sin_cos2.miz
begin
reserve p,q,r,th,th1 for
Real;
reserve n for
Nat;
theorem ::
SIN_COS2:1
Th1: p
>=
0 & r
>=
0 implies (p
+ r)
>= (2
* (
sqrt (p
* r)))
proof
assume that
A1: p
>=
0 and
A2: r
>=
0 ;
A3: (((
sqrt p)
- (
sqrt r))
^2 )
>=
0 by
XREAL_1: 63;
(((
sqrt p)
- (
sqrt r))
^2 )
= ((((
sqrt p)
^2 )
- ((2
* (
sqrt p))
* (
sqrt r)))
+ ((
sqrt r)
^2 ))
.= ((p
- ((2
* (
sqrt p))
* (
sqrt r)))
+ ((
sqrt r)
^2 )) by
A1,
SQUARE_1:def 2
.= ((p
- ((2
* (
sqrt p))
* (
sqrt r)))
+ r) by
A2,
SQUARE_1:def 2
.= ((p
+ r)
- ((2
* (
sqrt p))
* (
sqrt r)));
then (
0
+ ((2
* (
sqrt p))
* (
sqrt r)))
<= (p
+ r) by
A3,
XREAL_1: 19;
then (2
* ((
sqrt p)
* (
sqrt r)))
<= (p
+ r);
hence thesis by
A1,
A2,
SQUARE_1: 29;
end;
theorem ::
SIN_COS2:2
(
sin
|
].
0 , (
PI
/ 2).[) is
increasing
proof
for th st th
in
].
0 , (
PI
/ 2).[ holds
0
< (
diff (
sin ,th))
proof
let th;
assume th
in
].
0 , (
PI
/ 2).[;
then (
cos
. th)
>
0 by
SIN_COS: 80;
hence thesis by
SIN_COS: 68;
end;
hence thesis by
FDIFF_1: 26,
ROLLE: 9,
SIN_COS: 24,
SIN_COS: 68;
end;
Lm1: for th st th
in
].
0 , (
PI
/ 2).[ holds
0
< (
sin
. th)
proof
let th;
assume
A1: th
in
].
0 , (
PI
/ 2).[;
then th
< (
PI
/ 2) by
XXREAL_1: 4;
then (
- th)
> (
- (
PI
/ 2)) by
XREAL_1: 24;
then
A2: ((
- th)
+ (
PI
/ 2))
> ((
- (
PI
/ 2))
+ (
PI
/ 2)) by
XREAL_1: 6;
0
< th by
A1,
XXREAL_1: 4;
then (
0
- th)
<
0 ;
then ((
- th)
+ (
PI
/ 2))
< (
0
+ (
PI
/ 2)) by
XREAL_1: 6;
then ((
PI
/ 2)
- th)
in
].
0 , (
PI
/ 2).[ by
A2,
XXREAL_1: 4;
then (
cos
. ((
PI
/ 2)
- th))
>
0 by
SIN_COS: 80;
hence thesis by
SIN_COS: 78;
end;
theorem ::
SIN_COS2:3
(
sin
|
].(
PI
/ 2),
PI .[) is
decreasing
proof
for th1 st th1
in
].(
PI
/ 2),
PI .[ holds
0
> (
diff (
sin ,th1))
proof
let th1;
assume
A1: th1
in
].(
PI
/ 2),
PI .[;
then th1
<
PI by
XXREAL_1: 4;
then
A2: (th1
- (
PI
/ 2))
< (
PI
- (
PI
/ 2)) by
XREAL_1: 9;
(
PI
/ 2)
< th1 by
A1,
XXREAL_1: 4;
then ((
PI
/ 2)
- (
PI
/ 2))
< (th1
- (
PI
/ 2)) by
XREAL_1: 9;
then (th1
- (
PI
/ 2))
in
].
0 , (
PI
/ 2).[ by
A2,
XXREAL_1: 4;
then (
sin
. (th1
- (
PI
/ 2)))
>
0 by
Lm1;
then
A3: (
0
- (
sin
. (th1
- (
PI
/ 2))))
<
0 ;
(
diff (
sin ,th1))
= (
cos
. ((
PI
/ 2)
+ (th1
- (
PI
/ 2)))) by
SIN_COS: 68
.= (
- (
sin
. (th1
- (
PI
/ 2)))) by
SIN_COS: 78;
hence thesis by
A3;
end;
hence thesis by
FDIFF_1: 26,
ROLLE: 10,
SIN_COS: 24,
SIN_COS: 68;
end;
theorem ::
SIN_COS2:4
(
cos
|
].
0 , (
PI
/ 2).[) is
decreasing
proof
for th st th
in
].
0 , (
PI
/ 2).[ holds (
diff (
cos ,th))
<
0
proof
let th;
assume th
in
].
0 , (
PI
/ 2).[;
then
0
< (
sin
. th) by
Lm1;
then (
diff (
cos ,th))
= (
- (
sin
. th)) & (
0
- (
sin
. th))
<
0 by
SIN_COS: 67;
hence thesis;
end;
hence thesis by
FDIFF_1: 26,
ROLLE: 10,
SIN_COS: 24,
SIN_COS: 67;
end;
theorem ::
SIN_COS2:5
(
cos
|
].(
PI
/ 2),
PI .[) is
decreasing
proof
for th st th
in
].(
PI
/ 2),
PI .[ holds (
diff (
cos ,th))
<
0
proof
let th;
assume
A1: th
in
].(
PI
/ 2),
PI .[;
then th
<
PI by
XXREAL_1: 4;
then
A2: (th
- (
PI
/ 2))
< (
PI
- (
PI
/ 2)) by
XREAL_1: 9;
(
PI
/ 2)
< th by
A1,
XXREAL_1: 4;
then ((
PI
/ 2)
- (
PI
/ 2))
< (th
- (
PI
/ 2)) by
XREAL_1: 9;
then (th
- (
PI
/ 2))
in
].
0 , (
PI
/ 2).[ by
A2,
XXREAL_1: 4;
then (
cos
. (th
- (
PI
/ 2)))
>
0 by
SIN_COS: 80;
then
A3: (
0
- (
cos
. (th
- (
PI
/ 2))))
<
0 ;
(
diff (
cos ,th))
= (
- (
sin
. ((
PI
/ 2)
+ (th
- (
PI
/ 2))))) by
SIN_COS: 67
.= (
- (
cos
. (th
- (
PI
/ 2)))) by
SIN_COS: 78;
hence thesis by
A3;
end;
hence thesis by
FDIFF_1: 26,
ROLLE: 10,
SIN_COS: 24,
SIN_COS: 67;
end;
theorem ::
SIN_COS2:6
(
sin
|
].
PI , ((3
/ 2)
*
PI ).[) is
decreasing
proof
for th st th
in
].
PI , ((3
/ 2)
*
PI ).[ holds (
diff (
sin ,th))
<
0
proof
let th such that
A1: th
in
].
PI , ((3
/ 2)
*
PI ).[;
th
< ((3
/ 2)
*
PI ) by
A1,
XXREAL_1: 4;
then
A2: (th
-
PI )
< (((3
/ 2)
*
PI )
-
PI ) by
XREAL_1: 9;
PI
< th by
A1,
XXREAL_1: 4;
then (
PI
-
PI )
< (th
-
PI ) by
XREAL_1: 9;
then (th
-
PI )
in
].
0 , (
PI
/ 2).[ by
A2,
XXREAL_1: 4;
then (
cos
. (th
-
PI ))
>
0 by
SIN_COS: 80;
then
A3: (
0
- (
cos
. (th
-
PI )))
<
0 ;
(
diff (
sin ,th))
= (
cos
. (
PI
+ (th
-
PI ))) by
SIN_COS: 68
.= (
- (
cos
. (th
-
PI ))) by
SIN_COS: 78;
hence thesis by
A3;
end;
hence thesis by
FDIFF_1: 26,
ROLLE: 10,
SIN_COS: 24,
SIN_COS: 68;
end;
theorem ::
SIN_COS2:7
(
sin
|
].((3
/ 2)
*
PI ), (2
*
PI ).[) is
increasing
proof
for th st th
in
].((3
/ 2)
*
PI ), (2
*
PI ).[ holds (
diff (
sin ,th))
>
0
proof
let th such that
A1: th
in
].((3
/ 2)
*
PI ), (2
*
PI ).[;
th
< (2
*
PI ) by
A1,
XXREAL_1: 4;
then
A2: (th
- ((3
/ 2)
*
PI ))
< ((2
*
PI )
- ((3
/ 2)
*
PI )) by
XREAL_1: 9;
A3: (
diff (
sin ,th))
= (
cos
. (
PI
+ ((
PI
/ 2)
+ (th
- ((3
/ 2)
*
PI ))))) by
SIN_COS: 68
.= (
- (
cos
. ((
PI
/ 2)
+ (th
- ((3
/ 2)
*
PI ))))) by
SIN_COS: 78
.= (
- (
- (
sin
. (th
- ((3
/ 2)
*
PI ))))) by
SIN_COS: 78
.= (
sin
. (th
- ((3
/ 2)
*
PI )));
((3
/ 2)
*
PI )
< th by
A1,
XXREAL_1: 4;
then (((3
/ 2)
*
PI )
- ((3
/ 2)
*
PI ))
< (th
- ((3
/ 2)
*
PI )) by
XREAL_1: 9;
then (th
- ((3
/ 2)
*
PI ))
in
].
0 , (
PI
/ 2).[ by
A2,
XXREAL_1: 4;
hence thesis by
A3,
Lm1;
end;
hence thesis by
FDIFF_1: 26,
ROLLE: 9,
SIN_COS: 24,
SIN_COS: 68;
end;
theorem ::
SIN_COS2:8
(
cos
|
].
PI , ((3
/ 2)
*
PI ).[) is
increasing
proof
for th st th
in
].
PI , ((3
/ 2)
*
PI ).[ holds (
diff (
cos ,th))
>
0
proof
let th such that
A1: th
in
].
PI , ((3
/ 2)
*
PI ).[;
th
< ((3
/ 2)
*
PI ) by
A1,
XXREAL_1: 4;
then
A2: (th
-
PI )
< (((3
/ 2)
*
PI )
-
PI ) by
XREAL_1: 9;
A3: (
diff (
cos ,th))
= (
- (
sin
. (
PI
+ (th
-
PI )))) by
SIN_COS: 67
.= (
- (
- (
sin
. (th
-
PI )))) by
SIN_COS: 78
.= (
sin
. (th
-
PI ));
PI
< th by
A1,
XXREAL_1: 4;
then (
PI
-
PI )
< (th
-
PI ) by
XREAL_1: 9;
then (th
-
PI )
in
].
0 , (
PI
/ 2).[ by
A2,
XXREAL_1: 4;
hence thesis by
A3,
Lm1;
end;
hence thesis by
FDIFF_1: 26,
ROLLE: 9,
SIN_COS: 24,
SIN_COS: 67;
end;
theorem ::
SIN_COS2:9
(
cos
|
].((3
/ 2)
*
PI ), (2
*
PI ).[) is
increasing
proof
for th st th
in
].((3
/ 2)
*
PI ), (2
*
PI ).[ holds (
diff (
cos ,th))
>
0
proof
let th such that
A1: th
in
].((3
/ 2)
*
PI ), (2
*
PI ).[;
th
< (2
*
PI ) by
A1,
XXREAL_1: 4;
then
A2: (th
- ((3
/ 2)
*
PI ))
< ((2
*
PI )
- ((3
/ 2)
*
PI )) by
XREAL_1: 9;
A3: (
diff (
cos ,th))
= (
- (
sin
. (
PI
+ ((
PI
/ 2)
+ (th
- ((3
/ 2)
*
PI )))))) by
SIN_COS: 67
.= (
- (
- (
sin
. ((
PI
/ 2)
+ (th
- ((3
/ 2)
*
PI )))))) by
SIN_COS: 78
.= (
cos
. (th
- ((3
/ 2)
*
PI ))) by
SIN_COS: 78;
((3
/ 2)
*
PI )
< th by
A1,
XXREAL_1: 4;
then (((3
/ 2)
*
PI )
- ((3
/ 2)
*
PI ))
< (th
- ((3
/ 2)
*
PI )) by
XREAL_1: 9;
then (th
- ((3
/ 2)
*
PI ))
in
].
