prob_2.miz
begin
reserve Omega for
set;
reserve m,n,k for
Nat;
reserve x,y for
object;
reserve r,r1,r2,r3 for
Real;
reserve seq,seq1 for
Real_Sequence;
reserve Sigma for
SigmaField of Omega;
reserve ASeq,BSeq for
SetSequence of Sigma;
reserve A,B,C,A1,A2,A3 for
Event of Sigma;
theorem ::
PROB_2:1
Th1: for r, r1, r2, r3 st r
<>
0 & r1
<>
0 holds ((r3
/ r1)
= (r2
/ r) iff (r3
* r)
= (r2
* r1))
proof
let r, r1, r2, r3;
assume that
A1: r
<>
0 and
A2: r1
<>
0 ;
thus (r3
/ r1)
= (r2
/ r) implies (r3
* r)
= (r2
* r1)
proof
assume
A3: (r3
/ r1)
= (r2
/ r);
(r3
* r)
= (((r3
/ r1)
* r1)
* r) by
A2,
XCMPLX_1: 87
.= (((r2
/ r)
* r)
* r1) by
A3
.= (r2
* r1) by
A1,
XCMPLX_1: 87;
hence thesis;
end;
assume
A4: (r3
* r)
= (r2
* r1);
(r3
/ r1)
= ((r3
* 1)
/ r1)
.= ((r3
* (r
* (r
" )))
/ r1) by
A1,
XCMPLX_0:def 7
.= (((r2
* r1)
* (r
" ))
/ r1) by
A4,
XCMPLX_1: 4
.= (((r2
* (r
" ))
* r1)
/ r1)
.= (((r2
/ r)
* r1)
/ r1) by
XCMPLX_0:def 9
.= (((r2
/ r)
* r1)
* (r1
" )) by
XCMPLX_0:def 9
.= ((r2
/ r)
* (r1
* (r1
" )))
.= ((r2
/ r)
* 1) by
A2,
XCMPLX_0:def 7
.= (r2
/ r);
hence thesis;
end;
theorem ::
PROB_2:2
Th2: (seq is
convergent & for n holds (seq1
. n)
= (r
- (seq
. n))) implies seq1 is
convergent & (
lim seq1)
= (r
- (
lim seq))
proof
assume that
A1: seq is
convergent and
A2: for n holds (seq1
. n)
= (r
- (seq
. n));
consider r1 be
Real such that
A3: for r2 be
Real st
0
< r2 holds ex n st for m st n
<= m holds
|.((seq
. m)
- r1).|
< r2 by
A1,
SEQ_2:def 6;
A4:
now
let r2 be
Real;
assume
0
< r2;
then
consider n such that
A5: for m st n
<= m holds
|.((seq
. m)
- r1).|
< r2 by
A3;
take n;
now
let m such that
A6: n
<= m;
|.((seq
. m)
- r1).|
=
|.(
- ((seq
. m)
- r1)).| by
COMPLEX1: 52
.=
|.((r1
- r)
+ (r
- (seq
. m))).|
.=
|.((seq1
. m)
+ (
- (
- (r1
- r)))).| by
A2
.=
|.((seq1
. m)
- (r
- r1)).|;
hence
|.((seq1
. m)
- (r
- r1)).|
< r2 by
A5,
A6;
end;
hence for m st n
<= m holds
|.((seq1
. m)
- (r
- r1)).|
< r2;
end;
hence
A7: seq1 is
convergent by
SEQ_2:def 6;
(
lim seq)
= r1 by
A1,
A3,
SEQ_2:def 7;
hence thesis by
A4,
A7,
SEQ_2:def 7;
end;
definition
let Omega, Sigma, ASeq, n;
:: original:
.
redefine
func ASeq
. n ->
Event of Sigma ;
coherence by
PROB_1: 25;
end
definition
let Omega, Sigma, ASeq;
::
PROB_2:def1
func
@Intersection ASeq ->
Event of Sigma equals (
Intersection ASeq);
coherence
proof
(
rng ASeq)
c= Sigma by
RELAT_1:def 19;
hence thesis by
PROB_1:def 6;
end;
end
theorem ::
PROB_2:3
Th3: ex BSeq st for n holds (BSeq
. n)
= ((ASeq
. n)
/\ B)
proof
deffunc
F(
Element of
NAT ) = ((ASeq
. $1)
/\ B);
consider f be
Function such that
A1: (
dom f)
=
NAT & for n be
Element of
NAT holds (f
. n)
=
F(n) from
FUNCT_1:sch 4;
now
let m;
reconsider mm = m as
Element of
NAT by
ORDINAL1:def 12;
((ASeq
. m)
/\ B)
in (
bool Omega);
then (f
. mm)
in (
bool Omega) by
A1;
hence (f
. m)
in (
bool Omega);
end;
then for x be
object st x
in
NAT holds (f
. x)
in (
bool Omega);
then
reconsider f as
SetSequence of Omega by
A1,
FUNCT_2: 3;
now
let m be
Nat;
reconsider m1 = m as
Element of
NAT by
ORDINAL1:def 12;
((ASeq
. m1)
/\ B)
in Sigma;
hence (f
. m)
in Sigma by
A1;
end;
then (
rng f)
c= Sigma by
NAT_1: 52;
then
reconsider f as
SetSequence of Sigma by
RELAT_1:def 19;
take f;
let n;
reconsider n as
Element of
NAT by
ORDINAL1:def 12;
(f
. n)
=
F(n) by
A1;
hence thesis;
end;
theorem ::
PROB_2:4
Th4: (ASeq is
non-ascending & for n holds (BSeq
. n)
= ((ASeq
. n)
/\ B)) implies BSeq is
non-ascending
proof
assume that
A1: ASeq is
non-ascending and
A2: for n holds (BSeq
. n)
= ((ASeq
. n)
/\ B);
thus BSeq qua
Function is
non-ascending
proof
let m, n;
assume m
<= n;
then (ASeq
. n)
c= (ASeq
. m) by
A1;
then ((ASeq
. n)
/\ B)
c= ((ASeq
. m)
/\ B) by
XBOOLE_1: 26;
then (BSeq
. n)
c= ((ASeq
. m)
/\ B) by
A2;
hence (BSeq
. n)
c= (BSeq
. m) by
A2;
end;
end;
theorem ::
PROB_2:5
Th5: (for n holds (BSeq
. n)
= ((ASeq
. n)
/\ B)) implies ((
Intersection ASeq)
