sin_cos3.miz
begin
reserve x,y for
Real;
reserve z,z1,z2 for
Complex;
reserve n for
Element of
NAT ;
definition
::
SIN_COS3:def1
func
sin_C ->
Function of
COMPLEX ,
COMPLEX means
:
Def1: (it
. z)
= (((
exp (
<i>
* z))
- (
exp (
- (
<i>
* z))))
/ (2
*
<i> ));
existence
proof
deffunc
U(
Complex) = (
In ((((
exp (
<i>
* $1))
- (
exp (
- (
<i>
* $1))))
/ (2
*
<i> )),
COMPLEX ));
consider f be
Function of
COMPLEX ,
COMPLEX such that
A1: for z be
Element of
COMPLEX holds (f
. z)
=
U(z) from
FUNCT_2:sch 4;
take f;
let z be
Complex;
reconsider z as
Element of
COMPLEX by
XCMPLX_0:def 2;
(f
. z)
=
U(z) by
A1;
hence thesis;
end;
uniqueness
proof
let f1,f2 be
Function of
COMPLEX ,
COMPLEX such that
A2: (f1
. z)
= (((
exp (
<i>
* z))
- (
exp (
- (
<i>
* z))))
/ (2
*
<i> )) and
A3: (f2
. z)
= (((
exp (
<i>
* z))
- (
exp (
- (
<i>
* z))))
/ (2
*
<i> ));
let z be
Element of
COMPLEX ;
thus (f1
. z)
= (((
exp (
<i>
* z))
- (
exp (
- (
<i>
* z))))
/ (2
*
<i> )) by
A2
.= (f2
. z) by
A3;
end;
end
definition
::
SIN_COS3:def2
func
cos_C ->
Function of
COMPLEX ,
COMPLEX means
:
Def2: (it
. z)
= (((
exp (
<i>
* z))
+ (
exp (
- (
<i>
* z))))
/ 2);
existence
proof
deffunc
U(
Complex) = (
In ((((
exp (
<i>
* $1))
+ (
exp (
- (
<i>
* $1))))
/ 2),
COMPLEX ));
consider f be
Function of
COMPLEX ,
COMPLEX such that
A1: for z be
Element of
COMPLEX holds (f
. z)
=
U(z) from
FUNCT_2:sch 4;
take f;
let z;
reconsider z as
Element of
COMPLEX by
XCMPLX_0:def 2;
(f
. z)
=
U(z) by
A1;
hence thesis;
end;
uniqueness
proof
let f1,f2 be
Function of
COMPLEX ,
COMPLEX such that
A2: (f1
. z)
= (((
exp (
<i>
* z))
+ (
exp (
- (
<i>
* z))))
/ 2) and
A3: (f2
. z)
= (((
exp (
<i>
* z))
+ (
exp (
- (
<i>
* z))))
/ 2);
let z be
Element of
COMPLEX ;
thus (f1
. z)
= (((
exp (
<i>
* z))
+ (
exp (
- (
<i>
* z))))
/ 2) by
A2
.= (f2
. z) by
A3;
end;
end
definition
::
SIN_COS3:def3
func
sinh_C ->
Function of
COMPLEX ,
COMPLEX means
:
Def3: (it
. z)
= (((
exp z)
- (
exp (
- z)))
/ 2);
existence
proof
deffunc
U(
Complex) = (
In ((((
exp $1)
- (
exp (
- $1)))
/ 2),
COMPLEX ));
consider f be
Function of
COMPLEX ,
COMPLEX such that
A1: for z be
Element of
COMPLEX holds (f
. z)
=
U(z) from
FUNCT_2:sch 4;
take f;
let z;
reconsider z as
Element of
COMPLEX by
XCMPLX_0:def 2;
(f
. z)
=
U(z) by
A1;
hence thesis;
end;
uniqueness
proof
let f1,f2 be
Function of
COMPLEX ,
COMPLEX such that
A2: (f1
. z)
= (((
exp z)
- (
exp (
- z)))
/ 2) and
A3: (f2
. z)
= (((
exp z)
- (
exp (
- z)))
/ 2);
let z be
Element of
COMPLEX ;
thus (f1
. z)
= (((
exp z)
- (
exp (
- z)))
/ 2) by
A2
.= (f2
. z) by
A3;
end;
end
definition
::
SIN_COS3:def4
func
cosh_C ->
Function of
COMPLEX ,
COMPLEX means
:
Def4: (it
. z)
= (((
exp z)
+ (
exp (
- z)))
/ 2);
existence
proof
deffunc
U(
Complex) = (
In ((((
exp $1)
+ (
exp (
- $1)))
/ 2),
COMPLEX ));
consider f be
Function of
COMPLEX ,
COMPLEX such that
A1: for z be
Element of
COMPLEX holds (f
. z)
=
U(z) from
FUNCT_2:sch 4;
take f;
let z;
reconsider z as
Element of
COMPLEX by
XCMPLX_0:def 2;
(f
. z)
=
U(z) by
A1;
hence thesis;
end;
uniqueness
proof
let f1,f2 be
Function of
COMPLEX ,
COMPLEX such that
A2: (f1
. z)
= (((
exp z)
+ (
exp (
- z)))
/ 2) and
A3: (f2
. z)
= (((
exp z)
+ (
exp (
- z)))
/ 2);
let z be
Element of
COMPLEX ;
thus (f1
. z)
= (((
exp z)
+ (
exp (
- z)))
/ 2) by
A2
.= (f2
. z) by
A3;
end;
end
Lm1: for z be
Complex holds (
sinh_C
/. z)
= (((
exp z)
- (
exp (
- z)))
/ 2) by
Def3;
Lm2: for z be
Complex holds (
cosh_C
/. z)
= (((
exp z)
+ (
exp (
- z)))
/ 2) by
Def4;
Lm3: for z be
Complex holds ((
exp z)
* (
exp (
- z)))
= 1
proof
let z be
Complex;
thus ((
exp z)
* (
exp (
- z)))
= (
exp (z
+ (
- z))) by
SIN_COS: 23
.= 1 by
SIN_COS: 49,
SIN_COS: 51;
end;
begin
theorem ::
SIN_COS3:1
for z be
Element of
COMPLEX holds (((
sin_C
/. z)
* (
sin_C
/. z))
+ ((
cos_C
/. z)
* (
cos_C
/. z)))
= 1
proof
let z be
Element of
COMPLEX ;
set z1 = (
exp (
<i>
* z)), z2 = (
exp (
- (
<i>
* z)));
(((
sin_C
/. z)
* (
sin_C
/. z))
+ ((
cos_C
/. z)
* (
cos_C
/. z)))
= (((
sin_C
/. z)
* (
sin_C
/. z))
+ ((
cos_C
/. z)
* (((
exp (
<i>
* z))
+ (
exp (
- (
<i>
* z))))
/ 2))) by
Def2
.= (((
sin_C
/. z)
* (
sin_C
/. z))
+ (((z1
+ z2)
/ 2)
* ((z1
+ z2)
/ 2))) by
Def2
.= ((((z1
- z2)
/ (2
*
<i> ))
* (
sin_C
/. z))
+ (((z1
+ z2)
/ 2)
* ((z1
+ z2)
/ 2))) by
Def1
.= ((((z1
- z2)
/ (2
*
<i> ))
* ((z1
- z2)
/ (2
*
<i> )))
+ (((z1
+ z2)
/ 2)
* ((z1
+ z2)
/ 2))) by
Def1
.= ((((z1
* z2)
+ (z1
* z2))
+ ((z1
* z2)
+ (z1
* z2)))
/ 4)
.= (((1
+ (z1
* (
exp (
- (
<i>
* z)))))
+ ((z1
* (
exp (
- (
<i>
* z))))
+ (z1
* (
exp (
- (
<i>
* z))))))
/ 4) by
Lm3
.= (((1
+ 1)
+ ((z1
* (
exp (
- (
<i>
* z))))
+ (z1
* (
exp (
- (
<i>
* z))))))
/ 4) by
Lm3
.= (((1
+ 1)
+ ((z1
* (
exp (
- (
<i>
* z))))
+ 1))
/ 4) by
Lm3
.= ((2
+ 2)
/ 4) by
Lm3;
hence thesis;
end;
theorem ::
SIN_COS3:2
Th2: for z be
Complex holds (
- (
sin_C
/. z))
= (
sin_C
/. (
- z))
proof
let z be
Complex;
(
sin_C
/. (
- z))
= (((
exp (
<i>
* (
- z)))
- (
exp (
- (
<i>
* (
- z)))))
/ (2
*
<i> )) by
Def1
.= (
- (((
exp (
<i>
* z))
- (
exp (
- (
<i>
* z))))
/ (2
*
<i> )));
then (
- (
sin_C
/. z))
= (
sin_C
/. (
- z)) by
Def1;
hence thesis;
end;
theorem ::
SIN_COS3:3
Th3: for z be
Complex holds (
cos_C
/. z)
= (
cos_C
/. (
- z))
proof
let z be
Complex;
reconsider z as
Element of
COMPLEX by
XCMPLX_0:def 2;
(
cos_C
/. (
- z))
= (((
exp (
<i>
* (
- z)))
+ (
exp (
- (
<i>
* (
- z)))))
/ 2) by
Def2
.= (((
exp (
- (
<i>
* z)))
+ (
exp (
<i>
* z)))
/ 2);
then (
cos_C
/. z)
= (
cos_C
/. (
- z)) by
Def2;
hence thesis;
end;
theorem ::
SIN_COS3:4
Th4: for z1,z2 be
Complex holds (
sin_C
/. (z1
+ z2))
= (((
sin_C
/. z1)
* (
cos_C
/. z2))
+ ((
cos_C
/. z1)
* (
sin_C
/. z2)))
proof
let z1,z2 be
Complex;
reconsider z1, z2 as
Element of
COMPLEX by
XCMPLX_0:def 2;
reconsider e1 = (
exp (
<i>
* z1)), e2 = (
exp (
- (
<i>
* z1))), e3 = (
exp (
<i>
* z2)), e4 = (
exp (
- (
<i>
* z2))) as
Element of
COMPLEX ;
(((
sin_C
/. z1)
* (
cos_C
/. z2))
+ ((
cos_C
/. z1)
* (
sin_C
/. z2)))
= (((((
exp (
<i>
* z1))
- (
exp (
- (
<i>
* z1))))
/ (2
*
<i> ))
* (
cos_C
/. z2))
+ ((
cos_C
/. z1)
* (
sin_C
/. z2))) by
Def1
.= (((((
exp (
<i>
* z1))
- (
exp (
- (
<i>
* z1))))
/ (2
*
<i> ))
* (
cos_C
/. z2))
+ ((
cos_C
/. z1)
* (((
exp (
<i>
* z2))
- (
exp (
- (
<i>
* z2))))
/ (2
*
<i> )))) by
Def1
.= (((((
exp (
<i>
* z1))
- (
exp (
- (
<i>
* z1))))
/ (2
*
<i> ))
* (((
exp (
- (
<i>
* z2)))
+ (
exp (
<i>
* z2)))
/ 2))
+ ((
cos_C
/. z1)
* (((
exp (
<i>
* z2))
- (
exp (
- (
<i>
* z2))))
/ (2
*
<i> )))) by
Def2
.= (((((
exp (
<i>
* z1))
- (
exp (
- (
<i>
* z1))))
* ((
exp (
- (
<i>
* z2)))
+ (
exp (
<i>
* z2))))
/ ((2
*
<i> )
* 2))
+ ((((
exp (
- (
<i>
* z1)))
+ (
exp (
<i>
* z1)))
/ 2)
* (((
exp (
<i>
* z2))
- (
exp (
- (
<i>
* z2))))
/ (2
*
<i> )))) by
Def2
.= ((((e1
* e3)
+ (e1
* e3))
- (((e1
* e4)
+ (e2
* e4))
- ((e1
* e4)
- (e2
* e4))))
/ ((2
*
<i> )
* 2))
.= (((((
Re (e1
* e3))
+ (
Re (e1
* e3)))
+ (((
Im (e1
* e3))
+ (
Im (e1
* e3)))
*
<i> ))
- ((e2
* e4)
+ (e2
* e4)))
/ ((2
*
<i> )
* 2)) by
COMPLEX1: 81
.= ((((2
* (
Re (e1
* e3)))
+ ((2
* (
Im (e1
* e3)))
*
<i> ))
- ((e2
* e4)
+ (e2
* e4)))
/ ((2
*
<i> )
* 2))
.= ((((
Re (2
* (e1
* e3)))
