sin_cos5.miz
    
    begin
    
    reserve x,x1,x2,x3 for
    Real;
    
    theorem :: 
    
    SIN_COS5:1
    
    
    
    
    
    Th1: ( 
    cos x) 
    <>  
    0 implies ( 
    cosec x) 
    = (( 
    sec x) 
    / ( 
    tan x)) 
    
    proof
    
      assume
    
      
    
    A1: ( 
    cos x) 
    <>  
    0 ; 
    
      
    
      then ((
    sec x) 
    / ( 
    tan x)) 
    = (((1 
    / ( 
    cos x)) 
    * ( 
    cos x)) 
    / ((( 
    sin x) 
    / ( 
    cos x)) 
    * ( 
    cos x))) by 
    XCMPLX_1: 91
    
      .= (1
    / ((( 
    sin x) 
    / ( 
    cos x)) 
    * ( 
    cos x))) by 
    A1,
    XCMPLX_1: 87
    
      .= (1
    / ( 
    sin x)) by 
    A1,
    XCMPLX_1: 87;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:2
    
    
    
    
    
    Th2: ( 
    sin x) 
    <>  
    0 implies ( 
    cos x) 
    = (( 
    sin x) 
    * ( 
    cot x)) 
    
    proof
    
      assume (
    sin x) 
    <>  
    0 ; 
    
      
    
      then (
    cos x) 
    = ((( 
    sin x) 
    / ( 
    sin x)) 
    * ( 
    cos x)) by 
    XCMPLX_1: 88
    
      .= ((
    sin x) 
    * ( 
    cot x)) by 
    XCMPLX_1: 75;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:3
    
    (
    sin x1) 
    <>  
    0 & ( 
    sin x2) 
    <>  
    0 & ( 
    sin x3) 
    <>  
    0 implies ( 
    sin ((x1 
    + x2) 
    + x3)) 
    = (((( 
    sin x1) 
    * ( 
    sin x2)) 
    * ( 
    sin x3)) 
    * ((((( 
    cot x2) 
    * ( 
    cot x3)) 
    + (( 
    cot x1) 
    * ( 
    cot x3))) 
    + (( 
    cot x1) 
    * ( 
    cot x2))) 
    - 1)) 
    
    proof
    
      assume that
    
      
    
    A1: ( 
    sin x1) 
    <>  
    0 and 
    
      
    
    A2: ( 
    sin x2) 
    <>  
    0 and 
    
      
    
    A3: ( 
    sin x3) 
    <>  
    0 ; 
    
      (
    sin ((x1 
    + x2) 
    + x3)) 
    = ( 
    sin (x1 
    + (x2 
    + x3))) 
    
      .= (((
    sin x1) 
    * ( 
    cos (x2 
    + x3))) 
    + (( 
    cos x1) 
    * ( 
    sin (x2 
    + x3)))) by 
    SIN_COS: 75
    
      .= (((
    sin x1) 
    * ((( 
    cos x2) 
    * ( 
    cos x3)) 
    - (( 
    sin x2) 
    * ( 
    sin x3)))) 
    + (( 
    cos x1) 
    * ( 
    sin (x2 
    + x3)))) by 
    SIN_COS: 75
    
      .= ((((
    sin x1) 
    * (( 
    cos x2) 
    * ( 
    cos x3))) 
    - (( 
    sin x1) 
    * (( 
    sin x2) 
    * ( 
    sin x3)))) 
    + (( 
    cos x1) 
    * ((( 
    sin x2) 
    * ( 
    cos x3)) 
    + (( 
    cos x2) 
    * ( 
    sin x3))))) by 
    SIN_COS: 75
    
      .= (((((
    sin x1) 
    * ( 
    cos x2)) 
    * ( 
    cos x3)) 
    - ((( 
    sin x1) 
    * ( 
    sin x2)) 
    * ( 
    sin x3))) 
    + (((( 
    cos x1) 
    * ( 
    sin x2)) 
    * ( 
    cos x3)) 
    + ((( 
    cos x1) 
    * ( 
    cos x2)) 
    * ( 
    sin x3)))) 
    
      .= (((((
    sin x1) 
    * (( 
    sin x2) 
    * ( 
    cot x2))) 
    * ( 
    cos x3)) 
    - ((( 
    sin x1) 
    * ( 
    sin x2)) 
    * ( 
    sin x3))) 
    + (((( 
    cos x1) 
    * ( 
    sin x2)) 
    * ( 
    cos x3)) 
    + ((( 
    cos x1) 
    * ( 
    cos x2)) 
    * ( 
    sin x3)))) by 
    A2,
    Th2
    
      .= (((((
    sin x1) 
    * (( 
    sin x2) 
    * ( 
    cot x2))) 
    * (( 
    sin x3) 
    * ( 
    cot x3))) 
    - ((( 
    sin x1) 
    * ( 
    sin x2)) 
    * ( 
    sin x3))) 
    + (((( 
    cos x1) 
    * ( 
    sin x2)) 
    * ( 
    cos x3)) 
    + ((( 
    cos x1) 
    * ( 
    cos x2)) 
    * ( 
    sin x3)))) by 
    A3,
    Th2
    
      .= (((((
    sin x1) 
    * ( 
    sin x2)) 
    * ( 
    sin x3)) 
    * ((( 
    cot x2) 
    * ( 
    cot x3)) 
    - 1)) 
    + ((((( 
    sin x1) 
    * ( 
    cot x1)) 
    * ( 
    sin x2)) 
    * ( 
    cos x3)) 
    + ((( 
    cos x1) 
    * ( 
    cos x2)) 
    * ( 
    sin x3)))) by 
    A1,
    Th2
    
      .= (((((
    sin x1) 
    * ( 
    sin x2)) 
    * ( 
    sin x3)) 
    * ((( 
    cot x2) 
    * ( 
    cot x3)) 
    - 1)) 
    + ((((( 
    sin x1) 
    * ( 
    cot x1)) 
    * ( 
    sin x2)) 
    * (( 
    sin x3) 
    * ( 
    cot x3))) 
    + ((( 
    cos x1) 
    * ( 
    cos x2)) 
    * ( 
    sin x3)))) by 
    A3,
    Th2
    
      .= ((((((
    sin x1) 
    * ( 
    sin x2)) 
    * ( 
    sin x3)) 
    * ((( 
    cot x2) 
    * ( 
    cot x3)) 
    - 1)) 
    + ((((( 
    sin x1) 
    * ( 
    sin x2)) 
    * ( 
    sin x3)) 
    * ( 
    cot x1)) 
    * ( 
    cot x3))) 
    + ((( 
    cos x1) 
    * ( 
    cos x2)) 
    * ( 
    sin x3))) 
    
      .= (((((
    sin x1) 
    * ( 
    sin x2)) 
    * ( 
    sin x3)) 
    * (((( 
    cot x2) 
    * ( 
    cot x3)) 
    - 1) 
    + (( 
    cot x1) 
    * ( 
    cot x3)))) 
    + (((( 
    sin x1) 
    * ( 
    cot x1)) 
    * ( 
    cos x2)) 
    * ( 
    sin x3))) by 
    A1,
    Th2
    
      .= (((((
    sin x1) 
    * ( 
    sin x2)) 
    * ( 
    sin x3)) 
    * (((( 
    cot x2) 
    * ( 
    cot x3)) 
    - 1) 
    + (( 
    cot x1) 
    * ( 
    cot x3)))) 
    + (((( 
    sin x1) 
    * ( 
    cot x1)) 
    * (( 
    sin x2) 
    * ( 
    cot x2))) 
    * ( 
    sin x3))) by 
    A2,
    Th2
    
      .= ((((
    sin x1) 
    * ( 
    sin x2)) 
    * ( 
    sin x3)) 
    * ((((( 
    cot x2) 
    * ( 
    cot x3)) 
    + (( 
    cot x1) 
    * ( 
    cot x3))) 
    + (( 
    cot x1) 
    * ( 
    cot x2))) 
    - 1)); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:4
    
    (
    sin x1) 
    <>  
    0 & ( 
    sin x2) 
    <>  
    0 & ( 
    sin x3) 
    <>  
    0 implies ( 
    cos ((x1 
    + x2) 
    + x3)) 
    = ( 
    - (((( 
    sin x1) 
    * ( 
    sin x2)) 
    * ( 
    sin x3)) 
    * (((( 
    cot x1) 
    + ( 
    cot x2)) 
    + ( 
    cot x3)) 
    - ((( 
    cot x1) 
    * ( 
    cot x2)) 
    * ( 
    cot x3))))) 
    
    proof
    
      assume that
    
      
    
    A1: ( 
    sin x1) 
    <>  
    0 and 
    
      
    
    A2: ( 
    sin x2) 
    <>  
    0 and 
    
      
    
    A3: ( 
    sin x3) 
    <>  
    0 ; 
    
      (
    cos ((x1 
    + x2) 
    + x3)) 
    = ( 
    cos (x1 
    + (x2 
    + x3))) 
    
      .= (((
    cos x1) 
    * ( 
    cos (x2 
    + x3))) 
    - (( 
    sin x1) 
    * ( 
    sin (x2 
    + x3)))) by 
    SIN_COS: 75
    
      .= (((
    cos x1) 
    * ((( 
    cos x2) 
    * ( 
    cos x3)) 
    - (( 
    sin x2) 
    * ( 
    sin x3)))) 
    - (( 
    sin x1) 
    * ( 
    sin (x2 
    + x3)))) by 
    SIN_COS: 75
    
      .= ((((
    cos x1) 
    * (( 
    cos x2) 
    * ( 
    cos x3))) 
    - (( 
    cos x1) 
    * (( 
    sin x2) 
    * ( 
    sin x3)))) 
    - (( 
    sin x1) 
    * ((( 
    sin x2) 
    * ( 
    cos x3)) 
    + (( 
    cos x2) 
    * ( 
    sin x3))))) by 
    SIN_COS: 75
    
      .= (((((
    cos x1) 
    * ( 
    cos x2)) 
    * ( 
    cos x3)) 
    - ((( 
    cos x1) 
    * ( 
    sin x2)) 
    * ( 
    sin x3))) 
    - (((( 
    sin x1) 
    * ( 
    sin x2)) 
    * ( 
    cos x3)) 
    + ((( 
    sin x1) 
    * ( 
    sin x3)) 
    * ( 
    cos x2)))) 
    
      .= (((((
    cos x1) 
    * ( 
    cos x2)) 
    * ( 
    cos x3)) 
    - ((( 
    cos x1) 
    * ( 
    sin x2)) 
    * ( 
    sin x3))) 
    - (((( 
    sin x1) 
    * ( 
    sin x2)) 
    * (( 
    sin x3) 
    * ( 
    cot x3))) 
    + ((( 
    sin x1) 
    * ( 
    sin x3)) 
    * ( 
    cos x2)))) by 
    A3,
    Th2
    
      .= (((((
    cos x1) 
    * ( 
    cos x2)) 
    * ( 
    cos x3)) 
    - ((( 
    cos x1) 
    * ( 
    sin x2)) 
    * ( 
    sin x3))) 
    - (((( 
    sin x1) 
    * ( 
    sin x2)) 
    * (( 
    sin x3) 
    * ( 
    cot x3))) 
    + ((( 
    sin x1) 
    * ( 
    sin x3)) 
    * (( 
    sin x2) 
    * ( 
    cot x2))))) by 
    A2,
    Th2
    
      .= ((((((
    sin x1) 
    * ( 
    cot x1)) 
    * ( 
    cos x2)) 
    * ( 
    cos x3)) 
    - ((( 
    cos x1) 
    * ( 
    sin x2)) 
    * ( 
    sin x3))) 
    - (((( 
    sin x1) 
    * ( 
    sin x2)) 
    * ( 
    sin x3)) 
    * (( 
    cot x3) 
    + ( 
    cot x2)))) by 
    A1,
    Th2
    
      .= ((((((
    sin x1) 
    * ( 
    cot x1)) 
    * (( 
    sin x2) 
    * ( 
    cot x2))) 
    * ( 
    cos x3)) 
    - ((( 
    cos x1) 
    * ( 
    sin x2)) 
    * ( 
    sin x3))) 
    - (((( 
    sin x1) 
    * ( 
    sin x2)) 
    * ( 
    sin x3)) 
    * (( 
    cot x3) 
    + ( 
    cot x2)))) by 
    A2,
    Th2
    
      .= ((((((
    sin x1) 
    * ( 
    cot x1)) 
    * (( 
    sin x2) 
    * ( 
    cot x2))) 
    * (( 
    sin x3) 
    * ( 
    cot x3))) 
    - ((( 
    cos x1) 
    * ( 
    sin x2)) 
    * ( 
    sin x3))) 
    - (((( 
    sin x1) 
    * ( 
    sin x2)) 
    * ( 
    sin x3)) 
    * (( 
    cot x3) 
    + ( 
    cot x2)))) by 
    A3,
    Th2
    
      .= ((((((
    sin x1) 
    * ( 
    sin x2)) 
    * ( 
    sin x3)) 
    * ((( 
    cot x1) 
    * ( 
    cot x2)) 
    * ( 
    cot x3))) 
    - (((( 
    sin x1) 
    * ( 
    cot x1)) 
    * ( 
    sin x2)) 
    * ( 
    sin x3))) 
    - (((( 
    sin x1) 
    * ( 
    sin x2)) 
    * ( 
    sin x3)) 
    * (( 
    cot x3) 
    + ( 
    cot x2)))) by 
    A1,
    Th2
    
      .= (
    - (((( 
    sin x1) 
    * ( 
    sin x2)) 
    * ( 
    sin x3)) 
    * (((( 
    cot x1) 
    + ( 
    cot x2)) 
    + ( 
    cot x3)) 
    - ((( 
    cot x1) 
    * ( 
    cot x2)) 
    * ( 
    cot x3))))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:5
    
    
    
    
    
    Th5: ( 
    sin (2 
    * x)) 
    = ((2 
    * ( 
    sin x)) 
    * ( 
    cos x)) 
    
    proof
    
      (
    sin (2 
    * x)) 
    = ( 
    sin (x 
    + x)) 
    
      .= (((
    sin x) 
    * ( 
    cos x)) 
    + (( 
    cos x) 
    * ( 
    sin x))) by 
    SIN_COS: 75
    
      .= ((2
    * ( 
    sin x)) 
    * ( 
    cos x)); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:6
    
    
    
    
    
    Th6: ( 
    cos x) 
    <>  
    0 implies ( 
    sin (2 
    * x)) 
    = ((2 
    * ( 
    tan x)) 
    / (1 
    + (( 
    tan x) 
    ^2 ))) 
    
    proof
    
      assume
    
      
    
    A1: ( 
    cos x) 
    <>  
    0 ; 
    
      then
    
      
    
    A2: (( 
    cos x) 
    ^2 ) 
    <>  
    0 by 
    SQUARE_1: 12;
    
      (
    sin (2 
    * x)) 
    = (((2 
    * ( 
    sin x)) 
    * ( 
    cos x)) 
    * 1) by 
    Th5
    
      .= (((2
    * ( 
    sin x)) 
    * ( 
    cos x)) 
    * (( 
    cos x) 
    / ( 
    cos x))) by 
    A1,
    XCMPLX_1: 60
    
      .= ((((2
    * ( 
    sin x)) 
    * ( 
    cos x)) 
    * ( 
    cos x)) 
    / ( 
    cos x)) by 
    XCMPLX_1: 74
    
      .= (((2
    * (( 
    cos x) 
    ^2 )) 
    * ( 
    sin x)) 
    / ( 
    cos x)) 
    
      .= (((2
    * (( 
    cos x) 
    ^2 )) 
    * ( 
    tan x)) 
    / 1) by 
    XCMPLX_1: 74
    
      .= (((2
    * ( 
    tan x)) 
    * (( 
    cos x) 
    ^2 )) 
    / ((( 
    sin x) 
    ^2 ) 
    + (( 
    cos x) 
    ^2 ))) by 
    SIN_COS: 29
    
      .= ((2
    * ( 
    tan x)) 
    / (((( 
    sin x) 
    ^2 ) 
    + (( 
    cos x) 
    ^2 )) 
    / (( 
    cos x) 
    ^2 ))) by 
    XCMPLX_1: 77
    
      .= ((2
    * ( 
    tan x)) 
    / (((( 
    sin x) 
    ^2 ) 
    / (( 
    cos x) 
    ^2 )) 
    + ((( 
    cos x) 
    ^2 ) 
    / (( 
    cos x) 
    ^2 )))) by 
    XCMPLX_1: 62
    
      .= ((2
    * ( 
    tan x)) 
    / (((( 
    sin x) 
    ^2 ) 
    / (( 
    cos x) 
    ^2 )) 
    + 1)) by 
    A2,
    XCMPLX_1: 60
    
      .= ((2
    * ( 
    tan x)) 
    / ((( 
    tan x) 
    ^2 ) 
    + 1)) by 
    XCMPLX_1: 76;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:7
    
    
    
    
    
    Th7: ( 
    cos (2 
    * x)) 
    = ((( 
    cos x) 
    ^2 ) 
    - (( 
    sin x) 
    ^2 )) & ( 
    cos (2 
    * x)) 
    = ((2 
    * (( 
    cos x) 
    ^2 )) 
    - 1) & ( 
    cos (2 
    * x)) 
    = (1 
    - (2 
    * (( 
    sin x) 
    ^2 ))) 
    
    proof
    
      
    
