rfunct_3.miz
begin
reserve n,m for
Nat,
r,r1,r2,s,t for
Real,
x,y for
set;
definition
let r be
Real;
::
RFUNCT_3:def1
func
max+ (r) ->
Real equals (
max (r,
0 ));
correctness ;
::
RFUNCT_3:def2
func
max- (r) ->
Real equals (
max ((
- r),
0 ));
correctness ;
end
theorem ::
RFUNCT_3:1
Th1: for r be
Real holds r
= ((
max+ r)
- (
max- r))
proof
let r be
Real;
now
per cases ;
case
A1:
0
<= r;
then (
max- r)
=
0 by
XXREAL_0:def 10;
hence thesis by
A1,
XXREAL_0:def 10;
end;
case r
<
0 ;
then (
max+ r)
=
0 & (
max- r)
= (
- r) by
XXREAL_0:def 10;
hence thesis;
end;
end;
hence thesis;
end;
theorem ::
RFUNCT_3:2
Th2: for r be
Real holds
|.r.|
= ((
max+ r)
+ (
max- r))
proof
let r be
Real;
now
per cases ;
case
A1:
0
<= r;
then (
max+ r)
= r & (
max- r)
=
0 by
XXREAL_0:def 10;
hence thesis by
A1,
ABSVALUE:def 1;
end;
case
A2: r
<
0 ;
then (
max+ r)
=
0 & (
max- r)
= (
- r) by
XXREAL_0:def 10;
hence thesis by
A2,
ABSVALUE:def 1;
end;
end;
hence thesis;
end;
theorem ::
RFUNCT_3:3
Th3: for r be
Real holds (2
* (
max+ r))
= (r
+
|.r.|)
proof
let r be
Real;
thus (r
+
|.r.|)
= (((
max+ r)
- (
max- r))
+
|.r.|) by
Th1
.= (((
max+ r)
- (
max- r))
+ ((
max+ r)
+ (
max- r))) by
Th2
.= (2
* (
max+ r));
end;
theorem ::
RFUNCT_3:4
Th4: for r,s be
Real st
0
<= r holds (
max+ (r
* s))
= (r
* (
max+ s))
proof
let r,s be
Real;
assume
A1:
0
<= r;
now
per cases ;
case
A2:
0
<= s;
then (
max+ (r
* s))
= (r
* s) by
A1,
XXREAL_0:def 10;
hence thesis by
A2,
XXREAL_0:def 10;
end;
case
A3: s
<
0 ;
then (
max+ s)
=
0 by
XXREAL_0:def 10;
hence thesis by
A1,
A3,
XXREAL_0:def 10;
end;
end;
hence thesis;
end;
theorem ::
RFUNCT_3:5
Th5: for r,s be
Real holds (
max+ (r
+ s))
<= ((
max+ r)
+ (
max+ s))
proof
let r,s be
Real;
A1:
0
<= (
max (r,
0 )) &
0
<= (
max (s,
0 )) by
XXREAL_0: 25;
A2: r
<= (
max (r,
0 )) & s
<= (
max (s,
0 )) by
XXREAL_0: 25;
now
per cases ;
case
0
<= (r
+ s);
then (
max+ (r
+ s))
= (r
+ s) by
XXREAL_0:def 10;
hence thesis by
A2,
XREAL_1: 7;
end;
case (r
+ s)
<
0 ;
then (
max+ (r
+ s))
= (
0
+
0 ) by
XXREAL_0:def 10;
hence thesis by
A1;
end;
end;
hence thesis;
end;
Lm1: for D be non
empty
set, f be
FinSequence of D st (
len f)
<= n holds (f
| n)
= f
proof
let D be non
empty
set, f be
FinSequence of D;
A1: (
dom f)
= (
Seg (
len f)) by
FINSEQ_1:def 3;
assume (
len f)
<= n;
then (f
| n)
= (f
| (
Seg n)) & (
dom f)
c= (
Seg n) by
A1,
FINSEQ_1: 5,
FINSEQ_1:def 15;
hence thesis by
RELAT_1: 68;
end;
Lm2: for f be
Function, x be
set st not x
in (
rng f) holds (f
"
{x})
=
{}
proof
let f be
Function, x be
set;
assume
A1: not x
in (
rng f);
(
rng f)
misses
{x}
proof
set y = the
Element of ((
rng f)
/\
{x});
assume ((
rng f)
/\
{x})
<>
{} ;
then y
in (
rng f) & y
in
{x} by
XBOOLE_0:def 4;
hence contradiction by
A1,
TARSKI:def 1;
end;
hence thesis by
RELAT_1: 138;
end;
begin
theorem ::
RFUNCT_3:6
Th6: for D be non
empty
set, F be
PartFunc of D,
REAL , r,s be
Real st r
<>
0 holds (F
"
{(s
/ r)})
= ((r
(#) F)
"
{s})
proof
let D be non
empty
set, F be
PartFunc of D,
REAL , r,s be
Real;
assume
A1: r
<>
0 ;
thus (F
"
{(s
/ r)})
c= ((r
(#) F)
"
{s})
proof
let x be
object;
assume
A2: x
in (F
"
{(s
/ r)});
then
reconsider d = x as
Element of D;
d
in (
dom F) by
A2,
FUNCT_1:def 7;
then
A3: d
in (
dom (r
(#) F)) by
VALUED_1:def 5;
(F
. d)
in
{(s
/ r)} by
A2,
FUNCT_1:def 7;
then (F
. d)
= (s
/ r) by
TARSKI:def 1;
then (r
* (F
. d))
= s by
A1,
XCMPLX_1: 87;
then ((r
(#) F)
. d)
= s by
A3,
VALUED_1:def 5;
then ((r
(#) F)
. d)
in
{s} by
TARSKI:def 1;
hence thesis by
A3,
FUNCT_1:def 7;
end;
let x be
object;
assume
A4: x
in ((r
(#) F)
"
{s});
then
reconsider d = x as
Element of D;
A5: d
in (
dom (r
(#) F)) by
A4,
FUNCT_1:def 7;
((r
(#) F)
. d)
in
{s} by
A4,
FUNCT_1:def 7;
then ((r
(#) F)
. d)
= s by
TARSKI:def 1;
then (r
* (F
. d))
= s by
A5,
VALUED_1:def 5;
then (F
. d)
= (s
/ r) by
A1,
XCMPLX_1: 89;
then
A6: (F
. d)
in
{(s
/ r)} by
TARSKI:def 1;
d
in (
dom F) by
A5,
VALUED_1:def 5;
hence thesis by
A6,
FUNCT_1:def 7;
end;
theorem ::
RFUNCT_3:7
Th7: for D be non
empty
set, F be
PartFunc of D,
REAL holds ((
0
(#) F)
"
{
0 })
= (
dom F)
proof
let D be non
empty
set, F be
PartFunc of D,
REAL ;
thus ((
0
(#) F)
"
{
0 })
c= (
dom F)
proof
let x be
object;
assume
A1: x
in ((
0
(#) F)
"
{
0 });
then
reconsider d = x as
Element of D;
d
in (
dom (
0
(#) F)) by
A1,
FUNCT_1:def 7;
hence thesis by
VALUED_1:def 5;
end;
let x be
object;
assume
A2: x
in (
dom F);
then
reconsider d = x as
Element of D;
A3: d
in (
dom (
0
(#) F)) by
A2,
VALUED_1:def 5;
then ((
0
(#) F)
. d)
= (
0
* (F
. d)) by
VALUED_1:def 5
.=
0 ;
then ((
0
(#) F)
. d)
in
{
0 } by
TARSKI:def 1;
hence thesis by
A3,
FUNCT_1:def 7;
end;
theorem ::
RFUNCT_3:8
Th8: for D be non
empty
set, F be
PartFunc of D,
REAL , r st
0
< r holds ((
abs F)
"
{r})
= (F
"
{(
- r), r})
proof
let D be non
empty
set, F be
PartFunc of D,
REAL , r;
assume
A1:
0
< r;
A2: (
dom (
abs F))
= (
dom F) by
VALUED_1:def 11;
thus ((
abs F)
"
{r})
c= (F
"
{(
- r), r})
proof
let x be
object;
assume
A3: x
in ((
abs F)
"
{r});
then
reconsider rr = x as
Element of D;
((
abs F)
. rr)
in
{r} by
A3,
FUNCT_1:def 7;
then
|.(F
. rr).|
in
{r} by
VALUED_1: 18;
then
A4:
|.(F
. rr).|
= r by
TARSKI:def 1;
A5: rr
in (
dom (
abs F)) by
A3,
FUNCT_1:def 7;
now
per cases ;
case
0
<= (F
. rr);
then (F
. rr)
= r by
A4,
ABSVALUE:def 1;
then (F
. rr)
in
{(
- r), r} by
TARSKI:def 2;
hence thesis by
A2,
A5,
FUNCT_1:def 7;
end;
case (F
. rr)
<
0 ;
then (
- (F
. rr))
= r by
A4,
ABSVALUE:def 1;
then (F
. rr)
in
{(
- r), r} by
TARSKI:def 2;
hence thesis by
A2,
A5,
FUNCT_1:def 7;
end;
end;
hence thesis;
end;
let x be
object;
assume
A6: x
in (F
"
{(
- r), r});
then
reconsider rr = x as
Element of D;
A7: rr
in (
dom F) by
A6,
FUNCT_1:def 7;
A8: (F
. rr)
in
{(
- r), r} by
A6,
FUNCT_1:def 7;
now
per cases by
A8,
TARSKI:def 2;
case (F
. rr)
= (
- r);
then r
=
|.(
- (F
. rr)).| by
A1,
ABSVALUE:def 1
.=
|.(F
. rr).| by
COMPLEX1: 52
.= ((
abs F)
. rr) by
VALUED_1: 18;
then ((
abs F)
. rr)
in
{r} by
TARSKI:def 1;
hence thesis by
A2,
A7,
FUNCT_1:def 7;
end;
case (F
. rr)
= r;
then r
=
|.(F
. rr).| by
A1,
ABSVALUE:def 1
.= ((
abs F)
. rr) by
VALUED_1: 18;
then ((
abs F)
. rr)
in
{r} by
TARSKI:def 1;
hence thesis by
A2,
A7,
FUNCT_1:def 7;
end;
end;
hence thesis;
end;
theorem ::
RFUNCT_3:9
Th9: for D be non
empty
set, F be
PartFunc of D,
REAL holds ((
abs F)
"
{
0 })
= (F
"
{
0 })
proof
let D be non
empty
set, F be
PartFunc of D,
REAL ;
A1: (
dom (
abs F))
= (
dom F) by
VALUED_1:def 11;
thus ((
abs F)
"
{
0 })
c= (F
"
{
0 })
proof
let x be
object;
assume
A2: x
in ((
abs F)
"
{
0 });
then
reconsider r = x as
Element of D;
((
abs F)
. r)
in
{
0 } by
A2,
FUNCT_1:def 7;
then
|.(F
. r).|
in
{
0 } by
VALUED_1: 18;
then
|.(F
. r).|
=
0 by
TARSKI:def 1;
then (F
. r)
=
0 by
ABSVALUE: 2;
then
A3: (F
. r)
in
{
0 } by
TARSKI:def 1;
r
in (
dom (
abs F)) by
A2,
FUNCT_1:def 7;
hence thesis by
A1,
A3,
FUNCT_1:def 7;
end;
let x be
object;
assume
A4: x
in (F
"
{
0 });
then
reconsider r = x as
Element of D;
(F
. r)
in
{
0 } by
A4,
FUNCT_1:def 7;
then (F
. r)
=
0 by
TARSKI:def 1;
then
|.(F
. r).|
=
0 by
ABSVALUE: 2;
then ((
abs F)
. r)
=
0 by
VALUED_1: 18;
then
A5: ((
abs F)
. r)
in
{
0 } by
TARSKI:def 1;
r
in (
dom F) by
A4,
FUNCT_1:def 7;
hence thesis by
A1,
A5,
FUNCT_1:def 7;
end;
theorem ::
RFUNCT_3:10
Th10: for D be non
empty
set, F be
PartFunc of D,
REAL , r st r
<
0 holds ((
abs F)
"
{r})
=
{}
proof
let D be non
empty
set, F be
PartFunc of D,
REAL , r;
assume
A1: r
<
0 ;
set x = the
Element of ((
abs F)
"
{r});
assume
A2: ((
abs F)
"
{r})
<>
{} ;
then
reconsider x as
Element of D by
TARSKI:def 3;
((
abs F)
. x)
in
{r} by
A2,
FUNCT_1:def 7;
then
|.(F
. x).|
in
{r} by
VALUED_1: 18;
then
|.(F
. x).|
= r by
TARSKI:def 1;
hence contradiction by
A1,
COMPLEX1: 46;
end;
theorem ::
RFUNCT_3:11
Th11: for D,C be non
empty
set, F be
PartFunc of D,
REAL , G be
PartFunc of C,
REAL , r st r
<>
0 holds (F,G)
are_fiberwise_equipotent iff ((r
(#) F),(r
(#) G))
are_fiberwise_equipotent
proof
let D,C be non
empty
set, F be
PartFunc of D,
REAL , G be
PartFunc of C,
REAL , r;
assume
A1: r
<>
0 ;
reconsider rr = r as
Element of
REAL by
XREAL_0:def 1;
A2: (
rng (rr
(#) F))
c=
REAL & (
rng (rr
(#) G))
c=
REAL ;
thus (F,G)
are_fiberwise_equipotent implies ((r
(#) F),(r
(#) G))
are_fiberwise_equipotent
proof
assume
A3: (F,G)
are_fiberwise_equipotent ;
now
let x be
Element of
REAL ;
(
Coim (F,(x
/ r)))
= (
Coim ((r
(#) F),x)) & (
Coim (G,(x
/ r)))
= (
Coim ((r
(#) G),x)) by
A1,
Th6;
hence (
card (
Coim ((r
(#) F),x)))
= (
card (
Coim ((r
(#) G),x))) by
A3,
CLASSES1:def 10;
end;
hence thesis by
A2,
CLASSES1: 79;
end;
assume
A4: ((r
(#) F),(r
(#) G))
are_fiberwise_equipotent ;
A5:
now
let x be
Element of
REAL ;
A6: (G
"
{((r
* x)
/ r)})
= (
Coim ((r
(#) G),(r
* x))) by
A1,
Th6;
((r
* x)
/ r)
= x & (F
"
{((r
* x)
/ r)})
= (
Coim ((r
(#) F),(r
* x))) by
A1,
Th6,
XCMPLX_1: 89;
hence (
card (
Coim (F,x)))
= (
card (
Coim (G,x))) by
A4,
A6,
CLASSES1:def 10;
end;
(
rng F)
c=
REAL & (
rng G)
c=
REAL ;
hence thesis by
A5,
CLASSES1: 79;
end;
theorem ::
RFUNCT_3:12
for D,C be non
empty
set, F be
PartFunc of D,
REAL , G be
PartFunc of C,
REAL holds (F,G)
are_fiberwise_equipotent iff ((
- F),(
- G))
are_fiberwise_equipotent by
Th11;
theorem ::
RFUNCT_3:13
for D,C be non
empty
set, F be
PartFunc of D,
REAL , G be
PartFunc of C,
REAL st (F,G)
are_fiberwise_equipotent holds ((
abs F),(
abs G))
are_fiberwise_equipotent
proof
let D,C be non
empty
set, F be
PartFunc of D,
REAL , G be
PartFunc of C,
REAL ;
assume
A1: (F,G)
are_fiberwise_equipotent ;
A2:
now
let r be
Element of
REAL ;
now
per cases ;
case
0
< r;
then ((
abs F)
"
{r})
= (F
"
{(
- r), r}) & ((
abs G)
"
{r})
= (G
"
{(
- r), r}) by
Th8;
hence (
card ((
abs F)
"
{r}))
= (
card ((
abs G)
"
{r})) by
A1,
CLASSES1: 78;
end;
case
0
= r;
then ((
abs F)
"
{r})
= (F
"
{r}) & ((
abs G)
"
{r})
= (G
"
{r}) by
Th9;
hence (
card ((
abs F)
"
{r}))
= (
card ((
abs G)
"
{r})) by
A1,
CLASSES1: 78;
end;
case
A3: r
<
0 ;
then ((
abs F)
"
{r})
=
{} by
Th10;
hence (
card ((
abs F)
"
{r}))
= (
card ((
abs G)
"
{r})) by
A3,
Th10;
end;
end;
hence (
card (
Coim ((
abs F),r)))
= (
card (
Coim ((
abs G),r)));
end;
(
rng (
abs F))
c=
REAL & (
rng (
abs G))
c=
REAL ;
hence thesis by
A2,
CLASSES1: 79;
end;
definition
let X,Y be
set;
::
RFUNCT_3:def3
mode
PartFunc-set of X,Y ->
set means
:
Def3: for x be
Element of it holds x is
PartFunc of X, Y;
existence
proof
reconsider h =
{} as
PartFunc of X, Y by
RELSET_1: 12;
take
{h};
thus thesis by
TARSKI:def 1;
end;
end
registration
let X,Y be
set;
cluster non
empty for
PartFunc-set of X, Y;
existence
proof
reconsider h =
{} as
PartFunc of X, Y by
RELSET_1: 12;
{h} is
PartFunc-set of X, Y
proof
let x be
Element of
{h};
thus thesis by
TARSKI:def 1;
end;
hence thesis;
end;
end
definition
let X,Y be
set;
mode
PFUNC_DOMAIN of X,Y is non
empty
PartFunc-set of X, Y;
end
definition
let X,Y be
set;
:: original:
PFuncs
redefine
func
PFuncs (X,Y) ->
PartFunc-set of X, Y ;
coherence
proof
for x be
Element of (
PFuncs (X,Y)) holds x is
PartFunc of X, Y by
PARTFUN1: 47;
hence thesis by
Def3;
end;
let P be non
empty
PartFunc-set of X, Y;
:: original:
Element
redefine
mode
Element of P ->
PartFunc of X, Y ;
coherence by
Def3;
end
definition
let D,C be non
empty
set, X be
Subset of D, c be
Element of C;
:: original:
-->
redefine
func X
--> c ->
Element of (
PFuncs (D,C)) ;
coherence
proof
(X
--> c) is
PartFunc of D, C;
hence thesis by
PARTFUN1: 45;
end;
end
registration
let D be non
empty
set, E be
real-membered
set;
cluster ->
real-valued for
Element of (
PFuncs (D,E));
coherence ;
end
definition
let D be non
empty
set, E be
real-membered
set, F1,F2 be
Element of (
PFuncs (D,E));
:: original:
+
redefine
func F1
+ F2 ->
Element of (
PFuncs (D,
REAL )) ;
coherence
proof
reconsider F1, F2 as
PartFunc of D, E;
(F1
+ F2) is
PartFunc of D,
REAL ;
hence thesis by
PARTFUN1: 45;
end;
:: original:
-
redefine
func F1
- F2 ->
Element of (
PFuncs (D,
REAL )) ;
coherence
proof
reconsider F1, F2 as
PartFunc of D, E;
(F1
- F2) is
PartFunc of D,
REAL ;
hence thesis by
PARTFUN1: 45;
end;
:: original:
(#)
redefine
func F1
(#) F2 ->
Element of (
PFuncs (D,
REAL )) ;
coherence
proof
reconsider F1, F2 as
PartFunc of D, E;
(F1
(#) F2) is
PartFunc of D,
REAL ;
hence thesis by
PARTFUN1: 45;
end;
:: original:
/
redefine
func F1
/ F2 ->
Element of (
PFuncs (D,
REAL )) ;
coherence
proof
reconsider F1, F2 as
PartFunc of D, E;
(F1
/ F2) is
PartFunc of D,
REAL ;
hence thesis by
PARTFUN1: 45;
end;
end
definition
let D be non
empty
set, E be
real-membered
set, F be
Element of (
PFuncs (D,E));
:: original:
abs
redefine
func
abs (F) ->
Element of (
PFuncs (D,
REAL )) ;
coherence
proof
reconsider F as
PartFunc of D, E;
(
abs F) is
PartFunc of D,
REAL ;
hence thesis by
PARTFUN1: 45;
end;
:: original:
-
redefine
func
- F ->
Element of (
PFuncs (D,
REAL )) ;
coherence
proof
reconsider F as
PartFunc of D, E;
(
- F) is
PartFunc of D,
REAL ;
hence thesis by
PARTFUN1: 45;
end;
:: original:
^
redefine
func F
^ ->
Element of (
PFuncs (D,
REAL )) ;
coherence
proof
reconsider F as
PartFunc of D, E;
(F
^ ) is
PartFunc of D,
REAL ;
hence thesis by
PARTFUN1: 45;
end;
end
definition
let D be non
empty
set, E be
real-membered
set, F be
Element of (
PFuncs (D,E)), r be
Real;
:: original:
(#)
redefine
func r
(#) F ->
Element of (
PFuncs (D,
REAL )) ;
coherence
proof
reconsider F as
PartFunc of D, E;
(r
(#) F) is
PartFunc of D,
REAL ;
hence thesis by
PARTFUN1: 45;
end;
end
definition
let D be non
empty
set;
::
RFUNCT_3:def4
func
addpfunc (D) ->
BinOp of (
PFuncs (D,
REAL )) means
:
Def4: for F1,F2 be
Element of (
PFuncs (D,
REAL )) holds (it
. (F1,F2))
= (F1
+ F2);
existence
proof
deffunc
O(
Element of (
PFuncs (D,
REAL )),
Element of (
PFuncs (D,
REAL ))) = ($1
+ $2);
ex o be
BinOp of (
PFuncs (D,
REAL )) st for a,b be
Element of (
PFuncs (D,
REAL )) holds (o
. (a,b))
=
O(a,b) from
BINOP_1:sch 4;
hence thesis;
end;
uniqueness
proof
let o1,o2 be
BinOp of (
PFuncs (D,
REAL ));
assume that
A1: for f1,f2 be
Element of (
PFuncs (D,
REAL )) holds (o1
. (f1,f2))
= (f1
+ f2) and
A2: for f1,f2 be
Element of (
PFuncs (D,
REAL )) holds (o2
. (f1,f2))
= (f1
+ f2);
now
let f1,f2 be
Element of (
PFuncs (D,
REAL ));
(o1
. (f1,f2))
= (f1
+ f2) by
A1;
hence (o1
. (f1,f2))
= (o2
. (f1,f2)) by
A2;
end;
hence thesis;
end;
end
theorem ::
RFUNCT_3:14
Th14: for D be non
empty
set holds (
addpfunc D) is
commutative
proof
let D be non
empty
set;
let F1,F2 be
Element of (
PFuncs (D,
REAL ));
set o = (
addpfunc D);
thus (o
. (F1,F2))
= (F2
+ F1) by
Def4
.= (o
. (F2,F1)) by
Def4;
end;
theorem ::
RFUNCT_3:15
Th15: for D be non
empty
set holds (
addpfunc D) is
associative
proof
let D be non
empty
set;
let F1,F2,F3 be
Element of (
PFuncs (D,
REAL ));
set o = (
addpfunc D);
thus (o
. (F1,(o
. (F2,F3))))
= (o
. (F1,(F2
+ F3))) by
Def4
.= (F1
+ (F2
+ F3)) by
Def4
.= ((F1
+ F2)
+ F3) by
RFUNCT_1: 8
.= ((o
. (F1,F2))
+ F3) by
Def4
.= (o
. ((o
. (F1,F2)),F3)) by
Def4;
end;
theorem ::
RFUNCT_3:16
Th16: for D be non
empty
set holds ((
[#] D)
-->
0 qua
Real)
is_a_unity_wrt (
addpfunc D)
proof
let D be non
empty
set;
set F = ((
[#] D)
--> (
In (
0 ,
REAL )));
A1: (
dom F)
= D by
FUNCOP_1: 13;
A2:
now
let G be
Element of (
PFuncs (D,
REAL ));
A3:
now
let d be
Element of D;
assume d
in (
dom (G
+ F));
hence ((G
+ F)
. d)
= ((G
. d)
+ (F
. d)) by
VALUED_1:def 1
.= ((G
. d)
+
0 ) by
FUNCOP_1: 7
.= (G
. d);
end;
((
dom G)
/\ D)
= (
dom G) by
XBOOLE_1: 28;
then (
dom (G
+ F))
= (
dom G) by
A1,
VALUED_1:def 1;
then (G
+ F)
= G by
A3,
PARTFUN1: 5;
hence ((
addpfunc D)
. (G,F))
= G by
Def4;
end;
(
addpfunc D) is
commutative by
Th14;
hence thesis by
A2,
BINOP_1: 5;
end;
theorem ::
RFUNCT_3:17
Th17: for D be non
empty
set holds (
the_unity_wrt (
addpfunc D))
= ((
[#] D)
-->
0 qua
Real)
proof
let D be non
empty
set;
((
[#] D)
--> (
In (
0 ,
REAL )))
is_a_unity_wrt (
addpfunc D) by
Th16;
hence thesis by
BINOP_1:def 8;
end;
theorem ::
RFUNCT_3:18
Th18: for D be non
empty
set holds (
addpfunc D) is
having_a_unity
proof
let D be non
empty
set;
take ((
[#] D)
--> (
In (
0 ,
REAL )));
thus thesis by
Th16;
end;
definition
let D be non
empty
set, f be
FinSequence of (
PFuncs (D,
REAL ));
::
RFUNCT_3:def5
func
Sum (f) ->
Element of (
PFuncs (D,
REAL )) equals ((
addpfunc D)
$$ f);
correctness ;
end
theorem ::
RFUNCT_3:19
Th19: for D be non
empty
set holds (
Sum (
<*> (
PFuncs (D,
REAL ))))
= ((
[#] D)
-->
0 qua
Real)
proof
let D be non
empty
set;
set o = (
addpfunc D), o0 = ((
[#] D)
-->
0 qua
Real);
(
the_unity_wrt o)
= o0 by
Th17;
hence thesis by
Th18,
FINSOP_1: 10;
end;
theorem ::
RFUNCT_3:20
Th20: for D be non
empty
set, f be
FinSequence of (
PFuncs (D,
REAL )), G be
Element of (
PFuncs (D,
REAL )) holds (
Sum (f
^
<*G*>))
= ((
Sum f)
+ G)
proof
let D be non
empty
set, f be
FinSequence of (
PFuncs (D,
REAL )), G be
Element of (
PFuncs (D,
REAL ));
set o = (
addpfunc D);
thus (
Sum (f
^
<*G*>))
