comseq_3.miz
begin
reserve rseq,rseq1,rseq2 for
Real_Sequence;
reserve seq,seq1,seq2 for
Complex_Sequence;
reserve k,n,n1,n2,m for
Nat;
reserve p,r for
Real;
Lm1:
0c
= (
0
+ (
0
*
<i> ));
theorem ::
COMSEQ_3:1
(n
+ 1)
<>
0c & ((n
+ 1)
*
<i> )
<>
0c ;
theorem ::
COMSEQ_3:2
Th2: (for n holds (rseq
. n)
=
0 ) implies for m holds ((
Partial_Sums (
abs rseq))
. m)
=
0
proof
defpred
P[
Nat] means ((
abs rseq)
. $1)
= ((
Partial_Sums (
abs rseq))
. $1);
assume
A1: for n holds (rseq
. n)
=
0 ;
A2: for k st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A3:
P[k];
thus ((
abs rseq)
. (k
+ 1))
= (
0
+ ((
abs rseq)
. (k
+ 1)))
.= (
|.
0 .|
+ ((
abs rseq)
. (k
+ 1))) by
ABSVALUE:def 1
.= (
|.(rseq
. k).|
+ ((
abs rseq)
. (k
+ 1))) by
A1
.= (((
Partial_Sums (
abs rseq))
. k)
+ ((
abs rseq)
. (k
+ 1))) by
A3,
SEQ_1: 12
.= ((
Partial_Sums (
abs rseq))
. (k
+ 1)) by
SERIES_1:def 1;
end;
let m;
A4:
P[
0 ] by
SERIES_1:def 1;
for n holds
P[n] from
NAT_1:sch 2(
A4,
A2);
hence ((
Partial_Sums (
abs rseq))
. m)
= ((
abs rseq)
. m)
.=
|.(rseq
. m).| by
SEQ_1: 12
.=
|.
0 .| by
A1
.=
0 by
ABSVALUE:def 1;
end;
theorem ::
COMSEQ_3:3
Th3: (for n holds (rseq
. n)
=
0 ) implies rseq is
absolutely_summable
proof
assume
A1: for n holds (rseq
. n)
=
0 ;
take
0 ;
let p be
Real such that
A2:
0
< p;
take
0 ;
let m be
Nat such that
0
<= m;
|.(((
Partial_Sums (
abs rseq))
. m)
-
0 ).|
=
|.(
0
-
0 ).| by
A1,
Th2
.=
0 by
ABSVALUE:def 1;
hence
|.(((
Partial_Sums (
abs rseq))
. m)
-
0 ).|
< p by
A2;
end;
set C = (
seq_const
0 );
Lm2: for n be
Nat holds (C
. n)
=
0 ;
registration
cluster
summable ->
convergent for
Real_Sequence;
coherence by
SERIES_1: 4;
end
registration
cluster
absolutely_summable ->
summable for
Real_Sequence;
coherence ;
end
registration
cluster
absolutely_summable for
Real_Sequence;
existence by
Lm2,
Th3;
end
theorem ::
COMSEQ_3:4
rseq is
convergent implies for p st
0
< p holds ex n st for m,l be
Nat st n
<= m & n
<= l holds
|.((rseq
. m)
- (rseq
. l)).|
< p
proof
assume
A1: rseq is
convergent;
let p;
assume
0
< p;
then
consider n such that
A2: for m st n
<= m holds
|.((rseq
. m)
- (rseq
. n)).|
< (p
/ 2) by
A1,
SEQ_4: 41;
take n;
now
let m,l be
Nat;
assume n
<= m & n
<= l;
then
|.((rseq
. m)
- (rseq
. n)).|
< (p
/ 2) &
|.((rseq
. l)
- (rseq
. n)).|
< (p
/ 2) by
A2;
then
A3: (
|.((rseq
. m)
- (rseq
. n)).|
+
|.((rseq
. l)
- (rseq
. n)).|)
< ((p
/ 2)
+ (p
/ 2)) by
XREAL_1: 8;
|.((rseq
. m)
- (rseq
. l)).|
=
|.(((rseq
. m)
- (rseq
. n))
- ((rseq
. l)
- (rseq
. n))).|;
then
|.((rseq
. m)
- (rseq
. l)).|
<= (
|.((rseq
. m)
- (rseq
. n)).|
+
|.((rseq
. l)
- (rseq
. n)).|) by
COMPLEX1: 57;
hence
|.((rseq
. m)
- (rseq
. l)).|
< p by
A3,
XXREAL_0: 2;
end;
hence thesis;
end;
theorem ::
COMSEQ_3:5
(for n holds (rseq
. n)
<= p) implies for n,l be
Nat holds (((
Partial_Sums rseq)
. (n
+ l))
- ((
Partial_Sums rseq)
. n))
<= (p
* l)
proof
assume
A1: for n holds (rseq
. n)
<= p;
let n;
defpred
P[
Nat] means (((
Partial_Sums rseq)
. (n
+ $1))
- ((
Partial_Sums rseq)
. n))
<= (p
* $1);
A2:
now
let l be
Nat such that
A3:
P[l];
(rseq
. ((n
+ l)
+ 1))
<= p by
A1;
then
A4: ((p
* l)
+ (rseq
. ((n
+ l)
+ 1)))
<= ((p
* l)
+ p) by
XREAL_1: 6;
(((
Partial_Sums rseq)
. (n
+ (l
+ 1)))
- ((
Partial_Sums rseq)
. n))
= ((((
Partial_Sums rseq)
. (n
+ l))
+ (rseq
. ((n
+ l)
+ 1)))
- ((
Partial_Sums rseq)
. n)) by
SERIES_1:def 1
.= ((((
Partial_Sums rseq)
. (n
+ l))
- ((
Partial_Sums rseq)
. n))
+ (rseq
. ((n
+ l)
+ 1)));
then (((
Partial_Sums rseq)
. (n
+ (l
+ 1)))
- ((
Partial_Sums rseq)
. n))
<= ((p
* l)
+ (rseq
. ((n
+ l)
+ 1))) by
A3,
XREAL_1: 6;
hence
P[(l
+ 1)] by
A4,
XXREAL_0: 2;
end;
A5:
P[
0 ];
thus for l be
Nat holds
P[l] from
NAT_1:sch 2(
A5,
A2);
end;
theorem ::
COMSEQ_3:6
(for n holds (rseq
. n)
<= p) implies for n holds ((
Partial_Sums rseq)
. n)
<= (p
* (n
+ 1))
proof
defpred
P[
Nat] means ((
Partial_Sums rseq)
. $1)
<= (p
* ($1
+ 1));
assume
A1: for n holds (rseq
. n)
<= p;
A2:
now
let n be
Nat such that
A3:
P[n];
(rseq
. (n
+ 1))
<= p by
A1;
then
A4: ((p
* (n
+ 1))
+ (rseq
. (n
+ 1)))
<= ((p
* (n
+ 1))
+ p) by
XREAL_1: 6;
((
Partial_Sums rseq)
. (n
+ 1))
= (((
Partial_Sums rseq)
. n)
+ (rseq
. (n
+ 1))) by
SERIES_1:def 1;
then ((
Partial_Sums rseq)
. (n
+ 1))
<= ((p
* (n
+ 1))
+ (rseq
. (n
+ 1))) by
A3,
XREAL_1: 6;
hence
P[(n
+ 1)] by
A4,
XXREAL_0: 2;
end;
((
Partial_Sums rseq)
.
0 )
= (rseq
.
0 ) by
SERIES_1:def 1;
then
A5:
P[
0 ] by
A1;
thus for n be
Nat holds
P[n] from
NAT_1:sch 2(
A5,
A2);
end;
theorem ::
COMSEQ_3:7
(for n st n
<= m holds (rseq1
. n)
<= (p
* (rseq2
. n))) implies ((
Partial_Sums rseq1)
. m)
<= (p
* ((
Partial_Sums rseq2)
. m))
proof
defpred
P[
Nat] means $1
<= m implies ((
Partial_Sums rseq1)
. $1)
<= (p
* ((
Partial_Sums rseq2)
. $1));
assume
A1: for n st n
<= m holds (rseq1
. n)
<= (p
* (rseq2
. n));
A2:
now
let n be
Nat such that
A3:
P[n];
now
assume
A4: (n
+ 1)
<= m;
then (rseq1
. (n
+ 1))
<= (p
* (rseq2
. (n
+ 1))) by
A1;
then
A5: ((p
* ((
Partial_Sums rseq2)
. n))
+ (rseq1
. (n
+ 1)))
<= ((p
* ((
Partial_Sums rseq2)
. n))
+ (p
* (rseq2
. (n
+ 1)))) by
XREAL_1: 6;
n
< (n
+ 1) & ((
Partial_Sums rseq1)
. (n
+ 1))
= (((
Partial_Sums rseq1)
. n)
+ (rseq1
. (n
+ 1))) by
SERIES_1:def 1,
XREAL_1: 29;
then
A6: ((
Partial_Sums rseq1)
. (n
+ 1))
<= ((p
* ((
Partial_Sums rseq2)
. n))
+ (rseq1
. (n
+ 1))) by
A3,
A4,
XREAL_1: 6,
XXREAL_0: 2;
((p
* ((
Partial_Sums rseq2)
. n))
+ (p
* (rseq2
. (n
+ 1))))
= (p
* (((
Partial_Sums rseq2)
. n)
+ (rseq2
. (n
+ 1))))
.= (p
* ((
Partial_Sums rseq2)
. (n
+ 1))) by
SERIES_1:def 1;
hence ((
Partial_Sums rseq1)
. (n
+ 1))
<= (p
* ((
Partial_Sums rseq2)
. (n
+ 1))) by
A6,
A5,
XXREAL_0: 2;
end;
hence
P[(n
+ 1)];
end;
A7:
P[
0 ]
proof
assume
0
<= m;
((
Partial_Sums rseq1)
.
0 )
= (rseq1
.
0 ) & (p
* ((
Partial_Sums rseq2)
.
0 ))
= (p
* (rseq2
.
0 )) by
SERIES_1:def 1;
hence thesis by
A1;
end;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A7,
A2);
hence thesis;
end;
theorem ::
COMSEQ_3:8
(for n st n
<= m holds (rseq1
. n)
<= (p
* (rseq2
. n))) implies for n holds for l be
Nat st (n
+ l)
<= m holds (((
Partial_Sums rseq1)
. (n
+ l))
- ((
Partial_Sums rseq1)
. n))
<= (p
* (((
Partial_Sums rseq2)
. (n
+ l))
- ((
Partial_Sums rseq2)
. n)))
proof
assume
A1: for n st n
<= m holds (rseq1
. n)
<= (p
* (rseq2
. n));
let n;
defpred
P[
Nat] means (n
+ $1)
<= m implies (((
Partial_Sums rseq1)
. (n
+ $1))
- ((
Partial_Sums rseq1)
. n))
<= (p
* (((
Partial_Sums rseq2)
. (n
+ $1))
- ((
Partial_Sums rseq2)
. n)));
A2: for l be
Nat st
P[l] holds
P[(l
+ 1)]
proof
let l be
Nat such that
A3:
P[l];
assume
A4: (n
+ (l
+ 1))
<= m;
then ((
Partial_Sums rseq1)
. (n
+ (l
+ 1)))
= (((
Partial_Sums rseq1)
. (n
+ l))
+ (rseq1
. ((n
+ l)
+ 1))) & (rseq1
. ((n
+ l)
+ 1))
<= (p
* (rseq2
. ((n
+ l)
+ 1))) by
A1,
SERIES_1:def 1;
then ((
Partial_Sums rseq1)
. (n
+ (l
+ 1)))
<= (((
Partial_Sums rseq1)
. (n
+ l))
+ (p
* (rseq2
. ((n
+ l)
+ 1)))) by
XREAL_1: 6;
then
A5: (((
Partial_Sums rseq1)
. (n
+ (l
+ 1)))
- ((
Partial_Sums rseq1)
. n))
<= ((((
Partial_Sums rseq1)
. (n
+ l))
+ (p
* (rseq2
. ((n
+ l)
+ 1))))
- ((
Partial_Sums rseq1)
. n)) by
XREAL_1: 9;
(n
+ l)
< ((n
+ l)
+ 1) by
XREAL_1: 29;
then
A6: ((((
Partial_Sums rseq1)
. (n
+ l))
- ((
Partial_Sums rseq1)
. n))
+ (p
* (rseq2
. ((n
+ l)
+ 1))))
<= ((p
* (((
Partial_Sums rseq2)
. (n
+ l))
- ((
Partial_Sums rseq2)
. n)))
+ (p
* (rseq2
. ((n
+ l)
+ 1)))) by
A3,
A4,
XREAL_1: 6,
XXREAL_0: 2;
((p
* (((
Partial_Sums rseq2)
. (n
+ l))
- ((
Partial_Sums rseq2)
. n)))
+ (p
* (rseq2
. ((n
+ l)
+ 1))))
= (p
* ((((
Partial_Sums rseq2)
. (n
+ l))
+ (rseq2
. ((n
+ l)
+ 1)))
- ((
Partial_Sums rseq2)
. n)))
.= (p
* (((
Partial_Sums rseq2)
. (n
+ (l
+ 1)))
- ((
Partial_Sums rseq2)
. n))) by
SERIES_1:def 1;
hence thesis by
A5,
A6,
XXREAL_0: 2;
end;
A7:
P[
0 ];
thus for l be
Nat holds
P[l] from
NAT_1:sch 2(
A7,
A2);
end;
theorem ::
COMSEQ_3:9
(for n holds
0
<= (rseq
. n)) implies (for n, m st n
<= m holds
|.(((
Partial_Sums rseq)
. m)
- ((
Partial_Sums rseq)
. n)).|
= (((
Partial_Sums rseq)
. m)
- ((
Partial_Sums rseq)
. n))) & for n holds
|.((
Partial_Sums rseq)
. n).|
= ((
Partial_Sums rseq)
. n)
proof
assume
A1: for n holds
0
<= (rseq
. n);
then
A2: (
Partial_Sums rseq) is
non-decreasing by
SERIES_1: 16;
A3:
now
let n, m;
assume n
<= m;
then ((
Partial_Sums rseq)
. n)
<= ((
Partial_Sums rseq)
. m) by
A2,
SEQM_3: 6;
then (((
Partial_Sums rseq)
. n)
- ((
Partial_Sums rseq)
. n))
<= (((
Partial_Sums rseq)
. m)
- ((
Partial_Sums rseq)
. n)) by
XREAL_1: 9;
hence
|.(((
Partial_Sums rseq)
. m)
- ((
Partial_Sums rseq)
. n)).|
= (((
Partial_Sums rseq)
. m)
- ((
Partial_Sums rseq)
. n)) by
ABSVALUE:def 1;
end;
now
let n;
A4: ((
Partial_Sums rseq)
.
0 )
<= ((
Partial_Sums rseq)
. n) by
A2,
SEQM_3: 6;
((
Partial_Sums rseq)
.
0 )
= (rseq
.
0 ) &
0
<= (rseq
.
0 ) by
A1,
SERIES_1:def 1;
hence
|.((
Partial_Sums rseq)
. n).|
= ((
Partial_Sums rseq)
. n) by
A4,
ABSVALUE:def 1;
end;
hence thesis by
A3;
end;
theorem ::
COMSEQ_3:10
seq1 is
convergent & seq2 is
convergent & (
lim (seq1
- seq2))
=
0c implies (
lim seq1)
= (
lim seq2)
proof
assume that
A1: seq1 is
convergent & seq2 is
convergent and
A2: (
lim (seq1
- seq2))
=
0c ;
(
lim (seq1
- seq2))
= ((
lim seq1)
- (
lim seq2)) by
A1,
COMSEQ_2: 26;
hence thesis by
A2;
end;
begin
reserve z for
Complex;
reserve Nseq,Nseq1 for
increasing
sequence of
NAT ;
Lm3:
|.(seq
. n).|
= (
|.seq.|
. n) &
0
<= (
|.seq.|
. n)
proof
|.(seq
. n).|
= (
|.seq.|
. n) by
VALUED_1: 18;
hence thesis by
COMPLEX1: 46;
end;
definition
let z be
Complex;
::
COMSEQ_3:def1
func z
GeoSeq ->
Complex_Sequence means
:
Def1: (it
.
