polyeq_2.miz
    
    begin
    
    4
    = (2 
    * 2); 
    
    then 2
    divides 4 by 
    INT_1:def 3;
    
    then
    
    
    
    Lm1: 4 is 
    even by 
    ABIAN:def 1;
    
    3
    = ((2 
    * 1) 
    + 1); 
    
    then
    
    
    
    Lm2: 3 is 
    odd by 
    ABIAN: 1;
    
    definition
    
      let a,b,c,d,e,x be
    Complex;
    
      :: 
    
    POLYEQ_2:def1
    
      func
    
    Polynom (a,b,c,d,e,x) -> 
    set equals (((((a 
    * (x 
    |^ 4)) 
    + (b 
    * (x 
    |^ 3))) 
    + (c 
    * (x 
    ^2 ))) 
    + (d 
    * x)) 
    + e); 
    
      correctness ;
    
    end
    
    registration
    
      let a,b,c,d,e,x be
    Complex;
    
      cluster ( 
    Polynom (a,b,c,d,e,x)) -> 
    complex;
    
      coherence ;
    
    end
    
    registration
    
      let a,b,c,d,e,x be
    Real;
    
      cluster ( 
    Polynom (a,b,c,d,e,x)) -> 
    real;
    
      coherence ;
    
    end
    
    theorem :: 
    
    POLYEQ_2:1
    
    for a,c,e,x be
    Real st a 
    <>  
    0 & e 
    <>  
    0 & ((c 
    ^2 ) 
    - ((4 
    * a) 
    * e)) 
    >  
    0 holds ( 
    Polynom (a, 
    0 ,c, 
    0 ,e,x)) 
    =  
    0 implies x 
    <>  
    0 & (x 
    = ( 
    sqrt ((( 
    - c) 
    + ( 
    sqrt ( 
    delta (a,c,e)))) 
    / (2 
    * a))) or x 
    = ( 
    sqrt ((( 
    - c) 
    - ( 
    sqrt ( 
    delta (a,c,e)))) 
    / (2 
    * a))) or x 
    = ( 
    - ( 
    sqrt ((( 
    - c) 
    + ( 
    sqrt ( 
    delta (a,c,e)))) 
    / (2 
    * a)))) or x 
    = ( 
    - ( 
    sqrt ((( 
    - c) 
    - ( 
    sqrt ( 
    delta (a,c,e)))) 
    / (2 
    * a))))) 
    
    proof
    
      let a,c,e,x be
    Real;
    
      assume that
    
      
    
    A1: a 
    <>  
    0 and 
    
      
    
    A2: e 
    <>  
    0 and 
    
      
    
    A3: ((c 
    ^2 ) 
    - ((4 
    * a) 
    * e)) 
    >  
    0 ; 
    
      set y = (x
    ^2 ); 
    
      assume
    
      
    
    A4: ( 
    Polynom (a, 
    0 ,c, 
    0 ,e,x)) 
    =  
    0 ; 
    
      
    
    A5: 
    
      now
    
        assume x
    =  
    0 ; 
    
        then (((a
    *  
    0 ) 
    + ( 
    0  
    * ( 
    0  
    |^ 3))) 
    + e) 
    =  
    0 by 
    A4,
    NEWTON: 11;
    
        hence contradiction by
    A2;
    
      end;
    
      per cases by
    A5,
    XXREAL_0: 1;
    
        suppose
    
        
    
    A6: x 
    >  
    0 ; 
    
        (x
    |^ 4) 
    = (x 
    to_power (2 
    + 2)) by 
    POWER: 41
    
        .= ((x
    to_power 2) 
    * (x 
    to_power 2)) by 
    A6,
    POWER: 27
    
        .= ((x
    ^2 ) 
    * (x 
    to_power 2)) by 
    POWER: 46
    
        .= ((x
    ^2 ) 
    * (x 
    ^2 )) by 
    POWER: 46;
    
        then (((a
    * (y 
    ^2 )) 
    + (c 
    * y)) 
    + e) 
    =  
    0 by 
    A4;
    
        then
    
        
    
