Length (F 
    | k)))) 
    = $1 & $1 
    <= ( 
    Sum ( 
    Length (F 
    | (k 
    + 1)))) & $2 
    = ((F 
    . (k 
    + 1)) 
    . m); 
    
        
    
        
    
    A1: for n be 
    Nat st n 
    in ( 
    Seg ( 
    Sum ( 
    Length F))) holds ex x be 
    Element of D st 
    P[n, x]
    
        proof
    
          let n be
    Nat;
    
          assume n
    in ( 
    Seg ( 
    Sum ( 
    Length F))); 
    
          then 1
    <= n & n 
    <= ( 
    Sum ( 
    Length F)) by 
    FINSEQ_1: 1;
    
          then
    
          consider k,m be
    Nat such that 
    
          
    
    A2: 1 
    <= m & m 
    <= ( 
    len (F 
    . (k 
    + 1))) & k 
    < ( 
    len F) & (m 
    + ( 
    Sum ( 
    Length (F 
    | k)))) 
    = n & n 
    <= ( 
    Sum ( 
    Length (F 
    | (k 
    + 1)))) by 
    Th3;
    
          m
    in ( 
    dom (F 
    . (k 
    + 1))) by 
    A2,
    FINSEQ_3: 25;
    
          then ((F
    . (k 
    + 1)) 
    . m) 
    in ( 
    rng (F 
    . (k 
    + 1))) by 
    FUNCT_1: 3;
    
          then
    
          reconsider x = ((F
    . (k 
    + 1)) 
    . m) as 
    Element of D; 
    
          take x;
    
          thus thesis by
    A2;
    
        end;
    
        consider IT be
    FinSequence of D such that 
    
        
    
    A3: ( 
    dom IT) 
    = ( 
    Seg ( 
    Sum ( 
    Length F))) & for n be 
    Nat st n 
    in ( 
    Seg ( 
    Sum ( 
    Length F))) holds 
    P[n, (IT
    . n)] from 
    FINSEQ_1:sch 5(
    A1);
    
        take IT;
    
        thus (
    len IT) 
    = ( 
    Sum ( 
    Length F)) by 
    A3,
    FINSEQ_1:def 3;
    
        thus for n be
    Nat st n 
    in ( 
    dom IT) holds ex k,m be 
    Nat st 1 
    <= m & m 
    <= ( 
    len (F 
    . (k 
    + 1))) & k 
    < ( 
    len F) & (m 
    + ( 
    Sum ( 
    Length (F 
    | k)))) 
    = n & n 
    <= ( 
    Sum ( 
    Length (F 
    | (k 
    + 1)))) & (IT 
    . n) 
    = ((F 
    . (k 
    + 1)) 
    . m) by 
    A3;
    
      end;
    
      uniqueness
    
      proof
    
        let IT1,IT2 be
    FinSequence of D; 
    
        assume that
    
        
    
    A1: ( 
    len IT1) 
    = ( 
    Sum ( 
    Length F)) & (for n be 
    Nat st n 
    in ( 
    dom IT1) holds ex k,m be 
    Nat st 1 
    <= m & m 
    <= ( 
    len (F 
    . (k 
    + 1))) & k 
    < ( 
    len F) & (m 
    + ( 
    Sum ( 
    Length (F 
    | k)))) 
    = n & n 
    <= ( 
    Sum ( 
    Length (F 
    | (k 
    + 1)))) & (IT1 
    . n) 
    = ((F 
    . (k 
    + 1)) 
    . m)) and 
    
        
    
    A2: ( 
    len IT2) 
    = ( 
    Sum ( 
    Length F)) & (for n be 
    Nat st n 
    in ( 
    dom IT2) holds ex k,m be 
    Nat st 1 
    <= m & m 
    <= ( 
    len (F 
    . (k 
    + 1))) & k 
    < ( 
    len F) & (m 
    + ( 
    Sum ( 
    Length (F 
    | k)))) 
    = n & n 
    <= ( 
    Sum ( 
    Length (F 
    | (k 
    + 1)))) & (IT2 
    . n) 
    = ((F 
    . (k 
    + 1)) 
    . m)); 
    
        
    
        
    
    A3: ( 
    dom IT1) 
    = ( 
    dom IT2) by 
    A1,
    A2,
    FINSEQ_3: 29;
    
        now
    
          let n be
    Nat;
    
          assume
    
          
    
    A4: n 
    in ( 
    dom IT1); 
    
          then
    
          consider k1,m1 be
    Nat such that 
    
          
    
    A5: 1 
    <= m1 & m1 
    <= ( 
    len (F 
    . (k1 
    + 1))) & k1 
    < ( 
    len F) & (m1 
    + ( 
    Sum ( 
    Length (F 
    | k1)))) 
    = n & n 
    <= ( 
    Sum ( 
    Length (F 
    | (k1 
    + 1)))) & (IT1 
    . n) 
    = ((F 
    . (k1 
    + 1)) 
    . m1) by 
    A1;
    
          consider k2,m2 be
    Nat such that 
    
          
    
    A6: 1 
    <= m2 & m2 
    <= ( 
    len (F 
    . (k2 
    + 1))) & k2 
    < ( 
    len F) & (m2 
    + ( 
    Sum ( 
    Length (F 
    | k2)))) 
    = n & n 
    <= ( 
    Sum ( 
    Length (F 
    | (k2 
    + 1)))) & (IT2 
    . n) 
    = ((F 
    . (k2 
    + 1)) 
    . m2) by 
    A2,
    A3,
    A4;
    
          k1
    = k2 & m1 
    = m2 by 
    A5,
    A6,
    Th6;
    
          hence (IT1
    . n) 
    = (IT2 
    . n) by 
    A5,
    A6;
    
        end;
    
        hence IT1
    = IT2 by 
    A1,
    A2,
    FINSEQ_3: 29,
    FINSEQ_1: 13;
    
      end;
    
    end
    
    definition
    
      let D be
    set, Y be 
    FinSequenceSet of D, s be 
    sequence of Y; 
    
      :: 
    
    MEASURE9:def3
    
      func
    
    Length s -> 
    sequence of 
    NAT means 
    
      :
    
    Def3: for n be 
    Nat holds (it 
    . n) 
    = ( 
    len (s 
    . n)); 
    
      existence
    
      proof
    
        defpred
    
    P[
    Nat, 
    object] means $2
    = ( 
    len (s 
    . $1)); 
    
        
    
        
    
    A1: for k be 
    Element of 
    NAT holds ex x be 
    Element of 
    NAT st 
    P[k, x];
    
        consider IT be
    Function of 
    NAT , 
    NAT such that 
    
        
    
    A2: for k be 
    Element of 
    NAT holds 
    P[k, (IT
    . k)] from 
    FUNCT_2:sch 3(
    A1);
    
        take IT;
    
        hereby
    
          let n be
    Nat;
    
          n is
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
          hence (IT
    . n) 
    = ( 
    len (s 
    . n)) by 
    A2;
    
        end;
    
      end;
    
      uniqueness
    
      proof
    
        let IT1,IT2 be
    sequence of 
    NAT ; 
    
        assume that
    
        
    
    A1: for n be 
    Nat holds (IT1 
    . n) 
    = ( 
    len (s 
    . n)) and 
    
        
    
    A2: for n be 
    Nat holds (IT2 
    . n) 
    = ( 
    len (s 
    . n)); 
    
        now
    
          let n be
    Element of 
    NAT ; 
    
          (IT1
    . n) 
    = ( 
    len (s 
    . n)) by 
    A1;
    
          hence (IT1
    . n) 
    = (IT2 
    . n) by 
    A2;
    
        end;
    
        hence IT1
    = IT2 by 
    FUNCT_2: 63;
    
      end;
    
    end
    
    definition
    
      let s be
    sequence of 
    NAT ; 
    
      :: original:
    Partial_Sums
    
      redefine
    
      func
    
    Partial_Sums s -> 
    sequence of 
    NAT ; 
    
      correctness
    
      proof
    
        
    
        
    
    A2: ( 
    Partial_Sums s) is 
    total;
    
        now
    
          let y be
    object;
    
          assume y
    in ( 
    rng ( 
    Partial_Sums s)); 
    
          then
    
          consider n be
    object such that 
    
          
    
    A3: n 
    in ( 
    dom ( 
    Partial_Sums s)) & y 
    = (( 
    Partial_Sums s) 
    . n) by 
    FUNCT_1:def 3;
    
          reconsider n as
    Nat by 
    A3;
    
          defpred
    
    P[
    Nat] means ((
    Partial_Sums s) 
    . $1) is 
    Nat;
    
          ((
    Partial_Sums s) 
    .  
    0 ) 
    = (s 
    .  
    0 ) by 
    SERIES_1:def 1;
    
          then
    
          
    
    A4: 
    P[
    0 ]; 
    
          
    
          
    
    A5: for k be 
    Nat st 
    P[k] holds
    P[(k
    + 1)] 
    
          proof
    
            let k be
    Nat;
    
            assume
    P[k];
    
            then
    
            reconsider Pk = ((
    Partial_Sums s) 
    . k) as 
    Nat;
    
            ((
    Partial_Sums s) 
    . (k 
    + 1)) 
    = (Pk 
    + (s 
    . (k 
    + 1))) by 
    SERIES_1:def 1;
    
            hence
    P[(k
    + 1)]; 
    
          end;
    
          for k be
    Nat holds 
    P[k] from
    NAT_1:sch 2(
    A4,
    A5);
    
          then ((
    Partial_Sums s) 
    . n) is 
    Nat;
    
          hence y
    in  
    NAT by 
    A3,
    ORDINAL1:def 12;
    
        end;
    
        hence (
    Partial_Sums s) is 
    sequence of 
    NAT by 
    A2,
    TARSKI:def 3,
    FUNCT_2: 2;
    
      end;
    
    end
    
    registration
    
      let D be non
    empty  
    set;
    
      cluster non 
    empty
    with_non-empty_element for 
    FinSequenceSet of D; 
    
      existence
    
      proof
    
        consider x be
    object such that 
    
        
    
    A1: x 
    in D by 
    XBOOLE_0:def 1;
    
        reconsider x as
    Element of D by 
    A1;
    
        set S =
    {
    <*x*>};
    
        for a be
    object st a 
    in S holds a is 
    FinSequence of D by 
    TARSKI:def 1;
    
        then
    
        reconsider S as
    FinSequenceSet of D by 
    FINSEQ_2:def 3;
    
        take S;
    
        thus S is non
    empty
    with_non-empty_element;
    
      end;
    
    end
    
    theorem :: 
    
    MEASURE9:9
    
    
    
    
    
    Th7: for D be non 
    empty  
    set, Y be non 
    empty
    with_non-empty_element  
    FinSequenceSet of D, s be 
    non-empty  
    sequence of Y, n be 
    Nat holds ( 
    len (s 
    . n)) 
    >= 1 & n 
    < (( 
    Partial_Sums ( 
    Length s)) 
    . n) & (( 
    Partial_Sums ( 
    Length s)) 
    . n) 
    < (( 
    Partial_Sums ( 
    Length s)) 
    . (n 
    + 1)) 
    
    proof
    
      let D be non
    empty  
    set, Y be non 
    empty
    with_non-empty_element  
    FinSequenceSet of D, s be 
    non-empty  
    sequence of Y, n be 
    Nat;
    
      defpred
    
    P[
    Nat] means $1
    < (( 
    Partial_Sums ( 
    Length s)) 
    . $1); 
    
      
    
      
    
    A1: for k be 
    Nat holds ( 
    len (s 
    . k)) 
    >= 1 
    
      proof
    
        let k be
    Nat;
    
        (
    dom s) 
    =  
    NAT by 
    FUNCT_2:def 1;
    
        then k
    in ( 
    dom s) by 
    ORDINAL1:def 12;
    
        hence (
    len (s 
    . k)) 
    >= 1 by 
    FINSEQ_1: 20;
    
      end;
    
      ((
    Partial_Sums ( 
    Length s)) 
    .  
    0 ) 
    = (( 
    Length s) 
    .  
    0 ) by 
    SERIES_1:def 1
    
      .= (
    len (s 
    .  
    0 )) by 
    Def3;
    
      then
    
      
    
    A3: 
    P[
    0 ]; 
    
      
    
      
    
    A4: for k be 
    Nat st 
    P[k] holds
    P[(k
    + 1)] 
    
      proof
    
        let k be
    Nat;
    
        assume
    
        
    
    A5: 
    P[k];
    
        
    
        
    
    A6: (( 
    Partial_Sums ( 
    Length s)) 
    . (k 
    + 1)) 
    = ((( 
    Partial_Sums ( 
    Length s)) 
    . k) 
    + (( 
    Length s) 
    . (k 
    + 1))) by 
    SERIES_1:def 1;
    
        ((
    Length s) 
    . (k 
    + 1)) 
    = ( 
    len (s 
    . (k 
    + 1))) by 
    Def3;
    
        hence
    P[(k
    + 1)] by 
    A1,
    A6,
    A5,
    XREAL_1: 8;
    
      end;
    
      for k be
    Nat holds 
    P[k] from
    NAT_1:sch 2(
    A3,
    A4);
    
      hence (
    len (s 
    . n)) 
    >= 1 & n 
    < (( 
    Partial_Sums ( 
    Length s)) 
    . n) by 
    A1;
    
      ((
    Partial_Sums ( 
    Length s)) 
    . (n 
    + 1)) 
    = ((( 
    Partial_Sums ( 
    Length s)) 
    . n) 
    + (( 
    Length s) 
    . (n 
    + 1))) by 
    SERIES_1:def 1
    
      .= (((
    Partial_Sums ( 
    Length s)) 
    . n) 
    + ( 
    len (s 
    . (n 
    + 1)))) by 
    Def3;
    
      hence thesis by
    XREAL_1: 29;
    
    end;
    
    theorem :: 
    
    MEASURE9:10
    
    
    
    
    
    Th8: for D be non 
    empty  
    set, Y be non 
    empty
    with_non-empty_element  
    FinSequenceSet of D, s be 
    non-empty  
    sequence of Y, n be 
    Nat holds ex k,m be 
    Nat st m 
    in ( 
    dom (s 
    . k)) & ((((( 
    Partial_Sums ( 
    Length s)) 
    . k) 
    - ( 
    len (s 
    . k))) 
    + m) 
    - 1) 
    = n 
    
    proof
    
      let D be non
    empty  
    set, Y be non 
    empty
    with_non-empty_element  
    FinSequenceSet of D, s be 
    non-empty  
    sequence of Y, n be 
    Nat;
    
      per cases ;
    
        suppose
    
        
    
    A1: n 
    < ( 
    len (s 
    .  
    0 )); 
    
        set k =
    0 ; 
    
        set m = (n
    + 1); 
    
        take k, m;
    
        
    
        
    
    A4: m 
    <= ( 
    len (s 
    . k)) by 
    A1,
    NAT_1: 13;
    
        ((
    Partial_Sums ( 
    Length s)) 
    . k) 
    = (( 
    Length s) 
    .  
    0 ) by 
    SERIES_1:def 1
    
        .= (
    len (s 
    . k)) by 
    Def3;
    
        hence m
    in ( 
    dom (s 
    . k)) & ((((( 
    Partial_Sums ( 
    Length s)) 
    . k) 
    - ( 
    len (s 
    . k))) 
    + m) 
    - 1) 
    = n by 
    NAT_1: 11,
    A4,
    FINSEQ_3: 25;
    
      end;
    
        suppose
    
        
    
    A5: ( 
    len (s 
    .  
    0 )) 
    <= n; 
    
        then ((
    Length s) 
    .  
    0 ) 
    <= n by 
    Def3;
    
        then
    
        
    
    A6: (( 
    Partial_Sums ( 
    Length s)) 
    .  
    0 ) 
    <= n by 
    SERIES_1:def 1;
    
        now
    
          assume
    
          
    
    A8: for k be 
    Nat st k 
    < n holds n 
    < (( 
    Partial_Sums ( 
    Length s)) 
    . k) or (( 
    Partial_Sums ( 
    Length s)) 
    . (k 
    + 1)) 
    <= n; 
    
          defpred
    
    P[
    Nat] means $1
    < n implies (( 
    Partial_Sums ( 
    Length s)) 
    . ($1 
    + 1)) 
    <= n; 
    
          
    
          
    
    A9: 
    P[
    0 ] by 
    A6,
    A8;
    
          
    
          
    
    A12: for k be 
    Nat st 
    P[k] holds
    P[(k
    + 1)] by 
    A8,
    NAT_1: 13;
    
          
    
          
    
    A13: for k be 
    Nat holds 
    P[k] from
    NAT_1:sch 2(
    A9,
    A12);
    
          reconsider n1 = (n
    - 1) as 
    Nat by 
    A5,
    NAT_1: 20;
    
          ((
    Partial_Sums ( 
    Length s)) 
    . (n1 
    + 1)) 
    <= n by 
    A13,
    NAT_1: 19;
    
          hence contradiction by
    Th7;
    
        end;
    
        then
    
        consider k1 be
    Nat such that 
    
        
    
    A14: k1 
    < n & (( 
    Partial_Sums ( 
    Length s)) 
    . k1) 
    <= n & n 
    < (( 
    Partial_Sums ( 
    Length s)) 
    . (k1 
    + 1)); 
    
        take k = (k1
    + 1); 
    
        reconsider m1 = (((
    Partial_Sums ( 
    Length s)) 
    . k) 
    - n) as 
    Nat by 
    A14,
    NAT_1: 21;
    
        ((
    Partial_Sums ( 
    Length s)) 
    . k) 
    = ((( 
    Partial_Sums ( 
    Length s)) 
    . k1) 
    + (( 
    Length s) 
    . k)) by 
    SERIES_1:def 1;
    
        then
    
        
    
    A15: m1 
    = (((( 
    Partial_Sums ( 
    Length s)) 
    . k1) 
    + ( 
    len (s 
    . k))) 
    - n) by 
    Def3;
    
        (((
    Partial_Sums ( 
    Length s)) 
    . k1) 
    - n) 
    <=  
    0 by 
    A14,
    XREAL_1: 47;
    
        then
    
        
    
    A17: (((( 
    Partial_Sums ( 
    Length s)) 
    . k1) 
    - n) 
    + ( 
    len (s 
    . k))) 
    <= ( 
    len (s 
    . k)) by 
    XREAL_1: 32;
    
        then m1
    <= ( 
    len (s 
    . k)) & ( 
    len (s 
    . k)) 
    <= (( 
    len (s 
    . k)) 
    + 1) by 
    A15,
    NAT_1: 11;
    
        then
    
        reconsider m = (((
    len (s 
    . k)) 
    + 1) 
    - m1) as 
    Nat by 
    NAT_1: 21,
    XXREAL_0: 2;
    
        take m;
    
        m1
    >  
    0 by 
    A14,
    XREAL_1: 50;
    
        then ((
    len (s 
    . k)) 
    - m1) 
    >=  
    0 & (1 
    - m1) 
    <=  
    0 by 
    A15,
    A17,
    NAT_1: 14,
    XREAL_1: 47,
    XREAL_1: 48;
    
        then (((
    len (s 
    . k)) 
    - m1) 
    + 1) 
    >= ( 
    0  
    + 1) & (( 
    len (s 
    . k)) 
    + (1 
    - m1)) 
    <= (( 
    len (s 
    . k)) 
    +  
    0 ) by 
    XREAL_1: 6;
    
        hence m
    in ( 
    dom (s 
    . k)) & ((((( 
    Partial_Sums ( 
    Length s)) 
    . k) 
    - ( 
    len (s 
    . k))) 
    + m) 
    - 1) 
    = n by 
    FINSEQ_3: 25;
    
      end;
    
    end;
    
    theorem :: 
    
    MEASURE9:11
    
    
    
    
    
    Th9: for D be non 
    empty  
    set, Y be non 
    empty
    with_non-empty_element  
    FinSequenceSet of D, s be 
    non-empty  
    sequence of Y holds ( 
    Partial_Sums ( 
    Length s)) is 
    increasing
    
    proof
    
      let D be non
    empty  
    set, Y be non 
    empty
    with_non-empty_element  
    FinSequenceSet of D, s be 
    non-empty  
    sequence of Y; 
    
      now
    
        let n,m be
    Nat;
    
        assume
    
        
    
    A1: n 
    in ( 
    dom ( 
    Partial_Sums ( 
    Length s))) & m 
    in ( 
    dom ( 
    Partial_Sums ( 
    Length s))) & n 
    < m; 
    
        defpred
    
    P[
    Nat] means ((
    Partial_Sums ( 
    Length s)) 
    . n) 
    < (( 
    Partial_Sums ( 
    Length s)) 
    . ((n 
    + 1) 
    + $1)); 
    
        ((
    Partial_Sums ( 
    Length s)) 
    . ((n 
    + 1) 
    +  
    0 )) 
    = ((( 
    Partial_Sums ( 
    Length s)) 
    . n) 
    + (( 
    Length s) 
    . (n 
    + 1))) by 
    SERIES_1:def 1
    
        .= (((
    Partial_Sums ( 
    Length s)) 
    . n) 
    + ( 
    len (s 
    . (n 
    + 1)))) by 
    Def3;
    
        then
    
        
    
    A3: 
    P[
    0 ] by 
    XREAL_1: 29;
    
        
    
        
    
    A4: for k be 
    Nat st 
    P[k] holds
    P[(k
    + 1)] 
    
        proof
    
          let k be
    Nat;
    
          assume
    
          
    
    A5: 
    P[k];
    
          ((
    Partial_Sums ( 
    Length s)) 
    . ((n 
    + 1) 
    + (k 
    + 1))) 
    = ((( 
    Partial_Sums ( 
    Length s)) 
    . ((n 
    + 1) 
    + k)) 
    + (( 
    Length s) 
    . (((n 
    + 1) 
    + k) 
    + 1))) by 
    SERIES_1:def 1
    
          .= (((
    Partial_Sums ( 
    Length s)) 
    . ((n 
    + 1) 
    + k)) 
    + ( 
    len (s 
    . (((n 
    + 1) 
    + k) 
    + 1)))) by 
    Def3;
    
          then ((
    Partial_Sums ( 
    Length s)) 
    . ((n 
    + 1) 
    + (k 
    + 1))) 
    > (( 
    Partial_Sums ( 
    Length s)) 
    . ((n 
    + 1) 
    + k)) by 
    XREAL_1: 29;
    
          hence
    P[(k
    + 1)] by 
    A5,
    XXREAL_0: 2;
    
        end;
    
        
    
        
    
    A7: for k be 
    Nat holds 
    P[k] from
    NAT_1:sch 2(
    A3,
    A4);
    
        (n
    + 1) 
    <= m by 
    A1,
    NAT_1: 13;
    
        then
    
        reconsider k = (m
    - (n 
    + 1)) as 
    Nat by 
    NAT_1: 21;
    
        m
    = ((n 
    + 1) 
    + k); 
    
        hence ((
    Partial_Sums ( 
    Length s)) 
    . n) 
    < (( 
    Partial_Sums ( 
    Length s)) 
    . m) by 
    A7;
    
      end;
    
      hence (
    Partial_Sums ( 
    Length s)) is 
    increasing by 
    SEQM_3:def 1;
    
    end;
    
    theorem :: 
    
    MEASURE9:12
    
    
    
    
    
    Th10: for D be non 
    empty  
    set, Y be non 
    empty
    with_non-empty_element  
    FinSequenceSet of D, s be 
    non-empty  
    sequence of Y, m1,m2,k1,k2 be 
    Nat st m1 
    in ( 
    dom (s 
    . k1)) & m2 
    in ( 
    dom (s 
    . k2)) & (((( 
    Partial_Sums ( 
    Length s)) 
    . k1) 
    - ( 
    len (s 
    . k1))) 
    + m1) 
    = (((( 
    Partial_Sums ( 
    Length s)) 
    . k2) 
    - ( 
    len (s 
    . k2))) 
    + m2) holds m1 
    = m2 & k1 
    = k2 
    
    proof
    
      let D be non
    empty  
    set, Y be non 
    empty
    with_non-empty_element  
    FinSequenceSet of D, s be 
    non-empty  
    sequence of Y, m1,m2,k1,k2 be 
    Nat;
    
      assume that
    
      
    
    A1: m1 
    in ( 
    dom (s 
    . k1)) & m2 
    in ( 
    dom (s 
    . k2)) and 
    
      
    
    A2: (((( 
    Partial_Sums ( 
    Length s)) 
    . k1) 
    - ( 
    len (s 
    . k1))) 
    + m1) 
    = (((( 
    Partial_Sums ( 
    Length s)) 
    . k2) 
    - ( 
    len (s 
    . k2))) 
    + m2); 
    
      set n = ((((
    Partial_Sums ( 
    Length s)) 
    . k1) 
    - ( 
    len (s 
    . k1))) 
    + m1); 
    
      
    
      
    
    A3: 1 
    <= m1 & m1 
    <= ( 
    len (s 
    . k1)) & 1 
    <= m2 & m2 
    <= ( 
    len (s 
    . k2)) by 
    A1,
    FINSEQ_3: 25;
    
      then ((
    len (s 
    . k1)) 
    - m1) 
    >=  
    0 & (( 
    len (s 
    . k2)) 
    - m2) 
    >=  
    0 by 
    XREAL_1: 48;
    
      then
    
      
    
    A4: ((( 
    Partial_Sums ( 
    Length s)) 
    . k1) 
    - (( 
    len (s 
    . k1)) 
    - m1)) 
    <= (( 
    Partial_Sums ( 
    Length s)) 
    . k1) & ((( 
    Partial_Sums ( 
    Length s)) 
    . k2) 
    - (( 
    len (s 
    . k2)) 
    - m2)) 
    <= (( 
    Partial_Sums ( 
    Length s)) 
    . k2) by 
    XREAL_1: 43;
    
      
    
      
    
    A5: ( 
    dom ( 
    Partial_Sums ( 
    Length s))) 
    =  
    NAT by 
    FUNCT_2:def 1;
    
      then
    
      
    
    A6: k1 
    in ( 
    dom ( 
    Partial_Sums ( 
    Length s))) & k2 
    in ( 
    dom ( 
    Partial_Sums ( 
    Length s))) by 
    ORDINAL1:def 12;
    
      
    
      
    
    A7: ( 
    Partial_Sums ( 
    Length s)) is 
    increasing by 
    Th9;
    
      
    
    A14: 
    
      now
    
        assume
    
        
    
    A8: k1 
    <> k2; 
    
        per cases by
    A8,
    XXREAL_0: 1;
    
          suppose k1
    < k2; 
    
          then
    
          
    
    A10: (k1 
    + 1) 
    <= k2 by 
    NAT_1: 13;
    
          1
    <= (k1 
    + 1) by 
    NAT_1: 11;
    
          then
    
          reconsider j = (k2
    - 1) as 
    Element of 
    NAT by 
    NAT_1: 21,
    A10,
    XXREAL_0: 2;
    
          
    
          
    
    A11: k1 
    <= j by 
    A10,
    XREAL_1: 19;
    
          
    
          
    
    A12: (( 
    Partial_Sums ( 
    Length s)) 
    . k1) 
    <= (( 
    Partial_Sums ( 
    Length s)) 
    . j) 
    
          proof
    
            k1
    = j or k1 
    < j by 
    A11,
    XXREAL_0: 1;
    
            hence thesis by
    A5,
    A6,
    A7,
    SEQM_3:def 1;
    
          end;
    
          ((
    Partial_Sums ( 
    Length s)) 
    . (j 
    + 1)) 
    = ((( 
    Partial_Sums ( 
    Length s)) 
    . j) 
    + (( 
    Length s) 
    . (j 
    + 1))) by 
    SERIES_1:def 1
    
          .= (((
    Partial_Sums ( 
    Length s)) 
    . j) 
    + ( 
    len (s 
    . k2))) by 
    Def3;
    
          then n
    > (( 
    Partial_Sums ( 
    Length s)) 
    . j) by 
    A3,
    A2,
    XREAL_1: 29;
    
          hence contradiction by
    A4,
    A12,
    XXREAL_0: 2;
    
        end;
    
          suppose k2
    < k1; 
    
          then
    
          
    
    A10: (k2 
    + 1) 
    <= k1 by 
    NAT_1: 13;
    
          1
    <= (k2 
    + 1) by 
    NAT_1: 11;
    
          then
    
          reconsider j = (k1
    - 1) as 
    Element of 
    NAT by 
    NAT_1: 21,
    A10,
    XXREAL_0: 2;
    
          
    
          
    
    A11: k2 
    <= j by 
    A10,
    XREAL_1: 19;
    
          
    
          
    
    A12: (( 
    Partial_Sums ( 
    Length s)) 
    . k2) 
    <= (( 
    Partial_Sums ( 
    Length s)) 
    . j) 
    
          proof
    
            k2
    = j or k2 
    < j by 
    A11,
    XXREAL_0: 1;
    
            hence thesis by
    A5,
    A6,
    A7,
    SEQM_3:def 1;
    
          end;
    
          ((
    Partial_Sums ( 
    Length s)) 
    . (j 
    + 1)) 
    = ((( 
    Partial_Sums ( 
    Length s)) 
    . j) 
    + (( 
    Length s) 
    . (j 
    + 1))) by 
    SERIES_1:def 1
    
          .= (((
    Partial_Sums ( 
    Length s)) 
    . j) 
    + ( 
    len (s 
    . k1))) by 
    Def3;
    
          then n
    > (( 
    Partial_Sums ( 
    Length s)) 
    . j) by 
    A3,
    XREAL_1: 29;
    
          hence contradiction by
    A2,
    A4,
    A12,
    XXREAL_0: 2;
    
        end;
    
      end;
    
      then (((
    Partial_Sums ( 
    Length s)) 
    . k1) 
    - ( 
    len (s 
    . k1))) 
    = ((( 
    Partial_Sums ( 
    Length s)) 
    . k2) 
    - ( 
    len (s 
    . k2))); 
    
      hence m1
    = m2 & k1 
    = k2 by 
    A2,
    A14;
    
    end;
    
    theorem :: 
    
    MEASURE9:13
    
    
    
    
    
    Th11: for D be non 
    empty  
    set, Y be 
    with_non-empty_element  
    FinSequenceSet of D, s be 
    non-empty  
    sequence of Y holds ex N be 
    increasing  
    sequence of 
    NAT st for k be 
    Nat holds (N 
    . k) 
    = ((( 
    Partial_Sums ( 
    Length s)) 
    . k) 
    - 1) 
    
    proof
    
      let D be non
    empty  
    set, Y be 
    with_non-empty_element  
    FinSequenceSet of D, s be 
    non-empty  
    sequence of Y; 
    
      defpred
    
    P[
    Nat, 
    Nat] means $2
    = ((( 
    Partial_Sums ( 
    Length s)) 
    . $1) 
    - 1); 
    
      
    
      
    
    A1: for k be 
    Element of 
    NAT holds ex n be 
    Element of 
    NAT st 
    P[k, n]
    
      proof
    
        let k be
    Element of 
    NAT ; 
    
        reconsider n = (((
    Partial_Sums ( 
    Length s)) 
    . k) 
    - 1) as 
    Element of 
    NAT by 
    Th7,
    NAT_1: 20;
    
        take n;
    
        thus thesis;
    
      end;
    
      consider N be
    Function of 
    NAT , 
    NAT such that 
    
      
    
    A2: for k be 
    Element of 
    NAT holds 
    P[k, (N
    . k)] from 
    FUNCT_2:sch 3(
    A1);
    
      
    
      
    
    A3: for k be 
    Nat holds (N 
    . k) 
    = ((( 
    Partial_Sums ( 
    Length s)) 
    . k) 
    - 1) 
    
      proof
    
        let k be
    Nat;
    
        k is
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
        hence thesis by
    A2;
    
      end;
    
      for n be
    Nat holds (N 
    . n) 
    < (N 
    . (n 
    + 1)) 
    
      proof
    
        let n be
    Nat;
    
        (((
    Partial_Sums ( 
    Length s)) 
    . n) 
    - 1) 
    < ((( 
    Partial_Sums ( 
    Length s)) 
    . (n 
    + 1)) 
    - 1) by 
    Th7,
    XREAL_1: 9;
    
        then (N
    . n) 
    < ((( 
    Partial_Sums ( 
    Length s)) 
    . (n 
    + 1)) 
    - 1) by 
    A3;
    
        hence (N
    . n) 
    < (N 
    . (n 
    + 1)) by 
    A3;
    
      end;
    
      then
    
      reconsider N as
    increasing  
    sequence of 
    NAT by 
    VALUED_1:def 13;
    
      take N;
    
      thus thesis by
    A3;
    
    end;
    
    definition
    
      let D be non
    empty  
    set, Y be 
    with_non-empty_element  
    FinSequenceSet of D, s be 
    non-empty  
    sequence of Y; 
    
      :: 
    
    MEASURE9:def4
    
      func
    
    joined_seq s -> 
    sequence of D means 
    
      :
    
    Def4: for n be 
    Nat holds ex k,m be 
    Nat st m 
    in ( 
    dom (s 
    . k)) & ((((( 
    Partial_Sums ( 
    Length s)) 
    . k) 
    - ( 
    len (s 
    . k))) 
    + m) 
    - 1) 
    = n & (it 
    . n) 
    = ((s 
    . k) 
    . m); 
    
      existence
    
      proof
    
        defpred
    
    P[
    Nat, 
    object] means ex k,m be
    Nat st m 
    in ( 
    dom (s 
    . k)) & ((((( 
    Partial_Sums ( 
    Length s)) 
    . k) 
    - ( 
    len (s 
    . k))) 
    + m) 
    - 1) 
    = $1 & $2 
    = ((s 
    . k) 
    . m); 
    
        
    
        
    
    A1: for n be 
    Element of 
    NAT holds ex y be 
    Element of D st 
    P[n, y]
    
        proof
    
          let n be
    Element of 
    NAT ; 
    
          consider k,m be
    Nat such that 
    
          
    
    A2: m 
    in ( 
    dom (s 
    . k)) & ((((( 
    Partial_Sums ( 
    Length s)) 
    . k) 
    - ( 
    len (s 
    . k))) 
    + m) 
    - 1) 
    = n by 
    Th8;
    
          ((s
    . k) 
    . m) 
    in ( 
    rng (s 
    . k)) by 
    A2,
    FUNCT_1: 3;
    
          then
    
          reconsider y = ((s
    . k) 
    . m) as 
    Element of D; 
    
          take y;
    
          thus thesis by
    A2;
    
        end;
    
        consider IT be
    Function of 
    NAT , D such that 
    
        
    
    A4: for n be 
    Element of 
    NAT holds 
    P[n, (IT
    . n)] from 
    FUNCT_2:sch 3(
    A1);
    
        reconsider IT as
    sequence of D; 
    
        take IT;
    
        hereby
    
          let n be
    Nat;
    
          n is
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
          hence ex k,m be
    Nat st m 
    in ( 
    dom (s 
    . k)) & ((((( 
    Partial_Sums ( 
    Length s)) 
    . k) 
    - ( 
    len (s 
    . k))) 
    + m) 
    - 1) 
    = n & (IT 
    . n) 
    = ((s 
    . k) 
    . m) by 
    A4;
    
        end;
    
      end;
    
      uniqueness
    
      proof
    
        let f1,f2 be
    sequence of D such that 
    
        
    
    A1: (for n be 
    Nat holds ex k,m be 
    Nat st m 
    in ( 
    dom (s 
    . k)) & ((((( 
    Partial_Sums ( 
    Length s)) 
    . k) 
    - ( 
    len (s 
    . k))) 
    + m) 
    - 1) 
    = n & (f1 
    . n) 
    = ((s 
    . k) 
    . m)) and 
    
        
    
    A2: (for n be 
    Nat holds ex k,m be 
    Nat st m 
    in ( 
    dom (s 
    . k)) & ((((( 
    Partial_Sums ( 
    Length s)) 
    . k) 
    - ( 
    len (s 
    . k))) 
    + m) 
    - 1) 
    = n & (f2 
    . n) 
    = ((s 
    . k) 
    . m)); 
    
        for n be
    Element of 
    NAT holds (f1 
    . n) 
    = (f2 
    . n) 
    
        proof
    
          let n be
    Element of 
    NAT ; 
    
          consider k1,m1 be
    Nat such that 
    
          
    
    A3: m1 
    in ( 
    dom (s 
    . k1)) & ((((( 
    Partial_Sums ( 
    Length s)) 
    . k1) 
    - ( 
    len (s 
    . k1))) 
    + m1) 
    - 1) 
    = n & (f1 
    . n) 
    = ((s 
    . k1) 
    . m1) by 
    A1;
    
          consider k2,m2 be
    Nat such that 
    
          
    
    A4: m2 
    in ( 
    dom (s 
    . k2)) & ((((( 
    Partial_Sums ( 
    Length s)) 
    . k2) 
    - ( 
    len (s 
    . k2))) 
    + m2) 
    - 1) 
    = n & (f2 
    . n) 
    = ((s 
    . k2) 
    . m2) by 
    A2;
    
          m1
    = m2 & k1 
    = k2 by 
    A3,
    A4,
    Th10;
    
          hence (f1
    . n) 
    = (f2 
    . n) by 
    A3,
    A4;
    
        end;
    
        hence f1
    = f2 by 
    FUNCT_2:def 8;
    
      end;
    
    end
    
    theorem :: 
    
    MEASURE9:14
    
    for D be non
    empty  
    set, Y be 
    with_non-empty_element  
    FinSequenceSet of D, s be 
    non-empty  
    sequence of Y, s1 be 
    sequence of D st (for n be 
    Nat holds (s1 
    . n) 
    = (( 
    joined_seq s) 
    . ((( 
    Partial_Sums ( 
    Length s)) 
    . n) 
    - 1))) holds s1 is 
    subsequence of ( 
    joined_seq s) 
    
    proof
    
      let D be non
    empty  
    set, Y be 
    with_non-empty_element  
    FinSequenceSet of D; 
    
      let s be
    non-empty  
    sequence of Y, s1 be 
    sequence of D; 
    
      assume
    
      
    
    A1: for n be 
    Nat holds (s1 
    . n) 
    = (( 
    joined_seq s) 
    . ((( 
    Partial_Sums ( 
    Length s)) 
    . n) 
    - 1)); 
    
      consider N be
    increasing  
    sequence of 
    NAT such that 
    
      
    
    A2: for n be 
    Nat holds (N 
    . n) 
    = ((( 
    Partial_Sums ( 
    Length s)) 
    . n) 
    - 1) by 
    Th11;
    
      for n be
    Element of 
    NAT holds (s1 
    . n) 
    = ((( 
    joined_seq s) 
    * N) 
    . n) 
    
      proof
    
        let n be
    Element of 
    NAT ; 
    
        (s1
    . n) 
    = (( 
    joined_seq s) 
    . ((( 
    Partial_Sums ( 
    Length s)) 
    . n) 
    - 1)) by 
    A1;
    
        then (s1
    . n) 
    = (( 
    joined_seq s) 
    . (N 
    . n)) by 
    A2;
    
        hence (s1
    . n) 
    = ((( 
    joined_seq s) 
    * N) 
    . n) by 
    FUNCT_2: 15;
    
      end;
    
      hence s1 is
    subsequence of ( 
    joined_seq s) by 
    FUNCT_2:def 8;
    
    end;
    
    theorem :: 
    
    MEASURE9:15
    
    
    
    
    
    Th13: for D be non 
    empty  
    set, Y be 
    with_non-empty_element  
    FinSequenceSet of D, s be 
    non-empty  
    sequence of Y, k,m be 
    Nat st m 
    in ( 
    dom (s 
    . k)) holds ex n be 
    Nat st n 
    = ((((( 
    Partial_Sums ( 
    Length s)) 
    . k) 
    - ( 
    len (s 
    . k))) 
    + m) 
    - 1) & (( 
    joined_seq s) 
    . n) 
    = ((s 
    . k) 
    . m) 
    
    proof
    
      let D be non
    empty  
    set, Y be 
    with_non-empty_element  
    FinSequenceSet of D, s be 
    non-empty  
    sequence of Y, k,m be 
    Nat;
    
      assume
    
      
    
    A0: m 
    in ( 
    dom (s 
    . k)); 
    
      then
    
      
    
    A1: 1 
    <= m & m 
    <= ( 
    len (s 
    . k)) by 
    FINSEQ_3: 25;
    
      now
    
        per cases ;
    
          suppose
    
          
    
    A2: k 
    =  
    0 ; 
    
          
    
          then ((
    Partial_Sums ( 
    Length s)) 
    . k) 
    = (( 
    Length s) 
    .  
    0 ) by 
    SERIES_1:def 1
    
          .= (
    len (s 
    .  
    0 )) by 
    Def3;
    
          hence (((((
    Partial_Sums ( 
    Length s)) 
    . k) 
    - ( 
    len (s 
    . k))) 
    + m) 
    - 1) is 
    Nat by 
    A1,
    A2,
    NAT_1: 21;
    
        end;
    
          suppose k
    <>  
    0 ; 
    
          then
    
          reconsider k1 = (k
    - 1) as 
    Element of 
    NAT by 
    NAT_1: 14,
    NAT_1: 21;
    
          k
    = (k1 
    + 1); 
    
          
    
          then ((
    Partial_Sums ( 
    Length s)) 
    . k) 
    = ((( 
    Partial_Sums ( 
    Length s)) 
    . k1) 
    + (( 
    Length s) 
    . k)) by 
    SERIES_1:def 1
    
          .= (((
    Partial_Sums ( 
    Length s)) 
    . k1) 
    + ( 
    len (s 
    . k))) by 
    Def3;
    
          then
    
          reconsider n1 = (((
    Partial_Sums ( 
    Length s)) 
    . k) 
    - ( 
    len (s 
    . k))) as 
    Nat;
    
          (n1
    + m) 
    >= m by 
    NAT_1: 11;
    
          hence (((((
    Partial_Sums ( 
    Length s)) 
    . k) 
    - ( 
    len (s 
    . k))) 
    + m) 
    - 1) is 
    Nat by 
    A1,
    XXREAL_0: 2,
    NAT_1: 21;
    
        end;
    
      end;
    
      then
    
      reconsider n = (((((
    Partial_Sums ( 
    Length s)) 
    . k) 
    - ( 
    len (s 
    . k))) 
    + m) 
    - 1) as 
    Nat;
    
      take n;
    
      thus n
    = ((((( 
    Partial_Sums ( 
    Length s)) 
    . k) 
    - ( 
    len (s 
    . k))) 
    + m) 
    - 1); 
    
      consider k2,m2 be
    Nat such that 
    
      
    
    A4: m2 
    in ( 
    dom (s 
    . k2)) & ((((( 
    Partial_Sums ( 
    Length s)) 
    . k2) 
    - ( 
    len (s 
    . k2))) 
    + m2) 
    - 1) 
    = n & (( 
    joined_seq s) 
    . n) 
    = ((s 
    . k2) 
    . m2) by 
    Def4;
    
      m
    = m2 & k 
    = k2 by 
    A0,
    A4,
    Th10;
    
      hence ((
    joined_seq s) 
    . n) 
    = ((s 
    . k) 
    . m) by 
    A4;
    
    end;
    
    theorem :: 
    
    MEASURE9:16
    
    
    
    
    
    Th14: for D be non 
    empty  
    set, Y be 
    FinSequenceSet of D, F be 
    FinSequence of Y st (for n,m be 
    Nat st n 
    <> m holds ( 
    union ( 
    rng (F 
    . n))) 
    misses ( 
    union ( 
    rng (F 
    . m)))) & (for n be 
    Nat holds (F 
    . n) is 
    disjoint_valued) holds (
    joined_FinSeq F) is 
    disjoint_valued
    
    proof
    
      let D be non
    empty  
    set, Y be 
    FinSequenceSet of D, F be 
    FinSequence of Y; 
    
      assume that
    
      
    
    A1: for n,m be 
    Nat st n 
    <> m holds ( 
    union ( 
    rng (F 
    . n))) 
    misses ( 
    union ( 
    rng (F 
    . m))) and 
    
      
    
    A2: for n be 
    Nat holds (F 
    . n) is 
    disjoint_valued;
    
      now
    
        let x,y be
    object;
    
        assume
    
        
    
    A3: x 
    <> y; 
    
        per cases ;
    
          suppose
    
          
    
    A4: x 
    in ( 
    dom ( 
    joined_FinSeq F)) & y 
    in ( 
    dom ( 
    joined_FinSeq F)); 
    
          then
    
          reconsider n1 = x, n2 = y as
    Nat;
    
          consider k1,m1 be
    Nat such that 
    
          
    
    A5: 1 
    <= m1 & m1 
    <= ( 
    len (F 
    . (k1 
    + 1))) & k1 
    < ( 
    len F) & (m1 
    + ( 
    Sum ( 
    Length (F 
    | k1)))) 
    = n1 & n1 
    <= ( 
    Sum ( 
    Length (F 
    | (k1 
    + 1)))) & (( 
    joined_FinSeq F) 
    . x) 
    = ((F 
    . (k1 
    + 1)) 
    . m1) by 
    A4,
    Def2;
    
          consider k2,m2 be
    Nat such that 
    
          
    
    A6: 1 
    <= m2 & m2 
    <= ( 
    len (F 
    . (k2 
    + 1))) & k2 
    < ( 
    len F) & (m2 
    + ( 
    Sum ( 
    Length (F 
    | k2)))) 
    = n2 & n2 
    <= ( 
    Sum ( 
    Length (F 
    | (k2 
    + 1)))) & (( 
    joined_FinSeq F) 
    . y) 
    = ((F 
    . (k2 
    + 1)) 
    . m2) by 
    A4,
    Def2;
    
          m1
    in ( 
    dom (F 
    . (k1 
    + 1))) & m2 
    in ( 
    dom (F 
    . (k2 
    + 1))) by 
    A5,
    A6,
    FINSEQ_3: 25;
    
          then
    
          
    
    A8: (( 
    joined_FinSeq F) 
    . x) 
    in ( 
    rng (F 
    . (k1 
    + 1))) & (( 
    joined_FinSeq F) 
    . y) 
    in ( 
    rng (F 
    . (k2 
    + 1))) by 
    A5,
    A6,
    FUNCT_1: 3;
    
          now
    
            assume
    
            
    
    A9: not (( 
    joined_FinSeq F) 
    . x) 
    misses (( 
    joined_FinSeq F) 
    . y); 
    
            then (((
    joined_FinSeq F) 
    . x) 
    /\ (( 
    joined_FinSeq F) 
    . y)) 
    <>  
    {} by 
    XBOOLE_0:def 7;
    
            then
    
            consider z be
    object such that 
    
            
    
    A10: z 
    in ((( 
    joined_FinSeq F) 
    . x) 
    /\ (( 
    joined_FinSeq F) 
    . y)) by 
    XBOOLE_0:def 1;
    
            z
    in (( 
    joined_FinSeq F) 
    . x) & z 
    in (( 
    joined_FinSeq F) 
    . y) by 
    A10,
    XBOOLE_0:def 4;
    
            then z
    in ( 
    union ( 
    rng (F 
    . (k1 
    + 1)))) & z 
    in ( 
    union ( 
    rng (F 
    . (k2 
    + 1)))) by 
    A8,
    TARSKI:def 4;
    
            then
    
            
    
    A11: (k1 
    + 1) 
    = (k2 
    + 1) by 
    A1,
    XBOOLE_0: 3;
    
            (F
    . (k1 
    + 1)) is 
    disjoint_valued by 
    A2;
    
            hence contradiction by
    A5,
    A6,
    A3,
    A9,
    A11,
    PROB_2:def 2;
    
          end;
    
          hence ((
    joined_FinSeq F) 
    . x) 
    misses (( 
    joined_FinSeq F) 
    . y); 
    
        end;
    
          suppose not x
    in ( 
    dom ( 
    joined_FinSeq F)) or not y 
    in ( 
    dom ( 
    joined_FinSeq F)); 
    
          then ((
    joined_FinSeq F) 
    . x) 
    =  
    {} or (( 
    joined_FinSeq F) 
    . y) 
    =  
    {} by 
    FUNCT_1:def 2;
    
          hence ((
    joined_FinSeq F) 
    . x) 
    misses (( 
    joined_FinSeq F) 
    . y) by 
    XBOOLE_1: 65;
    
        end;
    
      end;
    
      hence (
    joined_FinSeq F) is 
    disjoint_valued by 
    PROB_2:def 2;
    
    end;
    
    theorem :: 
    
    MEASURE9:17
    
    
    
    
    
    Th15: for D be non 
    empty  
    set, Y be 
    FinSequenceSet of D, F be 
    FinSequence of Y holds ( 
    rng ( 
    joined_FinSeq F)) 
    = ( 
    union { ( 
    rng (F 
    . n)) where n be 
    Nat : n 
    in ( 
    dom F) }) 
    
    proof
    
      let D be non
    empty  
    set, Y be 
    FinSequenceSet of D, F be 
    FinSequence of Y; 
    
      now
    
        let x be
    object;
    
        assume x
    in ( 
    rng ( 
    joined_FinSeq F)); 
    
        then
    
        consider n be
    object such that 
    
        
    
    A1: n 
    in ( 
    dom ( 
    joined_FinSeq F)) & x 
    = (( 
    joined_FinSeq F) 
    . n) by 
    FUNCT_1:def 3;
    
        reconsider n as
    Nat by 
    A1;
    
        consider k,m be
    Nat such that 
    
        
    
    A2: 1 
    <= m & m 
    <= ( 
    len (F 
    . (k 
    + 1))) & k 
    < ( 
    len F) & (m 
    + ( 
    Sum ( 
    Length (F 
    | k)))) 
    = n & n 
    <= ( 
    Sum ( 
    Length (F 
    | (k 
    + 1)))) & (( 
    joined_FinSeq F) 
    . n) 
    = ((F 
    . (k 
    + 1)) 
    . m) by 
    A1,
    Def2;
    
        1
    <= (k 
    + 1) & (k 
    + 1) 
    <= ( 
    len F) by 
    A2,
    NAT_1: 11,
    NAT_1: 13;
    
        then
    
        
    
    A3: (k 
    + 1) 
    in ( 
    dom F) by 
    FINSEQ_3: 25;
    
        m
    in ( 
    dom (F 
    . (k 
    + 1))) by 
    A2,
    FINSEQ_3: 25;
    
        then
    
        
    
    A4: x 
    in ( 
    rng (F 
    . (k 
    + 1))) by 
    A1,
    A2,
    FUNCT_1: 3;
    
        (
    rng (F 
    . (k 
    + 1))) 
    in { ( 
    rng (F 
    . n)) where n be 
    Nat : n 
    in ( 
    dom F) } by 
    A3;
    
        hence x
    in ( 
    union { ( 
    rng (F 
    . n)) where n be 
    Nat : n 
    in ( 
    dom F) }) by 
    A4,
    TARSKI:def 4;
    
      end;
    
      then
    
      
    
    A5: ( 
    rng ( 
    joined_FinSeq F)) 
    c= ( 
    union { ( 
    rng (F 
    . n)) where n be 
    Nat : n 
    in ( 
    dom F) }) by 
    TARSKI:def 3;
    
      now
    
        let x be
    object;
    
        assume x
    in ( 
    union { ( 
    rng (F 
    . n)) where n be 
    Nat : n 
    in ( 
    dom F) }); 
    
        then
    
        consider A be
    set such that 
    
        
    
    A6: x 
    in A & A 
    in { ( 
    rng (F 
    . n)) where n be 
    Nat : n 
    in ( 
    dom F) } by 
    TARSKI:def 4;
    
        consider k be
    Nat such that 
    
        
    
    A7: A 
    = ( 
    rng (F 
    . k)) & k 
    in ( 
    dom F) by 
    A6;
    
        consider m be
    object such that 
    
        
    
    A8: m 
    in ( 
    dom (F 
    . k)) & x 
    = ((F 
    . k) 
    . m) by 
    A6,
    A7,
    FUNCT_1:def 3;
    
        reconsider m as
    Nat by 
    A8;
    
        
    
        
    
    A9: 1 
    <= k & k 
    <= ( 
    len F) by 
    A7,
    FINSEQ_3: 25;
    
        reconsider k1 = (k
    - 1) as 
    Nat by 
    A7,
    FINSEQ_3: 25,
    NAT_1: 21;
    
        set n = (m
    + ( 
    Sum ( 
    Length (F 
    | k1)))); 
    
        (
    Length (F 
    | (k1 
    + 1))) 
    = (( 
    Length (F 
    | k1)) 
    ^  
    <*(
    len (F 
    . (k1 
    + 1)))*>) by 
    Th2,
    A9,
    NAT_1: 13;
    
        then
    
        
    
    A11: ( 
    Sum ( 
    Length (F 
    | (k1 
    + 1)))) 
    = (( 
    Sum ( 
    Length (F 
    | k1))) 
    + ( 
    len (F 
    . (k1 
    + 1)))) by 
    RVSUM_1: 74;
    
        
    
        
    
    A14: 1 
    <= m & m 
    <= ( 
    len (F 
    . (k1 
    + 1))) by 
    A8,
    FINSEQ_3: 25;
    
        then
    
        
    
    A12: n 
    <= ( 
    Sum ( 
    Length (F 
    | (k1 
    + 1)))) by 
    A11,
    XREAL_1: 6;
    
        (
    Sum ( 
    Length (F 
    | (k1 
    + 1)))) 
    <= ( 
    Sum ( 
    Length (F 
    | ( 
    len F)))) by 
    A9,
    Th5;
    
        then n
    <= ( 
    Sum ( 
    Length (F 
    | ( 
    len F)))) by 
    A12,
    XXREAL_0: 2;
    
        then n
    <= ( 
    Sum ( 
    Length F)) by 
    FINSEQ_1: 58;
    
        then
    
        
    
    A13: n 
    <= ( 
    len ( 
    joined_FinSeq F)) by 
    Def2;
    
        m
    <= n by 
    NAT_1: 11;
    
        then 1
    <= n by 
    A14,
    XXREAL_0: 2;
    
        then
    
        
    
    A17: n 
    in ( 
    dom ( 
    joined_FinSeq F)) by 
    A13,
    FINSEQ_3: 25;
    
        then
    
        consider k2,m2 be
    Nat such that 
    
        
    
    A15: 1 
    <= m2 & m2 
    <= ( 
    len (F 
    . (k2 
    + 1))) & k2 
    < ( 
    len F) & (m2 
    + ( 
    Sum ( 
    Length (F 
    | k2)))) 
    = n & n 
    <= ( 
    Sum ( 
    Length (F 
    | (k2 
    + 1)))) & (( 
    joined_FinSeq F) 
    . n) 
    = ((F 
    . (k2 
    + 1)) 
    . m2) by 
    Def2;
    
        m
    = m2 & k1 
    = k2 by 
    A14,
    A15,
    A12,
    Th6;
    
        hence x
    in ( 
    rng ( 
    joined_FinSeq F)) by 
    A8,
    A15,
    A17,
    FUNCT_1: 3;
    
      end;
    
      then (
    union { ( 
    rng (F 
    . n)) where n be 
    Nat : n 
    in ( 
    dom F) }) 
    c= ( 
    rng ( 
    joined_FinSeq F)) by 
    TARSKI:def 3;
    
      hence thesis by
    A5,
    XBOOLE_0:def 10;
    
    end;
    
    begin
    
    definition
    
      let x be
    ext-real  
    number;
    
      :: original:
    <*
    
      redefine
    
      func
    
    <*x*> ->
    FinSequence of 
    ExtREAL ; 
    
      coherence
    
      proof
    
        now
    
          let y be
    object;
    
          assume y
    in ( 
    rng  
    <*x*>);
    
          then y
    in  
    {x} by
    FINSEQ_1: 39;
    
          hence y
    in  
    ExtREAL by 
    XXREAL_0:def 1;
    
        end;
    
        hence thesis by
    TARSKI:def 3,
    FINSEQ_1:def 4;
    
      end;
    
    end
    
    definition
    
      let e be
    FinSequence of ( 
    ExtREAL  
    * ); 
    
      :: 
    
    MEASURE9:def5
    
      func
    
    Sum e -> 
    FinSequence of 
    ExtREAL means 
    
      :
    
    Def5: ( 
    len it ) 
    = ( 
    len e) & for k be 
    Nat st k 
    in ( 
    dom it ) holds (it 
    . k) 
    = ( 
    Sum (e 
    . k)); 
    
      existence
    
      proof
    
        deffunc
    
    f(
    Nat) = (
    Sum (e 
    . $1)); 
    
        consider e1 be
    FinSequence of 
    ExtREAL such that 
    
        
    