0 )
=
1r & for n holds (it
. (n
+ 1))
= ((it
. n)
* z);
existence
proof
reconsider z9 = z as
Element of
COMPLEX by
XCMPLX_0:def 2;
deffunc
f(
set,
Element of
COMPLEX ) = (
In (($2
* z9),
COMPLEX ));
consider f be
sequence of
COMPLEX such that
A1: (f
.
0 )
=
1r & for n be
Nat holds (f
. (n
+ 1))
=
f(n,.) from
NAT_1:sch 12;
take f;
thus (f
.
0 )
=
1r by
A1;
let n;
(f
. (n
+ 1))
=
f(n,.) by
A1;
hence thesis;
end;
uniqueness
proof
let seq1, seq2;
assume that
A2: (seq1
.
0 )
=
1r and
A3: for n holds (seq1
. (n
+ 1))
= ((seq1
. n)
* z) and
A4: (seq2
.
0 )
=
1r and
A5: for n holds (seq2
. (n
+ 1))
= ((seq2
. n)
* z);
defpred
P[
Nat] means (seq1
. $1)
= (seq2
. $1);
A6: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
P[k];
hence (seq1
. (k
+ 1))
= ((seq2
. k)
* z) by
A3
.= (seq2
. (k
+ 1)) by
A5;
end;
A7:
P[
0 ] by
A2,
A4;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A7,
A6);
hence seq1
= seq2;
end;
end
definition
let z be
Complex, n be
Nat;
:: original:
|^
redefine
::
COMSEQ_3:def2
func z
|^ n ->
Element of
COMPLEX equals ((z
GeoSeq )
. n);
coherence by
XCMPLX_0:def 2;
compatibility
proof
reconsider n as
Element of
NAT by
ORDINAL1:def 12;
defpred
P[
Nat] means (z
|^ $1)
= ((z
GeoSeq )
. $1);
let w be
Element of
COMPLEX ;
A1: for n be
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be
Nat;
assume
P[n];
hence (z
|^ (n
+ 1))
= (((z
GeoSeq )
. n)
* z) by
NEWTON: 6
.= ((z
GeoSeq )
. (n
+ 1)) by
Def1;
end;
(z
|^
0 )
=
1r by
COMPLEX1:def 4,
NEWTON: 4
.= ((z
GeoSeq )
.
0 ) by
Def1;
then
A2:
P[
0 ];
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A2,
A1);
then (z
|^ n)
= ((z
GeoSeq )
. n);
hence thesis;
end;
end
theorem ::
COMSEQ_3:11
(z
|^
0 )
=
1r by
COMPLEX1:def 4,
NEWTON: 4;
definition
let f be
complex-valued
Function;
set A = (
dom f);
deffunc
F(
object) = (
Re (f
. $1));
::
COMSEQ_3:def3
func
Re f ->
Function means
:
Def3: (
dom it )
= (
dom f) & for x be
object st x
in (
dom it ) holds (it
. x)
= (
Re (f
. x));
existence
proof
ex f be
Function st (
dom f)
= A & for x be
object st x
in A holds (f
. x)
=
F(x) from
FUNCT_1:sch 3;
hence thesis;
end;
uniqueness
proof
let g,h be
Function such that
A1: (
dom g)
= (
dom f) and
A2: for x be
object st x
in (
dom g) holds (g
. x)
=
F(x) and
A3: (
dom h)
= (
dom f) and
A4: for x be
object st x
in (
dom h) holds (h
. x)
=
F(x);
now
let x be
object;
assume
A5: x
in (
dom g);
hence (g
. x)
=
F(x) by
A2
.= (h
. x) by
A1,
A3,
A4,
A5;
end;
hence thesis by
A1,
A3,
FUNCT_1: 2;
end;
deffunc
F(
object) = (
Im (f
. $1));
::
COMSEQ_3:def4
func
Im f ->
Function means
:
Def4: (
dom it )
= (
dom f) & for x be
object st x
in (
dom it ) holds (it
. x)
= (
Im (f
. x));
existence
proof
ex f be
Function st (
dom f)
= A & for x be
object st x
in A holds (f
. x)
=
F(x) from
FUNCT_1:sch 3;
hence thesis;
end;
uniqueness
proof
let g,h be
Function such that
A6: (
dom g)
= (
dom f) and
A7: for x be
object st x
in (
dom g) holds (g
. x)
=
F(x) and
A8: (
dom h)
= (
dom f) and
A9: for x be
object st x
in (
dom h) holds (h
. x)
=
F(x);
now
let x be
object;
assume
A10: x
in (
dom g);
hence (g
. x)
=
F(x) by
A7
.= (h
. x) by
A6,
A8,
A9,
A10;
end;
hence thesis by
A6,
A8,
FUNCT_1: 2;
end;
end
registration
let f be
complex-valued
Function;
cluster (
Re f) ->
real-valued;
coherence
proof
let x be
object;
assume x
in (
dom (
Re f));
then ((
Re f)
. x)
= (
Re (f
. x)) by
Def3;
hence thesis;
end;
cluster (
Im f) ->
real-valued;
coherence
proof
let x be
object;
assume x
in (
dom (
Im f));
then ((
Im f)
. x)
= (
Im (f
. x)) by
Def4;
hence thesis;
end;
end
definition
let X be
set, f be
PartFunc of X,
COMPLEX ;
:: original:
Re
redefine
func
Re f ->
PartFunc of X,
REAL ;
coherence
proof
A1: (
dom f)
c= X by
RELAT_1:def 18;
A2: (
rng (
Re f))
c=
REAL by
VALUED_0:def 3;
(
dom (
Re f))
= (
dom f) by
Def3;
hence thesis by
A1,
A2,
RELSET_1: 4;
end;
:: original:
Im
redefine
func
Im f ->
PartFunc of X,
REAL ;
coherence
proof
A3: (
dom f)
c= X by
RELAT_1:def 18;
A4: (
rng (
Im f))
c=
REAL by
VALUED_0:def 3;
(
dom (
Im f))
= (
dom f) by
Def4;
hence thesis by
A3,
A4,
RELSET_1: 4;
end;
end
definition
let c be
Complex_Sequence;
:: original:
Re
redefine
::
COMSEQ_3:def5
func
Re c ->
Real_Sequence means
:
Def5: for n holds (it
. n)
= (
Re (c
. n));
coherence
proof
(
dom (
Re c))
= (
dom c) by
Def3
.=
NAT by
FUNCT_2:def 1;
then (
Re c) is
total by
PARTFUN1:def 2;
hence thesis;
end;
compatibility
proof
let f be
Real_Sequence;
A1: (
dom (
Re c))
= (
dom c) by
Def3;
A2: (
dom c)
=
NAT by
FUNCT_2:def 1;
A3: (
dom f)
=
NAT by
FUNCT_2:def 1;
thus f
= (
Re c) implies for n holds (f
. n)
= (
Re (c
. n)) by
A1,
A2,
Def3,
ORDINAL1:def 12;
assume
A4: for n holds (f
. n)
= (
Re (c
. n));
now
let x be
object;
assume
A5: x
in (
dom f);
hence (f
. x)
= (
Re (c
. x)) by
A4
.= ((
Re c)
. x) by
A1,
A2,
A3,
A5,
Def3;
end;
hence thesis by
A1,
A2,
A3,
FUNCT_1: 2;
end;
:: original:
Im
redefine
::
COMSEQ_3:def6
func
Im c ->
Real_Sequence means
:
Def6: for n holds (it
. n)
= (
Im (c
. n));
coherence
proof
(
dom (
Im c))
= (
dom c) by
Def4
.=
NAT by
FUNCT_2:def 1;
then (
Im c) is
total by
PARTFUN1:def 2;
hence thesis;
end;
compatibility
proof
let f be
Real_Sequence;
A6: (
dom (
Im c))
= (
dom c) by
Def4;
A7: (
dom c)
=
NAT by
FUNCT_2:def 1;
A8: (
dom f)
=
NAT by
FUNCT_2:def 1;
thus f
= (
Im c) implies for n holds (f
. n)
= (
Im (c
. n)) by
A6,
A7,
ORDINAL1:def 12,
Def4;
assume
A9: for n holds (f
. n)
= (
Im (c
. n));
now
let x be
object;
assume
A10: x
in (
dom f);
hence (f
. x)
= (
Im (c
. x)) by
A9
.= ((
Im c)
. x) by
A6,
A7,
A8,
A10,
Def4;
end;
hence thesis by
A6,
A7,
A8,
FUNCT_1: 2;
end;
end
theorem ::
COMSEQ_3:12
Th12:
|.z.|
<= (
|.(
Re z).|
+
|.(
Im z).|)
proof
z
= ((
Re z)
+ ((
Im z)
*
<i> )) by
COMPLEX1: 13;
then
A1:
|.z.|
<= (
|.((
Re z)
+ (
0
*
<i> )).|
+
|.(
0
+ ((
Im z)
*
<i> )).|) by
COMPLEX1: 56;
(
Re (
0
+ ((
Im z)
*
<i> )))
=
0 & (
Im (
0
+ ((
Im z)
*
<i> )))
= (
Im z) by
COMPLEX1: 12;
hence thesis by
A1,
COMPLEX1: 51;
end;
theorem ::
COMSEQ_3:13
Th13:
|.(
Re z).|
<=
|.z.| &
|.(
Im z).|
<=
|.z.|
proof
0
<= ((
Re z)
^2 ) by
XREAL_1: 63;
then
A1: (
0
+ ((
Im z)
^2 ))
<= (((
Re z)
^2 )
+ ((
Im z)
^2 )) by
XREAL_1: 6;
0
<= ((
Im z)
^2 ) by
XREAL_1: 63;
then
A2: (
sqrt ((
Im z)
^2 ))
<= (
sqrt (((
Re z)
^2 )
+ ((
Im z)
^2 ))) by
A1,
SQUARE_1: 26;
0
<= ((
Im z)
^2 ) by
XREAL_1: 63;
then
A3: (
0
+ ((
Re z)
^2 ))
<= (((
Im z)
^2 )
+ ((
Re z)
^2 )) by
XREAL_1: 6;
0
<= ((
Re z)
^2 ) by
XREAL_1: 63;
then
|.z.|
= (
sqrt (((
Re z)
^2 )
+ ((
Im z)
^2 ))) & (
sqrt ((
Re z)
^2 ))
<= (
sqrt (((
Re z)
^2 )
+ ((
Im z)
^2 ))) by
A3,
COMPLEX1:def 12,
SQUARE_1: 26;
hence thesis by
A2,
COMPLEX1: 72;
end;
theorem ::
COMSEQ_3:14
Th14: (
Re seq1)
= (
Re seq2) & (
Im seq1)
= (
Im seq2) implies seq1
= seq2
proof
assume that
A1: (
Re seq1)
= (
Re seq2) and
A2: (
Im seq1)
= (
Im seq2);
now
let n be
Element of
NAT ;
A3: (
Im (seq1
. n))
= ((
Im seq2)
. n) by
A2,
Def6
.= (
Im (seq2
. n)) by
Def6;
(
Re (seq1
. n))
= ((
Re seq2)
. n) by
A1,
Def5
.= (
Re (seq2
. n)) by
Def5;
hence (seq1
. n)
= (seq2
. n) by
A3,
COMPLEX1: 3;
end;
hence thesis;
end;
theorem ::
COMSEQ_3:15
Th15: ((
Re seq1)
+ (
Re seq2))
= (
Re (seq1
+ seq2)) & ((
Im seq1)
+ (
Im seq2))
= (
Im (seq1
+ seq2) qua
Complex_Sequence)
proof
now
let n be
Element of
NAT ;
thus (((
Re seq1)
+ (
Re seq2))
. n)
= (((
Re seq1)
. n)
+ ((
Re seq2)
. n)) by
SEQ_1: 7
.= ((
Re (seq1
. n))
+ ((
Re seq2)
. n)) by
Def5
.= ((
Re (seq1
. n))
+ (
Re (seq2
. n))) by
Def5
.= (
Re ((seq1
. n)
+ (seq2
. n))) by
COMPLEX1: 8
.= (
Re ((seq1
+ seq2)
. n)) by
VALUED_1: 1
.= ((
Re (seq1
+ seq2))
. n) by
Def5;
end;
hence ((
Re seq1)
+ (
Re seq2))
= (
Re (seq1
+ seq2));
now
let n be
Element of
NAT ;
thus (((
Im seq1)
+ (
Im seq2))
. n)
= (((
Im seq1)
. n)
+ ((
Im seq2)
. n)) by
SEQ_1: 7
.= ((
Im (seq1
. n))
+ ((
Im seq2)
. n)) by
Def6
.= ((
Im (seq1
. n))
+ (
Im (seq2
. n))) by
Def6
.= (
Im ((seq1
. n)
+ (seq2
. n))) by
COMPLEX1: 8
.= (
Im ((seq1
+ seq2)
. n)) by
VALUED_1: 1
.= ((
Im (seq1
+ seq2))
. n) by
Def6;
end;
hence thesis;
end;
theorem ::
COMSEQ_3:16
Th16: (
- (
Re seq))
= (
Re (
- seq)) & (
- (
Im seq))
= (
Im (
- seq))
proof
now
let n be
Element of
NAT ;
thus ((
- (
Re seq))
. n)
= (
- ((
Re seq)
. n)) by
SEQ_1: 10
.= (
- (
Re (seq
. n))) by
Def5
.= (
Re (
- (seq
. n))) by
COMPLEX1: 17
.= (
Re ((
- seq)
. n)) by
VALUED_1: 8
.= ((
Re (
- seq))
. n) by
Def5;
end;
hence (
- (
Re seq))
= (
Re (
- seq));
now
let n be
Element of
NAT ;
thus ((
- (
Im seq))
. n)
= (
- ((
Im seq)
. n)) by
SEQ_1: 10
.= (
- (
Im (seq
. n))) by
Def6
.= (
Im (
- (seq
. n))) by
COMPLEX1: 17
.= (
Im ((
- seq)
. n)) by
VALUED_1: 8
.= ((
Im (
- seq))
. n) by
Def6;
end;
hence thesis;
end;
theorem ::
COMSEQ_3:17
Th17: (r
* (
Re z))
= (
Re (r
* z)) & (r
* (
Im z))
= (
Im (r
* z))
proof
reconsider r9 = r as
Element of
COMPLEX by
XCMPLX_0:def 2;
r
= (r
+ (
0
*
<i> ));
then
A1: (
Re r)
= r & (
Im r)
=
0 by
COMPLEX1: 12;
(r
* z)
= ((((
Re r9)
* (
Re z))
- ((
Im r9)
* (
Im z)))
+ ((((
Re r9)
* (
Im z))
+ ((
Re z)
* (
Im r9)))
*
<i> )) by
COMPLEX1: 82
.= ((r
* (
Re z))
+ ((r
* (
Im z))
*
<i> )) by
A1;
hence thesis by
COMPLEX1: 12;
end;
theorem ::
COMSEQ_3:18
Th18: ((
Re seq1)
- (
Re seq2))
= (
Re (seq1
- seq2)) & ((
Im seq1)
- (
Im seq2))
= (
Im (seq1
- seq2))
proof
now
let n be
Element of
NAT ;
thus (((
Re seq1)
- (
Re seq2))
. n)
= (((
Re seq1)
. n)
+ ((
- (
Re seq2))
. n)) by
SEQ_1: 7
.= (((
Re seq1)
. n)
+ ((
Re (
- seq2))
. n)) by
Th16
.= (((
Re seq1)
+ (
Re (
- seq2)))
. n) by
SEQ_1: 7
.= ((
Re (seq1
- seq2))
. n) by
Th15;
end;
hence ((
Re seq1)
- (
Re seq2))
= (
Re (seq1
- seq2));
now
let n be
Element of
NAT ;
thus (((
Im seq1)
- (
Im seq2))
. n)
= (((
Im seq1)
. n)
+ ((
- (
Im seq2))
. n)) by
SEQ_1: 7
.= (((
Im seq1)
. n)
+ ((
Im (
- seq2))
. n)) by
Th16
.= (((
Im seq1)
+ (
Im (
- seq2)))
. n) by
SEQ_1: 7
.= ((
Im (seq1
- seq2))
. n) by
Th15;
end;
hence thesis;
end;
theorem ::
COMSEQ_3:19
(r
(#) (
Re seq))
= (
Re (r