      
    
    A1: ( 
    cos (2 
    * x)) 
    = ( 
    cos (x 
    + x)) 
    
      .= (((
    cos x) 
    ^2 ) 
    - (( 
    sin x) 
    ^2 )) by 
    SIN_COS: 75;
    
      
    
      then (
    cos (2 
    * x)) 
    = ((((( 
    cos x) 
    ^2 ) 
    - (( 
    sin x) 
    ^2 )) 
    - 1) 
    + 1) 
    
      .= (((((
    cos x) 
    ^2 ) 
    - (( 
    sin x) 
    ^2 )) 
    - ((( 
    cos x) 
    ^2 ) 
    + (( 
    sin x) 
    ^2 ))) 
    + 1) by 
    SIN_COS: 29
    
      .= (
    - (( 
    - 1) 
    + (2 
    * (( 
    sin x) 
    ^2 )))); 
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    SIN_COS5:8
    
    
    
    
    
    Th8: ( 
    cos x) 
    <>  
    0 implies ( 
    cos (2 
    * x)) 
    = ((1 
    - (( 
    tan x) 
    ^2 )) 
    / (1 
    + (( 
    tan x) 
    ^2 ))) 
    
    proof
    
      assume (
    cos x) 
    <>  
    0 ; 
    
      then
    
      
    
    A1: (( 
    cos x) 
    ^2 ) 
    <>  
    0 by 
    SQUARE_1: 12;
    
      (
    cos (2 
    * x)) 
    = (((( 
    cos x) 
    ^2 ) 
    - (( 
    sin x) 
    ^2 )) 
    * 1) by 
    Th7
    
      .= ((((
    cos x) 
    ^2 ) 
    - (( 
    sin x) 
    ^2 )) 
    * ((( 
    cos x) 
    ^2 ) 
    / (( 
    cos x) 
    ^2 ))) by 
    A1,
    XCMPLX_1: 60
    
      .= (((((
    cos x) 
    ^2 ) 
    - (( 
    sin x) 
    ^2 )) 
    / (( 
    cos x) 
    ^2 )) 
    * (( 
    cos x) 
    ^2 )) by 
    XCMPLX_1: 75
    
      .= (((((
    cos x) 
    ^2 ) 
    / (( 
    cos x) 
    ^2 )) 
    - ((( 
    sin x) 
    ^2 ) 
    / (( 
    cos x) 
    ^2 ))) 
    * (( 
    cos x) 
    ^2 )) by 
    XCMPLX_1: 120
    
      .= ((1
    - ((( 
    sin x) 
    ^2 ) 
    / (( 
    cos x) 
    ^2 ))) 
    * (( 
    cos x) 
    ^2 )) by 
    A1,
    XCMPLX_1: 60
    
      .= (((1
    - (( 
    tan x) 
    ^2 )) 
    * (( 
    cos x) 
    ^2 )) 
    / 1) by 
    XCMPLX_1: 76
    
      .= (((1
    - (( 
    tan x) 
    ^2 )) 
    * (( 
    cos x) 
    ^2 )) 
    / ((( 
    cos x) 
    ^2 ) 
    + (( 
    sin x) 
    ^2 ))) by 
    SIN_COS: 29
    
      .= ((1
    - (( 
    tan x) 
    ^2 )) 
    / (((( 
    cos x) 
    ^2 ) 
    + (( 
    sin x) 
    ^2 )) 
    / (( 
    cos x) 
    ^2 ))) by 
    XCMPLX_1: 77
    
      .= ((1
    - (( 
    tan x) 
    ^2 )) 
    / (((( 
    cos x) 
    ^2 ) 
    / (( 
    cos x) 
    ^2 )) 
    + ((( 
    sin x) 
    ^2 ) 
    / (( 
    cos x) 
    ^2 )))) by 
    XCMPLX_1: 62
    
      .= ((1
    - (( 
    tan x) 
    ^2 )) 
    / (1 
    + ((( 
    sin x) 
    ^2 ) 
    / (( 
    cos x) 
    ^2 )))) by 
    A1,
    XCMPLX_1: 60
    
      .= ((1
    - (( 
    tan x) 
    ^2 )) 
    / (1 
    + (( 
    tan x) 
    ^2 ))) by 
    XCMPLX_1: 76;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:9
    
    (
    cos x) 
    <>  
    0 implies ( 
    tan (2 
    * x)) 
    = ((2 
    * ( 
    tan x)) 
    / (1 
    - (( 
    tan x) 
    ^2 ))) 
    
    proof
    
      assume
    
      
    
    A1: ( 
    cos x) 
    <>  
    0 ; 
    
      (
    tan (2 
    * x)) 
    = ( 
    tan (x 
    + x)) 
    
      .= (((
    tan x) 
    + ( 
    tan x)) 
    / (1 
    - (( 
    tan x) 
    * ( 
    tan x)))) by 
    A1,
    SIN_COS4: 7
    
      .= ((2
    * ( 
    tan x)) 
    / (1 
    - (( 
    tan x) 
    * ( 
    tan x)))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:10
    
    (
    sin x) 
    <>  
    0 implies ( 
    cot (2 
    * x)) 
    = (((( 
    cot x) 
    ^2 ) 
    - 1) 
    / (2 
    * ( 
    cot x))) 
    
    proof
    
      assume
    
      
    
    A1: ( 
    sin x) 
    <>  
    0 ; 
    
      (
    cot (2 
    * x)) 
    = ( 
    cot (x 
    + x)) 
    
      .= ((((
    cot x) 
    * ( 
    cot x)) 
    - 1) 
    / (( 
    cot x) 
    + ( 
    cot x))) by 
    A1,
    SIN_COS4: 9
    
      .= ((((
    cot x) 
    * ( 
    cot x)) 
    - 1) 
    / (2 
    * ( 
    cot x))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:11
    
    
    
    
    
    Th11: ( 
    cos x) 
    <>  
    0 implies (( 
    sec x) 
    ^2 ) 
    = (1 
    + (( 
    tan x) 
    ^2 )) 
    
    proof
    
      assume (
    cos x) 
    <>  
    0 ; 
    
      then
    
      
    
    A1: (( 
    cos x) 
    ^2 ) 
    <>  
    0 by 
    SQUARE_1: 12;
    
      ((
    sec x) 
    ^2 ) 
    = ((1 
    ^2 ) 
    / (( 
    cos x) 
    ^2 )) by 
    XCMPLX_1: 76
    
      .= ((((
    sin x) 
    ^2 ) 
    + (( 
    cos x) 
    ^2 )) 
    / (( 
    cos x) 
    ^2 )) by 
    SIN_COS: 29
    
      .= ((((
    sin x) 
    ^2 ) 
    / (( 
    cos x) 
    ^2 )) 
    + ((( 
    cos x) 
    ^2 ) 
    / (( 
    cos x) 
    ^2 ))) by 
    XCMPLX_1: 62
    
      .= ((((
    sin x) 
    ^2 ) 
    / (( 
    cos x) 
    ^2 )) 
    + 1) by 
    A1,
    XCMPLX_1: 60
    
      .= ((((
    sin x) 
    / ( 
    cos x)) 
    ^2 ) 
    + 1) by 
    XCMPLX_1: 76;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:12
    
    (
    cot x) 
    = (1 
    / ( 
    tan x)) by 
    XCMPLX_1: 57;
    
    theorem :: 
    
    SIN_COS5:13
    
    
    
    
    
    Th13: ( 
    cos x) 
    <>  
    0 & ( 
    sin x) 
    <>  
    0 implies ( 
    sec (2 
    * x)) 
    = ((( 
    sec x) 
    ^2 ) 
    / (1 
    - (( 
    tan x) 
    ^2 ))) & ( 
    sec (2 
    * x)) 
    = ((( 
    cot x) 
    + ( 
    tan x)) 
    / (( 
    cot x) 
    - ( 
    tan x))) 
    
    proof
    
      assume that
    
      
    
    A1: ( 
    cos x) 
    <>  
    0 and 
    
      
    
    A2: ( 
    sin x) 
    <>  
    0 ; 
    
      
    
      
    
    A3: ( 
    sec (2 
    * x)) 
    = (1 
    / ((1 
    - (( 
    tan x) 
    ^2 )) 
    / (1 
    + (( 
    tan x) 
    ^2 )))) by 
    A1,
    Th8
    
      .= ((1
    + (( 
    tan x) 
    ^2 )) 
    / (1 
    - (( 
    tan x) 
    ^2 ))) by 
    XCMPLX_1: 57
    
      .= (((
    sec x) 
    ^2 ) 
    / (1 
    - (( 
    tan x) 
    ^2 ))) by 
    A1,
    Th11;
    
      
    
      then (
    sec (2 
    * x)) 
    = ((1 
    + (( 
    tan x) 
    ^2 )) 
    / (1 
    - (( 
    tan x) 
    ^2 ))) by 
    A1,
    Th11
    
      .= (((1
    + (( 
    tan x) 
    ^2 )) 
    / ( 
    tan x)) 
    / ((1 
    - (( 
    tan x) 
    ^2 )) 
    / ( 
    tan x))) by 
    A1,
    A2,
    XCMPLX_1: 50,
    XCMPLX_1: 55
    
      .= (((1
    / ( 
    tan x)) 
    + ((( 
    tan x) 
    ^2 ) 
    / ( 
    tan x))) 
    / ((1 
    - (( 
    tan x) 
    ^2 )) 
    / ( 
    tan x))) by 
    XCMPLX_1: 62
    
      .= (((
    cot x) 
    + ((( 
    tan x) 
    ^2 ) 
    / ( 
    tan x))) 
    / ((1 
    - (( 
    tan x) 
    ^2 )) 
    / ( 
    tan x))) by 
    XCMPLX_1: 57
    
      .= (((
    cot x) 
    + ((( 
    tan x) 
    ^2 ) 
    / ( 
    tan x))) 
    / ((1 
    / ( 
    tan x)) 
    - ((( 
    tan x) 
    ^2 ) 
    / ( 
    tan x)))) by 
    XCMPLX_1: 120
    
      .= (((
    cot x) 
    + ((( 
    tan x) 
    * ( 
    tan x)) 
    / ( 
    tan x))) 
    / (( 
    cot x) 
    - ((( 
    tan x) 
    ^2 ) 
    / ( 
    tan x)))) by 
    XCMPLX_1: 57
    
      .= (((
    cot x) 
    + ( 
    tan x)) 
    / (( 
    cot x) 
    - ((( 
    tan x) 
    * ( 
    tan x)) 
    / ( 
    tan x)))) by 
    A1,
    A2,
    XCMPLX_1: 50,
    XCMPLX_1: 89;
    
      hence thesis by
    A1,
    A2,
    A3,
    XCMPLX_1: 50,
    XCMPLX_1: 89;
    
    end;
    
    theorem :: 
    
    SIN_COS5:14
    
    (
    sin x) 
    <>  
    0 implies (( 
    cosec x) 
    ^2 ) 
    = (1 
    + (( 
    cot x) 
    ^2 )) 
    
    proof
    
      assume (
    sin x) 
    <>  
    0 ; 
    
      then
    
      
    
    A1: (( 
    sin x) 
    ^2 ) 
    <>  
    0 by 
    SQUARE_1: 12;
    
      ((
    cosec x) 
    ^2 ) 
    = ((1 
    ^2 ) 
    / (( 
    sin x) 
    ^2 )) by 
    XCMPLX_1: 76
    
      .= ((((
    sin x) 
    ^2 ) 
    + (( 
    cos x) 
    ^2 )) 
    / (( 
    sin x) 
    ^2 )) by 
    SIN_COS: 29
    
      .= ((((
    sin x) 
    ^2 ) 
    / (( 
    sin x) 
    ^2 )) 
    + ((( 
    cos x) 
    ^2 ) 
    / (( 
    sin x) 
    ^2 ))) by 
    XCMPLX_1: 62
    
      .= (1
    + ((( 
    cos x) 
    ^2 ) 
    / (( 
    sin x) 
    ^2 ))) by 
    A1,
    XCMPLX_1: 60
    
      .= (1
    + ((( 
    cos x) 
    / ( 
    sin x)) 
    ^2 )) by 
    XCMPLX_1: 76;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:15
    
    (
    cos x) 
    <>  
    0 & ( 
    sin x) 
    <>  
    0 implies ( 
    cosec (2 
    * x)) 
    = ((( 
    sec x) 
    * ( 
    cosec x)) 
    / 2) & ( 
    cosec (2 
    * x)) 
    = ((( 
    tan x) 
    + ( 
    cot x)) 
    / 2) 
    
    proof
    
      assume that
    
      
    
    A1: ( 
    cos x) 
    <>  
    0 and 
    
      
    
    A2: ( 
    sin x) 
    <>  
    0 ; 
    
      
    
      
    
    A3: ( 
    cosec (2 
    * x)) 
    = (1 
    / ((2 
    * ( 
    tan x)) 
    / (1 
    + (( 
    tan x) 
    ^2 )))) by 
    A1,
    Th6
    
      .= ((1
    + (( 
    tan x) 
    ^2 )) 
    / (2 
    * ( 
    tan x))) by 
    XCMPLX_1: 57
    
      .= (((1
    + (( 
    tan x) 
    ^2 )) 
    / ( 
    tan x)) 
    / 2) by 
    XCMPLX_1: 78
    
      .= (((1
    / (( 
    sin x) 
    / ( 
    cos x))) 
    + ((( 
    tan x) 
    ^2 ) 
    / ( 
    tan x))) 
    / 2) by 
    XCMPLX_1: 62
    
      .= (((
    cot x) 
    + ((( 
    tan x) 
    * ( 
    tan x)) 
    / ( 
    tan x))) 
    / 2) by 
    XCMPLX_1: 57
    
      .= (((
    cot x) 
    + ( 
    tan x)) 
    / 2) by 
    A1,
    A2,
    XCMPLX_1: 50,
    XCMPLX_1: 89;
    
      (
    cosec (2 
    * x)) 
    = (1 
    / ((2 
    * ( 
    tan x)) 
    / (1 
    + (( 
    tan x) 
    ^2 )))) by 
    A1,
    Th6
    
      .= ((1
    + (( 
    tan x) 
    ^2 )) 
    / (2 
    * ( 
    tan x))) by 
    XCMPLX_1: 57
    
      .= (((
    sec x) 
    ^2 ) 
    / (2 
    * ( 
    tan x))) by 
    A1,
    Th11
    
      .= ((((
    sec x) 
    * ( 
    sec x)) 
    / ( 
    tan x)) 
    / 2) by 
    XCMPLX_1: 78
    
      .= (((
    sec x) 
    * (( 
    sec x) 
    / (( 
    sin x) 
    / ( 
    cos x)))) 
    / 2) by 
    XCMPLX_1: 74
    
      .= (((
    sec x) 
    * ((( 
    sec x) 
    * ( 
    cos x)) 
    / ( 
    sin x))) 
    / 2) by 
    XCMPLX_1: 77
    
      .= (((
    sec x) 
    * ( 
    cosec x)) 
    / 2) by 
    A1,
    XCMPLX_1: 106;
    
      hence thesis by
    A3;
    
    end;
    
    theorem :: 
    
    SIN_COS5:16
    
    
    
    
    
    Th16: ( 
    sin (3 
    * x)) 
    = (( 
    - (4 
    * (( 
    sin x) 
    |^ 3))) 
    + (3 
    * ( 
    sin x))) 
    
    proof
    
      (
    sin (3 
    * x)) 
    = ( 
    sin ((x 
    + x) 
    + x)) 
    
      .= (((
    sin (2 
    * x)) 
    * ( 
    cos x)) 
    + (( 
    cos (x 
    + x)) 
    * ( 
    sin x))) by 
    SIN_COS: 75
    
      .= ((((2
    * ( 
    sin x)) 
    * ( 
    cos x)) 
    * ( 
    cos x)) 
    + (( 
    cos (2 
    * x)) 
    * ( 
    sin x))) by 
    Th5
    
      .= (((2
    * ( 
    sin x)) 
    * (( 
    cos x) 
    * ( 
    cos x))) 
    + ((1 
    - (2 
    * (( 
    sin x) 
    ^2 ))) 
    * ( 
    sin x))) by 
    Th7
    
      .= (((2
    * ( 
    sin x)) 
    * (1 
    - (( 
    sin x) 
    ^2 ))) 
    + ((1 
    - (2 
    * (( 
    sin x) 
    ^2 ))) 
    * ( 
    sin x))) by 
    SIN_COS4: 5
    
      .= ((((2
    * ( 
    sin x)) 
    * 1) 
    - ((2 
    * ( 
    sin x)) 
    * (( 
    sin x) 
    * ( 
    sin x)))) 
    + ((1 
    * ( 
    sin x)) 
    - ((2 
    * (( 
    sin x) 
    ^2 )) 
    * ( 
    sin x)))) 
    
      .= ((((2
    * ( 
    sin x)) 
    * 1) 
    - ((2 
    * ((( 
    sin x) 
    |^ 1) 
    * ( 
    sin x))) 
    * ( 
    sin x))) 
    + ((1 
    * ( 
    sin x)) 
    - ((2 
    * (( 
    sin x) 
    ^2 )) 
    * ( 
    sin x)))) 
    