= (o
. ((o
$$ f),G)) by
Th18,
FINSOP_1: 4
.= ((
Sum f)
+ G) by
Def4;
end;
theorem ::
RFUNCT_3:21
Th21: for D be non
empty
set, f1,f2 be
FinSequence of (
PFuncs (D,
REAL )) holds (
Sum (f1
^ f2))
= ((
Sum f1)
+ (
Sum f2))
proof
let D be non
empty
set, f1,f2 be
FinSequence of (
PFuncs (D,
REAL ));
set o = (
addpfunc D);
o is
associative by
Th15;
hence (
Sum (f1
^ f2))
= ((
addpfunc D)
. ((
Sum f1),(
Sum f2))) by
Th18,
FINSOP_1: 5
.= ((
Sum f1)
+ (
Sum f2)) by
Def4;
end;
theorem ::
RFUNCT_3:22
for D be non
empty
set, f be
FinSequence of (
PFuncs (D,
REAL )), G be
Element of (
PFuncs (D,
REAL )) holds (
Sum (
<*G*>
^ f))
= (G
+ (
Sum f))
proof
let D be non
empty
set, f be
FinSequence of (
PFuncs (D,
REAL )), G be
Element of (
PFuncs (D,
REAL ));
thus (
Sum (
<*G*>
^ f))
= ((
Sum
<*G*>)
+ (
Sum f)) by
Th21
.= (G
+ (
Sum f)) by
FINSOP_1: 11;
end;
theorem ::
RFUNCT_3:23
Th23: for D be non
empty
set, G1,G2 be
Element of (
PFuncs (D,
REAL )) holds (
Sum
<*G1, G2*>)
= (G1
+ G2)
proof
let D be non
empty
set, G1,G2 be
Element of (
PFuncs (D,
REAL ));
thus (
Sum
<*G1, G2*>)
= (
Sum (
<*G1*>
^
<*G2*>)) by
FINSEQ_1:def 9
.= ((
Sum
<*G1*>)
+ G2) by
Th20
.= (G1
+ G2) by
FINSOP_1: 11;
end;
theorem ::
RFUNCT_3:24
for D be non
empty
set, G1,G2,G3 be
Element of (
PFuncs (D,
REAL )) holds (
Sum
<*G1, G2, G3*>)
= ((G1
+ G2)
+ G3)
proof
let D be non
empty
set, G1,G2,G3 be
Element of (
PFuncs (D,
REAL ));
thus (
Sum
<*G1, G2, G3*>)
= (
Sum (
<*G1, G2*>
^
<*G3*>)) by
FINSEQ_1: 43
.= ((
Sum
<*G1, G2*>)
+ G3) by
Th20
.= ((G1
+ G2)
+ G3) by
Th23;
end;
theorem ::
RFUNCT_3:25
for D be non
empty
set, f,g be
FinSequence of (
PFuncs (D,
REAL )) st (f,g)
are_fiberwise_equipotent holds (
Sum f)
= (
Sum g)
proof
let D be non
empty
set;
defpred
P[
Nat] means for f,g be
FinSequence of (
PFuncs (D,
REAL )) st (f,g)
are_fiberwise_equipotent & (
len f)
= $1 holds (
Sum f)
= (
Sum g);
let f,g be
FinSequence of (
PFuncs (D,
REAL ));
assume
A1: (f,g)
are_fiberwise_equipotent ;
A2: (
len f)
= (
len f);
A3: for n st
P[n] holds
P[(n
+ 1)]
proof
let n;
assume
A4:
P[n];
let f,g be
FinSequence of (
PFuncs (D,
REAL ));
assume that
A5: (f,g)
are_fiberwise_equipotent and
A6: (
len f)
= (n
+ 1);
(
0
+ 1)
<= (n
+ 1) by
NAT_1: 13;
then
A7: (n
+ 1)
in (
dom f) by
A6,
FINSEQ_3: 25;
then
reconsider a = (f
. (n
+ 1)) as
Element of (
PFuncs (D,
REAL )) by
FINSEQ_2: 11;
(
rng f)
= (
rng g) by
A5,
CLASSES1: 75;
then a
in (
rng g) by
A7,
FUNCT_1:def 3;
then
consider m be
Nat such that
A8: m
in (
dom g) and
A9: (g
. m)
= a by
FINSEQ_2: 10;
A10: g
= ((g
| m)
^ (g
/^ m)) by
RFINSEQ: 8;
set gg = (g
/^ m), gm = (g
| m);
m
<= (
len g) by
A8,
FINSEQ_3: 25;
then
A11: (
len gm)
= m by
FINSEQ_1: 59;
set fn = (f
| n);
A12: f
= (fn
^
<*a*>) by
A6,
RFINSEQ: 7;
A13: 1
<= m by
A8,
FINSEQ_3: 25;
then (
max (
0 ,(m
- 1)))
= (m
- 1) by
FINSEQ_2: 4;
then
reconsider m1 = (m
- 1) as
Element of
NAT by
FINSEQ_2: 5;
A14: m
= (m1
+ 1);
then m1
<= m by
NAT_1: 11;
then
A15: (
Seg m1)
c= (
Seg m) by
FINSEQ_1: 5;
m
in (
Seg m) by
A13,
FINSEQ_1: 1;
then (gm
. m)
= a by
A8,
A9,
RFINSEQ: 6;
then
A16: gm
= ((gm
| m1)
^
<*a*>) by
A11,
A14,
RFINSEQ: 7;
A17: (gm
| m1)
= (gm
| (
Seg m1)) by
FINSEQ_1:def 15
.= ((g
| (
Seg m))
| (
Seg m1)) by
FINSEQ_1:def 15
.= (g
| ((
Seg m)
/\ (
Seg m1))) by
RELAT_1: 71
.= (g
| (
Seg m1)) by
A15,
XBOOLE_1: 28
.= (g
| m1) by
FINSEQ_1:def 15;
now
let x be
object;
(
card (
Coim (f,x)))
= (
card (
Coim (g,x))) by
A5,
CLASSES1:def 10;
then ((
card (fn
"
{x}))
+ (
card (
<*a*>
"
{x})))
= (
card ((((g
| m1)
^
<*a*>)
^ (g
/^ m))
"
{x})) by
A10,
A16,
A17,
A12,
FINSEQ_3: 57
.= ((
card (((g
| m1)
^
<*a*>)
"
{x}))
+ (
card ((g
/^ m)
"
{x}))) by
FINSEQ_3: 57
.= (((
card ((g
| m1)
"
{x}))
+ (
card (
<*a*>
"
{x})))
+ (
card ((g
/^ m)
"
{x}))) by
FINSEQ_3: 57
.= (((
card ((g
| m1)
"
{x}))
+ (
card ((g
/^ m)
"
{x})))
+ (
card (
<*a*>
"
{x})))
.= ((
card (((g
| m1)
^ (g
/^ m))
"
{x}))
+ (
card (
<*a*>
"
{x}))) by
FINSEQ_3: 57;
hence (
card (
Coim (fn,x)))
= (
card (
Coim (((g
| m1)
^ (g
/^ m)),x)));
end;
then
A18: (fn,((g
| m1)
^ (g
/^ m)))
are_fiberwise_equipotent by
CLASSES1:def 10;
(
len fn)
= n by
A6,
FINSEQ_1: 59,
NAT_1: 11;
then (
Sum fn)
= (
Sum ((g
| m1)
^ gg)) by
A4,
A18;
hence (
Sum f)
= ((
Sum ((g
| m1)
^ gg))
+ (
Sum
<*a*>)) by
A12,
Th21
.= (((
Sum (g
| m1))
+ (
Sum gg))
+ (
Sum
<*a*>)) by
Th21
.= (((
Sum (g
| m1))
+ (
Sum
<*a*>))
+ (
Sum gg)) by
RFUNCT_1: 8
.= ((
Sum gm)
+ (
Sum gg)) by
A16,
A17,
Th21
.= (
Sum g) by
A10,
Th21;
end;
A19:
P[
0 ]
proof
let f,g be
FinSequence of (
PFuncs (D,
REAL ));
assume (f,g)
are_fiberwise_equipotent & (
len f)
=
0 ;
then
A20: (
len g)
=
0 & f
= (
<*> (
PFuncs (D,
REAL ))) by
RFINSEQ: 3;
then g
= (
<*> (
PFuncs (D,
REAL )));
hence thesis by
A20;
end;
for n holds
P[n] from
NAT_1:sch 2(
A19,
A3);
hence thesis by
A1,
A2;
end;
definition
let D be non
empty
set, f be
FinSequence;
::
RFUNCT_3:def6
func
CHI (f,D) ->
FinSequence of (
PFuncs (D,
REAL )) means
:
Def6: (
len it )
= (
len f) & for n st n
in (
dom it ) holds (it
. n)
= (
chi ((f
. n),D));
existence
proof
deffunc
F(
Nat) = (
chi ((f
. $1),D));
consider p be
FinSequence such that
A1: (
len p)
= (
len f) and
A2: for n be
Nat st n
in (
dom p) holds (p
. n)
=
F(n) from
FINSEQ_1:sch 2;
(
rng p)
c= (
PFuncs (D,
REAL ))
proof
let x be
object;
assume x
in (
rng p);
then
consider n be
Nat such that
A3: n
in (
dom p) & (p
. n)
= x by
FINSEQ_2: 10;
x
= (
chi ((f
. n),D)) by
A2,
A3;
hence thesis by
PARTFUN1: 45;
end;
then
reconsider p as
FinSequence of (
PFuncs (D,
REAL )) by
FINSEQ_1:def 4;
take p;
thus (
len p)
= (
len f) by
A1;
let n;
assume n
in (
dom p);
hence thesis by
A2;
end;
uniqueness
proof
let p1,p2 be
FinSequence of (
PFuncs (D,
REAL ));
assume that
A4: (
len p1)
= (
len f) and
A5: for n st n
in (
dom p1) holds (p1
. n)
= (
chi ((f
. n),D)) and
A6: (
len p2)
= (
len f) and
A7: for n st n
in (
dom p2) holds (p2
. n)
= (
chi ((f
. n),D));
A8: (
dom p1)
= (
Seg (
len p1)) & (
dom p2)
= (
Seg (
len p2)) by
FINSEQ_1:def 3;
now
let n be
Nat;
assume
A9: n
in (
dom p1);
then (p1
. n)
= (
chi ((f
. n),D)) by
A5;
hence (p1
. n)
= (p2
. n) by
A4,
A6,
A7,
A8,
A9;
end;
hence thesis by
A4,
A6,
FINSEQ_2: 9;
end;
end
definition
let D be non
empty
set, f be
FinSequence of (
PFuncs (D,
REAL )), R be
FinSequence of
REAL ;
::
RFUNCT_3:def7
func R
(#) f ->
FinSequence of (
PFuncs (D,
REAL )) means
:
Def7: (
len it )
= (
min ((
len R),(
len f))) & for n st n
in (
dom it ) holds for F be
PartFunc of D,
REAL , r st r
= (R
. n) & F
= (f
. n) holds (it
. n)
= (r
(#) F);
existence
proof
defpred
P[
Nat,
set] means for F be
PartFunc of D,
REAL , r st r
= (R
. $1) & F
= (f
. $1) holds $2
= (r
(#) F);
set m = (
min ((
len R),(
len f)));
A1: m
<= (
len f) by
XXREAL_0: 17;
A2: for n be
Nat st n
in (
Seg m) holds ex x be
Element of (
PFuncs (D,
REAL )) st
P[n, x]
proof
let n be
Nat;
reconsider r = (R
. n) as
Real;
assume
A3: n
in (
Seg m);
then n
<= m by
FINSEQ_1: 1;
then
A4: n
<= (
len f) by
A1,
XXREAL_0: 2;
1
<= n by
A3,
FINSEQ_1: 1;
then n
in (
dom f) by
A4,
FINSEQ_3: 25;
then
reconsider F = (f
. n) as
Element of (
PFuncs (D,
REAL )) by
FINSEQ_2: 11;
reconsider a = (r
(#) F) as
Element of (
PFuncs (D,
REAL ));
take a;
thus thesis;
end;
consider p be
FinSequence of (
PFuncs (D,
REAL )) such that
A5: (
dom p)
= (
Seg m) & for n be
Nat st n
in (
Seg m) holds
P[n, (p
. n)] from
FINSEQ_1:sch 5(
A2);
take p;
thus (
len p)
= m by
A5,
FINSEQ_1:def 3;
let n;
assume n
in (
dom p);
hence thesis by
A5;
end;
uniqueness
proof
set m = (
min ((
len R),(
len f)));
let p1,p2 be
FinSequence of (
PFuncs (D,
REAL ));
assume that
A6: (
len p1)
= m and
A7: for n st n
in (
dom p1) holds for F be
PartFunc of D,
REAL , r st r
= (R
. n) & F
= (f
. n) holds (p1
. n)
= (r
(#) F) and
A8: (
len p2)
= m and
A9: for n st n
in (
dom p2) holds for F be
PartFunc of D,
REAL , r st r
= (R
. n) & F
= (f
. n) holds (p2
. n)
= (r
(#) F);
A10: (
dom p1)
= (
Seg m) by
A6,
FINSEQ_1:def 3;
A11: (
dom p1)
= (
Seg (
len p1)) & (
dom p2)
= (
Seg (
len p2)) by
FINSEQ_1:def 3;
A12: m
<= (
len f) by
XXREAL_0: 17;
now
let n be
Nat;
reconsider r = (R
. n) as
Real;
assume
A13: n
in (
dom p1);
then n
<= m by
A10,
FINSEQ_1: 1;
then
A14: n
<= (
len f) by
A12,
XXREAL_0: 2;
1
<= n by
A10,
A13,
FINSEQ_1: 1;
then n
in (
dom f) by
A14,
FINSEQ_3: 25;
then
reconsider F = (f
. n) as
Element of (
PFuncs (D,
REAL )) by
FINSEQ_2: 11;
(p1
. n)
= (r
(#) F) by
A7,
A13;
hence (p1
. n)
= (p2
. n) by
A6,
A8,
A9,
A11,
A13;
end;
hence thesis by
A6,
A8,
FINSEQ_2: 9;
end;
end
definition
let D be non
empty
set, f be
FinSequence of (
PFuncs (D,
REAL )), d be
Element of D;
::
RFUNCT_3:def8
func f
# d ->
FinSequence of
REAL means
:
Def8: (
len it )
= (
len f) & for n be
Element of
NAT st n
in (
dom it ) holds (it
. n)
= ((f
. n)
. d);
existence
proof
defpred
P[
Nat,
set] means $2
= ((f
. $1)
. d);
A1: for n be
Nat st n
in (
Seg (
len f)) holds ex x be
Element of
REAL st
P[n, x]
proof
let n be
Nat;
assume n
in (
Seg (
len f));
then n
in (
dom f) by
FINSEQ_1:def 3;
then
reconsider G = (f
. n) as
Element of (
PFuncs (D,
REAL )) by
FINSEQ_2: 11;
take (G
. d);
thus thesis by
XREAL_0:def 1;
end;
consider p be
FinSequence of
REAL such that
A2: (
dom p)
= (
Seg (
len f)) and
A3: for n be
Nat st n
in (
Seg (
len f)) holds
P[n, (p
. n)] from
FINSEQ_1:sch 5(
A1);
take p;
thus (
len p)
= (
len f) by
A2,
FINSEQ_1:def 3;
thus thesis by
A2,
A3;
end;
uniqueness
proof
let p1,p2 be
FinSequence of
REAL ;
assume that
A4: (
len p1)
= (
len f) and
A5: for n be
Element of
NAT st n
in (
dom p1) holds (p1
. n)
= ((f
. n)
. d) and
A6: (
len p2)
= (
len f) and
A7: for n be
Element of
NAT st n
in (
dom p2) holds (p2
. n)
= ((f
. n)
. d);
A8: (
dom p1)
= (
Seg (
len p1)) by
FINSEQ_1:def 3;
A9: (
dom p2)
= (
Seg (
len p2)) by
FINSEQ_1:def 3;
now
let n be
Nat;
assume
A10: n
in (
dom p1);
then (p1
. n)
= ((f
. n)
. d) by
A5;
hence (p1
. n)
= (p2
. n) by
A4,
A6,
A7,
A8,
A9,
A10;
end;
hence thesis by
A4,
A6,
FINSEQ_2: 9;
end;
end
definition
let D,C be non
empty
set, f be
FinSequence of (
PFuncs (D,C)), d be
Element of D;
::
RFUNCT_3:def9
pred d
is_common_for_dom f means for n be
Nat st n
in (
dom f) holds d
in (
dom (f
. n));
end
theorem ::
RFUNCT_3:26
Th26: for D,C be non
empty
set, f be
FinSequence of (
PFuncs (D,C)), d be
Element of D, n be
Nat st d
is_common_for_dom f & n
<>
0 holds d
is_common_for_dom (f
| n)
proof
let D1,D2 be non
empty
set, f be
FinSequence of (
PFuncs (D1,D2)), d1 be
Element of D1, n;
assume that
A1: d1
is_common_for_dom f and
A2: n
<>
0 ;
let m;
assume
A3: m
in (
dom (f
| n));
set G = ((f
| n)
. m);
per cases ;
suppose n
>= (
len f);
then (f
| n)
= f by
Lm1;
hence thesis by
A1,
A3;
end;
suppose
A4: n
< (
len f);
(
0
+ 1)
<= n by
A2,
NAT_1: 13;
then
A5: n
in (
dom f) by
A4,
FINSEQ_3: 25;
(
dom (f
| n))
= (
Seg (
len (f
| n))) & (
len (f
| n))
= n by
A4,
FINSEQ_1: 59,
FINSEQ_1:def 3;
then G
= (f
. m) & m
in (
dom f) by
A3,
A5,
RFINSEQ: 6;
hence thesis by
A1;
end;
end;
theorem ::
RFUNCT_3:27
for D,C be non
empty
set, f be
FinSequence of (
PFuncs (D,C)), d be
Element of D, n be
Nat st d
is_common_for_dom f holds d
is_common_for_dom (f
/^ n)
proof
let D1,D2 be non
empty
set, f be
FinSequence of (
PFuncs (D1,D2)), d1 be
Element of D1, n;
assume
A1: d1
is_common_for_dom f;
let m;
set fn = (f
/^ n);
assume
A2: m
in (
dom fn);
set G = (fn
. m);
now
per cases ;
case (
len f)
< n;
hence thesis by
A2,
RELAT_1: 38,
RFINSEQ:def 1;
end;
case
A3: n
<= (
len f);
1
<= m & m
<= (m
+ n) by
A2,
FINSEQ_3: 25,
NAT_1: 11;
then
A4: 1
<= (m
+ n) by
XXREAL_0: 2;
A5: m
<= (
len fn) by
A2,
FINSEQ_3: 25;
(
len fn)
= ((
len f)
- n) by
A3,
RFINSEQ:def 1;
then (m
+ n)
<= (
len f) by
A5,
XREAL_1: 19;
then
A6: (m
+ n)
in (
dom f) by
A4,
FINSEQ_3: 25;
G
= (f
. (m
+ n)) by
A2,
A3,
RFINSEQ:def 1;
hence thesis by
A1,
A6;
end;
end;
hence thesis;
end;
theorem ::
RFUNCT_3:28
Th28: for D be non
empty
set, d be
Element of D, f be
FinSequence of (
PFuncs (D,
REAL )) st (
len f)
<>
0 holds d
is_common_for_dom f iff d
in (
dom (
Sum f))
proof
let D be non
empty
set, d be
Element of D;
defpred
P[
Nat] means for f be
FinSequence of (
PFuncs (D,
REAL )) st (
len f)
= $1 & (
len f)
<>
0 holds d
is_common_for_dom f iff d
in (
dom (
Sum f));
let f be
FinSequence of (
PFuncs (D,
REAL ));
assume
A1: (
len f)
<>
0 ;
A2: for n st
P[n] holds
P[(n
+ 1)]
proof
let n;
assume
A3:
P[n];
let f be
FinSequence of (
PFuncs (D,
REAL ));
assume that
A4: (
len f)
= (n
+ 1) and (
len f)
<>
0 ;
A5: (
dom f)
= (
Seg (
len f)) by
FINSEQ_1:def 3;
now
per cases ;
case
A6: n
=
0 ;
then
A7: 1
in (
dom f) by
A4,
FINSEQ_3: 25;
then
reconsider G = (f
. 1) as
Element of (
PFuncs (D,
REAL )) by
FINSEQ_2: 11;
f
=
<*G*> by
A4,
A6,
FINSEQ_1: 40;
then
A8: (
Sum f)
= G by
FINSOP_1: 11;
hence d
is_common_for_dom f implies d
in (
dom (
Sum f)) by
A7;
assume d
in (
dom (
Sum f));
then for m st m
in (
dom f) holds d
in (
dom (f
. m)) by
A4,
A5,
A6,
A8,
FINSEQ_1: 2,
TARSKI:def 1;
hence d
is_common_for_dom f;
end;
case
A9: n
<>
0 ;
A10: n
<= (n
+ 1) by
NAT_1: 11;
(
0
+ 1)
<= n by
A9,
NAT_1: 13;
then
A11: n
in (
dom f) by
A4,
A10,
FINSEQ_3: 25;
(
0
+ 1)
<= (n
+ 1) by
NAT_1: 13;
then
A12: (n
+ 1)
in (
dom f) by
A4,
FINSEQ_3: 25;
then
reconsider G = (f
. (n
+ 1)) as
Element of (
PFuncs (D,
REAL )) by
FINSEQ_2: 11;
set fn = (f
| n);
A13: (
len fn)
= n by
A4,
FINSEQ_1: 59,
NAT_1: 11;
f
= (fn
^
<*G*>) by
A4,
RFINSEQ: 7;
then
A14: (
Sum f)
= ((
Sum fn)
+ G) by
Th20;
thus d
is_common_for_dom f implies d
in (
dom (
Sum f))
proof
assume
A15: d
is_common_for_dom f;
then d
is_common_for_dom fn by
A9,
Th26;
then
A16: d
in (
dom (
Sum fn)) by
A3,
A9,
A13;
d
in (
dom G) by
A12,
A15;
then d
in ((
dom (
Sum fn))
/\ (
dom G)) by
A16,
XBOOLE_0:def 4;
hence thesis by
A14,
VALUED_1:def 1;
end;
assume d
in (
dom (
Sum f));
then
A17: d
in ((
dom (
Sum fn))
/\ (
dom G)) by
A14,
VALUED_1:def 1;
then d
in (
dom (
Sum fn)) by
XBOOLE_0:def 4;
then
A18: d
is_common_for_dom fn by
A3,
A9,
A13;
now
let m;
assume that
A19: m
in (
dom f);
set F = (f
. m);
A20: m
<= (
len f) by
A19,
FINSEQ_3: 25;
A21: 1
<= m by
A19,
FINSEQ_3: 25;
now
per cases ;
case m
= (
len f);
hence d
in (
dom F) by
A4,
A17,
XBOOLE_0:def 4;
end;
case m
<> (
len f);
then m
< (
len f) by
A20,
XXREAL_0: 1;
then m
<= n by
A4,
NAT_1: 13;
then
A22: m
in (
Seg n) by
A21,
FINSEQ_1: 1;
then (
dom fn)
= (
Seg (
len fn)) & F
= (fn
. m) by
A11,
FINSEQ_1:def 3,
RFINSEQ: 6;
hence d
in (
dom F) by
A13,
A18,
A22;
end;
end;
hence d
in (
dom F);
end;
hence d
is_common_for_dom f;
end;
end;
hence thesis;
end;
A23:
P[
0 ];
for n holds
P[n] from
NAT_1:sch 2(
A23,
A2);
hence thesis by
A1;
end;
theorem ::
RFUNCT_3:29
Th29: for D be non
empty
set, f be
FinSequence of (
PFuncs (D,
REAL )), d be
Element of D, n be
Nat holds ((f
| n)
# d)
= ((f
# d)
| n)
proof
let D1 be non
empty
set, f be
FinSequence of (
PFuncs (D1,
REAL )), d1 be
Element of D1, n be
Nat;
A1: (
len (f
# d1))
= (
len f) by
Def8;
A2: (
len ((f
| n)
# d1))
= (
len (f
| n)) by
Def8;
now
per cases ;
case
A3: (
len f)
<= n;
then (f
| n)
= f by
Lm1;
hence thesis by
A1,
A3,
Lm1;
end;
case
A4: n
< (
len f);
then
A5: (
len (f
| n))
= n by
FINSEQ_1: 59;
A6: (
len ((f
# d1)
| n))
= n by
A1,
A4,
FINSEQ_1: 59;
A7: (
dom f)
= (
Seg (
len f)) & (
dom (f
# d1))
= (
Seg (
len (f
# d1))) by
FINSEQ_1:def 3;
A8: (
dom ((f
| n)
# d1))
= (
Seg (
len ((f
| n)
# d1))) by
FINSEQ_1:def 3;
now
per cases ;
case
A9: n
=
0 ;
thus thesis by
A2,
A9;
end;
case
A10: n
<>
0 ;
A11: (
dom ((f
# d1)
| n))
= (
Seg (
len (f
| n))) by
A5,
A6,
FINSEQ_1:def 3;
(
0
+ 1)
<= n by
A10,
NAT_1: 13;
then
A12: n
in (
dom f) by
A4,
FINSEQ_3: 25;
now
let m be
Nat;
assume
A13: m
in (
dom ((f
# d1)
| n));
then
A14: m
in (
dom (f
# d1)) by
A1,
A5,
A7,
A12,
A11,
RFINSEQ: 6;
then
reconsider G = (f
. m) as
Element of (
PFuncs (D1,
REAL )) by
A1,
A7,
FINSEQ_2: 11;
(((f
# d1)
| n)
. m)
= ((f
# d1)
. m) by
A1,
A5,
A7,
A12,
A11,
A13,
RFINSEQ: 6;
then
A15: (((f
# d1)
| n)
. m)
= (G
. d1) by
A14,
Def8;
((f
| n)
. m)
= G by
A5,
A12,
A11,
A13,
RFINSEQ: 6;
hence (((f
# d1)
| n)
. m)
= (((f
| n)
# d1)
. m) by
A2,
A8,
A11,
A13,
A15,
Def8;
end;
hence thesis by
A2,
A5,
A6,
FINSEQ_2: 9;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
theorem ::
RFUNCT_3:30
Th30: for D be non
empty
set, f be
FinSequence, d be
Element of D holds d
is_common_for_dom (
CHI (f,D))
proof
let D be non
empty
set, f be
FinSequence, d be
Element of D;
let n;
assume n
in (
dom (
CHI (f,D)));
then ((
CHI (f,D))
. n)
= (
chi ((f
. n),D)) by
Def6;
then (
dom ((
CHI (f,D))
. n))
= D by
RFUNCT_1: 61;
hence thesis;
end;
theorem ::
RFUNCT_3:31
Th31: for D be non
empty
set, d be
Element of D, f be
FinSequence of (
PFuncs (D,
REAL )), R be
FinSequence of
REAL st d
is_common_for_dom f holds d
is_common_for_dom (R
(#) f)
proof
let D be non
empty
set, d be
Element of D, f be
FinSequence of (
PFuncs (D,
REAL )), R be
FinSequence of
REAL ;
assume
A1: d
is_common_for_dom f;
set m = (
min ((
len R),(
len f)));
let n;
assume
A2: n
in (
