comseq_3.miz



    begin

    reserve rseq,rseq1,rseq2 for Real_Sequence;

    reserve seq,seq1,seq2 for Complex_Sequence;

    reserve k,n,n1,n2,m for Nat;

    reserve p,r for Real;

    

     Lm1: 0c = ( 0 + ( 0 * <i> ));

    theorem :: COMSEQ_3:1

    (n + 1) <> 0c & ((n + 1) * <i> ) <> 0c ;

    theorem :: COMSEQ_3:2

    

     Th2: (for n holds (rseq . n) = 0 ) implies for m holds (( Partial_Sums ( abs rseq)) . m) = 0

    proof

      defpred P[ Nat] means (( abs rseq) . $1) = (( Partial_Sums ( abs rseq)) . $1);

      assume

       A1: for n holds (rseq . n) = 0 ;

      

       A2: for k st P[k] holds P[(k + 1)]

      proof

        let k be Nat such that

         A3: P[k];

        

        thus (( abs rseq) . (k + 1)) = ( 0 + (( abs rseq) . (k + 1)))

        .= ( |. 0 .| + (( abs rseq) . (k + 1))) by ABSVALUE:def 1

        .= ( |.(rseq . k).| + (( abs rseq) . (k + 1))) by A1

        .= ((( Partial_Sums ( abs rseq)) . k) + (( abs rseq) . (k + 1))) by A3, SEQ_1: 12

        .= (( Partial_Sums ( abs rseq)) . (k + 1)) by SERIES_1:def 1;

      end;

      let m;

      

       A4: P[ 0 ] by SERIES_1:def 1;

      for n holds P[n] from NAT_1:sch 2( A4, A2);

      

      hence (( Partial_Sums ( abs rseq)) . m) = (( abs rseq) . m)

      .= |.(rseq . m).| by SEQ_1: 12

      .= |. 0 .| by A1

      .= 0 by ABSVALUE:def 1;

    end;

    theorem :: COMSEQ_3:3

    

     Th3: (for n holds (rseq . n) = 0 ) implies rseq is absolutely_summable

    proof

      assume

       A1: for n holds (rseq . n) = 0 ;

      take 0 ;

      let p be Real such that

       A2: 0 < p;

      take 0 ;

      let m be Nat such that 0 <= m;

       |.((( Partial_Sums ( abs rseq)) . m) - 0 ).| = |.( 0 - 0 ).| by A1, Th2

      .= 0 by ABSVALUE:def 1;

      hence |.((( Partial_Sums ( abs rseq)) . m) - 0 ).| < p by A2;

    end;

    set C = ( seq_const 0 );

    

     Lm2: for n be Nat holds (C . n) = 0 ;

    registration

      cluster summable -> convergent for Real_Sequence;

      coherence by SERIES_1: 4;

    end

    registration

      cluster absolutely_summable -> summable for Real_Sequence;

      coherence ;

    end

    registration

      cluster absolutely_summable for Real_Sequence;

      existence by Lm2, Th3;

    end

    theorem :: COMSEQ_3:4

    rseq is convergent implies for p st 0 < p holds ex n st for m,l be Nat st n <= m & n <= l holds |.((rseq . m) - (rseq . l)).| < p

    proof

      assume

       A1: rseq is convergent;

      let p;

      assume 0 < p;

      then

      consider n such that

       A2: for m st n <= m holds |.((rseq . m) - (rseq . n)).| < (p / 2) by A1, SEQ_4: 41;

      take n;

      now

        let m,l be Nat;

        assume n <= m & n <= l;

        then |.((rseq . m) - (rseq . n)).| < (p / 2) & |.((rseq . l) - (rseq . n)).| < (p / 2) by A2;

        then

         A3: ( |.((rseq . m) - (rseq . n)).| + |.((rseq . l) - (rseq . n)).|) < ((p / 2) + (p / 2)) by XREAL_1: 8;

         |.((rseq . m) - (rseq . l)).| = |.(((rseq . m) - (rseq . n)) - ((rseq . l) - (rseq . n))).|;

        then |.((rseq . m) - (rseq . l)).| <= ( |.((rseq . m) - (rseq . n)).| + |.((rseq . l) - (rseq . n)).|) by COMPLEX1: 57;

        hence |.((rseq . m) - (rseq . l)).| < p by A3, XXREAL_0: 2;

      end;

      hence thesis;

    end;

    theorem :: COMSEQ_3:5

    (for n holds (rseq . n) <= p) implies for n,l be Nat holds ((( Partial_Sums rseq) . (n + l)) - (( Partial_Sums rseq) . n)) <= (p * l)

    proof

      assume

       A1: for n holds (rseq . n) <= p;

      let n;

      defpred P[ Nat] means ((( Partial_Sums rseq) . (n + $1)) - (( Partial_Sums rseq) . n)) <= (p * $1);

       A2:

      now

        let l be Nat such that

         A3: P[l];

        (rseq . ((n + l) + 1)) <= p by A1;

        then

         A4: ((p * l) + (rseq . ((n + l) + 1))) <= ((p * l) + p) by XREAL_1: 6;

        ((( Partial_Sums rseq) . (n + (l + 1))) - (( Partial_Sums rseq) . n)) = (((( Partial_Sums rseq) . (n + l)) + (rseq . ((n + l) + 1))) - (( Partial_Sums rseq) . n)) by SERIES_1:def 1

        .= (((( Partial_Sums rseq) . (n + l)) - (( Partial_Sums rseq) . n)) + (rseq . ((n + l) + 1)));

        then ((( Partial_Sums rseq) . (n + (l + 1))) - (( Partial_Sums rseq) . n)) <= ((p * l) + (rseq . ((n + l) + 1))) by A3, XREAL_1: 6;

        hence P[(l + 1)] by A4, XXREAL_0: 2;

      end;

      

       A5: P[ 0 ];

      thus for l be Nat holds P[l] from NAT_1:sch 2( A5, A2);

    end;

    theorem :: COMSEQ_3:6

    (for n holds (rseq . n) <= p) implies for n holds (( Partial_Sums rseq) . n) <= (p * (n + 1))

    proof

      defpred P[ Nat] means (( Partial_Sums rseq) . $1) <= (p * ($1 + 1));

      assume

       A1: for n holds (rseq . n) <= p;

       A2:

      now

        let n be Nat such that

         A3: P[n];

        (rseq . (n + 1)) <= p by A1;

        then

         A4: ((p * (n + 1)) + (rseq . (n + 1))) <= ((p * (n + 1)) + p) by XREAL_1: 6;

        (( Partial_Sums rseq) . (n + 1)) = ((( Partial_Sums rseq) . n) + (rseq . (n + 1))) by SERIES_1:def 1;

        then (( Partial_Sums rseq) . (n + 1)) <= ((p * (n + 1)) + (rseq . (n + 1))) by A3, XREAL_1: 6;

        hence P[(n + 1)] by A4, XXREAL_0: 2;

      end;

      (( Partial_Sums rseq) . 0 ) = (rseq . 0 ) by SERIES_1:def 1;

      then

       A5: P[ 0 ] by A1;

      thus for n be Nat holds P[n] from NAT_1:sch 2( A5, A2);

    end;

    theorem :: COMSEQ_3:7

    (for n st n <= m holds (rseq1 . n) <= (p * (rseq2 . n))) implies (( Partial_Sums rseq1) . m) <= (p * (( Partial_Sums rseq2) . m))

    proof

      defpred P[ Nat] means $1 <= m implies (( Partial_Sums rseq1) . $1) <= (p * (( Partial_Sums rseq2) . $1));

      assume

       A1: for n st n <= m holds (rseq1 . n) <= (p * (rseq2 . n));

       A2:

      now

        let n be Nat such that

         A3: P[n];

        now

          assume

           A4: (n + 1) <= m;

          then (rseq1 . (n + 1)) <= (p * (rseq2 . (n + 1))) by A1;

          then

           A5: ((p * (( Partial_Sums rseq2) . n)) + (rseq1 . (n + 1))) <= ((p * (( Partial_Sums rseq2) . n)) + (p * (rseq2 . (n + 1)))) by XREAL_1: 6;

          n < (n + 1) & (( Partial_Sums rseq1) . (n + 1)) = ((( Partial_Sums rseq1) . n) + (rseq1 . (n + 1))) by SERIES_1:def 1, XREAL_1: 29;

          then

           A6: (( Partial_Sums rseq1) . (n + 1)) <= ((p * (( Partial_Sums rseq2) . n)) + (rseq1 . (n + 1))) by A3, A4, XREAL_1: 6, XXREAL_0: 2;

          ((p * (( Partial_Sums rseq2) . n)) + (p * (rseq2 . (n + 1)))) = (p * ((( Partial_Sums rseq2) . n) + (rseq2 . (n + 1))))

          .= (p * (( Partial_Sums rseq2) . (n + 1))) by SERIES_1:def 1;

          hence (( Partial_Sums rseq1) . (n + 1)) <= (p * (( Partial_Sums rseq2) . (n + 1))) by A6, A5, XXREAL_0: 2;

        end;

        hence P[(n + 1)];

      end;

      

       A7: P[ 0 ]

      proof

        assume 0 <= m;

        (( Partial_Sums rseq1) . 0 ) = (rseq1 . 0 ) & (p * (( Partial_Sums rseq2) . 0 )) = (p * (rseq2 . 0 )) by SERIES_1:def 1;

        hence thesis by A1;

      end;

      for n be Nat holds P[n] from NAT_1:sch 2( A7, A2);

      hence thesis;

    end;

    theorem :: COMSEQ_3:8

    (for n st n <= m holds (rseq1 . n) <= (p * (rseq2 . n))) implies for n holds for l be Nat st (n + l) <= m holds ((( Partial_Sums rseq1) . (n + l)) - (( Partial_Sums rseq1) . n)) <= (p * ((( Partial_Sums rseq2) . (n + l)) - (( Partial_Sums rseq2) . n)))

    proof

      assume

       A1: for n st n <= m holds (rseq1 . n) <= (p * (rseq2 . n));

      let n;

      defpred P[ Nat] means (n + $1) <= m implies ((( Partial_Sums rseq1) . (n + $1)) - (( Partial_Sums rseq1) . n)) <= (p * ((( Partial_Sums rseq2) . (n + $1)) - (( Partial_Sums rseq2) . n)));

      

       A2: for l be Nat st P[l] holds P[(l + 1)]

      proof

        let l be Nat such that

         A3: P[l];

        assume

         A4: (n + (l + 1)) <= m;

        then (( Partial_Sums rseq1) . (n + (l + 1))) = ((( Partial_Sums rseq1) . (n + l)) + (rseq1 . ((n + l) + 1))) & (rseq1 . ((n + l) + 1)) <= (p * (rseq2 . ((n + l) + 1))) by A1, SERIES_1:def 1;

        then (( Partial_Sums rseq1) . (n + (l + 1))) <= ((( Partial_Sums rseq1) . (n + l)) + (p * (rseq2 . ((n + l) + 1)))) by XREAL_1: 6;

        then

         A5: ((( Partial_Sums rseq1) . (n + (l + 1))) - (( Partial_Sums rseq1) . n)) <= (((( Partial_Sums rseq1) . (n + l)) + (p * (rseq2 . ((n + l) + 1)))) - (( Partial_Sums rseq1) . n)) by XREAL_1: 9;

        (n + l) < ((n + l) + 1) by XREAL_1: 29;

        then

         A6: (((( Partial_Sums rseq1) . (n + l)) - (( Partial_Sums rseq1) . n)) + (p * (rseq2 . ((n + l) + 1)))) <= ((p * ((( Partial_Sums rseq2) . (n + l)) - (( Partial_Sums rseq2) . n))) + (p * (rseq2 . ((n + l) + 1)))) by A3, A4, XREAL_1: 6, XXREAL_0: 2;

        ((p * ((( Partial_Sums rseq2) . (n + l)) - (( Partial_Sums rseq2) . n))) + (p * (rseq2 . ((n + l) + 1)))) = (p * (((( Partial_Sums rseq2) . (n + l)) + (rseq2 . ((n + l) + 1))) - (( Partial_Sums rseq2) . n)))

        .= (p * ((( Partial_Sums rseq2) . (n + (l + 1))) - (( Partial_Sums rseq2) . n))) by SERIES_1:def 1;

        hence thesis by A5, A6, XXREAL_0: 2;

      end;

      

       A7: P[ 0 ];

      thus for l be Nat holds P[l] from NAT_1:sch 2( A7, A2);

    end;

    theorem :: COMSEQ_3:9

    (for n holds 0 <= (rseq . n)) implies (for n, m st n <= m holds |.((( Partial_Sums rseq) . m) - (( Partial_Sums rseq) . n)).| = ((( Partial_Sums rseq) . m) - (( Partial_Sums rseq) . n))) & for n holds |.(( Partial_Sums rseq) . n).| = (( Partial_Sums rseq) . n)

    proof

      assume

       A1: for n holds 0 <= (rseq . n);

      then

       A2: ( Partial_Sums rseq) is non-decreasing by SERIES_1: 16;

       A3:

      now

        let n, m;

        assume n <= m;

        then (( Partial_Sums rseq) . n) <= (( Partial_Sums rseq) . m) by A2, SEQM_3: 6;

        then ((( Partial_Sums rseq) . n) - (( Partial_Sums rseq) . n)) <= ((( Partial_Sums rseq) . m) - (( Partial_Sums rseq) . n)) by XREAL_1: 9;

        hence |.((( Partial_Sums rseq) . m) - (( Partial_Sums rseq) . n)).| = ((( Partial_Sums rseq) . m) - (( Partial_Sums rseq) . n)) by ABSVALUE:def 1;

      end;

      now

        let n;

        

         A4: (( Partial_Sums rseq) . 0 ) <= (( Partial_Sums rseq) . n) by A2, SEQM_3: 6;

        (( Partial_Sums rseq) . 0 ) = (rseq . 0 ) & 0 <= (rseq . 0 ) by A1, SERIES_1:def 1;

        hence |.(( Partial_Sums rseq) . n).| = (( Partial_Sums rseq) . n) by A4, ABSVALUE:def 1;

      end;

      hence thesis by A3;

    end;

    theorem :: COMSEQ_3:10

    seq1 is convergent & seq2 is convergent & ( lim (seq1 - seq2)) = 0c implies ( lim seq1) = ( lim seq2)

    proof

      assume that

       A1: seq1 is convergent & seq2 is convergent and

       A2: ( lim (seq1 - seq2)) = 0c ;

      ( lim (seq1 - seq2)) = (( lim seq1) - ( lim seq2)) by A1, COMSEQ_2: 26;

      hence thesis by A2;

    end;

    begin

    reserve z for Complex;

    reserve Nseq,Nseq1 for increasing sequence of NAT ;

    

     Lm3: |.(seq . n).| = ( |.seq.| . n) & 0 <= ( |.seq.| . n)

    proof

       |.(seq . n).| = ( |.seq.| . n) by VALUED_1: 18;

      hence thesis by COMPLEX1: 46;

    end;

    definition

      let z be Complex;