(#) seq)) & (r
(#) (
Im seq))
= (
Im (r
(#) seq))
proof
now
let n be
Element of
NAT ;
thus ((r
(#) (
Re seq))
. n)
= (r
* ((
Re seq)
. n)) by
SEQ_1: 9
.= (r
* (
Re (seq
. n))) by
Def5
.= (
Re (r
* (seq
. n))) by
Th17
.= (
Re ((r
(#) seq)
. n)) by
VALUED_1: 6
.= ((
Re (r
(#) seq))
. n) by
Def5;
end;
hence (r
(#) (
Re seq))
= (
Re (r
(#) seq));
now
let n be
Element of
NAT ;
thus ((r
(#) (
Im seq))
. n)
= (r
* ((
Im seq)
. n)) by
SEQ_1: 9
.= (r
* (
Im (seq
. n))) by
Def6
.= (
Im (r
* (seq
. n))) by
Th17
.= (
Im ((r
(#) seq)
. n)) by
VALUED_1: 6
.= ((
Im (r
(#) seq))
. n) by
Def6;
end;
hence thesis;
end;
theorem ::
COMSEQ_3:20
(
Re (z
(#) seq))
= (((
Re z)
(#) (
Re seq))
- ((
Im z)
(#) (
Im seq))) & (
Im (z
(#) seq))
= (((
Re z)
(#) (
Im seq))
+ ((
Im z)
(#) (
Re seq)))
proof
now
let n be
Element of
NAT ;
thus ((
Re (z
(#) seq))
. n)
= (
Re ((z
(#) seq)
. n)) by
Def5
.= (
Re (z
* (seq
. n))) by
VALUED_1: 6
.= (
Re ((((
Re z)
* (
Re (seq
. n)))
- ((
Im z)
* (
Im (seq
. n))))
+ ((((
Re z)
* (
Im (seq
. n)))
+ ((
Re (seq
. n))
* (
Im z)))
*
<i> ))) by
COMPLEX1: 82
.= (((
Re z)
* (
Re (seq
. n)))
- ((
Im z)
* (
Im (seq
. n)))) by
COMPLEX1: 12
.= (((
Re z)
* ((
Re seq)
. n))
- ((
Im z)
* (
Im (seq
. n)))) by
Def5
.= (((
Re z)
* ((
Re seq)
. n))
- ((
Im z)
* ((
Im seq)
. n))) by
Def6
.= ((((
Re z)
(#) (
Re seq))
. n)
- ((
Im z)
* ((
Im seq)
. n))) by
SEQ_1: 9
.= ((((
Re z)
(#) (
Re seq))
. n)
- (((
Im z)
(#) (
Im seq))
. n)) by
SEQ_1: 9
.= ((((
Re z)
(#) (
Re seq))
. n)
+ (
- (((
Im z)
(#) (
Im seq))
. n)))
.= ((((
Re z)
(#) (
Re seq))
. n)
+ ((
- ((
Im z)
(#) (
Im seq)))
. n)) by
SEQ_1: 10
.= ((((
Re z)
(#) (
Re seq))
- ((
Im z)
(#) (
Im seq)))
. n) by
SEQ_1: 7;
end;
hence (
Re (z
(#) seq))
= (((
Re z)
(#) (
Re seq))
- ((
Im z)
(#) (
Im seq)));
now
let n be
Element of
NAT ;
thus ((
Im (z
(#) seq))
. n)
= (
Im ((z
(#) seq)
. n)) by
Def6
.= (
Im (z
* (seq
. n))) by
VALUED_1: 6
.= (
Im ((((
Re z)
* (
Re (seq
. n)))
- ((
Im z)
* (
Im (seq
. n))))
+ ((((
Re z)
* (
Im (seq
. n)))
+ ((
Re (seq
. n))
* (
Im z)))
*
<i> ))) by
COMPLEX1: 82
.= (((
Re z)
* (
Im (seq
. n)))
+ ((
Re (seq
. n))
* (
Im z))) by
COMPLEX1: 12
.= (((
Re z)
* (
Im (seq
. n)))
+ ((
Im z)
* ((
Re seq)
. n))) by
Def5
.= (((
Re z)
* ((
Im seq)
. n))
+ ((
Im z)
* ((
Re seq)
. n))) by
Def6
.= ((((
Re z)
(#) (
Im seq))
. n)
+ ((
Im z)
* ((
Re seq)
. n))) by
SEQ_1: 9
.= ((((
Re z)
(#) (
Im seq))
. n)
+ (((
Im z)
(#) (
Re seq))
. n)) by
SEQ_1: 9
.= ((((
Re z)
(#) (
Im seq))
+ ((
Im z)
(#) (
Re seq)))
. n) by
SEQ_1: 7;
end;
hence thesis;
end;
theorem ::
COMSEQ_3:21
(
Re (seq1
(#) seq2))
= (((
Re seq1)
(#) (
Re seq2))
- ((
Im seq1)
(#) (
Im seq2))) & (
Im (seq1
(#) seq2))
= (((
Re seq1)
(#) (
Im seq2))
+ ((
Im seq1)
(#) (
Re seq2)))
proof
now
let n be
Element of
NAT ;
thus ((
Re (seq1
(#) seq2))
. n)
= (
Re ((seq1
(#) seq2)
. n)) by
Def5
.= (
Re ((seq1
. n)
* (seq2
. n))) by
VALUED_1: 5
.= (
Re ((((
Re (seq1
. n))
* (
Re (seq2
. n)))
- ((
Im (seq1
. n))
* (
Im (seq2
. n))))
+ ((((
Re (seq1
. n))
* (
Im (seq2
. n)))
+ ((
Re (seq2
. n))
* (
Im (seq1
. n))))
*
<i> ))) by
COMPLEX1: 82
.= (((
Re (seq1
. n))
* (
Re (seq2
. n)))
- ((
Im (seq1
. n))
* (
Im (seq2
. n)))) by
COMPLEX1: 12
.= ((((
Re seq1)
. n)
* (
Re (seq2
. n)))
- ((
Im (seq1
. n))
* (
Im (seq2
. n)))) by
Def5
.= ((((
Re seq1)
. n)
* ((
Re seq2)
. n))
- ((
Im (seq1
. n))
* (
Im (seq2
. n)))) by
Def5
.= ((((
Re seq1)
. n)
* ((
Re seq2)
. n))
- ((
Im (seq1
. n))
* ((
Im seq2)
. n))) by
Def6
.= ((((
Re seq1)
. n)
* ((
Re seq2)
. n))
- (((
Im seq1)
. n)
* ((
Im seq2)
. n))) by
Def6
.= ((((
Re seq1)
(#) (
Re seq2))
. n)
- (((
Im seq1)
. n)
* ((
Im seq2)
. n))) by
SEQ_1: 8
.= ((((
Re seq1)
(#) (
Re seq2))
. n)
- (((
Im seq1)
(#) (
Im seq2))
. n)) by
SEQ_1: 8
.= ((((
Re seq1)
(#) (
Re seq2))
. n)
+ (
- (((
Im seq1)
(#) (
Im seq2))
. n)))
.= ((((
Re seq1)
(#) (
Re seq2))
. n)
+ ((
- ((
Im seq1)
(#) (
Im seq2)))
. n)) by
SEQ_1: 10
.= ((((
Re seq1)
(#) (
Re seq2))
- ((
Im seq1)
(#) (
Im seq2)))
. n) by
SEQ_1: 7;
end;
hence (
Re (seq1
(#) seq2))
= (((
Re seq1)
(#) (
Re seq2))
- ((
Im seq1)
(#) (
Im seq2)));
now
let n be
Element of
NAT ;
thus ((
Im (seq1
(#) seq2))
. n)
= (
Im ((seq1
(#) seq2)
. n)) by
Def6
.= (
Im ((seq1
. n)
* (seq2
. n))) by
VALUED_1: 5
.= (
Im ((((
Re (seq1
. n))
* (
Re (seq2
. n)))
- ((
Im (seq1
. n))
* (
Im (seq2
. n))))
+ ((((
Re (seq1
. n))
* (
Im (seq2
. n)))
+ ((
Re (seq2
. n))
* (
Im (seq1
. n))))
*
<i> ))) by
COMPLEX1: 82
.= (((
Re (seq1
. n))
* (
Im (seq2
. n)))
+ ((
Re (seq2
. n))
* (
Im (seq1
. n)))) by
COMPLEX1: 12
.= (((
Re (seq1
. n))
* (
Im (seq2
. n)))
+ ((
Im (seq1
. n))
* ((
Re seq2)
. n))) by
Def5
.= ((((
Re seq1)
. n)
* (
Im (seq2
. n)))
+ ((
Im (seq1
. n))
* ((
Re seq2)
. n))) by
Def5
.= ((((
Re seq1)
. n)
* ((
Im seq2)
. n))
+ ((
Im (seq1
. n))
* ((
Re seq2)
. n))) by
Def6
.= ((((
Re seq1)
. n)
* ((
Im seq2)
. n))
+ (((
Im seq1)
. n)
* ((
Re seq2)
. n))) by
Def6
.= ((((
Re seq1)
(#) (
Im seq2))
. n)
+ (((
Im seq1)
. n)
* ((
Re seq2)
. n))) by
SEQ_1: 8
.= ((((
Re seq1)
(#) (
Im seq2))
. n)
+ (((
Im seq1)
(#) (
Re seq2))
. n)) by
SEQ_1: 8
.= ((((
Re seq1)
(#) (
Im seq2))
+ ((
Im seq1)
(#) (
Re seq2)))
. n) by
SEQ_1: 7;
end;
hence thesis;
end;
definition
let Nseq be
increasing
sequence of
NAT , seq be
Complex_Sequence;
:: original:
*
redefine
func seq
* Nseq ->
Complex_Sequence ;
coherence
proof
(
dom (seq
* Nseq))
=
NAT by
FUNCT_2:def 1;
hence thesis;
end;
end
theorem ::
COMSEQ_3:22
Th22: (
Re (seq
* Nseq))
= ((
Re seq)
* Nseq) & (
Im (seq
* Nseq))
= ((
Im seq)
* Nseq)
proof
now
let n be
Element of
NAT ;
thus ((
Re (seq
* Nseq))
. n)
= (
Re ((seq
* Nseq)
. n)) by
Def5
.= (
Re (seq
. (Nseq
. n))) by
FUNCT_2: 15
.= ((
Re seq)
. (Nseq
. n)) by
Def5
.= (((
Re seq)
* Nseq)
. n) by
FUNCT_2: 15;
end;
hence (
Re (seq
* Nseq))
= ((
Re seq)
* Nseq);
now
let n be
Element of
NAT ;
thus ((
Im (seq
* Nseq))
. n)
= (
Im ((seq
* Nseq)
. n)) by
Def6
.= (
Im (seq
. (Nseq
. n))) by
FUNCT_2: 15
.= ((
Im seq)
. (Nseq
. n)) by
Def6
.= (((
Im seq)
* Nseq)
. n) by
FUNCT_2: 15;
end;
hence thesis;
end;
theorem ::
COMSEQ_3:23
Th23: ((
Re seq)
^\ k)
= (
Re (seq
^\ k)) & ((
Im seq)
^\ k)
= (
Im (seq
^\ k))
proof
now
let n be
Element of
NAT ;
thus (((
Re seq)
^\ k)
. n)
= ((
Re seq)
. (n
+ k)) by
NAT_1:def 3
.= (
Re (seq
. (n
+ k))) by
Def5
.= (
Re ((seq
^\ k)
. n)) by
NAT_1:def 3
.= ((
Re (seq
^\ k))
. n) by
Def5;
thus (((
Im seq)
^\ k)
. n)
= ((
Im seq)
. (n
+ k)) by
NAT_1:def 3
.= (
Im (seq
. (n
+ k))) by
Def6
.= (
Im ((seq
^\ k)
. n)) by
NAT_1:def 3
.= ((
Im (seq
^\ k))
. n) by
Def6;
end;
hence thesis;
end;
definition
let s be
Complex_Sequence;
:: original:
Partial_Sums
redefine
func
Partial_Sums s ->
Complex_Sequence ;
coherence
proof
A1: (
dom (
Partial_Sums s))
=
NAT by
PARTFUN1:def 2;
(
rng (
Partial_Sums s))
c=
COMPLEX by
VALUED_0:def 1;
then (
Partial_Sums s) is
PartFunc of
NAT ,
COMPLEX by
A1,
RELSET_1: 4;
hence (
Partial_Sums s) is
Complex_Sequence;
end;
end
definition
let seq be
Complex_Sequence;
::
COMSEQ_3:def7
func
Sum seq ->
Element of
COMPLEX equals (
lim (
Partial_Sums seq));
coherence by
XCMPLX_0:def 2;
end
theorem ::
COMSEQ_3:24
Th24: (for n holds (seq
. n)
=
0c ) implies for m holds ((
Partial_Sums seq)
. m)
=
0c
proof
defpred
P[
Nat] means (seq
. $1)
= ((
Partial_Sums seq)
. $1);
assume
A1: for n holds (seq
. n)
=
0c ;
A2: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A3:
P[k];
thus (seq
. (k
+ 1))
= (
0c
+ (seq
. (k
+ 1)))
.= (((
Partial_Sums seq)
. k)
+ (seq
. (k
+ 1))) by
A1,
A3
.= ((
Partial_Sums seq)
. (k
+ 1)) by
SERIES_1:def 1;
end;
let m;
A4:
P[
0 ] by
SERIES_1:def 1;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A4,
A2);
then seq
= (
Partial_Sums seq);
hence thesis by
A1;
end;
theorem ::
COMSEQ_3:25
Th25: (for n holds (seq
. n)
=
0c ) implies for m holds ((
Partial_Sums
|.seq.|)
. m)
=
0
proof
defpred
P[
Nat] means (
|.seq.|
. $1)
= ((
Partial_Sums
|.seq.|)
. $1);
assume
A1: for n holds (seq
. n)
=
0c ;
A2: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A3:
P[k];
thus (
|.seq.|
. (k
+ 1))
= (
|.
0c .|
+ (
|.seq.|
. (k
+ 1))) by
COMPLEX1: 44
.= (
|.(seq
. k).|
+ (
|.seq.|
. (k
+ 1))) by
A1
.= (((
Partial_Sums
|.seq.|)
. k)
+ (
|.seq.|
. (k
+ 1))) by
A3,
VALUED_1: 18
.= ((
Partial_Sums
|.seq.|)
. (k
+ 1)) by
SERIES_1:def 1;
end;
let m;
A4:
P[
0 ] by
SERIES_1:def 1;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A4,
A2);
hence ((
Partial_Sums
|.seq.|)
. m)
= (
|.seq.|
. m)
.=
|.(seq
. m).| by
VALUED_1: 18
.=
0 by
A1,
COMPLEX1: 44;
end;
theorem ::
COMSEQ_3:26
Th26: (
Partial_Sums (
Re seq))
= (
Re (
Partial_Sums seq)) & (
Partial_Sums (
Im seq))
= (
Im (
Partial_Sums seq))
proof
defpred
P[
Nat] means ((
Partial_Sums (
Re seq))
. $1)
= ((
Re (
Partial_Sums seq))
. $1);
defpred
R[
Nat] means ((
Partial_Sums (
Im seq))
. $1)
= ((
Im (
Partial_Sums seq))
. $1);
A1: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
P[k];
then ((
Partial_Sums (
Re seq))
. (k
+ 1))
= (((
Re (
Partial_Sums seq))
. k)
+ ((
Re seq)
. (k
+ 1))) by
SERIES_1:def 1
.= (((
Re (
Partial_Sums seq))
. k)
+ (
Re (seq
. (k
+ 1)))) by
Def5
.= ((
Re ((
Partial_Sums seq)
. k))
+ (
Re (seq
. (k
+ 1)))) by
Def5
.= (
Re (((
Partial_Sums seq)
. k)
+ (seq
. (k
+ 1)))) by
COMPLEX1: 8
.= (
Re ((
Partial_Sums seq)
. (k
+ 1))) by
SERIES_1:def 1
.= ((
Re (
Partial_Sums seq))
. (k
+ 1)) by
Def5;
hence thesis;
end;
A2: for k be
Nat st
R[k] holds
R[(k
+ 1)]
proof
let k be
Nat;
assume
R[k];
then ((
Partial_Sums (
Im seq))
. (k
+ 1))
= (((
Im (
Partial_Sums seq))
. k)
+ ((
Im seq)
. (k
+ 1))) by
SERIES_1:def 1
.= (((
Im (
Partial_Sums seq))
. k)
+ (
Im (seq
. (k
+ 1)))) by
Def6
.= ((
Im ((
Partial_Sums seq)
. k))
+ (
Im (seq
. (k
+ 1)))) by
Def6
.= (
Im (((
Partial_Sums seq)
. k)
+ (seq
. (k
+ 1)))) by
COMPLEX1: 8
.= (
Im ((
Partial_Sums seq)
. (k
+ 1))) by
SERIES_1:def 1
.= ((
Im (
Partial_Sums seq))
. (k
+ 1)) by
Def6;
hence thesis;
end;
((
Partial_Sums (
Im seq))
.