    A1: ( 
    len e1) 
    = ( 
    len e) & for k be 
    Nat st k 
    in ( 
    dom e1) holds (e1 
    . k) 
    =  
    f(k) from
    FINSEQ_2:sch 1;
    
        take e1;
    
        thus thesis by
    A1;
    
      end;
    
      uniqueness
    
      proof
    
        let e1,e2 be
    FinSequence of 
    ExtREAL such that 
    
        
    
    A2: ( 
    len e1) 
    = ( 
    len e) and 
    
        
    
    A3: for k be 
    Nat st k 
    in ( 
    dom e1) holds (e1 
    . k) 
    = ( 
    Sum (e 
    . k)) and 
    
        
    
    A4: ( 
    len e2) 
    = ( 
    len e) and 
    
        
    
    A5: for k be 
    Nat st k 
    in ( 
    dom e2) holds (e2 
    . k) 
    = ( 
    Sum (e 
    . k)); 
    
        (
    dom e1) 
    = ( 
    dom e2) & for k be 
    Nat st k 
    in ( 
    dom e1) holds (e1 
    . k) 
    = (e2 
    . k) 
    
        proof
    
          
    
          thus
    
          
    
    A6: ( 
    dom e1) 
    = ( 
    Seg ( 
    len e)) by 
    A2,
    FINSEQ_1:def 3
    
          .= (
    dom e2) by 
    A4,
    FINSEQ_1:def 3;
    
          let k be
    Nat such that 
    
          
    
    A7: k 
    in ( 
    dom e1); 
    
          
    
          thus (e1
    . k) 
    = ( 
    Sum (e 
    . k)) by 
    A3,
    A7
    
          .= (e2
    . k) by 
    A5,
    A6,
    A7;
    
        end;
    
        hence thesis by
    FINSEQ_1: 13;
    
      end;
    
    end
    
    definition
    
      let M be
    Matrix of 
    ExtREAL ; 
    
      :: 
    
    MEASURE9:def6
    
      func
    
    SumAll M -> 
    Element of 
    ExtREAL equals ( 
    Sum ( 
    Sum M)); 
    
      coherence ;
    
    end
    
    theorem :: 
    
    MEASURE9:18
    
    
    
    
    
    Th16: for M be 
    Matrix of 
    ExtREAL holds ( 
    len ( 
    Sum M)) 
    = ( 
    len M) & for i be 
    Nat st i 
    in ( 
    Seg ( 
    len M)) holds (( 
    Sum M) 
    . i) 
    = ( 
    Sum ( 
    Line (M,i))) 
    
    proof
    
      let M be
    Matrix of 
    ExtREAL ; 
    
      thus (
    len ( 
    Sum M)) 
    = ( 
    len M) by 
    Def5;
    
      thus for k be
    Nat st k 
    in ( 
    Seg ( 
    len M)) holds (( 
    Sum M) 
    . k) 
    = ( 
    Sum ( 
    Line (M,k))) 
    
      proof
    
        let k be
    Nat such that 
    
        
    
    A1: k 
    in ( 
    Seg ( 
    len M)); 
    
        
    
        
    
    A2: k 
    in ( 
    dom M) by 
    A1,
    FINSEQ_1:def 3;
    
        k
    in ( 
    Seg ( 
    len ( 
    Sum M))) by 
    A1,
    Def5;
    
        then k
    in ( 
    dom ( 
    Sum M)) by 
    FINSEQ_1:def 3;
    
        
    
        hence ((
    Sum M) 
    . k) 
    = ( 
    Sum (M 
    . k)) by 
    Def5
    
        .= (
    Sum ( 
    Line (M,k))) by 
    A2,
    MATRIX_0: 60;
    
      end;
    
    end;
    
    theorem :: 
    
    MEASURE9:19
    
    
    
    
    
    Th17: for F be 
    FinSequence of 
    ExtREAL st for i be 
    Nat st i 
    in ( 
    dom F) holds (F 
    . i) 
    <>  
    -infty holds ( 
    Sum F) 
    <>  
    -infty  
    
    proof
    
      let F be
    FinSequence of 
    ExtREAL ; 
    
      assume
    
      
    
    A1: for i be 
    Nat st i 
    in ( 
    dom F) holds (F 
    . i) 
    <>  
    -infty ; 
    
      consider f be
    Function of 
    NAT , 
    ExtREAL such that 
    
      
    
    A2: ( 
    Sum F) 
    = (f 
    . ( 
    len F)) & (f 
    .  
    0 ) 
    =  
    0 & for i be 
    Nat st i 
    < ( 
    len F) holds (f 
    . (i 
    + 1)) 
    = ((f 
    . i) 
    + (F 
    . (i 
    + 1))) by 
    EXTREAL1:def 2;
    
      defpred
    
    P[
    Nat] means $1
    <= ( 
    len F) implies (f 
    . $1) 
    <>  
    -infty ; 
    
      
    
      
    
    A4: 
    P[
    0 ] by 
    A2;
    
      
    
      
    
    A5: for j be 
    Nat st 
    P[j] holds
    P[(j
    + 1)] 
    
      proof
    
        let j be
    Nat;
    
        assume
    
        
    
    A6: 
    P[j];
    
        now
    
          assume
    
          
    
    B2: (j 
    + 1) 
    <= ( 
    len F); 
    
          then
    
          
    
    A8: (f 
    . (j 
    + 1)) 
    = ((f 
    . j) 
    + (F 
    . (j 
    + 1))) by 
    A2,
    NAT_1: 13;
    
          1
    <= (j 
    + 1) by 
    NAT_1: 11;
    
          then (F
    . (j 
    + 1)) 
    <>  
    -infty by 
    A1,
    B2,
    FINSEQ_3: 25;
    
          hence (f
    . (j 
    + 1)) 
    <>  
    -infty by 
    A8,
    A6,
    B2,
    NAT_1: 13,
    XXREAL_3: 17;
    
        end;
    
        hence
    P[(j
    + 1)]; 
    
      end;
    
      for i be
    Nat holds 
    P[i] from
    NAT_1:sch 2(
    A4,
    A5);
    
      hence (
    Sum F) 
    <>  
    -infty by 
    A2;
    
    end;
    
    theorem :: 
    
    MEASURE9:20
    
    
    
    
    
    Th18: for F,G,H be 
    FinSequence of 
    ExtREAL st not 
    -infty  
    in ( 
    rng F) & not 
    -infty  
    in ( 
    rng G) & ( 
    dom F) 
    = ( 
    dom G) & H 
    = (F 
    + G) holds ( 
    Sum H) 
    = (( 
    Sum F) 
    + ( 
    Sum G)) 
    
    proof
    
      let F,G,H be
    FinSequence of 
    ExtREAL ; 
    
      assume that
    
      
    
    A1: not 
    -infty  
    in ( 
    rng F) & not 
    -infty  
    in ( 
    rng G) and 
    
      
    
    A3: ( 
    dom F) 
    = ( 
    dom G) and 
    
      
    
    A4: H 
    = (F 
    + G); 
    
      
    
      
    
    B1: for y be 
    object st y 
    in ( 
    rng F) holds not y 
    in  
    {
    -infty } by 
    A1,
    TARSKI:def 1;
    
      then
    
      
    
    A7: (F 
    "  
    {
    -infty }) 
    =  
    {} by 
    XBOOLE_0: 3,
    RELAT_1: 138;
    
      
    
      
    
    B2: for y be 
    object st y 
    in ( 
    rng G) holds not y 
    in  
    {
    -infty } by 
    A1,
    TARSKI:def 1;
    
      then
    
      
    
    A10: (G 
    "  
    {
    -infty }) 
    =  
    {} by 
    XBOOLE_0: 3,
    RELAT_1: 138;
    
      
    
      
    
    A11: ( 
    dom H) 
    = ((( 
    dom F) 
    /\ ( 
    dom G)) 
    \ (((F 
    "  
    {
    -infty }) 
    /\ (G 
    "  
    {
    +infty })) 
    \/ ((F 
    "  
    {
    +infty }) 
    /\ (G 
    "  
    {
    -infty })))) by 
    A4,
    MESFUNC1:def 3
    
      .= (
    dom F) by 
    A3,
    A7,
    A10;
    
      then
    
      
    
    A12: ( 
    len H) 
    = ( 
    len F) by 
    FINSEQ_3: 29;
    
      consider h be
    Function of 
    NAT , 
    ExtREAL such that 
    
      
    
    A13: ( 
    Sum H) 
    = (h 
    . ( 
    len H)) & (h 
    .  
    0 ) 
    =  
    0. & for i be 
    Nat st i 
    < ( 
    len H) holds (h 
    . (i 
    + 1)) 
    = ((h 
    . i) 
    + (H 
    . (i 
    + 1))) by 
    EXTREAL1:def 2;
    
      consider f be
    Function of 
    NAT , 
    ExtREAL such that 
    
      
    
    A16: ( 
    Sum F) 
    = (f 
    . ( 
    len F)) & (f 
    .  
    0 ) 
    =  
    0. & for i be 
    Nat st i 
    < ( 
    len F) holds (f 
    . (i 
    + 1)) 
    = ((f 
    . i) 
    + (F 
    . (i 
    + 1))) by 
    EXTREAL1:def 2;
    
      consider g be
    Function of 
    NAT , 
    ExtREAL such that 
    
      
    
    A19: ( 
    Sum G) 
    = (g 
    . ( 
    len G)) & (g 
    .  
    0 ) 
    =  
    0. & for i be 
    Nat st i 
    < ( 
    len G) holds (g 
    . (i 
    + 1)) 
    = ((g 
    . i) 
    + (G 
    . (i 
    + 1))) by 
    EXTREAL1:def 2;
    
      defpred
    
    P[
    Nat] means $1
    <= ( 
    len H) implies (h 
    . $1) 
    = ((f 
    . $1) 
    + (g 
    . $1)); 
    
      
    
      
    
    A22: ( 
    len H) 
    = ( 
    len G) by 
    A3,
    A11,
    FINSEQ_3: 29;
    
      
    
      
    
    A23: for k be 
    Nat st 
    P[k] holds
    P[(k
    + 1)] 
    
      proof
    
        let k be
    Nat;
    
        assume
    
        
    
    A24: 
    P[k];
    
        assume
    
        
    
    A25: (k 
    + 1) 
    <= ( 
    len H); 
    
        
    
        
    
    A26: k 
    < ( 
    len H) by 
    A25,
    NAT_1: 13;
    
        
    
        
    
    A27: (f 
    . (k 
    + 1)) 
    = ((f 
    . k) 
    + (F 
    . (k 
    + 1))) & (g 
    . (k 
    + 1)) 
    = ((g 
    . k) 
    + (G 
    . (k 
    + 1))) by 
    A16,
    A19,
    A12,
    A22,
    A25,
    NAT_1: 13;
    
        
    
        
    
    A28: (k 
    + 1) 
    in ( 
    dom H) by 
    A25,
    NAT_1: 11,
    FINSEQ_3: 25;
    
        
    
        
    
    A29: (f 
    . k) 
    <>  
    -infty & (g 
    . k) 
    <>  
    -infty & (F 
    . (k 
    + 1)) 
    <>  
    -infty & (G 
    . (k 
    + 1)) 
    <>  
    -infty  
    
        proof
    
          defpred
    
    Pg[
    Nat] means $1
    <= ( 
    len H) implies (g 
    . $1) 
    <>  
    -infty ; 
    
          defpred
    
    Pf[
    Nat] means $1
    <= ( 
    len H) implies (f 
    . $1) 
    <>  
    -infty ; 
    
          
    
          
    
    A30: for m be 
    Nat st 
    Pf[m] holds
    Pf[(m
    + 1)] 
    
          proof
    
            let m be
    Nat;
    
            assume
    
            
    
    A31: 
    Pf[m];
    
            assume
    
            
    
    A32: (m 
    + 1) 
    <= ( 
    len H); 
    
            then (m
    + 1) 
    in ( 
    dom H) by 
    NAT_1: 11,
    FINSEQ_3: 25;
    
            then not (F
    . (m 
    + 1)) 
    in  
    {
    -infty } by 
    B1,
    A11,
    FUNCT_1: 3;
    
            then
    
            
    
    A33: (F 
    . (m 
    + 1)) 
    <>  
    -infty by 
    TARSKI:def 1;
    
            (f
    . (m 
    + 1)) 
    = ((f 
    . m) 
    + (F 
    . (m 
    + 1))) by 
    A12,
    A16,
    A32,
    NAT_1: 13;
    
            hence thesis by
    A33,
    A32,
    NAT_1: 13,
    A31,
    XXREAL_3: 17;
    
          end;
    
          
    
          
    
    A34: 
    Pf[
    0 ] by 
    A16;
    
          for i be
    Nat holds 
    Pf[i] from
    NAT_1:sch 2(
    A34,
    A30);
    
          hence (f
    . k) 
    <>  
    -infty by 
    A26;
    
          
    
          
    
    A35: for m be 
    Nat st 
    Pg[m] holds
    Pg[(m
    + 1)] 
    
          proof
    
            let m be
    Nat;
    
            assume
    
            
    
    A36: 
    Pg[m];
    
            assume
    
            
    
    A37: (m 
    + 1) 
    <= ( 
    len H); 
    
            then (m
    + 1) 
    in ( 
    dom H) by 
    NAT_1: 11,
    FINSEQ_3: 25;
    
            then not (G
    . (m 
    + 1)) 
    in  
    {
    -infty } by 
    B2,
    A11,
    A3,
    FUNCT_1: 3;
    
            then
    
            
    
    A38: (G 
    . (m 
    + 1)) 
    <>  
    -infty by 
    TARSKI:def 1;
    
            (g
    . (m 
    + 1)) 
    = ((g 
    . m) 
    + (G 
    . (m 
    + 1))) by 
    A19,
    A22,
    A37,
    NAT_1: 13;
    
            hence thesis by
    A38,
    A37,
    NAT_1: 13,
    A36,
    XXREAL_3: 17;
    
          end;
    
          
    
          
    
    A39: 
    Pg[
    0 ] by 
    A19;
    
          for i be
    Nat holds 
    Pg[i] from
    NAT_1:sch 2(
    A39,
    A35);
    
          hence (g
    . k) 
    <>  
    -infty by 
    A26;
    
          thus (F
    . (k 
    + 1)) 
    <>  
    -infty by 
    A1,
    A11,
    A28,
    FUNCT_1: 3;
    
          thus thesis by
    A1,
    A3,
    A11,
    A28,
    FUNCT_1: 3;
    
        end;
    
        then
    
        
    
    A40: ((f 
    . k) 
    + (F 
    . (k 
    + 1))) 
    <>  
    -infty by 
    XXREAL_3: 17;
    
        
    
        
    
    A41: (h 
    . (k 
    + 1)) 
    = (((f 
    . k) 
    + (g 
    . k)) 
    + (H 
    . (k 
    + 1))) by 
    A13,
    A24,
    A25,
    NAT_1: 13
    
        .= (((f
    . k) 
    + (g 
    . k)) 
    + ((F 
    . (k 
    + 1)) 
    + (G 
    . (k 
    + 1)))) by 
    A4,
    A28,
    MESFUNC1:def 3;
    
        ((f
    . k) 
    + (g 
    . k)) 
    <>  
    -infty by 
    A29,
    XXREAL_3: 17;
    
        
    
        then (h
    . (k 
    + 1)) 
    = ((((f 
    . k) 
    + (g 
    . k)) 
    + (F 
    . (k 
    + 1))) 
    + (G 
    . (k 
    + 1))) by 
    A41,
    A29,
    XXREAL_3: 29
    
        .= ((((f
    . k) 
    + (F 
    . (k 
    + 1))) 
    + (g 
    . k)) 
    + (G 
    . (k 
    + 1))) by 
    A29,
    XXREAL_3: 29
    
        .= ((f
    . (k 
    + 1)) 
    + (g 
    . (k 
    + 1))) by 
    A27,
    A29,
    A40,
    XXREAL_3: 29;
    
        hence thesis;
    
      end;
    
      
    
      
    
    A42: 
    P[
    0 ] by 
    A16,
    A19,
    A13;
    
      for i be
    Nat holds 
    P[i] from
    NAT_1:sch 2(
    A42,
    A23);
    
      hence thesis by
    A16,
    A19,
    A13,
    A12,
    A22;
    
    end;
    
    theorem :: 
    
    MEASURE9:21
    
    
    
    
    
    Th19: for r be 
    R_eal, F be 
    FinSequence of 
    ExtREAL holds ( 
    Sum (F 
    ^  
    <*r*>))
    = (( 
    Sum F) 
    + r) 
    
    proof
    
      let r be
    R_eal, F be 
    FinSequence of 
    ExtREAL ; 
    
      consider f be
    Function of 
    NAT , 
    ExtREAL such that 
    
      
    
    A1: ( 
    Sum (F 
    ^  
    <*r*>))
    = (f 
    . ( 
    len (F 
    ^  
    <*r*>))) & (f
    .  
    0 ) 
    =  
    0 & for i be 
    Nat st i 
    < ( 
    len (F 
    ^  
    <*r*>)) holds (f
    . (i 
    + 1)) 
    = ((f 
    . i) 
    + ((F 
    ^  
    <*r*>)
    . (i 
    + 1))) by 
    EXTREAL1:def 2;
    
      consider g be
    Function of 
    NAT , 
    ExtREAL such that 
    
      
    
    A2: ( 
    Sum F) 
    = (g 
    . ( 
    len F)) & (g 
    .  
    0 ) 
    =  
    0 & for i be 
    Nat st i 
    < ( 
    len F) holds (g 
    . (i 
    + 1)) 
    = ((g 
    . i) 
    + (F 
    . (i 
    + 1))) by 
    EXTREAL1:def 2;
    
      (
    len (F 
    ^  
    <*r*>))
    = (( 
    len F) 
    + ( 
    len  
    <*r*>)) by
    FINSEQ_1: 22;
    
      then
    
      
    
    B1: ( 
    len (F 
    ^  
    <*r*>))
    = (( 
    len F) 
    + 1) by 
    FINSEQ_1: 39;
    
      then
    
      
    
    B2: ( 
    len F) 
    < ( 
    len (F 
    ^  
    <*r*>)) by
    NAT_1: 13;
    
      defpred
    
    P[
    Nat] means $1
    <= ( 
    len F) implies (f 
    . $1) 
    = (g 
    . $1); 
    
      
    
      
    
    A3: 
    P[
    0 ] by 
    A1,
    A2;
    
      
    
      
    
    A4: for k be 
    Nat st 
    P[k] holds
    P[(k
    + 1)] 
    
      proof
    
        let k be
    Nat;
    
        assume
    
        
    
    A5: 
    P[k];
    
        assume
    
        
    
    A6: (k 
    + 1) 
    <= ( 
    len F); 
    
        then
    
        
    
    A7: k 
    < ( 
    len F) by 
    NAT_1: 13;
    
        
    
        
    
    A9: ((F 
    ^  
    <*r*>)
    . (k 
    + 1)) 
    = (F 
    . (k 
    + 1)) by 
    A6,
    FINSEQ_1: 64,
    NAT_1: 11;
    
        k
    < ( 
    len (F 
    ^  
    <*r*>)) by
    A7,
    B1,
    NAT_1: 13;
    
        then (f
    . (k 
    + 1)) 
    = ((f 
    . k) 
    + ((F 
    ^  
    <*r*>)
    . (k 
    + 1))) by 
    A1;
    
        hence (f
    . (k 
    + 1)) 
    = (g 
    . (k 
    + 1)) by 
    A2,
    A6,
    A5,
    A9,
    NAT_1: 13;
    
      end;
    
      for i be
    Nat holds 
    P[i] from
    NAT_1:sch 2(
    A3,
    A4);
    
      then (f
    . ( 
    len F)) 
    = (g 
    . ( 
    len F)); 
    
      then (f
    . (( 
    len F) 
    + 1)) 
    = ((g 
    . ( 
    len F)) 
    + ((F 
    ^  
    <*r*>)
    . (( 
    len F) 
    + 1))) by 
    A1,
    B2;
    
      hence (
    Sum (F 
    ^  
    <*r*>))
    = (( 
    Sum F) 
    + r) by 
    A1,
    A2,
    B1,
    FINSEQ_1: 42;
    
    end;
    
    theorem :: 
    
    MEASURE9:22
    
    
    
    
    
    Th20: for r be 
    R_eal, i be 
    Nat st r is 
    real holds ( 
    Sum (i 
    |-> r)) 
    = (i 
    * r) 
    
    proof
    
      let r be
    R_eal, i be 
    Nat;
    
      assume
    
      
    
    A0: r is 
    real;
    
      defpred
    
    P[
    Nat] means (
    Sum ($1 
    |-> r)) 
    = ($1 
    * r); 
    
      
    
      
    
    A1: for i be 
    Nat st 
    P[i] holds
    P[(i
    + 1)] 
    
      proof
    
        let i be
    Nat such that 
    
        
    
    A2: ( 
    Sum (i 
    |-> r)) 
    = (i 
    * r); 
    
        reconsider i1 = i, One = 1 as
    ext-real  
    number;
    
        
    
        thus (
    Sum ((i 
    + 1) 
    |-> r)) 
    = ( 
    Sum ((i 
    |-> r) 
    ^  
    <*r*>)) by
    FINSEQ_2: 60
    
        .= ((i
    * r) 
    + r) by 
    A2,
    Th19
    
        .= ((i
    * r) 
    + (1 
    * r)) by 
    XXREAL_3: 81
    
        .= ((i1
    + One) 
    * r) by 
    A0,
    XXREAL_3: 95
    
        .= ((i
    + 1) 
    * r) by 
    XXREAL_3:def 2;
    
      end;
    
      
    
      
    
    A3: 
    P[
    0 ] by 
    EXTREAL1: 7,
    FINSEQ_2: 58;
    
      for i be
    Nat holds 
    P[i] from
    NAT_1:sch 2(
    A3,
    A1);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MEASURE9:23
    
    
    
    
    
    Th21: for M be 
    Matrix of 
    ExtREAL st ( 
    len M) 
    =  
    0 holds ( 
    SumAll M) 
    =  
    0  
    
    proof
    
      let M be
    Matrix of 
    ExtREAL ; 
    
      assume (
    len M) 
    =  
    0 ; 
    
      then (
    len ( 
    Sum M)) 
    =  
    0 by 
    Def5;
    
      then (
    Sum M) is 
    empty;
    
      hence thesis by
    EXTREAL1: 7;
    
    end;
    
    theorem :: 
    
    MEASURE9:24
    
    
    
    
    
    Th22: for m be 
    Nat, M be 
    Matrix of m, 
    0 , 
    ExtREAL holds ( 
    SumAll M) 
    =  
    0  
    
    proof
    
      let m be
    Nat, M be 
    Matrix of m, 
    0 , 
    ExtREAL ; 
    
      per cases ;
    
        suppose m
    =  
    0 ; 
    
        then (
    len M) 
    =  
    0 by 
    MATRIX_0:def 2;
    
        hence thesis by
    Th21;
    
      end;
    
        suppose m
    >  
    0 ; 
    
        then (
    len M) 
    >  
    0 by 
    MATRIX_0:def 2;
    
        then
    
        reconsider k = (
    len ( 
    Sum M)) as non 
    zero  
    Nat by 
    Def5;
    
        reconsider Z =
    0. as 
    R_eal;
    
        for k be
    Nat st k 
    in ( 
    dom ( 
    Sum M)) holds (( 
    Sum M) 
    . k) 
    =  
    0  
    
        proof
    
          (
    len M) 
    = ( 
    len ( 
    Sum M)) by 
    Def5;
    
          then
    
          
    
    A2: ( 
    dom M) 
    = ( 
    dom ( 
    Sum M)) by 
    FINSEQ_3: 29;
    
          hereby
    
            let k be
    Nat;
    
            assume
    
            
    
    A3: k 
    in ( 
    dom ( 
    Sum M)); 
    
            then (M
    . k) 
    in ( 
    rng M) by 
    A2,
    FUNCT_1:def 3;
    
            then (M
    . k) 
    = ( 
    <*>  
    ExtREAL ) by 
    MATRIX_0:def 2;
    
            hence ((
    Sum M) 
    . k) 
    =  
    0 by 
    A3,
    Def5,
    EXTREAL1: 7;
    
          end;
    
        end;
    
        then (
    Sum M) 
    = (k 
    |->  
    0. ) by 
    MATRPROB: 1;
    
        then (
    SumAll M) 
    = (( 
    len ( 
    Sum M)) 
    * Z) by 
    Th20;
    
        hence (
    SumAll M) 
    =  
    0 ; 
    
      end;
    
    end;
    
    theorem :: 
    
    MEASURE9:25
    
    
    
    
    
    Th23: for n,m,k be 
    Nat, M1 be 
    Matrix of n, k, 
    ExtREAL , M2 be 
    Matrix of m, k, 
    ExtREAL holds ( 
    Sum (M1 
    ^ M2)) 
    = (( 
    Sum M1) 
    ^ ( 
    Sum M2)) 
    
    proof
    
      let n,m,k be
    Nat;
    
      let M1 be
    Matrix of n, k, 
    ExtREAL ; 
    
      let M2 be
    Matrix of m, k, 
    ExtREAL ; 
    
      
    
      
    
    A1: ( 
    dom ( 
    Sum (M1 
    ^ M2))) 
    = ( 
    Seg ( 
    len ( 
    Sum (M1 
    ^ M2)))) by 
    FINSEQ_1:def 3;
    
      
    
    A2: 
    
      now
    
        let i be
    Nat;
    
        assume
    
        
    
    A3: i 
    in ( 
    dom ( 
    Sum (M1 
    ^ M2))); 
    
        then i
    in ( 
    Seg ( 
    len (M1 
    ^ M2))) by 
    A1,
    Def5;
    
        then
    
        
    
    A4: i 
    in ( 
    dom (M1 
    ^ M2)) by 
    FINSEQ_1:def 3;
    
        
    
        
    
    A8: ( 
    len M1) 
    = ( 
    len ( 
    Sum M1)) & ( 
    len M2) 
    = ( 
    len ( 
    Sum M2)) by 
    Def5;
    
        then
    
        
    
    A6: ( 
    dom M1) 
    = ( 
    dom ( 
    Sum M1)) & ( 
    dom M2) 
    = ( 
    dom ( 
    Sum M2)) by 
    FINSEQ_3: 29;
    
        per cases by
    A4,
    FINSEQ_1: 25;
    
          suppose
    
          
    
    A5: i 
    in ( 
    dom M1); 
    
          
    
          thus ((
    Sum (M1 
    ^ M2)) 
    . i) 
    = ( 
    Sum ((M1 
    ^ M2) 
    . i)) by 
    A3,
    Def5
    
          .= (
    Sum (M1 
    . i)) by 
    A5,
    FINSEQ_1:def 7
    
          .= ((
    Sum M1) 
    . i) by 
    A5,
    A6,
    Def5
    
          .= (((
    Sum M1) 
    ^ ( 
    Sum M2)) 
    . i) by 
    A5,
    A6,
    FINSEQ_1:def 7;
    
        end;
    
          suppose ex n be
    Nat st n 
    in ( 
    dom M2) & i 
    = (( 
    len M1) 
    + n); 
    
          then
    
          consider n be
    Nat such that 
    
          
    
    A10: n 
    in ( 
    dom M2) & i 
    = (( 
    len M1) 
    + n); 
    
          
    
          thus ((
    Sum (M1 
    ^ M2)) 
    . i) 
    = ( 
    Sum ((M1 
    ^ M2) 
    . i)) by 
    A3,
    Def5
    
          .= (
    Sum (M2 
    . n)) by 
    A10,
    FINSEQ_1:def 7
    
          .= ((
    Sum M2) 
    . n) by 
    A10,
    A6,
    Def5
    
          .= (((
    Sum M1) 
    ^ ( 
    Sum M2)) 
    . i) by 
    A10,
    A8,
    A6,
    FINSEQ_1:def 7;
    
        end;
    
      end;
    
      (
    len ( 
    Sum (M1 
    ^ M2))) 
    = ( 
    len (M1 
    ^ M2)) by 
    Def5
    
      .= ((
    len M1) 
    + ( 
    len M2)) by 
    FINSEQ_1: 22
    
      .= ((
    len ( 
    Sum M1)) 
    + ( 
    len M2)) by 
    Def5
    
      .= ((
    len ( 
    Sum M1)) 
    + ( 
    len ( 
    Sum M2))) by 
    Def5
    
      .= (
    len (( 
    Sum M1) 
    ^ ( 
    Sum M2))) by 
    FINSEQ_1: 22;
    
      hence thesis by
    A2,
    FINSEQ_2: 9;
    
    end;
    
    theorem :: 
    
    MEASURE9:26
    
    
    
    
    
    Th24: for M1,M2 be 
    Matrix of 
    ExtREAL st (for i be 
    Nat st i 
    in ( 
    dom M1) holds not 
    -infty  
    in ( 
    rng (M1 
    . i))) & (for i be 
    Nat st i 
    in ( 
    dom M2) holds not 
    -infty  
    in ( 
    rng (M2 
    . i))) holds (( 
    Sum M1) 
    + ( 
    Sum M2)) 
    = ( 
    Sum (M1 
    ^^ M2)) 
    
    proof
    
      let M1,M2 be
    Matrix of 
    ExtREAL ; 
    
      reconsider M = (
    min (( 
    len M1),( 
    len M2))) as 
    Element of 
    NAT ; 
    
      assume
    
      
    
    B0: (for i be 
    Nat st i 
    in ( 
    dom M1) holds not 
    -infty  
    in ( 
    rng (M1 
    . i))) & (for i be 
    Nat st i 
    in ( 
    dom M2) holds not 
    -infty  
    in ( 
    rng (M2 
    . i))); 
    
      now
    
        assume
    -infty  
    in ( 
    rng ( 
    Sum M1)); 
    
        then
    
        consider i be
    Nat such that 
    
        
    
    C1: i 
    in ( 
    dom ( 
    Sum M1)) & (( 
    Sum M1) 
    . i) 
    =  
    -infty by 
    FINSEQ_2: 10;
    
        i
    in ( 
    Seg ( 
    len ( 
    Sum M1))) by 
    C1,
    FINSEQ_1:def 3;
    
        then i
    in ( 
    Seg ( 
    len M1)) by 
    Def5;
    
        then i
    in ( 
    dom M1) by 
    FINSEQ_1:def 3;
    
        then
    
        
    
    C2: not 
    -infty  
    in ( 
    rng (M1 
    . i)) by 
    B0;
    
        ((
    Sum M1) 
    . i) 
    = ( 
    Sum (M1 
    . i)) by 
    C1,
    Def5;
    
        then ex j be
    Nat st j 
    in ( 
    dom (M1 
    . i)) & ((M1 
    . i) 
    . j) 
    =  
    -infty by 
    C1,
    Th17;
    
        hence contradiction by
    C2,
    FUNCT_1: 3;
    
      end;
    
      then
    
      
    
    D1: (( 
    Sum M1) 
    "  
    {
    -infty }) 
    =  
    {} by 
    FUNCT_1: 72;
    
      now
    
        assume
    -infty  
    in ( 
    rng ( 
    Sum M2)); 
    
        then
    
        consider i be
    Nat such that 
    
        
    
    C1: i 
    in ( 
    dom ( 
    Sum M2)) & (( 
    Sum M2) 
    . i) 
    =  
    -infty by 
    FINSEQ_2: 10;
    
        i
    in ( 
    Seg ( 
    len ( 
    Sum M2))) by 
    C1,
    FINSEQ_1:def 3;
    
        then i
    in ( 
    Seg ( 
    len M2)) by 
    Def5;
    
        then i
    in ( 
    dom M2) by 
    FINSEQ_1:def 3;
    
        then
    
        
    
    C2: not 
    -infty  
    in ( 
    rng (M2 
    . i)) by 
    B0;
    
        ((
    Sum M2) 
    . i) 
    = ( 
    Sum (M2 
    . i)) by 
    C1,
    Def5;
    
        then ex j be
    Nat st j 
    in ( 
    dom (M2 
    . i)) & ((M2 
    . i) 
    . j) 
    =  
    -infty by 
    C1,
    Th17;
    
        hence contradiction by
    C2,
    FUNCT_1: 3;
    
      end;
    
      then ((
    Sum M2) 
    "  
    {
    -infty }) 
    =  
    {} by 
    FUNCT_1: 72;
    
      then
    
      
    
    D2: (( 
    dom ( 
    Sum M1)) 
    /\ ( 
    dom ( 
    Sum M2))) 
    = ((( 
    dom ( 
    Sum M1)) 
    /\ ( 
    dom ( 
    Sum M2))) 
    \ (((( 
    Sum M1) 
    "  
    {
    -infty }) 
    /\ (( 
    Sum M2) 
    "  
    {
    +infty })) 
    \/ ((( 
    Sum M2) 
    "  
    {
    -infty }) 
    /\ (( 
    Sum M1) 
    "  
    {
    +infty })))) by 
    D1;
    
      
    
      
    
    A1: ( 
    Seg M) 
    = (( 
    Seg ( 
    len M1)) 
    /\ ( 
    Seg ( 
    len M2))) by 
    FINSEQ_2: 2
    
      .= ((
    Seg ( 
    len M1)) 
    /\ ( 
    dom M2)) by 
    FINSEQ_1:def 3
    
      .= ((
    dom M1) 
    /\ ( 
    dom M2)) by 
    FINSEQ_1:def 3
    
      .= (
    dom (M1 
    ^^ M2)) by 
    PRE_POLY:def 4
    
      .= (
    Seg ( 
    len (M1 
    ^^ M2))) by 
    FINSEQ_1:def 3;
    
      
    
      
    
    A0: ( 
    dom ( 
    Sum M1)) 
    = ( 
    Seg ( 
    len ( 
    Sum M1))) & ( 
    dom ( 
    Sum M2)) 
    = ( 
    Seg ( 
    len ( 
    Sum M2))) by 
    FINSEQ_1:def 3;
    
      (
    dom (( 
    Sum M1) 
    + ( 
    Sum M2))) 
    = (( 
    dom ( 
    Sum M1)) 
    /\ ( 
    dom ( 
    Sum M2))) by 
    D2,
    MESFUNC1:def 3;
    
      then
    
      
    
    K1: ( 
    dom (( 
    Sum M1) 
    + ( 
    Sum M2))) 
    = ( 
    Seg ( 
    min (( 
    len ( 
    Sum M1)),( 
    len ( 
    Sum M2))))) by 
    A0,
    FINSEQ_2: 2;
    
      then
    
      reconsider SM12 = ((
    Sum M1) 
    + ( 
    Sum M2)) as 
    FinSequence by 
    FINSEQ_1:def 2;
    
      (
    len SM12) 
    = ( 
    min (( 
    len ( 
    Sum M1)),( 
    len ( 
    Sum M2)))) by 
    K1,
    FINSEQ_1:def 3;
    
      
    
      then
    
      
    
    A2: ( 
    len SM12) 
    = ( 
    min (( 
    len M1),( 
    len ( 
    Sum M2)))) by 
    Def5
    
      .= (
    min (( 
    len M1),( 
    len M2))) by 
    Def5
    
      .= (
    len (M1 
    ^^ M2)) by 
    A1,
    FINSEQ_1: 6
    
      .= (
    len ( 
    Sum (M1 
    ^^ M2))) by 
    Def5;
    
      
    
      
    
    A3: ( 
    dom (( 
    Sum M1) 
    + ( 
    Sum M2))) 
    = ( 
    Seg ( 
    len SM12)) by 
    FINSEQ_1:def 3;
    
      now
    
        let i be
    Nat;
    
        assume
    
        
    
    A4: i 
    in ( 
    dom (( 
    Sum M1) 
    + ( 
    Sum M2))); 
    
        then i
    in ( 
    Seg ( 
    len SM12)) by 
    FINSEQ_1:def 3;
    
        then i
    in ( 
    Seg ( 
    len (M1 
    ^^ M2))) by 
    A2,
    Def5;
    
        then
    
        
    
    A6: i 
    in ( 
    dom (M1 
    ^^ M2)) by 
    FINSEQ_1:def 3;
    
        then i
    in (( 
    dom M1) 
    /\ ( 
    dom M2)) by 
    PRE_POLY:def 4;
    
        then
    
        
    
    B1: i 
    in ( 
    dom M1) & i 
    in ( 
    dom M2) by 
    XBOOLE_0:def 4;
    
        then i
    in ( 
    Seg ( 
    len M1)) & i 
    in ( 
    Seg ( 
    len M2)) by 
    FINSEQ_1:def 3;
    
        then i
    in ( 
    Seg ( 
    len ( 
    Sum M1))) & i 
    in ( 
    Seg ( 
    len ( 
    Sum M2))) by 
    Def5;
    
        then
    
        
    
    A8: i 
    in ( 
    dom ( 
    Sum M1)) & i 
    in ( 
    dom ( 
    Sum M2)) by 
    FINSEQ_1:def 3;
    
        
    
        
    
    A10: i 
    in ( 
    dom ( 
    Sum (M1 
    ^^ M2))) by 
    A2,
    A3,
    A4,
    FINSEQ_1:def 3;
    
        
    
        
    
    A11: ((M1 
    . i) 
    ^ (M2 
    . i)) 
    = ((M1 
    ^^ M2) 
    . i) by 
    A6,
    PRE_POLY:def 4;
    
        
    
        
    
    B3: not 
    -infty  
    in ( 
    rng (M1 
    . i)) & not 
    -infty  
    in ( 
    rng (M2 
    . i)) by 
    B0,
    B1;
    
        
    
        thus (((
    Sum M1) 
    + ( 
    Sum M2)) 
    . i) 
    = ((( 
    Sum M1) 
    . i) 
    + (( 
    Sum M2) 
    . i)) by 
    A4,
    MESFUNC1:def 3
    
        .= ((
    Sum (M1 
    . i)) 
    + (( 
    Sum M2) 
    . i)) by 
    A8,
    Def5
    
        .= ((
    Sum (M1 
    . i)) 
    + ( 
    Sum (M2 
    . i))) by 
    A8,
    Def5
    
        .= (
    Sum ((M1 
    ^^ M2) 
    . i)) by 
    A11,
    B3,
    EXTREAL1: 10
    
        .= ((
    Sum (M1 
    ^^ M2)) 
    . i) by 
    A10,
    Def5;
    
      end;
    
      hence thesis by
    A2,
    FINSEQ_2: 9;
    
    end;
    
    theorem :: 
    
    MEASURE9:27
    
    
    
    
    
    Th25: for M1,M2 be 
    Matrix of 
    ExtREAL st ( 
    len M1) 
    = ( 
    len M2) & (for i be 
    Nat st i 
    in ( 
    dom M1) holds not 
    -infty  
    in ( 
    rng (M1 
    . i))) & (for i be 
    Nat st i 
    in ( 
    dom M2) holds not 
    -infty  
    in ( 
    rng (M2 
    . i))) holds (( 
    SumAll M1) 
    + ( 
    SumAll M2)) 
    = ( 
    SumAll (M1 
    ^^ M2)) 
    
    proof
    
      let M1,M2 be
    Matrix of 
    ExtREAL such that 
    
      
    
    A1: ( 
    len M1) 
    = ( 
    len M2) & (for i be 
    Nat st i 
    in ( 
    dom M1) holds not 
    -infty  
    in ( 
    rng (M1 
    . i))) & (for i be 
    Nat st i 
    in ( 
    dom M2) holds not 
    -infty  
    in ( 
    rng (M2 
    . i))); 
    
      
    
      
    
    A2: ( 
    len ( 
    Sum M1)) 
    = ( 
    len M1) by 
    Def5
    
      .= (
    len ( 
    Sum M2)) by 
    A1,
    Def5;
    
      then
    
      reconsider p1 = (
    Sum M1), p2 = ( 
    Sum M2) as 
    Element of (( 
    len ( 
    Sum M1)) 
    -tuples_on  
    ExtREAL ) by 
    FINSEQ_2: 92;
    
      
    
    C0: 
    
      now
    
        assume
    -infty  
    in ( 
    rng ( 
    Sum M1)); 
    
        then
    
        consider i be
    Nat such that 
    
        
    
    C1: i 
    in ( 
    dom ( 
    Sum M1)) & (( 
    Sum M1) 
    . i) 
    =  
    -infty by 
    FINSEQ_2: 10;
    
        i
    in ( 
    Seg ( 
    len ( 
    Sum M1))) by 
    C1,
    FINSEQ_1:def 3;
    
        then i
    in ( 
    Seg ( 
    len M1)) by 
    Def5;
    
        then i
    in ( 
    dom M1) by 
    FINSEQ_1:def 3;
    
        then
    
        
    
    C2: not 
    -infty  
    in ( 
    rng (M1 
    . i)) by 
    A1;
    
        ((
    Sum M1) 
    . i) 
    = ( 
    Sum (M1 
    . i)) by 
    C1,
    Def5;
    
        then ex j be
    Nat st j 
    in ( 
    dom (M1 
    . i)) & ((M1 
    . i) 
    . j) 
    =  
    -infty by 
    C1,
    Th17;
    
        hence contradiction by
    C2,
    FUNCT_1: 3;
    
      end;
    
      
    
    A3: 
    
      now
    
        assume
    -infty  
    in ( 
    rng ( 
    Sum M2)); 
    
        then
    
        consider i be
    Nat such that 
    
        
    
    C1: i 
    in ( 
    dom ( 
    Sum M2)) & (( 
    Sum M2) 
    . i) 
    =  
    -infty by 
    FINSEQ_2: 10;
    
        i
    in ( 
    Seg ( 
    len ( 
    Sum M2))) by 
    C1,
    FINSEQ_1:def 3;
    
        then i
    in ( 
    Seg ( 
    len M2)) by 
    Def5;
    
        then i
    in ( 
    dom M2) by 
    FINSEQ_1:def 3;
    
        then
    
        
    
    C2: not 
    -infty  
    in ( 
    rng (M2 
    . i)) by 
    A1;
    
        ((
    Sum M2) 
    . i) 
    = ( 
    Sum (M2 
    . i)) by 
    C1,
    Def5;
    
        then ex j be
    Nat st j 
    in ( 
    dom (M2 
    . i)) & ((M2 
    . i) 
    . j) 
    =  
    -infty by 
    C1,
    Th17;
    
        hence contradiction by
    C2,
    FUNCT_1: 3;
    
      end;
    
      
    
      
    
    A4: ( 
    dom ( 
    Sum M1)) 
    = ( 
    dom ( 
    Sum M2)) by 
    A2,
    FINSEQ_3: 29;
    
      (
    Sum (M1 
    ^^ M2)) 
    = (( 
    Sum M1) 
    + ( 
    Sum M2)) by 
    A1,
    Th24;
    
      hence ((
    SumAll M1) 
    + ( 
    SumAll M2)) 
    = ( 
    SumAll (M1 
    ^^ M2)) by 
    A3,
    C0,
    A4,
    Th18;
    
    end;
    
    theorem :: 
    
    MEASURE9:28
    
    
    
    
    
    Th26: for p be 
    FinSequence of 
    ExtREAL st not 
    -infty  
    in ( 
    rng p) holds ( 
    SumAll  
    <*p*>)
    = ( 
    SumAll ( 
    <*p*>
    @ )) 
    
    proof
    
      defpred
    
    x[
    FinSequence of 
    ExtREAL ] means not 
    -infty  
    in ( 
    rng $1) implies ( 
    SumAll  
    <*$1*>)
    = ( 
    SumAll ( 
    <*$1*>
    @ )); 
    
      let p be
    FinSequence of 
    ExtREAL ; 
    
      assume
    
      
    
    B0: not 
    -infty  
    in ( 
    rng p); 
    
      
    
      
    
    A2: for p be 
    FinSequence of 
    ExtREAL , x be 
    Element of 
    ExtREAL st 
    x[p] holds
    x[(p
    ^  
    <*x*>)]
    
      proof
    
        let p be
    FinSequence of 
    ExtREAL , x be 
    Element of 
    ExtREAL such that 
    
        
    
    A3: not 
    -infty  
    in ( 
    rng p) implies ( 
    SumAll  
    <*p*>)
    = ( 
    SumAll ( 
    <*p*>
    @ )); 
    
        assume not
    -infty  
    in ( 
    rng (p 
    ^  
    <*x*>));
    
        then not
    -infty  
    in (( 
    rng p) 
    \/ ( 
    rng  
    <*x*>)) by
    FINSEQ_1: 31;
    
        then
    
        
    
    B3: not 
    -infty  
    in ( 
    rng p) & not 
    -infty  
    in ( 
    rng  
    <*x*>) by
    XBOOLE_0:def 3;
    
        (
    Seg ( 
    len ( 
    <*p*>
    ^^  
    <*
    <*x*>*>)))
    = ( 
    dom ( 
    <*p*>
    ^^  
    <*
    <*x*>*>)) by
    FINSEQ_1:def 3
    
        .= ((
    dom  
    <*p*>)
    /\ ( 
    dom  
    <*
    <*x*>*>)) by
    PRE_POLY:def 4
    
        .= ((
    Seg 1) 
    /\ ( 
    dom  
    <*
    <*x*>*>)) by
    FINSEQ_1: 38
    
        .= ((
    Seg 1) 
    /\ ( 
    Seg 1)) by 
    FINSEQ_1: 38
    
        .= (
    Seg 1); 
    
        
    
        then
    
        
    
    A4: ( 
    len ( 
    <*p*>
    ^^  
    <*
    <*x*>*>))
    = 1 by 
    FINSEQ_1: 6
    
        .= (
    len  
    <*(p
    ^  
    <*x*>)*>) by
    FINSEQ_1: 39;
    
        
    
        
    
    A5: ( 
    dom  
    <*(p
    ^  
    <*x*>)*>)
    = ( 
    Seg ( 
    len  
    <*(p
    ^  
    <*x*>)*>)) by
    FINSEQ_1:def 3;
    
        
    
    A6: 
    
        now
    
          let i be
    Nat;
    
          reconsider M1 = (
    <*p*>
    . i), M2 = ( 
    <*
    <*x*>*>
    . i) as 
    FinSequence;
    
          assume
    
          
    
    A7: i 
    in ( 
    dom  
    <*(p
    ^  
    <*x*>)*>);
    
          then
    
          
    
    A8: i 
    = 1 by 
    FINSEQ_1: 90;
    
          i
    in ( 
    dom ( 
    <*p*>
    ^^  
    <*
    <*x*>*>)) by
    A4,
    A5,
    A7,
    FINSEQ_1:def 3;
    
          
    
          hence ((
    <*p*>
    ^^  
    <*
    <*x*>*>)
    . i) 
    = (M1 
    ^ M2) by 
    PRE_POLY:def 4
    
          .= (p
    ^ M2) by 
    A8,
    FINSEQ_1: 40
    
          .= (p
    ^  
    <*x*>) by
    A8,
    FINSEQ_1: 40
    
          .= (
    <*(p
    ^  
    <*x*>)*>
    . i) by 
    A8,
    FINSEQ_1: 40;
    
        end;
    
        per cases ;
    
          suppose (
    len p) 
    =  
    0 ; 
    
          then
    
          
    
    A9: p 
    =  
    {} ; 
    
          
    
          hence (
    SumAll  
    <*(p
    ^  
    <*x*>)*>)
    = ( 
    SumAll  
    <*
    <*x*>*>) by
    FINSEQ_1: 34
    
          .= (
    SumAll ( 
    <*
    <*x*>*>
    @ )) by 
    MATRLIN: 15
    
          .= (
    SumAll ( 
    <*(p
    ^  
    <*x*>)*>
    @ )) by 
    A9,
    FINSEQ_1: 34;
    
        end;
    
          suppose
    
          
    
    A10: ( 
    len p) 
    <>  
    0 ; 
    
          
    
          
    
    A11: ( 
    len  
    <*
    <*x*>*>)
    = 1 & ( 
    len  
    <*p*>)
    = 1 & ( 
    len  
    <*x*>)
    = 1 by 
    FINSEQ_1: 40;
    
          then
    
          
    
    A12: ( 
    width  
    <*
    <*x*>*>)
    = 1 & ( 
    width  
    <*p*>)
    = ( 
    len p) by 
    MATRIX_0: 20;
    
          then
    
          
    
    A16: ( 
    len ( 
    <*p*>
    @ )) 
    = ( 
    len p) by 
    MATRIX_0:def 6;
    
          
    
          
    
    P5: ( 
    width ( 
    <*p*>
    @ )) 
    = 1 by 
    A10,
    A11,
    A12,
    MATRIX_0: 29;
    
          then
    
          reconsider d1 = (
    <*p*>
    @ ) as 
    Matrix of ( 
    len p), 1, 
    ExtREAL by 
    A10,
    A16,
    MATRIX_0: 20;
    
          
    
          
    
    A13: ( 
    len ( 
    <*
    <*x*>*>
    @ )) 
    = 1 by 
    A12,
    MATRIX_0: 54;
    
          
    
          
    
    PP5: ( 
    width ( 
    <*
    <*x*>*>
    @ )) 
    = 1 by 
    A11,
    A12,
    MATRIX_0: 29;
    
          then
    
          reconsider d2 = (
    <*
    <*x*>*>
    @ ) as 
    Matrix of 1, 1, 
    ExtREAL by 
    A13,
    MATRIX_0: 20;
    
          (
    len  
    <*(p
    ^  
    <*x*>)*>)
    = 1 by 
    FINSEQ_1: 40;
    
          
    
          then
    
          
    
    A18: ( 
    width  
    <*(p
    ^  
    <*x*>)*>)
    = ( 
    len (p 
    ^  
    <*x*>)) by
    MATRIX_0: 20
    
          .= ((
    len p) 
    + 1) by 
    A11,
    FINSEQ_1: 22;
    
          
    
          
    
    A19: (( 
    <*
    <*x*>*>
    @ ) 
    @ ) 
    =  
    <*
    <*x*>*> by
    A11,
    A12,
    MATRIX_0: 57;
    
          (
    width ( 
    <*p*>
    @ )) 
    = ( 
    width ( 
    <*
    <*x*>*>
    @ )) by 
    P5,
    A11,
    A12,
    MATRIX_0: 29;
    
          
    
          then
    
          
    
    A21: ((d1 
    ^ d2) 
    @ ) 
    = ((( 
    <*p*>
    @ ) 
    @ ) 
    ^^ (( 
    <*
    <*x*>*>
    @ ) 
    @ )) by 
    MATRLIN: 28
    
          .= (
    <*p*>
    ^^  
    <*
    <*x*>*>) by
    A10,
    A11,
    A12,
    A19,
    MATRIX_0: 57
    
          .=
    <*(p
    ^  
    <*x*>)*> by
    A4,
    A6,
    FINSEQ_2: 9
    
          .= ((
    <*(p
    ^  
    <*x*>)*>
    @ ) 
    @ ) by 
    A18,
    MATRIX_0: 57;
    
          
    
          
    
    A22: ( 
    len (( 
    <*p*>
    @ ) 
    ^ ( 
    <*
    <*x*>*>
    @ ))) 
    = (( 
    len ( 
    <*p*>
    @ )) 
    + ( 
    len ( 
    <*
    <*x*>*>
    @ ))) by 
    FINSEQ_1: 22
    
          .= ((
    width  
    <*p*>)
    + ( 
    len ( 
    <*
    <*x*>*>
    @ ))) by 
    MATRIX_0:def 6
    
          .= ((
    width  
    <*p*>)
    + ( 
    width  
    <*
    <*x*>*>)) by
    MATRIX_0:def 6
    
          .= (
    len ( 
    <*(p
    ^  
    <*x*>)*>
    @ )) by 
    A12,
    A18,
    MATRIX_0:def 6;
    
          
    
    B4: 
    
          now
    
            let i be
    Nat;
    
            assume i
    in ( 
    dom  
    <*p*>);
    
            then i
    = 1 by 
    FINSEQ_1: 90;
    
            hence not
    -infty  
    in ( 
    rng ( 
    <*p*>
    . i)) by 
    B3,
    FINSEQ_1:def 8;
    
          end;
    
          
    
    B5: 
    
          now
    
            let i be
    Nat;
    
            assume i
    in ( 
    dom  
    <*
    <*x*>*>);
    
            then i
    = 1 by 
    FINSEQ_1: 90;
    
            hence not
    -infty  
    in ( 
    rng ( 
    <*
    <*x*>*>
    . i)) by 
    B3,
    FINSEQ_1:def 8;
    
          end;
    
          (
    dom  
    <*p*>)
    = ( 
    Seg 1) by 
    FINSEQ_1: 38;
    
          then 1
    in ( 
    dom  
    <*p*>);
    
          then
    
          
    
    B6: not 
    -infty  
    in ( 
    rng ( 
    <*p*>
    . 1)) by 
    B4;
    
          then
    
          
    
    T6: not 
    -infty  
    in ( 
    rng p) by 
    FINSEQ_1:def 8;
    
          for x be
    object st x 
    in ( 
    dom ( 
    Sum d1)) holds (( 
    Sum d1) 
    . x) 
    <>  
    -infty  
    
          proof
    
            let x be
    object;
    
            assume
    
            
    
    P1: x 
    in ( 
    dom ( 
    Sum d1)); 
    
            then
    
            reconsider i = x as
    Nat;
    
            
    
            
    
    P2: (( 
    Sum d1) 
    . x) 
    = ( 
    Sum (d1 
    . i)) by 
    P1,
    Def5;
    
            1
    <= i & i 
    <= ( 
    len ( 
    Sum d1)) by 
    P1,
    FINSEQ_3: 25;
    
            then
    
            
    
    P3: 1 
    <= i & i 
    <= ( 
    len d1) by 
    Def5;
    
            then i
    in ( 
    dom p) by 
    A16,
    FINSEQ_3: 25;
    
            then
    
            
    
    R10: (p 
    . i) 
    <>  
    -infty by 
    T6,
    FUNCT_1: 3;
    
            i
    in ( 
    dom d1) by 
    P3,
    FINSEQ_3: 25;
    
            then
    
            
    
    P4: (d1 
    . i) 
    = ( 
    Line (d1,i)) by 
    MATRIX_0: 60;
    
            (
    dom d1) 
    = ( 
    Seg ( 
    len p)) by 
    A16,
    FINSEQ_1:def 3;
    
            then
    
            
    
    R2: ( 
    Indices d1) 
    =  
    [:(
    Seg ( 
    len p)), 
    {1}:] by
    P5,
    FINSEQ_1: 2,
    MATRIX_0:def 4;
    
            
    
            
    
    R3: i 
    in ( 
    Seg ( 
    len p)) by 
    P3,
    A16;
    
            for j be
    Nat st j 
    in ( 
    dom ( 
    Line (d1,i))) holds (( 
    Line (d1,i)) 
    . j) 
    <>  
    -infty  
    
            proof
    
              let j be
    Nat;
    
              assume j
    in ( 
    dom ( 
    Line (d1,i))); 
    
              then 1
    <= j & j 
    <= ( 
    len ( 
    Line (d1,i))) by 
    FINSEQ_3: 25;
    
              then 1
    <= j & j 
    <= ( 
    width d1) by 
    MATRIX_0:def 7;
    
              then
    
              
    
    P6: j 
    in ( 
    Seg ( 
    width d1)); 
    
              then
    
              
    
    R4: 
    [i, j]
    in  
    [:(
    Seg ( 
    len p)), 
    {1}:] by
    P5,
    R3,
    FINSEQ_1: 2,
    ZFMISC_1:def 2;
    
              then
    [j, i]
    in ( 
    Indices (d1 
    @ )) by 
    R2,
    MATRIX_0:def 6;
    
              then
    
              consider F be
    FinSequence of 
    ExtREAL such that 
    
              
    
    R7: F 
    = ((d1 
    @ ) 
    . j) & ((d1 
    @ ) 
    * (j,i)) 
    = (F 
    . i) by 
    MATRIX_0:def 5;
    
              F
    = ( 
    <*p*>
    . j) by 
    A10,
    A12,
    R7,
    A11,
    MATRIX_0: 57;
    
              then F
    = ( 
    <*p*>
    . 1) by 
    P5,
    P6,
    FINSEQ_1: 2,
    TARSKI:def 1;
    
              then
    
              
    
