polynom4.miz
begin
theorem ::
POLYNOM4:1
for D be non
empty
set holds for p be
FinSequence of D holds for n be
Element of
NAT st 1
<= n & n
<= (
len p) holds p
= (((p
| (n
-' 1))
^
<*(p
. n)*>)
^ (p
/^ n)) by
FINSEQ_5: 84;
Lm1: for R be
left_zeroed
right_add-cancelable
right-distributive non
empty
doubleLoopStr, a be
Element of R holds (a
* (
0. R))
= (
0. R)
proof
let R be
left_zeroed
right_add-cancelable
right-distributive non
empty
doubleLoopStr, a be
Element of R;
(a
* (
0. R))
= (a
* ((
0. R)
+ (
0. R))) by
ALGSTR_1:def 2
.= ((a
* (
0. R))
+ (a
* (
0. R))) by
VECTSP_1:def 2;
then ((a
* (
0. R))
+ (a
* (
0. R)))
= ((
0. R)
+ (a
* (
0. R))) by
ALGSTR_1:def 2;
hence thesis by
ALGSTR_0:def 4;
end;
registration
cluster
almost_left_invertible ->
domRing-like for
left_zeroed
right_add-cancelable
right-distributive
well-unital
associative non
empty
doubleLoopStr;
coherence
proof
let L be
left_zeroed
right_add-cancelable
right-distributive
well-unital
associative non
empty
doubleLoopStr;
assume
A1: L is
almost_left_invertible;
now
let x,y be
Element of L;
assume
A2: (x
* y)
= (
0. L);
thus x
= (
0. L) or y
= (
0. L)
proof
assume x
<> (
0. L);
then
consider z be
Element of L such that
A3: (z
* x)
= (
1. L) by
A1;
(z
* (
0. L))
= ((
1. L)
* y) by
A2,
A3,
GROUP_1:def 3
.= y;
hence thesis by
Lm1;
end;
end;
hence thesis by
VECTSP_2:def 1;
end;
end
registration
cluster
strict
Abelian
add-associative
right_zeroed
right_complementable
associative
commutative
distributive
unital
domRing-like
almost_left_invertible non
degenerated for non
empty
doubleLoopStr;
existence
proof
set F = the non
degenerated
strict
Field;
take F;
thus thesis;
end;
end
begin
theorem ::
POLYNOM4:2
Th2: for L be
add-associative
right_zeroed
right_complementable
left-distributive non
empty
doubleLoopStr holds for p be
sequence of L holds ((
0_. L)
*' p)
= (
0_. L)
proof
let L be
add-associative
right_zeroed
right_complementable
left-distributive non
empty
doubleLoopStr;
let p be
sequence of L;
now
let i be
Element of
NAT ;
consider r be
FinSequence of the
carrier of L such that (
len r)
= (i
+ 1) and
A1: (((
0_. L)
*' p)
. i)
= (
Sum r) and
A2: for k be
Element of
NAT st k
in (
dom r) holds (r
. k)
= (((
0_. L)
. (k
-' 1))
* (p
. ((i
+ 1)
-' k))) by
POLYNOM3:def 9;
now
let k be
Element of
NAT ;
assume k
in (
dom r);
hence (r
. k)
= (((
0_. L)
. (k
-' 1))
* (p
. ((i
+ 1)
-' k))) by
A2
.= ((
0. L)
* (p
. ((i
+ 1)
-' k))) by
FUNCOP_1: 7
.= (
0. L);
end;
hence (((
0_. L)
*' p)
. i)
= (
0. L) by
A1,
POLYNOM3: 1
.= ((
0_. L)
. i) by
FUNCOP_1: 7;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
POLYNOM4:3
Th3: for L be non
empty
ZeroStr holds (
len (
0_. L))
=
0
proof
let L be non
empty
ZeroStr;
for i be
Nat holds i
>=
0 implies ((
0_. L)
. i)
= (
0. L) by
FUNCOP_1: 7,
ORDINAL1:def 12;
then
0
is_at_least_length_of (
0_. L);
hence thesis by
ALGSEQ_1:def 3;
end;
theorem ::
POLYNOM4:4
Th4: for L be non
degenerated non
empty
multLoopStr_0 holds (
len (
1_. L))
= 1
proof
let L be non
degenerated non
empty
multLoopStr_0;
A1:
now
let i be
Nat;
assume that
A2: i
is_at_least_length_of (
1_. L) and
A3: (
0
+ 1)
> i;
0
>= i by
A3,
NAT_1: 13;
then ((
1_. L)
.
0 )
= (
0. L) by
A2;
hence contradiction by
POLYNOM3: 30;
end;
for i be
Nat st i
>= 1 holds ((
1_. L)
. i)
= (
0. L) by
POLYNOM3: 30;
then 1
is_at_least_length_of (
1_. L);
hence thesis by
A1,
ALGSEQ_1:def 3;
end;
theorem ::
POLYNOM4:5
Th5: for L be non
empty
ZeroStr holds for p be
Polynomial of L st (
len p)
=
0 holds p
= (
0_. L)
proof
let L be non
empty
ZeroStr;
let p be
Polynomial of L;
assume (
len p)
=
0 ;
then
A1:
0
is_at_least_length_of p by
ALGSEQ_1:def 3;
A2:
now
let x be
object;
assume x
in (
dom p);
then
reconsider i = x as
Element of
NAT by
NORMSP_1: 12;
i
>=
0 ;
hence (p
. x)
= (
0. L) by
A1;
end;
(
dom p)
=
NAT by
NORMSP_1: 12;
hence thesis by
A2,
FUNCOP_1: 11;
end;
theorem ::
POLYNOM4:6
Th6: for L be
right_zeroed non
empty
addLoopStr holds for p,q be
Polynomial of L holds for n be
Element of
NAT st n
>= (
len p) & n
>= (
len q) holds n
>= (
len (p
+ q))
proof
let L be
right_zeroed non
empty
addLoopStr;
let p,q be
Polynomial of L;
let n be
Element of
NAT ;
assume n
>= (
len p) & n
>= (
len q);
then n
is_at_least_length_of p & n
is_at_least_length_of q by
POLYNOM3: 23;
then n
is_at_least_length_of (p
+ q) by
POLYNOM3: 24;
hence thesis by
POLYNOM3: 23;
end;
theorem ::
POLYNOM4:7
Th7: for L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr holds for p,q be
Polynomial of L st (
len p)
<> (
len q) holds (
len (p
+ q))
= (
max ((
len p),(
len q)))
proof
let L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr;
let p,q be
Polynomial of L;
assume
A1: (
len p)
<> (
len q);
per cases by
A1,
XXREAL_0: 1;
suppose
A2: (
len p)
< (
len q);
then (
len q)
>= ((
len p)
+ 1) by
NAT_1: 13;
then ((
len q)
- 1)
>= (
len p) by
XREAL_1: 19;
then
A3: ((
len q)
-' 1)
>= (
len p) by
XREAL_0:def 2;
(
len q)
>= (
0
+ 1) by
A2,
NAT_1: 13;
then
A4: (
len q)
= (((
len q)
-' 1)
+ 1) by
XREAL_1: 235;
A5: ((p
+ q)
. ((
len q)
-' 1))
= ((p
. ((
len q)
-' 1))
+ (q
. ((
len q)
-' 1))) by
NORMSP_1:def 2
.= ((
0. L)
+ (q
. ((
len q)
-' 1))) by
A3,
ALGSEQ_1: 8
.= (q
. ((
len q)
-' 1)) by
RLVECT_1: 4;
A6: (
len (p
+ q))
>= (
len q)
proof
assume (
len (p
+ q))
< (
len q);
then ((
len (p
+ q))
+ 1)
<= (
len q) by
NAT_1: 13;
then (
len (p
+ q))
<= ((
len q)
- 1) by
XREAL_1: 19;
then (
len (p
+ q))
<= ((
len q)
-' 1) by
XREAL_0:def 2;
then ((p
+ q)
. ((
len q)
-' 1))
= (
0. L) by
ALGSEQ_1: 8;
hence contradiction by
A5,
A4,
ALGSEQ_1: 10;
end;
(
max ((
len p),(
len q)))
= (
len q) & (
len (p
+ q))
<= (
len q) by
A2,
Th6,
XXREAL_0:def 10;
hence thesis by
A6,
XXREAL_0: 1;
end;
suppose
A7: (
len p)
> (
len q);
then (
len p)
>= ((
len q)
+ 1) by
NAT_1: 13;
then ((
len p)
- 1)
>= (
len q) by
XREAL_1: 19;
then
A8: ((
len p)
-' 1)
>= (
len q) by
XREAL_0:def 2;
(
len p)
>= (
0
+ 1) by
A7,
NAT_1: 13;
then
A9: (
len p)
= (((
len p)
-' 1)
+ 1) by
XREAL_1: 235;
A10: ((p
+ q)
. ((
len p)
-' 1))
= ((p
. ((
len p)
-' 1))
+ (q
. ((
len p)
-' 1))) by
NORMSP_1:def 2
.= ((p
. ((
len p)
-' 1))
+ (
0. L)) by
A8,
ALGSEQ_1: 8
.= (p
. ((
len p)
-' 1)) by
RLVECT_1: 4;
A11: (
len (p
+ q))
>= (
len p)
proof
assume (
len (p
+ q))
< (
len p);
then ((
len (p
+ q))
+ 1)
<= (
len p) by
NAT_1: 13;
then (
len (p
+ q))
<= ((
len p)
- 1) by
XREAL_1: 19;
then (
len (p
+ q))
<= ((
len p)
-' 1) by
XREAL_0:def 2;
then ((p
+ q)
. ((
len p)
-' 1))
= (
0. L) by
ALGSEQ_1: 8;
hence contradiction by
A10,
A9,
ALGSEQ_1: 10;
end;
(
max ((
len p),(
len q)))
= (
len p) & (
len (p
+ q))
<= (
len p) by
A7,
Th6,
XXREAL_0:def 10;
hence thesis by
A11,
XXREAL_0: 1;
end;
end;
theorem ::
POLYNOM4:8
Th8: for L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr holds for p be
Polynomial of L holds (
len (
- p))
= (
len p)
proof
let L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr;
let p be
Polynomial of L;
A1:
now
let n be
Nat;
assume
A2: n
is_at_least_length_of (
- p);
n
is_at_least_length_of p
proof
let i be
Nat;
assume i
>= n;
then i
in
NAT & ((
- p)
. i)
= (
0. L) by
A2,
ORDINAL1:def 12;
then (
- (p
. i))
= (
0. L) by
BHSP_1: 44;
hence (p
. i)
= (
0. L) by
VECTSP_2: 3;
end;
hence (
len p)
<= n by
ALGSEQ_1:def 3;
end;
(
len p)
is_at_least_length_of (
- p)
proof
let i be
Nat;
assume
A3: i
>= (
len p);
thus ((
- p)
. i)
= (
- (p
. i)) by
BHSP_1: 44
.= (
- (
0. L)) by
A3,
