sin_cos5.miz
begin
reserve x,x1,x2,x3 for
Real;
theorem ::
SIN_COS5:1
Th1: (
cos x)
<>
0 implies (
cosec x)
= ((
sec x)
/ (
tan x))
proof
assume
A1: (
cos x)
<>
0 ;
then ((
sec x)
/ (
tan x))
= (((1
/ (
cos x))
* (
cos x))
/ (((
sin x)
/ (
cos x))
* (
cos x))) by
XCMPLX_1: 91
.= (1
/ (((
sin x)
/ (
cos x))
* (
cos x))) by
A1,
XCMPLX_1: 87
.= (1
/ (
sin x)) by
A1,
XCMPLX_1: 87;
hence thesis;
end;
theorem ::
SIN_COS5:2
Th2: (
sin x)
<>
0 implies (
cos x)
= ((
sin x)
* (
cot x))
proof
assume (
sin x)
<>
0 ;
then (
cos x)
= (((
sin x)
/ (
sin x))
* (
cos x)) by
XCMPLX_1: 88
.= ((
sin x)
* (
cot x)) by
XCMPLX_1: 75;
hence thesis;
end;
theorem ::
SIN_COS5:3
(
sin x1)
<>
0 & (
sin x2)
<>
0 & (
sin x3)
<>
0 implies (
sin ((x1
+ x2)
+ x3))
= ((((
sin x1)
* (
sin x2))
* (
sin x3))
* (((((
cot x2)
* (
cot x3))
+ ((
cot x1)
* (
cot x3)))
+ ((
cot x1)
* (
cot x2)))
- 1))
proof
assume that
A1: (
sin x1)
<>
0 and
A2: (
sin x2)
<>
0 and
A3: (
sin x3)
<>
0 ;
(
sin ((x1
+ x2)
+ x3))
= (
sin (x1
+ (x2
+ x3)))
.= (((
sin x1)
* (
cos (x2
+ x3)))
+ ((
cos x1)
* (
sin (x2
+ x3)))) by
SIN_COS: 75
.= (((
sin x1)
* (((
cos x2)
* (
cos x3))
- ((
sin x2)
* (
sin x3))))
+ ((
cos x1)
* (
sin (x2
+ x3)))) by
SIN_COS: 75
.= ((((
sin x1)
* ((
cos x2)
* (
cos x3)))
- ((
sin x1)
* ((
sin x2)
* (
sin x3))))
+ ((
cos x1)
* (((
sin x2)
* (
cos x3))
+ ((
cos x2)
* (
sin x3))))) by
SIN_COS: 75
.= (((((
sin x1)
* (
cos x2))
* (
cos x3))
- (((
sin x1)
* (
sin x2))
* (
sin x3)))
+ ((((
cos x1)
* (
sin x2))
* (
cos x3))
+ (((
cos x1)
* (
cos x2))
* (
sin x3))))
.= (((((
sin x1)
* ((
sin x2)
* (
cot x2)))
* (
cos x3))
- (((
sin x1)
* (
sin x2))
* (
sin x3)))
+ ((((
cos x1)
* (
sin x2))
* (
cos x3))
+ (((
cos x1)
* (
cos x2))
* (
sin x3)))) by
A2,
Th2
.= (((((
sin x1)
* ((
sin x2)
* (
cot x2)))
* ((
sin x3)
* (
cot x3)))
- (((
sin x1)
* (
sin x2))
* (
sin x3)))
+ ((((
cos x1)
* (
sin x2))
* (
cos x3))
+ (((
cos x1)
* (
cos x2))
* (
sin x3)))) by
A3,
Th2
.= (((((
sin x1)
* (
sin x2))
* (
sin x3))
* (((
cot x2)
* (
cot x3))
- 1))
+ (((((
sin x1)
* (
cot x1))
* (
sin x2))
* (
cos x3))
+ (((
cos x1)
* (
cos x2))
* (
sin x3)))) by
A1,
Th2
.= (((((
sin x1)
* (
sin x2))
* (
sin x3))
* (((
cot x2)
* (
cot x3))
- 1))
+ (((((
sin x1)
* (
cot x1))
* (
sin x2))
* ((
sin x3)
* (
cot x3)))
+ (((
cos x1)
* (
cos x2))
* (
sin x3)))) by
A3,
Th2
.= ((((((
sin x1)
* (
sin x2))
* (
sin x3))
* (((
cot x2)
* (
cot x3))
- 1))
+ (((((
sin x1)
* (
sin x2))
* (
sin x3))
* (
cot x1))
* (
cot x3)))
+ (((
cos x1)
* (
cos x2))
* (
sin x3)))
.= (((((
sin x1)
* (
sin x2))
* (
sin x3))
* ((((
cot x2)
* (
cot x3))
- 1)
+ ((
cot x1)
* (
cot x3))))
+ ((((
sin x1)
* (
cot x1))
* (
cos x2))
* (
sin x3))) by
A1,
Th2
.= (((((
sin x1)
* (
sin x2))
* (
sin x3))
* ((((
cot x2)
* (
cot x3))
- 1)
+ ((
cot x1)
* (
cot x3))))
+ ((((
sin x1)
* (
cot x1))
* ((
sin x2)
* (
cot x2)))
* (
sin x3))) by
A2,
Th2
.= ((((
sin x1)
* (
sin x2))
* (
sin x3))
* (((((
cot x2)
* (
cot x3))
+ ((
cot x1)
* (
cot x3)))
+ ((
cot x1)
* (
cot x2)))
- 1));
hence thesis;
end;
theorem ::
SIN_COS5:4
(
sin x1)
<>
0 & (
sin x2)
<>
0 & (
sin x3)
<>
0 implies (
cos ((x1
+ x2)
+ x3))
= (
- ((((
sin x1)
* (
sin x2))
* (
sin x3))
* ((((
cot x1)
+ (
cot x2))
+ (
cot x3))
- (((
cot x1)
* (
cot x2))
* (
cot x3)))))
proof
assume that
A1: (
sin x1)
<>
0 and
A2: (
sin x2)
<>
0 and
A3: (
sin x3)
<>
0 ;
(
cos ((x1
+ x2)
+ x3))
= (
cos (x1
+ (x2
+ x3)))
.= (((
cos x1)
* (
cos (x2
+ x3)))
- ((
sin x1)
* (
sin (x2
+ x3)))) by
SIN_COS: 75
.= (((
cos x1)
* (((
cos x2)
* (
cos x3))
- ((
sin x2)
* (
sin x3))))
- ((
sin x1)
* (
sin (x2
+ x3)))) by
SIN_COS: 75
.= ((((
cos x1)
* ((
cos x2)
* (
cos x3)))
- ((
cos x1)
* ((
sin x2)
* (
sin x3))))
- ((
sin x1)
* (((
sin x2)
* (
cos x3))
+ ((
cos x2)
* (
sin x3))))) by
SIN_COS: 75
.= (((((
cos x1)
* (
cos x2))
* (
cos x3))
- (((
cos x1)
* (
sin x2))
* (
sin x3)))
- ((((
sin x1)
* (
sin x2))
* (
cos x3))
+ (((
sin x1)
* (
sin x3))
* (
cos x2))))
.= (((((
cos x1)
* (
cos x2))
* (
cos x3))
- (((
cos x1)
* (
sin x2))
* (
sin x3)))
- ((((
sin x1)
* (
sin x2))
* ((
sin x3)
* (
cot x3)))
+ (((
sin x1)
* (
sin x3))
* (
cos x2)))) by
A3,
Th2
.= (((((
cos x1)
* (
cos x2))
* (
cos x3))
- (((
cos x1)
* (
sin x2))
* (
sin x3)))
- ((((
sin x1)
* (
sin x2))
* ((
sin x3)
* (
cot x3)))
+ (((
sin x1)
* (
sin x3))
* ((
sin x2)
* (
cot x2))))) by
A2,
Th2
.= ((((((
sin x1)
* (
cot x1))
* (
cos x2))
* (
cos x3))
- (((
cos x1)
* (
sin x2))
* (
sin x3)))
- ((((
sin x1)
* (
sin x2))
* (
sin x3))
* ((
cot x3)
+ (
cot x2)))) by
A1,
Th2
.= ((((((
sin x1)
* (
cot x1))
* ((
sin x2)
* (
cot x2)))
* (
cos x3))
- (((
cos x1)
* (
sin x2))
* (
sin x3)))
- ((((
sin x1)
* (
sin x2))
* (
sin x3))
* ((
cot x3)
+ (
cot x2)))) by
A2,
Th2
.= ((((((
sin x1)
* (
cot x1))
* ((
sin x2)
* (
cot x2)))
* ((
sin x3)
* (
cot x3)))
- (((
cos x1)
* (
sin x2))
* (
sin x3)))
- ((((
sin x1)
* (
sin x2))
* (
sin x3))
* ((
cot x3)
+ (
cot x2)))) by
A3,
Th2
.= ((((((
sin x1)
* (
sin x2))
* (
sin x3))
* (((
cot x1)
* (
cot x2))
* (
cot x3)))
- ((((
sin x1)
* (
cot x1))
* (
sin x2))
* (
sin x3)))
- ((((
sin x1)
* (
sin x2))
* (
sin x3))
* ((
cot x3)
+ (
cot x2)))) by
A1,
Th2
.= (
- ((((
sin x1)
* (
sin x2))
* (
sin x3))
* ((((
cot x1)
+ (
cot x2))
+ (
cot x3))
- (((
cot x1)
* (
cot x2))
* (
cot x3)))));
hence thesis;
end;
theorem ::
SIN_COS5:5
Th5: (
sin (2
* x))
= ((2
* (
sin x))
* (
cos x))
proof
(
sin (2
* x))
= (
sin (x
+ x))
.= (((
sin x)
* (
cos x))
+ ((
cos x)
* (
sin x))) by
SIN_COS: 75
.= ((2
* (
sin x))
* (
cos x));
hence thesis;
end;
theorem ::
SIN_COS5:6
Th6: (
cos x)
<>
0 implies (
sin (2
* x))
= ((2
* (
tan x))
/ (1
+ ((
tan x)
^2 )))
proof
assume
A1: (
cos x)
<>
0 ;
then
A2: ((
cos x)
^2 )
<>
0 by
SQUARE_1: 12;
(
sin (2
* x))
= (((2
* (
sin x))
* (
cos x))
* 1) by
Th5
.= (((2
* (
sin x))
* (
cos x))
* ((
cos x)
/ (
cos x))) by
A1,
XCMPLX_1: 60
.= ((((2
* (
sin x))
* (
cos x))
* (
cos x))
/ (
cos x)) by
XCMPLX_1: 74
.= (((2
* ((
cos x)
^2 ))
* (
sin x))
/ (
cos x))
.= (((2
* ((
cos x)
^2 ))
* (
tan x))
/ 1) by
XCMPLX_1: 74
.= (((2
* (
tan x))
* ((
cos x)
^2 ))
/ (((
sin x)
^2 )
+ ((
cos x)
^2 ))) by
SIN_COS: 29
.= ((2
* (
tan x))
/ ((((
sin x)
^2 )
+ ((
cos x)
^2 ))
/ ((
cos x)
^2 ))) by
XCMPLX_1: 77
.= ((2
* (
tan x))
/ ((((
sin x)
^2 )
/ ((
cos x)
^2 ))
+ (((
cos x)
^2 )
/ ((
cos x)
^2 )))) by
XCMPLX_1: 62
.= ((2
* (
tan x))
/ ((((
sin x)
^2 )
/ ((
cos x)
^2 ))
+ 1)) by
A2,
XCMPLX_1: 60
