sin_cos8.miz
begin
reserve x,y,z,w for
Real;
reserve n for
Element of
NAT ;
Lm1: (
cosh x)
>= 1 & (
cosh
0 )
= 1 & (
sinh
0 )
=
0
proof
(
cosh
. x)
>= 1 by
SIN_COS2: 37;
hence thesis by
SIN_COS2: 15,
SIN_COS2: 16,
SIN_COS2:def 2,
SIN_COS2:def 4;
end;
Lm2: (
sinh x)
= (((
exp_R x)
- (
exp_R (
- x)))
/ 2) & (
cosh x)
= (((
exp_R x)
+ (
exp_R (
- x)))
/ 2) & (
tanh x)
= (((
exp_R x)
- (
exp_R (
- x)))
/ ((
exp_R x)
+ (
exp_R (
- x))))
proof
A1: (
sinh x)
= (
sinh
. x) by
SIN_COS2:def 2
.= (((
exp_R
. x)
- (
exp_R
. (
- x)))
/ 2) by
SIN_COS2:def 1
.= (((
exp_R x)
- (
exp_R
. (
- x)))
/ 2) by
SIN_COS:def 23
.= (((
exp_R x)
- (
exp_R (
- x)))
/ 2) by
SIN_COS:def 23;
A2: (
cosh x)
= (
cosh
. x) by
SIN_COS2:def 4
.= (((
exp_R
. x)
+ (
exp_R
. (
- x)))
/ 2) by
SIN_COS2:def 3
.= (((
exp_R x)
+ (
exp_R
. (
- x)))
/ 2) by
SIN_COS:def 23
.= (((
exp_R x)
+ (
exp_R (
- x)))
/ 2) by
SIN_COS:def 23;
(
tanh x)
= (
tanh
. x) by
SIN_COS2:def 6
.= ((
sinh
. x)
/ (
cosh
. x)) by
SIN_COS2: 17
.= ((
sinh x)
/ (
cosh
. x)) by
SIN_COS2:def 2
.= ((((
exp_R x)
- (
exp_R (
- x)))
/ 2)
/ (((
exp_R x)
+ (
exp_R (
- x)))
/ 2)) by
A1,
A2,
SIN_COS2:def 4;
hence thesis by
A1,
A2,
XCMPLX_1: 55;
end;
Lm3: (((
cosh x)
^2 )
- ((
sinh x)
^2 ))
= 1 & (((
cosh x)
* (
cosh x))
- ((
sinh x)
* (
sinh x)))
= 1
proof
(((
cosh x)
^2 )
- ((
sinh x)
^2 ))
= (((
cosh x)
^2 )
- ((
sinh
. x)
^2 )) by
SIN_COS2:def 2
.= (((
cosh
. x)
^2 )
- ((
sinh
. x)
^2 )) by
SIN_COS2:def 4
.= 1 by
SIN_COS2: 14;
hence thesis;
end;
theorem ::
SIN_COS8:1
Th1: (
tanh x)
= ((
sinh x)
/ (
cosh x)) & (
tanh
0 )
=
0
proof
A1: (
tanh
0 )
= (
tanh
.
0 ) by
SIN_COS2:def 6
.= ((
sinh
.
0 )
/ (
cosh
.
0 )) by
SIN_COS2: 17
.=
0 by
SIN_COS2: 16;
(
tanh x)
= (
tanh
. x) by
SIN_COS2:def 6
.= ((
sinh
. x)
/ (
cosh
. x)) by
SIN_COS2: 17
.= ((
sinh x)
/ (
cosh
. x)) by
SIN_COS2:def 2
.= ((
sinh x)
/ (
cosh x)) by
SIN_COS2:def 4;
hence thesis by
A1;
end;
Lm4: x
<>
0 implies (
sinh x)
<>
0 & (
tanh x)
<>
0
proof
A1: (
exp_R x)
>
0 by
SIN_COS: 55;
assume x
<>
0 ;
then (1
/ (
exp_R x))
<> (
exp_R x) by
A1,
SIN_COS7: 29,
XCMPLX_1: 199;
then (((
exp_R x)
- (
exp_R (
- x)))
/ 2)
<>
0 by
TAYLOR_1: 4;
then
A2: (
sinh x)
<>
0 by
Lm2;
(
cosh x)
<>
0 by
Lm1;
then ((
sinh x)
/ (
cosh x))
<>
0 by
A2,
XCMPLX_1: 50;
hence thesis by
Th1;
end;
Lm5: (y
- z)
<>
0 implies (
sinh ((y
/ 2)
- (z
/ 2)))
<>
0
proof
assume (y
- z)
<>
0 ;
then ((y
- z)
/ 2)
<>
0 ;
hence thesis by
Lm4;
end;
Lm6: (y
+ z)
<>
0 implies (
sinh ((y
/ 2)
+ (z
/ 2)))
<>
0
proof
assume (y
+ z)
<>
0 ;
then ((y
+ z)
/ 2)
<>
0 ;
hence thesis by
Lm4;
end;
Lm7: ((
sinh x)
^2 )
= ((1
/ 2)
* ((
cosh (2
* x))
- 1)) & ((
cosh x)
^2 )
= ((1
/ 2)
* ((
cosh (2
* x))
+ 1))
proof
A1: ((
cosh x)
^2 )
= ((
cosh
. x)
^2 ) by
SIN_COS2:def 4
.= ((1
/ 2)
* ((
cosh
. (2
* x))
+ 1)) by
SIN_COS2: 18;
((
sinh x)
^2 )
= ((
sinh
. x)
^2 ) by
SIN_COS2:def 2
.= ((1
/ 2)
* ((
cosh
. (2
* x))
- 1)) by
SIN_COS2: 18
.= ((1
/ 2)
* ((
cosh (2
* x))
- 1)) by
SIN_COS2:def 4;
hence thesis by
A1,
SIN_COS2:def 4;
end;
Lm8: (
sinh (
- x))
= (
- (
sinh x)) & (
cosh (
- x))
= (
cosh x) & (
tanh (
- x))
= (
- (
tanh x)) & (
coth (
- x))
= (
- (
coth x)) & (
sech (
- x))
= (
sech x) & (
cosech (
- x))
= (
- (
cosech x))
proof
A1: (
tanh (
- x))
= (
tanh
. (
- x)) by
SIN_COS2:def 6
.= (
- (
tanh
. x)) by
SIN_COS2: 19
.= (
- (
tanh x)) by
SIN_COS2:def 6;
A2: (
sinh (
- x))
= (
sinh
. (
- x)) by
SIN_COS2:def 2
.= (
- (
sinh
. x)) by
SIN_COS2: 19
.= (
- (
sinh x)) by
SIN_COS2:def 2;
then
A3: (
cosech (
- x))
= (1
/ (
- (
sinh x))) by
SIN_COS5:def 3
.= (
- (1
/ (
sinh x))) by
XCMPLX_1: 188
.= (
- (
cosech x)) by
SIN_COS5:def 3;
A4: (
cosh (
- x))
= (
cosh
. (
- x)) by
SIN_COS2:def 4
.= (
cosh
. x) by
SIN_COS2: 19
.= (
cosh x) by
SIN_COS2:def 4;
then
A5: (
sech (
- x))
= (1
/ (
cosh x)) by
SIN_COS5:def 2
.= (
sech x) by
SIN_COS5:def 2;
(
coth (
- x))
= ((
cosh x)
/ (
- (
sinh x))) by
A2,
A4,
SIN_COS5:def 1
.= (
- ((
cosh x)
/ (
sinh x))) by
XCMPLX_1: 188
.= (
- (
coth x)) by
SIN_COS5:def 1;
hence thesis by
A2,
A4,
A1,
A5,
A3;
end;
theorem ::
SIN_COS8:2
Th2: (
sinh x)
= (1
/ (
cosech x)) & (
cosh x)
= (1
/ (
sech x)) & (
tanh x)
= (1
/ (
coth x))
proof
A1: (
sinh x)
= (1
/ (1
/ (
sinh x))) by
XCMPLX_1: 56
.= (1
/ (
cosech x)) by
SIN_COS5:def 3;
A2: (
cosh x)
= (1
/ (1
/ (
cosh x))) by
XCMPLX_1: 56
.= (1
/ (
sech x)) by
SIN_COS5:def 2;
(
tanh x)
= ((
sinh x)
/ (
cosh x)) by
Th1
.= (1
/ ((
cosh x)
/ (
sinh x))) by
XCMPLX_1: 57
.= (1
/ (
coth x)) by
SIN_COS5:def 1;
hence thesis by
A1,
A2;
end;
Lm9: ((
exp_R x)
+ (
exp_R (
- x)))
>= 2
proof
(
exp_R
. x)
>=
0 by
SIN_COS: 54;
then
A1: (
exp_R x)
>=
0 by
SIN_COS:def 23;
(
exp_R
. (
- x))
>=
0 by
SIN_COS: 54;
then
A2: (
exp_R (
- x))
>=
0 by
SIN_COS:def 23;
(2
* (
sqrt ((
exp_R x)
* (
exp_R (
- x)))))
= (2
* (
sqrt ((
exp_R x)
* (
exp_R
. (
- x))))) by
SIN_COS:def 23
.= (2
* (
sqrt ((
exp_R
. x)
* (
exp_R
. (
- x))))) by
SIN_COS:def 23
.= (2
* (
sqrt (
exp_R
. (x
+ (
- x))))) by
SIN_COS2: 12
.= (2
* 1) by
SIN_COS: 51,
SIN_COS:def 23,
SQUARE_1: 18;
hence thesis by
A1,
A2,
SIN_COS2: 1;
end;
theorem ::
SIN_COS8:3
Th3: (
sech x)
<= 1 &
0
< (
sech x) & (
sech
0 )
= 1
proof
A1: (2
/ 2)
>= (2
/ ((
exp_R x)
+ (
exp_R (
- x)))) by
Lm9,
XREAL_1: 183;
0
< (
cosh
. x) by
SIN_COS2: 15;
then
0
< (
cosh x) by
SIN_COS2:def 4;
then
A2:
0
< (1
/ (
cosh x)) by
XREAL_1: 139;
(
sech
0 )
= (1
/ 1) by
Lm1,
SIN_COS5:def 2
.= 1;
hence thesis by
A2,
A1,
SIN_COS5: 36,
SIN_COS5:def 2;
end;
theorem ::
SIN_COS8:4
x
>=
0 implies (
tanh x)
>=
0
proof
A1: (
cosh x)
>= 1 by
Lm1;
assume
A2: x
>=
0 ;
per cases by
A2;
suppose x
>
0 ;
then (
sinh x)
>=
0 by
SIN_COS5: 46;
then ((
sinh x)
/ (
cosh x))
>=
0 by
A1;
hence thesis by
Th1;
end;
suppose x
=
0 ;
hence thesis by
Th1;
end;
end;
theorem ::
SIN_COS8:5
(
cosh x)
= (1
/ (
sqrt (1
- ((
tanh x)
^2 )))) & (
sinh x)
= ((
tanh x)
/ (
sqrt (1
- ((
tanh x)
^2 ))))
proof
A1: ((
sech x)
^2 )
= ((((
sech x)
^2 )
+ ((
tanh x)
^2 ))
- ((
tanh x)
^2 ))
.= (1
- ((
tanh x)
^2 )) by
SIN_COS5: 38;
A2: (
sech x)
>
0 by
Th3;
A3: (
cosh x)
= (1
/ (1
/ (
cosh x))) by
XCMPLX_1: 56
.= (1
/ (
sech x)) by
SIN_COS5:def 2
.= (1
/ (
sqrt (1
- ((
tanh x)
^2 )))) by
A1,
A2,
SQUARE_1: 22;
(
cosh x)
<>
0 by
Lm1;
then (
sinh x)
= (((
sinh x)
/ (
cosh x))
* (
cosh x)) by
XCMPLX_1: 87
.= ((
tanh x)
* (1
/ (
sqrt (1
- ((
tanh x)
^2 ))))) by
A3,
Th1
.= ((
tanh x)
/ (
sqrt (1
- ((
tanh x)
^2 )))) by
XCMPLX_1: 99;
hence thesis by
A3;
end;
theorem ::
SIN_COS8:6
(((
cosh x)
+ (
sinh x))
|^ n)
= ((
cosh (n
* x))
+ (
sinh (n
* x))) & (((
cosh x)
- (
sinh x))
|^ n)
= ((
cosh (n
* x))
- (
sinh (n
* x)))
proof
A1: (((
cosh x)
+ (
sinh x))
|^ n)
= (((
cosh
. x)
+ (
sinh x))
|^ n) by
SIN_COS2:def 4
.= (((
cosh
. x)
+ (
sinh
. x))
|^ n) by
SIN_COS2:def 2
.= ((
cosh
. (n
* x))
+ (
sinh
. (n
* x))) by
SIN_COS2: 29
.= ((
cosh (n
* x))
+ (
sinh
. (n
* x))) by
SIN_COS2:def 4
.= ((
cosh (n
* x))
+ (
sinh (n
* x))) by
SIN_COS2:def 2;
(((
cosh x)
- (
sinh x))
|^ n)
= (((
cosh x)
+ (
- (
sinh x)))
|^ n)
.= (((
cosh x)
+ (
sinh (
- x)))
|^ n) by
Lm8
.= (((
cosh
. x)
+ (
sinh (
- x)))
|^ n) by
SIN_COS2:def 4
.= (((
cosh
. x)
+ (
sinh
. (
- x)))
|^ n) by
SIN_COS2:def 2
.= (((
cosh
. (
- x))
+ (
sinh
. (
- x)))
|^ n) by
SIN_COS2: 19
.= ((
cosh
. (n
* (
- x)))
+ (
sinh
. (
- (n
* x)))) by
SIN_COS2: 29
.= ((
cosh
. (n
* x))
+ (
sinh
. (
- (n
* x)))) by
SIN_COS2: 19
.= ((
cosh
. (n
* x))
+ (
- (
sinh
. (n
* x)))) by
SIN_COS2: 19
.= ((
cosh
. (n
* x))
- (
sinh
. (n
* x)))
.= ((
cosh (n
* x))
- (
sinh
. (n
* x))) by
SIN_COS2:def 4
.= ((
cosh (n
* x))
- (
sinh (n
* x))) by
SIN_COS2:def 2;
hence thesis by
A1;
end;
theorem ::
SIN_COS8:7
Th7: (
exp_R x)
= ((
cosh x)
+ (
sinh x)) & (
exp_R (
- x))
= ((
cosh x)
- (
sinh x)) & (
exp_R x)
= (((
cosh (x
/ 2))
+ (
sinh (x
/ 2)))
/ ((
cosh (x
/ 2))
- (
sinh (x
/ 2)))) & (
exp_R (
- x))
= (((
cosh (x
/ 2))
- (
sinh (x
/ 2)))
/ ((
cosh (x
/ 2))
+ (
sinh (x
/ 2)))) & (
exp_R x)
= ((1
+ (
tanh (x
/ 2)))
/ (1
- (
tanh (x
/ 2)))) & (
exp_R (
- x))
= ((1
- (
tanh (x
/ 2)))
/ (1
+ (
tanh (x
/ 2))))
proof
A1: (
exp_R (x
/ 2))
>
0 by
SIN_COS: 55;
A2: (
cosh (x
/ 2))
<>
0 by
Lm1;
A3: (
exp_R (
- x))
= (
exp_R ((
- (x
/ 2))
+ (
- (x
/ 2))))
.= ((
exp_R (
- (x
/ 2)))
* (
exp_R (
- (x
/ 2)))) by
SIN_COS: 50
.= (((
exp_R (
- (x
/ 2)))
* (
exp_R (x
/ 2)))
* ((
exp_R (
- (x
/ 2)))
/ (
exp_R (x
/ 2)))) by
A1,
XCMPLX_1: 90
.= ((
exp_R ((
- (x
/ 2))
+ (x
/ 2)))
* ((
exp_R (
- (x
/ 2)))
/ (
exp_R (x
/ 2)))) by
SIN_COS: 50
.= (((((
exp_R (x
/ 2))
+ (
exp_R (
- (x
/ 2))))
/ 2)
- (((
exp_R (x
/ 2))
- (
exp_R (
- (x
/ 2))))
/ 2))
/ (
exp_R (x
/ 2))) by
SIN_COS: 51
.= (((((
exp_R (x
/ 2))
+ (
exp_R (
- (x
/ 2))))
/ 2)
- (
sinh (x
/ 2)))
/ (
exp_R (x
/ 2))) by
Lm2
.= (((
cosh (x
/ 2))
- (
sinh (x
/ 2)))
/ ((((
exp_R (x
/ 2))
+ (
exp_R (
- (x
/ 2))))
/ 2)
+ (((
exp_R (x
/ 2))
/ 2)
- ((
exp_R (
- (x
/ 2)))
/ 2)))) by
Lm2
.= (((
cosh (x
/ 2))
- (
sinh (x
/ 2)))
/ ((
cosh (x
/ 2))
+ (((
exp_R (x
/ 2))
- (
exp_R (
- (x
/ 2))))
/ 2))) by
Lm2
.= (((
cosh (x
/ 2))
- (