0 , (
PI
/ 2).[ by
A2,
XXREAL_1: 4;
hence thesis by
A3,
SIN_COS: 80;
end;
hence thesis by
FDIFF_1: 26,
ROLLE: 9,
SIN_COS: 24,
SIN_COS: 67;
end;
theorem ::
SIN_COS2:10
for n be
Nat holds (
sin
. th)
= (
sin
. (((2
*
PI )
* n)
+ th))
proof
defpred
X[
Nat] means for th holds (
sin
. th)
= (
sin
. (((2
*
PI )
* $1)
+ th));
let n be
Nat;
A1: for n be
Nat st
X[n] holds
X[(n
+ 1)]
proof
let n be
Nat such that
A2: for th holds (
sin
. th)
= (
sin
. (((2
*
PI )
* n)
+ th));
for th holds (
sin
. th)
= (
sin
. (((2
*
PI )
* (n
+ 1))
+ th))
proof
let th;
(
sin
. (((2
*
PI )
* (n
+ 1))
+ th))
= (
sin
. ((((2
*
PI )
* n)
+ th)
+ (2
*
PI )))
.= (
sin
. (((2
*
PI )
* n)
+ th)) by
SIN_COS: 78
.= (
sin
. th) by
A2;
hence thesis;
end;
hence thesis;
end;
A3:
X[
0 ];
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A3,
A1);
hence thesis;
end;
theorem ::
SIN_COS2:11
for n be
Nat holds (
cos
. th)
= (
cos
. (((2
*
PI )
* n)
+ th))
proof
defpred
X[
Nat] means for th holds (
cos
. th)
= (
cos
. (((2
*
PI )
* $1)
+ th));
let n be
Nat;
A1: for n be
Nat st
X[n] holds
X[(n
+ 1)]
proof
let n be
Nat such that
A2: for th holds (
cos
. th)
= (
cos
. (((2
*
PI )
* n)
+ th));
for th holds (
cos
. th)
= (
cos
. (((2
*
PI )
* (n
+ 1))
+ th))
proof
let th;
(
cos
. (((2
*
PI )
* (n
+ 1))
+ th))
= (
cos
. ((((2
*
PI )
* n)
+ th)
+ (2
*
PI )))
.= (
cos
. (((2
*
PI )
* n)
+ th)) by
SIN_COS: 78
.= (
cos
. th) by
A2;
hence thesis;
end;
hence thesis;
end;
A3:
X[
0 ];
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A3,
A1);
hence thesis;
end;
begin
definition
::
SIN_COS2:def1
func
sinh ->
Function of
REAL ,
REAL means
:
Def1: for d be
Real holds (it
. d)
= (((
exp_R
. d)
- (
exp_R
. (
- d)))
/ 2);
existence
proof
deffunc
U(
Real) = (
In ((((
exp_R
. $1)
- (
exp_R
. (
- $1)))
/ 2),
REAL ));
consider f be
Function of
REAL ,
REAL such that
A1: for d be
Element of
REAL holds (f
. d)
=
U(d) from
FUNCT_2:sch 4;
take f;
let d be
Real;
d
in
REAL by
XREAL_0:def 1;
then (f
. d)
=
U(d) by
A1;
hence thesis;
end;
uniqueness
proof
let f1,f2 be
Function of
REAL ,
REAL ;
assume
A2: for d be
Real holds (f1
. d)
= (((
exp_R
. d)
- (
exp_R
. (
- d)))
/ 2);
assume
A3: for d be
Real holds (f2
. d)
= (((
exp_R
. d)
- (
exp_R
. (
- d)))
/ 2);
for d be
Element of
REAL holds (f1
. d)
= (f2
. d)
proof
let d be
Element of
REAL ;
thus (f1
. d)
= (((
exp_R
. d)
- (
exp_R
. (
- d)))
/ 2) by
A2
.= (f2
. d) by
A3;
end;
hence f1
= f2 by
FUNCT_2: 63;
end;
end
definition
let d be
object;
::
SIN_COS2:def2
func
sinh (d) ->
number equals (
sinh
. d);
coherence ;
end
registration
let d be
object;
cluster (
sinh d) ->
real;
coherence ;
end
definition
::
SIN_COS2:def3
func
cosh ->
Function of
REAL ,
REAL means
:
Def3: for d be
Real holds (it
. d)
= (((
exp_R
. d)
+ (
exp_R
. (
- d)))
/ 2);
existence
proof
deffunc
U(
Real) = (
In ((((
exp_R
. $1)
+ (
exp_R
. (
- $1)))
/ 2),
REAL ));
consider f be
Function of
REAL ,
REAL such that
A1: for d be
Element of
REAL holds (f
. d)
=
U(d) from
FUNCT_2:sch 4;
take f;
let d be
Real;
d
in
REAL by
XREAL_0:def 1;
then (f
. d)
=
U(d) by
A1;
hence thesis;
end;
uniqueness
proof
let f1,f2 be
Function of
REAL ,
REAL ;
assume
A2: for d be
Real holds (f1
. d)
= (((
exp_R
. d)
+ (
exp_R
. (
- d)))
/ 2);
assume
A3: for d be
Real holds (f2
. d)
= (((
exp_R
. d)
+ (
exp_R
. (
- d)))
/ 2);
for d be
Element of
REAL holds (f1
. d)
= (f2
. d)
proof
let d be
Element of
REAL ;
thus (f1
. d)
= (((
exp_R
. d)
+ (
exp_R
. (
- d)))
/ 2) by
A2
.= (f2
. d) by
A3;
end;
hence f1
= f2 by
FUNCT_2: 63;
end;
end
definition
let d be
object;
::
SIN_COS2:def4
func
cosh (d) ->
number equals (
cosh
. d);
coherence ;
end
registration
let d be
object;
cluster (
cosh d) ->
real;
coherence ;
end
definition
::
SIN_COS2:def5
func
tanh ->
Function of
REAL ,
REAL means
:
Def5: for d be
Real holds (it
. d)
= (((
exp_R
. d)
- (
exp_R
. (
- d)))
/ ((
exp_R
. d)
+ (
exp_R
. (
- d))));
existence
proof
deffunc
U(
Real) = (
In ((((
exp_R
. $1)
- (
exp_R
. (
- $1)))
/ ((
exp_R
. $1)
+ (
exp_R
. (
- $1)))),
REAL ));
consider f be
Function of
REAL ,
REAL such that
A1: for d be
Element of
REAL holds (f
. d)
=
U(d) from
FUNCT_2:sch 4;
take f;
let d be
Real;
d
in
REAL by
XREAL_0:def 1;
then (f
. d)
=
U(d) by
A1;
hence thesis;
end;
uniqueness
proof
let f1,f2 be
Function of
REAL ,
REAL ;
assume
A2: for d be
Real holds (f1
. d)
= (((
exp_R
. d)
- (
exp_R
. (
- d)))
/ ((
exp_R
. d)
+ (
exp_R
. (
- d))));
assume
A3: for d be
Real holds (f2
. d)
= (((
exp_R
. d)
- (
exp_R
. (
- d)))
/ ((
exp_R
. d)
+ (
exp_R
. (
- d))));
for d be
Element of
REAL holds (f1
. d)
= (f2
. d)
proof
let d be
Element of
REAL ;
thus (f1
. d)
= (((
exp_R
. d)
- (
exp_R
. (
- d)))
/ ((
exp_R
. d)
+ (
exp_R
. (
- d)))) by
A2
.= (f2
. d) by
A3;
end;
hence f1
= f2 by
FUNCT_2: 63;
end;
end
definition
let d be
object;
::
SIN_COS2:def6
func
tanh (d) ->
number equals (
tanh
. d);
coherence ;
end
registration
let d be
object;
cluster (
tanh d) ->
real;
coherence ;
end
theorem ::
SIN_COS2:12
Th12: (
exp_R
. (p
+ q))
= ((
exp_R
. p)
* (
exp_R
. q))
proof
(
exp_R
. (p
+ q))
= (
exp_R (p
+ q)) by
SIN_COS:def 23
.= ((
exp_R p)
* (
exp_R q)) by
SIN_COS: 50
.= ((
exp_R
. p)
* (
exp_R q)) by
SIN_COS:def 23
.= ((
exp_R
. p)
* (
exp_R
. q)) by
SIN_COS:def 23;
hence thesis;
end;
theorem ::
SIN_COS2:13
Th13: (
exp_R
.
0 )
= 1 by
SIN_COS: 51,
SIN_COS:def 23;
theorem ::
SIN_COS2:14
Th14: (((
cosh
. p)
^2 )
- ((
sinh
. p)
^2 ))
= 1 & (((
cosh
. p)
* (
cosh
. p))
- ((
sinh
. p)
* (
sinh
. p)))
= 1
proof
A1: ((
sinh
. p)
* (
sinh
. p))
= ((((
exp_R
. p)
- (
exp_R
. (
- p)))
/ 2)
* (
sinh
. p)) by
Def1
.= ((((
exp_R
. p)
- (
exp_R
. (
- p)))
/ 2)
* (((
exp_R
. p)
- (
exp_R
. (
- p)))
/ 2)) by
Def1
.= ((((((
exp_R
. p)
* (
exp_R
. p))
- ((
exp_R
. p)
* (
exp_R
. (
- p))))
- ((
exp_R
. (
- p))
* (
exp_R
. p)))
+ ((
exp_R
. (
- p))
* (
exp_R
. (
- p))))
/ (2
* 2))
.= (((((
exp_R
. (p
+ p))
- ((
exp_R
. p)
* (
exp_R
. (
- p))))
- ((
exp_R
. (
- p))
* (
exp_R
. p)))
+ ((
exp_R
. (
- p))
* (
exp_R
. (
- p))))
/ 4) by
Th12
.= (((((
exp_R
. (p
+ p))
- (
exp_R
. (p
+ (
- p))))
- ((
exp_R
. (
- p))
* (
exp_R
. p)))
+ ((
exp_R
. (
- p))
* (
exp_R
. (
- p))))
/ 4) by
Th12
.= (((((
exp_R
. (p
+ p))
- (
exp_R
. (p
+ (
- p))))
- ((
exp_R
. (
- p))
* (
exp_R
. p)))
+ (
exp_R
. ((
- p)
+ (
- p))))
/ 4) by
Th12
.= (((((
exp_R
. (p
+ p))
- 1)
- 1)
+ (
exp_R
. ((
- p)
+ (
- p))))
/ 4) by
Th12,
Th13;
((
cosh
. p)
* (
cosh
. p))
= ((((
exp_R
. p)
+ (
exp_R
. (
- p)))
/ 2)
* (
cosh
. p)) by
Def3
.= ((((
exp_R
. p)
+ (
exp_R
. (
- p)))
/ 2)
* (((
exp_R
. p)
+ (
exp_R
. (
- p)))
/ 2)) by
Def3
.= ((((((
exp_R
. p)
* (
exp_R
. p))
+ ((
exp_R
. p)
* (
exp_R
. (
- p))))
+ ((
exp_R
. (
- p))
* (
exp_R
. p)))
+ ((
exp_R
. (
- p))
* (
exp_R
. (
- p))))
/ (2
* 2))
.= (((((
exp_R
. (p
+ p))
+ ((
exp_R
. p)
* (
exp_R