.= ((2
* (
tan x))
/ (((
tan x)
^2 )
+ 1)) by
XCMPLX_1: 76;
hence thesis;
end;
theorem ::
SIN_COS5:7
Th7: (
cos (2
* x))
= (((
cos x)
^2 )
- ((
sin x)
^2 )) & (
cos (2
* x))
= ((2
* ((
cos x)
^2 ))
- 1) & (
cos (2
* x))
= (1
- (2
* ((
sin x)
^2 )))
proof
A1: (
cos (2
* x))
= (
cos (x
+ x))
.= (((
cos x)
^2 )
- ((
sin x)
^2 )) by
SIN_COS: 75;
then (
cos (2
* x))
= (((((
cos x)
^2 )
- ((
sin x)
^2 ))
- 1)
+ 1)
.= (((((
cos x)
^2 )
- ((
sin x)
^2 ))
- (((
cos x)
^2 )
+ ((
sin x)
^2 )))
+ 1) by
SIN_COS: 29
.= (
- ((
- 1)
+ (2
* ((
sin x)
^2 ))));
hence thesis by
A1;
end;
theorem ::
SIN_COS5:8
Th8: (
cos x)
<>
0 implies (
cos (2
* x))
= ((1
- ((
tan x)
^2 ))
/ (1
+ ((
tan x)
^2 )))
proof
assume (
cos x)
<>
0 ;
then
A1: ((
cos x)
^2 )
<>
0 by
SQUARE_1: 12;
(
cos (2
* x))
= ((((
cos x)
^2 )
- ((
sin x)
^2 ))
* 1) by
Th7
.= ((((
cos x)
^2 )
- ((
sin x)
^2 ))
* (((
cos x)
^2 )
/ ((
cos x)
^2 ))) by
A1,
XCMPLX_1: 60
.= (((((
cos x)
^2 )
- ((
sin x)
^2 ))
/ ((
cos x)
^2 ))
* ((
cos x)
^2 )) by
XCMPLX_1: 75
.= (((((
cos x)
^2 )
/ ((
cos x)
^2 ))
- (((
sin x)
^2 )
/ ((
cos x)
^2 )))
* ((
cos x)
^2 )) by
XCMPLX_1: 120
.= ((1
- (((
sin x)
^2 )
/ ((
cos x)
^2 )))
* ((
cos x)
^2 )) by
A1,
XCMPLX_1: 60
.= (((1
- ((
tan x)
^2 ))
* ((
cos x)
^2 ))
/ 1) by
XCMPLX_1: 76
.= (((1
- ((
tan x)
^2 ))
* ((
cos x)
^2 ))
/ (((
cos x)
^2 )
+ ((
sin x)
^2 ))) by
SIN_COS: 29
.= ((1
- ((
tan x)
^2 ))
/ ((((
cos x)
^2 )
+ ((
sin x)
^2 ))
/ ((
cos x)
^2 ))) by
XCMPLX_1: 77
.= ((1
- ((
tan x)
^2 ))
/ ((((
cos x)
^2 )
/ ((
cos x)
^2 ))
+ (((
sin x)
^2 )
/ ((
cos x)
^2 )))) by
XCMPLX_1: 62
.= ((1
- ((
tan x)
^2 ))
/ (1
+ (((
sin x)
^2 )
/ ((
cos x)
^2 )))) by
A1,
XCMPLX_1: 60
.= ((1
- ((
tan x)
^2 ))
/ (1
+ ((
tan x)
^2 ))) by
XCMPLX_1: 76;
hence thesis;
end;
theorem ::
SIN_COS5:9
(
cos x)
<>
0 implies (
tan (2
* x))
= ((2
* (
tan x))
/ (1
- ((
tan x)
^2 )))
proof
assume
A1: (
cos x)
<>
0 ;
(
tan (2
* x))
= (
tan (x
+ x))
.= (((
tan x)
+ (
tan x))
/ (1
- ((
tan x)
* (
tan x)))) by
A1,
SIN_COS4: 7
.= ((2
* (
tan x))
/ (1
- ((
tan x)
* (
tan x))));
hence thesis;
end;
theorem ::
SIN_COS5:10
(
sin x)
<>
0 implies (
cot (2
* x))
= ((((
cot x)
^2 )
- 1)
/ (2
* (
cot x)))
proof
assume
A1: (
sin x)
<>
0 ;
(
cot (2
* x))
= (
cot (x
+ x))
.= ((((
cot x)
* (
cot x))
- 1)
/ ((
cot x)
+ (
cot x))) by
A1,
SIN_COS4: 9
.= ((((
cot x)
* (
cot x))
- 1)
/ (2
* (
cot x)));
hence thesis;
end;
theorem ::
SIN_COS5:11
Th11: (
cos x)
<>
0 implies ((
sec x)
^2 )
= (1
+ ((
tan x)
^2 ))
proof
assume (
cos x)
<>
0 ;
then
A1: ((
cos x)
^2 )
<>
0 by
SQUARE_1: 12;
((
sec x)
^2 )
= ((1
^2 )
/ ((
cos x)
^2 )) by
XCMPLX_1: 76
.= ((((
sin x)
^2 )
+ ((
cos x)
^2 ))
/ ((
cos x)
^2 )) by
SIN_COS: 29
.= ((((
sin x)
^2 )
/ ((
cos x)
^2 ))
+ (((
cos x)
^2 )
/ ((
cos x)
^2 ))) by
XCMPLX_1: 62
.= ((((
sin x)
^2 )
/ ((
cos x)
^2 ))
+ 1) by
A1,
XCMPLX_1: 60
.= ((((
sin x)
/ (
cos x))
^2 )
+ 1) by
XCMPLX_1: 76;
hence thesis;
end;
theorem ::
SIN_COS5:12
(
cot x)
= (1
/ (
tan x)) by
XCMPLX_1: 57;
theorem ::
SIN_COS5:13
Th13: (
cos x)
<>
0 & (
sin x)
<>
0 implies (
sec (2
* x))
= (((
sec x)
^2 )
/ (1
- ((
tan x)
^2 ))) & (
sec (2
* x))
= (((
cot x)
+ (
tan x))
/ ((
cot x)
- (
tan x)))
proof
assume that
A1: (
cos x)
<>
0 and
A2: (
sin x)
<>
0 ;
A3: (
sec (2
* x))
= (1
/ ((1
- ((
tan x)
^2 ))
/ (1
+ ((
tan x)
^2 )))) by
A1,
Th8
.= ((1
+ ((
tan x)
^2 ))
/ (1
- ((
tan x)
^2 ))) by
XCMPLX_1: 57
.= (((
sec x)
^2 )
/ (1
- ((
tan x)
^2 ))) by
A1,
Th11;
then (
sec (2
* x))
= ((1
+ ((
tan x)
^2 ))
/ (1
- ((
tan x)
^2 ))) by
A1,
Th11
.= (((1
+ ((
tan x)
^2 ))
/ (
tan x))
/ ((1
- ((
tan x)
^2 ))
/ (
tan x))) by
A1,
A2,
XCMPLX_1: 50,
XCMPLX_1: 55
.= (((1
/ (
tan x))
+ (((
tan x)
^2 )
/ (
tan x)))
/ ((1
- ((
tan x)
^2 ))
/ (
tan x))) by
XCMPLX_1: 62
.= (((
cot x)
+ (((
tan x)
^2 )
/ (
tan x)))
/ ((1
- ((
tan x)
^2 ))
/ (
tan x))) by
XCMPLX_1: 57
.= (((
cot x)
+ (((
tan x)
^2 )
/ (
tan x)))
/ ((1
/ (
tan x))
- (((
tan x)
^2 )
/ (
tan x)))) by
XCMPLX_1: 120
.= (((
cot x)
+ (((
tan x)
* (
tan x))
/ (
tan x)))
/ ((
cot x)
- (((
tan x)
^2 )
/ (
tan x)))) by
XCMPLX_1: 57
.= (((
cot x)
+ (
tan x))
/ ((
cot x)
- (((
tan x)
* (
tan x))
/ (
tan x)))) by
A1,
A2,
XCMPLX_1: 50,
XCMPLX_1: 89;
hence thesis by
A1,
A2,
A3,
XCMPLX_1: 50,
XCMPLX_1: 89;
end;
theorem ::
SIN_COS5:14
(
sin x)
<>
0 implies ((
cosec x)
^2 )
= (1
+ ((
cot x)
^2 ))
proof
assume (
sin x)
<>
0 ;
then
A1: ((
sin x)
^2 )
<>
0 by
SQUARE_1: 12;
((
cosec x)
^2 )
= ((1
^2 )
/ ((
sin x)
^2 )) by
XCMPLX_1: 76
.= ((((
sin x)
^2 )
+ ((
cos x)
^2 ))
/ ((
sin x)
^2 )) by
SIN_COS: 29
.= ((((
sin x)
^2 )
/ ((
sin x)
^2 ))
+ (((
cos x)
^2 )
/ ((
sin x)
^2 ))) by
XCMPLX_1: 62
.= (1
+ (((
cos x)
^2 )
/ ((
sin x)
^2 ))) by
A1,
XCMPLX_1: 60
.= (1
+ (((
cos x)
/ (
sin x))
^2 )) by
XCMPLX_1: 76;
hence thesis;
end;
theorem ::
SIN_COS5:15
(
cos x)
<>
0 & (
sin x)
<>
0 implies (
cosec (2
* x))
= (((
sec x)
* (
cosec x))
/ 2) & (
cosec (2
* x))
= (((
tan x)
+ (
cot x))
/ 2)
proof
assume that
A1: (
cos x)
<>
0 and
A2: (
sin x)
<>
0 ;
A3: (
cosec (2
* x))
= (1
/ ((2
* (
tan x))
/ (1
+ ((
tan x)
^2 )))) by
A1,
Th6
.= ((1
+ ((
tan x)
^2 ))
/ (2
* (
tan x))) by
XCMPLX_1: 57
.= (((1
+ ((
tan x)
^2 ))
/ (
tan x))
/ 2) by
XCMPLX_1: 78
.= (((1
/ ((
sin x)
/ (
cos x)))
+ (((
tan x)
^2 )
/ (
tan x)))
/ 2) by
XCMPLX_1: 62
.= (((
cot x)
+ (((
tan x)
* (
tan x))
/ (
tan x)))
/ 2) by
XCMPLX_1: 57
.= (((
cot x)
+ (
tan x))
/ 2) by
A1,
A2,
XCMPLX_1: 50,
XCMPLX_1: 89;
(
cosec (2
* x))
= (1
/ ((2
* (
tan x))
/ (1
+ ((
tan x)
^2 )))) by
A1,
Th6
.= ((1
+ ((
tan x)
^2 ))
/ (2
* (
tan x))) by
XCMPLX_1: 57
.= (((
sec x)
^2 )
/ (2
* (
tan x))) by
A1,
Th11
.= ((((
sec x)
* (
sec x))
/ (
tan x))
/ 2) by
XCMPLX_1: 78
.= (((
sec x)
* ((
sec x)
/ ((
sin x)
/ (
cos x))))
/ 2) by
XCMPLX_1: 74
.= (((
sec x)
* (((
sec x)
* (
cos x))
/ (
sin x)))
/ 2) by
XCMPLX_1: 77
.= (((
sec x)
* (
cosec x))
/ 2) by
A1,
XCMPLX_1: 106;
hence thesis by
A3;
end;
theorem ::
SIN_COS5:16
Th16: (
sin (3
* x))
= ((
- (4
* ((
sin x)
|^ 3)))
+ (3
* (
sin x)))
proof
(
sin (3
* x))
= (
sin ((x
+ x)
+ x))
.= (((
sin (2
* x))
* (
cos x))
+ ((
cos (x
+ x))
* (
sin x))) by
SIN_COS: 75
.= ((((2
* (
sin x))
* (
cos x))
* (
cos x))
+ ((
cos (2
* x))
* (
sin x))) by
Th5
.= (((2
* (
sin x))
* ((
cos x)
* (
cos x)))
+ ((1
- (2
* ((
sin x)
^2 )))
* (
sin x))) by
Th7
.= (((2
* (
sin x))
* (1
- ((
sin x)
^2 )))
+ ((1
- (2
* ((
sin x)
^2 )))
* (
sin x))) by
SIN_COS4: 5
.= ((((2
* (
sin x))