ALGSEQ_1: 8
.= (
0. L) by
RLVECT_1: 12;
end;
hence thesis by
A1,
ALGSEQ_1:def 3;
end;
theorem ::
POLYNOM4:9
for L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr holds for p,q be
Polynomial of L holds for n be
Element of
NAT st n
>= (
len p) & n
>= (
len q) holds n
>= (
len (p
- q))
proof
let L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr;
let p,q be
Polynomial of L;
(
len q)
= (
len (
- q)) by
Th8;
hence thesis by
Th6;
end;
theorem ::
POLYNOM4:10
for L be
add-associative
right_zeroed
right_complementable
distributive
associative
left_unital non
empty
doubleLoopStr, p,q be
Polynomial of L st ((p
. ((
len p)
-' 1))
* (q
. ((
len q)
-' 1)))
<> (
0. L) holds (
len (p
*' q))
= (((
len p)
+ (
len q))
- 1)
proof
let L be
add-associative
right_zeroed
right_complementable
distributive
associative
left_unital non
empty
doubleLoopStr;
let p,q be
Polynomial of L;
A1: (((
len p)
+ (
len q))
-' 1)
is_at_least_length_of (p
*' q)
proof
let i be
Nat;
i
in
NAT by
ORDINAL1:def 12;
then
consider r be
FinSequence of the
carrier of L such that
A2: (
len r)
= (i
+ 1) and
A3: ((p
*' q)
. i)
= (
Sum r) and
A4: for k be
Element of
NAT st k
in (
dom r) holds (r
. k)
= ((p
. (k
-' 1))
* (q
. ((i
+ 1)
-' k))) by
POLYNOM3:def 9;
assume i
>= (((
len p)
+ (
len q))
-' 1);
then i
>= (((
len p)
+ (
len q))
- 1) by
XREAL_0:def 2;
then (i
+ 1)
>= ((
len p)
+ (
len q)) by
XREAL_1: 20;
then (
len p)
<= ((i
+ 1)
- (
len q)) by
XREAL_1: 19;
then
A5: (
- (
len p))
>= (
- ((i
+ 1)
- (
len q))) by
XREAL_1: 24;
now
let k be
Element of
NAT ;
assume
A6: k
in (
dom r);
then
A7: (r
. k)
= ((p
. (k
-' 1))
* (q
. ((i
+ 1)
-' k))) by
A4;
k
in (
Seg (
len r)) by
A6,
FINSEQ_1:def 3;
then k
<= (i
+ 1) by
A2,
FINSEQ_1: 1;
then
A8: ((i
+ 1)
- k)
>=
0 by
XREAL_1: 48;
per cases ;
suppose (k
-' 1)
< (
len p);
then (k
- 1)
< (
len p) by
XREAL_0:def 2;
then (
- (k
- 1))
> (
- (
len p)) by
XREAL_1: 24;
then (1
- k)
> ((
len q)
- (i
+ 1)) by
A5,
XXREAL_0: 2;
then ((i
+ 1)
+ (1
- k))
> (
len q) by
XREAL_1: 19;
then (((i
+ 1)
- k)
+ 1)
> (
len q);
then (((i
+ 1)
-' k)
+ 1)
> (
len q) by
A8,
XREAL_0:def 2;
then ((i
+ 1)
-' k)
>= (
len q) by
NAT_1: 13;
then (q
. ((i
+ 1)
-' k))
= (
0. L) by
ALGSEQ_1: 8;
hence (r
. k)
= (
0. L) by
A7;
end;
suppose (k
-' 1)
>= (
len p);
then (p
. (k
-' 1))
= (
0. L) by
ALGSEQ_1: 8;
hence (r
. k)
= (
0. L) by
A7;
end;
end;
hence ((p
*' q)
. i)
= (
0. L) by
A3,
POLYNOM3: 1;
end;
assume
A9: ((p
. ((
len p)
-' 1))
* (q
. ((
len q)
-' 1)))
<> (
0. L);
A10:
now
assume (
len p)
<=
0 ;
then (
len p)
=
0 ;
then p
= (
0_. L) by
Th5;
then (p
. ((
len p)
-' 1))
= (
0. L) by
FUNCOP_1: 7;
hence contradiction by
A9;
end;
A11:
now
assume (
len q)
<=
0 ;
then (
len q)
=
0 ;
then q
= (
0_. L) by
Th5;
then (q
. ((
len q)
-' 1))
= (
0. L) by
FUNCOP_1: 7;
hence contradiction by
A9;
end;
then ((
len p)
+ (
len q))
>= (
0
+ 1) by
NAT_1: 13;
then
A12: (((
len p)
+ (
len q))
- 1)
>= (1
- 1) by
XREAL_1: 9;
now
let n be
Nat;
assume that
A13: n
is_at_least_length_of (p
*' q) and
A14: (((
len p)
+ (
len q))
-' 1)
> n;
(((
len p)
+ (
len q))
-' 1)
>= (n
+ 1) by
A14,
NAT_1: 13;
then
A15: ((((
len p)
+ (
len q))
-' 1)
- 1)
>= n by
XREAL_1: 19;
A16: ((((
len p)
+ (
len q))
-' 1)
- 1)
= ((((
len p)
+ (
len q))
- 1)
- 1) by
A12,
XREAL_0:def 2;
A17: (
len q)
>= (
0
+ 1) by
A11,
NAT_1: 13;
then
A18: ((
len q)
- 1)
>=
0 by
XREAL_1: 19;
((
len p)
+ (
len q))
> (
0
+ 1) by
A10,
A17,
XREAL_1: 8;
then ((
len p)
+ (
len q))
>= (1
+ 1) by
NAT_1: 13;
then
A19: (((
len p)
+ (
len q))
- 2)
>= (2
- 2) by
XREAL_1: 9;
then
A20: (((
len p)
+ (
len q))
-' 2)
= (((
len p)
+ (
len q))
- (1
+ 1)) by
XREAL_0:def 2;
consider r be
FinSequence of the
carrier of L such that
A21: (
len r)
= ((((
len p)
+ (
len q))
-' 2)
+ 1) and
A22: ((p
*' q)
. (((
len p)
+ (
len q))
-' 2))
= (
Sum r) and
A23: for k be
Element of
NAT st k
in (
dom r) holds (r
. k)
= ((p
. (k
-' 1))
* (q
. (((((
len p)
+ (
len q))
-' 2)
+ 1)
-' k))) by
POLYNOM3:def 9;
A24: (
len r)
= (((((
len p)
+ (
len q))
- 1)
+ (
- 1))
+ 1) by
A21,
A19,
XREAL_0:def 2
.= ((
len p)
+ ((
len q)
- 1));
then
A25: (((((
len p)
+ (
len q))
-' 2)
+ 1)
-' (
len p))
= (((((
len p)
+ (
len q))
-' 2)
+ 1)
- (
len p)) by
A21,
A18,
XREAL_0:def 2
.= ((
len q)
-' 1) by
A21,
A18,
A24,
XREAL_0:def 2;
((
len r)
- (
len p))
= ((
len q)
- 1) by
A24;
then
A26: ((
len p)
+
0 )
<= (
len r) by
A18,
XREAL_1: 19;
now
let i be
Element of
NAT ;
assume
A27: i
in (
dom (r
/^ (
len p)));
then
A28: i
in (
Seg (
len (r
/^ (
len p)))) by
FINSEQ_1:def 3;
then
A29: 1
<= i by
FINSEQ_1: 1;
(i
+ (
len p))
>= i by
NAT_1: 11;
then (i
+ (
len p))
>= (
0
+ 1) by
A29,
XXREAL_0: 2;
then ((i
+ (
len p))
- 1)
>=
0 by
XREAL_1: 19;
then
A30: ((i
+ (
len p))
-' 1)
= ((
len p)
+ (i
- 1)) by
XREAL_0:def 2;
(
0
+ 1)
<= i by
A28,
FINSEQ_1: 1;
then (i
- 1)
>=
0 by
XREAL_1: 19;
then
A31: ((i
+ (
len p))
-' 1)
>= ((
len p)
+
0 ) by
A30,
XREAL_1: 6;
i
<= (
len (r
/^ (
len p))) by
A28,
FINSEQ_1: 1;
then i
<= ((
len r)
- (
len p)) by
A26,
RFINSEQ:def 1;
then
A32: (i
+ (
len p))
<= (
len r) by
XREAL_1: 19;
(i
+ (
len p))
>= i by
NAT_1: 11;
then (i
+ (
len p))
>= 1 by
A29,
XXREAL_0: 2;
then (i
+ (
len p))
in (
Seg (
len r)) by
A32,
FINSEQ_1: 1;
then
A33: (i
+ (
len p))
in (
dom r) by
FINSEQ_1:def 3;
thus ((r
/^ (
len p))
. i)
= (r
. (i
+ (
len p))) by
A26,
A27,
RFINSEQ:def 1
.= ((p
. ((i
+ (
len p))
-' 1))
* (q
. (((((
len p)
+ (
len q))
-' 2)
+ 1)
-' (i
+ (
len p))))) by
A23,
A33
.= ((
0. L)
* (q
. (((((
len p)
+ (
len q))
-' 2)
+ 1)
-' (i
+ (
len p))))) by
A31,
ALGSEQ_1: 8
.= (
0. L);
end;
then
A34: (
Sum (r
/^ (
len p)))
= (
0. L) by
POLYNOM3: 1;
A35: (
len p)
>= (
0
+ 1) by
A10,
NAT_1: 13;
then (
len p)
in (
Seg (
len r)) by
A26,
FINSEQ_1: 1;
then
A36: (
len p)
in (
dom r) by
FINSEQ_1:def 3;
now
A37: ((
len p)
- 1)
>= (1
- 1) by
A35,
XREAL_1: 9;
A38: ((((
len p)
+ (
len q))
-' 2)
+ 1)
= (((
len p)
- 1)
+ (
len q)) by
A21,
A24
.= (((
len p)
-' 1)
+ (
len q)) by
A37,
XREAL_0:def 2;
A39: (
dom (r
| ((
len p)
-' 1)))
c= (
dom r) by
FINSEQ_5: 18;
let i be
Element of
NAT ;
assume
A40: i
in (
dom (r
| ((
len p)
-' 1)));
(
len p)
< ((
len r)
+ 1) by
A26,
NAT_1: 13;
then ((
len p)
- 1)
< (((
len r)
+ 1)
- 1) by
XREAL_1: 9;
then ((
len p)
-' 1)
< (
len r) by
A37,
XREAL_0:def 2;
then (
len (r
| ((
len p)
-' 1)))
= ((
len p)
-' 1) by
FINSEQ_1: 59;
then i
in (
Seg ((
len p)
-' 1)) by
A40,
FINSEQ_1:def 3;
then i
<= ((
len p)
-' 1) by
FINSEQ_1: 1;
then (i
+ (
len q))
<= (((
len p)
-' 1)
+ (
len q)) by
XREAL_1: 6;
then (
len q)
<= (((((
len p)
+ (
len q))
-' 2)
+ 1)
- i) by
A38,
XREAL_1: 19;
then
A41: (
len q)
<= (((((
len p)
+ (
len q))
-' 2)
+ 1)
-' i) by
XREAL_0:def 2;
thus ((r
| ((
len p)
-' 1))
. i)
= ((r
| ((
len p)
-' 1))
/. i) by
A40,
PARTFUN1:def 6
.= (r
/. i) by
A40,
FINSEQ_4: 70
.= (r
. i) by
A40,
A39,
PARTFUN1:def 6
.= ((p
. (i
-' 1))
* (q
. (((((
len p)
+ (
len q))
-' 2)
+ 1)
-' i))) by
A23,
A40,
A39
.= ((p
. (i
-' 1))
* (
0. L)) by
A41,
ALGSEQ_1: 8
.= (
0. L);
end;
then
A42: (
Sum (r
| ((
len p)
-' 1)))
= (
0. L) by
POLYNOM3: 1;
r
= (((r
| ((
len p)
-' 1))
^
<*(r
. (
len p))*>)
^ (r
/^ (
len p))) by
A26,
A35,
FINSEQ_5: 84;
then r
= (((r
| ((
len p)
-' 1))
^
<*(r
/. (
len p))*>)
^ (r
/^ (
len p))) by
A26,
A35,
FINSEQ_4: 15;
then (
Sum r)
= ((
Sum ((r
| ((
len p)
-' 1))
^
<*(r
/. (
len p))*>))
+ (
Sum (r
/^ (
len p)))) by
RLVECT_1: 41
.= (((
Sum (r
| ((
len p)
-' 1)))
+ (
Sum
<*(r
/. (