. (
- p))))
+ ((
exp_R
. (
- p))
* (
exp_R
. p)))
+ ((
exp_R
. (
- p))
* (
exp_R
. (
- p))))
/ 4) by
Th12
.= (((((
exp_R
. (p
+ p))
+ (
exp_R
. (p
+ (
- p))))
+ ((
exp_R
. (
- p))
* (
exp_R
. p)))
+ ((
exp_R
. (
- p))
* (
exp_R
. (
- p))))
/ 4) by
Th12
.= (((((
exp_R
. (p
+ p))
+ (
exp_R
. (p
+ (
- p))))
+ ((
exp_R
. (
- p))
* (
exp_R
. p)))
+ (
exp_R
. ((
- p)
+ (
- p))))
/ 4) by
Th12
.= (((((
exp_R
. (p
+ p))
+ 1)
+ 1)
+ (
exp_R
. ((
- p)
+ (
- p))))
/ 4) by
Th12,
Th13
.= ((((
exp_R
. (p
+ p))
+ 2)
+ (
exp_R
. ((
- p)
+ (
- p))))
/ 4);
hence thesis by
A1;
end;
Lm2: (
cosh
. (p
+ r))
= (((
cosh
. p)
* (
cosh
. r))
+ ((
sinh
. p)
* (
sinh
. r)))
proof
(((
cosh
. p)
* (
cosh
. r))
+ ((
sinh
. p)
* (
sinh
. r)))
= (((((
exp_R
. p)
+ (
exp_R
. (
- p)))
/ 2)
* (
cosh
. r))
+ ((
sinh
. p)
* (
sinh
. r))) by
Def3
.= (((((
exp_R
. p)
+ (
exp_R
. (
- p)))
/ 2)
* (((
exp_R
. r)
+ (
exp_R
. (
- r)))
/ 2))
+ ((
sinh
. p)
* (
sinh
. r))) by
Def3
.= (((((
exp_R
. p)
+ (
exp_R
. (
- p)))
/ 2)
* (((
exp_R
. r)
+ (
exp_R
. (
- r)))
/ 2))
+ ((((
exp_R
. p)
- (
exp_R
. (
- p)))
/ 2)
* (
sinh
. r))) by
Def1
.= (((((
exp_R
. p)
+ (
exp_R
. (
- p)))
/ 2)
* (((
exp_R
. r)
+ (
exp_R
. (
- r)))
/ 2))
+ ((((
exp_R
. p)
- (
exp_R
. (
- p)))
/ 2)
* (((
exp_R
. r)
- (
exp_R
. (
- r)))
/ 2))) by
Def1
.= (((2
* ((
exp_R
. p)
* (
exp_R
. r)))
+ (2
* ((
exp_R
. (
- p))
* (
exp_R
. (
- r)))))
/ 4)
.= (((2
* (
exp_R
. (p
+ r)))
+ (2
* ((
exp_R
. (
- p))
* (
exp_R
. (
- r)))))
/ 4) by
Th12
.= (((2
* (
exp_R
. (p
+ r)))
+ (2
* (
exp_R
. ((
- p)
+ (
- r)))))
/ 4) by
Th12
.= (((
exp_R
. (p
+ r))
+ (
exp_R
. (
- (p
+ r))))
/ 2)
.= (
cosh
. (p
+ r)) by
Def3;
hence thesis;
end;
Lm3: (
sinh
. (p
+ r))
= (((
sinh
. p)
* (
cosh
. r))
+ ((
cosh
. p)
* (
sinh
. r)))
proof
(((
sinh
. p)
* (
cosh
. r))
+ ((
cosh
. p)
* (
sinh
. r)))
= (((((
exp_R
. p)
- (
exp_R
. (
- p)))
/ 2)
* (
cosh
. r))
+ ((
cosh
. p)
* (
sinh
. r))) by
Def1
.= (((((
exp_R
. p)
- (
exp_R
. (
- p)))
/ 2)
* (((
exp_R
. r)
+ (
exp_R
. (
- r)))
/ 2))
+ ((
cosh
. p)
* (
sinh
. r))) by
Def3
.= (((((
exp_R
. p)
- (
exp_R
. (
- p)))
/ 2)
* (((
exp_R
. r)
+ (
exp_R
. (
- r)))
/ 2))
+ ((((
exp_R
. p)
+ (
exp_R
. (
- p)))
/ 2)
* (
sinh
. r))) by
Def3
.= (((((
exp_R
. p)
- (
exp_R
. (
- p)))
/ 2)
* (((
exp_R
. r)
+ (
exp_R
. (
- r)))
/ 2))
+ ((((
exp_R
. p)
+ (
exp_R
. (
- p)))
/ 2)
* (((
exp_R
. r)
- (
exp_R
. (
- r)))
/ 2))) by
Def1
.= (((2
* ((
exp_R
. p)
* (
exp_R
. r)))
+ (2
* (
- ((
exp_R
. (
- p))
* (
exp_R
. (
- r))))))
/ 4)
.= (((2
* (
exp_R
. (p
+ r)))
+ (2
* (
- ((
exp_R
. (
- p))
* (
exp_R
. (
- r))))))
/ 4) by
Th12
.= (((2
* (
exp_R
. (p
+ r)))
+ (2
* (
- (
exp_R
. ((
- p)
+ (
- r))))))
/ 4) by
Th12
.= (((
exp_R
. (p
+ r))
- (
exp_R
. (
- (p
+ r))))
/ 2)
.= (
sinh
. (p
+ r)) by
Def1;
hence thesis;
end;
theorem ::
SIN_COS2:15
Th15: (
cosh
. p)
<>
0 & (
cosh
. p)
>
0 & (
cosh
.
0 )
= 1
proof
(
exp_R
. p)
>
0 & (
exp_R
. (
- p))
>
0 by
SIN_COS: 54;
then
A1: (((
exp_R
. p)
+ (
exp_R
. (
- p)))
/ 2)
>
0 by
XREAL_1: 139;
(
cosh
.
0 )
= (((
exp_R
.
0 )
+ (
exp_R
. (
-
0 )))
/ 2) by
Def3
.= 1 by
SIN_COS: 51,
SIN_COS:def 23;
hence thesis by
A1,
Def3;
end;
theorem ::
SIN_COS2:16
Th16: (
sinh
.
0 )
=
0
proof
(
sinh
.
0 )
= (((
exp_R
.
0 )
- (
exp_R
. (
-
0 )))
/ 2) by
Def1
.=
0 ;
hence thesis;
end;
theorem ::
SIN_COS2:17
Th17: (
tanh
. p)
= ((
sinh
. p)
/ (
cosh
. p))
proof
((
sinh
. p)
/ (
cosh
. p))
= ((((
exp_R
. p)
- (
exp_R
. (
- p)))
/ 2)
/ (
cosh
. p)) by
Def1
.= ((((
exp_R
. p)
- (
exp_R
. (
- p)))
/ 2)
/ (((
exp_R
. p)
+ (
exp_R
. (
- p)))
/ 2)) by
Def3
.= (((
exp_R
. p)
- (
exp_R
. (
- p)))
/ ((
exp_R
. p)
+ (
exp_R
. (
- p)))) by
XCMPLX_1: 55
.= (
tanh
. p) by
Def5;
hence thesis;
end;
Lm4: for a1 be
Real holds r
<>
0 & q
<>
0 implies (((p
* q)
+ (r
* a1))
/ ((r
* q)
+ (p
* a1)))
= (((p
/ r)
+ (a1
/ q))
/ (1
+ ((p
/ r)
* (a1
/ q))))
proof
let a1 be
Real;
assume that
A1: r
<>
0 and
A2: q
<>
0 ;
(((p
* q)
+ (r
* a1))
/ ((r
* q)
+ (p
* a1)))
= ((((p
* q)
+ (r
* a1))
/ (r
* q))
/ (((r
* q)
+ (p
* a1))
/ (r
* q))) by
A1,
A2,
XCMPLX_1: 6,
XCMPLX_1: 55
.= ((((p
* q)
/ (r
* q))
+ ((r
* a1)
/ (r
* q)))
/ (((r
* q)
+ (p
* a1))
/ (r
* q))) by
XCMPLX_1: 62
.= ((((p
* q)
/ (r
* q))
+ ((r
* a1)
/ (r
* q)))
/ (((r
* q)
/ (r
* q))
+ ((p
* a1)
/ (r
* q)))) by
XCMPLX_1: 62
.= (((p
/ r)
+ ((a1
* r)
/ (q
* r)))
/ (((r
* q)
/ (r
* q))
+ ((p
* a1)
/ (r
* q)))) by
A2,
XCMPLX_1: 91
.= (((p
/ r)
+ (a1
/ q))
/ (((r
* q)
/ (r
* q))
+ ((p
* a1)
/ (r
* q)))) by
A1,
XCMPLX_1: 91
.= (((p
/ r)
+ (a1
/ q))
/ (1
+ ((p
* a1)
/ (r
* q)))) by
A1,
A2,
XCMPLX_1: 6,
XCMPLX_1: 60
.= (((p
/ r)
+ (a1
/ q))
/ (1
+ ((p
/ r)
* (a1
/ q)))) by
XCMPLX_1: 76;
hence thesis;
end;
Lm5: (
tanh
. (p
+ r))
= (((
tanh
. p)
+ (
tanh
. r))
/ (1
+ ((
tanh
. p)
* (
tanh
. r))))
proof
A1: (
cosh
. r)
<>
0 & (
cosh
. p)
<>
0 by
Th15;
(
tanh
. (p
+ r))
= ((
sinh
. (p
+ r))
/ (
cosh
. (p
+ r))) by
Th17
.= ((((
sinh
. p)
* (
cosh
. r))
+ ((
cosh
. p)
* (
sinh
. r)))
/ (
cosh
. (p
+ r))) by
Lm3
.= ((((
sinh
. p)
* (
cosh
. r))
+ ((
cosh
. p)
* (
sinh
. r)))
/ (((
cosh
. p)
* (
cosh
. r))
+ ((
sinh
. p)
* (
sinh
. r)))) by
Lm2
.= ((((
sinh
. p)
/ (
cosh
. p))
+ ((
sinh
. r)
/ (
cosh
. r)))
/ (1
+ (((
sinh
. p)
/ (
cosh
. p))
* ((
sinh
. r)
/ (
cosh
. r))))) by
A1,
Lm4
.= (((
tanh
. p)
+ ((
sinh
. r)
/ (
cosh
. r)))
/ (1
+ (((
sinh
. p)
/ (
cosh
. p))
* ((
sinh
. r)
/ (
cosh
. r))))) by
Th17
.= (((
tanh
. p)
+ (
tanh
. r))
/ (1
+ (((
sinh
. p)
/ (
cosh
. p))
* ((
sinh
. r)
/ (
cosh
. r))))) by
Th17
.= (((
tanh
. p)
+ (
tanh
. r))
/ (1
+ ((
tanh
. p)
* ((
sinh
. r)
/ (
cosh
. r))))) by
Th17
.= (((
tanh
. p)
+ (
tanh
. r))
/ (1
+ ((
tanh
. p)
* (
tanh
. r)))) by
Th17;
hence thesis;
end;
theorem ::
SIN_COS2:18
Th18: ((
sinh
. p)
^2 )
= ((1
/ 2)
* ((
cosh
. (2
* p))
- 1)) & ((
cosh
. p)
^2 )
= ((1
/ 2)
* ((
cosh
. (2
* p))
+ 1))
proof
A1: ((
cosh
. p)
^2 )
= ((((
exp_R
. p)
+ (
exp_R
. (
- p)))
/ 2)
* (
cosh
. p)) by
Def3
.= ((((
exp_R
. p)
+ (
exp_R
. (
- p)))
/ 2)
* (((
exp_R
. p)
+ (
exp_R
. (
- p)))
/ 2)) by
Def3
.= ((((((
exp_R
. p)
* (
exp_R
. p))
+ ((
exp_R
. p)
* (
exp_R
. (
- p))))
+ ((
exp_R
. (
- p))
* (
exp_R
. p)))
+ ((
exp_R
. (
- p))
* (
exp_R
. (
- p))))
/ 4)
.= (((((
exp_R
. (p
+ p))
+ ((
exp_R
. p)
* (
exp_R
. (
- p))))
+ ((
exp_R
. p)
* (
exp_R
. (
- p))))
+ ((
exp_R
. (
- p))
* (
exp_R
. (
- p))))
/ 4) by
Th12
.= (((((
exp_R
. (p
+ p))
+ ((
exp_R
. p)
* (
exp_R
. (
- p))))
+ ((
exp_R
. p)
* (
exp_R
. (
- p))))
+ (
exp_R
. ((
- p)
+ (
- p))))
/ 4) by
Th12
.= (((((
exp_R
. (p
+ p))
+ (
exp_R
. (p
+ (
- p))))
+ ((
exp_R
. p)
* (
exp_R
. (
- p))))
+ (
exp_R
. ((
- p)
+ (
- p))))
/ 4) by
Th12
.= (((((
exp_R
. (p
+ p))
+ (
exp_R
. (p
+ (
- p))))
+ (
exp_R
. (p
+ (
- p))))
+ (
exp_R
. ((
- p)
+ (
- p))))
/ 4) by
Th12
.= ((((
exp_R
. (2
* p))
+ (2
* (
exp_R
.