      :: COMSEQ_3:def1

      func z GeoSeq -> Complex_Sequence means

      : Def1: (it . 0 ) = 1r & for n holds (it . (n + 1)) = ((it . n) * z);

      existence

      proof

        reconsider z9 = z as Element of COMPLEX by XCMPLX_0:def 2;

        deffunc f( set, Element of COMPLEX ) = ( In (($2 * z9), COMPLEX ));

        consider f be sequence of COMPLEX such that

         A1: (f . 0 ) = 1r & for n be Nat holds (f . (n + 1)) = f(n,.) from NAT_1:sch 12;

        take f;

        thus (f . 0 ) = 1r by A1;

        let n;

        (f . (n + 1)) = f(n,.) by A1;

        hence thesis;

      end;

      uniqueness

      proof

        let seq1, seq2;

        assume that

         A2: (seq1 . 0 ) = 1r and

         A3: for n holds (seq1 . (n + 1)) = ((seq1 . n) * z) and

         A4: (seq2 . 0 ) = 1r and

         A5: for n holds (seq2 . (n + 1)) = ((seq2 . n) * z);

        defpred P[ Nat] means (seq1 . $1) = (seq2 . $1);

        

         A6: for k be Nat st P[k] holds P[(k + 1)]

        proof

          let k be Nat;

          assume P[k];

          

          hence (seq1 . (k + 1)) = ((seq2 . k) * z) by A3

          .= (seq2 . (k + 1)) by A5;

        end;

        

         A7: P[ 0 ] by A2, A4;

        for n be Nat holds P[n] from NAT_1:sch 2( A7, A6);

        hence seq1 = seq2;

      end;

    end

    definition

      let z be Complex, n be Nat;

      :: original: |^

      redefine

      :: COMSEQ_3:def2

      func z |^ n -> Element of COMPLEX equals ((z GeoSeq ) . n);

      coherence by XCMPLX_0:def 2;

      compatibility

      proof

        reconsider n as Element of NAT by ORDINAL1:def 12;

        defpred P[ Nat] means (z |^ $1) = ((z GeoSeq ) . $1);

        let w be Element of COMPLEX ;

        

         A1: for n be Nat st P[n] holds P[(n + 1)]

        proof

          let n be Nat;

          assume P[n];

          

          hence (z |^ (n + 1)) = (((z GeoSeq ) . n) * z) by NEWTON: 6

          .= ((z GeoSeq ) . (n + 1)) by Def1;

        end;

        (z |^ 0 ) = 1r by COMPLEX1:def 4, NEWTON: 4

        .= ((z GeoSeq ) . 0 ) by Def1;

        then

         A2: P[ 0 ];

        for n be Nat holds P[n] from NAT_1:sch 2( A2, A1);

        then (z |^ n) = ((z GeoSeq ) . n);

        hence thesis;

      end;

    end

    theorem :: COMSEQ_3:11

    (z |^ 0 ) = 1r by COMPLEX1:def 4, NEWTON: 4;

    definition

      let f be complex-valued Function;

      set A = ( dom f);

      deffunc F( object) = ( Re (f . $1));

      :: COMSEQ_3:def3

      func Re f -> Function means

      : Def3: ( dom it ) = ( dom f) & for x be object st x in ( dom it ) holds (it . x) = ( Re (f . x));

      existence

      proof

        ex f be Function st ( dom f) = A & for x be object st x in A holds (f . x) = F(x) from FUNCT_1:sch 3;

        hence thesis;

      end;

      uniqueness

      proof

        let g,h be Function such that

         A1: ( dom g) = ( dom f) and

         A2: for x be object st x in ( dom g) holds (g . x) = F(x) and

         A3: ( dom h) = ( dom f) and

         A4: for x be object st x in ( dom h) holds (h . x) = F(x);

        now

          let x be object;

          assume

           A5: x in ( dom g);

          

          hence (g . x) = F(x) by A2

          .= (h . x) by A1, A3, A4, A5;

        end;

        hence thesis by A1, A3, FUNCT_1: 2;

      end;

      deffunc F( object) = ( Im (f . $1));

      :: COMSEQ_3:def4

      func Im f -> Function means

      : Def4: ( dom it ) = ( dom f) & for x be object st x in ( dom it ) holds (it . x) = ( Im (f . x));

      existence

      proof

        ex f be Function st ( dom f) = A & for x be object st x in A holds (f . x) = F(x) from FUNCT_1:sch 3;

        hence thesis;

      end;

      uniqueness

      proof

        let g,h be Function such that

         A6: ( dom g) = ( dom f) and

         A7: for x be object st x in ( dom g) holds (g . x) = F(x) and

         A8: ( dom h) = ( dom f) and

         A9: for x be object st x in ( dom h) holds (h . x) = F(x);

        now

          let x be object;

          assume

           A10: x in ( dom g);

          

          hence (g . x) = F(x) by A7

          .= (h . x) by A6, A8, A9, A10;

        end;

        hence thesis by A6, A8, FUNCT_1: 2;

      end;

    end

    registration

      let f be complex-valued Function;

      cluster ( Re f) -> real-valued;

      coherence

      proof

        let x be object;

        assume x in ( dom ( Re f));

        then (( Re f) . x) = ( Re (f . x)) by Def3;

        hence thesis;

      end;

      cluster ( Im f) -> real-valued;

      coherence

      proof

        let x be object;

        assume x in ( dom ( Im f));

        then (( Im f) . x) = ( Im (f . x)) by Def4;

        hence thesis;

      end;

    end

    definition

      let X be set, f be PartFunc of X, COMPLEX ;

      :: original: Re

      redefine

      func Re f -> PartFunc of X, REAL ;

      coherence

      proof

        

         A1: ( dom f) c= X by RELAT_1:def 18;

        

         A2: ( rng ( Re f)) c= REAL by VALUED_0:def 3;

        ( dom ( Re f)) = ( dom f) by Def3;

        hence thesis by A1, A2, RELSET_1: 4;

      end;

      :: original: Im

      redefine

      func Im f -> PartFunc of X, REAL ;

      coherence

      proof

        

         A3: ( dom f) c= X by RELAT_1:def 18;

        

         A4: ( rng ( Im f)) c= REAL by VALUED_0:def 3;

        ( dom ( Im f)) = ( dom f) by Def4;

        hence thesis by A3, A4, RELSET_1: 4;

      end;

    end

    definition

      let c be Complex_Sequence;

      :: original: Re

      redefine

      :: COMSEQ_3:def5

      func Re c -> Real_Sequence means

      : Def5: for n holds (it . n) = ( Re (c . n));

      coherence

      proof

        ( dom ( Re c)) = ( dom c) by Def3

        .= NAT by FUNCT_2:def 1;

        then ( Re c) is total by PARTFUN1:def 2;

        hence thesis;

      end;

      compatibility

      proof

        let f be Real_Sequence;

        

         A1: ( dom ( Re c)) = ( dom c) by Def3;

        

         A2: ( dom c) = NAT by FUNCT_2:def 1;

        

         A3: ( dom f) = NAT by FUNCT_2:def 1;

        thus f = ( Re c) implies for n holds (f . n) = ( Re (c . n)) by A1, A2, Def3, ORDINAL1:def 12;

        assume

         A4: for n holds (f . n) = ( Re (c . n));

        now

          let x be object;

          assume

           A5: x in ( dom f);

          

          hence (f . x) = ( Re (c . x)) by A4

          .= (( Re c) . x) by A1, A2, A3, A5, Def3;

        end;

        hence thesis by A1, A2, A3, FUNCT_1: 2;

      end;

      :: original: Im

      redefine

      :: COMSEQ_3:def6

      func Im c -> Real_Sequence means

      : Def6: for n holds (it . n) = ( Im (c . n));

      coherence

      proof

        ( dom ( Im c)) = ( dom c) by Def4

        .= NAT by FUNCT_2:def 1;

        then ( Im c) is total by PARTFUN1:def 2;

        hence thesis;

      end;

      compatibility

      proof

        let f be Real_Sequence;

        

         A6: ( dom ( Im c)) = ( dom c) by Def4;

        

         A7: ( dom c) = NAT by FUNCT_2:def 1;

        

         A8: ( dom f) = NAT by FUNCT_2:def 1;

        thus f = ( Im c) implies for n holds (f . n) = ( Im (c . n)) by A6, A7, ORDINAL1:def 12, Def4;

        assume

         A9: for n holds (f . n) = ( Im (c . n));

        now

          let x be object;

          assume

           A10: x in ( dom f);

          

          hence (f . x) = ( Im (c . x)) by A9

          .= (( Im c) . x) by A6, A7, A8, A10, Def4;

        end;

        hence thesis by A6, A7, A8, FUNCT_1: 2;

      end;

    end

    theorem :: COMSEQ_3:12

    

     Th12: |.z.| <= ( |.( Re z).| + |.( Im z).|)

    proof

      z = (( Re z) + (( Im z) * <i> )) by COMPLEX1: 13;

      then

       A1: |.z.| <= ( |.(( Re z) + ( 0 * <i> )).| + |.( 0 + (( Im z) * <i> )).|) by COMPLEX1: 56;

      ( Re ( 0 + (( Im z) * <i> ))) = 0 & ( Im ( 0 + (( Im z) * <i> ))) = ( Im z) by COMPLEX1: 12;

      hence thesis by A1, COMPLEX1: 51;

    end;

    theorem :: COMSEQ_3:13

    

     Th13: |.( Re z).| <= |.z.| & |.( Im z).| <= |.z.|

    proof

       0 <= (( Re z) ^2 ) by XREAL_1: 63;

      then

       A1: ( 0 + (( Im z) ^2 )) <= ((( Re z) ^2 ) + (( Im z) ^2 )) by XREAL_1: 6;

       0 <= (( Im z) ^2 ) by XREAL_1: 63;

      then

       A2: ( sqrt (( Im z) ^2 )) <= ( sqrt ((( Re z) ^2 ) + (( Im z) ^2 ))) by A1, SQUARE_1: 26;

       0 <= (( Im z) ^2 ) by XREAL_1: 63;

      then

       A3: ( 0 + (( Re z) ^2 )) <= ((( Im z) ^2 ) + (( Re z) ^2 )) by XREAL_1: 6;

       0 <= (( Re z) ^2 ) by XREAL_1: 63;

      then |.z.| = ( sqrt ((( Re z) ^2 ) + (( Im z) ^2 ))) & ( sqrt (( Re z) ^2 )) <= ( sqrt ((( Re z) ^2 ) + (( Im z) ^2 ))) by A3, COMPLEX1:def 12, SQUARE_1: 26;

      hence thesis by A2, COMPLEX1: 72;

    end;

    theorem :: COMSEQ_3:14

    

     Th14: ( Re seq1) = ( Re seq2) & ( Im seq1) = ( Im seq2) implies seq1 = seq2

    proof

      assume that

       A1: ( Re seq1) = ( Re seq2) and

       A2: ( Im seq1) = ( Im seq2);

      now

        let n be Element of NAT ;

        

         A3: ( Im (seq1 . n)) = (( Im seq2) . n) by A2, Def6

        .= ( Im (seq2 . n)) by Def6;

        ( Re (seq1 . n)) = (( Re seq2) . n) by A1, Def5

        .= ( Re (seq2 . n)) by Def5;

        hence (seq1 . n) = (seq2 . n) by A3, COMPLEX1: 3;

      end;

      hence thesis;

    end;

    theorem :: COMSEQ_3:15

    

     Th15: (( Re seq1) + ( Re seq2)) = ( Re (seq1 + seq2)) & (( Im seq1) + ( Im seq2)) = ( Im (seq1 + seq2) qua Complex_Sequence)

    proof

      now

        let n be Element of NAT ;

        

        thus ((( Re seq1) + ( Re seq2)) . n) = ((( Re seq1) . n) + (( Re seq2) . n)) by SEQ_1: 7

        .= (( Re (seq1 . n)) + (( Re seq2) . n)) by Def5

        .= (( Re (seq1 . n)) + ( Re (seq2 . n))) by Def5

        .= ( Re ((seq1 . n) + (seq2 . n))) by COMPLEX1: 8

        .= ( Re ((seq1 + seq2) . n)) by VALUED_1: 1

        .= (( Re (seq1 + seq2)) . n) by Def5;

      end;

      hence (( Re seq1) + ( Re seq2)) = ( Re (seq1 + seq2));

      now

        let n be Element of NAT ;

        

        thus ((( Im seq1) + ( Im seq2)) . n) = ((( Im seq1) . n) + (( Im seq2) . n)) by SEQ_1: 7

        .= (( Im (seq1 . n)) + (( Im seq2) . n)) by Def6

        .= (( Im (seq1 . n)) + ( Im (seq2 . n))) by Def6

        .= ( Im ((seq1 . n) + (seq2 . n))) by COMPLEX1: 8

        .= ( Im ((seq1 + seq2) . n)) by VALUED_1: 1

        .= (( Im (seq1 + seq2)) . n) by Def6;

      end;

      hence thesis;

    end;

    theorem :: COMSEQ_3:16

    

     Th16: ( - ( Re seq)) = ( Re ( - seq)) & ( - ( Im seq)) = ( Im ( - seq))

    proof

      now

        let n be Element of NAT ;

        

        thus (( - ( Re seq)) . n) = ( - (( Re seq) . n)) by SEQ_1: 10

        .= ( - ( Re (seq . n))) by Def5

        .= ( Re ( - (seq . n))) by COMPLEX1: 17

        .= ( Re (( - seq) . n)) by VALUED_1: 8

        .= (( Re ( - seq)) . n) by Def5;

      end;

      hence ( - ( Re seq)) = ( Re ( - seq));

      now

        let n be Element of NAT ;

        

        thus (( - ( Im seq)) . n) = ( - (( Im seq) . n)) by SEQ_1: 10

        .= ( - ( Im (seq . n))) by Def6

        .= ( Im ( - (seq . n))) by COMPLEX1: 17

        .= ( Im (( - seq) . n)) by VALUED_1: 8

        .= (( Im ( - seq)) . n) by Def6;

      end;

      hence thesis;

    end;

    theorem :: COMSEQ_3:17

    

     Th17: (r * ( Re z)) = ( Re (r * z)) & (r * ( Im z)) = ( Im (r * z))

    proof

      reconsider r9 = r as Element of COMPLEX by XCMPLX_0:def 2;

      r = (r + ( 0 * <i> ));

      then

       A1: ( Re r) = r & ( Im r) = 0 by COMPLEX1: 12;

      (r * z) = (((( Re r9) * ( Re z)) - (( Im r9) * ( Im z))) + (((( Re r9) * ( Im z)) + (( Re z) * ( Im r9))) * <i> )) by COMPLEX1: 82

      .= ((r * ( Re z)) + ((r * ( Im z)) * <i> )) by A1;

      hence thesis by COMPLEX1: 12;

    end;

    theorem :: COMSEQ_3:18

    

     Th18: (( Re seq1) - ( Re seq2)) = ( Re (seq1 - seq2)) & (( Im seq1) - ( Im seq2)) = ( Im (seq1 - seq2))

    proof

      now

        let n be Element of NAT ;

        

        thus ((( Re seq1) - ( Re seq2)) . n) = ((( Re seq1) . n) + (( - ( Re seq2)) . n)) by SEQ_1: 7

        .= ((( Re seq1) . n) + (( Re ( - seq2)) . n)) by Th16

        .= ((( Re seq1) + ( Re ( - seq2))) . n) by SEQ_1: 7

        .= (( Re (seq1 - seq2)) . n) by Th15;

      end;

      hence (( Re seq1) - ( Re seq2)) = ( Re (seq1 - seq2));

      now

        let n be Element of NAT ;