/\ B)
= (
Intersection BSeq)
proof
assume
A1: for n holds (BSeq
. n)
= ((ASeq
. n)
/\ B);
A2:
now
let x be
object;
assume
A3: x
in (
Intersection BSeq);
A4: for n holds x
in ((ASeq
. n)
/\ B)
proof
let n;
x
in (BSeq
. n) by
A3,
PROB_1: 13;
hence thesis by
A1;
end;
A5: for n holds x
in (ASeq
. n) & x
in B
proof
let n;
x
in ((ASeq
. n)
/\ B) by
A4;
hence thesis by
XBOOLE_0:def 4;
end;
then x
in (
Intersection ASeq) by
PROB_1: 13;
hence x
in ((
Intersection ASeq)
/\ B) by
A5,
XBOOLE_0:def 4;
end;
now
let x be
object;
assume
A6: x
in ((
Intersection ASeq)
/\ B);
then
A7: x
in (
Intersection ASeq) by
XBOOLE_0:def 4;
A8: for n holds x
in ((ASeq
. n)
/\ B)
proof
let n;
x
in (ASeq
. n) & x
in B by
A6,
A7,
PROB_1: 13,
XBOOLE_0:def 4;
hence thesis by
XBOOLE_0:def 4;
end;
for n holds x
in (BSeq
. n)
proof
let n;
x
in ((ASeq
. n)
/\ B) by
A8;
hence thesis by
A1;
end;
hence x
in (
Intersection BSeq) by
PROB_1: 13;
end;
hence thesis by
A2,
TARSKI: 2;
end;
registration
let Omega, Sigma, ASeq;
cluster (
Complement ASeq) -> Sigma
-valued;
coherence
proof
now
let n be
Nat;
reconsider n1 = n as
Element of
NAT by
ORDINAL1:def 12;
((
Complement ASeq)
. n1)
= ((ASeq
. n1)
` ) by
PROB_1:def 2;
then ((
Complement ASeq)
. n1) is
Event of Sigma by
PROB_1: 20;
hence ((
Complement ASeq)
. n)
in Sigma;
end;
then (
rng (
Complement ASeq))
c= Sigma by
NAT_1: 52;
hence thesis by
RELAT_1:def 19;
end;
end
theorem ::
PROB_2:6
for X be
set, S be
SetSequence of X holds S is
non-ascending iff for n holds (S
. (n
+ 1))
c= (S
. n)
proof
let X be
set, S be
SetSequence of X;
thus S is
non-ascending implies for n holds (S
. (n
+ 1))
c= (S
. n) by
NAT_1: 11;
assume
A1: for n holds (S
. (n
+ 1))
c= (S
. n);
now
let n, m such that
A2: n
<= m;
A3:
now
defpred
P[
Nat] means (S
. (n
+ $1))
c= (S
. n);
A4: for k st
P[k] holds
P[(k
+ 1)]
proof
let k such that
A5: (S
. (n
+ k))
c= (S
. n);
(S
. ((n
+ k)
+ 1))
c= (S
. (n
+ k)) by
A1;
hence thesis by
A5,
XBOOLE_1: 1;
end;
A6:
P[
0 ];
thus for k holds
P[k] from
NAT_1:sch 2(
A6,
A4);
end;
consider k be
Nat such that
A7: m
= (n
+ k) by
A2,
NAT_1: 10;
thus (S
. m)
c= (S
. n) by
A3,
A7;
end;
hence thesis;
end;
theorem ::
PROB_2:7
for X be
set, S be
SetSequence of X holds S is
non-descending iff for n holds (S
. n)
c= (S
. (n
+ 1))
proof
let X be
set, S be
SetSequence of X;
thus S is
non-descending implies for n holds (S
. n)
c= (S
. (n
+ 1)) by
NAT_1: 11;
assume
A1: for n holds (S
. n)
c= (S
. (n
+ 1));
now
let n, m such that
A2: n
<= m;
A3:
now
defpred
P[
Nat] means (S
. n)
c= (S
. (n
+ $1));
A4: for k st
P[k] holds
P[(k
+ 1)]
proof
let k such that
A5: (S
. n)
c= (S
. (n
+ k));
(S
. (n
+ k))
c= (S
. ((n
+ k)
+ 1)) by
A1;
hence thesis by
A5,
XBOOLE_1: 1;
end;
A6:
P[
0 ];
thus for k holds
P[k] from
NAT_1:sch 2(
A6,
A4);
end;
consider k be
Nat such that
A7: m
= (n
+ k) by
A2,
NAT_1: 10;
thus (S
. n)
c= (S
. m) by
A3,
A7;
end;
hence thesis;
end;
theorem ::
PROB_2:8
Th8: for ASeq be
SetSequence of Omega holds (ASeq is
non-ascending iff (
Complement ASeq) is
non-descending)
proof
let ASeq be
SetSequence of Omega;
thus ASeq is
non-ascending implies (
Complement ASeq) is
non-descending
proof
assume
A1: ASeq is
non-ascending;
now
let n, m;
assume n
<= m;
then (ASeq
. m)
c= (ASeq
. n) by
A1;
then ((ASeq
. n)
` )
c= ((ASeq
. m)
` ) by
SUBSET_1: 12;
then ((
Complement ASeq)
. n)
c= ((ASeq
. m)
` ) by
PROB_1:def 2;
hence ((
Complement ASeq)
. n)
c= ((
Complement ASeq)
. m) by
PROB_1:def 2;
end;
hence thesis;
end;
assume
A2: (
Complement ASeq) is
non-descending;
now
let n, m;
assume n
<= m;
then ((
Complement ASeq)
. n)
c= ((
Complement ASeq)
. m) by
A2;
then ((ASeq
. n)
` )
c= ((
Complement ASeq)
. m) by
PROB_1:def 2;
then ((ASeq
. n)
` )
c= ((ASeq
. m)
` ) by
PROB_1:def 2;
hence (ASeq
. m)
c= (ASeq
. n) by
SUBSET_1: 12;
end;
hence thesis;
end;
Lm1: for ASeq be
SetSequence of Omega holds (ASeq is
non-descending iff (