sinh (x
/ 2)))
/ ((
cosh (x
/ 2))
+ (
sinh (x
/ 2)))) by
Lm2;
then
A4: (
exp_R (
- x))
= ((((
cosh (x
/ 2))
- (
sinh (x
/ 2)))
/ (
cosh (x
/ 2)))
/ (((
cosh (x
/ 2))
+ (
sinh (x
/ 2)))
/ (
cosh (x
/ 2)))) by
A2,
XCMPLX_1: 55
.= ((((
cosh (x
/ 2))
/ (
cosh (x
/ 2)))
- ((
sinh (x
/ 2))
/ (
cosh (x
/ 2))))
/ (((
cosh (x
/ 2))
+ (
sinh (x
/ 2)))
/ (
cosh (x
/ 2)))) by
XCMPLX_1: 120
.= ((1
- ((
sinh (x
/ 2))
/ (
cosh (x
/ 2))))
/ (((
cosh (x
/ 2))
+ (
sinh (x
/ 2)))
/ (
cosh (x
/ 2)))) by
A2,
XCMPLX_1: 60
.= ((1
- (
tanh (x
/ 2)))
/ (((
cosh (x
/ 2))
+ (
sinh (x
/ 2)))
/ (
cosh (x
/ 2)))) by
Th1
.= ((1
- (
tanh (x
/ 2)))
/ (((
cosh (x
/ 2))
/ (
cosh (x
/ 2)))
+ ((
sinh (x
/ 2))
/ (
cosh (x
/ 2))))) by
XCMPLX_1: 62
.= ((1
- (
tanh (x
/ 2)))
/ (1
+ ((
sinh (x
/ 2))
/ (
cosh (x
/ 2))))) by
A2,
XCMPLX_1: 60
.= ((1
- (
tanh (x
/ 2)))
/ (1
+ (
tanh (x
/ 2)))) by
Th1;
A5: (
exp_R (
- x))
= ((((
exp_R x)
+ (
exp_R (
- x)))
/ 2)
- (((
exp_R x)
- (
exp_R (
- x)))
/ 2))
.= ((
cosh x)
- (((
exp_R x)
- (
exp_R (
- x)))
/ 2)) by
Lm2
.= ((
cosh x)
- (
sinh x)) by
Lm2;
A6: (
exp_R x)
= ((((
exp_R x)
+ (
exp_R (
- x)))
/ 2)
+ (((
exp_R x)
- (
exp_R (
- x)))
/ 2))
.= ((
cosh x)
+ (((
exp_R x)
- (
exp_R (
- x)))
/ 2)) by
Lm2
.= ((
cosh x)
+ (
sinh x)) by
Lm2;
A7: (
exp_R (
- (x
/ 2)))
>
0 by
SIN_COS: 55;
A8: (
exp_R x)
= (
exp_R ((x
/ 2)
+ (x
/ 2)))
.= ((
exp_R (x
/ 2))
* (
exp_R (x
/ 2))) by
SIN_COS: 50
.= (((
exp_R (x
/ 2))
* (
exp_R (
- (x
/ 2))))
* ((
exp_R (x
/ 2))
/ (
exp_R (
- (x
/ 2))))) by
A7,
XCMPLX_1: 90
.= ((
exp_R ((x
/ 2)
+ (
- (x
/ 2))))
* ((
exp_R (x
/ 2))
/ (
exp_R (
- (x
/ 2))))) by
SIN_COS: 50
.= (((((
exp_R (x
/ 2))
+ (
exp_R (
- (x
/ 2))))
/ 2)
+ (((
exp_R (x
/ 2))
- (
exp_R (
- (x
/ 2))))
/ 2))
/ (
exp_R (
- (x
/ 2)))) by
SIN_COS: 51
.= (((
cosh (x
/ 2))
+ (((
exp_R (x
/ 2))
- (
exp_R (
- (x
/ 2))))
/ 2))
/ (
exp_R (
- (x
/ 2)))) by
Lm2
.= (((
cosh (x
/ 2))
+ (
sinh (x
/ 2)))
/ ((((
exp_R (
- (x
/ 2)))
+ (
exp_R (x
/ 2)))
/ 2)
- (((
exp_R (x
/ 2))
- (
exp_R (
- (x
/ 2))))
/ 2))) by
Lm2
.= (((
cosh (x
/ 2))
+ (
sinh (x
/ 2)))
/ ((((
exp_R (x
/ 2))
+ (
exp_R (
- (x
/ 2))))
/ 2)
- (
sinh (x
/ 2)))) by
Lm2
.= (((
cosh (x
/ 2))
+ (
sinh (x
/ 2)))
/ ((
cosh (x
/ 2))
- (
sinh (x
/ 2)))) by
Lm2;
then (
exp_R x)
= ((((
cosh (x
/ 2))
+ (
sinh (x
/ 2)))
/ (
cosh (x
/ 2)))
/ (((
cosh (x
/ 2))
- (
sinh (x
/ 2)))
/ (
cosh (x
/ 2)))) by
A2,
XCMPLX_1: 55
.= ((((
cosh (x
/ 2))
/ (
cosh (x
/ 2)))
+ ((
sinh (x
/ 2))
/ (
cosh (x
/ 2))))
/ (((
cosh (x
/ 2))
- (
sinh (x
/ 2)))
/ (
cosh (x
/ 2)))) by
XCMPLX_1: 62
.= ((1
+ ((
sinh (x
/ 2))
/ (
cosh (x
/ 2))))
/ (((
cosh (x
/ 2))
- (
sinh (x
/ 2)))
/ (
cosh (x
/ 2)))) by
A2,
XCMPLX_1: 60
.= ((1
+ (
tanh (x
/ 2)))
/ (((
cosh (x
/ 2))
- (
sinh (x
/ 2)))
/ (
cosh (x
/ 2)))) by
Th1
.= ((1
+ (
tanh (x
/ 2)))
/ (((
cosh (x
/ 2))
/ (
cosh (x
/ 2)))
- ((
sinh (x
/ 2))
/ (
cosh (x
/ 2))))) by
XCMPLX_1: 120
.= ((1
+ (
tanh (x
/ 2)))
/ (1
- ((
sinh (x
/ 2))
/ (
cosh (x
/ 2))))) by
A2,
XCMPLX_1: 60
.= ((1
+ (
tanh (x
/ 2)))
/ (1
- (
tanh (x
/ 2)))) by
Th1;
hence thesis by
A6,
A5,
A8,
A3,
A4;
end;
theorem ::
SIN_COS8:8
x
<>
0 implies (
exp_R x)
= (((
coth (x
/ 2))
+ 1)
/ ((
coth (x
/ 2))
- 1)) & (
exp_R (
- x))
= (((
coth (x
/ 2))
- 1)
/ ((
coth (x
/ 2))
+ 1))
proof
assume x
<>
0 ;
then
A1: (x
/ 2)
<>
0 ;
A2: ((
coth (x
/ 2))
- 1)
= ((1
/ (1
/ (
coth (x
/ 2))))
- 1) by
XCMPLX_1: 56
.= ((1
/ (
tanh (x
/ 2)))
- 1) by
Th2
.= ((1
/ (
tanh (x
/ 2)))
- ((
tanh (x
/ 2))
/ (
tanh (x
/ 2)))) by
A1,
Lm4,
XCMPLX_1: 60
.= ((1
- (
tanh (x
/ 2)))
/ (
tanh (x
/ 2))) by
XCMPLX_1: 120;
A3: ((
coth (x
/ 2))
+ 1)
= ((1
/ (1
/ (
coth (x
/ 2))))
+ 1) by
XCMPLX_1: 56
.= ((1
/ (
tanh (x
/ 2)))
+ 1) by
Th2
.= ((1
/ (
tanh (x
/ 2)))
+ ((
tanh (x
/ 2))
/ (
tanh (x
/ 2)))) by
A1,
Lm4,
XCMPLX_1: 60
.= ((1
+ (
tanh (x
/ 2)))
/ (
tanh (x
/ 2))) by
XCMPLX_1: 62;
A4: (
exp_R (
- x))
= ((1
- (
tanh (x
/ 2)))
/ (1
+ (
tanh (x
/ 2)))) by
Th7
.= (((
coth (x
/ 2))
- 1)
/ ((
coth (x
/ 2))
+ 1)) by
A1,
A3,
A2,
Lm4,
XCMPLX_1: 55;
(
exp_R x)
= ((1
+ (
tanh (x
/ 2)))
/ (1
- (
tanh (x
/ 2)))) by
Th7
.= (((
coth (x
/ 2))
+ 1)
/ ((
coth (x
/ 2))
- 1)) by
A1,
A3,
A2,
Lm4,
XCMPLX_1: 55;
hence thesis by
A4;
end;
theorem ::
SIN_COS8:9
(((
cosh x)
+ (
sinh x))
/ ((
cosh x)
- (
sinh x)))
= ((1
+ (
tanh x))
/ (1
- (
tanh x)))
proof
A1: (
exp_R (2
* x))
= ((1
+ (
tanh x))
/ (1
- (
tanh ((2
* x)
/ 2)))) by
Th7
.= ((1
+ (
tanh x))
/ (1
- (
tanh x)));
(
exp_R (2
* x))
= (((
cosh ((2
* x)
/ 2))
+ (
sinh ((2
* x)
/ 2)))
/ ((
cosh ((2
* x)
/ 2))
- (
sinh ((2
* x)
/ 2)))) by
Th7
.= (((
cosh x)
+ (
sinh x))
/ ((
cosh x)
- (
sinh x)));
hence thesis by
A1;
end;
Lm10: (
cosh (y
+ z))
= (((
cosh y)
* (
cosh z))
+ ((
sinh y)
* (
sinh z))) & (
cosh (y
- z))
= (((
cosh y)
* (
cosh z))
- ((
sinh y)
* (
sinh z))) & (
sinh (y
+ z))
= (((
sinh y)
* (
cosh z))
+ ((
cosh y)
* (
sinh z))) & (
sinh (y
- z))
= (((
sinh y)
* (
cosh z))
- ((
cosh y)
* (
sinh z))) & (
tanh (y
+ z))
= (((
tanh y)
+ (
tanh z))
/ (1
+ ((
tanh y)
* (
tanh z)))) & (
tanh (y
- z))
= (((
tanh y)
- (
tanh z))
/ (1
- ((
tanh y)
* (
tanh z))))
proof
A1: (((
cosh y)
* (
cosh z))
- ((
sinh y)
* (
sinh z)))
= (((
cosh
. y)
* (
cosh z))
- ((
sinh y)
* (
sinh z))) by
SIN_COS2:def 4
.= (((
cosh
. y)
* (
cosh
. z))
- ((
sinh y)
* (
sinh z))) by
SIN_COS2:def 4
.= (((
cosh
. y)
* (
cosh
. z))
- ((
sinh
. y)
* (
sinh z))) by
SIN_COS2:def 2
.= (((
cosh
. y)
* (
cosh
. z))
- ((
sinh
. y)
* (
sinh
. z))) by
SIN_COS2:def 2
.= (
cosh
. (y
- z)) by
SIN_COS2: 20
.= (
cosh (y
- z)) by
SIN_COS2:def 4;
A2: (((
sinh y)
* (
cosh z))
+ ((
cosh y)
* (
sinh z)))
= (((
sinh
. y)
* (
cosh z))
+ ((
cosh y)
* (
sinh z))) by
SIN_COS2:def 2
.= (((
sinh
. y)
* (
cosh z))
+ ((
cosh y)
* (
sinh
. z))) by
SIN_COS2:def 2
.= (((
sinh
. y)
* (
cosh
. z))
+ ((
cosh y)
* (
sinh
. z))) by
SIN_COS2:def 4
.= (((
sinh
. y)
* (
cosh
. z))
+ ((
cosh
. y)
* (
sinh
. z))) by
SIN_COS2:def 4
.= (
sinh
. (y
+ z)) by
SIN_COS2: 21
.= (
sinh (y
+ z)) by
SIN_COS2:def 2;
A3: (
tanh (y
- z))
= (
tanh
. (y
- z)) by
SIN_COS2:def 6
.= (((
tanh
. y)
- (
tanh
. z))
/ (1
- ((
tanh
. y)
* (
tanh
. z)))) by
SIN_COS2: 22
.= (((
tanh y)
- (
tanh
. z))
/ (1
- ((
tanh
. y)
* (
tanh
. z)))) by
SIN_COS2:def 6
.= (((
tanh y)
- (
tanh z))
/ (1
- ((
tanh
. y)
* (
tanh
. z)))) by
SIN_COS2:def 6
.= (((
tanh y)
- (
tanh z))
/ (1
- ((
tanh y)
* (
tanh
. z)))) by
SIN_COS2:def 6
.= (((
tanh y)
- (
tanh z))
/ (1
- ((
tanh y)
* (
tanh z)))) by
SIN_COS2:def 6;
A4: (
tanh (y
+ z))
= (
tanh
. (y
+ z)) by
SIN_COS2:def 6
.= (((
tanh
. y)
+ (
tanh
. z))
/ (1
+ ((
tanh
. y)
* (
tanh
. z)))) by
SIN_COS2: 22
.= (((
tanh y)
+ (
tanh
. z))
/ (1
+ ((
tanh
. y)
* (
tanh
. z)))) by
SIN_COS2:def 6
.= (((
tanh y)
+ (
tanh z))
/ (1
+ ((
tanh
. y)
* (
tanh
. z)))) by
SIN_COS2:def 6
.= (((
tanh y)
+ (
tanh z))
/ (1
+ ((
tanh y)
* (
tanh
. z)))) by
SIN_COS2:def 6
.= (((
tanh y)
+ (
tanh z))
/ (1
+ ((
tanh y)
* (
tanh z)))) by
SIN_COS2:def 6;
A5: (((
sinh y)
* (
cosh z))
- ((
cosh y)
* (
sinh z)))
= (((
sinh
. y)
* (
cosh z))
- ((
cosh y)
* (
sinh z))) by
SIN_COS2:def 2
.= (((
sinh
. y)
* (
cosh z))
- ((
cosh y)
* (
sinh
. z))) by
SIN_COS2:def 2
.= (((
sinh
. y)
* (
cosh
. z))
- ((
cosh y)
* (
sinh
. z))) by
SIN_COS2:def 4
.= (((
sinh
. y)
* (
cosh
. z))
- ((
cosh
. y)
* (
sinh
. z))) by
SIN_COS2:def 4
.= (
sinh
. (y
- z)) by
SIN_COS2: 21
.= (
sinh (y
- z)) by
SIN_COS2:def 2;
(((
cosh y)
* (
cosh z))
+ ((
sinh y)
* (
sinh z)))
= (((
cosh
. y)
* (
cosh z))
+ ((
sinh y)
* (
sinh z))) by
SIN_COS2:def 4
.= (((
cosh
. y)
* (
cosh
. z))
+ ((
sinh y)
* (
sinh z))) by
SIN_COS2:def 4
.= (((
cosh
. y)
* (
cosh
. z))
+ ((
sinh
. y)
* (
sinh z))) by
SIN_COS2:def 2
.= (((
cosh
. y)
* (
cosh
. z))
+ ((
sinh
. y)
* (
sinh
. z))) by
SIN_COS2:def 2
.= (
cosh
. (y
+ z)) by
SIN_COS2: 20
.= (
cosh (y
+ z)) by
SIN_COS2:def 4;
hence thesis by
A1,
A2,
A5,
A4,
A3;
end;
theorem ::
SIN_COS8:10
y
<>
0 implies ((
coth y)
+ (
tanh z))
= ((
cosh (y
+ z))
/ ((
sinh y)
* (
cosh z))) & ((
coth y)
- (
tanh z))
= ((
cosh (y
- z))
/ ((
sinh y)
* (
cosh z)))
proof
assume
A1: y
<>
0 ;
A2: (
cosh z)
<>
0 by
Lm1;
A3: ((
coth y)
- (
tanh z))
= (((
cosh y)
/ (
sinh y))
- (
tanh z)) by
SIN_COS5:def 1
.= ((((
cosh y)
* (
cosh z))
/ ((
sinh y)
* (
cosh z)))
- (
tanh z)) by
A2,
XCMPLX_1: 91
.= ((((
cosh y)
* (
cosh z))
/ ((
sinh y)
* (
cosh z)))
- ((
sinh z)
/ (
cosh z))) by
Th1
.= ((((
cosh y)
* (
cosh z))
/ ((
sinh y)
* (
cosh z)))
- (((
sinh y)
* (
sinh z))
/ ((
sinh y)
* (
cosh z)))) by
A1,
Lm4,
XCMPLX_1: 91
.= ((((
cosh y)
* (
cosh z))
- ((
sinh y)
* (
sinh z)))
/ ((
sinh y)
* (
cosh z))) by
XCMPLX_1: 120
.= ((
cosh (y
- z))
/ ((
sinh y)
* (
cosh z))) by
Lm10;
((
coth y)
+ (
tanh z))
= (((
cosh y)
/ (
sinh y))
+ (
tanh z)) by
SIN_COS5:def 1
.= ((((
cosh y)
* (
cosh z))
/ ((
sinh y)
* (
cosh z)))
+ (
tanh z)) by
A2,
XCMPLX_1: 91
.= ((((
cosh y)
* (
cosh z))
/ ((
sinh y)
* (
cosh z)))
+ ((
sinh z)
/ (
cosh z))) by
Th1
.= ((((
cosh y)
* (
cosh z))
/ ((
sinh y)
* (
cosh z)))
+ (((
sinh y)
* (
sinh z))
/ ((
sinh y)
* (