dom (R
(#) f));
set G = ((R
(#) f)
. n);
(
len (R
(#) f))
= m by
Def7;
then m
<= (
len f) & n
<= m by
A2,
FINSEQ_3: 25,
XXREAL_0: 17;
then
A3: n
<= (
len f) by
XXREAL_0: 2;
1
<= n by
A2,
FINSEQ_3: 25;
then
A4: n
in (
dom f) by
A3,
FINSEQ_3: 25;
then
reconsider F = (f
. n) as
Element of (
PFuncs (D,
REAL )) by
FINSEQ_2: 11;
A5: d
in (
dom F) by
A1,
A4;
reconsider r = (R
. n) as
Real;
G
= (r
(#) F) by
A2,
Def7;
hence thesis by
A5,
VALUED_1:def 5;
end;
theorem ::
RFUNCT_3:32
for D be non
empty
set, f be
FinSequence, R be
FinSequence of
REAL , d be
Element of D holds d
is_common_for_dom (R
(#) (
CHI (f,D))) by
Th30,
Th31;
theorem ::
RFUNCT_3:33
for D be non
empty
set, d be
Element of D, f be
FinSequence of (
PFuncs (D,
REAL )) st d
is_common_for_dom f holds ((
Sum f)
. d)
= (
Sum (f
# d))
proof
let D be non
empty
set, d be
Element of D;
defpred
P[
Nat] means for f be
FinSequence of (
PFuncs (D,
REAL )) st (
len f)
= $1 & d
is_common_for_dom f holds ((
Sum f)
. d)
= (
Sum (f
# d));
let f be
FinSequence of (
PFuncs (D,
REAL ));
assume
A1: d
is_common_for_dom f;
A2: (
len f)
= (
len f);
A3: for n st
P[n] holds
P[(n
+ 1)]
proof
let n;
assume
A4:
P[n];
let f be
FinSequence of (
PFuncs (D,
REAL ));
assume that
A5: (
len f)
= (n
+ 1) and
A6: d
is_common_for_dom f;
set fn = (f
| n);
A7: (
len fn)
= n by
A5,
FINSEQ_1: 59,
NAT_1: 11;
(
0
+ 1)
<= (n
+ 1) by
NAT_1: 13;
then
A8: (n
+ 1)
in (
dom f) by
A5,
FINSEQ_3: 25;
then
reconsider G = (f
. (n
+ 1)) as
Element of (
PFuncs (D,
REAL )) by
FINSEQ_2: 11;
A9: (
dom f)
= (
Seg (
len f)) & (
dom (f
# d))
= (
Seg (
len (f
# d))) by
FINSEQ_1:def 3;
f
= (fn
^
<*G*>) by
A5,
RFINSEQ: 7;
then
A10: (
Sum f)
= ((
Sum fn)
+ G) by
Th20;
A11: (
len (f
# d))
= (
len f) by
Def8;
A12: d
in (
dom G) by
A6,
A8;
now
per cases ;
case
A13: n
=
0 ;
then
A14: (
len (f
# d))
= 1 by
A5,
Def8;
then
A15: 1
in (
dom (f
# d)) by
FINSEQ_3: 25;
A16:
now
let m be
Nat;
assume m
in (
Seg 1);
then
A17: m
= 1 by
FINSEQ_1: 2,
TARSKI:def 1;
hence ((f
# d)
. m)
= (G
. d) by
A13,
A15,
Def8
.= (
<*(G
. d)*>
. m) by
A17,
FINSEQ_1: 40;
end;
(
len
<*(G
. d)*>)
= 1 & (
dom (f
# d))
= (
Seg 1) by
A14,
FINSEQ_1: 40,
FINSEQ_1:def 3;
then
A18: (f
# d)
=
<*(G
. d)*> by
A14,
A16,
FINSEQ_2: 9;
A19: (G
. d)
in
REAL by
XREAL_0:def 1;
f
=
<*G*> by
A5,
A13,
FINSEQ_1: 40;
hence ((
Sum f)
. d)
= (G
. d) by
FINSOP_1: 11
.= (
Sum (f
# d)) by
A18,
A19,
FINSOP_1: 11;
end;
case
A20: n
<>
0 ;
A21: ((f
# d)
. (n
+ 1))
= (G
. d) by
A9,
A11,
A8,
Def8;
d
is_common_for_dom fn by
A6,
A20,
Th26;
then d
in (
dom (
Sum fn)) by
A7,
A20,
Th28;
then d
in ((
dom (
Sum fn))
/\ (
dom G)) by
A12,
XBOOLE_0:def 4;
then d
in (
dom ((
Sum fn)
+ G)) by
VALUED_1:def 1;
hence ((
Sum f)
. d)
= (((
Sum fn)
. d)
+ (G
. d)) by
A10,
VALUED_1:def 1
.= ((
Sum (fn
# d))
+ (G
. d)) by
A4,
A6,
A7,
A20,
Th26
.= ((
Sum ((f
# d)
| n))
+ (G
. d)) by
Th29
.= (
Sum (((f
# d)
| n)
^
<*(G
. d)*>)) by
RVSUM_1: 74
.= (
Sum (f
# d)) by
A5,
A11,
A21,
RFINSEQ: 7;
end;
end;
hence thesis;
end;
A22:
P[
0 ]
proof
let f be
FinSequence of (
PFuncs (D,
REAL ));
assume that
A23: (
len f)
=
0 and d
is_common_for_dom f;
f
= (
<*> (
PFuncs (D,
REAL ))) by
A23;
then
A24: ((
Sum f)
. d)
= (((
[#] D)
-->
0 qua
Real)
. d) by
Th19
.=
0 by
FUNCOP_1: 7;
(
len (f
# d))
=
0 by
A23,
Def8;
then (f
# d)
= (
<*> (
PFuncs (D,
REAL )));
hence thesis by
A24,
RVSUM_1: 72;
end;
for n holds
P[n] from
NAT_1:sch 2(
A22,
A3);
hence thesis by
A1,
A2;
end;
definition
let D be non
empty
set, F be
PartFunc of D,
REAL ;
::
RFUNCT_3:def10
func
max+ (F) ->
PartFunc of D,
REAL means
:
Def10: (
dom it )
= (
dom F) & for d be
Element of D st d
in (
dom it ) holds (it
. d)
= (
max+ (F
. d));
existence
proof
deffunc
Q(
set) = (
In ((
max+ (F
. $1)),
REAL ));
defpred
P[
set] means $1
in (
dom F);
consider f be
PartFunc of D,
REAL such that
A1: for d be
Element of D holds d
in (
dom f) iff
P[d] and
A2: for d be
Element of D st d
in (
dom f) holds (f
. d)
=
Q(d) from
SEQ_1:sch 3;
take f;
thus (
dom f)
= (
dom F)
proof
thus (
dom f)
c= (
dom F) by
A1;
let x be
object;
assume x
in (
dom F);
hence thesis by
A1;
end;
let d be
Element of D;
assume d
in (
dom f);
then (f
. d)
=
Q(d) by
A2;
hence thesis;
end;
uniqueness
proof
deffunc
F(
set) = (
max+ (F
. $1));
for f,g be
PartFunc of D,
REAL st ((
dom f)
= (
dom F) & for c be
Element of D st c
in (
dom f) holds (f
. c)
=
F(c)) & ((
dom g)
= (
dom F) & for c be
Element of D st c
in (
dom g) holds (g
. c)
=
F(c)) holds f
= g from
SEQ_1:sch 4;
hence thesis;
end;
::
RFUNCT_3:def11
func
max- (F) ->
PartFunc of D,
REAL means
:
Def11: (
dom it )
= (
dom F) & for d be
Element of D st d
in (
dom it ) holds (it
. d)
= (
max- (F
. d));
existence
proof
deffunc
F(
set) = (
In ((
max- (F
. $1)),
REAL ));
defpred
P[
set] means $1
in (
dom F);
consider f be
PartFunc of D,
REAL such that
A3: for d be
Element of D holds d
in (
dom f) iff
P[d] and
A4: for d be
Element of D st d
in (
dom f) holds (f
. d)
=
F(d) from
SEQ_1:sch 3;
take f;
thus (
dom f)
= (
dom F)
proof
thus (
dom f)
c= (
dom F) by
A3;
let x be
object;
assume x
in (
dom F);
hence thesis by
A3;
end;
let d be
Element of D;
assume d
in (
dom f);
then (f
. d)
=
F(d) by
A4;
hence thesis;
end;
uniqueness
proof
deffunc
F(
set) = (
max- (F
. $1));
for f,g be
PartFunc of D,
REAL st ((
dom f)
= (
dom F) & for c be
Element of D st c
in (
dom f) holds (f
. c)
=
F(c)) & ((
dom g)
= (
dom F) & for c be
Element of D st c
in (
dom g) holds (g
. c)
=
F(c)) holds f
= g from
SEQ_1:sch 4;
hence thesis;
end;
end
theorem ::
RFUNCT_3:34
for D be non
empty
set, F be
PartFunc of D,
REAL holds F
= ((
max+ F)
- (
max- F)) & (
abs F)
= ((
max+ F)
+ (
max- F)) & (2
(#) (
max+ F))
= (F
+ (
abs F))
proof
let D be non
empty
set, F be
PartFunc of D,
REAL ;
A1: (
dom F)
= ((
dom F)
/\ (
dom F));
A2: (
dom (
max+ F))
= (
dom F) by
Def10;
A3: (
dom (
max- F))
= (
dom F) by
Def11;
(
dom (
- (
max- F)))
= (
dom (
max- F)) by
VALUED_1:def 5;
then
A4: (
dom F)
= (
dom ((
max+ F)
+ (
- (
max- F)))) by
A2,
A3,
A1,
VALUED_1:def 1;
now
let d be
Element of D;
assume
A5: d
in (
dom F);
hence (((
max+ F)
- (
max- F))
. d)
= (((
max+ F)
. d)
- ((
max- F)
. d)) by
A4,
VALUED_1: 13
.= ((
max+ (F
. d))
- ((
max- F)
. d)) by
A2,
A5,
Def10
.= ((
max+ (F
. d))
- (
max- (F
. d))) by
A3,
A5,
Def11
.= (F
. d) by
Th1;
end;
hence F
= ((
max+ F)
- (
max- F)) by
A4,
PARTFUN1: 5;
A6: (
dom (
abs F))
= (
dom F) by
VALUED_1:def 11;
then
A7: (
dom (
abs F))
= (
dom ((
max+ F)
+ (
max- F))) by
A2,
A3,
A1,
VALUED_1:def 1;
now
let d be
Element of D;
assume
A8: d
in (
dom (
abs F));
hence (((
max+ F)
+ (
max- F))
. d)
= (((
max+ F)
. d)
+ ((
max- F)
. d)) by
A7,
VALUED_1:def 1
.= ((
max+ (F
. d))
+ ((
max- F)
. d)) by
A2,
A6,
A8,
Def10
.= ((
max+ (F
. d))
+ (
max- (F
. d))) by
A3,
A6,
A8,
Def11
.=
|.(F
. d).| by
Th2
.= ((
abs F)
. d) by
VALUED_1: 18;
end;
hence (
abs F)
= ((
max+ F)
+ (
max- F)) by
A7,
PARTFUN1: 5;
A9: (
dom (2
(#) (
max+ F)))
= (
dom (
max+ F)) by
VALUED_1:def 5;
then
A10: (
dom (2
(#) (
max+ F)))
= (
dom (F
+ (
abs F))) by
A2,
A6,
A1,
VALUED_1:def 1;
now
let d be
Element of D;
assume
A11: d
in (
dom F);
hence ((2
(#) (
max+ F))
. d)
= (2
* ((
max+ F)
. d)) by
A2,
A9,
VALUED_1:def 5
.= (2
* (
max+ (F
. d))) by
A2,
A11,
Def10
.= ((F
. d)
+
|.(F
. d).|) by
Th3
.= ((F
. d)
+ ((
abs F)
. d)) by
VALUED_1: 18
.= ((F
+ (
abs F))
. d) by
A2,
A9,
A10,
A11,
VALUED_1:def 1;
end;
hence thesis by
A2,
A9,
A10,
PARTFUN1: 5;
end;
theorem ::
RFUNCT_3:35
Th35: for D be non
empty
set, F be
PartFunc of D,
REAL , r st
0
< r holds (F
"
{r})
= ((
max+ F)
"
{r})
proof
let D be non
empty
set, F be
PartFunc of D,
REAL , r;
A1: (
dom (
max+ F))
= (
dom F) by
Def10;
assume
A2:
0
< r;
thus (F
"
{r})
c= ((
max+ F)
"
{r})
proof
let x be
object;
assume
A3: x
in (F
"
{r});
then
reconsider d = x as
Element of D;
(F
. d)
in
{r} by
A3,
FUNCT_1:def 7;
then
A4: (F
. d)
= r by
TARSKI:def 1;
A5: d
in (
dom F) by
A3,
FUNCT_1:def 7;
then ((
max+ F)
. d)
= (
max+ (F
. d)) by
A1,
Def10
.= r by
A2,
A4,
XXREAL_0:def 10;
then ((
max+ F)
. d)
in
{r} by
TARSKI:def 1;
hence thesis by
A1,
A5,
FUNCT_1:def 7;
end;
let x be
object;
assume
A6: x
in ((
max+ F)
"
{r});
then
reconsider d = x as
Element of D;
((
max+ F)
. d)
in
{r} by
A6,
FUNCT_1:def 7;
then
A7: ((
max+ F)
. d)
= r by
TARSKI:def 1;
A8: d
in (
dom F) by
A1,
A6,
FUNCT_1:def 7;
then ((
max+ F)
. d)
= (
max+ (F
. d)) by
A1,
Def10
.= (
max ((F
. d),
0 ));
then (F
. d)
= r by
A2,
A7,
XXREAL_0: 16;
then (F
. d)
in
{r} by
TARSKI:def 1;
hence thesis by
A8,
FUNCT_1:def 7;
end;
theorem ::
RFUNCT_3:36
Th36: for D be non
empty
set, F be
PartFunc of D,
REAL holds (F
" (
left_closed_halfline
0 ))
= ((
max+ F)
"
{
0 })
proof
set li = (
left_closed_halfline
0 );
let D be non
empty
set, F be
PartFunc of D,
REAL ;
A1: (
dom (
max+ F))
= (
dom F) by
Def10;
A2: li
= { s : s
<=
0 } by
XXREAL_1: 231;
thus (F
" li)
c= ((
max+ F)
"
{
0 })
proof
let x be
object;
assume
A3: x
in (F
" li);
then
reconsider d = x as
Element of D;
(F
. d)
in li by
A3,
FUNCT_1:def 7;
then ex s st s
= (F
. d) & s
<=
0 by
A2;
then
A4: (
max ((F
. d),
0 ))
=
0 by
XXREAL_0:def 10;
A5: d
in (
dom F) by
A3,
FUNCT_1:def 7;
then ((
max+ F)
. d)
= (
max+ (F
. d)) by
A1,
Def10
.= (
max ((F
. d),
0 ));
then ((
max+ F)
. d)
in
{
0 } by
A4,
TARSKI:def 1;
hence thesis by
A1,
A5,
FUNCT_1:def 7;
end;
let x be
object;
assume
A6: x
in ((
max+ F)
"
{
0 });
then
reconsider d = x as
Element of D;
((
max+ F)
. d)
in
{
0 } by
A6,
FUNCT_1:def 7;
then
A7: ((
max+ F)
. d)
=
0 by
TARSKI:def 1;
A8: d
in (
dom F) by
A1,
A6,
FUNCT_1:def 7;
then ((
max+ F)
. d)
= (
max+ (F
. d)) by
A1,
Def10
.= (
max ((F
. d),
0 ));
then (F
. d)
<=
0 by
A7,
XXREAL_0:def 10;
then (F
. d)
in li by
A2;
hence thesis by
A8,
FUNCT_1:def 7;
end;
theorem ::
RFUNCT_3:37
Th37: for D be non
empty
set, F be
PartFunc of D,
REAL , d be
Element of D holds
0
<= ((
max+ F)
. d)
proof
let D be non
empty
set, F be
PartFunc of D,
REAL , d be
Element of D;
A1: (
dom F)
= (
dom (
max+ F)) by
Def10;
per cases ;
suppose d
in (
dom F);
then ((
max+ F)
. d)
= (
max+ (F
. d)) by
A1,
Def10
.= (
max ((F
. d),
0 ));
hence thesis by
XXREAL_0: 25;
end;
suppose not d
in (
dom F);
hence thesis by
A1,
FUNCT_1:def 2;
end;
end;
theorem ::
RFUNCT_3:38
Th38: for D be non
empty
set, F be
PartFunc of D,
REAL , r st
0
< r holds (F
"
{(
- r)})
= ((
max- F)
"
{r})
proof
let D be non
empty
set, F be
PartFunc of D,
REAL , r;
A1: (
dom (
max- F))
= (
dom F) by
Def11;
assume
A2:
0
< r;
thus (F
"
{(
- r)})
c= ((
max- F)
"
{r})
proof
let x be
object;
assume
A3: x
in (F
"
{(
- r)});
then
reconsider d = x as
Element of D;
(F
. d)
in
{(
- r)} by
A3,
FUNCT_1:def 7;
then
A4: (F
. d)
= (
- r) by
TARSKI:def 1;
A5: d
in (
dom F) by
A3,
FUNCT_1:def 7;
then ((
max- F)
. d)
= (
max- (F
. d)) by
A1,
Def11
.= r by
A2,
A4,
XXREAL_0:def 10;
then ((
max- F)
. d)
in
{r} by
TARSKI:def 1;
hence thesis by
A1,
A5,
FUNCT_1:def 7;
end;
let x be
object;
assume
A6: x
in ((
max- F)
"
{r});
then
reconsider d = x as
Element of D;
((
max- F)
. d)
in
{r} by
A6,
FUNCT_1:def 7;
then
A7: ((
max- F)
. d)
= r by
TARSKI:def 1;
A8: d
in (
dom F) by
A1,
A6,
FUNCT_1:def 7;
then ((
max- F)
. d)
= (
max- (F
. d)) by
A1,
Def11
.= (
max ((
- (F
. d)),
0 ));
then (
- (F
. d))
= r by
A2,
A7,
XXREAL_0: 16;
then (F
. d)
in
{(
- r)} by
TARSKI:def 1;
hence thesis by
A8,
FUNCT_1:def 7;
end;
theorem ::
RFUNCT_3:39
Th39: for D be non
empty
set, F be
PartFunc of D,
REAL holds (F
" (
right_closed_halfline
0 ))
= ((
max- F)
"
{
0 })
proof
set li = (
right_closed_halfline
0 );
let D be non
empty
set, F be
PartFunc of D,
REAL ;
A1: (
dom (
max- F))
= (
dom F) by
Def11;
A2: li
= { s :
0
<= s } by
XXREAL_1: 232;
thus (F
" li)
c= ((
max- F)
"
{
0 })
proof
let x be
object;
assume
A3: x
in (F
" li);
then
reconsider d = x as
Element of D;
(F
. d)
in li by
A3,
FUNCT_1:def 7;
then ex s st s
= (F
. d) &
0
<= s by
A2;
then
A4: (
max ((
- (F
. d)),
0 ))
=
0 by
XXREAL_0:def 10;
A5: d
in (
dom F) by
A3,
FUNCT_1:def 7;
then ((
max- F)
. d)
= (
max- (F
. d)) by
A1,
Def11
.= (
max ((
- (F
. d)),
0 ));
then ((
max- F)
. d)
in
{
0 } by
A4,
TARSKI:def 1;
hence thesis by
A1,
A5,
FUNCT_1:def 7;
end;
let x be
object;
assume
A6: x
in ((
max- F)
"
{
0 });
then
reconsider d = x as
Element of D;
((
max- F)
. d)
in
{
0 } by
A6,
FUNCT_1:def 7;
then
A7: ((
max- F)
. d)
=
0 by
TARSKI:def 1;
A8: d
in (
dom F) by
A1,
A6,
FUNCT_1:def 7;
then ((
max- F)
. d)
= (
max- (F
. d)) by
A1,
Def11
.= (
max ((
- (F
. d)),
0 ));
then (
- (F
. d))
<= (
-
0 ) by
A7,
XXREAL_0:def 10;
then
0
<= (F
. d) by
XREAL_1: 24;
then (F
. d)
in li by
A2;
hence thesis by
A8,
FUNCT_1:def 7;
end;
theorem ::
RFUNCT_3:40
Th40: for D be non
empty
set, F be
PartFunc of D,
REAL , d be
Element of D holds
0
<= ((
max- F)
. d)
proof
let D be non
empty
set, F be
PartFunc of D,
REAL , d be
Element of D;
A1: (
dom F)
= (
dom (
max- F)) by
Def11;
per cases ;
suppose d
in (
dom F);
then ((
max- F)
. d)
= (
max- (F
. d)) by
A1,
Def11
.= (
max ((
- (F
. d)),
0 ));
hence thesis by
XXREAL_0: 25;
end;
suppose not d
in (
dom F);
hence thesis by
A1,
FUNCT_1:def 2;
end;
end;
theorem ::
RFUNCT_3:41
for D,C be non
empty
set, F be
PartFunc of D,
REAL , G be
PartFunc of C,
REAL st (F,G)
are_fiberwise_equipotent holds ((
max+ F),(
max+ G))
are_fiberwise_equipotent
proof
set li = (
left_closed_halfline
0 );
let D,C be non
empty
set, F be
PartFunc of D,
REAL , G be
PartFunc of C,
REAL ;
assume
A1: (F,G)
are_fiberwise_equipotent ;
A2:
now
let r be
Element of
REAL ;
now
per cases ;
case
0
< r;
then (
Coim (F,r))
= (
Coim ((
max+ F),r)) & (
Coim (G,r))
= (
Coim ((
max+ G),r)) by
Th35;
hence (
card (
Coim ((
max+ F),r)))
= (
card (
Coim ((
max+ G),r))) by
A1,
CLASSES1:def 10;
end;
case
A3: r
=
0 ;
(F
" li)
= ((
max+ F)
"
{
0 }) & (G
" li)
= ((
max+ G)
"
{
0 }) by
Th36;
hence (
card ((
max+ F)
"
{r}))
= (
card ((
max+ G)
"
{r})) by
A1,
A3,
CLASSES1: 78;
end;
case
A4: r
<
0 ;
now
assume r
in (
rng (
max+ F));
then ex d be
Element of D st d
in (
dom (
max+ F)) & ((
max+ F)
. d)
= r by
PARTFUN1: 3;
hence contradiction by
A4,
Th37;
end;
then
A5: ((
max+ F)
"
{r})
=
{} by
Lm2;
now
assume r
in (
rng (
max+ G));
then ex c be
Element of C st c
in (
dom (
max+ G)) & ((
max+ G)
. c)
= r by
PARTFUN1: 3;
hence contradiction by
A4,
Th37;
end;
hence (
card ((
max+ F)
"
{r}))
= (
card ((
max+ G)
"
{r})) by
A5,
Lm2;
end;
end;
hence (
card (
Coim ((
max+ F),r)))
= (
card (
Coim ((
max+ G),r)));
end;
(
rng (
max+ F))
c=
REAL & (
rng (
max+ G))
c=
REAL ;
hence thesis by
A2,
CLASSES1: 79;
end;
theorem ::
RFUNCT_3:42
for D,C be non
empty
set, F be
PartFunc of D,
REAL , G be
PartFunc of C,
REAL st (F,G)
are_fiberwise_equipotent holds ((
max- F),(
max- G))
are_fiberwise_equipotent
proof
set li = (
right_closed_halfline
0 );
let D,C be non
empty
set, F be
PartFunc of D,
REAL , G be
PartFunc of C,
REAL ;
assume
A1: (F,G)
are_fiberwise_equipotent ;
A2:
now
let r be
Element of
REAL ;
now
per cases ;
case
0
< r;
then (
Coim (F,(
- r)))
= ((
max- F)
"
{r}) & (
Coim (G,(
- r)))
= ((
max- G)
"
{r}) by
Th38;
hence (
card (
Coim ((
max- F),r)))
= (
card (
Coim ((
max- G),r))) by
A1,
CLASSES1:def 10;
end;
case
A3: r
=
0 ;
(F
" li)
= ((
max- F)
"
{
0 }) & (G
" li)
= ((
max- G)
"
{
0 }) by
Th39;
hence (
card ((
max- F)
"
{r}))
= (
card ((
max- G)
"
{r})) by
A1,
A3,
CLASSES1: 78;
end;
case
A4: r
<
0 ;
now
assume r
in (
rng (
max- F));
then ex d be
Element of D st d
in (
dom (
max- F)) & ((
max- F)
. d)
= r by
PARTFUN1: 3;
hence contradiction by
A4,
Th40;
end;
then
A5: ((
max- F)
"
{r})
=
{} by
Lm2;
now
assume r
in (
rng (
max- G));
then ex c be
Element of C st c
in (
dom (
max- G)) & ((
max- G)
. c)
= r by
PARTFUN1: 3;
hence contradiction by
A4,
Th40;
end;
hence (
card ((
max- F)
"
{r}))
= (
card ((
max- G)
"
{r})) by
A5,
Lm2;
end;
end;
hence (
card (
Coim ((
max- F),r)))
= (
card (
Coim ((
max- G),r)));
end;
(
rng (
max- F))
c=
REAL & (
rng (
max- G))
c=
REAL ;
hence thesis by
A2,
CLASSES1: 79;
end;
registration
let D be non
empty
set, F be
finite
PartFunc of D,
REAL ;
cluster (
max+ F) ->
finite;
coherence
proof
(
dom F) is
finite;
then (
dom (
max+ F)) is
finite by
Def10;
hence thesis by
FINSET_1: 10;
end;
cluster (
max- F) ->
finite;
coherence
proof
(
dom F) is
finite;
then (
dom (
max- F)) is
finite by
Def11;
hence thesis by
FINSET_1: 10;
end;
end
theorem ::
RFUNCT_3:43
for D,C be non
empty
set, F be
finite
PartFunc of D,
REAL , G be
finite
PartFunc of C,
REAL st ((
max+ F),(
max+ G))
are_fiberwise_equipotent & ((
max- F),(
max- G))
are_fiberwise_equipotent holds (F,G)
are_fiberwise_equipotent
proof
let D,C be non
empty
set, F be
finite
PartFunc of D,
REAL , G be
finite
PartFunc of C,
REAL ;
assume that
A1: ((
max+ F),(
max+ G))
are_fiberwise_equipotent and
A2: ((
max- F),(
max- G))
are_fiberwise_equipotent ;
set lh = (
left_closed_halfline
0 ), rh = (
right_closed_halfline
0 ), fp0 = ((
max+ F)
"
{
0 }), fm0 = ((
max- F)
"
{
0 }), gp0 = ((
max+ G)
"
{
0 }), gm0 = ((
max- G)
"
{
0 });
A3: (lh
/\ rh)
=
[.