len p))*>))
+ (
Sum (r
/^ (
len p)))) by
RLVECT_1: 41;
then (
Sum r)
= ((
Sum
<*(r
/. (
len p))*>)
+ (
0. L)) by
A42,
A34,
RLVECT_1: 4
.= (
Sum
<*(r
/. (
len p))*>) by
RLVECT_1: 4
.= (r
/. (
len p)) by
RLVECT_1: 44
.= (r
. (
len p)) by
A36,
PARTFUN1:def 6
.= ((p
. ((
len p)
-' 1))
* (q
. ((
len q)
-' 1))) by
A23,
A36,
A25;
hence contradiction by
A9,
A13,
A22,
A16,
A20,
A15;
end;
then (
len (p
*' q))
= (((
len p)
+ (
len q))
-' 1) by
A1,
ALGSEQ_1:def 3;
hence thesis by
A12,
XREAL_0:def 2;
end;
begin
definition
let L be non
empty
ZeroStr;
let p be
Polynomial of L;
::
POLYNOM4:def1
func
Leading-Monomial (p) ->
sequence of L means
:
Def1: (it
. ((
len p)
-' 1))
= (p
. ((
len p)
-' 1)) & for n be
Element of
NAT st n
<> ((
len p)
-' 1) holds (it
. n)
= (
0. L);
existence
proof
reconsider P = ((
0_. L)
+* (((
len p)
-' 1),(p
. ((
len p)
-' 1)))) as
sequence of L;
take P;
((
len p)
-' 1)
in
NAT ;
then ((
len p)
-' 1)
in (
dom (
0_. L)) by
NORMSP_1: 12;
hence (P
. ((
len p)
-' 1))
= (p
. ((
len p)
-' 1)) by
FUNCT_7: 31;
let n be
Element of
NAT ;
assume n
<> ((
len p)
-' 1);
hence (P
. n)
= ((
0_. L)
. n) by
FUNCT_7: 32
.= (
0. L) by
FUNCOP_1: 7;
end;
uniqueness
proof
let P1,P2 be
sequence of L such that
A1: (P1
. ((
len p)
-' 1))
= (p
. ((
len p)
-' 1)) and
A2: for n be
Element of
NAT st n
<> ((
len p)
-' 1) holds (P1
. n)
= (
0. L) and
A3: (P2
. ((
len p)
-' 1))
= (p
. ((
len p)
-' 1)) and
A4: for n be
Element of
NAT st n
<> ((
len p)
-' 1) holds (P2
. n)
= (
0. L);
now
let i be
Element of
NAT ;
per cases ;
suppose i
= ((
len p)
-' 1);
hence (P1
. i)
= (P2
. i) by
A1,
A3;
end;
suppose
A5: i
<> ((
len p)
-' 1);
hence (P1
. i)
= (
0. L) by
A2
.= (P2
. i) by
A4,
A5;
end;
end;
hence P1
= P2 by
FUNCT_2: 63;
end;
end
theorem ::
POLYNOM4:11
Th11: for L be non
empty
ZeroStr holds for p be
Polynomial of L holds (
Leading-Monomial p)
= ((
0_. L)
+* (((
len p)
-' 1),(p
. ((
len p)
-' 1))))
proof
let L be non
empty
ZeroStr;
let p be
Polynomial of L;
reconsider P = ((
0_. L)
+* (((
len p)
-' 1),(p
. ((
len p)
-' 1)))) as
sequence of L;
A1:
now
let n be
Element of
NAT ;
assume n
<> ((
len p)
-' 1);
hence (P
. n)
= ((
0_. L)
. n) by
FUNCT_7: 32
.= (
0. L) by
FUNCOP_1: 7;
end;
((
len p)
-' 1)
in
NAT ;
then ((
len p)
-' 1)
in (
dom (
0_. L)) by
NORMSP_1: 12;
then (P
. ((
len p)
-' 1))
= (p
. ((
len p)
-' 1)) by
FUNCT_7: 31;
hence thesis by
A1,
Def1;
end;
registration
let L be non
empty
ZeroStr;
let p be
Polynomial of L;
cluster (
Leading-Monomial p) ->
finite-Support;
coherence
proof
take (
len p);
let i be
Nat;
A1: i
in
NAT by
ORDINAL1:def 12;
assume i
>= (
len p);
then (i
+ 1)
> (
len p) by
NAT_1: 13;
then
A2: ((i
+ 1)
- 1)
> ((
len p)
- 1) by
XREAL_1: 9;
A3: (
Leading-Monomial p)
= ((
0_. L)
+* (((
len p)
-' 1),(p
. ((
len p)
-' 1)))) by
Th11;
per cases ;
suppose (
len p)
>
0 ;
then (
len p)
>= (
0
+ 1) by
NAT_1: 13;
then ((
len p)
- 1)
>= ((
0
+ 1)
- 1) by
XREAL_1: 9;
then i
<> ((
len p)
-' 1) by
A2,
XREAL_0:def 2;
hence ((
Leading-Monomial p)
. i)
= ((
0_. L)
. i) by
A3,
FUNCT_7: 32
.= (
0. L) by
A1,
FUNCOP_1: 7;
end;
suppose
A4: (
len p)
=
0 ;
then
A5: ((
len p)
-' 1)
=
0 by
NAT_2: 8;
0
in
NAT ;
then
A6:
0
in (
dom (
0_. L)) by
NORMSP_1: 12;
now
per cases ;
suppose i
>
0 ;
hence ((
Leading-Monomial p)
. i)
= ((
0_. L)
. i) by
A3,
A5,
FUNCT_7: 32
.= (
0. L) by
A1,
FUNCOP_1: 7;
end;
suppose i
=
0 ;
hence ((
Leading-Monomial p)
. i)
= (p
.
0 ) by
A3,
A5,
A6,
FUNCT_7: 31
.= ((
0_. L)
.
0 ) by
A4,
Th5
.= (
0. L) by
FUNCOP_1: 7;
end;
end;
hence thesis;
end;
end;
end
theorem ::
POLYNOM4:12
Th12: for L be non
empty
ZeroStr holds for p be
Polynomial of L st (
len p)
=
0 holds (
Leading-Monomial p)
= (
0_. L)
proof
let L be non
empty
ZeroStr;
let p be
Polynomial of L;
assume (
len p)
=
0 ;
then
A1: ((
0_. L)
. ((
len p)
-' 1))
= (p
. ((
len p)
-' 1)) by
Th5;
for n be
Element of
NAT st n
<> ((
len p)
-' 1) holds ((
0_. L)
. n)
= (
0. L) by
FUNCOP_1: 7;
hence thesis by
A1,
Def1;
end;
theorem ::
POLYNOM4:13
for L be non
empty
ZeroStr holds (
Leading-Monomial (
0_. L))
= (
0_. L)
proof
let L be non
empty
ZeroStr;
(
len (
0_. L))
=
0 by
Th3;
hence thesis by
Th12;
end;
theorem ::
POLYNOM4:14
for L be non
degenerated non
empty
multLoopStr_0 holds (
Leading-Monomial (
1_. L))
= (
1_. L)
proof
let L be non
degenerated non
empty
multLoopStr_0;
A1:
now
let n be
Element of
NAT ;
assume n
<> ((
len (
1_. L))
-' 1);
then n
<> (1
-' 1) by
Th4;
then n
<>
0 by
XREAL_1: 232;
hence ((
1_. L)
. n)
= (
0. L) by
POLYNOM3: 30;
end;
((
1_. L)
. ((
len (
1_. L))
-' 1))
= ((
1_. L)
. ((
len (
1_. L))
-' 1));
hence thesis by
A1,
Def1;
end;
theorem ::
POLYNOM4:15
Th15: for L be non
empty
ZeroStr holds for p be
Polynomial of L holds (
len (
Leading-Monomial p))
= (
len p)
proof
let L be non
empty
ZeroStr;
let p be
Polynomial of L;
set r = (
Leading-Monomial p);
A1: (
Leading-Monomial p)
= ((
0_. L)
+* (((
len p)
-' 1),(p
. ((
len p)
-' 1)))) by
Th11;
per cases ;
suppose (
len p)
>
0 ;
then
A2: (
len p)
>= (
0
+ 1) by
NAT_1: 13;
((
len p)
-' 1)
in
NAT ;
then
A3: ((
len p)
-' 1)
in (
dom (
0_. L)) by
NORMSP_1: 12;
A4:
now
let m be
Nat;
assume
A5: m
is_at_least_length_of r;
assume (
len p)
> m;
then (
len p)
>= (m
+ 1) by
NAT_1: 13;
then ((
len p)
- 1)
>= ((m
+ 1)
- 1) by
XREAL_1: 9;
then ((
len p)
-' 1)
>= m by
XREAL_0:def 2;
then (r
. ((
len p)
-' 1))
= (
0. L) by
A5;
then
A6: (p
. ((
len p)
-' 1))
= (
0. L) by
A1,
A3,
FUNCT_7: 31;
(
len p)
= (((
len p)
-' 1)
+ 1) by
A2,
XREAL_1: 235;
hence contradiction by
A6,
ALGSEQ_1: 10;
end;
A7: ((
len p)
- 1)
>=
0 by
A2,
XREAL_1: 19;
(
len p)
is_at_least_length_of r
proof
let i be
Nat;
A8: i
in
NAT by
ORDINAL1:def 12;
assume i
>= (
len p);
then (i
+ 1)
> (
len p) by
NAT_1: 13;
then ((i
+ 1)
- 1)
> ((
len p)
- 1) by
XREAL_1: 9;
then i
<> ((
len p)
-' 1) by
A7,
XREAL_0:def 2;
hence (r
. i)
= ((
0_. L)
. i) by
A1,
FUNCT_7: 32
.= (
0. L) by
A8,
FUNCOP_1: 7;
end;
hence thesis by
A4,
ALGSEQ_1:def 3;
end;
suppose
A9: (
len p)
=
0 ;
hence (
len (
Leading-Monomial p))
= (
len (
0_. L)) by
Th12
.= (
len p) by
A9,
Th5;
end;
end;
theorem ::
POLYNOM4:16
Th16: for L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr holds for p be
Polynomial of L st (
len p)
<>
0 holds ex q be
Polynomial of L st (
len q)
< (
len p) & p
= (q
+ (
Leading-Monomial p)) & for n be
Element of
NAT st n
< ((
len p)
- 1) holds (q
. n)
= (p
. n)
proof
let L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr;
let p be
Polynomial of L;
deffunc
F(
Element of
NAT ) = (p
. $1);
consider q be
Polynomial of L such that
A1: (
len q)
<= ((
len p)
-' 1) and
A2: for n be
Element of
NAT st n
< ((
len p)
-' 1) holds (q
. n)
=
F(n) from
POLYNOM3:sch 2;
assume (
len p)
<>
0 ;
then
A3: (
len p)
>= (
0
+ 1) by
NAT_1: 13;
take q;
(
len q)
< (((
len p)
-' 1)
+ 1) by
A1,
NAT_1: 13;
hence
A4: (
len q)
< (
len p) by
A3,
XREAL_1: 235;
A5:
now
let k be
Nat;
A6: k
in
NAT by
ORDINAL1:def 12;
assume k
< (
len p);
then (k
+ 1)
<= (
len p) by
NAT_1: 13;
then
A7: ((k
+ 1)
- 1)
<= ((
len p)
- 1) by
XREAL_1: 9;
per cases by
A7,
XXREAL_0: 1;
suppose k
< ((
len p)
- 1);
then
A8: k
< ((
len p)
-' 1) by
XREAL_0:def 2;
thus ((q
+ (
Leading-Monomial p))
. k)
= ((q
. k)
+ ((
Leading-Monomial p)
. k)) by
NORMSP_1:def 2
.= ((p
. k)
+ ((
Leading-Monomial p)
. k)) by
A2,
A6,
A8
.= ((p
. k)
+ (
0. L)) by
A6,
A8,
Def1
.= (p
. k) by
RLVECT_1:def 4;
end;
suppose k
= ((
len p)
- 1);
then
A9: k
= ((
len p)