0 )
= ((
Im seq)
.
0 ) by
SERIES_1:def 1
.= (
Im (seq
.
0 )) by
Def6
.= (
Im ((
Partial_Sums seq)
.
0 )) by
SERIES_1:def 1
.= ((
Im (
Partial_Sums seq))
.
0 ) by
Def6;
then
A3:
R[
0 ];
A4: for n be
Nat holds
R[n] from
NAT_1:sch 2(
A3,
A2);
((
Partial_Sums (
Re seq))
.
0 )
= ((
Re seq)
.
0 ) by
SERIES_1:def 1
.= (
Re (seq
.
0 )) by
Def5
.= (
Re ((
Partial_Sums seq)
.
0 )) by
SERIES_1:def 1
.= ((
Re (
Partial_Sums seq))
.
0 ) by
Def5;
then
A5:
P[
0 ];
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A5,
A1);
hence thesis by
A4;
end;
theorem ::
COMSEQ_3:27
Th27: ((
Partial_Sums seq1)
+ (
Partial_Sums seq2))
= (
Partial_Sums (seq1
+ seq2)) by
SERIES_1: 5;
theorem ::
COMSEQ_3:28
Th28: ((
Partial_Sums seq1)
- (
Partial_Sums seq2))
= (
Partial_Sums (seq1
- seq2))
proof
A1: (
Im ((
Partial_Sums seq1)
- (
Partial_Sums seq2)))
= ((
Im (
Partial_Sums seq1))
- (
Im (
Partial_Sums seq2))) by
Th18
.= ((
Partial_Sums (
Im seq1))
- (
Im (
Partial_Sums seq2))) by
Th26
.= ((
Partial_Sums (
Im seq1))
- (
Partial_Sums (
Im seq2))) by
Th26
.= (
Partial_Sums ((
Im seq1)
- (
Im seq2))) by
SERIES_1: 6
.= (
Partial_Sums (
Im (seq1
- seq2))) by
Th18
.= (
Im (
Partial_Sums (seq1
- seq2))) by
Th26;
(
Re ((
Partial_Sums seq1)
- (
Partial_Sums seq2)))
= ((
Re (
Partial_Sums seq1))
- (
Re (
Partial_Sums seq2))) by
Th18
.= ((
Partial_Sums (
Re seq1))
- (
Re (
Partial_Sums seq2))) by
Th26
.= ((
Partial_Sums (
Re seq1))
- (
Partial_Sums (
Re seq2))) by
Th26
.= (
Partial_Sums ((
Re seq1)
- (
Re seq2))) by
SERIES_1: 6
.= (
Partial_Sums (
Re (seq1
- seq2))) by
Th18
.= (
Re (
Partial_Sums (seq1
- seq2))) by
Th26;
hence thesis by
A1,
Th14;
end;
theorem ::
COMSEQ_3:29
Th29: for z be
Complex holds (
Partial_Sums (z
(#) seq))
= (z
(#) (
Partial_Sums seq))
proof
let z be
Complex;
defpred
P[
Nat] means ((
Partial_Sums (z
(#) seq))
. $1)
= ((z
(#) (
Partial_Sums seq))
. $1);
A1:
now
let n be
Nat;
assume
A2:
P[n];
((
Partial_Sums (z
(#) seq))
. (n
+ 1))
= (((
Partial_Sums (z
(#) seq))
. n)
+ ((z
(#) seq)
. (n
+ 1))) by
SERIES_1:def 1
.= ((z
* ((
Partial_Sums seq)
. n))
+ ((z
(#) seq)
. (n
+ 1))) by
A2,
VALUED_1: 6
.= ((z
* ((
Partial_Sums seq)
. n))
+ (z
* (seq
. (n
+ 1)))) by
VALUED_1: 6
.= (z
* (((
Partial_Sums seq)
. n)
+ (seq
. (n
+ 1))))
.= (z
* ((
Partial_Sums seq)
. (n
+ 1))) by
SERIES_1:def 1
.= ((z
(#) (
Partial_Sums seq))
. (n
+ 1)) by
VALUED_1: 6;
hence
P[(n
+ 1)];
end;
((
Partial_Sums (z
(#) seq))
.
0 )
= ((z
(#) seq)
.
0 ) by
SERIES_1:def 1
.= (z
* (seq
.
0 )) by
VALUED_1: 6
.= (z
* ((
Partial_Sums seq)
.
0 )) by
SERIES_1:def 1
.= ((z
(#) (
Partial_Sums seq))
.
0 ) by
VALUED_1: 6;
then
A3:
P[
0 ];
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A3,
A1);
hence thesis;
end;
theorem ::
COMSEQ_3:30
|.((
Partial_Sums seq)
. k).|
<= ((
Partial_Sums
|.seq.|)
. k)
proof
defpred
P[
Nat] means
|.((
Partial_Sums seq)
. $1).|
<= ((
Partial_Sums
|.seq.|)
. $1);
A1:
now
let k;
assume
P[k];
then
A2: (
|.((
Partial_Sums seq)
. k).|
+
|.(seq
. (k
+ 1)).|)
<= (((
Partial_Sums
|.seq.|)
. k)
+
|.(seq
. (k
+ 1)).|) by
XREAL_1: 6;
|.((
Partial_Sums seq)
. (k
+ 1)).|
=
|.(((
Partial_Sums seq)
. k)
+ (seq
. (k
+ 1))).| &
|.(((
Partial_Sums seq)
. k)
+ (seq
. (k
+ 1))).|
<= (
|.((
Partial_Sums seq)
. k).|
+
|.(seq
. (k
+ 1)).|) by
COMPLEX1: 56,
SERIES_1:def 1;
then
|.((
Partial_Sums seq)
. (k
+ 1)).|
<= (((
Partial_Sums
|.seq.|)
. k)
+
|.(seq
. (k
+ 1)).|) by
A2,
XXREAL_0: 2;
then
|.((
Partial_Sums seq)
. (k
+ 1)).|
<= (((
Partial_Sums
|.seq.|)
. k)
+ (
|.seq.|
. (k
+ 1))) by
VALUED_1: 18;
hence
P[(k
+ 1)] by
SERIES_1:def 1;
end;
((
Partial_Sums
|.seq.|)
.
0 )
= (
|.seq.|
.
0 ) by
SERIES_1:def 1
.=
|.(seq
.
0 ).| by
VALUED_1: 18;
then
A3:
P[
0 ] by
SERIES_1:def 1;
for k be
Nat holds
P[k] from
NAT_1:sch 2(
A3,
A1);
hence thesis;
end;
theorem ::
COMSEQ_3:31
Th31:
|.(((
Partial_Sums seq)
. m)
- ((
Partial_Sums seq)
. n)).|
<=
|.(((
Partial_Sums
|.seq.|)
. m)
- ((
Partial_Sums
|.seq.|)
. n)).|
proof
A1: for n,k be
Nat holds
0
<= (((
Partial_Sums
|.seq.|)
. (n
+ k))
- ((
Partial_Sums
|.seq.|)
. n))
proof
let n;
defpred
P[
Nat] means
0
<= (((
Partial_Sums
|.seq.|)
. (n
+ $1))
- ((
Partial_Sums
|.seq.|)
. n));
A2:
now
let k;
A3: (((
Partial_Sums
|.seq.|)
. (n
+ (k
+ 1)))
- ((
Partial_Sums
|.seq.|)
. n))
= ((((
Partial_Sums
|.seq.|)
. (n
+ k))
+ (
|.seq.|
. ((n
+ k)
+ 1)))
- ((
Partial_Sums
|.seq.|)
. n)) by
SERIES_1:def 1
.= ((((
Partial_Sums
|.seq.|)
. (n
+ k))
+
|.(seq
. ((n
+ k)
+ 1)).|)
- ((
Partial_Sums
|.seq.|)
. n)) by
VALUED_1: 18
.= ((((
Partial_Sums
|.seq.|)
. (n
+ k))
- ((
Partial_Sums
|.seq.|)
. n))
+
|.(seq
. ((n
+ k)
+ 1)).|);
A4:
0
<=
|.(seq
. ((n
+ k)
+ 1)).| by
COMPLEX1: 46;
assume
P[k];
hence
P[(k
+ 1)] by
A3,
A4;
end;
A5:
P[
0 ];
thus for k be
Nat holds
P[k] from
NAT_1:sch 2(
A5,
A2);
end;
A6: for n,k be
Nat holds
|.(((
Partial_Sums
|.seq.|)
. (n
+ k))
- ((
Partial_Sums
|.seq.|)
. n)).|
= (((
Partial_Sums
|.seq.|)
. (n
+ k))
- ((
Partial_Sums
|.seq.|)
. n)) by
A1,
ABSVALUE:def 1;
A7: for n, m st n
<= m holds
|.(((
Partial_Sums seq)
. m)
- ((
Partial_Sums seq)
. n)).|
<=
|.(((
Partial_Sums
|.seq.|)
. m)
- ((
Partial_Sums
|.seq.|)
. n)).|
proof
let n,m be
Nat;
assume n
<= m;
then
consider k be
Nat such that
A8: m
= (n
+ k) by
NAT_1: 10;
A9: for k be
Nat holds
|.(((
Partial_Sums seq)
. (n
+ k))
- ((
Partial_Sums seq)
. n)).|
<=
|.(((
Partial_Sums
|.seq.|)
. (n
+ k))
- ((
Partial_Sums
|.seq.|)
. n)).|
proof
defpred
P[
Nat] means
|.(((
Partial_Sums seq)
. (n
+ $1))
- ((
Partial_Sums seq)
. n)).|
<=
|.(((
Partial_Sums
|.seq.|)
. (n
+ $1))
- ((
Partial_Sums
|.seq.|)
. n)).|;
A10:
now
let k be
Nat;
assume
P[k];
then
A11:
|.((((
Partial_Sums seq)
. (n
+ k))
- ((
Partial_Sums seq)
. n))
+ (seq
. ((n
+ k)
+ 1))).|
<= (
|.(((
Partial_Sums seq)
. (n
+ k))
- ((
Partial_Sums seq)
. n)).|
+
|.(seq
. ((n
+ k)
+ 1)).|) & (
|.(((
Partial_Sums seq)
. (n
+ k))
- ((
Partial_Sums seq)
. n)).|
+
|.(seq
. ((n
+ k)
+ 1)).|)
<= (
|.(((
Partial_Sums
|.seq.|)
. (n
+ k))
- ((
Partial_Sums
|.seq.|)
. n)).|
+
|.(seq
. ((n
+ k)
+ 1)).|) by
COMPLEX1: 56,
XREAL_1: 6;
A12:
|.(((
Partial_Sums seq)
. (n
+ (k
+ 1)))
- ((
Partial_Sums seq)
. n)).|
=
|.((((
Partial_Sums seq)
. (n
+ k))
+ (seq
. ((n
+ k)
+ 1)))
- ((
Partial_Sums seq)
. n)).| by
SERIES_1:def 1
.=
|.((((
Partial_Sums seq)
. (n
+ k))
- ((
Partial_Sums seq)
. n))
+ (seq
. ((n
+ k)
+ 1))).|;
(
|.(((
Partial_Sums
|.seq.|)
. (n
+ k))
- ((
Partial_Sums
|.seq.|)
. n)).|
+
|.(seq
. ((n
+ k)
+ 1)).|)
= ((((
Partial_Sums
|.seq.|)
. (n
+ k))
- ((
Partial_Sums
|.seq.|)
. n))
+
|.(seq
. ((n
+ k)
+ 1)).|) by
A6
.= ((((
Partial_Sums
|.seq.|)
. (n
+ k))
+
|.(seq
. ((n
+ k)
+ 1)).|)
- ((
Partial_Sums
|.seq.|)
. n))
.= ((((
Partial_Sums
|.seq.|)
. (n
+ k))
+ (
|.seq.|
. ((n
+ k)
+ 1)))
- ((
Partial_Sums
|.seq.|)
. n)) by
VALUED_1: 18
.= (((
Partial_Sums
|.seq.|)
. (n
+ (k
+ 1)))
- ((
Partial_Sums
|.seq.|)
. n)) by
SERIES_1:def 1
.=
|.(((
Partial_Sums
|.seq.|)
. (n
+ (k
+ 1)))
- ((
Partial_Sums
|.seq.|)
. n)).| by
A6;
hence
P[(k
+ 1)] by
A12,
A11,
XXREAL_0: 2;
end;
A13:
P[
0 ];
thus for k be
Nat holds
P[k] from
NAT_1:sch 2(
A13,
A10);
end;
thus thesis by
A9,
A8;
end;
for n, m holds
|.(((
Partial_Sums seq)
. m)
- ((
Partial_Sums seq)
. n)).|
<=
|.(((
Partial_Sums
|.seq.|)
. m)
- ((
Partial_Sums
|.seq.|)
. n)).|
proof
let n, m;
m
<= n implies
|.(((
Partial_Sums seq)
. m)
- ((
Partial_Sums seq)
. n)).|
<=
|.(((
Partial_Sums
|.seq.|)
. m)
- ((
Partial_Sums
|.seq.|)
. n)).|
proof
assume m
<= n;
then
A14:
|.(((
Partial_Sums seq)
. n)
- ((
Partial_Sums seq)
. m)).|
<=
|.(((
Partial_Sums
|.seq.|)
. n)
- ((
Partial_Sums
|.seq.|)
. m)).| by
A7;
|.(((
Partial_Sums
|.seq.|)
. n)
- ((
Partial_Sums
|.seq.|)
. m)).|
=
|.(
- (((
Partial_Sums
|.seq.|)
. n)
- ((
Partial_Sums
|.seq.|)
. m))).| by
COMPLEX1: 52
.=
|.(((
Partial_Sums
|.seq.|)
. m)
- ((
Partial_Sums
|.seq.|)
. n)).|;
hence thesis by
A14,
COMPLEX1: 60;
end;
hence thesis by
A7;
end;
hence thesis;
end;
theorem ::
COMSEQ_3:32
Th32: ((
Partial_Sums (
Re seq))
^\ k)
= (
Re ((
Partial_Sums seq)
^\ k)) & ((
Partial_Sums (
Im seq))
^\ k)
= (
Im ((
Partial_Sums seq)
^\ k))
proof
now
let n be
Element of
NAT ;
thus (((
Partial_Sums (
Re seq))
^\ k)
. n)
= ((
Partial_Sums (
Re seq))
. (n
+ k)) by
NAT_1:def 3
.= ((
Re (
Partial_Sums seq))
. (n
+ k)) by
Th26
.= (
Re ((
Partial_Sums seq)
. (n
+ k))) by
Def5
.= (
Re (((
Partial_Sums seq)
^\ k)
. n)) by
NAT_1:def 3
.= ((
Re ((
Partial_Sums seq)
^\ k))
. n) by
Def5;
thus (((
Partial_Sums (
Im seq))
^\ k)
. n)
= ((
Partial_Sums (
Im seq))
. (n
+ k)) by
NAT_1:def 3
.= ((
Im (
Partial_Sums seq))
. (n
+ k)) by
Th26
.= (
Im ((
Partial_Sums seq)
. (n
+ k))) by
Def6
.= (
Im (((
Partial_Sums seq)
^\ k)
. n)) by
NAT_1:def 3
.= ((
Im ((
Partial_Sums seq)
^\ k))
. n) by
Def6;
end;
hence thesis;
end;
theorem ::
COMSEQ_3:33
(for n holds (seq1
. n)
= (seq
.