* 1)
- ((2
* (
sin x))
* ((
sin x)
* (
sin x))))
+ ((1
* (
sin x))
- ((2
* ((
sin x)
^2 ))
* (
sin x))))
.= ((((2
* (
sin x))
* 1)
- ((2
* (((
sin x)
|^ 1)
* (
sin x)))
* (
sin x)))
+ ((1
* (
sin x))
- ((2
* ((
sin x)
^2 ))
* (
sin x))))
.= ((((2
* (
sin x))
* 1)
- ((2
* ((
sin x)
|^ (1
+ 1)))
* (
sin x)))
+ ((1
* (
sin x))
- ((2
* ((
sin x)
^2 ))
* (
sin x)))) by
NEWTON: 6
.= ((((2
* (
sin x))
* 1)
- (2
* (((
sin x)
|^ 2)
* (
sin x))))
+ ((1
* (
sin x))
- ((2
* ((
sin x)
^2 ))
* (
sin x))))
.= ((((2
* (
sin x))
* 1)
- (2
* ((
sin x)
|^ (2
+ 1))))
+ ((1
* (
sin x))
- ((2
* ((
sin x)
^2 ))
* (
sin x)))) by
NEWTON: 6
.= (((2
* (
sin x))
- (2
* ((
sin x)
|^ 3)))
+ ((
sin x)
- ((2
* (((
sin x)
|^ 1)
* (
sin x)))
* (
sin x))))
.= (((2
* (
sin x))
- (2
* ((
sin x)
|^ 3)))
+ ((
sin x)
- ((2
* ((
sin x)
|^ (1
+ 1)))
* (
sin x)))) by
NEWTON: 6
.= (((2
* (
sin x))
- (2
* ((
sin x)
|^ 3)))
+ ((
sin x)
- (2
* (((
sin x)
|^ (1
+ 1))
* (
sin x)))))
.= (((2
* (
sin x))
- (2
* ((
sin x)
|^ 3)))
+ ((
sin x)
- (2
* ((
sin x)
|^ (2
+ 1))))) by
NEWTON: 6
.= (
- ((
- (3
* (
sin x)))
+ (4
* ((
sin x)
|^ 3))));
hence thesis;
end;
theorem ::
SIN_COS5:17
Th17: (
cos (3
* x))
= ((4
* ((
cos x)
|^ 3))
- (3
* (
cos x)))
proof
(
cos (3
* x))
= (
cos ((x
+ x)
+ x))
.= (((
cos (2
* x))
* (
cos x))
- ((
sin (x
+ x))
* (
sin x))) by
SIN_COS: 75
.= ((((2
* ((
cos x)
^2 ))
- 1)
* (
cos x))
- ((
sin (2
* x))
* (
sin x))) by
Th7
.= (((2
* (((
cos x)
* (
cos x))
* (
cos x)))
- (1
* (
cos x)))
- ((
sin (2
* x))
* (
sin x)))
.= (((2
* ((((
cos x)
|^ 1)
* (
cos x))
* (
cos x)))
- (1
* (
cos x)))
- ((
sin (2
* x))
* (
sin x)))
.= (((2
* (((
cos x)
|^ (1
+ 1))
* (
cos x)))
- (1
* (
cos x)))
- ((
sin (2
* x))
* (
sin x))) by
NEWTON: 6
.= (((2
* ((
cos x)
|^ (2
+ 1)))
- (
cos x))
- ((
sin (2
* x))
* (
sin x))) by
NEWTON: 6
.= (((2
* ((
cos x)
|^ 3))
- (
cos x))
- (((2
* (
sin x))
* (
cos x))
* (
sin x))) by
Th5
.= (((2
* ((
cos x)
|^ 3))
- (
cos x))
- ((2
* (
cos x))
* ((
sin x)
* (
sin x))))
.= (((2
* ((
cos x)
|^ 3))
- (
cos x))
- ((2
* (
cos x))
* (1
- ((
cos x)
* (
cos x))))) by
SIN_COS4: 4
.= (((2
* ((
cos x)
|^ 3))
- (
cos x))
- ((2
* (
cos x))
- (2
* (((
cos x)
* (
cos x))
* (
cos x)))))
.= (((2
* ((
cos x)
|^ 3))
- (
cos x))
- ((2
* (
cos x))
- (2
* ((((
cos x)
|^ 1)
* (
cos x))
* (
cos x)))))
.= (((2
* ((
cos x)
|^ 3))
- (
cos x))
- ((2
* (
cos x))
- (2
* (((
cos x)
|^ (1
+ 1))
* (
cos x))))) by
NEWTON: 6
.= (((2
* ((
cos x)
|^ 3))
- (
cos x))
- ((2
* (
cos x))
- (2
* ((
cos x)
|^ (2
+ 1))))) by
NEWTON: 6
.= (((2
* ((
cos x)
|^ 3))
+ (2
* ((
cos x)
|^ 3)))
- (3
* (
cos x)));
hence thesis;
end;
theorem ::
SIN_COS5:18
(
cos x)
<>
0 implies (
tan (3
* x))
= (((3
* (
tan x))
- ((
tan x)
|^ 3))
/ (1
- (3
* ((
tan x)
^2 ))))
proof
assume
A1: (
cos x)
<>
0 ;
(
tan (3
* x))
= (
tan ((x
+ x)
+ x))
.= (((((
tan x)
+ (
tan x))
+ (
tan x))
- (((
tan x)
* (
tan x))
* (
tan x)))
/ (((1
- ((
tan x)
* (
tan x)))
- ((
tan x)
* (
tan x)))
- ((
tan x)
* (
tan x)))) by
A1,
SIN_COS4: 13
.= (((3
* (
tan x))
- ((((
tan x)
|^ 1)
* (
tan x))
* (
tan x)))
/ (1
- ((3
* (
tan x))
* (
tan x))))
.= (((3
* (
tan x))
- (((
tan x)
|^ (1
+ 1))
* (
tan x)))
/ (1
- ((3
* (
tan x))
* (
tan x)))) by
NEWTON: 6
.= (((3
* (
tan x))
- ((
tan x)
|^ (2
+ 1)))
/ (1
- (3
* ((
tan x)
* (
tan x))))) by
NEWTON: 6;
hence thesis;
end;
theorem ::
SIN_COS5:19
(
sin x)
<>
0 implies (
cot (3
* x))
= ((((
cot x)
|^ 3)
- (3
* (
cot x)))
/ ((3
* ((
cot x)
^2 ))
- 1))
proof
assume
A1: (
sin x)
<>
0 ;
(
cot (3
* x))
= (
cot ((x
+ x)
+ x))
.= (((((((
cot x)
* (
cot x))
* (
cot x))
- (
cot x))
- (
cot x))
- (
cot x))
/ (((((
cot x)
* (
cot x))
+ ((
cot x)
* (
cot x)))
+ ((
cot x)
* (
cot x)))
- 1)) by
A1,
SIN_COS4: 14
.= (((((
cot x)
* (
cot x))
* (
cot x))
- (3
* (
cot x)))
/ ((3
* ((
cot x)
^2 ))
- 1))
.= ((((((
cot x)
|^ 1)
* (
cot x))
* (
cot x))
- (3
* (
cot x)))
/ ((3
* ((
cot x)
^2 ))
- 1))
.= (((((
cot x)
|^ (1
+ 1))
* (
cot x))
- (3
* (
cot x)))
/ ((3
* ((
cot x)
^2 ))
- 1)) by
NEWTON: 6
.= ((((
cot x)
|^ (2
+ 1))
- (3
* (
cot x)))
/ ((3
* ((
cot x)
^2 ))
- 1)) by
NEWTON: 6;
hence thesis;
end;
theorem ::
SIN_COS5:20
((
sin x)
^2 )
= ((1
- (
cos (2
* x)))
/ 2)
proof
((1
- (
cos (2
* x)))
/ 2)
= ((1
- (1
- (2
* ((
sin x)
^2 ))))
/ 2) by
Th7
.= ((((
sin x)
^2 )
* 2)
/ 2);
hence thesis;
end;
theorem ::
SIN_COS5:21
((
cos x)
^2 )
= ((1
+ (
cos (2
* x)))
/ 2)
proof
((1
+ (
cos (2
* x)))
/ 2)
= ((1
+ ((2
* ((
cos x)
^2 ))
- 1))
/ 2) by
Th7
.= ((((
cos x)
^2 )
* 2)
/ 2);
hence thesis;
end;
theorem ::
SIN_COS5:22
((
sin x)
|^ 3)
= (((3
* (
sin x))
- (
sin (3
* x)))
/ 4)
proof
(((3
* (
sin x))
- (
sin (3
* x)))
/ 4)
= (((3
* (
sin x))
- ((
- (4
* ((
sin x)
|^ 3)))
+ (3
* (
sin x))))
/ 4) by
Th16
.= ((4
* ((
sin x)
|^ 3))
/ 4);
hence thesis;
end;
theorem ::
SIN_COS5:23
((
cos x)
|^ 3)
= (((3
* (
cos x))
+ (
cos (3
* x)))
/ 4)
proof
(((3
* (
cos x))
+ (
cos (3
* x)))
/ 4)
= (((3
* (
cos x))
+ ((4
* ((
cos x)
|^ 3))
- (3
* (
cos x))))
/ 4) by
Th17
.= ((4
* ((
cos x)
|^ 3))
/ 4);
hence thesis;
end;
theorem ::
SIN_COS5:24
((
sin x)
|^ 4)
= (((3
- (4
* (
cos (2
* x))))
+ (
cos (4
* x)))
/ 8)
proof
(((3
- (4
* (
cos (2
* x))))
+ (
cos ((2
* 2)
* x)))
/ 8)
= (((3
- (4
* (
cos (2
* x))))
+ (
cos (2
* (2
* x))))
/ 8)
.= (((3
- (4
* (
cos (2
* x))))
+ (1
- (2
* ((
sin (2
* x))
^2 ))))
/ 8) by
Th7
.= (((3
- (4
* (
cos (2
* x))))
+ (1
- (2
* (((2
* (
sin x))
* (
cos x))
^2 ))))
/ 8) by
Th5
.= (((3
- (4
* (1
- (2
* ((
sin x)
^2 )))))
+ (1
- ((8
* ((
sin x)
^2 ))
* ((
cos x)
^2 ))))
/ 8) by
Th7
.= (((
sin x)
^2 )
* (1
- ((
cos x)
* (
cos x))))
.= (((
sin x)
* (
sin x))
* ((
sin x)
* (
sin x))) by
SIN_COS4: 4
.= ((((
sin x)
|^ 1)
* (
sin x))
* ((
sin x)
* (
sin x)))
.= (((
sin x)
|^ (1
+ 1))
* ((
sin x)
* (
sin x))) by
NEWTON: 6
.= ((((
sin x)
|^ (1
+ 1))
* (
sin x))
* (
sin x))
.= (((
sin x)
|^ (2
+ 1))
* (
sin x)) by
NEWTON: 6
.= ((
sin x)
|^ (3
+ 1)) by
NEWTON: 6;
hence thesis;
end;
theorem ::
SIN_COS5:25
((
cos x)
|^ 4)
= (((3
+ (4
* (
cos (2
* x))))
+ (
cos (4
* x)))
/ 8)
proof
(((3
+ (4
* (
cos (2
* x))))
+ (
cos (4
* x)))
/ 8)
= (((3
+ (4
* (
cos (2
* x))))
+ (
cos (2
* (2
* x))))
/ 8)
.= (((3
+ (4
* (
cos (2
* x))))
+ (1
- (2
* ((
sin (2
* x))
^2 ))))
/ 8) by
Th7
.= (((3
+ (4
* (
cos (2
* x))))
+ (1
- (2
* (((2
* (
sin x))
* (
cos x))
^2 ))))
/ 8) by
Th5
.= (((3
+ (4
* (1
- (2
* ((
sin x)
^2 )))))
+ (1
- ((8
* ((
sin x)
^2 ))
* ((
cos x)
^2 ))))