        

        thus ((( Im seq1) - ( Im seq2)) . n) = ((( Im seq1) . n) + (( - ( Im seq2)) . n)) by SEQ_1: 7

        .= ((( Im seq1) . n) + (( Im ( - seq2)) . n)) by Th16

        .= ((( Im seq1) + ( Im ( - seq2))) . n) by SEQ_1: 7

        .= (( Im (seq1 - seq2)) . n) by Th15;

      end;

      hence thesis;

    end;

    theorem :: COMSEQ_3:19

    (r (#) ( Re seq)) = ( Re (r (#) seq)) & (r (#) ( Im seq)) = ( Im (r (#) seq))

    proof

      now

        let n be Element of NAT ;

        

        thus ((r (#) ( Re seq)) . n) = (r * (( Re seq) . n)) by SEQ_1: 9

        .= (r * ( Re (seq . n))) by Def5

        .= ( Re (r * (seq . n))) by Th17

        .= ( Re ((r (#) seq) . n)) by VALUED_1: 6

        .= (( Re (r (#) seq)) . n) by Def5;

      end;

      hence (r (#) ( Re seq)) = ( Re (r (#) seq));

      now

        let n be Element of NAT ;

        

        thus ((r (#) ( Im seq)) . n) = (r * (( Im seq) . n)) by SEQ_1: 9

        .= (r * ( Im (seq . n))) by Def6

        .= ( Im (r * (seq . n))) by Th17

        .= ( Im ((r (#) seq) . n)) by VALUED_1: 6

        .= (( Im (r (#) seq)) . n) by Def6;

      end;

      hence thesis;

    end;

    theorem :: COMSEQ_3:20

    ( Re (z (#) seq)) = ((( Re z) (#) ( Re seq)) - (( Im z) (#) ( Im seq))) & ( Im (z (#) seq)) = ((( Re z) (#) ( Im seq)) + (( Im z) (#) ( Re seq)))

    proof

      now

        let n be Element of NAT ;

        

        thus (( Re (z (#) seq)) . n) = ( Re ((z (#) seq) . n)) by Def5

        .= ( Re (z * (seq . n))) by VALUED_1: 6

        .= ( Re (((( Re z) * ( Re (seq . n))) - (( Im z) * ( Im (seq . n)))) + (((( Re z) * ( Im (seq . n))) + (( Re (seq . n)) * ( Im z))) * <i> ))) by COMPLEX1: 82

        .= ((( Re z) * ( Re (seq . n))) - (( Im z) * ( Im (seq . n)))) by COMPLEX1: 12

        .= ((( Re z) * (( Re seq) . n)) - (( Im z) * ( Im (seq . n)))) by Def5

        .= ((( Re z) * (( Re seq) . n)) - (( Im z) * (( Im seq) . n))) by Def6

        .= (((( Re z) (#) ( Re seq)) . n) - (( Im z) * (( Im seq) . n))) by SEQ_1: 9

        .= (((( Re z) (#) ( Re seq)) . n) - ((( Im z) (#) ( Im seq)) . n)) by SEQ_1: 9

        .= (((( Re z) (#) ( Re seq)) . n) + ( - ((( Im z) (#) ( Im seq)) . n)))

        .= (((( Re z) (#) ( Re seq)) . n) + (( - (( Im z) (#) ( Im seq))) . n)) by SEQ_1: 10

        .= (((( Re z) (#) ( Re seq)) - (( Im z) (#) ( Im seq))) . n) by SEQ_1: 7;

      end;

      hence ( Re (z (#) seq)) = ((( Re z) (#) ( Re seq)) - (( Im z) (#) ( Im seq)));

      now

        let n be Element of NAT ;

        

        thus (( Im (z (#) seq)) . n) = ( Im ((z (#) seq) . n)) by Def6

        .= ( Im (z * (seq . n))) by VALUED_1: 6

        .= ( Im (((( Re z) * ( Re (seq . n))) - (( Im z) * ( Im (seq . n)))) + (((( Re z) * ( Im (seq . n))) + (( Re (seq . n)) * ( Im z))) * <i> ))) by COMPLEX1: 82

        .= ((( Re z) * ( Im (seq . n))) + (( Re (seq . n)) * ( Im z))) by COMPLEX1: 12

        .= ((( Re z) * ( Im (seq . n))) + (( Im z) * (( Re seq) . n))) by Def5

        .= ((( Re z) * (( Im seq) . n)) + (( Im z) * (( Re seq) . n))) by Def6

        .= (((( Re z) (#) ( Im seq)) . n) + (( Im z) * (( Re seq) . n))) by SEQ_1: 9

        .= (((( Re z) (#) ( Im seq)) . n) + ((( Im z) (#) ( Re seq)) . n)) by SEQ_1: 9

        .= (((( Re z) (#) ( Im seq)) + (( Im z) (#) ( Re seq))) . n) by SEQ_1: 7;

      end;

      hence thesis;

    end;

    theorem :: COMSEQ_3:21

    ( Re (seq1 (#) seq2)) = ((( Re seq1) (#) ( Re seq2)) - (( Im seq1) (#) ( Im seq2))) & ( Im (seq1 (#) seq2)) = ((( Re seq1) (#) ( Im seq2)) + (( Im seq1) (#) ( Re seq2)))

    proof

      now

        let n be Element of NAT ;

        

        thus (( Re (seq1 (#) seq2)) . n) = ( Re ((seq1 (#) seq2) . n)) by Def5

        .= ( Re ((seq1 . n) * (seq2 . n))) by VALUED_1: 5

        .= ( Re (((( Re (seq1 . n)) * ( Re (seq2 . n))) - (( Im (seq1 . n)) * ( Im (seq2 . n)))) + (((( Re (seq1 . n)) * ( Im (seq2 . n))) + (( Re (seq2 . n)) * ( Im (seq1 . n)))) * <i> ))) by COMPLEX1: 82

        .= ((( Re (seq1 . n)) * ( Re (seq2 . n))) - (( Im (seq1 . n)) * ( Im (seq2 . n)))) by COMPLEX1: 12

        .= (((( Re seq1) . n) * ( Re (seq2 . n))) - (( Im (seq1 . n)) * ( Im (seq2 . n)))) by Def5

        .= (((( Re seq1) . n) * (( Re seq2) . n)) - (( Im (seq1 . n)) * ( Im (seq2 . n)))) by Def5

        .= (((( Re seq1) . n) * (( Re seq2) . n)) - (( Im (seq1 . n)) * (( Im seq2) . n))) by Def6

        .= (((( Re seq1) . n) * (( Re seq2) . n)) - ((( Im seq1) . n) * (( Im seq2) . n))) by Def6

        .= (((( Re seq1) (#) ( Re seq2)) . n) - ((( Im seq1) . n) * (( Im seq2) . n))) by SEQ_1: 8

        .= (((( Re seq1) (#) ( Re seq2)) . n) - ((( Im seq1) (#) ( Im seq2)) . n)) by SEQ_1: 8

        .= (((( Re seq1) (#) ( Re seq2)) . n) + ( - ((( Im seq1) (#) ( Im seq2)) . n)))

        .= (((( Re seq1) (#) ( Re seq2)) . n) + (( - (( Im seq1) (#) ( Im seq2))) . n)) by SEQ_1: 10

        .= (((( Re seq1) (#) ( Re seq2)) - (( Im seq1) (#) ( Im seq2))) . n) by SEQ_1: 7;

      end;

      hence ( Re (seq1 (#) seq2)) = ((( Re seq1) (#) ( Re seq2)) - (( Im seq1) (#) ( Im seq2)));

      now

        let n be Element of NAT ;

        

        thus (( Im (seq1 (#) seq2)) . n) = ( Im ((seq1 (#) seq2) . n)) by Def6

        .= ( Im ((seq1 . n) * (seq2 . n))) by VALUED_1: 5

        .= ( Im (((( Re (seq1 . n)) * ( Re (seq2 . n))) - (( Im (seq1 . n)) * ( Im (seq2 . n)))) + (((( Re (seq1 . n)) * ( Im (seq2 . n))) + (( Re (seq2 . n)) * ( Im (seq1 . n)))) * <i> ))) by COMPLEX1: 82

        .= ((( Re (seq1 . n)) * ( Im (seq2 . n))) + (( Re (seq2 . n)) * ( Im (seq1 . n)))) by COMPLEX1: 12

        .= ((( Re (seq1 . n)) * ( Im (seq2 . n))) + (( Im (seq1 . n)) * (( Re seq2) . n))) by Def5

        .= (((( Re seq1) . n) * ( Im (seq2 . n))) + (( Im (seq1 . n)) * (( Re seq2) . n))) by Def5

        .= (((( Re seq1) . n) * (( Im seq2) . n)) + (( Im (seq1 . n)) * (( Re seq2) . n))) by Def6

        .= (((( Re seq1) . n) * (( Im seq2) . n)) + ((( Im seq1) . n) * (( Re seq2) . n))) by Def6

        .= (((( Re seq1) (#) ( Im seq2)) . n) + ((( Im seq1) . n) * (( Re seq2) . n))) by SEQ_1: 8

        .= (((( Re seq1) (#) ( Im seq2)) . n) + ((( Im seq1) (#) ( Re seq2)) . n)) by SEQ_1: 8

        .= (((( Re seq1) (#) ( Im seq2)) + (( Im seq1) (#) ( Re seq2))) . n) by SEQ_1: 7;

      end;

      hence thesis;

    end;

    definition

      let Nseq be increasing sequence of NAT , seq be Complex_Sequence;

      :: original: *

      redefine

      func seq * Nseq -> Complex_Sequence ;

      coherence

      proof

        ( dom (seq * Nseq)) = NAT by FUNCT_2:def 1;

        hence thesis;

      end;

    end

    theorem :: COMSEQ_3:22

    

     Th22: ( Re (seq * Nseq)) = (( Re seq) * Nseq) & ( Im (seq * Nseq)) = (( Im seq) * Nseq)

    proof

      now

        let n be Element of NAT ;

        

        thus (( Re (seq * Nseq)) . n) = ( Re ((seq * Nseq) . n)) by Def5

        .= ( Re (seq . (Nseq . n))) by FUNCT_2: 15

        .= (( Re seq) . (Nseq . n)) by Def5

        .= ((( Re seq) * Nseq) . n) by FUNCT_2: 15;

      end;

      hence ( Re (seq * Nseq)) = (( Re seq) * Nseq);

      now

        let n be Element of NAT ;

        

        thus (( Im (seq * Nseq)) . n) = ( Im ((seq * Nseq) . n)) by Def6

        .= ( Im (seq . (Nseq . n))) by FUNCT_2: 15

        .= (( Im seq) . (Nseq . n)) by Def6

        .= ((( Im seq) * Nseq) . n) by FUNCT_2: 15;

      end;

      hence thesis;

    end;

    theorem :: COMSEQ_3:23

    

     Th23: (( Re seq) ^\ k) = ( Re (seq ^\ k)) & (( Im seq) ^\ k) = ( Im (seq ^\ k))

    proof

      now

        let n be Element of NAT ;

        

        thus ((( Re seq) ^\ k) . n) = (( Re seq) . (n + k)) by NAT_1:def 3

        .= ( Re (seq . (n + k))) by Def5

        .= ( Re ((seq ^\ k) . n)) by NAT_1:def 3

        .= (( Re (seq ^\ k)) . n) by Def5;

        

        thus ((( Im seq) ^\ k) . n) = (( Im seq) . (n + k)) by NAT_1:def 3

        .= ( Im (seq . (n + k))) by Def6

        .= ( Im ((seq ^\ k) . n)) by NAT_1:def 3

        .= (( Im (seq ^\ k)) . n) by Def6;

      end;

      hence thesis;

    end;

    definition

      let s be Complex_Sequence;

      :: original: Partial_Sums

      redefine

      func Partial_Sums s -> Complex_Sequence ;

      coherence

      proof

        

         A1: ( dom ( Partial_Sums s)) = NAT by PARTFUN1:def 2;

        ( rng ( Partial_Sums s)) c= COMPLEX by VALUED_0:def 1;

        then ( Partial_Sums s) is PartFunc of NAT , COMPLEX by A1, RELSET_1: 4;

        hence ( Partial_Sums s) is Complex_Sequence;

      end;

    end

    definition

      let seq be Complex_Sequence;

      :: COMSEQ_3:def7

      func Sum seq -> Element of COMPLEX equals ( lim ( Partial_Sums seq));

      coherence by XCMPLX_0:def 2;

    end

    theorem :: COMSEQ_3:24

    

     Th24: (for n holds (seq . n) = 0c ) implies for m holds (( Partial_Sums seq) . m) = 0c

    proof

      defpred P[ Nat] means (seq . $1) = (( Partial_Sums seq) . $1);

      assume

       A1: for n holds (seq . n) = 0c ;

      

       A2: for k be Nat st P[k] holds P[(k + 1)]

      proof

        let k be Nat such that

         A3: P[k];

        

        thus (seq . (k + 1)) = ( 0c + (seq . (k + 1)))

        .= ((( Partial_Sums seq) . k) + (seq . (k + 1))) by A1, A3

        .= (( Partial_Sums seq) . (k + 1)) by SERIES_1:def 1;

      end;

      let m;

      

       A4: P[ 0 ] by SERIES_1:def 1;

      for n be Nat holds P[n] from NAT_1:sch 2( A4, A2);

      then seq = ( Partial_Sums seq);

      hence thesis by A1;

    end;

    theorem :: COMSEQ_3:25

    

     Th25: (for n holds (seq . n) = 0c ) implies for m holds (( Partial_Sums |.seq.|) . m) = 0

    proof

      defpred P[ Nat] means ( |.seq.| . $1) = (( Partial_Sums |.seq.|) . $1);

      assume

       A1: for n holds (seq . n) = 0c ;

      

       A2: for k be Nat st P[k] holds P[(k + 1)]

      proof

        let k be Nat such that

         A3: P[k];

        

        thus ( |.seq.| . (k + 1)) = ( |. 0c .| + ( |.seq.| . (k + 1))) by COMPLEX1: 44

        .= ( |.(seq . k).| + ( |.seq.| . (k + 1))) by A1

        .= ((( Partial_Sums |.seq.|) . k) + ( |.seq.| . (k + 1))) by A3, VALUED_1: 18

        .= (( Partial_Sums |.seq.|) . (k + 1)) by SERIES_1:def 1;

      end;

      let m;

      

       A4: P[ 0 ] by SERIES_1:def 1;

      for n be Nat holds P[n] from NAT_1:sch 2( A4, A2);

      

      hence (( Partial_Sums |.seq.|) . m) = ( |.seq.| . m)

      .= |.(seq . m).| by VALUED_1: 18

      .= 0 by A1, COMPLEX1: 44;

    end;

    theorem :: COMSEQ_3:26

    

     Th26: ( Partial_Sums ( Re seq)) = ( Re ( Partial_Sums seq)) & ( Partial_Sums ( Im seq)) = ( Im ( Partial_Sums seq))

    proof

      defpred P[ Nat] means (( Partial_Sums ( Re seq)) . $1) = (( Re ( Partial_Sums seq)) . $1);

      defpred R[ Nat] means (( Partial_Sums ( Im seq)) . $1) = (( Im ( Partial_Sums seq)) . $1);