Complement ASeq) is
non-ascending)
proof
let ASeq be
SetSequence of Omega;
thus ASeq is
non-descending implies (
Complement ASeq) is
non-ascending
proof
assume
A1: ASeq is
non-descending;
now
let n, m;
assume n
<= m;
then (ASeq
. n)
c= (ASeq
. m) by
A1;
then ((ASeq
. m)
` )
c= ((ASeq
. n)
` ) by
SUBSET_1: 12;
then ((
Complement ASeq)
. m)
c= ((ASeq
. n)
` ) by
PROB_1:def 2;
hence ((
Complement ASeq)
. m)
c= ((
Complement ASeq)
. n) by
PROB_1:def 2;
end;
hence thesis;
end;
assume
A2: (
Complement ASeq) is
non-ascending;
now
let n, m;
assume n
<= m;
then ((
Complement ASeq)
. m)
c= ((
Complement ASeq)
. n) by
A2;
then ((ASeq
. m)
` )
c= ((
Complement ASeq)
. n) by
PROB_1:def 2;
then ((ASeq
. m)
` )
c= ((ASeq
. n)
` ) by
PROB_1:def 2;
hence (ASeq
. n)
c= (ASeq
. m) by
SUBSET_1: 12;
end;
hence thesis;
end;
definition
let F be
Function;
::
PROB_2:def2
attr F is
disjoint_valued means x
<> y implies (F
. x)
misses (F
. y);
end
definition
let Omega, Sigma, ASeq;
:: original:
disjoint_valued
redefine
::
PROB_2:def3
attr ASeq is
disjoint_valued means for m, n st m
<> n holds (ASeq
. m)
misses (ASeq
. n);
compatibility
proof
thus ASeq is
disjoint_valued implies for m, n st m
<> n holds (ASeq
. m)
misses (ASeq
. n);
A1: (
dom ASeq)
=
NAT by
FUNCT_2:def 1;
assume
A2: for m, n st m
<> n holds (ASeq
. m)
misses (ASeq
. n);
let x, y;
assume
A3: x
<> y;
per cases ;
suppose x
in (
dom ASeq) & y
in (
dom ASeq);
hence thesis by
A1,
A2,
A3;
end;
suppose not (x
in (
dom ASeq) & y
in (
dom ASeq));
then (ASeq
. x)
=
{} or (ASeq
. y)
=
{} by
FUNCT_1:def 2;
hence thesis by
XBOOLE_1: 65;
end;
end;
end
reserve Omega for non
empty
set;
reserve Sigma for
SigmaField of Omega;
reserve A,B,C,A1,A2,A3 for
Event of Sigma;
reserve ASeq,BSeq for
SetSequence of Sigma;
reserve P,P1,P2 for
Probability of Sigma;
Lm2: for P, ASeq st ASeq is
non-descending holds (P
* ASeq) is
convergent & (
lim (P
* ASeq))
= (P
. (
Union ASeq))
proof
let P, ASeq such that
A1: ASeq is
non-descending;
set BSeq = (
Complement ASeq);
A2: BSeq is
non-ascending by
A1,
Lm1;
then
A3: (P
* BSeq) is
convergent by
PROB_1:def 8;
A4:
now
let n;
reconsider nn = n as
Element of
NAT by
ORDINAL1:def 12;
((P
* BSeq)
. n)
= (P
. (BSeq
. nn)) by
FUNCT_2: 15
.= (P
. ((ASeq
. n)
` )) by
PROB_1:def 2
.= (P
. ((
[#] Sigma)
\ (ASeq
. n)))
.= (1
- (P
. (ASeq
. n))) by
PROB_1: 32
.= (1
- ((P
* ASeq)
. nn)) by
FUNCT_2: 15
.= (1
+ (
- ((P
* ASeq)
. n)));
hence ((P
* ASeq)
. n)
= (1
- ((P
* BSeq)
. n));
end;
hence (P
* ASeq) is
convergent by
A3,
Th2;
reconsider V = (
Union ASeq) as
Event of Sigma by
PROB_1: 26;
(
Intersection BSeq)
= ((
[#] Sigma)
\ (
Union ASeq));
then
A5: (P
. (
Intersection BSeq))
= (1
- (P
. V)) by
PROB_1: 32;
thus (
lim (P
* ASeq))
= (1
- (
lim (P
* BSeq))) by
A3,
A4,
Th2
.= (1
- (1
- (P
. V))) by
A2,
A5,
PROB_1:def 8
.= (P
. (
Union ASeq));
end;
theorem ::
PROB_2:9
Th9: (for A holds (P
. A)
= (P1
. A)) implies P
= P1
proof
assume for A holds (P
. A)
= (P1
. A);
then for x be
object st x
in Sigma holds (P
. x)
= (P1
. x);
hence thesis by
FUNCT_2: 12;
end;
theorem ::
PROB_2:10
for P be
Function of Sigma,
REAL holds P is
Probability of Sigma iff (for A holds
0
<= (P
. A)) & (P
. Omega)
= 1 & (for A, B st A
misses B holds (P
. (A
\/ B))
= ((P
. A)
+ (P
. B))) & for ASeq st ASeq is
non-descending holds (P
* ASeq) is
convergent & (
lim (P
* ASeq))
= (P
. (
Union ASeq))
proof
let P be
Function of Sigma,
REAL ;
thus P is
Probability of Sigma implies (for A holds
0
<= (P
. A)) & (P
. Omega)
= 1 & (for A, B st A
misses B holds (P
. (A
\/ B))
= ((P
. A)
+ (P
. B))) & for ASeq st ASeq is
non-descending holds (P
* ASeq) is
convergent & (
lim (P
* ASeq))
= (P
. (
Union ASeq)) by
Lm2,
PROB_1:def 8;
assume that
A1: for A holds
0
<= (P
. A) and
A2: (P
. Omega)
= 1 and
A3: for A, B st A
misses B holds (P
. (A
\/ B))
= ((P
. A)
+ (P
. B)) and
A4: for ASeq st ASeq is
non-descending holds (P