/ 8) by
Th7
.= (1
- (((
sin x)
* (
sin x))
* (1
+ ((
cos x)
^2 ))))
.= (1
- (((1
^2 )
- ((
cos x)
^2 ))
* ((1
^2 )
+ ((
cos x)
^2 )))) by
SIN_COS4: 4
.= ((((
cos x)
* (
cos x))
* (
cos x))
* (
cos x))
.= (((((
cos x)
|^ 1)
* (
cos x))
* (
cos x))
* (
cos x))
.= ((((
cos x)
|^ (1
+ 1))
* (
cos x))
* (
cos x)) by
NEWTON: 6
.= (((
cos x)
|^ (2
+ 1))
* (
cos x)) by
NEWTON: 6
.= ((
cos x)
|^ (3
+ 1)) by
NEWTON: 6;
hence thesis;
end;
theorem ::
SIN_COS5:26
(
sin (x
/ 2))
= (
sqrt ((1
- (
cos x))
/ 2)) or (
sin (x
/ 2))
= (
- (
sqrt ((1
- (
cos x))
/ 2)))
proof
A1: (
sqrt ((1
- (
cos x))
/ 2))
= (
sqrt ((1
- (
cos (2
* (x
/ 2))))
/ 2))
.= (
sqrt ((1
- (1
- (2
* ((
sin (x
/ 2))
^2 ))))
/ 2)) by
Th7
.=
|.(
sin (x
/ 2)).| by
COMPLEX1: 72;
per cases ;
suppose (
sin (x
/ 2))
>=
0 ;
hence thesis by
A1,
ABSVALUE:def 1;
end;
suppose (
sin (x
/ 2))
<
0 ;
then ((
sqrt ((1
- (
cos x))
/ 2))
* (
- 1))
= ((
- (
sin (x
/ 2)))
* (
- 1)) by
A1,
ABSVALUE:def 1;
hence thesis;
end;
end;
theorem ::
SIN_COS5:27
(
cos (x
/ 2))
= (
sqrt ((1
+ (
cos x))
/ 2)) or (
cos (x
/ 2))
= (
- (
sqrt ((1
+ (
cos x))
/ 2)))
proof
A1: (
sqrt ((1
+ (
cos x))
/ 2))
= (
sqrt ((1
+ (
cos (2
* (x
/ 2))))
/ 2))
.= (
sqrt ((1
+ ((2
* ((
cos (x
/ 2))
^2 ))
- 1))
/ 2)) by
Th7
.=
|.(
cos (x
/ 2)).| by
COMPLEX1: 72;
per cases ;
suppose (
cos (x
/ 2))
>=
0 ;
hence thesis by
A1,
ABSVALUE:def 1;
end;
suppose (
cos (x
/ 2))
<
0 ;
then ((
sqrt ((1
+ (
cos x))
/ 2))
* (
- 1))
= ((
- (
cos (x
/ 2)))
* (
- 1)) by
A1,
ABSVALUE:def 1;
hence thesis;
end;
end;
theorem ::
SIN_COS5:28
(
sin (x
/ 2))
<>
0 implies (
tan (x
/ 2))
= ((1
- (
cos x))
/ (
sin x))
proof
assume (
sin (x
/ 2))
<>
0 ;
then
A1: (2
* (
sin (x
/ 2)))
<>
0 ;
((1
- (
cos x))
/ (
sin x))
= ((1
- (1
- (2
* ((
sin (x
/ 2))
^2 ))))
/ (
sin (2
* (x
/ 2)))) by
Th7
.= (((2
* (
sin (x
/ 2)))
* (
sin (x
/ 2)))
/ ((2
* (
sin (x
/ 2)))
* (
cos (x
/ 2)))) by
Th5
.= (
tan (x
/ 2)) by
A1,
XCMPLX_1: 91;
hence thesis;
end;
theorem ::
SIN_COS5:29
(
cos (x
/ 2))
<>
0 implies (
tan (x
/ 2))
= ((
sin x)
/ (1
+ (
cos x)))
proof
assume (
cos (x
/ 2))
<>
0 ;
then
A1: (2
* (
cos (x
/ 2)))
<>
0 ;
((
sin x)
/ (1
+ (
cos x)))
= (((2
* (
sin (x
/ 2)))
* (
cos (x
/ 2)))
/ (1
+ (
cos (2
* (x
/ 2))))) by
Th5
.= (((2
* (
sin (x
/ 2)))
* (
cos (x
/ 2)))
/ (1
+ ((2
* ((
cos (x
/ 2))
^2 ))
- 1))) by
Th7
.= (((2
* (
cos (x
/ 2)))
* (
sin (x
/ 2)))
/ ((2
* (
cos (x
/ 2)))
* (
cos (x
/ 2))))
.= ((
sin (x
/ 2))
/ (
cos (x
/ 2))) by
A1,
XCMPLX_1: 91;
hence thesis;
end;
theorem ::
SIN_COS5:30
(
tan (x
/ 2))
= (
sqrt ((1
- (
cos x))
/ (1
+ (
cos x)))) or (
tan (x
/ 2))
= (
- (
sqrt ((1
- (
cos x))
/ (1
+ (
cos x)))))
proof
A1: (
sqrt ((1
- (
cos x))
/ (1
+ (
cos x))))
= (
sqrt ((1
- (1
- (2
* ((
sin (x
/ 2))
^2 ))))
/ (1
+ (
cos (2
* (x
/ 2)))))) by
Th7
.= (
sqrt (((1
- 1)
+ (2
* ((
sin (x
/ 2))
^2 )))
/ (1
+ ((2
* ((
cos (x
/ 2))
^2 ))
- 1)))) by
Th7
.= (
sqrt (((
sin (x
/ 2))
^2 )
/ ((
cos (x
/ 2))
^2 ))) by
XCMPLX_1: 91
.= (
sqrt ((
tan (x
/ 2))
^2 )) by
XCMPLX_1: 76
.=
|.(
tan (x
/ 2)).| by
COMPLEX1: 72;
per cases ;
suppose (
tan (x
/ 2))
>=
0 ;
hence thesis by
A1,
ABSVALUE:def 1;
end;
suppose (
tan (x
/ 2))
<
0 ;
then ((
sqrt ((1
- (
cos x))
/ (1
+ (
cos x))))
* (
- 1))
= ((
- (
tan (x
/ 2)))
* (
- 1)) by
A1,
ABSVALUE:def 1;
hence thesis;
end;
end;
theorem ::
SIN_COS5:31
(
cos (x
/ 2))
<>
0 implies (
cot (x
/ 2))
= ((1
+ (
cos x))
/ (
sin x))
proof
assume (
cos (x
/ 2))
<>
0 ;
then
A1: (2
* (
cos (x
/ 2)))
<>
0 ;
((1
+ (
cos x))
/ (
sin x))
= ((1
+ ((2
* ((
cos (x
/ 2))
^2 ))
- 1))
/ (
sin (2
* (x
/ 2)))) by
Th7
.= ((2
* ((
cos (x
/ 2))
* (
cos (x
/ 2))))
/ ((2
* (
sin (x
/ 2)))
* (
cos (x
/ 2)))) by
Th5
.= (((2
* (
cos (x
/ 2)))
* (
cos (x
/ 2)))
/ ((2
* (
cos (x
/ 2)))
* (
sin (x
/ 2))))
.= (
cot (x
/ 2)) by
A1,
XCMPLX_1: 91;
hence thesis;
end;
theorem ::
SIN_COS5:32
(
sin (x
/ 2))
<>
0 implies (
cot (x
/ 2))
= ((
sin x)
/ (1
- (
cos x)))
proof
assume (
sin (x
/ 2))
<>
0 ;
then
A1: (2
* (
sin (x
/ 2)))
<>
0 ;
((
sin x)
/ (1
- (
cos x)))
= (((2
* (
sin (x
/ 2)))
* (
cos (x
/ 2)))
/ (1
- (
cos (2
* (x
/ 2))))) by
Th5
.= (((2
* (
sin (x
/ 2)))
* (
cos (x
/ 2)))
/ (1
- (1
- (2
* ((
sin (x
/ 2))
^2 ))))) by
Th7
.= (((2
* (
sin (x
/ 2)))
* (
cos (x
/ 2)))
/ ((2
* (
sin (x
/ 2)))
* (
sin (x
/ 2))))
.= ((
cos (x
/ 2))
/ (
sin (x
/ 2))) by
A1,
XCMPLX_1: 91;
hence thesis;
end;
theorem ::
SIN_COS5:33
(
cot (x
/ 2))
= (
sqrt ((1
+ (
cos x))
/ (1
- (
cos x)))) or (
cot (x
/ 2))
= (
- (
sqrt ((1
+ (
cos x))
/ (1
- (
cos x)))))
proof
A1: (
sqrt ((1
+ (
cos x))
/ (1
- (
cos x))))
= (
sqrt ((1
+ ((2
* ((
cos (x
/ 2))
^2 ))
- 1))
/ (1
- (
cos (2
* (x
/ 2)))))) by
Th7
.= (
sqrt ((1
- (1
- (2
* ((
cos (x
/ 2))
^2 ))))
/ (1
- (1
- (2
* ((
sin (x
/ 2))
^2 )))))) by
Th7
.= (
sqrt (((
cos (x
/ 2))
^2 )
/ ((
sin (x
/ 2))
^2 ))) by
XCMPLX_1: 91
.= (
sqrt ((
cot (x
/ 2))
^2 )) by
XCMPLX_1: 76
.=
|.(
cot (x
/ 2)).| by
COMPLEX1: 72;
per cases ;
suppose (
cot (x
/ 2))
>=
0 ;
hence thesis by
A1,
ABSVALUE:def 1;
end;
suppose (
cot (x
/ 2))
<
0 ;
then ((
sqrt ((1
+ (
cos x))
/ (1
- (
cos x))))
* (
- 1))
= ((
- (
cot (x
/ 2)))
* (
- 1)) by
A1,
ABSVALUE:def 1;
hence thesis;
end;
end;
theorem ::
SIN_COS5:34
(
sin (x
/ 2))
<>
0 & (
cos (x
/ 2))
<>
0 & (1
- ((
tan (x
/ 2))
^2 ))
<>
0 implies (
sec (x
/ 2))
= (
sqrt ((2
* (
sec x))
/ ((
sec x)
+ 1))) or (
sec (x
/ 2))
= (
- (
sqrt ((2
* (
sec x))
/ ((
sec x)
+ 1))))
proof
assume that
A1: (
sin (x
/ 2))
<>
0 and
A2: (
cos (x
/ 2))
<>
0 and
A3: (1
- ((
tan (x
/ 2))
^2 ))
<>
0 ;
set b = ((
sec (x
/ 2))
^2 );
set a = (1
- ((
tan (x
/ 2))
^2 ));
A4: (a
+ b)
= ((1
+ ((
tan (x
/ 2))
^2 ))
+ (1
- ((
tan (x
/ 2))
^2 ))) by
A2,
Th11
.= (1
+ 1);
(
sqrt ((2
* (
sec x))
/ ((
sec x)
+ 1)))
= (
sqrt ((2
* (((
sec (x
/ 2))
^2 )
/ (1
- ((
tan (x
/ 2))
^2 ))))
/ ((
sec (2
* (x
/ 2)))
+ 1))) by
A1,
A2,
Th13
.= (
sqrt ((2
* (((
sec (x
/ 2))
^2 )
/ (1
- ((
tan (x
/ 2))
^2 ))))
/ ((((
sec (x
/ 2))
^2 )
/ (1
- ((
tan (x
/ 2))
^2 )))
+ 1))) by
A1,
A2,
Th13;
then
A5: (
sqrt ((2
* (
sec x))
/ ((
sec x)
+ 1)))
= (
sqrt (((2
* (b
/ a))
* a)
/ (((b
/ a)
+ 1)
* a))) by
A3,
XCMPLX_1: 91
.= (
sqrt ((2
* ((b
/ a)
* a))
/ (((b
/ a)
* a)
+ (1
* a))))
.= (
sqrt ((2
* ((b
/ a)
* a))
/ (b
+ a))) by
A3,
XCMPLX_1: 87
.= (
sqrt ((2
* b)
/ 2)) by
A3,
A4,
XCMPLX_1: 87
.=
|.(
sec (x
/ 2)).| by
COMPLEX1: 72;
per cases ;
suppose (
sec (x
/ 2))
>=
0 ;
hence thesis by
A5,
ABSVALUE:def 1;
end;
suppose (
sec (x
/ 2))
<