0 )))
+ (
exp_R
. ((
- p)
+ (
- p))))
/ 4)
.= ((((
exp_R
. (2
* p))
+ (2
* 1))
+ (
exp_R
. (
- (2
* p))))
/ 4) by
SIN_COS: 51,
SIN_COS:def 23
.= (((1
/ 2)
* (((
exp_R
. (2
* p))
+ (
exp_R
. (
- (2
* p))))
/ 2))
+ ((1
* 2)
/ (2
* 2)))
.= (((1
/ 2)
* (
cosh
. (2
* p)))
+ ((1
/ 2)
* ((2
* 1)
/ 2))) by
Def3
.= ((1
/ 2)
* ((
cosh
. (2
* p))
+ 1));
((
sinh
. p)
^2 )
= ((((
exp_R
. p)
- (
exp_R
. (
- p)))
/ 2)
* (
sinh
. p)) by
Def1
.= ((((
exp_R
. p)
- (
exp_R
. (
- p)))
/ 2)
* (((
exp_R
. p)
- (
exp_R
. (
- p)))
/ 2)) by
Def1
.= ((((((
exp_R
. p)
* (
exp_R
. p))
- ((
exp_R
. p)
* (
exp_R
. (
- p))))
- ((
exp_R
. (
- p))
* (
exp_R
. p)))
+ ((
exp_R
. (
- p))
* (
exp_R
. (
- p))))
/ 4)
.= (((((
exp_R
. (p
+ p))
- ((
exp_R
. p)
* (
exp_R
. (
- p))))
- ((
exp_R
. p)
* (
exp_R
. (
- p))))
+ ((
exp_R
. (
- p))
* (
exp_R
. (
- p))))
/ 4) by
Th12
.= (((((
exp_R
. (p
+ p))
- ((
exp_R
. p)
* (
exp_R
. (
- p))))
- ((
exp_R
. p)
* (
exp_R
. (
- p))))
+ (
exp_R
. ((
- p)
+ (
- p))))
/ 4) by
Th12
.= (((((
exp_R
. (p
+ p))
- (
exp_R
. (p
+ (
- p))))
- ((
exp_R
. p)
* (
exp_R
. (
- p))))
+ (
exp_R
. ((
- p)
+ (
- p))))
/ 4) by
Th12
.= (((((
exp_R
. (p
+ p))
+ (
- (
exp_R
. (p
+ (
- p)))))
- (
exp_R
. (p
+ (
- p))))
+ (
exp_R
. ((
- p)
+ (
- p))))
/ 4) by
Th12
.= ((((
exp_R
. (2
* p))
+ (2
* (
- (
exp_R
.
0 ))))
+ (
exp_R
. ((
- p)
+ (
- p))))
/ 4)
.= ((((
exp_R
. (2
* p))
+ (2
* (
- 1)))
+ (
exp_R
. (
- (2
* p))))
/ 4) by
SIN_COS: 51,
SIN_COS:def 23
.= (((1
/ 2)
* (((
exp_R
. (2
* p))
+ (
exp_R
. (
- (2
* p))))
/ 2))
+ (((
- 1)
* 2)
/ (2
* 2)))
.= (((1
/ 2)
* (
cosh
. (2
* p)))
+ ((1
/ 2)
* ((2
* (
- 1))
/ 2))) by
Def3
.= ((1
/ 2)
* ((
cosh
. (2
* p))
- 1));
hence thesis by
A1;
end;
Lm6: (
sinh
. (2
* p))
= ((2
* (
sinh
. p))
* (
cosh
. p)) & (
cosh
. (2
* p))
= ((2
* ((
cosh
. p)
^2 ))
- 1)
proof
A1: (2
* ((
cosh
. p)
^2 ))
= (2
* ((1
/ 2)
* ((
cosh
. (2
* p))
+ 1))) by
Th18
.= ((
cosh
. (2
* p))
+ 1);
((2
* (
sinh
. p))
* (
cosh
. p))
= ((2
* (((
exp_R
. p)
- (
exp_R
. (
- p)))
/ 2))
* (
cosh
. p)) by
Def1
.= ((2
* (((
exp_R
. p)
- (
exp_R
. (
- p)))
/ 2))
* (((
exp_R
. p)
+ (
exp_R
. (
- p)))
/ 2)) by
Def3
.= ((2
/ 4)
* (((
exp_R
. p)
^2 )
- ((
exp_R
. (
- p))
^2 )))
.= ((2
/ 4)
* ((
exp_R
. (p
+ p))
- ((
exp_R
. (
- p))
* (
exp_R
. (
- p))))) by
Th12
.= ((2
/ 4)
* ((
exp_R
. (2
* p))
- (
exp_R
. ((
- p)
+ (
- p))))) by
Th12
.= ((((
exp_R
. (2
* p))
- (
exp_R
. (
- (2
* p))))
/ 2)
* 1)
.= (
sinh
. (2
* p)) by
Def1;
hence thesis by
A1;
end;
theorem ::
SIN_COS2:19
Th19: (
cosh
. (
- p))
= (
cosh
. p) & (
sinh
. (
- p))
= (
- (
sinh
. p)) & (
tanh
. (
- p))
= (
- (
tanh
. p))
proof
A1: (
cosh
. (
- p))
= (((
exp_R
. (
- p))
+ (
exp_R
. (
- (
- p))))
/ 2) by
Def3
.= (
cosh
. p) by
Def3;
A2: (
sinh
. (
- p))
= (((
exp_R
. (
- p))
- (
exp_R
. (
- (
- p))))
/ 2) by
Def1
.= (
- (((
exp_R
. p)
- (
exp_R
. (
- p)))
/ 2))
.= (
- (
sinh
. p)) by
Def1;
then (
tanh
. (
- p))
= ((
- (
sinh
. p))
/ (
cosh
. (
- p))) by
Th17
.= (
- ((
sinh
. p)
/ (
cosh
. p))) by
A1,
XCMPLX_1: 187
.= (
- (
tanh
. p)) by
Th17;
hence thesis by
A1,
A2;
end;
Lm7: (
cosh
. (p
- r))
= (((
cosh
. p)
* (
cosh
. r))
- ((
sinh
. p)
* (
sinh
. r)))
proof
(
cosh
. (p
- r))
= (
cosh
. (p
+ (
- r)))
.= (((
cosh
. p)
* (
cosh
. (
- r)))
+ ((
sinh
. p)
* (
sinh
. (
- r)))) by
Lm2
.= (((
cosh
. p)
* (
cosh
. r))
+ ((
sinh
. p)
* (
sinh
. (
- r)))) by
Th19
.= (((
cosh
. p)
* (
cosh
. r))
+ ((
sinh
. p)
* (
- (
sinh
. r)))) by
Th19
.= (((
cosh
. p)
* (
cosh
. r))
- ((
sinh
. p)
* (
sinh
. r)));
hence thesis;
end;
theorem ::
SIN_COS2:20
(
cosh
. (p
+ r))
= (((
cosh
. p)
* (
cosh
. r))
+ ((
sinh
. p)
* (
sinh
. r))) & (
cosh
. (p
- r))
= (((
cosh
. p)
* (
cosh
. r))
- ((
sinh
. p)
* (
sinh
. r))) by
Lm2,
Lm7;
Lm8: (
sinh
. (p
- r))
= (((
sinh
. p)
* (
cosh
. r))
- ((
cosh
. p)
* (
sinh
. r)))
proof
(
sinh
. (p
- r))
= (
sinh
. (p
+ (
- r)))
.= (((
sinh
. p)
* (
cosh
. (
- r)))
+ ((
cosh
. p)
* (
sinh
. (
- r)))) by
Lm3
.= (((
sinh
. p)
* (
cosh
. r))
+ ((
cosh
. p)
* (
sinh
. (
- r)))) by
Th19
.= (((
sinh
. p)
* (
cosh
. r))
+ ((
cosh
. p)
* (
- (
sinh
. r)))) by
Th19
.= (((
sinh
. p)
* (
cosh
. r))
- ((
cosh
. p)
* (
sinh
. r)));
hence thesis;
end;
theorem ::
SIN_COS2:21
(
sinh
. (p
+ r))
= (((
sinh
. p)
* (
cosh
. r))
+ ((
cosh
. p)
* (
sinh
. r))) & (
sinh
. (p
- r))
= (((
sinh
. p)
* (
cosh
. r))
- ((
cosh
. p)
* (
sinh
. r))) by
Lm3,
Lm8;
Lm9: (
tanh
. (p
- r))
= (((
tanh
. p)
- (
tanh
. r))
/ (1
- ((
tanh
. p)
* (
tanh
. r))))
proof
(
tanh
. (p
- r))
= (
tanh
. (p
+ (
- r)))
.= (((
tanh
. p)
+ (
tanh
. (
- r)))
/ (1
+ ((
tanh
. p)
* (
tanh
. (
- r))))) by
Lm5
.= (((
tanh
. p)
+ (
- (
tanh
. r)))
/ (1
+ ((
tanh
. p)
* (
tanh
. (
- r))))) by
Th19
.= (((
tanh
. p)
- (
tanh
. r))
/ (1
+ ((
tanh
. p)
* (
- (
tanh
. r))))) by
Th19
.= (((
tanh
. p)
- (
tanh
. r))
/ (1
- ((
tanh
. p)
* (
tanh
. r))));
hence thesis;
end;
theorem ::
SIN_COS2:22
(
tanh
. (p
+ r))
= (((
tanh
. p)
+ (
tanh
. r))
/ (1
+ ((
tanh
. p)
* (
tanh
. r)))) & (
tanh
. (p
- r))
= (((
tanh
. p)
- (
tanh
. r))
/ (1
- ((
tanh
. p)
* (
tanh
. r)))) by
Lm5,
Lm9;
theorem ::
SIN_COS2:23
(
sinh
. (2
* p))
= ((2
* (
sinh
. p))
* (
cosh
. p)) & (
cosh
. (2
* p))
= ((2
* ((
cosh
. p)
^2 ))
- 1) & (
tanh
. (2
* p))
= ((2
* (
tanh
. p))
/ (1
+ ((
tanh
. p)
^2 )))
proof
(
tanh
. (2
* p))
= (
tanh
. (p
+ p))
.= (((
tanh
. p)
+ (
tanh
. p))
/ (1
+ ((
tanh
. p)
* (
tanh
. p)))) by
Lm5
.= ((2
* (
tanh
. p))
/ (1
+ ((
tanh
. p)
^2 )));
hence thesis by
Lm6;
end;
theorem ::
SIN_COS2:24
Th24: (((
sinh
. p)
^2 )
- ((
sinh
. q)
^2 ))
= ((
sinh
. (p
+ q))
* (
sinh
. (p
- q))) & ((
sinh
. (p
+ q))
* (
sinh
. (p
- q)))
= (((
cosh
. p)
^2 )
- ((
cosh
. q)
^2 )) & (((
sinh
. p)
^2 )
- ((
sinh
. q)
^2 ))
= (((
cosh
. p)
^2 )
- ((
cosh
. q)
^2 ))
proof
A1: ((
sinh
. (p
+ q))
* (
sinh
. (p
- q)))
= ((((
sinh
. p)
* (
cosh
. q))
+ ((
cosh
. p)
* (
sinh
. q)))
* (
sinh
. (p
+ (
- q)))) by
Lm3
.= ((((
sinh
. p)
* (
cosh
. q))
+ ((
cosh
. p)
* (
sinh
. q)))
* (((
sinh
. p)
* (
cosh
. (
- q)))
+ ((
cosh
. p)
* (
sinh
. (
- q))))) by
Lm3
.= ((((
sinh
. p)
* (
cosh
. q))
+ ((
cosh
. p)
* (
sinh
. q)))
* (((
sinh
. p)
* (
cosh
. q))
+ ((
cosh
. p)
* (
sinh
. (
- q))))) by
Th19
.= ((((
sinh
. p)
* (
cosh
. q))
+ ((
cosh
. p)
* (
sinh
. q)))
* (((
sinh
. p)
* (
cosh
. q))
+ ((
cosh
. p)
* (
- (
sinh
. q))))) by
Th19
.= ((((
sinh
. p)
^2 )
* ((
cosh
. q)
^2 ))
- (((
sinh
. q)
^2 )
* ((
cosh
. p)
^2 )));
then
A2: ((
sinh
. (p
+ q))
* (
sinh
. (p
- q)))
= ((((
cosh
. q)
^2 )
* (
- (((
cosh
. p)
^2 )
- ((
sinh
. p)
^2 ))))
+ ((((
cosh
. p)
^2 )
* ((
cosh
. q)
^2 ))
+ (
- (((
sinh
. q)
^2 )
* ((
cosh
. p)
^2 )))))
.= ((((
cosh
. q)
^2 )
* (
- 1))
+ (((
cosh
. p)
^2 )
* (((
cosh
. q)
^2 )
- ((
sinh
. q)
^2 )))) by
Th14
.= ((((
cosh