cosh z)))) by
A1,
Lm4,
XCMPLX_1: 91
.= ((((
cosh y)
* (
cosh z))
+ ((
sinh y)
* (
sinh z)))
/ ((
sinh y)
* (
cosh z))) by
XCMPLX_1: 62
.= ((
cosh (y
+ z))
/ ((
sinh y)
* (
cosh z))) by
Lm10;
hence thesis by
A3;
end;
theorem ::
SIN_COS8:11
Th11: ((
sinh y)
* (
sinh z))
= ((1
/ 2)
* ((
cosh (y
+ z))
- (
cosh (y
- z)))) & ((
sinh y)
* (
cosh z))
= ((1
/ 2)
* ((
sinh (y
+ z))
+ (
sinh (y
- z)))) & ((
cosh y)
* (
sinh z))
= ((1
/ 2)
* ((
sinh (y
+ z))
- (
sinh (y
- z)))) & ((
cosh y)
* (
cosh z))
= ((1
/ 2)
* ((
cosh (y
+ z))
+ (
cosh (y
- z))))
proof
A1: ((
sinh y)
* (
cosh z))
= ((1
/ 2)
* ((((
sinh y)
* (
cosh z))
+ ((
cosh y)
* (
sinh z)))
+ (((
sinh y)
* (
cosh z))
- ((
cosh y)
* (
sinh z)))))
.= ((1
/ 2)
* ((
sinh (y
+ z))
+ (((
sinh y)
* (
cosh z))
- ((
cosh y)
* (
sinh z))))) by
Lm10
.= ((1
/ 2)
* ((
sinh (y
+ z))
+ (
sinh (y
- z)))) by
Lm10;
A2: ((
cosh y)
* (
sinh z))
= ((1
/ 2)
* ((((
sinh y)
* (
cosh z))
+ ((
cosh y)
* (
sinh z)))
- (((
sinh y)
* (
cosh z))
- ((
cosh y)
* (
sinh z)))))
.= ((1
/ 2)
* ((
sinh (y
+ z))
- (((
sinh y)
* (
cosh z))
- ((
cosh y)
* (
sinh z))))) by
Lm10
.= ((1
/ 2)
* ((
sinh (y
+ z))
- (
sinh (y
- z)))) by
Lm10;
A3: ((
cosh y)
* (
cosh z))
= ((1
/ 2)
* ((((
cosh y)
* (
cosh z))
+ ((
sinh y)
* (
sinh z)))
+ (((
cosh y)
* (
cosh z))
- ((
sinh y)
* (
sinh z)))))
.= ((1
/ 2)
* ((
cosh (y
+ z))
+ (((
cosh y)
* (
cosh z))
- ((
sinh y)
* (
sinh z))))) by
Lm10
.= ((1
/ 2)
* ((
cosh (y
+ z))
+ (
cosh (y
- z)))) by
Lm10;
((
sinh y)
* (
sinh z))
= ((1
/ 2)
* ((((
cosh y)
* (
cosh z))
+ ((
sinh y)
* (
sinh z)))
- (((
cosh y)
* (
cosh z))
- ((
sinh y)
* (
sinh z)))))
.= ((1
/ 2)
* ((
cosh (y
+ z))
- (((
cosh y)
* (
cosh z))
- ((
sinh y)
* (
sinh z))))) by
Lm10
.= ((1
/ 2)
* ((
cosh (y
+ z))
- (
cosh (y
- z)))) by
Lm10;
hence thesis by
A1,
A2,
A3;
end;
theorem ::
SIN_COS8:12
(((
sinh y)
^2 )
- ((
cosh z)
^2 ))
= (((
sinh (y
+ z))
* (
sinh (y
- z)))
- 1)
proof
(((
sinh y)
^2 )
- ((
cosh z)
^2 ))
= (((
sinh y)
^2 )
- (((
cosh z)
^2 )
* 1))
.= (((
sinh y)
^2 )
- (((
cosh z)
^2 )
* (((
cosh y)
^2 )
- ((
sinh y)
^2 )))) by
Lm3
.= (((
sinh y)
^2 )
+ ((((
cosh z)
^2 )
* ((
sinh y)
^2 ))
- (((
cosh y)
^2 )
* ((((
cosh z)
^2 )
- ((
sinh z)
^2 ))
+ ((
sinh z)
^2 )))))
.= (((
sinh y)
^2 )
+ ((((
cosh z)
^2 )
* ((
sinh y)
^2 ))
- (((
cosh y)
^2 )
* (1
+ ((
sinh z)
^2 ))))) by
Lm3
.= (((
sinh y)
^2 )
+ (((((
sinh y)
* (
cosh z))
+ ((
cosh y)
* (
sinh z)))
* (((
sinh y)
* (
cosh z))
- ((
cosh y)
* (
sinh z))))
- ((
cosh y)
^2 )))
.= (((
sinh y)
^2 )
+ (((
sinh (y
+ z))
* (((
sinh y)
* (
cosh z))
- ((
cosh y)
* (
sinh z))))
- ((
cosh y)
^2 ))) by
Lm10
.= ((((
sinh (y
+ z))
* (
sinh (y
- z)))
- ((
cosh y)
^2 ))
+ ((
sinh y)
^2 )) by
Lm10
.= (((
sinh (y
+ z))
* (
sinh (y
- z)))
- (((
cosh y)
^2 )
- ((
sinh y)
^2 )))
.= (((
sinh (y
+ z))
* (
sinh (y
- z)))
- 1) by
Lm3;
hence thesis;
end;
Lm11: ((
sinh y)
+ (
sinh z))
= ((2
* (
sinh ((y
/ 2)
+ (z
/ 2))))
* (
cosh ((y
/ 2)
- (z
/ 2)))) & ((
sinh y)
- (
sinh z))
= ((2
* (
sinh ((y
/ 2)
- (z
/ 2))))
* (
cosh ((y
/ 2)
+ (z
/ 2)))) & ((
cosh y)
+ (
cosh z))
= ((2
* (
cosh ((y
/ 2)
+ (z
/ 2))))
* (
cosh ((y
/ 2)
- (z
/ 2)))) & ((
cosh y)
- (
cosh z))
= ((2
* (
sinh ((y
/ 2)
- (z
/ 2))))
* (
sinh ((y
/ 2)
+ (z
/ 2)))) & ((
tanh y)
+ (
tanh z))
= ((
sinh (y
+ z))
/ ((
cosh y)
* (
cosh z))) & ((
tanh y)
- (
tanh z))
= ((
sinh (y
- z))
/ ((
cosh y)
* (
cosh z)))
proof
A1: ((2
* (
sinh ((y
/ 2)
- (z
/ 2))))
* (
cosh ((y
/ 2)
+ (z
/ 2))))
= ((2
* (
sinh
. ((y
/ 2)
- (z
/ 2))))
* (
cosh ((y
/ 2)
+ (z
/ 2)))) by
SIN_COS2:def 2
.= ((2
* (
sinh
. ((y
/ 2)
- (z
/ 2))))
* (
cosh
. ((y
/ 2)
+ (z
/ 2)))) by
SIN_COS2:def 4
.= ((
sinh
. y)
- (
sinh
. z)) by
SIN_COS2: 26
.= ((
sinh y)
- (
sinh
. z)) by
SIN_COS2:def 2
.= ((
sinh y)
- (
sinh z)) by
SIN_COS2:def 2;
A2: ((2
* (
cosh ((y
/ 2)
+ (z
/ 2))))
* (
cosh ((y
/ 2)
- (z
/ 2))))
= ((2
* (
cosh
. ((y
/ 2)
+ (z
/ 2))))
* (
cosh ((y
/ 2)
- (z
/ 2)))) by
SIN_COS2:def 4
.= ((2
* (
cosh
. ((y
/ 2)
+ (z
/ 2))))
* (
cosh
. ((y
/ 2)
- (z
/ 2)))) by
SIN_COS2:def 4
.= ((
cosh
. y)
+ (
cosh
. z)) by
SIN_COS2: 27
.= ((
cosh y)
+ (
cosh
. z)) by
SIN_COS2:def 4
.= ((
cosh y)
+ (
cosh z)) by
SIN_COS2:def 4;
A3: ((
sinh (y
- z))
/ ((
cosh y)
* (
cosh z)))
= ((
sinh
. (y
- z))
/ ((
cosh y)
* (
cosh z))) by
SIN_COS2:def 2
.= ((
sinh
. (y
- z))
/ ((
cosh
. y)
* (
cosh z))) by
SIN_COS2:def 4
.= ((
sinh
. (y
- z))
/ ((
cosh
. y)
* (
cosh
. z))) by
SIN_COS2:def 4
.= ((
tanh
. y)
- (
tanh
. z)) by
SIN_COS2: 28
.= ((
tanh y)
- (
tanh
. z)) by
SIN_COS2:def 6
.= ((
tanh y)
- (
tanh z)) by
SIN_COS2:def 6;
A4: ((
sinh (y
+ z))
/ ((
cosh y)
* (
cosh z)))
= ((
sinh
. (y
+ z))
/ ((
cosh y)
* (
cosh z))) by
SIN_COS2:def 2
.= ((
sinh
. (y
+ z))
/ ((
cosh
. y)
* (
cosh z))) by
SIN_COS2:def 4
.= ((
sinh
. (y
+ z))
/ ((
cosh
. y)
* (
cosh
. z))) by
SIN_COS2:def 4
.= ((
tanh
. y)
+ (
tanh
. z)) by
SIN_COS2: 28
.= ((
tanh y)
+ (
tanh
. z)) by
SIN_COS2:def 6
.= ((
tanh y)
+ (
tanh z)) by
SIN_COS2:def 6;
A5: ((2
* (
sinh ((y
/ 2)
- (z
/ 2))))
* (
sinh ((y
/ 2)
+ (z
/ 2))))
= ((2
* (
sinh
. ((y
/ 2)
- (z
/ 2))))
* (
sinh ((y
/ 2)
+ (z
/ 2)))) by
SIN_COS2:def 2
.= ((2
* (
sinh
. ((y
/ 2)
- (z
/ 2))))
* (
sinh
. ((y
/ 2)
+ (z
/ 2)))) by
SIN_COS2:def 2
.= ((
cosh
. y)
- (
cosh
. z)) by
SIN_COS2: 27
.= ((
cosh y)
- (
cosh
. z)) by
SIN_COS2:def 4
.= ((
cosh y)
- (
cosh z)) by
SIN_COS2:def 4;
((2
* (
sinh ((y
/ 2)
+ (z
/ 2))))
* (
cosh ((y
/ 2)
- (z
/ 2))))
= ((2
* (
sinh
. ((y
/ 2)
+ (z
/ 2))))
* (
cosh ((y
/ 2)
- (z
/ 2)))) by
SIN_COS2:def 2
.= ((2
* (
sinh
. ((y
/ 2)
+ (z
/ 2))))
* (
cosh
. ((y
/ 2)
- (z
/ 2)))) by
SIN_COS2:def 4
.= ((
sinh
. y)
+ (
sinh
. z)) by
SIN_COS2: 26
.= ((
sinh y)
+ (
sinh
. z)) by
SIN_COS2:def 2
.= ((
sinh y)
+ (
sinh z)) by
SIN_COS2:def 2;
hence thesis by
A1,
A2,
A5,
A4,
A3;
end;
theorem ::
SIN_COS8:13
((((
sinh y)
- (
sinh z))
^2 )
- (((
cosh y)
- (
cosh z))
^2 ))
= (4
* ((
sinh ((y
- z)
/ 2))
^2 )) & ((((
cosh y)
+ (
cosh z))
^2 )
- (((
sinh y)
+ (
sinh z))
^2 ))
= (4
* ((
cosh ((y
- z)
/ 2))
^2 ))
proof
A1: ((((
cosh y)
+ (
cosh z))
^2 )
- (((
sinh y)
+ (
sinh z))
^2 ))
= ((((2
* (
cosh ((y
/ 2)
+ (z
/ 2))))
* (
cosh ((y
/ 2)
- (z
/ 2))))
^2 )
- (((
sinh y)
+ (
sinh z))
^2 )) by
Lm11
.= (((2
* ((
cosh ((y
/ 2)
+ (z
/ 2)))
* (
cosh ((y
/ 2)
- (z
/ 2)))))
^2 )
- (((2
* (
sinh ((y
/ 2)
+ (z
/ 2))))
* (
cosh ((y
/ 2)
- (z
/ 2))))
^2 )) by
Lm11
.= (4
* (((
cosh ((y
/ 2)
- (z
/ 2)))
^2 )
* (((
cosh ((y
/ 2)
+ (z
/ 2)))
^2 )
- ((
sinh ((y
/ 2)
+ (z
/ 2)))
^2 ))))
.= (4
* (((
cosh ((y
/ 2)
- (z
/ 2)))
^2 )
* 1)) by
Lm3
.= (4
* ((
cosh ((y
- z)
/ 2))
^2 ));
((((
sinh y)
- (
sinh z))
^2 )
- (((
cosh y)
- (
cosh z))
^2 ))
= ((((2
* (
sinh ((y
/ 2)
- (z
/ 2))))
* (
cosh ((y
/ 2)
+ (z
/ 2))))
^2 )
- (((
cosh y)
- (
cosh z))
^2 )) by
Lm11
.= ((((2
* (
cosh ((y
/ 2)
+ (z
/ 2))))
* (
sinh ((y
/ 2)
- (z
/ 2))))
^2 )
- (((2
* (
sinh ((y
/ 2)
- (z
/ 2))))
* (
sinh ((y
+ z)
/ 2)))
^2 )) by
Lm11
.= (4
* (((
sinh ((y
/ 2)
- (z
/ 2)))
^2 )
* (((
cosh ((y
/ 2)
+ (z
/ 2)))
^2 )
- ((
sinh ((y
/ 2)
+ (z
/ 2)))
^2 ))))
.= (4
* (((
sinh ((y
/ 2)
- (z
/ 2)))
^2 )
* 1)) by
Lm3
.= (4
* ((
sinh ((y
- z)
/ 2))
^2 ));
hence thesis by
A1;
end;
theorem ::
SIN_COS8:14
(((
sinh y)
+ (
sinh z))
/ ((
sinh y)
- (
sinh z)))
= ((
tanh ((y
+ z)
/ 2))
* (
coth ((y
- z)
/ 2)))
proof
(((
sinh y)
+ (
sinh z))
/ ((
sinh y)
- (
sinh z)))
= (((2
* (
sinh ((y
/ 2)
+ (z
/ 2))))
* (
cosh ((y
/ 2)
- (z
/ 2))))
/ ((
sinh y)
- (
sinh z))) by
Lm11
.= (((2
* (
sinh ((y
/ 2)
+ (z
/ 2))))
* (
cosh ((y
/ 2)
- (z
/ 2))))
/ ((2
* (
sinh ((y
/ 2)
- (z
/ 2))))
* (
cosh ((y
/ 2)
+ (z
/ 2))))) by
Lm11
.= (((2
* (
sinh ((y
/ 2)
+ (z
/ 2))))
* (
cosh ((y
/ 2)
- (z
/ 2))))
/ ((2
* (
cosh ((y
/ 2)
+ (z
/ 2))))
* (
sinh ((y
/ 2)
- (z
/ 2)))))
.= (((2
* (
sinh ((y
/ 2)
+ (z
/ 2))))
/ (2
* (
cosh ((y
/ 2)
+ (z
/ 2)))))
* ((
cosh ((y
/ 2)
- (z
/ 2)))
/ (
sinh ((y
/ 2)
- (z
/ 2))))) by
XCMPLX_1: 76
.= (((2
* (
sinh ((y
/ 2)
+ (z
/ 2))))
/ (2
* (
cosh ((y
/ 2)
+ (z
/ 2)))))
* (
coth ((y
/ 2)
- (z
/ 2)))) by
SIN_COS5:def 1
.= (((2
/ 2)
* ((
sinh ((y
/ 2)
+ (z
/ 2)))
/ (
cosh ((y
/ 2)
+ (z
/ 2)))))
* (
coth ((y
/ 2)
- (z
/ 2)))) by
XCMPLX_1: 76
.= ((
tanh ((y
+ z)
/ 2))
* (
coth ((y
- z)
/ 2))) by
Th1;
hence thesis;
end;
theorem ::
SIN_COS8:15
(((
cosh y)
+ (
cosh z))
/ ((
cosh y)
- (
cosh z)))
= ((
coth ((y
+ z)
/ 2))
* (
coth ((y
- z)
/ 2)))
proof
(((
cosh y)
+ (
cosh z))
/ ((
cosh y)
- (
cosh z)))
= (((2
* (
cosh ((y
/ 2)
+ (z
/ 2))))
* (
cosh ((y
/ 2)
- (z
/ 2))))
/ ((
cosh y)
- (
cosh z))) by
Lm11
.= (((2
* (
cosh ((y
/ 2)
+ (z
/ 2))))
* (
cosh ((y
/ 2)
- (z
/ 2))))
/ ((2
* (
sinh ((y
/ 2)
- (z
/ 2))))
* (
sinh ((y
+ z)
/ 2)))) by
Lm11
.= (((2
* (
cosh ((y
/ 2)
+ (z
/ 2))))
* (
cosh ((y
/ 2)
- (z
/ 2))))
/ ((2
* (
sinh ((y
/ 2)
+ (z
/ 2))))
* (
sinh ((y
- z)
/ 2))))
.= (((2
* (
cosh ((y
/ 2)
+ (z
/ 2))))
/ (2
* (
sinh ((y
/ 2)
+ (z
/ 2)))))
* ((
cosh ((y
/ 2)
- (z
/ 2)))
/ (
sinh ((y
/ 2)
- (z
/ 2))))) by
XCMPLX_1: 76
.= (((2
* (
cosh ((y
/ 2)
+ (z
/ 2))))
/ (2
* (
sinh ((y
/ 2)
+ (z