0 ;
then ((
sqrt ((2
* (
sec x))
/ ((
sec x)
+ 1)))
* (
- 1))
= ((
- (
sec (x
/ 2)))
* (
- 1)) by
A5,
ABSVALUE:def 1;
hence thesis;
end;
end;
theorem ::
SIN_COS5:35
(
sin (x
/ 2))
<>
0 & (
cos (x
/ 2))
<>
0 & (1
- ((
tan (x
/ 2))
^2 ))
<>
0 implies (
cosec (x
/ 2))
= (
sqrt ((2
* (
sec x))
/ ((
sec x)
- 1))) or (
cosec (x
/ 2))
= (
- (
sqrt ((2
* (
sec x))
/ ((
sec x)
- 1))))
proof
assume that
A1: (
sin (x
/ 2))
<>
0 and
A2: (
cos (x
/ 2))
<>
0 and
A3: (1
- ((
tan (x
/ 2))
^2 ))
<>
0 ;
set b = ((
sec (x
/ 2))
^2 );
set a = (1
- ((
tan (x
/ 2))
^2 ));
A4: (b
- a)
= ((1
+ ((
tan (x
/ 2))
^2 ))
- (1
- ((
tan (x
/ 2))
^2 ))) by
A2,
Th11
.= (2
* ((
tan (x
/ 2))
^2 ));
(
sqrt ((2
* (
sec x))
/ ((
sec x)
- 1)))
= (
sqrt ((2
* (((
sec (x
/ 2))
^2 )
/ (1
- ((
tan (x
/ 2))
^2 ))))
/ ((
sec (2
* (x
/ 2)))
- 1))) by
A1,
A2,
Th13
.= (
sqrt ((2
* (((
sec (x
/ 2))
^2 )
/ (1
- ((
tan (x
/ 2))
^2 ))))
/ ((((
sec (x
/ 2))
^2 )
/ (1
- ((
tan (x
/ 2))
^2 )))
- 1))) by
A1,
A2,
Th13;
then
A5: (
sqrt ((2
* (
sec x))
/ ((
sec x)
- 1)))
= (
sqrt (((2
* (b
/ a))
* a)
/ (((b
/ a)
- 1)
* a))) by
A3,
XCMPLX_1: 91
.= (
sqrt ((2
* ((b
/ a)
* a))
/ (((b
/ a)
* a)
- (1
* a))))
.= (
sqrt ((2
* ((b
/ a)
* a))
/ (b
- a))) by
A3,
XCMPLX_1: 87
.= (
sqrt ((2
* b)
/ (2
* ((
tan (x
/ 2))
^2 )))) by
A3,
A4,
XCMPLX_1: 87
.= (
sqrt (((
sec (x
/ 2))
^2 )
/ ((
tan (x
/ 2))
^2 ))) by
XCMPLX_1: 91
.= (
sqrt (((
sec (x
/ 2))
/ (
tan (x
/ 2)))
^2 )) by
XCMPLX_1: 76
.= (
sqrt ((
cosec (x
/ 2))
^2 )) by
A2,
Th1
.=
|.(
cosec (x
/ 2)).| by
COMPLEX1: 72;
per cases ;
suppose (
cosec (x
/ 2))
>=
0 ;
hence thesis by
A5,
ABSVALUE:def 1;
end;
suppose (
cosec (x
/ 2))
<
0 ;
then ((
sqrt ((2
* (
sec x))
/ ((
sec x)
- 1)))
* (
- 1))
= ((
- (
cosec (x
/ 2)))
* (
- 1)) by
A5,
ABSVALUE:def 1;
hence thesis;
end;
end;
definition
let x be
Real;
::
SIN_COS5:def1
func
coth (x) ->
Real equals ((
cosh x)
/ (
sinh x));
coherence ;
::
SIN_COS5:def2
func
sech (x) ->
Real equals (1
/ (
cosh x));
coherence ;
::
SIN_COS5:def3
func
cosech (x) ->
Real equals (1
/ (
sinh x));
coherence ;
end
theorem ::
SIN_COS5:36
Th36: (
coth x)
= (((
exp_R x)
+ (
exp_R (
- x)))
/ ((
exp_R x)
- (
exp_R (
- x)))) & (
sech x)
= (2
/ ((
exp_R x)
+ (
exp_R (
- x)))) & (
cosech x)
= (2
/ ((
exp_R x)
- (
exp_R (
- x))))
proof
A1: (
sech x)
= (1
/ (
cosh
. x)) by
SIN_COS2:def 4
.= (1
/ (((
exp_R
. x)
+ (
exp_R
. (
- x)))
/ 2)) by
SIN_COS2:def 3
.= ((1
* 2)
/ ((((
exp_R
. x)
+ (
exp_R
. (
- x)))
/ 2)
* 2)) by
XCMPLX_1: 91
.= (2
/ ((
exp_R
. x)
+ (
exp_R (
- x)))) by
SIN_COS:def 23
.= (2
/ ((
exp_R x)
+ (
exp_R (
- x)))) by
SIN_COS:def 23;
A2: (
cosech x)
= (1
/ (
sinh
. x)) by
SIN_COS2:def 2
.= (1
/ (((
exp_R
. x)
- (
exp_R
. (
- x)))
/ 2)) by
SIN_COS2:def 1
.= ((1
* 2)
/ ((((
exp_R
. x)
- (
exp_R
. (
- x)))
/ 2)
* 2)) by
XCMPLX_1: 91
.= (2
/ ((
exp_R
. x)
- (
exp_R (
- x)))) by
SIN_COS:def 23;
(
coth x)
= ((
cosh
. x)
/ (
sinh x)) by
SIN_COS2:def 4
.= ((
cosh
. x)
/ (
sinh
. x)) by
SIN_COS2:def 2
.= ((((
exp_R
. x)
+ (
exp_R
. (
- x)))
/ 2)
/ (
sinh
. x)) by
SIN_COS2:def 3
.= ((((
exp_R
. x)
+ (
exp_R
. (
- x)))
/ 2)
/ (((
exp_R
. x)
- (
exp_R
. (
- x)))
/ 2)) by
SIN_COS2:def 1
.= (((((
exp_R
. x)
+ (
exp_R
. (
- x)))
/ 2)
* 2)
/ ((((
exp_R
. x)
- (
exp_R
. (
- x)))
/ 2)
* 2)) by
XCMPLX_1: 91
.= (((
exp_R
. x)
+ (
exp_R
. (
- x)))
/ ((
exp_R
. x)
- (
exp_R (
- x)))) by
SIN_COS:def 23
.= (((
exp_R
. x)
+ (
exp_R
. (
- x)))
/ ((
exp_R x)
- (
exp_R (
- x)))) by
SIN_COS:def 23
.= (((
exp_R
. x)
+ (
exp_R (
- x)))
/ ((
exp_R x)
- (
exp_R (
- x)))) by
SIN_COS:def 23
.= (((
exp_R x)
+ (
exp_R (
- x)))
/ ((
exp_R x)
- (
exp_R (
- x)))) by
SIN_COS:def 23;
hence thesis by
A1,
A2,
SIN_COS:def 23;
end;
theorem ::
SIN_COS5:37
((
exp_R x)
- (
exp_R (
- x)))
<>
0 implies ((
tanh x)
* (
coth x))
= 1
proof
assume
A1: ((
exp_R x)
- (
exp_R (
- x)))
<>
0 ;
(
exp_R x)
>
0 by
SIN_COS: 55;
then
A2: ((
exp_R x)
+ (
exp_R (
- x)))
> (
0
+
0 ) by
SIN_COS: 55,
XREAL_1: 8;
((
tanh x)
* (
coth x))
= ((
tanh
. x)
* (
coth x)) by
SIN_COS2:def 6
.= ((((
exp_R
. x)
- (
exp_R
. (
- x)))
/ ((
exp_R
. x)
+ (
exp_R
. (
- x))))
* (
coth x)) by
SIN_COS2:def 5
.= ((((
exp_R
. x)
- (
exp_R
. (
- x)))
/ ((
exp_R
. x)
+ (
exp_R
. (
- x))))
* (((
exp_R x)
+ (
exp_R (
- x)))
/ ((
exp_R x)
- (
exp_R (
- x))))) by
Th36
.= ((((
exp_R
. x)
- (
exp_R
. (
- x)))
/ ((
exp_R
. x)
+ (
exp_R (
- x))))
* (((
exp_R x)
+ (
exp_R (
- x)))
/ ((
exp_R x)
- (
exp_R (
- x))))) by
SIN_COS:def 23
.= ((((
exp_R x)
- (
exp_R
. (
- x)))
/ ((
exp_R
. x)
+ (
exp_R (
- x))))
* (((
exp_R x)
+ (
exp_R (
- x)))
/ ((
exp_R x)
- (
exp_R (
- x))))) by
SIN_COS:def 23
.= ((((
exp_R x)
- (
exp_R (
- x)))
/ ((
exp_R
. x)
+ (
exp_R (
- x))))
* (((
exp_R x)
+ (
exp_R (
- x)))
/ ((
exp_R x)
- (
exp_R (
- x))))) by
SIN_COS:def 23
.= ((((
exp_R x)
- (
exp_R (
- x)))
/ ((
exp_R x)
+ (
exp_R (
- x))))
* (((
exp_R x)
+ (
exp_R (
- x)))
/ ((
exp_R x)
- (
exp_R (
- x))))) by
SIN_COS:def 23
.= (((((
exp_R x)
- (
exp_R (
- x)))
/ ((
exp_R x)
+ (
exp_R (
- x))))
* ((
exp_R x)
+ (
exp_R (
- x))))
/ ((
exp_R x)
- (
exp_R (
- x)))) by
XCMPLX_1: 74;
then ((
tanh x)
* (
coth x))
= (((
exp_R x)
- (
exp_R (
- x)))
/ ((
exp_R x)
- (
exp_R (
- x)))) by
A2,
XCMPLX_1: 87
.= 1 by
A1,
XCMPLX_1: 60;
hence thesis;
end;
theorem ::
SIN_COS5:38
(((
sech x)
^2 )
+ ((
tanh x)
^2 ))
= 1
proof
(
cosh
. x)
<>
0 by
SIN_COS2: 15;
then
A1: ((
cosh
. x)
^2 )
<>
0 by
SQUARE_1: 12;
(((
sech x)
^2 )
+ ((
tanh x)
^2 ))
= (((1
/ (
cosh x))
^2 )
+ ((
tanh
. x)
^2 )) by
SIN_COS2:def 6
.= (((1
/ (
cosh
. x))
^2 )
+ ((
tanh
. x)
^2 )) by
SIN_COS2:def 4
.= (((1
^2 )
/ ((
cosh
. x)
^2 ))
+ ((
tanh
. x)
^2 )) by
XCMPLX_1: 76
.= (((1
^2 )
/ ((
cosh
. x)
^2 ))
+ (((
sinh
. x)
/ (
cosh
. x))
^2 )) by
SIN_COS2: 17
.= ((1
/ ((
cosh
. x)
^2 ))
+ (((
sinh
. x)
^2 )
/ ((
cosh
. x)
^2 ))) by
XCMPLX_1: 76
.= ((1
+ ((
sinh
. x)
^2 ))
/ ((
cosh
. x)
^2 )) by
XCMPLX_1: 62
.= (((((
cosh
. x)
^2 )
- ((
sinh
. x)
^2 ))
+ ((
sinh
. x)
^2 ))
/ ((
cosh
. x)
^2 )) by
SIN_COS2: 14
.= (((
cosh
. x)
^2 )
/ ((
cosh
. x)
^2 ));
hence thesis by
A1,
XCMPLX_1: 60;
end;
theorem ::
SIN_COS5:39
(
sinh x)
<>
0 implies (((
coth x)
^2 )
- ((
cosech x)
^2 ))
= 1
proof
assume (
sinh x)
<>
0 ;
then
A1: ((
sinh x)
^2 )
<>
0 by
SQUARE_1: 12;
(((
coth x)
^2 )
- ((
cosech x)
^2 ))
= ((((
cosh x)
^2 )
/ ((
sinh x)
^2 ))
- ((1
/ (
sinh x))
^2 )) by
XCMPLX_1: 76
.= ((((
cosh x)
^2 )
/ ((
sinh x)
^2 ))
- ((1
^2 )
/ ((
sinh x)