. q)
^2 )
* (
- 1))
+ (((
cosh
. p)
^2 )
* 1)) by
Th14
.= (((
cosh
. p)
^2 )
- ((
cosh
. q)
^2 ));
((
sinh
. (p
+ q))
* (
sinh
. (p
- q)))
= (((((
sinh
. p)
^2 )
* (((
cosh
. q)
^2 )
- ((
sinh
. q)
^2 )))
+ (((
sinh
. q)
^2 )
* ((
sinh
. p)
^2 )))
- (((
sinh
. q)
^2 )
* ((
cosh
. p)
^2 ))) by
A1
.= (((((
sinh
. p)
^2 )
* 1)
+ (((
sinh
. p)
^2 )
* ((
sinh
. q)
^2 )))
- (((
sinh
. q)
^2 )
* ((
cosh
. p)
^2 ))) by
Th14
.= (((
sinh
. p)
^2 )
+ (((
sinh
. q)
^2 )
* (
- (((
cosh
. p)
^2 )
- ((
sinh
. p)
^2 )))))
.= (((
sinh
. p)
^2 )
+ (((
sinh
. q)
^2 )
* (
- 1))) by
Th14
.= (((
sinh
. p)
^2 )
- ((
sinh
. q)
^2 ));
hence thesis by
A2;
end;
theorem ::
SIN_COS2:25
Th25: (((
sinh
. p)
^2 )
+ ((
cosh
. q)
^2 ))
= ((
cosh
. (p
+ q))
* (
cosh
. (p
- q))) & ((
cosh
. (p
+ q))
* (
cosh
. (p
- q)))
= (((
cosh
. p)
^2 )
+ ((
sinh
. q)
^2 )) & (((
sinh
. p)
^2 )
+ ((
cosh
. q)
^2 ))
= (((
cosh
. p)
^2 )
+ ((
sinh
. q)
^2 ))
proof
A1: ((
cosh
. (p
+ q))
* (
cosh
. (p
- q)))
= ((((
cosh
. p)
* (
cosh
. q))
+ ((
sinh
. p)
* (
sinh
. q)))
* (
cosh
. (p
+ (
- q)))) by
Lm2
.= ((((
cosh
. p)
* (
cosh
. q))
+ ((
sinh
. p)
* (
sinh
. q)))
* (((
cosh
. p)
* (
cosh
. (
- q)))
+ ((
sinh
. p)
* (
sinh
. (
- q))))) by
Lm2
.= ((((((
cosh
. p)
* (
cosh
. q))
* ((
cosh
. p)
* (
cosh
. (
- q))))
+ (((
cosh
. p)
* (
cosh
. q))
* ((
sinh
. p)
* (
sinh
. (
- q)))))
+ (((
sinh
. p)
* (
sinh
. q))
* ((
cosh
. p)
* (
cosh
. (
- q)))))
+ (((
sinh
. p)
* (
sinh
. q))
* ((
sinh
. p)
* (
sinh
. (
- q)))))
.= ((((((
cosh
. p)
* (
cosh
. q))
* ((
cosh
. p)
* (
cosh
. q)))
+ (((
cosh
. p)
* (
cosh
. q))
* ((
sinh
. (
- q))
* (
sinh
. p))))
+ (((
sinh
. p)
* (
sinh
. q))
* ((
cosh
. p)
* (
cosh
. (
- q)))))
+ (((
sinh
. p)
* (
sinh
. q))
* ((
sinh
. (
- q))
* (
sinh
. p)))) by
Th19
.= ((((((
cosh
. p)
* (
cosh
. q))
^2 )
+ (((
sinh
. (
- q))
* (
sinh
. p))
* ((
cosh
. p)
* (
cosh
. q))))
+ (((
sinh
. p)
* (
sinh
. q))
* ((
cosh
. p)
* (
cosh
. q))))
+ (((
sinh
. (
- q))
* (
sinh
. p))
* ((
sinh
. p)
* (
sinh
. q)))) by
Th19
.= ((((((
cosh
. p)
* (
cosh
. q))
^2 )
+ (((
- (
sinh
. q))
* (
sinh
. p))
* ((
cosh
. p)
* (
cosh
. q))))
+ (((
sinh
. p)
* (
sinh
. q))
* ((
cosh
. p)
* (
cosh
. q))))
+ (((
sinh
. (
- q))
* (
sinh
. p))
* ((
sinh
. p)
* (
sinh
. q)))) by
Th19
.= (((((
cosh
. p)
* (
cosh
. q))
^2 )
+
0 )
+ ((((
- 1)
* (
sinh
. q))
* (
sinh
. p))
* ((
sinh
. p)
* (
sinh
. q)))) by
Th19
.= ((((
cosh
. p)
^2 )
* ((
cosh
. q)
^2 ))
- (((
sinh
. q)
^2 )
* ((
sinh
. p)
^2 )));
then
A2: ((
cosh
. (p
+ q))
* (
cosh
. (p
- q)))
= (((((
cosh
. p)
^2 )
* (((
cosh
. q)
^2 )
- ((
sinh
. q)
^2 )))
+ (((
cosh
. p)
^2 )
* ((
sinh
. q)
^2 )))
+ (
- (((
sinh
. q)
^2 )
* ((
sinh
. p)
^2 ))))
.= (((((
cosh
. p)
^2 )
* 1)
+ (((
cosh
. p)
^2 )
* ((
sinh
. q)
^2 )))
+ (
- (((
sinh
. q)
^2 )
* ((
sinh
. p)
^2 )))) by
Th14
.= (((
cosh
. p)
^2 )
+ (((
sinh
. q)
^2 )
* (((
cosh
. p)
^2 )
- ((
sinh
. p)
^2 ))))
.= (((
cosh
. p)
^2 )
+ (((
sinh
. q)
^2 )
* 1)) by
Th14
.= (((
cosh
. p)
^2 )
+ ((
sinh
. q)
^2 ));
((
cosh
. (p
+ q))
* (
cosh
. (p
- q)))
= ((((
cosh
. q)
^2 )
* (((
cosh
. p)
^2 )
- ((
sinh
. p)
^2 )))
+ ((((
cosh
. q)
^2 )
* ((
sinh
. p)
^2 ))
+ (
- (((
sinh
. p)
^2 )
* ((
sinh
. q)
^2 ))))) by
A1
.= ((((
cosh
. q)
^2 )
* 1)
+ ((((
cosh
. q)
^2 )
* ((
sinh
. p)
^2 ))
- (((
sinh
. p)
^2 )
* ((
sinh
. q)
^2 )))) by
Th14
.= (((
cosh
. q)
^2 )
+ (((
sinh
. p)
^2 )
* (((
cosh
. q)
^2 )
- ((
sinh
. q)
^2 ))))
.= (((
cosh
. q)
^2 )
+ (((
sinh
. p)
^2 )
* 1)) by
Th14
.= (((
cosh
. q)
^2 )
+ ((
sinh
. p)
^2 ));
hence thesis by
A2;
end;
theorem ::
SIN_COS2:26
((
sinh
. p)
+ (
sinh
. r))
= ((2
* (
sinh
. ((p
/ 2)
+ (r
/ 2))))
* (
cosh
. ((p
/ 2)
- (r
/ 2)))) & ((
sinh
. p)
- (
sinh
. r))
= ((2
* (
sinh
. ((p
/ 2)
- (r
/ 2))))
* (
cosh
. ((p
/ 2)
+ (r
/ 2))))
proof
A1: ((2
* (
sinh
. ((p
/ 2)
- (r
/ 2))))
* (
cosh
. ((p
/ 2)
+ (r
/ 2))))
= ((2
* (((
sinh
. (p
/ 2))
* (
cosh
. (r
/ 2)))
- ((
cosh
. (p
/ 2))
* (
sinh
. (r
/ 2)))))
* (
cosh
. ((p
/ 2)
+ (r
/ 2)))) by
Lm8
.= ((2
* (((
sinh
. (p
/ 2))
* (
cosh
. (r
/ 2)))
- ((
cosh
. (p
/ 2))
* (
sinh
. (r
/ 2)))))
* (((
cosh
. (p
/ 2))
* (
cosh
. (r
/ 2)))
+ ((
sinh
. (p
/ 2))
* (
sinh
. (r
/ 2))))) by
Lm2
.= (2
* (((((
cosh
. (r
/ 2))
* (
sinh
. (r
/ 2)))
* (
- (((
cosh
. (p
/ 2))
^2 )
- ((
sinh
. (p
/ 2))
^2 ))))
+ ((
sinh
. (p
/ 2))
* ((
cosh
. (p
/ 2))
* ((
cosh
. (r
/ 2))
^2 ))))
- ((
cosh
. (p
/ 2))
* ((
sinh
. (p
/ 2))
* ((
sinh
. (r
/ 2))
^2 )))))
.= (2
* (((((
cosh
. (r
/ 2))
* (
sinh
. (r
/ 2)))
* (
- 1))
+ ((
sinh
. (p
/ 2))
* ((
cosh
. (p
/ 2))
* ((
cosh
. (r
/ 2))
^2 ))))
- ((
cosh
. (p
/ 2))
* ((
sinh
. (p
/ 2))
* ((
sinh
. (r
/ 2))
^2 ))))) by
Th14
.= (2
* ((((
sinh
. (p
/ 2))
* (
cosh
. (p
/ 2)))
* (((
cosh
. (r
/ 2))
^2 )
- ((
sinh
. (r
/ 2))
^2 )))
+ ((
- 1)
* ((
cosh
. (r
/ 2))
* (
sinh
. (r
/ 2))))))
.= (2
* ((((
sinh
. (p
/ 2))
* (
cosh
. (p
/ 2)))
* 1)
+ ((
- 1)
* ((
cosh
. (r
/ 2))
* (
sinh
. (r
/ 2)))))) by
Th14
.= (((2
* (
sinh
. (p
/ 2)))
* (
cosh
. (p
/ 2)))
- (2
* ((
sinh
. (r
/ 2))
* (
cosh
. (r
/ 2)))))
.= ((
sinh
. (2
* (p
/ 2)))
- ((2
* (
sinh
. (r
/ 2)))
* (
cosh
. (r
/ 2)))) by
Lm6
.= ((
sinh
. p)
- (
sinh
. (2
* (r
/ 2)))) by
Lm6
.= ((
sinh
. p)
- (
sinh
. r));
((2
* (
sinh
. ((p
/ 2)
+ (r
/ 2))))
* (
cosh
. ((p
/ 2)
- (r
/ 2))))
= ((2
* (((
sinh
. (p
/ 2))
* (
cosh
. (r
/ 2)))
+ ((
cosh
. (p
/ 2))
* (
sinh
. (r
/ 2)))))
* (
cosh
. ((p
/ 2)
- (r
/ 2)))) by
Lm3
.= ((2
* (((
sinh
. (p
/ 2))
* (
cosh
. (r
/ 2)))
+ ((
cosh
. (p
/ 2))
* (
sinh
. (r
/ 2)))))
* (((
cosh
. (p
/ 2))
* (
cosh
. (r
/ 2)))
- ((
sinh
. (p
/ 2))
* (
sinh
. (r
/ 2))))) by
Lm7
.= (2
* (((((
sinh
. (r
/ 2))
* (
cosh
. (r
/ 2)))
* (((
cosh
. (p
/ 2))
^2 )
- ((
sinh
. (p
/ 2))
^2 )))
+ ((
sinh
. (p
/ 2))
* ((
cosh
. (p
/ 2))
* ((
cosh
. (r
/ 2))
^2 ))))
- ((
cosh
. (p
/ 2))
* ((
sinh
. (p
/ 2))
* ((
sinh
. (r
/ 2))
^2 )))))
.= (2
* (((((
sinh
. (r
/ 2))
* (
cosh
. (r
/ 2)))
* 1)
+ ((
sinh
. (p
/ 2))
* ((
cosh
. (p
/ 2))
* ((
cosh
. (r
/ 2))
^2 ))))
- ((
cosh
. (p
/ 2))
* ((
sinh
. (p
/ 2))
* ((
sinh
. (r
/ 2))
^2 ))))) by
Th14
.= (2
* ((((
sinh
. (p
/ 2))
* (
cosh
. (p
/ 2)))
* (((
cosh
. (r
/ 2))
^2 )
- ((
sinh
. (r
/ 2))
^2 )))
+ ((
sinh
. (r
/ 2))
* (
cosh
. (r
/ 2)))))
.= (2
* ((((
sinh
. (p
/ 2))
* (
cosh
. (p
/ 2)))
* 1)
+ ((
sinh
. (r
/ 2))
* (
cosh
. (r
/ 2))))) by
Th14
.= (((2
* (
sinh
. (p
/ 2)))
* (
cosh
. (p
/ 2)))
+ (2
* ((
sinh
. (r
/ 2))
* (
cosh
. (r
/ 2)))))
.= ((
sinh
. (2
* (p
/ 2)))
+ ((2
* (
sinh
. (r
/ 2)))
* (
cosh
. (r
/ 2)))) by
Lm6
.= ((
sinh
. p)
+ (
sinh
. (2
* (r
/ 2)))) by
Lm6
.= ((
sinh
. p)
+ (
sinh
. r));
hence thesis by
A1;
end;
theorem ::
SIN_COS2:27
((
cosh
. p)
+ (
cosh
. r))
= ((2
* (
cosh
. ((p
/ 2)
+ (r
/ 2))))
* (
cosh
. ((p
/ 2)
- (r
/ 2)))) & ((
cosh
. p)
- (