    R9: F 
    = p by 
    FINSEQ_1:def 8;
    
              ((
    Line (d1,i)) 
    . j) 
    = (( 
    <*p*>
    @ ) 
    * (i,j)) by 
    P6,
    MATRIX_0:def 7;
    
              hence ((
    Line (d1,i)) 
    . j) 
    <>  
    -infty by 
    R7,
    R9,
    R10,
    R2,
    R4,
    MATRIX_0:def 6;
    
            end;
    
            hence ((
    Sum d1) 
    . x) 
    <>  
    -infty by 
    P2,
    P4,
    Th17;
    
          end;
    
          then
    
          
    
    B7: not 
    -infty  
    in ( 
    rng ( 
    Sum d1)) by 
    FUNCT_1:def 3;
    
          for z be
    object st z 
    in ( 
    dom ( 
    Sum d2)) holds (( 
    Sum d2) 
    . z) 
    <>  
    -infty  
    
          proof
    
            let z be
    object;
    
            assume
    
            
    
    P1: z 
    in ( 
    dom ( 
    Sum d2)); 
    
            then
    
            reconsider i = z as
    Nat;
    
            
    
            
    
    P2: (( 
    Sum d2) 
    . z) 
    = ( 
    Sum (d2 
    . i)) by 
    P1,
    Def5;
    
            1
    <= i & i 
    <= ( 
    len ( 
    Sum d2)) by 
    P1,
    FINSEQ_3: 25;
    
            then
    
            
    
    P3: 1 
    <= i & i 
    <= ( 
    len d2) by 
    Def5;
    
            then
    
            
    
    R1: 1 
    <= i & i 
    <= ( 
    len  
    <*x*>) by
    A13,
    FINSEQ_1: 40;
    
            then i
    in ( 
    dom  
    <*x*>) by
    FINSEQ_3: 25;
    
            then
    
            
    
    R10: ( 
    <*x*>
    . i) 
    <>  
    -infty by 
    B3,
    FUNCT_1: 3;
    
            i
    in ( 
    dom d2) by 
    P3,
    FINSEQ_3: 25;
    
            then
    
            
    
    P4: (d2 
    . i) 
    = ( 
    Line (d2,i)) by 
    MATRIX_0: 60;
    
            (
    dom d2) 
    = ( 
    Seg ( 
    len  
    <*x*>)) by
    A13,
    FINSEQ_1:def 3,
    FINSEQ_1: 40;
    
            then
    
            
    
    R2: ( 
    Indices d2) 
    =  
    [:(
    Seg ( 
    len  
    <*x*>)),
    {1}:] by
    PP5,
    FINSEQ_1: 2,
    MATRIX_0:def 4;
    
            
    
            
    
    R3: i 
    in ( 
    Seg ( 
    len  
    <*x*>)) by
    R1;
    
            for j be
    Nat st j 
    in ( 
    dom ( 
    Line (d2,i))) holds (( 
    Line (d2,i)) 
    . j) 
    <>  
    -infty  
    
            proof
    
              let j be
    Nat;
    
              assume j
    in ( 
    dom ( 
    Line (d2,i))); 
    
              then 1
    <= j & j 
    <= ( 
    len ( 
    Line (d2,i))) by 
    FINSEQ_3: 25;
    
              then 1
    <= j & j 
    <= ( 
    width d2) by 
    MATRIX_0:def 7;
    
              then
    
              
    
    P6: j 
    in ( 
    Seg ( 
    width d2)); 
    
              then
    
              
    
    R4: 
    [i, j]
    in  
    [:(
    Seg ( 
    len  
    <*x*>)),
    {1}:] by
    PP5,
    R3,
    FINSEQ_1: 2,
    ZFMISC_1:def 2;
    
              then
    [j, i]
    in ( 
    Indices (d2 
    @ )) by 
    R2,
    MATRIX_0:def 6;
    
              then
    
              consider F be
    FinSequence of 
    ExtREAL such that 
    
              
    
    R7: F 
    = ((d2 
    @ ) 
    . j) & ((d2 
    @ ) 
    * (j,i)) 
    = (F 
    . i) by 
    MATRIX_0:def 5;
    
              F
    = ( 
    <*
    <*x*>*>
    . j) by 
    A12,
    R7,
    A11,
    MATRIX_0: 57;
    
              then F
    = ( 
    <*
    <*x*>*>
    . 1) by 
    PP5,
    P6,
    FINSEQ_1: 2,
    TARSKI:def 1;
    
              then
    
              
    
    R9: F 
    =  
    <*x*> by
    FINSEQ_1:def 8;
    
              ((
    Line (d2,i)) 
    . j) 
    = (( 
    <*
    <*x*>*>
    @ ) 
    * (i,j)) by 
    P6,
    MATRIX_0:def 7;
    
              hence ((
    Line (d2,i)) 
    . j) 
    <>  
    -infty by 
    R7,
    R9,
    R10,
    R2,
    R4,
    MATRIX_0:def 6;
    
            end;
    
            hence ((
    Sum d2) 
    . z) 
    <>  
    -infty by 
    P2,
    P4,
    Th17;
    
          end;
    
          then
    
          
    
    B8: not 
    -infty  
    in ( 
    rng ( 
    Sum d2)) by 
    FUNCT_1:def 3;
    
          
    
          thus (
    SumAll  
    <*(p
    ^  
    <*x*>)*>)
    = ( 
    SumAll ( 
    <*p*>
    ^^  
    <*
    <*x*>*>)) by
    A4,
    A6,
    FINSEQ_2: 9
    
          .= ((
    SumAll  
    <*p*>)
    + ( 
    SumAll  
    <*
    <*x*>*>)) by
    A11,
    B4,
    B5,
    Th25
    
          .= ((
    SumAll ( 
    <*p*>
    @ )) 
    + ( 
    SumAll ( 
    <*
    <*x*>*>
    @ ))) by 
    A3,
    B6,
    FINSEQ_1:def 8,
    MATRLIN: 15
    
          .= (
    Sum (( 
    Sum d1) 
    ^ ( 
    Sum d2))) by 
    B7,
    B8,
    EXTREAL1: 10
    
          .= (
    SumAll (d1 
    ^ d2)) by 
    Th23
    
          .= (
    SumAll ( 
    <*(p
    ^  
    <*x*>)*>
    @ )) by 
    A22,
    A21,
    MATRIX_0: 53;
    
        end;
    
      end;
    
      
    
      
    
    A23: 
    x[(
    <*>  
    ExtREAL )] 
    
      proof
    
        reconsider M1 =
    <*(
    <*>  
    ExtREAL )*> as 
    Matrix of 1, 
    0 , 
    ExtREAL by 
    MATRIX_0: 14;
    
        (
    len M1) 
    = 1 by 
    MATRIX_0:def 2;
    
        then (
    width M1) 
    =  
    0 by 
    MATRIX_0: 20;
    
        then
    
        
    
    A24: ( 
    len (M1 
    @ )) 
    =  
    0 by 
    MATRIX_0:def 6;
    
        (
    SumAll M1) 
    =  
    0 by 
    Th22;
    
        hence thesis by
    A24,
    Th21;
    
      end;
    
      for p be
    FinSequence of 
    ExtREAL holds 
    x[p] from
    FINSEQ_2:sch 2(
    A23,
    A2);
    
      hence thesis by
    B0;
    
    end;
    
    theorem :: 
    
    MEASURE9:29
    
    
    
    
    
    Th27: for p be 
    ext-real  
    number, M be 
    Matrix of 
    ExtREAL st (for i be 
    Nat st i 
    in ( 
    dom M) holds not p 
    in ( 
    rng (M 
    . i))) holds (for j be 
    Nat st j 
    in ( 
    dom (M 
    @ )) holds not p 
    in ( 
    rng ((M 
    @ ) 
    . j))) 
    
    proof
    
      let p be
    ext-real  
    number;
    
      let M be
    Matrix of 
    ExtREAL ; 
    
      assume
    
      
    
    A1: for i be 
    Nat st i 
    in ( 
    dom M) holds not p 
    in ( 
    rng (M 
    . i)); 
    
      hereby
    
        let j be
    Nat;
    
        assume
    
        
    
    A2: j 
    in ( 
    dom (M 
    @ )); 
    
        then
    
        
    
    A3: ((M 
    @ ) 
    . j) 
    = ( 
    Line ((M 
    @ ),j)) by 
    MATRIX_0: 60;
    
        j
    in ( 
    Seg ( 
    len (M 
    @ ))) by 
    A2,
    FINSEQ_1:def 3;
    
        then j
    in ( 
    Seg ( 
    width M)) by 
    MATRIX_0:def 6;
    
        then
    
        
    
    A5: ( 
    Line ((M 
    @ ),j)) 
    = ( 
    Col (M,j)) by 
    MATRIX_0: 59;
    
        for v be
    object st v 
    in ( 
    dom ( 
    Line ((M 
    @ ),j))) holds (( 
    Line ((M 
    @ ),j)) 
    . v) 
    <> p 
    
        proof
    
          let v be
    object;
    
          assume
    
          
    
    A6: v 
    in ( 
    dom ( 
    Line ((M 
    @ ),j))); 
    
          then
    
          reconsider i = v as
    Element of 
    NAT ; 
    
          1
    <= i & i 
    <= ( 
    len ( 
    Line ((M 
    @ ),j))) by 
    A6,
    FINSEQ_3: 25;
    
          then 1
    <= i & i 
    <= ( 
    width (M 
    @ )) by 
    MATRIX_0:def 7;
    
          then i
    in ( 
    Seg ( 
    width (M 
    @ ))); 
    
          then
    [j, i]
    in  
    [:(
    dom (M 
    @ )), ( 
    Seg ( 
    width (M 
    @ ))):] by 
    A2,
    ZFMISC_1:def 2;
    
          then
    [j, i]
    in ( 
    Indices (M 
    @ )) by 
    MATRIX_0:def 4;
    
          then
    
          
    
    A7: 
    [i, j]
    in ( 
    Indices M) by 
    MATRIX_0:def 6;
    
          then
    
          
    
    A8: i 
    in ( 
    dom M) & j 
    in ( 
    dom (M 
    . i)) by 
    MATRPROB: 13;
    
          then ((
    Line ((M 
    @ ),j)) 
    . v) 
    = (M 
    * (i,j)) by 
    A5,
    MATRIX_0:def 8;
    
          then ((
    Line ((M 
    @ ),j)) 
    . v) 
    = ((M 
    . i) 
    . j) by 
    A7,
    MATRPROB: 14;
    
          then ((
    Line ((M 
    @ ),j)) 
    . v) 
    in ( 
    rng (M 
    . i)) by 
    A8,
    FUNCT_1: 3;
    
          hence ((
    Line ((M 
    @ ),j)) 
    . v) 
    <> p by 
    A1,
    A7,
    MATRPROB: 13;
    
        end;
    
        hence not p
    in ( 
    rng ((M 
    @ ) 
    . j)) by 
    A3,
    FUNCT_1:def 3;
    
      end;
    
    end;
    
    theorem :: 
    
    MEASURE9:30
    
    
    
    
    
    Th28: for M be 
    Matrix of 
    ExtREAL st (for i be 
    Nat st i 
    in ( 
    dom M) holds not 
    -infty  
    in ( 
    rng (M 
    . i))) holds ( 
    SumAll M) 
    = ( 
    SumAll (M 
    @ )) 
    
    proof
    
      let M be
    Matrix of 
    ExtREAL ; 
    
      assume
    
      
    
    A0: for i be 
    Nat st i 
    in ( 
    dom M) holds not 
    -infty  
    in ( 
    rng (M 
    . i)); 
    
      defpred
    
    x[
    Nat] means for M be
    Matrix of 
    ExtREAL st ( 
    len M) 
    = $1 & (for i be 
    Nat st i 
    in ( 
    dom M) holds not 
    -infty  
    in ( 
    rng (M 
    . i))) holds ( 
    SumAll M) 
    = ( 
    SumAll (M 
    @ )); 
    
      
    
      
    
    A1: for n be 
    Nat st 
    x[n] holds
    x[(n
    + 1)] 
    
      proof
    
        let n be
    Nat;
    
        assume
    
        
    
    A2: for M be 
    Matrix of 
    ExtREAL st ( 
    len M) 
    = n & (for i be 
    Nat st i 
    in ( 
    dom M) holds not 
    -infty  
    in ( 
    rng (M 
    . i))) holds ( 
    SumAll M) 
    = ( 
    SumAll (M 
    @ )); 
    
        thus for M be
    Matrix of 
    ExtREAL st ( 
    len M) 
    = (n 
    + 1) & (for i be 
    Nat st i 
    in ( 
    dom M) holds not 
    -infty  
    in ( 
    rng (M 
    . i))) holds ( 
    SumAll M) 
    = ( 
    SumAll (M 
    @ )) 
    
        proof
    
          let M be
    Matrix of 
    ExtREAL ; 
    
          assume
    
          
    
    A3: ( 
    len M) 
    = (n 
    + 1) & (for i be 
    Nat st i 
    in ( 
    dom M) holds not 
    -infty  
    in ( 
    rng (M 
    . i))); 
    
          then
    
          
    
    a3: M 
    <>  
    {} ; 
    
          per cases ;
    
            suppose
    
            
    
    A4: n 
    =  
    0 ; 
    
            1
    <= ( 
    len M) by 
    A3,
    NAT_1: 11;
    
            then
    
            
    
    A5: not 
    -infty  
    in ( 
    rng (M 
    . 1)) by 
    A3,
    FINSEQ_3: 25;
    
            M
    =  
    <*(M
    . 1)*> by 
    A3,
    A4,
    FINSEQ_1: 40;
    
            hence thesis by
    A5,
    Th26;
    
          end;
    
            suppose
    
            
    
    A30: n 
    >  
    0 ; 
    
            reconsider M9 = M as
    Matrix of (n 
    + 1), ( 
    width M), 
    ExtREAL by 
    A3,
    MATRIX_0: 20;
    
            reconsider M1 = (M
    . (n 
    + 1)) as 
    FinSequence of 
    ExtREAL ; 
    
            reconsider w = (
    Del (M9,(n 
    + 1))) as 
    Matrix of n, ( 
    width M), 
    ExtREAL by 
    MATRLIN: 3;
    
            
    
            
    
    V1: 1 
    <= (n 
    + 1) by 
    NAT_1: 11;
    
            then (M
    . (n 
    + 1)) 
    = ( 
    Line (M,(n 
    + 1))) by 
    A3,
    FINSEQ_3: 25,
    MATRIX_0: 60;
    
            then
    
            
    
    Y11: ( 
    len M1) 
    = ( 
    width M) by 
    MATRIX_0:def 7;
    
            then
    
            reconsider r =
    <*M1*> as
    Matrix of 1, ( 
    width M), 
    ExtREAL ; 
    
            
    
            
    
    A31: ( 
    width w) 
    = ( 
    width M9) by 
    A30,
    MATRLIN: 2
    
            .= (
    width r) by 
    MATRLIN: 2;
    
            
    
            
    
    A32: ( 
    len (w 
    @ )) 
    = ( 
    width w) by 
    MATRIX_0:def 6
    
            .= (
    len (r 
    @ )) by 
    A31,
    MATRIX_0:def 6;
    
            
    
            
    
    A33: ( 
    len ( 
    Del (M,(n 
    + 1)))) 
    = n by 
    A3,
    PRE_POLY: 12;
    
            
    
            
    
    T5: not 
    -infty  
    in ( 
    rng M1) by 
    V1,
    A3,
    FINSEQ_3: 25;
    
            for v be
    object st v 
    in ( 
    dom ( 
    Sum w)) holds (( 
    Sum w) 
    . v) 
    <>  
    -infty  
    
            proof
    
              let v be
    object;
    
              assume
    
              
    
    P1: v 
    in ( 
    dom ( 
    Sum w)); 
    
              then
    
              reconsider i = v as
    Nat;
    
              
    
              
    
    P2: (( 
    Sum w) 
    . v) 
    = ( 
    Sum (w 
    . i)) by 
    P1,
    Def5;
    
              1
    <= i & i 
    <= ( 
    len ( 
    Sum w)) by 
    P1,
    FINSEQ_3: 25;
    
              then
    
              
    
    P3: 1 
    <= i & i 
    <= ( 
    len w) by 
    Def5;
    
              then
    
              
    
    S0: 1 
    <= i & i 
    <= (n 
    + 1) by 
    A33,
    NAT_1: 12;
    
              
    
              
    
    R1: i 
    in ( 
    dom w) by 
    P3,
    FINSEQ_3: 25;
    
              then
    
              
    
    P4: (w 
    . i) 
    = ( 
    Line (w,i)) by 
    MATRIX_0: 60;
    
              for j be
    Nat st j 
    in ( 
    dom ( 
    Line (w,i))) holds (( 
    Line (w,i)) 
    . j) 
    <>  
    -infty  
    
              proof
    
                let j be
    Nat;
    
                assume j
    in ( 
    dom ( 
    Line (w,i))); 
    
                then 1
    <= j & j 
    <= ( 
    len ( 
    Line (w,i))) by 
    FINSEQ_3: 25;
    
                then 1
    <= j & j 
    <= ( 
    width w) by 
    MATRIX_0:def 7;
    
                then
    
                
    
    P6: j 
    in ( 
    Seg ( 
    width w)); 
    
                then
    [i, j]
    in  
    [:(
    dom w), ( 
    Seg ( 
    width w)):] by 
    R1,
    ZFMISC_1:def 2;
    
                then
    [i, j]
    in ( 
    Indices w) by 
    MATRIX_0:def 4;
    
                then
    
                consider F be
    FinSequence of 
    ExtREAL such that 
    
                
    
    R7: F 
    = (w 
    . i) & (w 
    * (i,j)) 
    = (F 
    . j) by 
    MATRIX_0:def 5;
    
                M
    <>  
    {} by 
    A3;
    
                then M
    = (( 
    Del (M,( 
    len M))) 
    ^  
    <*(M
    . ( 
    len M))*>) by 
    PRE_POLY: 13;
    
                then (M
    . i) 
    = (w 
    . i) by 
    A3,
    R1,
    FINSEQ_1:def 7;
    
                then
    
                
    
    S2: not 
    -infty  
    in ( 
    rng F) by 
    R7,
    A3,
    S0,
    FINSEQ_3: 25;
    
                (
    len F) 
    = ( 
    width w) by 
    P4,
    R7,
    MATRIX_0:def 7;
    
                then j
    in ( 
    dom F) by 
    P6,
    FINSEQ_1:def 3;
    
                then (F
    . j) 
    in ( 
    rng F) by 
    FUNCT_1: 3;
    
                hence ((
    Line (w,i)) 
    . j) 
    <>  
    -infty by 
    R7,
    S2,
    P6,
    MATRIX_0:def 7;
    
              end;
    
              hence ((
    Sum w) 
    . v) 
    <>  
    -infty by 
    P2,
    P4,
    Th17;
    
            end;
    
            then
    
            
    
    L1: not 
    -infty  
    in ( 
    rng ( 
    Sum w)) by 
    FUNCT_1:def 3;
    
            for v be
    object st v 
    in ( 
    dom ( 
    Sum r)) holds (( 
    Sum r) 
    . v) 
    <>  
    -infty  
    
            proof
    
              let v be
    object;
    
              assume
    
              
    
    P1: v 
    in ( 
    dom ( 
    Sum r)); 
    
              then
    
              reconsider i = v as
    Nat;
    
              
    
              
    
    P2: (( 
    Sum r) 
    . v) 
    = ( 
    Sum (r 
    . i)) by 
    P1,
    Def5;
    
              1
    <= i & i 
    <= ( 
    len ( 
    Sum r)) by 
    P1,
    FINSEQ_3: 25;
    
              then
    
              
    
    P3: 1 
    <= i & i 
    <= ( 
    len r) by 
    Def5;
    
              then 1
    <= i & i 
    <= 1 by 
    FINSEQ_1: 40;
    
              then i
    = 1 by 
    XXREAL_0: 1;
    
              then (n
    + i) 
    in ( 
    Seg (n 
    + 1)) by 
    FINSEQ_1: 4;
    
              then
    
              
    
    S0: (n 
    + i) 
    in ( 
    dom M) by 
    A3,
    FINSEQ_1:def 3;
    
              
    
              
    
    R1: i 
    in ( 
    dom r) by 
    P3,
    FINSEQ_3: 25;
    
              then
    
              
    
    P4: (r 
    . i) 
    = ( 
    Line (r,i)) by 
    MATRIX_0: 60;
    
              for j be
    Nat st j 
    in ( 
    dom ( 
    Line (r,i))) holds (( 
    Line (r,i)) 
    . j) 
    <>  
    -infty  
    
              proof
    
                let j be
    Nat;
    
                assume j
    in ( 
    dom ( 
    Line (r,i))); 
    
                then 1
    <= j & j 
    <= ( 
    len ( 
    Line (r,i))) by 
    FINSEQ_3: 25;
    
                then 1
    <= j & j 
    <= ( 
    width r) by 
    MATRIX_0:def 7;
    
                then
    
                
    
    P6: j 
    in ( 
    Seg ( 
    width r)); 
    
                then
    [i, j]
    in  
    [:(
    dom r), ( 
    Seg ( 
    width r)):] by 
    R1,
    ZFMISC_1:def 2;
    
                then
    [i, j]
    in ( 
    Indices r) by 
    MATRIX_0:def 4;
    
                then
    
                consider F be
    FinSequence of 
    ExtREAL such that 
    
                
    
    R7: F 
    = (r 
    . i) & (r 
    * (i,j)) 
    = (F 
    . j) by 
    MATRIX_0:def 5;
    
                M
    <>  
    {} by 
    A3;
    
                then M
    = (w 
    ^  
    <*(M
    . (n 
    + 1))*>) by 
    A3,
    PRE_POLY: 13;
    
                then (M
    . (n 
    + i)) 
    = (r 
    . i) by 
    A33,
    R1,
    FINSEQ_1:def 7;
    
                then
    
                
    
    S2: not 
    -infty  
    in ( 
    rng F) by 
    R7,
    A3,
    S0;
    
                (
    len F) 
    = ( 
    width r) by 
    P4,
    R7,
    MATRIX_0:def 7;
    
                then j
    in ( 
    dom F) by 
    P6,
    FINSEQ_1:def 3;
    
                then (F
    . j) 
    in ( 
    rng F) by 
    FUNCT_1: 3;
    
                hence ((
    Line (r,i)) 
    . j) 
    <>  
    -infty by 
    R7,
    S2,
    P6,
    MATRIX_0:def 7;
    
              end;
    
              hence ((
    Sum r) 
    . v) 
    <>  
    -infty by 
    P2,
    P4,
    Th17;
    
            end;
    
            then
    
            
    
    T3: not 
    -infty  
    in ( 
    rng ( 
    Sum r)) by 
    FUNCT_1:def 3;
    
            
    
            
    
    T4: for i be 
    Nat st i 
    in ( 
    dom ( 
    Del (M,(n 
    + 1)))) holds not 
    -infty  
    in ( 
    rng (( 
    Del (M,(n 
    + 1))) 
    . i)) 
    
            proof
    
              let i be
    Nat;
    
              assume
    
              
    
    R1: i 
    in ( 
    dom ( 
    Del (M,(n 
    + 1)))); 
    
              then
    
              
    
    P4: (w 
    . i) 
    = ( 
    Line (w,i)) by 
    MATRIX_0: 60;
    
              1
    <= i & i 
    <= ( 
    len w) by 
    R1,
    FINSEQ_3: 25;
    
              then
    
              
    
    S0: 1 
    <= i & i 
    <= (n 
    + 1) by 
    A33,
    NAT_1: 12;
    
              for v be
    object st v 
    in ( 
    dom ( 
    Line (w,i))) holds (( 
    Line (w,i)) 
    . v) 
    <>  
    -infty  
    
              proof
    
                let v be
    object;
    
                assume
    
                
    
    TT0: v 
    in ( 
    dom ( 
    Line (w,i))); 
    
                then
    
                reconsider j = v as
    Nat;
    
                1
    <= j & j 
    <= ( 
    len ( 
    Line (w,i))) by 
    TT0,
    FINSEQ_3: 25;
    
                then 1
    <= j & j 
    <= ( 
    width w) by 
    MATRIX_0:def 7;
    
                then
    
                
    
    P6: j 
    in ( 
    Seg ( 
    width w)); 
    
                then
    [i, j]
    in  
    [:(
    dom w), ( 
    Seg ( 
    width w)):] by 
    R1,
    ZFMISC_1:def 2;
    
                then
    [i, j]
    in ( 
    Indices w) by 
    MATRIX_0:def 4;
    
                then
    
                consider F be
    FinSequence of 
    ExtREAL such that 
    
                
    
    R7: F 
    = (w 
    . i) & (w 
    * (i,j)) 
    = (F 
    . j) by 
    MATRIX_0:def 5;
    
                M
    <>  
    {} by 
    A3;
    
                then M
    = (( 
    Del (M,( 
    len M))) 
    ^  
    <*(M
    . ( 
    len M))*>) by 
    PRE_POLY: 13;
    
                then (M
    . i) 
    = (w 
    . i) by 
    A3,
    R1,
    FINSEQ_1:def 7;
    
                then
    
                
    
    S2: not 
    -infty  
    in ( 
    rng F) by 
    R7,
    A3,
    S0,
    FINSEQ_3: 25;
    
                (
    len F) 
    = ( 
    width w) by 
    P4,
    R7,
    MATRIX_0:def 7;
    
                then j
    in ( 
    dom F) by 
    P6,
    FINSEQ_1:def 3;
    
                then (F
    . j) 
    in ( 
    rng F) by 
    FUNCT_1: 3;
    
                hence ((
    Line (w,i)) 
    . v) 
    <>  
    -infty by 
    R7,
    S2,
    P6,
    MATRIX_0:def 7;
    
              end;
    
              hence not
    -infty  
    in ( 
    rng (( 
    Del (M,(n 
    + 1))) 
    . i)) by 
    P4,
    FUNCT_1:def 3;
    
            end;
    
            M
    <>  
    {} by 
    A3;
    
            then M
    = (( 
    Del (M,( 
    len M))) 
    ^  
    <*(M
    . ( 
    len M))*>) by 
    PRE_POLY: 13;
    
            then
    
            
    
    H1: (M 
    @ ) 
    = ((w 
    @ ) 
    ^^ ( 
    <*(M
    . (n 
    + 1))*> 
    @ )) by 
    A3,
    A31,
    MATRLIN: 28;
    
            then
    
            
    
    Q4: ( 
    dom (M 
    @ )) 
    = (( 
    dom (w 
    @ )) 
    /\ ( 
    dom ( 
    <*(M
    . (n 
    + 1))*> 
    @ ))) by 
    PRE_POLY:def 4;
    
            (
    dom (w 
    @ )) 
    = ( 
    Seg ( 
    len (w 
    @ ))) by 
    FINSEQ_1:def 3;
    
            then (
    dom (w 
    @ )) 
    = ( 
    Seg ( 
    width w)) by 
    MATRIX_0:def 6;
    
            then (
    dom (w 
    @ )) 
    = ( 
    Seg ( 
    len ( 
    <*(M
    . (n 
    + 1))*> 
    @ ))) by 
    A31,
    MATRIX_0:def 6;
    
            then
    
            
    
    Z0: ( 
    dom (w 
    @ )) 
    = ( 
    dom ( 
    <*(M
    . (n 
    + 1))*> 
    @ )) by 
    FINSEQ_1:def 3;
    
            
    
            
    
    Y2: ( 
    len  
    <*(M
    . (n 
    + 1))*>) 
    = 1 by 
    FINSEQ_1: 40;
    
            then
    
            
    
    Z2: ( 
    width  
    <*(M
    . (n 
    + 1))*>) 
    = ( 
    width M) by 
    Y11,
    MATRIX_0: 20;
    
            
    
            
    
    T6: for i be 
    Nat st i 
    in ( 
    dom (w 
    @ )) holds not 
    -infty  
    in ( 
    rng ((w 
    @ ) 
    . i)) 
    
            proof
    
              let i be
    Nat;
    
              assume
    
              
    
    R1: i 
    in ( 
    dom (w 
    @ )); 
    
              then
    
              
    
    P4: ((w 
    @ ) 
    . i) 
    = ( 
    Line ((w 
    @ ),i)) by 
    MATRIX_0: 60;
    
              1
    <= i & i 
    <= ( 
    len (w 
    @ )) by 
    R1,
    FINSEQ_3: 25;
    
              then 1
    <= i & i 
    <= ( 
    width w) by 
    MATRIX_0:def 6;
    
              then 1
    <= ( 
    width w) by 
    XXREAL_0: 2;
    
              then
    
              
    
    V5: 1 
    <= ( 
    width M) by 
    A30,
    MATRLIN: 2;
    
              for v be
    object st v 
    in ( 
    dom ( 
    Line ((w 
    @ ),i))) holds (( 
    Line ((w 
    @ ),i)) 
    . v) 
    <>  
    -infty  
    
              proof
    
                let v be
    object;
    
                assume
    
                
    
    TT0: v 
    in ( 
    dom ( 
    Line ((w 
    @ ),i))); 
    
                then
    
                reconsider j = v as
    Nat;
    
                1
    <= j & j 
    <= ( 
    len ( 
    Line ((w 
    @ ),i))) by 
    TT0,
    FINSEQ_3: 25;
    
                then 1
    <= j & j 
    <= ( 
    width (w 
    @ )) by 
    MATRIX_0:def 7;
    
                then
    
                
    
    P6: j 
    in ( 
    Seg ( 
    width (w 
    @ ))); 
    
                then
    [i, j]
    in  
    [:(
    dom (w 
    @ )), ( 
    Seg ( 
    width (w 
    @ ))):] by 
    R1,
    ZFMISC_1:def 2;
    
                then
    [i, j]
    in ( 
    Indices (w 
    @ )) by 
    MATRIX_0:def 4;
    
                then
    
                consider F be
    FinSequence of 
    ExtREAL such that 
    
                
    
    R7: F 
    = ((w 
    @ ) 
    . i) & ((w 
    @ ) 
    * (i,j)) 
    = (F 
    . j) by 
    MATRIX_0:def 5;
    
                (
    width ( 
    <*(M
    . (n 
    + 1))*> 
    @ )) 
    = ( 
    len  
    <*(M
    . (n 
    + 1))*>) by 
    V5,
    Z2,
    MATRIX_0: 29;
    
                then 1
    in ( 
    Seg ( 
    width ( 
    <*(M
    . (n 
    + 1))*> 
    @ ))) by 
    Y2;
    
                then
    [i, 1]
    in  
    [:(
    dom ( 
    <*(M
    . (n 
    + 1))*> 
    @ )), ( 
    Seg ( 
    width ( 
    <*(M
    . (n 
    + 1))*> 
    @ ))):] by 
    Z0,
    R1,
    ZFMISC_1: 87;
    
                then
    [i, 1]
    in ( 
    Indices ( 
    <*(M
    . (n 
    + 1))*> 
    @ )) by 
    MATRIX_0:def 4;
    
                then
    
                consider G be
    FinSequence of 
    ExtREAL such that 
    
                
    
    Q7: G 
    = (( 
    <*(M
    . (n 
    + 1))*> 
    @ ) 
    . i) & (( 
    <*(M
    . (n 
    + 1))*> 
    @ ) 
    * (i,1)) 
    = (G 
    . 1) by 
    MATRIX_0:def 5;
    
                ((M
    @ ) 
    . i) 
    = (F 
    ^ G) by 
    R7,
    H1,
    Z0,
    Q4,
    R1,
    Q7,
    PRE_POLY:def 4;
    
                then not
    -infty  
    in ( 
    rng (F 
    ^ G)) by 
    Z0,
    Q4,
    R1,
    A3,
    Th27;
    
                then not
    -infty  
    in (( 
    rng F) 
    \/ ( 
    rng G)) by 
    FINSEQ_1: 31;
    
                then
    
                
    
    S2: not 
    -infty  
    in ( 
    rng F) & not 
    -infty  
    in ( 
    rng G) by 
    XBOOLE_0:def 3;
    
                (
    len F) 
    = ( 
    width (w 
    @ )) by 
    P4,
    R7,
    MATRIX_0:def 7;
    
                then j
    in ( 
    dom F) by 
    P6,
    FINSEQ_1:def 3;
    
                then (F
    . j) 
    in ( 
    rng F) by 
    FUNCT_1: 3;
    
                hence ((
    Line ((w 
    @ ),i)) 
    . v) 
    <>  
    -infty by 
    R7,
    S2,
    P6,
    MATRIX_0:def 7;
    
              end;
    
              hence not
    -infty  
    in ( 
    rng ((w 
    @ ) 
    . i)) by 
    P4,
    FUNCT_1:def 3;
    
            end;
    
            
    
            
    
    T7: for i be 
    Nat st i 
    in ( 
    dom (r 
    @ )) holds not 
    -infty  
    in ( 
    rng ((r 
    @ ) 
    . i)) 
    
            proof
    
              let i be
    Nat;
    
              assume
    
              
    
    R1: i 
    in ( 
    dom (r 
    @ )); 
    
              then
    
              
    
    P4: ((r 
    @ ) 
    . i) 
    = ( 
    Line ((r 
    @ ),i)) by 
    MATRIX_0: 60;
    
              1
    <= i & i 
    <= ( 
    len (r 
    @ )) by 
    R1,
    FINSEQ_3: 25;
    
              then 1
    <= i & i 
    <= ( 
    width r) by 
    MATRIX_0:def 6;
    
              then 1
    <= ( 
    width r) by 
    XXREAL_0: 2;
    
              then
    
              
    
    M1: 1 
    <= ( 
    width M9) by 
    MATRLIN: 2;
    
              for v be
    object st v 
    in ( 
    dom ( 
    Line ((r 
    @ ),i))) holds (( 
    Line ((r 
    @ ),i)) 
    . v) 
    <>  
    -infty  
    
              proof
    
                let v be
    object;
    
                assume
    
                
    
    TT0: v 
    in ( 
    dom ( 
    Line ((r 
    @ ),i))); 
    
                then
    
                reconsider j = v as
    Nat;
    
                1
    <= j & j 
    <= ( 
    len ( 
    Line ((r 
    @ ),i))) by 
    TT0,
    FINSEQ_3: 25;
    
                then 1
    <= j & j 
    <= ( 
    width (r 
    @ )) by 
    MATRIX_0:def 7;
    
                then
    
                
    
    P6: j 
    in ( 
    Seg ( 
    width (r 
    @ ))); 
    
                then
    [i, j]
    in  
    [:(
    dom (r 
    @ )), ( 
    Seg ( 
    width (r 
    @ ))):] by 
    R1,
    ZFMISC_1:def 2;
    
                then
    [i, j]
    in ( 
    Indices (r 
    @ )) by 
    MATRIX_0:def 4;
    
                then
    
                consider G be
    FinSequence of 
    ExtREAL such that 
    
                
    
    R7: G 
    = ((r 
    @ ) 
    . i) & ((r 
    @ ) 
    * (i,j)) 
    = (G 
    . j) by 
    MATRIX_0:def 5;
    
                1
    <= ( 
    width w) by 
    A30,
    M1,
    MATRLIN: 2;
    
                then (
    width (w 
    @ )) 
    = ( 
    len w) by 
    MATRIX_0: 29;
    
                then n
    in ( 
    Seg ( 
    width (w 
    @ ))) by 
    A30,
    A33,
    FINSEQ_1: 3;
    
                then
    [i, n]
    in  
    [:(
    dom (w 
    @ )), ( 
    Seg ( 
    width (w 
    @ ))):] by 
    Z0,
    R1,
    ZFMISC_1: 87;
    
                then
    [i, n]
    in ( 
    Indices (w 
    @ )) by 
    MATRIX_0:def 4;
    
                then
    
                consider F be
    FinSequence of 
    ExtREAL such that 
    
                
    
    Q7: F 
    = ((w 
    @ ) 
    . i) & ((w 
    @ ) 
    * (i,n)) 
    = (F 
    . n) by 
    MATRIX_0:def 5;
    
                ((M
    @ ) 
    . i) 
    = (F 
    ^ G) by 
    R7,
    H1,
    Z0,
    Q4,
    R1,
    Q7,
    PRE_POLY:def 4;
    
                then not
    -infty  
    in ( 
    rng (F 
    ^ G)) by 
    Z0,
    Q4,
    R1,
    A3,
    Th27;
    
                then not
    -infty  
    in (( 
    rng F) 
    \/ ( 
    rng G)) by 
    FINSEQ_1: 31;
    
                then
    
                
    
    S2: not 
    -infty  
    in ( 
    rng F) & not 
    -infty  
    in ( 
    rng G) by 
    XBOOLE_0:def 3;
    
                (
    len G) 
    = ( 
    width (r 
    @ )) by 
    P4,
    R7,
    MATRIX_0:def 7;
    
                then j
    in ( 
    dom G) by 
    P6,
    FINSEQ_1:def 3;
    
                then (G
    . j) 
    in ( 
    rng G) by 
    FUNCT_1: 3;
    
                hence ((
    Line ((r 
    @ ),i)) 
    . v) 
    <>  
    -infty by 
    S2,
    R7,
    P6,
    MATRIX_0:def 7;
    
              end;
    
              hence not
    -infty  
    in ( 
    rng ((r 
    @ ) 
    . i)) by 
    P4,
    FUNCT_1:def 3;
    
            end;
    
            
    
            thus (
    SumAll M) 
    = ( 
    SumAll (w 
    ^ r)) by 
    A3,
    PRE_POLY: 13,
    a3
    
            .= (
    Sum (( 
    Sum w) 
    ^ ( 
    Sum r))) by 
    Th23
    
            .= ((
    SumAll ( 
    Del (M,(n 
    + 1)))) 
    + ( 
    SumAll r)) by 
    T3,
    L1,
    EXTREAL1: 10
    
            .= ((
    SumAll (( 
    Del (M,(n 
    + 1))) 
    @ )) 
    + ( 
    SumAll r)) by 
    A2,
    A33,
    T4
    
            .= ((
    SumAll (( 
    Del (M,(n 
    + 1))) 
    @ )) 
    + ( 
    SumAll (r 
    @ ))) by 
    T5,
    Th26
    
            .= (
    SumAll ((w 
    @ ) 
    ^^ (r 
    @ ))) by 
    A32,
    Th25,
    T6,
    T7
    
            .= (
    SumAll ((w 
    ^ r) 
    @ )) by 
    A31,
    MATRLIN: 28
    
            .= (
    SumAll (M 
    @ )) by 
    A3,
    PRE_POLY: 13,
    a3;
    
          end;
    
        end;
    
      end;
    
      
    
      
    
    A34: 
    x[
    0 ] 
    
      proof
    
        let M be
    Matrix of 
    ExtREAL ; 
    
        assume
    
        
    
    A35: ( 
    len M) 
    =  
    0 & (for i be 
    Nat st i 
    in ( 
    dom M) holds not 
    -infty  
    in ( 
    rng (M 
    . i))); 
    
        then (
    width M) 
    =  
    0 by 
    MATRIX_0:def 3;
    
        then
    
        
    
    A36: ( 
    len (M 
    @ )) 
    =  
    0 by 
    MATRIX_0:def 6;
    
        
    
        thus (
    SumAll M) 
    =  
    0 by 
    A35,
    Th21
    
        .= (
    SumAll (M 
    @ )) by 
    A36,
    Th21;
    
      end;
    
      for n be
    Nat holds 
    x[n] from
    NAT_1:sch 2(
    A34,
    A1);
    
      then
    x[(
    len M)]; 
    
      hence thesis by
    A0;
    
    end;
    
    begin
    
    registration
    
      let x be
    object;
    
      cluster 
    <*x*> ->
    disjoint_valued;
    
      correctness
    
      proof
    
        now
    
          let i,j be
    object;
    
          assume
    
          
    
    A3: i 
    <> j; 
    
          per cases ;
    
            suppose i
    in ( 
    dom  
    <*x*>);
    
            then i
    in  
    {1} by
    FINSEQ_1: 2,
    FINSEQ_1: 38;
    
            then i
    = 1 by 
    TARSKI:def 1;
    
            then not j
    in  
    {1} by
    A3,
    TARSKI:def 1;
    
            then not j
    in ( 
    dom  
    <*x*>) by
    FINSEQ_1: 2,
    FINSEQ_1: 38;
    
            then (
    <*x*>
    . j) 
    =  
    {} by 
    FUNCT_1:def 2;
    
            hence (
    <*x*>
    . i) 
    misses ( 
    <*x*>
    . j) by 
    XBOOLE_1: 65;
    
          end;
    
            suppose not i
    in ( 
    dom  
    <*x*>);
    
            then (
    <*x*>
    . i) 
    =  
    {} by 
    FUNCT_1:def 2;
    
            hence (
    <*x*>
    . i) 
    misses ( 
    <*x*>
    . j) by 
    XBOOLE_1: 65;
    
          end;
    
        end;
    
        hence
    <*x*> is
    disjoint_valued by 
    PROB_2:def 2;
    
      end;
    
    end
    
    theorem :: 
    
    MEASURE9:31
    
    for X be
    set, S be 
    with_empty_element
    semi-diff-closed
    cap-closed  
    Subset-Family of X, F be 
    FinSequence of S, G be 
    Element of S holds ex H be 
    disjoint_valued  
    FinSequence of S st (G 
    \ ( 
    Union F)) 
    = ( 
    Union H) 
    
    proof
    
      let X be
    set, S be 
    with_empty_element
    semi-diff-closed
    cap-closed  
    Subset-Family of X, F be 
    FinSequence of S, G be 
    Element of S; 
    
      defpred
    
    P[
    Nat] means for f be
    FinSequence of S st ( 
    len f) 
    = $1 holds ex H be 
    disjoint_valued  
    FinSequence of S st (G 
    \ ( 
    Union f)) 
    = ( 
    Union H); 
    
      for f be
    FinSequence of S st ( 
    len f) 
    =  
    0 holds ex H be 
    disjoint_valued  
    FinSequence of S st (G 
    \ ( 
    Union f)) 
    = ( 
    Union H) 
    
      proof
    
        let f be
    FinSequence of S; 
    
        assume (
    len f) 
    =  
    0 ; 
    
        then f
    =  
    {} ; 
    
        then (
    rng f) 
    =  
    {} ; 
    
        then
    
        
    
    A4: ( 
    Union f) 
    =  
    {} by 
    CARD_3:def 4,
    ZFMISC_1: 2;
    
        
    
        
    
    A5: ( 
    rng  
    <*G*>)
    =  
    {G} by
    FINSEQ_1: 38;
    
        reconsider H =
    <*G*> as
    disjoint_valued  
    FinSequence of S; 
    
        take H;
    
        (
    union ( 
    rng H)) 
    = G by 
    A5,
    ZFMISC_1: 25;
    
        hence (G
    \ ( 
    Union f)) 
    = ( 
    Union H) by 
    A4,
    CARD_3:def 4;
    
      end;
    
      then
    
      
    
    A6: 
    P[
    0 ]; 
    
      
    
      
    
    A7: for i be 
    Nat st 
    P[i] holds
    P[(i
    + 1)] 
    
      proof
    
        let i be
    Nat;
    
        assume
    
        
    
    A8: 
    P[i];
    
        now
    
          let f be
    FinSequence of S; 
    
          assume
    
          
    
    A9: ( 
    len f) 
    = (i 
    + 1); 
    
          then (
    len (f 
    | i)) 
    = i by 
    NAT_1: 11,
    FINSEQ_1: 59;
    
          then
    
          consider h be
    disjoint_valued  
    FinSequence of S such that 
    
          
    
    A12: (G 
    \ ( 
    Union (f 
    | i))) 
    = ( 
    Union h) by 
    A8;
    
          
    
          
    
    A10: f 
    = ((f 
    | i) 
    ^  
    <*(f
    . (i 
    + 1))*>) by 
    A9,
    FINSEQ_3: 55;
    
          then
    
          reconsider f1 =
    <*(f
    . (i 
    + 1))*> as 
    FinSequence of S by 
    FINSEQ_1: 36;
    
          
    
          
    
    A11: ( 
    Union f1) 
    = ( 
    union ( 
    rng f1)) by 
    CARD_3:def 4
    
          .= (
    union  
    {(f
    . (i 
    + 1))}) by 
    FINSEQ_1: 38
    
          .= (f
    . (i 
    + 1)) by 
    ZFMISC_1: 25;
    
          (
    Union f) 
    = (( 
    Union (f 
    | i)) 
    \/ ( 
    Union f1)) by 
    A10,
    ROUGHS_1: 5;
    
          
    
          then
    
          
    
    A13: (G 
    \ ( 
    Union f)) 
    = ((G 
    \ ( 
    Union (f 
    | i))) 
    \ (f 
    . (i 
    + 1))) by 
    A11,
    XBOOLE_1: 41
    
          .= ((
    Union h) 
    \ (f 
    . (i 
    + 1))) by 
    A12;
    
          deffunc
    
    F(
    Nat) = ((h
    . $1) 
    \ (f 
    . (i 
    + 1))); 
    
          consider V be
    FinSequence such that 
    
          
    
    A14: ( 
    len V) 
    = ( 
    len h) & for k be 
    Nat st k 
    in ( 
    dom V) holds (V 
    . k) 
    =  
    F(k) from
    FINSEQ_1:sch 2;
    
          
    
          
    
    A19: for k be 
    Nat st k 
    in ( 
    dom V) holds ex D be 
    disjoint_valued  
    FinSequence of S st (V 
    . k) 
    = ( 
    Union D) 
    
          proof
    
            let k be
    Nat;
    
            assume
    
            
    
    A15: k 
    in ( 
    dom V); 
    
            k
    in ( 
    dom h) by 
    A14,
    A15,
    FINSEQ_3: 29;
    
            then
    
            
    
    A16: (h 
    . k) 
    in ( 
    rng h) by 
    FUNCT_1: 3;
    
            (i
    + 1) 
    in ( 
    Seg ( 
    len f)) by 
    A9,
    FINSEQ_1: 4;
    
            then (i
    + 1) 
    in ( 
    dom f) by 
    FINSEQ_1:def 3;
    
            then (f
    . (i 
    + 1)) 
    in ( 
    rng f) by 
    FUNCT_1: 3;
    
            then
    
            consider D be
    disjoint_valued  
    FinSequence of S such that 
    
            
    
    A18: ((h 
    . k) 
    \ (f 
    . (i 
    + 1))) 
    = ( 
    Union D) by 
    A16,
    SRINGS_3:def 1;
    
            take D;
    
            thus (V
    . k) 
    = ( 
    Union D) by 
    A15,
    A14,
    A18;
    
          end;
    
          defpred
    
    P[
    Nat, 
    object] means ex D be
    disjoint_valued  
    FinSequence of S st $2 
    = D & (V 
    . $1) 
    = ( 
    Union D); 
    
          
    
          
    
    P1: for k be 
    Nat st k 
    in ( 
    Seg ( 
    len V)) holds ex x be 
    object st 
    P[k, x]
    
          proof
    
            let k be
    Nat;
    
            assume k
    in ( 
    Seg ( 
    len V)); 
    
            then k
    in ( 
    dom V) by 
    FINSEQ_1:def 3;
    
            then
    
            consider D be
    disjoint_valued  
    FinSequence of S such that 
    
            
    
    P2: (V 
    . k) 
    = ( 
    Union D) by 
    A19;
    
            take D;
    
            thus thesis by
    P2;
    
          end;
    
          consider FinS be
    FinSequence such that 
    
          
    
    P3: ( 
    dom FinS) 
    = ( 
    Seg ( 
    len V)) & for k be 
    Nat st k 
    in ( 
    Seg ( 
    len V)) holds 
    P[k, (FinS
    . k)] from 
    FINSEQ_1:sch 1(
    P1);
    
          now
    
            let a be
    object;
    
            assume a
    in ( 
    rng FinS); 
    
            then
    
            consider x be
    object such that 
    
            
    
    P4: x 
    in ( 
    dom FinS) & a 
    = (FinS 
    . x) by 
    FUNCT_1:def 3;
    
            consider D be
    disjoint_valued  
    FinSequence of S such that 
    
            
    
    P5: (FinS 
    . x) 
    = D & (V 
    . x) 
    = ( 
    Union D) by 
    P3,
    P4;
    
            thus a is
    FinSequence of S by 
    P4,
    P5;
    
          end;
    
          then
    
          reconsider Y = (
    rng FinS) as 
    FinSequenceSet of S by 
    FINSEQ_2:def 3;
    
          reconsider FinS as
    FinSequence of Y by 
    FINSEQ_1:def 4;
    
          
    
          
    
    H1: for n,m be 
    Nat st n 
    <> m holds ( 
    union ( 
    rng (FinS 
    . n))) 
    misses ( 
    union ( 
    rng (FinS 
    . m))) 
    
          proof
    
            let n,m be
    Nat;
    
            assume
    
            
    
    H2: n 
    <> m; 
    
            per cases ;
    
              suppose
    
              
    
    H3: n 
    in ( 
    dom FinS) & m 
    in ( 
    dom FinS); 
    
              then
    
              consider D1 be
    disjoint_valued  
    FinSequence of S such that 
    
              
    
    H4: (FinS 
    . n) 
    = D1 & (V 
    . n) 
    = ( 
    Union D1) by 
    P3;
    
              consider D2 be
    disjoint_valued  
    FinSequence of S such that 
    
              
    
    H5: (FinS 
    . m) 
    = D2 & (V 
    . m) 
    = ( 
    Union D2) by 
    H3,
    P3;
    
              
    
              
    
    H6: (V 
    . n) 
    = ( 
    union ( 
    rng (FinS 
    . n))) & (V 
    . m) 
    = ( 
    union ( 
    rng (FinS 
    . m))) by 
    H4,
    H5,
    CARD_3:def 4;
    
              n
    in ( 
    dom V) & m 
    in ( 
    dom V) by 
    H3,
    P3,
    FINSEQ_1:def 3;
    
              then
    
              
    
    P15: (V 
    . n) 
    = ((h 
    . n) 
    \ (f 
    . (i 
    + 1))) & (V 
    . m) 
    = ((h 
    . m) 
    \ (f 
    . (i 
    + 1))) by 
    A14;
    
              then (V
    . n) 
    misses (h 
    . m) by 
    XBOOLE_1: 80,
    H2,
    PROB_2:def 2;
    
              hence (
    union ( 
    rng (FinS 
    . n))) 
    misses ( 
    union ( 
    rng (FinS 
    . m))) by 
    H6,
    P15,
    XBOOLE_1: 80;
    
            end;
    
              suppose not n
    in ( 
    dom FinS) or not m 
    in ( 
    dom FinS); 
    
              then (FinS
    . n) 
    =  
    {} or (FinS 
    . m) 
    =  
    {} by 
    FUNCT_1:def 2;
    
              then (
    rng (FinS 
    . n)) 
    =  
    {} or ( 
    rng (FinS 
    . m)) 
    =  
    {} ; 
    
              hence (
    union ( 
    rng (FinS 
    . n))) 
    misses ( 
    union ( 
    rng (FinS 
    . m))) by 
    ZFMISC_1: 2,
    XBOOLE_1: 65;
    
            end;
    
          end;
    
          for n be
    Nat holds (FinS 
    . n) is 
    disjoint_valued
    
          proof
    
            let n be
    Nat;
    
            per cases ;
    
              suppose not n
    in ( 
    dom FinS); 
    
              hence (FinS
    . n) is 
    disjoint_valued by 
    FUNCT_1:def 2;
    
            end;
    
              suppose n
    in ( 
    dom FinS); 
    
              then ex D be
    disjoint_valued  
    FinSequence of S st (FinS 
    . n) 
    = D & (V 
    . n) 
    = ( 
    Union D) by 
    P3;
    
              hence (FinS
    . n) is 
    disjoint_valued;
    
            end;
    
          end;
    
          then
    
          reconsider H = (
    joined_FinSeq FinS) as 
    disjoint_valued  
    FinSequence of S by 
    H1,
    Th14;
    
          take H;
    
          (
    Union H) 
    = ( 
    union ( 
    rng H)) by 
    CARD_3:def 4;
    
          then
    
          
    
    X1: ( 
    Union H) 
    = ( 
    union ( 
    union { ( 
    rng (FinS 
    . n)) where n be 
    Nat : n 
    in ( 
    dom FinS) })) by 
    Th15;
    
          
    
          
    
    X2: (G 
    \ ( 
    Union f)) 
    = (( 
    union ( 
    rng h)) 
    \ (f 
    . (i 
    + 1))) by 
    CARD_3:def 4,
    A13;
    
          now
    
            let x be
    object;
    
            assume
    
            
    
    B0: x 
    in (( 
    union ( 
    rng h)) 
    \ (f 
    . (i 
    + 1))); 
    
            then
    
            consider A be
    set such that 
    
            
    
    B2: x 
    in A & A 
    in ( 
    rng h) by 
    TARSKI:def 4;
    
            consider k be
    object such that 
    
            
    
    B3: k 
    in ( 
    dom h) & A 
    = (h 
    . k) by 
    B2,
    FUNCT_1:def 3;
    
            reconsider k as
    Nat by 
    B3;
    
            
    
            
    
    B4: k 
    in ( 
    dom V) by 
    A14,
    B3,
    FINSEQ_3: 29;
    
            
    
            
    
    B5: k 
    in ( 
    dom FinS) by 
    P3,
    FINSEQ_1:def 3,
    A14,
    B3;
    
            then
    
            consider D be
    disjoint_valued  
    FinSequence of S such that 
    
            
    
    B6: (FinS 
    . k) 
    = D & (V 
    . k) 
    = ( 
    Union D) by 
    P3;
    
            
    
            
    
    B7: (V 
    . k) 
    = ( 
    union ( 
    rng (FinS 
    . k))) by 
    B6,
    CARD_3:def 4;
    
            x
    in ( 
    union ( 
    rng h)) & not x 
    in (f 
    . (i 
    + 1)) by 
    B0,
    XBOOLE_0:def 5;
    
            then x
    in ((h 
    . k) 
    \ (f 
    . (i 
    + 1))) by 
    B2,
    B3,
    XBOOLE_0:def 5;
    
            then x
    in (V 
    . k) by 
    A14,
    B4;
    
            then
    
            consider V be
    set such that 
    
            
    
    B8: x 
    in V & V 
    in ( 
    rng (FinS 
    . k)) by 
    B7,
    TARSKI:def 4;
    
            (
    rng (FinS 
    . k)) 
    in { ( 
    rng (FinS 
    . n)) where n be 
    Nat : n 
    in ( 
    dom FinS) } by 
    B5;
    
            then V
    in ( 
    union { ( 
    rng (FinS 
    . n)) where n be 
    Nat : n 
    in ( 
    dom FinS) }) by 
    B8,
    TARSKI:def 4;
    
            hence x
    in ( 
    union ( 
    union { ( 
    rng (FinS 
    . n)) where n be 
    Nat : n 
    in ( 
    dom FinS) })) by 
    B8,
    TARSKI:def 4;
    
          end;
    
          then
    
          
    
    B9: (G 
    \ ( 
    Union f)) 
    c= ( 
    Union H) by 
    X1,
    X2,
    TARSKI:def 3;
    
          now
    
            let x be
    object;
    
            assume x
    in ( 
    union ( 
    union { ( 
    rng (FinS 
    . n)) where n be 
    Nat : n 
    in ( 
    dom FinS) })); 
    
            then
    
            consider A be
    set such that 
    
            
    
    C1: x 
    in A & A 
    in ( 
    union { ( 
    rng (FinS 
    . n)) where n be 
    Nat : n 
    in ( 
    dom FinS) }) by 
    TARSKI:def 4;
    
            consider D1 be
    set such that 
    
            
    
    C2: A 
    in D1 & D1 
    in { ( 
    rng (FinS 
    . n)) where n be 
    Nat : n 
    in ( 
    dom FinS) } by 
    C1,
    TARSKI:def 4;
    
            consider k be
    Nat such that 
    
            
    
    C3: D1 
    = ( 
    rng (FinS 
    . k)) & k 
    in ( 
    dom FinS) by 
    C2;
    
            consider D2 be
    disjoint_valued  
    FinSequence of S such that 
    
            
    
    C4: (FinS 
    . k) 
    = D2 & (V 
    . k) 
    = ( 
    Union D2) by 
    C3,
    P3;
    
            
    
            
    