      

       A1: for k be Nat st P[k] holds P[(k + 1)]

      proof

        let k be Nat;

        assume P[k];

        

        then (( Partial_Sums ( Re seq)) . (k + 1)) = ((( Re ( Partial_Sums seq)) . k) + (( Re seq) . (k + 1))) by SERIES_1:def 1

        .= ((( Re ( Partial_Sums seq)) . k) + ( Re (seq . (k + 1)))) by Def5

        .= (( Re (( Partial_Sums seq) . k)) + ( Re (seq . (k + 1)))) by Def5

        .= ( Re ((( Partial_Sums seq) . k) + (seq . (k + 1)))) by COMPLEX1: 8

        .= ( Re (( Partial_Sums seq) . (k + 1))) by SERIES_1:def 1

        .= (( Re ( Partial_Sums seq)) . (k + 1)) by Def5;

        hence thesis;

      end;

      

       A2: for k be Nat st R[k] holds R[(k + 1)]

      proof

        let k be Nat;

        assume R[k];

        

        then (( Partial_Sums ( Im seq)) . (k + 1)) = ((( Im ( Partial_Sums seq)) . k) + (( Im seq) . (k + 1))) by SERIES_1:def 1

        .= ((( Im ( Partial_Sums seq)) . k) + ( Im (seq . (k + 1)))) by Def6

        .= (( Im (( Partial_Sums seq) . k)) + ( Im (seq . (k + 1)))) by Def6

        .= ( Im ((( Partial_Sums seq) . k) + (seq . (k + 1)))) by COMPLEX1: 8

        .= ( Im (( Partial_Sums seq) . (k + 1))) by SERIES_1:def 1

        .= (( Im ( Partial_Sums seq)) . (k + 1)) by Def6;

        hence thesis;

      end;

      (( Partial_Sums ( Im seq)) . 0 ) = (( Im seq) . 0 ) by SERIES_1:def 1

      .= ( Im (seq . 0 )) by Def6

      .= ( Im (( Partial_Sums seq) . 0 )) by SERIES_1:def 1

      .= (( Im ( Partial_Sums seq)) . 0 ) by Def6;

      then

       A3: R[ 0 ];

      

       A4: for n be Nat holds R[n] from NAT_1:sch 2( A3, A2);

      (( Partial_Sums ( Re seq)) . 0 ) = (( Re seq) . 0 ) by SERIES_1:def 1

      .= ( Re (seq . 0 )) by Def5

      .= ( Re (( Partial_Sums seq) . 0 )) by SERIES_1:def 1

      .= (( Re ( Partial_Sums seq)) . 0 ) by Def5;

      then

       A5: P[ 0 ];

      for n be Nat holds P[n] from NAT_1:sch 2( A5, A1);

      hence thesis by A4;

    end;

    theorem :: COMSEQ_3:27

    

     Th27: (( Partial_Sums seq1) + ( Partial_Sums seq2)) = ( Partial_Sums (seq1 + seq2)) by SERIES_1: 5;

    theorem :: COMSEQ_3:28

    

     Th28: (( Partial_Sums seq1) - ( Partial_Sums seq2)) = ( Partial_Sums (seq1 - seq2))

    proof

      

       A1: ( Im (( Partial_Sums seq1) - ( Partial_Sums seq2))) = (( Im ( Partial_Sums seq1)) - ( Im ( Partial_Sums seq2))) by Th18

      .= (( Partial_Sums ( Im seq1)) - ( Im ( Partial_Sums seq2))) by Th26

      .= (( Partial_Sums ( Im seq1)) - ( Partial_Sums ( Im seq2))) by Th26

      .= ( Partial_Sums (( Im seq1) - ( Im seq2))) by SERIES_1: 6

      .= ( Partial_Sums ( Im (seq1 - seq2))) by Th18

      .= ( Im ( Partial_Sums (seq1 - seq2))) by Th26;

      ( Re (( Partial_Sums seq1) - ( Partial_Sums seq2))) = (( Re ( Partial_Sums seq1)) - ( Re ( Partial_Sums seq2))) by Th18

      .= (( Partial_Sums ( Re seq1)) - ( Re ( Partial_Sums seq2))) by Th26

      .= (( Partial_Sums ( Re seq1)) - ( Partial_Sums ( Re seq2))) by Th26

      .= ( Partial_Sums (( Re seq1) - ( Re seq2))) by SERIES_1: 6

      .= ( Partial_Sums ( Re (seq1 - seq2))) by Th18

      .= ( Re ( Partial_Sums (seq1 - seq2))) by Th26;

      hence thesis by A1, Th14;

    end;

    theorem :: COMSEQ_3:29

    

     Th29: for z be Complex holds ( Partial_Sums (z (#) seq)) = (z (#) ( Partial_Sums seq))

    proof

      let z be Complex;

      defpred P[ Nat] means (( Partial_Sums (z (#) seq)) . $1) = ((z (#) ( Partial_Sums seq)) . $1);

       A1:

      now

        let n be Nat;

        assume

         A2: P[n];

        (( Partial_Sums (z (#) seq)) . (n + 1)) = ((( Partial_Sums (z (#) seq)) . n) + ((z (#) seq) . (n + 1))) by SERIES_1:def 1

        .= ((z * (( Partial_Sums seq) . n)) + ((z (#) seq) . (n + 1))) by A2, VALUED_1: 6

        .= ((z * (( Partial_Sums seq) . n)) + (z * (seq . (n + 1)))) by VALUED_1: 6

        .= (z * ((( Partial_Sums seq) . n) + (seq . (n + 1))))

        .= (z * (( Partial_Sums seq) . (n + 1))) by SERIES_1:def 1

        .= ((z (#) ( Partial_Sums seq)) . (n + 1)) by VALUED_1: 6;

        hence P[(n + 1)];

      end;

      (( Partial_Sums (z (#) seq)) . 0 ) = ((z (#) seq) . 0 ) by SERIES_1:def 1

      .= (z * (seq . 0 )) by VALUED_1: 6

      .= (z * (( Partial_Sums seq) . 0 )) by SERIES_1:def 1

      .= ((z (#) ( Partial_Sums seq)) . 0 ) by VALUED_1: 6;

      then

       A3: P[ 0 ];

      for n be Nat holds P[n] from NAT_1:sch 2( A3, A1);

      hence thesis;

    end;

    theorem :: COMSEQ_3:30

     |.(( Partial_Sums seq) . k).| <= (( Partial_Sums |.seq.|) . k)

    proof

      defpred P[ Nat] means |.(( Partial_Sums seq) . $1).| <= (( Partial_Sums |.seq.|) . $1);

       A1:

      now

        let k;

        assume P[k];

        then

         A2: ( |.(( Partial_Sums seq) . k).| + |.(seq . (k + 1)).|) <= ((( Partial_Sums |.seq.|) . k) + |.(seq . (k + 1)).|) by XREAL_1: 6;

         |.(( Partial_Sums seq) . (k + 1)).| = |.((( Partial_Sums seq) . k) + (seq . (k + 1))).| & |.((( Partial_Sums seq) . k) + (seq . (k + 1))).| <= ( |.(( Partial_Sums seq) . k).| + |.(seq . (k + 1)).|) by COMPLEX1: 56, SERIES_1:def 1;

        then |.(( Partial_Sums seq) . (k + 1)).| <= ((( Partial_Sums |.seq.|) . k) + |.(seq . (k + 1)).|) by A2, XXREAL_0: 2;

        then |.(( Partial_Sums seq) . (k + 1)).| <= ((( Partial_Sums |.seq.|) . k) + ( |.seq.| . (k + 1))) by VALUED_1: 18;

        hence P[(k + 1)] by SERIES_1:def 1;

      end;

      (( Partial_Sums |.seq.|) . 0 ) = ( |.seq.| . 0 ) by SERIES_1:def 1

      .= |.(seq . 0 ).| by VALUED_1: 18;

      then

       A3: P[ 0 ] by SERIES_1:def 1;

      for k be Nat holds P[k] from NAT_1:sch 2( A3, A1);

      hence thesis;

    end;

    theorem :: COMSEQ_3:31

    

     Th31: |.((( Partial_Sums seq) . m) - (( Partial_Sums seq) . n)).| <= |.((( Partial_Sums |.seq.|) . m) - (( Partial_Sums |.seq.|) . n)).|

    proof

      

       A1: for n,k be Nat holds 0 <= ((( Partial_Sums |.seq.|) . (n + k)) - (( Partial_Sums |.seq.|) . n))

      proof

        let n;

        defpred P[ Nat] means 0 <= ((( Partial_Sums |.seq.|) . (n + $1)) - (( Partial_Sums |.seq.|) . n));

         A2:

        now

          let k;

          

           A3: ((( Partial_Sums |.seq.|) . (n + (k + 1))) - (( Partial_Sums |.seq.|) . n)) = (((( Partial_Sums |.seq.|) . (n + k)) + ( |.seq.| . ((n + k) + 1))) - (( Partial_Sums |.seq.|) . n)) by SERIES_1:def 1

          .= (((( Partial_Sums |.seq.|) . (n + k)) + |.(seq . ((n + k) + 1)).|) - (( Partial_Sums |.seq.|) . n)) by VALUED_1: 18

          .= (((( Partial_Sums |.seq.|) . (n + k)) - (( Partial_Sums |.seq.|) . n)) + |.(seq . ((n + k) + 1)).|);

          

           A4: 0 <= |.(seq . ((n + k) + 1)).| by COMPLEX1: 46;

          assume P[k];

          hence P[(k + 1)] by A3, A4;

        end;

        

         A5: P[ 0 ];

        thus for k be Nat holds P[k] from NAT_1:sch 2( A5, A2);

      end;

      

       A6: for n,k be Nat holds |.((( Partial_Sums |.seq.|) . (n + k)) - (( Partial_Sums |.seq.|) . n)).| = ((( Partial_Sums |.seq.|) . (n + k)) - (( Partial_Sums |.seq.|) . n)) by A1, ABSVALUE:def 1;

      

       A7: for n, m st n <= m holds |.((( Partial_Sums seq) . m) - (( Partial_Sums seq) . n)).| <= |.((( Partial_Sums |.seq.|) . m) - (( Partial_Sums |.seq.|) . n)).|

      proof

        let n,m be Nat;

        assume n <= m;

        then

        consider k be Nat such that

         A8: m = (n + k) by NAT_1: 10;

        

         A9: for k be Nat holds |.((( Partial_Sums seq) . (n + k)) - (( Partial_Sums seq) . n)).| <= |.((( Partial_Sums |.seq.|) . (n + k)) - (( Partial_Sums |.seq.|) . n)).|

        proof

          defpred P[ Nat] means |.((( Partial_Sums seq) . (n + $1)) - (( Partial_Sums seq) . n)).| <= |.((( Partial_Sums |.seq.|) . (n + $1)) - (( Partial_Sums |.seq.|) . n)).|;

           A10:

          now

            let k be Nat;

            assume P[k];

            then

             A11: |.(((( Partial_Sums seq) . (n + k)) - (( Partial_Sums seq) . n)) + (seq . ((n + k) + 1))).| <= ( |.((( Partial_Sums seq) . (n + k)) - (( Partial_Sums seq) . n)).| + |.(seq . ((n + k) + 1)).|) & ( |.((( Partial_Sums seq) . (n + k)) - (( Partial_Sums seq) . n)).| + |.(seq . ((n + k) + 1)).|) <= ( |.((( Partial_Sums |.seq.|) . (n + k)) - (( Partial_Sums |.seq.|) . n)).| + |.(seq . ((n + k) + 1)).|) by COMPLEX1: 56, XREAL_1: 6;

            

             A12: |.((( Partial_Sums seq) . (n + (k + 1))) - (( Partial_Sums seq) . n)).| = |.(((( Partial_Sums seq) . (n + k)) + (seq . ((n + k) + 1))) - (( Partial_Sums seq) . n)).| by SERIES_1:def 1

            .= |.(((( Partial_Sums seq) . (n + k)) - (( Partial_Sums seq) . n)) + (seq . ((n + k) + 1))).|;

            ( |.((( Partial_Sums |.seq.|) . (n + k)) - (( Partial_Sums |.seq.|) . n)).| + |.(seq . ((n + k) + 1)).|) = (((( Partial_Sums |.seq.|) . (n + k)) - (( Partial_Sums |.seq.|) . n)) + |.(seq . ((n + k) + 1)).|) by A6

            .= (((( Partial_Sums |.seq.|) . (n + k)) + |.(seq . ((n + k) + 1)).|) - (( Partial_Sums |.seq.|) . n))

            .= (((( Partial_Sums |.seq.|) . (n + k)) + ( |.seq.| . ((n + k) + 1))) - (( Partial_Sums |.seq.|) . n)) by VALUED_1: 18

            .= ((( Partial_Sums |.seq.|) . (n + (k + 1))) - (( Partial_Sums |.seq.|) . n)) by SERIES_1:def 1

            .= |.((( Partial_Sums |.seq.|) . (n + (k + 1))) - (( Partial_Sums |.seq.|) . n)).| by A6;

            hence P[(k + 1)] by A12, A11, XXREAL_0: 2;

          end;

          

           A13: P[ 0 ];

          thus for k be Nat holds P[k] from NAT_1:sch 2( A13, A10);

        end;

        thus thesis by A9, A8;

      end;

      for n, m holds |.((( Partial_Sums seq) . m) - (( Partial_Sums seq) . n)).| <= |.((( Partial_Sums |.seq.|) . m) - (( Partial_Sums |.seq.|) . n)).|

      proof

        let n, m;

        m <= n implies |.((( Partial_Sums seq) . m) - (( Partial_Sums seq) . n)).| <= |.((( Partial_Sums |.seq.|) . m) - (( Partial_Sums |.seq.|) . n)).|

        proof

          assume m <= n;

          then

           A14: |.((( Partial_Sums seq) . n) - (( Partial_Sums seq) . m)).| <= |.((( Partial_Sums |.seq.|) . n) - (( Partial_Sums |.seq.|) . m)).| by A7;

           |.((( Partial_Sums |.seq.|) . n) - (( Partial_Sums |.seq.|) . m)).| = |.( - ((( Partial_Sums |.seq.|) . n) - (( Partial_Sums |.seq.|) . m))).| by COMPLEX1: 52

          .= |.((( Partial_Sums |.seq.|) . m) - (( Partial_Sums |.seq.|) . n)).|;

          hence thesis by A14, COMPLEX1: 60;

        end;

        hence thesis by A7;

      end;

      hence thesis;

    end;

    theorem :: COMSEQ_3:32

    

     Th32: (( Partial_Sums ( Re seq)) ^\ k) = ( Re (( Partial_Sums seq) ^\ k)) & (( Partial_Sums ( Im seq)) ^\ k) = ( Im (( Partial_Sums seq) ^\ k))

    proof

      now

        let n be Element of NAT ;

        

        thus ((( Partial_Sums ( Re seq)) ^\ k) . n) = (( Partial_Sums ( Re seq)) . (n + k)) by NAT_1:def 3

        .= (( Re ( Partial_Sums seq)) . (n + k)) by Th26

        .= ( Re (( Partial_Sums seq) . (n + k))) by Def5

        .= ( Re ((( Partial_Sums seq) ^\ k) . n)) by NAT_1:def 3

        .= (( Re (( Partial_Sums seq) ^\ k)) . n) by Def5;