0 )) implies (
Partial_Sums (seq
^\ 1))
= (((
Partial_Sums seq)
^\ 1)
- seq1)
proof
assume
A1: for n holds (seq1
. n)
= (seq
.
0 );
A2:
now
let n;
thus ((
Re seq1)
. n)
= (
Re (seq1
. n)) by
Def5
.= (
Re (seq
.
0 )) by
A1
.= ((
Re seq)
.
0 ) by
Def5;
thus ((
Im seq1)
. n)
= (
Im (seq1
. n)) by
Def6
.= (
Im (seq
.
0 )) by
A1
.= ((
Im seq)
.
0 ) by
Def6;
end;
A3: (
Im (
Partial_Sums (seq
^\ 1)))
= (
Partial_Sums (
Im (seq
^\ 1))) by
Th26
.= (
Partial_Sums ((
Im seq)
^\ 1)) by
Th23
.= (((
Partial_Sums (
Im seq))
^\ 1)
- (
Im seq1)) by
A2,
SERIES_1: 11
.= ((
Im ((
Partial_Sums seq)
^\ 1))
- (
Im seq1)) by
Th32
.= (
Im (((
Partial_Sums seq)
^\ 1)
- seq1)) by
Th18;
(
Re (
Partial_Sums (seq
^\ 1)))
= (
Partial_Sums (
Re (seq
^\ 1))) by
Th26
.= (
Partial_Sums ((
Re seq)
^\ 1)) by
Th23
.= (((
Partial_Sums (
Re seq))
^\ 1)
- (
Re seq1)) by
A2,
SERIES_1: 11
.= ((
Re ((
Partial_Sums seq)
^\ 1))
- (
Re seq1)) by
Th32
.= (
Re (((
Partial_Sums seq)
^\ 1)
- seq1)) by
Th18;
hence thesis by
A3,
Th14;
end;
theorem ::
COMSEQ_3:34
Th34: (
Partial_Sums
|.seq.|) is
non-decreasing
proof
for n holds
0
<= (
|.seq.|
. n) by
Lm3;
hence thesis by
SERIES_1: 16;
end;
registration
let seq be
Complex_Sequence;
cluster (
Partial_Sums
|.seq.|) ->
non-decreasing;
coherence by
Th34;
end
theorem ::
COMSEQ_3:35
(for n st n
<= m holds (seq1
. n)
= (seq2
. n)) implies ((
Partial_Sums seq1)
. m)
= ((
Partial_Sums seq2)
. m)
proof
defpred
P[
Nat] means $1
<= m implies ((
Partial_Sums seq1)
. $1)
= ((
Partial_Sums seq2)
. $1);
assume
A1: for n st n
<= m holds (seq1
. n)
= (seq2
. n);
A2: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A3:
P[k];
assume
A4: (k
+ 1)
<= m;
k
< (k
+ 1) by
XREAL_1: 29;
hence ((
Partial_Sums seq1)
. (k
+ 1))
= (((
Partial_Sums seq2)
. k)
+ (seq1
. (k
+ 1))) by
A3,
A4,
SERIES_1:def 1,
XXREAL_0: 2
.= (((
Partial_Sums seq2)
. k)
+ (seq2
. (k
+ 1))) by
A1,
A4
.= ((
Partial_Sums seq2)
. (k
+ 1)) by
SERIES_1:def 1;
end;
A5:
P[
0 ]
proof
assume
0
<= m;
thus ((
Partial_Sums seq1)
.
0 )
= (seq1
.
0 ) by
SERIES_1:def 1
.= (seq2
.
0 ) by
A1
.= ((
Partial_Sums seq2)
.
0 ) by
SERIES_1:def 1;
end;
for k holds
P[k] from
NAT_1:sch 2(
A5,
A2);
hence thesis;
end;
theorem ::
COMSEQ_3:36
Th36:
1r
<> z implies for n holds ((
Partial_Sums (z
GeoSeq ))
. n)
= ((
1r
- (z
|^ (n
+ 1)))
/ (
1r
- z))
proof
now
let z;
defpred
P[
Nat] means ((
Partial_Sums (z
GeoSeq ))
. $1)
= ((
1r
- (z
|^ ($1
+ 1)))
/ (
1r
- z));
assume
1r
<> z;
then
A1: (
1r
- z)
<>
0c ;
A2: for n st
P[n] holds
P[(n
+ 1)]
proof
let n;
assume
P[n];
hence ((
Partial_Sums (z
GeoSeq ))
. (n
+ 1))
= (((
1r
- (z
|^ (n
+ 1)))
/ (
1r
- z))
+ ((z
|^ (n
+ 1))
*
1r )) by
COMPLEX1:def 4,
SERIES_1:def 1
.= (((
1r
- (z
|^ (n
+ 1)))
/ (
1r
- z))
+ ((z
|^ (n
+ 1))
* ((
1r
- z)
/ (
1r
- z)))) by
A1,
COMPLEX1:def 4,
XCMPLX_1: 60
.= (((
1r
- (z
|^ (n
+ 1)))
/ (
1r
- z))
+ (((z
|^ (n
+ 1))
* (
1r
- z))
/ (
1r
- z))) by
XCMPLX_1: 74
.= (((
1r
- (z
|^ (n
+ 1)))
+ ((z
|^ (n
+ 1))
- ((z
|^ (n
+ 1))
* z)))
/ (
1r
- z)) by
COMPLEX1:def 4,
XCMPLX_1: 62
.= ((
1r
- ((z
|^ (n
+ 1))
* z))
/ (
1r
- z))
.= ((
1r
- (z
|^ ((n
+ 1)
+ 1)))
/ (
1r
- z)) by
NEWTON: 6;
end;
((
Partial_Sums (z
GeoSeq ))
.
0 )
= ((z
GeoSeq )
.
0 ) by
SERIES_1:def 1
.=
1r by
Def1
.= ((
1r
- (1
* z))
/ (
1r
- z)) by
A1,
COMPLEX1:def 4,
XCMPLX_1: 60
.= ((
1r
- (z
|^ (
0
+ 1)))
/ (
1r
- z));
then
A3:
P[
0 ];
thus for n holds
P[n] from
NAT_1:sch 2(
A3,
A2);
end;
hence thesis;
end;
theorem ::
COMSEQ_3:37
Th37: z
<>
1r & (for n holds (seq
. (n
+ 1))
= (z
* (seq
. n))) implies for n holds ((
Partial_Sums seq)
. n)
= ((seq
.
0 )
* ((
1r
- (z
|^ (n
+ 1)))
/ (
1r
- z)))
proof
assume that
A1: z
<>
1r and
A2: for n holds (seq
. (n
+ 1))
= (z
* (seq
. n));
defpred
P[
Nat] means (seq
. $1)
= ((seq
.
0 )
* ((z
GeoSeq )
. $1));
A3:
now
let n be
Nat;
assume
P[n];
then (seq
. (n
+ 1))
= (z
* ((seq
.
0 )
* ((z
GeoSeq )
. n))) by
A2
.= ((seq
.
0 )
* (z
* ((z
GeoSeq )
. n)))
.= ((seq
.
0 )
* ((z
GeoSeq )
. (n
+ 1))) by
Def1;
hence
P[(n
+ 1)];
end;
let n;
(seq
.
0 )
= ((seq
.
0 )
*
1r ) by
COMPLEX1:def 4
.= ((seq
.
0 )
* ((z
GeoSeq )
.
0 )) by
Def1;
then
A4:
P[
0 ];
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A4,
A3);
then for n be
Element of
NAT holds
P[n];
then (
Partial_Sums seq)
= (
Partial_Sums ((seq
.
0 )
(#) (z
GeoSeq ))) by
VALUED_1: 7
.= ((seq
.
0 )
(#) (
Partial_Sums (z
GeoSeq ))) by
Th29;
hence ((
Partial_Sums seq)
. n)
= ((seq
.
0 )
* ((
Partial_Sums (z
GeoSeq ))
. n)) by
VALUED_1: 6
.= ((seq
.
0 )
* ((
1r
- (z
|^ (n
+ 1)))
/ (
1r
- z))) by
A1,
Th36;
end;
begin
theorem ::
COMSEQ_3:38
Th38: for a,b be
Real_Sequence, c be
Complex_Sequence st (for n holds (
Re (c
. n))
= (a
. n) & (
Im (c
. n))
= (b
. n)) holds a is
convergent & b is
convergent iff c is
convergent
proof
let a,b be
Real_Sequence, c be
Complex_Sequence such that
A1: for n holds (
Re (c
. n))
= (a
. n) & (
Im (c
. n))
= (b
. n);
thus a is
convergent & b is
convergent implies c is
convergent
proof
assume that
A2: a is
convergent and
A3: b is
convergent;
consider a1 be
Real such that
A4: for p be
Real st
0
< p holds ex n st for m st n
<= m holds
|.((a
. m)
- a1).|
< p by
A2,
SEQ_2:def 6;
consider b1 be
Real such that
A5: for p be
Real st
0
< p holds ex n st for m st n
<= m holds
|.((b
. m)
- b1).|
< p by
A3,
SEQ_2:def 6;
reconsider a1, b1 as
Real;
reconsider g = (a1
+ (b1
*
<i> )) as
Element of
COMPLEX by
XCMPLX_0:def 2;
take g;
for p st
0
< p holds ex n st for m st n
<= m holds
|.((c
. m)
- g).|
< p
proof
let p;
assume
A6:
0
< p;
then
consider n1 such that
A7: for m st n1
<= m holds
|.((a
. m)
- a1).|
< (p
/ 2) by
A4;
consider n2 such that
A8: for m st n2
<= m holds
|.((b
. m)
- b1).|
< (p
/ 2) by
A5,
A6;
n1
<= (n1
+ n2) & n2
<= (n1
+ n2) by
NAT_1: 11;
then
consider n such that
A9: n1
<= n and
A10: n2
<= n;
take n;
for m st n
<= m holds
|.((c
. m)
- g).|
< p
proof
let m;
(
Re (c
. m))
= (a
. m) & (
Re g)
= a1 by
A1,
COMPLEX1: 12;
then
A11: (
Re ((c
. m)
- g))
= ((a
. m)
- a1) by
COMPLEX1: 19;
(
Im (c
. m))
= (b
. m) & (
Im g)
= b1 by
A1,
COMPLEX1: 12;
then
A12: (
Im ((c
. m)
- g))
= ((b
. m)
- b1) by
COMPLEX1: 19;
assume
A13: n
<= m;
then n2
<= m by
A10,
XXREAL_0: 2;
then
A14:
|.((b
. m)
- b1).|
< (p
/ 2) by
A8;
n1
<= m by
A9,
A13,
XXREAL_0: 2;
then
|.((a
. m)
- a1).|
< (p
/ 2) by
A7;
then
A15: (
|.((a
. m)
- a1).|
+
|.((b
. m)
- b1).|)
< ((p
/ 2)
+ (p
/ 2)) by
A14,
XREAL_1: 8;
|.((c
. m)
- g).|
<= (
|.(
Re ((c
. m)
- g)).|
+
|.(
Im ((c
. m)
- g)).|) by
Th12;
hence thesis by
A15,
A11,
A12,
XXREAL_0: 2;
end;
hence thesis;
end;
hence thesis;
end;
assume c is
convergent;
then
consider z be
Complex such that
A16: for p be
Real st
0
< p holds ex n st for m st n
<= m holds
|.((c
. m)
- z).|
< p;
thus a is
convergent
proof
reconsider z as
Element of
COMPLEX by
XCMPLX_0:def 2;
take (
Re z);
let p be
Real;
assume
A17:
0
< p;
consider n such that
A18: for m st n
<= m holds
|.((c
. m)
- z).|
< p by
A16,
A17;
take n;
let m;
assume n
<= m;
then
A19:
|.((c
. m)
- z).|
< p by
A18;
(
Re (c
. m))
= (a
. m) & (
Re ((c
. m)
- z))
= ((
Re (c
. m))
- (
Re z)) by
A1,
COMPLEX1: 19;
then
|.((a
. m)
- (
Re z)).|
<=
|.((c
. m)
- z).| by
Th13;
hence thesis by
A19,
XXREAL_0: 2;
end;
take (
Im z);
let p be
Real;
assume
A20: p
>
0 ;
consider n such that
A21: for m st n
<= m holds
|.((c
. m)
- z).|
< p by
A16,
A20;
take n;
let m;
assume n
<= m;
then
A22:
|.((c
. m)
- z).|
< p by
A21;
A23: (
Im ((c
. m)
- z))
= ((
Im (c
. m))
- (
Im z)) by
COMPLEX1: 19;
(
Im (c
. m))
= (b
. m) by
A1;
then
|.((b
. m)
- (
Im z)).|
<=
|.((c
. m)
- z).| by
A23,
Th13;
hence thesis by
A22,
XXREAL_0: 2;
end;
theorem ::
COMSEQ_3:39
Th39: for a,b be
convergent
Real_Sequence, c be
Complex_Sequence st (for n holds (
Re (c
. n))
= (a
. n) & (
Im (c
. n))
= (b
. n)) holds c is
convergent & (
lim c)
= ((
lim a)
+ ((
lim b)
*
<i> ))
proof
let a,b be
convergent
Real_Sequence, c be
Complex_Sequence;
reconsider g = ((
lim a)
+ ((
lim b)
*
<i> )) as
Element of
COMPLEX by
XCMPLX_0:def 2;
assume
A1: for n holds (
Re (c
. n))
= (a
. n) & (
Im (c
. n))
= (b
. n);
hence
A2: c is
convergent by
Th38;
for p be
Real st
0
< p holds ex n st for m st n
<= m holds
|.((c
. m)
- g).|
< p
proof
let p be
Real;
assume
A3:
0
< p;
then
consider n1 such that
A4: for m st n1
<= m holds
|.((a
. m)
- (
lim a)).|
< (p
/ 2) by
SEQ_2:def 7;
consider n2 such that
A5: for m st n2
<= m holds
|.((b
. m)
- (
lim b)).|
< (p
/ 2) by
A3,
SEQ_2:def 7;
n1
<= (n1
+ n2) & n2
<= (n1
+ n2) by
NAT_1: 11;
then
consider n such that
A6: n1
<= n and
A7: n2
<= n;
take n;
let m;
assume
A8: n
<= m;
then n2
<= m by
A7,
XXREAL_0: 2;
then
A9:
|.((b
. m)
- (
lim b)).|
< (p
/ 2) by
A5;
n1
<= m by
A6,
A8,
XXREAL_0: 2;
then
|.((a
. m)
- (
lim a)).|
< (p
/ 2) by
A4;
then
A10: (
|.((a
. m)
- (
lim a)).|
+
|.((b
. m)
- (
lim b)).|)
< ((p
/ 2)
+ (p
/ 2)) by
A9,
XREAL_1: 8;
(
Re (c
. m))
= (a
. m) & (
Re g)
= (
lim a) by
A1,
COMPLEX1: 12;
then
A11: (
Re ((c
. m)
- g))
= ((a
. m)
- (
lim a)) by
COMPLEX1: 19;
(
Im (c
. m))
= (b
. m) & (
Im g)
= (
lim b) by
A1,
COMPLEX1: 12;
then
A12: (
Im ((c
. m)
- g))
= ((b
. m)
- (
lim b)) by
COMPLEX1: 19;
|.((c
. m)
- g).|
<= (
|.(
Re ((c
. m)
- g)).|
+
|.(
Im ((c
. m)
- g)).|) by
Th12;
hence thesis by
A10,
A11,
A12,
XXREAL_0: 2;
end;
hence thesis by
A2,
COMSEQ_2:def 6;
end;
theorem ::
COMSEQ_3:40
Th40: for a,b be
Real_Sequence, c be
convergent
Complex_Sequence st (for n holds (
Re (c
. n))
= (a
. n) & (
Im (c
. n))
= (b
. n)) holds a is
convergent & b is
convergent & (
lim a)
= (
Re (
lim c)) & (
lim b)
= (
Im (
lim c))
proof
let a,b be
Real_Sequence, c be
convergent
Complex_Sequence;
assume
A1: for n holds (
Re (c
. n))
= (a
. n) & (
Im (c
. n))
= (b
. n);
A2: for p be
Real st
0
< p holds ex n st for m st n
<= m holds
|.((b
. m)
- (
Im (
lim c))).|
< p
proof
let p be
Real;
assume
A3: p
>
0 ;
consider n such that
A4: for m st n
<= m holds
|.((c
. m)
- (
lim c)).|
< p by
A3,
COMSEQ_2:def 6;
take n;
let m;
assume n
<= m;
then
A5:
|.((c
. m)
- (
lim c)).|
< p by
A4;
(
Im (c
. m))
= (b
. m) & (
Im ((c
. m)
- (
lim c)))
= ((
Im (c
. m))
- (
Im (
lim c))) by
A1,
COMPLEX1: 19;
then
|.((b
. m)
- (
Im (
lim c))).|
<=
|.((c
. m)
- (
lim c)).| by
Th13;
hence thesis by
A5,
XXREAL_0: 2;
end;
A6: for p be
Real st
0
< p holds ex n st for m st n
<= m holds
|.((a
. m)
- (
Re (
lim c))).|
< p
proof
let p be
Real;
assume
A7:
0
< p;
consider n such that
A8: for m st n
<= m holds
|.((c
. m)
- (
lim c)).|
< p by
A7,
COMSEQ_2:def 6;
take n;
let m;
(
Re (c
. m))
= (a
. m) by
A1;
then (
Re ((c
. m)
- (
lim c)))
= ((a
. m)
- (
Re (
lim c))) by
COMPLEX1: 19;
then
A9:
|.((a
. m)
- (
Re (
lim c))).|
<=
|.((c
. m)
- (
lim c)).| by
Th13;
assume n
<= m;
then
|.((c
. m)
- (
lim c)).|
< p by
A8;
hence thesis by
A9,
XXREAL_0: 2;
end;
a is
convergent & b is
convergent by
A1,
Th38;
hence thesis by
A6,
A2,
SEQ_2:def 7;
end;
theorem ::
COMSEQ_3:41
Th41: for c be
convergent
Complex_Sequence holds (
Re c) is
convergent & (
Im c) is
convergent & (
lim (
Re c))
= (
Re (
lim c)) & (
lim (
Im c))
= (
Im (
lim c))
proof
let c be
convergent
Complex_Sequence;
(for n holds ((
Re c)
. n)
= (
Re (c
. n))) & for n holds ((
Im c)
. n)
= (
Im (c
. n)) by
Def5,
Def6;
hence thesis by
Th40;
end;
registration
let c be
convergent
Complex_Sequence;
cluster (
Re c) ->
convergent;
coherence by
Th41;
cluster (
Im c) ->
convergent;
coherence by
Th41;
end
theorem ::
COMSEQ_3:42
Th42: for c be
Complex_Sequence st (
Re c) is
convergent & (
Im c) is
convergent holds c is
convergent & (
Re (
lim c))
= (
lim (
Re c)) & (
Im (
lim c))
= (
lim (
Im c))
proof
let c be
Complex_Sequence;
assume
A1: (
Re c) is
convergent & (
Im c) is
convergent;
A2: (for n holds ((
Re c)
. n)
= (
Re (c
. n))) & for n holds ((
Im c)
. n)
= (
Im (c
. n)) by
Def5,
Def6;
then (
lim c)
= ((
lim (
Re c))
+ ((
lim (
Im c))
*
<i> )) by
A1,
Th39;
hence thesis by
A1,
A2,
Th39,
COMPLEX1: 12;
end;
theorem ::
COMSEQ_3:43
Th43: (
0
<
|.z.| &
|.z.|
< 1 & (seq
.