^2 ))) by
XCMPLX_1: 76
.= ((((
cosh x)
^2 )
- 1)
/ ((
sinh x)
^2 )) by
XCMPLX_1: 120
.= ((((
cosh x)
^2 )
- (((
cosh
. x)
^2 )
- ((
sinh
. x)
^2 )))
/ ((
sinh x)
^2 )) by
SIN_COS2: 14
.= (((((
cosh x)
^2 )
- ((
cosh
. x)
^2 ))
+ ((
sinh
. x)
^2 ))
/ ((
sinh x)
^2 ))
.= (((((
cosh x)
^2 )
- ((
cosh x)
^2 ))
+ ((
sinh
. x)
^2 ))
/ ((
sinh x)
^2 )) by
SIN_COS2:def 4
.= ((
0
+ ((
sinh x)
^2 ))
/ ((
sinh x)
^2 )) by
SIN_COS2:def 2;
hence thesis by
A1,
XCMPLX_1: 60;
end;
Lm1: (
coth (
- x))
= (
- (
coth x))
proof
(
coth (
- x))
= ((
cosh
. (
- x))
/ (
sinh (
- x))) by
SIN_COS2:def 4
.= ((
cosh
. (
- x))
/ (
sinh
. (
- x))) by
SIN_COS2:def 2
.= ((
cosh
. x)
/ (
sinh
. (
- x))) by
SIN_COS2: 19
.= ((
cosh
. x)
/ (
- (
sinh
. x))) by
SIN_COS2: 19
.= (
- ((
cosh
. x)
/ (
sinh
. x))) by
XCMPLX_1: 188
.= (
- ((
cosh x)
/ (
sinh
. x))) by
SIN_COS2:def 4
.= (
- (
coth x)) by
SIN_COS2:def 2;
hence thesis;
end;
theorem ::
SIN_COS5:40
Th40: (
sinh x1)
<>
0 & (
sinh x2)
<>
0 implies (
coth (x1
+ x2))
= ((1
+ ((
coth x1)
* (
coth x2)))
/ ((
coth x1)
+ (
coth x2)))
proof
assume that
A1: (
sinh x1)
<>
0 and
A2: (
sinh x2)
<>
0 ;
A3: (
sinh
. x1)
<>
0 by
A1,
SIN_COS2:def 2;
A4: (
sinh
. x2)
<>
0 by
A2,
SIN_COS2:def 2;
(
coth (x1
+ x2))
= ((
cosh
. (x1
+ x2))
/ (
sinh (x1
+ x2))) by
SIN_COS2:def 4
.= ((
cosh
. (x1
+ x2))
/ (
sinh
. (x1
+ x2))) by
SIN_COS2:def 2
.= ((((
cosh
. x1)
* (
cosh
. x2))
+ ((
sinh
. x1)
* (
sinh
. x2)))
/ (
sinh
. (x1
+ x2))) by
SIN_COS2: 20
.= ((((
cosh
. x1)
* (
cosh
. x2))
+ ((
sinh
. x1)
* (
sinh
. x2)))
/ (((
sinh
. x1)
* (
cosh
. x2))
+ ((
cosh
. x1)
* (
sinh
. x2)))) by
SIN_COS2: 21
.= (((((
cosh
. x1)
* (
cosh
. x2))
+ ((
sinh
. x1)
* (
sinh
. x2)))
/ ((
sinh
. x1)
* (
sinh
. x2)))
/ ((((
sinh
. x1)
* (
cosh
. x2))
+ ((
cosh
. x1)
* (
sinh
. x2)))
/ ((
sinh
. x1)
* (
sinh
. x2)))) by
A3,
A4,
XCMPLX_1: 6,
XCMPLX_1: 55
.= (((((
cosh
. x1)
* (
cosh
. x2))
/ ((
sinh
. x1)
* (
sinh
. x2)))
+ (((
sinh
. x1)
* (
sinh
. x2))
/ ((
sinh
. x1)
* (
sinh
. x2))))
/ ((((
sinh
. x1)
* (
cosh
. x2))
+ ((
cosh
. x1)
* (
sinh
. x2)))
/ ((
sinh
. x1)
* (
sinh
. x2)))) by
XCMPLX_1: 62
.= (((((
cosh
. x1)
* (
cosh
. x2))
/ ((
sinh
. x1)
* (
sinh
. x2)))
+ 1)
/ ((((
sinh
. x1)
* (
cosh
. x2))
+ ((
cosh
. x1)
* (
sinh
. x2)))
/ ((
sinh
. x1)
* (
sinh
. x2)))) by
A3,
A4,
XCMPLX_1: 6,
XCMPLX_1: 60
.= ((((((
cosh
. x1)
/ (
sinh
. x1))
* (
cosh
. x2))
/ (
sinh
. x2))
+ 1)
/ ((((
sinh
. x1)
* (
cosh
. x2))
+ ((
cosh
. x1)
* (
sinh
. x2)))
/ ((
sinh
. x1)
* (
sinh
. x2)))) by
XCMPLX_1: 83
.= (((((
cosh
. x1)
/ (
sinh
. x1))
* ((
cosh
. x2)
/ (
sinh
. x2)))
+ 1)
/ ((((
sinh
. x1)
* (
cosh
. x2))
+ ((
cosh
. x1)
* (
sinh
. x2)))
/ ((
sinh
. x1)
* (
sinh
. x2)))) by
XCMPLX_1: 74
.= (((((
cosh
. x1)
/ (
sinh
. x1))
* ((
cosh
. x2)
/ (
sinh
. x2)))
+ 1)
/ ((((
sinh
. x1)
* (
cosh
. x2))
/ ((
sinh
. x1)
* (
sinh
. x2)))
+ (((
cosh
. x1)
* (
sinh
. x2))
/ ((
sinh
. x1)
* (
sinh
. x2))))) by
XCMPLX_1: 62
.= (((((
cosh
. x1)
/ (
sinh
. x1))
* ((
cosh
. x2)
/ (
sinh
. x2)))
+ 1)
/ (((((
sinh
. x1)
/ (
sinh
. x1))
* (
cosh
. x2))
/ (
sinh
. x2))
+ (((
cosh
. x1)
* (
sinh
. x2))
/ ((
sinh
. x1)
* (
sinh
. x2))))) by
XCMPLX_1: 83
.= (((((
cosh
. x1)
/ (
sinh
. x1))
* ((
cosh
. x2)
/ (
sinh
. x2)))
+ 1)
/ (((((
sinh
. x1)
/ (
sinh
. x1))
* (
cosh
. x2))
/ (
sinh
. x2))
+ ((((
cosh
. x1)
/ (
sinh
. x1))
* (
sinh
. x2))
/ (
sinh
. x2)))) by
XCMPLX_1: 83
.= (((((
cosh
. x1)
/ (
sinh
. x1))
* ((
cosh
. x2)
/ (
sinh
. x2)))
+ 1)
/ (((1
* (
cosh
. x2))
/ (
sinh
. x2))
+ ((((
cosh
. x1)
/ (
sinh
. x1))
* (
sinh
. x2))
/ (
sinh
. x2)))) by
A3,
XCMPLX_1: 60
.= (((((
cosh
. x1)
/ (
sinh
. x1))
* ((
cosh
. x2)
/ (
sinh
. x2)))
+ 1)
/ (((
cosh
. x2)
/ (
sinh
. x2))
+ ((
cosh
. x1)
/ (
sinh
. x1)))) by
A4,
XCMPLX_1: 89
.= (((((
cosh x1)
/ (
sinh
. x1))
* ((
cosh
. x2)
/ (
sinh
. x2)))
+ 1)
/ (((
cosh
. x2)
/ (
sinh
. x2))
+ ((
cosh
. x1)
/ (
sinh
. x1)))) by
SIN_COS2:def 4
.= (((((
cosh x1)
/ (
sinh
. x1))
* ((
cosh x2)
/ (
sinh
. x2)))
+ 1)
/ (((
cosh
. x2)
/ (
sinh
. x2))
+ ((
cosh
. x1)
/ (
sinh
. x1)))) by
SIN_COS2:def 4
.= (((((
cosh x1)
/ (
sinh
. x1))
* ((
cosh x2)
/ (
sinh
. x2)))
+ 1)
/ (((
cosh x2)
/ (
sinh
. x2))
+ ((
cosh
. x1)
/ (
sinh
. x1)))) by
SIN_COS2:def 4
.= (((((
cosh x1)
/ (
sinh
. x1))
* ((
cosh x2)
/ (
sinh
. x2)))
+ 1)
/ (((
cosh x2)
/ (
sinh
. x2))
+ ((
cosh x1)
/ (
sinh
. x1)))) by
SIN_COS2:def 4
.= (((((
cosh x1)
/ (
sinh x1))
* ((
cosh x2)
/ (
sinh
. x2)))
+ 1)
/ (((
cosh x2)
/ (
sinh
. x2))
+ ((
cosh x1)
/ (
sinh
. x1)))) by
SIN_COS2:def 2
.= (((((
cosh x1)
/ (
sinh x1))
* ((
cosh x2)
/ (
sinh
. x2)))
+ 1)
/ (((
cosh x2)
/ (
sinh x2))
+ ((
cosh x1)
/ (
sinh
. x1)))) by
SIN_COS2:def 2
.= (((((
cosh x1)
/ (
sinh x1))
* ((
cosh x2)
/ (
sinh
. x2)))
+ 1)
/ (((
cosh x2)
/ (
sinh x2))
+ ((
cosh x1)
/ (
sinh x1)))) by
SIN_COS2:def 2
.= ((((
coth x1)
* (
coth x2))
+ 1)
/ ((
coth x2)
+ (
coth x1))) by
SIN_COS2:def 2;
hence thesis;
end;
theorem ::
SIN_COS5:41
(
sinh x1)
<>
0 & (
sinh x2)
<>
0 implies (
coth (x1
- x2))
= ((1
- ((
coth x1)
* (
coth x2)))
/ ((
coth x1)
- (
coth x2)))
proof
assume that
A1: (
sinh x1)
<>
0 and
A2: (
sinh x2)
<>
0 ;
(
- (
sinh
. x2))
<>
0 by
A2,
SIN_COS2:def 2;
then (
sinh
. (
- x2))
<>
0 by
SIN_COS2: 19;
then
A3: (
sinh (
- x2))
<>
0 by
SIN_COS2:def 2;
(
coth (x1
- x2))
= (
coth (x1
+ (
- x2)))
.= ((1
+ ((
coth x1)
* (
coth (
- x2))))
/ ((
coth x1)
+ (
coth (
- x2)))) by
A1,
A3,
Th40
.= ((1
+ ((
coth x1)
* (
- (
coth x2))))
/ ((
coth x1)
+ (
coth (
- x2)))) by
Lm1
.= ((1
- ((
coth x1)
* (
coth x2)))
/ ((
coth x1)
+ (
- (
coth x2)))) by
Lm1
.= ((1
- ((
coth x1)
* (
coth x2)))
/ ((
coth x1)
- (
coth x2)));
hence thesis;
end;
theorem ::
SIN_COS5:42
(
sinh x1)
<>
0 & (
sinh x2)
<>
0 implies ((
coth x1)
+ (
coth x2))
= ((
sinh (x1
+ x2))
/ ((
sinh x1)
* (
sinh x2))) & ((
coth x1)
- (
coth x2))
= (
- ((
sinh (x1
- x2))
/ ((
sinh x1)
* (
sinh x2))))
proof
assume that
A1: (
sinh x1)
<>
0 and
A2: (
sinh x2)
<>
0 ;
A3: (
sinh
. x1)
<>
0 by
A1,
SIN_COS2:def 2;
A4: (
sinh
. x2)
<>
0 by
A2,
SIN_COS2:def 2;
A5: (
- ((
sinh (x1
- x2))
/ ((
sinh x1)
* (
sinh x2))))
= (
- ((
sinh
. (x1
- x2))
/ ((
sinh x1)
* (
sinh x2)))) by
SIN_COS2:def 2
.= (
- ((
sinh
. (x1
- x2))
/ ((
sinh
. x1)
* (
sinh x2)))) by
SIN_COS2:def 2
.= (
- ((
sinh
. (x1
- x2))
/ ((
sinh
. x1)
* (
sinh
. x2)))) by
SIN_COS2:def 2
.= (
- ((((
sinh
. x1)
* (
cosh
. x2))
- ((
cosh
. x1)
* (
sinh