    A7: ( 
    Polynom (a,c,e,y)) 
    =  
    0 by 
    POLYEQ_1:def 2;
    
        (
    delta (a,c,e)) 
    >=  
    0 by 
    A3,
    QUIN_1:def 1;
    
        then y
    = ((( 
    - c) 
    + ( 
    sqrt ( 
    delta (a,c,e)))) 
    / (2 
    * a)) or y 
    = ((( 
    - c) 
    - ( 
    sqrt ( 
    delta (a,c,e)))) 
    / (2 
    * a)) by 
    A1,
    A7,
    POLYEQ_1: 5;
    
        then
    |.x.|
    = ( 
    sqrt ((( 
    - c) 
    + ( 
    sqrt ( 
    delta (a,c,e)))) 
    / (2 
    * a))) or 
    |.x.|
    = ( 
    sqrt ((( 
    - c) 
    - ( 
    sqrt ( 
    delta (a,c,e)))) 
    / (2 
    * a))) by 
    COMPLEX1: 72;
    
        hence thesis by
    A6,
    ABSVALUE:def 1;
    
      end;
    
        suppose
    
        
    
    A8: x 
    <  
    0 ; 
    
        then
    
        
    
    A9: 
    0  
    < ( 
    - x) by 
    XREAL_1: 58;
    
        ((
    - x) 
    |^ 4) 
    = (x 
    |^ 4) by 
    Lm1,
    POWER: 1;
    
        
    
        then (x
    |^ 4) 
    = (( 
    - x) 
    to_power (2 
    + 2)) by 
    POWER: 41
    
        .= (((
    - x) 
    to_power 2) 
    * (( 
    - x) 
    to_power 2)) by 
    A9,
    POWER: 27
    
        .= (((
    - x) 
    ^2 ) 
    * (( 
    - x) 
    to_power 2)) by 
    POWER: 46
    
        .= ((x
    ^2 ) 
    * (x 
    ^2 )) by 
    POWER: 46;
    
        then (((a
    * (y 
    ^2 )) 
    + (c 
    * y)) 
    + e) 
    =  
    0 by 
    A4;
    
        then
    
        
    
    A10: ( 
    Polynom (a,c,e,y)) 
    =  
    0 by 
    POLYEQ_1:def 2;
    
        ((c
    ^2 ) 
    - ((4 
    * a) 
    * e)) 
    = ( 
    delta (a,c,e)) by 
    QUIN_1:def 1;
    
        then y
    = ((( 
    - c) 
    + ( 
    sqrt ( 
    delta (a,c,e)))) 
    / (2 
    * a)) or y 
    = ((( 
    - c) 
    - ( 
    sqrt ( 
    delta (a,c,e)))) 
    / (2 
    * a)) by 
    A1,
    A3,
    A10,
    POLYEQ_1: 5;
    
        then
    |.x.|
    = ( 
    sqrt ((( 
    - c) 
    + ( 
    sqrt ( 
    delta (a,c,e)))) 
    / (2 
    * a))) or 
    |.x.|
    = ( 
    sqrt ((( 
    - c) 
    - ( 
    sqrt ( 
    delta (a,c,e)))) 
    / (2 
    * a))) by 
    COMPLEX1: 72;
    
        then ((
    - 1) 
    * ( 
    - x)) 
    = (( 
    - 1) 
    * ( 
    sqrt ((( 
    - c) 
    + ( 
    sqrt ( 
    delta (a,c,e)))) 
    / (2 
    * a)))) or (( 
    - 1) 
    * ( 
    - x)) 
    = (( 
    - 1) 
    * ( 
    sqrt ((( 
    - c) 
    - ( 
    sqrt ( 
    delta (a,c,e)))) 
    / (2 
    * a)))) by 
    A8,
    ABSVALUE:def 1;
    
        hence thesis by
    A5;
    
      end;
    
    end;
    
    theorem :: 
    
    POLYEQ_2:2
    
    
    
    
    