+ ((2
* (
Im (e1
* e3)))
*
<i> ))
- ((e2
* e4)
+ (e2
* e4)))
/ ((2
*
<i> )
* 2)) by
COMSEQ_3: 17
.= ((((
Re (2
* (e1
* e3)))
+ ((
Im (2
* (e1
* e3)))
*
<i> ))
- ((e2
* e4)
+ (e2
* e4)))
/ ((2
*
<i> )
* 2)) by
COMSEQ_3: 17
.= (((2
* (e1
* e3))
- ((e2
* e4)
+ (e2
* e4)))
/ ((2
*
<i> )
* 2)) by
COMPLEX1: 13
.= (((2
* (e1
* e3))
- (((
Re (e2
* e4))
+ (
Re (e2
* e4)))
+ (((
Im (e2
* e4))
+ (
Im (e2
* e4)))
*
<i> )))
/ ((2
*
<i> )
* 2)) by
COMPLEX1: 81
.= (((2
* (e1
* e3))
- ((2
* (
Re (e2
* e4)))
+ ((2
* (
Im (e2
* e4)))
*
<i> )))
/ ((2
*
<i> )
* 2))
.= (((2
* (e1
* e3))
- ((
Re (2
* (e2
* e4)))
+ ((2
* (
Im (e2
* e4)))
*
<i> )))
/ ((2
*
<i> )
* 2)) by
COMSEQ_3: 17
.= (((2
* (e1
* e3))
- ((
Re (2
* (e2
* e4)))
+ ((
Im (2
* (e2
* e4)))
*
<i> )))
/ ((2
*
<i> )
* 2)) by
COMSEQ_3: 17
.= (((2
* (e1
* e3))
- (2
* (e2
* e4)))
/ ((2
*
<i> )
* 2)) by
COMPLEX1: 13
.= (((e1
* e3)
/ (2
*
<i> ))
- ((2
* (e2
* e4))
/ ((2
*
<i> )
* 2)))
.= (((
exp ((
<i>
* z1)
+ (
<i>
* z2)))
/ (2
*
<i> ))
- ((e2
* e4)
/ (2
*
<i> ))) by
SIN_COS: 23
.= (((
exp (
<i>
* (z1
+ z2)))
/ (2
*
<i> ))
- ((
exp ((
- (
<i>
* z1))
+ (
- (
<i>
* z2))))
/ (2
*
<i> ))) by
SIN_COS: 23
.= (((
exp (
<i>
* (z1
+ z2)))
- (
exp (
- (
<i>
* (z1
+ z2)))))
/ (2
*
<i> ));
then (
sin_C
/. (z1
+ z2))
= (((
sin_C
/. z1)
* (
cos_C
/. z2))
+ ((
cos_C
/. z1)
* (
sin_C
/. z2))) by
Def1;
hence thesis;
end;
theorem ::
SIN_COS3:5
(
sin_C
/. (z1
- z2))
= (((
sin_C
/. z1)
* (
cos_C
/. z2))
- ((
cos_C
/. z1)
* (
sin_C
/. z2)))
proof
(
sin_C
/. (z1
- z2))
= (
sin_C
/. (z1
+ (
- z2)))
.= (((
sin_C
/. z1)
* (
cos_C
/. (
- z2)))
+ ((
cos_C
/. z1)
* (
sin_C
/. (
- z2)))) by
Th4
.= (((
sin_C
/. z1)
* (
cos_C
/. z2))
+ ((
cos_C
/. z1)
* (
sin_C
/. (
- z2)))) by
Th3
.= (((
sin_C
/. z1)
* (
cos_C
/. z2))
+ ((
cos_C
/. z1)
* (
- (
sin_C
/. z2)))) by
Th2
.= (((
sin_C
/. z1)
* (
cos_C
/. z2))
+ (
- ((
cos_C
/. z1)
* (
sin_C
/. z2))));
hence thesis;
end;
theorem ::
SIN_COS3:6
Th6: for z1,z2 be
Complex holds (
cos_C
/. (z1
+ z2))
= (((
cos_C
/. z1)
* (
cos_C
/. z2))
- ((
sin_C
/. z1)
* (
sin_C
/. z2)))
proof
let z1,z2 be
Complex;
reconsider z1, z2 as
Element of
COMPLEX by
XCMPLX_0:def 2;
set e1 = (
exp (
<i>
* z1)), e2 = (
exp (
- (
<i>
* z1))), e3 = (
exp (
<i>
* z2)), e4 = (
exp (
- (
<i>
* z2)));
(((
cos_C
/. z1)
* (
cos_C
/. z2))
- ((
sin_C
/. z1)
* (
sin_C
/. z2)))
= (((
cos_C
/. z1)
* (
cos_C
/. z2))
- ((((
exp (
<i>
* z1))
- (
exp (
- (
<i>
* z1))))
/ (2
*
<i> ))
* (
sin_C
/. z2))) by
Def1
.= (((
cos_C
/. z1)
* (
cos_C
/. z2))
- ((((
exp (
<i>
* z1))
- (
exp (
- (
<i>
* z1))))
/ (2
*
<i> ))
* (((
exp (
<i>
* z2))
- (
exp (
- (
<i>
* z2))))
/ (2
*
<i> )))) by
Def1
.= (((
cos_C
/. z1)
* (((
exp (
<i>
* z2))
+ (
exp (
- (
<i>
* z2))))
/ 2))
- ((((
exp (
<i>
* z1))
- (
exp (
- (
<i>
* z1))))
/ (2
*
<i> ))
* (((
exp (
<i>
* z2))
- (
exp (
- (
<i>
* z2))))
/ (2
*
<i> )))) by
Def2
.= ((((e1
+ e2)
/ 2)
* ((e3
+ e4)
/ 2))
- (((e1
- e2)
/ (2
*
<i> ))
* ((e3
- e4)
/ (2
*
<i> )))) by
Def2
.= ((((e1
* e3)
+ (e1
* e3))
+ ((e2
* e4)
+ (e2
* e4)))
/ (2
* 2))
.= (((((
Re (e1
* e3))
+ (
Re (e1
* e3)))
+ (((
Im (e1
* e3))
+ (
Im (e1
* e3)))
*
<i> ))
+ ((e2
* e4)
+ (e2
* e4)))
/ (2
* 2)) by
COMPLEX1: 81
.= ((((2
* (
Re (e1
* e3)))
+ ((2
* (
Im (e1
* e3)))
*
<i> ))
+ ((e2
* e4)
+ (e2
* e4)))
/ (2
* 2))
.= ((((
Re (2
* (e1
* e3)))
+ ((2
* (
Im (e1
* e3)))
*
<i> ))
+ ((e2
* e4)
+ (e2
* e4)))
/ (2
* 2)) by
COMSEQ_3: 17
.= ((((
Re (2
* (e1
* e3)))
+ ((
Im (2
* (e1
* e3)))
*
<i> ))
+ ((e2
* e4)
+ (e2
* e4)))
/ (2
* 2)) by
COMSEQ_3: 17
.= (((2
* (e1
* e3))
+ ((e2
* e4)
+ (e2
* e4)))
/ (2
* 2)) by
COMPLEX1: 13
.= (((2
* (e1
* e3))
+ (((
Re (e2
* e4))
+ (
Re (e2
* e4)))
+ (((
Im (e2
* e4))
+ (
Im (e2
* e4)))
*
<i> )))
/ (2
* 2)) by
COMPLEX1: 81
.= (((2
* (e1
* e3))
+ ((2
* (
Re (e2
* e4)))
+ ((2
* (
Im (e2
* e4)))
*
<i> )))
/ (2
* 2))
.= (((2
* (e1
* e3))
+ ((
Re (2
* (e2
* e4)))
+ ((2
* (
Im (e2
* e4)))
*
<i> )))
/ (2
* 2)) by
COMSEQ_3: 17
.= (((2
* (e1
* e3))
+ ((
Re (2
* (e2
* e4)))
+ ((
Im (2
* (e2
* e4)))
*
<i> )))
/ (2
* 2)) by
COMSEQ_3: 17
.= (((2
* (e1
* e3))
+ (2
* (e2
* e4)))
/ (2
* 2)) by
COMPLEX1: 13
.= (((e1
* e3)
/ 2)
+ ((2
* (e2
* e4))
/ (2
* 2)))
.= (((
exp ((
<i>
* z1)
+ (
<i>
* z2)))
/ 2)
+ ((e2
* e4)
/ 2)) by
SIN_COS: 23
.= (((
exp (
<i>
* (z1
+ z2)))
/ 2)
+ ((
exp ((
- (
<i>
* z1))
+ (
- (
<i>
* z2))))
/ 2)) by
SIN_COS: 23
.= (((
exp (
<i>
* (z1
+ z2)))
+ (
exp (
- (
<i>
* (z1
+ z2)))))
/ 2);
then (
cos_C
/. (z1
+ z2))
= (((
cos_C
/. z1)
* (
cos_C
/. z2))
- ((
sin_C
/. z1)
* (
sin_C
/. z2))) by
Def2;
hence thesis;
end;
theorem ::
SIN_COS3:7
(
cos_C
/. (z1
- z2))
= (((
cos_C
/. z1)
* (
cos_C
/. z2))
+ ((
sin_C
/. z1)
* (
sin_C
/. z2)))
proof
(
cos_C
/. (z1
- z2))
= (
cos_C
/. (z1
+ (
- z2)))
.= (((
cos_C
/. z1)
* (
cos_C
/. (
- z2)))
- ((
sin_C
/. z1)
* (
sin_C
/. (
- z2)))) by
Th6
.= (((
cos_C
/. z1)
* (
cos_C
/. z2))
- ((
sin_C
/. z1)
* (
sin_C
/. (
- z2)))) by
Th3
.= (((
cos_C
/. z1)
* (
cos_C
/. z2))
- ((
sin_C
/. z1)
* (
- (
sin_C
/. z2)))) by
Th2
.= (((
cos_C
/. z1)
* (
cos_C
/. z2))
- (
- ((
sin_C
/. z1)
* (
sin_C
/. z2))));
hence thesis;
end;
registration
let p be
Function of
COMPLEX ,
COMPLEX , i be
Complex;
identify p
. i with p
/. i;
correctness ;
end
theorem ::
SIN_COS3:8
Th8: (((
cosh_C
/. z)
* (
cosh_C
/. z))
- ((
sinh_C
/. z)
* (
sinh_C
/. z)))
= 1
proof
set e1 = (
exp z), e2 = (
exp (
- z));
(((
cosh_C
/. z)
* (
cosh_C
/. z))
- ((
sinh_C
/. z)
* (
sinh_C
/. z)))
= (((
cosh_C
/. z)
* (
cosh_C
/. z))
- (((e1
- e2)
/ 2)
* (
sinh_C
/. z))) by
Def3
.= (((
cosh_C
/. z)
* (
cosh_C
/. z))
- (((e1
- e2)
/ 2)
* ((e1
- e2)
/ 2))) by
Def3
.= ((((e1
+ e2)
/ 2)
* (
cosh_C
/. z))
- (((e1
- e2)
* (e1
- e2))
/ (2
* 2))) by
Def4
.= ((((e1
+ e2)
/ 2)
* ((e1
+ e2)
/ 2))
- (((e1
- e2)
* (e1
- e2))
/ (2
* 2))) by
Def4
.= ((((e1
* e2)
+ (e1
* e2))
+ ((e1
* e2)
+ (e1
* e2)))
/ (2
* 2))
.= (((1
+ (e1
* e2))
+ ((e1
* e2)
+ (e1
* e2)))
/ (2
* 2)) by
Lm3
.= (((1
+ 1)
+ ((e1
* e2)
+ (e1
* e2)))
/ (2
* 2)) by
Lm3
.= (((1
+ 1)
+ (1
+ (e1
* e2)))
/ (2
* 2)) by
Lm3
.= ((2
+ 2)
/ (2
* 2)) by
Lm3
.= 1;
hence thesis;
end;
theorem ::
SIN_COS3:9
Th9: (
- (
sinh_C
/. z))
= (
sinh_C
/. (
- z))
proof
(
sinh_C
/. (
- z))
= (((
exp (
- z))
- (
exp (
- (
- z))))
/ 2) by
Def3
.= (
- (((
exp z)
- (
exp (
- z)))
/ 2));
hence thesis by
Def3;
end;
theorem ::
SIN_COS3:10
Th10: (
cosh_C
/. z)
= (
cosh_C
/. (
- z))
proof
(
cosh_C
/. (
- z))
= (((
exp (
- z))
+ (
exp (
- (
- z))))
/ 2) by
Def4
.= (((
exp (
- z))
+ (
exp z))
/ 2);
hence thesis by
Def4;
end;
theorem ::
SIN_COS3:11
Th11: (
sinh_C
/. (z1
+ z2))
= (((
sinh_C
/. z1)
* (
cosh_C
/. z2))
+ ((
cosh_C
/. z1)
* (
sinh_C
/. z2)))
proof
set e1 = (
exp z1), e2 = (
exp (
- z1)), e3 = (
exp z2), e4 = (
exp (
- z2));
(((
sinh_C
/. z1)
* (
cosh_C
/. z2))
+ ((
cosh_C
/. z1)
* (
sinh_C
/. z2)))
= ((((e1
- e2)
/ 2)
* (
cosh_C
/. z2))
+ ((
cosh_C
/. z1)
* (
sinh_C
/. z2))) by
Def3
.= ((((e1
- e2)
/ 2)
* (
cosh_C
/. z2))
+ ((
cosh_C
/. z1)
* ((e3
- e4)
/ 2))) by
Def3
.= ((((e1
- e2)
/ 2)
* (
cosh_C
/. z2))
+ (((e1
+ e2)
/ 2)
* ((e3
- e4)
/ 2))) by
Def4
.= ((((e1
- e2)
/ 2)
* ((e3
+ e4)
/ 2))
+ (((e1
+ e2)
/ 2)
* ((e3
- e4)
/ 2))) by
Def4
.= ((((e1
* e3)