* ASeq) is
convergent & (
lim (P
* ASeq))
= (P
. (
Union ASeq));
for ASeq st ASeq is
non-ascending holds (P
* ASeq) is
convergent & (
lim (P
* ASeq))
= (P
. (
Intersection ASeq))
proof
let ASeq such that
A5: ASeq is
non-ascending;
(
Intersection ASeq)
= (
@Intersection ASeq);
then
reconsider V = (
Intersection ASeq) as
Event of Sigma;
set BSeq = (
Complement ASeq);
A6: for A holds (P
. (A
` ))
= (1
- (P
. A))
proof
let A;
reconsider B = (A
` ) as
Event of Sigma by
PROB_1: 20;
A7: A
misses B by
SUBSET_1: 24;
1
= (P
. (
[#] Omega)) by
A2
.= (P
. (A
\/ B)) by
SUBSET_1: 10
.= ((P
. A)
+ (P
. B)) by
A3,
A7;
hence thesis;
end;
A8:
now
let n;
reconsider nn = n as
Element of
NAT by
ORDINAL1:def 12;
((P
* BSeq)
. n)
= (P
. (BSeq
. nn)) by
FUNCT_2: 15
.= (P
. ((ASeq
. n)
` )) by
PROB_1:def 2
.= (1
- (P
. (ASeq
. n))) by
A6
.= (1
- ((P
* ASeq)
. nn)) by
FUNCT_2: 15
.= (1
+ (
- ((P
* ASeq)
. n)));
hence ((P
* ASeq)
. n)
= (1
- ((P
* BSeq)
. n));
end;
(
Union BSeq)
= ((
Intersection ASeq)
` );
then
A9: (P
. (
Union BSeq))
= (1
- (P
. V)) by
A6;
A10: BSeq is
non-descending by
A5,
Th8;
then
A11: (P
* BSeq) is
convergent by
A4;
hence (P
* ASeq) is
convergent by
A8,
Th2;
thus (
lim (P
* ASeq))
= (1
- (
lim (P
* BSeq))) by
A11,
A8,
Th2
.= (1
- (1
- (P
. V))) by
A4,
A10,
A9
.= (P
. (
Intersection ASeq));
end;
hence thesis by
A1,
A2,
A3,
PROB_1:def 8;
end;
theorem ::
PROB_2:11
(P
. ((A
\/ B)
\/ C))
= (((((P
. A)
+ (P
. B))
+ (P
. C))
- (((P
. (A
/\ B))
+ (P
. (B
/\ C)))
+ (P
. (A
/\ C))))
+ (P
. ((A
/\ B)
/\ C)))
proof
A1: (P
. ((A
\/ B)
/\ C))
= (P
. ((A
/\ C)
\/ (B
/\ C))) by
XBOOLE_1: 23
.= (((P
. (A
/\ C))
+ (P
. (B
/\ C)))
- (P
. ((A
/\ C)
/\ (B
/\ C)))) by
PROB_1: 38
.= (((P
. (A
/\ C))
+ (P
. (B
/\ C)))
- (P
. (A
/\ ((B
/\ C)
/\ C)))) by
XBOOLE_1: 16
.= (((P
. (A
/\ C))
+ (P
. (B
/\ C)))
- (P
. (A
/\ (B
/\ (C
/\ C))))) by
XBOOLE_1: 16
.= (((P
. (B
/\ C))
+ (P
. (A
/\ C)))
- (P
. ((A
/\ B)
/\ C))) by
XBOOLE_1: 16;
(P
. ((A
\/ B)
\/ C))
= (((P
. (A
\/ B))
+ (P
. C))
- (P
. ((A
\/ B)
/\ C))) by
PROB_1: 38
.= (((((P
. A)
+ (P
. B))
- (P
. (A
/\ B)))
+ (P
. C))
- (P
. ((A
\/ B)
/\ C))) by
PROB_1: 38
.= ((((P
. A)
+ (P
. B))
+ (P
. C))
- ((P
. (A
/\ B))
+ (P
. ((A
\/ B)
/\ C))));
hence thesis by
A1;
end;
theorem ::
PROB_2:12
(P
. (A
\ (A
/\ B)))
= ((P
. A)
- (P
. (A
/\ B))) by
PROB_1: 33,
XBOOLE_1: 17;
theorem ::
PROB_2:13
(P
. (A
/\ B))
<= (P
. B) & (P
. (A
/\ B))
<= (P
. A) by
PROB_1: 34,
XBOOLE_1: 17;
theorem ::
PROB_2:14
Th14: C
= (B
` ) implies (P
. A)
= ((P
. (A
/\ B))
+ (P
. (A
/\ C)))
proof
assume
A1: C
= (B
` );
then B
misses C by
SUBSET_1: 24;
then (A
/\ C)
misses B by
XBOOLE_1: 74;
then
A2: (A
/\ B)
misses (A
/\ C) by
XBOOLE_1: 74;
(P
. A)
= (P
. (A
/\ (
[#] Omega))) by
XBOOLE_1: 28
.= (P
. (A
/\ (B
\/ C))) by
A1,
SUBSET_1: 10
.= (P
. ((A
/\ B)
\/ (A
/\ C))) by
XBOOLE_1: 23
.= ((P
. (A
/\ B))
+ (P
. (A
/\ C))) by
A2,
PROB_1:def 8;
hence thesis;
end;
theorem ::
PROB_2:15
Th15: (((P
. A)
+ (P
. B))
- 1)
<= (P
. (A
/\ B))
proof
(((P
. A)
+ (P
. B))
- (P
. (A
/\ B)))
= (P
. (A
\/ B)) by
PROB_1: 38;
then (((P
. A)
+ (P
. B))
- (P
. (A
/\ B)))
<= 1 by
PROB_1: 35;
then ((P
. A)
+ (P
. B))
<= ((P
. (A
/\ B))
+ 1) by
XREAL_1: 20;
hence thesis by
XREAL_1: 20;
end;
theorem ::
PROB_2:16
Th16: (P
. A)
= (1
- (P
. ((
[#] Sigma)
\ A)))
proof
((P
. ((
[#] Sigma)
\ A))
+ (P
. A))
= 1 by
PROB_1: 31;
hence thesis;
end;
theorem ::
PROB_2:17
Th17: (P
. A)
< 1 iff
0
< (P
. ((
[#] Sigma)
\ A))
proof
thus (P
. A)
< 1 implies
0
< (P
. ((
[#] Sigma)
\ A))
proof
assume (P
. A)
< 1;
then (1
- (P
. ((
[#] Sigma)
\ A)))
< 1 by
Th16;
then (1
+ (
- (P
. ((
[#] Sigma)
\ A))))
< 1;
then (
- (P
. ((
[#] Sigma)
\ A)))
< (1
- 1) by
XREAL_1: 20;
hence thesis;
end;
assume
0
< (P
. ((
[#] Sigma)
\ A));
then
0
< (1
- (P
. A)) by
PROB_1: 32;
then ((P
. A)
+
0 )
< 1 by
XREAL_1: 20;
hence thesis;
end;
theorem ::
PROB_2:18
(P
. ((
[#] Sigma)