cosh
. r))
= ((2
* (
sinh
. ((p
/ 2)
- (r
/ 2))))
* (
sinh
. ((p
/ 2)
+ (r
/ 2))))
proof
A1: ((2
* (
sinh
. ((p
/ 2)
- (r
/ 2))))
* (
sinh
. ((p
/ 2)
+ (r
/ 2))))
= (2
* ((
sinh
. ((p
/ 2)
- (r
/ 2)))
* (
sinh
. ((p
/ 2)
+ (r
/ 2)))))
.= (2
* (((
cosh
. (p
/ 2))
^2 )
- ((
cosh
. (r
/ 2))
^2 ))) by
Th24
.= (2
* (((1
/ 2)
* ((
cosh
. (2
* (p
/ 2)))
+ 1))
- ((
cosh
. (r
/ 2))
^2 ))) by
Th18
.= (2
* (((1
/ 2)
* ((
cosh
. p)
+ 1))
- ((1
/ 2)
* ((
cosh
. (2
* (r
/ 2)))
+ 1)))) by
Th18
.= ((
cosh
. p)
- (
cosh
. r));
((2
* (
cosh
. ((p
/ 2)
+ (r
/ 2))))
* (
cosh
. ((p
/ 2)
- (r
/ 2))))
= (2
* ((
cosh
. ((p
/ 2)
+ (r
/ 2)))
* (
cosh
. ((p
/ 2)
- (r
/ 2)))))
.= (2
* (((
sinh
. (p
/ 2))
^2 )
+ ((
cosh
. (r
/ 2))
^2 ))) by
Th25
.= (2
* (((1
/ 2)
* ((
cosh
. (2
* (p
/ 2)))
- 1))
+ ((
cosh
. (r
/ 2))
^2 ))) by
Th18
.= (2
* (((1
/ 2)
* ((
cosh
. p)
- 1))
+ ((1
/ 2)
* ((
cosh
. (2
* (r
/ 2)))
+ 1)))) by
Th18
.= ((
cosh
. r)
+ (
cosh
. p));
hence thesis by
A1;
end;
theorem ::
SIN_COS2:28
((
tanh
. p)
+ (
tanh
. r))
= ((
sinh
. (p
+ r))
/ ((
cosh
. p)
* (
cosh
. r))) & ((
tanh
. p)
- (
tanh
. r))
= ((
sinh
. (p
- r))
/ ((
cosh
. p)
* (
cosh
. r)))
proof
A1: ((
sinh
. (p
- r))
/ ((
cosh
. p)
* (
cosh
. r)))
= ((((
sinh
. p)
* (
cosh
. r))
- ((
cosh
. p)
* (
sinh
. r)))
/ ((
cosh
. p)
* (
cosh
. r))) by
Lm8
.= ((((
sinh
. p)
* (
cosh
. r))
/ ((
cosh
. p)
* (
cosh
. r)))
- (((
cosh
. p)
* (
sinh
. r))
/ ((
cosh
. p)
* (
cosh
. r)))) by
XCMPLX_1: 120
.= (((
sinh
. p)
/ (
cosh
. p))
- (((
cosh
. p)
* (
sinh
. r))
/ ((
cosh
. p)
* (
cosh
. r)))) by
Th15,
XCMPLX_1: 91
.= (((
sinh
. p)
/ (
cosh
. p))
- ((
sinh
. r)
/ (
cosh
. r))) by
Th15,
XCMPLX_1: 91
.= ((
tanh
. p)
- ((
sinh
. r)
/ (
cosh
. r))) by
Th17
.= ((
tanh
. p)
- (
tanh
. r)) by
Th17;
((
sinh
. (p
+ r))
/ ((
cosh
. p)
* (
cosh
. r)))
= ((((
sinh
. p)
* (
cosh
. r))
+ ((
cosh
. p)
* (
sinh
. r)))
/ ((
cosh
. p)
* (
cosh
. r))) by
Lm3
.= ((((
sinh
. p)
* (
cosh
. r))
/ ((
cosh
. p)
* (
cosh
. r)))
+ (((
cosh
. p)
* (
sinh
. r))
/ ((
cosh
. p)
* (
cosh
. r)))) by
XCMPLX_1: 62
.= (((
sinh
. p)
/ (
cosh
. p))
+ (((
cosh
. p)
* (
sinh
. r))
/ ((
cosh
. p)
* (
cosh
. r)))) by
Th15,
XCMPLX_1: 91
.= (((
sinh
. p)
/ (
cosh
. p))
+ ((
sinh
. r)
/ (
cosh
. r))) by
Th15,
XCMPLX_1: 91
.= ((
tanh
. p)
+ ((
sinh
. r)
/ (
cosh
. r))) by
Th17
.= ((
tanh
. p)
+ (
tanh
. r)) by
Th17;
hence thesis by
A1;
end;
theorem ::
SIN_COS2:29
(((
cosh
. p)
+ (
sinh
. p))
|^ n)
= ((
cosh
. (n
* p))
+ (
sinh
. (n
* p)))
proof
defpred
X[
Nat] means for p holds (((
cosh
. p)
+ (
sinh
. p))
|^ $1)
= ((
cosh
. ($1
* p))
+ (
sinh
. ($1
* p)));
A1: for n st
X[n] holds
X[(n
+ 1)]
proof
let n such that
A2: for p holds (((
cosh
. p)
+ (
sinh
. p))
|^ n)
= ((
cosh
. (n
* p))
+ (
sinh
. (n
* p)));
for p holds (((
cosh
. p)
+ (
sinh
. p))
|^ (n
+ 1))
= ((
cosh
. ((n
+ 1)
* p))
+ (
sinh
. ((n
+ 1)
* p)))
proof
let p;
A3: (((
cosh
. (n
* p))
* (
cosh
. p))
+ ((
sinh
. (n
* p))
* (
sinh
. p)))
= (((((
exp_R
. (n
* p))
+ (
exp_R
. (
- (n
* p))))
/ 2)
* (
cosh
. p))
+ ((
sinh
. (n
* p))
* (
sinh
. p))) by
Def3
.= (((((
exp_R
. (n
* p))
+ (
exp_R
. (
- (n
* p))))
/ 2)
* (((
exp_R
. p)
+ (
exp_R
. (
- p)))
/ 2))
+ ((
sinh
. (n
* p))
* (
sinh
. p))) by
Def3
.= (((((
exp_R
. (n
* p))
+ (
exp_R
. (
- (n
* p))))
/ 2)
* (((
exp_R
. p)
+ (
exp_R
. (
- p)))
/ 2))
+ ((((
exp_R
. (n
* p))
- (
exp_R
. (
- (n
* p))))
/ 2)
* (
sinh
. p))) by
Def1
.= (((((
exp_R
. (n
* p))
/ 2)
+ ((
exp_R
. (
- (n
* p)))
/ 2))
* (((
exp_R
. p)
/ 2)
+ ((
exp_R
. (
- p))
/ 2)))
+ ((((
exp_R
. (n
* p))
/ 2)
- ((
exp_R
. (
- (n
* p)))
/ 2))
* (((
exp_R
. p)
- (
exp_R
. (
- p)))
/ 2))) by
Def1
.= ((2
* (((
exp_R
. (n
* p))
* (
exp_R
. p))
/ (2
* 2)))
+ (2
* (((
exp_R
. (
- (n
* p)))
/ 2)
* ((
exp_R
. (
- p))
/ 2))))
.= ((2
* ((
exp_R
. ((p
* n)
+ (p
* 1)))
/ (2
* 2)))
+ (2
* (((
exp_R
. (
- (n
* p)))
* (
exp_R
. (
- p)))
/ (2
* 2)))) by
Th12
.= ((2
* ((
exp_R
. (p
* (n
+ 1)))
/ (2
* 2)))
+ (2
* ((
exp_R
. ((
- (n
* p))
+ (
- p)))
/ (2
* 2)))) by
Th12
.= (((
exp_R
. (p
* (n
+ 1)))
+ (
exp_R
. (
- (p
* (n
+ 1)))))
/ 2)
.= (
cosh
. (p
* (n
+ 1))) by
Def3;
A4: (((
cosh
. (n
* p))
* (
sinh
. p))
+ ((
sinh
. (n
* p))
* (
cosh
. p)))
= (((((
exp_R
. (n
* p))
+ (
exp_R
. (
- (n
* p))))
/ 2)
* (
sinh
. p))
+ ((
sinh
. (n
* p))
* (
cosh
. p))) by
Def3
.= (((((
exp_R
. (n
* p))
+ (
exp_R
. (
- (n
* p))))
/ 2)
* (((
exp_R
. p)
- (
exp_R
. (
- p)))
/ 2))
+ ((
sinh
. (n
* p))
* (
cosh
. p))) by
Def1
.= (((((
exp_R
. (n
* p))
+ (
exp_R
. (
- (n
* p))))
/ 2)
* (((
exp_R
. p)
- (
exp_R
. (
- p)))
/ 2))
+ ((((
exp_R
. (n
* p))
- (
exp_R
. (
- (n
* p))))
/ 2)
* (
cosh
. p))) by
Def1
.= (((((((
exp_R
. (n
* p))
/ 2)
* ((
exp_R
. p)
/ 2))
- (((
exp_R
. (n
* p))
/ 2)
* ((
exp_R
. (
- p))
/ 2)))
+ (((
exp_R
. (
- (n
* p)))
/ 2)
* ((
exp_R
. p)
/ 2)))
- (((
exp_R
. (
- (n
* p)))
/ 2)
* ((
exp_R
. (
- p))
/ 2)))
+ ((((
exp_R
. (n
* p))
- (
exp_R
. (
- (n
* p))))
/ 2)
* (((
exp_R
. p)
+ (
exp_R
. (
- p)))
/ 2))) by
Def3
.= ((2
* (((
exp_R
. (n
* p))
* (
exp_R
. p))
/ 4))
+ (2
* (
- (((
exp_R
. (
- (n
* p)))
* (
exp_R
. (
- p)))
/ (2
* 2)))))
.= ((2
* ((
exp_R
. ((n
* p)
+ p))
/ 4))
+ (2
* (
- (((
exp_R
. (
- (n
* p)))
* (
exp_R
. (
- p)))
/ 4)))) by
Th12
.= ((2
* ((
exp_R
. ((n
* p)
+ p))
/ 4))
+ (2
* (
- ((
exp_R
. ((
- (n
* p))
+ (
- p)))
/ 4)))) by
Th12
.= (((
exp_R
. (p
* (n
+ 1)))
- (
exp_R
. (
- (p
* (n
+ 1)))))
/ 2)
.= (
sinh
. (p
* (n
+ 1))) by
Def1;
(((
cosh
. p)
+ (
sinh
. p))
|^ (n
+ 1))
= ((((
cosh
. p)
+ (
sinh
. p))
|^ n)
* ((
cosh
. p)
+ (
sinh
. p))) by
NEWTON: 6
.= (((
cosh
. (n
* p))
+ (
sinh
. (n
* p)))
* ((
cosh
. p)
+ (
sinh
. p))) by
A2
.= ((
sinh
. ((n
+ 1)
* p))
+ (
cosh
. ((n
+ 1)
* p))) by
A3,
A4;
hence thesis;
end;
hence thesis;
end;
A5:
X[
0 ] by
Th15,
Th16,
NEWTON: 4;
for n holds
X[n] from
NAT_1:sch 2(
A5,
A1);
hence thesis;
end;
theorem ::
SIN_COS2:30
Th30: (
dom
sinh )
=
REAL & (
dom
cosh )
=
REAL & (
dom
tanh )
=
REAL by
FUNCT_2:def 1;
Lm10: for d be
Real holds (
compreal
. d)
= ((
- 1)
* d)
proof
let d be
Real;
thus (
compreal
. d)
= (
- d) by
BINOP_2:def 7
.= ((
- 1)
* d);
end;
Lm11: (
dom
compreal )
=
REAL by
FUNCT_2:def 1;
Lm12: for f be
PartFunc of
REAL ,
REAL st f
=
compreal holds for p holds f
is_differentiable_in p & (
diff (f,p))
= (
- 1)
proof
reconsider f2 = (
REAL
--> (
In (
0 ,
REAL ))) as
Function of
REAL ,
REAL ;
deffunc
U(
Real) = (
In ((
- $1),
REAL ));
let f be
PartFunc of
REAL ,
REAL such that
A1: f
=
compreal ;
let p;
consider f1 be
Function of
REAL ,
REAL such that
A2: for p be
Element of
REAL holds (f1
. p)
=
U(p) from
FUNCT_2:sch 4;
A3: (
dom f2)
=
REAL by
FUNCOP_1: 13;
for hy1 be
0
-convergent
non-zero
Real_Sequence holds ((hy1
" )
(#) (f2
/* hy1)) is
convergent & (
lim ((hy1
" )
(#) (f2
/* hy1)))