+ (e1
* e3))
- ((e2
* e4)
+ (e2
* e4)))
/ 4)
.= (((((
Re (e1
* e3))
+ (
Re (e1
* e3)))
+ (((
Im (e1
* e3))
+ (
Im (e1
* e3)))
*
<i> ))
- ((e2
* e4)
+ (e2
* e4)))
/ 4) by
COMPLEX1: 81
.= ((((2
* (
Re (e1
* e3)))
+ ((2
* (
Im (e1
* e3)))
*
<i> ))
- ((e2
* e4)
+ (e2
* e4)))
/ 4)
.= ((((
Re (2
* (e1
* e3)))
+ ((2
* (
Im (e1
* e3)))
*
<i> ))
- ((e2
* e4)
+ (e2
* e4)))
/ 4) by
COMSEQ_3: 17
.= ((((
Re (2
* (e1
* e3)))
+ ((
Im (2
* (e1
* e3)))
*
<i> ))
- ((e2
* e4)
+ (e2
* e4)))
/ 4) by
COMSEQ_3: 17
.= (((2
* (e1
* e3))
- ((e2
* e4)
+ (e2
* e4)))
/ 4) by
COMPLEX1: 13
.= (((2
* (e1
* e3))
- (((
Re (e2
* e4))
+ (
Re (e2
* e4)))
+ (((
Im (e2
* e4))
+ (
Im (e2
* e4)))
*
<i> )))
/ 4) by
COMPLEX1: 81
.= (((2
* (e1
* e3))
- ((2
* (
Re (e2
* e4)))
+ ((2
* (
Im (e2
* e4)))
*
<i> )))
/ 4)
.= (((2
* (e1
* e3))
- ((
Re (2
* (e2
* e4)))
+ ((2
* (
Im (e2
* e4)))
*
<i> )))
/ 4) by
COMSEQ_3: 17
.= (((2
* (e1
* e3))
- ((
Re (2
* (e2
* e4)))
+ ((
Im (2
* (e2
* e4)))
*
<i> )))
/ 4) by
COMSEQ_3: 17
.= (((2
* (e1
* e3))
- (2
* (e2
* e4)))
/ 4) by
COMPLEX1: 13
.= (((e1
* e3)
/ 2)
- ((2
* (e2
* e4))
/ (2
* 2)))
.= (((
exp (z1
+ z2))
/ 2)
- ((e2
* e4)
/ 2)) by
SIN_COS: 23
.= (((
exp (z1
+ z2))
/ 2)
- ((
exp ((
- z1)
+ (
- z2)))
/ 2)) by
SIN_COS: 23
.= (((
exp (z1
+ z2))
- (
exp (
- (z1
+ z2))))
/ 2);
hence thesis by
Def3;
end;
theorem ::
SIN_COS3:12
Th12: (
sinh_C
/. (z1
- z2))
= (((
sinh_C
/. z1)
* (
cosh_C
/. z2))
- ((
cosh_C
/. z1)
* (
sinh_C
/. z2)))
proof
(
sinh_C
/. (z1
- z2))
= (
sinh_C
/. (z1
+ (
- z2)))
.= (((
sinh_C
/. z1)
* (
cosh_C
/. (
- z2)))
+ ((
cosh_C
/. z1)
* (
sinh_C
/. (
- z2)))) by
Th11
.= (((
sinh_C
/. z1)
* (
cosh_C
/. z2))
+ ((
cosh_C
/. z1)
* (
sinh_C
/. (
- z2)))) by
Th10
.= (((
sinh_C
/. z1)
* (
cosh_C
/. z2))
+ ((
cosh_C
/. z1)
* (
- (
sinh_C
/. z2)))) by
Th9
.= (((
sinh_C
/. z1)
* (
cosh_C
/. z2))
+ (
- ((
cosh_C
/. z1)
* (
sinh_C
/. z2))));
hence thesis;
end;
theorem ::
SIN_COS3:13
Th13: (
cosh_C
/. (z1
- z2))
= (((
cosh_C
/. z1)
* (
cosh_C
/. z2))
- ((
sinh_C
/. z1)
* (
sinh_C
/. z2)))
proof
set e1 = (
exp z1), e2 = (
exp (
- z1)), e3 = (
exp z2), e4 = (
exp (
- z2));
(((
cosh_C
/. z1)
* (
cosh_C
/. z2))
- ((
sinh_C
/. z1)
* (
sinh_C
/. z2)))
= ((((e1
+ e2)
/ 2)
* (
cosh_C
/. z2))
- ((
sinh_C
/. z1)
* (
sinh_C
/. z2))) by
Def4
.= ((((e1
+ e2)
/ 2)
* ((e3
+ e4)
/ 2))
- ((
sinh_C
/. z1)
* (
sinh_C
/. z2))) by
Def4
.= ((((e1
+ e2)
* (e3
+ e4))
/ (2
* 2))
- (((e1
- e2)
/ 2)
* (
sinh_C
/. z2))) by
Def3
.= ((((e1
+ e2)
* (e3
+ e4))
/ (2
* 2))
- (((e1
- e2)
/ 2)
* ((e3
- e4)
/ 2))) by
Def3
.= ((((e2
* e3)
+ (e2
* e3))
+ (((e1
* e4)
+ (e2
* e4))
+ ((e1
* e4)
- (e2
* e4))))
/ (2
* 2))
.= (((((
Re (e2
* e3))
+ (
Re (e2
* e3)))
+ (((
Im (e2
* e3))
+ (
Im (e2
* e3)))
*
<i> ))
+ ((e1
* e4)
+ (e1
* e4)))
/ (2
* 2)) by
COMPLEX1: 81
.= ((((2
* (
Re (e2
* e3)))
+ ((2
* (
Im (e2
* e3)))
*
<i> ))
+ ((e1
* e4)
+ (e1
* e4)))
/ (2
* 2))
.= ((((
Re (2
* (e2
* e3)))
+ ((2
* (
Im (e2
* e3)))
*
<i> ))
+ ((e1
* e4)
+ (e1
* e4)))
/ (2
* 2)) by
COMSEQ_3: 17
.= ((((
Re (2
* (e2
* e3)))
+ ((
Im (2
* (e2
* e3)))
*
<i> ))
+ ((e1
* e4)
+ (e1
* e4)))
/ (2
* 2)) by
COMSEQ_3: 17
.= (((2
* (e2
* e3))
+ ((e1
* e4)
+ (e1
* e4)))
/ (2
* 2)) by
COMPLEX1: 13
.= (((2
* (e2
* e3))
+ (((
Re (e1
* e4))
+ (
Re (e1
* e4)))
+ (((
Im (e1
* e4))
+ (
Im (e1
* e4)))
*
<i> )))
/ (2
* 2)) by
COMPLEX1: 81
.= (((2
* (e2
* e3))
+ ((2
* (
Re (e1
* e4)))
+ ((2
* (
Im (e1
* e4)))
*
<i> )))
/ (2
* 2))
.= (((2
* (e2
* e3))
+ ((
Re (2
* (e1
* e4)))
+ ((2
* (
Im (e1
* e4)))
*
<i> )))
/ (2
* 2)) by
COMSEQ_3: 17
.= (((2
* (e2
* e3))
+ ((
Re (2
* (e1
* e4)))
+ ((
Im (2
* (e1
* e4)))
*
<i> )))
/ (2
* 2)) by
COMSEQ_3: 17
.= (((2
* (e2
* e3))
+ (2
* (e1
* e4)))
/ (2
* 2)) by
COMPLEX1: 13
.= (((e1
* e4)
/ 2)
+ ((2
* (e2
* e3))
/ (2
* 2)))
.= (((
exp (z1
+ (
- z2)))
/ 2)
+ ((e2
* e3)
/ 2)) by
SIN_COS: 23
.= (((
exp (z1
- z2))
/ 2)
+ ((
exp ((
- z1)
+ z2))
/ 2)) by
SIN_COS: 23
.= (((
exp (z1
- z2))
+ (
exp (
- (z1
- z2))))
/ 2);
hence thesis by
Def4;
end;
theorem ::
SIN_COS3:14
Th14: (
cosh_C
/. (z1
+ z2))
= (((
cosh_C
/. z1)
* (
cosh_C
/. z2))
+ ((
sinh_C
/. z1)
* (
sinh_C
/. z2)))
proof
(
cosh_C
/. (z1
+ z2))
= (
cosh_C
/. (z1
- (
- z2)))
.= (((
cosh_C
/. z1)
* (
cosh_C
/. (
- z2)))
- ((
sinh_C
/. z1)
* (
sinh_C
/. (
- z2)))) by
Th13
.= (((
cosh_C
/. z1)
* (
cosh_C
/. z2))
- ((
sinh_C
/. z1)
* (
sinh_C
/. (
- z2)))) by
Th10
.= (((
cosh_C
/. z1)
* (
cosh_C
/. z2))
- ((
sinh_C
/. z1)
* (
- (
sinh_C
/. z2)))) by
Th9
.= (((
cosh_C
/. z1)
* (
cosh_C
/. z2))
- (
- ((
sinh_C
/. z1)
* (
sinh_C
/. z2))));
hence thesis;
end;
theorem ::
SIN_COS3:15
Th15: for z be
Complex holds (
sin_C
/. (
<i>
* z))
= (
<i>
* (
sinh_C
/. z))
proof
let z be
Complex;
reconsider z as
Element of
COMPLEX by
XCMPLX_0:def 2;
(
sin_C
/. (
<i>
* z))
= (((
exp ((
<i>
*
<i> )
* z))
- (
exp (
- (
<i>
* (
<i>
* z)))))
/ (
<i>
* 2)) by
Def1
.= (
<i>
* (((
exp z)
- (
exp (
- z)))
/ 2));
then (
sin_C
/. (
<i>
* z))
= (
<i>
* (
sinh_C
/. z)) by
Def3;
hence thesis;
end;
theorem ::
SIN_COS3:16
Th16: for z be
Complex holds (
cos_C
/. (
<i>
* z))
= (
cosh_C
/. z)
proof
let z be
Complex;
reconsider z as
Element of
COMPLEX by
XCMPLX_0:def 2;
(
cos_C
/. (
<i>
* z))
= (((
exp ((
<i>
*
<i> )
* z))
+ (
exp (
- (
<i>
* (
<i>
* z)))))
/ 2) by
Def2
.= (((
exp (
- z))
+ (
exp z))
/ 2);
then (
cos_C
/. (
<i>
* z))
= (
cosh_C
/. z) by
Def4;
hence thesis;
end;
theorem ::
SIN_COS3:17
Th17: for z be
Complex holds (
sinh_C
/. (
<i>
* z))
= (
<i>
* (
sin_C
/. z))
proof
let z be
Complex;
reconsider z as
Element of
COMPLEX by
XCMPLX_0:def 2;
(
sinh_C
/. (
<i>
* z))
= (((
exp (
<i>
* z))
- (
exp (
- (
<i>
* z))))
/ 2) by
Def3
.= (
<i>
* (((
exp (
<i>
* z))
- (
exp (
- (
<i>
* z))))
/ (
<i>
* 2)));
then (
sinh_C
/. (
<i>
* z))
= (
<i>
* (
sin_C
/. z)) by
Def1;
hence thesis;
end;
theorem ::
SIN_COS3:18
Th18: for z be
Complex holds (
cosh_C
/. (
<i>
* z))
= (
cos_C
/. z)
proof
let z be
Complex;
reconsider z as
Element of
COMPLEX by
XCMPLX_0:def 2;
(
cosh_C
/. (
<i>
* z))
= (((
exp (
<i>
* z))
+ (
exp (
- (
<i>
* z))))
/ 2) by
Def4;
then (
cosh_C
/. (
<i>
* z))
= (
cos_C
/. z) by
Def2;
hence thesis;
end;
Lm4: (
exp (x
+ (y
*
<i> )))
= ((
exp_R x)
* ((
cos y)
+ ((
sin y)
*
<i> )))
proof
(
exp (x
+ (y
*
<i> )))
= ((
exp x)
* (
exp (y
*
<i> ))) by
SIN_COS: 23
.= ((
exp_R x)
* (
exp (y
*
<i> ))) by
SIN_COS: 49
.= ((
exp_R x)
* ((
cos y)
+ ((
sin y)
*
<i> ))) by
SIN_COS: 25;
hence thesis;
end;
theorem ::
SIN_COS3:19
Th19: for x, y holds (
exp (x
+ (y
*
<i> )))
= (((
exp_R
. x)
* (
cos
. y))
+ (((
exp_R
. x)
* (
sin
. y))
*
<i> ))
proof
let x, y;
(
exp (x
+ (y
*
<i> )))
= ((
exp_R x)
* ((
cos y)
+ ((
sin y)
*
<i> ))) by
Lm4
.= ((((
exp_R x)
* (
cos y))
- (
0
* (
sin y)))
+ ((((
exp_R x)
* (
sin y))
+ ((
cos y)
*
0 ))
*
<i> ))
.= (((
exp_R x)
* (
cos
. y))
+ (((
exp_R x)
* (
sin y))
*
<i> )) by
SIN_COS:def 19
.= (((
exp_R
. x)
* (
cos
. y))
+ (((
exp_R x)
* (
sin y))
*
<i> )) by
SIN_COS:def 23
.= (((
exp_R
. x)
* (
cos
. y))
+ (((
exp_R
. x)
* (
sin y))
*
<i> )) by
SIN_COS:def 23;
hence thesis by
SIN_COS:def 17;
end;
theorem ::
SIN_COS3:20
(
exp
0c )
= 1 by
SIN_COS: 49,
SIN_COS: 51;
theorem ::
SIN_COS3:21
Th21: (
sin_C
/.