/ 2)))))
* (
coth ((y
/ 2)
- (z
/ 2)))) by
SIN_COS5:def 1
.= (((2
/ 2)
* ((
cosh ((y
/ 2)
+ (z
/ 2)))
/ (
sinh ((y
/ 2)
+ (z
/ 2)))))
* (
coth ((y
/ 2)
- (z
/ 2)))) by
XCMPLX_1: 76
.= ((
coth ((y
+ z)
/ 2))
* (
coth ((y
- z)
/ 2))) by
SIN_COS5:def 1;
hence thesis;
end;
theorem ::
SIN_COS8:16
(y
- z)
<>
0 implies (((
sinh y)
+ (
sinh z))
/ ((
cosh y)
+ (
cosh z)))
= (((
cosh y)
- (
cosh z))
/ ((
sinh y)
- (
sinh z)))
proof
assume
A1: (y
- z)
<>
0 ;
A2: (
cosh ((y
/ 2)
- (z
/ 2)))
<>
0 by
Lm1;
(((
sinh y)
+ (
sinh z))
/ ((
cosh y)
+ (
cosh z)))
= (((2
* (
sinh ((y
/ 2)
+ (z
/ 2))))
* (
cosh ((y
/ 2)
- (z
/ 2))))
/ ((
cosh y)
+ (
cosh z))) by
Lm11
.= (((2
* (
sinh ((y
/ 2)
+ (z
/ 2))))
* (
cosh ((y
/ 2)
- (z
/ 2))))
/ ((2
* (
cosh ((y
/ 2)
+ (z
/ 2))))
* (
cosh ((y
/ 2)
- (z
/ 2))))) by
Lm11
.= (((2
* (
sinh ((y
/ 2)
+ (z
/ 2))))
/ (2
* (
cosh ((y
/ 2)
+ (z
/ 2)))))
* ((
cosh ((y
/ 2)
- (z
/ 2)))
/ (
cosh ((y
/ 2)
- (z
/ 2))))) by
XCMPLX_1: 76
.= (((2
* (
sinh ((y
/ 2)
+ (z
/ 2))))
/ (2
* (
cosh ((y
/ 2)
+ (z
/ 2)))))
* 1) by
A2,
XCMPLX_1: 60
.= (((2
* (
sinh ((y
+ z)
/ 2)))
* (
sinh ((y
- z)
/ 2)))
/ ((2
* (
cosh ((y
/ 2)
+ (z
/ 2))))
* (
sinh ((y
/ 2)
- (z
/ 2))))) by
A1,
Lm5,
XCMPLX_1: 91
.= (((2
* (
sinh ((y
- z)
/ 2)))
* (
sinh ((y
+ z)
/ 2)))
/ ((2
* (
cosh ((y
/ 2)
+ (z
/ 2))))
* (
sinh ((y
/ 2)
- (z
/ 2)))))
.= (((
cosh y)
- (
cosh z))
/ ((2
* (
sinh ((y
/ 2)
- (z
/ 2))))
* (
cosh ((y
/ 2)
+ (z
/ 2))))) by
Lm11
.= (((
cosh y)
- (
cosh z))
/ ((
sinh y)
- (
sinh z))) by
Lm11;
hence thesis;
end;
theorem ::
SIN_COS8:17
(y
+ z)
<>
0 implies (((
sinh y)
- (
sinh z))
/ ((
cosh y)
+ (
cosh z)))
= (((
cosh y)
- (
cosh z))
/ ((
sinh y)
+ (
sinh z)))
proof
assume
A1: (y
+ z)
<>
0 ;
A2: (
cosh ((y
/ 2)
+ (z
/ 2)))
<>
0 by
Lm1;
(((
sinh y)
- (
sinh z))
/ ((
cosh y)
+ (
cosh z)))
= (((2
* (
sinh ((y
/ 2)
- (z
/ 2))))
* (
cosh ((y
/ 2)
+ (z
/ 2))))
/ ((
cosh y)
+ (
cosh z))) by
Lm11
.= (((2
* (
cosh ((y
/ 2)
+ (z
/ 2))))
* (
sinh ((y
/ 2)
- (z
/ 2))))
/ ((2
* (
cosh ((y
/ 2)
+ (z
/ 2))))
* (
cosh ((y
/ 2)
- (z
/ 2))))) by
Lm11
.= (((2
* (
cosh ((y
/ 2)
+ (z
/ 2))))
/ (2
* (
cosh ((y
/ 2)
+ (z
/ 2)))))
* ((
sinh ((y
/ 2)
- (z
/ 2)))
/ (
cosh ((y
/ 2)
- (z
/ 2))))) by
XCMPLX_1: 76
.= (((
cosh ((y
/ 2)
+ (z
/ 2)))
/ (
cosh ((y
/ 2)
+ (z
/ 2))))
* ((
sinh ((y
/ 2)
- (z
/ 2)))
/ (
cosh ((y
/ 2)
- (z
/ 2))))) by
XCMPLX_1: 91
.= (1
* ((
sinh ((y
/ 2)
- (z
/ 2)))
/ (
cosh ((y
/ 2)
- (z
/ 2))))) by
A2,
XCMPLX_1: 60
.= (((
sinh ((y
/ 2)
+ (z
/ 2)))
* (
sinh ((y
/ 2)
- (z
/ 2))))
/ ((
sinh ((y
/ 2)
+ (z
/ 2)))
* (
cosh ((y
/ 2)
- (z
/ 2))))) by
A1,
Lm6,
XCMPLX_1: 91
.= ((2
* ((
sinh ((y
/ 2)
+ (z
/ 2)))
* (
sinh ((y
/ 2)
- (z
/ 2)))))
/ (2
* ((
sinh ((y
/ 2)
+ (z
/ 2)))
* (
cosh ((y
/ 2)
- (z
/ 2)))))) by
XCMPLX_1: 91
.= (((2
* (
sinh ((y
- z)
/ 2)))
* (
sinh ((y
+ z)
/ 2)))
/ ((2
* (
sinh ((y
/ 2)
+ (z
/ 2))))
* (
cosh ((y
/ 2)
- (z
/ 2)))))
.= (((
cosh y)
- (
cosh z))
/ ((2
* (
sinh ((y
/ 2)
+ (z
/ 2))))
* (
cosh ((y
/ 2)
- (z
/ 2))))) by
Lm11
.= (((
cosh y)
- (
cosh z))
/ ((
sinh y)
+ (
sinh z))) by
Lm11;
hence thesis;
end;
theorem ::
SIN_COS8:18
(((
sinh y)
+ (
sinh z))
/ ((
cosh y)
+ (
cosh z)))
= (
tanh ((y
/ 2)
+ (z
/ 2))) & (((
sinh y)
- (
sinh z))
/ ((
cosh y)
+ (
cosh z)))
= (
tanh ((y
/ 2)
- (z
/ 2)))
proof
A1: (
cosh ((y
/ 2)
- (z
/ 2)))
<>
0 by
Lm1;
A2: (
cosh ((y
/ 2)
+ (z
/ 2)))
<>
0 by
Lm1;
A3: (((
sinh y)
- (
sinh z))
/ ((
cosh y)
+ (
cosh z)))
= (((2
* (
sinh ((y
/ 2)
- (z
/ 2))))
* (
cosh ((y
/ 2)
+ (z
/ 2))))
/ ((
cosh y)
+ (
cosh z))) by
Lm11
.= ((2
* ((
sinh ((y
/ 2)
- (z
/ 2)))
* (
cosh ((y
/ 2)
+ (z
/ 2)))))
/ ((2
* (
cosh ((y
/ 2)
+ (z
/ 2))))
* (
cosh ((y
/ 2)
- (z
/ 2))))) by
Lm11
.= ((2
* ((
sinh ((y
/ 2)
- (z
/ 2)))
* (
cosh ((y
/ 2)
+ (z
/ 2)))))
/ (2
* ((
cosh ((y
/ 2)
+ (z
/ 2)))
* (
cosh ((y
/ 2)
- (z
/ 2))))))
.= (((
cosh ((y
/ 2)
+ (z
/ 2)))
* (
sinh ((y
/ 2)
- (z
/ 2))))
/ ((
cosh ((y
/ 2)
+ (z
/ 2)))
* (
cosh ((y
/ 2)
- (z
/ 2))))) by
XCMPLX_1: 91
.= (((
cosh ((y
/ 2)
+ (z
/ 2)))
/ (
cosh ((y
/ 2)
+ (z
/ 2))))
* ((
sinh ((y
/ 2)
- (z
/ 2)))
/ (
cosh ((y
/ 2)
- (z
/ 2))))) by
XCMPLX_1: 76
.= (1
* ((
sinh ((y
/ 2)
- (z
/ 2)))
/ (
cosh ((y
/ 2)
- (z
/ 2))))) by
A2,
XCMPLX_1: 60
.= (
tanh ((y
/ 2)
- (z
/ 2))) by
Th1;
(((
sinh y)
+ (
sinh z))
/ ((
cosh y)
+ (
cosh z)))
= (((2
* (
sinh ((y
/ 2)
+ (z
/ 2))))
* (
cosh ((y
/ 2)
- (z
/ 2))))
/ ((
cosh y)
+ (
cosh z))) by
Lm11
.= (((2
* (
sinh ((y
/ 2)
+ (z
/ 2))))
* (
cosh ((y
/ 2)
- (z
/ 2))))
/ ((2
* (
cosh ((y
/ 2)
+ (z
/ 2))))
* (
cosh ((y
/ 2)
- (z
/ 2))))) by
Lm11
.= (((2
* (
sinh ((y
/ 2)
+ (z
/ 2))))
/ (2
* (
cosh ((y
/ 2)
+ (z
/ 2)))))
* ((
cosh ((y
/ 2)
- (z
/ 2)))
/ (
cosh ((y
/ 2)
- (z
/ 2))))) by
XCMPLX_1: 76
.= (((2
* (
sinh ((y
/ 2)
+ (z
/ 2))))
/ (2
* (
cosh ((y
/ 2)
+ (z
/ 2)))))
* 1) by
A1,
XCMPLX_1: 60
.= ((2
/ 2)
* ((
sinh ((y
/ 2)
+ (z
/ 2)))
/ (
cosh ((y
/ 2)
+ (z
/ 2))))) by
XCMPLX_1: 76
.= (
tanh ((y
/ 2)
+ (z
/ 2))) by
Th1;
hence thesis by
A3;
end;
theorem ::
SIN_COS8:19
(((
tanh y)
+ (
tanh z))
/ ((
tanh y)
- (
tanh z)))
= ((
sinh (y
+ z))
/ (
sinh (y
- z)))
proof
A1: (
cosh y)
<>
0 & (
cosh z)
<>
0 by
Lm1;
(((
tanh y)
+ (
tanh z))
/ ((
tanh y)
- (
tanh z)))
= (((
sinh (y
+ z))
/ ((
cosh y)
* (
cosh z)))
/ ((
tanh y)
- (
tanh z))) by
Lm11
.= (((
sinh (y
+ z))
/ ((
cosh y)
* (
cosh z)))
/ ((
sinh (y
- z))
/ ((
cosh y)
* (
cosh z)))) by
Lm11
.= ((
sinh (y
+ z))
/ (
sinh (y
- z))) by
A1,
XCMPLX_1: 6,
XCMPLX_1: 55;
hence thesis;
end;
Lm12: (1
+ ((
cosh x)
+ (
cosh x)))
<>
0
proof
(
cosh
. x)
>
0 by
SIN_COS2: 15;
then (
cosh x)
>
0 by
SIN_COS2:def 4;
hence thesis;
end;
Lm13: ((
cosh x)
+ 1)
>
0 & ((
cosh x)
- 1)
>=
0 & (((
cosh x)
+ 2)
+ (
cosh x))
<>
0
proof
(
cosh
. x)
>
0 by
SIN_COS2: 15;
then
A1: (
cosh x)
>
0 by
SIN_COS2:def 4;
(
cosh x)
>= 1 by
Lm1;
then ((
cosh x)
- 1)
>= (1
- 1) by
XREAL_1: 13;
hence thesis by
A1;
end;
theorem ::
SIN_COS8:20
((((
sinh (y
- z))
+ (
sinh y))
+ (
sinh (y
+ z)))
/ (((
cosh (y
- z))
+ (
cosh y))
+ (
cosh (y
+ z))))
= (
tanh y)
proof
((((
sinh (y
- z))
+ (
sinh y))
+ (
sinh (y
+ z)))
/ (((
cosh (y
- z))
+ (
cosh y))
+ (
cosh (y
+ z))))
= ((((((
sinh y)
* (
cosh z))
- ((
cosh y)
* (
sinh z)))
+ (
sinh y))
+ (
sinh (y
+ z)))
/ (((
cosh (y
- z))
+ (
cosh y))
+ (
cosh (y
+ z)))) by
Lm10
.= ((((
sinh y)
+ (((
sinh y)
* (
cosh z))
- ((
cosh y)
* (
sinh z))))
+ (((
sinh y)
* (
cosh z))
+ ((
cosh y)
* (
sinh z))))
/ (((
cosh y)
+ (
cosh (y
- z)))
+ (
cosh (y
+ z)))) by
Lm10
.= (((
sinh y)
* (1
+ ((
cosh z)
+ (
cosh z))))
/ (((
cosh y)
+ (((
cosh y)
* (
cosh z))
- ((
sinh y)
* (
sinh z))))
+ (
cosh (y
+ z)))) by
Lm10
.= (((
sinh y)
* (1
+ ((
cosh z)
+ (
cosh z))))
/ (((
cosh y)
+ (((
cosh y)
* (
cosh z))
- ((
sinh y)
* (
sinh z))))
+ (((
cosh y)
* (
cosh z))
+ ((
sinh y)
* (
sinh z))))) by
Lm10
.= (((
sinh y)
* (1
+ ((
cosh z)
+ (
cosh z))))
/ ((
cosh y)
* (1
+ ((
cosh z)
+ (
cosh z)))))
.= (((
sinh y)
/ (
cosh y))
* ((1
+ ((
cosh z)
+ (
cosh z)))
/ (1
+ ((
cosh z)
+ (
cosh z))))) by
XCMPLX_1: 76
.= (((
sinh y)
/ (
cosh y))
* 1) by
Lm12,
XCMPLX_1: 60
.= (
tanh y) by
Th1;
hence thesis;
end;
Lm14: (((
sinh y)
* (
cosh z))
/ ((
cosh y)
* (
cosh z)))
= (
tanh y) & ((
sinh y)
* (
cosh z))
= ((
tanh y)
* ((
cosh y)
* (
cosh z))) & (
sinh y)
= ((
tanh y)
* (
cosh y)) & ((
sinh y)
* (
sinh z))
= (((
tanh y)
* (
tanh z))
* ((
cosh y)
* (
cosh z)))
proof
A1: (
cosh y)
<>
0 by
Lm1;
then
A2: (
sinh y)
= (((
sinh y)
/ (
cosh y))
* (
cosh y)) by
XCMPLX_1: 87
.= ((
tanh y)
* (
cosh y)) by
Th1;
A3: (
cosh z)
<>
0 by
Lm1;
then
A4: (((
sinh y)
* (
cosh z))
/ ((
cosh y)
* (
cosh z)))
= ((
sinh y)
/ (
cosh y)) by
XCMPLX_1: 91
.= (
tanh y) by
Th1;
((
sinh y)
* (
sinh z))
= ((((
sinh y)
* (
sinh z))
/ ((
cosh y)
* (
cosh z)))
* ((
cosh y)
* (
cosh z))) by
A1,
A3,
XCMPLX_1: 6,
XCMPLX_1: 87
.= ((((
sinh y)
/ (
cosh y))
* ((
sinh z)
/ (
cosh z)))
* ((
cosh y)
* (
cosh z))) by
XCMPLX_1: 76
.= (((
tanh y)
* ((
sinh z)
/ (
cosh z)))
* ((
cosh y)
* (
cosh z))) by
Th1
.= (((
tanh y)
* (
tanh z))
* ((
cosh y)
* (
cosh z))) by
Th1;
hence thesis by
A4,
A2;
end;
theorem ::
SIN_COS8:21
Th21: (
sinh ((y
+ z)
+ w))
= (((((((
tanh y)
+ (
tanh z))
+ (
tanh w))
+ (((
tanh y)
* (
tanh z))
* (
tanh w)))
* (
cosh y))
* (
cosh z))
* (
cosh w)) & (
cosh ((y
+ z)
+ w))
= ((((((1
+ ((
tanh y)
* (
tanh z)))
+ ((
tanh z)
* (
tanh w)))
+ ((
tanh w)
* (
tanh y)))
* (
cosh y))
* (
cosh z))
* (
cosh w)) & (
tanh ((y
+ z)
+ w))
= (((((
tanh y)
+ (
tanh z))
+ (
tanh w))
+ (((
tanh y)
* (
tanh z))
* (
tanh w)))
/ (((1
+ ((
tanh z)
* (
tanh w)))
+ ((
tanh w)
* (
tanh y)))
+ ((
tanh y)
* (
tanh z))))
proof
A1: (
cosh w)
<>
0 by
Lm1;
(
cosh y)
<>
0 & (
cosh z)
<>
0 by
Lm1;
then
A2: ((
cosh y)
* (
cosh z))
<>
0 by
XCMPLX_1: 6;
A3: (
cosh ((y
+ z)
+ w))
= (((
cosh (y
+ z))
* (
cosh w))
+ ((
sinh (y
+ z))
* (
sinh w))) by
Lm10
.= (((((
cosh y)
* (
cosh z))
+ ((
sinh y)
* (
sinh z)))
* (
cosh w))
+ ((
sinh (y
+ z))
* (
sinh w))) by
Lm10
.= (((((
cosh y)
* (
cosh z))
* (
cosh w))
+ (((
sinh y)
* (
sinh z))
* (
cosh w)))
+ ((((
sinh y)
* (