-' 1) by
XREAL_0:def 2;
thus ((q
+ (
Leading-Monomial p))
. k)
= ((q
. k)
+ ((
Leading-Monomial p)
. k)) by
NORMSP_1:def 2
.= ((
0. L)
+ ((
Leading-Monomial p)
. k)) by
A1,
A9,
ALGSEQ_1: 8
.= ((
Leading-Monomial p)
. k) by
RLVECT_1: 4
.= (p
. k) by
A9,
Def1;
end;
end;
A10: (
len (
Leading-Monomial p))
= (
len p) by
Th15;
then (
len (q
+ (
Leading-Monomial p)))
= (
max ((
len q),(
len (
Leading-Monomial p)))) by
A4,
Th7
.= (
len p) by
A4,
A10,
XXREAL_0:def 10;
hence p
= (q
+ (
Leading-Monomial p)) by
A5,
ALGSEQ_1: 12;
let n be
Element of
NAT ;
assume n
< ((
len p)
- 1);
then n
< ((
len p)
-' 1) by
XREAL_0:def 2;
hence thesis by
A2;
end;
begin
definition
let L be
unital non
empty
doubleLoopStr;
let p be
Polynomial of L;
let x be
Element of L;
::
POLYNOM4:def2
func
eval (p,x) ->
Element of L means
:
Def2: ex F be
FinSequence of the
carrier of L st it
= (
Sum F) & (
len F)
= (
len p) & for n be
Element of
NAT st n
in (
dom F) holds (F
. n)
= ((p
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1))));
existence
proof
deffunc
G(
Nat) = ((p
. ($1
-' 1))
* ((
power L)
. (x,($1
-' 1))));
consider F be
FinSequence of the
carrier of L such that
A1: (
len F)
= (
len p) and
A2: for n be
Nat st n
in (
dom F) holds (F
. n)
=
G(n) from
FINSEQ_2:sch 1;
take y = (
Sum F);
take F;
thus y
= (
Sum F) & (
len F)
= (
len p) by
A1;
let n be
Element of
NAT ;
assume n
in (
dom F);
hence thesis by
A2;
end;
uniqueness
proof
let y1,y2 be
Element of L;
given F1 be
FinSequence of the
carrier of L such that
A3: y1
= (
Sum F1) and
A4: (
len F1)
= (
len p) and
A5: for n be
Element of
NAT st n
in (
dom F1) holds (F1
. n)
= ((p
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1))));
given F2 be
FinSequence of the
carrier of L such that
A6: y2
= (
Sum F2) and
A7: (
len F2)
= (
len p) and
A8: for n be
Element of
NAT st n
in (
dom F2) holds (F2
. n)
= ((p
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1))));
A9: (
dom F1)
= (
Seg (
len p)) by
A4,
FINSEQ_1:def 3;
now
let n be
Nat;
assume
A10: n
in (
dom F1);
then
A11: n
in (
dom F2) by
A7,
A9,
FINSEQ_1:def 3;
thus (F1
. n)
= ((p
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
A5,
A10
.= (F2
. n) by
A8,
A11;
end;
hence thesis by
A3,
A4,
A6,
A7,
FINSEQ_2: 9;
end;
end
theorem ::
POLYNOM4:17
Th17: for L be
unital non
empty
doubleLoopStr holds for x be
Element of L holds (
eval ((
0_. L),x))
= (
0. L)
proof
let L be
unital non
empty
doubleLoopStr;
let x be
Element of L;
consider F be
FinSequence of the
carrier of L such that
A1: (
eval ((
0_. L),x))
= (
Sum F) and
A2: (
len F)
= (
len (
0_. L)) and for n be
Element of
NAT st n
in (
dom F) holds (F
. n)
= (((
0_. L)
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
Def2;
(
len F)
=
0 by
A2,
Th3;
then F
= (
<*> the
carrier of L);
hence thesis by
A1,
RLVECT_1: 43;
end;
theorem ::
POLYNOM4:18
Th18: for L be
well-unital
add-associative
right_zeroed
right_complementable
associative non
degenerated non
empty
doubleLoopStr holds for x be
Element of L holds (
eval ((
1_. L),x))
= (
1. L)
proof
let L be
well-unital
add-associative
right_zeroed
right_complementable
associative non
degenerated non
empty
doubleLoopStr;
let x be
Element of L;
consider F be
FinSequence of the
carrier of L such that
A1: (
eval ((
1_. L),x))
= (
Sum F) and
A2: (
len F)
= (
len (
1_. L)) and
A3: for n be
Element of
NAT st n
in (
dom F) holds (F
. n)
= (((
1_. L)
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
Def2;
A4: (
len F)
= 1 by
A2,
Th4;
then 1
in (
Seg (
len F)) by
FINSEQ_1: 1;
then 1
in (
dom F) by
FINSEQ_1:def 3;
then (F
. 1)
= (((
1_. L)
. (1
-' 1))
* ((
power L)
. (x,(1
-' 1)))) by
A3
.= (((
1_. L)
.
0 )
* ((
power L)
. (x,(1
-' 1)))) by
XREAL_1: 232
.= ((
1. L)
* ((
power L)
. (x,(1
-' 1)))) by
POLYNOM3: 30
.= ((
power L)
. (x,(1
-' 1)))
.= ((
power L)
. (x,
0 )) by
XREAL_1: 232
.= (
1_ L) by
GROUP_1:def 7
.= (
1. L);
then F
=
<*(
1. L)*> by
A4,
FINSEQ_1: 40;
hence thesis by
A1,
RLVECT_1: 44;
end;
theorem ::
POLYNOM4:19
Th19: for L be
Abelian
add-associative
right_zeroed
right_complementable
unital
left-distributive non
empty
doubleLoopStr holds for p,q be
Polynomial of L holds for x be
Element of L holds (
eval ((p
+ q),x))
= ((
eval (p,x))
+ (
eval (q,x)))
proof
let L be
Abelian
add-associative
right_zeroed
right_complementable
unital
left-distributive non
empty
doubleLoopStr;
let p,q be
Polynomial of L;
let x be
Element of L;
reconsider k = (
max ((
len p),(
len q))) as
Element of
NAT by
ORDINAL1:def 12;
A1: (k
- (
len p))
>=
0 by
XREAL_1: 48,
XXREAL_0: 25;
consider F1 be
FinSequence of the
carrier of L such that
A2: (
eval (p,x))
= (
Sum F1) and
A3: (
len F1)
= (
len p) and
A4: for n be
Element of
NAT st n
in (
dom F1) holds (F1
. n)
= ((p
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
Def2;
A5: (
len (F1
^ ((k
-' (
len F1))
|-> (
0. L))))
= ((
len p)
+ (
len ((k
-' (
len p))
|-> (
0. L)))) by
A3,
FINSEQ_1: 22
.= ((
len p)
+ (k
-' (
len p))) by
CARD_1:def 7
.= ((
len p)
+ (k
- (
len p))) by
A1,
XREAL_0:def 2
.= k;
A6: (k
- (
len q))
>=
0 by
XREAL_1: 48,
XXREAL_0: 25;
k
>= (
len p) & k
>= (
len q) by
XXREAL_0: 25;
then
A7: (k
- (
len (p
+ q)))
>=
0 by
Th6,
XREAL_1: 48;
consider F3 be
FinSequence of the
carrier of L such that
A8: (
eval ((p
+ q),x))
= (
Sum F3) and
A9: (
len F3)
= (
len (p
+ q)) and
A10: for n be
Element of
NAT st n
in (
dom F3) holds (F3
. n)
= (((p
+ q)
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
Def2;
A11: (
len (F3
^ ((k
-' (
len F3))
|-> (
0. L))))
= ((
len (p
+ q))
+ (
len ((k
-' (
len (p
+ q)))
|-> (
0. L)))) by
A9,
FINSEQ_1: 22
.= ((
len (p
+ q))
+ (k
-' (
len (p
+ q)))) by
CARD_1:def 7
.= ((
len (p
+ q))
+ (k
- (
len (p
+ q)))) by
A7,
XREAL_0:def 2
.= k;
consider F2 be
FinSequence of the
carrier of L such that
A12: (
eval (q,x))
= (
Sum F2) and
A13: (
len F2)
= (
len q) and
A14: for n be
Element of
NAT st n
in (
dom F2) holds (F2
. n)
= ((q
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
Def2;
(
len (F2
^ ((k
-' (
len F2))
|-> (
0. L))))
= ((
len q)
+ (
len ((k
-' (
len q))
|-> (
0. L)))) by
A13,
FINSEQ_1: 22
.= ((
len q)
+ (k
-' (
len q))) by
CARD_1:def 7
.= ((
len q)
+ (k
- (
len q))) by
A6,
XREAL_0:def 2
.= k;
then
reconsider G1 = (F1
^ ((k
-' (
len F1))
|-> (
0. L))), G2 = (F2
^ ((k
-' (
len F2))
|-> (
0. L))), G3 = (F3
^ ((k
-' (
len F3))
|-> (
0. L))) as
Element of (k
-tuples_on the
carrier of L) by
A5,
A11,
FINSEQ_2: 92;
now
let n be
Nat;
assume
A15: n
in (
Seg k);
then
A16: (
0
+ 1)
<= n by
FINSEQ_1: 1;
A17: n
<= k by
A15,
FINSEQ_1: 1;
per cases by
XXREAL_0: 1;
suppose
A18: (
len p)
> (
len q);
then
A19: k
= (
len p) by
XXREAL_0:def 10;
then (
len (p
+ q))
= (
len p) by
A18,
Th7;
then
A20: n
in (
dom F3) by
A9,
A15,
A19,
FINSEQ_1:def 3;
A21: (
len G2)
= k by
CARD_1:def 7;
then
A22: n
in (
dom G2) by
A15,
FINSEQ_1:def 3;
then
A23: (G2
/. n)
= (G2
. n) by
PARTFUN1:def 6;
(
len G1)
= k by
CARD_1:def 7;
then
A24: n
in (
dom G1) by
A15,
FINSEQ_1:def 3;
then
A25: (G1
/. n)
= (G1
. n) by
PARTFUN1:def 6;
A26: n
in (
dom F1) by
A3,
A15,
A19,
FINSEQ_1:def 3;
A27: (G1
/. n)
= (G1
. n) by
A24,
PARTFUN1:def 6
.= (F1
. n) by
A26,
FINSEQ_1:def 7
.= (F1
/. n) by
A26,
PARTFUN1:def 6;
A28: (F1
. n)
= ((p
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
A4,
A26;
now
per cases ;
suppose n
<= (
len q);
then n
in (
Seg (
len q)) by
A16,
FINSEQ_1: 1;
then
A29: n
in (
dom F2) by
A13,
FINSEQ_1:def 3;