0c )
=
0
proof
(
sin_C
/.
0c )
= (((
exp
0c )
- (
exp (
- (
<i>
*
0c ))))
/ (
<i>
* 2)) by
Def1
.= (
0c
/ (
<i>
* 2));
hence thesis;
end;
theorem ::
SIN_COS3:22
(
sinh_C
/.
0c )
=
0
proof
(
sinh_C
/.
0c )
= (((
exp
0c )
- (
exp (
-
0c )))
/ 2) by
Def3
.= (
0c
/ 2);
hence thesis;
end;
theorem ::
SIN_COS3:23
Th23: (
cos_C
/.
0c )
= 1
proof
(
cos_C
/.
0c )
= (((
exp
0c )
+ (
exp (
- (
<i>
*
0c ))))
/ 2) by
Def2
.= 1 by
SIN_COS: 49,
SIN_COS: 51;
hence thesis;
end;
theorem ::
SIN_COS3:24
(
cosh_C
/.
0c )
= 1
proof
(
cosh_C
/.
0c )
= (((
exp
0c )
+ (
exp (
-
0c )))
/ 2) by
Def4
.= 1 by
SIN_COS: 49,
SIN_COS: 51;
hence thesis;
end;
theorem ::
SIN_COS3:25
(
exp z)
= ((
cosh_C
/. z)
+ (
sinh_C
/. z))
proof
((
cosh_C
/. z)
+ (
sinh_C
/. z))
= ((((
exp z)
+ (
exp (
- z)))
/ 2)
+ (
sinh_C
/. z)) by
Def4
.= ((((
exp z)
+ (
exp (
- z)))
/ 2)
+ (((
exp z)
- (
exp (
- z)))
/ 2)) by
Def3
.= (((
exp z)
+ (((
exp (
- z))
+ (
exp z))
- (
exp (
- z))))
/ 2)
.= ((((
Re (
exp z))
+ (
Re (
exp z)))
+ (((
Im (
exp z))
+ (
Im (
exp z)))
*
<i> ))
/ 2) by
COMPLEX1: 81
.= (((2
* (
Re (
exp z)))
+ ((2
* (
Im (
exp z)))
*
<i> ))
/ 2)
.= (((
Re (2
* (
exp z)))
+ ((2
* (
Im (
exp z)))
*
<i> ))
/ 2) by
COMSEQ_3: 17
.= (((
Re (2
* (
exp z)))
+ ((
Im (2
* (
exp z)))
*
<i> ))
/ 2) by
COMSEQ_3: 17
.= ((2
* (
exp z))
/ 2) by
COMPLEX1: 13
.= ((
exp z)
* 1);
hence thesis;
end;
theorem ::
SIN_COS3:26
(
exp (
- z))
= ((
cosh_C
/. z)
- (
sinh_C
/. z))
proof
((
cosh_C
/. z)
- (
sinh_C
/. z))
= ((((
exp z)
+ (
exp (
- z)))
/ 2)
- (
sinh_C
/. z)) by
Def4
.= ((((
exp z)
+ (
exp (
- z)))
/ 2)
- (((
exp z)
- (
exp (
- z)))
/ 2)) by
Def3
.= (((
exp (
- z))
+ (
exp (
- z)))
/ 2)
.= ((((
Re (
exp (
- z)))
+ (
Re (
exp (
- z))))
+ (((
Im (
exp (
- z)))
+ (
Im (
exp (
- z))))
*
<i> ))
/ 2) by
COMPLEX1: 81
.= (((2
* (
Re (
exp (
- z))))
+ ((2
* (
Im (
exp (
- z))))
*
<i> ))
/ 2)
.= (((
Re (2
* (
exp (
- z))))
+ ((2
* (
Im (
exp (
- z))))
*
<i> ))
/ 2) by
COMSEQ_3: 17
.= (((
Re (2
* (
exp (
- z))))
+ ((
Im (2
* (
exp (
- z))))
*
<i> ))
/ 2) by
COMSEQ_3: 17
.= ((2
* (
exp (
- z)))
/ 2) by
COMPLEX1: 13
.= ((
exp (
- z))
* 1);
hence thesis;
end;
theorem ::
SIN_COS3:27
(
exp (z
+ ((2
*
PI )
*
<i> )))
= (
exp z)
proof
(z
+ ((2
*
PI )
*
<i> ))
= (((
Re z)
+ ((
Im z)
*
<i> ))
+ (((2
*
PI )
+ (
0
*
<i> ))
*
<i> )) by
COMPLEX1: 13
.= (((
Re z)
+
0 )
+ (((
Im z)
+ (2
*
PI ))
*
<i> ));
then (
exp (z
+ ((2
*
PI )
*
<i> )))
= (((
exp_R
. (
Re z))
* (
cos
. ((
Im z)
+ ((2
*
PI )
* 1))))
+ (((
exp_R
. (
Re z))
* (
sin
. ((
Im z)
+ (2
*
PI ))))
*
<i> )) by
Th19
.= (((
exp_R
. (
Re z))
* (
cos
. (
Im z)))
+ (((
exp_R
. (
Re z))
* (
sin
. ((
Im z)
+ ((2
*
PI )
* 1))))
*
<i> )) by
SIN_COS2: 11
.= (((
exp_R
. (
Re z))
* (
cos
. (
Im z)))
+ (((
exp_R
. (
Re z))
* (
sin
. (
Im z)))
*
<i> )) by
SIN_COS2: 10
.= (
exp ((
Re z)
+ ((
Im z)
*
<i> ))) by
Th19;
hence thesis by
COMPLEX1: 13;
end;
theorem ::
SIN_COS3:28
Th28: (
exp (((2
*
PI )
* n)
*
<i> ))
= 1
proof
thus (
exp (((2
*
PI )
* n)
*
<i> ))
= ((
cos (
0
+ ((2
*
PI )
* n)))
+ ((
sin (
0
+ ((2
*
PI )
* n)))
*
<i> )) by
SIN_COS: 25
.= ((
cos
. (
0
+ ((2
*
PI )
* n)))
+ ((
sin (
0
+ ((2
*
PI )
* n)))
*
<i> )) by
SIN_COS:def 19
.= ((
cos
. (
0
+ ((2
*
PI )
* n)))
+ ((
sin
. (
0
+ ((2
*
PI )
* n)))
*
<i> )) by
SIN_COS:def 17
.= ((
cos
. (
0
+ ((2
*
PI )
* n)))
+ ((
sin
.
0 )
*
<i> )) by
SIN_COS2: 10
.= 1 by
SIN_COS: 30,
SIN_COS2: 11;
end;
theorem ::
SIN_COS3:29
Th29: (
exp ((
- ((2
*
PI )
* n))
*
<i> ))
= 1
proof
thus (
exp ((
- ((2
*
PI )
* n))
*
<i> ))
= ((
cos (
- ((2
*
PI )
* n)))
+ ((
sin (
- ((2
*
PI )
* n)))
*
<i> )) by
SIN_COS: 25
.= ((
cos ((2
*
PI )
* n))
+ ((
sin (
- ((2
*
PI )
* n)))
*
<i> )) by
SIN_COS: 31
.= ((
cos (
0
+ ((2
*
PI )
* n)))
+ ((
- (
sin ((2
*
PI )
* n)))
*
<i> )) by
SIN_COS: 31
.= ((
cos
. (
0
+ ((2
*
PI )
* n)))
+ (
- ((
sin (
0
+ ((2
*
PI )
* n)))
*
<i> ))) by
SIN_COS:def 19
.= ((
cos
. (
0
+ ((2
*
PI )
* n)))
+ (
- ((
sin
. (
0
+ ((2
*
PI )
* n)))
*
<i> ))) by
SIN_COS:def 17
.= ((
cos
. (
0
+ ((2
*
PI )
* n)))
+ (
- ((
sin
.
0 )
*
<i> ))) by
SIN_COS2: 10
.= 1 by
SIN_COS: 30,
SIN_COS2: 11;
end;
theorem ::
SIN_COS3:30
(
exp ((((2
* n)
+ 1)
*
PI )
*
<i> ))
= (
- 1)
proof
(
exp ((((2
* n)
+ 1)
*
PI )
*
<i> ))
= ((
cos (((
PI
* 2)
* n)
+
PI ))
+ ((
sin ((
PI
* (2
* n))
+ (1
*
PI )))
*
<i> )) by
SIN_COS: 25
.= ((
cos
. (((
PI
* 2)
* n)
+
PI ))
+ ((
sin (((
PI
* 2)
* n)
+
PI ))
*
<i> )) by
SIN_COS:def 19
.= ((
cos
. (((
PI
* 2)
* n)
+
PI ))
+ ((
sin
. (((
PI
* 2)
* n)
+
PI ))
*
<i> )) by
SIN_COS:def 17
.= ((
cos
.
PI )
+ ((
sin
. (((
PI
* 2)
* n)
+
PI ))
*
<i> )) by
SIN_COS2: 11
.= ((
- 1)
+ ((
sin
.
PI )
*
<i> )) by
SIN_COS: 76,
SIN_COS2: 10;
hence thesis by
SIN_COS: 76;
end;
theorem ::
SIN_COS3:31
(
exp ((
- (((2
* n)
+ 1)
*
PI ))
*
<i> ))
= (
- 1)
proof
(
exp ((
- (((2
* n)
+ 1)
*
PI ))
*
<i> ))
= ((
cos (
- (((2
* n)
+ 1)
*
PI )))
+ ((
sin (
- (((2
* n)
+ 1)
*
PI )))
*
<i> )) by
SIN_COS: 25
.= ((
cos (((2
* n)
+ 1)
*
PI ))
+ ((
sin (
- (((2
* n)
+ 1)
*
PI )))
*
<i> )) by
SIN_COS: 31
.= ((
cos (((
PI
* 2)
* n)
+
PI ))
+ ((
- (
sin ((
PI
* (2
* n))
+
PI )))
*
<i> )) by
SIN_COS: 31
.= ((
cos
. (((
PI
* 2)
* n)
+
PI ))
+ (
- ((
sin (((
PI
* 2)
* n)
+
PI ))
*
<i> ))) by
SIN_COS:def 19
.= ((
cos
. (((
PI
* 2)
* n)
+
PI ))
+ (
- ((
sin
. (((
PI
* 2)
* n)
+
PI ))
*
<i> ))) by
SIN_COS:def 17
.= ((
cos
.
PI )
+ (
- ((
sin
. (((
PI
* 2)
* n)
+
PI ))
*
<i> ))) by
SIN_COS2: 11
.= ((
- 1)
+ (
- ((
sin
.