\ A))
< 1 iff
0
< (P
. A)
proof
thus (P
. ((
[#] Sigma)
\ A))
< 1 implies
0
< (P
. A)
proof
assume (P
. ((
[#] Sigma)
\ A))
< 1;
then (1
- (P
. A))
< 1 by
PROB_1: 32;
then (1
+ (
- (P
. A)))
< 1;
then (
- (P
. A))
< (1
- 1) by
XREAL_1: 20;
hence thesis;
end;
assume
0
< (P
. A);
then
0
< (1
- (P
. ((
[#] Sigma)
\ A))) by
Th16;
then ((P
. ((
[#] Sigma)
\ A))
+
0 )
< 1 by
XREAL_1: 20;
hence thesis;
end;
definition
let Omega, Sigma, P, A, B;
::
PROB_2:def4
pred A,B
are_independent_respect_to P means (P
. (A
/\ B))
= ((P
. A)
* (P
. B));
let C;
::
PROB_2:def5
pred A,B,C
are_independent_respect_to P means (P
. ((A
/\ B)
/\ C))
= (((P
. A)
* (P
. B))
* (P
. C)) & (P
. (A
/\ B))
= ((P
. A)
* (P
. B)) & (P
. (A
/\ C))
= ((P
. A)
* (P
. C)) & (P
. (B
/\ C))
= ((P
. B)
* (P
. C));
end
theorem ::
PROB_2:19
(A,B)
are_independent_respect_to P implies (B,A)
are_independent_respect_to P;
theorem ::
PROB_2:20
(A,B,C)
are_independent_respect_to P iff (P
. ((A
/\ B)
/\ C))
= (((P
. A)
* (P
. B))
* (P
. C)) & (A,B)
are_independent_respect_to P & (B,C)
are_independent_respect_to P & (A,C)
are_independent_respect_to P;
theorem ::
PROB_2:21
(A,B,C)
are_independent_respect_to P implies (B,A,C)
are_independent_respect_to P;
theorem ::
PROB_2:22
(A,B,C)
are_independent_respect_to P implies (A,C,B)
are_independent_respect_to P by
XBOOLE_1: 16;
theorem ::
PROB_2:23
for E be
Event of Sigma st E
=
{} holds (A,E)
are_independent_respect_to P
proof
let E be
Event of Sigma;
A1: (P
. (A
/\ (
{} Sigma)))
= ((P
. A)
*
0 ) by
VALUED_0:def 19
.= ((P
. A)
* (P
. (
{} Sigma))) by
VALUED_0:def 19;
assume E
=
{} ;
hence thesis by
A1;
end;
theorem ::
PROB_2:24
(A,(
[#] Sigma))
are_independent_respect_to P
proof
(P
. (A
/\ (
[#] Sigma)))
= ((P
. A)
* 1) by
XBOOLE_1: 28
.= ((P
. A)
* (P
. (
[#] Sigma))) by
PROB_1: 30;
hence thesis;
end;
theorem ::
PROB_2:25
Th25: for A, B, P st (A,B)
are_independent_respect_to P holds (A,((
[#] Sigma)
\ B))
are_independent_respect_to P
proof
let A, B, P;
assume (A,B)
are_independent_respect_to P;
then
A1: (P
. (A
/\ B))
= ((P
. A)
* (P
. B));
(P
. (A
/\ ((
[#] Sigma)
\ B)))
= (P
. (A
/\ (B
` )))
.= (P
. (A
\ B)) by
SUBSET_1: 13
.= (P
. (A
\ (A
/\ B))) by
XBOOLE_1: 47
.= (((P
. A)
* 1)
- ((P
. A)
* (P
. B))) by
A1,
PROB_1: 33,
XBOOLE_1: 17
.= ((P
. A)
* (1
- (P
. B)))
.= ((P
. A)
* (P
. ((
[#] Sigma)
\ B))) by
PROB_1: 32;
hence thesis;
end;
theorem ::
PROB_2:26
Th26: (A,B)
are_independent_respect_to P implies (((
[#] Sigma)
\ A),((
[#] Sigma)
\ B))
are_independent_respect_to P
proof
assume (A,B)
are_independent_respect_to P;
then (A,((
[#] Sigma)
\ B))
are_independent_respect_to P by
Th25;
then (((
[#] Sigma)
\ B),A)
are_independent_respect_to P;
then (((
[#] Sigma)
\ B),((
[#] Sigma)
\ A))
are_independent_respect_to P by
Th25;
hence thesis;
end;
theorem ::
PROB_2:27
for A, B, C, P st (A,B)
are_independent_respect_to P & (A,C)
are_independent_respect_to P & B
misses C holds (A,(B
\/ C))
are_independent_respect_to P
proof
let A, B, C, P;
assume that
A1: (A,B)
are_independent_respect_to P and
A2: (A,C)
are_independent_respect_to P and
A3: B
misses C;
A4: (A
/\ B)
misses (A
/\ C) by
A3,
XBOOLE_1: 76;
(P
. (A
/\ (B
\/ C)))
= (P
. ((A
/\ B)
\/ (A
/\ C))) by
XBOOLE_1: 23
.= ((P
. (A
/\ B))
+ (P
. (A
/\ C))) by
A4,
PROB_1:def 8
.= (((P
. A)
* (P
. B))
+ (P
. (A
/\ C))) by
A1
.= (((P
. A)
* (P
. B))
+ ((P
. A)
* (P
. C))) by
A2
.= ((P
. A)
* ((P
. B)
+ (P
. C)))
.= ((P
. A)
* (P
. (B
\/ C))) by
A3,
PROB_1:def 8;
hence thesis;
end;
theorem ::
PROB_2:28
for P, A, B st (A,B)
are_independent_respect_to P & (P
. A)
< 1 & (P
. B)
< 1 holds (P
. (A
\/ B))
< 1
proof
A1:
now
let r, r1;
assume
0
< r1;
then (
- r1)
< (
-
0 ) by
XREAL_1: 24;
then (r
+ (
- r1))
< (r
+
0 ) by
XREAL_1: 6;
hence (r
- r1)
< r;
end;
let P, A, B;
assume that
A2: (A,B)
are_independent_respect_to P and
A3: (P
. A)
< 1 & (P
. B)
< 1;
A4: (((
[#] Sigma)
\ A),((