0 )
= z & for n holds (seq
. (n
+ 1))
= ((seq
. n)
* z)) implies seq is
convergent & (
lim seq)
=
0c
proof
assume that
A1:
0
<
|.z.| and
A2:
|.z.|
< 1;
deffunc
g(
Nat) = (
|.z.|
to_power ($1
+ 1));
consider rseq1 such that
A3: for n holds (rseq1
. n)
=
g(n) from
SEQ_1:sch 1;
assume that
A4: (seq
.
0 )
= z and
A5: for n holds (seq
. (n
+ 1))
= ((seq
. n)
* z);
A6: for n holds
|.(seq
. n).|
= (
|.z.|
to_power (n
+ 1))
proof
defpred
P[
Nat] means
|.(seq
. $1).|
= (
|.z.|
to_power ($1
+ 1));
A7: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
A8:
P[k];
|.(seq
. (k
+ 1)).|
=
|.((seq
. k)
* z).| by
A5
.= ((
|.z.|
to_power (k
+ 1))
*
|.z.|) by
A8,
COMPLEX1: 65
.= ((
|.z.|
to_power (k
+ 1))
* (
|.z.|
to_power 1)) by
POWER: 25
.= (
|.z.|
to_power ((k
+ 1)
+ 1)) by
A1,
POWER: 27;
hence thesis;
end;
A9:
P[
0 ] by
A4,
POWER: 25;
for n holds
P[n] from
NAT_1:sch 2(
A9,
A7);
hence thesis;
end;
A10:
now
let n;
((
abs (
Re seq))
. n)
=
|.((
Re seq)
. n).| by
SEQ_1: 12;
then
A11: ((
abs (
Re seq))
. n)
=
|.(
Re (seq
. n)).| by
Def5;
|.(
Re (seq
. n)).|
<=
|.(seq
. n).| &
|.(seq
. n).|
= (
|.z.|
to_power (n
+ 1)) by
A6,
Th13;
hence ((
abs (
Re seq))
. n)
<= (rseq1
. n) by
A3,
A11;
end;
A12:
now
let n;
A13:
|.(seq
. n).|
= (
|.z.|
to_power (n
+ 1)) by
A6;
((
abs (
Im seq))
. n)
=
|.((
Im seq)
. n).| &
|.(
Im (seq
. n)).|
<=
|.(seq
. n).| by
Th13,
SEQ_1: 12;
then ((
abs (
Im seq))
. n)
<= (
|.z.|
to_power (n
+ 1)) by
A13,
Def6;
hence ((
abs (
Im seq))
. n)
<= (rseq1
. n) by
A3;
end;
(C
.
0 )
=
0 ;
then
A14: (
lim C)
=
0 by
SEQ_4: 25;
A15: rseq1 is
convergent & (
lim rseq1)
=
0 by
A1,
A2,
A3,
SERIES_1: 1;
now
let n;
((
abs (
Re seq))
. n)
=
|.((
Re seq)
. n).| by
SEQ_1: 12;
then
0
<= ((
abs (
Re seq))
. n) by
COMPLEX1: 46;
hence (C
. n)
<= ((
abs (
Re seq))
. n);
end;
then
A16: (
abs (
Re seq)) is
convergent & (
lim (
abs (
Re seq)))
=
0 by
A14,
A15,
A10,
SEQ_2: 19,
SEQ_2: 20;
then
A17: (
Re seq) is
convergent by
SEQ_4: 15;
now
let n;
((
abs (
Im seq))
. n)
=
|.((
Im seq)
. n).| by
SEQ_1: 12;
then
0
<= ((
abs (
Im seq))
. n) by
COMPLEX1: 46;
hence (C
. n)
<= ((
abs (
Im seq))
. n);
end;
then
A18: (
abs (
Im seq)) is
convergent & (
lim (
abs (
Im seq)))
=
0 by
A14,
A15,
A12,
SEQ_2: 19,
SEQ_2: 20;
then
A19: (
Im seq) is
convergent by
SEQ_4: 15;
(
lim (
Im seq))
=
0 by
A18,
SEQ_4: 15;
then
A20: (
Im (
lim seq))
=
0 by
A17,
A19,
Th42;
(
lim (
Re seq))
=
0 by
A16,
SEQ_4: 15;
then (
Re (
lim seq))
=
0 by
A17,
A19,
Th42;
hence thesis by
A17,
A19,
A20,
Lm1,
Th42,
COMPLEX1: 13;
end;
theorem ::
COMSEQ_3:44
Th44:
|.z.|
< 1 & (for n holds (seq
. n)
= (z
|^ (n
+ 1))) implies seq is
convergent & (
lim seq)
=
0c
proof
assume that
A1:
|.z.|
< 1 and
A2: for n holds (seq
. n)
= (z
|^ (n
+ 1));
A3:
now
let n;
thus (seq
. (n
+ 1))
= (z
|^ ((n
+ 1)
+ 1)) by
A2
.= ((z
|^ (n
+ 1))
* z) by
NEWTON: 6
.= ((seq
. n)
* z) by
A2;
end;
A4:
now
assume
|.z.|
=
0 ;
then
A5: z
=
0c by
COMPLEX1: 45;
A6:
now
let n;
thus (seq
. n)
= (
0c
|^ (n
+ 1)) by
A2,
A5
.= (((
0c
GeoSeq )
. n)
*
0c ) by
Def1
.=
0c ;
end;
hence seq is
convergent by
COMSEQ_2: 9;
thus thesis by
A6,
COMSEQ_2: 9,
COMSEQ_2: 10;
end;
A7: (seq
.
0 )
= (z
|^ (
0
+ 1)) by
A2
.= z;
now
A8:
0
<=
|.z.| by
COMPLEX1: 46;
assume
|.z.|
<>
0 ;
hence thesis by
A1,
A7,
A3,
A8,
Th43;
end;
hence thesis by
A4;
end;
theorem ::
COMSEQ_3:45
r
>
0 & (ex m st for n st n
>= m holds
|.(seq
. n).|
>= r) implies not
|.seq.| is
convergent or (
lim
|.seq.|)
<>
0
proof
assume that
A1: r
>
0 and
A2: ex m st for n st n
>= m holds
|.(seq
. n).|
>= r;
consider m such that
A3: for n st n
>= m holds
|.(seq
. n).|
>= r by
A2;
now
let n such that
A4: n
>= m;
0
<= (
|.seq.|
. n) by
Lm3;
then
|.(
|.seq.|
. n).|
= (
|.seq.|
. n) by
ABSVALUE:def 1
.=
|.(seq
. n).| by
VALUED_1: 18;
hence
|.(
|.seq.|
. n).|
>= r by
A3,
A4;
end;
hence thesis by
A1,
SERIES_1: 38;
end;
theorem ::
COMSEQ_3:46
Th46: seq is
convergent iff for p st
0
< p holds ex n st for m st n
<= m holds
|.((seq
. m)
- (seq
. n)).|
< p
proof
A1:
now
assume
A2: for p st
0
< p holds ex n st for m st n
<= m holds
|.((seq
. m)
- (seq
. n)).|
< p;
for p be
Real st
0
< p holds ex n st for m st n
<= m holds
|.(((
Re seq)
. m)
- ((
Re seq)
. n)).|
< p
proof
let p be
Real;
assume
A3:
0
< p;
consider n such that
A4: for m st n
<= m holds
|.((seq
. m)
- (seq
. n)).|
< p by
A2,
A3;
take n;
let m;
assume n
<= m;
then
A5:
|.((seq
. m)
- (seq
. n)).|
< p by
A4;
(
Re ((seq
. m)
- (seq
. n)))
= ((
Re (seq
. m))
- (
Re (seq
. n))) by
COMPLEX1: 19
.= (((
Re seq)
. m)
- (
Re (seq
. n))) by
Def5
.= (((
Re seq)
. m)
- ((
Re seq)
. n)) by
Def5;
then
|.(((
Re seq)
. m)
- ((
Re seq)
. n)).|
<=
|.((seq
. m)
- (seq
. n)).| by
Th13;
hence thesis by
A5,
XXREAL_0: 2;
end;
hence
A6: (
Re seq) is
convergent by
SEQ_4: 41;
for p be
Real st
0
< p holds ex n st for m st n
<= m holds
|.(((
Im seq)
. m)
- ((
Im seq)
. n)).|
< p
proof
let p be
Real;
assume
A7:
0
< p;
consider n such that
A8: for m st n
<= m holds
|.((seq
. m)
- (seq
. n)).|
< p by
A2,
A7;
take n;
let m;
assume n
<= m;
then
A9:
|.((seq
. m)
- (seq
. n)).|
< p by
A8;
(
Im ((seq
. m)
- (seq
. n)))
= ((
Im (seq
. m))
- (
Im (seq
. n))) by
COMPLEX1: 19
.= (((
Im seq)
. m)
- (
Im (seq
. n))) by
Def6
.= (((
Im seq)
. m)
- ((
Im seq)
. n)) by
Def6;
then
|.(((
Im seq)
. m)
- ((
Im seq)
. n)).|
<=
|.((seq
. m)
- (seq
. n)).| by
Th13;
hence thesis by
A9,
XXREAL_0: 2;
end;
hence (
Im seq) is
convergent by
SEQ_4: 41;
hence seq is
convergent by
A6,
Th42;
end;
now
assume seq is
convergent;
then
consider z be
Complex such that
A10: for p be
Real st
0
< p holds ex n st for m st n
<= m holds
|.((seq
. m)
- z).|
< p;
let p;
assume
0
< p;
then
consider n such that
A11: for m st n
<= m holds
|.((seq
. m)
- z).|
< (p
/ 2) by
A10;
take n;
let m;
assume n
<= m;
then
A12:
|.((seq
. m)
- z).|
< (p
/ 2) by
A11;
|.((seq
. n)
- z).|
< (p
/ 2) by
A11;
then (
|.((seq
. m)
- z).|
+
|.((seq
. n)
- z).|)
< ((p
/ 2)
+ (p
/ 2)) by
A12,
XREAL_1: 8;
then
A13: (
|.((seq
. m)
- z).|
+
|.(z
- (seq
. n)).|)
< p by
COMPLEX1: 60;
|.((seq
. m)
- (seq
. n)).|
<= (
|.((seq
. m)
- z).|
+
|.(z
- (seq
. n)).|) by
COMPLEX1: 63;
hence
|.((seq
. m)
- (seq
. n)).|
< p by
A13,
XXREAL_0: 2;
end;
hence thesis by
A1;
end;
theorem ::
COMSEQ_3:47
seq is
convergent implies for p st
0
< p holds ex n st for m,l be
Nat st n
<= m & n
<= l holds
|.((seq
. m)
- (seq
. l)).|
< p
proof
assume
A1: seq is
convergent;
let p;
assume
0
< p;
then
consider n such that
A2: for m st n
<= m holds
|.((seq
. m)
- (seq
. n)).|
< (p
/ 2) by
A1,
Th46;
take n;
let m,l be
Nat;
assume n
<= m & n
<= l;
then
|.((seq
. m)
- (seq
. n)).|
< (p
/ 2) &
|.((seq
. l)
- (seq
. n)).|
< (p
/ 2) by
A2;
then
A3: (
|.((seq
. m)
- (seq
. n)).|
+
|.((seq
. l)
- (seq
. n)).|)
< ((p
/ 2)
+ (p
/ 2)) by
XREAL_1: 8;
|.(((seq
. m)
- (seq
. n))
- ((seq
. l)
- (seq
. n))).|
<= (
|.((seq
. m)
- (seq
. n)).|
+
|.((seq
. l)
- (seq
. n)).|) by
COMPLEX1: 57;
hence
|.((seq
. m)
- (seq
. l)).|
< p by
A3,
XXREAL_0: 2;
end;
theorem ::
COMSEQ_3:48
(for n holds
|.(seq
. n).|
<= (rseq
. n)) & rseq is
convergent & (
lim rseq)
=
0 implies seq is
convergent & (
lim seq)
=
0c
proof
assume that
A1: for n holds
|.(seq
. n).|
<= (rseq
. n) and
A2: rseq is
convergent & (
lim rseq)
=
0 ;
A3:
now
let n;
((
abs (
Re seq))
. n)
=
|.((
Re seq)
. n).| by
SEQ_1: 12;
then
0
<= ((
abs (
Re seq))
. n) by
COMPLEX1: 46;
hence (C
. n)
<= ((
abs (
Re seq))
. n);
end;
(C
.