PI )
*
<i> ))) by
SIN_COS: 76,
SIN_COS2: 10;
hence thesis by
SIN_COS: 76;
end;
theorem ::
SIN_COS3:32
(
exp ((((2
* n)
+ (1
/ 2))
*
PI )
*
<i> ))
=
<i>
proof
(
exp ((((2
* n)
+ (1
/ 2))
*
PI )
*
<i> ))
= ((
cos (((
PI
* 2)
* n)
+ ((1
/ 2)
*
PI )))
+ ((
sin ((
PI
* (2
* n))
+ ((1
/ 2)
*
PI )))
*
<i> )) by
SIN_COS: 25
.= ((
cos
. (((
PI
* 2)
* n)
+ ((1
/ 2)
*
PI )))
+ ((
sin (((
PI
* 2)
* n)
+ ((1
/ 2)
*
PI )))
*
<i> )) by
SIN_COS:def 19
.= ((
cos
. (((
PI
* 2)
* n)
+ ((1
/ 2)
*
PI )))
+ ((
sin
. (((
PI
* 2)
* n)
+ ((1
/ 2)
*
PI )))
*
<i> )) by
SIN_COS:def 17
.= ((
cos
. ((1
/ 2)
*
PI ))
+ ((
sin
. (((
PI
* 2)
* n)
+ ((1
/ 2)
*
PI )))
*
<i> )) by
SIN_COS2: 11
.= ((
sin
. (
PI
/ 2))
*
<i> ) by
SIN_COS: 76,
SIN_COS2: 10;
hence thesis by
SIN_COS: 76;
end;
theorem ::
SIN_COS3:33
(
exp ((
- (((2
* n)
+ (1
/ 2))
*
PI ))
*
<i> ))
= (
- (1
*
<i> ))
proof
(
exp ((
- (((2
* n)
+ (1
/ 2))
*
PI ))
*
<i> ))
= ((
cos (
- (((2
* n)
+ (1
/ 2))
*
PI )))
+ ((
sin (
- (((2
* n)
+ (1
/ 2))
*
PI )))
*
<i> )) by
SIN_COS: 25
.= ((
cos (((2
* n)
+ (1
/ 2))
*
PI ))
+ ((
sin (
- (((2
* n)
+ (1
/ 2))
*
PI )))
*
<i> )) by
SIN_COS: 31
.= ((
cos (((
PI
* 2)
* n)
+ ((1
/ 2)
*
PI )))
+ ((
- (
sin ((
PI
* (2
* n))
+ ((1
/ 2)
*
PI ))))
*
<i> )) by
SIN_COS: 31
.= ((
cos
. (((
PI
* 2)
* n)
+ ((1
/ 2)
*
PI )))
+ (
- ((
sin (((
PI
* 2)
* n)
+ ((1
/ 2)
*
PI )))
*
<i> ))) by
SIN_COS:def 19
.= ((
cos
. (((
PI
* 2)
* n)
+ ((1
/ 2)
*
PI )))
+ (
- ((
sin
. (((
PI
* 2)
* n)
+ ((1
/ 2)
*
PI )))
*
<i> ))) by
SIN_COS:def 17
.= ((
cos
. ((1
/ 2)
*
PI ))
+ ((
- (
sin
. (((
PI
* 2)
* n)
+ ((1
/ 2)
*
PI ))))
*
<i> )) by
SIN_COS2: 11
.= ((
- (
sin
. (
PI
/ 2)))
*
<i> ) by
SIN_COS: 76,
SIN_COS2: 10;
hence thesis by
SIN_COS: 76;
end;
theorem ::
SIN_COS3:34
(
sin_C
/. (z
+ ((2
* n)
*
PI )))
= (
sin_C
/. z)
proof
(
sin_C
/. (z
+ ((2
* n)
*
PI )))
= (((
exp ((
<i>
* z)
+ (
<i>
* ((2
* n)
*
PI ))))
- (
exp (
- (
<i>
* (z
+ ((2
* n)
*
PI ))))))
/ (2
*
<i> )) by
Def1
.= ((((
exp (
<i>
* z))
* (
exp (((2
*
PI )
* n)
*
<i> )))
- (
exp (
- (
<i>
* (z
+ ((2
* n)
*
PI ))))))
/ (2
*
<i> )) by
SIN_COS: 23
.= ((((
exp (
<i>
* z))
* 1)
- (
exp (
- (
<i>
* (z
+ ((2
* n)
*
PI ))))))
/ (2
*
<i> )) by
Th28
.= (((
exp (
<i>
* z))
- (
exp (((
-
<i> )
* z)
+ ((
-
<i> )
* ((2
* n)
*
PI )))))
/ (2
*
<i> ))
.= (((
exp (
<i>
* z))
- ((
exp ((
-
<i> )
* z))
* (
exp ((
- ((2
*
PI )
* n))
*
<i> ))))
/ (2
*
<i> )) by
SIN_COS: 23
.= (((
exp (
<i>
* z))
- ((
exp ((
-
<i> )
* z))
* 1))
/ (2
*
<i> )) by
Th29
.= (((
exp (
<i>
* z))
- (
exp (
- (
<i>
* z))))
/ (2
*
<i> ));
hence thesis by
Def1;
end;
theorem ::
SIN_COS3:35
(
cos_C
/. (z
+ ((2
* n)
*
PI )))
= (
cos_C
/. z)
proof
(
cos_C
/. (z
+ ((2
* n)
*
PI )))
= (((
exp ((
<i>
* z)
+ (
<i>
* ((2
* n)
*
PI ))))
+ (
exp (
- (
<i>
* (z
+ ((2
* n)
*
PI ))))))
/ 2) by
Def2
.= ((((
exp (
<i>
* z))
* (
exp (((2
*
PI )
* n)
*
<i> )))
+ (
exp (
- (
<i>
* (z
+ ((2
* n)
*
PI ))))))
/ 2) by
SIN_COS: 23
.= ((((
exp (
<i>
* z))
* 1)
+ (
exp (
- (
<i>
* (z
+ ((2
* n)
*
PI ))))))
/ 2) by
Th28
.= (((
exp (
<i>
* z))
+ (
exp (((
-
<i> )
* z)
+ ((
-
<i> )
* ((2
* n)
*
PI )))))
/ 2)
.= (((
exp (
<i>
* z))
+ ((
exp ((
-
<i> )
* z))
* (
exp ((
- ((2
*
PI )
* n))
*
<i> ))))
/ 2) by
SIN_COS: 23
.= ((((
exp (
<i>
* z))
* 1)
+ ((
exp (
- (
<i>
* z)))
* 1))
/ 2) by
Th29
.= (((
exp (
<i>
* z))
+ (
exp (
- (
<i>
* z))))
/ 2);
hence thesis by
Def2;
end;
theorem ::
SIN_COS3:36
Th36: for z be
Complex holds (
exp (
<i>
* z))
= ((
cos_C
/. z)
+ (
<i>
* (
sin_C
/. z)))
proof
let z be
Complex;
reconsider z as
Element of
COMPLEX by
XCMPLX_0:def 2;
((
cos_C
/. z)
+ (
<i>
* (
sin_C
/. z)))
= ((((
exp (
<i>
* z))
+ (
exp (
- (
<i>
* z))))
/ 2)
+ (
<i>
* (
sin_C
/. z))) by
Def2
.= ((((
exp (
<i>
* z))
+ (
exp (
- (
<i>
* z))))
/ 2)
+ (
<i>
* (((
exp (
<i>
* z))
- (
exp (
- (
<i>
* z))))
/ (2
*
<i> )))) by
Def1
.= (((
exp (
<i>
* z))
+ (((
exp (
- (
<i>
* z)))
+ (
exp (
<i>
* z)))
- (
exp (
- (
<i>
* z)))))
/ 2)
.= ((((
Re (
exp (
<i>
* z)))
+ (
Re (
exp (
<i>
* z))))
+ (((
Im (
exp (
<i>
* z)))
+ (
Im (
exp (
<i>
* z))))
*
<i> ))
/ 2) by
COMPLEX1: 81
.= (((2
* (
Re (
exp (
<i>
* z))))
+ ((2
* (
Im (
exp (
<i>
* z))))
*
<i> ))
/ 2)
.= (((
Re (2
* (
exp (
<i>
* z))))
+ ((2
* (
Im (
exp (
<i>
* z))))
*
<i> ))
/ 2) by
COMSEQ_3: 17
.= (((
Re (2
* (
exp (
<i>
* z))))
+ ((
Im (2
* (
exp (
<i>
* z))))
*
<i> ))
/ 2) by
COMSEQ_3: 17
.= ((2
* (
exp (
<i>
* z)))
/ 2) by
COMPLEX1: 13;
hence thesis;
end;
theorem ::
SIN_COS3:37
Th37: for z be
Complex holds (
exp (
- (
<i>
* z)))
= ((
cos_C
/. z)
- (
<i>
* (
sin_C
/. z)))
proof
let z be
Complex;
reconsider z as
Element of
COMPLEX by
XCMPLX_0:def 2;
((
cos_C
/. z)
- (
<i>
* (
sin_C
/. z)))
= ((((
exp (
<i>
* z))
+ (
exp (
- (
<i>
* z))))
/ 2)
- (
<i>
* (
sin_C
/. z))) by
Def2
.= ((((
exp (
<i>
* z))
+ (
exp (
- (
<i>
* z))))
/ 2)
- (
<i>
* (((
exp (
<i>
* z))
- (
exp (
- (
<i>
* z))))
/ (2
*
<i> )))) by
Def1
.= (((
exp (
- (
<i>
* z)))
+ (
exp (
- (
<i>
* z))))
/ 2)
.= ((((
Re (
exp (
- (
<i>
* z))))
+ (
Re (
exp (
- (
<i>
* z)))))
+ (((
Im (
exp (
- (
<i>
* z))))
+ (
Im (
exp (
- (
<i>
* z)))))
*
<i> ))
/ 2) by
COMPLEX1: 81
.= (((2
* (
Re (
exp (
- (
<i>
* z)))))
+ ((2
* (
Im (
exp (
- (
<i>
* z)))))
*
<i> ))
/ 2)
.= (((
Re (2
* (
exp (
- (
<i>
* z)))))
+ ((2
* (
Im (
exp (
- (
<i>
* z)))))
*
<i> ))
/ 2) by
COMSEQ_3: 17
.= (((
Re (2
* (
exp (
- (
<i>
* z)))))
+ ((
Im (2
* (
exp (
- (
<i>
* z)))))
*
<i> ))
/ 2) by
COMSEQ_3: 17
.= ((2
* (
exp (
- (
<i>
* z))))
/ 2) by
COMPLEX1: 13;
hence thesis;
end;
theorem ::
SIN_COS3:38
Th38: for x holds (
sin_C
/. x)
= (
sin
. x)
proof
let x;
x
in
REAL by
XREAL_0:def 1;
then
reconsider z = x as
Element of
COMPLEX by
NUMBERS: 11;
(
sin_C
/. x)
= (
sin_C
/. z)
.= (((
exp ((
-
0 )
+ (x
*
<i> )))
- (
exp (
- (
<i>
* x))))
/ (2
*
<i> )) by
Def1
.= (((((
exp_R
.
0 )
* (
cos
. x))
+ (((
exp_R
.
0 )
* (
sin
. x))
*
<i> ))
- (
exp (
- (x
*
<i> ))))
/ (2
*
<i> )) by
Th19
.= (((((
exp_R
0 )
* (
cos
. x))
+ (((
exp_R
.
0 )
* (
sin
. x))
*
<i> ))
- (
exp (
- (x
*
<i> ))))
/ (2
*
<i> )) by
SIN_COS:def 23
.= (((((
exp_R
0 )
* (
cos
. x))
+ (((
exp_R
0 )
* (
sin
. x))
*
<i> ))
- (
exp (
- (x
*
<i> ))))
/ (2
*
<i> )) by
SIN_COS:def 23
.= ((((
cos
. x)
+ ((
sin
. x)
*
<i> ))
- (
exp (
0
+ ((
- x)
*
<i> ))))
/ (2
*
<i> )) by
SIN_COS: 51
.= ((((
cos
. x)
+ ((
sin
. x)
*
<i> ))
- (((
exp_R
.
0 )
* (
cos
. (
- x)))
+ (((
exp_R
.
0 )
* (
sin
. (
- x)))
*
<i> )))
/ (2
*
<i> )) by
Th19
.= ((((
cos
. x)
+ ((
sin
. x)
*
<i> ))
- (((
exp_R
0 )
* (
cos
. (
- x)))
+ (((
exp_R
.
0 )
* (
sin
. (
- x)))
*
<i> )))
/ (2
*
<i> )) by
SIN_COS:def 23
.= ((((
cos
. x)
+ ((
sin
. x)
*
<i> ))
- ((1
* (
cos
. (
- x)))
+ ((1
* (
sin
. (
- x)))
*
<i> )))
/ (2
*
<i> )) by
SIN_COS: 51,
SIN_COS:def 23
.= ((((
cos
. x)
+ ((
sin
. x)
*
<i> ))
- ((
cos
. (
- x))
+ ((
- (
sin
. x))
*
<i> )))
/ (2
*
<i> )) by
SIN_COS: 30
.= ((((
cos
. x)
+ ((
sin
. x)
*
<i> ))
- ((
cos
. x)
+ ((
- (
sin
. x))
*
<i> )))
/ (2
*
<i> )) by
SIN_COS: 30
.= (
sin
. x);
hence thesis;
end;
theorem ::
SIN_COS3:39
Th39: for x holds (
cos_C
/. x)
= (
cos
. x)
proof
let x;
x
in
REAL by
XREAL_0:def 1;
then
reconsider z = x as
Element of
COMPLEX by
NUMBERS: 11;
(
cos_C
/. x)
= (
cos_C
/. z)
.= (((
exp (
0
+ (
<i>
* x)))
+ (
exp (
- (
<i>
* x))))
/ 2) by
Def2
.= (((((
exp_R
.
0 )
* (
cos
. x))
+ (((
exp_R
.