      .= ((((2
    * ( 
    sin x)) 
    * 1) 
    - ((2 
    * (( 
    sin x) 
    |^ (1 
    + 1))) 
    * ( 
    sin x))) 
    + ((1 
    * ( 
    sin x)) 
    - ((2 
    * (( 
    sin x) 
    ^2 )) 
    * ( 
    sin x)))) by 
    NEWTON: 6
    
      .= ((((2
    * ( 
    sin x)) 
    * 1) 
    - (2 
    * ((( 
    sin x) 
    |^ 2) 
    * ( 
    sin x)))) 
    + ((1 
    * ( 
    sin x)) 
    - ((2 
    * (( 
    sin x) 
    ^2 )) 
    * ( 
    sin x)))) 
    
      .= ((((2
    * ( 
    sin x)) 
    * 1) 
    - (2 
    * (( 
    sin x) 
    |^ (2 
    + 1)))) 
    + ((1 
    * ( 
    sin x)) 
    - ((2 
    * (( 
    sin x) 
    ^2 )) 
    * ( 
    sin x)))) by 
    NEWTON: 6
    
      .= (((2
    * ( 
    sin x)) 
    - (2 
    * (( 
    sin x) 
    |^ 3))) 
    + (( 
    sin x) 
    - ((2 
    * ((( 
    sin x) 
    |^ 1) 
    * ( 
    sin x))) 
    * ( 
    sin x)))) 
    
      .= (((2
    * ( 
    sin x)) 
    - (2 
    * (( 
    sin x) 
    |^ 3))) 
    + (( 
    sin x) 
    - ((2 
    * (( 
    sin x) 
    |^ (1 
    + 1))) 
    * ( 
    sin x)))) by 
    NEWTON: 6
    
      .= (((2
    * ( 
    sin x)) 
    - (2 
    * (( 
    sin x) 
    |^ 3))) 
    + (( 
    sin x) 
    - (2 
    * ((( 
    sin x) 
    |^ (1 
    + 1)) 
    * ( 
    sin x))))) 
    
      .= (((2
    * ( 
    sin x)) 
    - (2 
    * (( 
    sin x) 
    |^ 3))) 
    + (( 
    sin x) 
    - (2 
    * (( 
    sin x) 
    |^ (2 
    + 1))))) by 
    NEWTON: 6
    
      .= (
    - (( 
    - (3 
    * ( 
    sin x))) 
    + (4 
    * (( 
    sin x) 
    |^ 3)))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:17
    
    
    
    
    
    Th17: ( 
    cos (3 
    * x)) 
    = ((4 
    * (( 
    cos x) 
    |^ 3)) 
    - (3 
    * ( 
    cos x))) 
    
    proof
    
      (
    cos (3 
    * x)) 
    = ( 
    cos ((x 
    + x) 
    + x)) 
    
      .= (((
    cos (2 
    * x)) 
    * ( 
    cos x)) 
    - (( 
    sin (x 
    + x)) 
    * ( 
    sin x))) by 
    SIN_COS: 75
    
      .= ((((2
    * (( 
    cos x) 
    ^2 )) 
    - 1) 
    * ( 
    cos x)) 
    - (( 
    sin (2 
    * x)) 
    * ( 
    sin x))) by 
    Th7
    
      .= (((2
    * ((( 
    cos x) 
    * ( 
    cos x)) 
    * ( 
    cos x))) 
    - (1 
    * ( 
    cos x))) 
    - (( 
    sin (2 
    * x)) 
    * ( 
    sin x))) 
    
      .= (((2
    * (((( 
    cos x) 
    |^ 1) 
    * ( 
    cos x)) 
    * ( 
    cos x))) 
    - (1 
    * ( 
    cos x))) 
    - (( 
    sin (2 
    * x)) 
    * ( 
    sin x))) 
    
      .= (((2
    * ((( 
    cos x) 
    |^ (1 
    + 1)) 
    * ( 
    cos x))) 
    - (1 
    * ( 
    cos x))) 
    - (( 
    sin (2 
    * x)) 
    * ( 
    sin x))) by 
    NEWTON: 6
    
      .= (((2
    * (( 
    cos x) 
    |^ (2 
    + 1))) 
    - ( 
    cos x)) 
    - (( 
    sin (2 
    * x)) 
    * ( 
    sin x))) by 
    NEWTON: 6
    
      .= (((2
    * (( 
    cos x) 
    |^ 3)) 
    - ( 
    cos x)) 
    - (((2 
    * ( 
    sin x)) 
    * ( 
    cos x)) 
    * ( 
    sin x))) by 
    Th5
    
      .= (((2
    * (( 
    cos x) 
    |^ 3)) 
    - ( 
    cos x)) 
    - ((2 
    * ( 
    cos x)) 
    * (( 
    sin x) 
    * ( 
    sin x)))) 
    
      .= (((2
    * (( 
    cos x) 
    |^ 3)) 
    - ( 
    cos x)) 
    - ((2 
    * ( 
    cos x)) 
    * (1 
    - (( 
    cos x) 
    * ( 
    cos x))))) by 
    SIN_COS4: 4
    
      .= (((2
    * (( 
    cos x) 
    |^ 3)) 
    - ( 
    cos x)) 
    - ((2 
    * ( 
    cos x)) 
    - (2 
    * ((( 
    cos x) 
    * ( 
    cos x)) 
    * ( 
    cos x))))) 
    
      .= (((2
    * (( 
    cos x) 
    |^ 3)) 
    - ( 
    cos x)) 
    - ((2 
    * ( 
    cos x)) 
    - (2 
    * (((( 
    cos x) 
    |^ 1) 
    * ( 
    cos x)) 
    * ( 
    cos x))))) 
    
      .= (((2
    * (( 
    cos x) 
    |^ 3)) 
    - ( 
    cos x)) 
    - ((2 
    * ( 
    cos x)) 
    - (2 
    * ((( 
    cos x) 
    |^ (1 
    + 1)) 
    * ( 
    cos x))))) by 
    NEWTON: 6
    
      .= (((2
    * (( 
    cos x) 
    |^ 3)) 
    - ( 
    cos x)) 
    - ((2 
    * ( 
    cos x)) 
    - (2 
    * (( 
    cos x) 
    |^ (2 
    + 1))))) by 
    NEWTON: 6
    
      .= (((2
    * (( 
    cos x) 
    |^ 3)) 
    + (2 
    * (( 
    cos x) 
    |^ 3))) 
    - (3 
    * ( 
    cos x))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:18
    
    (
    cos x) 
    <>  
    0 implies ( 
    tan (3 
    * x)) 
    = (((3 
    * ( 
    tan x)) 
    - (( 
    tan x) 
    |^ 3)) 
    / (1 
    - (3 
    * (( 
    tan x) 
    ^2 )))) 
    
    proof
    
      assume
    
      
    
    A1: ( 
    cos x) 
    <>  
    0 ; 
    
      (
    tan (3 
    * x)) 
    = ( 
    tan ((x 
    + x) 
    + x)) 
    
      .= (((((
    tan x) 
    + ( 
    tan x)) 
    + ( 
    tan x)) 
    - ((( 
    tan x) 
    * ( 
    tan x)) 
    * ( 
    tan x))) 
    / (((1 
    - (( 
    tan x) 
    * ( 
    tan x))) 
    - (( 
    tan x) 
    * ( 
    tan x))) 
    - (( 
    tan x) 
    * ( 
    tan x)))) by 
    A1,
    SIN_COS4: 13
    
      .= (((3
    * ( 
    tan x)) 
    - (((( 
    tan x) 
    |^ 1) 
    * ( 
    tan x)) 
    * ( 
    tan x))) 
    / (1 
    - ((3 
    * ( 
    tan x)) 
    * ( 
    tan x)))) 
    
      .= (((3
    * ( 
    tan x)) 
    - ((( 
    tan x) 
    |^ (1 
    + 1)) 
    * ( 
    tan x))) 
    / (1 
    - ((3 
    * ( 
    tan x)) 
    * ( 
    tan x)))) by 
    NEWTON: 6
    
      .= (((3
    * ( 
    tan x)) 
    - (( 
    tan x) 
    |^ (2 
    + 1))) 
    / (1 
    - (3 
    * (( 
    tan x) 
    * ( 
    tan x))))) by 
    NEWTON: 6;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:19
    
    (
    sin x) 
    <>  
    0 implies ( 
    cot (3 
    * x)) 
    = (((( 
    cot x) 
    |^ 3) 
    - (3 
    * ( 
    cot x))) 
    / ((3 
    * (( 
    cot x) 
    ^2 )) 
    - 1)) 
    
    proof
    
      assume
    
      
    
    A1: ( 
    sin x) 
    <>  
    0 ; 
    
      (
    cot (3 
    * x)) 
    = ( 
    cot ((x 
    + x) 
    + x)) 
    
      .= (((((((
    cot x) 
    * ( 
    cot x)) 
    * ( 
    cot x)) 
    - ( 
    cot x)) 
    - ( 
    cot x)) 
    - ( 
    cot x)) 
    / ((((( 
    cot x) 
    * ( 
    cot x)) 
    + (( 
    cot x) 
    * ( 
    cot x))) 
    + (( 
    cot x) 
    * ( 
    cot x))) 
    - 1)) by 
    A1,
    SIN_COS4: 14
    
      .= (((((
    cot x) 
    * ( 
    cot x)) 
    * ( 
    cot x)) 
    - (3 
    * ( 
    cot x))) 
    / ((3 
    * (( 
    cot x) 
    ^2 )) 
    - 1)) 
    
      .= ((((((
    cot x) 
    |^ 1) 
    * ( 
    cot x)) 
    * ( 
    cot x)) 
    - (3 
    * ( 
    cot x))) 
    / ((3 
    * (( 
    cot x) 
    ^2 )) 
    - 1)) 
    
      .= (((((
    cot x) 
    |^ (1 
    + 1)) 
    * ( 
    cot x)) 
    - (3 
    * ( 
    cot x))) 
    / ((3 
    * (( 
    cot x) 
    ^2 )) 
    - 1)) by 
    NEWTON: 6
    
      .= ((((
    cot x) 
    |^ (2 
    + 1)) 
    - (3 
    * ( 
    cot x))) 
    / ((3 
    * (( 
    cot x) 
    ^2 )) 
    - 1)) by 
    NEWTON: 6;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:20
    
    ((
    sin x) 
    ^2 ) 
    = ((1 
    - ( 
    cos (2 
    * x))) 
    / 2) 
    
    proof
    
      ((1
    - ( 
    cos (2 
    * x))) 
    / 2) 
    = ((1 
    - (1 
    - (2 
    * (( 
    sin x) 
    ^2 )))) 
    / 2) by 
    Th7
    
      .= ((((
    sin x) 
    ^2 ) 
    * 2) 
    / 2); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:21
    
    ((
    cos x) 
    ^2 ) 
    = ((1 
    + ( 
    cos (2 
    * x))) 
    / 2) 
    
    proof
    
      ((1
    + ( 
    cos (2 
    * x))) 
    / 2) 
    = ((1 
    + ((2 
    * (( 
    cos x) 
    ^2 )) 
    - 1)) 
    / 2) by 
    Th7
    
      .= ((((
    cos x) 
    ^2 ) 
    * 2) 
    / 2); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:22
    
    ((
    sin x) 
    |^ 3) 
    = (((3 
    * ( 
    sin x)) 
    - ( 
    sin (3 
    * x))) 
    / 4) 
    
    proof
    
      (((3
    * ( 
    sin x)) 
    - ( 
    sin (3 
    * x))) 
    / 4) 
    = (((3 
    * ( 
    sin x)) 
    - (( 
    - (4 
    * (( 
    sin x) 
    |^ 3))) 
    + (3 
    * ( 
    sin x)))) 
    / 4) by 
    Th16
    
      .= ((4
    * (( 
    sin x) 
    |^ 3)) 
    / 4); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:23
    
    ((
    cos x) 
    |^ 3) 
    = (((3 
    * ( 
    cos x)) 
    + ( 
    cos (3 
    * x))) 
    / 4) 
    
    proof
    
      (((3
    * ( 
    cos x)) 
    + ( 
    cos (3 
    * x))) 
    / 4) 
    = (((3 
    * ( 
    cos x)) 
    + ((4 
    * (( 
    cos x) 
    |^ 3)) 
    - (3 
    * ( 
    cos x)))) 
    / 4) by 
    Th17
    
      .= ((4
    * (( 
    cos x) 
    |^ 3)) 
    / 4); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:24
    
    ((
    sin x) 
    |^ 4) 
    = (((3 
    - (4 
    * ( 
    cos (2 
    * x)))) 
    + ( 
    cos (4 
    * x))) 
    / 8) 
    
    proof
    
      (((3
    - (4 
    * ( 
    cos (2 
    * x)))) 
    + ( 
    cos ((2 
    * 2) 
    * x))) 
    / 8) 
    = (((3 
    - (4 
    * ( 
    cos (2 
    * x)))) 
    + ( 
    cos (2 
    * (2 
    * x)))) 
    / 8) 
    
      .= (((3
    - (4 
    * ( 
    cos (2 
    * x)))) 
    + (1 
    - (2 
    * (( 
    sin (2 
    * x)) 
    ^2 )))) 
    / 8) by 
    Th7
    
      .= (((3
    - (4 
    * ( 
    cos (2 
    * x)))) 
    + (1 
    - (2 
    * (((2 
    * ( 
    sin x)) 
    * ( 
    cos x)) 
    ^2 )))) 
    / 8) by 
    Th5
    
      .= (((3
    - (4 
    * (1 
    - (2 
    * (( 
    sin x) 
    ^2 ))))) 
    + (1 
    - ((8 
    * (( 
    sin x) 
    ^2 )) 
    * (( 
    cos x) 
    ^2 )))) 
    / 8) by 
    Th7
    
      .= (((
    sin x) 
    ^2 ) 
    * (1 
    - (( 
    cos x) 
    * ( 
    cos x)))) 
    
      .= (((
    sin x) 
    * ( 
    sin x)) 
    * (( 
    sin x) 
    * ( 
    sin x))) by 
    SIN_COS4: 4
    
      .= ((((
    sin x) 
    |^ 1) 
    * ( 
    sin x)) 
    * (( 
    sin x) 
    * ( 
    sin x))) 
    
      .= (((
    sin x) 
    |^ (1 
    + 1)) 
    * (( 
    sin x) 
    * ( 
    sin x))) by 
    NEWTON: 6
    
      .= ((((
    sin x) 
    |^ (1 
    + 1)) 
    * ( 
    sin x)) 
    * ( 
    sin x)) 
    
      .= (((
    sin x) 
    |^ (2 
    + 1)) 
    * ( 
    sin x)) by 
    NEWTON: 6
    
      .= ((
    sin x) 
    |^ (3 
    + 1)) by 
    NEWTON: 6;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:25
    
    ((
    cos x) 
    |^ 4) 
    = (((3 
    + (4 
    * ( 
    cos (2 
    * x)))) 
    + ( 
    cos (4 
    * x))) 
    / 8) 
    
    proof
    
      (((3
    + (4 
    * ( 
    cos (2 
    * x)))) 
    + ( 
    cos (4 
    * x))) 
    / 8) 
    = (((3 
    + (4 
    * ( 
    cos (2 
    * x)))) 
    + ( 
    cos (2 
    * (2 
    * x)))) 
    / 8) 
    
      .= (((3
    + (4 
    * ( 
    cos (2 
    * x)))) 
    + (1 
    - (2 
    * (( 
    sin (2 
    * x)) 
    ^2 )))) 
    / 8) by 
    Th7
    
      .= (((3
    + (4 
    * ( 
    cos (2 
    * x)))) 
    + (1 
    - (2 
    * (((2 
    * ( 
    sin x)) 
    * ( 
    cos x)) 
    ^2 )))) 
    / 8) by 
    Th5
    
      .= (((3
    + (4 
    * (1 
    - (2 
    * (( 
    sin x) 
    ^2 ))))) 
    + (1 
    - ((8 
    * (( 
    sin x) 
    ^2 )) 
    * (( 
    cos x) 
    ^2 )))) 
    / 8) by 
    Th7
    
      .= (1
    - ((( 
    sin x) 
    * ( 
    sin x)) 
    * (1 
    + (( 
    cos x) 
    ^2 )))) 
    
      .= (1
    - (((1 
    ^2 ) 
    - (( 
    cos x) 
    ^2 )) 
    * ((1 
    ^2 ) 
    + (( 
    cos x) 
    ^2 )))) by 
    SIN_COS4: 4
    
      .= ((((
    cos x) 
    * ( 
    cos x)) 
    * ( 
    cos x)) 
    * ( 
    cos x)) 
    
      .= (((((
    cos x) 
    |^ 1) 
    * ( 
    cos x)) 
    * ( 
    cos x)) 
    * ( 
    cos x)) 
    
      .= ((((
    cos x) 
    |^ (1 
    + 1)) 
    * ( 
    cos x)) 
    * ( 
    cos x)) by 
    NEWTON: 6
    
      .= (((
    cos x) 
    |^ (2 
    + 1)) 
    * ( 
    cos x)) by 
    NEWTON: 6
    
      .= ((
    cos x) 
    |^ (3 
    + 1)) by 
    NEWTON: 6;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:26
    