cosh z))
+ ((
cosh y)
* (
sinh z)))
* (
sinh w))) by
Lm10
.= (((((
cosh y)
* (
cosh z))
* (
cosh w))
+ ((((
tanh y)
* (
tanh z))
* ((
cosh y)
* (
cosh z)))
* (
cosh w)))
+ ((((
sinh y)
* (
sinh w))
* (
cosh z))
+ (((
sinh z)
* (
sinh w))
* (
cosh y)))) by
Lm14
.= (((((
cosh y)
* (
cosh z))
* (
cosh w))
+ ((((
tanh y)
* (
tanh z))
* ((
cosh y)
* (
cosh z)))
* (
cosh w)))
+ (((((
tanh w)
* (
tanh y))
* ((
cosh w)
* (
cosh y)))
* (
cosh z))
+ (((
sinh z)
* (
sinh w))
* (
cosh y)))) by
Lm14
.= (((1
+ ((
tanh y)
* (
tanh z)))
* (((
cosh y)
* (
cosh z))
* (
cosh w)))
+ (((((
tanh z)
* (
tanh w))
* ((
cosh z)
* (
cosh w)))
* (
cosh y))
+ (((
tanh w)
* (
tanh y))
* (((
cosh y)
* (
cosh z))
* (
cosh w))))) by
Lm14
.= ((((((1
+ ((
tanh y)
* (
tanh z)))
+ ((
tanh z)
* (
tanh w)))
+ ((
tanh w)
* (
tanh y)))
* (
cosh y))
* (
cosh z))
* (
cosh w));
A4: (
sinh ((y
+ z)
+ w))
= (((
sinh (y
+ z))
* (
cosh w))
+ ((
cosh (y
+ z))
* (
sinh w))) by
Lm10
.= (((((
sinh y)
* (
cosh z))
+ ((
cosh y)
* (
sinh z)))
* (
cosh w))
+ ((
cosh (y
+ z))
* (
sinh w))) by
Lm10
.= (((((
sinh y)
* (
cosh z))
+ ((
cosh y)
* (
sinh z)))
* (
cosh w))
+ ((((
cosh y)
* (
cosh z))
+ ((
sinh y)
* (
sinh z)))
* (
sinh w))) by
Lm10
.= (((((
tanh y)
* ((
cosh y)
* (
cosh z)))
+ ((
cosh y)
* (
sinh z)))
* (
cosh w))
+ ((((
cosh y)
* (
cosh z))
+ ((
sinh y)
* (
sinh z)))
* (
sinh w))) by
Lm14
.= (((((
tanh y)
* ((
cosh y)
* (
cosh z)))
+ ((
tanh z)
* ((
cosh y)
* (
cosh z))))
* (
cosh w))
+ ((((
cosh y)
* (
cosh z))
+ ((
sinh y)
* (
sinh z)))
* (
sinh w))) by
Lm14
.= ((((
tanh y)
+ (
tanh z))
* (((
cosh y)
* (
cosh z))
* (
cosh w)))
+ (((
cosh y)
* ((
cosh z)
* (
sinh w)))
+ (((
sinh y)
* (
sinh z))
* (
sinh w))))
.= ((((
tanh y)
+ (
tanh z))
* (((
cosh y)
* (
cosh z))
* (
cosh w)))
+ (((
cosh y)
* ((
tanh w)
* ((
cosh z)
* (
cosh w))))
+ (((
sinh y)
* (
sinh z))
* (
sinh w)))) by
Lm14
.= ((((
tanh y)
+ (
tanh z))
* (((
cosh y)
* (
cosh z))
* (
cosh w)))
+ ((((
tanh w)
* ((
cosh y)
* (
cosh z)))
* (
cosh w))
+ ((((
tanh y)
* (
cosh y))
* (
sinh z))
* (
sinh w)))) by
Lm14
.= ((((
tanh y)
+ (
tanh z))
* (((
cosh y)
* (
cosh z))
* (
cosh w)))
+ ((((
tanh w)
* ((
cosh y)
* (
cosh z)))
* (
cosh w))
+ ((((
tanh y)
* (
cosh y))
* ((
tanh z)
* (
cosh z)))
* (
sinh w)))) by
Lm14
.= ((((
tanh y)
+ (
tanh z))
* (((
cosh y)
* (
cosh z))
* (
cosh w)))
+ ((((
tanh w)
* ((
cosh y)
* (
cosh z)))
* (
cosh w))
+ ((((
tanh y)
* (
tanh z))
* ((
cosh y)
* (
cosh z)))
* ((
tanh w)
* (
cosh w))))) by
Lm14
.= (((((((
tanh y)
+ (
tanh z))
+ (
tanh w))
+ (((
tanh y)
* (
tanh z))
* (
tanh w)))
* (
cosh y))
* (
cosh z))
* (
cosh w));
then (
tanh ((y
+ z)
+ w))
= ((((((
tanh y)
+ (
tanh z))
+ (
tanh w))
+ (((
tanh y)
* (
tanh z))
* (
tanh w)))
* (((
cosh y)
* (
cosh z))
* (
cosh w)))
/ ((((1
+ ((
tanh y)
* (
tanh z)))
+ ((
tanh z)
* (
tanh w)))
+ ((
tanh w)
* (
tanh y)))
* (((
cosh y)
* (
cosh z))
* (
cosh w)))) by
A3,
Th1
.= (((((
tanh y)
+ (
tanh z))
+ (
tanh w))
+ (((
tanh y)
* (
tanh z))
* (
tanh w)))
/ (((1
+ ((
tanh y)
* (
tanh z)))
+ ((
tanh z)
* (
tanh w)))
+ ((
tanh w)
* (
tanh y)))) by
A1,
A2,
XCMPLX_1: 6,
XCMPLX_1: 91;
hence thesis by
A4,
A3;
end;
theorem ::
SIN_COS8:22
((((
cosh (2
* y))
+ (
cosh (2
* z)))
+ (
cosh (2
* w)))
+ (
cosh (2
* ((y
+ z)
+ w))))
= (((4
* (
cosh (z
+ w)))
* (
cosh (w
+ y)))
* (
cosh (y
+ z)))
proof
((((
cosh (2
* y))
+ (
cosh (2
* z)))
+ (
cosh (2
* w)))
+ (
cosh (2
* ((y
+ z)
+ w))))
= (2
* (((1
/ 2)
* ((
cosh (2
* ((y
+ z)
+ w)))
+ (
cosh (2
* y))))
+ ((1
/ 2)
* ((
cosh (2
* w))
+ (
cosh (2
* z))))))
.= (2
* (((1
/ 2)
* ((2
* (
cosh (((2
* ((y
+ z)
+ w))
/ 2)
+ ((2
* y)
/ 2))))
* (
cosh (((2
* ((y
+ z)
+ w))
/ 2)
- ((2
* y)
/ 2)))))
+ ((1
/ 2)
* ((
cosh (2
* w))
+ (
cosh (2
* z)))))) by
Lm11
.= (2
* (((
cosh (z
+ w))
* (
cosh (((y
+ z)
+ w)
+ y)))
+ ((1
/ 2)
* ((2
* (
cosh (((2
* w)
/ 2)
+ ((2
* z)
/ 2))))
* (
cosh (((2
* w)
/ 2)
- ((2
* z)
/ 2))))))) by
Lm11
.= (2
* ((
cosh (z
+ w))
* ((
cosh ((2
* y)
+ (z
+ w)))
+ (
cosh (w
- z)))))
.= (2
* ((
cosh (z
+ w))
* ((2
* (
cosh ((((2
* y)
+ (z
+ w))
/ 2)
+ ((w
- z)
/ 2))))
* (
cosh ((((2
* y)
+ (z
+ w))
/ 2)
- ((w
- z)
/ 2)))))) by
Lm11
.= (((4
* (
cosh (z
+ w)))
* (
cosh (w
+ y)))
* (
cosh (y
+ z)));
hence thesis;
end;
theorem ::
SIN_COS8:23
((((((
sinh y)
* (
sinh z))
* (
sinh (z
- y)))
+ (((
sinh z)
* (
sinh w))
* (
sinh (w
- z))))
+ (((
sinh w)
* (
sinh y))
* (
sinh (y
- w))))
+ (((
sinh (z
- y))
* (
sinh (w
- z)))
* (
sinh (y
- w))))
=
0
proof
((((((
sinh y)
* (
sinh z))
* (
sinh (z
- y)))
+ (((
sinh z)
* (
sinh w))
* (
sinh (w
- z))))
+ (((
sinh w)
* (
sinh y))
* (
sinh (y
- w))))
+ (((
sinh (z
- y))
* (
sinh (w
- z)))
* (
sinh (y
- w))))
= ((((((1
/ 2)
* ((
cosh (y
+ z))
- (
cosh (y
- z))))
* (
sinh (z
- y)))
+ (((
sinh z)
* (
sinh w))
* (
sinh (w
- z))))
+ (((
sinh w)
* (
sinh y))
* (
sinh (y
- w))))
+ (((
sinh (z
- y))
* (
sinh (w
- z)))
* (
sinh (y
- w)))) by
Th11
.= (((((1
/ 2)
* (((
cosh (y
+ z))
* (
sinh (z
- y)))
- ((
cosh (y
- z))
* (
sinh (z
- y)))))
+ (((
sinh z)
* (
sinh w))
* (
sinh (w
- z))))
+ (((
sinh w)
* (
sinh y))
* (
sinh (y
- w))))
+ (((
sinh (z
- y))
* (
sinh (w
- z)))
* (
sinh (y
- w))))
.= (((((1
/ 2)
* (((1
/ 2)
* ((
sinh ((y
+ z)
+ (z
- y)))
- (
sinh ((y
+ z)
- (z
- y)))))
- ((
cosh (y
- z))
* (
sinh (z
- y)))))
+ (((
sinh z)
* (
sinh w))
* (
sinh (w
- z))))
+ (((
sinh w)
* (
sinh y))
* (
sinh (y
- w))))
+ (((
sinh (z
- y))
* (
sinh (w
- z)))
* (
sinh (y
- w)))) by
Th11
.= (((((1
/ 2)
* (((1
/ 2)
* ((
sinh (2
* z))
- (
sinh (y
+ y))))
- ((1
/ 2)
* ((
sinh ((y
- z)
+ (
- (y
- z))))
- (
sinh ((y
- z)
- (z
- y)))))))
+ (((
sinh z)
* (
sinh w))
* (
sinh (w
- z))))
+ (((
sinh w)
* (
sinh y))
* (
sinh (y
- w))))
+ (((
sinh (z
- y))
* (
sinh (w
- z)))
* (
sinh (y
- w)))) by
Th11
.= (((((1
/ 2)
* (((1
/ 2)
* ((
sinh (2
* z))
- (
sinh (2
* y))))
- ((1
/ 2)
* ((
sinh
.
0 )
- (
sinh (2
* (y
- z)))))))
+ (((
sinh z)
* (
sinh w))
* (
sinh (w
- z))))
+ (((
sinh w)
* (
sinh y))
* (
sinh (y
- w))))
+ (((
sinh (z
- y))
* (
sinh (w
- z)))
* (
sinh (y
- w)))) by
SIN_COS2:def 2
.= (((((1
/ 2)
* ((1
/ 2)
* (((
sinh (2
* z))
- (
sinh (2
* y)))
- (
- (
sinh (2
* (y
- z)))))))
+ (((1
/ 2)
* ((
cosh (z
+ w))
- (
cosh (z
- w))))
* (
sinh (w
- z))))
+ (((
sinh w)
* (
sinh y))
* (
sinh (y
- w))))
+ (((
sinh (z
- y))
* (
sinh (w
- z)))
* (
sinh (y
- w)))) by
Th11,
SIN_COS2: 16
.= ((((1
/ 2)
* (((1
/ 2)
* (((
sinh (2
* z))
- (
sinh (2
* y)))
- (
- (
sinh (2
* (y
- z))))))
+ (((
cosh (z
+ w))
* (
sinh (w
- z)))
- ((
cosh (z
- w))
* (
sinh (w
- z))))))
+ (((
sinh w)
* (
sinh y))
* (
sinh (y
- w))))
+ (((
sinh (z
- y))
* (
sinh (w
- z)))
* (
sinh (y
- w))))
.= ((((1
/ 2)
* (((1
/ 2)
* (((
sinh (2
* z))
- (
sinh (2
* y)))
- (
- (
sinh (2
* (y
- z))))))
+ (((1
/ 2)
* ((
sinh ((z
+ w)
+ (w
- z)))
- (
sinh ((z
+ w)
- (w
- z)))))
- ((
cosh (z
- w))
* (
sinh (w
- z))))))
+ (((
sinh w)
* (
sinh y))
* (
sinh (y
- w))))
+ (((
sinh (z
- y))
* (
sinh (w
- z)))
* (
sinh (y
- w)))) by
Th11
.= ((((1
/ 2)
* (((1
/ 2)
* (((
sinh (2
* z))
- (
sinh (2
* y)))
- (
- (
sinh (2
* (y
- z))))))
+ (((1
/ 2)
* ((
sinh (2
* w))
- (
sinh (2
* z))))
- ((1
/ 2)
* ((
sinh ((z
- w)
+ (w
- z)))
- (
sinh ((z
- w)
- (w
- z))))))))
+ (((
sinh w)
* (
sinh y))
* (
sinh (y
- w))))
+ (((
sinh (z
- y))
* (
sinh (w
- z)))
* (
sinh (y
- w)))) by
Th11
.= ((((1
/ 2)
* (((1
/ 2)
* (((
sinh (2
* z))
- (
sinh (2
* y)))
- (
- (
sinh (2
* (y
- z))))))
+ (((1
/ 2)
* ((
sinh (2
* w))
- (
sinh (2
* z))))
- ((1
/ 2)
* (
0
- (
sinh ((z
- w)
- (w
- z))))))))
+ (((
sinh w)
* (
sinh y))
* (
sinh (y
- w))))
+ (((
sinh (z
- y))
* (
sinh (w
- z)))
* (
sinh (y
- w)))) by
SIN_COS2: 16,
SIN_COS2:def 2
.= ((((1
/ 2)
* ((1
/ 2)
* ((((
sinh (2
* z))
- (
sinh (2
* y)))
- (
- (
sinh (2
* (y
- z)))))
+ (((
sinh (2
* w))
- (
sinh (2
* z)))
- (
- (
sinh (2
* (z
- w))))))))
+ (((1
/ 2)
* ((
cosh (w
+ y))
- (
cosh (w
- y))))
* (
sinh (y
- w))))
+ (((
sinh (z
- y))
* (
sinh (w
- z)))
* (
sinh (y
- w)))) by
Th11
.= (((1
/ 2)
* (((1
/ 2)
* ((((
sinh (2
* z))
- (
sinh (2
* y)))
- (
- (
sinh (2
* (y
- z)))))
+ (((
sinh (2
* w))
- (
sinh (2
* z)))
- (
- (
sinh (2
* (z
- w)))))))
+ (((
cosh (w
+ y))
* (
sinh (y
- w)))
- ((
cosh (w
- y))
* (
sinh (y
- w))))))
+ (((
sinh (z
- y))
* (
sinh (w
- z)))
* (
sinh (y
- w))))
.= (((1
/ 2)
* (((1
/ 2)
* ((((
sinh (2
* z))
- (
sinh (2
* y)))
- (
- (
sinh (2
* (y
- z)))))
+ (((
sinh (2
* w))
- (
sinh (2
* z)))
- (
- (
sinh (2
* (z
- w)))))))
+ (((1
/ 2)
* ((
sinh ((w
+ y)
+ (y
- w)))
- (
sinh ((w
+ y)
- (y
- w)))))
- ((
cosh (w
- y))
* (
sinh (y
- w))))))
+ (((
sinh (z
- y))
* (
sinh (w
- z)))
* (
sinh (y
- w)))) by
Th11
.= (((1
/ 2)
* (((1
/ 2)
* ((((
sinh (2
* z))
- (
sinh (2
* y)))
- (
- (
sinh (2
* (y
- z)))))
+ (((
sinh (2
* w))
- (
sinh (2
* z)))
- (
- (
sinh (2
* (z
- w)))))))
+ (((1
/ 2)
* ((
sinh (2
* y))
- (
sinh (2
* w))))
- ((1
/ 2)
* ((
sinh ((w
- y)
+ (
- (w
- y))))
- (
sinh ((w
- y)
- (
- (w
- y)))))))))
+ (((
sinh (z
- y))
* (
sinh (w
- z)))
* (
sinh (y
- w)))) by
Th11
.= (((1
/ 2)
* (((1
/ 2)