        

        thus ((( Partial_Sums ( Im seq)) ^\ k) . n) = (( Partial_Sums ( Im seq)) . (n + k)) by NAT_1:def 3

        .= (( Im ( Partial_Sums seq)) . (n + k)) by Th26

        .= ( Im (( Partial_Sums seq) . (n + k))) by Def6

        .= ( Im ((( Partial_Sums seq) ^\ k) . n)) by NAT_1:def 3

        .= (( Im (( Partial_Sums seq) ^\ k)) . n) by Def6;

      end;

      hence thesis;

    end;

    theorem :: COMSEQ_3:33

    (for n holds (seq1 . n) = (seq . 0 )) implies ( Partial_Sums (seq ^\ 1)) = ((( Partial_Sums seq) ^\ 1) - seq1)

    proof

      assume

       A1: for n holds (seq1 . n) = (seq . 0 );

       A2:

      now

        let n;

        

        thus (( Re seq1) . n) = ( Re (seq1 . n)) by Def5

        .= ( Re (seq . 0 )) by A1

        .= (( Re seq) . 0 ) by Def5;

        

        thus (( Im seq1) . n) = ( Im (seq1 . n)) by Def6

        .= ( Im (seq . 0 )) by A1

        .= (( Im seq) . 0 ) by Def6;

      end;

      

       A3: ( Im ( Partial_Sums (seq ^\ 1))) = ( Partial_Sums ( Im (seq ^\ 1))) by Th26

      .= ( Partial_Sums (( Im seq) ^\ 1)) by Th23

      .= ((( Partial_Sums ( Im seq)) ^\ 1) - ( Im seq1)) by A2, SERIES_1: 11

      .= (( Im (( Partial_Sums seq) ^\ 1)) - ( Im seq1)) by Th32

      .= ( Im ((( Partial_Sums seq) ^\ 1) - seq1)) by Th18;

      ( Re ( Partial_Sums (seq ^\ 1))) = ( Partial_Sums ( Re (seq ^\ 1))) by Th26

      .= ( Partial_Sums (( Re seq) ^\ 1)) by Th23

      .= ((( Partial_Sums ( Re seq)) ^\ 1) - ( Re seq1)) by A2, SERIES_1: 11

      .= (( Re (( Partial_Sums seq) ^\ 1)) - ( Re seq1)) by Th32

      .= ( Re ((( Partial_Sums seq) ^\ 1) - seq1)) by Th18;

      hence thesis by A3, Th14;

    end;

    theorem :: COMSEQ_3:34

    

     Th34: ( Partial_Sums |.seq.|) is non-decreasing

    proof

      for n holds 0 <= ( |.seq.| . n) by Lm3;

      hence thesis by SERIES_1: 16;

    end;

    registration

      let seq be Complex_Sequence;

      cluster ( Partial_Sums |.seq.|) -> non-decreasing;

      coherence by Th34;

    end

    theorem :: COMSEQ_3:35

    (for n st n <= m holds (seq1 . n) = (seq2 . n)) implies (( Partial_Sums seq1) . m) = (( Partial_Sums seq2) . m)

    proof

      defpred P[ Nat] means $1 <= m implies (( Partial_Sums seq1) . $1) = (( Partial_Sums seq2) . $1);

      assume

       A1: for n st n <= m holds (seq1 . n) = (seq2 . n);

      

       A2: for k be Nat st P[k] holds P[(k + 1)]

      proof

        let k be Nat such that

         A3: P[k];

        assume

         A4: (k + 1) <= m;

        k < (k + 1) by XREAL_1: 29;

        

        hence (( Partial_Sums seq1) . (k + 1)) = ((( Partial_Sums seq2) . k) + (seq1 . (k + 1))) by A3, A4, SERIES_1:def 1, XXREAL_0: 2

        .= ((( Partial_Sums seq2) . k) + (seq2 . (k + 1))) by A1, A4

        .= (( Partial_Sums seq2) . (k + 1)) by SERIES_1:def 1;

      end;

      

       A5: P[ 0 ]

      proof

        assume 0 <= m;

        

        thus (( Partial_Sums seq1) . 0 ) = (seq1 . 0 ) by SERIES_1:def 1

        .= (seq2 . 0 ) by A1

        .= (( Partial_Sums seq2) . 0 ) by SERIES_1:def 1;

      end;

      for k holds P[k] from NAT_1:sch 2( A5, A2);

      hence thesis;

    end;

    theorem :: COMSEQ_3:36

    

     Th36: 1r <> z implies for n holds (( Partial_Sums (z GeoSeq )) . n) = (( 1r - (z |^ (n + 1))) / ( 1r - z))

    proof

      now

        let z;

        defpred P[ Nat] means (( Partial_Sums (z GeoSeq )) . $1) = (( 1r - (z |^ ($1 + 1))) / ( 1r - z));

        assume 1r <> z;

        then

         A1: ( 1r - z) <> 0c ;

        

         A2: for n st P[n] holds P[(n + 1)]

        proof

          let n;

          assume P[n];

          

          hence (( Partial_Sums (z GeoSeq )) . (n + 1)) = ((( 1r - (z |^ (n + 1))) / ( 1r - z)) + ((z |^ (n + 1)) * 1r )) by COMPLEX1:def 4, SERIES_1:def 1

          .= ((( 1r - (z |^ (n + 1))) / ( 1r - z)) + ((z |^ (n + 1)) * (( 1r - z) / ( 1r - z)))) by A1, COMPLEX1:def 4, XCMPLX_1: 60

          .= ((( 1r - (z |^ (n + 1))) / ( 1r - z)) + (((z |^ (n + 1)) * ( 1r - z)) / ( 1r - z))) by XCMPLX_1: 74

          .= ((( 1r - (z |^ (n + 1))) + ((z |^ (n + 1)) - ((z |^ (n + 1)) * z))) / ( 1r - z)) by COMPLEX1:def 4, XCMPLX_1: 62

          .= (( 1r - ((z |^ (n + 1)) * z)) / ( 1r - z))

          .= (( 1r - (z |^ ((n + 1) + 1))) / ( 1r - z)) by NEWTON: 6;

        end;

        (( Partial_Sums (z GeoSeq )) . 0 ) = ((z GeoSeq ) . 0 ) by SERIES_1:def 1

        .= 1r by Def1

        .= (( 1r - (1 * z)) / ( 1r - z)) by A1, COMPLEX1:def 4, XCMPLX_1: 60

        .= (( 1r - (z |^ ( 0 + 1))) / ( 1r - z));

        then

         A3: P[ 0 ];

        thus for n holds P[n] from NAT_1:sch 2( A3, A2);

      end;

      hence thesis;

    end;

    theorem :: COMSEQ_3:37

    

     Th37: z <> 1r & (for n holds (seq . (n + 1)) = (z * (seq . n))) implies for n holds (( Partial_Sums seq) . n) = ((seq . 0 ) * (( 1r - (z |^ (n + 1))) / ( 1r - z)))

    proof

      assume that

       A1: z <> 1r and

       A2: for n holds (seq . (n + 1)) = (z * (seq . n));

      defpred P[ Nat] means (seq . $1) = ((seq . 0 ) * ((z GeoSeq ) . $1));

       A3:

      now

        let n be Nat;

        assume P[n];

        

        then (seq . (n + 1)) = (z * ((seq . 0 ) * ((z GeoSeq ) . n))) by A2

        .= ((seq . 0 ) * (z * ((z GeoSeq ) . n)))

        .= ((seq . 0 ) * ((z GeoSeq ) . (n + 1))) by Def1;

        hence P[(n + 1)];

      end;

      let n;

      (seq . 0 ) = ((seq . 0 ) * 1r ) by COMPLEX1:def 4

      .= ((seq . 0 ) * ((z GeoSeq ) . 0 )) by Def1;

      then

       A4: P[ 0 ];

      for n be Nat holds P[n] from NAT_1:sch 2( A4, A3);

      then for n be Element of NAT holds P[n];

      

      then ( Partial_Sums seq) = ( Partial_Sums ((seq . 0 ) (#) (z GeoSeq ))) by VALUED_1: 7

      .= ((seq . 0 ) (#) ( Partial_Sums (z GeoSeq ))) by Th29;

      

      hence (( Partial_Sums seq) . n) = ((seq . 0 ) * (( Partial_Sums (z GeoSeq )) . n)) by VALUED_1: 6

      .= ((seq . 0 ) * (( 1r - (z |^ (n + 1))) / ( 1r - z))) by A1, Th36;

    end;

    begin

    theorem :: COMSEQ_3:38

    

     Th38: for a,b be Real_Sequence, c be Complex_Sequence st (for n holds ( Re (c . n)) = (a . n) & ( Im (c . n)) = (b . n)) holds a is convergent & b is convergent iff c is convergent

    proof

      let a,b be Real_Sequence, c be Complex_Sequence such that

       A1: for n holds ( Re (c . n)) = (a . n) & ( Im (c . n)) = (b . n);

      thus a is convergent & b is convergent implies c is convergent

      proof

        assume that

         A2: a is convergent and

         A3: b is convergent;

        consider a1 be Real such that

         A4: for p be Real st 0 < p holds ex n st for m st n <= m holds |.((a . m) - a1).| < p by A2, SEQ_2:def 6;

        consider b1 be Real such that

         A5: for p be Real st 0 < p holds ex n st for m st n <= m holds |.((b . m) - b1).| < p by A3, SEQ_2:def 6;

        reconsider a1, b1 as Real;

        reconsider g = (a1 + (b1 * <i> )) as Element of COMPLEX by XCMPLX_0:def 2;

        take g;

        for p st 0 < p holds ex n st for m st n <= m holds |.((c . m) - g).| < p

        proof

          let p;

          assume

           A6: 0 < p;

          then

          consider n1 such that

           A7: for m st n1 <= m holds |.((a . m) - a1).| < (p / 2) by A4;

          consider n2 such that

           A8: for m st n2 <= m holds |.((b . m) - b1).| < (p / 2) by A5, A6;

          n1 <= (n1 + n2) & n2 <= (n1 + n2) by NAT_1: 11;

          then

          consider n such that

           A9: n1 <= n and

           A10: n2 <= n;

          take n;

          for m st n <= m holds |.((c . m) - g).| < p

          proof

            let m;

            ( Re (c . m)) = (a . m) & ( Re g) = a1 by A1, COMPLEX1: 12;

            then

             A11: ( Re ((c . m) - g)) = ((a . m) - a1) by COMPLEX1: 19;

            ( Im (c . m)) = (b . m) & ( Im g) = b1 by A1, COMPLEX1: 12;

            then

             A12: ( Im ((c . m) - g)) = ((b . m) - b1) by COMPLEX1: 19;

            assume

             A13: n <= m;

            then n2 <= m by A10, XXREAL_0: 2;

            then

             A14: |.((b . m) - b1).| < (p / 2) by A8;

            n1 <= m by A9, A13, XXREAL_0: 2;

            then |.((a . m) - a1).| < (p / 2) by A7;

            then

             A15: ( |.((a . m) - a1).| + |.((b . m) - b1).|) < ((p / 2) + (p / 2)) by A14, XREAL_1: 8;

             |.((c . m) - g).| <= ( |.( Re ((c . m) - g)).| + |.( Im ((c . m) - g)).|) by Th12;

            hence thesis by A15, A11, A12, XXREAL_0: 2;

          end;

          hence thesis;

        end;

        hence thesis;

      end;

      assume c is convergent;

      then

      consider z be Complex such that

       A16: for p be Real st 0 < p holds ex n st for m st n <= m holds |.((c . m) - z).| < p;

      thus a is convergent

      proof

        reconsider z as Element of COMPLEX by XCMPLX_0:def 2;

        take ( Re z);

        let p be Real;

        assume

         A17: 0 < p;

        consider n such that

         A18: for m st n <= m holds |.((c . m) - z).| < p by A16, A17;

        take n;

        let m;

        assume n <= m;

        then

         A19: |.((c . m) - z).| < p by A18;

        ( Re (c . m)) = (a . m) & ( Re ((c . m) - z)) = (( Re (c . m)) - ( Re z)) by A1, COMPLEX1: 19;

        then |.((a . m) - ( Re z)).| <= |.((c . m) - z).| by Th13;

        hence thesis by A19, XXREAL_0: 2;

      end;

      take ( Im z);

      let p be Real;

      assume

       A20: p > 0 ;

      consider n such that

       A21: for m st n <= m holds |.((c . m) - z).| < p by A16, A20;

      take n;

      let m;

      assume n <= m;

      then

       A22: |.((c . m) - z).| < p by A21;

      

       A23: ( Im ((c . m) - z)) = (( Im (c . m)) - ( Im z)) by COMPLEX1: 19;

      ( Im (c . m)) = (b . m) by A1;

      then |.((b . m) - ( Im z)).| <= |.((c . m) - z).| by A23, Th13;

      hence thesis by A22, XXREAL_0: 2;

    end;

    theorem :: COMSEQ_3:39

    

     Th39: for a,b be convergent Real_Sequence, c be Complex_Sequence st (for n holds ( Re (c . n)) = (a . n) & ( Im (c . n)) = (b . n)) holds c is convergent & ( lim c) = (( lim a) + (( lim b) * <i> ))

    proof

      let a,b be convergent Real_Sequence, c be Complex_Sequence;

      reconsider g = (( lim a) + (( lim b) * <i> )) as Element of COMPLEX by XCMPLX_0:def 2;

      assume

       A1: for n holds ( Re (c . n)) = (a . n) & ( Im (c . n)) = (b . n);

      hence

       A2: c is convergent by Th38;

      for p be Real st 0 < p holds ex n st for m st n <= m holds |.((c . m) - g).| < p

      proof

        let p be Real;

        assume

         A3: 0 < p;

        then

        consider n1 such that

         A4: for m st n1 <= m holds |.((a . m) - ( lim a)).| < (p / 2) by SEQ_2:def 7;

        consider n2 such that

         A5: for m st n2 <= m holds |.((b . m) - ( lim b)).| < (p / 2) by A3, SEQ_2:def 7;

        n1 <= (n1 + n2) & n2 <= (n1 + n2) by NAT_1: 11;

        then

        consider n such that

         A6: n1 <= n and

         A7: n2 <= n;

        take n;

        let m;

        assume

         A8: n <= m;

        then n2 <= m by A7, XXREAL_0: 2;

        then

         A9: |.((b . m) - ( lim b)).| < (p / 2) by A5;

        n1 <= m by A6, A8, XXREAL_0: 2;

        then |.((a . m) - ( lim a)).| < (p / 2) by A4;

        then

         A10: ( |.((a . m) - ( lim a)).| + |.((b . m) - ( lim b)).|) < ((p / 2) + (p / 2)) by A9, XREAL_1: 8;

        ( Re (c . m)) = (a . m) & ( Re g) = ( lim a) by A1, COMPLEX1: 12;

        then

         A11: ( Re ((c . m) - g)) = ((a . m) - ( lim a)) by COMPLEX1: 19;