    (
    sin (x 
    / 2)) 
    = ( 
    sqrt ((1 
    - ( 
    cos x)) 
    / 2)) or ( 
    sin (x 
    / 2)) 
    = ( 
    - ( 
    sqrt ((1 
    - ( 
    cos x)) 
    / 2))) 
    
    proof
    
      
    
      
    
    A1: ( 
    sqrt ((1 
    - ( 
    cos x)) 
    / 2)) 
    = ( 
    sqrt ((1 
    - ( 
    cos (2 
    * (x 
    / 2)))) 
    / 2)) 
    
      .= (
    sqrt ((1 
    - (1 
    - (2 
    * (( 
    sin (x 
    / 2)) 
    ^2 )))) 
    / 2)) by 
    Th7
    
      .=
    |.(
    sin (x 
    / 2)).| by 
    COMPLEX1: 72;
    
      per cases ;
    
        suppose (
    sin (x 
    / 2)) 
    >=  
    0 ; 
    
        hence thesis by
    A1,
    ABSVALUE:def 1;
    
      end;
    
        suppose (
    sin (x 
    / 2)) 
    <  
    0 ; 
    
        then ((
    sqrt ((1 
    - ( 
    cos x)) 
    / 2)) 
    * ( 
    - 1)) 
    = (( 
    - ( 
    sin (x 
    / 2))) 
    * ( 
    - 1)) by 
    A1,
    ABSVALUE:def 1;
    
        hence thesis;
    
      end;
    
    end;
    
    theorem :: 
    
    SIN_COS5:27
    
    (
    cos (x 
    / 2)) 
    = ( 
    sqrt ((1 
    + ( 
    cos x)) 
    / 2)) or ( 
    cos (x 
    / 2)) 
    = ( 
    - ( 
    sqrt ((1 
    + ( 
    cos x)) 
    / 2))) 
    
    proof
    
      
    
      
    
    A1: ( 
    sqrt ((1 
    + ( 
    cos x)) 
    / 2)) 
    = ( 
    sqrt ((1 
    + ( 
    cos (2 
    * (x 
    / 2)))) 
    / 2)) 
    
      .= (
    sqrt ((1 
    + ((2 
    * (( 
    cos (x 
    / 2)) 
    ^2 )) 
    - 1)) 
    / 2)) by 
    Th7
    
      .=
    |.(
    cos (x 
    / 2)).| by 
    COMPLEX1: 72;
    
      per cases ;
    
        suppose (
    cos (x 
    / 2)) 
    >=  
    0 ; 
    
        hence thesis by
    A1,
    ABSVALUE:def 1;
    
      end;
    
        suppose (
    cos (x 
    / 2)) 
    <  
    0 ; 
    
        then ((
    sqrt ((1 
    + ( 
    cos x)) 
    / 2)) 
    * ( 
    - 1)) 
    = (( 
    - ( 
    cos (x 
    / 2))) 
    * ( 
    - 1)) by 
    A1,
    ABSVALUE:def 1;
    
        hence thesis;
    
      end;
    
    end;
    
    theorem :: 
    
    SIN_COS5:28
    
    (
    sin (x 
    / 2)) 
    <>  
    0 implies ( 
    tan (x 
    / 2)) 
    = ((1 
    - ( 
    cos x)) 
    / ( 
    sin x)) 
    
    proof
    
      assume (
    sin (x 
    / 2)) 
    <>  
    0 ; 
    
      then
    
      
    
    A1: (2 
    * ( 
    sin (x 
    / 2))) 
    <>  
    0 ; 
    
      ((1
    - ( 
    cos x)) 
    / ( 
    sin x)) 
    = ((1 
    - (1 
    - (2 
    * (( 
    sin (x 
    / 2)) 
    ^2 )))) 
    / ( 
    sin (2 
    * (x 
    / 2)))) by 
    Th7
    
      .= (((2
    * ( 
    sin (x 
    / 2))) 
    * ( 
    sin (x 
    / 2))) 
    / ((2 
    * ( 
    sin (x 
    / 2))) 
    * ( 
    cos (x 
    / 2)))) by 
    Th5
    
      .= (
    tan (x 
    / 2)) by 
    A1,
    XCMPLX_1: 91;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:29
    
    (
    cos (x 
    / 2)) 
    <>  
    0 implies ( 
    tan (x 
    / 2)) 
    = (( 
    sin x) 
    / (1 
    + ( 
    cos x))) 
    
    proof
    
      assume (
    cos (x 
    / 2)) 
    <>  
    0 ; 
    
      then
    
      
    
    A1: (2 
    * ( 
    cos (x 
    / 2))) 
    <>  
    0 ; 
    
      ((
    sin x) 
    / (1 
    + ( 
    cos x))) 
    = (((2 
    * ( 
    sin (x 
    / 2))) 
    * ( 
    cos (x 
    / 2))) 
    / (1 
    + ( 
    cos (2 
    * (x 
    / 2))))) by 
    Th5
    
      .= (((2
    * ( 
    sin (x 
    / 2))) 
    * ( 
    cos (x 
    / 2))) 
    / (1 
    + ((2 
    * (( 
    cos (x 
    / 2)) 
    ^2 )) 
    - 1))) by 
    Th7
    
      .= (((2
    * ( 
    cos (x 
    / 2))) 
    * ( 
    sin (x 
    / 2))) 
    / ((2 
    * ( 
    cos (x 
    / 2))) 
    * ( 
    cos (x 
    / 2)))) 
    
      .= ((
    sin (x 
    / 2)) 
    / ( 
    cos (x 
    / 2))) by 
    A1,
    XCMPLX_1: 91;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:30
    
    (
    tan (x 
    / 2)) 
    = ( 
    sqrt ((1 
    - ( 
    cos x)) 
    / (1 
    + ( 
    cos x)))) or ( 
    tan (x 
    / 2)) 
    = ( 
    - ( 
    sqrt ((1 
    - ( 
    cos x)) 
    / (1 
    + ( 
    cos x))))) 
    
    proof
    
      
    
      
    
    A1: ( 
    sqrt ((1 
    - ( 
    cos x)) 
    / (1 
    + ( 
    cos x)))) 
    = ( 
    sqrt ((1 
    - (1 
    - (2 
    * (( 
    sin (x 
    / 2)) 
    ^2 )))) 
    / (1 
    + ( 
    cos (2 
    * (x 
    / 2)))))) by 
    Th7
    
      .= (
    sqrt (((1 
    - 1) 
    + (2 
    * (( 
    sin (x 
    / 2)) 
    ^2 ))) 
    / (1 
    + ((2 
    * (( 
    cos (x 
    / 2)) 
    ^2 )) 
    - 1)))) by 
    Th7
    
      .= (
    sqrt ((( 
    sin (x 
    / 2)) 
    ^2 ) 
    / (( 
    cos (x 
    / 2)) 
    ^2 ))) by 
    XCMPLX_1: 91
    
      .= (
    sqrt (( 
    tan (x 
    / 2)) 
    ^2 )) by 
    XCMPLX_1: 76
    
      .=
    |.(
    tan (x 
    / 2)).| by 
    COMPLEX1: 72;
    
      per cases ;
    
        suppose (
    tan (x 
    / 2)) 
    >=  
    0 ; 
    
        hence thesis by
    A1,
    ABSVALUE:def 1;
    
      end;
    
        suppose (
    tan (x 
    / 2)) 
    <  
    0 ; 
    
        then ((
    sqrt ((1 
    - ( 
    cos x)) 
    / (1 
    + ( 
    cos x)))) 
    * ( 
    - 1)) 
    = (( 
    - ( 
    tan (x 
    / 2))) 
    * ( 
    - 1)) by 
    A1,
    ABSVALUE:def 1;
    
        hence thesis;
    
      end;
    
    end;
    
    theorem :: 
    
    SIN_COS5:31
    
    (
    cos (x 
    / 2)) 
    <>  
    0 implies ( 
    cot (x 
    / 2)) 
    = ((1 
    + ( 
    cos x)) 
    / ( 
    sin x)) 
    
    proof
    
      assume (
    cos (x 
    / 2)) 
    <>  
    0 ; 
    
      then
    
      
    
    A1: (2 
    * ( 
    cos (x 
    / 2))) 
    <>  
    0 ; 
    
      ((1
    + ( 
    cos x)) 
    / ( 
    sin x)) 
    = ((1 
    + ((2 
    * (( 
    cos (x 
    / 2)) 
    ^2 )) 
    - 1)) 
    / ( 
    sin (2 
    * (x 
    / 2)))) by 
    Th7
    
      .= ((2
    * (( 
    cos (x 
    / 2)) 
    * ( 
    cos (x 
    / 2)))) 
    / ((2 
    * ( 
    sin (x 
    / 2))) 
    * ( 
    cos (x 
    / 2)))) by 
    Th5
    
      .= (((2
    * ( 
    cos (x 
    / 2))) 
    * ( 
    cos (x 
    / 2))) 
    / ((2 
    * ( 
    cos (x 
    / 2))) 
    * ( 
    sin (x 
    / 2)))) 
    
      .= (
    cot (x 
    / 2)) by 
    A1,
    XCMPLX_1: 91;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:32
    
    (
    sin (x 
    / 2)) 
    <>  
    0 implies ( 
    cot (x 
    / 2)) 
    = (( 
    sin x) 
    / (1 
    - ( 
    cos x))) 
    
    proof
    
      assume (
    sin (x 
    / 2)) 
    <>  
    0 ; 
    
      then
    
      
    
    A1: (2 
    * ( 
    sin (x 
    / 2))) 
    <>  
    0 ; 
    
      ((
    sin x) 
    / (1 
    - ( 
    cos x))) 
    = (((2 
    * ( 
    sin (x 
    / 2))) 
    * ( 
    cos (x 
    / 2))) 
    / (1 
    - ( 
    cos (2 
    * (x 
    / 2))))) by 
    Th5
    
      .= (((2
    * ( 
    sin (x 
    / 2))) 
    * ( 
    cos (x 
    / 2))) 
    / (1 
    - (1 
    - (2 
    * (( 
    sin (x 
    / 2)) 
    ^2 ))))) by 
    Th7
    
      .= (((2
    * ( 
    sin (x 
    / 2))) 
    * ( 
    cos (x 
    / 2))) 
    / ((2 
    * ( 
    sin (x 
    / 2))) 
    * ( 
    sin (x 
    / 2)))) 
    
      .= ((
    cos (x 
    / 2)) 
    / ( 
    sin (x 
    / 2))) by 
    A1,
    XCMPLX_1: 91;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:33
    
    (
    cot (x 
    / 2)) 
    = ( 
    sqrt ((1 
    + ( 
    cos x)) 
    / (1 
    - ( 
    cos x)))) or ( 
    cot (x 
    / 2)) 
    = ( 
    - ( 
    sqrt ((1 
    + ( 
    cos x)) 
    / (1 
    - ( 
    cos x))))) 
    
    proof
    
      
    
      
    
    A1: ( 
    sqrt ((1 
    + ( 
    cos x)) 
    / (1 
    - ( 
    cos x)))) 
    = ( 
    sqrt ((1 
    + ((2 
    * (( 
    cos (x 
    / 2)) 
    ^2 )) 
    - 1)) 
    / (1 
    - ( 
    cos (2 
    * (x 
    / 2)))))) by 
    Th7
    
      .= (
    sqrt ((1 
    - (1 
    - (2 
    * (( 
    cos (x 
    / 2)) 
    ^2 )))) 
    / (1 
    - (1 
    - (2 
    * (( 
    sin (x 
    / 2)) 
    ^2 )))))) by 
    Th7
    
      .= (
    sqrt ((( 
    cos (x 
    / 2)) 
    ^2 ) 
    / (( 
    sin (x 
    / 2)) 
    ^2 ))) by 
    XCMPLX_1: 91
    
      .= (
    sqrt (( 
    cot (x 
    / 2)) 
    ^2 )) by 
    XCMPLX_1: 76
    
      .=
    |.(
    cot (x 
    / 2)).| by 
    COMPLEX1: 72;
    
      per cases ;
    
        suppose (
    cot (x 
    / 2)) 
    >=  
    0 ; 
    
        hence thesis by
    A1,
    ABSVALUE:def 1;
    
      end;
    
        suppose (
    cot (x 
    / 2)) 
    <  
    0 ; 
    
        then ((
    sqrt ((1 
    + ( 
    cos x)) 
    / (1 
    - ( 
    cos x)))) 
    * ( 
    - 1)) 
    = (( 
    - ( 
    cot (x 
    / 2))) 
    * ( 
    - 1)) by 
    A1,
    ABSVALUE:def 1;
    
        hence thesis;
    
      end;
    
    end;
    
    theorem :: 
    
    SIN_COS5:34
    
    (
    sin (x 
    / 2)) 
    <>  
    0 & ( 
    cos (x 
    / 2)) 
    <>  
    0 & (1 
    - (( 
    tan (x 
    / 2)) 
    ^2 )) 
    <>  
    0 implies ( 
    sec (x 
    / 2)) 
    = ( 
    sqrt ((2 
    * ( 
    sec x)) 
    / (( 
    sec x) 
    + 1))) or ( 
    sec (x 
    / 2)) 
    = ( 
    - ( 
    sqrt ((2 
    * ( 
    sec x)) 
    / (( 
    sec x) 
    + 1)))) 
    
    proof
    
      assume that
    
      
    
    A1: ( 
    sin (x 
    / 2)) 
    <>  
    0 and 
    
      
    
    A2: ( 
    cos (x 
    / 2)) 
    <>  
    0 and 
    
      
    
    A3: (1 
    - (( 
    tan (x 
    / 2)) 
    ^2 )) 
    <>  
    0 ; 
    
      set b = ((
    sec (x 
    / 2)) 
    ^2 ); 
    
      set a = (1
    - (( 
    tan (x 
    / 2)) 
    ^2 )); 
    
      
    
      
    
    A4: (a 
    + b) 
    = ((1 
    + (( 
    tan (x 
    / 2)) 
    ^2 )) 
    + (1 
    - (( 
    tan (x 
    / 2)) 
    ^2 ))) by 
    A2,
    Th11
    
      .= (1
    + 1); 
    
      (
    sqrt ((2 
    * ( 
    sec x)) 
    / (( 
    sec x) 
    + 1))) 
    = ( 
    sqrt ((2 
    * ((( 
    sec (x 
    / 2)) 
    ^2 ) 
    / (1 
    - (( 
    tan (x 
    / 2)) 
    ^2 )))) 
    / (( 
    sec (2 
    * (x 
    / 2))) 
    + 1))) by 
    A1,
    A2,
    Th13
    
      .= (
    sqrt ((2 
    * ((( 
    sec (x 
    / 2)) 
    ^2 ) 
    / (1 
    - (( 
    tan (x 
    / 2)) 
    ^2 )))) 
    / (((( 
    sec (x 
    / 2)) 
    ^2 ) 
    / (1 
    - (( 
    tan (x 
    / 2)) 
    ^2 ))) 
    + 1))) by 
    A1,
    A2,
    Th13;
    
      
    
      then
    
      
    
    A5: ( 
    sqrt ((2 
    * ( 
    sec x)) 
    / (( 
    sec x) 
    + 1))) 
    = ( 
    sqrt (((2 
    * (b 
    / a)) 
    * a) 
    / (((b 
    / a) 
    + 1) 
    * a))) by 
    A3,
    XCMPLX_1: 91
    
      .= (
    sqrt ((2 
    * ((b 
    / a) 
    * a)) 
    / (((b 
    / a) 
    * a) 
    + (1 
    * a)))) 
    
      .= (
    sqrt ((2 
    * ((b 
    / a) 
    * a)) 
    / (b 
    + a))) by 
    A3,
    XCMPLX_1: 87
    
      .= (
    sqrt ((2 
    * b) 
    / 2)) by 
    A3,
    A4,
    XCMPLX_1: 87
    
      .=
    |.(
    sec (x 
    / 2)).| by 
    COMPLEX1: 72;
    
      per cases ;
    
        suppose (
    sec (x 
    / 2)) 
    >=  
    0 ; 
    
        hence thesis by
    A5,
    ABSVALUE:def 1;
    
      end;
    
        suppose (
    sec (x 
    / 2)) 
    <  
    0 ; 
    
        then ((
    sqrt ((2 
    * ( 
    sec x)) 
    / (( 
    sec x) 
    + 1))) 
    * ( 
    - 1)) 
    = (( 
    - ( 
    sec (x 
    / 2))) 
    * ( 
    - 1)) by 
    A5,
    ABSVALUE:def 1;
    
        hence thesis;
    
      end;
    
    end;
    
    theorem :: 
    
    SIN_COS5:35
    
    (
    sin (x 
    / 2)) 
    <>  
    0 & ( 
    cos (x 
    / 2)) 
    <>  
    0 & (1 
    - (( 
    tan (x 
    / 2)) 
    ^2 )) 
    <>  
    0 implies ( 
    cosec (x 
    / 2)) 
    = ( 
    sqrt ((2 
    * ( 
    sec x)) 
    / (( 
    sec x) 
    - 1))) or ( 
    cosec (x 
    / 2)) 
    = ( 
    - ( 
    sqrt ((2 
    * ( 
    sec x)) 
    / (( 
    sec x) 
    - 1)))) 
    
    proof
    
      assume that
    
      
    
    A1: ( 
    sin (x 
    / 2)) 
    <>  
    0 and 
    
      
    