=
0
proof
let hy1 be
0
-convergent
non-zero
Real_Sequence;
A4: for n be
Nat holds (((hy1
" )
(#) (f2
/* hy1))
. n)
= (
In (
0 ,
REAL ))
proof
let n be
Nat;
A5: (
rng hy1)
c= (
dom f2) by
A3;
A6: n
in
NAT by
ORDINAL1:def 12;
(((hy1
" )
(#) (f2
/* hy1))
. n)
= (((hy1
" )
. n)
* ((f2
/* hy1)
. n)) by
SEQ_1: 8
.= (((hy1
. n)
" )
* ((f2
/* hy1)
. n)) by
VALUED_1: 10;
then (((hy1
" )
(#) (f2
/* hy1))
. n)
= (((hy1
. n)
" )
* (f2
. (hy1
. n))) by
A6,
A5,
FUNCT_2: 108
.= (((hy1
. n)
" )
*
0 ) by
FUNCOP_1: 7
.=
0 ;
hence thesis;
end;
then
A7: ((hy1
" )
(#) (f2
/* hy1)) is
constant by
VALUED_0:def 18;
for n holds (
lim ((hy1
" )
(#) (f2
/* hy1)))
=
0
proof
let n;
(
lim ((hy1
" )
(#) (f2
/* hy1)))
= (((hy1
" )
(#) (f2
/* hy1))
. n) by
A7,
SEQ_4: 26
.=
0 by
A4;
hence thesis;
end;
hence thesis by
A7;
end;
then
A8: f2 is
RestFunc by
FDIFF_1:def 2;
A9: ex N be
Neighbourhood of p st N
c= (
dom
compreal ) & for r st r
in N holds ((
compreal
. r)
- (
compreal
. p))
= ((f1
. (r
- p))
+ (f2
. (r
- p)))
proof
take
].(p
- 1), (p
+ 1).[;
for r st r
in
].(p
- 1), (p
+ 1).[ holds ((
compreal
. r)
- (
compreal
. p))
= ((f1
. (r
- p))
+ (f2
. (r
- p)))
proof
let r;
A10: for d be
Real holds (f2
. d)
=
0 by
XREAL_0:def 1,
FUNCOP_1: 7;
A11: for p be
Real holds (f1
. p)
= (
- p)
proof
let p be
Real;
p
in
REAL by
XREAL_0:def 1;
then (f1
. p)
=
U(p) by
A2;
hence thesis;
end;
((
compreal
. r)
- (
compreal
. p))
= (((
- 1)
* r)
- (
compreal
. p)) by
Lm10
.= ((((
- 1)
* r)
- ((
- 1)
* p))
+
0 ) by
Lm10
.= ((
- (r
- p))
+ (f2
. (r
- p))) by
A10
.= ((f1
. (r
- p))
+ (f2
. (r
- p))) by
A11;
hence thesis;
end;
hence thesis by
Lm11,
RCOMP_1:def 6;
end;
reconsider pp = p as
Real;
A12: 1
in
REAL by
XREAL_0:def 1;
for p holds (f1
. p)
= ((
- 1)
* p)
proof
let p;
reconsider pp = p as
Element of
REAL by
XREAL_0:def 1;
(f1
. p)
=
U(pp) by
A2;
hence thesis;
end;
then
A13: f1 is
LinearFunc by
FDIFF_1:def 3;
then f
is_differentiable_in pp by
A1,
A8,
A9,
FDIFF_1:def 4;
then (
diff (f,pp))
= (f1
. 1) by
A1,
A13,
A8,
A9,
FDIFF_1:def 5
.=
U() by
A2,
A12;
hence thesis by
A1,
A13,
A8,
A9,
FDIFF_1:def 4;
end;
Lm13: for f be
PartFunc of
REAL ,
REAL st f
=
compreal holds (
exp_R
* f)
is_differentiable_in p & (
diff ((
exp_R
* f),p))
= ((
- 1)
* (
exp_R
. (f
. p)))
proof
let f be
PartFunc of
REAL ,
REAL such that
A1: f
=
compreal ;
A2: p is
Real &
exp_R
is_differentiable_in (f
. p) by
SIN_COS: 65;
A3: f
is_differentiable_in p by
A1,
Lm12;
then (
diff ((
exp_R
* f),p))
= ((
diff (
exp_R ,(f
. p)))
* (
diff (f,p))) by
A2,
FDIFF_2: 13
.= ((
diff (
exp_R ,(f
. p)))
* (
- 1)) by
A1,
Lm12
.= ((
exp_R
. (f
. p))
* (
- 1)) by
SIN_COS: 65;
hence thesis by
A2,
A3,
FDIFF_2: 13;
end;
Lm14: for f be
PartFunc of
REAL ,
REAL st f
=
compreal holds (
exp_R
. ((
- 1)
* p))
= ((
exp_R
* f)
. p)
proof
let f be
PartFunc of
REAL ,
REAL ;
A1: p
in
REAL by
XREAL_0:def 1;
assume
A2: f
=
compreal ;
then (
exp_R
. ((
- 1)
* p))
= (
exp_R
. (f
. p)) by
Lm10
.= ((
exp_R
* f)
. p) by
A2,
A1,
FUNCT_2: 15;
hence thesis;
end;
Lm15: for f be
PartFunc of
REAL ,
REAL st f
=
compreal holds (
exp_R
- (
exp_R
* f))
is_differentiable_in p & (
exp_R
+ (
exp_R
* f))
is_differentiable_in p & (
diff ((
exp_R
- (
exp_R
* f)),p))
= ((
exp_R
. p)
+ (
exp_R
. (
- p))) & (
diff ((
exp_R
+ (
exp_R
* f)),p))
= ((
exp_R
. p)
- (
exp_R
. (
- p)))
proof
let f be
PartFunc of
REAL ,
REAL ;
A1: p is
Real &
exp_R
is_differentiable_in p by
SIN_COS: 65;
assume
A2: f
=
compreal ;
then
A3: (
exp_R
* f)
is_differentiable_in p by
Lm13;
then
A4: (
diff ((
exp_R
+ (
exp_R
* f)),p))
= ((
diff (
exp_R ,p))
+ (
diff ((
exp_R
* f),p))) by
A1,
FDIFF_1: 13
.= ((
exp_R
. p)
+ (
diff ((
exp_R
* f),p))) by
SIN_COS: 65
.= ((
exp_R
. p)
+ ((
- 1)
* (
exp_R
. (f
. p)))) by
A2,
Lm13
.= ((
exp_R
. p)
+ ((
- 1)
* (
exp_R
. ((
- 1)
* p)))) by
A2,
Lm10
.= ((
exp_R
. p)
- (
exp_R
. (
- p)));
(
diff ((
exp_R
- (
exp_R
* f)),p))
= ((
diff (
exp_R ,p))
- (
diff ((
exp_R
* f),p))) by
A1,
A3,
FDIFF_1: 14
.= ((
exp_R
. p)
- (
diff ((
exp_R
* f),p))) by
SIN_COS: 65
.= ((
exp_R
. p)
- ((
- 1)
* (
exp_R
. (f
. p)))) by
A2,
Lm13
.= ((
exp_R
. p)
- ((
- 1)
* (
exp_R
. ((
- 1)
* p)))) by
A2,
Lm10
.= ((
exp_R
. p)
+ (
exp_R
. (
- p)));
hence thesis by
A1,
A3,
A4,
FDIFF_1: 13,
FDIFF_1: 14;
end;
Lm16: for f be
PartFunc of
REAL ,
REAL st f
=
compreal holds ((1
/ 2)
(#) (
exp_R
- (
exp_R
* f)))
is_differentiable_in p & (
diff (((1
/ 2)
(#) (
exp_R
- (
exp_R
* f))),p))
= ((1
/ 2)
* (
diff ((
exp_R
- (
exp_R
* f)),p)))
proof
let f be
PartFunc of
REAL ,
REAL ;
assume f
=
compreal ;
then p is
Real & (
exp_R
- (
exp_R
* f))
is_differentiable_in p by
Lm15;
hence thesis by
FDIFF_1: 15;
end;
Lm17: for ff be
PartFunc of
REAL ,
REAL st ff
=
compreal holds (
sinh
. p)
= (((1
/ 2)
(#) (
exp_R
- (
exp_R
* ff)))
. p)
proof
A1: p
in
REAL by
XREAL_0:def 1;
let ff be
PartFunc of
REAL ,
REAL such that
A2: ff
=
compreal ;
A3: (
dom (
exp_R
- (
exp_R
* ff)))
= ((
dom
exp_R )
/\ (
dom (
exp_R
* ff))) & (
dom (
exp_R
* ff))
=
REAL by
A2,
FUNCT_2:def 1,
VALUED_1: 12;
A4: (
dom ((1
/ 2)
(#) (
exp_R
- (
exp_R
* ff))))
=
REAL by
A2,
FUNCT_2:def 1;
(
sinh
. p)
= (((
exp_R
. p)
- (
exp_R
. (
- p)))
/ 2) by
Def1
.= ((1
/ 2)
* ((
exp_R
. p)
- (
exp_R
. ((
- 1)
* p))))
.= ((1
/ 2)
* ((
exp_R
. p)
- ((
exp_R
* ff)
. p))) by
A2,
Lm14
.= ((1
/ 2)
* ((
exp_R
- (
exp_R
* ff))
. p)) by
A1,
A3,
SIN_COS: 47,
VALUED_1: 13
.= (((1
/ 2)
(#) (
exp_R
- (
exp_R
* ff)))
. p) by
A1,
A4,
VALUED_1:def 5;
hence thesis;
end;
Lm18: for ff be
PartFunc of
REAL ,
REAL st ff
=
compreal holds
sinh
= ((1
/ 2)
(#) (
exp_R
- (
exp_R
* ff)))
proof
let ff be
PartFunc of
REAL ,
REAL ;
assume ff
=
compreal ;
then
A1:
REAL
= (
dom ((1
/ 2)
(#) (
exp_R
- (
exp_R
* ff)))) & for p be
Element of
REAL st p
in
REAL holds (
sinh
. p)
= (((1
/ 2)
(#) (
exp_R
- (
exp_R
* ff)))
. p) by
Lm17,
FUNCT_2:def 1;
REAL
= (
dom
sinh ) by
FUNCT_2:def 1;
hence thesis by
A1,
PARTFUN1: 5;
end;
theorem ::
SIN_COS2:31
Th31:
sinh
is_differentiable_in p & (
diff (
sinh ,p))
= (
cosh
. p)
proof
set ff =
compreal ;
A1:
sinh
= ((1
/ 2)
(#) (
exp_R
- (
exp_R
* ff))) by
Lm18;
(
diff (
sinh ,p))
= (
diff (((1
/ 2)
(#) (
exp_R
- (
exp_R
* ff))),p)) by
Lm18
.= ((1
/ 2)
* (
diff ((
exp_R
- (
exp_R
* ff)),p))) by
Lm16
.= ((1
/ 2)
* ((
exp_R
. p)
+ (
exp_R
. (
- p)))) by
Lm15
.= (((
exp_R
. p)
+ (
exp_R
. (
- p)))
/ 2)
.= (
cosh
. p) by
Def3;
hence thesis by
A1,
Lm16;
end;
Lm19: for ff be
PartFunc of
REAL ,
REAL st ff
=
compreal holds ((1
/ 2)
(#) (
exp_R
+ (
exp_R
* ff)))
is_differentiable_in p & (
diff (((1
/ 2)
(#) (
exp_R
+ (
exp_R
* ff))),p))
= ((1
/ 2)
* (
diff ((
exp_R
+ (
exp_R
* ff)),p)))
proof
let ff be
PartFunc of
REAL ,
REAL ;
assume ff
=
compreal ;
then p is
Real & (
exp_R
+ (
exp_R
* ff))
is_differentiable_in p by
Lm15;