0 ,
0 .] by
XXREAL_1: 272
.=
{
0 } by
XXREAL_1: 17;
(F
" (
rng F))
c= (F
"
REAL ) by
RELAT_1: 143;
then
A4: (F
"
REAL )
c= (
dom F) & (
dom F)
c= (F
"
REAL ) by
RELAT_1: 132,
RELAT_1: 134;
A5: (F
" lh)
= fp0 & (F
" rh)
= fm0 by
Th36,
Th39;
(G
" (
rng G))
c= (G
"
REAL ) by
RELAT_1: 143;
then
A6: (G
"
REAL )
c= (
dom G) & (
dom G)
c= (G
"
REAL ) by
RELAT_1: 132,
RELAT_1: 134;
A7: (G
" lh)
= gp0 & (G
" rh)
= gm0 by
Th36,
Th39;
reconsider fp0, fm0, gp0, gm0 as
finite
set;
A8: (lh
\/ rh)
= (
REAL
\
].
0 ,
0 .[) by
XXREAL_1: 398
.= (
REAL
\
{} ) by
XXREAL_1: 28
.=
REAL ;
then (fp0
\/ fm0)
= (F
"
REAL ) by
A5,
RELAT_1: 140;
then
A9: (fp0
\/ fm0)
= (
dom F) by
A4;
(gp0
\/ gm0)
= (G
" (lh
\/ rh)) by
A7,
RELAT_1: 140;
then
A10: (gp0
\/ gm0)
= (
dom G) by
A8,
A6;
(
card (fp0
\/ fm0))
= (((
card fp0)
+ (
card fm0))
- (
card (fp0
/\ fm0))) by
CARD_2: 45;
then
A11: (
card (fp0
/\ fm0))
= (((
card fp0)
+ (
card fm0))
- (
card (fp0
\/ fm0)));
(
card (gp0
\/ gm0))
= (((
card gp0)
+ (
card gm0))
- (
card (gp0
/\ gm0))) by
CARD_2: 45;
then
A12: (
card (gp0
/\ gm0))
= (((
card gp0)
+ (
card gm0))
- (
card (gp0
\/ gm0)));
A13: (
dom F)
= (
dom (
max+ F)) & (
dom G)
= (
dom (
max+ G)) by
Def10;
A14:
now
let r be
Element of
REAL ;
A15: (
card fp0)
= (
card gp0) & (
card fm0)
= (
card gm0) by
A1,
A2,
CLASSES1: 78;
now
per cases ;
case
0
< r;
then (
Coim (F,r))
= (
Coim ((
max+ F),r)) & (
Coim (G,r))
= (
Coim ((
max+ G),r)) by
Th35;
hence (
card (
Coim (F,r)))
= (
card (
Coim (G,r))) by
A1,
CLASSES1:def 10;
end;
case
0
= r;
then (F
"
{r})
= ((F
" lh)
/\ (F
" rh)) & (G
"
{r})
= ((G
" lh)
/\ (G
" rh)) by
A3,
FUNCT_1: 68;
hence (
card (F
"
{r}))
= (
card (G
"
{r})) by
A1,
A13,
A5,
A7,
A11,
A12,
A9,
A10,
A15,
CLASSES1: 81;
end;
case
A16: r
<
0 ;
A17: (
- (
- r))
= r;
0
< (
- r) by
A16,
XREAL_1: 58;
then (
Coim (F,r))
= (
Coim ((
max- F),(
- r))) & (
Coim (G,r))
= (
Coim ((
max- G),(
- r))) by
A17,
Th38;
hence (
card (
Coim (F,r)))
= (
card (
Coim (G,r))) by
A2,
CLASSES1:def 10;
end;
end;
hence (
card (
Coim (F,r)))
= (
card (
Coim (G,r)));
end;
(
rng F)
c=
REAL & (
rng G)
c=
REAL ;
hence thesis by
A14,
CLASSES1: 79;
end;
theorem ::
RFUNCT_3:44
Th44: for D be non
empty
set, F be
PartFunc of D,
REAL , X be
set holds ((
max+ F)
| X)
= (
max+ (F
| X))
proof
let D be non
empty
set, F be
PartFunc of D,
REAL , X be
set;
A1: (
dom ((
max+ F)
| X))
= ((
dom (
max+ F))
/\ X) by
RELAT_1: 61;
A2: ((
dom (
max+ F))
/\ X)
= ((
dom F)
/\ X) by
Def10
.= (
dom (F
| X)) by
RELAT_1: 61;
A3: (
dom (F
| X))
= (
dom (
max+ (F
| X))) by
Def10;
now
let d be
Element of D;
assume
A4: d
in (
dom ((
max+ F)
| X));
then
A5: d
in (
dom (
max+ F)) by
A1,
XBOOLE_0:def 4;
thus (((
max+ F)
| X)
. d)
= ((
max+ F)
. d) by
A4,
FUNCT_1: 47
.= (
max+ (F
. d)) by
A5,
Def10
.= (
max+ ((F
| X)
. d)) by
A1,
A2,
A4,
FUNCT_1: 47
.= ((
max+ (F
| X))
. d) by
A1,
A2,
A3,
A4,
Def10;
end;
hence thesis by
A2,
A3,
PARTFUN1: 5,
RELAT_1: 61;
end;
theorem ::
RFUNCT_3:45
for D be non
empty
set, F be
PartFunc of D,
REAL , X be
set holds ((
max- F)
| X)
= (
max- (F
| X))
proof
let D be non
empty
set, F be
PartFunc of D,
REAL , X be
set;
A1: (
dom ((
max- F)
| X))
= ((
dom (
max- F))
/\ X) by
RELAT_1: 61;
A2: ((
dom (
max- F))
/\ X)
= ((
dom F)
/\ X) by
Def11
.= (
dom (F
| X)) by
RELAT_1: 61;
A3: (
dom (F
| X))
= (
dom (
max- (F
| X))) by
Def11;
now
let d be
Element of D;
assume
A4: d
in (
dom ((
max- F)
| X));
then
A5: d
in (
dom (
max- F)) by
A1,
XBOOLE_0:def 4;
thus (((
max- F)
| X)
. d)
= ((
max- F)
. d) by
A4,
FUNCT_1: 47
.= (
max- (F
. d)) by
A5,
Def11
.= (
max- ((F
| X)
. d)) by
A1,
A2,
A4,
FUNCT_1: 47
.= ((
max- (F
| X))
. d) by
A1,
A2,
A3,
A4,
Def11;
end;
hence thesis by
A2,
A3,
PARTFUN1: 5,
RELAT_1: 61;
end;
theorem ::
RFUNCT_3:46
Th46: for D be non
empty
set, F be
PartFunc of D,
REAL st (for d be
Element of D st d
in (
dom F) holds (F
. d)
>=
0 ) holds (
max+ F)
= F
proof
let D be non
empty
set, F be
PartFunc of D,
REAL ;
A1: (
dom (
max+ F))
= (
dom F) by
Def10;
assume
A2: for d be
Element of D st d
in (
dom F) holds (F
. d)
>=
0 ;
now
let d be
Element of D;
assume
A3: d
in (
dom F);
then
A4: (F
. d)
>=
0 by
A2;
thus ((
max+ F)
. d)
= (
max+ (F
. d)) by
A1,
A3,
Def10
.= (F
. d) by
A4,
XXREAL_0:def 10;
end;
hence thesis by
A1,
PARTFUN1: 5;
end;
theorem ::
RFUNCT_3:47
for D be non
empty
set, F be
PartFunc of D,
REAL st (for d be
Element of D st d
in (
dom F) holds (F
. d)
<=
0 ) holds (
max- F)
= (
- F)
proof
let D be non
empty
set, F be
PartFunc of D,
REAL ;
A1: (
dom (
max- F))
= (
dom F) by
Def11;
assume
A2: for d be
Element of D st d
in (
dom F) holds (F
. d)
<=
0 ;
A3:
now
let d be
Element of D;
assume
A4: d
in (
dom F);
then
A5: (F
. d)
<=
0 by
A2;
thus ((
max- F)
. d)
= (
max- (F
. d)) by
A1,
A4,
Def11
.= (
- (F
. d)) by
A5,
XXREAL_0:def 10
.= ((
- F)
. d) by
VALUED_1: 8;
end;
(
dom F)
= (
dom (
- F)) by
VALUED_1: 8;
hence thesis by
A1,
A3,
PARTFUN1: 5;
end;
theorem ::
RFUNCT_3:48
Th48: for D be non
empty
set, F be
PartFunc of D,
REAL holds (F
-
0 )
= F
proof
let D be non
empty
set, F be
PartFunc of D,
REAL ;
A1:
now
let d be
Element of D;
assume d
in (
dom F);
hence ((F
-
0 )
. d)
= ((F
. d)
-
0 ) by
VALUED_1: 3
.= (F
. d);
end;
(
dom (F
-
0 ))
= (
dom F) by
VALUED_1: 3;
hence thesis by
A1,
PARTFUN1: 5;
end;
theorem ::
RFUNCT_3:49
for D be non
empty
set, F be
PartFunc of D,
REAL , r be
Real, X be
set holds ((F
| X)
- r)
= ((F
- r)
| X)
proof
let D be non
empty
set, F be
PartFunc of D,
REAL , r be
Real, X be
set;
A1: (
dom ((F
| X)
- r))
= (
dom (F
| X)) by
VALUED_1: 3;
A2: (
dom (F
| X))
= ((
dom F)
/\ X) by
RELAT_1: 61;
A3: ((
dom F)
/\ X)
= ((
dom (F
- r))
/\ X) by
VALUED_1: 3
.= (
dom ((F
- r)
| X)) by
RELAT_1: 61;
now
let d be
Element of D;
assume
A4: d
in (
dom ((F
| X)
- r));
then
A5: d
in (
dom F) by
A1,
A2,
XBOOLE_0:def 4;
thus (((F
| X)
- r)
. d)
= (((F
| X)
. d)
- r) by
A1,
A4,
VALUED_1: 3
.= ((F
. d)
- r) by
A1,
A4,
FUNCT_1: 47
.= ((F
- r)
. d) by
A5,
VALUED_1: 3
.= (((F
- r)
| X)
. d) by
A1,
A2,
A3,
A4,
FUNCT_1: 47;
end;
hence thesis by
A2,
A3,
PARTFUN1: 5,
VALUED_1: 3;
end;
theorem ::
RFUNCT_3:50
Th50: for D be non
empty
set, F be
PartFunc of D,
REAL , r, s holds (F
"
{(s
+ r)})
= ((F
- r)
"
{s})
proof
let D be non
empty
set, F be
PartFunc of D,
REAL , r, s;
thus (F
"
{(s
+ r)})
c= ((F
- r)
"
{s})
proof
let x be
object;
assume
A1: x
in (F
"
{(s
+ r)});
then
reconsider d = x as
Element of D;
A2: d
in (
dom F) by
A1,
FUNCT_1:def 7;
(F
. d)
in
{(s
+ r)} by
A1,
FUNCT_1:def 7;
then (F
. d)
= (s
+ r) by
TARSKI:def 1;
then ((F
. d)
- r)
= s;
then ((F
- r)
. d)
= s by
A2,
VALUED_1: 3;
then
A3: ((F
- r)
. d)
in
{s} by
TARSKI:def 1;
d
in (
dom (F
- r)) by
A2,
VALUED_1: 3;
hence thesis by
A3,
FUNCT_1:def 7;
end;
let x be
object;
assume
A4: x
in ((F
- r)
"
{s});
then
reconsider d = x as
Element of D;
d
in (
dom (F
- r)) by
A4,
FUNCT_1:def 7;
then
A5: d
in (
dom F) by
VALUED_1: 3;
((F
- r)
. d)
in
{s} by
A4,
FUNCT_1:def 7;
then ((F
- r)
. d)
= s by
TARSKI:def 1;
then ((F
. d)
- r)
= s by
A5,
VALUED_1: 3;
then (F
. d)
in
{(s
+ r)} by
TARSKI:def 1;
hence thesis by
A5,
FUNCT_1:def 7;
end;
theorem ::
RFUNCT_3:51
for D,C be non
empty
set, F be
PartFunc of D,
REAL , G be
PartFunc of C,
REAL , r be
Real holds (F,G)
are_fiberwise_equipotent iff ((F
- r),(G
- r))
are_fiberwise_equipotent
proof
let D,C be non
empty
set, F be
PartFunc of D,
REAL , G be
PartFunc of C,
REAL , r be
Real;
A1: (
rng (F
- r))
c=
REAL & (
rng (G
- r))
c=
REAL ;
thus (F,G)
are_fiberwise_equipotent implies ((F
- r),(G
- r))
are_fiberwise_equipotent
proof
assume
A2: (F,G)
are_fiberwise_equipotent ;
now
let s be
Element of
REAL ;
thus (
card (
Coim ((F
- r),s)))
= (
card (
Coim (F,(s
+ r)))) by
Th50
.= (
card (
Coim (G,(s
+ r)))) by
A2,
CLASSES1:def 10
.= (
card (
Coim ((G
- r),s))) by
Th50;
end;
hence thesis by
A1,
CLASSES1: 79;
end;
assume
A3: ((F
- r),(G
- r))
are_fiberwise_equipotent ;
A4:
now
let s be
Element of
REAL ;
A5: s
= ((s
- r)
+ r);
hence (
card (
Coim (F,s)))
= (
card (
Coim ((F
- r),(s
- r)))) by
Th50
.= (
card (
Coim ((G
- r),(s
- r)))) by
A3,
CLASSES1:def 10
.= (
card (
Coim (G,s))) by
A5,
Th50;
end;
(
rng F)
c=
REAL & (
rng G)
c=
REAL ;
hence thesis by
A4,
CLASSES1: 79;
end;
definition
let F be
PartFunc of
REAL ,
REAL , X be
set;
::
RFUNCT_3:def12
pred F
is_convex_on X means X
c= (
dom F) & for p be
Real st
0
<= p & p
<= 1 holds for r,s be
Real st r
in X & s
in X & ((p
* r)
+ ((1
- p)
* s))
in X holds (F
. ((p
* r)
+ ((1
- p)
* s)))
<= ((p
* (F
. r))
+ ((1
- p)
* (F
. s)));
end
theorem ::
RFUNCT_3:52
for a,b be
Real, F be
PartFunc of
REAL ,
REAL holds F
is_convex_on
[.a, b.] iff
[.a, b.]
c= (
dom F) & for p be
Real st
0
<= p & p
<= 1 holds for r,s be
Real st r
in
[.a, b.] & s
in
[.a, b.] holds (F
. ((p
* r)
+ ((1
- p)
* s)))
<= ((p
* (F
. r))
+ ((1
- p)
* (F
. s)))
proof
let a,b be
Real, f be
PartFunc of
REAL ,
REAL ;
set ab = { r : a
<= r & r
<= b };
A1:
[.a, b.]
= ab by
RCOMP_1:def 1;
thus f
is_convex_on
[.a, b.] implies
[.a, b.]
c= (
dom f) & for p be
Real st
0
<= p & p
<= 1 holds for x,y be
Real st x
in
[.a, b.] & y
in
[.a, b.] holds (f
. ((p
* x)
+ ((1
- p)
* y)))
<= ((p
* (f
. x))
+ ((1
- p)
* (f
. y)))
proof
assume
A2: f
is_convex_on
[.a, b.];
hence
[.a, b.]
c= (
dom f);
let p be
Real;
assume that
A3:
0
<= p and
A4: p
<= 1;
A5:
0
<= (1
- p) by
A4,
XREAL_1: 48;
A6: ((p
* b)
+ ((1
- p)
* b))
= b;
A7: ((p
* a)
+ ((1
- p)
* a))
= a;
let x,y be
Real;
assume that
A8: x
in
[.a, b.] and
A9: y
in
[.a, b.];
A10: ex r2 st r2
= y & a
<= r2 & r2
<= b by
A1,
A9;
then
A11: ((1
- p)
* y)
<= ((1
- p)
* b) by
A5,
XREAL_1: 64;
A12: ex r1 st r1
= x & a
<= r1 & r1
<= b by
A1,
A8;
then (p
* x)
<= (p
* b) by
A3,
XREAL_1: 64;
then
A13: ((p
* x)
+ ((1
- p)
* y))
<= b by
A11,
A6,
XREAL_1: 7;
A14: ((1
- p)
* a)
<= ((1
- p)
* y) by
A5,
A10,
XREAL_1: 64;
(p
* a)
<= (p
* x) by
A3,
A12,
XREAL_1: 64;
then a
<= ((p
* x)
+ ((1
- p)
* y)) by
A14,
A7,
XREAL_1: 7;
then ((p
* x)
+ ((1
- p)
* y))
in ab by
A13;
hence thesis by
A1,
A2,
A3,
A4,
A8,
A9;
end;
assume that
A15:
[.a, b.]
c= (
dom f) and
A16: for p be
Real st
0
<= p & p
<= 1 holds for x,y be
Real st x
in
[.a, b.] & y
in
[.a, b.] holds (f
. ((p
* x)
+ ((1
- p)
* y)))
<= ((p
* (f
. x))
+ ((1
- p)
* (f
. y)));
thus
[.a, b.]
c= (
dom f) by
A15;
let p be
Real;
assume
A17:
0
<= p & p
<= 1;
let x,y be
Real;
assume that
A18: x
in
[.a, b.] & y
in
[.a, b.] and ((p
* x)
+ ((1
- p)
* y))
in
[.a, b.];
thus thesis by
A16,
A17,
A18;
end;
theorem ::
RFUNCT_3:53
for a,b be
Real, F be
PartFunc of
REAL ,
REAL holds F
is_convex_on
[.a, b.] iff
[.a, b.]
c= (
dom F) & for x1,x2,x3 be
Real st x1
in
[.a, b.] & x2
in
[.a, b.] & x3
in
[.a, b.] & x1
< x2 & x2
< x3 holds (((F
. x1)
- (F
. x2))
/ (x1
- x2))
<= (((F
. x2)
- (F
. x3))
/ (x2
- x3))
proof
let a,b be
Real, f be
PartFunc of
REAL ,
REAL ;
thus f
is_convex_on
[.a, b.] implies
[.a, b.]
c= (
dom f) & for x1,x2,x3 be
Real st x1
in
[.a, b.] & x2
in
[.a, b.] & x3
in
[.a, b.] & x1
< x2 & x2
< x3 holds (((f
. x1)
- (f
. x2))
/ (x1
- x2))
<= (((f
. x2)
- (f
. x3))
/ (x2
- x3))
proof
assume
A1: f
is_convex_on
[.a, b.];
hence
[.a, b.]
c= (
dom f);
let x1,x2,x3 be
Real;
assume that
A2: x1
in
[.a, b.] & x2
in
[.a, b.] & x3
in
[.a, b.] and
A3: x1
< x2 and
A4: x2
< x3;
A5: (x2
- x3)
<
0 by
A4,
XREAL_1: 49;
set r = ((x2
- x3)
/ (x1
- x3));
A6: (r
* ((f
. x2)
- (f
. x1)))
= ((r
* (f
. x2))
- (r
* (f
. x1))) & ((1
- r)
* ((f
. x3)
- (f
. x2)))
= (((1
- r)
* (f
. x3))
- ((1
- r)
* (f
. x2)));
A7: ((x1
- x2)
/ (x1
- x3))
= (((x1
- x3)
" )
* (x1
- x2)) by
XCMPLX_0:def 9;
x1
< x3 by
A3,
A4,
XXREAL_0: 2;
then
A8: (x1
- x3)
<
0 by
XREAL_1: 49;
A9: (r
+ ((x1
- x2)
/ (x1
- x3)))
= (((x1
- x2)
+ (x2
- x3))
/ (x1
- x3)) by
XCMPLX_1: 62
.= 1 by
A8,
XCMPLX_1: 60;
then
A10: ((r
* x1)
+ ((1
- r)
* x3))
= (((x1
* (x2
- x3))
/ (x1
- x3))
+ (x3
* ((x1
- x2)
/ (x1
- x3)))) by
XCMPLX_1: 74
.= (((x1
* (x2
- x3))
/ (x1
- x3))
+ ((x3
* (x1
- x2))
/ (x1
- x3))) by
XCMPLX_1: 74
.= ((((x2
* x1)
- (x3
* x1))
+ ((x1
- x2)
* x3))
/ (x1
- x3)) by
XCMPLX_1: 62
.= ((x2
* (x1
- x3))
/ (x1
- x3))
.= x2 by
A8,
XCMPLX_1: 89;
A11: (x1
- x2)
<
0 by
A3,
XREAL_1: 49;
then r
<= 1 by
A8,
A9,
XREAL_1: 29,
XREAL_1: 140;
then ((r
* (f
. x2))
+ ((1
- r)
* (f
. x2)))
<= ((r
* (f
. x1))
+ ((1
- r)
* (f
. x3))) by
A1,
A2,
A5,
A8,
A10;
then (r
* ((f
. x2)
- (f
. x1)))
<= ((1
- r)
* ((f
. x3)
- (f
. x2))) by
A6,
XREAL_1: 21;
then (
- ((1
- r)
* ((f
. x3)
- (f
. x2))))
<= (
- (r
* ((f
. x2)
- (f
. x1)))) by
XREAL_1: 24;
then ((1
- r)
* (
- ((f
. x3)
- (f
. x2))))
<= (r
* (
- ((f
. x2)
- (f
. x1))));
then ((((x1
- x3)
" )
* (x1
- x2))
* ((f
. x2)
- (f
. x3)))
<= ((((x1
- x3)
" )
* (x2
- x3))
* ((f
. x1)
- (f
. x2))) by
A9,
A7,
XCMPLX_0:def 9;
then
A12: ((x1
- x3)
* ((((x1
- x3)
" )
* (x2
- x3))
* ((f
. x1)
- (f
. x2))))
<= ((x1
- x3)
* ((((x1
- x3)
" )
* (x1
- x2))
* ((f
. x2)
- (f
. x3)))) by
A8,
XREAL_1: 65;
set v = ((x1
- x2)
* ((f
. x2)
- (f
. x3)));
set u = ((x2
- x3)
* ((f
. x1)
- (f
. x2)));
A13: ((x1
- x3)
* ((((x1
- x3)
" )
* (x1
- x2))
* ((f
. x2)
- (f
. x3))))
= (((x1
- x3)
* ((x1
- x3)
" ))
* v)
.= (1
* v) by
A8,
XCMPLX_0:def 7
.= v;
((x1
- x3)
* ((((x1
- x3)
" )
* (x2
- x3))
* ((f
. x1)
- (f
. x2))))
= (((x1
- x3)
* ((x1
- x3)
" ))
* u)
.= (1
* u) by
A8,
XCMPLX_0:def 7
.= u;
hence thesis by
A5,
A11,
A12,
A13,
XREAL_1: 103;
end;
assume that
A14:
[.a, b.]