    A2: ( 
    cos (x 
    / 2)) 
    <>  
    0 and 
    
      
    
    A3: (1 
    - (( 
    tan (x 
    / 2)) 
    ^2 )) 
    <>  
    0 ; 
    
      set b = ((
    sec (x 
    / 2)) 
    ^2 ); 
    
      set a = (1
    - (( 
    tan (x 
    / 2)) 
    ^2 )); 
    
      
    
      
    
    A4: (b 
    - a) 
    = ((1 
    + (( 
    tan (x 
    / 2)) 
    ^2 )) 
    - (1 
    - (( 
    tan (x 
    / 2)) 
    ^2 ))) by 
    A2,
    Th11
    
      .= (2
    * (( 
    tan (x 
    / 2)) 
    ^2 )); 
    
      (
    sqrt ((2 
    * ( 
    sec x)) 
    / (( 
    sec x) 
    - 1))) 
    = ( 
    sqrt ((2 
    * ((( 
    sec (x 
    / 2)) 
    ^2 ) 
    / (1 
    - (( 
    tan (x 
    / 2)) 
    ^2 )))) 
    / (( 
    sec (2 
    * (x 
    / 2))) 
    - 1))) by 
    A1,
    A2,
    Th13
    
      .= (
    sqrt ((2 
    * ((( 
    sec (x 
    / 2)) 
    ^2 ) 
    / (1 
    - (( 
    tan (x 
    / 2)) 
    ^2 )))) 
    / (((( 
    sec (x 
    / 2)) 
    ^2 ) 
    / (1 
    - (( 
    tan (x 
    / 2)) 
    ^2 ))) 
    - 1))) by 
    A1,
    A2,
    Th13;
    
      
    
      then
    
      
    
    A5: ( 
    sqrt ((2 
    * ( 
    sec x)) 
    / (( 
    sec x) 
    - 1))) 
    = ( 
    sqrt (((2 
    * (b 
    / a)) 
    * a) 
    / (((b 
    / a) 
    - 1) 
    * a))) by 
    A3,
    XCMPLX_1: 91
    
      .= (
    sqrt ((2 
    * ((b 
    / a) 
    * a)) 
    / (((b 
    / a) 
    * a) 
    - (1 
    * a)))) 
    
      .= (
    sqrt ((2 
    * ((b 
    / a) 
    * a)) 
    / (b 
    - a))) by 
    A3,
    XCMPLX_1: 87
    
      .= (
    sqrt ((2 
    * b) 
    / (2 
    * (( 
    tan (x 
    / 2)) 
    ^2 )))) by 
    A3,
    A4,
    XCMPLX_1: 87
    
      .= (
    sqrt ((( 
    sec (x 
    / 2)) 
    ^2 ) 
    / (( 
    tan (x 
    / 2)) 
    ^2 ))) by 
    XCMPLX_1: 91
    
      .= (
    sqrt ((( 
    sec (x 
    / 2)) 
    / ( 
    tan (x 
    / 2))) 
    ^2 )) by 
    XCMPLX_1: 76
    
      .= (
    sqrt (( 
    cosec (x 
    / 2)) 
    ^2 )) by 
    A2,
    Th1
    
      .=
    |.(
    cosec (x 
    / 2)).| by 
    COMPLEX1: 72;
    
      per cases ;
    
        suppose (
    cosec (x 
    / 2)) 
    >=  
    0 ; 
    
        hence thesis by
    A5,
    ABSVALUE:def 1;
    
      end;
    
        suppose (
    cosec (x 
    / 2)) 
    <  
    0 ; 
    
        then ((
    sqrt ((2 
    * ( 
    sec x)) 
    / (( 
    sec x) 
    - 1))) 
    * ( 
    - 1)) 
    = (( 
    - ( 
    cosec (x 
    / 2))) 
    * ( 
    - 1)) by 
    A5,
    ABSVALUE:def 1;
    
        hence thesis;
    
      end;
    
    end;
    
    definition
    
      let x be
    Real;
    
      :: 
    
    SIN_COS5:def1
    
      func
    
    coth (x) -> 
    Real equals (( 
    cosh x) 
    / ( 
    sinh x)); 
    
      coherence ;
    
      :: 
    
    SIN_COS5:def2
    
      func
    
    sech (x) -> 
    Real equals (1 
    / ( 
    cosh x)); 
    
      coherence ;
    
      :: 
    
    SIN_COS5:def3
    
      func
    
    cosech (x) -> 
    Real equals (1 
    / ( 
    sinh x)); 
    
      coherence ;
    
    end
    
    theorem :: 
    
    SIN_COS5:36
    
    
    
    
    
    Th36: ( 
    coth x) 
    = ((( 
    exp_R x) 
    + ( 
    exp_R ( 
    - x))) 
    / (( 
    exp_R x) 
    - ( 
    exp_R ( 
    - x)))) & ( 
    sech x) 
    = (2 
    / (( 
    exp_R x) 
    + ( 
    exp_R ( 
    - x)))) & ( 
    cosech x) 
    = (2 
    / (( 
    exp_R x) 
    - ( 
    exp_R ( 
    - x)))) 
    
    proof
    
      
    
      
    
    A1: ( 
    sech x) 
    = (1 
    / ( 
    cosh  
    . x)) by 
    SIN_COS2:def 4
    
      .= (1
    / ((( 
    exp_R  
    . x) 
    + ( 
    exp_R  
    . ( 
    - x))) 
    / 2)) by 
    SIN_COS2:def 3
    
      .= ((1
    * 2) 
    / (((( 
    exp_R  
    . x) 
    + ( 
    exp_R  
    . ( 
    - x))) 
    / 2) 
    * 2)) by 
    XCMPLX_1: 91
    
      .= (2
    / (( 
    exp_R  
    . x) 
    + ( 
    exp_R ( 
    - x)))) by 
    SIN_COS:def 23
    
      .= (2
    / (( 
    exp_R x) 
    + ( 
    exp_R ( 
    - x)))) by 
    SIN_COS:def 23;
    
      
    
      
    
    A2: ( 
    cosech x) 
    = (1 
    / ( 
    sinh  
    . x)) by 
    SIN_COS2:def 2
    
      .= (1
    / ((( 
    exp_R  
    . x) 
    - ( 
    exp_R  
    . ( 
    - x))) 
    / 2)) by 
    SIN_COS2:def 1
    
      .= ((1
    * 2) 
    / (((( 
    exp_R  
    . x) 
    - ( 
    exp_R  
    . ( 
    - x))) 
    / 2) 
    * 2)) by 
    XCMPLX_1: 91
    
      .= (2
    / (( 
    exp_R  
    . x) 
    - ( 
    exp_R ( 
    - x)))) by 
    SIN_COS:def 23;
    
      (
    coth x) 
    = (( 
    cosh  
    . x) 
    / ( 
    sinh x)) by 
    SIN_COS2:def 4
    
      .= ((
    cosh  
    . x) 
    / ( 
    sinh  
    . x)) by 
    SIN_COS2:def 2
    
      .= ((((
    exp_R  
    . x) 
    + ( 
    exp_R  
    . ( 
    - x))) 
    / 2) 
    / ( 
    sinh  
    . x)) by 
    SIN_COS2:def 3
    
      .= ((((
    exp_R  
    . x) 
    + ( 
    exp_R  
    . ( 
    - x))) 
    / 2) 
    / ((( 
    exp_R  
    . x) 
    - ( 
    exp_R  
    . ( 
    - x))) 
    / 2)) by 
    SIN_COS2:def 1
    
      .= (((((
    exp_R  
    . x) 
    + ( 
    exp_R  
    . ( 
    - x))) 
    / 2) 
    * 2) 
    / (((( 
    exp_R  
    . x) 
    - ( 
    exp_R  
    . ( 
    - x))) 
    / 2) 
    * 2)) by 
    XCMPLX_1: 91
    
      .= (((
    exp_R  
    . x) 
    + ( 
    exp_R  
    . ( 
    - x))) 
    / (( 
    exp_R  
    . x) 
    - ( 
    exp_R ( 
    - x)))) by 
    SIN_COS:def 23
    
      .= (((
    exp_R  
    . x) 
    + ( 
    exp_R  
    . ( 
    - x))) 
    / (( 
    exp_R x) 
    - ( 
    exp_R ( 
    - x)))) by 
    SIN_COS:def 23
    
      .= (((
    exp_R  
    . x) 
    + ( 
    exp_R ( 
    - x))) 
    / (( 
    exp_R x) 
    - ( 
    exp_R ( 
    - x)))) by 
    SIN_COS:def 23
    
      .= (((
    exp_R x) 
    + ( 
    exp_R ( 
    - x))) 
    / (( 
    exp_R x) 
    - ( 
    exp_R ( 
    - x)))) by 
    SIN_COS:def 23;
    
      hence thesis by
    A1,
    A2,
    SIN_COS:def 23;
    
    end;
    
    theorem :: 
    
    SIN_COS5:37
    
    ((
    exp_R x) 
    - ( 
    exp_R ( 
    - x))) 
    <>  
    0 implies (( 
    tanh x) 
    * ( 
    coth x)) 
    = 1 
    
    proof
    
      assume
    
      
    
    A1: (( 
    exp_R x) 
    - ( 
    exp_R ( 
    - x))) 
    <>  
    0 ; 
    
      (
    exp_R x) 
    >  
    0 by 
    SIN_COS: 55;
    
      then
    
      
    
    A2: (( 
    exp_R x) 
    + ( 
    exp_R ( 
    - x))) 
    > ( 
    0  
    +  
    0 ) by 
    SIN_COS: 55,
    XREAL_1: 8;
    
      ((
    tanh x) 
    * ( 
    coth x)) 
    = (( 
    tanh  
    . x) 
    * ( 
    coth x)) by 
    SIN_COS2:def 6
    
      .= ((((
    exp_R  
    . x) 
    - ( 
    exp_R  
    . ( 
    - x))) 
    / (( 
    exp_R  
    . x) 
    + ( 
    exp_R  
    . ( 
    - x)))) 
    * ( 
    coth x)) by 
    SIN_COS2:def 5
    
      .= ((((
    exp_R  
    . x) 
    - ( 
    exp_R  
    . ( 
    - x))) 
    / (( 
    exp_R  
    . x) 
    + ( 
    exp_R  
    . ( 
    - x)))) 
    * ((( 
    exp_R x) 
    + ( 
    exp_R ( 
    - x))) 
    / (( 
    exp_R x) 
    - ( 
    exp_R ( 
    - x))))) by 
    Th36
    
      .= ((((
    exp_R  
    . x) 
    - ( 
    exp_R  
    . ( 
    - x))) 
    / (( 
    exp_R  
    . x) 
    + ( 
    exp_R ( 
    - x)))) 
    * ((( 
    exp_R x) 
    + ( 
    exp_R ( 
    - x))) 
    / (( 
    exp_R x) 
    - ( 
    exp_R ( 
    - x))))) by 
    SIN_COS:def 23
    
      .= ((((
    exp_R x) 
    - ( 
    exp_R  
    . ( 
    - x))) 
    / (( 
    exp_R  
    . x) 
    + ( 
    exp_R ( 
    - x)))) 
    * ((( 
    exp_R x) 
    + ( 
    exp_R ( 
    - x))) 
    / (( 
    exp_R x) 
    - ( 
    exp_R ( 
    - x))))) by 
    SIN_COS:def 23
    
      .= ((((
    exp_R x) 
    - ( 
    exp_R ( 
    - x))) 
    / (( 
    exp_R  
    . x) 
    + ( 
    exp_R ( 
    - x)))) 
    * ((( 
    exp_R x) 
    + ( 
    exp_R ( 
    - x))) 
    / (( 
    exp_R x) 
    - ( 
    exp_R ( 
    - x))))) by 
    SIN_COS:def 23
    
      .= ((((
    exp_R x) 
    - ( 
    exp_R ( 
    - x))) 
    / (( 
    exp_R x) 
    + ( 
    exp_R ( 
    - x)))) 
    * ((( 
    exp_R x) 
    + ( 
    exp_R ( 
    - x))) 
    / (( 
    exp_R x) 
    - ( 
    exp_R ( 
    - x))))) by 
    SIN_COS:def 23
    
      .= (((((
    exp_R x) 
    - ( 
    exp_R ( 
    - x))) 
    / (( 
    exp_R x) 
    + ( 
    exp_R ( 
    - x)))) 
    * (( 
    exp_R x) 
    + ( 
    exp_R ( 
    - x)))) 
    / (( 
    exp_R x) 
    - ( 
    exp_R ( 
    - x)))) by 
    XCMPLX_1: 74;
    
      
    
      then ((
    tanh x) 
    * ( 
    coth x)) 
    = ((( 
    exp_R x) 
    - ( 
    exp_R ( 
    - x))) 
    / (( 
    exp_R x) 
    - ( 
    exp_R ( 
    - x)))) by 
    A2,
    XCMPLX_1: 87
    
      .= 1 by
    A1,
    XCMPLX_1: 60;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:38
    
    (((
    sech x) 
    ^2 ) 
    + (( 
    tanh x) 
    ^2 )) 
    = 1 
    
    proof
    
      (
    cosh  
    . x) 
    <>  
    0 by 
    SIN_COS2: 15;
    
      then
    
      
    
    A1: (( 
    cosh  
    . x) 
    ^2 ) 
    <>  
    0 by 
    SQUARE_1: 12;
    
      (((
    sech x) 
    ^2 ) 
    + (( 
    tanh x) 
    ^2 )) 
    = (((1 
    / ( 
    cosh x)) 
    ^2 ) 
    + (( 
    tanh  
    . x) 
    ^2 )) by 
    SIN_COS2:def 6
    
      .= (((1
    / ( 
    cosh  
    . x)) 
    ^2 ) 
    + (( 
    tanh  
    . x) 
    ^2 )) by 
    SIN_COS2:def 4
    
      .= (((1
    ^2 ) 
    / (( 
    cosh  
    . x) 
    ^2 )) 
    + (( 
    tanh  
    . x) 
    ^2 )) by 
    XCMPLX_1: 76
    
      .= (((1
    ^2 ) 
    / (( 
    cosh  
    . x) 
    ^2 )) 
    + ((( 
    sinh  
    . x) 
    / ( 
    cosh  
    . x)) 
    ^2 )) by 
    SIN_COS2: 17
    
      .= ((1
    / (( 
    cosh  
    . x) 
    ^2 )) 
    + ((( 
    sinh  
    . x) 
    ^2 ) 
    / (( 
    cosh  
    . x) 
    ^2 ))) by 
    XCMPLX_1: 76
    
      .= ((1
    + (( 
    sinh  
    . x) 
    ^2 )) 
    / (( 
    cosh  
    . x) 
    ^2 )) by 
    XCMPLX_1: 62
    
      .= (((((
    cosh  
    . x) 
    ^2 ) 
    - (( 
    sinh  
    . x) 
    ^2 )) 
    + (( 
    sinh  
    . x) 
    ^2 )) 
    / (( 
    cosh  
    . x) 
    ^2 )) by 
    SIN_COS2: 14
    
      .= (((
    cosh  
    . x) 
    ^2 ) 
    / (( 
    cosh  
    . x) 
    ^2 )); 
    
      hence thesis by
    A1,
    XCMPLX_1: 60;
    
    end;
    
    theorem :: 
    
    SIN_COS5:39
    
    (
    sinh x) 
    <>  
    0 implies ((( 
    coth x) 
    ^2 ) 
    - (( 
    cosech x) 
    ^2 )) 
    = 1 
    
    proof
    
      assume (
    sinh x) 
    <>  
    0 ; 
    
      then
    
      
    
    A1: (( 
    sinh x) 
    ^2 ) 
    <>  
    0 by 
    SQUARE_1: 12;
    
      (((
    coth x) 
    ^2 ) 
    - (( 
    cosech x) 
    ^2 )) 
    = (((( 
    cosh x) 
    ^2 ) 
    / (( 
    sinh x) 
    ^2 )) 
    - ((1 
    / ( 
    sinh x)) 
    ^2 )) by 
    XCMPLX_1: 76
    
      .= ((((
    cosh x) 
    ^2 ) 
    / (( 
    sinh x) 
    ^2 )) 
    - ((1 
    ^2 ) 
    / (( 
    sinh x) 
    ^2 ))) by 
    XCMPLX_1: 76
    
      .= ((((
    cosh x) 
    ^2 ) 
    - 1) 
    / (( 
    sinh x) 
    ^2 )) by 
    XCMPLX_1: 120
    
      .= ((((
    cosh x) 
    ^2 ) 
    - ((( 
    cosh  
    . x) 
    ^2 ) 
    - (( 
    sinh  
    . x) 
    ^2 ))) 
    / (( 
    sinh x) 
    ^2 )) by 
    SIN_COS2: 14
    
      .= (((((
    cosh x) 
    ^2 ) 
    - (( 
    cosh  
    . x) 
    ^2 )) 
    + (( 
    sinh  
    . x) 
    ^2 )) 
    / (( 
    sinh x) 
    ^2 )) 
    
      .= (((((
    cosh x) 
    ^2 ) 
    - (( 
    cosh x) 
    ^2 )) 
    + (( 
    sinh  
    . x) 
    ^2 )) 
    / (( 
    sinh x) 
    ^2 )) by 
    SIN_COS2:def 4
    