* ((((
sinh (2
* z))
- (
sinh (2
* y)))
- (
- (
sinh (2
* (y
- z)))))
+ (((
sinh (2
* w))
- (
sinh (2
* z)))
- (
- (
sinh (2
* (z
- w)))))))
+ (((1
/ 2)
* ((
sinh (2
* y))
- (
sinh (2
* w))))
- ((1
/ 2)
* (
0
- (
sinh (2
* (w
- y))))))))
+ (((
sinh (z
- y))
* (
sinh (w
- z)))
* (
sinh (y
- w)))) by
SIN_COS2: 16,
SIN_COS2:def 2
.= (((1
/ 2)
* ((1
/ 2)
* (((
sinh (2
* (y
- z)))
+ (
sinh (2
* (z
- w))))
+ (
sinh (2
* (w
- y))))))
+ (((1
/ 2)
* ((
cosh ((z
- y)
+ (
- (z
- w))))
- (
cosh ((z
- y)
- (w
- z)))))
* (
sinh (y
- w)))) by
Th11
.= ((1
/ 2)
* (((1
/ 2)
* (((
sinh (2
* (y
- z)))
+ (
sinh (2
* (z
- w))))
+ (
sinh (2
* (w
- y)))))
+ (((
cosh (w
- y))
* (
sinh (y
- w)))
- ((
cosh ((z
- y)
- (w
- z)))
* (
sinh (y
- w))))))
.= ((1
/ 2)
* (((1
/ 2)
* (((
sinh (2
* (y
- z)))
+ (
sinh (2
* (z
- w))))
+ (
sinh (2
* (w
- y)))))
+ (((1
/ 2)
* ((
sinh ((w
- y)
+ (
- (w
- y))))
- (
sinh ((w
- y)
- (y
- w)))))
- ((
cosh ((z
- y)
- (w
- z)))
* (
sinh (y
- w)))))) by
Th11
.= ((1
/ 2)
* (((1
/ 2)
* (((
sinh (2
* (y
- z)))
+ (
sinh (2
* (z
- w))))
+ (
sinh (2
* (w
- y)))))
+ (((1
/ 2)
* (
0
- (
sinh ((w
- y)
- (y
- w)))))
- ((
cosh ((z
- y)
- (w
- z)))
* (
sinh (y
- w)))))) by
SIN_COS2: 16,
SIN_COS2:def 2
.= ((1
/ 2)
* (((1
/ 2)
* (((
sinh (2
* (y
- z)))
+ (
sinh (2
* (z
- w))))
+ (
sinh (2
* (w
- y)))))
+ (((1
/ 2)
* (
- (
sinh (2
* (w
- y)))))
- ((1
/ 2)
* ((
sinh (((z
- y)
+ (z
- w))
+ (y
- w)))
- (
sinh (((z
- y)
+ (z
- w))
- (y
- w)))))))) by
Th11
.= ((1
/ 2)
* (((1
/ 2)
* (((
sinh (2
* (y
- z)))
+ (
sinh (2
* (z
- w))))
+ (
sinh (2
* (w
- y)))))
+ ((1
/ 2)
* (((
sinh (
- (2
* (y
- z))))
- (
sinh (2
* (z
- w))))
+ (
- (
sinh (2
* (w
- y))))))))
.= ((1
/ 2)
* (((1
/ 2)
* (((
sinh (2
* (y
- z)))
+ (
sinh (2
* (z
- w))))
+ (
sinh (2
* (w
- y)))))
+ ((1
/ 2)
* (((
- (
sinh (2
* (y
- z))))
- (
sinh (2
* (z
- w))))
+ (
- (
sinh (2
* (w
- y)))))))) by
Lm8;
hence thesis;
end;
theorem ::
SIN_COS8:24
Th24: x
>=
0 implies (
sinh (x
/ 2))
= (
sqrt (((
cosh x)
- 1)
/ 2))
proof
assume x
>=
0 ;
then (
sinh (x
/ 2))
= (
sqrt ((
sinh (x
/ 2))
^2 )) by
SIN_COS5: 46,
SQUARE_1: 22
.= (
sqrt ((
sinh
. (x
/ 2))
^2 )) by
SIN_COS2:def 2
.= (
sqrt ((1
/ 2)
* ((
cosh
. (2
* (x
/ 2)))
- 1))) by
SIN_COS2: 18
.= (
sqrt (((
cosh
. x)
- 1)
/ 2))
.= (
sqrt (((
cosh x)
- 1)
/ 2)) by
SIN_COS2:def 4;
hence thesis;
end;
theorem ::
SIN_COS8:25
Th25: x
<
0 implies (
sinh (x
/ 2))
= (
- (
sqrt (((
cosh x)
- 1)
/ 2)))
proof
assume x
<
0 ;
then
A1: (x
/ 2)
<
0 by
XREAL_1: 141;
(
sinh (x
/ 2))
= (
- (
- (
sinh (x
/ 2))))
.= (
- (
sqrt ((
sinh (x
/ 2))
^2 ))) by
A1,
SIN_COS5: 47,
SQUARE_1: 23
.= (
- (
sqrt ((
sinh
. (x
/ 2))
^2 ))) by
SIN_COS2:def 2
.= (
- (
sqrt ((1
/ 2)
* ((
cosh
. (2
* (x
/ 2)))
- 1)))) by
SIN_COS2: 18
.= (
- (
sqrt (((
cosh
. x)
- 1)
/ 2)))
.= (
- (
sqrt (((
cosh x)
- 1)
/ 2))) by
SIN_COS2:def 4;
hence thesis;
end;
theorem ::
SIN_COS8:26
Th26: (
sinh (2
* x))
= ((2
* (
sinh x))
* (
cosh x)) & (
cosh (2
* x))
= ((2
* ((
cosh x)
^2 ))
- 1) & (
tanh (2
* x))
= ((2
* (
tanh x))
/ (1
+ ((
tanh x)
^2 )))
proof
A1: (
cosh (2
* x))
= (
cosh
. (2
* x)) by
SIN_COS2:def 4
.= ((2
* ((
cosh
. x)
^2 ))
- 1) by
SIN_COS2: 23
.= ((2
* ((
cosh x)
^2 ))
- 1) by
SIN_COS2:def 4;
A2: (
tanh (2
* x))
= (
tanh
. (2
* x)) by
SIN_COS2:def 6
.= ((2
* (
tanh
. x))
/ (1
+ ((
tanh
. x)
^2 ))) by
SIN_COS2: 23
.= ((2
* (
tanh x))
/ (1
+ ((
tanh
. x)
^2 ))) by
SIN_COS2:def 6
.= ((2
* (
tanh x))
/ (1
+ ((
tanh x)
^2 ))) by
SIN_COS2:def 6;
(
sinh (2
* x))
= (
sinh
. (2
* x)) by
SIN_COS2:def 2
.= ((2
* (
sinh
. x))
* (
cosh
. x)) by
SIN_COS2: 23
.= ((2
* (
sinh x))
* (
cosh
. x)) by
SIN_COS2:def 2
.= ((2
* (
sinh x))
* (
cosh x)) by
SIN_COS2:def 4;
hence thesis by
A1,
A2;
end;
theorem ::
SIN_COS8:27
Th27: (
sinh (2
* x))
= ((2
* (
tanh x))
/ (1
- ((
tanh x)
^2 ))) & (
sinh (3
* x))
= ((
sinh x)
* ((4
* ((
cosh x)
^2 ))
- 1)) & (
sinh (3
* x))
= ((3
* (
sinh x))
- ((2
* (
sinh x))
* (1
- (
cosh (2
* x))))) & (
cosh (2
* x))
= (1
+ (2
* ((
sinh x)
^2 ))) & (
cosh (2
* x))
= (((
cosh x)
^2 )
+ ((
sinh x)
^2 )) & (
cosh (2
* x))
= ((1
+ ((
tanh x)
^2 ))
/ (1
- ((
tanh x)
^2 ))) & (
cosh (3
* x))
= ((
cosh x)
* ((4
* ((
sinh x)
^2 ))
+ 1)) & (
tanh (3
* x))
= (((3
* (
tanh x))
+ ((
tanh x)
|^ 3))
/ (1
+ (3
* ((
tanh x)
^2 ))))
proof
A1: (
cosh x)
<>
0 by
Lm1;
A2: (
sinh (2
* x))
= ((2
* (
sinh x))
* (
cosh x)) by
Th26
.= (((2
* (
sinh x))
* (
cosh x))
* ((
cosh x)
/ (
cosh x))) by
A1,
XCMPLX_1: 88
.= ((((2
* (
sinh x))
* (
cosh x))
* (
cosh x))
/ (
cosh x)) by
XCMPLX_1: 74
.= (((2
* (
sinh x))
* ((
cosh x)
* (
cosh x)))
/ (
cosh x))
.= (((2
* (
sinh x))
/ (
cosh x))
* ((
cosh x)
* (
cosh x))) by
XCMPLX_1: 74
.= ((2
* ((
sinh x)
/ (
cosh x)))
* ((
cosh x)
* (
cosh x))) by
XCMPLX_1: 74
.= ((2
* (
tanh x))
* ((
cosh x)
* (
cosh x))) by
Th1
.= ((2
* (
tanh x))
/ (1
/ ((
cosh x)
* (
cosh x)))) by
XCMPLX_1: 100
.= ((2
* (
tanh x))
/ ((((
cosh x)
* (
cosh x))
- ((
sinh x)
^2 ))
/ ((
cosh x)
* (
cosh x)))) by
Lm3
.= ((2
* (
tanh x))
/ ((((
cosh x)
* (
cosh x))
/ ((
cosh x)
* (
cosh x)))
- (((
sinh x)
* (
sinh x))
/ ((
cosh x)
* (
cosh x))))) by
XCMPLX_1: 120
.= ((2
* (
tanh x))
/ ((((
cosh x)
/ (
cosh x))
* ((
cosh x)
/ (
cosh x)))
- (((
sinh x)
* (
sinh x))
/ ((
cosh x)
* (
cosh x))))) by
XCMPLX_1: 76
.= ((2
* (
tanh x))
/ ((1
* ((
cosh x)
/ (
cosh x)))
- (((
sinh x)
* (
sinh x))
/ ((
cosh x)
* (
cosh x))))) by
A1,
XCMPLX_1: 60
.= ((2
* (
tanh x))
/ (1
- (((
sinh x)
* (
sinh x))
/ ((
cosh x)
* (
cosh x))))) by
A1,
XCMPLX_1: 60
.= ((2
* (
tanh x))
/ (1
- (((
sinh x)
/ (
cosh x))
* ((
sinh x)
/ (
cosh x))))) by
XCMPLX_1: 76
.= ((2
* (
tanh x))
/ (1
- ((
tanh x)
* ((
sinh x)
/ (
cosh x))))) by
Th1
.= ((2
* (
tanh x))
/ (1
- ((
tanh x)
^2 ))) by
Th1;
A3: (
cosh (3
* x))
= ((4
* ((
cosh x)
|^ (2
+ 1)))
- (3
* (
cosh x))) by
SIN_COS5: 44
.= ((4
* (((
cosh x)
|^ 2)
* (
cosh x)))
- (3
* (
cosh x))) by
NEWTON: 6
.= (((4
* ((
cosh x)
|^ (1
+ 1)))
- 3)
* (
cosh x))
.= (((4
* (((
cosh x)
|^ 1)
* (
cosh x)))
- 3)
* (
cosh x)) by
NEWTON: 6
.= (((4
* ((((
cosh x)
^2 )
- ((
sinh x)
^2 ))
+ ((
sinh x)
^2 )))
- 3)
* (
cosh x))
.= (((4
* (1
+ ((
sinh x)
^2 )))
- 3)
* (
cosh x)) by
Lm3
.= ((
cosh x)
* ((4
* ((
sinh x)
^2 ))
+ 1));
A4: (
cosh (2
* x))
= ((2
* ((((
cosh x)
^2 )
- ((
sinh x)
^2 ))
+ ((
sinh x)
^2 )))
- 1) by
Th26
.= ((2
* (1
+ ((
sinh x)
^2 )))
- 1) by
Lm3
.= (1
+ (2
* ((
sinh x)
^2 )));
A5: (
tanh (3
* x))
= (
tanh ((x
+ x)
+ x))
.= (((((
tanh x)
+ (
tanh x))
+ (
tanh x))
+ (((
tanh x)
* (
tanh x))
* (
tanh x)))
/ (((1
+ ((
tanh x)
* (
tanh x)))
+ ((
tanh x)
* (
tanh x)))
+ ((
tanh x)
* (
tanh x)))) by
Th21
.= (((3
* (
tanh x))
+ ((((
tanh x)
|^ 1)
* (
tanh x))
* (
tanh x)))
/ (((1
+ ((
tanh x)
* (
tanh x)))
+ ((
tanh x)
* (
tanh x)))
+ ((
tanh x)
* (
tanh x))))
.= (((3
* (
tanh x))
+ (((
tanh x)
|^ (1
+ 1))
* (
tanh x)))
/ (((1
+ ((
tanh x)
* (
tanh x)))
+ ((
tanh x)
* (
tanh x)))
+ ((
tanh x)
* (
tanh x)))) by
NEWTON: 6
.= (((3
* (
tanh x))
+ ((
tanh x)
|^ ((1
+ 1)
+ 1)))
/ (((1
+ ((
tanh x)
* (
tanh x)))
+ ((
tanh x)
* (
tanh x)))
+ ((
tanh x)
* (
tanh x)))) by
NEWTON: 6
.= (((3
* (
tanh x))
+ ((
tanh x)
|^ 3))
/ (1
+ (3
* ((
tanh x)
^2 ))));
A6: (
cosh x)
<>
0 by
Lm1;
A7: (
cosh (2
* x))
= ((2
* ((
cosh x)
^2 ))
- 1) by
Th26
.= ((2
* ((
cosh x)
^2 ))
- (((
cosh x)
^2 )
- ((
sinh x)
^2 ))) by
Lm3
.= (((
cosh x)
^2 )
+ ((
sinh x)
^2 ));
then
A8: (
cosh (2
* x))
= (((1
/ (
sech x))
^2 )
+ ((
sinh x)
^2 )) by
Th2
.= ((1
/ ((
sech x)
^2 ))
+ (((
sinh x)
^2 )
* (1
^2 ))) by
XCMPLX_1: 76
.= ((1
/ ((
sech x)
^2 ))
+ ((((
sinh x)
^2 )
/ ((
cosh x)
^2 ))
* ((
cosh x)
^2 ))) by
A6,
XCMPLX_1: 6,
XCMPLX_1: 87
.= ((1
/ ((
sech x)
^2 ))
+ ((((
sinh x)
/ (
cosh x))
^2 )
* ((
cosh x)
^2 ))) by
XCMPLX_1: 76
.= ((1
/ ((
sech x)
^2 ))
+ (((
tanh x)
^2 )
* ((
cosh x)
^2 ))) by
Th1
.= ((1
/ ((
sech x)
^2 ))
+ (((
tanh x)
^2 )
/ ((1
^2 )
/ ((
cosh x)
^2 )))) by
XCMPLX_1: 100
.= ((1
/ ((
sech x)
^2 ))
+ (((
tanh x)
^2 )
/ ((1
/ (
cosh x))
^2 ))) by
XCMPLX_1: 76
.= ((1
/ ((
sech x)
^2 ))
+ (((
tanh x)
^2 )
/ ((
sech x)
^2 ))) by
SIN_COS5:def 2
.= ((1
+ ((
tanh x)
^2 ))
/ ((((
sech x)
^2 )
+ ((
tanh x)
^2 ))
- ((
tanh x)
^2 ))) by
XCMPLX_1: 62
.= ((1
+ ((
tanh x)
^2 ))
/ (1
- ((
tanh x)
^2 ))) by
SIN_COS5: 38;
A9: (
sinh (3
* x))
= ((4
* ((
sinh x)
|^ (2
+ 1)))
+ (3
* (
sinh x))) by
SIN_COS5: 43
.= ((4
* (((
sinh x)
|^ 2)
* (
sinh x)))
+ (3
* (
sinh x))) by
NEWTON: 6
.= ((
sinh x)
* ((4
* ((
sinh x)
|^ (1
+ 1)))
+ 3))
.= ((
sinh x)
* ((4
* (((
sinh x)
|^ 1)
* (
sinh x)))
+ 3)) by
NEWTON: 6
.= ((
sinh x)
* ((4
* (((
cosh x)
^2 )
- (((
cosh x)
^2 )
- ((
sinh x)
^2 ))))
+ 3))
.= ((
sinh x)
* ((4
* (((
cosh x)
^2 )
- 1))
+ 3)) by
Lm3
.= ((
sinh x)
* ((4
* ((
cosh x)
^2 ))
- 1));
then (
sinh (3
* x))
= (((
sinh x)
* (4
* ((((
cosh x)
^2 )
- ((
sinh x)
^2 ))
+ ((
sinh x)
^2 ))))
- (
sinh x))
.= (((
sinh x)
* (4
* (1
+ ((
sinh x)
^2 ))))
- (
sinh x)) by
Lm3
.= (((4
* (
sinh x))
+ ((
sinh x)
* ((2
* (((
cosh x)
^2 )
- (((
cosh x)
^2 )
- ((
sinh x)
^2 ))))
+ (2
* ((
sinh x)
^2 )))))
- (
sinh x))