    C5: k 
    in ( 
    dom V) by 
    C3,
    P3,
    FINSEQ_1:def 3;
    
            then (V
    . k) 
    = ((h 
    . k) 
    \ (f 
    . (i 
    + 1))) by 
    A14;
    
            then ((h
    . k) 
    \ (f 
    . (i 
    + 1))) 
    = ( 
    union D1) by 
    C3,
    C4,
    CARD_3:def 4;
    
            then
    
            
    
    C6: x 
    in ((h 
    . k) 
    \ (f 
    . (i 
    + 1))) by 
    C1,
    C2,
    TARSKI:def 4;
    
            then
    
            
    
    C7: x 
    in (h 
    . k) & not x 
    in (f 
    . (i 
    + 1)) by 
    XBOOLE_0:def 5;
    
            (
    dom V) 
    = ( 
    dom h) by 
    A14,
    FINSEQ_3: 29;
    
            then (h
    . k) 
    in ( 
    rng h) by 
    C5,
    FUNCT_1: 3;
    
            then x
    in ( 
    union ( 
    rng h)) by 
    C6,
    TARSKI:def 4;
    
            hence x
    in (( 
    union ( 
    rng h)) 
    \ (f 
    . (i 
    + 1))) by 
    C7,
    XBOOLE_0:def 5;
    
          end;
    
          then (
    Union H) 
    c= (G 
    \ ( 
    Union f)) by 
    X1,
    X2,
    TARSKI:def 3;
    
          hence (G
    \ ( 
    Union f)) 
    = ( 
    Union H) by 
    B9,
    XBOOLE_0:def 10;
    
        end;
    
        hence
    P[(i
    + 1)]; 
    
      end;
    
      for i be
    Nat holds 
    P[i] from
    NAT_1:sch 2(
    A6,
    A7);
    
      then for f be
    FinSequence of S st ( 
    len f) 
    = ( 
    len F) holds ex H be 
    disjoint_valued  
    FinSequence of S st (G 
    \ ( 
    Union f)) 
    = ( 
    Union H); 
    
      hence thesis;
    
    end;
    
    registration
    
      let X be
    set, P be 
    with_empty_element
    semi-diff-closed
    cap-closed  
    Subset-Family of X; 
    
      cluster 
    disjoint_valued for 
    sequence of P; 
    
      existence
    
      proof
    
        consider F be
    sequence of 
    {
    {} } such that 
    
        
    
    A1: for n be 
    Element of 
    NAT holds (F 
    . n) 
    =  
    {} by 
    MEASURE1: 16;
    
        
    {
    {} } 
    c= P by 
    ZFMISC_1: 31,
    SETFAM_1:def 8;
    
        then
    
        reconsider F as
    sequence of P by 
    FUNCT_2: 7;
    
        take F;
    
        for x,y be
    object st x 
    <> y holds (F 
    . x) 
    misses (F 
    . y) 
    
        proof
    
          let x,y be
    object;
    
          assume x
    <> y; 
    
          per cases ;
    
            suppose x
    in ( 
    dom F); 
    
            then (F
    . x) 
    =  
    {} by 
    A1;
    
            hence (F
    . x) 
    misses (F 
    . y) by 
    XBOOLE_1: 65;
    
          end;
    
            suppose not x
    in ( 
    dom F); 
    
            then (F
    . x) 
    =  
    {} by 
    FUNCT_1:def 2;
    
            hence (F
    . x) 
    misses (F 
    . y) by 
    XBOOLE_1: 65;
    
          end;
    
        end;
    
        hence F is
    disjoint_valued by 
    PROB_2:def 2;
    
      end;
    
    end
    
    
    
    
    
    LM: for X be 
    set, P be non 
    empty  
    Subset-Family of X holds (P 
    -->  
    0. ) is 
    nonnegative & (P 
    -->  
    0. ) is 
    additive & (P 
    -->  
    0. ) is 
    zeroed
    
    proof
    
      let X be
    set, P be non 
    empty  
    Subset-Family of X; 
    
      set M = (P
    -->  
    0. ); 
    
      for A be
    Element of P holds 
    0.  
    <= (M 
    . A); 
    
      hence (P
    -->  
    0. ) is 
    nonnegative by 
    MEASURE1:def 2;
    
      now
    
        let A,B be
    Element of P; 
    
        assume A
    misses B & (A 
    \/ B) 
    in P; 
    
        then
    
        reconsider D = (A
    \/ B) as 
    Element of P; 
    
        (M
    . A) 
    =  
    0. & (M 
    . B) 
    =  
    0. & (M 
    . D) 
    =  
    0. by 
    FUNCOP_1: 7;
    
        hence (M
    . (A 
    \/ B)) 
    = ((M 
    . A) 
    + (M 
    . B)); 
    
      end;
    
      hence (P
    -->  
    0. ) is 
    additive by 
    MEASURE1:def 3;
    
      per cases ;
    
        suppose
    {}  
    in P; 
    
        then ((P
    -->  
    0. ) 
    .  
    {} ) 
    =  
    0. by 
    FUNCOP_1: 7;
    
        hence (P
    -->  
    0. ) is 
    zeroed by 
    VALUED_0:def 19;
    
      end;
    
        suppose not
    {}  
    in P; 
    
        then not
    {}  
    in ( 
    dom (P 
    -->  
    0. )); 
    
        then ((P
    -->  
    0. ) 
    .  
    {} ) 
    =  
    0 by 
    FUNCT_1:def 2;
    
        hence (P
    -->  
    0. ) is 
    zeroed by 
    VALUED_0:def 19;
    
      end;
    
    end;
    
    registration
    
      let X be
    set, P be non 
    empty  
    Subset-Family of X; 
    
      cluster 
    nonnegative
    additive
    zeroed for 
    Function of P, 
    ExtREAL ; 
    
      existence
    
      proof
    
        reconsider M = (P
    -->  
    0. ) as 
    Function of P, 
    ExtREAL ; 
    
        take M;
    
        thus thesis by
    LM;
    
      end;
    
    end
    
    registration
    
      let X be
    set, P be 
    with_empty_element  
    Subset-Family of X; 
    
      cluster 
    disjoint_valued for 
    Function of 
    NAT , P; 
    
      existence
    
      proof
    
        
    {}  
    in P by 
    SETFAM_1:def 8;
    
        then
    
        reconsider F = (
    NAT  
    -->  
    {} ) as 
    Function of 
    NAT , P by 
    FUNCOP_1: 46;
    
        take F;
    
        now
    
          let i,j be
    object;
    
          assume i
    <> j; 
    
          per cases ;
    
            suppose i
    in ( 
    dom F); 
    
            thus (F
    . i) 
    misses (F 
    . j) by 
    XBOOLE_1: 65;
    
          end;
    
            suppose not i
    in ( 
    dom F); 
    
            thus (F
    . i) 
    misses (F 
    . j) by 
    XBOOLE_1: 65;
    
          end;
    
        end;
    
        hence F is
    disjoint_valued by 
    PROB_2:def 2;
    
      end;
    
    end
    
    definition
    
      let X be
    set, P be 
    with_empty_element  
    Subset-Family of X; 
    
      :: 
    
    MEASURE9:def7
    
      mode
    
    pre-Measure of P -> 
    nonnegative
    zeroed  
    Function of P, 
    ExtREAL means 
    
      :
    
    Def8: (for F be 
    disjoint_valued  
    FinSequence of P st ( 
    Union F) 
    in P holds (it 
    . ( 
    Union F)) 
    = ( 
    Sum (it 
    * F))) & (for K be 
    disjoint_valued  
    Function of 
    NAT , P st ( 
    Union K) 
    in P holds (it 
    . ( 
    Union K)) 
    <= ( 
    SUM (it 
    * K))); 
    
      existence
    
      proof
    
        reconsider M = (P
    -->  
    0. ) as 
    Function of P, 
    ExtREAL ; 
    
        (for x be
    Element of P holds 
    0.  
    <= (M 
    . x)) & (M 
    .  
    {} ) 
    =  
    0 by 
    FUNCOP_1: 7,
    SETFAM_1:def 8;
    
        then
    
        reconsider M as
    nonnegative
    zeroed  
    Function of P, 
    ExtREAL by 
    MEASURE1:def 2,
    VALUED_0:def 19;
    
        take M;
    
        
    0 is 
    Element of 
    REAL by 
    XREAL_0:def 1;
    
        then
    
        reconsider m = (P
    -->  
    0 ) as 
    Function of P, 
    REAL by 
    FUNCOP_1: 46;
    
        
    
        
    
    A2: for F be 
    disjoint_valued  
    FinSequence of P st ( 
    Union F) 
    in P holds (M 
    . ( 
    Union F)) 
    = ( 
    Sum (M 
    * F)) 
    
        proof
    
          let F be
    disjoint_valued  
    FinSequence of P; 
    
          assume (
    Union F) 
    in P; 
    
          then
    
          
    
    A3: (M 
    . ( 
    Union F)) 
    =  
    0. by 
    FUNCOP_1: 7;
    
          (
    rng F) 
    c= P & ( 
    dom M) 
    = P & ( 
    dom m) 
    = P by 
    FUNCT_2:def 1;
    
          then
    
          
    
    A4: ( 
    dom (M 
    * F)) 
    = ( 
    dom F) & ( 
    dom (m 
    * F)) 
    = ( 
    dom F) by 
    RELAT_1: 27;
    
          
    
          
    
    A7: ( 
    Sum (M 
    * F)) 
    = ( 
    Sum (m 
    * F)) by 
    MESFUNC3: 2;
    
          
    
          
    
    A8: (m 
    * F) 
    = ((F 
    " P) 
    -->  
    0 ) by 
    FUNCOP_1: 19;
    
          then (
    dom F) 
    = (F 
    " P) by 
    A4,
    FUNCOP_1: 13;
    
          then (
    Seg ( 
    len F)) 
    = (F 
    " P) by 
    FINSEQ_1:def 3;
    
          then (m
    * F) 
    = (( 
    len F) 
    |->  
    0 ) by 
    A8,
    FINSEQ_2:def 2;
    
          hence (M
    . ( 
    Union F)) 
    = ( 
    Sum (M 
    * F)) by 
    A3,
    A7,
    RVSUM_1: 81;
    
        end;
    
        for K be
    disjoint_valued  
    Function of 
    NAT , P st ( 
    Union K) 
    in P holds (M 
    . ( 
    Union K)) 
    <= ( 
    SUM (M 
    * K)) 
    
        proof
    
          let K be
    disjoint_valued  
    Function of 
    NAT , P; 
    
          assume (
    Union K) 
    in P; 
    
          then
    
          
    
    A10: (M 
    . ( 
    Union K)) 
    =  
    0. by 
    FUNCOP_1: 7;
    
          now
    
            let n be
    Element of 
    NAT ; 
    
            ((M
    * K) 
    . n) 
    = (M 
    . (K 
    . n)) by 
    FUNCT_2: 15;
    
            hence ((M
    * K) 
    . n) 
    =  
    0. by 
    FUNCOP_1: 7;
    
          end;
    
          hence (M
    . ( 
    Union K)) 
    <= ( 
    SUM (M 
    * K)) by 
    A10,
    MEASURE7: 1;
    
        end;
    
        hence thesis by
    A2;
    
      end;
    
    end
    
    theorem :: 
    
    MEASURE9:32
    
    for X be
    with_empty_element  
    set, F be 
    FinSequence of X holds ex G be 
    Function of 
    NAT , X st (for i be 
    Nat holds (F 
    . i) 
    = (G 
    . i)) & ( 
    Union F) 
    = ( 
    Union G) 
    
    proof
    
      let X be
    with_empty_element  
    set;
    
      let F be
    FinSequence of X; 
    
      defpred
    
    P[
    Element of 
    NAT , 
    set] means ($1
    in ( 
    dom F) implies (F 
    . $1) 
    = $2) & ( not $1 
    in ( 
    dom F) implies $2 
    =  
    {} ); 
    
      
    
      
    
    A1: for i be 
    Element of 
    NAT holds ex y be 
    Element of X st 
    P[i, y]
    
      proof
    
        let i be
    Element of 
    NAT ; 
    
        per cases ;
    
          suppose
    
          
    
    A2: i 
    in ( 
    dom F); 
    
          then (F
    . i) 
    in ( 
    rng F) & ( 
    rng F) 
    c= X by 
    FUNCT_1: 3;
    
          then
    
          reconsider y = (F
    . i) as 
    Element of X; 
    
          take y;
    
          thus
    P[i, y] by
    A2;
    
        end;
    
          suppose
    
          
    
    A3: not i 
    in ( 
    dom F); 
    
          reconsider y =
    {} as 
    Element of X by 
    SETFAM_1:def 8;
    
          take y;
    
          thus
    P[i, y] by
    A3;
    
        end;
    
      end;
    
      consider G be
    Function of 
    NAT , X such that 
    
      
    
    A4: for i be 
    Element of 
    NAT holds 
    P[i, (G
    . i)] from 
    FUNCT_2:sch 3(
    A1);
    
      take G;
    
      
    
    A5: 
    
      now
    
        let i be
    Nat;
    
        per cases ;
    
          suppose i
    in ( 
    dom F); 
    
          hence (F
    . i) 
    = (G 
    . i) by 
    A4;
    
        end;
    
          suppose not i
    in ( 
    dom F); 
    
          reconsider j = i as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
          
    P[j, (G
    . j)] by 
    A4;
    
          hence (F
    . i) 
    = (G 
    . i) by 
    FUNCT_1:def 2;
    
        end;
    
      end;
    
      
    
      
    
    B1: ( 
    Union F) 
    = ( 
    union ( 
    rng F)) & ( 
    Union G) 
    = ( 
    union ( 
    rng G)) by 
    CARD_3:def 4;
    
      now
    
        let x be
    object;
    
        assume x
    in ( 
    Union F); 
    
        then
    
        consider A be
    set such that 
    
        
    
    A7: x 
    in A & A 
    in ( 
    rng F) by 
    B1,
    TARSKI:def 4;
    
        consider k be
    object such that 
    
        
    
    A8: k 
    in ( 
    dom F) & A 
    = (F 
    . k) by 
    A7,
    FUNCT_1:def 3;
    
        reconsider k as
    Nat by 
    A8;
    
        (
    dom G) 
    =  
    NAT by 
    FUNCT_2:def 1;
    
        then A
    = (G 
    . k) & (G 
    . k) 
    in ( 
    rng G) by 
    A5,
    A8,
    FUNCT_1: 3;
    
        hence x
    in ( 
    Union G) by 
    A7,
    B1,
    TARSKI:def 4;
    
      end;
    
      then
    
      
    
    A9: ( 
    Union F) 
    c= ( 
    Union G) by 
    TARSKI:def 3;
    
      now
    
        let x be
    object;
    
        assume x
    in ( 
    Union G); 
    
        then
    
        consider A be
    set such that 
    
        
    
    A10: x 
    in A & A 
    in ( 
    rng G) by 
    B1,
    TARSKI:def 4;
    
        consider k be
    object such that 
    
        
    
    A11: k 
    in ( 
    dom G) & A 
    = (G 
    . k) by 
    A10,
    FUNCT_1:def 3;
    
        reconsider k as
    Nat by 
    A11;
    
        
    
    A12: 
    
        now
    
          assume not k
    in ( 
    dom F); 
    
          then (F
    . k) 
    =  
    {} by 
    FUNCT_1:def 2;
    
          hence contradiction by
    A5,
    A10,
    A11;
    
        end;
    
        
    
        
    
    A13: (F 
    . k) 
    = (G 
    . k) by 
    A5;
    
        (F
    . k) 
    in ( 
    rng F) by 
    A12,
    FUNCT_1: 3;
    
        hence x
    in ( 
    Union F) by 
    B1,
    A10,
    A11,
    A13,
    TARSKI:def 4;
    
      end;
    
      then (
    Union G) 
    c= ( 
    Union F) by 
    TARSKI:def 3;
    
      hence thesis by
    A5,
    A9,
    XBOOLE_0:def 10;
    
    end;
    
    theorem :: 
    
    MEASURE9:33
    
    for X be non
    empty  
    set, F be 
    FinSequence of X, G be 
    Function of 
    NAT , X st (for i be 
    Nat holds (F 
    . i) 
    = (G 
    . i)) holds F is 
    disjoint_valued iff G is 
    disjoint_valued
    
    proof
    
      let X be non
    empty  
    set, F be 
    FinSequence of X, G be 
    Function of 
    NAT , X; 
    
      assume
    
      
    
    A1: for i be 
    Nat holds (F 
    . i) 
    = (G 
    . i); 
    
      hereby
    
        assume
    
        
    
    A2: F is 
    disjoint_valued;
    
        now
    
          let x,y be
    object;
    
          assume
    
          
    
    A3: x 
    <> y; 
    
          per cases ;
    
            suppose x
    in ( 
    dom F) & y 
    in ( 
    dom F); 
    
            then (G
    . x) 
    = (F 
    . x) & (G 
    . y) 
    = (F 
    . y) by 
    A1;
    
            hence (G
    . x) 
    misses (G 
    . y) by 
    A2,
    A3,
    PROB_2:def 2;
    
          end;
    
            suppose not x
    in ( 
    dom F) & x 
    in ( 
    dom G); 
    
            then (F
    . x) 
    =  
    {} & (G 
    . x) 
    = (F 
    . x) by 
    A1,
    FUNCT_1:def 2;
    
            hence (G
    . x) 
    misses (G 
    . y) by 
    XBOOLE_1: 65;
    
          end;
    
            suppose not x
    in ( 
    dom F) & not x 
    in ( 
    dom G); 
    
            then (G
    . x) 
    =  
    {} by 
    FUNCT_1:def 2;
    
            hence (G
    . x) 
    misses (G 
    . y) by 
    XBOOLE_1: 65;
    
          end;
    
            suppose not y
    in ( 
    dom F) & y 
    in ( 
    dom G); 
    
            then (F
    . y) 
    =  
    {} & (G 
    . y) 
    = (F 
    . y) by 
    A1,
    FUNCT_1:def 2;
    
            hence (G
    . x) 
    misses (G 
    . y) by 
    XBOOLE_1: 65;
    
          end;
    
            suppose not y
    in ( 
    dom F) & not y 
    in ( 
    dom G); 
    
            then (G
    . y) 
    =  
    {} by 
    FUNCT_1:def 2;
    
            hence (G
    . x) 
    misses (G 
    . y) by 
    XBOOLE_1: 65;
    
          end;
    
        end;
    
        hence G is
    disjoint_valued by 
    PROB_2:def 2;
    
      end;
    
      assume
    
      
    
    A8: G is 
    disjoint_valued;
    
      now
    
        let x,y be
    object;
    
        assume
    
        
    
    A9: x 
    <> y; 
    
        per cases ;
    
          suppose x
    in ( 
    dom G) & y 
    in ( 
    dom G); 
    
          then (F
    . x) 
    = (G 
    . x) & (F 
    . y) 
    = (G 
    . y) by 
    A1;
    
          hence (F
    . x) 
    misses (F 
    . y) by 
    A8,
    A9,
    PROB_2:def 2;
    
        end;
    
          suppose
    
          
    
    A10: not x 
    in ( 
    dom G) or not y 
    in ( 
    dom G); 
    
          (
    dom F) 
    c=  
    NAT ; 
    
          then (
    dom F) 
    c= ( 
    dom G) by 
    FUNCT_2:def 1;
    
          then not x
    in ( 
    dom F) or not y 
    in ( 
    dom F) by 
    A10;
    
          then (F
    . x) 
    =  
    {} or (F 
    . y) 
    =  
    {} by 
    FUNCT_1:def 2;
    
          hence (F
    . x) 
    misses (F 
    . y) by 
    XBOOLE_1: 65;
    
        end;
    
      end;
    
      hence F is
    disjoint_valued by 
    PROB_2:def 2;
    
    end;
    
    theorem :: 
    
    MEASURE9:34
    
    for F be
    FinSequence of 
    ExtREAL , G be 
    ExtREAL_sequence st (for i be 
    Nat holds (F 
    . i) 
    = (G 
    . i)) holds F is 
    nonnegative iff G is 
    nonnegative
    
    proof
    
      let F be
    FinSequence of 
    ExtREAL , G be 
    ExtREAL_sequence;
    
      assume
    
      
    
    A1: for i be 
    Nat holds (F 
    . i) 
    = (G 
    . i); 
    
      hereby
    
        assume
    
        
    
    A3: F is 
    nonnegative;
    
        now
    
          let i be
    object;
    
          assume
    
          
    
    A4: i 
    in ( 
    dom G); 
    
          per cases ;
    
            suppose i
    in ( 
    dom F); 
    
            then (G
    . i) 
    = (F 
    . i) by 
    A1;
    
            hence (G
    . i) 
    >=  
    0 by 
    A3,
    SUPINF_2: 51;
    
          end;
    
            suppose not i
    in ( 
    dom F); 
    
            then (F
    . i) 
    =  
    0 by 
    FUNCT_1:def 2;
    
            hence (G
    . i) 
    >=  
    0 by 
    A1,
    A4;
    
          end;
    
        end;
    
        hence G is
    nonnegative by 
    SUPINF_2: 52;
    
      end;
    
      assume
    
      
    
    A5: G is 
    nonnegative;
    
      now
    
        let i be
    object;
    
        per cases ;
    
          suppose i
    in ( 
    dom F); 
    
          then (F
    . i) 
    = (G 
    . i) by 
    A1;
    
          hence (F
    . i) 
    >=  
    0 by 
    A5,
    SUPINF_2: 51;
    
        end;
    
          suppose not i
    in ( 
    dom F); 
    
          hence (F
    . i) 
    >=  
    0 by 
    FUNCT_1:def 2;
    
        end;
    
      end;
    
      hence F is
    nonnegative by 
    SUPINF_2: 51;
    
    end;
    
    
    
    
    
    LL1: 
    <*
    +infty *> is 
    nonnegative & 
    <*
    +infty *> is 
    without-infty
    
    proof
    
      set F =
    <*
    +infty *>; 
    
      now
    
        let i be
    object;
    
        per cases ;
    
          suppose i
    in ( 
    dom F); 
    
          then i
    in ( 
    Seg 1) by 
    FINSEQ_1: 38;
    
          then i
    = 1 by 
    TARSKI:def 1,
    FINSEQ_1: 2;
    
          hence (F
    . i) 
    >=  
    0 by 
    FINSEQ_1: 40;
    
        end;
    
          suppose not i
    in ( 
    dom F); 
    
          hence (F
    . i) 
    >=  
    0 by 
    FUNCT_1:def 2;
    
        end;
    
      end;
    
      hence F is
    nonnegative by 
    SUPINF_2: 51;
    
      hence F is
    without-infty;
    
    end;
    
    
    
    
    
    LL2: 
    <*
    -infty *> is 
    nonpositive & 
    <*
    -infty *> is 
    without+infty
    
    proof
    
      set F =
    <*
    -infty *>; 
    
      now
    
        let i be
    object;
    
        per cases ;
    
          suppose i
    in ( 
    dom F); 
    
          then i
    in ( 
    Seg 1) by 
    FINSEQ_1: 38;
    
          then i
    = 1 by 
    TARSKI:def 1,
    FINSEQ_1: 2;
    
          hence (F
    . i) 
    <=  
    0 by 
    FINSEQ_1: 40;
    
        end;
    
          suppose not i
    in ( 
    dom F); 
    
          hence (F
    . i) 
    <=  
    0 by 
    FUNCT_1:def 2;
    
        end;
    
      end;
    
      hence F is
    nonpositive by 
    MESFUNC5: 8;
    
      hence F is
    without+infty;
    
    end;
    
    registration
    
      cluster 
    nonnegative for 
    FinSequence of 
    ExtREAL ; 
    
      existence by
    LL1;
    
      cluster 
    without-infty for 
    FinSequence of 
    ExtREAL ; 
    
      existence by
    LL1;
    
      cluster 
    nonpositive for 
    FinSequence of 
    ExtREAL ; 
    
      existence by
    LL2;
    
      cluster 
    without+infty for 
    FinSequence of 
    ExtREAL ; 
    
      existence by
    LL2;
    
      cluster 
    nonnegative -> 
    without-infty for 
    FinSequence of 
    ExtREAL ; 
    
      correctness ;
    
      cluster 
    nonpositive -> 
    without+infty for 
    FinSequence of 
    ExtREAL ; 
    
      correctness ;
    
    end
    
    registration
    
      let X,Y be non
    empty  
    set, F be 
    without-infty  
    Function of Y, 
    ExtREAL , G be 
    Function of X, Y; 
    
      cluster (F 
    * G) -> 
    without-infty;
    
      correctness
    
      proof
    
        for x be
    object holds 
    -infty  
    < ((F 
    * G) 
    . x) 
    
        proof
    
          let x be
    object;
    
          per cases ;
    
            suppose x
    in ( 
    dom (F 
    * G)); 
    
            then ((F
    * G) 
    . x) 
    = (F 
    . (G 
    . x)) by 
    FUNCT_1: 12;
    
            hence
    -infty  
    < ((F 
    * G) 
    . x) by 
    MESFUNC5:def 5;
    
          end;
    
            suppose not x
    in ( 
    dom (F 
    * G)); 
    
            hence
    -infty  
    < ((F 
    * G) 
    . x) by 
    FUNCT_1:def 2;
    
          end;
    
        end;
    
        hence thesis by
    MESFUNC5:def 5;
    
      end;
    
    end
    
    registration
    
      let X,Y be non
    empty  
    set, F be 
    nonnegative  
    Function of Y, 
    ExtREAL , G be 
    Function of X, Y; 
    
      cluster (F 
    * G) -> 
    nonnegative;
    
      correctness by
    MEASURE1: 25;
    
    end
    
    theorem :: 
    
    MEASURE9:35
    
    
    
    
    
    Th33: for a be 
    R_eal holds ( 
    Sum  
    <*a*>)
    = a 
    
    proof
    
      let a be
    R_eal;
    
      consider f be
    sequence of 
    ExtREAL such that 
    
      
    
    A1: ( 
    Sum  
    <*a*>)
    = (f 
    . ( 
    len  
    <*a*>)) & (f
    .  
    0 ) 
    =  
    0. & for i be 
    Nat st i 
    < ( 
    len  
    <*a*>) holds (f
    . (i 
    + 1)) 
    = ((f 
    . i) 
    + ( 
    <*a*>
    . (i 
    + 1))) by 
    EXTREAL1:def 2;
    
      
    
      
    
    A2: ( 
    len  
    <*a*>)
    = 1 by 
    FINSEQ_1: 39;
    
      (f
    . ( 
    0  
    + 1)) 
    = ((f 
    .  
    0 ) 
    + ( 
    <*a*>
    . ( 
    0  
    + 1))) by 
    A1
    
      .= (
    0  
    + a) by 
    A1,
    FINSEQ_1: 40;
    
      hence (
    Sum  
    <*a*>)
    = a by 
    A1,
    A2,
    XXREAL_3: 4;
    
    end;
    
    theorem :: 
    
    MEASURE9:36
    
    
    
    
    
    Th34: for F be 
    FinSequence of 
    ExtREAL , k be 
    Nat holds (F is 
    without-infty implies (F 
    | k) is 
    without-infty) & (F is
    without+infty implies (F 
    | k) is 
    without+infty)
    
    proof
    
      let F be
    FinSequence of 
    ExtREAL , k be 
    Nat;
    
      hereby
    
        assume
    
        
    
    A1: F is 
    without-infty;
    
        now
    
          assume
    -infty  
    in ( 
    rng (F 
    | k)); 
    
          then
    
          consider i be
    Element of 
    NAT such that 
    
          
    
    A2: i 
    in ( 
    dom (F 
    | k)) & 
    -infty  
    = ((F 
    | k) 
    . i) by 
    PARTFUN1: 3;
    
          (
    dom (F 
    | k)) 
    c= ( 
    dom F) by 
    RELAT_1: 60;
    
          then i
    in ( 
    dom F) & ((F 
    | k) 
    . i) 
    = (F 
    . i) by 
    A2,
    FUNCT_1: 47;
    
          then
    -infty  
    in ( 
    rng F) by 
    A2,
    FUNCT_1: 3;
    
          hence contradiction by
    A1,
    MESFUNC5:def 3;
    
        end;
    
        hence (F
    | k) is 
    without-infty by 
    MESFUNC5:def 3;
    
      end;
    
      assume
    
      
    
    A3: F is 
    without+infty;
    
      now
    
        assume
    +infty  
    in ( 
    rng (F 
    | k)); 
    
        then
    
        consider i be
    Element of 
    NAT such that 
    
        
    
    A4: i 
    in ( 
    dom (F 
    | k)) & 
    +infty  
    = ((F 
    | k) 
    . i) by 
    PARTFUN1: 3;
    
        (
    dom (F 
    | k)) 
    c= ( 
    dom F) by 
    RELAT_1: 60;
    
        then i
    in ( 
    dom F) & ((F 
    | k) 
    . i) 
    = (F 
    . i) by 
    A4,
    FUNCT_1: 47;
    
        then
    +infty  
    in ( 
    rng F) by 
    A4,
    FUNCT_1: 3;
    
        hence contradiction by
    A3,
    MESFUNC5:def 4;
    
      end;
    
      hence (F
    | k) is 
    without+infty by 
    MESFUNC5:def 4;
    
    end;
    
    theorem :: 
    
    MEASURE9:37
    
    
    
    
    
    Th35: for F be 
    without-infty  
    FinSequence of 
    ExtREAL , G be 
    ExtREAL_sequence st (for i be 
    Nat holds (F 
    . i) 
    = (G 
    . i)) holds for i be 
    Nat holds ( 
    Sum (F 
    | i)) 
    = (( 
    Partial_Sums G) 
    . i) 
    
    proof
    
      let F be
    without-infty  
    FinSequence of 
    ExtREAL , G be 
    ExtREAL_sequence;
    
      assume
    
      
    
    A1: for i be 
    Nat holds (F 
    . i) 
    = (G 
    . i); 
    
      hereby
    
        let i be
    Nat;
    
        defpred
    
    P[
    Nat] means (
    Sum (F 
    | $1)) 
    = (( 
    Partial_Sums G) 
    . $1); 
    
        
    
        
    
    A3: ex f0 be 
    sequence of 
    ExtREAL st ( 
    Sum (F 
    |  
    0 )) 
    = (f0 
    . ( 
    len (F 
    |  
    0 ))) & (f0 
    .  
    0 ) 
    =  
    0. & for i be 
    Nat st i 
    < ( 
    len (F 
    |  
    0 )) holds (f0 
    . (i 
    + 1)) 
    = ((f0 
    . i) 
    + ((F 
    |  
    0 ) 
    . (i 
    + 1))) by 
    EXTREAL1:def 2;
    
         not
    0  
    in ( 
    Seg ( 
    len F)) by 
    FINSEQ_1: 1;
    
        then not
    0  
    in ( 
    dom F) by 
    FINSEQ_1:def 3;
    
        then (F
    .  
    0 ) 
    =  
    0 by 
    FUNCT_1:def 2;
    
        then (G
    .  
    0 ) 
    =  
    0 by 
    A1;
    
        then
    
        
    
    A4: 
    P[
    0 ] by 
    A3,
    MESFUNC9:def 1;
    
        
    
        
    
    A5: for k be 
    Nat st 
    P[k] holds
    P[(k
    + 1)] 
    
        proof
    
          let k be
    Nat;
    
          assume
    
          
    
    A6: 
    P[k];
    
          (F
    | k) is 
    without-infty by 
    Th34;
    
          then
    
          
    
    A7: not 
    -infty  
    in ( 
    rng (F 
    | k)) by 
    MESFUNC5:def 3;
    
          
    
    A8: 
    
          now
    
            assume
    -infty  
    in ( 
    rng  
    <*(F
    . (k 
    + 1))*>); 
    
            then
    -infty  
    in  
    {(F
    . (k 
    + 1))} by 
    FINSEQ_1: 39;
    
            then
    
            
    
    A9: (F 
    . (k 
    + 1)) 
    =  
    -infty by 
    TARSKI:def 1;
    
            per cases ;
    
              suppose (k
    + 1) 
    in ( 
    dom F); 
    
              then (F
    . (k 
    + 1)) 
    in ( 
    rng F) by 
    FUNCT_1: 3;
    
              hence contradiction by
    A9,
    MESFUNC5:def 3;
    
            end;
    
              suppose not (k
    + 1) 
    in ( 
    dom F); 
    
              hence contradiction by
    A9,
    FUNCT_1:def 2;
    
            end;
    
          end;
    
          per cases ;
    
            suppose (k
    + 1) 
    <= ( 
    len F); 
    
            then (F
    | (k 
    + 1)) 
    = ((F 
    | k) 
    ^  
    <*(F
    . (k 
    + 1))*>) by 
    NAT_1: 13,
    FINSEQ_5: 83;
    
            
    
            then (
    Sum (F 
    | (k 
    + 1))) 
    = (( 
    Sum (F 
    | k)) 
    + ( 
    Sum  
    <*(F
    . (k 
    + 1))*>)) by 
    A7,
    A8,
    EXTREAL1: 10
    
            .= (((
    Partial_Sums G) 
    . k) 
    + (F 
    . (k 
    + 1))) by 
    A6,
    Th33
    
            .= (((
    Partial_Sums G) 
    . k) 
    + (G 
    . (k 
    + 1))) by 
    A1;
    
            hence
    P[(k
    + 1)] by 
    MESFUNC9:def 1;
    
          end;
    
            suppose
    
            
    
    A10: (k 
    + 1) 
    > ( 
    len F); 
    
            then
    
            
    
    A11: (F 
    | k) 
    = F & (F 
    | (k 
    + 1)) 
    = F by 
    NAT_1: 13,
    FINSEQ_1: 58;
    
             not (k
    + 1) 
    in ( 
    dom F) by 
    A10,
    FINSEQ_3: 25;
    
            then (F
    . (k 
    + 1)) 
    =  
    0 by 
    FUNCT_1:def 2;
    
            then (G
    . (k 
    + 1)) 
    =  
    0 by 
    A1;
    
            then ((
    Partial_Sums G) 
    . (k 
    + 1)) 
    = ((( 
    Partial_Sums G) 
    . k) 
    +  
    0 ) by 
    MESFUNC9:def 1;
    
            hence
    P[(k
    + 1)] by 
    A6,
    A11,
    XXREAL_3: 4;
    
          end;
    
        end;
    
        for k be
    Nat holds 
    P[k] from
    NAT_1:sch 2(
    A4,
    A5);
    
        hence (
    Sum (F 
    | i)) 
    = (( 
    Partial_Sums G) 
    . i); 
    
      end;
    
    end;
    
    theorem :: 
    
    MEASURE9:38
    
    for F be
    without-infty  
    FinSequence of 
    ExtREAL , G be 
    ExtREAL_sequence st (for i be 
    Nat holds (F 
    . i) 
    = (G 
    . i)) holds G is 
    summable & ( 
    Sum F) 
    = ( 
    Sum G) 
    
    proof
    
      let F be
    without-infty  
    FinSequence of 
    ExtREAL , G be 
    ExtREAL_sequence;
    
      assume
    
      
    
    A1: for i be 
    Nat holds (F 
    . i) 
    = (G 
    . i); 
    
      then
    
      
    
    A2: ( 
    Sum (F 
    | ( 
    len F))) 
    = (( 
    Partial_Sums G) 
    . ( 
    len F)) by 
    Th35;
    
      defpred
    
    P[
    Nat] means (
    Sum F) 
    = (( 
    Partial_Sums G) 
    . (( 
    len F) 
    + $1)); 
    
      
    
      
    
    B1: 
    P[
    0 ] by 
    A2,
    FINSEQ_1: 58;
    
      
    
      
    
    B2: for k be 
    Nat st 
    P[k] holds
    P[(k
    + 1)] 
    
      proof
    
        let k be
    Nat;
    
        assume
    
        
    
    A3: 
    P[k];
    
        (
    len F) 
    < (( 
    len F) 
    + (k 
    + 1)) by 
    NAT_1: 11,
    NAT_1: 19;
    
        then not (((
    len F) 
    + k) 
    + 1) 
    in ( 
    dom F) by 
    FINSEQ_3: 25;
    
        then (F
    . ((( 
    len F) 
    + k) 
    + 1)) 
    =  
    0 by 
    FUNCT_1:def 2;
    
        then
    
        
    
    A4: (G 
    . ((( 
    len F) 
    + k) 
    + 1)) 
    =  
    0 by 
    A1;
    
        ((
    Partial_Sums G) 
    . (( 
    len F) 
    + (k 
    + 1))) 
    = ((( 
    Partial_Sums G) 
    . (( 
    len F) 
    + k)) 
    + (G 
    . ((( 
    len F) 
    + k) 
    + 1))) by 
    MESFUNC9:def 1
    
        .= ((
    Partial_Sums G) 
    . (( 
    len F) 
    + k)) by 
    A4,
    XXREAL_3: 4;
    
        hence
    P[(k
    + 1)] by 
    A3;
    
      end;
    
      
    
      
    
    A5: for k be 
    Nat holds 
    P[k] from
    NAT_1:sch 2(
    B1,
    B2);
    
      hereby
    
        per cases by
    XXREAL_0: 14;
    
          suppose (
    Sum F) 
    in  
    REAL ; 
    
          then
    
          reconsider r = (
    Sum F) as 
    Real;
    
          
    
          
    
    B1: for p be 
    Real st 
    0  
    < p holds ex n be 
    Nat st for m be 
    Nat st n 
    <= m holds 
    |.(((
    Partial_Sums G) 
    . m) 
    - r) qua 
    ExtReal.|
    < p 
    
          proof
    
            let p be
    Real;
    
            assume
    
            
    
    A6: 
    0  
    < p; 
    
            take n = (
    len F); 
    
            now
    
              let m be
    Nat;
    
              assume (
    len F) 
    <= m; 
    
              then
    
              reconsider k = (m
    - n) as 
    Nat by 
    NAT_1: 21;
    
              m
    = (n 
    + k); 
    
              then ((
    Partial_Sums G) 
    . m) 
    = ( 
    Sum F) by 
    A5;
    
              hence
    |.(((
    Partial_Sums G) 
    . m) 
    - r) qua 
    ExtReal.|
    < p by 
    A6,
    XXREAL_3: 7,
    EXTREAL1: 16;
    
            end;
    
            hence thesis;
    
          end;
    
          then
    
          
    
    B2: ( 
    Partial_Sums G) is 
    convergent_to_finite_number by 
    MESFUNC5:def 8;
    
          hence G is
    summable by 
    MESFUNC9:def 2;
    
          (
    lim ( 
    Partial_Sums G)) 
    = ( 
    Sum F) by 
    B1,
    B2,
    MESFUNC5:def 12;
    
          hence (
    Sum F) 
    = ( 
    Sum G) by 
    MESFUNC9:def 3;
    
        end;
    
          suppose
    
          
    
    A7: ( 
    Sum F) 
    =  
    +infty ; 
    
          now
    
            let g be
    Real;
    
            assume
    0  
    < g; 
    
            thus ex n be
    Nat st for m be 
    Nat st n 
    <= m holds g 
    <= (( 
    Partial_Sums G) 
    . m) 
    
            proof
    
              take n = (
    len F); 
    
              hereby
    
                let m be
    Nat;
    
                assume n
    <= m; 
    
                then
    
                reconsider k = (m
    - n) as 
    Nat by 
    NAT_1: 21;
    
                m
    = (n 
    + k); 
    
                then ((
    Partial_Sums G) 
    . m) 
    =  
    +infty by 
    A5,
    A7;
    
                hence g
    <= (( 
    Partial_Sums G) 
    . m) by 
    XXREAL_0: 3;
    
              end;
    
            end;
    
          end;
    
          then
    
          
    
    B5: ( 
    Partial_Sums G) is 
    convergent_to_+infty by 
    MESFUNC5:def 9;
    
          hence G is
    summable by 
    MESFUNC9:def 2;
    
          (
    lim ( 
    Partial_Sums G)) 
    = ( 
    Sum F) by 
    A7,
    B5,
    MESFUNC5:def 12;
    
          hence (
    Sum F) 
    = ( 
    Sum G) by 
    MESFUNC9:def 3;
    
        end;
    
          suppose
    
          
    
    A8: ( 
    Sum F) 
    =  
    -infty ; 
    
          now
    
            let g be
    Real;
    
            assume g
    <  
    0 ; 
    
            thus ex n be
    Nat st for m be 
    Nat st n 
    <= m holds (( 
    Partial_Sums G) 
    . m) 
    <= g 
    
            proof
    
              take n = (
    len F); 
    
              hereby
    
                let m be
    Nat;
    
                assume n
    <= m; 
    
                then
    
                reconsider k = (m
    - n) as 
    Nat by 
    NAT_1: 21;
    
                m
    = (n 
    + k); 
    
                then ((
    Partial_Sums G) 
    . m) 
    =  
    -infty by 
    A5,
    A8;
    
                hence ((
    Partial_Sums G) 
    . m) 
    <= g by 
    XXREAL_0: 5;
    
              end;
    
            end;
    
          end;
    
          then
    
          
    
    B8: ( 
    Partial_Sums G) is 
    convergent_to_-infty by 
    MESFUNC5:def 10;
    
          hence G is
    summable by 
    MESFUNC9:def 2;
    
          (
    lim ( 
    Partial_Sums G)) 
    = ( 
    Sum F) by 
    A8,
    B8,
    MESFUNC5:def 12;
    
          hence (
    Sum F) 
    = ( 
    Sum G) by 
    MESFUNC9:def 3;
    
        end;
    
      end;
    
    end;
    
    theorem :: 
    
    MEASURE9:39
    
    for X be
    set, S be 
    with_empty_element
    semi-diff-closed
    cap-closed  
    Subset-Family of X, F be 
    disjoint_valued  
    FinSequence of S, R be non 
    empty
    preBoolean  
    Subset-Family of X st S 
    c= R & ( 
    Union F) 
    in R holds for i be 
    Nat holds ( 
    Union (F 
    | i)) 
    in R 
    
    proof
    
      let X be
    set, S be 
    with_empty_element
    semi-diff-closed
    cap-closed  
    Subset-Family of X, F be 
    disjoint_valued  
    FinSequence of S, R be non 
    empty
    preBoolean  
    Subset-Family of X; 
    
      assume
    
      
    
    A1: S 
    c= R & ( 
    Union F) 
    in R; 
    
      defpred
    
    P[
    Nat] means (
    Union (F 
    | $1)) 
    in R; 
    
      (
    union ( 
    rng (F 
    |  
    0 ))) 
    =  
    {} by 
    ZFMISC_1: 2;
    
      then (
    Union (F 
    |  
    0 )) 
    =  
    {} by 
    CARD_3:def 4;
    
      then
    
      
    
    A3: 
    P[
    0 ] by 
    FINSUB_1: 7;
    
      
    
      
    
    A4: for i be 
    Nat st 
    P[i] holds
    P[(i
    + 1)] 
    
      proof
    
        let i be
    Nat;
    
        assume
    
        
    
    A5: 
    P[i];
    
        per cases ;
    
          suppose i
    >= ( 
    len F); 
    
          then (F
    | i) 
    = F & (F 
    | (i 
    + 1)) 
    = F by 
    NAT_1: 12,
    FINSEQ_1: 58;
    
          hence
    P[(i
    + 1)] by 
    A5;
    
        end;
    
          suppose i
    < ( 
    len F); 
    
          then
    
          
    
    A8: (i 
    + 1) 
    <= ( 
    len F) by 
    NAT_1: 13;
    
          set F1 = (F
    | (i 
    + 1)); 
    
          
    
          
    
    A9: (F1 
    | i) 
    = (F 
    | i) by 
    NAT_1: 12,
    FINSEQ_1: 82;
    
          F1
    = ((F1 
    | i) 
    ^  
    <*(F1
    . (i 
    + 1))*>) by 
    A8,
    FINSEQ_1: 17,
    FINSEQ_3: 55;
    
          then (
    rng F1) 
    = (( 
    rng (F1 
    | i)) 
    \/ ( 
    rng  
    <*(F1
    . (i 
    + 1))*>)) by 
    FINSEQ_1: 31;
    
          then (
    rng F1) 
    = (( 
    rng (F 
    | i)) 
    \/  
    {(F1
    . (i 
    + 1))}) by 
    A9,
    FINSEQ_1: 38;
    
          then (
    rng F1) 
    = (( 
    rng (F 
    | i)) 
    \/  
    {(F
    . (i 
    + 1))}) by 
    FINSEQ_3: 112;
    
          then (
    union ( 
    rng F1)) 
    = (( 
    union ( 
    rng (F 
    | i))) 
    \/ ( 
    union  
    {(F
    . (i 
    + 1))})) by 
    ZFMISC_1: 78;
    
          then (
    Union F1) 
    = (( 
    union ( 
    rng (F 
    | i))) 
    \/ ( 
    union  
    {(F
    . (i 
    + 1))})) by 
    CARD_3:def 4;
    
          then (
    Union F1) 
    = (( 
    Union (F 
    | i)) 
    \/ ( 
    union  
    {(F
    . (i 
    + 1))})) by 
    CARD_3:def 4;
    
          then
    
          
    
    A11: ( 
    Union F1) 
    = (( 
    Union (F 
    | i)) 
    \/ (F 
    . (i 
    + 1))) by 
    ZFMISC_1: 25;
    
          (i
    + 1) 
    in ( 
    dom F) by 
    A8,
    NAT_1: 12,
    FINSEQ_3: 25;
    
          then (F
    . (i 
    + 1)) 
    in ( 
    rng F) by 
    FUNCT_1: 3;
    
          then (F
    . (i 
    + 1)) 
    in S; 
    
          hence
    P[(i
    + 1)] by 
    A1,
    A5,
    A11,
    FINSUB_1:def 1;
    
        end;
    
      end;
    
      for i be
    Nat holds 
    P[i] from
    NAT_1:sch 2(
    A3,
    A4);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MEASURE9:40
    
    for X be
    set, S be 
    with_empty_element
    semi-diff-closed
    cap-closed  
    Subset-Family of X, P be 
    pre-Measure of S, F1,F2 be 
    disjoint_valued  
    FinSequence of S st ( 
    Union F1) 
    in S & ( 
    Union F1) 
    = ( 
    Union F2) holds (P 
    . ( 
    Union F1)) 
    = (P 
    . ( 
    Union F2)); 
    
    theorem :: 
    
    MEASURE9:41
    
    
    
    
    
    FStoMAT1: for S be non 
    empty
    cap-closed  
    set, F1,F2 be 
    FinSequence of S holds ex Mx be 
    Matrix of ( 
    len F1), ( 
    len F2), S st for i,j be 
    Nat st 
    [i, j]
    in ( 
    Indices Mx) holds (Mx 
    * (i,j)) 
    = ((F1 
    . i) 
    /\ (F2 
    . j)) 
    
    proof
    
      let S be non
    empty
    cap-closed  
    set;
    
      let F1,F2 be
    FinSequence of S; 
    
      defpred
    
    P[
    Nat, 
    Nat, 
    set] means $3
    = ((F1 
    . $1) 
    /\ (F2 
    . $2)); 
    
      
    
      
    
    A2: for i,j be 
    Nat st 
    [i, j]
    in  
    [:(
    Seg ( 
    len F1)), ( 
    Seg ( 
    len F2)):] holds ex K be 
    Element of S st 
    P[i, j, K]
    
      proof
    
        let i,j be
    Nat;
    
        assume
    [i, j]
    in  
    [:(
    Seg ( 
    len F1)), ( 
    Seg ( 
    len F2)):]; 
    
        then i
    in ( 
    Seg ( 
    len F1)) & j 
    in ( 
    Seg ( 
    len F2)) by 
    ZFMISC_1: 87;
    
        then i
    in ( 
    dom F1) & j 
    in ( 
    dom F2) by 
    FINSEQ_1:def 3;
    
        then (F1
    . i) 
    in ( 
    rng F1) & (F2 
    . j) 
    in ( 
    rng F2) by 
    FUNCT_1: 3;
    
        then ((F1
    . i) 
    /\ (F2 
    . j)) 
    in S by 
    FINSUB_1:def 2;
    
        hence thesis;
    
      end;
    
      consider Mx be
    Matrix of ( 
    len F1), ( 
    len F2), S such that 
    
      
    
    A3: for i,j be 
    Nat st 
    [i, j]
    in ( 
    Indices Mx) holds 
    P[i, j, (Mx
    * (i,j))] from 
    MATRIX_0:sch 2(
    A2);
    
      take Mx;
    
      thus thesis by
    A3;
    
    end;
    
    theorem :: 
    
    MEASURE9:42
    
    
    
    
    
    Th40: for X be 
    set, S be 
    with_empty_element
    cap-closed  
    Subset-Family of X, F1,F2 be non 
    empty
    disjoint_valued  
    FinSequence of S, P be 
    nonnegative
    zeroed  
    Function of S, 
    ExtREAL , Mx be 
    Matrix of ( 
    len F1), ( 
    len F2), 
    ExtREAL st ( 
    Union F1) 
    = ( 
    Union F2) & (for i,j be 
    Nat st 
    [i, j]
    in ( 
    Indices Mx) holds (Mx 
    * (i,j)) 
    = (P 
    . ((F1 
    . i) 
    /\ (F2 
    . j)))) & (for F be 
    disjoint_valued  
    FinSequence of S st ( 
    Union F) 
    in S holds (P 
    . ( 
    Union F)) 
    = ( 
    Sum (P 
    * F))) holds (for i be 
    Nat st i 
    <= ( 
    len (P 
    * F1)) holds ((P 
    * F1) 
    . i) 
    = (( 
    Sum Mx) 
    . i)) & ( 
    Sum (P 
    * F1)) 
    = ( 
    SumAll Mx) 
    
    proof
    
      let X be
    set, S be 
    with_empty_element
    cap-closed  
    Subset-Family of X, F1,F2 be non 
    empty
    disjoint_valued  
    FinSequence of S, P be 
    nonnegative
    zeroed  
    Function of S, 
    ExtREAL , Mx be 
    Matrix of ( 
    len F1), ( 
    len F2), 
    ExtREAL ; 
    
      assume that
    
      
    
    A1: ( 
    Union F1) 
    = ( 
    Union F2) and 
    
      
    
    A2: for i,j be 
    Nat st 
    [i, j]
    in ( 
    Indices Mx) holds (Mx 
    * (i,j)) 
    = (P 
    . ((F1 
    . i) 
    /\ (F2 
    . j))) and 
    
      
    
    A3: for F be 
    disjoint_valued  
    FinSequence of S st ( 
    Union F) 
    in S holds (P 
    . ( 
    Union F)) 
    = ( 
    Sum (P 
    * F)); 
    
      consider Kx be
    Matrix of ( 
    len F1), ( 
    len F2), S such that 
    
      
    
    KX1: for i,j be 
    Nat st 
    [i, j]
    in ( 
    Indices Kx) holds (Kx 
    * (i,j)) 
    = ((F1 
    . i) 
    /\ (F2 
    . j)) by 
    FStoMAT1;
    
      
    
      
    
    C0: ( 
    len Kx) 
    = ( 
    len F1) & ( 
    len Mx) 
    = ( 
    len F1) by 
    MATRIX_0:def 2;
    
      then
    
      
    
    C1: ( 
    len (P 
    * F1)) 
    = ( 
    len Mx) & ( 
    len (P 
    * F1)) 
    = ( 
    len Kx) by 
    FINSEQ_2: 33;
    
      
    
      
    
    C4: ( 
    width Kx) 
    = ( 
    len F2) & ( 
    width Mx) 
    = ( 
    len F2) by 
    C0,
    MATRIX_0: 20;
    
      
    
      
    
    C2: ( 
    len (P 
    * F1)) 
    = ( 
    len ( 
    Sum Mx)) by 
    C1,
    Def5;
    
      thus
    
      
    
    C6: for i be 
    Nat st i 
    <= ( 
    len (P 
    * F1)) holds ((P 
    * F1) 
    . i) 
    = (( 
    Sum Mx) 
    . i) 
    
      proof
    
        let i be
    Nat;
    
        assume
    
        
    
    E0: i 
    <= ( 
    len (P 
    * F1)); 
    
        per cases ;
    
          suppose i
    =  
    0 ; 
    
          then not i
    in ( 
    dom (P 
    * F1)) & not i 
    in ( 
    dom ( 
    Sum Mx)) by 
    FINSEQ_3: 24;
    
          then ((P
    * F1) 
    . i) 
    =  
    0 & (( 
    Sum Mx) 
    . i) 
    =  
    0 by 
    FUNCT_1:def 2;
    
          hence ((P
    * F1) 
    . i) 
    = (( 
    Sum Mx) 
    . i); 
    
        end;
    
          suppose i
    <>  
    0 ; 
    
          then
    
          
    
    E1: 1 
    <= i by 
    NAT_1: 14;
    
          then i
    in ( 
    dom (P 
    * F1)) by 
    E0,
    FINSEQ_3: 25;
    
          then
    
          
    
    E2: i 
    in ( 
    dom F1) by 
    FUNCT_1: 11;
    
          then (F1
    . i) 
    c= ( 
    union ( 
    rng F1)) by 
    FUNCT_1: 3,
    ZFMISC_1: 74;
    
          then (F1
    . i) 
    c= ( 
    Union F2) by 
    A1,
    CARD_3:def 4;
    
          then
    
          
    
    E3: ((F1 
    . i) 
    /\ ( 
    Union F2)) 
    = (F1 
    . i) by 
    XBOOLE_1: 28;
    
          
    
          
    
    E4: (F1 
    . i) 
    in ( 
    rng F1) by 
    E2,
    FUNCT_1: 3;
    
          
    
          
    
    E5: i 
    in ( 
    dom Kx) & i 
    in ( 
    dom Mx) by 
    C1,
    E0,
    E1,
    FINSEQ_3: 25;
    
          for p,q be
    object st p 
    <> q holds ((Kx 
    . i) 
    . p) 
    misses ((Kx 
    . i) 
    . q) 
    
          proof
    
            let p,q be
    object;
    
            assume
    
            
    
    SA0: p 
    <> q; 
    
            per cases ;
    
              suppose
    
              
    
    SA1: p 
    in ( 
    dom (Kx 
    . i)) & q 
    in ( 
    dom (Kx 
    . i)); 
    
              then
    
              reconsider p1 = p, q1 = q as
    Nat;
    
              
    
              
    
    E6: 
    [i, p1]
    in ( 
    Indices Kx) & 
    [i, q1]
    in ( 
    Indices Kx) by 
    SA1,
    E5,
    MATRIX_0: 37;
    
              (Kx
    * (i,p1)) 
    = ((Kx 
    . i) 
    . p) & (Kx 
    * (i,q1)) 
    = ((Kx 
    . i) 
    . q) by 
    E6,
    MATRPROB: 14;
    
              then ((Kx
    . i) 
    . p) 
    = ((F1 
    . i) 
    /\ (F2 
    . p1)) & ((Kx 
    . i) 
    . q) 
    = ((F1 
    . i) 
    /\ (F2 
    . q1)) by 
    E6,
    KX1;
    
              hence ((Kx
    . i) 
    . p) 
    misses ((Kx 
    . i) 
    . q) by 
    SA0,
    PROB_2:def 2,
    XBOOLE_1: 76;
    
            end;
    
              suppose not p
    in ( 
    dom (Kx 
    . i)); 
    
              then ((Kx
    . i) 
    . p) 
    =  
    {} by 
    FUNCT_1:def 2;
    
              hence ((Kx
    . i) 
    . p) 
    misses ((Kx 
    . i) 
    . q) by 
    XBOOLE_1: 65;
    
            end;
    
              suppose not q
    in ( 
    dom (Kx 
    . i)); 
    
              then ((Kx
    . i) 
    . q) 
    =  
    {} by 
    FUNCT_1:def 2;
    
              hence ((Kx
    . i) 
    . p) 
    misses ((Kx 
    . i) 
    . q) by 
    XBOOLE_1: 65;
    
            end;
    
          end;
    
          then
    
          
    
    E8: (Kx 
    . i) is 
    disjoint_valued  
    FinSequence of S by 
    PROB_2:def 2;
    
          now
    
            let x be
    object;
    
            assume x
    in ( 
    Union (Kx 
    . i)); 
    
            then x
    in ( 
    union ( 
    rng (Kx 
    . i))) by 
    CARD_3:def 4;
    
            then
    
            consider A be
    set such that 
    
            
    