0 )
=
0 ;
then
A4: (
lim C)
=
0 by
SEQ_4: 25;
now
let n;
((
Re seq)
. n)
= (
Re (seq
. n)) by
Def5;
then
A5: ((
abs (
Re seq))
. n)
=
|.(
Re (seq
. n)).| by
SEQ_1: 12;
|.(
Re (seq
. n)).|
<=
|.(seq
. n).| &
|.(seq
. n).|
<= (rseq
. n) by
A1,
Th13;
hence ((
abs (
Re seq))
. n)
<= (rseq
. n) by
A5,
XXREAL_0: 2;
end;
then
A6: (
abs (
Re seq)) is
convergent & (
lim (
abs (
Re seq)))
=
0 by
A2,
A4,
A3,
SEQ_2: 19,
SEQ_2: 20;
then
A7: (
Re seq) is
convergent by
SEQ_4: 15;
A8:
now
let n;
((
abs (
Im seq))
. n)
=
|.((
Im seq)
. n).| by
SEQ_1: 12;
then
0
<= ((
abs (
Im seq))
. n) by
COMPLEX1: 46;
hence (C
. n)
<= ((
abs (
Im seq))
. n);
end;
now
let n;
A9: ((
Im seq)
. n)
= (
Im (seq
. n)) & ((
abs (
Im seq))
. n)
=
|.((
Im seq)
. n).| by
Def6,
SEQ_1: 12;
|.(
Im (seq
. n)).|
<=
|.(seq
. n).| &
|.(seq
. n).|
<= (rseq
. n) by
A1,
Th13;
hence ((
abs (
Im seq))
. n)
<= (rseq
. n) by
A9,
XXREAL_0: 2;
end;
then
A10: (
abs (
Im seq)) is
convergent & (
lim (
abs (
Im seq)))
=
0 by
A2,
A4,
A8,
SEQ_2: 19,
SEQ_2: 20;
then
A11: (
Im seq) is
convergent by
SEQ_4: 15;
(
lim (
Im seq))
=
0 by
A10,
SEQ_4: 15;
then
A12: (
Im (
lim seq))
=
0 by
A7,
A11,
Th42;
(
lim (
Re seq))
=
0 by
A6,
SEQ_4: 15;
then (
Re (
lim seq))
=
0 by
A7,
A11,
Th42;
hence thesis by
A7,
A11,
A12,
Lm1,
Th42,
COMPLEX1: 13;
end;
begin
theorem ::
COMSEQ_3:49
seq is
subsequence of seq1 implies (
Re seq) is
subsequence of (
Re seq1) & (
Im seq) is
subsequence of (
Im seq1)
proof
assume seq is
subsequence of seq1;
then
consider Nseq such that
A1: seq
= (seq1
* Nseq) by
VALUED_0:def 17;
(
Re seq)
= ((
Re seq1)
* Nseq) by
A1,
Th22;
hence (
Re seq) is
subsequence of (
Re seq1);
(
Im seq)
= ((
Im seq1)
* Nseq) by
A1,
Th22;
hence thesis;
end;
theorem ::
COMSEQ_3:50
seq is
bounded implies ex seq1 st seq1 is
subsequence of seq & seq1 is
convergent
proof
assume seq is
bounded;
then
consider r be
Real such that
A1:
0
< r and
A2: for n holds
|.(seq
. n).|
< r by
COMSEQ_2: 8;
now
let n;
|.((
Re seq)
. n).|
=
|.(
Re (seq
. n)).| &
|.(
Re (seq
. n)).|
<=
|.(seq
. n).| by
Def5,
Th13;
hence
|.((
Re seq)
. n).|
< r by
A2,
XXREAL_0: 2;
end;
then (
Re seq) is
bounded by
A1,
SEQ_2: 3;
then
consider rseq1 such that
A3: rseq1 is
subsequence of (
Re seq) and
A4: rseq1 is
convergent by
SEQ_4: 40;
consider Nseq such that
A5: rseq1
= ((
Re seq)
* Nseq) by
A3,
VALUED_0:def 17;
A6:
now
let n;
n
in
NAT by
ORDINAL1:def 12;
then
|.((seq
* Nseq)
. n).|
=
|.(seq
. (Nseq
. n)).| by
FUNCT_2: 15;
hence
|.((seq
* Nseq)
. n).|
< r by
A2;
end;
now
let n;
|.((
Im (seq
* Nseq))
. n).|
=
|.(
Im ((seq
* Nseq)
. n)).| &
|.(
Im ((seq
* Nseq)
. n)).|
<=
|.((seq
* Nseq)
. n).| by
Def6,
Th13;
hence
|.((
Im (seq
* Nseq))
. n).|
< r by
A6,
XXREAL_0: 2;
end;
then (
Im (seq
* Nseq)) is
bounded by
A1,
SEQ_2: 3;
then
consider rseq2 such that
A7: rseq2 is
subsequence of (
Im (seq
* Nseq)) and
A8: rseq2 is
convergent by
SEQ_4: 40;
consider Nseq1 such that
A9: rseq2
= ((
Im (seq
* Nseq))
* Nseq1) by
A7,
VALUED_0:def 17;
(
Re ((seq
* Nseq)
* Nseq1))
= ((
Re (seq
* Nseq))
* Nseq1) by
Th22
.= (rseq1
* Nseq1) by
A5,
Th22;
then
A10: (
Re ((seq
* Nseq)
* Nseq1)) is
convergent by
A4,
SEQ_4: 16;
(seq
* Nseq) is
subsequence of seq & ((seq
* Nseq)
* Nseq1) is
subsequence of (seq
* Nseq) by
VALUED_0:def 17;
then
A11: ((seq
* Nseq)
* Nseq1) is
subsequence of seq by
VALUED_0: 20;
(
Im ((seq
* Nseq)
* Nseq1)) is
convergent by
A8,
A9,
Th22;
hence thesis by
A11,
A10,
Th42;
end;
definition
let seq be
Complex_Sequence;
::
COMSEQ_3:def8
attr seq is
summable means
:
Def8: (
Partial_Sums seq) is
convergent;
end
set D = (
NAT
-->
0c );
registration
cluster
summable for
Complex_Sequence;
existence
proof
take D,
0c ;
let p be
Real such that
A1:
0
< p;
take
0 ;
for n holds (D
. n)
=
0c ;
hence thesis by
A1,
Th24,
COMPLEX1: 44;
end;
end
registration
let seq be
summable
Complex_Sequence;
cluster (
Partial_Sums seq) ->
convergent;
coherence by
Def8;
end
definition
let seq be
Complex_Sequence;
::
COMSEQ_3:def9
attr seq is
absolutely_summable means
:
Def9:
|.seq.| is
summable;
end
theorem ::
COMSEQ_3:51
Th51: (for n holds (seq
. n)
=
0c ) implies seq is
absolutely_summable
proof
assume
A1: for n holds (seq
. n)
=
0c ;
take
0 ;
let p be
Real such that
A2:
0
< p;
take
0 ;
let m;
|.(((
Partial_Sums
|.seq.|)
. m)
-
0 ).|
=
|.(
0
-
0 ).| by
A1,
Th25
.=
0 by
ABSVALUE:def 1;
hence thesis by
A2;
end;
registration
cluster
absolutely_summable for
Complex_Sequence;
existence
proof
take D;
for n holds (D
. n)
=
0c ;
hence thesis by
Th51;
end;
end
registration
let seq be
absolutely_summable
Complex_Sequence;
cluster
|.seq.| ->
summable;
coherence by
Def9;
end
theorem ::
COMSEQ_3:52
Th52: seq is
summable implies seq is
convergent & (
lim seq)
=
0c
proof
assume
A1: seq is
summable;
then (
Re (
Partial_Sums seq)) is
convergent;
then (
Partial_Sums (
Re seq)) is
convergent by
Th26;
then
A2: (
Re seq) is
summable;
(
Im (
Partial_Sums seq)) is
convergent by
A1;
then (
Partial_Sums (
Im seq)) is
convergent by
Th26;
then
A3: (
Im seq) is
summable;
then (
lim (
Im seq))
=
0 by
SERIES_1: 4;
then
A4: (
Im (
lim seq))
=
0 by
A2,
A3,
Th42;
(
lim (
Re seq))
=
0 by
A2,
SERIES_1: 4;
then (
Re (
lim seq))
=
0 by
A2,
A3,
Th42;
hence thesis by
A2,
A3,
A4,
Lm1,
Th42,
COMPLEX1: 13;
end;
registration
cluster
summable ->
convergent for
Complex_Sequence;
coherence by
Th52;
end
theorem ::
COMSEQ_3:53
Th53: seq is
summable implies (
Re seq) is
summable & (
Im seq) is
summable & (
Sum seq)
= ((
Sum (
Re seq))
+ ((
Sum (
Im seq))
*
<i> ))
proof
A1: (
lim (
Re (
Partial_Sums seq)))
= (
lim (
Partial_Sums (
Re seq))) & (
lim (
Im (
Partial_Sums seq)))
= (
lim (
Partial_Sums (
Im seq))) by
Th26;
assume
A2: seq is
summable;
then (
Re (
Partial_Sums seq)) is
convergent;
then
A3: (
Partial_Sums (
Re seq)) is
convergent by
Th26;
(
Im (
Partial_Sums seq)) is
convergent by
A2;
then
A4: (
Partial_Sums (
Im seq)) is
convergent by
Th26;
(
lim (
Re (
Partial_Sums seq)))
= (
Re (
lim (
Partial_Sums seq))) & (
lim (
Im (
Partial_Sums seq)))
= (
Im (
lim (
Partial_Sums seq))) by
A2,
Th41;
hence thesis by
A3,
A4,
A1,
COMPLEX1: 13;
end;
registration
let seq be
summable
Complex_Sequence;
cluster (
Re seq) ->
summable;
coherence by
Th53;
cluster (
Im seq) ->
summable;
coherence by
Th53;
end
theorem ::
COMSEQ_3:54
Th54: seq1 is
summable & seq2 is
summable implies (seq1
+ seq2) is
summable & (
Sum (seq1
+ seq2))
= ((
Sum seq1)
+ (
Sum seq2))
proof
assume
A1: seq1 is
summable & seq2 is
summable;
then
A2: ((
Partial_Sums seq1)
+ (
Partial_Sums seq2)) is
convergent;
A3: ((
Partial_Sums seq1)
+ (
Partial_Sums seq2))
= (
Partial_Sums (seq1
+ seq2)) by
Th27;
(
Sum (seq1
+ seq2))
= (
lim ((
Partial_Sums seq1)
+ (
Partial_Sums seq2))) by
Th27
.= ((
lim (
Partial_Sums seq1))
+ (
lim (
Partial_Sums seq2))) by
A1,
COMSEQ_2: 14;
hence thesis by
A2,
A3;
end;
theorem ::
COMSEQ_3:55
Th55: seq1 is
summable & seq2 is
summable implies (seq1
- seq2) is
summable & (
Sum (seq1
- seq2))
= ((
Sum seq1)
- (
Sum seq2))
proof
assume
A1: seq1 is
summable & seq2 is
summable;
then
A2: ((
Partial_Sums seq1)
- (
Partial_Sums seq2)) is
convergent;
A3: ((
Partial_Sums seq1)
- (
Partial_Sums seq2))
= (
Partial_Sums (seq1
- seq2)) by
Th28;
(
Sum (seq1
- seq2))
= (
lim ((
Partial_Sums seq1)
- (
Partial_Sums seq2))) by
Th28
.= ((
lim (
Partial_Sums seq1))
- (
lim (
Partial_Sums seq2))) by
A1,
COMSEQ_2: 26;
hence thesis by
A2,
A3;
end;
registration
let seq1,seq2 be
summable
Complex_Sequence;
cluster (seq1
+ seq2) ->
summable;
coherence by
Th54;
cluster (seq1
- seq2) ->
summable;
coherence by
Th55;
end
theorem ::
COMSEQ_3:56
Th56: seq is
summable implies for z be
Complex holds (z
(#) seq) is
summable & (
Sum (z
(#) seq))
= (z
* (
Sum seq))
proof
assume
A1: seq is
summable;
let z be
Complex;
A2: (
Partial_Sums (z
(#) seq))
= (z
(#) (
Partial_Sums seq)) by
Th29;
(
Sum (z
(#) seq))
= (
lim (z
(#) (
Partial_Sums seq))) by
Th29
.= (z
* (
Sum seq)) by
A1,
COMSEQ_2: 18;
hence thesis by
A1,
A2;
end;
registration
let z be
Element of
COMPLEX , seq be
summable
Complex_Sequence;
cluster (z
(#) seq) ->
summable;
coherence by
Th56;
end
theorem ::
COMSEQ_3:57
Th57: (
Re seq) is
summable & (
Im seq) is
summable implies seq is
summable & (
Sum seq)
= ((
Sum (
Re seq))
+ ((
Sum (
Im seq))
*
<i> ))
proof
assume that
A1: (
Re seq) is
summable and
A2: (
Im seq) is
summable;
(
Partial_Sums (
Im seq)) is
convergent by
A2;
then
A3: (
Im (
Partial_Sums seq)) is
convergent by
Th26;
(
Partial_Sums (
Re seq)) is
convergent by
A1;
then
A4: (
Re (
Partial_Sums seq)) is
convergent by
Th26;
then
A5: (
lim (
Im (
Partial_Sums seq)))
= (
Im (
lim (
Partial_Sums seq))) by
A3,
Th42;
A6: (
lim (
Re (
Partial_Sums seq)))
= (
lim (
Partial_Sums (
Re seq))) & (
lim (
Im (
Partial_Sums seq)))
= (
lim (
Partial_Sums (
Im seq))) by
Th26;
(
Partial_Sums seq) is
convergent & (
lim (
Re (
Partial_Sums seq)))
= (
Re (
lim (
Partial_Sums seq))) by
A4,
A3,
Th42;
hence thesis by
A6,
A5,
COMPLEX1: 13;
end;
theorem ::
COMSEQ_3:58
Th58: seq is
summable implies for n holds (seq
^\ n) is
summable
proof
assume
A1: seq is
summable;
let n;
A2: (
Re (seq
^\ n))
= ((
Re seq)
^\ n) & (
Im (seq
^\ n))
= ((
Im seq)
^\ n) by
Th23;
((
Re seq)
^\ n) is
summable & ((
Im seq)
^\ n) is
summable by
A1,
SERIES_1: 12;
hence (seq
^\ n) is
summable by
A2,
Th57;
end;
registration
let seq be
summable
Complex_Sequence, n be
Nat;
cluster (seq
^\ n) ->
summable;
coherence by
Th58;
end
theorem ::
COMSEQ_3:59
(ex n st (seq
^\ n) is
summable) implies seq is
summable
proof
given n such that
A1: (seq
^\ n) is
summable;
(
Im (seq
^\ n))
= ((
Im seq)
^\ n) by
Th23;
then
A2: (
Im seq) is
summable by
A1,
SERIES_1: 13;
(
Re (seq
^\ n))
= ((
Re seq)
^\ n) by
Th23;
then (
Re seq) is
summable by
A1,
SERIES_1: 13;
hence thesis by
A2,
Th57;
end;