        ( Im (c . m)) = (b . m) & ( Im g) = ( lim b) by A1, COMPLEX1: 12;

        then

         A12: ( Im ((c . m) - g)) = ((b . m) - ( lim b)) by COMPLEX1: 19;

         |.((c . m) - g).| <= ( |.( Re ((c . m) - g)).| + |.( Im ((c . m) - g)).|) by Th12;

        hence thesis by A10, A11, A12, XXREAL_0: 2;

      end;

      hence thesis by A2, COMSEQ_2:def 6;

    end;

    theorem :: COMSEQ_3:40

    

     Th40: for a,b be Real_Sequence, c be convergent Complex_Sequence st (for n holds ( Re (c . n)) = (a . n) & ( Im (c . n)) = (b . n)) holds a is convergent & b is convergent & ( lim a) = ( Re ( lim c)) & ( lim b) = ( Im ( lim c))

    proof

      let a,b be Real_Sequence, c be convergent Complex_Sequence;

      assume

       A1: for n holds ( Re (c . n)) = (a . n) & ( Im (c . n)) = (b . n);

      

       A2: for p be Real st 0 < p holds ex n st for m st n <= m holds |.((b . m) - ( Im ( lim c))).| < p

      proof

        let p be Real;

        assume

         A3: p > 0 ;

        consider n such that

         A4: for m st n <= m holds |.((c . m) - ( lim c)).| < p by A3, COMSEQ_2:def 6;

        take n;

        let m;

        assume n <= m;

        then

         A5: |.((c . m) - ( lim c)).| < p by A4;

        ( Im (c . m)) = (b . m) & ( Im ((c . m) - ( lim c))) = (( Im (c . m)) - ( Im ( lim c))) by A1, COMPLEX1: 19;

        then |.((b . m) - ( Im ( lim c))).| <= |.((c . m) - ( lim c)).| by Th13;

        hence thesis by A5, XXREAL_0: 2;

      end;

      

       A6: for p be Real st 0 < p holds ex n st for m st n <= m holds |.((a . m) - ( Re ( lim c))).| < p

      proof

        let p be Real;

        assume

         A7: 0 < p;

        consider n such that

         A8: for m st n <= m holds |.((c . m) - ( lim c)).| < p by A7, COMSEQ_2:def 6;

        take n;

        let m;

        ( Re (c . m)) = (a . m) by A1;

        then ( Re ((c . m) - ( lim c))) = ((a . m) - ( Re ( lim c))) by COMPLEX1: 19;

        then

         A9: |.((a . m) - ( Re ( lim c))).| <= |.((c . m) - ( lim c)).| by Th13;

        assume n <= m;

        then |.((c . m) - ( lim c)).| < p by A8;

        hence thesis by A9, XXREAL_0: 2;

      end;

      a is convergent & b is convergent by A1, Th38;

      hence thesis by A6, A2, SEQ_2:def 7;

    end;

    theorem :: COMSEQ_3:41

    

     Th41: for c be convergent Complex_Sequence holds ( Re c) is convergent & ( Im c) is convergent & ( lim ( Re c)) = ( Re ( lim c)) & ( lim ( Im c)) = ( Im ( lim c))

    proof

      let c be convergent Complex_Sequence;

      (for n holds (( Re c) . n) = ( Re (c . n))) & for n holds (( Im c) . n) = ( Im (c . n)) by Def5, Def6;

      hence thesis by Th40;

    end;

    registration

      let c be convergent Complex_Sequence;

      cluster ( Re c) -> convergent;

      coherence by Th41;

      cluster ( Im c) -> convergent;

      coherence by Th41;

    end

    theorem :: COMSEQ_3:42

    

     Th42: for c be Complex_Sequence st ( Re c) is convergent & ( Im c) is convergent holds c is convergent & ( Re ( lim c)) = ( lim ( Re c)) & ( Im ( lim c)) = ( lim ( Im c))

    proof

      let c be Complex_Sequence;

      assume

       A1: ( Re c) is convergent & ( Im c) is convergent;

      

       A2: (for n holds (( Re c) . n) = ( Re (c . n))) & for n holds (( Im c) . n) = ( Im (c . n)) by Def5, Def6;

      then ( lim c) = (( lim ( Re c)) + (( lim ( Im c)) * <i> )) by A1, Th39;

      hence thesis by A1, A2, Th39, COMPLEX1: 12;

    end;

    theorem :: COMSEQ_3:43

    

     Th43: ( 0 < |.z.| & |.z.| < 1 & (seq . 0 ) = z & for n holds (seq . (n + 1)) = ((seq . n) * z)) implies seq is convergent & ( lim seq) = 0c

    proof

      assume that

       A1: 0 < |.z.| and

       A2: |.z.| < 1;

      deffunc g( Nat) = ( |.z.| to_power ($1 + 1));

      consider rseq1 such that

       A3: for n holds (rseq1 . n) = g(n) from SEQ_1:sch 1;

      assume that

       A4: (seq . 0 ) = z and

       A5: for n holds (seq . (n + 1)) = ((seq . n) * z);

      

       A6: for n holds |.(seq . n).| = ( |.z.| to_power (n + 1))

      proof

        defpred P[ Nat] means |.(seq . $1).| = ( |.z.| to_power ($1 + 1));

        

         A7: for k be Nat st P[k] holds P[(k + 1)]

        proof

          let k be Nat;

          assume

           A8: P[k];

           |.(seq . (k + 1)).| = |.((seq . k) * z).| by A5

          .= (( |.z.| to_power (k + 1)) * |.z.|) by A8, COMPLEX1: 65

          .= (( |.z.| to_power (k + 1)) * ( |.z.| to_power 1)) by POWER: 25

          .= ( |.z.| to_power ((k + 1) + 1)) by A1, POWER: 27;

          hence thesis;

        end;

        

         A9: P[ 0 ] by A4, POWER: 25;

        for n holds P[n] from NAT_1:sch 2( A9, A7);

        hence thesis;

      end;

       A10:

      now

        let n;

        (( abs ( Re seq)) . n) = |.(( Re seq) . n).| by SEQ_1: 12;

        then

         A11: (( abs ( Re seq)) . n) = |.( Re (seq . n)).| by Def5;

         |.( Re (seq . n)).| <= |.(seq . n).| & |.(seq . n).| = ( |.z.| to_power (n + 1)) by A6, Th13;

        hence (( abs ( Re seq)) . n) <= (rseq1 . n) by A3, A11;

      end;

       A12:

      now

        let n;

        

         A13: |.(seq . n).| = ( |.z.| to_power (n + 1)) by A6;

        (( abs ( Im seq)) . n) = |.(( Im seq) . n).| & |.( Im (seq . n)).| <= |.(seq . n).| by Th13, SEQ_1: 12;

        then (( abs ( Im seq)) . n) <= ( |.z.| to_power (n + 1)) by A13, Def6;

        hence (( abs ( Im seq)) . n) <= (rseq1 . n) by A3;

      end;

      (C . 0 ) = 0 ;

      then

       A14: ( lim C) = 0 by SEQ_4: 25;

      

       A15: rseq1 is convergent & ( lim rseq1) = 0 by A1, A2, A3, SERIES_1: 1;

      now

        let n;

        (( abs ( Re seq)) . n) = |.(( Re seq) . n).| by SEQ_1: 12;

        then 0 <= (( abs ( Re seq)) . n) by COMPLEX1: 46;

        hence (C . n) <= (( abs ( Re seq)) . n);

      end;

      then

       A16: ( abs ( Re seq)) is convergent & ( lim ( abs ( Re seq))) = 0 by A14, A15, A10, SEQ_2: 19, SEQ_2: 20;

      then

       A17: ( Re seq) is convergent by SEQ_4: 15;

      now

        let n;

        (( abs ( Im seq)) . n) = |.(( Im seq) . n).| by SEQ_1: 12;

        then 0 <= (( abs ( Im seq)) . n) by COMPLEX1: 46;

        hence (C . n) <= (( abs ( Im seq)) . n);

      end;

      then

       A18: ( abs ( Im seq)) is convergent & ( lim ( abs ( Im seq))) = 0 by A14, A15, A12, SEQ_2: 19, SEQ_2: 20;

      then

       A19: ( Im seq) is convergent by SEQ_4: 15;

      ( lim ( Im seq)) = 0 by A18, SEQ_4: 15;

      then

       A20: ( Im ( lim seq)) = 0 by A17, A19, Th42;

      ( lim ( Re seq)) = 0 by A16, SEQ_4: 15;

      then ( Re ( lim seq)) = 0 by A17, A19, Th42;

      hence thesis by A17, A19, A20, Lm1, Th42, COMPLEX1: 13;

    end;

    theorem :: COMSEQ_3:44

    

     Th44: |.z.| < 1 & (for n holds (seq . n) = (z |^ (n + 1))) implies seq is convergent & ( lim seq) = 0c

    proof

      assume that

       A1: |.z.| < 1 and

       A2: for n holds (seq . n) = (z |^ (n + 1));

       A3:

      now

        let n;

        

        thus (seq . (n + 1)) = (z |^ ((n + 1) + 1)) by A2

        .= ((z |^ (n + 1)) * z) by NEWTON: 6

        .= ((seq . n) * z) by A2;

      end;

       A4:

      now

        assume |.z.| = 0 ;

        then

         A5: z = 0c by COMPLEX1: 45;

         A6:

        now

          let n;

          

          thus (seq . n) = ( 0c |^ (n + 1)) by A2, A5

          .= ((( 0c GeoSeq ) . n) * 0c ) by Def1

          .= 0c ;

        end;

        hence seq is convergent by COMSEQ_2: 9;

        thus thesis by A6, COMSEQ_2: 9, COMSEQ_2: 10;

      end;

      

       A7: (seq . 0 ) = (z |^ ( 0 + 1)) by A2

      .= z;

      now

        

         A8: 0 <= |.z.| by COMPLEX1: 46;

        assume |.z.| <> 0 ;

        hence thesis by A1, A7, A3, A8, Th43;

      end;

      hence thesis by A4;

    end;

    theorem :: COMSEQ_3:45

    r > 0 & (ex m st for n st n >= m holds |.(seq . n).| >= r) implies not |.seq.| is convergent or ( lim |.seq.|) <> 0

    proof

      assume that

       A1: r > 0 and

       A2: ex m st for n st n >= m holds |.(seq . n).| >= r;

      consider m such that

       A3: for n st n >= m holds |.(seq . n).| >= r by A2;

      now

        let n such that

         A4: n >= m;

         0 <= ( |.seq.| . n) by Lm3;

        

        then |.( |.seq.| . n).| = ( |.seq.| . n) by ABSVALUE:def 1

        .= |.(seq . n).| by VALUED_1: 18;

        hence |.( |.seq.| . n).| >= r by A3, A4;

      end;

      hence thesis by A1, SERIES_1: 38;

    end;

    theorem :: COMSEQ_3:46

    

     Th46: seq is convergent iff for p st 0 < p holds ex n st for m st n <= m holds |.((seq . m) - (seq . n)).| < p

    proof

       A1:

      now

        assume

         A2: for p st 0 < p holds ex n st for m st n <= m holds |.((seq . m) - (seq . n)).| < p;

        for p be Real st 0 < p holds ex n st for m st n <= m holds |.((( Re seq) . m) - (( Re seq) . n)).| < p

        proof

          let p be Real;

          assume

           A3: 0 < p;

          consider n such that

           A4: for m st n <= m holds |.((seq . m) - (seq . n)).| < p by A2, A3;

          take n;

          let m;

          assume n <= m;

          then

           A5: |.((seq . m) - (seq . n)).| < p by A4;

          ( Re ((seq . m) - (seq . n))) = (( Re (seq . m)) - ( Re (seq . n))) by COMPLEX1: 19

          .= ((( Re seq) . m) - ( Re (seq . n))) by Def5

          .= ((( Re seq) . m) - (( Re seq) . n)) by Def5;

          then |.((( Re seq) . m) - (( Re seq) . n)).| <= |.((seq . m) - (seq . n)).| by Th13;

          hence thesis by A5, XXREAL_0: 2;

        end;

        hence

         A6: ( Re seq) is convergent by SEQ_4: 41;

        for p be Real st 0 < p holds ex n st for m st n <= m holds |.((( Im seq) . m) - (( Im seq) . n)).| < p

        proof

          let p be Real;

          assume

           A7: 0 < p;

          consider n such that

           A8: for m st n <= m holds |.((seq . m) - (seq . n)).| < p by A2, A7;

          take n;

          let m;

          assume n <= m;

          then

           A9: |.((seq . m) - (seq . n)).| < p by A8;

          ( Im ((seq . m) - (seq . n))) = (( Im (seq . m)) - ( Im (seq . n))) by COMPLEX1: 19

          .= ((( Im seq) . m) - ( Im (seq . n))) by Def6

          .= ((( Im seq) . m) - (( Im seq) . n)) by Def6;

          then |.((( Im seq) . m) - (( Im seq) . n)).| <= |.((seq . m) - (seq . n)).| by Th13;

          hence thesis by A9, XXREAL_0: 2;

        end;

        hence ( Im seq) is convergent by SEQ_4: 41;

        hence seq is convergent by A6, Th42;

      end;

      now

        assume seq is convergent;

        then

        consider z be Complex such that

         A10: for p be Real st 0 < p holds ex n st for m st n <= m holds |.((seq . m) - z).| < p;

        let p;

        assume 0 < p;

        then

        consider n such that

         A11: for m st n <= m holds |.((seq . m) - z).| < (p / 2) by A10;

        take n;

        let m;

        assume n <= m;

        then

         A12: |.((seq . m) - z).| < (p / 2) by A11;

         |.((seq . n) - z).| < (p / 2) by A11;

        then ( |.((seq . m) - z).| + |.((seq . n) - z).|) < ((p / 2) + (p / 2)) by A12, XREAL_1: 8;

        then

         A13: ( |.((seq . m) - z).| + |.(z - (seq . n)).|) < p by COMPLEX1: 60;

         |.((seq . m) - (seq . n)).| <= ( |.((seq . m) - z).| + |.(z - (seq . n)).|) by COMPLEX1: 63;

        hence |.((seq . m) - (seq . n)).| < p by A13, XXREAL_0: 2;

      end;

      hence thesis by A1;

    end;

    theorem :: COMSEQ_3:47

    seq is convergent implies for p st 0 < p holds ex n st for m,l be Nat st n <= m & n <= l holds |.((seq . m) - (seq . l)).| < p

    proof

      assume

       A1: seq is convergent;

      let p;

      assume 0 < p;

      then

      consider n such that

       A2: for m st n <= m holds |.((seq . m) - (seq . n)).| < (p / 2) by A1, Th46;

      take n;

      let m,l be Nat;

      assume n <= m & n <= l;

      then |.((seq . m) - (seq . n)).| < (p / 2) & |.((seq . l) - (seq . n)).| < (p / 2) by A2;

      then

       A3: ( |.((seq . m) - (seq . n)).| + |.((seq . l) - (seq . n)).|) < ((p / 2) + (p / 2)) by XREAL_1: 8;

       |.(((seq . m) - (seq . n)) - ((seq . l) - (seq . n))).| <= ( |.((seq . m) - (seq . n)).| + |.((seq . l) - (seq . n)).|) by COMPLEX1: 57;

      hence |.((seq . m) - (seq . l)).| < p by A3, XXREAL_0: 2;

    end;

    theorem :: COMSEQ_3:48

    (for n holds |.(seq . n).| <= (rseq . n)) & rseq is convergent & ( lim rseq) = 0 implies seq is convergent & ( lim seq) = 0c

    proof

      assume that

       A1: for n holds |.(seq . n).| <= (rseq . n) and

       A2: rseq is convergent & ( lim rseq) = 0 ;