    E9: x 
    in A & A 
    in ( 
    rng (Kx 
    . i)) by 
    TARSKI:def 4;
    
            consider m be
    object such that 
    
            
    
    E10: m 
    in ( 
    dom (Kx 
    . i)) & A 
    = ((Kx 
    . i) 
    . m) by 
    E9,
    FUNCT_1:def 3;
    
            reconsider m as
    Nat by 
    E10;
    
            
    
            
    
    E11: 
    [i, m]
    in ( 
    Indices Kx) by 
    E10,
    E5,
    MATRIX_0: 37;
    
            then ((Kx
    . i) 
    . m) 
    = (Kx 
    * (i,m)) by 
    MATRPROB: 14;
    
            then ((Kx
    . i) 
    . m) 
    = ((F1 
    . i) 
    /\ (F2 
    . m)) by 
    E11,
    KX1;
    
            then
    
            
    
    E12: x 
    in (F1 
    . i) & x 
    in (F2 
    . m) by 
    E9,
    E10,
    XBOOLE_0:def 4;
    
            1
    <= m & m 
    <= ( 
    len F2) by 
    E11,
    MATRIX_0: 33;
    
            then m
    in ( 
    dom F2) by 
    FINSEQ_3: 25;
    
            then (F2
    . m) 
    in ( 
    rng F2) by 
    FUNCT_1: 3;
    
            then x
    in ( 
    union ( 
    rng F2)) by 
    E12,
    TARSKI:def 4;
    
            then x
    in ( 
    Union F2) by 
    CARD_3:def 4;
    
            hence x
    in ((F1 
    . i) 
    /\ ( 
    Union F2)) by 
    E12,
    XBOOLE_0:def 4;
    
          end;
    
          then
    
          
    
    E13: ( 
    Union (Kx 
    . i)) 
    c= ((F1 
    . i) 
    /\ ( 
    Union F2)) by 
    TARSKI:def 3;
    
          now
    
            let x be
    object;
    
            assume x
    in ((F1 
    . i) 
    /\ ( 
    Union F2)); 
    
            then
    
            
    
    E14: x 
    in (F1 
    . i) & x 
    in ( 
    Union F2) by 
    XBOOLE_0:def 4;
    
            then x
    in ( 
    union ( 
    rng F2)) by 
    CARD_3:def 4;
    
            then
    
            consider A be
    set such that 
    
            
    
    E15: x 
    in A & A 
    in ( 
    rng F2) by 
    TARSKI:def 4;
    
            consider m be
    object such that 
    
            
    
    E16: m 
    in ( 
    dom F2) & A 
    = (F2 
    . m) by 
    E15,
    FUNCT_1:def 3;
    
            reconsider m as
    Nat by 
    E16;
    
            1
    <= i & i 
    <= ( 
    len F1) & 1 
    <= m & m 
    <= ( 
    len F2) by 
    E2,
    E16,
    FINSEQ_3: 25;
    
            then
    
            
    
    E17: 
    [i, m]
    in ( 
    Indices Kx) by 
    MATRIX_0: 31;
    
            then ((Kx
    . i) 
    . m) 
    = (Kx 
    * (i,m)) by 
    MATRPROB: 14;
    
            then ((Kx
    . i) 
    . m) 
    = ((F1 
    . i) 
    /\ (F2 
    . m)) by 
    E17,
    KX1;
    
            then
    
            
    
    E18: x 
    in ((Kx 
    . i) 
    . m) by 
    E14,
    E15,
    E16,
    XBOOLE_0:def 4;
    
            m
    in ( 
    dom (Kx 
    . i)) by 
    E17,
    MATRIX_0: 38;
    
            then ((Kx
    . i) 
    . m) 
    in ( 
    rng (Kx 
    . i)) by 
    FUNCT_1: 3;
    
            then x
    in ( 
    union ( 
    rng (Kx 
    . i))) by 
    E18,
    TARSKI:def 4;
    
            hence x
    in ( 
    Union (Kx 
    . i)) by 
    CARD_3:def 4;
    
          end;
    
          then ((F1
    . i) 
    /\ ( 
    Union F2)) 
    c= ( 
    Union (Kx 
    . i)) by 
    TARSKI:def 3;
    
          then ((F1
    . i) 
    /\ ( 
    Union F2)) 
    = ( 
    Union (Kx 
    . i)) by 
    E13,
    XBOOLE_0:def 10;
    
          then
    
          
    
    E19: (P 
    . ((F1 
    . i) 
    /\ ( 
    Union F2))) 
    = ( 
    Sum (P 
    * (Kx 
    . i))) by 
    E3,
    E4,
    E8,
    A3;
    
          
    
          
    
    E20: i 
    in ( 
    Seg ( 
    len Mx)) by 
    C1,
    E0,
    E1;
    
          
    
          
    
    E21: (Mx 
    . i) 
    = ( 
    Line (Mx,i)) & (Kx 
    . i) 
    = ( 
    Line (Kx,i)) by 
    E5,
    MATRIX_0: 60;
    
          (
    rng (Kx 
    . i)) 
    c= S; 
    
          then (
    rng (Kx 
    . i)) 
    c= ( 
    dom P) by 
    FUNCT_2:def 1;
    
          then
    
          
    
    E22: ( 
    dom (P 
    * (Kx 
    . i))) 
    = ( 
    dom (Kx 
    . i)) by 
    RELAT_1: 27;
    
          then (
    len (P 
    * (Kx 
    . i))) 
    = ( 
    len (Kx 
    . i)) by 
    FINSEQ_3: 29;
    
          then
    
          
    
    E23a: ( 
    len (P 
    * (Kx 
    . i))) 
    = ( 
    width Kx) by 
    E21,
    MATRIX_0:def 7;
    
          then
    
          
    
    E23: ( 
    len (P 
    * (Kx 
    . i))) 
    = ( 
    len (Mx 
    . i)) by 
    C4,
    E21,
    MATRIX_0:def 7;
    
          for k be
    Nat st 1 
    <= k & k 
    <= ( 
    len (P 
    * (Kx 
    . i))) holds ((P 
    * (Kx 
    . i)) 
    . k) 
    = ((Mx 
    . i) 
    . k) 
    
          proof
    
            let k be
    Nat;
    
            assume
    
            
    
    E24: 1 
    <= k & k 
    <= ( 
    len (P 
    * (Kx 
    . i))); 
    
            then k
    in ( 
    dom (Kx 
    . i)) & k 
    in ( 
    dom (Mx 
    . i)) by 
    E23,
    E22,
    FINSEQ_3: 25;
    
            then
    
            
    
    E25: 
    [i, k]
    in ( 
    Indices Kx) & 
    [i, k]
    in ( 
    Indices Mx) by 
    E5,
    MATRPROB: 13;
    
            k
    in ( 
    dom (P 
    * (Kx 
    . i))) by 
    E24,
    FINSEQ_3: 25;
    
            then ((P
    * (Kx 
    . i)) 
    . k) 
    = (P 
    . ((Kx 
    . i) 
    . k)) by 
    FUNCT_1: 12;
    
            then ((P
    * (Kx 
    . i)) 
    . k) 
    = (P 
    . (Kx 
    * (i,k))) by 
    E25,
    MATRPROB: 14;
    
            then ((P
    * (Kx 
    . i)) 
    . k) 
    = (P 
    . ((F1 
    . i) 
    /\ (F2 
    . k))) by 
    E25,
    KX1;
    
            then ((P
    * (Kx 
    . i)) 
    . k) 
    = (Mx 
    * (i,k)) by 
    E25,
    A2;
    
            hence ((P
    * (Kx 
    . i)) 
    . k) 
    = ((Mx 
    . i) 
    . k) by 
    E25,
    MATRPROB: 14;
    
          end;
    
          then
    
          
    
    E27: (P 
    * (Kx 
    . i)) 
    = (Mx 
    . i) by 
    E23a,
    C4,
    E21,
    MATRIX_0:def 7;
    
          (F1
    . i) 
    c= ( 
    union ( 
    rng F1)) by 
    E2,
    FUNCT_1: 3,
    ZFMISC_1: 74;
    
          then (F1
    . i) 
    c= ( 
    Union F1) by 
    CARD_3:def 4;
    
          then ((F1
    . i) 
    /\ ( 
    Union F2)) 
    = (F1 
    . i) by 
    A1,
    XBOOLE_1: 28;
    
          then ((P
    * F1) 
    . i) 
    = ( 
    Sum (P 
    * (Kx 
    . i))) by 
    E2,
    E19,
    FUNCT_1: 13;
    
          hence ((P
    * F1) 
    . i) 
    = (( 
    Sum Mx) 
    . i) by 
    E20,
    E27,
    E21,
    Th16;
    
        end;
    
      end;
    
      consider SMF1 be
    Function of 
    NAT , 
    ExtREAL such that 
    
      
    
    A2: ( 
    Sum (P 
    * F1)) 
    = (SMF1 
    . ( 
    len (P 
    * F1))) & (SMF1 
    .  
    0 ) 
    =  
    0 & for i be 
    Nat st i 
    < ( 
    len (P 
    * F1)) holds (SMF1 
    . (i 
    + 1)) 
    = ((SMF1 
    . i) 
    + ((P 
    * F1) 
    . (i 
    + 1))) by 
    EXTREAL1:def 2;
    
      consider LL be
    Function of 
    NAT , 
    ExtREAL such that 
    
      
    
    C7: ( 
    SumAll Mx) 
    = (LL 
    . ( 
    len ( 
    Sum Mx))) & (LL 
    .  
    0 ) 
    =  
    0. & for i be 
    Nat st i 
    < ( 
    len ( 
    Sum Mx)) holds (LL 
    . (i 
    + 1)) 
    = ((LL 
    . i) 
    + (( 
    Sum Mx) 
    . (i 
    + 1))) by 
    EXTREAL1:def 2;
    
      defpred
    
    PK1[
    Nat] means $1
    <= ( 
    len (P 
    * F1)) implies (SMF1 
    . $1) 
    = (LL 
    . $1); 
    
      
    
      
    
    C8: 
    PK1[
    0 ] by 
    A2,
    C7;
    
      
    
      
    
    C9: for i be 
    Nat st 
    PK1[i] holds
    PK1[(i
    + 1)] 
    
      proof
    
        let i be
    Nat;
    
        assume
    
        
    
    V1: 
    PK1[i];
    
        assume
    
        
    
    V3: (i 
    + 1) 
    <= ( 
    len (P 
    * F1)); 
    
        then (SMF1
    . (i 
    + 1)) 
    = ((SMF1 
    . i) 
    + ((P 
    * F1) 
    . (i 
    + 1))) by 
    A2,
    NAT_1: 13;
    
        then (SMF1
    . (i 
    + 1)) 
    = ((LL 
    . i) 
    + (( 
    Sum Mx) 
    . (i 
    + 1))) by 
    C6,
    V1,
    V3,
    NAT_1: 13;
    
        hence (SMF1
    . (i 
    + 1)) 
    = (LL 
    . (i 
    + 1)) by 
    C7,
    V3,
    C2,
    NAT_1: 13;
    
      end;
    
      for i be
    Nat holds 
    PK1[i] from
    NAT_1:sch 2(
    C8,
    C9);
    
      hence (
    Sum (P 
    * F1)) 
    = ( 
    SumAll Mx) by 
    A2,
    C2,
    C7;
    
    end;
    
    theorem :: 
    
    MEASURE9:43
    
    
    
    
    
    Th41: for X be 
    set, S be 
    with_empty_element
    cap-closed  
    Subset-Family of X, F1,F2 be non 
    empty
    disjoint_valued  
    FinSequence of S, P be 
    nonnegative
    zeroed  
    Function of S, 
    ExtREAL , Mx be 
    Matrix of ( 
    len F1), ( 
    len F2), 
    ExtREAL st ( 
    Union F1) 
    = ( 
    Union F2) & (for i,j be 
    Nat st 
    [i, j]
    in ( 
    Indices Mx) holds (Mx 
    * (i,j)) 
    = (P 
    . ((F1 
    . i) 
    /\ (F2 
    . j)))) & (for F be 
    disjoint_valued  
    FinSequence of S st ( 
    Union F) 
    in S holds (P 
    . ( 
    Union F)) 
    = ( 
    Sum (P 
    * F))) holds (for i be 
    Nat st i 
    <= ( 
    len (P 
    * F2)) holds ((P 
    * F2) 
    . i) 
    = (( 
    Sum (Mx 
    @ )) 
    . i)) & ( 
    Sum (P 
    * F2)) 
    = ( 
    SumAll (Mx 
    @ )) 
    
    proof
    
      let X be
    set, S be 
    with_empty_element
    cap-closed  
    Subset-Family of X, F1,F2 be non 
    empty
    disjoint_valued  
    FinSequence of S, P be 
    nonnegative
    zeroed  
    Function of S, 
    ExtREAL , Mx be 
    Matrix of ( 
    len F1), ( 
    len F2), 
    ExtREAL ; 
    
      assume that
    
      
    
    A1: ( 
    Union F1) 
    = ( 
    Union F2) and 
    
      
    
    A2: for i,j be 
    Nat st 
    [i, j]
    in ( 
    Indices Mx) holds (Mx 
    * (i,j)) 
    = (P 
    . ((F1 
    . i) 
    /\ (F2 
    . j))) and 
    
      
    
    A3: for F be 
    disjoint_valued  
    FinSequence of S st ( 
    Union F) 
    in S holds (P 
    . ( 
    Union F)) 
    = ( 
    Sum (P 
    * F)); 
    
      consider Kx be
    Matrix of ( 
    len F1), ( 
    len F2), S such that 
    
      
    
    KX1: for i,j be 
    Nat st 
    [i, j]
    in ( 
    Indices Kx) holds (Kx 
    * (i,j)) 
    = ((F1 
    . i) 
    /\ (F2 
    . j)) by 
    FStoMAT1;
    
      
    
      
    
    A5: ( 
    len (P 
    * F2)) 
    = ( 
    len F2) by 
    FINSEQ_2: 33;
    
      
    
      
    
    C3: ( 
    len Kx) 
    = ( 
    len F1) & ( 
    len Mx) 
    = ( 
    len F1) by 
    MATRIX_0:def 2;
    
      then (
    width Kx) 
    = ( 
    len F2) & ( 
    width Mx) 
    = ( 
    len F2) by 
    MATRIX_0: 20;
    
      then
    
      
    
    C5: ( 
    len (Kx 
    @ )) 
    = ( 
    len F2) & ( 
    len (Mx 
    @ )) 
    = ( 
    len F2) & ( 
    width (Kx 
    @ )) 
    = ( 
    len F1) & ( 
    width (Mx 
    @ )) 
    = ( 
    len F1) by 
    C3,
    MATRIX_0: 29;
    
      then
    
      
    
    D2: ( 
    len (P 
    * F2)) 
    = ( 
    len ( 
    Sum (Mx 
    @ ))) by 
    A5,
    Def5;
    
      thus
    
      
    
    D6: for i be 
    Nat st i 
    <= ( 
    len (P 
    * F2)) holds ((P 
    * F2) 
    . i) 
    = (( 
    Sum (Mx 
    @ )) 
    . i) 
    
      proof
    
        let i be
    Nat;
    
        assume
    
        
    
    E0: i 
    <= ( 
    len (P 
    * F2)); 
    
        per cases ;
    
          suppose i
    =  
    0 ; 
    
          then not i
    in ( 
    dom (P 
    * F2)) & not i 
    in ( 
    dom ( 
    Sum (Mx 
    @ ))) by 
    FINSEQ_3: 24;
    
          then ((P
    * F2) 
    . i) 
    =  
    0 & (( 
    Sum (Mx 
    @ )) 
    . i) 
    =  
    0 by 
    FUNCT_1:def 2;
    
          hence ((P
    * F2) 
    . i) 
    = (( 
    Sum (Mx 
    @ )) 
    . i); 
    
        end;
    
          suppose i
    <>  
    0 ; 
    
          then
    
          
    
    E1: 1 
    <= i by 
    NAT_1: 14;
    
          then i
    in ( 
    dom (P 
    * F2)) by 
    E0,
    FINSEQ_3: 25;
    
          then
    
          
    
    E2: i 
    in ( 
    dom F2) by 
    FUNCT_1: 11;
    
          then (F2
    . i) 
    c= ( 
    union ( 
    rng F2)) by 
    FUNCT_1: 3,
    ZFMISC_1: 74;
    
          then (F2
    . i) 
    c= ( 
    Union F1) by 
    A1,
    CARD_3:def 4;
    
          then
    
          
    
    E3: ((F2 
    . i) 
    /\ ( 
    Union F1)) 
    = (F2 
    . i) by 
    XBOOLE_1: 28;
    
          
    
          
    
    E4: (F2 
    . i) 
    in ( 
    rng F2) by 
    E2,
    FUNCT_1: 3;
    
          
    
          
    
    E5: i 
    in ( 
    dom (Kx 
    @ )) & i 
    in ( 
    dom (Mx 
    @ )) by 
    C5,
    A5,
    E0,
    E1,
    FINSEQ_3: 25;
    
          for p,q be
    object st p 
    <> q holds (((Kx 
    @ ) 
    . i) 
    . p) 
    misses (((Kx 
    @ ) 
    . i) 
    . q) 
    
          proof
    
            let p,q be
    object;
    
            assume
    
            
    
    SA0: p 
    <> q; 
    
            per cases ;
    
              suppose
    
              
    
    SA1: p 
    in ( 
    dom ((Kx 
    @ ) 
    . i)) & q 
    in ( 
    dom ((Kx 
    @ ) 
    . i)); 
    
              then
    
              reconsider p1 = p, q1 = q as
    Nat;
    
              
    
              
    
    E6: 
    [i, p1]
    in ( 
    Indices (Kx 
    @ )) & 
    [i, q1]
    in ( 
    Indices (Kx 
    @ )) by 
    SA1,
    E5,
    MATRIX_0: 37;
    
              then
    
              
    
    EE6: 
    [p1, i]
    in ( 
    Indices Kx) & 
    [q1, i]
    in ( 
    Indices Kx) by 
    MATRIX_0:def 6;
    
              ((Kx
    @ ) 
    * (i,p1)) 
    = (((Kx 
    @ ) 
    . i) 
    . p) & ((Kx 
    @ ) 
    * (i,q1)) 
    = (((Kx 
    @ ) 
    . i) 
    . q) by 
    E6,
    MATRPROB: 14;
    
              then (((Kx
    @ ) 
    . i) 
    . p) 
    = (Kx 
    * (p1,i)) & (((Kx 
    @ ) 
    . i) 
    . q) 
    = (Kx 
    * (q1,i)) by 
    EE6,
    MATRIX_0:def 6;
    
              then (((Kx
    @ ) 
    . i) 
    . p) 
    = ((F2 
    . i) 
    /\ (F1 
    . p1)) & (((Kx 
    @ ) 
    . i) 
    . q) 
    = ((F2 
    . i) 
    /\ (F1 
    . q1)) by 
    EE6,
    KX1;
    
              hence (((Kx
    @ ) 
    . i) 
    . p) 
    misses (((Kx 
    @ ) 
    . i) 
    . q) by 
    SA0,
    PROB_2:def 2,
    XBOOLE_1: 76;
    
            end;
    
              suppose not p
    in ( 
    dom ((Kx 
    @ ) 
    . i)); 
    
              then (((Kx
    @ ) 
    . i) 
    . p) 
    =  
    {} by 
    FUNCT_1:def 2;
    
              hence (((Kx
    @ ) 
    . i) 
    . p) 
    misses (((Kx 
    @ ) 
    . i) 
    . q) by 
    XBOOLE_1: 65;
    
            end;
    
              suppose not q
    in ( 
    dom ((Kx 
    @ ) 
    . i)); 
    
              then (((Kx
    @ ) 
    . i) 
    . q) 
    =  
    {} by 
    FUNCT_1:def 2;
    
              hence (((Kx
    @ ) 
    . i) 
    . p) 
    misses (((Kx 
    @ ) 
    . i) 
    . q) by 
    XBOOLE_1: 65;
    
            end;
    
          end;
    
          then
    
          
    
    E8: ((Kx 
    @ ) 
    . i) is 
    disjoint_valued  
    FinSequence of S by 
    PROB_2:def 2;
    
          now
    
            let x be
    object;
    
            assume x
    in ( 
    Union ((Kx 
    @ ) 
    . i)); 
    
            then x
    in ( 
    union ( 
    rng ((Kx 
    @ ) 
    . i))) by 
    CARD_3:def 4;
    
            then
    
            consider A be
    set such that 
    
            
    
    E9: x 
    in A & A 
    in ( 
    rng ((Kx 
    @ ) 
    . i)) by 
    TARSKI:def 4;
    
            consider m be
    object such that 
    
            
    
    E10: m 
    in ( 
    dom ((Kx 
    @ ) 
    . i)) & A 
    = (((Kx 
    @ ) 
    . i) 
    . m) by 
    E9,
    FUNCT_1:def 3;
    
            reconsider m as
    Nat by 
    E10;
    
            
    
            
    
    E11: 
    [i, m]
    in ( 
    Indices (Kx 
    @ )) by 
    E10,
    E5,
    MATRIX_0: 37;
    
            then
    
            
    
    EE11: 
    [m, i]
    in ( 
    Indices Kx) by 
    MATRIX_0:def 6;
    
            (((Kx
    @ ) 
    . i) 
    . m) 
    = ((Kx 
    @ ) 
    * (i,m)) by 
    E11,
    MATRPROB: 14;
    
            then (((Kx
    @ ) 
    . i) 
    . m) 
    = (Kx 
    * (m,i)) by 
    EE11,
    MATRIX_0:def 6;
    
            then (((Kx
    @ ) 
    . i) 
    . m) 
    = ((F2 
    . i) 
    /\ (F1 
    . m)) by 
    EE11,
    KX1;
    
            then
    
            
    
    E12: x 
    in (F2 
    . i) & x 
    in (F1 
    . m) by 
    E9,
    E10,
    XBOOLE_0:def 4;
    
            1
    <= m & m 
    <= ( 
    len F1) by 
    EE11,
    MATRIX_0: 33;
    
            then m
    in ( 
    dom F1) by 
    FINSEQ_3: 25;
    
            then (F1
    . m) 
    in ( 
    rng F1) by 
    FUNCT_1: 3;
    
            then x
    in ( 
    union ( 
    rng F1)) by 
    E12,
    TARSKI:def 4;
    
            then x
    in ( 
    Union F1) by 
    CARD_3:def 4;
    
            hence x
    in ((F2 
    . i) 
    /\ ( 
    Union F1)) by 
    E12,
    XBOOLE_0:def 4;
    
          end;
    
          then
    
          
    
    E13: ( 
    Union ((Kx 
    @ ) 
    . i)) 
    c= ((F2 
    . i) 
    /\ ( 
    Union F1)) by 
    TARSKI:def 3;
    
          now
    
            let x be
    object;
    
            assume x
    in ((F2 
    . i) 
    /\ ( 
    Union F1)); 
    
            then
    
            
    
    E14: x 
    in (F2 
    . i) & x 
    in ( 
    Union F1) by 
    XBOOLE_0:def 4;
    
            then x
    in ( 
    union ( 
    rng F1)) by 
    CARD_3:def 4;
    
            then
    
            consider A be
    set such that 
    
            
    
    E15: x 
    in A & A 
    in ( 
    rng F1) by 
    TARSKI:def 4;
    
            consider m be
    object such that 
    
            
    
    E16: m 
    in ( 
    dom F1) & A 
    = (F1 
    . m) by 
    E15,
    FUNCT_1:def 3;
    
            reconsider m as
    Nat by 
    E16;
    
            1
    <= i & i 
    <= ( 
    len F2) & 1 
    <= m & m 
    <= ( 
    len F1) by 
    E2,
    E16,
    FINSEQ_3: 25;
    
            then
    
            
    
    EE17: 
    [m, i]
    in ( 
    Indices Kx) by 
    MATRIX_0: 31;
    
            then
    
            
    
    E17: 
    [i, m]
    in ( 
    Indices (Kx 
    @ )) by 
    MATRIX_0:def 6;
    
            (((Kx
    @ ) 
    . i) 
    . m) 
    = ((Kx 
    @ ) 
    * (i,m)) by 
    E17,
    MATRPROB: 14;
    
            then (((Kx
    @ ) 
    . i) 
    . m) 
    = (Kx 
    * (m,i)) by 
    EE17,
    MATRIX_0:def 6;
    
            then (((Kx
    @ ) 
    . i) 
    . m) 
    = ((F2 
    . i) 
    /\ (F1 
    . m)) by 
    EE17,
    KX1;
    
            then
    
            
    
    E18: x 
    in (((Kx 
    @ ) 
    . i) 
    . m) by 
    E14,
    E15,
    E16,
    XBOOLE_0:def 4;
    
            m
    in ( 
    dom ((Kx 
    @ ) 
    . i)) by 
    E17,
    MATRIX_0: 38;
    
            then (((Kx
    @ ) 
    . i) 
    . m) 
    in ( 
    rng ((Kx 
    @ ) 
    . i)) by 
    FUNCT_1: 3;
    
            then x
    in ( 
    union ( 
    rng ((Kx 
    @ ) 
    . i))) by 
    E18,
    TARSKI:def 4;
    
            hence x
    in ( 
    Union ((Kx 
    @ ) 
    . i)) by 
    CARD_3:def 4;
    
          end;
    
          then ((F2
    . i) 
    /\ ( 
    Union F1)) 
    c= ( 
    Union ((Kx 
    @ ) 
    . i)) by 
    TARSKI:def 3;
    
          then ((F2
    . i) 
    /\ ( 
    Union F1)) 
    = ( 
    Union ((Kx 
    @ ) 
    . i)) by 
    E13,
    XBOOLE_0:def 10;
    
          then
    
          
    
    E19: (P 
    . ((F2 
    . i) 
    /\ ( 
    Union F1))) 
    = ( 
    Sum (P 
    * ((Kx 
    @ ) 
    . i))) by 
    E3,
    E4,
    E8,
    A3;
    
          
    
          
    
    E20: i 
    in ( 
    Seg ( 
    len (Mx 
    @ ))) by 
    C5,
    A5,
    E0,
    E1;
    
          
    
          
    
    E21: ((Mx 
    @ ) 
    . i) 
    = ( 
    Line ((Mx 
    @ ),i)) & ((Kx 
    @ ) 
    . i) 
    = ( 
    Line ((Kx 
    @ ),i)) by 
    E5,
    MATRIX_0: 60;
    
          (
    rng ((Kx 
    @ ) 
    . i)) 
    c= S; 
    
          then (
    rng ((Kx 
    @ ) 
    . i)) 
    c= ( 
    dom P) by 
    FUNCT_2:def 1;
    
          then
    
          
    
    E22: ( 
    dom (P 
    * ((Kx 
    @ ) 
    . i))) 
    = ( 
    dom ((Kx 
    @ ) 
    . i)) by 
    RELAT_1: 27;
    
          then (
    len (P 
    * ((Kx 
    @ ) 
    . i))) 
    = ( 
    len ((Kx 
    @ ) 
    . i)) by 
    FINSEQ_3: 29;
    
          then
    
          
    
    F23: ( 
    len (P 
    * ((Kx 
    @ ) 
    . i))) 
    = ( 
    width (Kx 
    @ )) by 
    E21,
    MATRIX_0:def 7;
    
          then
    
          
    
    E23: ( 
    len (P 
    * ((Kx 
    @ ) 
    . i))) 
    = ( 
    len ((Mx 
    @ ) 
    . i)) by 
    C5,
    E21,
    MATRIX_0:def 7;
    
          for k be
    Nat st 1 
    <= k & k 
    <= ( 
    len (P 
    * ((Kx 
    @ ) 
    . i))) holds ((P 
    * ((Kx 
    @ ) 
    . i)) 
    . k) 
    = (((Mx 
    @ ) 
    . i) 
    . k) 
    
          proof
    
            let k be
    Nat;
    
            assume
    
            
    
    E24: 1 
    <= k & k 
    <= ( 
    len (P 
    * ((Kx 
    @ ) 
    . i))); 
    
            then k
    in ( 
    dom ((Kx 
    @ ) 
    . i)) & k 
    in ( 
    dom ((Mx 
    @ ) 
    . i)) by 
    E23,
    E22,
    FINSEQ_3: 25;
    
            then
    
            
    
    E25: 
    [i, k]
    in ( 
    Indices (Kx 
    @ )) & 
    [i, k]
    in ( 
    Indices (Mx 
    @ )) by 
    E5,
    MATRPROB: 13;
    
            then
    
            
    
    EE25: 
    [k, i]
    in ( 
    Indices Kx) & 
    [k, i]
    in ( 
    Indices Mx) by 
    MATRIX_0:def 6;
    
            k
    in ( 
    dom (P 
    * ((Kx 
    @ ) 
    . i))) by 
    E24,
    FINSEQ_3: 25;
    
            then ((P
    * ((Kx 
    @ ) 
    . i)) 
    . k) 
    = (P 
    . (((Kx 
    @ ) 
    . i) 
    . k)) by 
    FUNCT_1: 12;
    
            then ((P
    * ((Kx 
    @ ) 
    . i)) 
    . k) 
    = (P 
    . ((Kx 
    @ ) 
    * (i,k))) by 
    E25,
    MATRPROB: 14;
    
            then ((P
    * ((Kx 
    @ ) 
    . i)) 
    . k) 
    = (P 
    . (Kx 
    * (k,i))) by 
    EE25,
    MATRIX_0:def 6;
    
            then ((P
    * ((Kx 
    @ ) 
    . i)) 
    . k) 
    = (P 
    . ((F2 
    . i) 
    /\ (F1 
    . k))) by 
    EE25,
    KX1;
    
            then ((P
    * ((Kx 
    @ ) 
    . i)) 
    . k) 
    = (Mx 
    * (k,i)) by 
    EE25,
    A2;
    
            then ((P
    * ((Kx 
    @ ) 
    . i)) 
    . k) 
    = ((Mx 
    @ ) 
    * (i,k)) by 
    EE25,
    MATRIX_0:def 6;
    
            hence ((P
    * ((Kx 
    @ ) 
    . i)) 
    . k) 
    = (((Mx 
    @ ) 
    . i) 
    . k) by 
    E25,
    MATRPROB: 14;
    
          end;
    
          then
    
          
    
    E27: (P 
    * ((Kx 
    @ ) 
    . i)) 
    = ((Mx 
    @ ) 
    . i) by 
    F23,
    C5,
    E21,
    MATRIX_0:def 7;
    
          (F2
    . i) 
    c= ( 
    union ( 
    rng F2)) by 
    E2,
    FUNCT_1: 3,
    ZFMISC_1: 74;
    
          then (F2
    . i) 
    c= ( 
    Union F2) by 
    CARD_3:def 4;
    
          then ((F2
    . i) 
    /\ ( 
    Union F1)) 
    = (F2 
    . i) by 
    A1,
    XBOOLE_1: 28;
    
          then ((P
    * F2) 
    . i) 
    = ( 
    Sum (P 
    * ((Kx 
    @ ) 
    . i))) by 
    E2,
    E19,
    FUNCT_1: 13;
    
          hence ((P
    * F2) 
    . i) 
    = (( 
    Sum (Mx 
    @ )) 
    . i) by 
    E20,
    E27,
    E21,
    Th16;
    
        end;
    
      end;
    
      consider SMF2 be
    Function of 
    NAT , 
    ExtREAL such that 
    
      
    
    A3: ( 
    Sum (P 
    * F2)) 
    = (SMF2 
    . ( 
    len (P 
    * F2))) & (SMF2 
    .  
    0 ) 
    =  
    0 & for i be 
    Nat st i 
    < ( 
    len (P 
    * F2)) holds (SMF2 
    . (i 
    + 1)) 
    = ((SMF2 
    . i) 
    + ((P 
    * F2) 
    . (i 
    + 1))) by 
    EXTREAL1:def 2;
    
      consider LL be
    Function of 
    NAT , 
    ExtREAL such that 
    
      
    
    D7: ( 
    SumAll (Mx 
    @ )) 
    = (LL 
    . ( 
    len ( 
    Sum (Mx 
    @ )))) & (LL 
    .  
    0 ) 
    =  
    0. & for i be 
    Nat st i 
    < ( 
    len ( 
    Sum (Mx 
    @ ))) holds (LL 
    . (i 
    + 1)) 
    = ((LL 
    . i) 
    + (( 
    Sum (Mx 
    @ )) 
    . (i 
    + 1))) by 
    EXTREAL1:def 2;
    
      defpred
    
    PK2[
    Nat] means $1
    <= ( 
    len (P 
    * F2)) implies (SMF2 
    . $1) 
    = (LL 
    . $1); 
    
      
    
      
    
    D8: 
    PK2[
    0 ] by 
    A3,
    D7;
    
      
    
      
    
    D9: for i be 
    Nat st 
    PK2[i] holds
    PK2[(i
    + 1)] 
    
      proof
    
        let i be
    Nat;
    
        assume
    
        
    
    V1: 
    PK2[i];
    
        assume
    
        
    
    V3: (i 
    + 1) 
    <= ( 
    len (P 
    * F2)); 
    
        then (SMF2
    . (i 
    + 1)) 
    = ((SMF2 
    . i) 
    + ((P 
    * F2) 
    . (i 
    + 1))) by 
    A3,
    NAT_1: 13;
    
        then (SMF2
    . (i 
    + 1)) 
    = ((LL 
    . i) 
    + (( 
    Sum (Mx 
    @ )) 
    . (i 
    + 1))) by 
    D6,
    V1,
    V3,
    NAT_1: 13;
    
        hence (SMF2
    . (i 
    + 1)) 
    = (LL 
    . (i 
    + 1)) by 
    D7,
    V3,
    D2,
    NAT_1: 13;
    
      end;
    
      for i be
    Nat holds 
    PK2[i] from
    NAT_1:sch 2(
    D8,
    D9);
    
      hence (
    Sum (P 
    * F2)) 
    = ( 
    SumAll (Mx 
    @ )) by 
    A3,
    D2,
    D7;
    
    end;
    
    theorem :: 
    
    MEASURE9:44
    
    
    
    
    
    Th42: for X be 
    set, S be 
    with_empty_element
    semi-diff-closed
    cap-closed  
    Subset-Family of X, P be 
    pre-Measure of S, A be 
    set st A 
    in ( 
    Ring_generated_by S) holds for F1,F2 be 
    disjoint_valued  
    FinSequence of S st A 
    = ( 
    Union F1) & A 
    = ( 
    Union F2) holds ( 
    Sum (P 
    * F1)) 
    = ( 
    Sum (P 
    * F2)) 
    
    proof
    
      let X be
    set, S be 
    with_empty_element
    semi-diff-closed
    cap-closed  
    Subset-Family of X, P be 
    pre-Measure of S, A be 
    set;
    
      assume A
    in ( 
    Ring_generated_by S); 
    
      hereby
    
        let F1,F2 be
    disjoint_valued  
    FinSequence of S; 
    
        assume
    
        
    
    A1: A 
    = ( 
    Union F1) & A 
    = ( 
    Union F2); 
    
        consider SMF1 be
    Function of 
    NAT , 
    ExtREAL such that 
    
        
    
    A2: ( 
    Sum (P 
    * F1)) 
    = (SMF1 
    . ( 
    len (P 
    * F1))) & (SMF1 
    .  
    0 ) 
    =  
    0 & for i be 
    Nat st i 
    < ( 
    len (P 
    * F1)) holds (SMF1 
    . (i 
    + 1)) 
    = ((SMF1 
    . i) 
    + ((P 
    * F1) 
    . (i 
    + 1))) by 
    EXTREAL1:def 2;
    
        consider SMF2 be
    Function of 
    NAT , 
    ExtREAL such that 
    
        
    
    A3: ( 
    Sum (P 
    * F2)) 
    = (SMF2 
    . ( 
    len (P 
    * F2))) & (SMF2 
    .  
    0 ) 
    =  
    0 & for i be 
    Nat st i 
    < ( 
    len (P 
    * F2)) holds (SMF2 
    . (i 
    + 1)) 
    = ((SMF2 
    . i) 
    + ((P 
    * F2) 
    . (i 
    + 1))) by 
    EXTREAL1:def 2;
    
        (
    dom P) 
    = S by 
    FUNCT_2:def 1;
    
        then (
    rng F1) 
    c= ( 
    dom P) & ( 
    rng F2) 
    c= ( 
    dom P); 
    
        then
    
        
    
    A4: ( 
    dom (P 
    * F1)) 
    = ( 
    dom F1) & ( 
    dom (P 
    * F2)) 
    = ( 
    dom F2) by 
    RELAT_1: 27;
    
        then
    
        
    
    A5: ( 
    dom (P 
    * F1)) 
    = ( 
    Seg ( 
    len F1)) & ( 
    dom (P 
    * F2)) 
    = ( 
    Seg ( 
    len F2)) & ( 
    len (P 
    * F1)) 
    = ( 
    len F1) & ( 
    len (P 
    * F2)) 
    = ( 
    len F2) by 
    FINSEQ_1:def 3,
    FINSEQ_3: 29;
    
        per cases ;
    
          suppose
    
          
    
    A6: ( 
    len (P 
    * F1)) 
    =  
    0 ; 
    
          then (P
    * F1) 
    =  
    {} ; 
    
          then F1
    =  
    {} by 
    A4;
    
          then (
    rng F1) 
    =  
    {} ; 
    
          then (
    Union F2) 
    =  
    {} by 
    A1,
    CARD_3:def 4,
    ZFMISC_1: 2;
    
          then
    
          
    
    G7: ( 
    union ( 
    rng F2)) 
    =  
    {} by 
    CARD_3:def 4;
    
          defpred
    
    S[
    Nat] means $1
    <= ( 
    len (P 
    * F2)) implies (SMF2 
    . $1) 
    =  
    0 ; 
    
          
    
          
    
    A8: 
    S[
    0 ] by 
    A3;
    
          
    
          
    
    A9: for i be 
    Nat st 
    S[i] holds
    S[(i
    + 1)] 
    
          proof
    
            let i be
    Nat;
    
            assume
    
            
    
    A10: 
    S[i];
    
            assume
    
            
    
    A11: (i 
    + 1) 
    <= ( 
    len (P 
    * F2)); 
    
            then
    
            
    
    A13: (SMF2 
    . (i 
    + 1)) 
    = ((SMF2 
    . i) 
    + ((P 
    * F2) 
    . (i 
    + 1))) & (SMF2 
    . i) 
    =  
    0 by 
    A3,
    A10,
    NAT_1: 13;
    
            
    
            
    
    A14: (i 
    + 1) 
    in ( 
    dom (P 
    * F2)) by 
    A11,
    NAT_1: 11,
    FINSEQ_3: 25;
    
            then (F2
    . (i 
    + 1)) 
    =  
    {} by 
    A4,
    G7,
    ORDERS_1: 6,
    FUNCT_1: 3;
    
            then (P
    . (F2 
    . (i 
    + 1))) 
    =  
    0 by 
    VALUED_0:def 19;
    
            then ((P
    * F2) 
    . (i 
    + 1)) 
    =  
    0 by 
    A14,
    FUNCT_1: 12;
    
            hence (SMF2
    . (i 
    + 1)) 
    =  
    0 by 
    A13;
    
          end;
    
          for i be
    Nat holds 
    S[i] from
    NAT_1:sch 2(
    A8,
    A9);
    
          hence (
    Sum (P 
    * F1)) 
    = ( 
    Sum (P 
    * F2)) by 
    A2,
    A3,
    A6;
    
        end;
    
          suppose
    
          
    
    B6: ( 
    len (P 
    * F2)) 
    =  
    0 ; 
    
          then (P
    * F2) 
    =  
    {} ; 
    
          then F2
    =  
    {} by 
    A4;
    
          then (
    rng F2) 
    =  
    {} ; 
    
          then (
    Union F1) 
    =  
    {} by 
    A1,
    CARD_3:def 4,
    ZFMISC_1: 2;
    
          then
    
          
    
    E7: ( 
    union ( 
    rng F1)) 
    =  
    {} by 
    CARD_3:def 4;
    
          defpred
    
    S[
    Nat] means $1
    <= ( 
    len (P 
    * F1)) implies (SMF1 
    . $1) 
    =  
    0 ; 
    
          
    
          
    
    B8: 
    S[
    0 ] by 
    A2;
    
          
    
          
    
    B9: for i be 
    Nat st 
    S[i] holds
    S[(i
    + 1)] 
    
          proof
    
            let i be
    Nat;
    
            assume
    
            
    
    B10: 
    S[i];
    
            assume
    
            
    
    B11: (i 
    + 1) 
    <= ( 
    len (P 
    * F1)); 
    
            then
    
            
    
    B13: (SMF1 
    . (i 
    + 1)) 
    = ((SMF1 
    . i) 
    + ((P 
    * F1) 
    . (i 
    + 1))) & (SMF1 
    . i) 
    =  
    0 by 
    A2,
    B10,
    NAT_1: 13;
    
            
    
            
    
    B14: (i 
    + 1) 
    in ( 
    dom (P 
    * F1)) by 
    B11,
    NAT_1: 11,
    FINSEQ_3: 25;
    
            then (F1
    . (i 
    + 1)) 
    =  
    {} by 
    A4,
    E7,
    ORDERS_1: 6,
    FUNCT_1: 3;
    
            then (P
    . (F1 
    . (i 
    + 1))) 
    =  
    0 by 
    VALUED_0:def 19;
    
            then ((P
    * F1) 
    . (i 
    + 1)) 
    =  
    0 by 
    B14,
    FUNCT_1: 12;
    
            hence (SMF1
    . (i 
    + 1)) 
    =  
    0 by 
    B13;
    
          end;
    
          for i be
    Nat holds 
    S[i] from
    NAT_1:sch 2(
    B8,
    B9);
    
          hence (
    Sum (P 
    * F1)) 
    = ( 
    Sum (P 
    * F2)) by 
    A2,
    A3,
    B6;
    
        end;
    
          suppose
    
          
    
    A15: ( 
    len (P 
    * F1)) 
    <>  
    0 & ( 
    len (P 
    * F2)) 
    <>  
    0 ; 
    
          defpred
    
    Mx[
    Nat, 
    Nat, 
    set] means $3
    = (P 
    . ((F1 
    . $1) 
    /\ (F2 
    . $2))); 
    
          
    
          
    
    MX0: for i,j be 
    Nat st 
    [i, j]
    in  
    [:(
    Seg ( 
    len F1)), ( 
    Seg ( 
    len F2)):] holds ex A be 
    Element of 
    ExtREAL st 
    Mx[i, j, A];
    
          consider Mx be
    Matrix of ( 
    len F1), ( 
    len F2), 
    ExtREAL such that 
    
          
    
    MX1: for i,j be 
    Nat st 
    [i, j]
    in ( 
    Indices Mx) holds 
    Mx[i, j, (Mx
    * (i,j))] from 
    MATRIX_0:sch 2(
    MX0);
    
          
    
          
    
    C3: ( 
    len Mx) 
    = ( 
    len F1) by 
    MATRIX_0:def 2;
    
          then
    
          
    
    C4: ( 
    width Mx) 
    = ( 
    len F2) by 
    A15,
    A5,
    MATRIX_0: 20;
    
          
    
          
    
    CC0: for F be 
    disjoint_valued  
    FinSequence of S st ( 
    Union F) 
    in S holds (P 
    . ( 
    Union F)) 
    = ( 
    Sum (P 
    * F)) by 
    Def8;
    
          
    
          
    
    C0: F1 is non 
    empty & F2 is non 
    empty by 
    A15;
    
          then
    
          
    
    C10: ( 
    Sum (P 
    * F1)) 
    = ( 
    SumAll Mx) by 
    A1,
    MX1,
    CC0,
    Th40;
    
          
    
          
    
    D10: ( 
    Sum (P 
    * F2)) 
    = ( 
    SumAll (Mx 
    @ )) by 
    C0,
    A1,
    MX1,
    CC0,
    Th41;
    
          for i be
    Nat st i 
    in ( 
    dom Mx) holds not 
    -infty  
    in ( 
    rng (Mx 
    . i)) 
    
          proof
    
            let i be
    Nat;
    
            assume
    
            
    
    F1: i 
    in ( 
    dom Mx); 
    
            assume
    -infty  
    in ( 
    rng (Mx 
    . i)); 
    
            then
    
            consider j be
    object such that 
    
            
    
    F2: j 
    in ( 
    dom (Mx 
    . i)) & ((Mx 
    . i) 
    . j) 
    =  
    -infty by 
    FUNCT_1:def 3;
    
            reconsider j as
    Nat by 
    F2;
    
            
    
            
    
    F3: 
    [i, j]
    in ( 
    Indices Mx) by 
    F1,
    F2,
    MATRPROB: 13;
    
            then ((Mx
    . i) 
    . j) 
    = (Mx 
    * (i,j)) by 
    MATRPROB: 14;
    
            then
    
            
    
    F5: ((Mx 
    . i) 
    . j) 
    = (P 
    . ((F1 
    . i) 
    /\ (F2 
    . j))) by 
    F3,
    MX1;
    
            i
    in ( 
    Seg ( 
    len Mx)) & j 
    in ( 
    Seg ( 
    width Mx)) by 
    F3,
    MATRPROB: 12;
    
            then i
    in ( 
    dom F1) & j 
    in ( 
    dom F2) by 
    C3,
    C4,
    FINSEQ_1:def 3;
    
            then (F1
    . i) 
    in ( 
    rng F1) & (F2 
    . j) 
    in ( 
    rng F2) by 
    FUNCT_1: 3;
    
            then ((F1
    . i) 
    /\ (F2 
    . j)) 
    in S by 
    FINSUB_1:def 2;
    
            hence contradiction by
    F2,
    F5,
    MEASURE1:def 2;
    
          end;
    
          hence (
    Sum (P 
    * F1)) 
    = ( 
    Sum (P 
    * F2)) by 
    C10,
    D10,
    Th28;
    
        end;
    
      end;
    
    end;
    
    theorem :: 
    
    MEASURE9:45
    
    
    
    
    
    Th43: for f1,f2 be 
    FinSequence st f1 is 
    disjoint_valued & f2 is 
    disjoint_valued & ( 
    union ( 
    rng f1)) 
    misses ( 
    union ( 
    rng f2)) holds (f1 
    ^ f2) is 
    disjoint_valued
    
    proof
    
      let f1,f2 be
    FinSequence;
    
      assume that
    
      
    
    A1: f1 is 
    disjoint_valued & f2 is 
    disjoint_valued and 
    
      
    
    A2: ( 
    union ( 
    rng f1)) 
    misses ( 
    union ( 
    rng f2)); 
    
      now
    
        let x,y be
    object;
    
        assume
    
        
    
    A3: x 
    <> y; 
    
        per cases ;
    
          suppose
    
          
    
    A4: x 
    in ( 
    dom (f1 
    ^ f2)) & y 
    in ( 
    dom (f1 
    ^ f2)); 
    
          then
    
          reconsider x1 = x, y1 = y as
    Nat;
    
          per cases by
    A4,
    FINSEQ_1: 25;
    
            suppose x1
    in ( 
    dom f1) & y1 
    in ( 
    dom f1); 
    
            then ((f1
    ^ f2) 
    . x) 
    = (f1 
    . x) & ((f1 
    ^ f2) 
    . y) 
    = (f1 
    . y) by 
    FINSEQ_1:def 7;
    
            hence ((f1
    ^ f2) 
    . x) 
    misses ((f1 
    ^ f2) 
    . y) by 
    A1,
    A3,
    PROB_2:def 2;
    
          end;
    
            suppose
    
            
    
    A6: x1 
    in ( 
    dom f1) & ex n be 
    Nat st n 
    in ( 
    dom f2) & y1 
    = (( 
    len f1) 
    + n); 
    
            then
    
            consider n be
    Nat such that 
    
            
    
    A7: n 
    in ( 
    dom f2) & y1 
    = (( 
    len f1) 
    + n); 
    
            ((f1
    ^ f2) 
    . x) 
    = (f1 
    . x) by 
    A6,
    FINSEQ_1:def 7;
    
            then
    
            
    
    A8: ((f1 
    ^ f2) 
    . x) 
    in ( 
    rng f1) by 
    A6,
    FUNCT_1: 3;
    
            ((f1
    ^ f2) 
    . y) 
    = (f2 
    . n) by 
    A7,
    FINSEQ_1:def 7;
    
            then
    
            
    
    A9: ((f1 
    ^ f2) 
    . y) 
    in ( 
    rng f2) by 
    A7,
    FUNCT_1: 3;
    
            now
    
              assume ((f1
    ^ f2) 
    . x) 
    meets ((f1 
    ^ f2) 
    . y); 
    
              then
    
              consider z be
    object such that 
    
              
    
    A10: z 
    in ((f1 
    ^ f2) 
    . x) & z 
    in ((f1 
    ^ f2) 
    . y) by 
    XBOOLE_0: 3;
    
              z
    in ( 
    union ( 
    rng f1)) & z 
    in ( 
    union ( 
    rng f2)) by 
    A8,
    A9,
    A10,
    TARSKI:def 4;
    
              hence contradiction by
    A2,
    XBOOLE_0: 3;
    
            end;
    
            hence ((f1
    ^ f2) 
    . x) 
    misses ((f1 
    ^ f2) 
    . y); 
    
          end;
    
            suppose
    
            
    
    A11: y1 
    in ( 
    dom f1) & ex n be 
    Nat st n 
    in ( 
    dom f2) & x1 
    = (( 
    len f1) 
    + n); 
    
            then
    
            consider n be
    Nat such that 
    
            
    
    A12: n 
    in ( 
    dom f2) & x1 
    = (( 
    len f1) 
    + n); 
    
            ((f1
    ^ f2) 
    . x) 
    = (f2 
    . n) by 
    A12,
    FINSEQ_1:def 7;
    
            then
    
            
    
    A13: ((f1 
    ^ f2) 
    . x) 
    in ( 
    rng f2) by 
    A12,
    FUNCT_1: 3;
    
            ((f1
    ^ f2) 
    . y) 
    = (f1 
    . y) by 
    A11,
    FINSEQ_1:def 7;
    
            then
    
            
    
    A14: ((f1 
    ^ f2) 
    . y) 
    in ( 
    rng f1) by 
    A11,
    FUNCT_1: 3;
    
            now
    
              assume ((f1
    ^ f2) 
    . x) 
    meets ((f1 
    ^ f2) 
    . y); 
    
              then
    
              consider z be
    object such that 
    
              
    
    A15: z 
    in ((f1 
    ^ f2) 
    . x) & z 
    in ((f1 
    ^ f2) 
    . y) by 
    XBOOLE_0: 3;
    
              z
    in ( 
    union ( 
    rng f1)) & z 
    in ( 
    union ( 
    rng f2)) by 
    A13,
    A14,
    A15,
    TARSKI:def 4;
    
              hence contradiction by
    A2,
    XBOOLE_0: 3;
    
            end;
    
            hence ((f1
    ^ f2) 
    . x) 
    misses ((f1 
    ^ f2) 
    . y); 
    
          end;
    
            suppose
    
            
    
    A16: (ex n be 
    Nat st n 
    in ( 
    dom f2) & x1 
    = (( 
    len f1) 
    + n)) & (ex m be 
    Nat st m 
    in ( 
    dom f2) & y1 
    = (( 
    len f1) 
    + m)); 
    
            then
    
            consider n be
    Nat such that 
    
            
    
    A17: n 
    in ( 
    dom f2) & x1 
    = (( 
    len f1) 
    + n); 
    
            
    
            
    
    A18: ((f1 
    ^ f2) 
    . x) 
    = (f2 
    . n) by 
    A17,
    FINSEQ_1:def 7;
    
            consider m be
    Nat such that 
    
            
    
    A19: m 
    in ( 
    dom f2) & y1 
    = (( 
    len f1) 
    + m) by 
    A16;
    
            ((f1
    ^ f2) 
    . y) 
    = (f2 
    . m) by 
    A19,
    FINSEQ_1:def 7;
    
            hence ((f1
    ^ f2) 
    . x) 
    misses ((f1 
    ^ f2) 
    . y) by 
    A1,
    A18,
    A17,
    A19,
    A3,
    PROB_2:def 2;
    
          end;
    
        end;
    
          suppose not x
    in ( 
    dom (f1 
    ^ f2)) or not y 
    in ( 
    dom (f1 
    ^ f2)); 
    
          then ((f1
    ^ f2) 
    . x) 
    =  
    {} or ((f1 
    ^ f2) 
    . y) 
    =  
    {} by 
    FUNCT_1:def 2;
    
          hence ((f1
    ^ f2) 
    . x) 
    misses ((f1 
    ^ f2) 
    . y) by 
    XBOOLE_1: 65;
    
        end;
    
      end;
    
      hence (f1
    ^ f2) is 
    disjoint_valued by 
    PROB_2:def 2;
    
    end;
    
    theorem :: 
    
    MEASURE9:46
    
    for X be
    set, P be 
    with_empty_element
    semi-diff-closed  
    Subset-Family of X, M be 
    pre-Measure of P, A,B be 
    set st A 
    in P & B 
    in P & (A 
    \ B) 
    in P & B 
    c= A holds (M 
    . A) 
    >= (M 
    . B) 
    
    proof
    
      let X be
    set, P be 
    with_empty_element
    semi-diff-closed  
    Subset-Family of X, M be 
    pre-Measure of P, A,B be 
    set;
    
      assume that
    
      
    
    A1: A 
    in P & B 
    in P & (A 
    \ B) 
    in P and 
    
      
    
    A2: B 
    c= A; 
    
      consider F be
    disjoint_valued  
    FinSequence of P such that 
    
      
    
    A3: (A 
    \ B) 
    = ( 
    Union F) by 
    A1,
    SRINGS_3:def 1;
    
      
    
      
    
    A7: ( 
    rng  
    <*B*>)
    =  
    {B} by
    FINSEQ_1: 38;
    
      then
    
      reconsider G =
    <*B*> as
    disjoint_valued  
    FinSequence of P by 
    FINSEQ_1:def 4,
    A1,
    ZFMISC_1: 31;
    
      now
    
        assume (
    union ( 
    rng G)) 
    meets ( 
    union ( 
    rng F)); 
    
        then
    
        consider x be
    object such that 
    
        
    
    A4: x 
    in ( 
    union ( 
    rng G)) & x 
    in ( 
    union ( 
    rng F)) by 
    XBOOLE_0: 3;
    
        consider P be
    set such that 
    
        
    
    A5: x 
    in P & P 
    in ( 
    rng G) by 
    A4,
    TARSKI:def 4;
    
        P
    in  
    {B} by
    A5,
    FINSEQ_1: 38;
    
        then
    
        
    
    A6: x 
    in B by 
    A5,
    TARSKI:def 1;
    
        x
    in (A 
    \ B) by 
    A3,
    A4,
    CARD_3:def 4;
    
        hence contradiction by
    A6,
    XBOOLE_0:def 5;
    
      end;
    
      then
    
      reconsider H = (G
    ^ F) as 
    disjoint_valued  
    FinSequence of P by 
    Th43;
    
      
    
      
    
    A8: ( 
    union ( 
    rng G)) 
    = B by 
    A7,
    ZFMISC_1: 25;
    
      (
    rng H) 
    = (( 
    rng G) 
    \/ ( 
    rng F)) by 
    FINSEQ_1: 31;
    
      then (
    union ( 
    rng H)) 
    = (( 
    union ( 
    rng G)) 
    \/ ( 
    union ( 
    rng F))) by 
    ZFMISC_1: 78;
    
      
    
      then (
    Union H) 
    = (B 
    \/ ( 
    union ( 
    rng F))) by 
    A8,
    CARD_3:def 4
    
      .= (B
    \/ (A 
    \ B)) by 
    A3,
    CARD_3:def 4;
    
      then (
    Union H) 
    = (A 
    \/ B) by 
    XBOOLE_1: 39;
    
      then (
    Union H) 
    = A by 
    A2,
    XBOOLE_1: 12;
    
      then
    
      
    
    A9: (M 
    . A) 
    = ( 
    Sum (M 
    * H)) by 
    A1,
    Def8;
    
      (
    Union G) 
    = B by 
    A8,
    CARD_3:def 4;
    
      then
    
      
    
    A10: (M 
    . B) 
    = ( 
    Sum (M 
    * G)) by 
    A1,
    Def8;
    