c= (
dom f) and
A15: for x1,x2,x3 be
Real st x1
in
[.a, b.] & x2
in
[.a, b.] & x3
in
[.a, b.] & x1
< x2 & x2
< x3 holds (((f
. x1)
- (f
. x2))
/ (x1
- x2))
<= (((f
. x2)
- (f
. x3))
/ (x2
- x3));
now
let p be
Real;
assume that
A16:
0
<= p and
A17: p
<= 1;
A18:
0
<= (1
- p) by
A17,
XREAL_1: 48;
let x,y be
Real;
set r = ((p
* x)
+ ((1
- p)
* y));
assume that
A19: x
in
[.a, b.] and
A20: y
in
[.a, b.];
A21: ((p
* y)
+ ((1
- p)
* y))
= y;
A22: { s : a
<= s & s
<= b }
=
[.a, b.] by
RCOMP_1:def 1;
then
A23: ex t st t
= y & a
<= t & t
<= b by
A20;
then
A24: ((1
- p)
* y)
<= ((1
- p)
* b) by
A18,
XREAL_1: 64;
A25: ex t st t
= x & a
<= t & t
<= b by
A22,
A19;
then ((p
* b)
+ ((1
- p)
* b))
= b & (p
* x)
<= (p
* b) by
A16,
XREAL_1: 64;
then
A26: r
<= b by
A24,
XREAL_1: 7;
A27: ((1
- p)
* a)
<= ((1
- p)
* y) by
A18,
A23,
XREAL_1: 64;
((p
* a)
+ ((1
- p)
* a))
= a & (p
* a)
<= (p
* x) by
A16,
A25,
XREAL_1: 64;
then a
<= r by
A27,
XREAL_1: 7;
then
A28: r
in
[.a, b.] by
A22,
A26;
A29: ((p
* x)
+ ((1
- p)
* x))
= x;
now
per cases ;
case x
= y;
hence (f
. ((p
* x)
+ ((1
- p)
* y)))
<= ((p
* (f
. x))
+ ((1
- p)
* (f
. y)));
end;
case
A30: x
<> y;
now
per cases ;
case p
=
0 ;
hence (f
. ((p
* x)
+ ((1
- p)
* y)))
<= ((p
* (f
. x))
+ ((1
- p)
* (f
. y)));
end;
case
A31: p
<>
0 ;
now
per cases ;
case p
= 1;
hence (f
. ((p
* x)
+ ((1
- p)
* y)))
<= ((p
* (f
. x))
+ ((1
- p)
* (f
. y)));
end;
case p
<> 1;
then p
< 1 by
A17,
XXREAL_0: 1;
then
A32:
0
< (1
- p) by
XREAL_1: 50;
now
per cases by
A30,
XXREAL_0: 1;
case
A33: x
< y;
then ((1
- p)
* x)
< ((1
- p)
* y) by
A32,
XREAL_1: 68;
then
A34: x
< r by
A29,
XREAL_1: 8;
then
A35: (x
- r)
<
0 by
XREAL_1: 49;
(p
* x)
< (p
* y) by
A16,
A31,
A33,
XREAL_1: 68;
then
A36: r
< y by
A21,
XREAL_1: 8;
then
A37: (r
- y)
<
0 by
XREAL_1: 49;
A38: (x
- y)
<
0 by
A33,
XREAL_1: 49;
(((f
. x)
- (f
. r))
/ (x
- r))
<= (((f
. r)
- (f
. y))
/ (r
- y)) by
A15,
A19,
A20,
A28,
A36,
A34;
then (((f
. x)
- (f
. r))
* (p
* (x
- y)))
<= (((f
. r)
- (f
. y))
* ((1
- p)
* (x
- y))) by
A37,
A35,
XREAL_1: 107;
then (((((f
. x)
- (f
. r))
* p)
* (x
- y))
/ (x
- y))
>= (((((f
. r)
- (f
. y))
* (1
- p))
* (x
- y))
/ (x
- y)) by
A38,
XREAL_1: 73;
then (((((f
. r)
- (f
. y))
* (1
- p))
* (x
- y))
/ (x
- y))
<= (((f
. x)
- (f
. r))
* p) by
A38,
XCMPLX_1: 89;
then (((f
. r)
* (1
- p))
- ((f
. y)
* (1
- p)))
<= (((f
. x)
* p)
- ((f
. r)
* p)) by
A38,
XCMPLX_1: 89;
then (((f
. r)
* p)
+ (((f
. r)
* (1
- p))
- ((f
. y)
* (1
- p))))
<= ((f
. x)
* p) by
XREAL_1: 19;
then ((((f
. r)
* p)
+ ((f
. r)
* (1
- p)))
- ((f
. y)
* (1
- p)))
<= ((f
. x)
* p);
hence (f
. r)
<= ((p
* (f
. x))
+ ((1
- p)
* (f
. y))) by
XREAL_1: 20;
end;
case
A39: y
< x;
then ((1
- p)
* y)
< ((1
- p)
* x) by
A32,
XREAL_1: 68;
then
A40: r
< x by
A29,
XREAL_1: 8;
then
A41: (r
- x)
<
0 by
XREAL_1: 49;
(p
* y)
< (p
* x) by
A16,
A31,
A39,
XREAL_1: 68;
then
A42: y
< r by
A21,
XREAL_1: 8;
then
A43: (y
- r)
<
0 by
XREAL_1: 49;
A44: (y
- x)
<
0 by
A39,
XREAL_1: 49;
(((f
. y)
- (f
. r))
/ (y
- r))
<= (((f
. r)
- (f
. x))
/ (r
- x)) by
A15,
A19,
A20,
A28,
A42,
A40;
then (((f
. y)
- (f
. r))
* ((1
- p)
* (y
- x)))
<= (((f
. r)
- (f
. x))
* (p
* (y
- x))) by
A43,
A41,
XREAL_1: 107;
then (((((f
. y)
- (f
. r))
* (1
- p))
* (y
- x))
/ (y
- x))
>= (((((f
. r)
- (f
. x))
* p)
* (y
- x))
/ (y
- x)) by
A44,
XREAL_1: 73;
then (((((f
. r)
- (f
. x))
* p)
* (y
- x))
/ (y
- x))
<= (((f
. y)
- (f
. r))
* (1
- p)) by
A44,
XCMPLX_1: 89;
then (((f
. r)
* p)
- ((f
. x)
* p))
<= (((f
. y)
* (1
- p))
- ((f
. r)
* (1
- p))) by
A44,
XCMPLX_1: 89;
then ((((f
. r)
* p)
- ((f
. x)
* p))
+ ((f
. r)
* (1
- p)))
<= ((f
. y)
* (1
- p)) by
XREAL_1: 19;
then ((((f
. r)
* p)
+ ((f
. r)
* (1
- p)))
- ((f
. x)
* p))
<= ((f
. y)
* (1
- p));
hence (f
. r)
<= ((p
* (f
. x))
+ ((1
- p)
* (f
. y))) by
XREAL_1: 20;
end;
end;
hence (f
. ((p
* x)
+ ((1
- p)
* y)))
<= ((p
* (f
. x))
+ ((1
- p)
* (f
. y)));
end;
end;
hence (f
. ((p
* x)
+ ((1
- p)
* y)))
<= ((p
* (f
. x))
+ ((1
- p)
* (f
. y)));
end;
end;
hence (f
. ((p
* x)
+ ((1
- p)
* y)))
<= ((p
* (f
. x))
+ ((1
- p)
* (f
. y)));
end;
end;
hence (f
. ((p
* x)
+ ((1
- p)
* y)))
<= ((p
* (f
. x))
+ ((1
- p)
* (f
. y)));
end;
hence thesis by
A14;
end;
theorem ::
RFUNCT_3:54
for F be
PartFunc of
REAL ,
REAL , X,Y be
set st F
is_convex_on X & Y
c= X holds F
is_convex_on Y
proof
let F be
PartFunc of
REAL ,
REAL , X,Y be
set;
assume that
A1: F
is_convex_on X and
A2: Y
c= X;
X
c= (
dom F) by
A1;
hence Y
c= (
dom F) by
A2;
let p be
Real;
assume
A3:
0
<= p & p
<= 1;
let x,y be
Real;
assume x
in Y & y
in Y & ((p
* x)
+ ((1
- p)
* y))
in Y;
hence thesis by
A1,
A2,
A3;
end;
theorem ::
RFUNCT_3:55
for F be
PartFunc of
REAL ,
REAL , X be
set, r holds F
is_convex_on X iff (F
- r)
is_convex_on X
proof
let F be
PartFunc of
REAL ,
REAL , X be
set, r;
A1: (
dom F)
= (
dom (F
- r)) by
VALUED_1: 3;
thus F
is_convex_on X implies (F
- r)
is_convex_on X
proof
assume
A2: F
is_convex_on X;
hence
A3: X
c= (
dom (F
- r)) by
A1;
let p be
Real;
assume
A4:
0
<= p & p
<= 1;
let x,y be
Real;
assume that
A5: x
in X and
A6: y
in X and
A7: ((p
* x)
+ ((1
- p)
* y))
in X;
(F
. ((p
* x)
+ ((1
- p)
* y)))
<= ((p
* (F
. x))
+ ((1
- p)
* (F
. y))) by
A2,
A4,
A5,
A6,
A7;
then
A8: ((F
. ((p
* x)
+ ((1
- p)
* y)))
- r)
<= (((p
* (F
. x))
+ ((1
- p)
* (F
. y)))
- r) by
XREAL_1: 9;
(((p
* (F
. x))
+ ((1
- p)
* (F
. y)))
- r)
= ((p
* ((F
. x)
- r))
+ ((1
- p)
* ((F
. y)
- r)))
.= ((p
* ((F
- r)
. x))
+ ((1
- p)
* ((F
. y)
- r))) by
A1,
A3,
A5,
VALUED_1: 3
.= ((p
* ((F
- r)
. x))
+ ((1
- p)
* ((F
- r)
. y))) by
A1,
A3,
A6,
VALUED_1: 3;
hence thesis by
A1,
A3,
A7,
A8,
VALUED_1: 3;
end;
assume
A9: (F
- r)
is_convex_on X;
hence
A10: X
c= (
dom F) by
A1;
let p be
Real;
assume
A11:
0
<= p & p
<= 1;
let x,y be
Real;
assume that
A12: x
in X and
A13: y
in X and
A14: ((p
* x)
+ ((1
- p)
* y))
in X;
((F
- r)
. ((p
* x)
+ ((1
- p)
* y)))
<= ((p
* ((F
- r)
. x))
+ ((1
- p)
* ((F
- r)
. y))) by
A9,
A11,
A12,
A13,
A14;
then
A15: ((F
. ((p
* x)
+ ((1
- p)
* y)))
- r)
<= ((p
* ((F
- r)
. x))
+ ((1
- p)
* ((F
- r)
. y))) by
A10,
A14,
VALUED_1: 3;
((p
* ((F
- r)
. x))
+ ((1
- p)
* ((F
- r)
. y)))
= ((p
* ((F
- r)
. x))
+ ((1
- p)
* ((F
. y)
- r))) by
A10,
A13,
VALUED_1: 3
.= ((p
* ((F
. x)
- r))
+ (((1
- p)
* (F
. y))
- ((1
- p)
* r))) by
A10,
A12,
VALUED_1: 3
.= (((p
* (F
. x))
+ ((1
- p)
* (F
. y)))
- r);
hence thesis by
A15,
XREAL_1: 9;
end;
theorem ::
RFUNCT_3:56
for F be
PartFunc of
REAL ,
REAL , X be
set, r st
0
< r holds F
is_convex_on X iff (r
(#) F)
is_convex_on X
proof
let F be
PartFunc of
REAL ,
REAL , X be
set, r;
assume
A1:
0
< r;
A2: (
dom F)
= (
dom (r
(#) F)) by
VALUED_1:def 5;
thus F
is_convex_on X implies (r
(#) F)
is_convex_on X
proof
assume
A3: F
is_convex_on X;
then
A4: X
c= (
dom F);
thus X
c= (
dom (r
(#) F)) by
A2,
A3;
let p be
Real;
assume
A5:
0
<= p & p
<= 1;
let x,y be
Real;
assume that
A6: x
in X and
A7: y
in X and
A8: ((p
* x)
+ ((1
- p)
* y))
in X;
(F
. ((p
* x)
+ ((1
- p)
* y)))
<= ((p
* (F
. x))
+ ((1
- p)
* (F
. y))) by
A3,
A5,
A6,
A7,
A8;
then (r
* (F
. ((p
* x)
+ ((1
- p)
* y))))
<= (r
* ((p
* (F
. x))
+ ((1
- p)
* (F
. y)))) by
A1,
XREAL_1: 64;
then ((r
(#) F)
. ((p
* x)
+ ((1
- p)
* y)))
<= ((p
* (r
* (F
. x)))
+ (((1
- p)
* r)
* (F
. y))) by
A2,
A4,
A8,
VALUED_1:def 5;
then ((r
(#) F)
. ((p
* x)
+ ((1
- p)
* y)))
<= ((p
* ((r
(#) F)
. x))
+ ((1
- p)
* (r
* (F
. y)))) by
A2,
A4,
A6,
VALUED_1:def 5;
hence thesis by
A2,
A4,
A7,
VALUED_1:def 5;
end;
assume
A9: (r
(#) F)
is_convex_on X;
then
A10: X
c= (
dom (r
(#) F));
hence X
c= (
dom F) by
VALUED_1:def 5;
let p be
Real;
assume
A11:
0
<= p & p
<= 1;
let x,y be
Real;
assume that
A12: x
in X and
A13: y
in X and
A14: ((p
* x)
+ ((1
- p)
* y))
in X;
((r
(#) F)
. ((p
* x)
+ ((1
- p)
* y)))
<= ((p
* ((r
(#) F)
. x))
+ ((1
- p)
* ((r
(#) F)
. y))) by
A9,
A11,
A12,
A13,
A14;
then (r
* (F
. ((p
* x)
+ ((1
- p)
* y))))
<= ((p
* ((r
(#) F)
. x))
+ ((1
- p)
* ((r
(#) F)
. y))) by
A10,
A14,
VALUED_1:def 5;
then (r
* (F
. ((p
* x)
+ ((1
- p)
* y))))
<= ((p
* (r
* (F
. x)))
+ ((1
- p)
* ((r
(#) F)
. y))) by
A10,
A12,
VALUED_1:def 5;
then (r
* (F
. ((p
* x)
+ ((1
- p)
* y))))
<= ((p
* (r
* (F
. x)))
+ ((1
- p)
* (r
* (F
. y)))) by
A10,
A13,
VALUED_1:def 5;
then ((r
* (F
. ((p
* x)
+ ((1
- p)
* y))))
/ r)
<= ((r
* ((p
* (F
. x))
+ ((1
- p)
* (F
. y))))
/ r) by
A1,
XREAL_1: 72;
then (F
. ((p
* x)
+ ((1
- p)
* y)))
<= ((r
* ((p
* (F
. x))
+ ((1
- p)
* (F
. y))))
/ r) by
A1,
XCMPLX_1: 89;
hence thesis by
A1,
XCMPLX_1: 89;
end;
theorem ::
RFUNCT_3:57
for F be
PartFunc of
REAL ,
REAL , X be
set st X
c= (
dom F) holds (
0
(#) F)
is_convex_on X
proof
let F be
PartFunc of
REAL ,
REAL , X be
set;
assume
A1: X
c= (
dom F);
hence X
c= (
dom (
0
(#) F)) by
VALUED_1:def 5;
let p be
Real;
assume that
0
<= p and p
<= 1;
let x,y be
Real;
assume that
A2: x
in X and
A3: y
in X and
A4: ((p
* x)
+ ((1
- p)
* y))
in X;
A5: (
dom F)
= (
dom (
0
(#) F)) by
VALUED_1:def 5;
then
A6: ((
0
(#) F)
. ((p
* x)
+ ((1
- p)
* y)))
= (
0
* (F
. ((p
* x)
+ ((1
- p)
* y)))) by
A1,
A4,
VALUED_1:def 5
.=
0 ;
((p
* ((
0
(#) F)
. x))
+ ((1
- p)
* ((
0
(#) F)
. y)))
= ((p
* (
0
* (F
. x)))
+ ((1
- p)
* ((
0
(#) F)
. y))) by
A1,
A5,
A2,
VALUED_1:def 5
.= ((p
*
0 )
+ ((1
- p)
* (
0
* (F
. y)))) by
A1,
A5,
A3,
VALUED_1:def 5
.= (
0
+
0 );
hence thesis by
A6;
end;
theorem ::
RFUNCT_3:58
for F,G be
PartFunc of
REAL ,
REAL , X be
set st F
is_convex_on X & G
is_convex_on X holds (F
+ G)
is_convex_on X
proof
let F,G be
PartFunc of
REAL ,
REAL , X be
set;
A1: (
dom (F
+ G))
= ((
dom F)
/\ (
dom G)) by
VALUED_1:def 1;
assume
A2: F
is_convex_on X & G
is_convex_on X;
then X
c= (
dom F) & X
c= (
dom G);
hence
A3: X
c= (
dom (F
+ G)) by
A1,
XBOOLE_1: 19;
let p be
Real;
assume
A4:
0
<= p & p
<= 1;
let x,y be
Real;
assume that
A5: x
in X and
A6: y
in X and
A7: ((p
* x)
+ ((1
- p)
* y))
in X;
(F
. ((p
* x)
+ ((1
- p)
* y)))
<= ((p
* (F
. x))
+ ((1
- p)
* (F
. y))) & (G
. ((p
* x)
+ ((1
- p)
* y)))
<= ((p
* (G
. x))
+ ((1
- p)
* (G
. y))) by
A2,
A4,
A5,
A6,
A7;
then ((F
. ((p
* x)
+ ((1
- p)
* y)))
+ (G
. ((p
* x)
+ ((1
- p)
* y))))
<= (((p
* (F
. x))
+ ((1
- p)
* (F
. y)))
+ ((p
* (G
. x))
+ ((1
- p)
* (G
. y)))) by
XREAL_1: 7;
then
A8: ((F
+ G)
. ((p
* x)
+ ((1
- p)
* y)))
<= (((p
* (F
. x))
+ ((1
- p)
* (F
. y)))
+ ((p
* (G
. x))
+ ((1
- p)
* (G
. y)))) by
A3,
A7,
VALUED_1:def 1;
(((p
* (F
. x))
+ ((1
- p)
* (F
. y)))
+ ((p
* (G
. x))
+ ((1
- p)
* (G
. y))))
= (((p
* ((F
. x)
+ (G
. x)))
+ ((1
- p)
* (F
. y)))
+ ((1
- p)
* (G
. y)))
.= (((p
* ((F
+ G)
. x))
+ ((1
- p)
* (F
. y)))
+ ((1
- p)
* (G
. y))) by
A3,
A5,
VALUED_1:def 1
.= ((p
* ((F
+ G)
. x))
+ ((1
- p)
* ((F
. y)
+ (G
. y))));
hence thesis by
A3,
A6,
A8,
VALUED_1:def 1;
end;
theorem ::
RFUNCT_3:59
Th59: for F be
PartFunc of
REAL ,
REAL , X be
set, r st F
is_convex_on X holds (
max+ (F
- r))
is_convex_on X
proof
let F be
PartFunc of
REAL ,
REAL , X be
set, r;
assume
A1: F
is_convex_on X;
then
A2: X
c= (
dom F);
A3: (
dom F)
= (
dom (F
- r)) & (
dom (
max+ (F
- r)))
= (
dom (F
- r)) by
Def10,
VALUED_1: 3;
hence X
c= (
dom (
max+ (F
- r))) by
A1;
let p be
Real;
assume that
A4:
0
<= p and
A5: p
<= 1;
let x,y be
Real;
assume that
A6: x
in X and
A7: y
in X and
A8: ((p
* x)
+ ((1
- p)
* y))
in X;
(F
. ((p
* x)
+ ((1
- p)
* y)))
<= ((p
* (F
. x))
+ ((1
- p)
* (F
. y))) by
A1,
A4,
A5,
A6,
A7,
A8;
then ((F
. ((p
* x)
+ ((1
- p)
* y)))
- r)
<= (((p
* (F
. x))
+ ((1
- p)
* (F
. y)))
- r) by
XREAL_1: 9;
then
A9: (
max+ ((F
. ((p
* x)
+ ((1
- p)
* y)))
- r))
<= (
max ((((p
* (F
. x))
+ ((1
- p)
* (F
. y)))
- r),
0 )) by
XXREAL_0: 26;
(
0
+ p)
<= 1 by
A5;
then
0
<= (1
- p) by
XREAL_1: 19;
then
A10: (
max+ ((1
- p)
* ((F
- r)
. y)))
= ((1
- p)
* (
max+ ((F
- r)
. y))) by
Th4;
A11: (
max+ ((p
* ((F
- r)
. x))
+ ((1
- p)
* ((F
- r)
. y))))
<= ((
max+ (p
* ((F
- r)
. x)))
+ (
max+ ((1
- p)
* ((F
- r)
. y)))) by
Th5;
A12: (
max+ (p
* ((F
- r)
. x)))
= (p
* (
max+ ((F
- r)
. x))) by
A4,
Th4;
reconsider pc = ((p
* x)
+ ((1
- p)
* y)) as
Element of
REAL by
XREAL_0:def 1;
reconsider x, y as
Element of
REAL by
XREAL_0:def 1;
(((p
* (F
. x))
+ ((1
- p)
* (F
. y)))
- r)
= ((p
* ((F
. x)
- r))
+ ((1
- p)
* ((F
. y)
- r)))
.= ((p
* ((F
- r)
. x))
+ ((1
- p)
* ((F
. y)
- r))) by
A6,
A2,
VALUED_1: 3
.= ((p
* ((F
- r)
. x))
+ ((1
- p)
* ((F
- r)
. y))) by
A7,
A2,
VALUED_1: 3;
then (
max+ ((F
. ((p
* x)
+ ((1
- p)
* y)))
- r))
<= ((p
* (
max+ ((F
- r)
. x)))
+ ((1
- p)
* (
max+ ((F
- r)
. y)))) by
A9,
A11,
A12,
A10,
XXREAL_0: 2;
then (
max+ ((F
- r)
. pc))
<= ((p
* (
max+ ((F
- r)
. x)))
+ ((1
- p)
* (
max+ ((F
- r)
. y)))) by
A8,
A2,
VALUED_1: 3;
then ((
max+ (F
- r))
. pc)
<= ((p
* (
max+ ((F
- r)
. x)))
+ ((1
- p)
* (
max+ ((F
- r)
. y)))) by
A3,
A8,
A2,
Def10;
then ((
max+ (F
- r))
. pc)
<= ((p
* ((
max+ (F
- r))
. x))
+ ((1
- p)
* (
max+ ((F
- r)
. y)))) by
A3,
A6,
A2,
Def10;
hence thesis by
A3,
A7,
A2,
Def10;
end;
theorem ::
RFUNCT_3:60
for F be
PartFunc of
REAL ,
REAL , X be
set st F
is_convex_on X holds (
max+ F)
is_convex_on X
proof
let F be
PartFunc of
REAL ,
REAL , X be
set;
assume F
is_convex_on X;
then (
max+ (F
-
0 ))
is_convex_on X by
Th59;
hence thesis by
Th48;
end;
theorem ::
RFUNCT_3:61
Th61: (
id (
[#]
REAL ))
is_convex_on
REAL
proof
set i = (
id (
[#]
REAL ));
thus
REAL
c= (
dom i) by
FUNCT_1: 17;
let p be
Real;
assume that
0
<= p and p
<= 1;
let x,y be
Real;
assume that
A1: x
in
REAL and
A2: y
in
REAL and
A3: ((p
* x)
+ ((1
- p)
* y))
in
REAL ;
(i
. x)
= x & (i
. y)
= y by
A1,
A2,
FUNCT_1: 17;
hence thesis by
A3,
FUNCT_1: 17;
end;
theorem ::
RFUNCT_3:62
for r be
Real holds (
max+ ((
id (
[#]
REAL ))
- r))
is_convex_on
REAL by
Th59,
Th61;
definition
let D be non
empty
set, F be
PartFunc of D,
REAL , X be
set;
assume
A1: (
dom (F
| X)) is
finite;
::
RFUNCT_3:def13
func
FinS (F,X) ->
non-increasing
FinSequence of
REAL means
:
Def13: ((F
| X),it )
are_fiberwise_equipotent ;
existence
proof
set x = (
dom (F
| X));
consider b be
FinSequence such that
A2: ((F
| x),b)
are_fiberwise_equipotent by
A1,
RFINSEQ: 5;
(
rng (F
| x))
= (
rng b) by
A2,
CLASSES1: 75;
then
reconsider b as
FinSequence of
REAL by
FINSEQ_1:def 4;
consider a be
non-increasing
FinSequence of
REAL such that
A3: (b,a)
are_fiberwise_equipotent by
RFINSEQ: 22;
take a;
x
= ((
dom F)
/\ X) by
RELAT_1: 61;
then (F
| x)
= ((F
| (
dom F))
| X) by
RELAT_1: 71
.= (F
| X) by
RELAT_1: 68;
hence thesis by
A2,
A3,
CLASSES1: 76;
end;
uniqueness by
CLASSES1: 76,
RFINSEQ: 23;
end
theorem ::
RFUNCT_3:63
Th63: for D be non
empty
set, F be
PartFunc of D,
REAL , X be
set st (
dom (F
| X)) is
finite holds (
FinS (F,(
dom (F
| X))))
= (
FinS (F,X))
proof
let D be non
empty
set, F be
PartFunc of D,
REAL , X be
set;
A1: (F
| (
dom (F
| X)))
= (F
| ((
dom F)
/\ X)) by
RELAT_1: 61
.= ((F
| (
dom F))
| X) by
RELAT_1: 71
.= (F
| X) by
RELAT_1: 68;
assume
A2: (
dom (F
| X)) is
finite;
then ((
FinS (F,X)),(F
| X))
are_fiberwise_equipotent by
Def13;
hence thesis by
A2,
A1,
Def13;
end;
theorem ::
RFUNCT_3:64
Th64: for D be non
empty
set, F be
PartFunc of D,
REAL , X be
set st (
dom (F
| X)) is
finite holds (
FinS ((F
| X),X))
= (
FinS (F,X))
proof
let D be non
empty
set, F be
PartFunc of D,
REAL , X be
set;
A1: ((F
| X)
| X)
= (F
| X) by
RELAT_1: 72;
assume
A2: (
dom (F
| X)) is
finite;
then ((
FinS (F,X)),(F
| X))
are_fiberwise_equipotent by
Def13;
hence thesis by
A2,
A1,
Def13;
end;
theorem ::
RFUNCT_3:65
Th65: for D be non
empty
set, d be
Element of D, X be
set, F be
PartFunc of D,
REAL st X is
finite & d
in (
dom (F
| X)) holds (((
FinS (F,(X
\
{d})))
^
<*(F
. d)*>),(F
| X))
are_fiberwise_equipotent