      .= ((
    0  
    + (( 
    sinh x) 
    ^2 )) 
    / (( 
    sinh x) 
    ^2 )) by 
    SIN_COS2:def 2;
    
      hence thesis by
    A1,
    XCMPLX_1: 60;
    
    end;
    
    
    
    
    
    Lm1: ( 
    coth ( 
    - x)) 
    = ( 
    - ( 
    coth x)) 
    
    proof
    
      (
    coth ( 
    - x)) 
    = (( 
    cosh  
    . ( 
    - x)) 
    / ( 
    sinh ( 
    - x))) by 
    SIN_COS2:def 4
    
      .= ((
    cosh  
    . ( 
    - x)) 
    / ( 
    sinh  
    . ( 
    - x))) by 
    SIN_COS2:def 2
    
      .= ((
    cosh  
    . x) 
    / ( 
    sinh  
    . ( 
    - x))) by 
    SIN_COS2: 19
    
      .= ((
    cosh  
    . x) 
    / ( 
    - ( 
    sinh  
    . x))) by 
    SIN_COS2: 19
    
      .= (
    - (( 
    cosh  
    . x) 
    / ( 
    sinh  
    . x))) by 
    XCMPLX_1: 188
    
      .= (
    - (( 
    cosh x) 
    / ( 
    sinh  
    . x))) by 
    SIN_COS2:def 4
    
      .= (
    - ( 
    coth x)) by 
    SIN_COS2:def 2;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:40
    
    
    
    
    
    Th40: ( 
    sinh x1) 
    <>  
    0 & ( 
    sinh x2) 
    <>  
    0 implies ( 
    coth (x1 
    + x2)) 
    = ((1 
    + (( 
    coth x1) 
    * ( 
    coth x2))) 
    / (( 
    coth x1) 
    + ( 
    coth x2))) 
    
    proof
    
      assume that
    
      
    
    A1: ( 
    sinh x1) 
    <>  
    0 and 
    
      
    
    A2: ( 
    sinh x2) 
    <>  
    0 ; 
    
      
    
      
    
    A3: ( 
    sinh  
    . x1) 
    <>  
    0 by 
    A1,
    SIN_COS2:def 2;
    
      
    
      
    
    A4: ( 
    sinh  
    . x2) 
    <>  
    0 by 
    A2,
    SIN_COS2:def 2;
    
      (
    coth (x1 
    + x2)) 
    = (( 
    cosh  
    . (x1 
    + x2)) 
    / ( 
    sinh (x1 
    + x2))) by 
    SIN_COS2:def 4
    
      .= ((
    cosh  
    . (x1 
    + x2)) 
    / ( 
    sinh  
    . (x1 
    + x2))) by 
    SIN_COS2:def 2
    
      .= ((((
    cosh  
    . x1) 
    * ( 
    cosh  
    . x2)) 
    + (( 
    sinh  
    . x1) 
    * ( 
    sinh  
    . x2))) 
    / ( 
    sinh  
    . (x1 
    + x2))) by 
    SIN_COS2: 20
    
      .= ((((
    cosh  
    . x1) 
    * ( 
    cosh  
    . x2)) 
    + (( 
    sinh  
    . x1) 
    * ( 
    sinh  
    . x2))) 
    / ((( 
    sinh  
    . x1) 
    * ( 
    cosh  
    . x2)) 
    + (( 
    cosh  
    . x1) 
    * ( 
    sinh  
    . x2)))) by 
    SIN_COS2: 21
    
      .= (((((
    cosh  
    . x1) 
    * ( 
    cosh  
    . x2)) 
    + (( 
    sinh  
    . x1) 
    * ( 
    sinh  
    . x2))) 
    / (( 
    sinh  
    . x1) 
    * ( 
    sinh  
    . x2))) 
    / (((( 
    sinh  
    . x1) 
    * ( 
    cosh  
    . x2)) 
    + (( 
    cosh  
    . x1) 
    * ( 
    sinh  
    . x2))) 
    / (( 
    sinh  
    . x1) 
    * ( 
    sinh  
    . x2)))) by 
    A3,
    A4,
    XCMPLX_1: 6,
    XCMPLX_1: 55
    
      .= (((((
    cosh  
    . x1) 
    * ( 
    cosh  
    . x2)) 
    / (( 
    sinh  
    . x1) 
    * ( 
    sinh  
    . x2))) 
    + ((( 
    sinh  
    . x1) 
    * ( 
    sinh  
    . x2)) 
    / (( 
    sinh  
    . x1) 
    * ( 
    sinh  
    . x2)))) 
    / (((( 
    sinh  
    . x1) 
    * ( 
    cosh  
    . x2)) 
    + (( 
    cosh  
    . x1) 
    * ( 
    sinh  
    . x2))) 
    / (( 
    sinh  
    . x1) 
    * ( 
    sinh  
    . x2)))) by 
    XCMPLX_1: 62
    
      .= (((((
    cosh  
    . x1) 
    * ( 
    cosh  
    . x2)) 
    / (( 
    sinh  
    . x1) 
    * ( 
    sinh  
    . x2))) 
    + 1) 
    / (((( 
    sinh  
    . x1) 
    * ( 
    cosh  
    . x2)) 
    + (( 
    cosh  
    . x1) 
    * ( 
    sinh  
    . x2))) 
    / (( 
    sinh  
    . x1) 
    * ( 
    sinh  
    . x2)))) by 
    A3,
    A4,
    XCMPLX_1: 6,
    XCMPLX_1: 60
    
      .= ((((((
    cosh  
    . x1) 
    / ( 
    sinh  
    . x1)) 
    * ( 
    cosh  
    . x2)) 
    / ( 
    sinh  
    . x2)) 
    + 1) 
    / (((( 
    sinh  
    . x1) 
    * ( 
    cosh  
    . x2)) 
    + (( 
    cosh  
    . x1) 
    * ( 
    sinh  
    . x2))) 
    / (( 
    sinh  
    . x1) 
    * ( 
    sinh  
    . x2)))) by 
    XCMPLX_1: 83
    
      .= (((((
    cosh  
    . x1) 
    / ( 
    sinh  
    . x1)) 
    * (( 
    cosh  
    . x2) 
    / ( 
    sinh  
    . x2))) 
    + 1) 
    / (((( 
    sinh  
    . x1) 
    * ( 
    cosh  
    . x2)) 
    + (( 
    cosh  
    . x1) 
    * ( 
    sinh  
    . x2))) 
    / (( 
    sinh  
    . x1) 
    * ( 
    sinh  
    . x2)))) by 
    XCMPLX_1: 74
    
      .= (((((
    cosh  
    . x1) 
    / ( 
    sinh  
    . x1)) 
    * (( 
    cosh  
    . x2) 
    / ( 
    sinh  
    . x2))) 
    + 1) 
    / (((( 
    sinh  
    . x1) 
    * ( 
    cosh  
    . x2)) 
    / (( 
    sinh  
    . x1) 
    * ( 
    sinh  
    . x2))) 
    + ((( 
    cosh  
    . x1) 
    * ( 
    sinh  
    . x2)) 
    / (( 
    sinh  
    . x1) 
    * ( 
    sinh  
    . x2))))) by 
    XCMPLX_1: 62
    
      .= (((((
    cosh  
    . x1) 
    / ( 
    sinh  
    . x1)) 
    * (( 
    cosh  
    . x2) 
    / ( 
    sinh  
    . x2))) 
    + 1) 
    / ((((( 
    sinh  
    . x1) 
    / ( 
    sinh  
    . x1)) 
    * ( 
    cosh  
    . x2)) 
    / ( 
    sinh  
    . x2)) 
    + ((( 
    cosh  
    . x1) 
    * ( 
    sinh  
    . x2)) 
    / (( 
    sinh  
    . x1) 
    * ( 
    sinh  
    . x2))))) by 
    XCMPLX_1: 83
    
      .= (((((
    cosh  
    . x1) 
    / ( 
    sinh  
    . x1)) 
    * (( 
    cosh  
    . x2) 
    / ( 
    sinh  
    . x2))) 
    + 1) 
    / ((((( 
    sinh  
    . x1) 
    / ( 
    sinh  
    . x1)) 
    * ( 
    cosh  
    . x2)) 
    / ( 
    sinh  
    . x2)) 
    + (((( 
    cosh  
    . x1) 
    / ( 
    sinh  
    . x1)) 
    * ( 
    sinh  
    . x2)) 
    / ( 
    sinh  
    . x2)))) by 
    XCMPLX_1: 83
    
      .= (((((
    cosh  
    . x1) 
    / ( 
    sinh  
    . x1)) 
    * (( 
    cosh  
    . x2) 
    / ( 
    sinh  
    . x2))) 
    + 1) 
    / (((1 
    * ( 
    cosh  
    . x2)) 
    / ( 
    sinh  
    . x2)) 
    + (((( 
    cosh  
    . x1) 
    / ( 
    sinh  
    . x1)) 
    * ( 
    sinh  
    . x2)) 
    / ( 
    sinh  
    . x2)))) by 
    A3,
    XCMPLX_1: 60
    
      .= (((((
    cosh  
    . x1) 
    / ( 
    sinh  
    . x1)) 
    * (( 
    cosh  
    . x2) 
    / ( 
    sinh  
    . x2))) 
    + 1) 
    / ((( 
    cosh  
    . x2) 
    / ( 
    sinh  
    . x2)) 
    + (( 
    cosh  
    . x1) 
    / ( 
    sinh  
    . x1)))) by 
    A4,
    XCMPLX_1: 89
    
      .= (((((
    cosh x1) 
    / ( 
    sinh  
    . x1)) 
    * (( 
    cosh  
    . x2) 
    / ( 
    sinh  
    . x2))) 
    + 1) 
    / ((( 
    cosh  
    . x2) 
    / ( 
    sinh  
    . x2)) 
    + (( 
    cosh  
    . x1) 
    / ( 
    sinh  
    . x1)))) by 
    SIN_COS2:def 4
    
      .= (((((
    cosh x1) 
    / ( 
    sinh  
    . x1)) 
    * (( 
    cosh x2) 
    / ( 
    sinh  
    . x2))) 
    + 1) 
    / ((( 
    cosh  
    . x2) 
    / ( 
    sinh  
    . x2)) 
    + (( 
    cosh  
    . x1) 
    / ( 
    sinh  
    . x1)))) by 
    SIN_COS2:def 4
    
      .= (((((
    cosh x1) 
    / ( 
    sinh  
    . x1)) 
    * (( 
    cosh x2) 
    / ( 
    sinh  
    . x2))) 
    + 1) 
    / ((( 
    cosh x2) 
    / ( 
    sinh  
    . x2)) 
    + (( 
    cosh  
    . x1) 
    / ( 
    sinh  
    . x1)))) by 
    SIN_COS2:def 4
    
      .= (((((
    cosh x1) 
    / ( 
    sinh  
    . x1)) 
    * (( 
    cosh x2) 
    / ( 
    sinh  
    . x2))) 
    + 1) 
    / ((( 
    cosh x2) 
    / ( 
    sinh  
    . x2)) 
    + (( 
    cosh x1) 
    / ( 
    sinh  
    . x1)))) by 
    SIN_COS2:def 4
    
      .= (((((
    cosh x1) 
    / ( 
    sinh x1)) 
    * (( 
    cosh x2) 
    / ( 
    sinh  
    . x2))) 
    + 1) 
    / ((( 
    cosh x2) 
    / ( 
    sinh  
    . x2)) 
    + (( 
    cosh x1) 
    / ( 
    sinh  
    . x1)))) by 
    SIN_COS2:def 2
    
      .= (((((
    cosh x1) 
    / ( 
    sinh x1)) 
    * (( 
    cosh x2) 
    / ( 
    sinh  
    . x2))) 
    + 1) 
    / ((( 
    cosh x2) 
    / ( 
    sinh x2)) 
    + (( 
    cosh x1) 
    / ( 
    sinh  
    . x1)))) by 
    SIN_COS2:def 2
    
      .= (((((
    cosh x1) 
    / ( 
    sinh x1)) 
    * (( 
    cosh x2) 
    / ( 
    sinh  
    . x2))) 
    + 1) 
    / ((( 
    cosh x2) 
    / ( 
    sinh x2)) 
    + (( 
    cosh x1) 
    / ( 
    sinh x1)))) by 
    SIN_COS2:def 2
    
      .= ((((
    coth x1) 
    * ( 
    coth x2)) 
    + 1) 
    / (( 
    coth x2) 
    + ( 
    coth x1))) by 
    SIN_COS2:def 2;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:41
    
    (
    sinh x1) 
    <>  
    0 & ( 
    sinh x2) 
    <>  
    0 implies ( 
    coth (x1 
    - x2)) 
    = ((1 
    - (( 
    coth x1) 
    * ( 
    coth x2))) 
    / (( 
    coth x1) 
    - ( 
    coth x2))) 
    
    proof
    
      assume that
    
      
    
    A1: ( 
    sinh x1) 
    <>  
    0 and 
    
      
    
    A2: ( 
    sinh x2) 
    <>  
    0 ; 
    
      (
    - ( 
    sinh  
    . x2)) 
    <>  
    0 by 
    A2,
    SIN_COS2:def 2;
    
      then (
    sinh  
    . ( 
    - x2)) 
    <>  
    0 by 
    SIN_COS2: 19;
    
      then
    
      
    
    A3: ( 
    sinh ( 
    - x2)) 
    <>  
    0 by 
    SIN_COS2:def 2;
    
      (
    coth (x1 
    - x2)) 
    = ( 
    coth (x1 
    + ( 
    - x2))) 
    
      .= ((1
    + (( 
    coth x1) 
    * ( 
    coth ( 
    - x2)))) 
    / (( 
    coth x1) 
    + ( 
    coth ( 
    - x2)))) by 
    A1,
    A3,
    Th40
    
      .= ((1
    + (( 
    coth x1) 
    * ( 
    - ( 
    coth x2)))) 
    / (( 
    coth x1) 
    + ( 
    coth ( 
    - x2)))) by 
    Lm1
    
      .= ((1
    - (( 
    coth x1) 
    * ( 
    coth x2))) 
    / (( 
    coth x1) 
    + ( 
    - ( 
    coth x2)))) by 
    Lm1
    
      .= ((1
    - (( 
    coth x1) 
    * ( 
    coth x2))) 
    / (( 
    coth x1) 
    - ( 
    coth x2))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:42
    
    (
    sinh x1) 
    <>  
    0 & ( 
    sinh x2) 
    <>  
    0 implies (( 
    coth x1) 
    + ( 
    coth x2)) 
    = (( 
    sinh (x1 
    + x2)) 
    / (( 
    sinh x1) 
    * ( 
    sinh x2))) & (( 
    coth x1) 
    - ( 
    coth x2)) 
    = ( 
    - (( 
    sinh (x1 
    - x2)) 
    / (( 
    sinh x1) 
    * ( 
    sinh x2)))) 
    
    proof
    
      assume that
    
      
    
    A1: ( 
    sinh x1) 
    <>  
    0 and 
    
      
    
    A2: ( 
    sinh x2) 
    <>  
    0 ; 
    
      
    
      
    
    A3: ( 
    sinh  
    . x1) 
    <>  
    0 by 
    A1,
    SIN_COS2:def 2;
    
      
    
      
    
    A4: ( 
    sinh  
    . x2) 
    <>  
    0 by 
    A2,
    SIN_COS2:def 2;
    
      
    
      
    
    A5: ( 
    - (( 
    sinh (x1 
    - x2)) 
    / (( 
    sinh x1) 
    * ( 
    sinh x2)))) 
    = ( 
    - (( 
    sinh  
    . (x1 
    - x2)) 
    / (( 
    sinh x1) 
    * ( 
    sinh x2)))) by 
    SIN_COS2:def 2
    
      .= (
    - (( 
    sinh  
    . (x1 
    - x2)) 
    / (( 
    sinh  
    . x1) 
    * ( 
    sinh x2)))) by 
    SIN_COS2:def 2
    
      .= (
    - (( 
    sinh  
    . (x1 
    - x2)) 
    / (( 
    sinh  
    . x1) 
    * ( 
    sinh  
    . x2)))) by 
    SIN_COS2:def 2
    
      .= (
    - (((( 
    sinh  
    . x1) 
    * ( 
    cosh  
    . x2)) 
    - (( 
    cosh  
    . x1) 
    * ( 
    sinh  
    . x2))) 
    / (( 
    sinh  
    . x1) 
    * ( 
    sinh  
    . x2)))) by 
    SIN_COS2: 21
    
      .= (
    - (((( 
    sinh  
    . x1) 
    * ( 
    cosh  
    . x2)) 
    / (( 
    sinh  
    . x1) 
    * ( 
    sinh  
    . x2))) 
    - ((( 
    cosh  
    . x1) 
    * ( 
    sinh  
    . x2)) 
    / (( 
    sinh  
    . x1) 
    * ( 
    sinh  
    . x2))))) by 
    XCMPLX_1: 120
    
      .= (
    - ((((( 
    sinh  
    . x1) 
    / ( 
    sinh  
    . x1)) 
    * ( 
    cosh  
    . x2)) 
    / ( 
    sinh  
    . x2)) 
    - ((( 
    cosh  
    . x1) 
    * ( 
    sinh  
    . x2)) 
    / (( 
    sinh  
    . x1) 
    * ( 
    sinh  
    . x2))))) by 
    XCMPLX_1: 83
    