      
    
    B0: 
    
      now
    
        assume
    -infty  
    in ( 
    rng (M 
    * G)); 
    
        then
    
        consider n be
    Element of 
    NAT such that 
    
        
    
    B1: n 
    in ( 
    dom (M 
    * G)) & 
    -infty  
    = ((M 
    * G) 
    . n) by 
    PARTFUN1: 3;
    
        (M
    . (G 
    . n)) 
    =  
    -infty by 
    B1,
    FUNCT_1: 12;
    
        hence contradiction by
    SUPINF_2: 51;
    
      end;
    
      
    
    A11: 
    
      now
    
        assume
    -infty  
    in ( 
    rng (M 
    * F)); 
    
        then
    
        consider n be
    Element of 
    NAT such that 
    
        
    
    B2: n 
    in ( 
    dom (M 
    * F)) & 
    -infty  
    = ((M 
    * F) 
    . n) by 
    PARTFUN1: 3;
    
        (M
    . (F 
    . n)) 
    =  
    -infty by 
    B2,
    FUNCT_1: 12;
    
        hence contradiction by
    SUPINF_2: 51;
    
      end;
    
      
    
    A12: 
    
      now
    
        let n be
    Nat;
    
        assume n
    in ( 
    dom (M 
    * F)); 
    
        then ((M
    * F) 
    . n) 
    = (M 
    . (F 
    . n)) & (F 
    . n) 
    in ( 
    dom M) by 
    FUNCT_1: 11,
    FUNCT_1: 12;
    
        hence ((M
    * F) 
    . n) 
    >=  
    0 by 
    SUPINF_2: 51;
    
      end;
    
      (M
    * H) 
    = ((M 
    * G) 
    ^ (M 
    * F)) by 
    FINSEQOP: 9;
    
      then (
    Sum (M 
    * H)) 
    = (( 
    Sum (M 
    * G)) 
    + ( 
    Sum (M 
    * F))) by 
    A11,
    B0,
    EXTREAL1: 10;
    
      hence (M
    . B) 
    <= (M 
    . A) by 
    A9,
    A10,
    A12,
    MESFUNC5: 53,
    XXREAL_3: 39;
    
    end;
    
    theorem :: 
    
    MEASURE9:47
    
    
    
    
    
    Th45: for Y,S be non 
    empty  
    set, F be 
    PartFunc of Y, S, M be 
    Function of S, 
    ExtREAL st M is 
    nonnegative holds (M 
    * F) is 
    nonnegative
    
    proof
    
      let Y,S be non
    empty  
    set;
    
      let F be
    PartFunc of Y, S; 
    
      let M be
    Function of S, 
    ExtREAL ; 
    
      assume
    
      
    
    A1: M is 
    nonnegative;
    
      now
    
        let n be
    object;
    
        per cases ;
    
          suppose n
    in ( 
    dom (M 
    * F)); 
    
          then ((M
    * F) 
    . n) 
    = (M 
    . (F 
    . n)) by 
    FUNCT_1: 12;
    
          hence ((M
    * F) 
    . n) 
    >=  
    0 by 
    A1,
    SUPINF_2: 51;
    
        end;
    
          suppose not n
    in ( 
    dom (M 
    * F)); 
    
          hence ((M
    * F) 
    . n) 
    >=  
    0 by 
    FUNCT_1:def 2;
    
        end;
    
      end;
    
      hence thesis by
    SUPINF_2: 51;
    
    end;
    
    theorem :: 
    
    MEASURE9:48
    
    
    
    
    
    Th46: for X be 
    set, S be 
    with_empty_element
    semi-diff-closed
    cap-closed  
    Subset-Family of X, P be 
    pre-Measure of S holds ex M be 
    nonnegative
    additive
    zeroed  
    Function of ( 
    Ring_generated_by S), 
    ExtREAL st for A be 
    set st A 
    in ( 
    Ring_generated_by S) holds for F be 
    disjoint_valued  
    FinSequence of S st A 
    = ( 
    Union F) holds (M 
    . A) 
    = ( 
    Sum (P 
    * F)) 
    
    proof
    
      let X be
    set, S be 
    with_empty_element
    semi-diff-closed
    cap-closed  
    Subset-Family of X, P be 
    pre-Measure of S; 
    
      defpred
    
    P[
    object, 
    object] means for F be
    disjoint_valued  
    FinSequence of S st $1 
    = ( 
    Union F) holds $2 
    = ( 
    Sum (P 
    * F)); 
    
      
    
      
    
    A1: for A be 
    object st A 
    in ( 
    Ring_generated_by S) holds ex p be 
    object st p 
    in  
    ExtREAL & 
    P[A, p]
    
      proof
    
        let A be
    object;
    
        assume
    
        
    
    A2: A 
    in ( 
    Ring_generated_by S); 
    
        then A
    in ( 
    DisUnion S) by 
    SRINGS_3: 18;
    
        then
    
        consider V be
    Subset of X such that 
    
        
    
    A3: A 
    = V & ex F be 
    disjoint_valued  
    FinSequence of S st V 
    = ( 
    Union F); 
    
        consider F be
    disjoint_valued  
    FinSequence of S such that 
    
        
    
    A4: V 
    = ( 
    Union F) by 
    A3;
    
        set p = (
    Sum (P 
    * F)); 
    
        take p;
    
        thus p
    in  
    ExtREAL & 
    P[A, p] by
    A2,
    A3,
    A4,
    Th42;
    
      end;
    
      consider M be
    Function of ( 
    Ring_generated_by S), 
    ExtREAL such that 
    
      
    
    A5: for A be 
    object st A 
    in ( 
    Ring_generated_by S) holds 
    P[A, (M
    . A)] from 
    FUNCT_2:sch 1(
    A1);
    
      
    
      
    
    A18: for A be 
    Element of ( 
    Ring_generated_by S) holds 
    0  
    <= (M 
    . A) 
    
      proof
    
        let A be
    Element of ( 
    Ring_generated_by S); 
    
        A
    in ( 
    Ring_generated_by S); 
    
        then A
    in ( 
    DisUnion S) by 
    SRINGS_3: 18;
    
        then
    
        consider V be
    Subset of X such that 
    
        
    
    A7: A 
    = V & ex F be 
    disjoint_valued  
    FinSequence of S st V 
    = ( 
    Union F); 
    
        consider F be
    disjoint_valued  
    FinSequence of S such that 
    
        
    
    A8: V 
    = ( 
    Union F) by 
    A7;
    
        consider PF be
    sequence of 
    ExtREAL such that 
    
        
    
    A10: ( 
    Sum (P 
    * F)) 
    = (PF 
    . ( 
    len (P 
    * F))) & (PF 
    .  
    0 ) 
    =  
    0. & for i be 
    Nat st i 
    < ( 
    len (P 
    * F)) holds (PF 
    . (i 
    + 1)) 
    = ((PF 
    . i) 
    + ((P 
    * F) 
    . (i 
    + 1))) by 
    EXTREAL1:def 2;
    
        defpred
    
    P2[
    Nat] means $1
    <= ( 
    len (P 
    * F)) implies (PF 
    . $1) 
    >=  
    0 ; 
    
        
    
        
    
    A11: 
    P2[
    0 ] by 
    A10;
    
        
    
        
    
    A12: for i be 
    Nat st 
    P2[i] holds
    P2[(i
    + 1)] 
    
        proof
    
          let i be
    Nat;
    
          assume
    
          
    
    A13: 
    P2[i];
    
          assume
    
          
    
    A14: (i 
    + 1) 
    <= ( 
    len (P 
    * F)); 
    
          then (i
    + 1) 
    in ( 
    dom (P 
    * F)) by 
    NAT_1: 11,
    FINSEQ_3: 25;
    
          then ((P
    * F) 
    . (i 
    + 1)) 
    = (P 
    . (F 
    . (i 
    + 1))) by 
    FUNCT_1: 12;
    
          then
    
          
    
    A17: ((P 
    * F) 
    . (i 
    + 1)) 
    >=  
    0 by 
    SUPINF_2: 51;
    
          (PF
    . (i 
    + 1)) 
    = ((PF 
    . i) 
    + ((P 
    * F) 
    . (i 
    + 1))) by 
    A14,
    A10,
    NAT_1: 13;
    
          hence (PF
    . (i 
    + 1)) 
    >=  
    0 by 
    A13,
    A14,
    A17,
    NAT_1: 13;
    
        end;
    
        for i be
    Nat holds 
    P2[i] from
    NAT_1:sch 2(
    A11,
    A12);
    
        then (
    Sum (P 
    * F)) 
    >=  
    0 by 
    A10;
    
        hence
    0  
    <= (M 
    . A) by 
    A7,
    A8,
    A5;
    
      end;
    
      for A,B be
    Element of ( 
    Ring_generated_by S) st A 
    misses B & (A 
    \/ B) 
    in ( 
    Ring_generated_by S) holds (M 
    . (A 
    \/ B)) 
    = ((M 
    . A) 
    + (M 
    . B)) 
    
      proof
    
        let A,B be
    Element of ( 
    Ring_generated_by S); 
    
        assume
    
        
    
    A19: A 
    misses B & (A 
    \/ B) 
    in ( 
    Ring_generated_by S); 
    
        A
    in ( 
    Ring_generated_by S); 
    
        then A
    in ( 
    DisUnion S) by 
    SRINGS_3: 18;
    
        then
    
        consider V be
    Subset of X such that 
    
        
    
    A20: A 
    = V & ex F be 
    disjoint_valued  
    FinSequence of S st V 
    = ( 
    Union F); 
    
        consider F be
    disjoint_valued  
    FinSequence of S such that 
    
        
    
    A21: V 
    = ( 
    Union F) by 
    A20;
    
        B
    in ( 
    Ring_generated_by S); 
    
        then B
    in ( 
    DisUnion S) by 
    SRINGS_3: 18;
    
        then
    
        consider W be
    Subset of X such that 
    
        
    
    A22: B 
    = W & ex G be 
    disjoint_valued  
    FinSequence of S st W 
    = ( 
    Union G); 
    
        consider G be
    disjoint_valued  
    FinSequence of S such that 
    
        
    
    A23: W 
    = ( 
    Union G) by 
    A22;
    
        set H = (F
    ^ G); 
    
        
    
        
    
    A24: A 
    = ( 
    union ( 
    rng F)) & B 
    = ( 
    union ( 
    rng G)) by 
    A20,
    A21,
    A22,
    A23,
    CARD_3:def 4;
    
        then
    
        reconsider H as
    disjoint_valued  
    FinSequence of S by 
    A19,
    Th43;
    
        (
    rng H) 
    = (( 
    rng F) 
    \/ ( 
    rng G)) by 
    FINSEQ_1: 31;
    
        then (
    union ( 
    rng H)) 
    = (( 
    union ( 
    rng F)) 
    \/ ( 
    union ( 
    rng G))) by 
    ZFMISC_1: 78;
    
        then (A
    \/ B) 
    = ( 
    Union H) by 
    A24,
    CARD_3:def 4;
    
        then
    
        
    
    A25: (M 
    . (A 
    \/ B)) 
    = ( 
    Sum (P 
    * H)) by 
    A5;
    
        
    
        
    
    A26: (M 
    . A) 
    = ( 
    Sum (P 
    * F)) & (M 
    . B) 
    = ( 
    Sum (P 
    * G)) by 
    A20,
    A21,
    A22,
    A23,
    A5;
    
        (P
    * F) is 
    nonnegative by 
    Th45;
    
        then
    
        
    
    A27: not 
    -infty  
    in ( 
    rng (P 
    * F)) by 
    SUPINF_2:def 9,
    SUPINF_2:def 12;
    
        (P
    * G) is 
    nonnegative by 
    Th45;
    
        then
    
        
    
    A28: not 
    -infty  
    in ( 
    rng (P 
    * G)) by 
    SUPINF_2:def 9,
    SUPINF_2:def 12;
    
        (P
    * H) 
    = ((P 
    * F) 
    ^ (P 
    * G)) by 
    FINSEQOP: 9;
    
        hence (M
    . (A 
    \/ B)) 
    = ((M 
    . A) 
    + (M 
    . B)) by 
    A25,
    A26,
    A27,
    A28,
    EXTREAL1: 10;
    
      end;
    
      then
    
      
    
    A29: M is 
    additive by 
    MEASURE1:def 3;
    
      reconsider E =
    {} as 
    Element of S by 
    SETFAM_1:def 8;
    
      reconsider F =
    <*E*> as
    disjoint_valued  
    FinSequence of S; 
    
      (
    rng F) 
    =  
    {
    {} } by 
    FINSEQ_1: 38;
    
      then (
    union ( 
    rng F)) 
    =  
    {} by 
    ZFMISC_1: 25;
    
      then (
    Union F) 
    =  
    {} by 
    CARD_3:def 4;
    
      then (M
    .  
    {} ) 
    = ( 
    Sum (P 
    * F)) by 
    A5,
    FINSUB_1: 7;
    
      then (M
    .  
    {} ) 
    = ( 
    Sum  
    <*(P
    .  
    {} )*>) by 
    FINSEQ_2: 35;
    
      then (M
    .  
    {} ) 
    = (P 
    .  
    {} ) by 
    EXTREAL1: 8;
    
      then (M
    .  
    {} ) 
    =  
    0 by 
    VALUED_0:def 19;
    
      then
    
      reconsider M as
    nonnegative
    additive
    zeroed  
    Function of ( 
    Ring_generated_by S), 
    ExtREAL by 
    A18,
    A29,
    VALUED_0:def 19,
    MEASURE1:def 2;
    
      take M;
    
      thus thesis by
    A5;
    
    end;
    
    theorem :: 
    
    MEASURE9:49
    
    for X,Y be
    set, F,G be 
    Function of 
    NAT , ( 
    bool X) st (for i be 
    Nat holds (G 
    . i) 
    = ((F 
    . i) 
    /\ Y)) & ( 
    Union F) 
    = Y holds ( 
    Union G) 
    = ( 
    Union F) 
    
    proof
    
      let X,Y be
    set, F,G be 
    Function of 
    NAT , ( 
    bool X); 
    
      assume that
    
      
    
    A1: for i be 
    Nat holds (G 
    . i) 
    = ((F 
    . i) 
    /\ Y) and 
    
      
    
    A2: ( 
    Union F) 
    = Y; 
    
      now
    
        let x be
    object;
    
        assume x
    in ( 
    Union G); 
    
        then x
    in ( 
    union ( 
    rng G)) by 
    CARD_3:def 4;
    
        then
    
        consider A be
    set such that 
    
        
    
    A3: x 
    in A & A 
    in ( 
    rng G) by 
    TARSKI:def 4;
    
        consider i be
    Element of 
    NAT such that 
    
        
    
    A4: A 
    = (G 
    . i) by 
    A3,
    FUNCT_2: 113;
    
        (
    dom F) 
    =  
    NAT by 
    FUNCT_2:def 1;
    
        then A
    = ((F 
    . i) 
    /\ Y) & i 
    in ( 
    dom F) by 
    A1,
    A4;
    
        then x
    in (F 
    . i) & (F 
    . i) 
    in ( 
    rng F) by 
    A3,
    XBOOLE_0:def 4,
    FUNCT_1: 3;
    
        then x
    in ( 
    union ( 
    rng F)) by 
    TARSKI:def 4;
    
        hence x
    in ( 
    Union F) by 
    CARD_3:def 4;
    
      end;
    
      then
    
      
    
    A5: ( 
    Union G) 
    c= ( 
    Union F) by 
    TARSKI:def 3;
    
      now
    
        let x be
    object;
    
        assume
    
        
    
    A6: x 
    in ( 
    Union F); 
    
        then x
    in ( 
    union ( 
    rng F)) by 
    CARD_3:def 4;
    
        then
    
        consider A be
    set such that 
    
        
    
    A7: x 
    in A & A 
    in ( 
    rng F) by 
    TARSKI:def 4;
    
        consider i be
    Element of 
    NAT such that 
    
        
    
    A8: A 
    = (F 
    . i) by 
    A7,
    FUNCT_2: 113;
    
        (
    dom G) 
    =  
    NAT by 
    FUNCT_2:def 1;
    
        then x
    in ((F 
    . i) 
    /\ Y) & i 
    in ( 
    dom G) by 
    A2,
    A6,
    A7,
    A8,
    XBOOLE_0:def 4;
    
        then x
    in (G 
    . i) & (G 
    . i) 
    in ( 
    rng G) by 
    A1,
    FUNCT_1: 3;
    
        then x
    in ( 
    union ( 
    rng G)) by 
    TARSKI:def 4;
    
        hence x
    in ( 
    Union G) by 
    CARD_3:def 4;
    
      end;
    
      then (
    Union F) 
    c= ( 
    Union G) by 
    TARSKI:def 3;
    
      hence thesis by
    A5,
    XBOOLE_0:def 10;
    
    end;
    
    theorem :: 
    
    MEASURE9:50
    
    for X be
    set, S be 
    with_empty_element
    semi-diff-closed
    cap-closed  
    Subset-Family of X, P be 
    pre-Measure of S holds ex M be 
    Function of ( 
    Ring_generated_by S), 
    ExtREAL st (M 
    .  
    {} ) 
    =  
    0 & for K be 
    disjoint_valued  
    FinSequence of S st ( 
    Union K) 
    in ( 
    Ring_generated_by S) holds (M 
    . ( 
    Union K)) 
    = ( 
    Sum (P 
    * K)) 
    
    proof
    
      let X be
    set, S be 
    with_empty_element
    semi-diff-closed
    cap-closed  
    Subset-Family of X, P be 
    pre-Measure of S; 
    
      consider M be
    nonnegative
    additive
    zeroed  
    Function of ( 
    Ring_generated_by S), 
    ExtREAL such that 
    
      
    
    A1: for A be 
    set st A 
    in ( 
    Ring_generated_by S) holds for F be 
    disjoint_valued  
    FinSequence of S st A 
    = ( 
    Union F) holds (M 
    . A) 
    = ( 
    Sum (P 
    * F)) by 
    Th46;
    
      take M;
    
      thus (M
    .  
    {} ) 
    =  
    0 by 
    VALUED_0:def 19;
    
      thus for K be
    disjoint_valued  
    FinSequence of S st ( 
    Union K) 
    in ( 
    Ring_generated_by S) holds (M 
    . ( 
    Union K)) 
    = ( 
    Sum (P 
    * K)) by 
    A1;
    
    end;
    
    theorem :: 
    
    MEASURE9:51
    
    for X,Z be
    set, P be 
    with_empty_element
    semi-diff-closed
    cap-closed  
    Subset-Family of X, K be 
    disjoint_valued  
    Function of 
    NAT , ( 
    Ring_generated_by P) st Z 
    = { 
    [n, F] where n be
    Nat, F be 
    disjoint_valued  
    FinSequence of P : ( 
    Union F) 
    = (K 
    . n) & ((K 
    . n) 
    =  
    {} implies F 
    =  
    <*
    {} *>) } holds ( 
    proj2 Z) is 
    FinSequenceSet of P & (for x be 
    object holds x 
    in ( 
    rng K) iff ex F be 
    FinSequence of P st F 
    in ( 
    proj2 Z) & ( 
    Union F) 
    = x) & ( 
    proj2 Z) is 
    with_non-empty_elements
    
    proof
    
      let X,Z be
    set, P be 
    with_empty_element
    semi-diff-closed
    cap-closed  
    Subset-Family of X, K be 
    disjoint_valued  
    Function of 
    NAT , ( 
    Ring_generated_by P); 
    
      assume
    
      
    
    A1: Z 
    = { 
    [n, F] where n be
    Nat, F be 
    disjoint_valued  
    FinSequence of P : ( 
    Union F) 
    = (K 
    . n) & ((K 
    . n) 
    =  
    {} implies F 
    =  
    <*
    {} *>) }; 
    
      now
    
        let a be
    object;
    
        assume a
    in ( 
    proj2 Z); 
    
        then
    
        consider k be
    object such that 
    
        
    
    A2: 
    [k, a]
    in Z by 
    XTUPLE_0:def 13;
    
        consider n be
    Nat, F be 
    disjoint_valued  
    FinSequence of P such that 
    
        
    
    A3: 
    [k, a]
    =  
    [n, F] & (
    Union F) 
    = (K 
    . n) & ((K 
    . n) 
    =  
    {} implies F 
    =  
    <*
    {} *>) by 
    A1,
    A2;
    
        thus a is
    FinSequence of P by 
    A3,
    XTUPLE_0: 1;
    
      end;
    
      hence (
    proj2 Z) is 
    FinSequenceSet of P by 
    FINSEQ_2:def 3;
    
      hereby
    
        let x be
    object;
    
        hereby
    
          assume x
    in ( 
    rng K); 
    
          then
    
          consider n be
    Element of 
    NAT such that 
    
          
    
    A6: x 
    = (K 
    . n) by 
    FUNCT_2: 113;
    
          (K
    . n) 
    in ( 
    Ring_generated_by P); 
    
          then (K
    . n) 
    in ( 
    DisUnion P) by 
    SRINGS_3: 18;
    
          then
    
          consider A be
    Subset of X such that 
    
          
    
    A7: x 
    = A & ex F be 
    disjoint_valued  
    FinSequence of P st A 
    = ( 
    Union F) by 
    A6;
    
          consider F be
    disjoint_valued  
    FinSequence of P such that 
    
          
    
    A8: A 
    = ( 
    Union F) by 
    A7;
    
          per cases ;
    
            suppose
    
            
    
    A9: (K 
    . n) 
    =  
    {} ; 
    
            
    
            
    
    A10: ( 
    rng  
    <*
    {} *>) 
    =  
    {
    {} } by 
    FINSEQ_1: 38;
    
            
    {}  
    in P by 
    SETFAM_1:def 8;
    
            then
    
            reconsider F1 =
    <*
    {} *> as 
    disjoint_valued  
    FinSequence of P by 
    A10,
    ZFMISC_1: 31,
    FINSEQ_1:def 4;
    
            (
    rng F1) 
    =  
    {
    {} } by 
    FINSEQ_1: 38;
    
            then (
    union ( 
    rng F1)) 
    =  
    {} by 
    ZFMISC_1: 25;
    
            then
    
            
    
    B1: ( 
    Union F1) 
    =  
    {} by 
    CARD_3:def 4;
    
            then
    [n, F1]
    in Z by 
    A9,
    A1;
    
            then F1
    in ( 
    proj2 Z) by 
    XTUPLE_0:def 13;
    
            hence ex F be
    FinSequence of P st F 
    in ( 
    proj2 Z) & ( 
    Union F) 
    = x by 
    A9,
    B1,
    A6;
    
          end;
    
            suppose (K
    . n) 
    <>  
    {} ; 
    
            then
    [n, F]
    in Z by 
    A1,
    A6,
    A7,
    A8;
    
            then F
    in ( 
    proj2 Z) by 
    XTUPLE_0:def 13;
    
            hence ex F be
    FinSequence of P st F 
    in ( 
    proj2 Z) & ( 
    Union F) 
    = x by 
    A8,
    A7;
    
          end;
    
        end;
    
        assume ex F be
    FinSequence of P st F 
    in ( 
    proj2 Z) & ( 
    Union F) 
    = x; 
    
        then
    
        consider z be
    FinSequence of P such that 
    
        
    
    A12: z 
    in ( 
    proj2 Z) & ( 
    Union z) 
    = x; 
    
        consider y be
    object such that 
    
        
    
    A13: 
    [y, z]
    in Z by 
    A12,
    XTUPLE_0:def 13;
    
        consider n be
    Nat, F be 
    disjoint_valued  
    FinSequence of P such that 
    
        
    
    A14: 
    [y, z]
    =  
    [n, F] & (
    Union F) 
    = (K 
    . n) & ((K 
    . n) 
    =  
    {} implies F 
    =  
    <*
    {} *>) by 
    A1,
    A13;
    
        y
    = n & z 
    = F by 
    A14,
    XTUPLE_0: 1;
    
        hence x
    in ( 
    rng K) by 
    A12,
    A14,
    FUNCT_2: 4,
    ORDINAL1:def 12;
    
      end;
    
      now
    
        assume
    {}  
    in ( 
    proj2 Z); 
    
        then
    
        consider y be
    object such that 
    
        
    
    A16: 
    [y,
    {} ] 
    in Z by 
    XTUPLE_0:def 13;
    
        consider n be
    Nat, F be 
    disjoint_valued  
    FinSequence of P such that 
    
        
    
    A17: 
    [y,
    {} ] 
    =  
    [n, F] & (
    Union F) 
    = (K 
    . n) & ((K 
    . n) 
    =  
    {} implies F 
    =  
    <*
    {} *>) by 
    A1,
    A16;
    
        y
    = n & 
    {}  
    = F by 
    A17,
    XTUPLE_0: 1;
    
        then (
    union ( 
    rng F)) 
    =  
    {} by 
    ZFMISC_1: 2;
    
        hence contradiction by
    A17,
    XTUPLE_0: 1,
    CARD_3:def 4;
    
      end;
    
      hence (
    proj2 Z) is 
    with_non-empty_elements;
    
    end;
    
    theorem :: 
    
    MEASURE9:52
    
    for X be
    set, P be 
    with_empty_element
    semi-diff-closed
    cap-closed  
    Subset-Family of X, K be 
    disjoint_valued  
    Function of 
    NAT , ( 
    Ring_generated_by P) st ( 
    rng K) is 
    with_non-empty_element holds ex Y be non 
    empty  
    FinSequenceSet of P st Y 
    = { F where F be 
    disjoint_valued  
    FinSequence of P : ( 
    Union F) 
    in ( 
    rng K) & F 
    <>  
    {} } & Y is 
    with_non-empty_elements
    
    proof
    
      let X be
    set, P be 
    with_empty_element
    semi-diff-closed
    cap-closed  
    Subset-Family of X, K be 
    disjoint_valued  
    Function of 
    NAT , ( 
    Ring_generated_by P); 
    
      assume
    
      
    
    A0: ( 
    rng K) is 
    with_non-empty_element;
    
      set Y = { F where F be
    disjoint_valued  
    FinSequence of P : ( 
    Union F) 
    in ( 
    rng K) & F 
    <>  
    {} }; 
    
      now
    
        let a be
    object;
    
        assume a
    in Y; 
    
        then ex A be
    disjoint_valued  
    FinSequence of P st a 
    = A & ( 
    Union A) 
    in ( 
    rng K) & A 
    <>  
    {} ; 
    
        hence a is
    FinSequence of P; 
    
      end;
    
      then
    
      reconsider Y as
    FinSequenceSet of P by 
    FINSEQ_2:def 3;
    
      consider k be non
    empty  
    set such that 
    
      
    
    A2: k 
    in ( 
    rng K) by 
    A0;
    
      consider i be
    Element of 
    NAT such that 
    
      
    
    A3: k 
    = (K 
    . i) by 
    A2,
    FUNCT_2: 113;
    
      (K
    . i) 
    in ( 
    Ring_generated_by P); 
    
      then (K
    . i) 
    in ( 
    DisUnion P) by 
    SRINGS_3: 18;
    
      then
    
      consider A be
    Subset of X such that 
    
      
    
    A4: (K 
    . i) 
    = A & ex F be 
    disjoint_valued  
    FinSequence of P st A 
    = ( 
    Union F); 
    
      consider F be
    disjoint_valued  
    FinSequence of P such that 
    
      
    
    A5: A 
    = ( 
    Union F) by 
    A4;
    
      now
    
        assume F
    =  
    {} ; 
    
        then (
    union ( 
    rng F)) 
    =  
    {} by 
    ZFMISC_1: 2;
    
        hence contradiction by
    A5,
    A4,
    A3,
    CARD_3:def 4;
    
      end;
    
      then F
    in Y by 
    A2,
    A3,
    A4,
    A5;
    
      then
    
      reconsider Y as non
    empty  
    FinSequenceSet of P; 
    
      take Y;
    
      thus Y
    = { A where A be 
    disjoint_valued  
    FinSequence of P : ( 
    Union A) 
    in ( 
    rng K) & A 
    <>  
    {} }; 
    
      now
    
        assume
    {}  
    in Y; 
    
        then ex A be
    disjoint_valued  
    FinSequence of P st 
    {}  
    = A & ( 
    Union A) 
    in ( 
    rng K) & A 
    <>  
    {} ; 
    
        hence contradiction;
    
      end;
    
      hence Y is
    with_non-empty_elements;
    
    end;
    
    begin
    
    theorem :: 
    
    MEASURE9:53
    
    
    
    
    
    Th51: for X,Z be 
    set, P be 
    semialgebra_of_sets of X, K be 
    disjoint_valued  
    Function of 
    NAT , ( 
    Field_generated_by P) st Z 
    = { 
    [n, F] where n be
    Nat, F be 
    disjoint_valued  
    FinSequence of P : ( 
    Union F) 
    = (K 
    . n) & ((K 
    . n) 
    =  
    {} implies F 
    =  
    <*
    {} *>) } holds ( 
    proj2 Z) is 
    FinSequenceSet of P & (for x be 
    object holds x 
    in ( 
    rng K) iff ex F be 
    FinSequence of P st F 
    in ( 
    proj2 Z) & ( 
    Union F) 
    = x) & ( 
    proj2 Z) is 
    with_non-empty_elements
    
    proof
    
      let X,Z be
    set, P be 
    semialgebra_of_sets of X, K be 
    disjoint_valued  
    Function of 
    NAT , ( 
    Field_generated_by P); 
    
      assume
    
      
    
    A1: Z 
    = { 
    [n, F] where n be
    Nat, F be 
    disjoint_valued  
    FinSequence of P : ( 
    Union F) 
    = (K 
    . n) & ((K 
    . n) 
    =  
    {} implies F 
    =  
    <*
    {} *>) }; 
    
      now
    
        let a be
    object;
    
        assume a
    in ( 
    proj2 Z); 
    
        then
    
        consider k be
    object such that 
    
        
    
    A2: 
    [k, a]
    in Z by 
    XTUPLE_0:def 13;
    
        ex n be
    Nat, F be 
    disjoint_valued  
    FinSequence of P st 
    [k, a]
    =  
    [n, F] & (
    Union F) 
    = (K 
    . n) & ((K 
    . n) 
    =  
    {} implies F 
    =  
    <*
    {} *>) by 
    A1,
    A2;
    
        hence a is
    FinSequence of P by 
    XTUPLE_0: 1;
    
      end;
    
      hence (
    proj2 Z) is 
    FinSequenceSet of P by 
    FINSEQ_2:def 3;
    
      hereby
    
        let x be
    object;
    
        hereby
    
          assume x
    in ( 
    rng K); 
    
          then
    
          consider n be
    Element of 
    NAT such that 
    
          
    
    A6: x 
    = (K 
    . n) by 
    FUNCT_2: 113;
    
          (K
    . n) 
    in ( 
    Field_generated_by P); 
    
          then (K
    . n) 
    in ( 
    DisUnion P) by 
    SRINGS_3: 22;
    
          then
    
          consider A be
    Subset of X such that 
    
          
    
    A7: x 
    = A & ex F be 
    disjoint_valued  
    FinSequence of P st A 
    = ( 
    Union F) by 
    A6;
    
          consider F be
    disjoint_valued  
    FinSequence of P such that 
    
          
    
    A8: A 
    = ( 
    Union F) by 
    A7;
    
          per cases ;
    
            suppose
    
            
    
    A9: (K 
    . n) 
    =  
    {} ; 
    
            
    
            
    
    A10: ( 
    rng  
    <*
    {} *>) 
    =  
    {
    {} } by 
    FINSEQ_1: 38;
    
            
    {}  
    in P by 
    SETFAM_1:def 8;
    
            then
    
            reconsider F1 =
    <*
    {} *> as 
    disjoint_valued  
    FinSequence of P by 
    A10,
    ZFMISC_1: 31,
    FINSEQ_1:def 4;
    
            (
    rng F1) 
    =  
    {
    {} } by 
    FINSEQ_1: 38;
    
            then (
    union ( 
    rng F1)) 
    =  
    {} by 
    ZFMISC_1: 25;
    
            then
    
            
    
    B1: ( 
    Union F1) 
    =  
    {} by 
    CARD_3:def 4;
    
            then
    [n, F1]
    in Z by 
    A9,
    A1;
    
            then F1
    in ( 
    proj2 Z) by 
    XTUPLE_0:def 13;
    
            hence ex F be
    FinSequence of P st F 
    in ( 
    proj2 Z) & ( 
    Union F) 
    = x by 
    A9,
    B1,
    A6;
    
          end;
    
            suppose (K
    . n) 
    <>  
    {} ; 
    
            then
    [n, F]
    in Z by 
    A1,
    A6,
    A7,
    A8;
    
            then F
    in ( 
    proj2 Z) by 
    XTUPLE_0:def 13;
    
            hence ex F be
    FinSequence of P st F 
    in ( 
    proj2 Z) & ( 
    Union F) 
    = x by 
    A8,
    A7;
    
          end;
    
        end;
    
        assume ex F be
    FinSequence of P st F 
    in ( 
    proj2 Z) & ( 
    Union F) 
    = x; 
    
        then
    
        consider z be
    FinSequence of P such that 
    
        
    
    A12: z 
    in ( 
    proj2 Z) & ( 
    Union z) 
    = x; 
    
        consider y be
    object such that 
    
        
    
    A13: 
    [y, z]
    in Z by 
    A12,
    XTUPLE_0:def 13;
    
        consider n be
    Nat, F be 
    disjoint_valued  
    FinSequence of P such that 
    
        
    
    A14: 
    [y, z]
    =  
    [n, F] & (
    Union F) 
    = (K 
    . n) & ((K 
    . n) 
    =  
    {} implies F 
    =  
    <*
    {} *>) by 
    A1,
    A13;
    
        y
    = n & z 
    = F by 
    A14,
    XTUPLE_0: 1;
    
        hence x
    in ( 
    rng K) by 
    A12,
    A14,
    ORDINAL1:def 12,
    FUNCT_2: 4;
    
      end;
    
      now
    
        assume
    {}  
    in ( 
    proj2 Z); 
    
        then
    
        consider y be
    object such that 
    
        
    
    A16: 
    [y,
    {} ] 
    in Z by 
    XTUPLE_0:def 13;
    
        consider n be
    Nat, F be 
    disjoint_valued  
    FinSequence of P such that 
    
        
    
    A17: 
    [y,
    {} ] 
    =  
    [n, F] & (
    Union F) 
    = (K 
    . n) & ((K 
    . n) 
    =  
    {} implies F 
    =  
    <*
    {} *>) by 
    A1,
    A16;
    
        y
    = n & 
    {}  
    = F by 
    A17,
    XTUPLE_0: 1;
    
        then (
    union ( 
    rng F)) 
    =  
    {} by 
    ZFMISC_1: 2;
    
        hence contradiction by
    A17,
    XTUPLE_0: 1,
    CARD_3:def 4;
    
      end;
    
      hence (
    proj2 Z) is 
    with_non-empty_elements;
    
    end;
    
    theorem :: 
    
    MEASURE9:54
    
    
    
    
    
    Th54: for X be 
    set, S be 
    semialgebra_of_sets of X, P be 
    pre-Measure of S, A be 
    set holds for F1,F2 be 
    disjoint_valued  
    FinSequence of S st A 
    = ( 
    Union F1) & A 
    = ( 
    Union F2) holds ( 
    Sum (P 
    * F1)) 
    = ( 
    Sum (P 
    * F2)) 
    
    proof
    
      let X be
    set, S be 
    semialgebra_of_sets of X, P be 
    pre-Measure of S, A be 
    set;
    
      hereby
    
        let F1,F2 be
    disjoint_valued  
    FinSequence of S; 
    
        assume
    
        
    
    A1: A 
    = ( 
    Union F1) & A 
    = ( 
    Union F2); 
    
        consider SMF1 be
    Function of 
    NAT , 
    ExtREAL such that 
    
        
    
    A2: ( 
    Sum (P 
    * F1)) 
    = (SMF1 
    . ( 
    len (P 
    * F1))) & (SMF1 
    .  
    0 ) 
    =  
    0 & for i be 
    Nat st i 
    < ( 
    len (P 
    * F1)) holds (SMF1 
    . (i 
    + 1)) 
    = ((SMF1 
    . i) 
    + ((P 
    * F1) 
    . (i 
    + 1))) by 
    EXTREAL1:def 2;
    
        consider SMF2 be
    Function of 
    NAT , 
    ExtREAL such that 
    
        
    
    A3: ( 
    Sum (P 
    * F2)) 
    = (SMF2 
    . ( 
    len (P 
    * F2))) & (SMF2 
    .  
    0 ) 
    =  
    0 & for i be 
    Nat st i 
    < ( 
    len (P 
    * F2)) holds (SMF2 
    . (i 
    + 1)) 
    = ((SMF2 
    . i) 
    + ((P 
    * F2) 
    . (i 
    + 1))) by 
    EXTREAL1:def 2;
    
        (
    dom P) 
    = S by 
    FUNCT_2:def 1;
    
        then (
    rng F1) 
    c= ( 
    dom P) & ( 
    rng F2) 
    c= ( 
    dom P); 
    
        then
    
        
    
    A4: ( 
    dom (P 
    * F1)) 
    = ( 
    dom F1) & ( 
    dom (P 
    * F2)) 
    = ( 
    dom F2) by 
    RELAT_1: 27;
    
        then
    
        
    
    A5: ( 
    dom (P 
    * F1)) 
    = ( 
    Seg ( 
    len F1)) & ( 
    dom (P 
    * F2)) 
    = ( 
    Seg ( 
    len F2)) & ( 
    len (P 
    * F1)) 
    = ( 
    len F1) & ( 
    len (P 
    * F2)) 
    = ( 
    len F2) by 
    FINSEQ_1:def 3,
    FINSEQ_3: 29;
    
        per cases ;
    
          suppose
    
          
    
    A6: ( 
    len (P 
    * F1)) 
    =  
    0 ; 
    
          then (P
    * F1) 
    =  
    {} ; 
    
          then F1
    =  
    {} by 
    A4;
    
          then (
    rng F1) 
    =  
    {} ; 
    
          then (
    Union F2) 
    =  
    {} by 
    A1,
    CARD_3:def 4,
    ZFMISC_1: 2;
    
          then
    
          
    
    A7: ( 
    union ( 
    rng F2)) 
    =  
    {} by 
    CARD_3:def 4;
    
          defpred
    
    S[
    Nat] means $1
    <= ( 
    len (P 
    * F2)) implies (SMF2 
    . $1) 
    =  
    0 ; 
    
          
    
          
    
    A8: 
    S[
    0 ] by 
    A3;
    
          
    
          
    
    A9: for i be 
    Nat st 
    S[i] holds
    S[(i
    + 1)] 
    
          proof
    
            let i be
    Nat;
    
            assume
    
            
    
    A10: 
    S[i];
    
            assume
    
            
    
    A11: (i 
    + 1) 
    <= ( 
    len (P 
    * F2)); 
    
            then
    
            
    
    A13: (SMF2 
    . (i 
    + 1)) 
    = ((SMF2 
    . i) 
    + ((P 
    * F2) 
    . (i 
    + 1))) & (SMF2 
    . i) 
    =  
    0 by 
    A3,
    A10,
    NAT_1: 13;
    
            
    
            
    
    A14: (i 
    + 1) 
    in ( 
    dom (P 
    * F2)) by 
    A11,
    NAT_1: 11,
    FINSEQ_3: 25;
    
            then (F2
    . (i 
    + 1)) 
    =  
    {} by 
    A4,
    A7,
    ORDERS_1: 6,
    FUNCT_1: 3;
    
            then (P
    . (F2 
    . (i 
    + 1))) 
    =  
    0 by 
    VALUED_0:def 19;
    
            then ((P
    * F2) 
    . (i 
    + 1)) 
    =  
    0 by 
    A14,
    FUNCT_1: 12;
    
            hence (SMF2
    . (i 
    + 1)) 
    =  
    0 by 
    A13;
    
          end;
    
          for i be
    Nat holds 
    S[i] from
    NAT_1:sch 2(
    A8,
    A9);
    
          hence (
    Sum (P 
    * F1)) 
    = ( 
    Sum (P 
    * F2)) by 
    A2,
    A3,
    A6;
    
        end;
    
          suppose
    
          
    
    B6: ( 
    len (P 
    * F2)) 
    =  
    0 ; 
    
          then (P
    * F2) 
    =  
    {} ; 
    
          then F2
    =  
    {} by 
    A4;
    
          then (
    rng F2) 
    =  
    {} ; 
    
          then (
    Union F1) 
    =  
    {} by 
    A1,
    CARD_3:def 4,
    ZFMISC_1: 2;
    
          then
    
          
    
    B7: ( 
    union ( 
    rng F1)) 
    =  
    {} by 
    CARD_3:def 4;
    
          defpred
    
    S[
    Nat] means $1
    <= ( 
    len (P 
    * F1)) implies (SMF1 
    . $1) 
    =  
    0 ; 
    
          
    
          
    
    B8: 
    S[
    0 ] by 
    A2;
    
          
    
          
    
    B9: for i be 
    Nat st 
    S[i] holds
    S[(i
    + 1)] 
    
          proof
    
            let i be
    Nat;
    
            assume
    
            
    
    B10: 
    S[i];
    
            assume
    
            
    
    B11: (i 
    + 1) 
    <= ( 
    len (P 
    * F1)); 
    
            then
    
            
    
    B13: (SMF1 
    . (i 
    + 1)) 
    = ((SMF1 
    . i) 
    + ((P 
    * F1) 
    . (i 
    + 1))) & (SMF1 
    . i) 
    =  
    0 by 
    A2,
    B10,
    NAT_1: 13;
    
            
    
            
    
    B14: (i 
    + 1) 
    in ( 
    dom (P 
    * F1)) by 
    B11,
    NAT_1: 11,
    FINSEQ_3: 25;
    
            then (F1
    . (i 
    + 1)) 
    =  
    {} by 
    A4,
    B7,
    ORDERS_1: 6,
    FUNCT_1: 3;
    
            then (P
    . (F1 
    . (i 
    + 1))) 
    =  
    0 by 
    VALUED_0:def 19;
    
            then ((P
    * F1) 
    . (i 
    + 1)) 
    =  
    0 by 
    B14,
    FUNCT_1: 12;
    
            hence (SMF1
    . (i 
    + 1)) 
    =  
    0 by 
    B13;
    
          end;
    
          for i be
    Nat holds 
    S[i] from
    NAT_1:sch 2(
    B8,
    B9);
    
          hence (
    Sum (P 
    * F1)) 
    = ( 
    Sum (P 
    * F2)) by 
    A2,
    A3,
    B6;
    
        end;
    
          suppose
    
          
    
    A15: ( 
    len (P 
    * F1)) 
    <>  
    0 & ( 
    len (P 
    * F2)) 
    <>  
    0 ; 
    
          defpred
    
    Mx[
    Nat, 
    Nat, 
    set] means $3
    = (P 
    . ((F1 
    . $1) 
    /\ (F2 
    . $2))); 
    
          
    
          
    
    MX0: for i,j be 
    Nat st 
    [i, j]
    in  
    [:(
    Seg ( 
    len F1)), ( 
    Seg ( 
    len F2)):] holds ex A be 
    Element of 
    ExtREAL st 
    Mx[i, j, A];
    
          consider Mx be
    Matrix of ( 
    len F1), ( 
    len F2), 
    ExtREAL such that 
    
          
    
    MX1: for i,j be 
    Nat st 
    [i, j]
    in ( 
    Indices Mx) holds 
    Mx[i, j, (Mx
    * (i,j))] from 
    MATRIX_0:sch 2(
    MX0);
    
          
    
          
    
    C3: ( 
    len Mx) 
    = ( 
    len F1) by 
    MATRIX_0:def 2;
    
          then
    
          
    
    C4: ( 
    width Mx) 
    = ( 
    len F2) by 
    A15,
    A5,
    MATRIX_0: 20;
    
          
    
          
    
    CC0: for F be 
    disjoint_valued  
    FinSequence of S st ( 
    Union F) 
    in S holds (P 
    . ( 
    Union F)) 
    = ( 
    Sum (P 
    * F)) by 
    Def8;
    
          F1 is non
    empty & F2 is non 
    empty by 
    A15;
    
          then
    
          
    
    C10: ( 
    Sum (P 
    * F1)) 
    = ( 
    SumAll Mx) & ( 
    Sum (P 
    * F2)) 
    = ( 
    SumAll (Mx 
    @ )) by 
    A1,
    MX1,
    CC0,
    Th40,
    Th41;
    
          for i be
    Nat st i 
    in ( 
    dom Mx) holds not 
    -infty  
    in ( 
    rng (Mx 
    . i)) 
    
          proof
    
            let i be
    Nat;
    
            assume
    
            
    
    F1: i 
    in ( 
    dom Mx); 
    
            assume
    -infty  
    in ( 
    rng (Mx 
    . i)); 
    
            then
    
            consider j be
    object such that 
    
            
    
    F2: j 
    in ( 
    dom (Mx 
    . i)) & ((Mx 
    . i) 
    . j) 
    =  
    -infty by 
    FUNCT_1:def 3;
    
            reconsider j as
    Nat by 
    F2;
    
            
    
            
    
    F3: 
    [i, j]
    in ( 
    Indices Mx) by 
    F1,
    F2,
    MATRPROB: 13;
    
            then ((Mx
    . i) 
    . j) 
    = (Mx 
    * (i,j)) by 
    MATRPROB: 14;
    
            then
    
            
    
    F5: ((Mx 
    . i) 
    . j) 
    = (P 
    . ((F1 
    . i) 
    /\ (F2 
    . j))) by 
    F3,
    MX1;
    
            i
    in ( 
    Seg ( 
    len Mx)) & j 
    in ( 
    Seg ( 
    width Mx)) by 
    F3,
    MATRPROB: 12;
    
            then i
    in ( 
    dom F1) & j 
    in ( 
    dom F2) by 
    C3,
    C4,
    FINSEQ_1:def 3;
    
            then (F1
    . i) 
    in ( 
    rng F1) & (F2 
    . j) 
    in ( 
    rng F2) by 
    FUNCT_1: 3;
    
            then ((F1
    . i) 
    /\ (F2 
    . j)) 
    in S by 
    FINSUB_1:def 2;
    
            hence contradiction by
    F2,
    F5,
    MEASURE1:def 2;
    
          end;
    
          hence (
    Sum (P 
    * F1)) 
    = ( 
    Sum (P 
    * F2)) by 
    C10,
    Th28;
    
        end;
    
      end;
    
    end;
    
    theorem :: 
    
    MEASURE9:55
    
    
    
    
    
    Th55: for X be 
    set, S be 
    semialgebra_of_sets of X, P be 
    pre-Measure of S holds ex M be 
    Measure of ( 
    Field_generated_by S) st for A be 
    set st A 
    in ( 
    Field_generated_by S) holds for F be 
    disjoint_valued  
    FinSequence of S st A 
    = ( 
    Union F) holds (M 
    . A) 
    = ( 
    Sum (P 
    * F)) 
    
    proof
    
      let X be
    set, S be 
    semialgebra_of_sets of X, P be 
    pre-Measure of S; 
    
      defpred
    
    P[
    object, 
    object] means for F be
    disjoint_valued  
    FinSequence of S st $1 
    = ( 
    Union F) holds $2 
    = ( 
    Sum (P 
    * F)); 
    
      
    
      
    
    A1: for A be 
    object st A 
    in ( 
    Field_generated_by S) holds ex p be 
    object st p 
    in  
    ExtREAL & 
    P[A, p]
    
      proof
    
        let A be
    object;
    
        assume A
    in ( 
    Field_generated_by S); 
    
        then A
    in ( 
    DisUnion S) by 
    SRINGS_3: 22;
    
        then
    
        consider V be
    Subset of X such that 
    
        
    
    A3: A 
    = V & ex F be 
    disjoint_valued  
    FinSequence of S st V 
    = ( 
    Union F); 
    
        consider F be
    disjoint_valued  
    FinSequence of S such that 
    
        
    
    A4: V 
    = ( 
    Union F) by 
    A3;
    
        set p = (
    Sum (P 
    * F)); 
    
        take p;
    
        thus p
    in  
    ExtREAL & 
    P[A, p] by
    A3,
    A4,
    Th54;
    
      end;
    
      consider M be
    Function of ( 
    Field_generated_by S), 
    ExtREAL such that 
    
      
    
    A5: for A be 
    object st A 
    in ( 
    Field_generated_by S) holds 
    P[A, (M
    . A)] from 
    FUNCT_2:sch 1(
    A1);
    
      
    
      
    
    A18: for A be 
    Element of ( 
    Field_generated_by S) holds 
    0  
    <= (M 
    . A) 
    
      proof
    
        let A be
    Element of ( 
    Field_generated_by S); 
    
        A
    in ( 
    Field_generated_by S); 
    
        then A
    in ( 
    DisUnion S) by 
    SRINGS_3: 22;
    
        then
    
        consider V be
    Subset of X such that 
    
        
    
    A7: A 
    = V & ex F be 
    disjoint_valued  
    FinSequence of S st V 
    = ( 
    Union F); 
    
        consider F be
    disjoint_valued  
    FinSequence of S such that 
    
        
    
    A8: V 
    = ( 
    Union F) by 
    A7;
    
        consider PF be
    sequence of 
    ExtREAL such that 
    
        
    
    A10: ( 
    Sum (P 
    * F)) 
    = (PF 
    . ( 
    len (P 
    * F))) & (PF 
    .  
    0 ) 
    =  
    0. & for i be 
    Nat st i 
    < ( 
    len (P 
    * F)) holds (PF 
    . (i 
    + 1)) 
    = ((PF 
    . i) 
    + ((P 
    * F) 
    . (i 
    + 1))) by 
    EXTREAL1:def 2;
    
        defpred
    
    P2[
    Nat] means $1
    <= ( 
    len (P 
    * F)) implies (PF 
    . $1) 
    >=  
    0 ; 
    
        
    
        
    
    A11: 
    P2[
    0 ] by 
    A10;
    
        
    
        
    
    A12: for i be 
    Nat st 
    P2[i] holds
    P2[(i
    + 1)] 
    
        proof
    
          let i be
    Nat;
    
          assume
    
          
    
    A13: 
    P2[i];
    
          assume
    
          
    
    A14: (i 
    + 1) 
    <= ( 
    len (P 
    * F)); 
    
          then (i
    + 1) 
    in ( 
    dom (P 
    * F)) by 
    NAT_1: 11,
    FINSEQ_3: 25;
    
          then ((P
    * F) 
    . (i 
    + 1)) 
    = (P 
    . (F 
    . (i 
    + 1))) by 
    FUNCT_1: 12;
    
          then
    
          
    
    A17: ((P 
    * F) 
    . (i 
    + 1)) 
    >=  
    0 by 
    SUPINF_2: 51;
    
          (PF
    . (i 
    + 1)) 
    = ((PF 
    . i) 
    + ((P 
    * F) 
    . (i 
    + 1))) by 
    A14,
    A10,
    NAT_1: 13;
    
          hence (PF
    . (i 
    + 1)) 
    >=  
    0 by 
    A13,
    A14,
    NAT_1: 13,
    A17;
    
        end;
    
        for i be
    Nat holds 
    P2[i] from
    NAT_1:sch 2(
    A11,
    A12);
    
        then (
    Sum (P 
    * F)) 
    >=  
    0 by 
    A10;
    
        hence
    0  
    <= (M 
    . A) by 
    A7,
    A8,
    A5;
    
      end;
    
      
    
      
    
    A29: for A,B be 
    Element of ( 
    Field_generated_by S) st A 
    misses B holds (M 
    . (A 
    \/ B)) 
    = ((M 
    . A) 
    + (M 
    . B)) 
    
      proof
    
        let A,B be
    Element of ( 
    Field_generated_by S); 
    
        assume
    
        
    
    A19: A 
    misses B; 
    
        A
    in ( 
    Field_generated_by S); 
    
        then A
    in ( 
    DisUnion S) by 
    SRINGS_3: 22;
    
        then
    
        consider V be
    Subset of X such that 
    
        
    
    A20: A 
    = V & ex F be 
    disjoint_valued  
    FinSequence of S st V 
    = ( 
    Union F); 
    
        consider F be
    disjoint_valued  
    FinSequence of S such that 
    
        
    
    A21: V 
    = ( 
    Union F) by 
    A20;
    
        B
    in ( 
    Field_generated_by S); 
    
        then B
    in ( 
    DisUnion S) by 
    SRINGS_3: 22;
    
        then
    
        consider W be
    Subset of X such that 
    
        
    
    A22: B 
    = W & ex G be 
    disjoint_valued  
    FinSequence of S st W 
    = ( 
    Union G); 
    
        consider G be
    disjoint_valued  
    FinSequence of S such that 
    
        
    
    A23: W 
    = ( 
    Union G) by 
    A22;
    
        set H = (F
    ^ G); 
    
        
    
        
    
    A24: A 
    = ( 
    union ( 
    rng F)) & B 
    = ( 
    union ( 
    rng G)) by 
    A20,
    A21,
    A22,
    A23,
    CARD_3:def 4;
    
        then
    
        reconsider H as
    disjoint_valued  
    FinSequence of S by 
    A19,
    Th43;
    
        (
    rng H) 
    = (( 
    rng F) 
    \/ ( 
    rng G)) by 
    FINSEQ_1: 31;
    
        then (
    union ( 
    rng H)) 
    = (( 
    union ( 
    rng F)) 
    \/ ( 
    union ( 
    rng G))) by 
    ZFMISC_1: 78;
    
        then (A
    \/ B) 
    = ( 
    Union H) by 
    A24,
    CARD_3:def 4;
    
        then
    
        
    
    A25: (M 
    . (A 
    \/ B)) 
    = ( 
    Sum (P 
    * H)) by 
    A5;
    
        
    
        
    
    A26: (M 
    . A) 
    = ( 
    Sum (P 
    * F)) & (M 
    . B) 
    = ( 
    Sum (P 
    * G)) by 
    A20,
    A21,
    A22,
    A23,
    A5;
    
        (P
    * F) is 
    nonnegative by 
    Th45;
    
        then
    
        
    
    A27: not 
    -infty  
    in ( 
    rng (P 
    * F)) by 
    SUPINF_2:def 12,
    SUPINF_2:def 9;
    
        (P
    * G) is 
    nonnegative by 
    Th45;
    
        then
    
        
    
    A28: not 
    -infty  
    in ( 
    rng (P 
    * G)) by 
    SUPINF_2:def 12,
    SUPINF_2:def 9;
    
        (P
    * H) 
    = ((P 
    * F) 
    ^ (P 
    * G)) by 
    FINSEQOP: 9;
    
        hence (M
    . (A 
    \/ B)) 
    = ((M 
    . A) 
    + (M 
    . B)) by 
    A25,
    A26,
    A27,
    A28,
    EXTREAL1: 10;
    
      end;
    
      reconsider E =
    {} as 
    Element of S by 
    SETFAM_1:def 8;
    
      reconsider F =
    <*E*> as
    disjoint_valued  
    FinSequence of S; 
    
      (
    rng F) 
    =  
    {
    {} } by 
    FINSEQ_1: 38;
    
      then (
    union ( 
    rng F)) 
    =  
    {} by 
    ZFMISC_1: 25;
    
      then (
    Union F) 
    =  
    {} by 
    CARD_3:def 4;
    
      then (M
    .  
    {} ) 
    = ( 
    Sum (P 
    * F)) by 
    A5,
    FINSUB_1: 7;
    
      then (M
    .  
    {} ) 
    = ( 
    Sum  
    <*(P
    .  
    {} )*>) by 
    FINSEQ_2: 35;
    
      then (M
    .  
    {} ) 
    = (P 
    .  
    {} ) by 
    EXTREAL1: 8;
    
      then (M
    .  
    {} ) 
    =  
    0 by 
    VALUED_0:def 19;
    
      then
    
      reconsider M as
    nonnegative
    additive
    zeroed  
    Function of ( 
    Field_generated_by S), 
    ExtREAL by 
    A18,
    A29,
    VALUED_0:def 19,
    MEASURE1:def 2,
    MEASURE1:def 8;
    
      take M;
    
      thus thesis by
    A5;
    
    end;
    
    theorem :: 
    