.= (((4
* (
sinh x))
+ ((
sinh x)
* ((2
* (((
cosh x)
^2 )
- 1))
+ (2
* ((
sinh x)
^2 )))))
- (
sinh x)) by
Lm3
.= (((4
* (
sinh x))
+ ((
sinh x)
* (2
* ((((
cosh x)
* (
cosh x))
+ ((
sinh x)
^2 ))
- 1))))
- (
sinh x))
.= (((4
* (
sinh x))
+ ((
sinh x)
* (2
* ((
cosh (x
+ x))
- 1))))
- (
sinh x)) by
Lm10
.= ((3
* (
sinh x))
- ((2
* (
sinh x))
* (1
- (
cosh (2
* x)))));
hence thesis by
A2,
A9,
A4,
A7,
A8,
A3,
A5;
end;
theorem ::
SIN_COS8:28
((((
sinh (5
* x))
+ (2
* (
sinh (3
* x))))
+ (
sinh x))
/ (((
sinh (7
* x))
+ (2
* (
sinh (5
* x))))
+ (
sinh (3
* x))))
= ((
sinh (3
* x))
/ (
sinh (5
* x)))
proof
((((
sinh (5
* x))
+ (2
* (
sinh (3
* x))))
+ (
sinh x))
/ (((
sinh (7
* x))
+ (2
* (
sinh (5
* x))))
+ (
sinh (3
* x))))
= ((((
sinh ((3
* x)
+ (2
* x)))
+ (2
* (
sinh (3
* x))))
+ (
sinh x))
/ (((
sinh ((5
+ 2)
* x))
+ (2
* (
sinh (5
* x))))
+ (
sinh (3
* x))))
.= ((((((
sinh (3
* x))
* (
cosh (2
* x)))
+ ((
cosh (3
* x))
* (
sinh (2
* x))))
+ (2
* (
sinh (3
* x))))
+ (
sinh x))
/ (((
sinh ((5
+ 2)
* x))
+ (2
* (
sinh (5
* x))))
+ (
sinh (3
* x)))) by
Lm10
.= ((((
sinh (3
* x))
* ((
cosh (2
* x))
+ 2))
+ (((
cosh ((2
* x)
+ (1
* x)))
* (
sinh (2
* x)))
+ (
sinh x)))
/ (((
sinh ((5
* x)
+ (2
* x)))
+ (2
* (
sinh (5
* x))))
+ (
sinh (3
* x))))
.= ((((
sinh (3
* x))
* ((
cosh (2
* x))
+ 2))
+ (((((
cosh (2
* x))
* (
cosh x))
+ ((
sinh (2
* x))
* (
sinh x)))
* (
sinh (2
* x)))
+ (
sinh x)))
/ (((
sinh ((5
* x)
+ (2
* x)))
+ (2
* (
sinh (5
* x))))
+ (
sinh (3
* x)))) by
Lm10
.= ((((
sinh (3
* x))
* ((
cosh (2
* x))
+ 2))
+ ((((
cosh (2
* x))
* (
cosh x))
* (
sinh (2
* x)))
+ ((((
sinh (2
* x))
^2 )
+ 1)
* (
sinh x))))
/ (((
sinh ((5
* x)
+ (2
* x)))
+ (2
* (
sinh (5
* x))))
+ (
sinh (3
* x))))
.= ((((
sinh (3
* x))
* ((
cosh (2
* x))
+ 2))
+ ((((
cosh (2
* x))
* (
cosh x))
* (
sinh (2
* x)))
+ (((((
cosh (2
* x))
^2 )
- ((
sinh (2
* x))
^2 ))
+ ((
sinh (2
* x))
^2 ))
* (
sinh x))))
/ (((
sinh ((5
* x)
+ (2
* x)))
+ (2
* (
sinh (5
* x))))
+ (
sinh (3
* x)))) by
Lm3
.= ((((
sinh (3
* x))
* ((
cosh (2
* x))
+ 2))
+ ((
cosh (2
* x))
* (((
sinh (2
* x))
* (
cosh x))
+ ((
cosh (2
* x))
* (
sinh x)))))
/ (((
sinh ((5
* x)
+ (2
* x)))
+ (2
* (
sinh (5
* x))))
+ (
sinh (3
* x))))
.= ((((
sinh (3
* x))
* ((
cosh (2
* x))
+ 2))
+ ((
cosh (2
* x))
* (
sinh ((2
* x)
+ (1
* x)))))
/ (((
sinh ((5
* x)
+ (2
* x)))
+ (2
* (
sinh (5
* x))))
+ (
sinh (3
* x)))) by
Lm10
.= (((
sinh (3
* x))
* (((
cosh (2
* x))
+ 2)
+ (
cosh (2
* x))))
/ (((((
sinh (5
* x))
* (
cosh (2
* x)))
+ ((
cosh (5
* x))
* (
sinh (2
* x))))
+ ((
sinh (5
* x))
* 2))
+ (
sinh (3
* x)))) by
Lm10
.= (((
sinh (3
* x))
* (((
cosh (2
* x))
+ 2)
+ (
cosh (2
* x))))
/ (((
sinh (5
* x))
* ((
cosh (2
* x))
+ 2))
+ (((
cosh ((3
* x)
+ (2
* x)))
* (
sinh (2
* x)))
+ (
sinh (3
* x)))))
.= (((
sinh (3
* x))
* (((
cosh (2
* x))
+ 2)
+ (
cosh (2
* x))))
/ (((
sinh (5
* x))
* ((
cosh (2
* x))
+ 2))
+ (((((
cosh (3
* x))
* (
cosh (2
* x)))
+ ((
sinh (3
* x))
* (
sinh (2
* x))))
* (
sinh (2
* x)))
+ (
sinh (3
* x))))) by
Lm10
.= (((
sinh (3
* x))
* (((
cosh (2
* x))
+ 2)
+ (
cosh (2
* x))))
/ (((
sinh (5
* x))
* ((
cosh (2
* x))
+ 2))
+ ((((
cosh (3
* x))
* (
cosh (2
* x)))
* (
sinh (2
* x)))
+ ((
sinh (3
* x))
* (((
sinh (2
* x))
^2 )
+ 1)))))
.= (((
sinh (3
* x))
* (((
cosh (2
* x))
+ 2)
+ (
cosh (2
* x))))
/ (((
sinh (5
* x))
* ((
cosh (2
* x))
+ 2))
+ ((((
cosh (3
* x))
* (
cosh (2
* x)))
* (
sinh (2
* x)))
+ ((
sinh (3
* x))
* ((((
cosh (2
* x))
^2 )
- ((
sinh (2
* x))
^2 ))
+ ((
sinh (2
* x))
^2 )))))) by
Lm3
.= (((
sinh (3
* x))
* (((
cosh (2
* x))
+ 2)
+ (
cosh (2
* x))))
/ (((
sinh (5
* x))
* ((
cosh (2
* x))
+ 2))
+ ((
cosh (2
* x))
* (((
sinh (2
* x))
* (
cosh (3
* x)))
+ ((
cosh (2
* x))
* (
sinh (3
* x)))))))
.= (((
sinh (3
* x))
* (((
cosh (2
* x))
+ 2)
+ (
cosh (2
* x))))
/ (((
sinh (5
* x))
* ((
cosh (2
* x))
+ 2))
+ ((
cosh (2
* x))
* (
sinh ((2
* x)
+ (3
* x)))))) by
Lm10
.= (((
sinh (3
* x))
* (((
cosh (2
* x))
+ 2)
+ (
cosh (2
* x))))
/ ((
sinh (5
* x))
* (((
cosh (2
* x))
+ 2)
+ (
cosh (2
* x)))))
.= ((
sinh (3
* x))
/ (
sinh (5
* x))) by
Lm13,
XCMPLX_1: 91;
hence thesis;
end;
theorem ::
SIN_COS8:29
x
>=
0 implies (
tanh (x
/ 2))
= (
sqrt (((
cosh x)
- 1)
/ ((
cosh x)
+ 1)))
proof
assume
A1: x
>=
0 ;
A2: ((
cosh x)
+ 1)
>
0 & ((
cosh x)
- 1)
>=
0 by
Lm13;
(
tanh (x
/ 2))
= ((
sinh (x
/ 2))
/ (
cosh (x
/ 2))) by
Th1
.= ((
sqrt (((
cosh x)
- 1)
/ 2))
/ (
cosh (x
/ 2))) by
A1,
Th24
.= ((
sqrt (((
cosh x)
- 1)
/ 2))
/ (
sqrt (((
cosh x)
+ 1)
/ 2))) by
SIN_COS5: 48
.= (
sqrt ((((
cosh x)
- 1)
/ 2)
/ (((
cosh x)
+ 1)
/ 2))) by
A2,
SQUARE_1: 30
.= (
sqrt (((
cosh x)
- 1)
/ ((
cosh x)
+ 1))) by
XCMPLX_1: 55;
hence thesis;
end;
theorem ::
SIN_COS8:30
x
<
0 implies (
tanh (x
/ 2))
= (
- (
sqrt (((
cosh x)
- 1)
/ ((
cosh x)
+ 1))))
proof
assume
A1: x
<
0 ;
A2: ((
cosh x)
+ 1)
>
0 & ((
cosh x)
- 1)
>=
0 by
Lm13;
(
tanh (x
/ 2))
= ((
sinh (x
/ 2))
/ (
cosh (x
/ 2))) by
Th1
.= ((
- (
sqrt (((
cosh x)
- 1)
/ 2)))
/ (
cosh (x
/ 2))) by
A1,
Th25
.= (
- ((
sqrt (((
cosh x)
- 1)
/ 2))
/ (
cosh (x
/ 2)))) by
XCMPLX_1: 187
.= (
- ((
sqrt (((
cosh x)
- 1)
/ 2))
/ (
sqrt (((
cosh x)
+ 1)
/ 2)))) by
SIN_COS5: 48
.= (
- (
sqrt ((((
cosh x)
- 1)
/ 2)
/ (((
cosh x)
+ 1)
/ 2)))) by
A2,
SQUARE_1: 30
.= (
- (
sqrt (((
cosh x)
- 1)
/ ((
cosh x)
+ 1)))) by
XCMPLX_1: 55;
hence thesis;
end;
theorem ::
SIN_COS8:31
((
sinh x)
|^ 3)
= (((
sinh (3
* x))
- (3
* (
sinh x)))
/ 4) & ((
sinh x)
|^ 4)
= ((((
cosh (4
* x))
- (4
* (
cosh (2
* x))))
+ 3)
/ 8) & ((
sinh x)
|^ 5)
= ((((
sinh (5
* x))
- (5
* (
sinh (3
* x))))
+ (10
* (
sinh x)))
/ 16) & ((
sinh x)
|^ 6)
= (((((
cosh (6
* x))
- (6
* (
cosh (4
* x))))
+ (15
* (
cosh (2
* x))))
- 10)
/ 32) & ((
sinh x)
|^ 7)
= (((((
sinh (7
* x))
- (7
* (
sinh (5
* x))))
+ (21
* (
sinh (3
* x))))
- (35
* (
sinh x)))
/ 64) & ((
sinh x)
|^ 8)
= ((((((
cosh (8
* x))
- (8
* (
cosh (6
* x))))
+ (28
* (
cosh (4
* x))))
- (56
* (
cosh (2
* x))))
+ 35)
/ 128)
proof
A1: ((
sinh x)
|^ 3)
= ((((4
* ((
sinh x)
|^ 3))
+ (3
* (
sinh x)))
- (3
* (
sinh x)))
/ 4)
.= (((
sinh (3
* x))
- (3
* (
sinh x)))
/ 4) by
SIN_COS5: 43;
then
A2: ((
sinh x)
|^ 4)
= ((((
sinh (3
* x))
- (3
* (
sinh x)))
/ 4)
* (
sinh x)) by
POLYEQ_2: 4
.= ((((
sinh (3
* x))
* (
sinh x))
- (3
* ((
sinh x)
* (
sinh x))))
/ 4)
.= ((((1
/ 2)
* ((
cosh ((3
* x)
+ (1
* x)))
- (
cosh ((3
* x)
- (1
* x)))))
- (3
* ((
sinh x)
* (
sinh x))))
/ 4) by
Th11
.= ((((1
/ 2)
* ((
cosh (4
* x))
- (
cosh (2
* x))))
- (((
sinh x)
^2 )
* 3))
/ 4)
.= ((((1
/ 2)
* ((
cosh (4
* x))
- (
cosh (2
* x))))
- (((1
/ 2)
* ((
cosh (2
* x))
- 1))
* 3))
/ 4) by
Lm7
.= ((((
cosh (4
* x))
- (4
* (
cosh (2
* x))))
+ 3)
/ 8);
A3: ((
sinh x)
|^ 5)
= ((
sinh x)
|^ (4
+ 1))
.= (((((
cosh (4
* x))
- (4
* (
cosh (2
* x))))
+ 3)
/ 8)
* (
sinh x)) by
A2,
NEWTON: 6
.= (((((
cosh (4
* x))
* (
sinh x))
- (4
* ((
cosh (2
* x))
* (
sinh x))))
+ (3
* (
sinh x)))
/ 8)
.= (((((1
/ 2)
* ((
sinh ((4
* x)
+ (1
* x)))
- (
sinh ((4
* x)
- (1
* x)))))
- (4
* ((
cosh (2
* x))
* (
sinh x))))
+ (3
* (
sinh x)))
/ 8) by
Th11
.= (((((1
/ 2)
* ((
sinh (5
* x))
- (
sinh (3
* x))))
- (4
* ((1
/ 2)
* ((
sinh ((2
* x)
+ (1
* x)))
- (
sinh ((2
* x)
- (1
* x)))))))
+ (3
* (
sinh x)))
/ 8) by
Th11
.= ((((
sinh (5
* x))
- (5
* (
sinh (3
* x))))
+ (10
* (
sinh x)))
/ 16);
A4: ((
sinh x)
|^ 6)
= ((
sinh x)
|^ (5
+ 1))
.= (((((
sinh (5
* x))
- (5
* (
sinh (3
* x))))
+ (10
* (
sinh x)))
/ 16)
* (
sinh x)) by
A3,
NEWTON: 6
.= (((((
sinh (5
* x))
* (
sinh x))
- (5
* ((
sinh (3
* x))
* (
sinh x))))
+ (10
* ((
sinh x)
* (
sinh x))))
/ 16)
.= (((((1
/ 2)
* ((
cosh ((5
* x)
+ (1
* x)))
- (
cosh ((5
* x)
- (1
* x)))))
- (5
* ((
sinh (3
* x))
* (
sinh x))))
+ (10
* ((
sinh x)
* (
sinh x))))
/ 16) by
Th11
.= (((((1
/ 2)
* ((
cosh (6
* x))
- (
cosh (4
* x))))
- (((1
/ 2)
* ((
cosh ((3
* x)
+ (1
* x)))
- (
cosh ((3
* x)
- (1
* x)))))
* 5))
+ (10
* ((
sinh x)
* (
sinh x))))
/ 16) by
Th11
.= ((((1
/ 2)
* (((
cosh (6
* x))
- (6
* (
cosh (4
* x))))
+ ((
cosh (2
* x))
* 5)))
+ (10
* ((
sinh x)
^2 )))
/ 16)
.= ((((1
/ 2)
* (((
cosh (6
* x))
- (6
* (
cosh (4
* x))))
+ ((
cosh (2
* x))
* 5)))
+ (((1
/ 2)
* ((
cosh (2
* x))
- 1))
* 10))
/ 16) by
Lm7
.= (((((
cosh (6
* x))
- (6
* (
cosh (4
* x))))
+ (15
* (
cosh (2
* x))))
- 10)
/ 32);
A5: ((
sinh x)
|^ 7)
= ((
sinh x)
|^ (6
+ 1))
.= ((((((
cosh (6
* x))
- (6
* (
cosh (4
* x))))
+ (15
* (
cosh (2
* x))))
- 10)
/ 32)
* (
sinh x)) by
A4,
NEWTON: 6
.= ((((((
cosh (6
* x))
* (
sinh x))
- ((6
* (
cosh (4
* x)))
* (
sinh x)))
+ ((15
* (
cosh (2
* x)))
* (
sinh x)))
- (10
* (
sinh x)))
/ 32)
.= ((((((1
/ 2)
* ((
sinh ((6
* x)
+ (1
* x)))
- (
sinh ((6
* x)
- (1
* x)))))
- ((6
* (
cosh (4
* x)))
* (
sinh x)))
+ ((15
* (
cosh (2
* x)))
* (
sinh x)))
- (10
* (
sinh x)))
/ 32) by
Th11
.= ((((((1
/ 2)
* ((
sinh (7
* x))
- (
sinh (5
* x))))
- (6
* ((
cosh (4
* x))
* (
sinh x))))
+ ((15
* (
cosh (2
* x)))
* (
sinh x)))
- (10
* (
sinh x)))
/ 32)
.= ((((((1
/ 2)
* ((
sinh (7
* x))
- (
sinh (5
* x))))
- (6
* ((1
/ 2)
* ((
sinh ((4
* x)