0 )
* (
sin
. x))
*
<i> ))
+ (
exp (
- (
<i>
* x))))
/ 2) by
Th19
.= (((((
exp_R
0 )
* (
cos
. x))
+ (((
exp_R
.
0 )
* (
sin
. x))
*
<i> ))
+ (
exp (
- (
<i>
* x))))
/ 2) by
SIN_COS:def 23
.= ((((1
* (
cos
. x))
+ ((1
* (
sin
. x))
*
<i> ))
+ (
exp (
- (
<i>
* x))))
/ 2) by
SIN_COS: 51,
SIN_COS:def 23
.= ((((
cos
. x)
+ ((
sin
. x)
*
<i> ))
+ (
exp (
0
+ ((
- x)
*
<i> ))))
/ 2)
.= ((((
cos
. x)
+ ((
sin
. x)
*
<i> ))
+ (((
exp_R
.
0 )
* (
cos
. (
- x)))
+ (((
exp_R
.
0 )
* (
sin
. (
- x)))
*
<i> )))
/ 2) by
Th19
.= ((((
cos
. x)
+ ((
sin
. x)
*
<i> ))
+ (((
exp_R
0 )
* (
cos
. (
- x)))
+ (((
exp_R
.
0 )
* (
sin
. (
- x)))
*
<i> )))
/ 2) by
SIN_COS:def 23
.= ((((
cos
. x)
+ ((
sin
. x)
*
<i> ))
+ ((1
* (
cos
. (
- x)))
+ ((1
* (
sin
. (
- x)))
*
<i> )))
/ 2) by
SIN_COS: 51,
SIN_COS:def 23
.= ((((
cos
. x)
+ ((
sin
. x)
*
<i> ))
+ ((1
* (
cos
. x))
+ ((1
* (
sin
. (
- x)))
*
<i> )))
/ 2) by
SIN_COS: 30
.= ((((
cos
. x)
+ ((
sin
. x)
*
<i> ))
+ ((
cos
. x)
+ ((
- (
sin
. x))
*
<i> )))
/ 2) by
SIN_COS: 30
.= (
cos
. x);
hence thesis;
end;
theorem ::
SIN_COS3:40
Th40: for x holds (
sinh_C
/. x)
= (
sinh
. x)
proof
let x;
A1: ((
sinh
. x)
* 2)
= (2
* (((
exp_R
. x)
- (
exp_R
. (
- x)))
/ 2)) by
SIN_COS2:def 1
.= (((
exp_R
. x)
- (
exp_R
. (
- x)))
/ (2
/ 2));
x
in
REAL by
XREAL_0:def 1;
then
reconsider z = x as
Element of
COMPLEX by
NUMBERS: 11;
(
sinh_C
/. x)
= (
sinh_C
/. z)
.= (((
exp (x
+ (
0
*
<i> )))
- (
exp (
- z)))
/ 2) by
Def3
.= (((((
exp_R
. x)
* 1)
+ (((
exp_R
. x)
*
0 )
*
<i> ))
- (
exp (
- z)))
/ 2) by
Th19,
SIN_COS: 30
.= (((
exp_R
. x)
- (
exp ((
- x)
+ (
0
*
<i> ))))
/ 2)
.= (((
exp_R
. x)
- (((
exp_R
. (
- x))
* 1)
+ (((
exp_R
. (
- x))
*
0 )
*
<i> )))
/ 2) by
Th19,
SIN_COS: 30
.= (((
sinh
. x)
* 2)
/ 2) by
A1;
hence thesis;
end;
theorem ::
SIN_COS3:41
Th41: for x holds (
cosh_C
/. x)
= (
cosh
. x)
proof
let x;
A1: ((
cosh
. x)
* 2)
= (2
* (((
exp_R
. x)
+ (
exp_R
. (
- x)))
/ 2)) by
SIN_COS2:def 3
.= (((
exp_R
. x)
+ (
exp_R
. (
- x)))
/ (2
/ 2));
x
in
REAL by
XREAL_0:def 1;
then
reconsider z = x as
Element of
COMPLEX by
NUMBERS: 11;
(
cosh_C
/. x)
= (
cosh_C
/. z)
.= (((
exp (x
+ (
0
*
<i> )))
+ (
exp (
- z)))
/ 2) by
Def4
.= (((((
exp_R
. x)
* 1)
+ (((
exp_R
. x)
*
0 )
*
<i> ))
+ (
exp (
- z)))
/ 2) by
Th19,
SIN_COS: 30
.= (((
exp_R
. x)
+ (
exp ((
- x)
+ (
0
*
<i> ))))
/ 2)
.= (((
exp_R
. x)
+ (((
exp_R
. (
- x))
* 1)
+ (((
exp_R
. (
- x))
*
0 )
*
<i> )))
/ 2) by
Th19,
SIN_COS: 30
.= (((
cosh
. x)
* 2)
/ 2) by
A1;
hence thesis;
end;
theorem ::
SIN_COS3:42
Th42: (
sin_C
/. (x
+ (y
*
<i> )))
= (((
sin
. x)
* (
cosh
. y) qua
Real)
+ (((
cos
. x)
* (
sinh
. y))
*
<i> ))
proof
(
sin_C
/. (x
+ (y
*
<i> )))
= (((
sin_C
/. x)
* (
cos_C
/. (y
*
<i> )))
+ ((
cos_C
/. x)
* (
sin_C
/. (y
*
<i> )))) by
Th4
.= (((
sin_C
/. x)
* (
cosh_C
/. y))
+ ((
cos_C
/. x)
* (
sin_C
/. (y
*
<i> )))) by
Th16
.= (((
sin_C
/. x)
* (
cosh_C
/. y))
+ ((
cos_C
/. x)
* ((
sinh_C
/. y)
*
<i> ))) by
Th15
.= (((
sin
. x)
* (
cosh_C
/. y))
+ ((
cos_C
/. x)
* (
<i>
* (
sinh_C
/. y)))) by
Th38
.= (((
sin
. x)
* (
cosh_C
/. y))
+ ((
cos
. x)
* (
<i>
* (
sinh_C
/. y)))) by
Th39
.= (((
sin
. x)
* (
cosh_C
/. y))
+ ((
cos
. x)
* (
<i>
* (
sinh
. y)))) by
Th40
.= ((((
sin
. x)
* (
cosh
. y))
+ (
0
*
<i> ))
+ (
0
+ (((
cos
. x)
* (
sinh
. y))
*
<i> ))) by
Th41;
hence thesis;
end;
theorem ::
SIN_COS3:43
Th43: (
sin_C
/. (x
+ ((
- y)
*
<i> )))
= (((
sin
. x)
* (
cosh
. y))
+ ((
- ((
cos
. x)
* (
sinh
. y)))
*
<i> ))
proof
(
sin_C
/. (x
+ ((
- y)
*
<i> )))
= (((
sin
. x)
* (
cosh
. (
- y)))
+ (((
cos
. x)
* (
sinh
. (
- y)))
*
<i> )) by
Th42
.= (((
sin
. x)
* (
cosh
. y))
+ (((
cos
. x)
* (
sinh
. (
- y)))
*
<i> )) by
SIN_COS2: 19
.= (((
sin
. x)
* (
cosh
. y))
+ (((
cos
. x)
* (
- (
sinh
. y)))
*
<i> )) by
SIN_COS2: 19;
hence thesis;
end;
theorem ::
SIN_COS3:44
Th44: (
cos_C
/. (x
+ (y
*
<i> )))
= (((
cos
. x)
* (
cosh
. y))
+ ((
- ((
sin
. x)
* (
sinh
. y)))
*
<i> ))
proof
(
cos_C
/. (x
+ (y
*
<i> )))
= (((
cos_C
/. x)
* (
cos_C
/. (
<i>
* y)))
- ((
sin_C
/. x)
* (
sin_C
/. (
<i>
* y)))) by
Th6
.= (((
cos_C
/. x)
* (
cos_C
/. (
<i>
* y)))
- ((
sin_C
/. x)
* ((
sinh_C
/. y)
*
<i> ))) by
Th15
.= (((
cos_C
/. x)
* (
cosh_C
/. y))
- ((
sin_C
/. x)
* ((
sinh_C
/. y)
*
<i> ))) by
Th16
.= (((
cos_C
/. x)
* (
cosh_C
/. y))
- ((
sin
. x)
* ((
sinh_C
/. y)
*
<i> ))) by
Th38
.= (((
cos
. x)
* (
cosh_C
/. y))
- ((
sin
. x)
* ((
sinh_C
/. y)
*
<i> ))) by
Th39
.= (((
cos
. x)
* (
cosh_C
/. y))
- ((
sin
. x)
* ((
sinh
. y)
*
<i> ))) by
Th40
.= (((
cos
. x)
* (
cosh
. y))
- (((
sin
. x)
* (
sinh
. y))
*
<i> )) by
Th41
.= (((
cos
. x)
* (
cosh
. y))
+ ((
- ((
sin
. x)
* (
sinh
. y)))
*
<i> ));
hence thesis;
end;
theorem ::
SIN_COS3:45
Th45: (
cos_C
/. (x
+ ((
- y)
*
<i> )))
= (((
cos
. x)
* (
cosh
. y))
+ (((
sin
. x)
* (
sinh
. y))
*
<i> ))
proof
(
cos_C
/. (x
+ ((
- y)
*
<i> )))
= (((
cos
. x)
* (
cosh
. (
- y)))
+ ((
- ((
sin
. x)
* (
sinh
. (
- y))))
*
<i> )) by
Th44
.= (((
cos
. x)
* (
cosh
. y))
+ (
- (((
sin
. x)
* (
sinh
. (
- y)))
*
<i> ))) by
SIN_COS2: 19
.= (((
cos
. x)
* (
cosh
. y))
+ (
- (((
sin
. x)
* (
- (
sinh
. y)))
*
<i> ))) by
SIN_COS2: 19
.= (((
cos
. x)
* (
cosh
. y))
+ (
- (
- (((
sin
. x)
* (
sinh
. y))
*
<i> ))));
hence thesis;
end;
theorem ::
SIN_COS3:46
Th46: (
sinh_C
/. (x
+ (y
*
<i> )))
= (((
sinh
. x)
* (
cos
. y))
+ (((
cosh
. x)
* (
sin
. y))
*
<i> ))
proof
(
sinh_C
/. (x
+ (y
*
<i> )))
= (
sinh_C
/. ((y
+ ((
- x)
*
<i> ))
*
<i> ))
.= (
<i>
* (
sin_C
/. (y
+ ((
- x)
*
<i> )))) by
Th17
.= (
<i>
* (((
sin
. y)
* (
cosh
. x))
+ ((
- ((
cos
. y)
* (
sinh
. x)))
*
<i> ))) by
Th43
.= ((
- (
- ((
sinh
. x)
* (
cos
. y))))
+ (((
cosh
. x)
* (
sin
. y))
*
<i> ));
hence thesis;
end;
theorem ::
SIN_COS3:47
Th47: (
sinh_C
/. (x
+ ((
- y)
*
<i> )))
= (((
sinh
. x)
* (
cos
. y))
+ ((
- ((
cosh
. x)
* (
sin
. y)))
*
<i> ))
proof
(
sinh_C
/. (x
+ ((
- y)
*
<i> )))
= (((
sinh
. x)
* (
cos
. (
- y)))
+ (((
cosh
. x)
* (
sin
. (
- y)))
*
<i> )) by
Th46
.= (((
sinh
. x)
* (
cos
. y))
+ (((
cosh
. x)
* (
sin
. (
- y)))
*
<i> )) by
SIN_COS: 30
.= (((
sinh
. x)
* (
cos
. y))
+ (((
cosh
. x)
* (
- (
sin
. y)))
*
<i> )) by
SIN_COS: 30;
hence thesis;
end;
theorem ::
SIN_COS3:48
Th48: (
cosh_C
/. (x
+ (y
*
<i> )))
= (((
cosh
. x)
* (
cos
. y))
+ (((
sinh
. x)
* (
sin
. y))
*
<i> ))
proof
(
cosh_C
/. (
<i>
* (y
+ ((
- x)
*
<i> ))))
= (
cos_C
/. (y
+ ((
- x)
*
<i> ))) by
Th18;
hence thesis by
Th45;
end;
theorem ::
SIN_COS3:49
Th49: (
cosh_C
/. (x
+ ((
- y)
*
<i> )))
= (((
cosh
. x)
* (
cos
. y))
+ ((
- ((
sinh
. x)
* (
sin
. y)))
*
<i> ))
proof
(
cosh_C
/. (x
+ ((
- y)
*
<i> )))
= (((
cosh
. x)
* (
cos
. (
- y)))
+ (((
sinh
. x)
* (
sin
. (
- y)))
*
<i> )) by
Th48
.= (((
cosh
. x)
* (
cos
. y))
+ (((
sinh
. x)
* (
sin
. (
- y)))
*
<i> )) by
SIN_COS: 30