    MEASURE9:56
    
    for F be
    ExtREAL_sequence, n be 
    Nat, a be 
    R_eal st (for k be 
    Nat holds (F 
    . k) 
    = a) holds (( 
    Partial_Sums F) 
    . n) 
    = (a 
    * (n 
    + 1)) 
    
    proof
    
      let F be
    ExtREAL_sequence, n be 
    Nat, a be 
    R_eal;
    
      assume
    
      
    
    A1: for k be 
    Nat holds (F 
    . k) 
    = a; 
    
      defpred
    
    P[
    Nat] means ((
    Partial_Sums F) 
    . $1) 
    = (a 
    * ($1 
    + 1)); 
    
      ((
    Partial_Sums F) 
    .  
    0 ) 
    = (F 
    .  
    0 ) by 
    MESFUNC9:def 1;
    
      then ((
    Partial_Sums F) 
    .  
    0 ) 
    = a by 
    A1;
    
      then
    
      
    
    A2: 
    P[
    0 ] by 
    XXREAL_3: 81;
    
      
    
      
    
    A3: for i be 
    Nat st 
    P[i] holds
    P[(i
    + 1)] 
    
      proof
    
        let i be
    Nat;
    
        assume
    
        
    
    A4: 
    P[i];
    
        (i
    + 1) 
    in  
    REAL & 1 
    in  
    REAL by 
    XREAL_0:def 1;
    
        then
    
        reconsider i1 = (i
    + 1), One = 1 as 
    R_eal by 
    XBOOLE_0:def 3,
    XXREAL_0:def 4;
    
        ((
    Partial_Sums F) 
    . (i 
    + 1)) 
    = ((( 
    Partial_Sums F) 
    . i) 
    + (F 
    . (i 
    + 1))) by 
    MESFUNC9:def 1;
    
        then ((
    Partial_Sums F) 
    . (i 
    + 1)) 
    = ((a 
    * (i 
    + 1)) 
    + a) by 
    A1,
    A4;
    
        then ((
    Partial_Sums F) 
    . (i 
    + 1)) 
    = ((a 
    * (i 
    + 1)) 
    + (a 
    * 1)) by 
    XXREAL_3: 81;
    
        then ((
    Partial_Sums F) 
    . (i 
    + 1)) 
    = (a 
    * (i1 
    + One)) by 
    XXREAL_3: 96;
    
        hence
    P[(i
    + 1)] by 
    XXREAL_3:def 2;
    
      end;
    
      for i be
    Nat holds 
    P[i] from
    NAT_1:sch 2(
    A2,
    A3);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MEASURE9:57
    
    
    
    
    
    Th57: for X be non 
    empty  
    set, F be 
    sequence of X, n be 
    Nat holds ( 
    rng (F 
    | ( 
    Segm (n 
    + 1)))) 
    = (( 
    rng (F 
    | ( 
    Segm n))) 
    \/  
    {(F
    . n)}) 
    
    proof
    
      let X be non
    empty  
    set, F be 
    sequence of X, n be 
    Nat;
    
      now
    
        let y be
    object;
    
        assume y
    in ( 
    rng (F 
    | ( 
    Segm (n 
    + 1)))); 
    
        then
    
        consider x be
    object such that 
    
        
    
    A1: x 
    in ( 
    dom (F 
    | ( 
    Segm (n 
    + 1)))) & y 
    = ((F 
    | ( 
    Segm (n 
    + 1))) 
    . x) by 
    FUNCT_1:def 3;
    
        reconsider x as
    Nat by 
    A1;
    
        
    
        
    
    A4: y 
    = (F 
    . x) by 
    A1,
    FUNCT_1: 47;
    
        x
    in (( 
    dom F) 
    /\ ( 
    Segm (n 
    + 1))) by 
    A1,
    RELAT_1: 61;
    
        then
    
        
    
    A2: x 
    in ( 
    dom F) & x 
    in ( 
    Segm (n 
    + 1)) by 
    XBOOLE_0:def 4;
    
        x
    < (n 
    + 1) by 
    A2,
    NAT_1: 44;
    
        then
    
        
    
    A3: x 
    <= n by 
    NAT_1: 13;
    
        per cases ;
    
          suppose x
    = n; 
    
          then y
    in  
    {(F
    . n)} by 
    A4,
    TARSKI:def 1;
    
          hence y
    in (( 
    rng (F 
    | ( 
    Segm n))) 
    \/  
    {(F
    . n)}) by 
    XBOOLE_0:def 3;
    
        end;
    
          suppose x
    <> n; 
    
          then x
    < n by 
    A3,
    XXREAL_0: 1;
    
          then x
    in ( 
    Segm n) by 
    NAT_1: 44;
    
          then x
    in (( 
    dom F) 
    /\ ( 
    Segm n)) by 
    A2,
    XBOOLE_0:def 4;
    
          then x
    in ( 
    dom (F 
    | ( 
    Segm n))) by 
    RELAT_1: 61;
    
          then ((F
    | ( 
    Segm n)) 
    . x) 
    in ( 
    rng (F 
    | ( 
    Segm n))) & ((F 
    | ( 
    Segm n)) 
    . x) 
    = (F 
    . x) by 
    FUNCT_1: 3,
    FUNCT_1: 47;
    
          hence y
    in (( 
    rng (F 
    | ( 
    Segm n))) 
    \/  
    {(F
    . n)}) by 
    A4,
    XBOOLE_0:def 3;
    
        end;
    
      end;
    
      then
    
      
    
    A5: ( 
    rng (F 
    | ( 
    Segm (n 
    + 1)))) 
    c= (( 
    rng (F 
    | ( 
    Segm n))) 
    \/  
    {(F
    . n)}) by 
    TARSKI:def 3;
    
      now
    
        let y be
    object;
    
        assume
    
        
    
    A6: y 
    in (( 
    rng (F 
    | ( 
    Segm n))) 
    \/  
    {(F
    . n)}); 
    
        per cases by
    A6,
    XBOOLE_0:def 3;
    
          suppose
    
          
    
    A7: y 
    in ( 
    rng (F 
    | ( 
    Segm n))); 
    
          n
    <= (n 
    + 1) by 
    NAT_1: 11;
    
          then (F
    | ( 
    Segm n)) 
    c= (F 
    | ( 
    Segm (n 
    + 1))) by 
    NAT_1: 39,
    RELAT_1: 75;
    
          then (
    rng (F 
    | ( 
    Segm n))) 
    c= ( 
    rng (F 
    | ( 
    Segm (n 
    + 1)))) by 
    RELAT_1: 11;
    
          hence y
    in ( 
    rng (F 
    | ( 
    Segm (n 
    + 1)))) by 
    A7;
    
        end;
    
          suppose y
    in  
    {(F
    . n)}; 
    
          then
    
          
    
    A8: y 
    = (F 
    . n) by 
    TARSKI:def 1;
    
          n
    in  
    NAT by 
    ORDINAL1:def 12;
    
          then n
    in ( 
    dom F) & n 
    in ( 
    Segm (n 
    + 1)) by 
    FUNCT_2:def 1,
    NAT_1: 45;
    
          then n
    in (( 
    dom F) 
    /\ ( 
    Segm (n 
    + 1))) by 
    XBOOLE_0:def 4;
    
          then
    
          
    
    A9: n 
    in ( 
    dom (F 
    | ( 
    Segm (n 
    + 1)))) by 
    RELAT_1: 61;
    
          then (F
    . n) 
    = ((F 
    | ( 
    Segm (n 
    + 1))) 
    . n) by 
    FUNCT_1: 47;
    
          hence y
    in ( 
    rng (F 
    | ( 
    Segm (n 
    + 1)))) by 
    A8,
    A9,
    FUNCT_1: 3;
    
        end;
    
      end;
    
      then ((
    rng (F 
    | ( 
    Segm n))) 
    \/  
    {(F
    . n)}) 
    c= ( 
    rng (F 
    | ( 
    Segm (n 
    + 1)))) by 
    TARSKI:def 3;
    
      hence thesis by
    A5,
    XBOOLE_0:def 10;
    
    end;
    
    theorem :: 
    
    MEASURE9:58
    
    
    
    
    
    Th58: for X be 
    set, S be 
    Field_Subset of X, M be 
    Measure of S, F be 
    Sep_Sequence of S, n be 
    Nat holds ( 
    union ( 
    rng (F 
    | ( 
    Segm (n 
    + 1))))) 
    in S & (( 
    Partial_Sums (M 
    * F)) 
    . n) 
    = (M 
    . ( 
    union ( 
    rng (F 
    | ( 
    Segm (n 
    + 1)))))) 
    
    proof
    
      let X be
    set, S be 
    Field_Subset of X, M be 
    Measure of S, F be 
    Sep_Sequence of S, n be 
    Nat;
    
      
    
      
    
    A2: ( 
    rng (F 
    | ( 
    Segm ( 
    0  
    + 1)))) 
    = (( 
    rng (F 
    | ( 
    Segm  
    0 ))) 
    \/  
    {(F
    .  
    0 )}) by 
    Th57
    
      .=
    {(F
    .  
    0 )}; 
    
      then
    
      
    
    A2a: ( 
    union ( 
    rng (F 
    | ( 
    Segm ( 
    0  
    + 1))))) 
    = (F 
    .  
    0 ) by 
    ZFMISC_1: 25;
    
      defpred
    
    P2[
    Nat] means (
    union ( 
    rng (F 
    | ( 
    Segm ($1 
    + 1))))) 
    in S; 
    
      
    
      
    
    A14: 
    P2[
    0 ] by 
    A2a;
    
      
    
      
    
    A15: for k be 
    Nat st 
    P2[k] holds
    P2[(k
    + 1)] 
    
      proof
    
        let k be
    Nat;
    
        assume
    
        
    
    A16: 
    P2[k];
    
        (
    union ( 
    rng (F 
    | ( 
    Segm ((k 
    + 1) 
    + 1))))) 
    = ( 
    union (( 
    rng (F 
    | ( 
    Segm (k 
    + 1)))) 
    \/  
    {(F
    . (k 
    + 1))})) by 
    Th57
    
        .= ((
    union ( 
    rng (F 
    | ( 
    Segm (k 
    + 1))))) 
    \/ ( 
    union  
    {(F
    . (k 
    + 1))})) by 
    ZFMISC_1: 78
    
        .= ((
    union ( 
    rng (F 
    | ( 
    Segm (k 
    + 1))))) 
    \/ (F 
    . (k 
    + 1))) by 
    ZFMISC_1: 25;
    
        hence (
    union ( 
    rng (F 
    | ( 
    Segm ((k 
    + 1) 
    + 1))))) 
    in S by 
    A16,
    PROB_1: 3;
    
      end;
    
      
    
      
    
    P1: for k be 
    Nat holds 
    P2[k] from
    NAT_1:sch 2(
    A14,
    A15);
    
      hence (
    union ( 
    rng (F 
    | ( 
    Segm (n 
    + 1))))) 
    in S; 
    
      defpred
    
    P[
    Nat] means ((
    Partial_Sums (M 
    * F)) 
    . $1) 
    = (M 
    . ( 
    union ( 
    rng (F 
    | ( 
    Segm ($1 
    + 1)))))); 
    
      
    
      
    
    A1: (( 
    Partial_Sums (M 
    * F)) 
    .  
    0 ) 
    = ((M 
    * F) 
    .  
    0 ) by 
    MESFUNC9:def 1
    
      .= (M
    . (F 
    .  
    0 )) by 
    FUNCT_2: 15;
    
      
    
      
    
    A3: 
    P[
    0 ] by 
    A1,
    A2,
    ZFMISC_1: 25;
    
      
    
      
    
    A4: for n be 
    Nat st 
    P[n] holds
    P[(n
    + 1)] 
    
      proof
    
        let n be
    Nat;
    
        assume
    
        
    
    A5: 
    P[n];
    
        
    
        
    
    A6: (( 
    Partial_Sums (M 
    * F)) 
    . (n 
    + 1)) 
    = ((( 
    Partial_Sums (M 
    * F)) 
    . n) 
    + ((M 
    * F) 
    . (n 
    + 1))) by 
    MESFUNC9:def 1
    
        .= ((M
    . ( 
    union ( 
    rng (F 
    | ( 
    Segm (n 
    + 1)))))) 
    + (M 
    . (F 
    . (n 
    + 1)))) by 
    A5,
    FUNCT_2: 15;
    
        
    
    A13: 
    
        now
    
          assume ex x be
    object st x 
    in (( 
    union ( 
    rng (F 
    | ( 
    Segm (n 
    + 1))))) 
    /\ (F 
    . (n 
    + 1))); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A7: x 
    in (( 
    union ( 
    rng (F 
    | ( 
    Segm (n 
    + 1))))) 
    /\ (F 
    . (n 
    + 1))); 
    
          
    
          
    
    A8: x 
    in ( 
    union ( 
    rng (F 
    | ( 
    Segm (n 
    + 1))))) & x 
    in (F 
    . (n 
    + 1)) by 
    A7,
    XBOOLE_0:def 4;
    
          then
    
          consider A be
    set such that 
    
          
    
    A9: x 
    in A & A 
    in ( 
    rng (F 
    | ( 
    Segm (n 
    + 1)))) by 
    TARSKI:def 4;
    
          consider k be
    object such that 
    
          
    
    A10: k 
    in ( 
    dom (F 
    | ( 
    Segm (n 
    + 1)))) & A 
    = ((F 
    | ( 
    Segm (n 
    + 1))) 
    . k) by 
    A9,
    FUNCT_1:def 3;
    
          reconsider k as
    Nat by 
    A10;
    
          
    
          
    
    A11: k 
    < (n 
    + 1) by 
    A10,
    RELAT_1: 57,
    NAT_1: 44;
    
          A
    = (F 
    . k) by 
    A10,
    FUNCT_1: 47;
    
          then x
    in ((F 
    . k) 
    /\ (F 
    . (n 
    + 1))) by 
    A8,
    A9,
    XBOOLE_0:def 4;
    
          hence contradiction by
    A11,
    PROB_2:def 2,
    XBOOLE_0: 4;
    
        end;
    
        (
    union ( 
    rng (F 
    | ( 
    Segm (n 
    + 1))))) 
    in S by 
    P1;
    
        
    
        then ((M
    . ( 
    union ( 
    rng (F 
    | ( 
    Segm (n 
    + 1)))))) 
    + (M 
    . (F 
    . (n 
    + 1)))) 
    = (M 
    . (( 
    union ( 
    rng (F 
    | ( 
    Segm (n 
    + 1))))) 
    \/ (F 
    . (n 
    + 1)))) by 
    A13,
    XBOOLE_0: 4,
    MEASURE1:def 8
    
        .= (M
    . (( 
    union ( 
    rng (F 
    | ( 
    Segm (n 
    + 1))))) 
    \/ ( 
    union  
    {(F
    . (n 
    + 1))}))) by 
    ZFMISC_1: 25
    
        .= (M
    . ( 
    union (( 
    rng (F 
    | ( 
    Segm (n 
    + 1)))) 
    \/  
    {(F
    . (n 
    + 1))}))) by 
    ZFMISC_1: 78
    
        .= (M
    . ( 
    union ( 
    rng (F 
    | ( 
    Segm ((n 
    + 1) 
    + 1)))))) by 
    Th57;
    
        hence thesis by
    A6;
    
      end;
    
      for n be
    Nat holds 
    P[n] from
    NAT_1:sch 2(
    A3,
    A4);
    
      hence ((
    Partial_Sums (M 
    * F)) 
    . n) 
    = (M 
    . ( 
    union ( 
    rng (F 
    | ( 
    Segm (n 
    + 1)))))); 
    
    end;
    
    theorem :: 
    
    MEASURE9:59
    
    
    
    
    
    Th59: for X be 
    set, S be 
    semialgebra_of_sets of X, P be 
    pre-Measure of S, M be 
    Measure of ( 
    Field_generated_by S) st (for A be 
    set st A 
    in ( 
    Field_generated_by S) holds for F be 
    disjoint_valued  
    FinSequence of S st A 
    = ( 
    Union F) holds (M 
    . A) 
    = ( 
    Sum (P 
    * F))) holds M is 
    completely-additive
    
    proof
    
      let X be
    set, S be 
    semialgebra_of_sets of X, P be 
    pre-Measure of S, M be 
    Measure of ( 
    Field_generated_by S); 
    
      assume
    
      
    
    A1: for A be 
    set st A 
    in ( 
    Field_generated_by S) holds for F be 
    disjoint_valued  
    FinSequence of S st A 
    = ( 
    Union F) holds (M 
    . A) 
    = ( 
    Sum (P 
    * F)); 
    
      now
    
        let FSets be
    Sep_Sequence of ( 
    Field_generated_by S); 
    
        assume
    
        
    
    B0: ( 
    union ( 
    rng FSets)) 
    in ( 
    Field_generated_by S); 
    
        then (
    union ( 
    rng FSets)) 
    in ( 
    DisUnion S) by 
    SRINGS_3: 22;
    
        then
    
        consider A be
    Subset of X such that 
    
        
    
    B1: A 
    = ( 
    union ( 
    rng FSets)) & ex F be 
    disjoint_valued  
    FinSequence of S st A 
    = ( 
    Union F); 
    
        consider D be
    disjoint_valued  
    FinSequence of S such that 
    
        
    
    B2: A 
    = ( 
    Union D) by 
    B1;
    
        set Z = {
    [n, E] where n be
    Nat, E be 
    disjoint_valued  
    FinSequence of S : ( 
    Union E) 
    = (FSets 
    . n) & ((FSets 
    . n) 
    =  
    {} implies E 
    =  
    <*
    {} *>) }; 
    
        reconsider Y = (
    proj2 Z) as 
    FinSequenceSet of S by 
    Th51;
    
        
    
        
    
    E4: Y is 
    with_non-empty_elements by 
    Th51;
    
        per cases ;
    
          suppose (
    rng FSets) is 
    with_non-empty_element;
    
          then
    
          consider a be non
    empty  
    set such that 
    
          
    
    E6: a 
    in ( 
    rng FSets); 
    
          ex E be
    FinSequence of S st E 
    in Y & ( 
    Union E) 
    = a by 
    E6,
    Th51;
    
          then
    
          reconsider Y as non
    empty
    with_non-empty_element  
    FinSequenceSet of S by 
    E4;
    
          defpred
    
    P[
    Element of 
    NAT , 
    object] means
    [$1, $2]
    in Z; 
    
          
    
          
    
    F2: for n be 
    Element of 
    NAT holds ex y be 
    Element of Y st 
    P[n, y]
    
          proof
    
            let n be
    Element of 
    NAT ; 
    
            (FSets
    . n) 
    in ( 
    Field_generated_by S); 
    
            then (FSets
    . n) 
    in ( 
    DisUnion S) by 
    SRINGS_3: 22;
    
            then
    
            consider A be
    Subset of X such that 
    
            
    
    F3: (FSets 
    . n) 
    = A & ex F be 
    disjoint_valued  
    FinSequence of S st A 
    = ( 
    Union F); 
    
            consider F be
    disjoint_valued  
    FinSequence of S such that 
    
            
    
    F4: A 
    = ( 
    Union F) by 
    F3;
    
            per cases ;
    
              suppose
    
              
    
    F5: (FSets 
    . n) 
    =  
    {} ; 
    
              
    
              
    
    F6: ( 
    rng  
    <*
    {} *>) 
    =  
    {
    {} } by 
    FINSEQ_1: 38;
    
              
    {}  
    in S by 
    SETFAM_1:def 8;
    
              then
    
              reconsider E =
    <*
    {} *> as 
    disjoint_valued  
    FinSequence of S by 
    F6,
    ZFMISC_1: 31,
    FINSEQ_1:def 4;
    
              (
    union ( 
    rng E)) 
    =  
    {} by 
    F6,
    ZFMISC_1: 25;
    
              then (
    Union E) 
    =  
    {} by 
    CARD_3:def 4;
    
              then
    
              
    
    F7: 
    [n, E]
    in Z by 
    F5;
    
              then E
    in Y by 
    XTUPLE_0:def 13;
    
              hence ex y be
    Element of Y st 
    P[n, y] by
    F7;
    
            end;
    
              suppose (FSets
    . n) 
    <>  
    {} ; 
    
              then
    
              
    
    F8: 
    [n, F]
    in Z by 
    F4,
    F3;
    
              then F
    in Y by 
    XTUPLE_0:def 13;
    
              hence ex y be
    Element of Y st 
    P[n, y] by
    F8;
    
            end;
    
          end;
    
          consider s be
    Function of 
    NAT , Y such that 
    
          
    
    F9: for n be 
    Element of 
    NAT holds 
    P[n, (s
    . n)] from 
    FUNCT_2:sch 3(
    F2);
    
          now
    
            let n be
    object;
    
            assume n
    in ( 
    dom s); 
    
            then
    
            reconsider n1 = n as
    Element of 
    NAT ; 
    
            
    [n1, (s
    . n1)] 
    in Z by 
    F9;
    
            then
    
            
    
    F11: ex m be 
    Nat, E be 
    disjoint_valued  
    FinSequence of S st 
    [n1, (s
    . n1)] 
    =  
    [m, E] & (
    Union E) 
    = (FSets 
    . m) & ((FSets 
    . m) 
    =  
    {} implies E 
    =  
    <*
    {} *>); 
    
            now
    
              assume
    
              
    
    F15: (s 
    . n) 
    =  
    {} ; 
    
              then (
    union ( 
    rng (s 
    . n1))) 
    =  
    {} by 
    ZFMISC_1: 2;
    
              then (
    Union (s 
    . n1)) 
    =  
    {} by 
    CARD_3:def 4;
    
              hence contradiction by
    F11,
    F15,
    XTUPLE_0: 1;
    
            end;
    
            hence (s
    . n) is non 
    empty;
    
          end;
    
          then
    
          reconsider s as
    non-empty  
    sequence of Y by 
    FUNCT_1:def 9;
    
          reconsider G = (
    joined_seq s) as 
    sequence of S; 
    
          now
    
            let x,y be
    object;
    
            assume
    
            
    
    F16: x 
    <> y; 
    
            per cases ;
    
              suppose not x
    in  
    NAT or not y 
    in  
    NAT ; 
    
              then not x
    in ( 
    dom G) or not y 
    in ( 
    dom G); 
    
              then (G
    . x) 
    =  
    {} or (G 
    . y) 
    =  
    {} by 
    FUNCT_1:def 2;
    
              hence (G
    . x) 
    misses (G 
    . y) by 
    XBOOLE_1: 65;
    
            end;
    
              suppose x
    in  
    NAT & y 
    in  
    NAT ; 
    
              then
    
              reconsider n1 = x, n2 = y as
    Element of 
    NAT ; 
    
              consider k1,m1 be
    Nat such that 
    
              
    
    F17: m1 
    in ( 
    dom (s 
    . k1)) & ((((( 
    Partial_Sums ( 
    Length s)) 
    . k1) 
    - ( 
    len (s 
    . k1))) 
    + m1) 
    - 1) 
    = n1 & (G 
    . n1) 
    = ((s 
    . k1) 
    . m1) by 
    Def4;
    
              consider k2,m2 be
    Nat such that 
    
              
    
    F18: m2 
    in ( 
    dom (s 
    . k2)) & ((((( 
    Partial_Sums ( 
    Length s)) 
    . k2) 
    - ( 
    len (s 
    . k2))) 
    + m2) 
    - 1) 
    = n2 & (G 
    . n2) 
    = ((s 
    . k2) 
    . m2) by 
    Def4;
    
              k1 is
    Element of 
    NAT & k2 is 
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
              then
    
              
    
    F21: 
    [k1, (s
    . k1)] 
    in Z & 
    [k2, (s
    . k2)] 
    in Z by 
    F9;
    
              then
    
              consider i1 be
    Nat, E1 be 
    disjoint_valued  
    FinSequence of S such that 
    
              
    
    F22: 
    [k1, (s
    . k1)] 
    =  
    [i1, E1] & (
    Union E1) 
    = (FSets 
    . i1) & ((FSets 
    . i1) 
    =  
    {} implies E1 
    =  
    <*
    {} *>); 
    
              consider i2 be
    Nat, E2 be 
    disjoint_valued  
    FinSequence of S such that 
    
              
    
    F23: 
    [k2, (s
    . k2)] 
    =  
    [i2, E2] & (
    Union E2) 
    = (FSets 
    . i2) & ((FSets 
    . i2) 
    =  
    {} implies E2 
    =  
    <*
    {} *>) by 
    F21;
    
              
    
              
    
    F24: k1 
    = i1 & (s 
    . k1) 
    = E1 & k2 
    = i2 & (s 
    . k2) 
    = E2 by 
    F22,
    F23,
    XTUPLE_0: 1;
    
              now
    
                assume k1
    <> k2; 
    
                then (FSets
    . i1) 
    misses (FSets 
    . i2) by 
    F24,
    PROB_2:def 2;
    
                then (
    union ( 
    rng (s 
    . k1))) 
    misses ( 
    Union (s 
    . k2)) by 
    F22,
    F23,
    F24,
    CARD_3:def 4;
    
                then
    
                
    
    F25: ( 
    union ( 
    rng (s 
    . k1))) 
    misses ( 
    union ( 
    rng (s 
    . k2))) by 
    CARD_3:def 4;
    
                (G
    . n1) 
    c= ( 
    union ( 
    rng (s 
    . k1))) & (G 
    . n2) 
    c= ( 
    union ( 
    rng (s 
    . k2))) by 
    F17,
    F18,
    FUNCT_1: 3,
    ZFMISC_1: 74;
    
                hence (G
    . n1) 
    misses (G 
    . n2) by 
    F25,
    XBOOLE_1: 64;
    
              end;
    
              hence (G
    . x) 
    misses (G 
    . y) by 
    F16,
    F17,
    F18,
    F24,
    PROB_2:def 2;
    
            end;
    
          end;
    
          then
    
          reconsider G as
    disjoint_valued  
    sequence of S by 
    PROB_2:def 2;
    
          now
    
            let x be
    object;
    
            assume x
    in ( 
    Union FSets); 
    
            then x
    in ( 
    union ( 
    rng FSets)) by 
    CARD_3:def 4;
    
            then
    
            consider A be
    set such that 
    
            
    
    G1: x 
    in A & A 
    in ( 
    rng FSets) by 
    TARSKI:def 4;
    
            consider n be
    Element of 
    NAT such that 
    
            
    
    G2: A 
    = (FSets 
    . n) by 
    G1,
    FUNCT_2: 113;
    
            
    [n, (s
    . n)] 
    in Z by 
    F9;
    
            then
    
            consider n2 be
    Nat, E2 be 
    disjoint_valued  
    FinSequence of S such that 
    
            
    
    G6: 
    [n, (s
    . n)] 
    =  
    [n2, E2] & (
    Union E2) 
    = (FSets 
    . n2) & ((FSets 
    . n2) 
    =  
    {} implies E2 
    =  
    <*
    {} *>); 
    
            n
    = n2 & (s 
    . n) 
    = E2 by 
    G6,
    XTUPLE_0: 1;
    
            then x
    in ( 
    union ( 
    rng (s 
    . n))) by 
    G1,
    G2,
    G6,
    CARD_3:def 4;
    
            then
    
            consider A2 be
    set such that 
    
            
    
    G8: x 
    in A2 & A2 
    in ( 
    rng (s 
    . n)) by 
    TARSKI:def 4;
    
            consider m be
    object such that 
    
            
    
    G9: m 
    in ( 
    dom (s 
    . n)) & A2 
    = ((s 
    . n) 
    . m) by 
    G8,
    FUNCT_1:def 3;
    
            reconsider m as
    Nat by 
    G9;
    
            consider N be
    Nat such that 
    
            
    
    G10: N 
    = ((((( 
    Partial_Sums ( 
    Length s)) 
    . n) 
    - ( 
    len (s 
    . n))) 
    + m) 
    - 1) & (G 
    . N) 
    = ((s 
    . n) 
    . m) by 
    G9,
    Th13;
    
            A2
    in ( 
    rng G) by 
    FUNCT_2: 4,
    G9,
    G10,
    ORDINAL1:def 12;
    
            then x
    in ( 
    union ( 
    rng G)) by 
    G8,
    TARSKI:def 4;
    
            hence x
    in ( 
    Union G) by 
    CARD_3:def 4;
    
          end;
    
          then
    
          
    
    T0: ( 
    Union FSets) 
    c= ( 
    Union G) by 
    TARSKI:def 3;
    
          now
    
            let x be
    object;
    
            assume x
    in ( 
    Union G); 
    
            then x
    in ( 
    union ( 
    rng G)) by 
    CARD_3:def 4;
    
            then
    
            consider A be
    set such that 
    
            
    
    G11: x 
    in A & A 
    in ( 
    rng G) by 
    TARSKI:def 4;
    
            consider n be
    Element of 
    NAT such that 
    
            
    
    G12: A 
    = (G 
    . n) by 
    G11,
    FUNCT_2: 113;
    
            consider k,m be
    Nat such that 
    
            
    
    G13: m 
    in ( 
    dom (s 
    . k)) & ((((( 
    Partial_Sums ( 
    Length s)) 
    . k) 
    - ( 
    len (s 
    . k))) 
    + m) 
    - 1) 
    = n & (G 
    . n) 
    = ((s 
    . k) 
    . m) by 
    Def4;
    
            k is
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
            then
    [k, (s
    . k)] 
    in Z by 
    F9;
    
            then
    
            consider k2 be
    Nat, E be 
    disjoint_valued  
    FinSequence of S such that 
    
            
    
    G14: 
    [k, (s
    . k)] 
    =  
    [k2, E] & (
    Union E) 
    = (FSets 
    . k2) & ((FSets 
    . k2) 
    =  
    {} implies E 
    =  
    <*
    {} *>); 
    
            
    
            
    
    G15: k 
    = k2 & (s 
    . k) 
    = E by 
    G14,
    XTUPLE_0: 1;
    
            x
    in ((s 
    . k) 
    . m) & ((s 
    . k) 
    . m) 
    in ( 
    rng (s 
    . k)) by 
    G11,
    G12,
    G13,
    FUNCT_1: 3;
    
            then x
    in ( 
    union ( 
    rng (s 
    . k))) by 
    TARSKI:def 4;
    
            then
    
            
    
    G16: x 
    in (FSets 
    . k2) by 
    G14,
    G15,
    CARD_3:def 4;
    
            (FSets
    . k2) 
    in ( 
    rng FSets) by 
    FUNCT_2: 4,
    ORDINAL1:def 12;
    
            then x
    in ( 
    union ( 
    rng FSets)) by 
    G16,
    TARSKI:def 4;
    
            hence x
    in ( 
    Union FSets) by 
    CARD_3:def 4;
    
          end;
    
          then (
    Union G) 
    c= ( 
    Union FSets) by 
    TARSKI:def 3;
    
          then
    
          
    
    T1: ( 
    Union FSets) 
    = ( 
    Union G) by 
    T0,
    XBOOLE_0:def 10;
    
          defpred
    
    Q[
    Nat, 
    Nat, 
    object] means (($1
    + 1) 
    <= ( 
    len D) implies $3 
    = ((D 
    . ($1 
    + 1)) 
    /\ (G 
    . $2))) & (($1 
    + 1) 
    > ( 
    len D) implies $3 
    =  
    {} ); 
    
          
    
          
    
    D0: for i be 
    Element of 
    NAT holds for j be 
    Element of 
    NAT holds ex z be 
    Element of S st 
    Q[i, j, z]
    
          proof
    
            let i,j be
    Element of 
    NAT ; 
    
            per cases ;
    
              suppose
    
              
    
    D1: (i 
    + 1) 
    <= ( 
    len D); 
    
              then (i
    + 1) 
    in ( 
    dom D) by 
    NAT_1: 11,
    FINSEQ_3: 25;
    
              then (D
    . (i 
    + 1)) 
    in ( 
    rng D) by 
    FUNCT_1: 3;
    
              then ((D
    . (i 
    + 1)) 
    /\ (G 
    . j)) 
    in S by 
    FINSUB_1:def 2;
    
              hence ex z be
    Element of S st 
    Q[i, j, z] by
    D1;
    
            end;
    
              suppose
    
              
    
    D4: (i 
    + 1) 
    > ( 
    len D); 
    
              
    {}  
    in S by 
    SETFAM_1:def 8;
    
              hence ex z be
    Element of S st 
    Q[i, j, z] by
    D4;
    
            end;
    
          end;
    
          consider LG be
    Function of 
    [:
    NAT , 
    NAT :], S such that 
    
          
    
    D5: for i be 
    Element of 
    NAT holds for j be 
    Element of 
    NAT holds 
    Q[i, j, (LG
    . (i,j))] from 
    BINOP_1:sch 3(
    D0);
    
          
    
          
    
    D5a: for i,j be 
    Nat holds ((i 
    + 1) 
    <= ( 
    len D) implies (LG 
    . (i,j)) 
    = ((D 
    . (i 
    + 1)) 
    /\ (G 
    . j))) & ((i 
    + 1) 
    > ( 
    len D) implies (LG 
    . (i,j)) 
    =  
    {} ) 
    
          proof
    
            let i,j be
    Nat;
    
            reconsider i1 = i, j1 = j as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
            
    
    DD5: 
    
            now
    
              assume (i
    + 1) 
    <= ( 
    len D); 
    
              then (LG
    . (i1,j1)) 
    = ((D 
    . (i 
    + 1)) 
    /\ (G 
    . j)) by 
    D5;
    
              hence (LG
    . (i,j)) 
    = ((D 
    . (i 
    + 1)) 
    /\ (G 
    . j)); 
    
            end;
    
            now
    
              assume (i
    + 1) 
    > ( 
    len D); 
    
              then (LG
    . (i1,j1)) 
    =  
    {} by 
    D5;
    
              hence (LG
    . (i,j)) 
    =  
    {} ; 
    
            end;
    
            hence thesis by
    DD5;
    
          end;
    
          (
    Union FSets) 
    = ( 
    union ( 
    rng FSets)) by 
    CARD_3:def 4;
    
          then
    
          
    
    X2: (M 
    . ( 
    Union FSets)) 
    = ( 
    Sum (P 
    * D)) by 
    A1,
    B0,
    B1,
    B2;
    
          consider SumPD be
    sequence of 
    ExtREAL such that 
    
          
    
    X3: ( 
    Sum (P 
    * D)) 
    = (SumPD 
    . ( 
    len (P 
    * D))) & (SumPD 
    .  
    0 ) 
    =  
    0. & for i be 
    Nat st i 
    < ( 
    len (P 
    * D)) holds (SumPD 
    . (i 
    + 1)) 
    = ((SumPD 
    . i) 
    + ((P 
    * D) 
    . (i 
    + 1))) by 
    EXTREAL1:def 2;
    
          
    
          
    
    X4: for i be 
    Element of 
    NAT st i 
    < ( 
    len D) holds (D 
    . (i 
    + 1)) 
    = ( 
    Union ( 
    ProjMap1 (LG,i))) 
    
          proof
    
            let i be
    Element of 
    NAT ; 
    
            assume
    
            
    
    X40: i 
    < ( 
    len D); 
    
            then 1
    <= (i 
    + 1) & (i 
    + 1) 
    <= ( 
    len D) by 
    NAT_1: 11,
    NAT_1: 13;
    
            then (i
    + 1) 
    in ( 
    dom D) by 
    FINSEQ_3: 25;
    
            then
    
            
    
    X41: (D 
    . (i 
    + 1)) 
    in ( 
    rng D) by 
    FUNCT_1: 3;
    
            now
    
              let x be
    object;
    
              assume
    
              
    
    X44: x 
    in (D 
    . (i 
    + 1)); 
    
              then x
    in ( 
    union ( 
    rng D)) by 
    X41,
    TARSKI:def 4;
    
              then x
    in ( 
    Union D) by 
    CARD_3:def 4;
    
              then x
    in ( 
    Union G) by 
    B1,
    B2,
    T1,
    CARD_3:def 4;
    
              then x
    in ( 
    union ( 
    rng G)) by 
    CARD_3:def 4;
    
              then
    
              consider Gx be
    set such that 
    
              
    
    X42: x 
    in Gx & Gx 
    in ( 
    rng G) by 
    TARSKI:def 4;
    
              consider j be
    Element of 
    NAT such that 
    
              
    
    X43: Gx 
    = (G 
    . j) by 
    X42,
    FUNCT_2: 113;
    
              
    
              
    
    X46: ( 
    dom ( 
    ProjMap1 (LG,i))) 
    =  
    NAT by 
    FUNCT_2:def 1;
    
              
    
              
    
    X45: x 
    in ((D 
    . (i 
    + 1)) 
    /\ (G 
    . j)) by 
    X44,
    X42,
    X43,
    XBOOLE_0:def 4;
    
              (i
    + 1) 
    <= ( 
    len D) implies (LG 
    . (i,j)) 
    = ((D 
    . (i 
    + 1)) 
    /\ (G 
    . j)) by 
    D5;
    
              then
    
              
    
    X47: x 
    in (( 
    ProjMap1 (LG,i)) 
    . j) by 
    X40,
    NAT_1: 13,
    X45,
    MESFUNC9:def 6;
    
              ((
    ProjMap1 (LG,i)) 
    . j) 
    in ( 
    rng ( 
    ProjMap1 (LG,i))) by 
    X46,
    FUNCT_1: 3;
    
              then x
    in ( 
    union ( 
    rng ( 
    ProjMap1 (LG,i)))) by 
    X47,
    TARSKI:def 4;
    
              hence x
    in ( 
    Union ( 
    ProjMap1 (LG,i))) by 
    CARD_3:def 4;
    
            end;
    
            then
    
            
    
    X48: (D 
    . (i 
    + 1)) 
    c= ( 
    Union ( 
    ProjMap1 (LG,i))) by 
    TARSKI:def 3;
    
            now
    
              let x be
    object;
    
              assume x
    in ( 
    Union ( 
    ProjMap1 (LG,i))); 
    
              then x
    in ( 
    union ( 
    rng ( 
    ProjMap1 (LG,i)))) by 
    CARD_3:def 4;
    
              then
    
              consider Px be
    set such that 
    
              
    
    X50: x 
    in Px & Px 
    in ( 
    rng ( 
    ProjMap1 (LG,i))) by 
    TARSKI:def 4;
    
              consider j be
    Element of 
    NAT such that 
    
              
    
    X51: Px 
    = (( 
    ProjMap1 (LG,i)) 
    . j) by 
    X50,
    FUNCT_2: 113;
    
              ((
    ProjMap1 (LG,i)) 
    . j) 
    = (LG 
    . (i,j)) by 
    MESFUNC9:def 6;
    
              then x
    in ((D 
    . (i 
    + 1)) 
    /\ (G 
    . j)) by 
    X50,
    X51,
    D5;
    
              hence x
    in (D 
    . (i 
    + 1)) by 
    XBOOLE_0:def 4;
    
            end;
    
            then (
    Union ( 
    ProjMap1 (LG,i))) 
    c= (D 
    . (i 
    + 1)) by 
    TARSKI:def 3;
    
            hence thesis by
    X48,
    XBOOLE_0:def 10;
    
          end;
    
          
    
          
    
    X5: for i be 
    Element of 
    NAT st i 
    < ( 
    len D) holds ((P 
    * D) 
    . (i 
    + 1)) 
    <= (( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG))) 
    . i) 
    
          proof
    
            let i be
    Element of 
    NAT ; 
    
            assume
    
            
    
    X50: i 
    < ( 
    len D); 
    
            then
    
            
    
    X50a: 1 
    <= (i 
    + 1) & (i 
    + 1) 
    <= ( 
    len D) by 
    NAT_1: 11,
    NAT_1: 13;
    
            then
    
            
    
    X51: (i 
    + 1) 
    in ( 
    dom D) by 
    FINSEQ_3: 25;
    
            then
    
            
    
    X52: (D 
    . (i 
    + 1)) 
    in ( 
    rng D) by 
    FUNCT_1: 3;
    
            now
    
              let x,y be
    object;
    
              assume
    
              
    
    V1: x 
    <> y; 
    
              per cases ;
    
                suppose not x
    in ( 
    dom ( 
    ProjMap1 (LG,i))) or not y 
    in ( 
    dom ( 
    ProjMap1 (LG,i))); 
    
                then ((
    ProjMap1 (LG,i)) 
    . x) 
    =  
    {} or (( 
    ProjMap1 (LG,i)) 
    . y) 
    =  
    {} by 
    FUNCT_1:def 2;
    
                hence ((
    ProjMap1 (LG,i)) 
    . x) 
    misses (( 
    ProjMap1 (LG,i)) 
    . y) by 
    XBOOLE_1: 65;
    
              end;
    
                suppose x
    in ( 
    dom ( 
    ProjMap1 (LG,i))) & y 
    in ( 
    dom ( 
    ProjMap1 (LG,i))); 
    
                then
    
                reconsider x1 = x, y1 = y as
    Element of 
    NAT ; 
    
                ((
    ProjMap1 (LG,i)) 
    . x) 
    = (LG 
    . (i,x1)) & (( 
    ProjMap1 (LG,i)) 
    . y) 
    = (LG 
    . (i,y1)) by 
    MESFUNC9:def 6;
    
                then ((
    ProjMap1 (LG,i)) 
    . x) 
    = ((D 
    . (i 
    + 1)) 
    /\ (G 
    . x1)) & (( 
    ProjMap1 (LG,i)) 
    . y) 
    = ((D 
    . (i 
    + 1)) 
    /\ (G 
    . y1)) by 
    X50a,
    D5;
    
                hence ((
    ProjMap1 (LG,i)) 
    . x) 
    misses (( 
    ProjMap1 (LG,i)) 
    . y) by 
    V1,
    PROB_2:def 2,
    XBOOLE_1: 76;
    
              end;
    
            end;
    
            then
    
            
    
    X53: ( 
    ProjMap1 (LG,i)) is 
    disjoint_valued  
    Function of 
    NAT , S by 
    PROB_2:def 2;
    
            
    
            
    
    X54: (D 
    . (i 
    + 1)) 
    = ( 
    Union ( 
    ProjMap1 (LG,i))) by 
    X4,
    X50;
    
            
    
            
    
    X55: ((P 
    * D) 
    . (i 
    + 1)) 
    = (P 
    . (D 
    . (i 
    + 1))) by 
    X51,
    FUNCT_1: 13
    
            .= (P
    . ( 
    Union ( 
    ProjMap1 (LG,i)))) by 
    X4,
    X50;
    
            
    
    X56: 
    
            now
    
              let k be
    Element of 
    NAT ; 
    
              (P
    . (LG 
    . (i,k))) 
    = ((P 
    * LG) 
    . (i,k)) by 
    ZFMISC_1: 87,
    FUNCT_2: 15;
    
              
    
              then ((
    ProjMap1 ((P 
    * LG),i)) 
    . k) 
    = (P 
    . (LG 
    . (i,k))) by 
    MESFUNC9:def 6
    
              .= (P
    . (( 
    ProjMap1 (LG,i)) 
    . k)) by 
    MESFUNC9:def 6;
    
              hence ((P
    * ( 
    ProjMap1 (LG,i))) 
    . k) 
    = (( 
    ProjMap1 ((P 
    * LG),i)) 
    . k) by 
    FUNCT_2: 15;
    
            end;
    
            (
    SUM (P 
    * ( 
    ProjMap1 (LG,i)))) 
    = ( 
    Sum (P 
    * ( 
    ProjMap1 (LG,i)))) by 
    MEASURE8: 2
    
            .= (
    lim ( 
    Partial_Sums (P 
    * ( 
    ProjMap1 (LG,i))))) by 
    MESFUNC9:def 3
    
            .= (
    lim ( 
    Partial_Sums ( 
    ProjMap1 ((P 
    * LG),i)))) by 
    X56,
    FUNCT_2:def 8
    
            .= (
    lim ( 
    ProjMap1 (( 
    Partial_Sums_in_cod2 (P 
    * LG)),i))) by 
    DBLSEQ_3: 53
    
            .= ((
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG))) 
    . i) by 
    DBLSEQ_3:def 13;
    
            hence thesis by
    X55,
    X52,
    X53,
    X54,
    Def8;
    
          end;
    
          defpred
    
    SPD[
    Nat] means $1
    < ( 
    len (P 
    * D)) implies (SumPD 
    . ($1 
    + 1)) 
    <= (( 
    Partial_Sums ( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG)))) 
    . $1); 
    
          (
    rng D) 
    c= S; 
    
          then (
    rng D) 
    c= ( 
    dom P) by 
    FUNCT_2:def 1;
    
          then (
    dom (P 
    * D)) 
    = ( 
    dom D) by 
    RELAT_1: 27;
    
          then
    
          
    
    X71: ( 
    len (P 
    * D)) 
    = ( 
    len D) by 
    FINSEQ_3: 29;
    
          now
    
            assume
    
            
    
    X60: 
    0  
    < ( 
    len (P 
    * D)); 
    
            then
    
            
    
    X61: ((P 
    * D) 
    . ( 
    0  
    + 1)) 
    <= (( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG))) 
    .  
    0 ) by 
    X5,
    X71;
    
            (SumPD
    . ( 
    0  
    + 1)) 
    = ((SumPD 
    .  
    0 ) 
    + ((P 
    * D) 
    . ( 
    0  
    + 1))) by 
    X60,
    X3;
    
            then (SumPD
    . ( 
    0  
    + 1)) 
    = ((P 
    * D) 
    . 1) by 
    X3,
    XXREAL_3: 4;
    
            hence (SumPD
    . ( 
    0  
    + 1)) 
    <= (( 
    Partial_Sums ( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG)))) 
    .  
    0 ) by 
    X61,
    MESFUNC9:def 1;
    
          end;
    
          then
    
          
    
    X62: 
    SPD[
    0 ]; 
    
          
    
          
    
    X63: for k be 
    Nat st 
    SPD[k] holds
    SPD[(k
    + 1)] 
    
          proof
    
            let k be
    Nat;
    
            assume
    
            
    
    X64: 
    SPD[k];
    
            assume
    
            
    
    X65: (k 
    + 1) 
    < ( 
    len (P 
    * D)); 
    
            then
    
            
    
    X67: ((P 
    * D) 
    . ((k 
    + 1) 
    + 1)) 
    <= (( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG))) 
    . (k 
    + 1)) by 
    X5,
    X71;
    
            (SumPD
    . ((k 
    + 1) 
    + 1)) 
    = ((SumPD 
    . (k 
    + 1)) 
    + ((P 
    * D) 
    . ((k 
    + 1) 
    + 1))) by 
    X3,
    X65;
    
            then (SumPD
    . ((k 
    + 1) 
    + 1)) 
    <= ((( 
    Partial_Sums ( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG)))) 
    . k) 
    + (( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG))) 
    . (k 
    + 1))) by 
    NAT_1: 13,
    X67,
    X64,
    X65,
    XXREAL_3: 36;
    
            hence (SumPD
    . ((k 
    + 1) 
    + 1)) 
    <= (( 
    Partial_Sums ( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG)))) 
    . (k 
    + 1)) by 
    MESFUNC9:def 1;
    
          end;
    
          
    
          
    
    X68: for k be 
    Nat holds 
    SPD[k] from
    NAT_1:sch 2(
    X62,
    X63);
    
          
    
    XX70: 
    
          now
    
            assume D
    =  
    {} ; 
    
            then (
    union ( 
    rng D)) 
    =  
    {} by 
    ZFMISC_1: 2;
    
            then
    
            
    
    X69: ( 
    union ( 
    rng FSets)) 
    =  
    {} by 
    B1,
    B2,
    CARD_3:def 4;
    
            (
    union  
    {a})
    c= ( 
    union ( 
    rng FSets)) by 
    E6,
    ZFMISC_1: 31,
    ZFMISC_1: 77;
    
            hence contradiction by
    X69;
    
          end;
    
          then
    
          consider i1 be
    Nat such that 
    
          
    
    X70: ( 
    len D) 
    = (i1 
    + 1) by 
    NAT_1: 6;
    
          reconsider i1 as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
          i1
    < ( 
    len D) by 
    X70,
    NAT_1: 13;
    
          then
    
          
    
    X72: ( 
    Sum (P 
    * D)) 
    <= (( 
    Partial_Sums ( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG)))) 
    . i1) by 
    X70,
    X71,
    X68,
    X3;
    
          
    
          
    
    X73: ( 
    len (P 
    * D)) 
    >= i1 by 
    X70,
    X71,
    NAT_1: 11;
    
          
    
          
    
    W3: ( 
    Partial_Sums_in_cod2 (P 
    * LG)) is 
    convergent_in_cod2 by 
    DBLSEQ_3: 66;
    
          then
    
          
    
    X80: ( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG))) is 
    nonnegative by 
    DBLSEQ_3: 65;
    
          then
    
          
    
    X74: (( 
    Partial_Sums ( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG)))) 
    . i1) 
    <= (( 
    Partial_Sums ( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG)))) 
    . ( 
    len (P 
    * D))) by 
    X73,
    RINFSUP2: 7,
    MESFUNC9: 16;
    
          ((
    Partial_Sums ( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG)))) 
    . ( 
    len (P 
    * D))) 
    = (( 
    lim_in_cod2 ( 
    Partial_Sums (P 
    * LG))) 
    . ( 
    len (P 
    * D))) 
    
          proof
    
            per cases ;
    
              suppose
    
              
    
    X75: (( 
    Partial_Sums ( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG)))) 
    . ( 
    len (P 
    * D))) 
    =  
    +infty ; 
    
              then ex k be
    Element of 
    NAT st k 
    <= ( 
    len (P 
    * D)) & ( 
    ProjMap1 (( 
    Partial_Sums_in_cod2 (P 
    * LG)),k)) is 
    convergent_to_+infty by 
    DBLSEQ_3: 74;
    
              then (
    lim ( 
    ProjMap1 (( 
    Partial_Sums_in_cod2 ( 
    Partial_Sums_in_cod1 (P 
    * LG))),( 
    len (P 
    * D))))) 
    =  
    +infty by 
    DBLSEQ_3: 77;
    
              then (
    lim ( 
    ProjMap1 (( 
    Partial_Sums (P 
    * LG)),( 
    len (P 
    * D))))) 
    =  
    +infty by 
    DBLSEQ_3:def 16;
    
              hence ((
    Partial_Sums ( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG)))) 
    . ( 
    len (P 
    * D))) 
    = (( 
    lim_in_cod2 ( 
    Partial_Sums (P 
    * LG))) 
    . ( 
    len (P 
    * D))) by 
    X75,
    DBLSEQ_3:def 13;
    
            end;
    
              suppose ((
    Partial_Sums ( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG)))) 
    . ( 
    len (P 
    * D))) 
    <>  
    +infty ; 
    
              then
    
              
    
    X81: (( 
    Partial_Sums ( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG)))) 
    . ( 
    len (P 
    * D))) 
    <  
    +infty by 
    XXREAL_0: 4;
    
              for m be
    Element of 
    NAT holds ( 
    ProjMap1 (( 
    Partial_Sums_in_cod2 (P 
    * LG)),m)) is 
    convergent_to_finite_number
    
              proof
    
                let m be
    Element of 
    NAT ; 
    
                
    
                
    
    W5: ( 
    ProjMap1 (( 
    Partial_Sums_in_cod2 (P 
    * LG)),m)) is 
    convergent_to_+infty or ( 
    ProjMap1 (( 
    Partial_Sums_in_cod2 (P 
    * LG)),m)) is 
    convergent_to_finite_number or ( 
    ProjMap1 (( 
    Partial_Sums_in_cod2 (P 
    * LG)),m)) is 
    convergent_to_-infty by 
    W3,
    DBLSEQ_3:def 11,
    MESFUNC5:def 11;
    
                per cases ;
    
                  suppose m
    <= ( 
    len (P 
    * D)); 
    
                  then
    
                  
    
    W1: (( 
    Partial_Sums ( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG)))) 
    . m) 
    <= (( 
    Partial_Sums ( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG)))) 
    . ( 
    len (P 
    * D))) by 
    X80,
    MESFUNC9: 16,
    RINFSUP2: 7;
    
                  ((
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG))) 
    . m) 
    <= (( 
    Partial_Sums ( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG)))) 
    . m) by 
    X80,
    DBLSEQ_3: 4;
    
                  then
    
                  
    
    W2: (( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG))) 
    . m) 
    <= (( 
    Partial_Sums ( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG)))) 
    . ( 
    len (P 
    * D))) by 
    W1,
    XXREAL_0: 2;
    
                  ((
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG))) 
    . m) 
    >=  
    0 by 
    X80,
    SUPINF_2: 51;
    
                  then ((
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG))) 
    . m) 
    in  
    REAL by 
    W2,
    X81,
    XXREAL_0: 14;
    
                  then (
    lim ( 
    ProjMap1 (( 
    Partial_Sums_in_cod2 (P 
    * LG)),m))) 
    in  
    REAL by 
    DBLSEQ_3:def 13;
    
                  hence (
    ProjMap1 (( 
    Partial_Sums_in_cod2 (P 
    * LG)),m)) is 
    convergent_to_finite_number by 
    W5,
    MESFUNC5:def 12;
    
                end;
    
                  suppose m
    > ( 
    len (P 
    * D)); 
    
                  then
    
                  consider j be
    Nat such that 
    
                  
    
    W7: m 
    = (( 
    len (P 
    * D)) 
    + j) by 
    NAT_1: 10;
    
                  defpred
    
    H[
    Nat] means ((
    Partial_Sums ( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG)))) 
    . (( 
    len (P 
    * D)) 
    + $1)) 
    = (( 
    Partial_Sums ( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG)))) 
    . ( 
    len (P 
    * D))); 
    
                  
    
                  
    
    W8: 
    H[
    0 ]; 
    
                  
    
                  
    
    W9: for i be 
    Nat st 
    H[i] holds
    H[(i
    + 1)] 
    
                  proof
    
                    let i be
    Nat;
    
                    assume
    
                    
    
    W12: 
    H[i];
    
                    
    
                    
    
    W13: (( 
    Partial_Sums ( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG)))) 
    . ((( 
    len (P 
    * D)) 
    + i) 
    + 1)) 
    = ((( 
    Partial_Sums ( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG)))) 
    . ( 
    len (P 
    * D))) 
    + (( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG))) 
    . ((( 
    len (P 
    * D)) 
    + i) 
    + 1))) by 
    W12,
    MESFUNC9:def 1;
    
                    for s be
    Nat holds (( 
    ProjMap1 (( 
    Partial_Sums_in_cod2 (P 
    * LG)),((( 
    len (P 
    * D)) 
    + i) 
    + 1))) 
    . s) 
    =  
    0  
    
                    proof
    
                      let s be
    Nat;
    
                      reconsider s1 = s as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
                      
    
                      
    
    W15: (( 
    ProjMap1 (( 
    Partial_Sums_in_cod2 (P 
    * LG)),((( 
    len (P 
    * D)) 
    + i) 
    + 1))) 
    . s1) 
    = (( 
    Partial_Sums_in_cod2 (P 
    * LG)) 
    . (((( 
    len (P 
    * D)) 
    + i) 
    + 1),s)) by 
    MESFUNC9:def 6;
    
                      
    
                      
    
    P0: for k,j be 
    Nat holds ((P 
    * LG) 
    . (((( 
    len (P 
    * D)) 
    + k) 
    + 1),j)) 
    =  
    0  
    
                      proof
    
                        let k,j be
    Nat;
    
                        reconsider k1 = k, j1 = j as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
                        (((
    len D) 
    + k) 
    + 1) 
    >= ( 
    len D) by 
    NAT_1: 11,
    NAT_1: 12;
    
                        then
    
                        
    
    P1: (((( 
    len D) 
    + k1) 
    + 1) 
    + 1) 
    > ( 
    len D) by 
    NAT_1: 13;
    
                        
    [(((
    len (P 
    * D)) 
    + k1) 
    + 1), j1] 
    in  
    [:
    NAT , 
    NAT :] by 
    ZFMISC_1: 87;
    
                        then
    [(((
    len (P 
    * D)) 
    + k1) 
    + 1), j1] 
    in ( 
    dom LG) by 
    FUNCT_2:def 1;
    
                        then ((P
    * LG) 
    . (((( 
    len (P 
    * D)) 
    + k) 
    + 1),j)) 
    = (P 
    . (LG 
    . (((( 
    len D) 
    + k1) 
    + 1),j1))) by 
    X71,
    FUNCT_1: 13;
    
                        then ((P
    * LG) 
    . (((( 
    len (P 
    * D)) 
    + k) 
    + 1),j)) 
    = (P 
    .  
    {} ) by 
    D5,
    P1;
    