      .= (
    - ((((( 
    sinh  
    . x1) 
    / ( 
    sinh  
    . x1)) 
    * ( 
    cosh  
    . x2)) 
    / ( 
    sinh  
    . x2)) 
    - (((( 
    sinh  
    . x2) 
    / ( 
    sinh  
    . x2)) 
    * ( 
    cosh  
    . x1)) 
    / ( 
    sinh  
    . x1)))) by 
    XCMPLX_1: 83
    
      .= (
    - (((1 
    * ( 
    cosh  
    . x2)) 
    / ( 
    sinh  
    . x2)) 
    - (((( 
    sinh  
    . x2) 
    / ( 
    sinh  
    . x2)) 
    * ( 
    cosh  
    . x1)) 
    / ( 
    sinh  
    . x1)))) by 
    A3,
    XCMPLX_1: 60
    
      .= (
    - ((( 
    cosh  
    . x2) 
    / ( 
    sinh  
    . x2)) 
    - ((1 
    * ( 
    cosh  
    . x1)) 
    / ( 
    sinh  
    . x1)))) by 
    A4,
    XCMPLX_1: 60
    
      .= (
    - ((( 
    cosh x2) 
    / ( 
    sinh  
    . x2)) 
    - (( 
    cosh  
    . x1) 
    / ( 
    sinh  
    . x1)))) by 
    SIN_COS2:def 4
    
      .= (
    - ((( 
    cosh x2) 
    / ( 
    sinh  
    . x2)) 
    - (( 
    cosh x1) 
    / ( 
    sinh  
    . x1)))) by 
    SIN_COS2:def 4
    
      .= (
    - ((( 
    cosh x2) 
    / ( 
    sinh x2)) 
    - (( 
    cosh x1) 
    / ( 
    sinh  
    . x1)))) by 
    SIN_COS2:def 2
    
      .= (
    - (( 
    coth x2) 
    - (( 
    cosh x1) 
    / ( 
    sinh x1)))) by 
    SIN_COS2:def 2
    
      .= ((
    coth x1) 
    - ( 
    coth x2)); 
    
      ((
    sinh (x1 
    + x2)) 
    / (( 
    sinh x1) 
    * ( 
    sinh x2))) 
    = (( 
    sinh  
    . (x1 
    + x2)) 
    / (( 
    sinh x1) 
    * ( 
    sinh x2))) by 
    SIN_COS2:def 2
    
      .= ((((
    sinh  
    . x1) 
    * ( 
    cosh  
    . x2)) 
    + (( 
    cosh  
    . x1) 
    * ( 
    sinh  
    . x2))) 
    / (( 
    sinh x1) 
    * ( 
    sinh x2))) by 
    SIN_COS2: 21
    
      .= ((((
    sinh  
    . x1) 
    * ( 
    cosh  
    . x2)) 
    + (( 
    cosh  
    . x1) 
    * ( 
    sinh  
    . x2))) 
    / (( 
    sinh  
    . x1) 
    * ( 
    sinh x2))) by 
    SIN_COS2:def 2
    
      .= ((((
    sinh  
    . x1) 
    * ( 
    cosh  
    . x2)) 
    + (( 
    cosh  
    . x1) 
    * ( 
    sinh  
    . x2))) 
    / (( 
    sinh  
    . x1) 
    * ( 
    sinh  
    . x2))) by 
    SIN_COS2:def 2
    
      .= ((((
    sinh  
    . x1) 
    * ( 
    cosh  
    . x2)) 
    / (( 
    sinh  
    . x1) 
    * ( 
    sinh  
    . x2))) 
    + ((( 
    cosh  
    . x1) 
    * ( 
    sinh  
    . x2)) 
    / (( 
    sinh  
    . x1) 
    * ( 
    sinh  
    . x2)))) by 
    XCMPLX_1: 62
    
      .= (((((
    sinh  
    . x1) 
    / ( 
    sinh  
    . x1)) 
    * ( 
    cosh  
    . x2)) 
    / ( 
    sinh  
    . x2)) 
    + ((( 
    cosh  
    . x1) 
    * ( 
    sinh  
    . x2)) 
    / (( 
    sinh  
    . x1) 
    * ( 
    sinh  
    . x2)))) by 
    XCMPLX_1: 83
    
      .= (((1
    * ( 
    cosh  
    . x2)) 
    / ( 
    sinh  
    . x2)) 
    + ((( 
    cosh  
    . x1) 
    * ( 
    sinh  
    . x2)) 
    / (( 
    sinh  
    . x1) 
    * ( 
    sinh  
    . x2)))) by 
    A3,
    XCMPLX_1: 60
    
      .= (((
    cosh  
    . x2) 
    / ( 
    sinh  
    . x2)) 
    + (((( 
    cosh  
    . x1) 
    / ( 
    sinh  
    . x1)) 
    * ( 
    sinh  
    . x2)) 
    / ( 
    sinh  
    . x2))) by 
    XCMPLX_1: 83
    
      .= (((
    cosh  
    . x2) 
    / ( 
    sinh  
    . x2)) 
    + ((( 
    cosh  
    . x1) 
    / ( 
    sinh  
    . x1)) 
    * (( 
    sinh  
    . x2) 
    / ( 
    sinh  
    . x2)))) by 
    XCMPLX_1: 74
    
      .= (((
    cosh  
    . x2) 
    / ( 
    sinh  
    . x2)) 
    + ((( 
    cosh  
    . x1) 
    / ( 
    sinh  
    . x1)) 
    * 1)) by 
    A4,
    XCMPLX_1: 60
    
      .= (((
    cosh  
    . x2) 
    / ( 
    sinh  
    . x2)) 
    + (( 
    cosh  
    . x1) 
    / ( 
    sinh x1))) by 
    SIN_COS2:def 2
    
      .= (((
    cosh  
    . x2) 
    / ( 
    sinh x2)) 
    + (( 
    cosh  
    . x1) 
    / ( 
    sinh x1))) by 
    SIN_COS2:def 2
    
      .= (((
    cosh x2) 
    / ( 
    sinh x2)) 
    + (( 
    cosh  
    . x1) 
    / ( 
    sinh x1))) by 
    SIN_COS2:def 4
    
      .= ((
    coth x2) 
    + ( 
    coth x1)) by 
    SIN_COS2:def 4;
    
      hence thesis by
    A5;
    
    end;
    
    
    
    
    
    Lm2: (( 
    cosh  
    . x) 
    ^2 ) 
    = (1 
    + (( 
    sinh  
    . x) 
    ^2 )) 
    
    proof
    
      ((((
    cosh  
    . x) 
    ^2 ) 
    - (( 
    sinh  
    . x) 
    ^2 )) 
    + (( 
    sinh  
    . x) 
    ^2 )) 
    = (1 
    + (( 
    sinh  
    . x) 
    ^2 )) by 
    SIN_COS2: 14;
    
      hence thesis;
    
    end;
    
    
    
    
    
    Lm3: ((( 
    cosh  
    . x) 
    ^2 ) 
    - 1) 
    = (( 
    sinh  
    . x) 
    ^2 ) 
    
    proof
    
      ((((
    cosh  
    . x) 
    ^2 ) 
    - (( 
    sinh  
    . x) 
    ^2 )) 
    + (( 
    sinh  
    . x) 
    ^2 )) 
    = (1 
    + (( 
    sinh  
    . x) 
    ^2 )) by 
    SIN_COS2: 14;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:43
    
    (
    sinh (3 
    * x)) 
    = ((3 
    * ( 
    sinh x)) 
    + (4 
    * (( 
    sinh x) 
    |^ 3))) 
    
    proof
    
      (
    sinh (3 
    * x)) 
    = ( 
    sinh  
    . ((x 
    + x) 
    + x)) by 
    SIN_COS2:def 2
    
      .= (((
    sinh  
    . (2 
    * x)) 
    * ( 
    cosh  
    . x)) 
    + (( 
    cosh  
    . (2 
    * x)) 
    * ( 
    sinh  
    . x))) by 
    SIN_COS2: 21
    
      .= ((((2
    * ( 
    sinh  
    . x)) 
    * ( 
    cosh  
    . x)) 
    * ( 
    cosh  
    . x)) 
    + (( 
    cosh  
    . (2 
    * x)) 
    * ( 
    sinh  
    . x))) by 
    SIN_COS2: 23
    
      .= (((2
    * ( 
    sinh  
    . x)) 
    * (( 
    cosh  
    . x) 
    ^2 )) 
    + (((2 
    * (( 
    cosh  
    . x) 
    ^2 )) 
    - 1) 
    * ( 
    sinh  
    . x))) by 
    SIN_COS2: 23
    
      .= (((2
    * ( 
    sinh  
    . x)) 
    * (1 
    + (( 
    sinh  
    . x) 
    ^2 ))) 
    + (((2 
    * (( 
    cosh  
    . x) 
    ^2 )) 
    - 1) 
    * ( 
    sinh  
    . x))) by 
    Lm2
    
      .= (((2
    * ( 
    sinh  
    . x)) 
    * (1 
    + (( 
    sinh  
    . x) 
    ^2 ))) 
    + (((2 
    * (1 
    + (( 
    sinh  
    . x) 
    ^2 ))) 
    - 1) 
    * ( 
    sinh  
    . x))) by 
    Lm2
    
      .= (((2
    * ( 
    sinh  
    . x)) 
    + (((2 
    + 2) 
    * ( 
    sinh  
    . x)) 
    * (( 
    sinh  
    . x) 
    ^2 ))) 
    + ( 
    sinh  
    . x)) 
    
      .= (((2
    * ( 
    sinh  
    . x)) 
    + ((4 
    * (( 
    sinh  
    . x) 
    |^ 1)) 
    * (( 
    sinh  
    . x) 
    ^2 ))) 
    + ( 
    sinh  
    . x)) 
    
      .= ((3
    * ( 
    sinh  
    . x)) 
    + (4 
    * (((( 
    sinh  
    . x) 
    |^ 1) 
    * ( 
    sinh  
    . x)) 
    * ( 
    sinh  
    . x)))) 
    
      .= ((3
    * ( 
    sinh  
    . x)) 
    + (4 
    * ((( 
    sinh  
    . x) 
    |^ (1 
    + 1)) 
    * ( 
    sinh  
    . x)))) by 
    NEWTON: 6
    
      .= ((3
    * ( 
    sinh  
    . x)) 
    + (4 
    * (( 
    sinh  
    . x) 
    |^ (2 
    + 1)))) by 
    NEWTON: 6
    
      .= ((3
    * ( 
    sinh x)) 
    + (4 
    * (( 
    sinh  
    . x) 
    |^ 3))) by 
    SIN_COS2:def 2;
    
      hence thesis by
    SIN_COS2:def 2;
    
    end;
    
    theorem :: 
    
    SIN_COS5:44
    
    (
    cosh (3 
    * x)) 
    = ((4 
    * (( 
    cosh x) 
    |^ 3)) 
    - (3 
    * ( 
    cosh x))) 
    
    proof
    
      (
    cosh (3 
    * x)) 
    = ( 
    cosh  
    . ((x 
    + x) 
    + x)) by 
    SIN_COS2:def 4
    
      .= (((
    cosh  
    . (2 
    * x)) 
    * ( 
    cosh  
    . x)) 
    + (( 
    sinh  
    . (2 
    * x)) 
    * ( 
    sinh  
    . x))) by 
    SIN_COS2: 20
    
      .= ((((2
    * (( 
    cosh  
    . x) 
    ^2 )) 
    - 1) 
    * ( 
    cosh  
    . x)) 
    + (( 
    sinh  
    . (2 
    * x)) 
    * ( 
    sinh  
    . x))) by 
    SIN_COS2: 23
    
      .= ((((2
    * (( 
    cosh  
    . x) 
    ^2 )) 
    - 1) 
    * ( 
    cosh  
    . x)) 
    + (((2 
    * ( 
    sinh  
    . x)) 
    * ( 
    cosh  
    . x)) 
    * ( 
    sinh  
    . x))) by 
    SIN_COS2: 23
    
      .= ((((2
    * (( 
    cosh  
    . x) 
    ^2 )) 
    - 1) 
    * ( 
    cosh  
    . x)) 
    + ((2 
    * (( 
    sinh  
    . x) 
    ^2 )) 
    * ( 
    cosh  
    . x))) 
    
      .= ((((2
    * (( 
    cosh  
    . x) 
    ^2 )) 
    - 1) 
    * ( 
    cosh  
    . x)) 
    + ((2 
    * ((( 
    cosh  
    . x) 
    ^2 ) 
    - 1)) 
    * ( 
    cosh  
    . x))) by 
    Lm3
    
      .= ((4
    * ((( 
    cosh  
    . x) 
    * ( 
    cosh  
    . x)) 
    * ( 
    cosh  
    . x))) 
    - (3 
    * ( 
    cosh  
    . x))) 
    
      .= ((4
    * (((( 
    cosh  
    . x) 
    |^ 1) 
    * ( 
    cosh  
    . x)) 
    * ( 
    cosh  
    . x))) 
    - (3 
    * ( 
    cosh  
    . x))) 
    
      .= ((4
    * ((( 
    cosh  
    . x) 
    |^ (1 
    + 1)) 
    * ( 
    cosh  
    . x))) 
    - (3 
    * ( 
    cosh  
    . x))) by 
    NEWTON: 6
    
      .= ((4
    * (( 
    cosh  
    . x) 
    |^ (2 
    + 1))) 
    - (3 
    * ( 
    cosh  
    . x))) by 
    NEWTON: 6
    
      .= ((4
    * (( 
    cosh  
    . x) 
    |^ 3)) 
    - (3 
    * ( 
    cosh x))) by 
    SIN_COS2:def 4;
    
      hence thesis by
    SIN_COS2:def 4;
    
    end;
    
    theorem :: 
    
    SIN_COS5:45
    
    (
    sinh x) 
    <>  
    0 implies ( 
    coth (2 
    * x)) 
    = ((1 
    + (( 
    coth x) 
    ^2 )) 
    / (2 
    * ( 
    coth x))) 
    
    proof
    
      assume (
    sinh x) 
    <>  
    0 ; 
    
      then
    
      
    
    A1: ( 
    sinh  
    . x) 
    <>  
    0 by 
    SIN_COS2:def 2;
    
      then
    
      
    
    A2: (( 
    sinh  
    . x) 
    ^2 ) 
    <>  
    0 by 
    SQUARE_1: 12;
    
      (
    coth (2 
    * x)) 
    = (( 
    cosh  
    . (2 
    * x)) 
    / ( 
    sinh (2 
    * x))) by 
    SIN_COS2:def 4
    
      .= ((
    cosh  
    . (2 
    * x)) 
    / ( 
    sinh  
    . (2 
    * x))) by 
    SIN_COS2:def 2
    
      .= (((2
    * (( 
    cosh  
    . x) 
    ^2 )) 
    - 1) 
    / ( 
    sinh  
    . (2 
    * x))) by 
    SIN_COS2: 23
    
      .= (((2
    * (( 
    cosh  
    . x) 
    ^2 )) 
    - 1) 
    / ((2 
    * ( 
    sinh  
    . x)) 
    * ( 
    cosh  
    . x))) by 
    SIN_COS2: 23
    
      .= ((((2
    * (( 
    cosh  
    . x) 
    ^2 )) 
    - 1) 
    / (( 
    sinh  
    . x) 
    ^2 )) 
    / (((2 
    * ( 
    sinh  
    . x)) 
    * ( 
    cosh  
    . x)) 
    / (( 
    sinh  
    . x) 
    ^2 ))) by 
    A2,
    XCMPLX_1: 55
    
      .= ((((2
    * (( 
    cosh  
    . x) 
    ^2 )) 
    - ((( 
    cosh  
    . x) 
    ^2 ) 
    - (( 
    sinh  
    . x) 
    ^2 ))) 
    / (( 
    sinh  
    . x) 
    ^2 )) 
    / (((2 
    * ( 
    sinh  
    . x)) 
    * ( 
    cosh  
    . x)) 
    / (( 
    sinh  
    . x) 
    ^2 ))) by 
    SIN_COS2: 14
    
      .= (((((2
    - 1) 
    * (( 
    cosh  
    . x) 
    ^2 )) 
    + (( 
    sinh  
    . x) 
    ^2 )) 
    / (( 
    sinh  
    . x) 
    ^2 )) 
    / (((2 
    * ( 
    sinh  
    . x)) 
    * ( 
    cosh  
    . x)) 
    / (( 
    sinh  
    . x) 
    ^2 ))) 
    
      .= (((((
    cosh  
    . x) 
    ^2 ) 
    / (( 
    sinh  
    . x) 
    ^2 )) 
    + ((( 
    sinh  
    . x) 
    ^2 ) 
    / (( 
    sinh  
    . x) 
    ^2 ))) 
    / (((2 
    * ( 
    sinh  
    . x)) 
    * ( 
    cosh  
    . x)) 
    / (( 
    sinh  
    . x) 
    ^2 ))) by 
    XCMPLX_1: 62
    