.= (((
cosh
. x)
* (
cos
. y))
+ (((
sinh
. x)
* (
- (
sin
. y)))
*
<i> )) by
SIN_COS: 30;
hence thesis;
end;
::$Notion-Name
theorem ::
SIN_COS3:50
Th50: for n be
Element of
NAT , z be
Complex holds (((
cos_C
/. z)
+ (
<i>
* (
sin_C
/. z)))
|^ n)
= ((
cos_C
/. (n
* z))
+ (
<i>
* (
sin_C
/. (n
* z))))
proof
defpred
X[
Nat] means for z be
Complex holds (((
cos_C
/. z)
+ (
<i>
* (
sin_C
/. z)))
|^ $1)
= ((
cos_C
/. ($1
* z))
+ (
<i>
* (
sin_C
/. ($1
* z))));
A1: for n be
Nat st
X[n] holds
X[(n
+ 1)]
proof
let n be
Nat such that
A2: for z be
Complex holds (((
cos_C
/. z)
+ (
<i>
* (
sin_C
/. z)))
|^ n)
= ((
cos_C
/. (n
* z))
+ (
<i>
* (
sin_C
/. (n
* z))));
for z be
Complex holds (((
cos_C
/. z)
+ (
<i>
* (
sin_C
/. z)))
|^ (n
+ 1))
= ((
cos_C
/. ((n
+ 1)
* z))
+ (
<i>
* (
sin_C
/. ((n
+ 1)
* z))))
proof
let z be
Complex;
set cn = (
cos_C
/. (n
* z)), sn = (
sin_C
/. (n
* z)), c1 = (
cos_C
/. z), s1 = (
sin_C
/. z);
A3: (((
cos_C
/. z)
+ (
<i>
* (
sin_C
/. z)))
|^ (n
+ 1))
= ((((
cos_C
/. z)
+ (
<i>
* (
sin_C
/. z)))
GeoSeq )
. (n
+ 1)) by
COMSEQ_3:def 2
.= (((((
cos_C
/. z)
+ (
<i>
* (
sin_C
/. z)))
GeoSeq )
. n)
* ((
cos_C
/. z)
+ (
<i>
* (
sin_C
/. z)))) by
COMSEQ_3:def 1
.= ((((
cos_C
/. z)
+ (
<i>
* (
sin_C
/. z)))
|^ n)
* ((
cos_C
/. z)
+ (
<i>
* (
sin_C
/. z)))) by
COMSEQ_3:def 2
.= (((
cos_C
/. (n
* z))
+ (
<i>
* (
sin_C
/. (n
* z))))
* ((
cos_C
/. z)
+ (
<i>
* (
sin_C
/. z)))) by
A2
.= (((cn
* c1)
+ ((
<i>
* sn)
* c1))
+ (((
<i>
* cn)
* s1)
+ (
- (sn
* s1))));
((
cos_C
/. ((n
+ 1)
* z))
+ (
<i>
* (
sin_C
/. ((n
+ 1)
* z))))
= ((
cos_C
/. ((n
* z)
+ (1
* z)))
+ (
<i>
* (((
sin_C
/. (n
* z))
* (
cos_C
/. (1
* z)))
+ ((
cos_C
/. (n
* z))
* (
sin_C
/. (1
* z)))))) by
Th4
.= ((((
cos_C
/. (n
* z))
* (
cos_C
/. z))
- ((
sin_C
/. (n
* z))
* (
sin_C
/. z)))
+ (
<i>
* (((
sin_C
/. (n
* z))
* (
cos_C
/. z))
+ ((
cos_C
/. (n
* z))
* (
sin_C
/. z))))) by
Th6
.= ((cn
* c1)
+ (((
<i>
* sn)
* c1)
+ (((
<i>
* cn)
* s1)
+ (
- (sn
* s1)))));
hence thesis by
A3;
end;
hence thesis;
end;
A4:
X[
0 ] by
Th21,
Th23,
COMPLEX1:def 4,
COMSEQ_3: 11;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A4,
A1);
hence thesis;
end;
theorem ::
SIN_COS3:51
Th51: for n be
Element of
NAT , z be
Complex holds (((
cos_C
/. z)
- (
<i>
* (
sin_C
/. z)))
|^ n)
= ((
cos_C
/. (n
* z))
- (
<i>
* (
sin_C
/. (n
* z))))
proof
let n be
Element of
NAT ;
let z be
Complex;
(((
cos_C
/. z)
- (
<i>
* (
sin_C
/. z)))
|^ n)
= (((
cos_C
/. z)
+ (
<i>
* (
- (
sin_C
/. z))))
|^ n)
.= (((
cos_C
/. z)
+ (
<i>
* (
sin_C
/. (
- z))))
|^ n) by
Th2
.= (((
cos_C
/. (
- z))
+ (
<i>
* (
sin_C
/. (
- z))))
|^ n) by
Th3
.= ((
cos_C
/. (
- (n
* z)))
+ (
<i>
* (
sin_C
/. (n
* (
- z))))) by
Th50
.= ((
cos_C
/. (n
* z))
+ (
<i>
* (
sin_C
/. (
- (n
* z))))) by
Th3
.= ((
cos_C
/. (n
* z))
+ (
<i>
* (
- (
sin_C
/. (n
* z))))) by
Th2
.= ((
cos_C
/. (n
* z))
+ (
- (
<i>
* (
sin_C
/. (n
* z)))));
hence thesis;
end;
theorem ::
SIN_COS3:52
for n be
Element of
NAT , z be
Element of
COMPLEX holds (
exp ((
<i>
* n)
* z))
= (((
cos_C
/. z)
+ (
<i>
* (
sin_C
/. z)))
|^ n)
proof
let n be
Element of
NAT ;
let z be
Element of
COMPLEX ;
(
exp ((
<i>
* n)
* z))
= (
exp (
<i>
* (n
* z)))
.= ((
cos_C
/. (n
* z))
+ (
<i>
* (
sin_C
/. (n
* z)))) by
Th36;
hence thesis by
Th50;
end;
theorem ::
SIN_COS3:53
for n be
Element of
NAT , z be
Element of
COMPLEX holds (
exp (
- ((
<i>
* n)
* z)))
= (((
cos_C
/. z)
- (
<i>
* (
sin_C
/. z)))
|^ n)
proof
let n be
Element of
NAT ;
let z be
Element of
COMPLEX ;
(
exp (
- ((
<i>
* n)
* z)))
= (
exp (
- (
<i>
* (n
* z))))
.= ((
cos_C
/. (n
* z))
- (
<i>
* (
sin_C
/. (n
* z)))) by
Th37;
hence thesis by
Th51;
end;
theorem ::
SIN_COS3:54
for x,y be
Element of
REAL holds ((((1
+ ((
- 1)
*
<i> ))
/ 2)
* (
sinh_C
/. (x
+ (y
*
<i> ))))
+ (((1
+
<i> )
/ 2)
* (
sinh_C
/. (x
+ ((
- y)
*
<i> )))))
= (((
sinh
. x)
* (
cos
. y))
+ ((
cosh
. x)
* (
sin
. y)))
proof
let x,y be
Element of
REAL ;
set shx = (
sinh
. x), cy = (
cos
. y), chx = (
cosh
. x), sy = (
sin
. y);
((((1
+ ((
- 1)
*
<i> ))
/ 2)
* (
sinh_C
/. (x
+ (y
*
<i> ))))
+ (((1
+
<i> )
/ 2)
* (
sinh_C
/. (x
+ ((
- y)
*
<i> )))))
= ((((1
+ ((
- 1)
*
<i> ))
/ 2)
* ((shx
* cy)
+ ((chx
* sy)
*
<i> )))
+ (((1
+
<i> )
/ 2)
* (
sinh_C
/. (x
+ ((
- y)
*
<i> ))))) by
Th46
.= ((((1
+ ((
- 1)
*
<i> ))
/ 2)
* ((shx
* cy)
+ ((chx
* sy)
*
<i> )))
+ (((1
+
<i> )
/ 2)
* (((
sinh
. x)
* (
cos
. y))
+ ((
- ((
cosh
. x)
* (
sin
. y)))
*
<i> )))) by
Th47
.= ((2
* (((shx
* cy)
+ (chx
* sy))
+ (
0
*
<i> )))
/ 2);
hence thesis;
end;
theorem ::
SIN_COS3:55
for x,y be
Element of
REAL holds ((((1
+ ((
- 1)
*
<i> ))
/ 2)
* (
cosh_C
/. (x
+ (y
*
<i> ))))
+ (((1
+
<i> )
/ 2)
* (
cosh_C
/. (x
+ ((
- y)
*
<i> )))))
= (((
sinh
. x)
* (
sin
. y))
+ ((
cosh
. x)
* (
cos
. y)))
proof
let x,y be
Element of
REAL ;
set shx = (
sinh
. x), cy = (
cos
. y), chx = (
cosh
. x), sy = (
sin
. y);
((((1
+ ((
- 1)
*
<i> ))
/ 2)
* (
cosh_C
/. (x
+ (y
*
<i> ))))
+ (((1
+
<i> )
/ 2)
* (
cosh_C
/. (x
+ ((
- y)
*
<i> )))))
= ((((1
+ ((
- 1)
*
<i> ))
/ 2)
* ((chx
* cy)
+ ((shx
* sy)
*
<i> )))
+ (((1
+
<i> )
/ 2)
* (
cosh_C
/. (x
+ ((
- y)
*
<i> ))))) by
Th48
.= ((((1
+ ((
- 1)
*
<i> ))
* ((chx
* cy)
+ ((shx
* sy)
*
<i> )))
/ 2)
+ (((1
+
<i> )
/ 2)
* ((chx
* cy)
+ ((
- (shx
* sy))
*
<i> )))) by
Th49
.= ((2
* (((chx
* cy)
+ (shx
* sy))
+ (
0
*
<i> )))
/ 2);
hence thesis;
end;
theorem ::
SIN_COS3:56
((
sinh_C
/. z)
* (
sinh_C
/. z))
= (((
cosh_C
/. (2
* z))
- 1)
/ 2)
proof
set e1 = (
exp z), e2 = (
exp (
- z));
((
sinh_C
/. z)
* (
sinh_C
/. z))
= ((((
exp z)
- (
exp (
- z)))
/ 2)
* (
sinh_C
/. z)) by
Def3
.= (((e1
- e2)
/ 2)
* ((e1
- e2)
/ 2)) by
Def3
.= (((((e1
* e1)
+ (e2
* e2))
- (2
* (e1
* e2)))
/ 2)
/ 2)
.= (((((e1
* e1)
+ (e2
* e2))
- (2
* 1))
/ 2)
/ 2) by
Lm3
.= (((((
exp (z
+ z))
+ (e2
* e2))
- 2)
/ 2)
/ 2) by
SIN_COS: 23
.= (((((
exp (2
* z))
+ (
exp ((
- z)
+ (
- z))))
- 2)
/ 2)
/ 2) by
SIN_COS: 23
.= (((((
exp (2
* z))
+ (
exp (
- (2
* z))))
/ 2)
- 1)
/ 2);
hence thesis by
Lm2;
end;
theorem ::
SIN_COS3:57
Th57: ((
cosh_C
/. z)
* (
cosh_C
/. z))
= (((
cosh_C
/. (2
* z))
+ 1)
/ 2)
proof
set e1 = (
exp z), e2 = (
exp (
- z));
((
cosh_C
/. z)
* (
cosh_C
/. z))
= ((((
exp z)
+ (
exp (
- z)))
/ 2)
* (
cosh_C
/. z)) by
Def4
.= (((e1
+ e2)
/ 2)
* ((e1
+ e2)
/ 2)) by
Def4
.= (((((e1
* e1)
+ (e2
* e2))
+ (2
* (e1
* e2)))
/ 2)
/ 2)
.= (((((e1
* e1)
+ (e2
* e2))
+ (2
* 1))
/ 2)
/ 2) by
Lm3
.= (((((
exp (z
+ z))
+ (e2
* e2))
+ 2)
/ 2)
/ 2) by
SIN_COS: 23
.= (((((
exp (2
* z))
+ (
exp ((
- z)
+ (
- z))))
+ 2)
/ 2)
/ 2) by
SIN_COS: 23
.= (((((
exp (2
* z))
+ (
exp (
- (2
* z))))
/ 2)
+ 1)
/ 2);
hence thesis by
Lm2;
end;
theorem ::
SIN_COS3:58
Th58: (
sinh_C
/. (2
* z))
= ((2
* (
sinh_C
/. z))
* (
cosh_C
/. z)) & (
cosh_C
/. (2
* z))
= (((2
* (
cosh_C
/. z))
* (
cosh_C
/. z))
- 1)