proof
for D be non
empty
set, X be
finite
set, F be
PartFunc of D,
REAL , x be
object st x
in (
dom (F
| X)) holds (((
FinS (F,(X
\
{x})))
^
<*(F
. x)*>),(F
| X))
are_fiberwise_equipotent
proof
let D be non
empty
set, X be
finite
set, F be
PartFunc of D,
REAL , x be
object;
set Y = (X
\
{x});
set A = ((
FinS (F,Y))
^
<*(F
. x)*>);
assume x
in (
dom (F
| X));
then
A1: x
in ((
dom F)
/\ X) by
RELAT_1: 61;
then x
in X by
XBOOLE_0:def 4;
then
A2:
{x}
c= X by
ZFMISC_1: 31;
x
in (
dom F) by
A1,
XBOOLE_0:def 4;
then
A3:
{x}
c= (
dom F) by
ZFMISC_1: 31;
(
dom (F
| Y)) is
finite;
then
A4: ((F
| Y),(
FinS (F,Y)))
are_fiberwise_equipotent by
Def13;
now
let y be
object;
A5: Y
misses
{x} by
XBOOLE_1: 79;
A6: (
card (
Coim ((F
| Y),y)))
= (
card (
Coim ((
FinS (F,Y)),y))) by
A4,
CLASSES1:def 10;
A7: (
dom (F
|
{x}))
=
{x} by
A3,
RELAT_1: 62;
A8: (
dom
<*(F
. x)*>)
=
{1} by
FINSEQ_1: 2,
FINSEQ_1: 38;
A9:
now
per cases ;
case
A10: y
= (F
. x);
A11:
{x}
c= ((F
|
{x})
"
{y})
proof
let z be
object;
A12: y
in
{y} by
TARSKI:def 1;
assume
A13: z
in
{x};
then z
= x by
TARSKI:def 1;
then y
= ((F
|
{x})
. z) by
A7,
A10,
A13,
FUNCT_1: 47;
hence thesis by
A7,
A13,
A12,
FUNCT_1:def 7;
end;
((F
|
{x})
"
{y})
c=
{x} by
A7,
RELAT_1: 132;
then ((F
|
{x})
"
{y})
=
{x} by
A11;
then
A14: (
card ((F
|
{x})
"
{y}))
= 1 by
CARD_1: 30;
A15:
{1}
c= (
<*(F
. x)*>
"
{y})
proof
let z be
object;
A16: y
in
{y} by
TARSKI:def 1;
assume
A17: z
in
{1};
then z
= 1 by
TARSKI:def 1;
then y
= (
<*(F
. x)*>
. z) by
A10,
FINSEQ_1: 40;
hence thesis by
A8,
A17,
A16,
FUNCT_1:def 7;
end;
(
<*(F
. x)*>
"
{y})
c=
{1} by
A8,
RELAT_1: 132;
then (
<*(F
. x)*>
"
{y})
=
{1} by
A15;
hence (
card ((F
|
{x})
"
{y}))
= (
card (
<*(F
. x)*>
"
{y})) by
A14,
CARD_1: 30;
end;
case
A18: y
<> (F
. x);
A19:
now
set z = the
Element of (
<*(F
. x)*>
"
{y});
assume
A20: (
<*(F
. x)*>
"
{y})
<>
{} ;
then (
<*(F
. x)*>
. z)
in
{y} by
FUNCT_1:def 7;
then
A21: (
<*(F
. x)*>
. z)
= y by
TARSKI:def 1;
z
in
{1} by
A8,
A20,
FUNCT_1:def 7;
then z
= 1 by
TARSKI:def 1;
hence contradiction by
A18,
A21,
FINSEQ_1: 40;
end;
now
set z = the
Element of ((F
|
{x})
"
{y});
assume
A22: ((F
|
{x})
"
{y})
<>
{} ;
then ((F
|
{x})
. z)
in
{y} by
FUNCT_1:def 7;
then
A23: ((F
|
{x})
. z)
= y by
TARSKI:def 1;
A24: z
in
{x} by
A7,
A22,
FUNCT_1:def 7;
then z
= x by
TARSKI:def 1;
hence contradiction by
A7,
A18,
A24,
A23,
FUNCT_1: 47;
end;
hence (
card ((F
|
{x})
"
{y}))
= (
card (
<*(F
. x)*>
"
{y})) by
A19;
end;
end;
A25: (((F
| Y)
"
{y})
\/ ((F
|
{x})
"
{y}))
= ((Y
/\ (F
"
{y}))
\/ ((F
|
{x})
"
{y})) by
FUNCT_1: 70
.= ((Y
/\ (F
"
{y}))
\/ (
{x}
/\ (F
"
{y}))) by
FUNCT_1: 70
.= ((Y
\/
{x})
/\ (F
"
{y})) by
XBOOLE_1: 23
.= ((X
\/
{x})
/\ (F
"
{y})) by
XBOOLE_1: 39
.= (X
/\ (F
"
{y})) by
A2,
XBOOLE_1: 12
.= ((F
| X)
"
{y}) by
FUNCT_1: 70;
(((F
| Y)
"
{y})
/\ ((F
|
{x})
"
{y}))
= ((Y
/\ (F
"
{y}))
/\ ((F
|
{x})
"
{y})) by
FUNCT_1: 70
.= ((Y
/\ (F
"
{y}))
/\ (
{x}
/\ (F
"
{y}))) by
FUNCT_1: 70
.= ((((F
"
{y})
/\ Y)
/\
{x})
/\ (F
"
{y})) by
XBOOLE_1: 16
.= (((F
"
{y})
/\ (Y
/\
{x}))
/\ (F
"
{y})) by
XBOOLE_1: 16
.= (
{}
/\ (F
"
{y})) by
A5
.=
{} ;
hence (
card (
Coim ((F
| X),y)))
= (((
card ((F
| Y)
"
{y}))
+ (
card (
<*(F
. x)*>
"
{y})))
- (
card
{} )) by
A25,
A9,
CARD_2: 45
.= (
card (
Coim (A,y))) by
A6,
FINSEQ_3: 57;
end;
hence thesis by
CLASSES1:def 10;
end;
hence thesis;
end;
theorem ::
RFUNCT_3:66
Th66: for D be non
empty
set, d be
Element of D, X be
set, F be
PartFunc of D,
REAL st (
dom (F
| X)) is
finite & d
in (
dom (F
| X)) holds (((
FinS (F,(X
\
{d})))
^
<*(F
. d)*>),(F
| X))
are_fiberwise_equipotent
proof
let D be non
empty
set, d be
Element of D, X be
set, F be
PartFunc of D,
REAL ;
set dx = (
dom (F
| X));
assume that
A1: dx is
finite and
A2: d
in dx;
set Y = (X
\
{d}), dy = (
dom (F
| Y));
A3: dy
= ((
dom F)
/\ Y) by
RELAT_1: 61;
A4: dx
= ((
dom F)
/\ X) by
RELAT_1: 61;
A5: dy
= (dx
\
{d})
proof
thus dy
c= (dx
\
{d})
proof
let y be
object;
assume
A6: y
in dy;
then y
in (X
\
{d}) by
A3,
XBOOLE_0:def 4;
then
A7: not y
in
{d} by
XBOOLE_0:def 5;
y
in (
dom F) by
A3,
A6,
XBOOLE_0:def 4;
then y
in dx by
A3,
A4,
A6,
XBOOLE_0:def 4;
hence thesis by
A7,
XBOOLE_0:def 5;
end;
let y be
object;
assume
A8: y
in (dx
\
{d});
then
A9: not y
in
{d} by
XBOOLE_0:def 5;
A10: y
in dx by
A8,
XBOOLE_0:def 5;
then y
in X by
A4,
XBOOLE_0:def 4;
then
A11: y
in Y by
A9,
XBOOLE_0:def 5;
y
in (
dom F) by
A4,
A10,
XBOOLE_0:def 4;
hence thesis by
A3,
A11,
XBOOLE_0:def 4;
end;
(F
| dx)
= (F
| ((
dom F)
/\ X)) by
RELAT_1: 61
.= ((F
| (
dom F))
| X) by
RELAT_1: 71
.= (F
| X) by
RELAT_1: 68;
then (((
FinS (F,(dx
\
{d})))
^
<*(F
. d)*>),(F
| X))
are_fiberwise_equipotent by
A1,
A2,
Th65;
hence thesis by
A1,
A5,
Th63;
end;
theorem ::
RFUNCT_3:67
Th67: for D be non
empty
set, F be
PartFunc of D,
REAL , X be
set, Y be
finite
set st Y
= (
dom (F
| X)) holds (
len (
FinS (F,X)))
= (
card Y)
proof
let D be non
empty
set, F be
PartFunc of D,
REAL , X be
set;
let Y be
finite
set;
reconsider fs = (
dom (
FinS (F,X))) as
finite
set;
A1: (
dom (
FinS (F,X)))
= (
Seg (
len (
FinS (F,X)))) by
FINSEQ_1:def 3;
assume
A2: Y
= (
dom (F
| X));
((
FinS (F,X)),(F
| X))
are_fiberwise_equipotent by
A2,
Def13;
hence (
card Y)
= (
card fs) by
A2,
CLASSES1: 81
.= (
len (
FinS (F,X))) by
A1,
FINSEQ_1: 57;
end;
theorem ::
RFUNCT_3:68
Th68: for D be non
empty
set, F be
PartFunc of D,
REAL holds (
FinS (F,
{} ))
= (
<*>
REAL )
proof
let D be non
empty
set, F be
PartFunc of D,
REAL ;
(
dom (F
|
{} ))
= ((
dom F)
/\
{} ) by
RELAT_1: 61
.=
{} ;
then (
len (
FinS (F,
{} )))
=
0 by
Th67,
CARD_1: 27;
hence thesis;
end;
theorem ::
RFUNCT_3:69
Th69: for D be non
empty
set, F be
PartFunc of D,
REAL , d be
Element of D st d
in (
dom F) holds (
FinS (F,
{d}))
=
<*(F
. d)*>
proof
let D be non
empty
set, F be
PartFunc of D,
REAL , d be
Element of D;
assume d
in (
dom F);
then
{d}
c= (
dom F) by
ZFMISC_1: 31;
then
A1:
{d}
= ((
dom F)
/\
{d}) by
XBOOLE_1: 28
.= (
dom (F
|
{d})) by
RELAT_1: 61;
then ((
FinS (F,
{d})),(F
|
{d}))
are_fiberwise_equipotent by
Def13;
then
A2: (
rng (
FinS (F,
{d})))
= (
rng (F
|
{d})) by
CLASSES1: 75;
A3: (
rng (F
|
{d}))
=
{(F
. d)}
proof
thus (
rng (F
|
{d}))
c=
{(F
. d)}
proof
let x be
object;
assume x
in (
rng (F
|
{d}));
then
consider e be
Element of D such that
A4: e
in (
dom (F
|
{d})) and
A5: ((F
|
{d})
. e)
= x by
PARTFUN1: 3;
e
= d by
A1,
A4,
TARSKI:def 1;
then x
= (F
. d) by
A4,
A5,
FUNCT_1: 47;
hence thesis by
TARSKI:def 1;
end;
let x be
object;
A6: d
in (
dom (F
|
{d})) by
A1,
TARSKI:def 1;
assume x
in
{(F
. d)};
then x
= (F
. d) by
TARSKI:def 1;
then x
= ((F
|
{d})
. d) by
A6,
FUNCT_1: 47;
hence thesis by
A6,
FUNCT_1:def 3;
end;
(
len (
FinS (F,
{d})))
= (
card
{d}) by
A1,
Th67
.= 1 by
CARD_1: 30;
hence thesis by
A2,
A3,
FINSEQ_1: 39;
end;
theorem ::
RFUNCT_3:70
Th70: for D be non
empty
set, F be
PartFunc of D,
REAL , X be
set, d be
Element of D st (
dom (F
| X)) is
finite & d
in (
dom (F
| X)) & ((
FinS (F,X))
. (
len (
FinS (F,X))))
= (F
. d) holds (
FinS (F,X))
= ((
FinS (F,(X
\
{d})))
^
<*(F
. d)*>)
proof
let D be non
empty
set, F be
PartFunc of D,
REAL , X be
set, d be
Element of D;
set dx = (
dom (F
| X)), fx = (
FinS (F,X)), fy = (
FinS (F,(X
\
{d})));
assume that
A1: dx is
finite and
A2: d
in dx and
A3: (fx
. (
len fx))
= (F
. d);
A4: (fx,(F
| X))
are_fiberwise_equipotent by
A1,
Def13;
then (
rng fx)
= (
rng (F
| X)) by
CLASSES1: 75;
then fx
<>
{} by
A2,
FUNCT_1: 3,
RELAT_1: 38;
then (
0
+ 1)
<= (
len fx) by
NAT_1: 13;
then (
max (
0 ,((
len fx)
- 1)))
= ((
len fx)
- 1) by
FINSEQ_2: 4;
then
reconsider n = ((
len fx)
- 1) as
Element of
NAT by
FINSEQ_2: 5;
(
len fx)
= (n
+ 1);
then
A5: fx
= ((fx
| n)
^
<*(F
. d)*>) by
A3,
RFINSEQ: 7;
A6: (fx
| n) is
non-increasing by
RFINSEQ: 20;
((fy
^
<*(F
. d)*>),(F
| X))
are_fiberwise_equipotent by
A1,
A2,
Th66;
then (fx,(fy
^
<*(F
. d)*>))
are_fiberwise_equipotent by
A4,
CLASSES1: 76;
then (fy,(fx
| n))
are_fiberwise_equipotent by
A5,
RFINSEQ: 1;
hence thesis by
A5,
A6,
RFINSEQ: 23;
end;
defpred
P[
Nat] means for D be non
empty
set, F be
PartFunc of D,
REAL , X be
set holds for Y be
set, Z be
finite
set st Z
= (
dom (F
| Y)) & (
dom (F
| X)) is
finite & Y
c= X & $1
= (
card Z) & (for d1,d2 be
Element of D st d1
in (
dom (F
| Y)) & d2
in (
dom (F
| (X
\ Y))) holds (F
. d1)
>= (F
. d2)) holds (
FinS (F,X))
= ((
FinS (F,Y))
^ (
FinS (F,(X
\ Y))));
Lm3:
P[
0 ]
proof
let D be non
empty
set, F be
PartFunc of D,
REAL , X be
set;
let Y be
set;
let Z be
finite
set such that
A1: Z
= (
dom (F
| Y));
assume that
A2: (
dom (F
| X)) is
finite and Y
c= X and
A3:
0
= (
card Z) and for d1,d2 be
Element of D st d1
in (
dom (F
| Y)) & d2
in (
dom (F
| (X
\ Y))) holds (F
. d1)
>= (F
. d2);
A4: (
dom (F
| Y))
=
{} by
A1,
A3;
A5: (
dom (F
| (X
\ Y)))
= ((
dom F)
/\ (X
\ Y)) by
RELAT_1: 61;
(
dom (F
| X))
= ((
dom F)
/\ X) & (
dom (F
| Y))
= ((
dom F)
/\ Y) by
RELAT_1: 61;
then (
dom (F
| (X
\ Y)))
= ((
dom (F
| X))
\
{} ) by
A5,
A4,
XBOOLE_1: 50
.= (
dom (F
| X));
then
A6: (
FinS (F,(X
\ Y)))
= (
FinS (F,(
dom (F
| X)))) by
A2,
Th63
.= (
FinS (F,X)) by
A2,
Th63;
(
FinS (F,Y))
= (
FinS (F,
{} )) by
A4,
Th63
.=
{} by
Th68;
hence thesis by
A6,
FINSEQ_1: 34;
end;
Lm4: for n st
P[n] holds
P[(n
+ 1)]
proof
let n;
assume
A1:
P[n];
let D be non
empty
set, F be
PartFunc of D,
REAL , X be
set;
let Y be
set;
set dx = (
dom (F
| X)), dxy = (
dom (F
| (X
\ Y))), fy = (
FinS (F,Y)), fxy = (
FinS (F,(X
\ Y)));
let dy be
finite
set such that
A2: dy
= (
dom (F
| Y)) and
A3: (
dom (F
| X)) is
finite and
A4: Y
c= X and
A5: (n
+ 1)
= (
card dy) and
A6: for d1,d2 be
Element of D st d1
in (
dom (F
| Y)) & d2
in dxy holds (F
. d1)
>= (F
. d2);
A7: (
len fy)
= (n
+ 1) by
A2,
A5,
Th67;
A8: ((F
| Y),fy)
are_fiberwise_equipotent by
A2,
Def13;
then
A9: (
rng fy)
= (
rng (F
| Y)) by
CLASSES1: 75;
(
0
+ 1)
<= (n
+ 1) by
NAT_1: 13;
then
A10: (
len fy)
in (
dom fy) by
A7,
FINSEQ_3: 25;
then (fy
. (
len fy))
in (
rng fy) by
FUNCT_1:def 3;
then
consider d be
Element of D such that
A11: d
in dy and
A12: ((F
| Y)
. d)
= (fy
. (
len fy)) by
A2,
A9,
PARTFUN1: 3;
A13: dxy
= ((
dom F)
/\ (X
\ Y)) by
RELAT_1: 61;
A14: dy
= ((
dom F)
/\ Y) by
A2,
RELAT_1: 61;
then
A15: d
in Y by
A11,
XBOOLE_0:def 4;
then
A16:
{d}
c= X by
A4,
ZFMISC_1: 31;
A17: d
in (
dom F) by
A14,
A11,
XBOOLE_0:def 4;
then
A18:
{d}
c= (
dom F) by
ZFMISC_1: 31;
A19:
{d}
c= Y by
A15,
ZFMISC_1: 31;
A20: ((fxy
^
<*(F
. d)*>),(
<*(F
. d)*>
^ fxy))
are_fiberwise_equipotent by
RFINSEQ: 2;
set Yd = (Y
\
{d}), dyd = (
dom (F
| Yd)), xyd = (
dom (F
| (X
\ Yd)));
A21: xyd
= ((
dom F)
/\ (X
\ Yd)) by
RELAT_1: 61;
A22: dyd
= ((
dom F)
/\ Yd) by
RELAT_1: 61;
A23: dyd
= (dy
\
{d})
proof
thus dyd
c= (dy
\
{d})
proof
let y be
object;
assume
A24: y
in dyd;
then y
in (Y
\
{d}) by
A22,
XBOOLE_0:def 4;
then
A25: not y
in
{d} by
XBOOLE_0:def 5;
y
in (
dom F) by
A22,
A24,
XBOOLE_0:def 4;
then y
in dy by
A14,
A22,
A24,
XBOOLE_0:def 4;
hence thesis by
A25,
XBOOLE_0:def 5;
end;
let y be
object;
assume
A26: y
in (dy
\
{d});
then ( not y
in
{d}) & y
in Y by
A14,
XBOOLE_0:def 4,
XBOOLE_0:def 5;
then
A27: y
in Yd by
XBOOLE_0:def 5;
y
in (
dom F) by
A14,
A26,
XBOOLE_0:def 4;
hence thesis by
A22,
A27,
XBOOLE_0:def 4;
end;
A28: (F
. d)
= (fy
. (
len fy)) by
A2,
A11,
A12,
FUNCT_1: 47;
then
A29: fy
= ((fy
| n)
^
<*(F
. d)*>) by
A7,
RFINSEQ: 7;
reconsider dyd as
finite
set by
A23;
A30: (X
\ Yd)
= ((X
\ Y)
\/ (X
/\
{d})) by
XBOOLE_1: 52
.= ((X
\ Y)
\/
{d}) by
A16,
XBOOLE_1: 28;
then
A31: xyd
= (dxy
\/ ((
dom F)
/\
{d})) by
A13,
A21,
XBOOLE_1: 23
.= (dxy
\/
{d}) by
A18,
XBOOLE_1: 28;
A32:
now
let d1,d2 be
Element of D;
assume that
A33: d1
in dyd and
A34: d2
in xyd;
now
per cases by
A31,
A34,
XBOOLE_0:def 3;
case d2
in dxy;
hence (F
. d1)
>= (F
. d2) by
A2,
A6,
A23,
A33;
end;
case d2
in
{d};
then
A35: d2
= d by
TARSKI:def 1;
((F
| Y)
. d1)
in (
rng (F
| Y)) by
A2,
A23,
A33,
FUNCT_1:def 3;
then (F
. d1)
in (
rng (F
| Y)) by
A2,
A23,
A33,
FUNCT_1: 47;
then
consider m be
Nat such that
A36: m
in (
dom fy) and
A37: (fy
. m)
= (F
. d1) by
A9,
FINSEQ_2: 10;
A38: m
<= (
len fy) by
A36,
FINSEQ_3: 25;
now
per cases ;
case m
= (
len fy);
hence (F
. d1)
>= (F
. d2) by
A2,
A11,
A12,
A35,
A37,
FUNCT_1: 47;
end;
case m
<> (
len fy);
then m
< (
len fy) by
A38,
XXREAL_0: 1;
hence (F
. d1)
>= (F
. d2) by
A10,
A28,
A35,
A36,
A37,
RFINSEQ: 19;
end;
end;
hence (F
. d1)
>= (F
. d2);
end;
end;
hence (F
. d1)
>= (F
. d2);
end;
dx
= ((
dom F)
/\ X) by
RELAT_1: 61;
then
A39: dxy is
finite by
A3,
A13,
FINSET_1: 1,
XBOOLE_1: 26;
then ((F
| (X
\ Y)),fxy)
are_fiberwise_equipotent by
Def13;
then
A40: (
rng fxy)
= (
rng (F
| (X
\ Y))) by
CLASSES1: 75;
A41: (
<*(F
. d)*>
^ fxy) is
non-increasing
proof
set xfy = (
<*(F
. d)*>
^ fxy);
let n;
assume that
A42: n
in (
dom (
<*(F
. d)*>
^ fxy)) and
A43: (n
+ 1)
in (
dom (
<*(F
. d)*>
^ fxy));
A44: 1
<= n by
A42,
FINSEQ_3: 25;
then (
max (
0 ,(n
- 1)))
= (n
- 1) by
FINSEQ_2: 4;
then
reconsider n1 = (n
- 1) as
Element of
NAT by
FINSEQ_2: 5;
set r = (xfy
. n), s = (xfy
. (n
+ 1));
A45: (
len
<*(F
. d)*>)
= 1 by
FINSEQ_1: 40;
then (
len xfy)
= (1
+ (
len fxy)) by
FINSEQ_1: 22;
then
A46: (
len fxy)
= ((
len xfy)
- 1);
A47: (n
+ 1)
<= (
len xfy) by
A43,
FINSEQ_3: 25;
then (n1
+ 1)
<= (
len fxy) by
A46,
XREAL_1: 19;
then
A48: (n1
+ 1)
in (
dom fxy) by
A44,
FINSEQ_3: 25;
then (fxy
. (n1
+ 1))
in (
rng fxy) by
FUNCT_1:def 3;
then
consider d1 be
Element of D such that
A49: d1
in dxy & ((F
| (X
\ Y))
. d1)
= (fxy
. (n1
+ 1)) by
A40,
PARTFUN1: 3;
1
< (n
+ 1) by
A44,
NAT_1: 13;
then
A50: (xfy
. (n
+ 1))
= (fxy
. ((n
+ 1)
- 1)) by
A45,
A47,
FINSEQ_1: 24
.= (fxy
. (n1
+ 1));
A51: n
<= (
len xfy) by
A42,
FINSEQ_3: 25;
then
A52: n1
<= (
len fxy) by
A46,
XREAL_1: 9;
A53: (F
. d1)
= (fxy
. (n1
+ 1)) & (F
. d)
>= (F
. d1) by
A2,
A6,
A11,
A49,
FUNCT_1: 47;
now
per cases ;
suppose n
= 1;
hence r
>= s by
A50,
A53,
FINSEQ_1: 41;
end;
suppose n
<> 1;
then
A54: 1
< n by
A44,
XXREAL_0: 1;
then (1
+ 1)
<= n by
NAT_1: 13;
then 1
<= n1 by
XREAL_1: 19;
then
A55: n1
in (
dom fxy) by
A52,
FINSEQ_3: 25;
(xfy
. n)
= (fxy
. n1) by
A45,
A51,
A54,
FINSEQ_1: 24;
hence r
>= s by
A48,
A50,
A55,
RFINSEQ:def 3;
end;
end;
hence r
>= s;
end;
A56: (
<*(F
. d)*>
^ fxy) is
FinSequence of
REAL by
RVSUM_1: 145;
d
in
{d} by
TARSKI:def 1;
then d
in (X
\ Yd) by
A30,
XBOOLE_0:def 3;
then
A57: d
in xyd by
A21,
A17,
XBOOLE_0:def 4;
((X
\ Yd)
\
{d})
= (X
\ (Yd
\/
{d})) by
XBOOLE_1: 41
.= (X
\ (Y
\/
{d})) by
XBOOLE_1: 39
.= (X
\ Y) by
A19,
XBOOLE_1: 12;
then ((fxy
^
<*(F
. d)*>),(F
| (X
\ Yd)))
are_fiberwise_equipotent by
A39,
A31,
A57,
Th66;
then ((
<*(F
. d)*>
^ fxy),(F
| (X
\ Yd)))
are_fiberwise_equipotent by
A20,
CLASSES1: 76;
then
A58: (
<*(F
. d)*>
^ fxy)
= (
FinS (F,(X
\ Yd))) by
A39,
A31,
A41,
Def13,
A56;
{d}
c= dy by
A11,
ZFMISC_1: 31;
then (
card dyd)
= ((
card dy)
- (
card
{d})) by
A23,
CARD_2: 44
.= ((n
+ 1)
- 1) by
A5,
CARD_1: 30
.= n;
then (
FinS (F,X))
= ((
FinS (F,Yd))
^ (
FinS (F,(X
\ Yd)))) by
A1,
A3,
A4,
A32,
XBOOLE_1: 1;
then
A59: (
FinS (F,X))
= (((
FinS (F,Yd))
^
<*(F
. d)*>)
^ fxy) by
A58,
FINSEQ_1: 32;
A60: (fy
| n) is
non-increasing by
RFINSEQ: 20;
((F
| Y),((
FinS (F,Yd))
^
<*(F
. d)*>))
are_fiberwise_equipotent by
A2,
A11,
Th66;
then (((
FinS (F,Yd))
^
<*(F
. d)*>),fy)
are_fiberwise_equipotent by
A8,
CLASSES1: 76;
then ((
FinS (F,Yd)),(fy
| n))
are_fiberwise_equipotent by
A29,
RFINSEQ: 1;
hence thesis by
A59,
A29,
A60,
RFINSEQ: 23;
end;
theorem ::
RFUNCT_3:71
for D be non
empty
set, F be
PartFunc of D,
REAL , X,Y be
set st (
dom (F
| X)) is
finite & Y
c= X & (for d1,d2 be
Element of D st d1
in (
dom (F