[#] Sigma)
\ B))
are_independent_respect_to P by
A2,
Th26;
A5:
0
< (P
. ((
[#] Sigma)
\ A)) &
0
< (P
. ((
[#] Sigma)
\ B)) by
A3,
Th17;
(P
. (A
\/ B))
= (1
- (P
. ((
[#] Sigma)
\ (A
\/ B)))) by
Th16
.= (1
- (P
. (((
[#] Sigma)
\ A)
/\ ((
[#] Sigma)
\ B)))) by
XBOOLE_1: 53
.= (1
- ((P
. ((
[#] Sigma)
\ A))
* (P
. ((
[#] Sigma)
\ B)))) by
A4;
hence thesis by
A5,
A1,
XREAL_1: 129;
end;
definition
let Omega, Sigma, P, B;
assume
A1:
0
< (P
. B);
::
PROB_2:def6
func P
.|. B ->
Probability of Sigma means
:
Def6: for A holds (it
. A)
= ((P
. (A
/\ B))
/ (P
. B));
existence
proof
defpred
P[
object,
object] means ex A, r st (A
= $1 & r
= $2) & r
= ((P
. (A
/\ B))
/ (P
. B));
A2: for x be
object st x
in Sigma holds ex y be
object st y
in
REAL &
P[x, y]
proof
let x be
object;
assume x
in Sigma;
then
reconsider x as
Event of Sigma;
consider y such that
A3: y
= ((P
. (x
/\ B))
/ (P
. B));
take y;
thus thesis by
A3;
end;
consider f be
Function of Sigma,
REAL such that
A4: for x be
object st x
in Sigma holds
P[x, (f
. x)] from
FUNCT_2:sch 1(
A2);
A5: for A holds (f
. A)
= ((P
. (A
/\ B))
/ (P
. B))
proof
let A;
ex C, r1 st C
= A & r1
= (f
. A) & r1
= ((P
. (C
/\ B))
/ (P
. B)) by
A4;
hence thesis;
end;
then
A6: (f
. Omega)
= ((P
. ((
[#] Sigma)
/\ B))
/ (P
. B))
.= ((P
. B)
/ (P
. B)) by
XBOOLE_1: 28
.= 1 by
A1,
XCMPLX_1: 60;
A7: for A, C st A
misses C holds (f
. (A
\/ C))
= ((f
. A)
+ (f
. C))
proof
let A, C;
assume A
misses C;
then
A8: (A
/\ B)
misses (C
/\ B) by
XBOOLE_1: 76;
thus (f
. (A
\/ C))
= ((P
. ((A
\/ C)
/\ B))
/ (P
. B)) by
A5
.= ((P
. ((A
/\ B)
\/ (C
/\ B)))
/ (P
. B)) by
XBOOLE_1: 23
.= (((P
. (A
/\ B))
+ (P
. (C
/\ B)))
/ (P
. B)) by
A8,
PROB_1:def 8
.= (((P
. (A
/\ B))
/ (P
. B))
+ ((P
. (C
/\ B))
/ (P
. B))) by
XCMPLX_1: 62
.= (((P
. (A
/\ B))
/ (P
. B))
+ (f
. C)) by
A5
.= ((f
. A)
+ (f
. C)) by
A5;
end;
A9: for A holds
0
<= (f
. A)
proof
let A;
0
<= (P
. (A
/\ B)) by
PROB_1:def 8;
then
0
<= ((P
. (A
/\ B))
/ (P
. B)) by
A1;
hence thesis by
A5;
end;
for ASeq st ASeq is
non-ascending holds (f
* ASeq) is
convergent & (
lim (f
* ASeq))
= (f
. (
Intersection ASeq))
proof
let ASeq such that
A10: ASeq is
non-ascending;
consider BSeq such that
A11: for n holds (BSeq
. n)
= ((ASeq
. n)
/\ B) by
Th3;
A12: (
dom (f
* ASeq))
=
NAT by
FUNCT_2:def 1;
A13:
now
let n be
object;
assume
A14: n
in (
dom (f
* ASeq));
then
reconsider n1 = n as
Element of
NAT by
FUNCT_2:def 1;
thus ((f
* ASeq)
. n)
= (f
. (ASeq
. n)) by
A12,
A14,
FUNCT_2: 15
.= ((P
. ((ASeq
. n1)
/\ B))
/ (P
. B)) by
A5
.= ((P
. (BSeq
. n))
/ (P
. B)) by
A11
.= (((P
* BSeq)
. n)
/ (P
. B)) by
A12,
A14,
FUNCT_2: 15
.= (((P
. B)
" )
* ((P
* BSeq)
. n)) by
XCMPLX_0:def 9;
end;
A15: BSeq is
non-ascending by
A10,
A11,
Th4;
then
A16: (P
* BSeq) is
convergent by
PROB_1:def 8;
(
dom (P
* BSeq))
=
NAT by
FUNCT_2:def 1;
then
A17: (f
* ASeq)
= (((P
. B)
" )
(#) (P
* BSeq)) by
A12,
A13,
VALUED_1:def 5;
hence (f
* ASeq) is
convergent by
A16,
SEQ_2: 7;
(
lim (P
* BSeq))
= (P
. (
Intersection BSeq)) by
A15,
PROB_1:def 8;
hence (
lim (f
* ASeq))
= (((P
. B)
" )
* (P
. (
@Intersection BSeq))) by
A17,
A16,
SEQ_2: 8
.= ((P
. (
@Intersection BSeq))
/ (P
. B)) by
XCMPLX_0:def 9
.= ((P
. ((
@Intersection ASeq)
/\ B))
/ (P
. B)) by
A11,
Th5
.= (f
. (
Intersection ASeq)) by
A5;
end;
then
reconsider f as
Probability of Sigma by
A9,
A6,
A7,
PROB_1:def 8;
take f;
thus thesis by
A5;
end;
uniqueness
proof
let P1, P2;
assume that
A18: for A holds (P1
. A)
= ((P
. (A
/\ B))
/ (P
. B)) and
A19: for A holds (P2
. A)
= ((P
. (A
/\ B))
/ (P
. B));
now
let A;
thus (P1
. A)
= ((P
. (A
/\ B))
/ (P
. B)) by
A18
.= (P2
. A) by
A19;
end;
hence thesis by
Th9;
end;
end
theorem ::
PROB_2:29
Th29: for P, B, A st
0
< (P
. B) holds (P
. (A
/\ B))
= (((P
.|. B)
. A)
* (P
. B))
proof
let P, B, A;
assume
A1:
0
< (P
. B);
then (((P
.|. B)
. A)
* (P
. B))
= (((P
. (A
/\ B))
/ (P
. B))
* (P
. B)) by
Def6