then
A30: (F2
. n)
= ((q
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
A14;
A31: (G2
/. n)
= (G2
. n) by
A22,
PARTFUN1:def 6
.= (F2
. n) by
A29,
FINSEQ_1:def 7
.= (F2
/. n) by
A29,
PARTFUN1:def 6;
thus (G3
. n)
= (F3
. n) by
A20,
FINSEQ_1:def 7
.= (((p
+ q)
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
A10,
A20
.= (((p
. (n
-' 1))
+ (q
. (n
-' 1)))
* ((
power L)
. (x,(n
-' 1)))) by
NORMSP_1:def 2
.= (((p
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1))))
+ ((q
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1))))) by
VECTSP_1:def 3
.= (((p
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1))))
+ (F2
/. n)) by
A29,
A30,
PARTFUN1:def 6
.= ((F1
/. n)
+ (F2
/. n)) by
A26,
A28,
PARTFUN1:def 6
.= ((G1
+ G2)
. n) by
A15,
A25,
A23,
A27,
A31,
FVSUM_1: 18;
end;
suppose
A32: n
> (
len q);
then
A33: n
>= ((
len q)
+ 1) by
NAT_1: 13;
then (n
- 1)
>= (
len q) by
XREAL_1: 19;
then
A34: (n
-' 1)
>= (
len q) by
XREAL_0:def 2;
(n
- (
len F2))
<= (k
- (
len F2)) by
A17,
XREAL_1: 9;
then
A35: (n
- (
len F2))
<= (k
-' (
len F2)) by
XREAL_0:def 2;
A36: (n
- (
len F2))
>= 1 by
A13,
A33,
XREAL_1: 19;
then (n
- (
len F2))
= (n
-' (
len F2)) by
XREAL_0:def 2;
then
A37: (n
- (
len F2))
in (
Seg (k
-' (
len F2))) by
A36,
A35,
FINSEQ_1: 1;
n
<= (
len G2) by
A15,
A21,
FINSEQ_1: 1;
then
A38: (G2
/. n)
= (((k
-' (
len F2))
|-> (
0. L))
. (n
- (
len F2))) by
A13,
A23,
A32,
FINSEQ_1: 24
.= (
0. L) by
A37,
FUNCOP_1: 7;
thus (G3
. n)
= (F3
. n) by
A20,
FINSEQ_1:def 7
.= (((p
+ q)
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
A10,
A20
.= (((p
. (n
-' 1))
+ (q
. (n
-' 1)))
* ((
power L)
. (x,(n
-' 1)))) by
NORMSP_1:def 2
.= (((p
. (n
-' 1))
+ (
0. L))
* ((
power L)
. (x,(n
-' 1)))) by
A34,
ALGSEQ_1: 8
.= ((p
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
RLVECT_1: 4
.= (F1
. n) by
A4,
A26
.= (G1
/. n) by
A26,
A27,
PARTFUN1:def 6
.= ((G1
/. n)
+ (
0. L)) by
RLVECT_1: 4
.= ((G1
+ G2)
. n) by
A15,
A25,
A23,
A38,
FVSUM_1: 18;
end;
end;
hence (G3
. n)
= ((G1
+ G2)
. n);
end;
suppose
A39: (
len p)
< (
len q);
then
A40: k
= (
len q) by
XXREAL_0:def 10;
then (
len (p
+ q))
= (
len q) by
A39,
Th7;
then
A41: n
in (
dom F3) by
A9,
A15,
A40,
FINSEQ_1:def 3;
A42: (
len G1)
= k by
CARD_1:def 7;
then
A43: n
in (
dom G1) by
A15,
FINSEQ_1:def 3;
then
A44: (G1
/. n)
= (G1
. n) by
PARTFUN1:def 6;
(
len G2)
= k by
CARD_1:def 7;
then
A45: n
in (
dom G2) by
A15,
FINSEQ_1:def 3;
then
A46: (G2
/. n)
= (G2
. n) by
PARTFUN1:def 6;
A47: n
in (
dom F2) by
A13,
A15,
A40,
FINSEQ_1:def 3;
A48: (G2
/. n)
= (G2
. n) by
A45,
PARTFUN1:def 6
.= (F2
. n) by
A47,
FINSEQ_1:def 7
.= (F2
/. n) by
A47,
PARTFUN1:def 6;
A49: (F2
. n)
= ((q
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
A14,
A47;
now
per cases ;
suppose n
<= (
len p);
then n
in (
Seg (
len p)) by
A16,
FINSEQ_1: 1;
then
A50: n
in (
dom F1) by
A3,
FINSEQ_1:def 3;
then
A51: (F1
. n)
= ((p
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
A4;
A52: (G1
/. n)
= (G1
. n) by
A43,
PARTFUN1:def 6
.= (F1
. n) by
A50,
FINSEQ_1:def 7
.= (F1
/. n) by
A50,
PARTFUN1:def 6;
thus (G3
. n)
= (F3
. n) by
A41,
FINSEQ_1:def 7
.= (((p
+ q)
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
A10,
A41
.= (((p
. (n
-' 1))
+ (q
. (n
-' 1)))
* ((
power L)
. (x,(n
-' 1)))) by
NORMSP_1:def 2
.= (((p
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1))))
+ ((q
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1))))) by
VECTSP_1:def 3
.= ((F1
/. n)
+ ((q
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1))))) by
A50,
A51,
PARTFUN1:def 6
.= ((F1
/. n)
+ (F2
/. n)) by
A47,
A49,
PARTFUN1:def 6
.= ((G1
+ G2)
. n) by
A15,
A44,
A46,
A48,
A52,
FVSUM_1: 18;
end;
suppose
A53: n
> (
len p);
then
A54: n
>= ((
len p)
+ 1) by
NAT_1: 13;
then (n
- 1)
>= (
len p) by
XREAL_1: 19;
then
A55: (n
-' 1)
>= (
len p) by
XREAL_0:def 2;
(n
- (
len F1))
<= (k
- (
len F1)) by
A17,
XREAL_1: 9;
then
A56: (n
- (
len F1))
<= (k
-' (
len F1)) by
XREAL_0:def 2;
A57: (n
- (
len F1))
>= 1 by
A3,
A54,
XREAL_1: 19;
then (n
- (
len F1))
= (n
-' (
len F1)) by
XREAL_0:def 2;
then
A58: (n
- (
len F1))
in (
Seg (k
-' (
len F1))) by
A57,
A56,
FINSEQ_1: 1;
n
<= (
len G1) by
A15,
A42,
FINSEQ_1: 1;
then
A59: (G1
/. n)
= (((k
-' (
len F1))
|-> (
0. L))
. (n
- (
len F1))) by
A3,
A44,
A53,
FINSEQ_1: 24
.= (
0. L) by
A58,
FUNCOP_1: 7;
thus (G3
. n)
= (F3
. n) by
A41,
FINSEQ_1:def 7
.= (((p
+ q)
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
A10,
A41
.= (((p
. (n
-' 1))
+ (q
. (n
-' 1)))
* ((
power L)
. (x,(n
-' 1)))) by
NORMSP_1:def 2
.= (((
0. L)
+ (q
. (n
-' 1)))
* ((
power L)
. (x,(n
-' 1)))) by
A55,
ALGSEQ_1: 8
.= ((q
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
RLVECT_1: 4
.= (F2
. n) by
A14,
A47
.= (G2
/. n) by
A47,
A48,
PARTFUN1:def 6
.= ((
0. L)
+ (G2
/. n)) by
RLVECT_1: 4
.= ((G1
+ G2)
. n) by
A15,
A44,
A46,
A59,
FVSUM_1: 18;
end;
end;
hence (G3
. n)
= ((G1
+ G2)
. n);
end;
suppose
A60: (
len p)
= (
len q);
(
len G2)
= k by
CARD_1:def 7;
then
A61: n
in (
dom G2) by
A15,
FINSEQ_1:def 3;
then
A62: (G2
/. n)
= (G2
. n) by
PARTFUN1:def 6;
(
len G1)
= k by
CARD_1:def 7;
then
A63: n
in (
dom G1) by
A15,
FINSEQ_1:def 3;
then
A64: (G1
/. n)
= (G1
. n) by
PARTFUN1:def 6;
A65: (
len G3)
= k by
CARD_1:def 7;
A66: n
in (
dom F2) by
A13,
A15,
A60,
FINSEQ_1:def 3;
A67: n
in (
dom F1) by
A3,
A15,
A60,
FINSEQ_1:def 3;
then
A68: (F1
. n)
= ((p
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
A4;
A69: (G1
/. n)
= (G1
. n) by
A63,
PARTFUN1:def 6
.= (F1
. n) by
A67,
FINSEQ_1:def 7
.= (F1
/. n) by
A67,
PARTFUN1:def 6;
now
per cases ;
suppose
A70: n
<= (
len (p
+ q));
A71: n
in (
dom F2) by
A13,
A15,
A60,
FINSEQ_1:def 3;
then
A72: (F2
. n)
= ((q
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
A14;
A73: (G2
/. n)
= (G2
. n) by
A61,
PARTFUN1:def 6
.= (F2
. n) by
A71,
FINSEQ_1:def 7
.= (F2
/. n) by
A71,
PARTFUN1:def 6;
n
in (
Seg (
len (p
+ q))) by
A16,
A70,
FINSEQ_1: 1;
then
A74: n
in (
dom F3) by
A9,
FINSEQ_1:def 3;
hence (G3
. n)
= (F3
. n) by
FINSEQ_1:def 7
.= (((p
+ q)
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
A10,
A74
.= (((p
. (n
-' 1))
+ (q
. (n
-' 1)))
* ((
power L)
. (x,(n
-' 1)))) by
NORMSP_1:def 2
.= (((p
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1))))
+ ((q
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1))))) by
VECTSP_1:def 3
.= (((p
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1))))
+ (F2
/. n)) by
A71,
A72,
PARTFUN1:def 6
.= ((F1
/. n)
+ (F2
/. n)) by
A67,
A68,
PARTFUN1:def 6
.= ((G1
+ G2)
. n) by
A15,
A64,
A62,
A69,
A73,
FVSUM_1: 18;
end;
suppose
A75: n
> (
len (p
+ q));
then
A76: n
>= ((
len (p
+ q))
+ 1) by
NAT_1: 13;
then (n
- 1)
>= (((
len (p
+ q))
+ 1)
- 1) by
XREAL_1: 9;
then
A77: (n
-' 1)
>= (
len (p
+ q)) by
XREAL_0:def 2;
(n
- (
len F3))
<= (k
- (
len F3)) by
A17,
XREAL_1: 9;
then
A78: (n
- (
len F3))
<= (k
-' (
len F3)) by
XREAL_0:def 2;
A79: (G2
. n)
= (F2
. n) by
A66,
FINSEQ_1:def 7
.= ((q
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
A14,
A66;
A80: (G1
. n)
= (F1
. n) by
A67,
FINSEQ_1:def 7
.= ((p
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
A4,
A67;
A81: (n
- (
len F3))
>= 1 by
A9,
A76,
XREAL_1: 19;
then (n
- (
len F3))
= (n
-' (
len F3)) by
XREAL_0:def 2;
then
A82: (n
- (
len F3))
in (
Seg (k
-' (
len F3))) by
A81,
A78,
FINSEQ_1: 1;
n
<= (
len G3) by
A15,
A65,
FINSEQ_1: 1;
hence (G3
. n)
= (((k
-' (
len F3))
|-> (
0. L))
. (n