                        hence thesis by
    VALUED_0:def 19;
    
                      end;
    
                      defpred
    
    G[
    Nat] means ((
    Partial_Sums_in_cod2 (P 
    * LG)) 
    . (((( 
    len (P 
    * D)) 
    + i) 
    + 1),$1)) 
    =  
    0 ; 
    
                      ((
    Partial_Sums_in_cod2 (P 
    * LG)) 
    . (((( 
    len (P 
    * D)) 
    + i) 
    + 1), 
    0 )) 
    = ((P 
    * LG) 
    . (((( 
    len (P 
    * D)) 
    + i) 
    + 1), 
    0 )) by 
    DBLSEQ_3:def 14;
    
                      then
    
                      
    
    W16: 
    G[
    0 ] by 
    P0;
    
                      
    
                      
    
    W17: for j be 
    Nat st 
    G[j] holds
    G[(j
    + 1)] 
    
                      proof
    
                        let j be
    Nat;
    
                        assume
    
                        
    
    P2: 
    G[j];
    
                        ((
    Partial_Sums_in_cod2 (P 
    * LG)) 
    . (((( 
    len (P 
    * D)) 
    + i) 
    + 1),(j 
    + 1))) 
    = ((( 
    Partial_Sums_in_cod2 (P 
    * LG)) 
    . (((( 
    len (P 
    * D)) 
    + i) 
    + 1),j)) 
    + ((P 
    * LG) 
    . (((( 
    len (P 
    * D)) 
    + i) 
    + 1),(j 
    + 1)))) by 
    DBLSEQ_3:def 14
    
                        .= ((P
    * LG) 
    . (((( 
    len (P 
    * D)) 
    + i) 
    + 1),(j 
    + 1))) by 
    P2,
    XXREAL_3: 4;
    
                        hence
    G[(j
    + 1)] by 
    P0;
    
                      end;
    
                      for j be
    Nat holds 
    G[j] from
    NAT_1:sch 2(
    W16,
    W17);
    
                      hence ((
    ProjMap1 (( 
    Partial_Sums_in_cod2 (P 
    * LG)),((( 
    len (P 
    * D)) 
    + i) 
    + 1))) 
    . s) 
    =  
    0 by 
    W15;
    
                    end;
    
                    then (
    lim ( 
    ProjMap1 (( 
    Partial_Sums_in_cod2 (P 
    * LG)),((( 
    len (P 
    * D)) 
    + i) 
    + 1)))) 
    =  
    0 by 
    MESFUNC5: 52;
    
                    then ((
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG))) 
    . ((( 
    len (P 
    * D)) 
    + i) 
    + 1)) 
    =  
    0 by 
    DBLSEQ_3:def 13;
    
                    hence
    H[(i
    + 1)] by 
    W13,
    XXREAL_3: 4;
    
                  end;
    
                  for i be
    Nat holds 
    H[i] from
    NAT_1:sch 2(
    W8,
    W9);
    
                  then
    H[j];
    
                  then
    
                  
    
    W10: (( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG))) 
    . m) 
    <= (( 
    Partial_Sums ( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG)))) 
    . ( 
    len (P 
    * D))) by 
    W7,
    X80,
    DBLSEQ_3: 4;
    
                  ((
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG))) 
    . m) 
    >  
    -infty by 
    X80,
    SUPINF_2: 51;
    
                  then ((
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG))) 
    . m) 
    in  
    REAL by 
    W10,
    X81,
    XXREAL_0: 14;
    
                  then (
    lim ( 
    ProjMap1 (( 
    Partial_Sums_in_cod2 (P 
    * LG)),m))) 
    in  
    REAL by 
    DBLSEQ_3:def 13;
    
                  hence (
    ProjMap1 (( 
    Partial_Sums_in_cod2 (P 
    * LG)),m)) is 
    convergent_to_finite_number by 
    W5,
    MESFUNC5:def 12;
    
                end;
    
              end;
    
              then (
    Partial_Sums (P 
    * LG)) is 
    convergent_in_cod2_to_finite by 
    DBLSEQ_3:def 10,
    DBLSEQ_3: 81;
    
              
    
              then ((
    Partial_Sums ( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG)))) 
    . ( 
    len (P 
    * D))) 
    = ( 
    lim ( 
    ProjMap1 (( 
    Partial_Sums_in_cod2 ( 
    Partial_Sums_in_cod1 (P 
    * LG))),( 
    len (P 
    * D))))) by 
    DBLSEQ_3: 82
    
              .= (
    lim ( 
    ProjMap1 (( 
    Partial_Sums (P 
    * LG)),( 
    len (P 
    * D))))) by 
    DBLSEQ_3:def 16;
    
              hence ((
    Partial_Sums ( 
    lim_in_cod2 ( 
    Partial_Sums_in_cod2 (P 
    * LG)))) 
    . ( 
    len (P 
    * D))) 
    = (( 
    lim_in_cod2 ( 
    Partial_Sums (P 
    * LG))) 
    . ( 
    len (P 
    * D))) by 
    DBLSEQ_3:def 13;
    
            end;
    
          end;
    
          then
    
          
    
    X100: ( 
    Sum (P 
    * D)) 
    <= (( 
    lim_in_cod2 ( 
    Partial_Sums (P 
    * LG))) 
    . ( 
    len (P 
    * D))) by 
    X74,
    X72,
    XXREAL_0: 2;
    
          for j be
    Nat holds (( 
    Partial_Sums_in_cod1 (P 
    * LG)) 
    . (( 
    len (P 
    * D)),j)) 
    = ((P 
    * G) 
    . j) 
    
          proof
    
            let j be
    Nat;
    
            reconsider j1 = j as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
            consider k,m be
    Nat such that 
    
            
    
    M0: m 
    in ( 
    dom (s 
    . k)) & ((((( 
    Partial_Sums ( 
    Length s)) 
    . k) 
    - ( 
    len (s 
    . k))) 
    + m) 
    - 1) 
    = j & (G 
    . j) 
    = ((s 
    . k) 
    . m) by 
    Def4;
    
            reconsider k1 = k as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
            
    [k1, (s
    . k1)] 
    in Z by 
    F9;
    
            then
    
            consider k2 be
    Nat, Sk be 
    disjoint_valued  
    FinSequence of S such that 
    
            
    
    M1: 
    [k1, (s
    . k1)] 
    =  
    [k2, Sk] & (
    Union Sk) 
    = (FSets 
    . k2) & ((FSets 
    . k2) 
    =  
    {} implies Sk 
    =  
    <*
    {} *>); 
    
            
    
            
    
    M2: (s 
    . k) 
    = Sk & ( 
    Union Sk) 
    = (FSets 
    . k) & ((FSets 
    . k) 
    =  
    {} implies Sk 
    =  
    <*
    {} *>) by 
    M1,
    XTUPLE_0: 1;
    
            defpred
    
    Cj[
    Nat, 
    object] means $2
    = ((D 
    . $1) 
    /\ (G 
    . j)); 
    
            
    
            
    
    M3: for k be 
    Nat st k 
    in ( 
    Seg ( 
    len D)) holds ex x be 
    Element of S st 
    Cj[k, x]
    
            proof
    
              let k be
    Nat;
    
              assume
    
              
    
    M5: k 
    in ( 
    Seg ( 
    len D)); 
    
              then 1
    <= k & k 
    <= ( 
    len D) by 
    FINSEQ_1: 1;
    
              then
    
              consider k1 be
    Nat such that 
    
              
    
    M4: k 
    = (k1 
    + 1) by 
    NAT_1: 6;
    
              reconsider kk1 = k1 as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
              (LG
    . (kk1,j1)) 
    = ((D 
    . k) 
    /\ (G 
    . j)) by 
    M4,
    M5,
    D5,
    FINSEQ_1: 1;
    
              hence thesis;
    
            end;
    
            consider Cj be
    FinSequence of S such that 
    
            
    
    M7: ( 
    dom Cj) 
    = ( 
    Seg ( 
    len D)) & for k be 
    Nat st k 
    in ( 
    Seg ( 
    len D)) holds 
    Cj[k, (Cj
    . k)] from 
    FINSEQ_1:sch 5(
    M3);
    
            
    
            
    
    M7a: ( 
    len Cj) 
    = ( 
    len D) by 
    M7,
    FINSEQ_1:def 3;
    
            now
    
              let x,y be
    object;
    
              assume
    
              
    
    M61: x 
    <> y; 
    
              per cases ;
    
                suppose
    
                
    
    M62: x 
    in ( 
    dom Cj) & y 
    in ( 
    dom Cj); 
    
                then
    
                reconsider x1 = x, y1 = y as
    Nat;
    
                (Cj
    . x) 
    = ((D 
    . x1) 
    /\ (G 
    . j)) & (Cj 
    . y) 
    = ((D 
    . y1) 
    /\ (G 
    . j)) by 
    M7,
    M62;
    
                hence (Cj
    . x) 
    misses (Cj 
    . y) by 
    M61,
    PROB_2:def 2,
    XBOOLE_1: 76;
    
              end;
    
                suppose not x
    in ( 
    dom Cj) or not y 
    in ( 
    dom Cj); 
    
                then (Cj
    . x) 
    =  
    {} or (Cj 
    . y) 
    =  
    {} by 
    FUNCT_1:def 2;
    
                hence (Cj
    . x) 
    misses (Cj 
    . y) by 
    XBOOLE_1: 65;
    
              end;
    
            end;
    
            then
    
            reconsider Cj as
    disjoint_valued  
    FinSequence of S by 
    PROB_2:def 2;
    
            now
    
              let x be
    object;
    
              assume x
    in ( 
    Union Cj); 
    
              then x
    in ( 
    union ( 
    rng Cj)) by 
    CARD_3:def 4;
    
              then
    
              consider V be
    set such that 
    
              
    
    M64: x 
    in V & V 
    in ( 
    rng Cj) by 
    TARSKI:def 4;
    
              consider y be
    object such that 
    
              
    
    M65: y 
    in ( 
    dom Cj) & V 
    = (Cj 
    . y) by 
    M64,
    FUNCT_1:def 3;
    
              reconsider y as
    Nat by 
    M65;
    
              (Cj
    . y) 
    = ((D 
    . y) 
    /\ (G 
    . j)) by 
    M65,
    M7;
    
              hence x
    in (G 
    . j) by 
    M64,
    M65,
    XBOOLE_0:def 4;
    
            end;
    
            then
    
            
    
    M66: ( 
    Union Cj) 
    c= (G 
    . j) by 
    TARSKI:def 3;
    
            now
    
              let x be
    object;
    
              assume
    
              
    
    M67a: x 
    in (G 
    . j); 
    
              then x
    in (Sk 
    . m) & (Sk 
    . m) 
    in ( 
    rng Sk) by 
    M0,
    M2,
    FUNCT_1: 3;
    
              then x
    in ( 
    union ( 
    rng Sk)) by 
    TARSKI:def 4;
    
              then
    
              
    
    M67: x 
    in (FSets 
    . k2) by 
    M1,
    CARD_3:def 4;
    
              (
    dom FSets) 
    =  
    NAT by 
    FUNCT_2:def 1;
    
              then (FSets
    . k2) 
    in ( 
    rng FSets) by 
    FUNCT_1: 3,
    ORDINAL1:def 12;
    
              then x
    in ( 
    union ( 
    rng FSets)) by 
    M67,
    TARSKI:def 4;
    
              then x
    in ( 
    union ( 
    rng D)) by 
    B1,
    B2,
    CARD_3:def 4;
    
              then
    
              consider V be
    set such that 
    
              
    
    M68: x 
    in V & V 
    in ( 
    rng D) by 
    TARSKI:def 4;
    
              consider y be
    object such that 
    
              
    
    M69: y 
    in ( 
    dom D) & V 
    = (D 
    . y) by 
    M68,
    FUNCT_1:def 3;
    
              reconsider y as
    Nat by 
    M69;
    
              
    
              
    
    M70: x 
    in ((D 
    . y) 
    /\ (G 
    . j)) by 
    M67a,
    M68,
    M69,
    XBOOLE_0:def 4;
    
              y
    in ( 
    Seg ( 
    len D)) by 
    M69,
    FINSEQ_1:def 3;
    
              then
    
              
    
    M71: x 
    in (Cj 
    . y) by 
    M7,
    M70;
    
              y
    in ( 
    dom Cj) by 
    M69,
    FINSEQ_1:def 3,
    M7;
    
              then (Cj
    . y) 
    in ( 
    rng Cj) by 
    FUNCT_1: 3;
    
              then x
    in ( 
    union ( 
    rng Cj)) by 
    M71,
    TARSKI:def 4;
    
              hence x
    in ( 
    Union Cj) by 
    CARD_3:def 4;
    
            end;
    
            then (G
    . j) 
    c= ( 
    Union Cj) by 
    TARSKI:def 3;
    
            then
    
            
    
    M6: ( 
    Union Cj) 
    = (G 
    . j) by 
    M66,
    XBOOLE_0:def 10;
    
            
    
            
    
    M6b: (P 
    . (G 
    . j)) 
    = ( 
    Sum (P 
    * Cj)) by 
    M6,
    Def8;
    
            j
    in  
    NAT by 
    ORDINAL1:def 12;
    
            then j
    in ( 
    dom G) by 
    FUNCT_2:def 1;
    
            then
    
            
    
    M6a: ((P 
    * G) 
    . j) 
    = ( 
    Sum (P 
    * Cj)) by 
    M6b,
    FUNCT_1: 13;
    
            consider SumPCj be
    sequence of 
    ExtREAL such that 
    
            
    
    M8: ( 
    Sum (P 
    * Cj)) 
    = (SumPCj 
    . ( 
    len (P 
    * Cj))) & (SumPCj 
    .  
    0 ) 
    =  
    0. & for i be 
    Nat st i 
    < ( 
    len (P 
    * Cj)) holds (SumPCj 
    . (i 
    + 1)) 
    = ((SumPCj 
    . i) 
    + ((P 
    * Cj) 
    . (i 
    + 1))) by 
    EXTREAL1:def 2;
    
            (
    rng Cj) 
    c= S; 
    
            then (
    rng Cj) 
    c= ( 
    dom P) by 
    FUNCT_2:def 1;
    
            then
    
            
    
    N9: ( 
    dom (P 
    * Cj)) 
    = ( 
    dom Cj) by 
    RELAT_1: 27;
    
            then
    
            
    
    M9: ( 
    len (P 
    * Cj)) 
    = ( 
    len Cj) by 
    FINSEQ_3: 29;
    
            
    
            
    
    M13: for i be 
    Nat st i 
    < ( 
    len D) holds ((P 
    * Cj) 
    . (i 
    + 1)) 
    = ((P 
    * LG) 
    . (i,j)) 
    
            proof
    
              let i be
    Nat;
    
              assume i
    < ( 
    len D); 
    
              then
    
              
    
    M11: 1 
    <= (i 
    + 1) & (i 
    + 1) 
    <= ( 
    len D) by 
    NAT_1: 11,
    NAT_1: 13;
    
              then
    
              
    
    M12: (i 
    + 1) 
    in ( 
    Seg ( 
    len D)); 
    
              ((P
    * Cj) 
    . (i 
    + 1)) 
    = (P 
    . (Cj 
    . (i 
    + 1))) by 
    M11,
    N9,
    M7a,
    FINSEQ_3: 25,
    FUNCT_1: 12;
    
              then ((P
    * Cj) 
    . (i 
    + 1)) 
    = (P 
    . ((D 
    . (i 
    + 1)) 
    /\ (G 
    . j))) by 
    M7,
    M12;
    
              then
    
              
    
    M10: ((P 
    * Cj) 
    . (i 
    + 1)) 
    = (P 
    . (LG 
    . (i,j))) by 
    M11,
    D5a;
    
              i
    in  
    NAT & j 
    in  
    NAT by 
    ORDINAL1:def 12;
    
              then
    [i, j]
    in  
    [:
    NAT , 
    NAT :] by 
    ZFMISC_1: 87;
    
              then
    [i, j]
    in ( 
    dom LG) by 
    FUNCT_2:def 1;
    
              hence ((P
    * Cj) 
    . (i 
    + 1)) 
    = ((P 
    * LG) 
    . (i,j)) by 
    M10,
    FUNCT_1: 13;
    
            end;
    
            
    
            
    
    MM15: (( 
    len (P 
    * D)) 
    + 1) 
    > ( 
    len D) by 
    X71,
    NAT_1: 13;
    
            (
    len (P 
    * D)) 
    in  
    NAT & j 
    in  
    NAT by 
    ORDINAL1:def 12;
    
            then
    [(
    len (P 
    * D)), j] 
    in  
    [:
    NAT , 
    NAT :] by 
    ZFMISC_1: 87;
    
            then
    [(
    len (P 
    * D)), j] 
    in ( 
    dom LG) by 
    FUNCT_2:def 1;
    
            then ((P
    * LG) 
    . (( 
    len (P 
    * D)),j)) 
    = (P 
    . (LG 
    . (( 
    len (P 
    * D)),j))) by 
    FUNCT_1: 13;
    
            then ((P
    * LG) 
    . (( 
    len (P 
    * D)),j)) 
    = (P 
    .  
    {} ) by 
    MM15,
    D5a;
    
            then
    
            
    
    M15: ((P 
    * LG) 
    . (( 
    len (P 
    * D)),j)) 
    =  
    0 by 
    VALUED_0:def 19;
    
            consider LENDM1 be
    Nat such that 
    
            
    
    M23: ( 
    len D) 
    = (LENDM1 
    + 1) by 
    XX70,
    NAT_1: 6;
    
            
    
            
    
    M24: LENDM1 
    < ( 
    len (P 
    * D)) by 
    M23,
    X71,
    NAT_1: 13;
    
            defpred
    
    EQ[
    Nat] means $1
    < ( 
    len (P 
    * D)) implies (( 
    Partial_Sums_in_cod1 (P 
    * LG)) 
    . ($1,j)) 
    = (SumPCj 
    . ($1 
    + 1)); 
    
            ((
    Partial_Sums_in_cod1 (P 
    * LG)) 
    . ( 
    0 ,j)) 
    = ((P 
    * LG) 
    . ( 
    0 ,j)) by 
    DBLSEQ_3:def 15;
    
            then
    
            
    
    M17: (( 
    Partial_Sums_in_cod1 (P 
    * LG)) 
    . ( 
    0 ,j)) 
    = ((P 
    * Cj) 
    . ( 
    0  
    + 1)) by 
    XX70,
    M13;
    
            (SumPCj
    . ( 
    0  
    + 1)) 
    = ( 
    0  
    + ((P 
    * Cj) 
    . ( 
    0  
    + 1))) by 
    XX70,
    M7a,
    M9,
    M8;
    
            then
    
            
    
    M18: 
    EQ[
    0 ] by 
    M17,
    XXREAL_3: 4;
    
            
    
            
    
    M22: for k be 
    Nat st 
    EQ[k] holds
    EQ[(k
    + 1)] 
    
            proof
    
              let k be
    Nat;
    
              assume
    
              
    
    M19: 
    EQ[k];
    
              assume
    
              
    
    M20: (k 
    + 1) 
    < ( 
    len (P 
    * D)); 
    
              
    
              then ((
    Partial_Sums_in_cod1 (P 
    * LG)) 
    . ((k 
    + 1),j)) 
    = ((SumPCj 
    . (k 
    + 1)) 
    + ((P 
    * LG) 
    . ((k 
    + 1),j))) by 
    M19,
    NAT_1: 13,
    DBLSEQ_3:def 15
    
              .= ((SumPCj
    . (k 
    + 1)) 
    + ((P 
    * Cj) 
    . ((k 
    + 1) 
    + 1))) by 
    M20,
    M13,
    X71;
    
              hence ((
    Partial_Sums_in_cod1 (P 
    * LG)) 
    . ((k 
    + 1),j)) 
    = (SumPCj 
    . ((k 
    + 1) 
    + 1)) by 
    M20,
    M9,
    M7a,
    M8,
    X71;
    
            end;
    
            for k be
    Nat holds 
    EQ[k] from
    NAT_1:sch 2(
    M18,
    M22);
    
            then ((
    Partial_Sums_in_cod1 (P 
    * LG)) 
    . (LENDM1,j)) 
    = ((P 
    * G) 
    . j) by 
    M6a,
    M8,
    M24,
    M23,
    M7a,
    M9;
    
            then ((
    Partial_Sums_in_cod1 (P 
    * LG)) 
    . (( 
    len (P 
    * D)),j)) 
    = (((P 
    * G) 
    . j) 
    +  
    0 ) by 
    M15,
    X71,
    M23,
    DBLSEQ_3:def 15;
    
            hence thesis by
    XXREAL_3: 4;
    
          end;
    
          then
    
          
    
    X120: (M 
    . ( 
    Union FSets)) 
    <= ( 
    Sum (P 
    * G)) by 
    X2,
    X100,
    DBLSEQ_3: 41;
    
          (
    Partial_Sums (P 
    * G)) is 
    non-decreasing by 
    MESFUNC9: 16;
    
          then
    
          
    
    X123: ( 
    Partial_Sums (P 
    * G)) is 
    convergent by 
    RINFSUP2: 37;
    
          
    
          
    
    X124: ( 
    Partial_Sums (M 
    * FSets)) is 
    subsequence of ( 
    Partial_Sums (P 
    * G)) 
    
          proof
    
            consider N be
    increasing  
    sequence of 
    NAT such that 
    
            
    
    Z0: for k be 
    Nat holds (N 
    . k) 
    = ((( 
    Partial_Sums ( 
    Length s)) 
    . k) 
    - 1) by 
    Th11;
    
            defpred
    
    P[
    Nat] means (((
    Partial_Sums (P 
    * G)) 
    * N) 
    . $1) 
    = (( 
    Partial_Sums (M 
    * FSets)) 
    . $1); 
    
            
    [
    0 , (s 
    .  
    0 )] 
    in Z by 
    F9;
    
            then
    
            consider n0 be
    Nat, E0 be 
    disjoint_valued  
    FinSequence of S such that 
    
            
    
    Z1: 
    [
    0 , (s 
    .  
    0 )] 
    =  
    [n0, E0] & (
    Union E0) 
    = (FSets 
    . n0) & ((FSets 
    . n0) 
    =  
    {} implies E0 
    =  
    <*
    {} *>); 
    
            
    
            
    
    Z2: n0 
    =  
    0 & E0 
    = (s 
    .  
    0 ) by 
    Z1,
    XTUPLE_0: 1;
    
            
    
            
    
    Z4: (M 
    . ( 
    Union E0)) 
    = ( 
    Sum (P 
    * E0)) by 
    A1,
    Z1;
    
            consider SPE0 be
    sequence of 
    ExtREAL such that 
    
            
    
    Z5: ( 
    Sum (P 
    * E0)) 
    = (SPE0 
    . ( 
    len (P 
    * E0))) & (SPE0 
    .  
    0 ) 
    =  
    0. & for i be 
    Nat st i 
    < ( 
    len (P 
    * E0)) holds (SPE0 
    . (i 
    + 1)) 
    = ((SPE0 
    . i) 
    + ((P 
    * E0) 
    . (i 
    + 1))) by 
    EXTREAL1:def 2;
    
            (
    rng E0) 
    c= S; 
    
            then (
    rng E0) 
    c= ( 
    dom P) by 
    FUNCT_2:def 1;
    
            then
    
            
    
    ZZ10: ( 
    dom (P 
    * E0)) 
    = ( 
    dom E0) by 
    RELAT_1: 27;
    
            then
    
            
    
    Z10: ( 
    len (P 
    * E0)) 
    = ( 
    len E0) by 
    FINSEQ_3: 29;
    
            (
    len (s 
    .  
    0 )) 
    >= 1 by 
    FINSEQ_1: 20;
    
            then
    
            
    
    Z11: ( 
    len (s 
    .  
    0 )) 
    in ( 
    dom (s 
    .  
    0 )) & 1 
    in ( 
    dom (s 
    .  
    0 )) by 
    FINSEQ_3: 25;
    
            then
    
            consider N0 be
    Nat such that 
    
            
    
    Z6: N0 
    = ((((( 
    Partial_Sums ( 
    Length s)) 
    .  
    0 ) 
    - ( 
    len (s 
    .  
    0 ))) 
    + ( 
    len (s 
    .  
    0 ))) 
    - 1) & (G 
    . N0) 
    = ((s 
    .  
    0 ) 
    . ( 
    len (s 
    .  
    0 ))) by 
    Th13;
    
            
    
            
    
    Z6d: N0 
    = (N 
    .  
    0 ) by 
    Z0,
    Z6;
    
            N0
    = ((( 
    Length s) 
    .  
    0 ) 
    - 1) by 
    Z6,
    SERIES_1:def 1;
    
            then
    
            
    
    Z6c: (N0 
    + 1) 
    = ( 
    len (s 
    .  
    0 )) by 
    Def3;
    
            then
    
            
    
    Z6b: N0 
    < ( 
    len (s 
    .  
    0 )) by 
    NAT_1: 13;
    
            defpred
    
    P0[
    Nat] means $1
    < ( 
    len (P 
    * E0)) implies (( 
    Partial_Sums (P 
    * G)) 
    . $1) 
    = (SPE0 
    . ($1 
    + 1)); 
    
            consider z0 be
    Nat such that 
    
            
    
    Z7: z0 
    = ((((( 
    Partial_Sums ( 
    Length s)) 
    .  
    0 ) 
    - ( 
    len (s 
    .  
    0 ))) 
    + 1) 
    - 1) & (G 
    . z0) 
    = ((s 
    .  
    0 ) 
    . 1) by 
    Z11,
    Th13;
    
            z0
    = ((( 
    Length s) 
    .  
    0 ) 
    - ( 
    len (s 
    .  
    0 ))) by 
    Z7,
    SERIES_1:def 1;
    
            then
    
            
    
    Z8: z0 
    = (( 
    len (s 
    .  
    0 )) 
    - ( 
    len (s 
    .  
    0 ))) by 
    Def3;
    
            
    
            
    
    Z12: (( 
    Partial_Sums (P 
    * G)) 
    .  
    0 ) 
    = ((P 
    * G) 
    .  
    0 ) by 
    MESFUNC9:def 1
    
            .= (P
    . ((s 
    .  
    0 ) 
    . 1)) by 
    Z7,
    Z8,
    FUNCT_2: 15
    
            .= ((P
    * E0) 
    . 1) by 
    Z11,
    Z2,
    FUNCT_1: 13;
    
            (SPE0
    . ( 
    0  
    + 1)) 
    = ( 
    0  
    + ((P 
    * E0) 
    . 1)) by 
    Z5,
    Z10,
    Z2;
    
            then
    
            
    
    ZZ1: 
    P0[
    0 ] by 
    Z12,
    XXREAL_3: 4;
    
            
    
            
    
    ZZ2: for i be 
    Nat st 
    P0[i] holds
    P0[(i
    + 1)] 
    
            proof
    
              let i be
    Nat;
    
              assume
    
              
    
    Z13: 
    P0[i];
    
              assume
    
              
    
    Z14: (i 
    + 1) 
    < ( 
    len (P 
    * E0)); 
    
              
    
              
    
    Z16: (( 
    Partial_Sums (P 
    * G)) 
    . (i 
    + 1)) 
    = ((( 
    Partial_Sums (P 
    * G)) 
    . i) 
    + ((P 
    * G) 
    . (i 
    + 1))) by 
    MESFUNC9:def 1
    
              .= ((SPE0
    . (i 
    + 1)) 
    + (P 
    . (G 
    . (i 
    + 1)))) by 
    Z14,
    NAT_1: 13,
    Z13,
    FUNCT_2: 15;
    
              
    
              
    
    Z18: 1 
    <= ((i 
    + 1) 
    + 1) & ((i 
    + 1) 
    + 1) 
    <= ( 
    len (P 
    * E0)) by 
    Z14,
    NAT_1: 11,
    NAT_1: 13;
    
              then
    
              consider zi1 be
    Nat such that 
    
              
    
    Z17: zi1 
    = ((((( 
    Partial_Sums ( 
    Length s)) 
    .  
    0 ) 
    - ( 
    len (s 
    .  
    0 ))) 
    + ((i 
    + 1) 
    + 1)) 
    - 1) & (G 
    . zi1) 
    = ((s 
    .  
    0 ) 
    . ((i 
    + 1) 
    + 1)) by 
    Th13,
    ZZ10,
    Z2,
    FINSEQ_3: 25;
    
              zi1
    = ((((( 
    Length s) 
    .  
    0 ) 
    - ( 
    len (s 
    .  
    0 ))) 
    + ((i 
    + 1) 
    + 1)) 
    - 1) by 
    Z17,
    SERIES_1:def 1
    
              .= ((((
    len (s 
    .  
    0 )) 
    - ( 
    len (s 
    .  
    0 ))) 
    + ((i 
    + 1) 
    + 1)) 
    - 1) by 
    Def3;
    
              then (P
    . (G 
    . (i 
    + 1))) 
    = ((P 
    * E0) 
    . ((i 
    + 1) 
    + 1)) by 
    Z17,
    Z18,
    ZZ10,
    Z2,
    FINSEQ_3: 25,
    FUNCT_1: 13;
    
              hence ((
    Partial_Sums (P 
    * G)) 
    . (i 
    + 1)) 
    = (SPE0 
    . ((i 
    + 1) 
    + 1)) by 
    Z14,
    Z5,
    Z16;
    
            end;
    
            for i be
    Nat holds 
    P0[i] from
    NAT_1:sch 2(
    ZZ1,
    ZZ2);
    
            then ((
    Partial_Sums (P 
    * G)) 
    . N0) 
    = (M 
    . (FSets 
    .  
    0 )) by 
    Z6b,
    Z6c,
    Z2,
    Z10,
    Z5,
    Z4,
    Z1;
    
            then ((
    Partial_Sums (P 
    * G)) 
    . N0) 
    = ((M 
    * FSets) 
    .  
    0 ) by 
    FUNCT_2: 15;
    
            then ((
    Partial_Sums (P 
    * G)) 
    . N0) 
    = (( 
    Partial_Sums (M 
    * FSets)) 
    .  
    0 ) by 
    MESFUNC9:def 1;
    
            then
    
            
    
    Z100: 
    P[
    0 ] by 
    Z6d,
    FUNCT_2: 15;
    
            
    
            
    
    Z101: for n be 
    Nat st 
    P[n] holds
    P[(n
    + 1)] 
    
            proof
    
              let n be
    Nat;
    
              assume
    
              
    
    Z20: 
    P[n];
    
              
    [(n
    + 1), (s 
    . (n 
    + 1))] 
    in Z by 
    F9;
    
              then
    
              consider N1 be
    Nat, E be 
    disjoint_valued  
    FinSequence of S such that 
    
              
    
    Z21: 
    [(n
    + 1), (s 
    . (n 
    + 1))] 
    =  
    [N1, E] & (
    Union E) 
    = (FSets 
    . N1) & ((FSets 
    . N1) 
    =  
    {} implies E 
    =  
    <*
    {} *>); 
    
              
    
              
    
    Z22: (n 
    + 1) 
    = N1 & (s 
    . (n 
    + 1)) 
    = E by 
    Z21,
    XTUPLE_0: 1;
    
              
    
              
    
    Z24: (M 
    . ( 
    Union E)) 
    = ( 
    Sum (P 
    * E)) by 
    A1,
    Z21;
    
              consider SPE be
    sequence of 
    ExtREAL such that 
    
              
    
    Z25: ( 
    Sum (P 
    * E)) 
    = (SPE 
    . ( 
    len (P 
    * E))) & (SPE 
    .  
    0 ) 
    =  
    0. & for i be 
    Nat st i 
    < ( 
    len (P 
    * E)) holds (SPE 
    . (i 
    + 1)) 
    = ((SPE 
    . i) 
    + ((P 
    * E) 
    . (i 
    + 1))) by 
    EXTREAL1:def 2;
    
              (
    rng E) 
    c= S; 
    
              then (
    rng E) 
    c= ( 
    dom P) by 
    FUNCT_2:def 1;
    
              then
    
              
    
    ZZ30: ( 
    dom (P 
    * E)) 
    = ( 
    dom E) by 
    RELAT_1: 27;
    
              then
    
              
    
    Z30: ( 
    len (P 
    * E)) 
    = ( 
    len E) by 
    FINSEQ_3: 29;
    
              (
    len (s 
    . (n 
    + 1))) 
    >= 1 by 
    FINSEQ_1: 20;
    
              then
    
              
    
    Z31: ( 
    len (s 
    . (n 
    + 1))) 
    in ( 
    dom (s 
    . (n 
    + 1))) & 1 
    in ( 
    dom (s 
    . (n 
    + 1))) by 
    FINSEQ_3: 25;
    
              then
    
              consider NEnd be
    Nat such that 
    
              
    
    Z26: NEnd 
    = ((((( 
    Partial_Sums ( 
    Length s)) 
    . (n 
    + 1)) 
    - ( 
    len (s 
    . (n 
    + 1)))) 
    + ( 
    len (s 
    . (n 
    + 1)))) 
    - 1) & (G 
    . NEnd) 
    = ((s 
    . (n 
    + 1)) 
    . ( 
    len (s 
    . (n 
    + 1)))) by 
    Th13;
    
              
    
              
    
    Z26d: NEnd 
    = (N 
    . (n 
    + 1)) by 
    Z0,
    Z26;
    
              consider NSt be
    Nat such that 
    
              
    
    Z27: NSt 
    = ((((( 
    Partial_Sums ( 
    Length s)) 
    . (n 
    + 1)) 
    - ( 
    len (s 
    . (n 
    + 1)))) 
    + 1) 
    - 1) & (G 
    . NSt) 
    = ((s 
    . (n 
    + 1)) 
    . 1) by 
    Z31,
    Th13;
    
              NSt
    = (((( 
    Partial_Sums ( 
    Length s)) 
    . n) 
    + (( 
    Length s) 
    . (n 
    + 1))) 
    - ( 
    len (s 
    . (n 
    + 1)))) by 
    Z27,
    SERIES_1:def 1;
    
              then
    
              
    
    Z28: NSt 
    = (((( 
    Partial_Sums ( 
    Length s)) 
    . n) 
    + ( 
    len (s 
    . (n 
    + 1)))) 
    - ( 
    len (s 
    . (n 
    + 1)))) by 
    Def3;
    
              
    
              
    
    Z50: (N 
    . n) 
    = ((( 
    Partial_Sums ( 
    Length s)) 
    . n) 
    - 1) by 
    Z0;
    
              defpred
    
    PE[
    Nat] means $1
    < ( 
    len (P 
    * E)) implies (( 
    Partial_Sums (P 
    * G)) 
    . (((N 
    . n) 
    + $1) 
    + 1)) 
    = ((( 
    Partial_Sums (P 
    * G)) 
    . (N 
    . n)) 
    + (SPE 
    . ($1 
    + 1))); 
    
              
    
              
    
    Z40: (( 
    Partial_Sums (P 
    * G)) 
    . ((N 
    . n) 
    + 1)) 
    = ((( 
    Partial_Sums (P 
    * G)) 
    . (N 
    . n)) 
    + ((P 
    * G) 
    . ((N 
    . n) 
    + 1))) by 
    MESFUNC9:def 1
    
              .= (((
    Partial_Sums (P 
    * G)) 
    . (N 
    . n)) 
    + (P 
    . (G 
    . ((N 
    . n) 
    + 1)))) by 
    FUNCT_2: 15
    
              .= (((
    Partial_Sums (P 
    * G)) 
    . (N 
    . n)) 
    + ((P 
    * E) 
    . 1)) by 
    Z31,
    Z22,
    Z50,
    Z28,
    Z27,
    FUNCT_1: 13;
    
              (SPE
    . ( 
    0  
    + 1)) 
    = ((SPE 
    .  
    0 ) 
    + ((P 
    * E) 
    . ( 
    0  
    + 1))) by 
    Z25,
    Z30,
    Z22;
    
              then
    
              
    
    Z60: 
    PE[
    0 ] by 
    Z40,
    Z25,
    XXREAL_3: 4;
    
              
    
              
    
    Z61: for j be 
    Nat st 
    PE[j] holds
    PE[(j
    + 1)] 
    
              proof
    
                let j be
    Nat;
    
                assume
    
                
    
    Z52: 
    PE[j];
    
                assume
    
                
    
    Z53: (j 
    + 1) 
    < ( 
    len (P 
    * E)); 
    
                then
    
                
    
    Z58a: 1 
    <= ((j 
    + 1) 
    + 1) & ((j 
    + 1) 
    + 1) 
    <= ( 
    len (P 
    * E)) by 
    NAT_1: 11,
    NAT_1: 13;
    
                then
    
                consider Nj be
    Nat such that 
    
                
    
    Z58: Nj 
    = ((((( 
    Partial_Sums ( 
    Length s)) 
    . (n 
    + 1)) 
    - ( 
    len (s 
    . (n 
    + 1)))) 
    + ((j 
    + 1) 
    + 1)) 
    - 1) & (G 
    . Nj) 
    = ((s 
    . (n 
    + 1)) 
    . ((j 
    + 1) 
    + 1)) by 
    Th13,
    ZZ30,
    Z22,
    FINSEQ_3: 25;
    
                
    
                
    
    Z55: (( 
    Partial_Sums (P 
    * G)) 
    . (N 
    . n)) 
    >  
    -infty by 
    SUPINF_2: 51;
    
                
    
                
    
    Z56: (P 
    . (G 
    . ((((N 
    . n) 
    + j) 
    + 1) 
    + 1))) 
    >  
    -infty by 
    SUPINF_2: 51;
    
                defpred
    
    SP[
    Nat] means $1
    <= ( 
    len (P 
    * E)) implies (SPE 
    . $1) 
    >=  
    0 ; 
    
                
    
                
    
    ZZ1: 
    SP[
    0 ] by 
    Z25;
    
                
    
                
    
    ZZ2: for t be 
    Nat st 
    SP[t] holds
    SP[(t
    + 1)] 
    
                proof
    
                  let t be
    Nat;
    
                  assume
    
                  
    
    ZZ3: 
    SP[t];
    
                  assume
    
                  
    
    ZZ6: (t 
    + 1) 
    <= ( 
    len (P 
    * E)); 
    
                  then
    
                  
    
    ZZ5: (SPE 
    . (t 
    + 1)) 
    = ((SPE 
    . t) 
    + ((P 
    * E) 
    . (t 
    + 1))) by 
    Z25,
    NAT_1: 13;
    
                  (t
    + 1) 
    in ( 
    dom (P 
    * E)) by 
    NAT_1: 11,
    ZZ6,
    FINSEQ_3: 25;
    
                  then ((P
    * E) 
    . (t 
    + 1)) 
    = (P 
    . (E 
    . (t 
    + 1))) by 
    FUNCT_1: 12;
    
                  then ((P
    * E) 
    . (t 
    + 1)) 
    >=  
    0 by 
    SUPINF_2: 51;
    
                  hence thesis by
    ZZ3,
    ZZ6,
    NAT_1: 13,
    ZZ5;
    
                end;
    
                for t be
    Nat holds 
    SP[t] from
    NAT_1:sch 2(
    ZZ1,
    ZZ2);
    
                then
    
                
    
    Z57: (SPE 
    . (j 
    + 1)) 
    >=  
    0 by 
    Z53;
    
                ((
    Partial_Sums (P 
    * G)) 
    . (((N 
    . n) 
    + (j 
    + 1)) 
    + 1)) 
    = ((( 
    Partial_Sums (P 
    * G)) 
    . ((N 
    . n) 
    + (j 
    + 1))) 
    + ((P 
    * G) 
    . (((N 
    . n) 
    + (j 
    + 1)) 
    + 1))) by 
    MESFUNC9:def 1
    
                .= ((((
    Partial_Sums (P 
    * G)) 
    . (N 
    . n)) 
    + (SPE 
    . (j 
    + 1))) 
    + (P 
    . (G 
    . ((((N 
    . n) 
    + j) 
    + 1) 
    + 1)))) by 
    Z53,
    Z52,
    NAT_1: 13,
    FUNCT_2: 15
    
                .= (((
    Partial_Sums (P 
    * G)) 
    . (N 
    . n)) 
    + ((SPE 
    . (j 
    + 1)) 
    + (P 
    . (G 
    . ((((N 
    . n) 
    + j) 
    + 1) 
    + 1))))) by 
    Z55,
    Z56,
    Z57,
    XXREAL_3: 29
    
                .= (((
    Partial_Sums (P 
    * G)) 
    . (N 
    . n)) 
    + ((SPE 
    . (j 
    + 1)) 
    + ((P 
    * E) 
    . ((j 
    + 1) 
    + 1)))) by 
    Z58a,
    Z58,
    Z50,
    Z28,
    Z27,
    Z22,
    ZZ30,
    FINSEQ_3: 25,
    FUNCT_1: 13;
    
                hence thesis by
    Z53,
    Z25;
    
              end;
    
              
    
              
    
    Z62: for j be 
    Nat holds 
    PE[j] from
    NAT_1:sch 2(
    Z60,
    Z61);
    
              
    
              
    
    Z59a: ((N 
    . n) 
    + ( 
    len (P 
    * E))) 
    = (((( 
    Partial_Sums ( 
    Length s)) 
    . n) 
    - 1) 
    + ( 
    len (s 
    . (n 
    + 1)))) by 
    Z0,
    Z30,
    Z22
    
              .= ((((
    Partial_Sums ( 
    Length s)) 
    . n) 
    - 1) 
    + (( 
    Length s) 
    . (n 
    + 1))) by 
    Def3
    
              .= ((((
    Partial_Sums ( 
    Length s)) 
    . n) 
    + (( 
    Length s) 
    . (n 
    + 1))) 
    - 1) 
    
              .= (N
    . (n 
    + 1)) by 
    Z26,
    Z26d,
    SERIES_1:def 1;
    
              consider sn1 be
    Nat such that 
    
              
    
    Z63: ( 
    len (P 
    * E)) 
    = (sn1 
    + 1) by 
    Z22,
    Z30,
    NAT_1: 6;
    
              sn1
    < ( 
    len (P 
    * E)) by 
    Z63,
    NAT_1: 13;
    
              
    
              then
    
              
    
    TA: (( 
    Partial_Sums (P 
    * G)) 
    . (((N 
    . n) 
    + sn1) 
    + 1)) 
    = ((( 
    Partial_Sums (P 
    * G)) 
    . (N 
    . n)) 
    + ( 
    Sum (P 
    * E))) by 
    Z25,
    Z62,
    Z63
    
              .= (((
    Partial_Sums (P 
    * G)) 
    . (N 
    . n)) 
    + ((M 
    * FSets) 
    . (n 
    + 1))) by 
    Z24,
    Z21,
    Z22,
    FUNCT_2: 15;
    
              ((
    Partial_Sums (M 
    * FSets)) 
    . (n 
    + 1)) 
    = (((( 
    Partial_Sums (P 
    * G)) 
    * N) 
    . n) 
    + ((M 
    * FSets) 
    . (n 
    + 1))) by 
    Z20,
    MESFUNC9:def 1
    
              .= ((
    Partial_Sums (P 
    * G)) 
    . (N 
    . (n 
    + 1))) by 
    TA,
    Z59a,
    Z63,
    ORDINAL1:def 12,
    FUNCT_2: 15
    
              .= (((
    Partial_Sums (P 
    * G)) 
    * N) 
    . (n 
    + 1)) by 
    FUNCT_2: 15;
    
              hence thesis;
    
            end;
    
            for n be
    Nat holds 
    P[n] from
    NAT_1:sch 2(
    Z100,
    Z101);
    
            then for n be
    Element of 
    NAT holds (( 
    Partial_Sums (M 
    * FSets)) 
    . n) 
    = ((( 
    Partial_Sums (P 
    * G)) 
    * N) 
    . n); 
    
            hence (
    Partial_Sums (M 
    * FSets)) is 
    subsequence of ( 
    Partial_Sums (P 
    * G)) by 
    FUNCT_2:def 8;
    
          end;
    
          
    
          
    
    X125: ( 
    Sum (M 
    * FSets)) 
    = ( 
    Sum (P 
    * G)) 
    
          proof
    
            per cases by
    X123,
    MESFUNC5:def 11,
    MESFUNC9: 8;
    
              suppose
    
              
    
    L1: ( 
    Partial_Sums (P 
    * G)) is 
    convergent_to_+infty;
    
              then (
    lim ( 
    Partial_Sums (M 
    * FSets))) 
    =  
    +infty by 
    X124,
    DBLSEQ_3: 27;
    
              then (
    lim ( 
    Partial_Sums (M 
    * FSets))) 
    = ( 
    lim ( 
    Partial_Sums (P 
    * G))) by 
    L1,
    MESFUNC9: 7;
    
              then (
    Sum (M 
    * FSets)) 
    = ( 
    lim ( 
    Partial_Sums (P 
    * G))) by 
    MESFUNC9:def 3;
    
              hence (
    Sum (M 
    * FSets)) 
    = ( 
    Sum (P 
    * G)) by 
    MESFUNC9:def 3;
    
            end;
    
              suppose (
    Partial_Sums (P 
    * G)) is 
    convergent_to_finite_number;
    
              then (
    lim ( 
    Partial_Sums (M 
    * FSets))) 
    = ( 
    lim ( 
    Partial_Sums (P 
    * G))) by 
    X124,
    DBLSEQ_3: 26;
    
              then (
    Sum (M 
    * FSets)) 
    = ( 
    lim ( 
    Partial_Sums (P 
    * G))) by 
    MESFUNC9:def 3;
    
              hence (
    Sum (M 
    * FSets)) 
    = ( 
    Sum (P 
    * G)) by 
    MESFUNC9:def 3;
    
            end;
    
          end;
    
          
    
          
    
    H0: ( 
    Partial_Sums (M 
    * FSets)) is 
    non-decreasing by 
    MESFUNC9: 16;
    
          for n be
    Nat holds (( 
    Partial_Sums (M 
    * FSets)) 
    . n) 
    <= (M 
    . ( 
    union ( 
    rng FSets))) 
    
          proof
    
            let n be
    Nat;
    
            
    
            
    
    H1: ( 
    union ( 
    rng (FSets 
    | ( 
    Segm (n 
    + 1))))) 
    in ( 
    Field_generated_by S) by 
    Th58;
    
            (
    rng (FSets 
    | ( 
    Segm (n 
    + 1)))) 
    c= ( 
    rng FSets) by 
    RELAT_1: 70;
    
            then (M
    . ( 
    union ( 
    rng (FSets 
    | ( 
    Segm (n 
    + 1)))))) 
    <= (M 
    . ( 
    union ( 
    rng FSets))) by 
    B0,
    H1,
    MEASURE1: 8,
    ZFMISC_1: 77;
    
            hence ((
    Partial_Sums (M 
    * FSets)) 
    . n) 
    <= (M 
    . ( 
    union ( 
    rng FSets))) by 
    Th58;
    
          end;
    
          then (
    lim ( 
    Partial_Sums (M 
    * FSets))) 
    <= (M 
    . ( 
    union ( 
    rng FSets))) by 
    H0,
    RINFSUP2: 37,
    MESFUNC9: 9;
    
          then (
    Sum (M 
    * FSets)) 
    <= (M 
    . ( 
    union ( 
    rng FSets))) by 
    MESFUNC9:def 3;
    
          then (
    Sum (M 
    * FSets)) 
    <= (M 
    . ( 
    Union FSets)) by 
    CARD_3:def 4;
    
          then
    
          
    
    X126: (M 
    . ( 
    Union FSets)) 
    = ( 
    Sum (M 
    * FSets)) by 
    X125,
    X120,
    XXREAL_0: 1;
    
          (
    Sum (M 
    * FSets)) 
    = ( 
    SUM (M 
    * FSets)) by 
    MEASURE8: 2;
    
          hence (
    SUM (M 
    * FSets)) 
    = (M 
    . ( 
    union ( 
    rng FSets))) by 
    X126,
    CARD_3:def 4;
    
        end;
    
          suppose
    
          
    
    LL1: ( 
    rng FSets) is 
    empty-membered;
    
          then (
    union ( 
    rng FSets)) 
    =  
    {} by 
    Th52;
    
          then
    
          
    
    L2: (M 
    . ( 
    union ( 
    rng FSets))) 
    =  
    0 by 
    VALUED_0:def 19;
    
          
    
          
    
    LL3: for n be 
    Nat holds ((M 
    * FSets) 
    . n) 
    =  
    0  
    
          proof
    
            let n be
    Nat;
    
            
    
            
    
    LL4: ( 
    dom FSets) 
    =  
    NAT by 
    FUNCT_2:def 1;
    
            then (FSets
    . n) 
    in ( 
    rng FSets) by 
    FUNCT_1: 3,
    ORDINAL1:def 12;
    
            then (FSets
    . n) 
    =  
    {} by 
    LL1;
    
            then ((M
    * FSets) 
    . n) 
    = (M 
    .  
    {} ) by 
    LL4,
    ORDINAL1:def 12,
    FUNCT_1: 13;
    
            hence ((M
    * FSets) 
    . n) 
    =  
    0 by 
    VALUED_0:def 19;
    
          end;
    
          
    
          
    
    LL5: ( 
    dom ( 
    Partial_Sums (M 
    * FSets))) 
    =  
    NAT & ( 
    dom ( 
    seq_const  
    0 )) 
    =  
    NAT by 
    FUNCT_2:def 1;
    
          for n be
    object st n 
    in ( 
    dom ( 
    Partial_Sums (M 
    * FSets))) holds (( 
    Partial_Sums (M 
    * FSets)) 
    . n) 
    = (( 
    seq_const  
    0 ) 
    . n) 
    
          proof
    
            let n be
    object;
    
            assume n
    in ( 
    dom ( 
    Partial_Sums (M 
    * FSets))); 
    
            then
    
            reconsider n1 = n as
    Nat;
    
            defpred
    
    P[
    Nat] means ((
    Partial_Sums (M 
    * FSets)) 
    . $1) 
    =  
    0 ; 
    
            ((
    Partial_Sums (M 
    * FSets)) 
    .  
    0 ) 
    = ((M 
    * FSets) 
    .  
    0 ) by 
    MESFUNC9:def 1;
    
            then
    
            
    
    LL8: 
    P[
    0 ] by 
    LL3;
    
            
    
            
    
    LL9: for i be 
    Nat st 
    P[i] holds
    P[(i
    + 1)] 
    
            proof
    
              let i be
    Nat;
    
              assume
    P[i];
    
              then (((
    Partial_Sums (M 
    * FSets)) 
    . i) 
    + ((M 
    * FSets) 
    . (i 
    + 1))) 
    = ((M 
    * FSets) 
    . (i 
    + 1)) by 
    XXREAL_3: 4;
    
              then ((
    Partial_Sums (M 
    * FSets)) 
    . (i 
    + 1)) 
    = ((M 
    * FSets) 
    . (i 
    + 1)) by 
    MESFUNC9:def 1;
    
              hence
    P[(i
    + 1)] by 
    LL3;
    
            end;
    
            for i be
    Nat holds 
    P[i] from
    NAT_1:sch 2(
    LL8,
    LL9);
    
            then ((
    Partial_Sums (M 
    * FSets)) 
    . n1) 
    =  
    0 ; 
    
            hence thesis;
    
          end;
    
          then (
    Partial_Sums (M 
    * FSets)) 
    = ( 
    seq_const  
    0 ) by 
    LL5,
    FUNCT_1:def 11;
    
          then
    
          
    
    L4: ( 
    Partial_Sums (M 
    * FSets)) is 
    convergent_to_finite_number & ( 
    Partial_Sums (M 
    * FSets)) is 
    convergent & ( 
    lim ( 
    Partial_Sums (M 
    * FSets))) 
    = ( 
    lim ( 
    seq_const  
    0 )) by 
    RINFSUP2: 14;
    
          (
    SUM (M 
    * FSets)) 
    = ( 
    Sum (M 
    * FSets)) by 
    MEASURE8: 2;
    
          hence (
    SUM (M 
    * FSets)) 
    = (M 
    . ( 
    union ( 
    rng FSets))) by 
    L2,
    L4,
    MESFUNC9:def 3;
    
        end;
    
      end;
    
      hence M is
    completely-additive by 
    MEASURE8:def 11;
    
    end;
    
    definition
    
      let X be
    set, S be 
    semialgebra_of_sets of X, P be 
    pre-Measure of S; 
    
      :: 
    
    MEASURE9:def8
    
      mode
    
    induced_Measure of S,P -> 
    Measure of ( 
    Field_generated_by S) means 
    
      :
    
    Def9: for A be 
    set st A 
    in ( 
    Field_generated_by S) holds for F be 
    disjoint_valued  
    FinSequence of S st A 
    = ( 
    Union F) holds (it 
    . A) 
    = ( 
    Sum (P 
    * F)); 
    
      existence by
    Th55;
    
    end
    
    theorem :: 
    
    MEASURE9:60
    
    
    
    
    
    Th60: for X be 
    set, S be 
    semialgebra_of_sets of X, P be 
    pre-Measure of S, M be 
    induced_Measure of S, P holds M is 
    completely-additive
    
    proof
    
      let X be
    set, S be 
    semialgebra_of_sets of X, P be 
    pre-Measure of S, M be 
    induced_Measure of S, P; 
    
      for A be
    set st A 
    in ( 
    Field_generated_by S) holds for F be 
    disjoint_valued  
    FinSequence of S st A 
    = ( 
    Union F) holds (M 
    . A) 
    = ( 
    Sum (P 
    * F)) by 
    Def9;
    
      hence thesis by
    Th59;
    
    end;
    
    theorem :: 
    
    MEASURE9:61
    
    
    
    
    
    Th61: for X be non 
    empty  
    set, S be 
    semialgebra_of_sets of X, P be 
    pre-Measure of S, M be 
    induced_Measure of S, P holds (( 
    sigma_Meas ( 
    C_Meas M)) 
    | ( 
    sigma ( 
    Field_generated_by S))) is 
    sigma_Measure of ( 
    sigma ( 
    Field_generated_by S)) 
    
    proof
    
      let X be non
    empty  
    set, S be 
    semialgebra_of_sets of X, P be 
    pre-Measure of S, M be 
    induced_Measure of S, P; 
    
      M is
    completely-additive by 
    Th60;
    
      then
    
      consider N be
    sigma_Measure of ( 
    sigma ( 
    Field_generated_by S)) such that 
    
      
    
    A1: N 
    is_extension_of M & N 
    = (( 
    sigma_Meas ( 
    C_Meas M)) 
    | ( 
    sigma ( 
    Field_generated_by S))) by 
    MEASURE8: 33;
    
      thus thesis by
    A1;
    
    end;
    
    definition
    
      let X be non
    empty  
    set, S be 
    semialgebra_of_sets of X, P be 
    pre-Measure of S, M be 
    induced_Measure of S, P; 
    
      :: 
    
    MEASURE9:def9
    
      mode
    
    induced_sigma_Measure of S,M -> 
    sigma_Measure of ( 
    sigma ( 
    Field_generated_by S)) means 
    
      :
    
    Def10: it 
    = (( 
    sigma_Meas ( 
    C_Meas M)) 
    | ( 
    sigma ( 
    Field_generated_by S))); 
    
      existence
    
      proof
    
        ((
    sigma_Meas ( 
    C_Meas M)) 
    | ( 
    sigma ( 
    Field_generated_by S))) is 
    sigma_Measure of ( 
    sigma ( 
    Field_generated_by S)) by 
    Th61;
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    MEASURE9:62
    
    for X be non
    empty  
    set, S be 
    semialgebra_of_sets of X, P be 
    pre-Measure of S, m be 
    induced_Measure of S, P, M be 
    induced_sigma_Measure of S, m holds M 
    is_extension_of m 
    
    proof
    
      let X be non
    empty  
    set, S be 
    semialgebra_of_sets of X, P be 
    pre-Measure of S, m be 
    induced_Measure of S, P, M be 
    induced_sigma_Measure of S, m; 
    
      m is
    completely-additive by 
    Th60;
    
      then
    
      consider N be
    sigma_Measure of ( 
    sigma ( 
    Field_generated_by S)) such that 
    
      
    
    A2: N 
    is_extension_of m & N 
    = (( 
    sigma_Meas ( 
    C_Meas m)) 
    | ( 
    sigma ( 
    Field_generated_by S))) by 
    MEASURE8: 33;
    
      thus M
    is_extension_of m by 
    A2,
    Def10;
    
    end;