theorem ::
COMSEQ_3:60
seq is
summable implies for n holds (
Sum seq)
= (((
Partial_Sums seq)
. n)
+ (
Sum (seq
^\ (n
+ 1))))
proof
assume
A1: seq is
summable;
then (
Sum seq)
= ((
Sum (
Re seq))
+ ((
Sum (
Im seq))
*
<i> )) by
Th53;
then
A2: (
Re (
Sum seq))
= (
Sum (
Re seq)) & (
Im (
Sum seq))
= (
Sum (
Im seq)) by
COMPLEX1: 12;
let n;
A3: (
Sum (seq
^\ (n
+ 1)))
= ((
Sum (
Re (seq
^\ (n
+ 1))))
+ ((
Sum (
Im (seq
^\ (n
+ 1))))
*
<i> )) by
A1,
Th53;
A4: (
Sum (
Im seq))
= (((
Partial_Sums (
Im seq))
. n)
+ (
Sum ((
Im seq)
^\ (n
+ 1)))) by
A1,
SERIES_1: 15
.= (((
Im (
Partial_Sums seq))
. n)
+ (
Sum ((
Im seq)
^\ (n
+ 1)))) by
Th26
.= (((
Im (
Partial_Sums seq))
. n)
+ (
Sum (
Im (seq
^\ (n
+ 1))))) by
Th23
.= (((
Im (
Partial_Sums seq))
. n)
+ (
Im (
Sum (seq
^\ (n
+ 1))))) by
A3,
COMPLEX1: 12
.= ((
Im ((
Partial_Sums seq)
. n))
+ (
Im (
Sum (seq
^\ (n
+ 1))))) by
Def6
.= (
Im (((
Partial_Sums seq)
. n)
+ (
Sum (seq
^\ (n
+ 1))))) by
COMPLEX1: 8;
(
Sum (
Re seq))
= (((
Partial_Sums (
Re seq))
. n)
+ (
Sum ((
Re seq)
^\ (n
+ 1)))) by
A1,
SERIES_1: 15
.= (((
Re (
Partial_Sums seq))
. n)
+ (
Sum ((
Re seq)
^\ (n
+ 1)))) by
Th26
.= (((
Re (
Partial_Sums seq))
. n)
+ (
Sum (
Re (seq
^\ (n
+ 1))))) by
Th23
.= (((
Re (
Partial_Sums seq))
. n)
+ (
Re (
Sum (seq
^\ (n
+ 1))))) by
A3,
COMPLEX1: 12
.= ((
Re ((
Partial_Sums seq)
. n))
+ (
Re (
Sum (seq
^\ (n
+ 1))))) by
Def5
.= (
Re (((
Partial_Sums seq)
. n)
+ (
Sum (seq
^\ (n
+ 1))))) by
COMPLEX1: 8;
hence thesis by
A2,
A4,
COMPLEX1:def 3;
end;
theorem ::
COMSEQ_3:61
Th61: (
Partial_Sums
|.seq.|) is
bounded_above iff seq is
absolutely_summable
proof
(
Partial_Sums
|.seq.|) is
bounded_above iff
|.seq.| is
summable;
hence thesis;
end;
registration
let seq be
absolutely_summable
Complex_Sequence;
cluster (
Partial_Sums
|.seq.|) ->
bounded_above;
coherence by
Th61;
end
theorem ::
COMSEQ_3:62
Th62: seq is
summable iff for p st
0
< p holds ex n st for m st n
<= m holds
|.(((
Partial_Sums seq)
. m)
- ((
Partial_Sums seq)
. n)).|
< p by
Th46;
theorem ::
COMSEQ_3:63
Th63: seq is
absolutely_summable implies seq is
summable
proof
assume
A1: seq is
absolutely_summable;
now
let p;
assume
0
< p;
then
consider n such that
A2: for m st n
<= m holds
|.(((
Partial_Sums
|.seq.|)
. m)
- ((
Partial_Sums
|.seq.|)
. n)).|
< p by
A1,
SEQ_4: 41;
take n;
let m;
assume n
<= m;
then
A3:
|.(((
Partial_Sums
|.seq.|)
. m)
- ((
Partial_Sums
|.seq.|)
. n)).|
< p by
A2;
|.(((
Partial_Sums seq)
. m)
- ((
Partial_Sums seq)
. n)).|
<=
|.(((
Partial_Sums
|.seq.|)
. m)
- ((
Partial_Sums
|.seq.|)
. n)).| by
Th31;
hence
|.(((
Partial_Sums seq)
. m)
- ((
Partial_Sums seq)
. n)).|
< p by
A3,
XXREAL_0: 2;
end;
hence thesis by
Th62;
end;
registration
cluster
absolutely_summable ->
summable for
Complex_Sequence;
coherence by
Th63;
end
registration
cluster
absolutely_summable for
Complex_Sequence;
existence
proof
set C = the
absolutely_summable
Complex_Sequence;
take C;
thus thesis;
end;
end
theorem ::
COMSEQ_3:64
Th64:
|.z.|
< 1 implies (z
GeoSeq ) is
summable & (
Sum (z
GeoSeq ))
= (
1r
/ (
1r
- z))
proof
set seq2 = (
NAT
-->
1r );
deffunc
f(
Nat) = (z
|^ ($1
+ 1));
consider seq1 such that
A1: for n holds (seq1
. n)
=
f(n) from
COMSEQ_1:sch 1;
assume
A2:
|.z.|
< 1;
then
A3: (
lim seq1)
=
0c by
A1,
Th44;
A4:
now
let n be
Element of
NAT ;
thus ((
Partial_Sums (z
GeoSeq ))
. n)
= ((
1r
- (z
|^ (n
+ 1)))
/ (
1r
- z)) by
A2,
Th36,
COMPLEX1: 48
.= ((
1r
- (seq1
. n))
/ (
1r
- z)) by
A1
.= ((
1r
* ((seq2
. n)
- (seq1
. n)))
/ (
1r
- z)) by
COMPLEX1:def 4,
FUNCOP_1: 7
.= ((
1r
/ (
1r
- z))
* ((seq2
. n)
+ (
- (seq1
. n)))) by
XCMPLX_1: 74
.= ((
1r
/ (
1r
- z))
* ((seq2
. n)
+ ((
- seq1)
. n))) by
VALUED_1: 8
.= ((
1r
/ (
1r
- z))
* ((seq2
- seq1)
. n)) by
VALUED_1: 1
.= (((
1r
/ (
1r
- z))
(#) (seq2
- seq1))
. n) by
VALUED_1: 6;
end;
A5: for n holds (seq2
. n)
=
1r by
ORDINAL1:def 12,
FUNCOP_1: 7;
then
A6: seq2 is
convergent by
COMSEQ_2: 9;
A7: seq1 is
convergent by
A2,
A1,
Th44;
then
A8: (seq2
- seq1) is
convergent by
A6;
hence (
Partial_Sums (z
GeoSeq )) is
convergent by
A4,
FUNCT_2: 63;
(
lim (seq2
- seq1))
= ((
lim seq2)
- (
lim seq1)) by
A7,
A6,
COMSEQ_2: 26
.=
1r by
A3,
A5,
COMSEQ_2: 10;
then (
lim ((
1r
/ (
1r
- z))
(#) (seq2
- seq1)))
= ((
1r
/ (
1r
- z))
*
1r ) by
A8,
COMSEQ_2: 18
.= (
1r
/ (
1r
- z)) by
COMPLEX1:def 4;
hence thesis by
A4,
FUNCT_2: 63;
end;
theorem ::
COMSEQ_3:65
|.z.|
< 1 & (for n holds (seq
. (n
+ 1))
= (z
* (seq
. n))) implies seq is
summable & (
Sum seq)
= ((seq
.
0 )
/ (
1r
- z))
proof
assume that
A1:
|.z.|
< 1 and
A2: for n holds (seq
. (n
+ 1))
= (z
* (seq
. n));
now
let n be
Element of
NAT ;
thus ((
Partial_Sums seq)
. n)
= ((seq
.
0 )
* ((
1r
- (z
|^ (n
+ 1)))
/ (
1r
- z))) by
A1,
A2,
Th37,
COMPLEX1: 48
.= ((seq
.
0 )
* ((
Partial_Sums (z
GeoSeq ))
. n)) by
A1,
Th36,
COMPLEX1: 48
.= (((seq
.
0 )
(#) (
Partial_Sums (z
GeoSeq )))
. n) by
VALUED_1: 6;
end;
then
A3: (
Partial_Sums seq)
= ((seq
.
0 )
(#) (
Partial_Sums (z
GeoSeq )));
A4: (z
GeoSeq ) is
summable by
A1,
Th64;
hence seq is
summable by
A3;
(
Sum seq)
= ((seq
.
0 )
* (
Sum (z
GeoSeq ))) by
A3,
A4,
COMSEQ_2: 18
.= ((seq
.
0 )
* (
1r
/ (
1r
- z))) by
A1,
Th64
.= (((seq
.
0 )
*
1r )
/ (
1r
- z)) by
XCMPLX_1: 74
.= ((seq
.
0 )
/ (
1r
- z)) by
COMPLEX1:def 4;
hence thesis;
end;
theorem ::
COMSEQ_3:66
rseq1 is
summable & (ex m st for n st m
<= n holds
|.(seq2
. n).|
<= (rseq1
. n)) implies seq2 is
absolutely_summable
proof
assume that
A1: rseq1 is
summable and
A2: ex m st for n st m
<= n holds
|.(seq2
. n).|
<= (rseq1
. n);
consider m such that
A3: for n st m
<= n holds
|.(seq2
. n).|
<= (rseq1
. n) by
A2;
A4:
now
let n;
|.(seq2
. n).|
= (
|.seq2.|
. n) by
VALUED_1: 18;
hence
0
<= (
|.seq2.|
. n) by
COMPLEX1: 46;
end;
now
let n;
assume m
<= n;
then
|.(seq2
. n).|
<= (rseq1
. n) by
A3;
hence (
|.seq2.|
. n)
<= (rseq1
. n) by
VALUED_1: 18;
end;
hence
|.seq2.| is
summable by
A1,
A4,
SERIES_1: 19;
end;
theorem ::
COMSEQ_3:67
(for n holds
0
<= (
|.seq1.|
. n) & (
|.seq1.|
. n)
<= (
|.seq2.|
. n)) & seq2 is
absolutely_summable implies seq1 is
absolutely_summable & (
Sum
|.seq1.|)
<= (
Sum
|.seq2.|) by
SERIES_1: 20;
theorem ::
COMSEQ_3:68
(for n holds (
|.seq.|
. n)
>
0 ) & (ex m st for n st n
>= m holds ((
|.seq.|
. (n
+ 1))
/ (
|.seq.|
. n))
>= 1) implies not seq is
absolutely_summable by
SERIES_1: 27;
theorem ::
COMSEQ_3:69
(for n holds (rseq1
. n)
= (n
-root (
|.seq.|
. n))) & rseq1 is
convergent & (
lim rseq1)
< 1 implies seq is
absolutely_summable
proof
assume
A1: (for n holds (rseq1
. n)
= (n
-root (
|.seq.|
. n))) & rseq1 is
convergent & (
lim rseq1)
< 1;
for n holds (
|.seq.|
. n)
>=
0 by
Lm3;
hence
|.seq.| is
summable by
A1,
SERIES_1: 28;
end;
theorem ::
COMSEQ_3:70
(for n holds (rseq1
. n)
= (n
-root (
|.seq.|
. n))) & (ex m st for n st m
<= n holds (rseq1
. n)
>= 1) implies not
|.seq.| is
summable
proof
assume
A1: (for n holds (rseq1
. n)
= (n
-root (
|.seq.|
. n))) & ex m st for n st m
<= n holds (rseq1
. n)
>= 1;
for n holds (
|.seq.|
. n)
>=
0 by
Lm3;
hence thesis by
A1,
SERIES_1: 29;
end;
theorem ::
COMSEQ_3:71
(for n holds (rseq1
. n)
= (n
-root (
|.seq.|
. n))) & rseq1 is
convergent & (
lim rseq1)
> 1 implies not seq is
absolutely_summable
proof
assume
A1: (for n holds (rseq1
. n)
= (n
-root (
|.seq.|
. n))) & rseq1 is
convergent & (
lim rseq1)
> 1;
for n holds (
|.seq.|
. n)
>=
0 by
Lm3;
hence not
|.seq.| is
summable by
A1,
SERIES_1: 30;
end;
theorem ::
COMSEQ_3:72
|.seq.| is
non-increasing & (for n holds (rseq1
. n)
= ((2
to_power n)
* (
|.seq.|
. (2
to_power n)))) implies (seq is
absolutely_summable iff rseq1 is
summable)
proof
assume
|.seq.| is
non-increasing & for n holds (rseq1
. n)
= ((2
to_power n)
* (
|.seq.|
. (2
to_power n)));
then for n holds
|.seq.| is
non-increasing & (
|.seq.|
. n)
>=
0 & (rseq1
. n)
= ((2
to_power n)
* (
|.seq.|
. (2
to_power n))) by
Lm3;
then
|.seq.| is
summable iff rseq1 is
summable by
SERIES_1: 31;
hence thesis;
end;
theorem ::
COMSEQ_3:73
p
> 1 & (for n st n
>= 1 holds (
|.seq.|
. n)
= (1
/ (n
to_power p))) implies seq is
absolutely_summable by
SERIES_1: 32;
theorem ::
COMSEQ_3:74
p
<= 1 & (for n st n
>= 1 holds (
|.seq.|
. n)
= (1
/ (n
to_power p))) implies not seq is
absolutely_summable by
SERIES_1: 33;
theorem ::
COMSEQ_3:75
(for n holds (seq
. n)
<>
0c & (rseq1
. n)
= ((
|.seq.|
. (n
+ 1))
/ (
|.seq.|
. n))) & rseq1 is
convergent & (
lim rseq1)
< 1 implies seq is
absolutely_summable
proof
assume that
A1: for n holds (seq
. n)
<>
0c & (rseq1
. n)
= ((
|.seq.|
. (n
+ 1))
/ (
|.seq.|
. n)) and
A2: rseq1 is
convergent & (
lim rseq1)
< 1;
now
let n;
A3: (seq
. n)
<>
0c & (
|.seq.|
. n)
=
|.(seq
. n).| by
A1,
VALUED_1: 18;
hence (
|.seq.|
. n)
<>
0 & (rseq1
. n)
= ((
|.seq.|
. (n
+ 1))
/ (
|.seq.|
. n)) by
A1,
COMPLEX1: 47;
thus (
|.seq.|
. n)
<>
0 & (rseq1
. n)
= ((
|.
|.seq.|.|
. (n
+ 1))
/ (
|.seq.|
. n)) by
A1,
A3,
COMPLEX1: 47;
thus (
|.seq.|
. n)
<>
0 & (rseq1
. n)
= (((
abs
|.seq.|)
. (n
+ 1))
/ ((
abs
|.seq.|)
. n)) by
A1,
A3,
COMPLEX1: 47;
end;
then
|.seq.| is
absolutely_summable by
A2,
SERIES_1: 37;
hence thesis;
end;
theorem ::
COMSEQ_3:76
(for n holds (seq
. n)
<>
0c ) & (ex m st for n st n
>= m holds ((
|.seq.|
. (n
+ 1))
/ (
|.seq.|
. n))
>= 1) implies not seq is
absolutely_summable
proof
assume that
A1: for n holds (seq
. n)
<>
0c and
A2: ex m st for n st n
>= m holds ((
|.seq.|
. (n
+ 1))
/ (
|.seq.|
. n))
>= 1;
consider m such that
A3: for n st n
>= m holds ((
|.seq.|
. (n
+ 1))
/ (
|.seq.|
. n))
>= 1 by
A2;
A4:
now
let n;
(seq
. n)
<>
0c by
A1;
then
|.(seq
. n).|
<>
0 by
COMPLEX1: 47;
hence (
|.seq.|
. n)
<>
0 by
VALUED_1: 18;
end;
for n st n
>= m holds (((
abs
|.seq.|)
. (n
+ 1))
/ ((
abs
|.seq.|)
. n))
>= 1 by
A3;
hence not
|.seq.| is
summable by
A4,
SERIES_1: 39;
end;