- (
len F3))) by
A9,
A75,
FINSEQ_1: 24
.= (
0. L) by
A82,
FUNCOP_1: 7
.= ((
0. L)
* ((
power L)
. (x,(n
-' 1))))
.= (((p
+ q)
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
A77,
ALGSEQ_1: 8
.= (((p
. (n
-' 1))
+ (q
. (n
-' 1)))
* ((
power L)
. (x,(n
-' 1)))) by
NORMSP_1:def 2
.= (((p
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1))))
+ ((q
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1))))) by
VECTSP_1:def 3
.= ((G1
+ G2)
. n) by
A15,
A80,
A79,
FVSUM_1: 18;
end;
end;
hence (G3
. n)
= ((G1
+ G2)
. n);
end;
end;
then
A83: G3
= (G1
+ G2) by
FINSEQ_2: 119;
A84: (
Sum G3)
= ((
Sum F3)
+ (
Sum ((k
-' (
len F3))
|-> (
0. L)))) by
RLVECT_1: 41
.= ((
Sum F3)
+ (
0. L)) by
MATRIX_3: 11
.= (
Sum F3) by
RLVECT_1:def 4;
A85: (
Sum G2)
= ((
Sum F2)
+ (
Sum ((k
-' (
len F2))
|-> (
0. L)))) by
RLVECT_1: 41
.= ((
Sum F2)
+ (
0. L)) by
MATRIX_3: 11
.= (
Sum F2) by
RLVECT_1:def 4;
(
Sum G1)
= ((
Sum F1)
+ (
Sum ((k
-' (
len F1))
|-> (
0. L)))) by
RLVECT_1: 41
.= ((
Sum F1)
+ (
0. L)) by
MATRIX_3: 11
.= (
Sum F1) by
RLVECT_1:def 4;
hence thesis by
A2,
A12,
A8,
A85,
A84,
A83,
FVSUM_1: 76;
end;
theorem ::
POLYNOM4:20
Th20: for L be
Abelian
add-associative
right_zeroed
right_complementable
unital
distributive non
empty
doubleLoopStr holds for p be
Polynomial of L holds for x be
Element of L holds (
eval ((
- p),x))
= (
- (
eval (p,x)))
proof
let L be
Abelian
add-associative
right_zeroed
right_complementable
unital
distributive non
empty
doubleLoopStr;
let p be
Polynomial of L;
let x be
Element of L;
consider F1 be
FinSequence of the
carrier of L such that
A1: (
eval (p,x))
= (
Sum F1) and
A2: (
len F1)
= (
len p) and
A3: for n be
Element of
NAT st n
in (
dom F1) holds (F1
. n)
= ((p
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
Def2;
consider F2 be
FinSequence of the
carrier of L such that
A4: (
eval ((
- p),x))
= (
Sum F2) and
A5: (
len F2)
= (
len (
- p)) and
A6: for n be
Element of
NAT st n
in (
dom F2) holds (F2
. n)
= (((
- p)
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
Def2;
(
len F2)
= (
len F1) by
A2,
A5,
Th8;
then
A7: (
dom F2)
= (
dom F1) by
FINSEQ_3: 29;
now
let n be
Nat;
let v be
Element of L;
assume that
A8: n
in (
dom F2) and
A9: v
= (F1
. n);
thus (F2
. n)
= (((
- p)
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
A6,
A8
.= ((
- (p
. (n
-' 1)))
* ((
power L)
. (x,(n
-' 1)))) by
BHSP_1: 44
.= (
- ((p
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1))))) by
VECTSP_1: 9
.= (
- v) by
A3,
A7,
A8,
A9;
end;
hence thesis by
A1,
A2,
A4,
A5,
Th8,
RLVECT_1: 40;
end;
theorem ::
POLYNOM4:21
for L be
Abelian
add-associative
right_zeroed
right_complementable
unital
distributive non
empty
doubleLoopStr holds for p,q be
Polynomial of L holds for x be
Element of L holds (
eval ((p
- q),x))
= ((
eval (p,x))
- (
eval (q,x)))
proof
let L be
Abelian
add-associative
right_zeroed
right_complementable
unital
distributive non
empty
doubleLoopStr;
let p,q be
Polynomial of L;
let x be
Element of L;
thus (
eval ((p
- q),x))
= ((
eval (p,x))
+ (
eval ((
- q),x))) by
Th19
.= ((
eval (p,x))
+ (
- (
eval (q,x)))) by
Th20
.= ((
eval (p,x))
- (
eval (q,x))) by
RLVECT_1:def 11;
end;
theorem ::
POLYNOM4:22
Th22: for L be
add-associative
right_zeroed
right_complementable
right_zeroed
distributive
unital non
empty
doubleLoopStr holds for p be
Polynomial of L holds for x be
Element of L holds (
eval ((
Leading-Monomial p),x))
= ((p
. ((
len p)
-' 1))
* ((
power L)
. (x,((
len p)
-' 1))))
proof
let L be
add-associative
right_zeroed
right_complementable
right_zeroed
distributive
unital non
empty
doubleLoopStr;
let p be
Polynomial of L;
let x be
Element of L;
set LMp = (
Leading-Monomial p);
consider F be
FinSequence of the
carrier of L such that
A1: (
eval (LMp,x))
= (
Sum F) and
A2: (
len F)
= (
len LMp) and
A3: for n be
Element of
NAT st n
in (
dom F) holds (F
. n)
= ((LMp
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
Def2;
A4: (
len F)
= (
len p) by
A2,
Th15;
per cases ;
suppose (
len p)
>
0 ;
then
A5: (
len p)
>= (
0
+ 1) by
NAT_1: 13;
then (
len p)
in (
Seg (
len F)) by
A4,
FINSEQ_1: 1;
then
A6: (
len p)
in (
dom F) by
FINSEQ_1:def 3;
A7: ((
len p)
- 1)
>=
0 by
A5,
XREAL_1: 19;
now
A8: ((
len p)
-' 1)
= ((
len p)
- 1) by
A7,
XREAL_0:def 2;
let i be
Element of
NAT ;
assume that
A9: i
in (
dom F) and
A10: i
<> (
len p);
i
in (
Seg (
len F)) by
A9,
FINSEQ_1:def 3;
then i
>= (
0
+ 1) by
FINSEQ_1: 1;
then (i
- 1)
>=
0 by
XREAL_1: 19;
then (i
-' 1)
= (i
- 1) by
XREAL_0:def 2;
then
A11: (i
-' 1)
<> ((
len p)
-' 1) by
A10,
A8;
thus (F
/. i)
= (F
. i) by
A9,
PARTFUN1:def 6
.= ((LMp
. (i
-' 1))
* ((
power L)
. (x,(i
-' 1)))) by
A3,
A9
.= ((
0. L)
* ((
power L)
. (x,(i
-' 1)))) by
A11,
Def1
.= (
0. L);
end;
then (
Sum F)
= (F
/. (
len p)) by
A6,
POLYNOM2: 3
.= (F
. (
len p)) by
A6,
PARTFUN1:def 6
.= ((LMp
. ((
len p)
-' 1))
* ((
power L)
. (x,((
len p)
-' 1)))) by
A3,
A6;
hence thesis by
A1,
Def1;
end;
suppose
A12: (
len p)
=
0 ;
then
A13: p
= (
0_. L) by
Th5;
LMp
= (
0_. L) by
A12,
Th12;
hence (
eval ((
Leading-Monomial p),x))
= (
0. L) by
Th17
.= ((
0. L)
* ((
power L)
. (x,((
len p)
-' 1))))
.= ((p
. ((
len p)
-' 1))
* ((
power L)
. (x,((
len p)
-' 1)))) by
A13,
FUNCOP_1: 7;
end;
end;
Lm2: for L be
add-associative
right_zeroed
right_complementable
unital
distributive
associative non
empty
doubleLoopStr holds for p,q be
Polynomial of L st (
len p)
>
0 & (
len q)
>
0 holds for x be
Element of L holds (
eval (((
Leading-Monomial p)
*' (
Leading-Monomial q)),x))
= (((p
. ((
len p)
-' 1))
* (q
. ((
len q)
-' 1)))
* ((
power L)
. (x,(((
len p)
+ (
len q))
-' 2))))
proof
let L be
add-associative
right_zeroed
right_complementable
unital
distributive
associative non
empty
doubleLoopStr;
let p,q be
Polynomial of L;
assume that
A1: (
len p)
>
0 and
A2: (
len q)
>
0 ;
A3: (
len q)
>= (
0
+ 1) by
A2,
NAT_1: 13;
then
A4: ((
len q)
- 1)
>=
0 by
XREAL_1: 19;
A5: (
len p)
>= (
0
+ 1) by
A1,
NAT_1: 13;
then ((
len p)
- 1)
>=
0 by
XREAL_1: 19;
then
A6: ((
len p)
- 1)
= ((
len p)
-' 1) by
XREAL_0:def 2;
A7: ((
len p)
+ (
len q))
>= (
0
+ (1
+ 1)) by
A5,
A3,
XREAL_1: 7;
then
A8: (((
len p)
+ (
len q))
- 1)
>= 1 by
XREAL_1: 19;
then
reconsider i1 = (((
len p)
+ (
len q))
- 1) as
Element of
NAT by
INT_1: 3;
A9: ((i1
-' 1)
+ 1)
= i1 by
A8,
XREAL_1: 235;
set LMp = (
Leading-Monomial p), LMq = (
Leading-Monomial q);
let x be
Element of L;
consider F be
FinSequence of the
carrier of L such that
A10: (
eval ((LMp
*' LMq),x))
= (
Sum F) and
A11: (
len F)
= (
len (LMp
*' LMq)) and
A12: for n be
Element of
NAT st n
in (
dom F) holds (F
. n)
= (((LMp
*' LMq)
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
Def2;
consider r be
FinSequence of the
carrier of L such that
A13: (
len r)
= ((i1
-' 1)
+ 1) and
A14: ((LMp
*' LMq)
. (i1
-' 1))
= (
Sum r) and
A15: for k be
Element of
NAT st k
in (
dom r) holds (r
. k)
= ((LMp
. (k
-' 1))
* (LMq
. (((i1
-' 1)
+ 1)
-' k))) by
POLYNOM3:def 9;
((
len p)
+
0 )
<= ((
len p)
+ ((
len q)
- 1)) by
A4,
XREAL_1: 7;
then (
len p)
in (
Seg (
len r)) by
A5,
A9,
A13,
FINSEQ_1: 1;
then
A16: (
len p)
in (
dom r) by
FINSEQ_1:def 3;
(((
len p)
+ ((
len q)
- 1))
- (
len p))
>=
0 by
A3,
XREAL_1: 19;
then (i1
-' (
len p))
= (((
len p)
+ ((
len q)
- 1))
- (
len p)) by
XREAL_0:def 2
.= ((
len q)
-' 1) by
A4,
XREAL_0:def 2;
then
A17: (r
. (
len p))
= ((LMp
. ((
len p)
-' 1))
* (LMq
. ((
len q)
-' 1))) by