hence thesis by
FDIFF_1: 15;
end;
Lm20: for ff be
PartFunc of
REAL ,
REAL st ff
=
compreal holds (
cosh
. p)
= (((1
/ 2)
(#) (
exp_R
+ (
exp_R
* ff)))
. p)
proof
A1: p
in
REAL by
XREAL_0:def 1;
let ff be
PartFunc of
REAL ,
REAL such that
A2: ff
=
compreal ;
A3: (
dom (
exp_R
+ (
exp_R
* ff)))
= ((
dom
exp_R )
/\ (
dom (
exp_R
* ff))) & (
dom (
exp_R
* ff))
=
REAL by
A2,
FUNCT_2:def 1,
VALUED_1:def 1;
A4: (
dom ((1
/ 2)
(#) (
exp_R
+ (
exp_R
* ff))))
=
REAL by
A2,
FUNCT_2:def 1;
(
cosh
. p)
= (((
exp_R
. p)
+ (
exp_R
. (
- p)))
/ 2) by
Def3
.= ((1
/ 2)
* ((
exp_R
. p)
+ (
exp_R
. ((
- 1)
* p))))
.= ((1
/ 2)
* ((
exp_R
. p)
+ ((
exp_R
* ff)
. p))) by
A2,
Lm14
.= ((1
/ 2)
* ((
exp_R
+ (
exp_R
* ff))
. p)) by
A1,
A3,
SIN_COS: 47,
VALUED_1:def 1
.= (((1
/ 2)
(#) (
exp_R
+ (
exp_R
* ff)))
. p) by
A1,
A4,
VALUED_1:def 5;
hence thesis;
end;
Lm21: for ff be
PartFunc of
REAL ,
REAL st ff
=
compreal holds
cosh
= ((1
/ 2)
(#) (
exp_R
+ (
exp_R
* ff)))
proof
let ff be
PartFunc of
REAL ,
REAL ;
assume ff
=
compreal ;
then
A1:
REAL
= (
dom ((1
/ 2)
(#) (
exp_R
+ (
exp_R
* ff)))) & for p be
Element of
REAL st p
in
REAL holds (
cosh
. p)
= (((1
/ 2)
(#) (
exp_R
+ (
exp_R
* ff)))
. p) by
Lm20,
FUNCT_2:def 1;
REAL
= (
dom
cosh ) by
FUNCT_2:def 1;
hence thesis by
A1,
PARTFUN1: 5;
end;
theorem ::
SIN_COS2:32
Th32:
cosh
is_differentiable_in p & (
diff (
cosh ,p))
= (
sinh
. p)
proof
reconsider ff =
compreal as
PartFunc of
REAL ,
REAL ;
A1:
cosh
= ((1
/ 2)
(#) (
exp_R
+ (
exp_R
* ff))) by
Lm21;
(
diff (
cosh ,p))
= (
diff (((1
/ 2)
(#) (
exp_R
+ (
exp_R
* ff))),p)) by
Lm21
.= ((1
/ 2)
* (
diff ((
exp_R
+ (
exp_R
* ff)),p))) by
Lm19
.= ((1
/ 2)
* ((
exp_R
. p)
- (
exp_R
. (
- p)))) by
Lm15
.= (((
exp_R
. p)
- (
exp_R
. (
- p)))
/ 2)
.= (
sinh
. p) by
Def1;
hence thesis by
A1,
Lm19;
end;
Lm22: (
sinh
/
cosh )
is_differentiable_in p & (
diff ((
sinh
/
cosh ),p))
= (1
/ ((
cosh
. p)
^2 ))
proof
A1: p is
Real & (
cosh
. p)
<>
0 by
Th15;
A2:
sinh
is_differentiable_in p &
cosh
is_differentiable_in p by
Th31,
Th32;
then (
diff ((
sinh
/
cosh ),p))
= ((((
diff (
sinh ,p))
* (
cosh
. p))
- ((
diff (
cosh ,p))
* (
sinh
. p)))
/ ((
cosh
. p)
^2 )) by
A1,
FDIFF_2: 14
.= ((((
cosh
. p)
* (
cosh
. p))
- ((
diff (
cosh ,p))
* (
sinh
. p)))
/ ((
cosh
. p)
^2 )) by
Th31
.= ((((
cosh
. p)
^2 )
- ((
sinh
. p)
* (
sinh
. p)))
/ ((
cosh
. p)
^2 )) by
Th32
.= (1
/ ((
cosh
. p)
^2 )) by
Th14;
hence thesis by
A1,
A2,
FDIFF_2: 14;
end;
Lm23:
tanh
= (
sinh
/
cosh )
proof
not
0
in (
rng
cosh )
proof
assume
0
in (
rng
cosh );
then ex p be
Element of
REAL st p
in (
dom
cosh ) &
0
= (
cosh
. p) by
PARTFUN1: 3;
hence contradiction by
Th15;
end;
then
A1: (
dom (
sinh
/
cosh ))
= ((
dom
sinh )
/\ ((
dom
cosh )
\ (
cosh
"
{
0 }))) & (
cosh
"
{
0 })
=
{} by
FUNCT_1: 72,
RFUNCT_1:def 1;
for p be
Element of
REAL st p
in
REAL holds (
tanh
. p)
= ((
sinh
/
cosh )
. p)
proof
let p;
p
in
REAL by
XREAL_0:def 1;
then ((
sinh
/
cosh )
. p)
= ((
sinh
. p)
* ((
cosh
. p)
" )) by
A1,
Th30,
RFUNCT_1:def 1
.= ((
sinh
. p)
/ (
cosh
. p)) by
XCMPLX_0:def 9
.= (
tanh
. p) by
Th17;
hence thesis;
end;
hence thesis by
A1,
Th30,
PARTFUN1: 5;
end;
theorem ::
SIN_COS2:33
tanh
is_differentiable_in p & (
diff (
tanh ,p))
= (1
/ ((
cosh
. p)
^2 )) by
Lm22,
Lm23;
theorem ::
SIN_COS2:34
Th34:
sinh
is_differentiable_on
REAL & (
diff (
sinh ,p))
= (
cosh
. p)
proof
A1: (
[#]
REAL ) is
open
Subset of
REAL &
REAL
c= (
dom
sinh ) by
FUNCT_2:def 1;
for p st p
in
REAL holds
sinh
is_differentiable_in p by
Th31;
hence thesis by
A1,
Th31,
FDIFF_1: 9;
end;
theorem ::
SIN_COS2:35
Th35:
cosh
is_differentiable_on
REAL & (
diff (
cosh ,p))
= (
sinh
. p)
proof
A1: (
[#]
REAL ) is
open
Subset of
REAL &
REAL
c= (
dom
cosh ) by
FUNCT_2:def 1;
for r st r
in
REAL holds
cosh
is_differentiable_in r by
Th32;
hence thesis by
A1,
Th32,
FDIFF_1: 9;
end;
theorem ::
SIN_COS2:36
Th36:
tanh
is_differentiable_on
REAL & (
diff (
tanh ,p))
= (1
/ ((
cosh
. p)
^2 ))
proof
(
[#]
REAL ) is
open
Subset of
REAL & for p st p
in
REAL holds
tanh
is_differentiable_in p by
Lm22,
Lm23;
hence thesis by
Lm22,
Lm23,
Th30,
FDIFF_1: 9;
end;
Lm24: ((
exp_R
. p)
+ (
exp_R
. (
- p)))
>= 2
proof
A1: (
exp_R
. p)
>=
0 & (
exp_R
. (
- p))
>=
0 by
SIN_COS: 54;
(2
* (
sqrt ((
exp_R
. p)
* (
exp_R
. (
- p)))))
= (2
* (
sqrt (
exp_R
. (p
+ (
- p))))) by
Th12
.= (2
* 1) by
SIN_COS: 51,
SIN_COS:def 23,
SQUARE_1: 18;
hence thesis by
A1,
Th1;
end;
theorem ::
SIN_COS2:37
(
cosh
. p)
>= 1
proof
(((
exp_R
. p)
+ (
exp_R
. (
- p)))
/ 2)
>= (2
/ 2) by
Lm24,
XREAL_1: 72;
hence thesis by
Def3;
end;
theorem ::
SIN_COS2:38
sinh
is_continuous_in p by
Th31,
FDIFF_1: 24;
theorem ::
SIN_COS2:39
cosh
is_continuous_in p by
Th32,
FDIFF_1: 24;
theorem ::
SIN_COS2:40
tanh
is_continuous_in p by
Lm22,
Lm23,
FDIFF_1: 24;
theorem ::
SIN_COS2:41
(
sinh
|
REAL ) is
continuous by
Th34,
FDIFF_1: 25;
theorem ::
SIN_COS2:42
(
cosh
|
REAL ) is
continuous by
Th35,
FDIFF_1: 25;
theorem ::
SIN_COS2:43
(
tanh
|
REAL ) is
continuous by
Th36,
FDIFF_1: 25;
theorem ::
SIN_COS2:44
(
tanh
. p)
< 1 & (
tanh
. p)
> (
- 1)
proof
A1: (
exp_R
. p)
>
0 & (
exp_R
. (
- p))
>
0 by
SIN_COS: 54;
thus (
tanh
. p)
< 1
proof
assume (
tanh
. p)
>= 1;
then
A2: (((
exp_R
. p)
- (
exp_R
. (
- p)))
/ ((
exp_R
. p)
+ (
exp_R
. (
- p))))
>= 1 by
Def5;
(
exp_R
. p)
>
0 & (
exp_R
. (
- p))
>
0 by
SIN_COS: 54;
then
A3: ((((
exp_R
. p)
- (
exp_R
. (
- p)))
/ ((
exp_R
. p)
+ (
exp_R
. (
- p))))
* ((
exp_R
. p)
+ (
exp_R
. (
- p))))
= ((
exp_R
. p)
- (
exp_R
. (
- p))) by
XCMPLX_1: 87;
((
exp_R
. p)
+ (
exp_R
. (
- p)))
>= 2 by
Lm24;
then ((((
exp_R
. p)
- (
exp_R
. (
- p)))
/ ((
exp_R
. p)
+ (
exp_R
. (
- p))))
* ((
exp_R
. p)
+ (
exp_R
. (
- p))))
>= (1
* ((
exp_R
. p)
+ (
exp_R
. (
- p)))) by
A2,
XREAL_1: 64;
then (((
exp_R
. p)
- (
exp_R
. (
- p)))
- (
exp_R
. p))
>= (((
exp_R
. p)
+ (
exp_R
. (
- p)))
- (
exp_R
. p)) by
A3,
XREAL_1: 9;
then
A4: ((
- (
exp_R
. (
- p)))
+ (
exp_R
. (
- p)))
>= ((
exp_R
. (
- p))
+ (
exp_R
. (
- p))) by
XREAL_1: 6;
(
exp_R
. (
- p))
>
0 by
SIN_COS: 54;
hence contradiction by
A4;
end;
assume (
tanh
. p)
<= (
- 1);
then
A5: (((
exp_R
. p)
- (
exp_R
. (
- p)))
/ ((
exp_R
. p)
+ (
exp_R
. (
- p))))
<= (
- 1) by
Def5;
((
exp_R
. p)
+ (
exp_R
. (
- p)))
>= 2 by
Lm24;
then ((((
exp_R
. p)
- (
exp_R
. (
- p)))
/ ((
exp_R
. p)
+ (
exp_R
. (
- p))))
* ((
exp_R
. p)
+ (
exp_R
. (
- p))))
<= ((
- 1)
* ((
exp_R
. p)
+ (
exp_R
. (
- p)))) by
A5,
XREAL_1: 64;
then ((
exp_R
. p)
- (
exp_R
. (
- p)))
<= (
- ((
exp_R
. p)
+ (
exp_R
. (
- p)))) by
A1,
XCMPLX_1: 87;
then
A6: (((
exp_R
. p)
- (
exp_R
. (
- p)))
+ (
exp_R
. (
- p)))
<= (((
- (
exp_R
. p))
+ (
- (
exp_R
. (
- p))))
+ (
exp_R
. (
- p))) by
XREAL_1: 6;
(
exp_R
. p)
>
0 by
SIN_COS: 54;
hence contradiction by
A6;
end;