+ (1
* x)))
- (
sinh ((4
* x)
- (1
* x)))))))
+ ((15
* (
cosh (2
* x)))
* (
sinh x)))
- (10
* (
sinh x)))
/ 32) by
Th11
.= (((((1
/ 2)
* (((
sinh (7
* x))
- (7
* (
sinh (5
* x))))
+ ((
sinh (3
* x))
* 6)))
+ (15
* ((
cosh (2
* x))
* (
sinh x))))
- (10
* (
sinh x)))
/ 32)
.= (((((1
/ 2)
* (((
sinh (7
* x))
- (7
* (
sinh (5
* x))))
+ ((
sinh (3
* x))
* 6)))
+ (15
* ((1
/ 2)
* ((
sinh ((2
* x)
+ (1
* x)))
- (
sinh ((2
* x)
- (1
* x)))))))
- (10
* (
sinh x)))
/ 32) by
Th11
.= (((((
sinh (7
* x))
- (7
* (
sinh (5
* x))))
+ (21
* (
sinh (3
* x))))
- (35
* (
sinh x)))
/ 64);
((
sinh x)
|^ 8)
= ((
sinh x)
|^ (7
+ 1))
.= ((((((
sinh (7
* x))
- (7
* (
sinh (5
* x))))
+ (21
* (
sinh (3
* x))))
- (35
* (
sinh x)))
/ 64)
* (
sinh x)) by
A5,
NEWTON: 6
.= ((((((
sinh (7
* x))
* (
sinh x))
- (7
* ((
sinh (5
* x))
* (
sinh x))))
+ (21
* ((
sinh (3
* x))
* (
sinh x))))
- (35
* ((
sinh x)
* (
sinh x))))
/ 64)
.= ((((((1
/ 2)
* ((
cosh ((7
* x)
+ (1
* x)))
- (
cosh ((7
* x)
- (1
* x)))))
- (7
* ((
sinh (5
* x))
* (
sinh x))))
+ (21
* ((
sinh (3
* x))
* (
sinh x))))
- (35
* ((
sinh x)
* (
sinh x))))
/ 64) by
Th11
.= ((((((1
/ 2)
* ((
cosh (8
* x))
- (
cosh (6
* x))))
- (((1
/ 2)
* ((
cosh ((5
* x)
+ (1
* x)))
- (
cosh ((5
* x)
- (1
* x)))))
* 7))
+ (21
* ((
sinh (3
* x))
* (
sinh x))))
- (35
* ((
sinh x)
* (
sinh x))))
/ 64) by
Th11
.= (((((1
/ 2)
* (((
cosh (8
* x))
- (8
* (
cosh (6
* x))))
+ ((
cosh (4
* x))
* 7)))
+ (((1
/ 2)
* ((
cosh ((3
* x)
+ (1
* x)))
- (
cosh ((3
* x)
- (1
* x)))))
* 21))
- (35
* ((
sinh x)
* (
sinh x))))
/ 64) by
Th11
.= ((((1
/ 2)
* ((((
cosh (8
* x))
- (8
* (
cosh (6
* x))))
+ (28
* (
cosh (4
* x))))
+ (
- ((
cosh (2
* x))
* 21))))
- (35
* ((
sinh x)
^2 )))
/ 64)
.= ((((1
/ 2)
* ((((
cosh (8
* x))
- (8
* (
cosh (6
* x))))
+ (28
* (
cosh (4
* x))))
+ (
- ((
cosh (2
* x))
* 21))))
- (((1
/ 2)
* ((
cosh (2
* x))
- 1))
* 35))
/ 64) by
Lm7
.= ((((((
cosh (8
* x))
- (8
* (
cosh (6
* x))))
+ (28
* (
cosh (4
* x))))
- (56
* (
cosh (2
* x))))
+ 35)
/ 128);
hence thesis by
A1,
A2,
A3,
A4,
A5;
end;
theorem ::
SIN_COS8:32
((
cosh x)
|^ 3)
= (((
cosh (3
* x))
+ (3
* (
cosh x)))
/ 4) & ((
cosh x)
|^ 4)
= ((((
cosh (4
* x))
+ (4
* (
cosh (2
* x))))
+ 3)
/ 8) & ((
cosh x)
|^ 5)
= ((((
cosh (5
* x))
+ (5
* (
cosh (3
* x))))
+ (10
* (
cosh x)))
/ 16) & ((
cosh x)
|^ 6)
= (((((
cosh (6
* x))
+ (6
* (
cosh (4
* x))))
+ (15
* (
cosh (2
* x))))
+ 10)
/ 32) & ((
cosh x)
|^ 7)
= (((((
cosh (7
* x))
+ (7
* (
cosh (5
* x))))
+ (21
* (
cosh (3
* x))))
+ (35
* (
cosh x)))
/ 64) & ((
cosh x)
|^ 8)
= ((((((
cosh (8
* x))
+ (8
* (
cosh (6
* x))))
+ (28
* (
cosh (4
* x))))
+ (56
* (
cosh (2
* x))))
+ 35)
/ 128)
proof
A1: ((
cosh x)
|^ 3)
= ((
cosh x)
|^ ((1
+ 1)
+ 1))
.= (((
cosh x)
|^ (1
+ 1))
* (
cosh x)) by
NEWTON: 6
.= ((((
cosh x)
|^ 1)
* (
cosh x))
* (
cosh x)) by
NEWTON: 6
.= (((((
cosh x)
^2 )
* (
cosh x))
+ (3
* ((
cosh x)
* ((((
cosh x)
^2 )
- ((
sinh x)
^2 ))
+ ((
sinh x)
^2 )))))
/ 4)
.= (((((
cosh x)
^2 )
* (
cosh x))
+ (3
* ((
cosh x)
* (1
+ ((
sinh x)
^2 )))))
/ 4) by
Lm3
.= (((((
cosh x)
* (((
cosh x)
* (
cosh x))
+ ((
sinh x)
^2 )))
+ (2
* ((
cosh x)
* ((
sinh x)
^2 ))))
+ (3
* (
cosh x)))
/ 4)
.= (((((
cosh x)
* (
cosh (x
+ x)))
+ (2
* ((
cosh x)
* ((
sinh x)
^2 ))))
+ (3
* (
cosh x)))
/ 4) by
Lm10
.= (((((
cosh x)
* (
cosh (2
* x)))
+ (((2
* (
sinh x))
* (
cosh x))
* (
sinh x)))
+ (3
* (
cosh x)))
/ 4)
.= (((((
cosh (2
* x))
* (
cosh x))
+ ((
sinh (2
* x))
* (
sinh x)))
+ (3
* (
cosh x)))
/ 4) by
Th26
.= (((
cosh ((x
+ x)
+ x))
+ (3
* (
cosh x)))
/ 4) by
Lm10
.= (((
cosh (3
* x))
+ (3
* (
cosh x)))
/ 4);
then
A2: ((
cosh x)
|^ 4)
= ((((
cosh (3
* x))
+ (3
* (
cosh x)))
/ 4)
* (
cosh x)) by
POLYEQ_2: 4
.= ((((
cosh (3
* x))
* (
cosh x))
+ (3
* ((
cosh x)
* (
cosh x))))
/ 4)
.= ((((1
/ 2)
* ((
cosh ((3
* x)
+ (1
* x)))
+ (
cosh ((3
* x)
- x))))
+ (3
* ((
cosh x)
* (
cosh x))))
/ 4) by
Th11
.= ((((1
/ 2)
* ((
cosh (4
* x))
+ (
cosh (2
* x))))
+ (3
* ((1
/ 2)
* ((
cosh (x
+ x))
+ (
cosh (x
- x))))))
/ 4) by
Th11
.= ((((1
/ 2)
* ((
cosh (4
* x))
+ (
cosh (2
* x))))
+ (((1
/ 2)
* ((
cosh (2
* x))
+ 1))
* 3))
/ 4) by
SIN_COS2: 15,
SIN_COS2:def 4
.= ((((
cosh (4
* x))
+ (4
* (
cosh (2
* x))))
+ 3)
/ 8);
A3: ((
cosh x)
|^ 5)
= ((
cosh x)
|^ (4
+ 1))
.= (((((
cosh (4
* x))
+ (4
* (
cosh (2
* x))))
+ 3)
/ 8)
* (
cosh x)) by
A2,
NEWTON: 6
.= (((((
cosh (4
* x))
* (
cosh x))
+ (4
* ((
cosh (2
* x))
* (
cosh x))))
+ (3
* (
cosh x)))
/ 8)
.= (((((1
/ 2)
* ((
cosh ((4
* x)
+ (1
* x)))
+ (
cosh ((4
* x)
- x))))
+ (4
* ((
cosh (2
* x))
* (
cosh x))))
+ (3
* (
cosh x)))
/ 8) by
Th11
.= (((((1
/ 2)
* ((
cosh (5
* x))
+ (
cosh (3
* x))))
+ (4
* ((1
/ 2)
* ((
cosh ((2
* x)
+ (1
* x)))
+ (
cosh ((2
* x)
- x))))))
+ (3
* (
cosh x)))
/ 8) by
Th11
.= ((((
cosh (5
* x))
+ (5
* (
cosh (3
* x))))
+ (10
* (
cosh x)))
/ 16);
A4: ((
cosh x)
|^ 6)
= ((
cosh x)
|^ (5
+ 1))
.= (((((
cosh (5
* x))
+ (5
* (
cosh (3
* x))))
+ (10
* (
cosh x)))
/ 16)
* (
cosh x)) by
A3,
NEWTON: 6
.= (((((
cosh (5
* x))
* (
cosh x))
+ (5
* ((
cosh (3
* x))
* (
cosh x))))
+ (10
* ((
cosh x)
* (
cosh x))))
/ 16)
.= (((((1
/ 2)
* ((
cosh ((5
* x)
+ x))
+ (
cosh ((5
* x)
- x))))
+ (5
* ((
cosh (3
* x))
* (
cosh x))))
+ (10
* ((
cosh x)
* (
cosh x))))
/ 16) by
Th11
.= (((((1
/ 2)
* ((
cosh ((5
* x)
+ x))
+ (
cosh ((5
* x)
- x))))
+ (((1
/ 2)
* ((
cosh ((3
* x)
+ x))
+ (
cosh ((3
* x)
- x))))
* 5))
+ (10
* ((
cosh x)
* (
cosh x))))
/ 16) by
Th11
.= ((((1
/ 2)
* (((
cosh (6
* x))
+ (6
* (
cosh (4
* x))))
+ ((
cosh (2
* x))
* 5)))
+ (10
* ((
cosh x)
^2 )))
/ 16)
.= ((((1
/ 2)
* (((
cosh (6
* x))
+ (6
* (
cosh (4
* x))))
+ ((
cosh (2
* x))
* 5)))
+ (((1
/ 2)
* ((
cosh (2
* x))
+ 1))
* 10))
/ 16) by
Lm7
.= (((((
cosh (6
* x))
+ (6
* (
cosh (4
* x))))
+ (15
* (
cosh (2
* x))))
+ 10)
/ 32);
A5: ((
cosh x)
|^ 7)
= ((
cosh x)
|^ (6
+ 1))
.= ((((((
cosh (6
* x))
+ (6
* (
cosh (4
* x))))
+ (15
* (
cosh (2
* x))))
+ 10)
/ 32)
* (
cosh x)) by
A4,
NEWTON: 6
.= ((((((
cosh (6
* x))
* (
cosh x))
+ (6
* ((
cosh (4
* x))
* (
cosh x))))
+ (15
* ((
cosh (2
* x))
* (
cosh x))))
+ (10
* (
cosh x)))
/ 32)
.= ((((((1
/ 2)
* ((
cosh ((6
* x)
+ (1
* x)))
+ (
cosh ((6
* x)
- (1
* x)))))
+ (6
* ((
cosh (4
* x))
* (
cosh x))))
+ (15
* ((
cosh (2
* x))
* (
cosh x))))
+ (10
* (
cosh x)))
/ 32) by
Th11
.= ((((((1
/ 2)
* ((
cosh (7
* x))
+ (
cosh (5
* x))))
+ (((1
/ 2)
* ((
cosh ((4
* x)
+ x))
+ (
cosh ((4
* x)
- x))))
* 6))
+ (15
* ((
cosh (2
* x))
* (
cosh x))))
+ (10
* (
cosh x)))
/ 32) by
Th11
.= (((((1
/ 2)
* (((
cosh (7
* x))
+ (7
* (
cosh (5
* x))))
+ ((
cosh (3
* x))
* 6)))
+ (((1
/ 2)
* ((
cosh ((2
* x)
+ x))
+ (
cosh ((2
* x)
- x))))
* 15))
+ (10
* (
cosh x)))
/ 32) by
Th11
.= (((((
cosh (7
* x))
+ (7
* (
cosh (5
* x))))
+ (21
* (
cosh (3
* x))))
+ (35
* (
cosh x)))
/ 64);
((
cosh x)
|^ 8)
= ((
cosh x)
|^ (7
+ 1))
.= ((((((
cosh (7
* x))
+ (7
* (
cosh (5
* x))))
+ (21
* (
cosh (3
* x))))
+ (35
* (
cosh x)))
/ 64)
* (
cosh x)) by
A5,
NEWTON: 6
.= ((((((
cosh (7
* x))
* (
cosh x))
+ ((7
* (
cosh (5
* x)))
* (
cosh x)))
+ ((21
* (
cosh (3
* x)))
* (
cosh x)))
+ (35
* ((
cosh x)
^2 )))
/ 64)
.= ((((((1
/ 2)
* ((
cosh ((7
* x)
+ (1
* x)))
+ (
cosh ((7
* x)
- x))))
+ ((7
* (
cosh (5
* x)))
* (
cosh x)))
+ ((21
* (
cosh (3
* x)))
* (
cosh x)))
+ (35
* ((
cosh x)
^2 )))
/ 64) by
Th11
.= ((((((1
/ 2)
* ((
cosh (8
* x))
+ (
cosh (6
* x))))
+ (7
* ((
cosh (5
* x))
* (
cosh x))))
+ ((21
* (
cosh (3
* x)))
* (
cosh x)))
+ (35
* ((
cosh x)
^2 )))
/ 64)
.= ((((((1
/ 2)
* ((
cosh (8
* x))
+ (
cosh (6
* x))))
+ (7
* ((1
/ 2)
* ((
cosh ((5
* x)
+ (1
* x)))
+ (
cosh ((5
* x)
- (1
* x)))))))
+ ((21
* (
cosh (3
* x)))
* (
cosh x)))
+ (35
* ((
cosh x)
^2 )))
/ 64) by
Th11
.= (((((1
/ 2)
* (((
cosh (8
* x))
+ (8
* (
cosh (6
* x))))
+ ((
cosh (4
* x))
* 7)))
+ (21
* ((
cosh (3
* x))
* (
cosh x))))
+ (35
* ((
cosh x)
^2 )))
/ 64)
.= (((((1
/ 2)
* (((
cosh (8
* x))
+ (8
* (
cosh (6
* x))))
+ ((
cosh (4
* x))
* 7)))
+ (21
* ((1
/ 2)
* ((
cosh ((3
* x)
+ (1
* x)))
+ (
cosh ((3
* x)
- x))))))
+ (35
* ((
cosh x)
^2 )))
/ 64) by
Th11
.= ((((1
/ 2)
* ((((
cosh (8
* x))
+ (8
* (
cosh (6
* x))))
+ (28
* (
cosh (4
* x))))
+ ((
cosh (2
* x))
* 21)))
+ (((1
/ 2)
* ((
cosh (2
* x))
+ 1))
* 35))
/ 64) by
Lm7
.= ((((((
cosh (8
* x))
+ (8
* (
cosh (6
* x))))
+ (28
* (
cosh (4
* x))))
+ (56
* (
cosh (2
* x))))
+ 35)
/ 128);
hence thesis by
A1,
A2,
A3,
A4,
A5;
end;
theorem ::
SIN_COS8:33
((
cosh (2
* y))
+ (
cos (2
* z)))
= (2
+ (2
* (((
sinh y)
^2 )
- ((
sin z)
^2 )))) & ((
cosh (2
* y))
- (
cos (2
* z)))
= (2
* (((
sinh y)
^2 )
+ ((
sin z)
^2 )))
proof
A1: ((
cosh (2
* y))
- (
cos (2
* z)))
= ((1
+ (2
* ((
sinh y)
^2 )))
- (
cos (2
* z))) by
Th27
.= ((1
+ (2
* ((
sinh y)
^2 )))
- (1
- (2
* ((
sin z)
^2 )))) by
SIN_COS5: 7
.= (2
* (((
sinh y)
^2 )
+ ((
sin z)
^2 )));
((
cosh (2
* y))
+ (
cos (2
* z)))
= ((1
+ (2
* ((
sinh y)
^2 )))
+ (
cos (2
* z))) by
Th27
.= ((1
+ (2
* ((
sinh y)
^2 )))
+ (1
- (2
* ((
sin z)
^2 )))) by
SIN_COS5: 7
.= (2
+ (2
* (((
sinh y)
^2 )
- ((
sin z)
^2 ))));
hence thesis by
A1;
end;