       A3:

      now

        let n;

        (( abs ( Re seq)) . n) = |.(( Re seq) . n).| by SEQ_1: 12;

        then 0 <= (( abs ( Re seq)) . n) by COMPLEX1: 46;

        hence (C . n) <= (( abs ( Re seq)) . n);

      end;

      (C . 0 ) = 0 ;

      then

       A4: ( lim C) = 0 by SEQ_4: 25;

      now

        let n;

        (( Re seq) . n) = ( Re (seq . n)) by Def5;

        then

         A5: (( abs ( Re seq)) . n) = |.( Re (seq . n)).| by SEQ_1: 12;

         |.( Re (seq . n)).| <= |.(seq . n).| & |.(seq . n).| <= (rseq . n) by A1, Th13;

        hence (( abs ( Re seq)) . n) <= (rseq . n) by A5, XXREAL_0: 2;

      end;

      then

       A6: ( abs ( Re seq)) is convergent & ( lim ( abs ( Re seq))) = 0 by A2, A4, A3, SEQ_2: 19, SEQ_2: 20;

      then

       A7: ( Re seq) is convergent by SEQ_4: 15;

       A8:

      now

        let n;

        (( abs ( Im seq)) . n) = |.(( Im seq) . n).| by SEQ_1: 12;

        then 0 <= (( abs ( Im seq)) . n) by COMPLEX1: 46;

        hence (C . n) <= (( abs ( Im seq)) . n);

      end;

      now

        let n;

        

         A9: (( Im seq) . n) = ( Im (seq . n)) & (( abs ( Im seq)) . n) = |.(( Im seq) . n).| by Def6, SEQ_1: 12;

         |.( Im (seq . n)).| <= |.(seq . n).| & |.(seq . n).| <= (rseq . n) by A1, Th13;

        hence (( abs ( Im seq)) . n) <= (rseq . n) by A9, XXREAL_0: 2;

      end;

      then

       A10: ( abs ( Im seq)) is convergent & ( lim ( abs ( Im seq))) = 0 by A2, A4, A8, SEQ_2: 19, SEQ_2: 20;

      then

       A11: ( Im seq) is convergent by SEQ_4: 15;

      ( lim ( Im seq)) = 0 by A10, SEQ_4: 15;

      then

       A12: ( Im ( lim seq)) = 0 by A7, A11, Th42;

      ( lim ( Re seq)) = 0 by A6, SEQ_4: 15;

      then ( Re ( lim seq)) = 0 by A7, A11, Th42;

      hence thesis by A7, A11, A12, Lm1, Th42, COMPLEX1: 13;

    end;

    begin

    theorem :: COMSEQ_3:49

    seq is subsequence of seq1 implies ( Re seq) is subsequence of ( Re seq1) & ( Im seq) is subsequence of ( Im seq1)

    proof

      assume seq is subsequence of seq1;

      then

      consider Nseq such that

       A1: seq = (seq1 * Nseq) by VALUED_0:def 17;

      ( Re seq) = (( Re seq1) * Nseq) by A1, Th22;

      hence ( Re seq) is subsequence of ( Re seq1);

      ( Im seq) = (( Im seq1) * Nseq) by A1, Th22;

      hence thesis;

    end;

    theorem :: COMSEQ_3:50

    seq is bounded implies ex seq1 st seq1 is subsequence of seq & seq1 is convergent

    proof

      assume seq is bounded;

      then

      consider r be Real such that

       A1: 0 < r and

       A2: for n holds |.(seq . n).| < r by COMSEQ_2: 8;

      now

        let n;

         |.(( Re seq) . n).| = |.( Re (seq . n)).| & |.( Re (seq . n)).| <= |.(seq . n).| by Def5, Th13;

        hence |.(( Re seq) . n).| < r by A2, XXREAL_0: 2;

      end;

      then ( Re seq) is bounded by A1, SEQ_2: 3;

      then

      consider rseq1 such that

       A3: rseq1 is subsequence of ( Re seq) and

       A4: rseq1 is convergent by SEQ_4: 40;

      consider Nseq such that

       A5: rseq1 = (( Re seq) * Nseq) by A3, VALUED_0:def 17;

       A6:

      now

        let n;

        n in NAT by ORDINAL1:def 12;

        then |.((seq * Nseq) . n).| = |.(seq . (Nseq . n)).| by FUNCT_2: 15;

        hence |.((seq * Nseq) . n).| < r by A2;

      end;

      now

        let n;

         |.(( Im (seq * Nseq)) . n).| = |.( Im ((seq * Nseq) . n)).| & |.( Im ((seq * Nseq) . n)).| <= |.((seq * Nseq) . n).| by Def6, Th13;

        hence |.(( Im (seq * Nseq)) . n).| < r by A6, XXREAL_0: 2;

      end;

      then ( Im (seq * Nseq)) is bounded by A1, SEQ_2: 3;

      then

      consider rseq2 such that

       A7: rseq2 is subsequence of ( Im (seq * Nseq)) and

       A8: rseq2 is convergent by SEQ_4: 40;

      consider Nseq1 such that

       A9: rseq2 = (( Im (seq * Nseq)) * Nseq1) by A7, VALUED_0:def 17;

      ( Re ((seq * Nseq) * Nseq1)) = (( Re (seq * Nseq)) * Nseq1) by Th22

      .= (rseq1 * Nseq1) by A5, Th22;

      then

       A10: ( Re ((seq * Nseq) * Nseq1)) is convergent by A4, SEQ_4: 16;

      (seq * Nseq) is subsequence of seq & ((seq * Nseq) * Nseq1) is subsequence of (seq * Nseq) by VALUED_0:def 17;

      then

       A11: ((seq * Nseq) * Nseq1) is subsequence of seq by VALUED_0: 20;

      ( Im ((seq * Nseq) * Nseq1)) is convergent by A8, A9, Th22;

      hence thesis by A11, A10, Th42;

    end;

    definition

      let seq be Complex_Sequence;

      :: COMSEQ_3:def8

      attr seq is summable means

      : Def8: ( Partial_Sums seq) is convergent;

    end

    set D = ( NAT --> 0c );

    registration

      cluster summable for Complex_Sequence;

      existence

      proof

        take D, 0c ;

        let p be Real such that

         A1: 0 < p;

        take 0 ;

        for n holds (D . n) = 0c ;

        hence thesis by A1, Th24, COMPLEX1: 44;

      end;

    end

    registration

      let seq be summable Complex_Sequence;

      cluster ( Partial_Sums seq) -> convergent;

      coherence by Def8;

    end

    definition

      let seq be Complex_Sequence;

      :: COMSEQ_3:def9

      attr seq is absolutely_summable means

      : Def9: |.seq.| is summable;

    end

    theorem :: COMSEQ_3:51

    

     Th51: (for n holds (seq . n) = 0c ) implies seq is absolutely_summable

    proof

      assume

       A1: for n holds (seq . n) = 0c ;

      take 0 ;

      let p be Real such that

       A2: 0 < p;

      take 0 ;

      let m;

       |.((( Partial_Sums |.seq.|) . m) - 0 ).| = |.( 0 - 0 ).| by A1, Th25

      .= 0 by ABSVALUE:def 1;

      hence thesis by A2;

    end;

    registration

      cluster absolutely_summable for Complex_Sequence;

      existence

      proof

        take D;

        for n holds (D . n) = 0c ;

        hence thesis by Th51;

      end;

    end

    registration

      let seq be absolutely_summable Complex_Sequence;

      cluster |.seq.| -> summable;

      coherence by Def9;

    end

    theorem :: COMSEQ_3:52

    

     Th52: seq is summable implies seq is convergent & ( lim seq) = 0c

    proof

      assume

       A1: seq is summable;

      then ( Re ( Partial_Sums seq)) is convergent;

      then ( Partial_Sums ( Re seq)) is convergent by Th26;

      then

       A2: ( Re seq) is summable;

      ( Im ( Partial_Sums seq)) is convergent by A1;

      then ( Partial_Sums ( Im seq)) is convergent by Th26;

      then

       A3: ( Im seq) is summable;

      then ( lim ( Im seq)) = 0 by SERIES_1: 4;

      then

       A4: ( Im ( lim seq)) = 0 by A2, A3, Th42;

      ( lim ( Re seq)) = 0 by A2, SERIES_1: 4;

      then ( Re ( lim seq)) = 0 by A2, A3, Th42;

      hence thesis by A2, A3, A4, Lm1, Th42, COMPLEX1: 13;

    end;

    registration

      cluster summable -> convergent for Complex_Sequence;

      coherence by Th52;

    end

    theorem :: COMSEQ_3:53

    

     Th53: seq is summable implies ( Re seq) is summable & ( Im seq) is summable & ( Sum seq) = (( Sum ( Re seq)) + (( Sum ( Im seq)) * <i> ))

    proof

      

       A1: ( lim ( Re ( Partial_Sums seq))) = ( lim ( Partial_Sums ( Re seq))) & ( lim ( Im ( Partial_Sums seq))) = ( lim ( Partial_Sums ( Im seq))) by Th26;

      assume

       A2: seq is summable;

      then ( Re ( Partial_Sums seq)) is convergent;

      then

       A3: ( Partial_Sums ( Re seq)) is convergent by Th26;

      ( Im ( Partial_Sums seq)) is convergent by A2;

      then

       A4: ( Partial_Sums ( Im seq)) is convergent by Th26;

      ( lim ( Re ( Partial_Sums seq))) = ( Re ( lim ( Partial_Sums seq))) & ( lim ( Im ( Partial_Sums seq))) = ( Im ( lim ( Partial_Sums seq))) by A2, Th41;

      hence thesis by A3, A4, A1, COMPLEX1: 13;

    end;

    registration

      let seq be summable Complex_Sequence;

      cluster ( Re seq) -> summable;

      coherence by Th53;

      cluster ( Im seq) -> summable;

      coherence by Th53;

    end

    theorem :: COMSEQ_3:54

    

     Th54: seq1 is summable & seq2 is summable implies (seq1 + seq2) is summable & ( Sum (seq1 + seq2)) = (( Sum seq1) + ( Sum seq2))

    proof

      assume

       A1: seq1 is summable & seq2 is summable;

      then

       A2: (( Partial_Sums seq1) + ( Partial_Sums seq2)) is convergent;

      

       A3: (( Partial_Sums seq1) + ( Partial_Sums seq2)) = ( Partial_Sums (seq1 + seq2)) by Th27;

      ( Sum (seq1 + seq2)) = ( lim (( Partial_Sums seq1) + ( Partial_Sums seq2))) by Th27

      .= (( lim ( Partial_Sums seq1)) + ( lim ( Partial_Sums seq2))) by A1, COMSEQ_2: 14;

      hence thesis by A2, A3;

    end;

    theorem :: COMSEQ_3:55

    

     Th55: seq1 is summable & seq2 is summable implies (seq1 - seq2) is summable & ( Sum (seq1 - seq2)) = (( Sum seq1) - ( Sum seq2))

    proof

      assume

       A1: seq1 is summable & seq2 is summable;

      then

       A2: (( Partial_Sums seq1) - ( Partial_Sums seq2)) is convergent;

      

       A3: (( Partial_Sums seq1) - ( Partial_Sums seq2)) = ( Partial_Sums (seq1 - seq2)) by Th28;

      ( Sum (seq1 - seq2)) = ( lim (( Partial_Sums seq1) - ( Partial_Sums seq2))) by Th28

      .= (( lim ( Partial_Sums seq1)) - ( lim ( Partial_Sums seq2))) by A1, COMSEQ_2: 26;

      hence thesis by A2, A3;

    end;

    registration

      let seq1,seq2 be summable Complex_Sequence;

      cluster (seq1 + seq2) -> summable;

      coherence by Th54;

      cluster (seq1 - seq2) -> summable;

      coherence by Th55;

    end

    theorem :: COMSEQ_3:56

    

     Th56: seq is summable implies for z be Complex holds (z (#) seq) is summable & ( Sum (z (#) seq)) = (z * ( Sum seq))

    proof

      assume

       A1: seq is summable;

      let z be Complex;

      

       A2: ( Partial_Sums (z (#) seq)) = (z (#) ( Partial_Sums seq)) by Th29;

      ( Sum (z (#) seq)) = ( lim (z (#) ( Partial_Sums seq))) by Th29

      .= (z * ( Sum seq)) by A1, COMSEQ_2: 18;

      hence thesis by A1, A2;

    end;

    registration

      let z be Element of COMPLEX , seq be summable Complex_Sequence;

      cluster (z (#) seq) -> summable;

      coherence by Th56;

    end

    theorem :: COMSEQ_3:57

    

     Th57: ( Re seq) is summable & ( Im seq) is summable implies seq is summable & ( Sum seq) = (( Sum ( Re seq)) + (( Sum ( Im seq)) * <i> ))

    proof

      assume that

       A1: ( Re seq) is summable and

       A2: ( Im seq) is summable;

      ( Partial_Sums ( Im seq)) is convergent by A2;

      then

       A3: ( Im ( Partial_Sums seq)) is convergent by Th26;

      ( Partial_Sums ( Re seq)) is convergent by A1;

      then

       A4: ( Re ( Partial_Sums seq)) is convergent by Th26;

      then

       A5: ( lim ( Im ( Partial_Sums seq))) = ( Im ( lim ( Partial_Sums seq))) by A3, Th42;

      

       A6: ( lim ( Re ( Partial_Sums seq))) = ( lim ( Partial_Sums ( Re seq))) & ( lim ( Im ( Partial_Sums seq))) = ( lim ( Partial_Sums ( Im seq))) by Th26;

      ( Partial_Sums seq) is convergent & ( lim ( Re ( Partial_Sums seq))) = ( Re ( lim ( Partial_Sums seq))) by A4, A3, Th42;

      hence thesis by A6, A5, COMPLEX1: 13;

    end;

    theorem :: COMSEQ_3:58

    

     Th58: seq is summable implies for n holds (seq ^\ n) is summable

    proof

      assume

       A1: seq is summable;

      let n;

      

       A2: ( Re (seq ^\ n)) = (( Re seq) ^\ n) & ( Im (seq ^\ n)) = (( Im seq) ^\ n) by Th23;

      (( Re seq) ^\ n) is summable & (( Im seq) ^\ n) is summable by A1, SERIES_1: 12;

      hence (seq ^\ n) is summable by A2, Th57;

    end;

    registration

      let seq be summable Complex_Sequence, n be Nat;

      cluster (seq ^\ n) -> summable;

      coherence by Th58;

    end

    theorem :: COMSEQ_3:59

    (ex n st (seq ^\ n) is summable) implies seq is summable

    proof

      given n such that

       A1: (seq ^\ n) is summable;

      ( Im (seq ^\ n)) = (( Im seq) ^\ n) by Th23;

      then

       A2: ( Im seq) is summable by A1, SERIES_1: 13;