| Y)) & d2
in (
dom (F
| (X
\ Y))) holds (F
. d1)
>= (F
. d2)) holds (
FinS (F,X))
= ((
FinS (F,Y))
^ (
FinS (F,(X
\ Y))))
proof
A1: for n holds
P[n] from
NAT_1:sch 2(
Lm3,
Lm4);
let D be non
empty
set, F be
PartFunc of D,
REAL , X be
set;
let Y be
set;
assume that
A2: (
dom (F
| X)) is
finite and
A3: Y
c= X and
A4: for d1,d2 be
Element of D st d1
in (
dom (F
| Y)) & d2
in (
dom (F
| (X
\ Y))) holds (F
. d1)
>= (F
. d2);
(F
| Y)
c= (F
| X) by
A3,
RELAT_1: 75;
then
reconsider dFY = (
dom (F
| Y)) as
finite
set by
A2,
FINSET_1: 1,
RELAT_1: 11;
(
card dFY)
= (
card dFY);
hence thesis by
A1,
A2,
A3,
A4;
end;
theorem ::
RFUNCT_3:72
Th72: for D be non
empty
set, F be
PartFunc of D,
REAL , r be
Real, X be
set, d be
Element of D st (
dom (F
| X)) is
finite & d
in (
dom (F
| X)) holds ((
FinS ((F
- r),X))
. (
len (
FinS ((F
- r),X))))
= ((F
- r)
. d) iff ((
FinS (F,X))
. (
len (
FinS (F,X))))
= (F
. d)
proof
let D be non
empty
set, F be
PartFunc of D,
REAL , r be
Real, X be
set, d be
Element of D;
set dx = (
dom (F
| X)), drx = (
dom ((F
- r)
| X)), frx = (
FinS ((F
- r),X)), fx = (
FinS (F,X));
assume that
A1: dx is
finite and
A2: d
in dx;
reconsider dx as
finite
set by
A1;
A3: drx
= ((
dom (F
- r))
/\ X) by
RELAT_1: 61
.= ((
dom F)
/\ X) by
VALUED_1: 3
.= dx by
RELAT_1: 61;
then (fx,(F
| X))
are_fiberwise_equipotent by
Def13;
then
A4: (
rng fx)
= (
rng (F
| X)) by
CLASSES1: 75;
then fx
<>
{} by
A2,
FUNCT_1: 3,
RELAT_1: 38;
then (
0
+ 1)
<= (
len fx) by
NAT_1: 13;
then
A5: (
len fx)
in (
dom fx) by
FINSEQ_3: 25;
((F
| X)
. d)
in (
rng (F
| X)) by
A2,
FUNCT_1:def 3;
then (F
. d)
in (
rng (F
| X)) by
A2,
FUNCT_1: 47;
then
consider n be
Nat such that
A6: n
in (
dom fx) and
A7: (fx
. n)
= (F
. d) by
A4,
FINSEQ_2: 10;
A8: (
dom fx)
= (
Seg (
len fx)) by
FINSEQ_1:def 3;
(frx,((F
- r)
| X))
are_fiberwise_equipotent by
A3,
Def13;
then
A9: (
rng frx)
= (
rng ((F
- r)
| X)) by
CLASSES1: 75;
A10: (
len fx)
= (
card dx) & (
dom frx)
= (
Seg (
len frx)) by
Th67,
FINSEQ_1:def 3;
A11: (
len frx)
= (
card dx) by
A3,
Th67;
then (frx
. (
len frx))
in (
rng frx) by
A10,
A8,
A5,
FUNCT_1:def 3;
then
consider d1 be
Element of D such that
A12: d1
in drx and
A13: (((F
- r)
| X)
. d1)
= (frx
. (
len frx)) by
A9,
PARTFUN1: 3;
((F
| X)
. d1)
= (F
. d1) by
A3,
A12,
FUNCT_1: 47;
then (F
. d1)
in (
rng (F
| X)) by
A3,
A12,
FUNCT_1:def 3;
then
consider m be
Nat such that
A14: m
in (
dom fx) and
A15: (fx
. m)
= (F
. d1) by
A4,
FINSEQ_2: 10;
A16: (
dom (F
- r))
= (
dom F) by
VALUED_1: 3;
A17: drx
= ((
dom (F
- r))
/\ X) by
RELAT_1: 61;
then
A18: d1
in (
dom (F
- r)) by
A12,
XBOOLE_0:def 4;
A19: (frx
. (
len frx))
= ((F
- r)
. d1) by
A12,
A13,
FUNCT_1: 47
.= ((F
. d1)
- r) by
A16,
A18,
VALUED_1: 3;
A20: d
in (
dom (F
- r)) by
A2,
A3,
A17,
XBOOLE_0:def 4;
then
A21: ((F
- r)
. d)
= ((F
. d)
- r) by
A16,
VALUED_1: 3;
A22: n
<= (
len fx) by
A6,
FINSEQ_3: 25;
thus (frx
. (
len frx))
= ((F
- r)
. d) implies (fx
. (
len fx))
= (F
. d)
proof
(fx
. (
len fx))
in (
rng fx) by
A5,
FUNCT_1:def 3;
then
consider d1 be
Element of D such that
A23: d1
in dx and
A24: ((F
| X)
. d1)
= (fx
. (
len fx)) by
A4,
PARTFUN1: 3;
A25: d1
in (
dom (F
- r)) by
A3,
A17,
A23,
XBOOLE_0:def 4;
A26: (F
. d1)
= (fx
. (
len fx)) by
A23,
A24,
FUNCT_1: 47;
(((F
- r)
| X)
. d1)
= ((F
- r)
. d1) by
A3,
A23,
FUNCT_1: 47
.= ((F
. d1)
- r) by
A16,
A25,
VALUED_1: 3;
then ((F
. d1)
- r)
in (
rng ((F
- r)
| X)) by
A3,
A23,
FUNCT_1:def 3;
then
consider m be
Nat such that
A27: m
in (
dom frx) and
A28: (frx
. m)
= ((F
. d1)
- r) by
A9,
FINSEQ_2: 10;
A29: m
<= (
len frx) by
A27,
FINSEQ_3: 25;
assume that
A30: (frx
. (
len frx))
= ((F
- r)
. d) and
A31: (fx
. (
len fx))
<> (F
. d);
n
< (
len fx) by
A7,
A22,
A31,
XXREAL_0: 1;
then
A32: (F
. d)
>= (F
. d1) by
A5,
A6,
A7,
A26,
RFINSEQ: 19;
now
per cases ;
case (
len frx)
= m;
then ((F
. d1)
+ (
- r))
= ((F
. d)
- r) by
A16,
A20,
A30,
A28,
VALUED_1: 3;
hence contradiction by
A31,
A23,
A24,
FUNCT_1: 47;
end;
case (
len frx)
<> m;
then m
< (
len frx) by
A29,
XXREAL_0: 1;
then ((F
. d1)
- r)
>= ((F
. d)
- r) by
A11,
A10,
A8,
A21,
A5,
A30,
A27,
A28,
RFINSEQ: 19;
then (F
. d1)
>= (F
. d) by
XREAL_1: 9;
hence contradiction by
A31,
A26,
A32,
XXREAL_0: 1;
end;
end;
hence contradiction;
end;
assume that
A33: (fx
. (
len fx))
= (F
. d) and
A34: (frx
. (
len frx))
<> ((F
- r)
. d);
(((F
- r)
| X)
. d)
in (
rng ((F
- r)
| X)) by
A2,
A3,
FUNCT_1:def 3;
then ((F
- r)
. d)
in (
rng ((F
- r)
| X)) by
A2,
A3,
FUNCT_1: 47;
then
consider n1 be
Nat such that
A35: n1
in (
dom frx) and
A36: (frx
. n1)
= ((F
. d)
- r) by
A9,
A21,
FINSEQ_2: 10;
n1
<= (
len frx) by
A35,
FINSEQ_3: 25;
then n1
< (
len frx) by
A21,
A34,
A36,
XXREAL_0: 1;
then ((F
. d)
- r)
>= ((F
. d1)
- r) by
A11,
A10,
A8,
A5,
A19,
A35,
A36,
RFINSEQ: 19;
then
A37: (F
. d)
>= (F
. d1) by
XREAL_1: 9;
A38: m
<= (
len fx) by
A14,
FINSEQ_3: 25;
now
per cases ;
case (
len fx)
= m;
hence contradiction by
A16,
A20,
A33,
A34,
A19,
A15,
VALUED_1: 3;
end;
case (
len fx)
<> m;
then m
< (
len fx) by
A38,
XXREAL_0: 1;
then (F
. d1)
>= (F
. d) by
A5,
A33,
A14,
A15,
RFINSEQ: 19;
hence contradiction by
A21,
A34,
A19,
A37,
XXREAL_0: 1;
end;
end;
hence contradiction;
end;
theorem ::
RFUNCT_3:73
Th73: for D be non
empty
set, F be
PartFunc of D,
REAL , r be
Real, X be
set, Z be
finite
set st Z
= (
dom (F
| X)) holds (
FinS ((F
- r),X))
= ((
FinS (F,X))
- ((
card Z)
|-> r))
proof
let D be non
empty
set, F be
PartFunc of D,
REAL , r be
Real;
let X be
set;
reconsider rr = r as
Element of
REAL by
XREAL_0:def 1;
defpred
P[
Nat] means for X be
set, G be
finite
set st G
= (
dom (F
| X)) & $1
= (
card G) holds (
FinS ((F
- r),X))
= ((
FinS (F,X))
- ((
card G)
|-> r));
A1: for n st
P[n] holds
P[(n
+ 1)]
proof
let n;
assume
A2:
P[n];
let X be
set, G be
finite
set;
assume
A3: G
= (
dom (F
| X));
set frx = (
FinS ((F
- rr),X)), fx = (
FinS (F,X));
A4: (
dom ((F
- r)
| X))
= ((
dom (F
- r))
/\ X) by
RELAT_1: 61
.= ((
dom F)
/\ X) by
VALUED_1: 3
.= (
dom (F
| X)) by
RELAT_1: 61;
then
A5: (
len frx)
= (
card G) by
A3,
Th67;
A6: ((
FinS ((F
- r),X)),((F
- r)
| X))
are_fiberwise_equipotent by
A3,
A4,
Def13;
then
A7: (
rng (
FinS ((F
- r),X)))
= (
rng ((F
- r)
| X)) by
CLASSES1: 75;
assume
A8: (n
+ 1)
= (
card G);
then
A9: (
len fx)
= (n
+ 1) by
A3,
Th67;
(
0
+ 1)
<= (n
+ 1) by
NAT_1: 13;
then (
len frx)
in (
dom frx) by
A8,
A5,
FINSEQ_3: 25;
then (frx
. (
len frx))
in (
rng frx) by
FUNCT_1:def 3;
then
consider d be
Element of D such that
A10: d
in (
dom ((F
- r)
| X)) and
A11: (((F
- r)
| X)
. d)
= (frx
. (
len frx)) by
A7,
PARTFUN1: 3;
set Y = (X
\
{d}), dx = (
dom (F
| X)), dy = (
dom (F
| Y)), fry = (
FinS ((F
- r),Y)), fy = (
FinS (F,Y)), n1r = ((n
+ 1)
|-> rr), nr = (n
|-> rr);
A12:
{d}
c= dx by
A4,
A10,
ZFMISC_1: 31;
((F
- r)
. d)
= (frx
. (
len frx)) by
A10,
A11,
FUNCT_1: 47;
then
A13: (fx
. (
len fx))
= (F
. d) by
A3,
A4,
A10,
Th72;
(
len fx)
= (
card G) by
A3,
Th67;
then
A14: fx
= ((fx
| n)
^
<*(F
. d)*>) by
A8,
A13,
RFINSEQ: 7;
fx
= (fy
^
<*(F
. d)*>) by
A3,
A4,
A10,
A13,
Th70;
then
A15: fy
= (fx
| n) by
A14,
FINSEQ_1: 33;
A16: (
dom (fy
- nr))
= (
Seg (
len (fy
- nr))) by
FINSEQ_1:def 3;
A17: dy
= ((
dom F)
/\ Y) by
RELAT_1: 61;
A18: dx
= ((
dom F)
/\ X) by
RELAT_1: 61;
A19: dy
= (dx
\
{d})
proof
thus dy
c= (dx
\
{d})
proof
let y be
object;
assume
A20: y
in dy;
then y
in (X
\
{d}) by
A17,
XBOOLE_0:def 4;
then
A21: not y
in
{d} by
XBOOLE_0:def 5;
y
in (
dom F) by
A17,
A20,
XBOOLE_0:def 4;
then y
in dx by
A17,
A18,
A20,
XBOOLE_0:def 4;
hence thesis by
A21,
XBOOLE_0:def 5;
end;
let y be
object;
assume
A22: y
in (dx
\
{d});
then
A23: not y
in
{d} by
XBOOLE_0:def 5;
A24: y
in dx by
A22,
XBOOLE_0:def 5;
then y
in X by
A18,
XBOOLE_0:def 4;
then
A25: y
in Y by
A23,
XBOOLE_0:def 5;
y
in (
dom F) by
A18,
A24,
XBOOLE_0:def 4;
hence thesis by
A17,
A25,
XBOOLE_0:def 4;
end;
then
reconsider dx, dy as
finite
set by
A3;
A26: (
card dy)
= ((
card dx)
- (
card
{d})) by
A12,
A19,
CARD_2: 44
.= ((n
+ 1)
- 1) by
A3,
A8,
CARD_1: 30
.= n;
then (
len nr)
= n & (
len fy)
= n by
Th67,
CARD_1:def 7;
then
A27: (
len (fy
- nr))
= n by
FINSEQ_2: 72;
((F
- r)
. d)
= (frx
. (
len frx)) by
A10,
A11,
FUNCT_1: 47;
then
A28: frx
= ((frx
| n)
^
<*((F
- r)
. d)*>) by
A8,
A5,
RFINSEQ: 7;
((fry
^
<*((F
- r)
. d)*>),((F
- r)
| X))
are_fiberwise_equipotent by
A3,
A4,
A10,
Th66;
then ((fry
^
<*((F
- r)
. d)*>),frx)
are_fiberwise_equipotent by
A6,
CLASSES1: 76;
then (frx
| n) is
non-increasing & (fry,(frx
| n))
are_fiberwise_equipotent by
A28,
RFINSEQ: 1,
RFINSEQ: 20;
then
A29: fry
= (frx
| n) by
RFINSEQ: 23;
(
len n1r)
= (n
+ 1) by
CARD_1:def 7;
then
A30: (
len (fx
- n1r))
= (n
+ 1) by
A9,
FINSEQ_2: 72;
then
A31: (
dom (fx
- n1r))
= (
Seg (n
+ 1)) by
FINSEQ_1:def 3;
(
dom ((F
- r)
| X))
= ((
dom (F
- r))
/\ X) by
RELAT_1: 61;
then d
in (
dom (F
- r)) by
A10,
XBOOLE_0:def 4;
then d
in (
dom F) by
VALUED_1: 3;
then ((F
- r)
. d)
= ((F
. d)
- r) by
VALUED_1: 3;
then
A32:
<*((F
- r)
. d)*>
= (
<*(F
. d)*>
-
<*r*>) by
RVSUM_1: 29;
A33: n
< (n
+ 1) by
NAT_1: 13;
A34: (
dom fx)
= (
Seg (
len fx)) by
FINSEQ_1:def 3;
reconsider Fd =
<*(F
. d)*>, rr =
<*r*> as
FinSequence of
REAL by
RVSUM_1: 145;
(
len
<*(F
. d)*>)
= 1 & (
len
<*r*>)
= 1 by
FINSEQ_1: 40;
then
A35: (
len (Fd
- rr))
= 1 by
FINSEQ_2: 72;
then
A36: (
len ((fy
- nr)
^ (
<*(F
. d)*>
-
<*r*>)))
= (n
+ 1) by
A27,
FINSEQ_1: 22;
1
in (
Seg 1) by
FINSEQ_1: 1;
then
A37: 1
in (
dom (
<*(F
. d)*>
-
<*r*>)) by
A35,
FINSEQ_1:def 3;
A38: (
<*(F
. d)*>
. 1)
= (F
. d) & (
<*r*>
. 1)
= r by
FINSEQ_1: 40;
A39:
now
let m be
Nat;
assume
A40: m
in (
dom (fx
- n1r));
per cases ;
suppose
A41: m
= (n
+ 1);
then
A42: (n1r
. m)
= r by
FINSEQ_1: 4,
FUNCOP_1: 7;
(((fy
- nr)
^ (
<*(F
. d)*>
-
<*r*>))
. m)
= ((
<*(F
. d)*>
-
<*r*>)
. ((n
+ 1)
- n)) by
A27,
A36,
A33,
A41,
FINSEQ_1: 24
.= ((F
. d)
- r) by
A38,
A37,
VALUED_1: 13;
hence ((fx
- n1r)
. m)
= (((fy
- nr)
^ (
<*(F
. d)*>
-
<*r*>))
. m) by
A13,
A9,
A40,
A41,
A42,
VALUED_1: 13;
end;
suppose
A43: m
<> (n
+ 1);
m
<= (n
+ 1) by
A31,
A40,
FINSEQ_1: 1;
then m
< (n
+ 1) by
A43,
XXREAL_0: 1;
then
A44: m
<= n by
NAT_1: 13;
reconsider s = (fx
. m) as
Element of
REAL by
XREAL_0:def 1;
A45: n
<= (n
+ 1) by
NAT_1: 11;
A46: (n1r
. m)
= r by
A31,
A40,
FUNCOP_1: 7;
A47: 1
<= m by
A31,
A40,
FINSEQ_1: 1;
then
A48: m
in (
Seg n) by
A44,
FINSEQ_1: 1;
then
A49: m
in (
dom (fy
- nr)) by
A27,
FINSEQ_1:def 3;
1
<= n by
A47,
A44,
XXREAL_0: 2;
then n
in (
Seg (n
+ 1)) by
A45,
FINSEQ_1: 1;
then
A50: ((fx
| n)
. m)
= (fx
. m) by
A9,
A34,
A48,
RFINSEQ: 6;
(((fy
- nr)
^ (
<*(F
. d)*>
-
<*r*>))
. m)
= ((fy
- nr)
. m) & (nr
. m)
= r by
A27,
A16,
A48,
FINSEQ_1:def 7,
FUNCOP_1: 7;
hence (((fy
- nr)
^ (
<*(F
. d)*>
-
<*r*>))
. m)
= (s
- r) by
A15,
A50,
A49,
VALUED_1: 13
.= ((fx
- n1r)
. m) by
A40,
A46,
VALUED_1: 13;
end;
end;
fry
= (fy
- nr) by
A2,
A26;
hence thesis by
A8,
A28,
A29,
A32,
A30,
A36,
A39,
FINSEQ_2: 9;
end;
A51:
P[
0 ]
proof
let X be
set, G be
finite
set;
assume
A52: G
= (
dom (F
| X));
assume
0
= (
card G);
then
A53: (
dom (F
| X))
=
{} by
A52;
then (
FinS (F,X))
= (
FinS (F,
{} )) by
Th63
.= (
<*>
REAL ) by
Th68;
then
A54: ((
FinS (F,X))
- ((
card G)
|-> rr))
= (
<*>
REAL ) by
FINSEQ_2: 73;
(
dom ((F
- r)
| X))
= ((
dom (F
- r))
/\ X) by
RELAT_1: 61
.= ((
dom F)
/\ X) by
VALUED_1: 3
.= (
dom (F
| X)) by
RELAT_1: 61;
hence (
FinS ((F
- r),X))
= (
FinS ((F
- r),
{} )) by
A53,
Th63
.= ((
FinS (F,X))
- ((
card G)
|-> r)) by
A54,
Th68;
end;
A55: for n holds
P[n] from
NAT_1:sch 2(
A51,
A1);
let G be
finite
set;
assume G
= (
dom (F
| X));
hence thesis by
A55;
end;
theorem ::
RFUNCT_3:74
for D be non
empty
set, F be
PartFunc of D,
REAL , X be
set st (
dom (F
| X)) is
finite & (for d be
Element of D st d
in (
dom (F
| X)) holds (F
. d)
>=
0 ) holds (
FinS ((
max+ F),X))
= (
FinS (F,X))
proof
let D be non
empty
set, F be
PartFunc of D,
REAL , X be
set;
assume that
A1: (
dom (F
| X)) is
finite and
A2: for d be
Element of D st d
in (
dom (F
| X)) holds (F
. d)
>=
0 ;
now
let d be
Element of D;
assume
A3: d
in (
dom (F
| X));
then (F
. d)
>=
0 by
A2;
hence ((F
| X)
. d)
>=
0 by
A3,
FUNCT_1: 47;
end;
then
A4: (F
| X)
= (
max+ (F
| X)) by
Th46
.= ((
max+ F)
| X) by
Th44;
hence (
FinS (F,X))
= (
FinS (((
max+ F)
| X),X)) by
A1,
Th64
.= (
FinS ((
max+ F),X)) by
A1,
A4,
Th64;
end;
theorem ::
RFUNCT_3:75
for D be non
empty
set, F be
PartFunc of D,
REAL , X be
set, r be
Real, Z be
finite
set st Z
= (
dom (F
| X)) & (
rng (F
| X))
=
{r} holds (
FinS (F,X))
= ((
card Z)
|-> r)
proof
let D be non
empty
set, F be
PartFunc of D,
REAL , X be
set, r be
Real;
let dx be
finite
set such that
A1: dx
= (
dom (F
| X));
set fx = (
FinS (F,X));
assume
A2: (
rng (F
| X))
=
{r};
((F
| X),fx)
are_fiberwise_equipotent by
A1,
Def13;
then
A3: (
rng fx)
=
{r} by
A2,
CLASSES1: 75;
A4: (
dom fx)
= (
Seg (
len fx)) by
FINSEQ_1:def 3;
(
len fx)
= (
card dx) by
A1,
Th67;
hence thesis by
A3,
A4,
FUNCOP_1: 9;
end;
theorem ::
RFUNCT_3:76
Th76: for D be non
empty
set, F be
PartFunc of D,
REAL , X,Y be
set st (
dom (F
| (X
\/ Y))) is
finite & X
misses Y holds ((
FinS (F,(X
\/ Y))),((
FinS (F,X))
^ (
FinS (F,Y))))
are_fiberwise_equipotent
proof
let D be non
empty
set, F be
PartFunc of D,
REAL , X,Y be
set;
assume
A1: (
dom (F
| (X
\/ Y))) is
finite;
(F
| Y)
c= (F
| (X
\/ Y)) by
RELAT_1: 75,
XBOOLE_1: 7;
then
reconsider dfy = (
dom (F
| Y)) as
finite
set by
A1,
FINSET_1: 1,
RELAT_1: 11;
defpred
P[
Nat] means for Y be
set, Z be
finite
set st Z
= (
dom (F
| Y)) & (
dom (F
| (X
\/ Y))) is
finite & (X
/\ Y)
=
{} & $1
= (
card Z) holds ((
FinS (F,(X
\/ Y))),((
FinS (F,X))
^ (
FinS (F,Y))))
are_fiberwise_equipotent ;
A2: (
card dfy)
= (
card dfy);
A3: for n st
P[n] holds
P[(n
+ 1)]
proof
let n;
assume
A4:
P[n];
let Y be
set, Z be
finite
set;
assume that
A5: Z
= (
dom (F
| Y)) and
A6: (
dom (F
| (X
\/ Y))) is
finite and
A7: (X
/\ Y)
=
{} and
A8: (n
+ 1)
= (
card Z);
set x = the
Element of (
dom (F
| Y));
reconsider x as
Element of D by
A5,
A8,
CARD_1: 27,
TARSKI:def 3;
set y1 = (Y
\
{x});
A9: (
dom (F
| Y))
= ((
dom F)
/\ Y) by
RELAT_1: 61;
now
assume
A10: x
in X;
x
in Y by
A5,
A8,
A9,
CARD_1: 27,
XBOOLE_0:def 4;
hence contradiction by
A7,
A10,
XBOOLE_0:def 4;
end;
then (X
\
{x})
= X by
ZFMISC_1: 57;
then
A11: ((X
\/ Y)
\
{x})
= (X
\/ y1) by
XBOOLE_1: 42;
A12: (
dom (F
| y1))
= ((
dom F)
/\ y1) by
RELAT_1: 61;
A13: (
dom (F
| y1))
= ((
dom (F
| Y))
\
{x})
proof
thus (
dom (F
| y1))
c= ((
dom (F
| Y))
\
{x})
proof
let y be
object;
assume
A14: y
in (
dom (F
| y1));
then y
in (Y
\
{x}) by
A12,
XBOOLE_0:def 4;
then
A15: not y
in
{x} by
XBOOLE_0:def 5;
y
in (
dom F) by
A12,
A14,
XBOOLE_0:def 4;
then y
in (
dom (F
| Y)) by
A12,
A9,
A14,
XBOOLE_0:def 4;
hence thesis by
A15,
XBOOLE_0:def 5;
end;
let y be
object;
assume
A16: y
in ((
dom (F
| Y))
\
{x});
then
A17: not y
in
{x} by
XBOOLE_0:def 5;
A18: y
in (
dom (F
| Y)) by
A16,
XBOOLE_0:def 5;
then y
in Y by
A9,
XBOOLE_0:def 4;
then
A19: y
in y1 by
A17,
XBOOLE_0:def 5;
y
in (
dom F) by
A9,
A18,
XBOOLE_0:def 4;
hence thesis by
A12,
A19,
XBOOLE_0:def 4;
end;
then
reconsider dFy = (
dom (F
| y1)) as
finite
set by
A5;
{x}
c= (
dom (F
| Y)) by
A5,
A8,
CARD_1: 27,
ZFMISC_1: 31;
then
A20: (
card dFy)
= ((n
+ 1)
- (
card
{x})) by
A5,
A8,
A13,
CARD_2: 44
.= ((n
+ 1)
- 1) by
CARD_1: 30
.= n;
(X
\/ y1)
c= (X
\/ Y) by
XBOOLE_1: 13;
then ((
dom F)
/\ (X
\/ y1))
c= ((
dom F)
/\ (X
\/ Y)) by
XBOOLE_1: 27;
then (
dom (F
| (X
\/ y1)))
c= ((
dom F)
/\ (X
\/ Y)) by
RELAT_1: 61;
then
A21: (
dom (F
| (X
\/ y1)))
c= (
dom (F
| (X
\/ Y))) by
RELAT_1: 61;
A22: ((
FinS (F,(X
\/ Y))),(F
| (X
\/ Y)))
are_fiberwise_equipotent by
A6,