. x2)))
/ ((
sinh
. x1)
* (
sinh
. x2)))) by
SIN_COS2: 21
.= (
- ((((
sinh
. x1)
* (
cosh
. x2))
/ ((
sinh
. x1)
* (
sinh
. x2)))
- (((
cosh
. x1)
* (
sinh
. x2))
/ ((
sinh
. x1)
* (
sinh
. x2))))) by
XCMPLX_1: 120
.= (
- (((((
sinh
. x1)
/ (
sinh
. x1))
* (
cosh
. x2))
/ (
sinh
. x2))
- (((
cosh
. x1)
* (
sinh
. x2))
/ ((
sinh
. x1)
* (
sinh
. x2))))) by
XCMPLX_1: 83
.= (
- (((((
sinh
. x1)
/ (
sinh
. x1))
* (
cosh
. x2))
/ (
sinh
. x2))
- ((((
sinh
. x2)
/ (
sinh
. x2))
* (
cosh
. x1))
/ (
sinh
. x1)))) by
XCMPLX_1: 83
.= (
- (((1
* (
cosh
. x2))
/ (
sinh
. x2))
- ((((
sinh
. x2)
/ (
sinh
. x2))
* (
cosh
. x1))
/ (
sinh
. x1)))) by
A3,
XCMPLX_1: 60
.= (
- (((
cosh
. x2)
/ (
sinh
. x2))
- ((1
* (
cosh
. x1))
/ (
sinh
. x1)))) by
A4,
XCMPLX_1: 60
.= (
- (((
cosh x2)
/ (
sinh
. x2))
- ((
cosh
. x1)
/ (
sinh
. x1)))) by
SIN_COS2:def 4
.= (
- (((
cosh x2)
/ (
sinh
. x2))
- ((
cosh x1)
/ (
sinh
. x1)))) by
SIN_COS2:def 4
.= (
- (((
cosh x2)
/ (
sinh x2))
- ((
cosh x1)
/ (
sinh
. x1)))) by
SIN_COS2:def 2
.= (
- ((
coth x2)
- ((
cosh x1)
/ (
sinh x1)))) by
SIN_COS2:def 2
.= ((
coth x1)
- (
coth x2));
((
sinh (x1
+ x2))
/ ((
sinh x1)
* (
sinh x2)))
= ((
sinh
. (x1
+ x2))
/ ((
sinh x1)
* (
sinh x2))) by
SIN_COS2:def 2
.= ((((
sinh
. x1)
* (
cosh
. x2))
+ ((
cosh
. x1)
* (
sinh
. x2)))
/ ((
sinh x1)
* (
sinh x2))) by
SIN_COS2: 21
.= ((((
sinh
. x1)
* (
cosh
. x2))
+ ((
cosh
. x1)
* (
sinh
. x2)))
/ ((
sinh
. x1)
* (
sinh x2))) by
SIN_COS2:def 2
.= ((((
sinh
. x1)
* (
cosh
. x2))
+ ((
cosh
. x1)
* (
sinh
. x2)))
/ ((
sinh
. x1)
* (
sinh
. x2))) by
SIN_COS2:def 2
.= ((((
sinh
. x1)
* (
cosh
. x2))
/ ((
sinh
. x1)
* (
sinh
. x2)))
+ (((
cosh
. x1)
* (
sinh
. x2))
/ ((
sinh
. x1)
* (
sinh
. x2)))) by
XCMPLX_1: 62
.= (((((
sinh
. x1)
/ (
sinh
. x1))
* (
cosh
. x2))
/ (
sinh
. x2))
+ (((
cosh
. x1)
* (
sinh
. x2))
/ ((
sinh
. x1)
* (
sinh
. x2)))) by
XCMPLX_1: 83
.= (((1
* (
cosh
. x2))
/ (
sinh
. x2))
+ (((
cosh
. x1)
* (
sinh
. x2))
/ ((
sinh
. x1)
* (
sinh
. x2)))) by
A3,
XCMPLX_1: 60
.= (((
cosh
. x2)
/ (
sinh
. x2))
+ ((((
cosh
. x1)
/ (
sinh
. x1))
* (
sinh
. x2))
/ (
sinh
. x2))) by
XCMPLX_1: 83
.= (((
cosh
. x2)
/ (
sinh
. x2))
+ (((
cosh
. x1)
/ (
sinh
. x1))
* ((
sinh
. x2)
/ (
sinh
. x2)))) by
XCMPLX_1: 74
.= (((
cosh
. x2)
/ (
sinh
. x2))
+ (((
cosh
. x1)
/ (
sinh
. x1))
* 1)) by
A4,
XCMPLX_1: 60
.= (((
cosh
. x2)
/ (
sinh
. x2))
+ ((
cosh
. x1)
/ (
sinh x1))) by
SIN_COS2:def 2
.= (((
cosh
. x2)
/ (
sinh x2))
+ ((
cosh
. x1)
/ (
sinh x1))) by
SIN_COS2:def 2
.= (((
cosh x2)
/ (
sinh x2))
+ ((
cosh
. x1)
/ (
sinh x1))) by
SIN_COS2:def 4
.= ((
coth x2)
+ (
coth x1)) by
SIN_COS2:def 4;
hence thesis by
A5;
end;
Lm2: ((
cosh
. x)
^2 )
= (1
+ ((
sinh
. x)
^2 ))
proof
((((
cosh
. x)
^2 )
- ((
sinh
. x)
^2 ))
+ ((
sinh
. x)
^2 ))
= (1
+ ((
sinh
. x)
^2 )) by
SIN_COS2: 14;
hence thesis;
end;
Lm3: (((
cosh
. x)
^2 )
- 1)
= ((
sinh
. x)
^2 )
proof
((((
cosh
. x)
^2 )
- ((
sinh
. x)
^2 ))
+ ((
sinh
. x)
^2 ))
= (1
+ ((
sinh
. x)
^2 )) by
SIN_COS2: 14;
hence thesis;
end;
theorem ::
SIN_COS5:43
(
sinh (3
* x))
= ((3
* (
sinh x))
+ (4
* ((
sinh x)
|^ 3)))
proof
(
sinh (3
* x))
= (
sinh
. ((x
+ x)
+ x)) by
SIN_COS2:def 2
.= (((
sinh
. (2
* x))
* (
cosh
. x))
+ ((
cosh
. (2
* x))
* (
sinh
. x))) by
SIN_COS2: 21
.= ((((2
* (
sinh
. x))
* (
cosh
. x))
* (
cosh
. x))
+ ((
cosh
. (2
* x))
* (
sinh
. x))) by
SIN_COS2: 23
.= (((2
* (
sinh
. x))
* ((
cosh
. x)
^2 ))
+ (((2
* ((
cosh
. x)
^2 ))
- 1)
* (
sinh
. x))) by
SIN_COS2: 23
.= (((2
* (
sinh
. x))
* (1
+ ((
sinh
. x)
^2 )))
+ (((2
* ((
cosh
. x)
^2 ))
- 1)
* (
sinh
. x))) by
Lm2
.= (((2
* (
sinh
. x))
* (1
+ ((
sinh
. x)
^2 )))
+ (((2
* (1
+ ((
sinh
. x)
^2 )))
- 1)
* (
sinh
. x))) by
Lm2
.= (((2
* (
sinh
. x))
+ (((2
+ 2)
* (
sinh
. x))
* ((
sinh
. x)
^2 )))
+ (
sinh
. x))
.= (((2
* (
sinh
. x))
+ ((4
* ((
sinh
. x)
|^ 1))
* ((
sinh
. x)
^2 )))
+ (
sinh
. x))
.= ((3
* (
sinh
. x))
+ (4
* ((((
sinh
. x)
|^ 1)
* (
sinh
. x))
* (
sinh
. x))))
.= ((3
* (
sinh
. x))
+ (4
* (((
sinh
. x)
|^ (1
+ 1))
* (
sinh
. x)))) by
NEWTON: 6
.= ((3
* (
sinh
. x))
+ (4
* ((
sinh
. x)
|^ (2
+ 1)))) by
NEWTON: 6
.= ((3
* (
sinh x))
+ (4
* ((
sinh
. x)
|^ 3))) by
SIN_COS2:def 2;
hence thesis by
SIN_COS2:def 2;
end;
theorem ::
SIN_COS5:44
(
cosh (3
* x))
= ((4
* ((
cosh x)
|^ 3))
- (3
* (
cosh x)))
proof
(
cosh (3
* x))
= (
cosh
. ((x
+ x)
+ x)) by
SIN_COS2:def 4
.= (((
cosh
. (2
* x))
* (
cosh
. x))
+ ((
sinh
. (2
* x))
* (
sinh
. x))) by
SIN_COS2: 20
.= ((((2
* ((
cosh
. x)
^2 ))
- 1)
* (
cosh
. x))
+ ((
sinh
. (2
* x))
* (
sinh
. x))) by
SIN_COS2: 23
.= ((((2
* ((
cosh
. x)
^2 ))
- 1)
* (
cosh
. x))
+ (((2
* (
sinh
. x))
* (
cosh
. x))
* (
sinh
. x))) by
SIN_COS2: 23
.= ((((2
* ((
cosh
. x)
^2 ))
- 1)
* (
cosh
. x))
+ ((2
* ((
sinh
. x)
^2 ))
* (
cosh
. x)))
.= ((((2
* ((
cosh
. x)
^2 ))
- 1)
* (
cosh
. x))
+ ((2
* (((
cosh
. x)
^2 )
- 1))
* (
cosh
. x))) by
Lm3
.= ((4
* (((
cosh
. x)
* (
cosh
. x))
* (
cosh
. x)))
- (3
* (
cosh
. x)))
.= ((4
* ((((
cosh
. x)
|^ 1)
* (
cosh
. x))
* (
cosh
. x)))
- (3
* (
cosh
. x)))
.= ((4
* (((
cosh
. x)
|^ (1
+ 1))
* (
cosh
. x)))
- (3
* (
cosh
. x))) by
NEWTON: 6
.= ((4
* ((
cosh
. x)
|^ (2
+ 1)))
- (3
* (
cosh
. x))) by
NEWTON: 6
.= ((4
* ((
cosh
. x)
|^ 3))
- (3
* (
cosh x))) by
SIN_COS2:def 4;
hence thesis by
SIN_COS2:def 4;
end;
theorem ::
SIN_COS5:45
(
sinh x)
<>
0 implies (
coth (2
* x))
= ((1
+ ((
coth x)
^2 ))
/ (2
* (
coth x)))
proof
assume (
sinh x)
<>
0 ;
then
A1: (
sinh
. x)
<>
0 by
SIN_COS2:def 2;
then
A2: ((
sinh
. x)
^2 )
<>
0 by
SQUARE_1: 12;
(
coth (2
* x))
= ((
cosh
. (2
* x))
/ (
sinh (2
* x))) by
SIN_COS2:def 4
.= ((
cosh
. (2
* x))
/ (
sinh
. (2
* x))) by
SIN_COS2:def 2
.= (((2
* ((
cosh
. x)
^2 ))
- 1)
/ (
sinh
. (2
* x))) by
SIN_COS2: 23
.= (((2
* ((
cosh
. x)
^2 ))
- 1)
/ ((2
* (
sinh
. x))
* (
cosh
. x))) by
SIN_COS2: 23
.= ((((2
* ((
cosh
. x)
^2 ))
- 1)
/ ((
sinh
. x)
^2 ))
/ (((2
* (
sinh
. x))
* (
cosh
. x))
/ ((
sinh
. x)
^2 ))) by
A2,
XCMPLX_1: 55
.= ((((2
* ((
cosh
. x)
^2 ))
- (((
cosh
. x)
^2 )
- ((
sinh
. x)
^2 )))
/ ((
sinh
. x)
^2 ))
/ (((2
* (
sinh
. x))
* (
cosh
. x))
/ ((
sinh
. x)
^2 ))) by
SIN_COS2: 14
.= (((((2
- 1)
* ((
cosh
. x)
^2 ))
+ ((
sinh
. x)
^2 ))
/ ((
sinh
. x)
^2 ))
/ (((2
* (
sinh
. x))
* (
cosh
. x))
/ ((
sinh
. x)
^2 )))
.= (((((
cosh
. x)
^2 )
/ ((
sinh
. x)
^2 ))
+ (((
sinh
. x)
^2 )
/ ((
sinh
. x)
^2 )))
/ (((2
* (
sinh
. x))
* (
cosh
. x))