      ( Re (seq ^\ n)) = (( Re seq) ^\ n) by Th23;

      then ( Re seq) is summable by A1, SERIES_1: 13;

      hence thesis by A2, Th57;

    end;

    theorem :: COMSEQ_3:60

    seq is summable implies for n holds ( Sum seq) = ((( Partial_Sums seq) . n) + ( Sum (seq ^\ (n + 1))))

    proof

      assume

       A1: seq is summable;

      then ( Sum seq) = (( Sum ( Re seq)) + (( Sum ( Im seq)) * <i> )) by Th53;

      then

       A2: ( Re ( Sum seq)) = ( Sum ( Re seq)) & ( Im ( Sum seq)) = ( Sum ( Im seq)) by COMPLEX1: 12;

      let n;

      

       A3: ( Sum (seq ^\ (n + 1))) = (( Sum ( Re (seq ^\ (n + 1)))) + (( Sum ( Im (seq ^\ (n + 1)))) * <i> )) by A1, Th53;

      

       A4: ( Sum ( Im seq)) = ((( Partial_Sums ( Im seq)) . n) + ( Sum (( Im seq) ^\ (n + 1)))) by A1, SERIES_1: 15

      .= ((( Im ( Partial_Sums seq)) . n) + ( Sum (( Im seq) ^\ (n + 1)))) by Th26

      .= ((( Im ( Partial_Sums seq)) . n) + ( Sum ( Im (seq ^\ (n + 1))))) by Th23

      .= ((( Im ( Partial_Sums seq)) . n) + ( Im ( Sum (seq ^\ (n + 1))))) by A3, COMPLEX1: 12

      .= (( Im (( Partial_Sums seq) . n)) + ( Im ( Sum (seq ^\ (n + 1))))) by Def6

      .= ( Im ((( Partial_Sums seq) . n) + ( Sum (seq ^\ (n + 1))))) by COMPLEX1: 8;

      ( Sum ( Re seq)) = ((( Partial_Sums ( Re seq)) . n) + ( Sum (( Re seq) ^\ (n + 1)))) by A1, SERIES_1: 15

      .= ((( Re ( Partial_Sums seq)) . n) + ( Sum (( Re seq) ^\ (n + 1)))) by Th26

      .= ((( Re ( Partial_Sums seq)) . n) + ( Sum ( Re (seq ^\ (n + 1))))) by Th23

      .= ((( Re ( Partial_Sums seq)) . n) + ( Re ( Sum (seq ^\ (n + 1))))) by A3, COMPLEX1: 12

      .= (( Re (( Partial_Sums seq) . n)) + ( Re ( Sum (seq ^\ (n + 1))))) by Def5

      .= ( Re ((( Partial_Sums seq) . n) + ( Sum (seq ^\ (n + 1))))) by COMPLEX1: 8;

      hence thesis by A2, A4, COMPLEX1:def 3;

    end;

    theorem :: COMSEQ_3:61

    

     Th61: ( Partial_Sums |.seq.|) is bounded_above iff seq is absolutely_summable

    proof

      ( Partial_Sums |.seq.|) is bounded_above iff |.seq.| is summable;

      hence thesis;

    end;

    registration

      let seq be absolutely_summable Complex_Sequence;

      cluster ( Partial_Sums |.seq.|) -> bounded_above;

      coherence by Th61;

    end

    theorem :: COMSEQ_3:62

    

     Th62: seq is summable iff for p st 0 < p holds ex n st for m st n <= m holds |.((( Partial_Sums seq) . m) - (( Partial_Sums seq) . n)).| < p by Th46;

    theorem :: COMSEQ_3:63

    

     Th63: seq is absolutely_summable implies seq is summable

    proof

      assume

       A1: seq is absolutely_summable;

      now

        let p;

        assume 0 < p;

        then

        consider n such that

         A2: for m st n <= m holds |.((( Partial_Sums |.seq.|) . m) - (( Partial_Sums |.seq.|) . n)).| < p by A1, SEQ_4: 41;

        take n;

        let m;

        assume n <= m;

        then

         A3: |.((( Partial_Sums |.seq.|) . m) - (( Partial_Sums |.seq.|) . n)).| < p by A2;

         |.((( Partial_Sums seq) . m) - (( Partial_Sums seq) . n)).| <= |.((( Partial_Sums |.seq.|) . m) - (( Partial_Sums |.seq.|) . n)).| by Th31;

        hence |.((( Partial_Sums seq) . m) - (( Partial_Sums seq) . n)).| < p by A3, XXREAL_0: 2;

      end;

      hence thesis by Th62;

    end;

    registration

      cluster absolutely_summable -> summable for Complex_Sequence;

      coherence by Th63;

    end

    registration

      cluster absolutely_summable for Complex_Sequence;

      existence

      proof

        set C = the absolutely_summable Complex_Sequence;

        take C;

        thus thesis;

      end;

    end

    theorem :: COMSEQ_3:64

    

     Th64: |.z.| < 1 implies (z GeoSeq ) is summable & ( Sum (z GeoSeq )) = ( 1r / ( 1r - z))

    proof

      set seq2 = ( NAT --> 1r );

      deffunc f( Nat) = (z |^ ($1 + 1));

      consider seq1 such that

       A1: for n holds (seq1 . n) = f(n) from COMSEQ_1:sch 1;

      assume

       A2: |.z.| < 1;

      then

       A3: ( lim seq1) = 0c by A1, Th44;

       A4:

      now

        let n be Element of NAT ;

        

        thus (( Partial_Sums (z GeoSeq )) . n) = (( 1r - (z |^ (n + 1))) / ( 1r - z)) by A2, Th36, COMPLEX1: 48

        .= (( 1r - (seq1 . n)) / ( 1r - z)) by A1

        .= (( 1r * ((seq2 . n) - (seq1 . n))) / ( 1r - z)) by COMPLEX1:def 4, FUNCOP_1: 7

        .= (( 1r / ( 1r - z)) * ((seq2 . n) + ( - (seq1 . n)))) by XCMPLX_1: 74

        .= (( 1r / ( 1r - z)) * ((seq2 . n) + (( - seq1) . n))) by VALUED_1: 8

        .= (( 1r / ( 1r - z)) * ((seq2 - seq1) . n)) by VALUED_1: 1

        .= ((( 1r / ( 1r - z)) (#) (seq2 - seq1)) . n) by VALUED_1: 6;

      end;

      

       A5: for n holds (seq2 . n) = 1r by ORDINAL1:def 12, FUNCOP_1: 7;

      then

       A6: seq2 is convergent by COMSEQ_2: 9;

      

       A7: seq1 is convergent by A2, A1, Th44;

      then

       A8: (seq2 - seq1) is convergent by A6;

      hence ( Partial_Sums (z GeoSeq )) is convergent by A4, FUNCT_2: 63;

      ( lim (seq2 - seq1)) = (( lim seq2) - ( lim seq1)) by A7, A6, COMSEQ_2: 26

      .= 1r by A3, A5, COMSEQ_2: 10;

      

      then ( lim (( 1r / ( 1r - z)) (#) (seq2 - seq1))) = (( 1r / ( 1r - z)) * 1r ) by A8, COMSEQ_2: 18

      .= ( 1r / ( 1r - z)) by COMPLEX1:def 4;

      hence thesis by A4, FUNCT_2: 63;

    end;

    theorem :: COMSEQ_3:65

     |.z.| < 1 & (for n holds (seq . (n + 1)) = (z * (seq . n))) implies seq is summable & ( Sum seq) = ((seq . 0 ) / ( 1r - z))

    proof

      assume that

       A1: |.z.| < 1 and

       A2: for n holds (seq . (n + 1)) = (z * (seq . n));

      now

        let n be Element of NAT ;

        

        thus (( Partial_Sums seq) . n) = ((seq . 0 ) * (( 1r - (z |^ (n + 1))) / ( 1r - z))) by A1, A2, Th37, COMPLEX1: 48

        .= ((seq . 0 ) * (( Partial_Sums (z GeoSeq )) . n)) by A1, Th36, COMPLEX1: 48

        .= (((seq . 0 ) (#) ( Partial_Sums (z GeoSeq ))) . n) by VALUED_1: 6;

      end;

      then

       A3: ( Partial_Sums seq) = ((seq . 0 ) (#) ( Partial_Sums (z GeoSeq )));

      

       A4: (z GeoSeq ) is summable by A1, Th64;

      hence seq is summable by A3;

      ( Sum seq) = ((seq . 0 ) * ( Sum (z GeoSeq ))) by A3, A4, COMSEQ_2: 18

      .= ((seq . 0 ) * ( 1r / ( 1r - z))) by A1, Th64

      .= (((seq . 0 ) * 1r ) / ( 1r - z)) by XCMPLX_1: 74

      .= ((seq . 0 ) / ( 1r - z)) by COMPLEX1:def 4;

      hence thesis;

    end;

    theorem :: COMSEQ_3:66

    rseq1 is summable & (ex m st for n st m <= n holds |.(seq2 . n).| <= (rseq1 . n)) implies seq2 is absolutely_summable

    proof

      assume that

       A1: rseq1 is summable and

       A2: ex m st for n st m <= n holds |.(seq2 . n).| <= (rseq1 . n);

      consider m such that

       A3: for n st m <= n holds |.(seq2 . n).| <= (rseq1 . n) by A2;

       A4:

      now

        let n;

         |.(seq2 . n).| = ( |.seq2.| . n) by VALUED_1: 18;

        hence 0 <= ( |.seq2.| . n) by COMPLEX1: 46;

      end;

      now

        let n;

        assume m <= n;

        then |.(seq2 . n).| <= (rseq1 . n) by A3;

        hence ( |.seq2.| . n) <= (rseq1 . n) by VALUED_1: 18;

      end;

      hence |.seq2.| is summable by A1, A4, SERIES_1: 19;

    end;

    theorem :: COMSEQ_3:67

    (for n holds 0 <= ( |.seq1.| . n) & ( |.seq1.| . n) <= ( |.seq2.| . n)) & seq2 is absolutely_summable implies seq1 is absolutely_summable & ( Sum |.seq1.|) <= ( Sum |.seq2.|) by SERIES_1: 20;

    theorem :: COMSEQ_3:68

    (for n holds ( |.seq.| . n) > 0 ) & (ex m st for n st n >= m holds (( |.seq.| . (n + 1)) / ( |.seq.| . n)) >= 1) implies not seq is absolutely_summable by SERIES_1: 27;

    theorem :: COMSEQ_3:69

    (for n holds (rseq1 . n) = (n -root ( |.seq.| . n))) & rseq1 is convergent & ( lim rseq1) < 1 implies seq is absolutely_summable

    proof

      assume

       A1: (for n holds (rseq1 . n) = (n -root ( |.seq.| . n))) & rseq1 is convergent & ( lim rseq1) < 1;

      for n holds ( |.seq.| . n) >= 0 by Lm3;

      hence |.seq.| is summable by A1, SERIES_1: 28;

    end;

    theorem :: COMSEQ_3:70

    (for n holds (rseq1 . n) = (n -root ( |.seq.| . n))) & (ex m st for n st m <= n holds (rseq1 . n) >= 1) implies not |.seq.| is summable

    proof

      assume

       A1: (for n holds (rseq1 . n) = (n -root ( |.seq.| . n))) & ex m st for n st m <= n holds (rseq1 . n) >= 1;

      for n holds ( |.seq.| . n) >= 0 by Lm3;

      hence thesis by A1, SERIES_1: 29;

    end;

    theorem :: COMSEQ_3:71

    (for n holds (rseq1 . n) = (n -root ( |.seq.| . n))) & rseq1 is convergent & ( lim rseq1) > 1 implies not seq is absolutely_summable

    proof

      assume

       A1: (for n holds (rseq1 . n) = (n -root ( |.seq.| . n))) & rseq1 is convergent & ( lim rseq1) > 1;

      for n holds ( |.seq.| . n) >= 0 by Lm3;

      hence not |.seq.| is summable by A1, SERIES_1: 30;

    end;

    theorem :: COMSEQ_3:72

     |.seq.| is non-increasing & (for n holds (rseq1 . n) = ((2 to_power n) * ( |.seq.| . (2 to_power n)))) implies (seq is absolutely_summable iff rseq1 is summable)

    proof

      assume |.seq.| is non-increasing & for n holds (rseq1 . n) = ((2 to_power n) * ( |.seq.| . (2 to_power n)));

      then for n holds |.seq.| is non-increasing & ( |.seq.| . n) >= 0 & (rseq1 . n) = ((2 to_power n) * ( |.seq.| . (2 to_power n))) by Lm3;

      then |.seq.| is summable iff rseq1 is summable by SERIES_1: 31;

      hence thesis;

    end;

    theorem :: COMSEQ_3:73

    p > 1 & (for n st n >= 1 holds ( |.seq.| . n) = (1 / (n to_power p))) implies seq is absolutely_summable by SERIES_1: 32;

    theorem :: COMSEQ_3:74

    p <= 1 & (for n st n >= 1 holds ( |.seq.| . n) = (1 / (n to_power p))) implies not seq is absolutely_summable by SERIES_1: 33;

    theorem :: COMSEQ_3:75

    (for n holds (seq . n) <> 0c & (rseq1 . n) = (( |.seq.| . (n + 1)) / ( |.seq.| . n))) & rseq1 is convergent & ( lim rseq1) < 1 implies seq is absolutely_summable

    proof

      assume that

       A1: for n holds (seq . n) <> 0c & (rseq1 . n) = (( |.seq.| . (n + 1)) / ( |.seq.| . n)) and

       A2: rseq1 is convergent & ( lim rseq1) < 1;

      now

        let n;

        

         A3: (seq . n) <> 0c & ( |.seq.| . n) = |.(seq . n).| by A1, VALUED_1: 18;

        hence ( |.seq.| . n) <> 0 & (rseq1 . n) = (( |.seq.| . (n + 1)) / ( |.seq.| . n)) by A1, COMPLEX1: 47;

        thus ( |.seq.| . n) <> 0 & (rseq1 . n) = (( |. |.seq.|.| . (n + 1)) / ( |.seq.| . n)) by A1, A3, COMPLEX1: 47;

        thus ( |.seq.| . n) <> 0 & (rseq1 . n) = ((( abs |.seq.|) . (n + 1)) / (( abs |.seq.|) . n)) by A1, A3, COMPLEX1: 47;

      end;

      then |.seq.| is absolutely_summable by A2, SERIES_1: 37;

      hence thesis;

    end;

    theorem :: COMSEQ_3:76

    (for n holds (seq . n) <> 0c ) & (ex m st for n st n >= m holds (( |.seq.| . (n + 1)) / ( |.seq.| . n)) >= 1) implies not seq is absolutely_summable

    proof

      assume that

       A1: for n holds (seq . n) <> 0c and

       A2: ex m st for n st n >= m holds (( |.seq.| . (n + 1)) / ( |.seq.| . n)) >= 1;

      consider m such that

       A3: for n st n >= m holds (( |.seq.| . (n + 1)) / ( |.seq.| . n)) >= 1 by A2;

       A4:

      now

        let n;

        (seq . n) <> 0c by A1;

        then |.(seq . n).| <> 0 by COMPLEX1: 47;

        hence ( |.seq.| . n) <> 0 by VALUED_1: 18;

      end;

      for n st n >= m holds ((( abs |.seq.|) . (n + 1)) / (( abs |.seq.|) . n)) >= 1 by A3;

      hence not |.seq.| is summable by A4, SERIES_1: 39;

    end;