Def13;
(
dom (F
| (X
\/ Y)))
= ((
dom F)
/\ (X
\/ Y)) by
RELAT_1: 61
.= (((
dom F)
/\ X)
\/ ((
dom F)
/\ Y)) by
XBOOLE_1: 23
.= ((
dom (F
| X))
\/ ((
dom F)
/\ Y)) by
RELAT_1: 61
.= ((
dom (F
| X))
\/ (
dom (F
| Y))) by
RELAT_1: 61;
then x
in (
dom (F
| (X
\/ Y))) by
A5,
A8,
CARD_1: 27,
XBOOLE_0:def 3;
then (((
FinS (F,(X
\/ y1)))
^
<*(F
. x)*>),(F
| (X
\/ Y)))
are_fiberwise_equipotent by
A6,
A11,
Th66;
then
A23: (((
FinS (F,(X
\/ y1)))
^
<*(F
. x)*>),(
FinS (F,(X
\/ Y))))
are_fiberwise_equipotent by
A22,
CLASSES1: 76;
(X
/\ y1)
c= (X
/\ Y) by
XBOOLE_1: 27;
then ((
FinS (F,(X
\/ y1))),((
FinS (F,X))
^ (
FinS (F,y1))))
are_fiberwise_equipotent by
A4,
A6,
A7,
A21,
A20,
XBOOLE_1: 3;
then (((
FinS (F,(X
\/ y1)))
^
<*(F
. x)*>),(((
FinS (F,X))
^ (
FinS (F,y1)))
^
<*(F
. x)*>))
are_fiberwise_equipotent by
RFINSEQ: 1;
then
A24: (((
FinS (F,(X
\/ y1)))
^
<*(F
. x)*>),((
FinS (F,X))
^ ((
FinS (F,y1))
^
<*(F
. x)*>)))
are_fiberwise_equipotent by
FINSEQ_1: 32;
(((
FinS (F,y1))
^
<*(F
. x)*>),(F
| Y))
are_fiberwise_equipotent & ((
FinS (F,Y)),(F
| Y))
are_fiberwise_equipotent by
A5,
A8,
Def13,
Th66,
CARD_1: 27;
then (((
FinS (F,y1))
^
<*(F
. x)*>),(
FinS (F,Y)))
are_fiberwise_equipotent by
CLASSES1: 76;
then
A25: ((((
FinS (F,y1))
^
<*(F
. x)*>)
^ (
FinS (F,X))),((
FinS (F,Y))
^ (
FinS (F,X))))
are_fiberwise_equipotent by
RFINSEQ: 1;
(((
FinS (F,X))
^ ((
FinS (F,y1))
^
<*(F
. x)*>)),(((
FinS (F,y1))
^
<*(F
. x)*>)
^ (
FinS (F,X))))
are_fiberwise_equipotent by
RFINSEQ: 2;
then (((
FinS (F,Y))
^ (
FinS (F,X))),((
FinS (F,X))
^ (
FinS (F,Y))))
are_fiberwise_equipotent & (((
FinS (F,X))
^ ((
FinS (F,y1))
^
<*(F
. x)*>)),((
FinS (F,Y))
^ (
FinS (F,X))))
are_fiberwise_equipotent by
A25,
CLASSES1: 76,
RFINSEQ: 2;
then (((
FinS (F,X))
^ ((
FinS (F,y1))
^
<*(F
. x)*>)),((
FinS (F,X))
^ (
FinS (F,Y))))
are_fiberwise_equipotent by
CLASSES1: 76;
then (((
FinS (F,(X
\/ y1)))
^
<*(F
. x)*>),((
FinS (F,X))
^ (
FinS (F,Y))))
are_fiberwise_equipotent by
A24,
CLASSES1: 76;
hence thesis by
A23,
CLASSES1: 76;
end;
A26:
P[
0 ]
proof
let Y be
set, Z be
finite
set;
assume that
A27: Z
= (
dom (F
| Y)) and
A28: (
dom (F
| (X
\/ Y))) is
finite and (X
/\ Y)
=
{} and
A29:
0
= (
card Z);
A30: (
dom (F
| (X
\/ Y)))
= ((
dom F)
/\ (X
\/ Y)) by
RELAT_1: 61
.= (((
dom F)
/\ X)
\/ ((
dom F)
/\ Y)) by
XBOOLE_1: 23
.= ((
dom (F
| X))
\/ ((
dom F)
/\ Y)) by
RELAT_1: 61
.= ((
dom (F
| X))
\/ (
dom (F
| Y))) by
RELAT_1: 61;
then
A31: (
dom (F
| X)) is
finite by
A28,
FINSET_1: 1,
XBOOLE_1: 7;
A32: (
dom (F
| Y))
=
{} by
A27,
A29;
then (
FinS (F,(X
\/ Y)))
= (
FinS (F,(
dom (F
| X)))) by
A28,
A30,
Th63
.= (
FinS (F,X)) by
A31,
Th63
.= ((
FinS (F,X))
^ (
<*>
REAL )) by
FINSEQ_1: 34
.= ((
FinS (F,X))
^ (
FinS (F,(
dom (F
| Y))))) by
A32,
Th68
.= ((
FinS (F,X))
^ (
FinS (F,Y))) by
A27,
Th63;
hence thesis;
end;
A33: for n holds
P[n] from
NAT_1:sch 2(
A26,
A3);
assume (X
/\ Y)
=
{} ;
hence thesis by
A1,
A33,
A2;
end;
definition
let D be non
empty
set, F be
PartFunc of D,
REAL , X be
set;
::
RFUNCT_3:def14
func
Sum (F,X) ->
Real equals (
Sum (
FinS (F,X)));
correctness ;
end
theorem ::
RFUNCT_3:77
Th77: for D be non
empty
set, F be
PartFunc of D,
REAL , X be
set, r st (
dom (F
| X)) is
finite holds (
Sum ((r
(#) F),X))
= (r
* (
Sum (F,X)))
proof
let D be non
empty
set, F be
PartFunc of D,
REAL , X be
set, r;
set x = (
dom (F
| X));
reconsider rr = r as
Real;
assume
A1: (
dom (F
| X)) is
finite;
then
reconsider FX = (F
| X) as
finite
Function by
FINSET_1: 10;
(
dom ((r
(#) F)
| X))
= (
dom (r
(#) (F
| X))) by
RFUNCT_1: 49
.= (
dom (F
| X)) by
VALUED_1:def 5;
then
reconsider rFX = ((r
(#) F)
| X) as
finite
Function by
A1,
FINSET_1: 10;
consider b be
FinSequence such that
A2: ((F
| x),b)
are_fiberwise_equipotent by
A1,
RFINSEQ: 5;
(
rng (F
| x))
= (
rng b) by
A2,
CLASSES1: 75;
then
reconsider b as
FinSequence of
REAL by
FINSEQ_1:def 4;
x
= ((
dom F)
/\ X) by
RELAT_1: 61;
then
A3: (F
| x)
= ((F
| (
dom F))
| X) by
RELAT_1: 71
.= (F
| X) by
RELAT_1: 68;
then
A4: (
rng b)
= (
rng (F
| X)) by
A2,
CLASSES1: 75;
A5:
now
let x be
Element of
REAL ;
A6: (
len (r
* b))
= (
len b) by
FINSEQ_2: 33;
now
per cases ;
case
A7: not x
in (
rng (r
* b));
A8:
now
assume x
in (
rng ((r
(#) F)
| X));
then x
in (
rng (r
(#) (F
| X))) by
RFUNCT_1: 49;
then
consider d be
Element of D such that
A9: d
in (
dom (r
(#) (F
| X))) and
A10: ((r
(#) (F
| X))
. d)
= x by
PARTFUN1: 3;
d
in (
dom (F
| X)) by
A9,
VALUED_1:def 5;
then ((F
| X)
. d)
in (
rng (F
| X)) by
FUNCT_1:def 3;
then
consider n be
Nat such that
A11: n
in (
dom b) and
A12: (b
. n)
= ((F
| X)
. d) by
A4,
FINSEQ_2: 10;
x
= (r
* ((F
| X)
. d)) by
A9,
A10,
VALUED_1:def 5;
then
A13: x
= ((r
* b)
. n) by
A12,
RVSUM_1: 44;
n
in (
dom (r
* b)) by
A6,
A11,
FINSEQ_3: 29;
hence contradiction by
A7,
A13,
FUNCT_1:def 3;
end;
((r
* b)
"
{x})
=
{} by
A7,
Lm2;
hence (
card ((r
* b)
"
{x}))
= (
card (rFX
"
{x})) by
A8,
Lm2;
end;
case x
in (
rng (r
* b));
then
consider n be
Nat such that n
in (
dom (r
* b)) and
A14: ((r
* b)
. n)
= x by
FINSEQ_2: 10;
reconsider p = (b
. n) as
Real;
A15: x
= (r
* p) by
A14,
RVSUM_1: 44;
now
per cases ;
case
A16: r
=
0 ;
then
A17: ((r
* b)
"
{x})
= (
dom b) by
A15,
RFINSEQ: 25;
(
dom FX)
= ((r
(#) (F
| X))
"
{x}) by
A15,
A16,
Th7
.= (((r
(#) F)
| X)
"
{x}) by
RFUNCT_1: 49;
hence (
card ((r
* b)
"
{x}))
= (
card (rFX
"
{x})) by
A2,
A3,
A17,
CLASSES1: 81;
end;
case
A18: r
<>
0 ;
then
A19: (
Coim ((rr
* b),x))
= (
Coim (b,(x
/ rr))) by
RFINSEQ: 24;
(
Coim (((r
(#) F)
| X),x))
= ((r
(#) (F
| X))
"
{x}) by
RFUNCT_1: 49
.= (
Coim (FX,(x
/ r))) by
A18,
Th6;
hence (
card (
Coim ((r
* b),x)))
= (
card (
Coim (rFX,x))) by
A2,
A3,
A19,
CLASSES1:def 10;
end;
end;
hence (
card ((r
* b)
"
{x}))
= (
card (rFX
"
{x}));
end;
end;
hence (
card (
Coim ((r
* b),x)))
= (
card (
Coim (rFX,x)));
end;
(
rng (r
* b))
c=
REAL & (
rng ((r
(#) F)
| X))
c=
REAL ;
then
A20: ((r
* b),((r
(#) F)
| X))
are_fiberwise_equipotent by
A5,
CLASSES1: 79;
((F
| X),(
FinS (F,X)))
are_fiberwise_equipotent by
A1,
Def13;
then
A21: (
Sum b)
= (
Sum (F,X)) by
A2,
A3,
CLASSES1: 76,
RFINSEQ: 9;
(
dom ((r
(#) F)
| X))
= ((
dom (r
(#) F))
/\ X) by
RELAT_1: 61
.= ((
dom F)
/\ X) by
VALUED_1:def 5
.= (
dom (F
| X)) by
RELAT_1: 61;
then (((r
(#) F)
| X),(
FinS ((r
(#) F),X)))
are_fiberwise_equipotent by
A1,
Def13;
hence (
Sum ((r
(#) F),X))
= (
Sum (r
* b)) by
A20,
CLASSES1: 76,
RFINSEQ: 9
.= (r
* (
Sum (F,X))) by
A21,
RVSUM_1: 87;
end;
theorem ::
RFUNCT_3:78
Th78: for D be non
empty
set, F,G be
PartFunc of D,
REAL , X be
set, Y be
finite
set st Y
= (
dom (F
| X)) & (
dom (F
| X))
= (
dom (G
| X)) holds (
Sum ((F
+ G),X))
= ((
Sum (F,X))
+ (
Sum (G,X)))
proof
let D be non
empty
set;
let F,G be
PartFunc of D,
REAL , X be
set, Y be
finite
set such that
A1: Y
= (
dom (F
| X));
defpred
P[
Nat] means for F,G be
PartFunc of D,
REAL , X be
set, Y be
finite
set st (
card Y)
= $1 & Y
= (
dom (F
| X)) & (
dom (F
| X))
= (
dom (G
| X)) holds (
Sum ((F
+ G),X))
= ((
Sum (F,X))
+ (
Sum (G,X)));
A2: (
card Y)
= (
card Y);
A3: for n st
P[n] holds
P[(n
+ 1)]
proof
let n;
assume
A4:
P[n];
let F,G be
PartFunc of D,
REAL , X be
set, dx be
finite
set;
set gx = (
dom (G
| X));
assume that
A5: (
card dx)
= (n
+ 1) and
A6: dx
= (
dom (F
| X)) and
A7: (
dom (F
| X))
= (
dom (G
| X));
set x = the
Element of dx;
reconsider x as
Element of D by
A5,
A6,
CARD_1: 27,
TARSKI:def 3;
A8: dx
= ((
dom F)
/\ X) by
A6,
RELAT_1: 61;
then
A9: x
in (
dom F) by
A5,
CARD_1: 27,
XBOOLE_0:def 4;
set Y = (X
\
{x}), dy = (
dom (F
| Y)), gy = (
dom (G
| Y));
A10: gx
= ((
dom G)
/\ X) by
RELAT_1: 61;
then x
in (
dom G) by
A5,
A6,
A7,
CARD_1: 27,
XBOOLE_0:def 4;
then x
in ((
dom F)
/\ (
dom G)) by
A9,
XBOOLE_0:def 4;
then
A11: x
in (
dom (F
+ G)) by
VALUED_1:def 1;
A12: dy
= ((
dom F)
/\ Y) by
RELAT_1: 61;
A13: dy
= (dx
\
{x})
proof
thus dy
c= (dx
\
{x})
proof
let y be
object;
assume
A14: y
in dy;
then y
in (X
\
{x}) by
A12,
XBOOLE_0:def 4;
then
A15: not y
in
{x} by
XBOOLE_0:def 5;
y
in (
dom F) by
A12,
A14,
XBOOLE_0:def 4;
then y
in dx by
A12,
A8,
A14,
XBOOLE_0:def 4;
hence thesis by
A15,
XBOOLE_0:def 5;
end;
let y be
object;
assume
A16: y
in (dx
\
{x});
then ( not y
in
{x}) & y
in X by
A8,
XBOOLE_0:def 4,
XBOOLE_0:def 5;
then
A17: y
in Y by
XBOOLE_0:def 5;
y
in (
dom F) by
A8,
A16,
XBOOLE_0:def 4;
hence thesis by
A12,
A17,
XBOOLE_0:def 4;
end;
then
reconsider dy as
finite
set;
A18: gy
= ((
dom G)
/\ Y) by
RELAT_1: 61;
A19: dy
= gy
proof
thus dy
c= gy
proof
let y be
object;
assume
A20: y
in dy;
then y
in (
dom F) by
A12,
XBOOLE_0:def 4;
then y
in gx by
A6,
A7,
A12,
A8,
A20,
XBOOLE_0:def 4;
then
A21: y
in (
dom G) by
A10,
XBOOLE_0:def 4;
y
in Y by
A12,
A20,
XBOOLE_0:def 4;
hence thesis by
A18,
A21,
XBOOLE_0:def 4;
end;
let y be
object;
assume
A22: y
in gy;
then y
in (
dom G) by
A18,
XBOOLE_0:def 4;
then y
in dx by
A6,
A7,
A18,
A10,
A22,
XBOOLE_0:def 4;
then
A23: y
in (
dom F) by
A8,
XBOOLE_0:def 4;
y
in Y by
A18,
A22,
XBOOLE_0:def 4;
hence thesis by
A12,
A23,
XBOOLE_0:def 4;
end;
{x}
c= dx by
A5,
CARD_1: 27,
ZFMISC_1: 31;
then (
card dy)
= ((
card dx)
- (
card
{x})) by
A13,
CARD_2: 44
.= ((n
+ 1)
- 1) by
A5,
CARD_1: 30
.= n;
then
A24: (
Sum ((F
+ G),Y))
= ((
Sum (F,Y))
+ (
Sum (G,Y))) by
A4,
A19;
A25: (
dom ((F
+ G)
| X))
= (
dom ((F
| X)
+ (G
| X))) by
RFUNCT_1: 44
.= (dx
/\ gx) by
A6,
VALUED_1:def 1;
then
A26: ((
FinS ((F
+ G),X)),((F
+ G)
| X))
are_fiberwise_equipotent by
Def13;
x
in X by
A5,
A8,
CARD_1: 27,
XBOOLE_0:def 4;
then x
in ((
dom (F
+ G))
/\ X) by
A11,
XBOOLE_0:def 4;
then x
in (
dom ((F
+ G)
| X)) by
RELAT_1: 61;
then
A27: (((
FinS ((F
+ G),Y))
^
<*((F
+ G)
. x)*>),((F
+ G)
| X))
are_fiberwise_equipotent by
A25,
Th66;
reconsider Fx =
<*(F
. x)*>, Gx =
<*(G
. x)*>, FGx =
<*((F
+ G)
. x)*> as
FinSequence of
REAL by
RVSUM_1: 145;
(((
FinS (F,Y))
^
<*(F
. x)*>),(F
| X))
are_fiberwise_equipotent & ((
FinS (F,X)),(F
| X))
are_fiberwise_equipotent by
A5,
A6,
Def13,
Th66,
CARD_1: 27;
then
A28: (
Sum (F,X))
= (
Sum ((
FinS (F,Y))
^ Fx)) by
CLASSES1: 76,
RFINSEQ: 9
.= ((
Sum (F,Y))
+ (F
. x)) by
RVSUM_1: 74;
(((
FinS (G,Y))
^
<*(G
. x)*>),(G
| X))
are_fiberwise_equipotent & ((
FinS (G,X)),(G
| X))
are_fiberwise_equipotent by
A5,
A6,
A7,
Def13,
Th66,
CARD_1: 27;
then (
Sum (G,X))
= (
Sum ((
FinS (G,Y))
^ Gx)) by
CLASSES1: 76,
RFINSEQ: 9
.= ((
Sum (G,Y))
+ (G
. x)) by
RVSUM_1: 74;
hence ((
Sum (F,X))
+ (
Sum (G,X)))
= ((
Sum (
FinS ((F
+ G),Y)))
+ ((F
. x)
+ (G
. x))) by
A24,
A28
.= ((
Sum (
FinS ((F
+ G),Y)))
+ ((F
+ G)
. x)) by
A11,
VALUED_1:def 1
.= (
Sum ((
FinS ((F
+ G),Y))
^ FGx)) by
RVSUM_1: 74
.= (
Sum ((F
+ G),X)) by
A27,
A26,
CLASSES1: 76,
RFINSEQ: 9;
end;
A29:
P[
0 ]
proof
let F,G be
PartFunc of D,
REAL , X be
set, Y be
finite
set;
assume that
A30: (
card Y)
=
0 and
A31: Y
= (
dom (F
| X)) and
A32: (
dom (F
| X))
= (
dom (G
| X));
(
dom (F
| X))
=
{} by
A30,
A31;
then
A33: (
rng (F
| X))
=
{} by
RELAT_1: 42;
((F
+ G)
| X)
= ((F
| X)
+ (G
| X)) by
RFUNCT_1: 44;
then (
dom ((F
+ G)
| X))
= ((
dom (F
| X))
/\ (
dom (G
| X))) by
VALUED_1:def 1
.=
{} by
A30,
A31,
A32;
then (
rng ((F
+ G)
| X))
=
{} & ((
FinS ((F
+ G),X)),((F
+ G)
| X))
are_fiberwise_equipotent by
Def13,
RELAT_1: 42;
then
A34: (
rng (
FinS ((F
+ G),X)))
=
{} by
CLASSES1: 75;
((
FinS (F,X)),(F
| X))
are_fiberwise_equipotent by
A31,
Def13;
then (
rng (
FinS (F,X)))
=
{} by
A33,
CLASSES1: 75;
then
A35: (
Sum (F,X))
=
0 by
RELAT_1: 41,
RVSUM_1: 72;
(
dom (G
| X))
=
{} by
A30,
A31,
A32;
then
A36: (
rng (G
| X))
=
{} by
RELAT_1: 42;
((
FinS (G,X)),(G
| X))
are_fiberwise_equipotent by
A31,
A32,
Def13;
then (
rng (
FinS (G,X)))
=
{} by
A36,
CLASSES1: 75;
then ((
Sum (F,X))
+ (
Sum (G,X)))
= (
0
+
0 ) by
A35,
RELAT_1: 41,
RVSUM_1: 72;
hence thesis by
A34,
RELAT_1: 41,
RVSUM_1: 72;
end;
A37: for n holds
P[n] from
NAT_1:sch 2(
A29,
A3);
assume (
dom (F
| X))
= (
dom (G
| X));
hence thesis by
A1,
A37,
A2;
end;
theorem ::
RFUNCT_3:79
for D be non
empty
set, F,G be
PartFunc of D,
REAL , X be
set st (
dom (F
| X)) is
finite & (
dom (F
| X))
= (
dom (G
| X)) holds (
Sum ((F
- G),X))
= ((
Sum (F,X))
- (
Sum (G,X)))
proof
let D be non
empty
set, F,G be
PartFunc of D,
REAL , X be
set;
assume
A1: (
dom (F
| X)) is
finite & (
dom (F
| X))
= (
dom (G
| X));
(
dom (((
- 1)
(#) G)
| X))
= ((
dom ((
- 1)
(#) G))
/\ X) by
RELAT_1: 61
.= ((
dom G)
/\ X) by
VALUED_1:def 5
.= (
dom (G
| X)) by
RELAT_1: 61;
hence (
Sum ((F
- G),X))
= ((
Sum (F,X))
+ (
Sum (((
- 1)
(#) G),X))) by
A1,
Th78
.= ((
Sum (F,X))
+ ((
- 1)
* (
Sum (G,X)))) by
A1,
Th77
.= ((
Sum (F,X))
- (
Sum (G,X)));
end;
theorem ::
RFUNCT_3:80
for D be non
empty
set, F be
PartFunc of D,
REAL , X be
set, r be
Real, Y be
finite
set st Y
= (
dom (F
| X)) holds (
Sum ((F
- r),X))
= ((
Sum (F,X))
- (r
* (
card Y)))
proof
let D be non
empty
set, F be
PartFunc of D,
REAL , X be
set, r be
Real;
set fx = (
FinS (F,X));
let Y be
finite
set;
reconsider rr = r as
Element of
REAL by
XREAL_0:def 1;
set dr = ((
card Y)
|-> rr);
assume
A1: Y
= (
dom (F
| X));
then (
len fx)
= (
card Y) by
Th67;
then
reconsider xf = fx, rd = dr as
Element of ((
card Y)
-tuples_on
REAL ) by
FINSEQ_2: 92;
(
FinS ((F
- r),X))
= (fx
- dr) by
A1,
Th73;
hence (
Sum ((F
- r),X))
= ((
Sum xf)
- (
Sum rd)) by
RVSUM_1: 90
.= ((
Sum (F,X))
- (r
* (
card Y))) by
RVSUM_1: 80;
end;
theorem ::
RFUNCT_3:81
for D be non
empty
set, F be
PartFunc of D,
REAL holds (
Sum (F,
{} ))
=
0 by
Th68,
RVSUM_1: 72;
theorem ::
RFUNCT_3:82
for D be non
empty
set, F be
PartFunc of D,
REAL , d be
Element of D st d
in (
dom F) holds (
Sum (F,
{d}))
= (F
. d)
proof
let D be non
empty
set, F be
PartFunc of D,
REAL , d be
Element of D;
reconsider Fd = (F
. d) as
Element of
REAL by
XREAL_0:def 1;
assume d
in (
dom F);
hence (
Sum (F,
{d}))
= (
Sum
<*Fd*>) by
Th69
.= (F
. d) by
FINSOP_1: 11;
end;
theorem ::
RFUNCT_3:83
for D be non
empty
set, F be
PartFunc of D,
REAL , X,Y be
set st (
dom (F
| (X
\/ Y))) is
finite & X
misses Y holds (
Sum (F,(X
\/ Y)))
= ((
Sum (F,X))
+ (
Sum (F,Y)))
proof
let D be non
empty
set, F be
PartFunc of D,
REAL , X,Y be
set;
assume (
dom (F
| (X
\/ Y))) is
finite & X
misses Y;
hence (
Sum (F,(X
\/ Y)))
= (
Sum ((
FinS (F,X))
^ (
FinS (F,Y)))) by
Th76,
RFINSEQ: 9
.= ((
Sum (F,X))
+ (
Sum (F,Y))) by
RVSUM_1: 75;
end;
theorem ::
RFUNCT_3:84
for D be non
empty
set, F be
PartFunc of D,
REAL , X,Y be
set st (
dom (F
| (X
\/ Y))) is
finite & (
dom (F
| X))
misses (
dom (F
| Y)) holds (
Sum (F,(X
\/ Y)))
= ((
Sum (F,X))
+ (
Sum (F,Y)))
proof
let D be non
empty
set, F be
PartFunc of D,
REAL , X,Y be
set;
assume that
A1: (
dom (F
| (X
\/ Y))) is
finite and
A2: (
dom (F
| X))
misses (
dom (F
| Y));
A3: (
dom (F
| (X
\/ Y)))
= ((
dom F)
/\ (X
\/ Y)) by
RELAT_1: 61
.= (((
dom F)
/\ X)
\/ ((
dom F)
/\ Y)) by
XBOOLE_1: 23
.= ((
dom (F
| X))
\/ ((
dom F)
/\ Y)) by
RELAT_1: 61
.= ((
dom (F
| X))
\/ (
dom (F
| Y))) by
RELAT_1: 61;
then (
dom (F
| X)) is
finite by
A1,
FINSET_1: 1,
XBOOLE_1: 7;
then
A4: (
FinS (F,X))
= (
FinS (F,(
dom (F
| X)))) by
Th63;
(
dom (F
| Y)) is
finite by
A1,
A3,
FINSET_1: 1,
XBOOLE_1: 7;
then
A5: (
FinS (F,Y))
= (
FinS (F,(
dom (F
| Y)))) by
Th63;
A6: (
dom (F
| (
dom (F
| (X
\/ Y)))))
= ((
dom F)
/\ (
dom (F
| (X
\/ Y)))) by
RELAT_1: 61
.= ((
dom F)
/\ ((
dom F)
/\ (X
\/ Y))) by
RELAT_1: 61
.= (((
dom F)
/\ (
dom F))
/\ (X
\/ Y)) by
XBOOLE_1: 16
.= (
dom (F
| (X
\/ Y))) by
RELAT_1: 61;
(
FinS (F,(X
\/ Y)))
= (
FinS (F,(
dom (F
| (X
\/ Y))))) by
A1,
Th63;
hence (
Sum (F,(X
\/ Y)))
= (
Sum ((
FinS (F,X))
^ (
FinS (F,Y)))) by
A1,
A2,
A3,
A4,
A5,
A6,
Th76,
RFINSEQ: 9
.= ((
Sum (F,X))
+ (
Sum (F,Y))) by
RVSUM_1: 75;
end;