A9,
A15,
A16;
now
let i be
Element of
NAT ;
assume that
A18: i
in (
dom r) and
A19: i
<> (
len p);
i
in (
Seg (
len r)) by
A18,
FINSEQ_1:def 3;
then i
>= (
0
+ 1) by
FINSEQ_1: 1;
then (i
- 1)
>=
0 by
XREAL_1: 19;
then (i
-' 1)
= (i
- 1) by
XREAL_0:def 2;
then
A20: (i
-' 1)
<> ((
len p)
-' 1) by
A6,
A19;
thus (r
/. i)
= (r
. i) by
A18,
PARTFUN1:def 6
.= ((LMp
. (i
-' 1))
* (LMq
. (((i1
-' 1)
+ 1)
-' i))) by
A15,
A18
.= ((
0. L)
* (LMq
. (((i1
-' 1)
+ 1)
-' i))) by
A20,
Def1
.= (
0. L);
end;
then
A21: (
Sum r)
= (r
/. (
len p)) by
A16,
POLYNOM2: 3
.= ((LMp
. ((
len p)
-' 1))
* (LMq
. ((
len q)
-' 1))) by
A16,
A17,
PARTFUN1:def 6
.= ((p
. ((
len p)
-' 1))
* (LMq
. ((
len q)
-' 1))) by
Def1
.= ((p
. ((
len p)
-' 1))
* (q
. ((
len q)
-' 1))) by
Def1;
A22: ((
len q)
- 1)
= ((
len q)
-' 1) by
A4,
XREAL_0:def 2;
A23:
now
let i be
Element of
NAT ;
assume that
A24: i
in (
dom F) and
A25: i
<> i1;
consider r1 be
FinSequence of the
carrier of L such that
A26: (
len r1)
= ((i
-' 1)
+ 1) and
A27: ((LMp
*' LMq)
. (i
-' 1))
= (
Sum r1) and
A28: for k be
Element of
NAT st k
in (
dom r1) holds (r1
. k)
= ((LMp
. (k
-' 1))
* (LMq
. (((i
-' 1)
+ 1)
-' k))) by
POLYNOM3:def 9;
i
in (
Seg (
len F)) by
A24,
FINSEQ_1:def 3;
then i
>= 1 by
FINSEQ_1: 1;
then
A29: ((i
-' 1)
+ 1)
= i by
XREAL_1: 235;
A30:
now
let j be
Element of
NAT ;
assume
A31: j
in (
dom r1);
then j
in (
Seg (
len r1)) by
FINSEQ_1:def 3;
then j
>= (
0
+ 1) by
FINSEQ_1: 1;
then (j
- 1)
>=
0 by
XREAL_1: 19;
then
A32: (j
-' 1)
= (j
- 1) by
XREAL_0:def 2;
per cases ;
suppose j
<> (
len p);
then
A33: (j
-' 1)
<> ((
len p)
-' 1) by
A6,
A32;
thus (r1
. j)
= ((LMp
. (j
-' 1))
* (LMq
. (((i
-' 1)
+ 1)
-' j))) by
A28,
A31
.= ((
0. L)
* (LMq
. (((i
-' 1)
+ 1)
-' j))) by
A33,
Def1
.= (
0. L);
end;
suppose
A34: j
= (
len p);
j
in (
Seg (
len r1)) by
A31,
FINSEQ_1:def 3;
then i
>= (
0
+ j) by
A26,
A29,
FINSEQ_1: 1;
then (i
- j)
>=
0 by
XREAL_1: 19;
then (i
-' (
len p))
= (i
- (
len p)) by
A34,
XREAL_0:def 2;
then
A35: (i
-' (
len p))
<> ((
len q)
-' 1) by
A22,
A25;
thus (r1
. j)
= ((LMp
. (j
-' 1))
* (LMq
. (i
-' (
len p)))) by
A28,
A29,
A31,
A34
.= ((LMp
. (j
-' 1))
* (
0. L)) by
A35,
Def1
.= (
0. L);
end;
end;
thus (F
/. i)
= (F
. i) by
A24,
PARTFUN1:def 6
.= ((
Sum r1)
* ((
power L)
. (x,(i
-' 1)))) by
A12,
A24,
A27
.= ((
0. L)
* ((
power L)
. (x,(i
-' 1)))) by
A30,
POLYNOM3: 1
.= (
0. L);
end;
A36: (((
len p)
+ (
len q))
- 2)
>=
0 by
A7,
XREAL_1: 19;
(((
len p)
+ (
len q))
- (1
+ 1))
>=
0 by
A7,
XREAL_1: 19;
then
A37: (i1
-' 1)
= ((((
len p)
+ (
len q))
- 1)
- 1) by
XREAL_0:def 2
.= (((
len p)
+ (
len q))
-' 2) by
A36,
XREAL_0:def 2;
per cases ;
suppose ((LMp
*' LMq)
. (i1
-' 1))
<> (
0. L);
then (
len F)
> (i1
-' 1) by
A11,
ALGSEQ_1: 8;
then (
len F)
>= i1 by
A9,
NAT_1: 13;
then i1
in (
Seg (
len F)) by
A8,
FINSEQ_1: 1;
then
A38: i1
in (
dom F) by
FINSEQ_1:def 3;
hence (
eval (((
Leading-Monomial p)
*' (
Leading-Monomial q)),x))
= (F
/. i1) by
A10,
A23,
POLYNOM2: 3
.= (F
. i1) by
A38,
PARTFUN1:def 6
.= (((p
. ((
len p)
-' 1))
* (q
. ((
len q)
-' 1)))
* ((
power L)
. (x,(((
len p)
+ (
len q))
-' 2)))) by
A12,
A14,
A37,
A21,
A38;
end;
suppose
A39: ((LMp
*' LMq)
. (i1
-' 1))
= (
0. L);
now
let j be
Nat;
assume j
>=
0 ;
j
in
NAT by
ORDINAL1:def 12;
then
consider r1 be
FinSequence of the
carrier of L such that
A40: (
len r1)
= (j
+ 1) and
A41: ((LMp
*' LMq)
. j)
= (
Sum r1) and
A42: for k be
Element of
NAT st k
in (
dom r1) holds (r1
. k)
= ((LMp
. (k
-' 1))
* (LMq
. ((j
+ 1)
-' k))) by
POLYNOM3:def 9;
now
per cases ;
suppose j
= (i1
-' 1);
hence ((LMp
*' LMq)
. j)
= (
0. L) by
A39;
end;
suppose
A43: j
<> (i1
-' 1);
now
let k be
Element of
NAT ;
assume
A44: k
in (
dom r1);
per cases ;
suppose
A45: (k
-' 1)
<> ((
len p)
-' 1);
thus (r1
. k)
= ((LMp
. (k
-' 1))
* (LMq
. ((j
+ 1)
-' k))) by
A42,
A44
.= ((
0. L)
* (LMq
. ((j
+ 1)
-' k))) by
A45,
Def1
.= (
0. L);
end;
suppose
A46: (k
-' 1)
= ((
len p)
-' 1);
A47: k
in (
Seg (
len r1)) by
A44,
FINSEQ_1:def 3;
then (
0
+ 1)
<= k by
FINSEQ_1: 1;
then (k
- 1)
>=
0 by
XREAL_1: 19;
then
A48: (k
-' 1)
= (k
- 1) by
XREAL_0:def 2;
(
0
+ k)
<= (j
+ 1) by
A40,
A47,
FINSEQ_1: 1;
then ((j
+ 1)
- k)
>=
0 by
XREAL_1: 19;
then
A49: ((j
+ 1)
-' k)
= ((j
- (
len p))
+ 1) by
A6,
A46,
A48,
XREAL_0:def 2;
A50: ((j
- (
len p))
+ 1)
<> (((i1
-' 1)
- (
len p))
+ 1) by
A43;
thus (r1
. k)
= ((LMp
. (k
-' 1))
* (LMq
. ((j
+ 1)
-' k))) by
A42,
A44
.= ((LMp
. (k
-' 1))
* (
0. L)) by
A22,
A9,
A49,
A50,
Def1
.= (
0. L);
end;
end;
hence ((LMp
*' LMq)
. j)
= (
0. L) by
A41,
POLYNOM3: 1;
end;
end;
hence ((LMp
*' LMq)
. j)
= (
0. L);
end;
then
0
is_at_least_length_of (LMp
*' LMq);
then (
len (LMp
*' LMq))
=
0 by
ALGSEQ_1:def 3;
then (LMp
*' LMq)
= (
0_. L) by
Th5;
then (
eval ((LMp
*' LMq),x))
= (
0. L) by
Th17;
hence thesis by
A14,
A21,
A39;
end;
end;
Lm3: for L be
add-associative
right_zeroed
right_complementable
left_unital
distributive
commutative
associative non
trivial
doubleLoopStr holds for p,q be
Polynomial of L holds for x be
Element of L holds (
eval (((
Leading-Monomial p)
*' (
Leading-Monomial q)),x))
= ((
eval ((
Leading-Monomial p),x))
* (
eval ((
Leading-Monomial q),x)))
proof
let L be
add-associative
right_zeroed
right_complementable
left_unital
distributive
commutative
associative non
trivial
doubleLoopStr;
let p,q be
Polynomial of L;
let x be
Element of L;
set p1 = ((
len p)
-' 1);
set q1 = ((
len q)
-' 1);
per cases ;
suppose
A1: (
len p)
<>
0 & (
len q)
<>
0 ;
then
A2: (
len q)
>= (
0
+ 1) by
NAT_1: 13;
then ((
len q)
- 1)
>=
0 by
XREAL_1: 19;
then
A3: ((
len q)
- 1)
= ((
len q)
-' 1) by
XREAL_0:def 2;
A4: (
len p)
>= (
0
+ 1) by
A1,
NAT_1: 13;
then ((
len p)
- 1)
>=
0 by
XREAL_1: 19;
then
A5: ((
len p)
- 1)
= ((
len p)
-' 1) by
XREAL_0:def 2;
((
len p)
+ (
len q))
>= (
0
+ (1
+ 1)) by
A4,
A2,
XREAL_1: 7;
then (((
len p)
+ (
len q))
- 2)
>=
0 by
XREAL_1: 19;
then
A6: (((
len p)
+ (
len q))
-' 2)
= (((
len p)
+ (
len q))
- 2) by
XREAL_0:def 2;
A7: (((
len p)
+ (
len q))
- (1
+ 1))
= (((
len p)
- 1)
+ ((
len q)
- 1));
set P1 = ((
power L)
. (x,p1));
set Q1 = ((
power L)
. (x,q1));
thus (
eval (((
Leading-Monomial p)
*' (
Leading-Monomial q)),x))
= (((p
. p1)
* (q
. q1))
* ((
power L)
. (x,(((
len p)
+ (
len q))
-' 2)))) by
A1,
Lm2
.= (((p
. p1)
* (q
. q1))
* (P1
* Q1)) by
A5,
A3,
A6,
A7,
POLYNOM2: 1
.= ((p
. p1)
* ((q
. q1)
* (P1
* Q1))) by
GROUP_1:def 3
.= ((p
. p1)
* (P1
* ((q
. q1)
* Q1))) by
GROUP_1:def 3
.= (((p
. p1)
* P1)
* ((q
. q1)
* Q1)) by
GROUP_1:def 3
.= (((p
. p1)
* P1)
* (
eval ((
Leading-Monomial q),x))) by
Th22
.= ((
eval ((
Leading-Monomial p),x))
* (
eval ((
Leading-Monomial q),x))) by
Th22;
end;
suppose (
len p)
=
0 ;
then
A8: (
Leading-Monomial p)
= (
0_. L) by
Th12;
hence (
eval (((
Leading-Monomial p)
*' (
Leading-Monomial q)),x))
= (
eval ((
0_. L),x)) by
Th2
.= (
0. L) by
Th17
.= ((
0. L)
* (
eval ((
Leading-Monomial q),x)))
.= ((
eval ((
Leading-Monomial p),x))
* (
eval ((
Leading-Monomial q),x))) by
A8,
Th17;
end;
suppose (
len q)
=
0 ;
then (
len (
Leading-Monomial q))
=
0 by
Th15;
then
A9: (
Leading-Monomial q)
= (
0_. L) by
Th5;
hence (
eval (((
Leading-Monomial p)
*' (
Leading-Monomial q)),x))
= (
eval ((
0_. L),x)) by
POLYNOM3: 34
.= (
0. L) by
Th17
.= ((
eval ((
Leading-Monomial p),x))
* (
0. L))
.= ((
eval ((
Leading-Monomial p),x))
* (
eval ((
Leading-Monomial q),x))) by
A9,
Th17;
end;
end;
theorem ::
POLYNOM4:23