      .= (((((
    cosh  
    . x) 
    / ( 
    sinh  
    . x)) 
    ^2 ) 
    + ((( 
    sinh  
    . x) 
    ^2 ) 
    / (( 
    sinh  
    . x) 
    ^2 ))) 
    / (((2 
    * ( 
    sinh  
    . x)) 
    * ( 
    cosh  
    . x)) 
    / (( 
    sinh  
    . x) 
    ^2 ))) by 
    XCMPLX_1: 76
    
      .= (((((
    cosh  
    . x) 
    / ( 
    sinh  
    . x)) 
    ^2 ) 
    + ((( 
    sinh  
    . x) 
    / ( 
    sinh  
    . x)) 
    ^2 )) 
    / (((2 
    * ( 
    sinh  
    . x)) 
    * ( 
    cosh  
    . x)) 
    / (( 
    sinh  
    . x) 
    ^2 ))) by 
    XCMPLX_1: 76
    
      .= (((((
    cosh  
    . x) 
    / ( 
    sinh  
    . x)) 
    ^2 ) 
    + (1 
    ^2 )) 
    / (((2 
    * ( 
    cosh  
    . x)) 
    * ( 
    sinh  
    . x)) 
    / (( 
    sinh  
    . x) 
    * ( 
    sinh  
    . x)))) by 
    A1,
    XCMPLX_1: 60
    
      .= (((((
    cosh  
    . x) 
    / ( 
    sinh  
    . x)) 
    ^2 ) 
    + 1) 
    / ((((2 
    * ( 
    cosh  
    . x)) 
    * ( 
    sinh  
    . x)) 
    / ( 
    sinh  
    . x)) 
    / ( 
    sinh  
    . x))) by 
    XCMPLX_1: 78
    
      .= (((((
    cosh  
    . x) 
    / ( 
    sinh  
    . x)) 
    ^2 ) 
    + 1) 
    / ((2 
    * ( 
    cosh  
    . x)) 
    / ( 
    sinh  
    . x))) by 
    A1,
    XCMPLX_1: 89
    
      .= (((((
    cosh  
    . x) 
    / ( 
    sinh  
    . x)) 
    ^2 ) 
    + 1) 
    / (2 
    * (( 
    cosh  
    . x) 
    / ( 
    sinh  
    . x)))) by 
    XCMPLX_1: 74
    
      .= (((((
    cosh x) 
    / ( 
    sinh  
    . x)) 
    ^2 ) 
    + 1) 
    / (2 
    * (( 
    cosh  
    . x) 
    / ( 
    sinh  
    . x)))) by 
    SIN_COS2:def 4
    
      .= (((((
    cosh x) 
    / ( 
    sinh  
    . x)) 
    ^2 ) 
    + 1) 
    / (2 
    * (( 
    cosh x) 
    / ( 
    sinh  
    . x)))) by 
    SIN_COS2:def 4
    
      .= (((((
    cosh x) 
    / ( 
    sinh x)) 
    ^2 ) 
    + 1) 
    / (2 
    * (( 
    cosh x) 
    / ( 
    sinh  
    . x)))) by 
    SIN_COS2:def 2
    
      .= ((((
    coth x) 
    ^2 ) 
    + 1) 
    / (2 
    * (( 
    cosh x) 
    / ( 
    sinh x)))) by 
    SIN_COS2:def 2;
    
      hence thesis;
    
    end;
    
    
    
    
    
    Lm4: x 
    >  
    0 implies ( 
    sinh x) 
    >=  
    0  
    
    proof
    
      assume
    
      
    
    A1: x 
    >  
    0 ; 
    
      then (x
    + ( 
    - x)) 
    > ( 
    0  
    + ( 
    - x)) by 
    XREAL_1: 8;
    
      then
    
      
    
    A2: ( 
    exp_R  
    . ( 
    - x)) 
    <= 1 by 
    SIN_COS: 53;
    
      (
    exp_R  
    . x) 
    >= 1 by 
    A1,
    SIN_COS: 52;
    
      then ((
    exp_R  
    . x) 
    - ( 
    exp_R  
    . ( 
    - x))) 
    >= (1 
    - 1) by 
    A2,
    XREAL_1: 13;
    
      then (((
    exp_R  
    . x) 
    - ( 
    exp_R  
    . ( 
    - x))) 
    / 2) 
    >=  
    0 by 
    XREAL_1: 136;
    
      then (
    sinh  
    . x) 
    >=  
    0 by 
    SIN_COS2:def 1;
    
      hence thesis by
    SIN_COS2:def 2;
    
    end;
    
    theorem :: 
    
    SIN_COS5:46
    
    x
    >=  
    0 implies ( 
    sinh x) 
    >=  
    0  
    
    proof
    
      assume
    
      
    
    A1: x 
    >=  
    0 ; 
    
      per cases by
    A1,
    XXREAL_0: 1;
    
        suppose x
    >  
    0 ; 
    
        hence thesis by
    Lm4;
    
      end;
    
        suppose x
    =  
    0 ; 
    
        hence thesis by
    SIN_COS2: 16,
    SIN_COS2:def 2;
    
      end;
    
    end;
    
    theorem :: 
    
    SIN_COS5:47
    
    x
    <=  
    0 implies ( 
    sinh x) 
    <=  
    0  
    
    proof
    
      assume
    
      
    
    A1: x 
    <=  
    0 ; 
    
      per cases by
    A1,
    XXREAL_0: 1;
    
        suppose
    
        
    
    A2: x 
    <  
    0 ; 
    
        then (
    - x) 
    >  
    0 by 
    XREAL_1: 58;
    
        then
    
        
    
    A3: ( 
    exp_R  
    . ( 
    - x)) 
    >= 1 by 
    SIN_COS: 52;
    
        (
    exp_R  
    . x) 
    <= 1 by 
    A2,
    SIN_COS: 53;
    
        then ((
    exp_R  
    . x) 
    - ( 
    exp_R  
    . ( 
    - x))) 
    <= (1 
    - 1) by 
    A3,
    XREAL_1: 13;
    
        then (((
    exp_R  
    . x) 
    - ( 
    exp_R  
    . ( 
    - x))) 
    / 2) 
    <=  
    0 by 
    XREAL_1: 138;
    
        then (
    sinh  
    . x) 
    <=  
    0 by 
    SIN_COS2:def 1;
    
        hence thesis by
    SIN_COS2:def 2;
    
      end;
    
        suppose x
    =  
    0 ; 
    
        hence thesis by
    SIN_COS2: 16,
    SIN_COS2:def 2;
    
      end;
    
    end;
    
    theorem :: 
    
    SIN_COS5:48
    
    (
    cosh (x 
    / 2)) 
    = ( 
    sqrt ((( 
    cosh x) 
    + 1) 
    / 2)) 
    
    proof
    
      
    
      
    
    A1: ( 
    cosh  
    . (x 
    / 2)) 
    >  
    0 by 
    SIN_COS2: 15;
    
      (
    sqrt ((( 
    cosh x) 
    + 1) 
    / 2)) 
    = ( 
    sqrt ((( 
    cosh  
    . (2 
    * (x 
    / 2))) 
    + 1) 
    / 2)) by 
    SIN_COS2:def 4
    
      .= (
    sqrt ((((2 
    * (( 
    cosh  
    . (x 
    / 2)) 
    ^2 )) 
    - 1) 
    + 1) 
    / 2)) by 
    SIN_COS2: 23
    
      .= (
    cosh  
    . (x 
    / 2)) by 
    A1,
    SQUARE_1: 22;
    
      hence thesis by
    SIN_COS2:def 4;
    
    end;
    
    theorem :: 
    
    SIN_COS5:49
    
    (
    sinh (x 
    / 2)) 
    <>  
    0 implies ( 
    tanh (x 
    / 2)) 
    = ((( 
    cosh x) 
    - 1) 
    / ( 
    sinh x)) 
    
    proof
    
      assume (
    sinh (x 
    / 2)) 
    <>  
    0 ; 
    
      then
    
      
    
    A1: (2 
    * ( 
    sinh  
    . (x 
    / 2))) 
    <>  
    0 by 
    SIN_COS2:def 2;
    
      (((
    cosh x) 
    - 1) 
    / ( 
    sinh x)) 
    = ((( 
    cosh  
    . (2 
    * (x 
    / 2))) 
    - 1) 
    / ( 
    sinh (2 
    * (x 
    / 2)))) by 
    SIN_COS2:def 4
    
      .= ((((2
    * (( 
    cosh  
    . (x 
    / 2)) 
    ^2 )) 
    - 1) 
    - 1) 
    / ( 
    sinh (2 
    * (x 
    / 2)))) by 
    SIN_COS2: 23
    
      .= ((2
    * ((( 
    cosh  
    . (x 
    / 2)) 
    ^2 ) 
    - 1)) 
    / ( 
    sinh (2 
    * (x 
    / 2)))) 
    
      .= ((2
    * (( 
    sinh  
    . (x 
    / 2)) 
    ^2 )) 
    / ( 
    sinh (2 
    * (x 
    / 2)))) by 
    Lm3
    
      .= ((2
    * (( 
    sinh  
    . (x 
    / 2)) 
    ^2 )) 
    / ( 
    sinh  
    . (2 
    * (x 
    / 2)))) by 
    SIN_COS2:def 2
    
      .= (((2
    * ( 
    sinh  
    . (x 
    / 2))) 
    * ( 
    sinh  
    . (x 
    / 2))) 
    / ((2 
    * ( 
    sinh  
    . (x 
    / 2))) 
    * ( 
    cosh  
    . (x 
    / 2)))) by 
    SIN_COS2: 23
    
      .= ((
    sinh  
    . (x 
    / 2)) 
    / ( 
    cosh  
    . (x 
    / 2))) by 
    A1,
    XCMPLX_1: 91
    
      .= (
    tanh  
    . (x 
    / 2)) by 
    SIN_COS2: 17
    
      .= (
    tanh (x 
    / 2)) by 
    SIN_COS2:def 6;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:50
    
    (
    cosh (x 
    / 2)) 
    <>  
    0 implies ( 
    tanh (x 
    / 2)) 
    = (( 
    sinh x) 
    / (( 
    cosh x) 
    + 1)) 
    
    proof
    
      assume (
    cosh (x 
    / 2)) 
    <>  
    0 ; 
    
      then
    
      
    
    A1: (2 
    * ( 
    cosh  
    . (x 
    / 2))) 
    <>  
    0 by 
    SIN_COS2:def 4;
    
      ((
    sinh x) 
    / (( 
    cosh x) 
    + 1)) 
    = (( 
    sinh  
    . (2 
    * (x 
    / 2))) 
    / (( 
    cosh (2 
    * (x 
    / 2))) 
    + 1)) by 
    SIN_COS2:def 2
    
      .= ((
    sinh  
    . (2 
    * (x 
    / 2))) 
    / (( 
    cosh  
    . (2 
    * (x 
    / 2))) 
    + 1)) by 
    SIN_COS2:def 4
    
      .= (((2
    * ( 
    sinh  
    . (x 
    / 2))) 
    * ( 
    cosh  
    . (x 
    / 2))) 
    / (( 
    cosh  
    . (2 
    * (x 
    / 2))) 
    + 1)) by 
    SIN_COS2: 23
    
      .= (((2
    * ( 
    sinh  
    . (x 
    / 2))) 
    * ( 
    cosh  
    . (x 
    / 2))) 
    / (((2 
    * (( 
    cosh  
    . (x 
    / 2)) 
    ^2 )) 
    - 1) 
    + 1)) by 
    SIN_COS2: 23
    
      .= (((2
    * ( 
    cosh  
    . (x 
    / 2))) 
    * ( 
    sinh  
    . (x 
    / 2))) 
    / ((2 
    * ( 
    cosh  
    . (x 
    / 2))) 
    * ( 
    cosh  
    . (x 
    / 2)))) 
    
      .= ((
    sinh  
    . (x 
    / 2)) 
    / ( 
    cosh  
    . (x 
    / 2))) by 
    A1,
    XCMPLX_1: 91
    
      .= (
    tanh  
    . (x 
    / 2)) by 
    SIN_COS2: 17;
    
      hence thesis by
    SIN_COS2:def 6;
    
    end;
    
    theorem :: 
    
    SIN_COS5:51
    
    (
    sinh (x 
    / 2)) 
    <>  
    0 implies ( 
    coth (x 
    / 2)) 
    = (( 
    sinh x) 
    / (( 
    cosh x) 
    - 1)) 
    
    proof
    
      assume (
    sinh (x 
    / 2)) 
    <>  
    0 ; 
    
      then
    
      
    
    A1: (2 
    * ( 
    sinh  
    . (x 
    / 2))) 
    <>  
    0 by 
    SIN_COS2:def 2;
    
      ((
    sinh x) 
    / (( 
    cosh x) 
    - 1)) 
    = (( 
    sinh  
    . (2 
    * (x 
    / 2))) 
    / (( 
    cosh (2 
    * (x 
    / 2))) 
    - 1)) by 
    SIN_COS2:def 2
    
      .= ((
    sinh  
    . (2 
    * (x 
    / 2))) 
    / (( 
    cosh  
    . (2 
    * (x 
    / 2))) 
    - 1)) by 
    SIN_COS2:def 4
    
      .= (((2
    * ( 
    sinh  
    . (x 
    / 2))) 
    * ( 
    cosh  
    . (x 
    / 2))) 
    / (( 
    cosh  
    . (2 
    * (x 
    / 2))) 
    - 1)) by 
    SIN_COS2: 23
    
      .= (((2
    * ( 
    sinh  
    . (x 
    / 2))) 
    * ( 
    cosh  
    . (x 
    / 2))) 
    / (((2 
    * (( 
    cosh  
    . (x 
    / 2)) 
    ^2 )) 
    - 1) 
    - 1)) by 
    SIN_COS2: 23
    
      .= (((2
    * ( 
    sinh  
    . (x 
    / 2))) 
    * ( 
    cosh  
    . (x 
    / 2))) 
    / (2 
    * ((( 
    cosh  
    . (x 
    / 2)) 
    ^2 ) 
    - 1))) 
    
      .= (((2
    * ( 
    sinh  
    . (x 
    / 2))) 
    * ( 
    cosh  
    . (x 
    / 2))) 
    / (2 
    * (( 
    sinh  
    . (x 
    / 2)) 
    ^2 ))) by 
    Lm3
    
      .= (((2
    * ( 
    sinh  
    . (x 
    / 2))) 
    * ( 
    cosh  
    . (x 
    / 2))) 
    / ((2 
    * ( 
    sinh  
    . (x 
    / 2))) 
    * ( 
    sinh  
    . (x 
    / 2)))) 
    
      .= ((
    cosh  
    . (x 
    / 2)) 
    / ( 
    sinh  
    . (x 
    / 2))) by 
    A1,
    XCMPLX_1: 91
    
      .= ((
    cosh (x 
    / 2)) 
    / ( 
    sinh  
    . (x 
    / 2))) by 
    SIN_COS2:def 4
    
      .= ((
    cosh (x 
    / 2)) 
    / ( 
    sinh (x 
    / 2))) by 
    SIN_COS2:def 2;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SIN_COS5:52
    
    (
    cosh (x 
    / 2)) 
    <>  
    0 implies ( 
    coth (x 
    / 2)) 
    = ((( 
    cosh x) 
    + 1) 
    / ( 
    sinh x)) 
    
    proof
    
      assume (
    cosh (x 
    / 2)) 
    <>  
    0 ; 
    
      then
    
      
    
    A1: (2 
    * ( 
    cosh  
    . (x 
    / 2))) 
    <>  
    0 by 
    SIN_COS2:def 4;
    
      (((
    cosh x) 
    + 1) 
    / ( 
    sinh x)) 
    = ((( 
    cosh  
    . (2 
    * (x 
    / 2))) 
    + 1) 
    / ( 
    sinh (2 
    * (x 
    / 2)))) by 
    SIN_COS2:def 4
    
      .= ((((2
    * (( 
    cosh  
    . (x 
    / 2)) 
    ^2 )) 
    - 1) 
    + 1) 
    / ( 
    sinh (2 
    * (x 
    / 2)))) by 
    SIN_COS2: 23
    
      .= ((2
    * (( 
    cosh  
    . (x 
    / 2)) 
    ^2 )) 
    / ( 
    sinh  
    . (2 
    * (x 
    / 2)))) by 
    SIN_COS2:def 2
    
      .= ((2
    * (( 
    cosh  
    . (x 
    / 2)) 
    * ( 
    cosh  
    . (x 
    / 2)))) 
    / ((2 
    * ( 
    sinh  
    . (x 
    / 2))) 
    * ( 
    cosh  
    . (x 
    / 2)))) by 
    SIN_COS2: 23
    
      .= (((2
    * ( 
    cosh  
    . (x 
    / 2))) 
    * ( 
    cosh  
    . (x 
    / 2))) 
    / ((2 
    * ( 
    cosh  
    . (x 
    / 2))) 
    * ( 
    sinh  
    . (x 
    / 2)))) 
    
      .= ((
    cosh  
    . (x 
    / 2)) 
    / ( 
    sinh  
    . (x 
    / 2))) by 
    A1,
    XCMPLX_1: 91
    
      .= ((
    cosh (x 
    / 2)) 
    / ( 
    sinh  
    . (x 
    / 2))) by 
    SIN_COS2:def 4
    
      .= ((
    cosh (x 
    / 2)) 
    / ( 
    sinh (x 
    / 2))) by 
    SIN_COS2:def 2;
    
      hence thesis;
    
    end;