/ ((
sinh
. x)
^2 ))) by
XCMPLX_1: 62
.= (((((
cosh
. x)
/ (
sinh
. x))
^2 )
+ (((
sinh
. x)
^2 )
/ ((
sinh
. x)
^2 )))
/ (((2
* (
sinh
. x))
* (
cosh
. x))
/ ((
sinh
. x)
^2 ))) by
XCMPLX_1: 76
.= (((((
cosh
. x)
/ (
sinh
. x))
^2 )
+ (((
sinh
. x)
/ (
sinh
. x))
^2 ))
/ (((2
* (
sinh
. x))
* (
cosh
. x))
/ ((
sinh
. x)
^2 ))) by
XCMPLX_1: 76
.= (((((
cosh
. x)
/ (
sinh
. x))
^2 )
+ (1
^2 ))
/ (((2
* (
cosh
. x))
* (
sinh
. x))
/ ((
sinh
. x)
* (
sinh
. x)))) by
A1,
XCMPLX_1: 60
.= (((((
cosh
. x)
/ (
sinh
. x))
^2 )
+ 1)
/ ((((2
* (
cosh
. x))
* (
sinh
. x))
/ (
sinh
. x))
/ (
sinh
. x))) by
XCMPLX_1: 78
.= (((((
cosh
. x)
/ (
sinh
. x))
^2 )
+ 1)
/ ((2
* (
cosh
. x))
/ (
sinh
. x))) by
A1,
XCMPLX_1: 89
.= (((((
cosh
. x)
/ (
sinh
. x))
^2 )
+ 1)
/ (2
* ((
cosh
. x)
/ (
sinh
. x)))) by
XCMPLX_1: 74
.= (((((
cosh x)
/ (
sinh
. x))
^2 )
+ 1)
/ (2
* ((
cosh
. x)
/ (
sinh
. x)))) by
SIN_COS2:def 4
.= (((((
cosh x)
/ (
sinh
. x))
^2 )
+ 1)
/ (2
* ((
cosh x)
/ (
sinh
. x)))) by
SIN_COS2:def 4
.= (((((
cosh x)
/ (
sinh x))
^2 )
+ 1)
/ (2
* ((
cosh x)
/ (
sinh
. x)))) by
SIN_COS2:def 2
.= ((((
coth x)
^2 )
+ 1)
/ (2
* ((
cosh x)
/ (
sinh x)))) by
SIN_COS2:def 2;
hence thesis;
end;
Lm4: x
>
0 implies (
sinh x)
>=
0
proof
assume
A1: x
>
0 ;
then (x
+ (
- x))
> (
0
+ (
- x)) by
XREAL_1: 8;
then
A2: (
exp_R
. (
- x))
<= 1 by
SIN_COS: 53;
(
exp_R
. x)
>= 1 by
A1,
SIN_COS: 52;
then ((
exp_R
. x)
- (
exp_R
. (
- x)))
>= (1
- 1) by
A2,
XREAL_1: 13;
then (((
exp_R
. x)
- (
exp_R
. (
- x)))
/ 2)
>=
0 by
XREAL_1: 136;
then (
sinh
. x)
>=
0 by
SIN_COS2:def 1;
hence thesis by
SIN_COS2:def 2;
end;
theorem ::
SIN_COS5:46
x
>=
0 implies (
sinh x)
>=
0
proof
assume
A1: x
>=
0 ;
per cases by
A1,
XXREAL_0: 1;
suppose x
>
0 ;
hence thesis by
Lm4;
end;
suppose x
=
0 ;
hence thesis by
SIN_COS2: 16,
SIN_COS2:def 2;
end;
end;
theorem ::
SIN_COS5:47
x
<=
0 implies (
sinh x)
<=
0
proof
assume
A1: x
<=
0 ;
per cases by
A1,
XXREAL_0: 1;
suppose
A2: x
<
0 ;
then (
- x)
>
0 by
XREAL_1: 58;
then
A3: (
exp_R
. (
- x))
>= 1 by
SIN_COS: 52;
(
exp_R
. x)
<= 1 by
A2,
SIN_COS: 53;
then ((
exp_R
. x)
- (
exp_R
. (
- x)))
<= (1
- 1) by
A3,
XREAL_1: 13;
then (((
exp_R
. x)
- (
exp_R
. (
- x)))
/ 2)
<=
0 by
XREAL_1: 138;
then (
sinh
. x)
<=
0 by
SIN_COS2:def 1;
hence thesis by
SIN_COS2:def 2;
end;
suppose x
=
0 ;
hence thesis by
SIN_COS2: 16,
SIN_COS2:def 2;
end;
end;
theorem ::
SIN_COS5:48
(
cosh (x
/ 2))
= (
sqrt (((
cosh x)
+ 1)
/ 2))
proof
A1: (
cosh
. (x
/ 2))
>
0 by
SIN_COS2: 15;
(
sqrt (((
cosh x)
+ 1)
/ 2))
= (
sqrt (((
cosh
. (2
* (x
/ 2)))
+ 1)
/ 2)) by
SIN_COS2:def 4
.= (
sqrt ((((2
* ((
cosh
. (x
/ 2))
^2 ))
- 1)
+ 1)
/ 2)) by
SIN_COS2: 23
.= (
cosh
. (x
/ 2)) by
A1,
SQUARE_1: 22;
hence thesis by
SIN_COS2:def 4;
end;
theorem ::
SIN_COS5:49
(
sinh (x
/ 2))
<>
0 implies (
tanh (x
/ 2))
= (((
cosh x)
- 1)
/ (
sinh x))
proof
assume (
sinh (x
/ 2))
<>
0 ;
then
A1: (2
* (
sinh
. (x
/ 2)))
<>
0 by
SIN_COS2:def 2;
(((
cosh x)
- 1)
/ (
sinh x))
= (((
cosh
. (2
* (x
/ 2)))
- 1)
/ (
sinh (2
* (x
/ 2)))) by
SIN_COS2:def 4
.= ((((2
* ((
cosh
. (x
/ 2))
^2 ))
- 1)
- 1)
/ (
sinh (2
* (x
/ 2)))) by
SIN_COS2: 23
.= ((2
* (((
cosh
. (x
/ 2))
^2 )
- 1))
/ (
sinh (2
* (x
/ 2))))
.= ((2
* ((
sinh
. (x
/ 2))
^2 ))
/ (
sinh (2
* (x
/ 2)))) by
Lm3
.= ((2
* ((
sinh
. (x
/ 2))
^2 ))
/ (
sinh
. (2
* (x
/ 2)))) by
SIN_COS2:def 2
.= (((2
* (
sinh
. (x
/ 2)))
* (
sinh
. (x
/ 2)))
/ ((2
* (
sinh
. (x
/ 2)))
* (
cosh
. (x
/ 2)))) by
SIN_COS2: 23
.= ((
sinh
. (x
/ 2))
/ (
cosh
. (x
/ 2))) by
A1,
XCMPLX_1: 91
.= (
tanh
. (x
/ 2)) by
SIN_COS2: 17
.= (
tanh (x
/ 2)) by
SIN_COS2:def 6;
hence thesis;
end;
theorem ::
SIN_COS5:50
(
cosh (x
/ 2))
<>
0 implies (
tanh (x
/ 2))
= ((
sinh x)
/ ((
cosh x)
+ 1))
proof
assume (
cosh (x
/ 2))
<>
0 ;
then
A1: (2
* (
cosh
. (x
/ 2)))
<>
0 by
SIN_COS2:def 4;
((
sinh x)
/ ((
cosh x)
+ 1))
= ((
sinh
. (2
* (x
/ 2)))
/ ((
cosh (2
* (x
/ 2)))
+ 1)) by
SIN_COS2:def 2
.= ((
sinh
. (2
* (x
/ 2)))
/ ((
cosh
. (2
* (x
/ 2)))
+ 1)) by
SIN_COS2:def 4
.= (((2
* (
sinh
. (x
/ 2)))
* (
cosh
. (x
/ 2)))
/ ((
cosh
. (2
* (x
/ 2)))
+ 1)) by
SIN_COS2: 23
.= (((2
* (
sinh
. (x
/ 2)))
* (
cosh
. (x
/ 2)))
/ (((2
* ((
cosh
. (x
/ 2))
^2 ))
- 1)
+ 1)) by
SIN_COS2: 23
.= (((2
* (
cosh
. (x
/ 2)))
* (
sinh
. (x
/ 2)))
/ ((2
* (
cosh
. (x
/ 2)))
* (
cosh
. (x
/ 2))))
.= ((
sinh
. (x
/ 2))
/ (
cosh
. (x
/ 2))) by
A1,
XCMPLX_1: 91
.= (
tanh
. (x
/ 2)) by
SIN_COS2: 17;
hence thesis by
SIN_COS2:def 6;
end;
theorem ::
SIN_COS5:51
(
sinh (x
/ 2))
<>
0 implies (
coth (x
/ 2))
= ((
sinh x)
/ ((
cosh x)
- 1))
proof
assume (
sinh (x
/ 2))
<>
0 ;
then
A1: (2
* (
sinh
. (x
/ 2)))
<>
0 by
SIN_COS2:def 2;
((
sinh x)
/ ((
cosh x)
- 1))
= ((
sinh
. (2
* (x
/ 2)))
/ ((
cosh (2
* (x
/ 2)))
- 1)) by
SIN_COS2:def 2
.= ((
sinh
. (2
* (x
/ 2)))
/ ((
cosh
. (2
* (x
/ 2)))
- 1)) by
SIN_COS2:def 4
.= (((2
* (
sinh
. (x
/ 2)))
* (
cosh
. (x
/ 2)))
/ ((
cosh
. (2
* (x
/ 2)))
- 1)) by
SIN_COS2: 23
.= (((2
* (
sinh
. (x
/ 2)))
* (
cosh
. (x
/ 2)))
/ (((2
* ((
cosh
. (x
/ 2))
^2 ))
- 1)
- 1)) by
SIN_COS2: 23
.= (((2
* (
sinh
. (x
/ 2)))
* (
cosh
. (x
/ 2)))
/ (2
* (((
cosh
. (x
/ 2))
^2 )
- 1)))
.= (((2
* (
sinh
. (x
/ 2)))
* (
cosh
. (x
/ 2)))
/ (2
* ((
sinh
. (x
/ 2))
^2 ))) by
Lm3
.= (((2
* (
sinh
. (x
/ 2)))
* (
cosh
. (x
/ 2)))
/ ((2
* (
sinh
. (x
/ 2)))
* (
sinh
. (x
/ 2))))
.= ((
cosh
. (x
/ 2))
/ (
sinh
. (x
/ 2))) by
A1,
XCMPLX_1: 91
.= ((
cosh (x
/ 2))
/ (
sinh
. (x
/ 2))) by
SIN_COS2:def 4
.= ((
cosh (x
/ 2))
/ (
sinh (x
/ 2))) by
SIN_COS2:def 2;
hence thesis;
end;
theorem ::
SIN_COS5:52
(
cosh (x
/ 2))
<>
0 implies (
coth (x
/ 2))
= (((
cosh x)
+ 1)
/ (
sinh x))
proof
assume (
cosh (x
/ 2))
<>
0 ;
then
A1: (2
* (
cosh
. (x
/ 2)))
<>
0 by
SIN_COS2:def 4;
(((
cosh x)
+ 1)
/ (
sinh x))
= (((
cosh
. (2
* (x
/ 2)))
+ 1)
/ (
sinh (2
* (x
/ 2)))) by
SIN_COS2:def 4
.= ((((2
* ((
cosh
. (x
/ 2))
^2 ))
- 1)
+ 1)
/ (
sinh (2
* (x
/ 2)))) by
SIN_COS2: 23
.= ((2
* ((
cosh
. (x
/ 2))
^2 ))
/ (
sinh
. (2
* (x
/ 2)))) by
SIN_COS2:def 2
.= ((2
* ((
cosh
. (x
/ 2))
* (
cosh
. (x
/ 2))))
/ ((2
* (
sinh
. (x
/ 2)))
* (
cosh
. (x
/ 2)))) by
SIN_COS2: 23
.= (((2
* (
cosh
. (x
/ 2)))
* (
cosh
. (x
/ 2)))
/ ((2
* (
cosh
. (x
/ 2)))
* (
sinh
. (x
/ 2))))
.= ((
cosh
. (x
/ 2))
/ (
sinh
. (x
/ 2))) by
A1,
XCMPLX_1: 91
.= ((
cosh (x
/ 2))
/ (
sinh
. (x
/ 2))) by
SIN_COS2:def 4
.= ((
cosh (x
/ 2))
/ (
sinh (x
/ 2))) by
SIN_COS2:def 2;
hence thesis;
end;