.= (((P
. (A
/\ B))
* ((P
. B)
" ))
* (P
. B)) by
XCMPLX_0:def 9
.= ((P
. (A
/\ B))
* (((P
. B)
" )
* (P
. B)))
.= ((P
. (A
/\ B))
* 1) by
A1,
XCMPLX_0:def 7
.= (P
. (A
/\ B));
hence thesis;
end;
theorem ::
PROB_2:30
for P, A, B, C st
0
< (P
. (A
/\ B)) holds (P
. ((A
/\ B)
/\ C))
= (((P
. A)
* ((P
.|. A)
. B))
* ((P
.|. (A
/\ B))
. C))
proof
let P, A, B, C;
assume
A1:
0
< (P
. (A
/\ B));
then
A2:
0
< (P
. A) by
PROB_1: 34,
XBOOLE_1: 17;
(P
. ((A
/\ B)
/\ C))
= ((P
. (B
/\ A))
* ((P
.|. (A
/\ B))
. C)) by
A1,
Th29
.= (((P
. A)
* ((P
.|. A)
. B))
* ((P
.|. (A
/\ B))
. C)) by
A2,
Th29;
hence thesis;
end;
theorem ::
PROB_2:31
Th31: for P, A, B, C st C
= (B
` ) &
0
< (P
. B) &
0
< (P
. C) holds (P
. A)
= ((((P
.|. B)
. A)
* (P
. B))
+ (((P
.|. C)
. A)
* (P
. C)))
proof
let P, A, B, C;
assume that
A1: C
= (B
` ) and
A2:
0
< (P
. B) and
A3:
0
< (P
. C);
(P
. A)
= ((P
. (A
/\ B))
+ (P
. (A
/\ C))) by
A1,
Th14
.= ((((P
.|. B)
. A)
* (P
. B))
+ (P
. (A
/\ C))) by
A2,
Th29
.= ((((P
.|. B)
. A)
* (P
. B))
+ (((P
.|. C)
. A)
* (P
. C))) by
A3,
Th29;
hence thesis;
end;
theorem ::
PROB_2:32
Th32: for P, A, A1, A2, A3 st A1
misses A2 & A3
= ((A1
\/ A2)
` ) &
0
< (P
. A1) &
0
< (P
. A2) &
0
< (P
. A3) holds (P
. A)
= (((((P
.|. A1)
. A)
* (P
. A1))
+ (((P
.|. A2)
. A)
* (P
. A2)))
+ (((P
.|. A3)
. A)
* (P
. A3)))
proof
let P, A, A1, A2, A3;
assume that
A1: A1
misses A2 and
A2: A3
= ((A1
\/ A2)
` ) and
A3:
0
< (P
. A1) and
A4:
0
< (P
. A2) and
A5:
0
< (P
. A3);
A6: (A
/\ A1)
misses (A
/\ A2) by
A1,
XBOOLE_1: 76;
(A1
\/ A2)
misses A3 by
A2,
SUBSET_1: 24;
then
A7: (A
/\ (A1
\/ A2))
misses (A
/\ A3) by
XBOOLE_1: 76;
A8: ((A1
\/ A2)
\/ A3)
= (
[#] Omega) by
A2,
SUBSET_1: 10
.= Omega;
(((((P
.|. A1)
. A)
* (P
. A1))
+ (((P
.|. A2)
. A)
* (P
. A2)))
+ (((P
.|. A3)
. A)
* (P
. A3)))
= (((P
. (A
/\ A1))
+ (((P
.|. A2)
. A)
* (P
. A2)))
+ (((P
.|. A3)
. A)
* (P
. A3))) by
A3,
Th29
.= (((P
. (A
/\ A1))
+ (P
. (A
/\ A2)))
+ (((P
.|. A3)
. A)
* (P
. A3))) by
A4,
Th29
.= (((P
. (A
/\ A1))
+ (P
. (A
/\ A2)))
+ (P
. (A
/\ A3))) by
A5,
Th29
.= ((P
. ((A
/\ A1)
\/ (A
/\ A2)))
+ (P
. (A
/\ A3))) by
A6,
PROB_1:def 8
.= ((P
. (A
/\ (A1
\/ A2)))
+ (P
. (A
/\ A3))) by
XBOOLE_1: 23
.= (P
. ((A
/\ (A1
\/ A2))
\/ (A
/\ A3))) by
A7,
PROB_1:def 8
.= (P
. (A
/\ Omega)) by
A8,
XBOOLE_1: 23
.= (P
. A) by
XBOOLE_1: 28;
hence thesis;
end;
theorem ::
PROB_2:33
for P, A, B st
0
< (P
. B) holds (((P
.|. B)
. A)
= (P
. A) iff (A,B)
are_independent_respect_to P)
proof
let P, A, B;
assume
A1:
0
< (P
. B);
thus ((P
.|. B)
. A)
= (P
. A) implies (A,B)
are_independent_respect_to P
proof
assume ((P
.|. B)
. A)
= (P
. A);
then (((P
. (A
/\ B))
/ (P
. B))
* (P
. B))
= ((P
. A)
* (P
. B)) by
A1,
Def6;
then (P
. (A
/\ B))
= ((P
. A)
* (P
. B)) by
A1,
XCMPLX_1: 87;
hence thesis;
end;
assume (A,B)
are_independent_respect_to P;
then ((P
. (A
/\ B))
* ((P
. B)
" ))
= (((P
. A)
* (P
. B))
* ((P
. B)
" ));
then ((P
. (A
/\ B))
* ((P
. B)
" ))
= ((P
. A)
* ((P
. B)
* ((P
. B)
" )));
then ((P
. (A
/\ B))
* ((P
. B)
" ))
= ((P
. A)
* 1) by
A1,
XCMPLX_0:def 7;
then ((P
. (A
/\ B))
/ (P
. B))
= (P
. A) by
XCMPLX_0:def 9;
hence thesis by
A1,
Def6;
end;
theorem ::
PROB_2:34
for P, A, B st
0
< (P
. B) & (P
. B)
< 1 & ((P
.|. B)
. A)
= ((P
.|. ((
[#] Sigma)
\ B))
. A) holds (A,B)
are_independent_respect_to P
proof
let P, A, B;
assume that
A1:
0
< (P
. B) and
A2: (P
. B)
< 1 and
A3: ((P
.|. B)
. A)
= ((P
.|. ((
[#] Sigma)
\ B))
. A);
0
< (P
. ((
[#] Sigma)
\ B)) & ((P
. (A
/\ B))
/ (P
. B))
= ((P
.|. ((
[#] Sigma)
\ B))
. A) by
A1,
A2,
A3,
Def6,
Th17;
then
A4: ((P
. (A
/\ B))
/ (P
. B))
= ((P
. (A
/\ ((
[#] Sigma)
\ B)))
/ (P
. ((
[#] Sigma)
\ B))) by
Def6;
A5: (B
` )
= ((
[#] Sigma)
\ B);
(P
. ((
[#] Sigma)
\ B))
<>
0 by
A2,
Th17;
then ((P
. (A
/\ B))
* (P
. ((
[#] Sigma)
\ B)))
= ((P
. (A
/\ ((
[#] Sigma)
\ B)))
* (P
. B)) by
A1,
A4,
Th1;
then ((P
. (A
/\ B))
* (1
- (P
. B)))