proof
set e1 = (
exp z), e2 = (
exp (
- z));
A1: (((2
* (
cosh_C
/. z))
* (
cosh_C
/. z))
- 1)
= ((2
* ((
cosh_C
/. z)
* (
cosh_C
/. z)))
- 1)
.= ((2
* (((
cosh_C
/. (2
* z))
+ 1)
/ 2))
- 1) by
Th57
.= (((
cosh_C
/. (2
* z))
+ 1)
- 1);
((2
* (
sinh_C
/. z))
* (
cosh_C
/. z))
= (2
* ((
sinh_C
/. z)
* (
cosh_C
/. z)))
.= (2
* ((
sinh_C
/. z)
* ((e1
+ e2)
/ 2))) by
Def4
.= (2
* (((e1
- e2)
/ 2)
* ((e1
+ e2)
/ 2))) by
Def3
.= (((e1
* e1)
- (e2
* e2))
/ 2)
.= (((
exp (z
+ z))
- (e2
* e2))
/ 2) by
SIN_COS: 23
.= (((
exp (2
* z))
- (
exp ((
- z)
+ (
- z))))
/ 2) by
SIN_COS: 23
.= (((
exp (2
* z))
- (
exp (
- (2
* z))))
/ 2)
.= (
sinh_C
/. (2
* z)) by
Lm1;
hence thesis by
A1;
end;
theorem ::
SIN_COS3:59
Th59: (((
sinh_C
/. z1)
* (
sinh_C
/. z1))
- ((
sinh_C
/. z2)
* (
sinh_C
/. z2)))
= ((
sinh_C
/. (z1
+ z2))
* (
sinh_C
/. (z1
- z2))) & (((
cosh_C
/. z1)
* (
cosh_C
/. z1))
- ((
cosh_C
/. z2)
* (
cosh_C
/. z2)))
= ((
sinh_C
/. (z1
+ z2))
* (
sinh_C
/. (z1
- z2))) & (((
sinh_C
/. z1)
* (
sinh_C
/. z1))
- ((
sinh_C
/. z2)
* (
sinh_C
/. z2)))
= (((
cosh_C
/. z1)
* (
cosh_C
/. z1))
- ((
cosh_C
/. z2)
* (
cosh_C
/. z2)))
proof
set s1 = (
sinh_C
/. z1), s2 = (
sinh_C
/. z2), c1 = (
cosh_C
/. z1), c2 = (
cosh_C
/. z2);
A1: ((
sinh_C
/. (z1
+ z2))
* (
sinh_C
/. (z1
- z2)))
= (((s1
* c2)
+ (c1
* s2))
* (
sinh_C
/. (z1
- z2))) by
Th11
.= (((s1
* c2)
+ (c1
* s2))
* ((s1
* c2)
- (c1
* s2))) by
Th12
.= (((s1
* s1)
* (c2
* c2))
- ((s2
* (c1
* c1))
* s2));
then
A2: ((
sinh_C
/. (z1
+ z2))
* (
sinh_C
/. (z1
- z2)))
= ((((
- ((c1
* c1)
- (s1
* s1)))
* (c2
* c2))
+ ((c1
* c1)
* (c2
* c2)))
- ((s2
* s2)
* (c1
* c1)))
.= ((((
- 1)
* (c2
* c2))
+ ((c1
* c1)
* (c2
* c2)))
- ((s2
* s2)
* (c1
* c1))) by
Th8
.= (((
- 1)
* (c2
* c2))
+ ((c1
* c1)
* ((c2
* c2)
- (s2
* s2))))
.= (((
- 1)
* (c2
* c2))
+ ((c1
* c1)
* 1)) by
Th8
.= ((
- (c2
* c2))
+ (c1
* c1));
((
sinh_C
/. (z1
+ z2))
* (
sinh_C
/. (z1
- z2)))
= ((((s1
* s1)
* ((c2
* c2)
- (s2
* s2)))
+ ((s1
* s1)
* (s2
* s2)))
- ((s2
* s2)
* (c1
* c1))) by
A1
.= ((((s1
* s1)
* 1)
+ ((s1
* s1)
* (s2
* s2)))
- ((s2
* s2)
* (c1
* c1))) by
Th8
.= (((s1
* s1)
* 1)
+ ((s2
* s2)
* (
- ((c1
* c1)
- (s1
* s1)))))
.= (((s1
* s1)
* 1)
+ ((s2
* s2)
* (
- 1))) by
Th8
.= (((s1
* s1)
* 1)
- (s2
* s2));
hence thesis by
A2;
end;
theorem ::
SIN_COS3:60
Th60: ((
cosh_C
/. (z1
+ z2))
* (
cosh_C
/. (z1
- z2)))
= (((
sinh_C
/. z1)
* (
sinh_C
/. z1))
+ ((
cosh_C
/. z2)
* (
cosh_C
/. z2))) & ((
cosh_C
/. (z1
+ z2))
* (
cosh_C
/. (z1
- z2)))
= (((
cosh_C
/. z1)
* (
cosh_C
/. z1))
+ ((
sinh_C
/. z2)
* (
sinh_C
/. z2))) & (((
sinh_C
/. z1)
* (
sinh_C
/. z1))
+ ((
cosh_C
/. z2)
* (
cosh_C
/. z2)))
= (((
cosh_C
/. z1)
* (
cosh_C
/. z1))
+ ((
sinh_C
/. z2)
* (
sinh_C
/. z2)))
proof
set s1 = (
sinh_C
/. z1), s2 = (
sinh_C
/. z2), c1 = (
cosh_C
/. z1), c2 = (
cosh_C
/. z2);
A1: ((
cosh_C
/. (z1
+ z2))
* (
cosh_C
/. (z1
- z2)))
= (((c1
* c2)
+ (s1
* s2))
* (
cosh_C
/. (z1
- z2))) by
Th14
.= (((c1
* c2)
+ (s1
* s2))
* ((c1
* c2)
- (s1
* s2))) by
Th13
.= ((((c1
* c1)
* c2)
* c2)
- (((s1
* s1)
* s2)
* s2));
then
A2: ((
cosh_C
/. (z1
+ z2))
* (
cosh_C
/. (z1
- z2)))
= (((c1
* c1)
* ((c2
* c2)
- (s2
* s2)))
+ (((c1
* c1)
- (s1
* s1))
* (s2
* s2)))
.= (((c1
* c1)
* 1)
+ (((c1
* c1)
- (s1
* s1))
* (s2
* s2))) by
Th8
.= ((c1
* c1)
+ (1
* (s2
* s2))) by
Th8;
((
cosh_C
/. (z1
+ z2))
* (
cosh_C
/. (z1
- z2)))
= ((((c1
* c1)
- (s1
* s1))
* (c2
* c2))
+ ((s1
* s1)
* ((c2
* c2)
- (s2
* s2)))) by
A1
.= ((1
* (c2
* c2))
+ ((s1
* s1)
* ((c2
* c2)
- (s2
* s2)))) by
Th8
.= ((c2
* c2)
+ ((s1
* s1)
* 1)) by
Th8;
hence thesis by
A2;
end;
theorem ::
SIN_COS3:61
((
sinh_C
/. (2
* z1))
+ (
sinh_C
/. (2
* z2)))
= ((2
* (
sinh_C
/. (z1
+ z2)))
* (
cosh_C
/. (z1
- z2))) & ((
sinh_C
/. (2
* z1))
- (
sinh_C
/. (2
* z2)))
= ((2
* (
sinh_C
/. (z1
- z2)))
* (
cosh_C
/. (z1
+ z2)))
proof
set c1 = (
cosh_C
/. z1), c2 = (
cosh_C
/. z2), s1 = (
sinh_C
/. z1), s2 = (
sinh_C
/. z2);
A1: ((2
* (
sinh_C
/. (z1
- z2)))
* (
cosh_C
/. (z1
+ z2)))
= ((2
* ((s1
* c2)
- (c1
* s2)))
* (
cosh_C
/. (z1
+ z2))) by
Th12
.= ((2
* ((s1
* c2)
- (c1
* s2)))
* ((c1
* c2)
+ (s1
* s2))) by
Th14
.= (2
* (((s1
* c1)
* ((c2
* c2)
- (s2
* s2)))
- (((s2
* c2)
* (c1
* c1))
- ((s2
* c2)
* (s1
* s1)))))
.= (2
* (((s1
* c1)
* 1)
- ((s2
* c2)
* ((c1
* c1)
- (s1
* s1))))) by
Th8
.= (2
* (((s1
* c1)
* 1)
- ((s2
* c2)
* 1))) by
Th8
.= (((2
* s1)
* c1)
- (2
* (s2
* c2)))
.= ((
sinh_C
/. (2
* z1))
- ((2
* s2)
* c2)) by
Th58;
((2
* (
sinh_C
/. (z1
+ z2)))
* (
cosh_C
/. (z1
- z2)))
= ((2
* ((s1
* c2)
+ (c1
* s2)))
* (
cosh_C
/. (z1
- z2))) by
Th11
.= ((2
* ((s1
* c2)
+ (c1
* s2)))
* ((c1
* c2)
- (s1
* s2))) by
Th13
.= (2
* ((((c2
* c2)
- (s2
* s2))
* (c1
* s1))
+ (((c1
* c1)
* (s2
* c2))
- ((s1
* s1)
* (c2
* s2)))))
.= (2
* ((1
* (c1
* s1))
+ (((c1
* c1)
- (s1
* s1))
* (c2
* s2)))) by
Th8
.= (2
* ((1
* (c1
* s1))
+ (1
* (c2
* s2)))) by
Th8
.= (((2
* s1)
* c1)
+ (2
* (c2
* s2)))
.= ((
sinh_C
/. (2
* z1))
+ ((2
* s2)
* c2)) by
Th58
.= ((
sinh_C
/. (2
* z1))
+ (
sinh_C
/. (2
* z2))) by
Th58;
hence thesis by
A1,
Th58;
end;
Lm5: for z1 holds ((
sinh_C
/. z1)
* (
sinh_C
/. z1))
= (((
cosh_C
/. z1)
* (
cosh_C
/. z1))
- 1)
proof
let z1;
(((
cosh_C
/. z1)
* (
cosh_C
/. z1))
- 1)
= (((
cosh_C
/. z1)
* (
cosh_C
/. z1))
- (((
cosh_C
/. z1)
* (
cosh_C
/. z1))
- ((
sinh_C
/. z1)
* (
sinh_C
/. z1)))) by
Th8
.= ((((
sinh_C
/. z1)
* (
sinh_C
/. z1))
+ ((
cosh_C
/. z1)
* (
cosh_C
/. z1)))
- ((
cosh_C
/. z1)
* (
cosh_C
/. z1)));
hence thesis;
end;
theorem ::
SIN_COS3:62
((
cosh_C
/. (2
* z1))
+ (
cosh_C
/. (2
* z2)))
= ((2
* (
cosh_C
/. (z1
+ z2)))
* (
cosh_C
/. (z1
- z2))) & ((
cosh_C
/. (2
* z1))
- (
cosh_C
/. (2
* z2)))
= ((2
* (
sinh_C
/. (z1
+ z2)))
* (
sinh_C
/. (z1
- z2)))
proof
A1: ((2
* (
sinh_C
/. (z1
+ z2)))
* (
sinh_C
/. (z1
- z2)))
= (2
* ((
sinh_C
/. (z1
+ z2))
* (
sinh_C
/. (z1
- z2))))
.= (2
* (((
cosh_C
/. z1)
* (
cosh_C
/. z1))
- ((
cosh_C
/. z2)
* (
cosh_C
/. z2)))) by
Th59
.= (((((2
* (
cosh_C
/. z1))
* (
cosh_C
/. z1))
- 1)
+ 1)
- (2
* ((
cosh_C
/. z2)
* (
cosh_C
/. z2))))
.= (((
cosh_C
/. (2
* z1))
+ 1)
- (2
* ((
cosh_C
/. z2)
* (
cosh_C
/. z2)))) by
Th58
.= ((
cosh_C
/. (2
* z1))
- (((2
* (
cosh_C
/. z2))
* (
cosh_C
/. z2))
- 1));
((2
* (
cosh_C
/. (z1
+ z2)))
* (
cosh_C
/. (z1
- z2)))
= (2
* ((
cosh_C
/. (z1
+ z2))
* (
cosh_C
/. (z1
- z2))))
.= (2
* (((
sinh_C
/. z1)
* (
sinh_C
/. z1))
+ ((
cosh_C
/. z2)
* (
cosh_C
/. z2)))) by
Th60
.= (2
* ((((
cosh_C
/. z1)
* (
cosh_C
/. z1))
- 1)
+ ((
cosh_C
/. z2)
* (
cosh_C
/. z2)))) by
Lm5
.= ((((2
* (
cosh_C
/. z1))
* (
cosh_C
/. z1))
- 1)
+ (((2
* (
cosh_C
/. z2))
* (
cosh_C
/. z2))
- 1))
.= ((
cosh_C
/. (2
* z1))
+ (((2
* (
cosh_C
/. z2))
* (
cosh_C
/. z2))
- 1)) by
Th58
.= ((
cosh_C
/. (2
* z1))
+ (
cosh_C
/. (2
* z2))) by
Th58;
hence thesis by
A1,
Th58;
end;