Th23: for L be
add-associative
right_zeroed
right_complementable
Abelian
left_unital
distributive
commutative
associative non
trivial
doubleLoopStr holds for p,q be
Polynomial of L holds for x be
Element of L holds (
eval (((
Leading-Monomial p)
*' q),x))
= ((
eval ((
Leading-Monomial p),x))
* (
eval (q,x)))
proof
let L be
add-associative
right_zeroed
right_complementable
Abelian
left_unital
distributive
commutative
associative non
trivial
doubleLoopStr;
let p1,q be
Polynomial of L;
let x be
Element of L;
set p = (
Leading-Monomial p1);
defpred
P[
Nat] means for q be
Polynomial of L holds (
len q)
= $1 implies (
eval ((p
*' q),x))
= ((
eval (p,x))
* (
eval (q,x)));
A1: for k be
Nat st for n be
Nat st n
< k holds
P[n] holds
P[k]
proof
let k be
Nat;
assume
A2: for n be
Nat st n
< k holds for q be
Polynomial of L holds (
len q)
= n implies (
eval ((p
*' q),x))
= ((
eval (p,x))
* (
eval (q,x)));
let q be
Polynomial of L;
assume
A3: (
len q)
= k;
per cases ;
suppose
A4: (
len q)
<>
0 ;
set LMq = (
Leading-Monomial q);
consider r be
Polynomial of L such that
A5: (
len r)
< (
len q) and
A6: q
= (r
+ (
Leading-Monomial q)) and for n be
Element of
NAT st n
< ((
len q)
- 1) holds (r
. n)
= (q
. n) by
A4,
Th16;
thus (
eval ((p
*' q),x))
= (
eval (((p
*' r)
+ (p
*' LMq)),x)) by
A6,
POLYNOM3: 31
.= ((
eval ((p
*' r),x))
+ (
eval ((p
*' LMq),x))) by
Th19
.= (((
eval (p,x))
* (
eval (r,x)))
+ (
eval ((p
*' LMq),x))) by
A2,
A3,
A5
.= (((
eval (p,x))
* (
eval (r,x)))
+ ((
eval (p,x))
* (
eval (LMq,x)))) by
Lm3
.= ((
eval (p,x))
* ((
eval (r,x))
+ (
eval (LMq,x)))) by
VECTSP_1:def 7
.= ((
eval (p,x))
* (
eval (q,x))) by
A6,
Th19;
end;
suppose (
len q)
=
0 ;
then
A7: q
= (
0_. L) by
Th5;
hence (
eval ((p
*' q),x))
= (
eval ((
0_. L),x)) by
POLYNOM3: 34
.= (
0. L) by
Th17
.= ((
eval (p,x))
* (
0. L))
.= ((
eval (p,x))
* (
eval (q,x))) by
A7,
Th17;
end;
end;
A8: for n be
Nat holds
P[n] from
NAT_1:sch 4(
A1);
(
len q)
= (
len q);
hence thesis by
A8;
end;
theorem ::
POLYNOM4:24
Th24: for L be
add-associative
right_zeroed
right_complementable
Abelian
left_unital
distributive
commutative
associative non
trivial
doubleLoopStr holds for p,q be
Polynomial of L holds for x be
Element of L holds (
eval ((p
*' q),x))
= ((
eval (p,x))
* (
eval (q,x)))
proof
let L be
add-associative
right_zeroed
right_complementable
Abelian
left_unital
distributive
commutative
associative non
trivial
doubleLoopStr;
let p,q be
Polynomial of L;
let x be
Element of L;
defpred
P[
Nat] means for p be
Polynomial of L holds (
len p)
= $1 implies (
eval ((p
*' q),x))
= ((
eval (p,x))
* (
eval (q,x)));
A1: for k be
Nat st for n be
Nat st n
< k holds
P[n] holds
P[k]
proof
let k be
Nat;
assume
A2: for n be
Nat st n
< k holds for p be
Polynomial of L holds (
len p)
= n implies (
eval ((p
*' q),x))
= ((
eval (p,x))
* (
eval (q,x)));
let p be
Polynomial of L;
assume
A3: (
len p)
= k;
per cases ;
suppose
A4: (
len p)
<>
0 ;
set LMp = (
Leading-Monomial p);
consider r be
Polynomial of L such that
A5: (
len r)
< (
len p) and
A6: p
= (r
+ (
Leading-Monomial p)) and for n be
Element of
NAT st n
< ((
len p)
- 1) holds (r
. n)
= (p
. n) by
A4,
Th16;
thus (
eval ((p
*' q),x))
= (
eval (((r
*' q)
+ (LMp
*' q)),x)) by
A6,
POLYNOM3: 32
.= ((
eval ((r
*' q),x))
+ (
eval ((LMp
*' q),x))) by
Th19
.= (((
eval (r,x))
* (
eval (q,x)))
+ (
eval ((LMp
*' q),x))) by
A2,
A3,
A5
.= (((
eval (r,x))
* (
eval (q,x)))
+ ((
eval (LMp,x))
* (
eval (q,x)))) by
Th23
.= (((
eval (r,x))
+ (
eval (LMp,x)))
* (
eval (q,x))) by
VECTSP_1:def 7
.= ((
eval (p,x))
* (
eval (q,x))) by
A6,
Th19;
end;
suppose (
len p)
=
0 ;
then
A7: p
= (
0_. L) by
Th5;
hence (
eval ((p
*' q),x))
= (
eval ((
0_. L),x)) by
Th2
.= (
0. L) by
Th17
.= ((
0. L)
* (
eval (q,x)))
.= ((
eval (p,x))
* (
eval (q,x))) by
A7,
Th17;
end;
end;
A8: for n be
Nat holds
P[n] from
NAT_1:sch 4(
A1);
(
len p)
= (
len p);
hence thesis by
A8;
end;
begin
definition
let L be
add-associative
right_zeroed
right_complementable
distributive
unital non
empty
doubleLoopStr;
let x be
Element of L;
::
POLYNOM4:def3
func
Polynom-Evaluation (L,x) ->
Function of (
Polynom-Ring L), L means
:
Def3: for p be
Polynomial of L holds (it
. p)
= (
eval (p,x));
existence
proof
defpred
P[
set,
set] means ex p be
Polynomial of L st p
= $1 & $2
= (
eval (p,x));
A1: for y be
Element of (
Polynom-Ring L) holds ex z be
Element of L st
P[y, z]
proof
let y be
Element of (
Polynom-Ring L);
reconsider p = y as
Polynomial of L by
POLYNOM3:def 10;
take (
eval (p,x));
take p;
thus thesis;
end;
consider f be
Function of the
carrier of (
Polynom-Ring L), the
carrier of L such that
A2: for y be
Element of (
Polynom-Ring L) holds
P[y, (f
. y)] from
FUNCT_2:sch 3(
A1);
reconsider f as
Function of (
Polynom-Ring L), L;
take f;
let p be
Polynomial of L;
p
in the
carrier of (
Polynom-Ring L) by
POLYNOM3:def 10;
then ex q be
Polynomial of L st q
= p & (f
. p)
= (
eval (q,x)) by
A2;
hence thesis;
end;
uniqueness
proof
let f1,f2 be
Function of (
Polynom-Ring L), L such that
A3: for p be
Polynomial of L holds (f1
. p)
= (
eval (p,x)) and
A4: for p be
Polynomial of L holds (f2
. p)
= (
eval (p,x));
now
let y be
Element of (
Polynom-Ring L);
reconsider p = y as
Polynomial of L by
POLYNOM3:def 10;
thus (f1
. y)
= (
eval (p,x)) by
A3
.= (f2
. y) by
A4;
end;
hence f1
= f2 by
FUNCT_2: 63;
end;
end
registration
let L be
add-associative
right_zeroed
right_complementable
distributive
associative
well-unital non
degenerated
Abelian non
empty
doubleLoopStr;
let x be
Element of L;
cluster (
Polynom-Evaluation (L,x)) ->
unity-preserving;
coherence
proof
thus ((
Polynom-Evaluation (L,x))
. (
1_ (
Polynom-Ring L)))
= ((
Polynom-Evaluation (L,x))
. (
1_. L)) by
POLYNOM3: 37
.= (
eval ((
1_. L),x)) by
Def3
.= (
1_ L) by
Th18;
end;
end
registration
let L be
Abelian
add-associative
right_zeroed
right_complementable
distributive
unital non
empty
doubleLoopStr;
let x be
Element of L;
cluster (
Polynom-Evaluation (L,x)) ->
additive;
coherence
proof
let a,b be
Element of (
Polynom-Ring L);
reconsider p = a, q = b as
Polynomial of L by
POLYNOM3:def 10;
thus ((
Polynom-Evaluation (L,x))
. (a
+ b))
= ((
Polynom-Evaluation (L,x))
. (p
+ q)) by
POLYNOM3:def 10
.= (
eval ((p
+ q),x)) by
Def3
.= ((
eval (p,x))
+ (
eval (q,x))) by
Th19
.= (((
Polynom-Evaluation (L,x))
. a)
+ (
eval (q,x))) by
Def3
.= (((
Polynom-Evaluation (L,x))
. a)
+ ((
Polynom-Evaluation (L,x))
. b)) by
Def3;
end;
end
registration
let L be
add-associative
right_zeroed
right_complementable
Abelian
left_unital
distributive
commutative
associative non
trivial
doubleLoopStr;
let x be
Element of L;
cluster (
Polynom-Evaluation (L,x)) ->
multiplicative;
coherence
proof
let a,b be
Element of (
Polynom-Ring L);
reconsider p = a, q = b as
Polynomial of L by
POLYNOM3:def 10;
thus ((
Polynom-Evaluation (L,x))
. (a
* b))
= ((
Polynom-Evaluation (L,x))
. (p
*' q)) by
POLYNOM3:def 10
.= (
eval ((p
*' q),x)) by
Def3
.= ((
eval (p,x))
* (
eval (q,x))) by
Th24
.= (((
Polynom-Evaluation (L,x))
. a)
* (
eval (q,x))) by
Def3
.= (((
Polynom-Evaluation (L,x))
. a)
* ((
Polynom-Evaluation (L,x))
. b)) by
Def3;
end;
end
registration
let L be
add-associative
right_zeroed
right_complementable
Abelian
well-unital
distributive
commutative
associative non
degenerated
doubleLoopStr;
let x be
Element of L;
cluster (
Polynom-Evaluation (L,x)) ->
RingHomomorphism;
coherence ;
end