= ((P
. (A
/\ ((
[#] Sigma)
\ B)))
* (P
. B)) by
PROB_1: 32;
then (P
. (A
/\ B))
= (((P
. (A
/\ ((
[#] Sigma)
\ B)))
+ (P
. (A
/\ B)))
* (P
. B))
.= ((P
. A)
* (P
. B)) by
A5,
Th14;
hence thesis;
end;
theorem ::
PROB_2:35
for P, A, B st
0
< (P
. B) holds ((((P
. A)
+ (P
. B))
- 1)
/ (P
. B))
<= ((P
.|. B)
. A)
proof
let P, A, B such that
A1:
0
< (P
. B);
((((P
. A)
+ (P
. B))
- 1)
/ (P
. B))
<= ((P
. (A
/\ B))
/ (P
. B)) by
A1,
Th15,
XREAL_1: 72;
hence thesis by
A1,
Def6;
end;
theorem ::
PROB_2:36
Th36: for A, B, P st
0
< (P
. A) &
0
< (P
. B) holds ((P
.|. B)
. A)
= ((((P
.|. A)
. B)
* (P
. A))
/ (P
. B))
proof
let A, B, P;
assume that
A1:
0
< (P
. A) and
A2:
0
< (P
. B);
thus ((((P
.|. A)
. B)
* (P
. A))
/ (P
. B))
= ((P
. (A
/\ B))
/ (P
. B)) by
A1,
Th29
.= ((P
.|. B)
. A) by
A2,
Def6;
end;
::$Notion-Name
theorem ::
PROB_2:37
for B, A1, A2, P st
0
< (P
. B) & A2
= (A1
` ) &
0
< (P
. A1) &
0
< (P
. A2) holds ((P
.|. B)
. A1)
= ((((P
.|. A1)
. B)
* (P
. A1))
/ ((((P
.|. A1)
. B)
* (P
. A1))
+ (((P
.|. A2)
. B)
* (P
. A2)))) & ((P
.|. B)
. A2)
= ((((P
.|. A2)
. B)
* (P
. A2))
/ ((((P
.|. A1)
. B)
* (P
. A1))
+ (((P
.|. A2)
. B)
* (P
. A2))))
proof
let B, A1, A2, P;
assume that
A1:
0
< (P
. B) and
A2: A2
= (A1
` ) and
A3:
0
< (P
. A1) and
A4:
0
< (P
. A2);
thus ((((P
.|. A1)
. B)
* (P
. A1))
/ ((((P
.|. A1)
. B)
* (P
. A1))
+ (((P
.|. A2)
. B)
* (P
. A2))))
= ((((P
.|. A1)
. B)
* (P
. A1))
/ (P
. B)) by
A2,
A3,
A4,
Th31
.= ((P
.|. B)
. A1) by
A1,
A3,
Th36;
thus ((((P
.|. A2)
. B)
* (P
. A2))
/ ((((P
.|. A1)
. B)
* (P
. A1))
+ (((P
.|. A2)
. B)
* (P
. A2))))
= ((((P
.|. A2)
. B)
* (P
. A2))
/ (P
. B)) by
A2,
A3,
A4,
Th31
.= ((P
.|. B)
. A2) by
A1,
A4,
Th36;
end;
theorem ::
PROB_2:38
for B, A1, A2, A3, P st
0
< (P
. B) &
0
< (P
. A1) &
0
< (P
. A2) &
0
< (P
. A3) & A1
misses A2 & A3
= ((A1
\/ A2)
` ) holds ((P
.|. B)
. A1)
= ((((P
.|. A1)
. B)
* (P
. A1))
/ (((((P
.|. A1)
. B)
* (P
. A1))
+ (((P
.|. A2)
. B)
* (P
. A2)))
+ (((P
.|. A3)
. B)
* (P
. A3)))) & ((P
.|. B)
. A2)
= ((((P
.|. A2)
. B)
* (P
. A2))
/ (((((P
.|. A1)
. B)
* (P
. A1))
+ (((P
.|. A2)
. B)
* (P
. A2)))
+ (((P
.|. A3)
. B)
* (P
. A3)))) & ((P
.|. B)
. A3)
= ((((P
.|. A3)
. B)
* (P
. A3))
/ (((((P
.|. A1)
. B)
* (P
. A1))
+ (((P
.|. A2)
. B)
* (P
. A2)))
+ (((P
.|. A3)
. B)
* (P
. A3))))
proof
let B, A1, A2, A3, P;
assume that
A1:
0
< (P
. B) and
A2:
0
< (P
. A1) and
A3:
0
< (P
. A2) and
A4:
0
< (P
. A3) and
A5: A1
misses A2 & A3
= ((A1
\/ A2)
` );
thus ((((P
.|. A1)
. B)
* (P
. A1))
/ (((((P
.|. A1)
. B)
* (P
. A1))
+ (((P
.|. A2)
. B)
* (P
. A2)))
+ (((P
.|. A3)
. B)
* (P
. A3))))
= ((((P
.|. A1)
. B)
* (P
. A1))
/ (P
. B)) by
A2,
A3,
A4,
A5,
Th32
.= ((P
.|. B)
. A1) by
A1,
A2,
Th36;
thus ((((P
.|. A2)
. B)
* (P
. A2))
/ (((((P
.|. A1)
. B)
* (P
. A1))
+ (((P
.|. A2)
. B)
* (P
. A2)))
+ (((P
.|. A3)
. B)
* (P
. A3))))
= ((((P
.|. A2)
. B)
* (P
. A2))
/ (P
. B)) by
A2,
A3,
A4,
A5,
Th32
.= ((P
.|. B)
. A2) by
A1,
A3,
Th36;
thus ((((P
.|. A3)
. B)
* (P
. A3))
/ (((((P
.|. A1)
. B)
* (P
. A1))
+ (((P
.|. A2)
. B)
* (P
. A2)))
+ (((P
.|. A3)
. B)
* (P
. A3))))
= ((((P
.|. A3)
. B)
* (P
. A3))
/ (P
. B)) by
A2,
A3,
A4,
A5,
Th32
.= ((P
.|. B)
. A3) by
A1,
A4,
Th36;
end;
theorem ::
PROB_2:39
for A, B, P st
0
< (P
. B) holds (1
- ((P
. ((
[#] Sigma)
\ A))
/ (P
. B)))
<= ((P
.|. B)
. A)
proof
let A, B, P;
assume
A1:
0
< (P
. B);
(((P
. B)
+ (P
. A))
- 1)
<= (P
. (A
/\ B)) by
Th15;
then ((P
. B)
+ (
- (1
- (P
. A))))
<= (P
. (A
/\ B));
then ((P
. B)
+ (
- (P
. ((
[#] Sigma)
\ A))))
<= (P
. (A
/\ B)) by
PROB_1: 32;
then (((P
. B)
+ (
- (P
. ((
[#] Sigma)
\ A))))
/ (P
. B))
<= ((P
. (A
/\ B))
/ (P
. B)) by
A1,
XREAL_1: 72;
then (((P
. B)
- (P
. ((
[#] Sigma)
\ A)))
/ (P
. B))
<= ((P
.|. B)
. A) by
A1,
Def6;
then (((P
. B)
/ (P
. B))
- ((P
. ((
[#] Sigma)
\ A))
/ (P
. B)))
<= ((P
.|. B)
. A) by
XCMPLX_1: 120;
hence thesis by
A1,
XCMPLX_1: 60;
end;