    Th2: for a,b,c,x,y be 
    Real st a 
    <>  
    0 & y 
    = (x 
    + (1 
    / x)) holds ( 
    Polynom (a,b,c,b,a,x)) 
    =  
    0 implies x 
    <>  
    0 & ((((a 
    * (y 
    ^2 )) 
    + (b 
    * y)) 
    + c) 
    - (2 
    * a)) 
    =  
    0  
    
    proof
    
      let a,b,c,x,y be
    Real;
    
      assume that
    
      
    
    A1: a 
    <>  
    0 and 
    
      
    
    A2: y 
    = (x 
    + (1 
    / x)); 
    
      assume
    
      
    
    A3: ( 
    Polynom (a,b,c,b,a,x)) 
    =  
    0 ; 
    
      
    
      
    
    A4: x 
    <>  
    0  
    
      proof
    
        assume x
    =  
    0 ; 
    
        then (((a
    * ( 
    0  
    to_power 4)) 
    + (b 
    * ( 
    0  
    |^ 3))) 
    + a) 
    =  
    0 by 
    A3;
    
        then (((a
    *  
    0 ) 
    + (b 
    * ( 
    0  
    |^ 3))) 
    + a) 
    =  
    0 by 
    POWER:def 2;
    
        then (((a
    *  
    0 ) 
    + (b 
    *  
    0 )) 
    + a) 
    =  
    0 by 
    NEWTON: 11;
    
        hence contradiction by
    A1;
    
      end;
    
      then
    
      
    
    A5: (x 
    ^2 ) 
    >  
    0 by 
    SQUARE_1: 12;
    
      
    
      
    
    A6: (x 
    |^ 4) 
    = (x 
    to_power (2 
    + 2)) by 
    POWER: 41;
    
      
    
    A7: 
    
      now
    
        per cases by
    A4,
    XXREAL_0: 1;
    
          case
    
          
    
    A8: x 
    >  
    0 ; 
    
          set n = (
    - ((b 
    * x) 
    + a)); 
    
          set m = ((a
    * (x 
    ^2 )) 
    + ((b 
    * x) 
    + c)); 
    
          (x
    |^ 3) 
    = (x 
    to_power (2 
    + 1)) by 
    POWER: 41
    
          .= ((x
    to_power 2) 
    * (x 
    to_power 1)) by 
    A8,
    POWER: 27;
    
          
    
          then
    
          
    
    A9: (x 
    |^ 3) 
    = ((x 
    to_power 2) 
    * x) 
    
          .= ((x
    ^2 ) 
    * x) by 
    POWER: 46;
    
          (x
    |^ 4) 
    = ((x 
    to_power 2) 
    * (x 
    to_power 2)) by 
    A6,
    A8,
    POWER: 27
    
          .= ((x
    ^2 ) 
    * (x 
    to_power 2)) by 
    POWER: 46
    
          .= ((x
    ^2 ) 
    * (x 
    ^2 )) by 
    POWER: 46;
    
          then (m
    * (x 
    ^2 )) 
    = (n 
    * 1) by 
    A3,
    A9;
    
          then (m
    / 1) 
    = (n 
    / (x 
    ^2 )) by 
    A5,
    XCMPLX_1: 94;
    
          
    
          then ((a
    * (x 
    ^2 )) 
    + ((b 
    * x) 
    + c)) 
    = (( 
    - ((b 
    * x) 
    + a)) 
    * (1 
    / (x 
    ^2 ))) by 
    XCMPLX_1: 99
    
          .= ((
    - ((b 
    * x) 
    + a)) 
    * ((x 
    ^2 ) 
    " )) by 
    XCMPLX_1: 215
    
          .= ((
    - (b 
    * (x 
    * ((x 
    ^2 ) 
    " )))) 
    - (a 
    * ((x 
    ^2 ) 
    " ))); 
    
          then (a
    * ((x 
    ^2 ) 
    + ((x 
    ^2 ) 
    " ))) 
    = (( 
    - (b 
    * ((x 
    * ((x 
    ^2 ) 
    " )) 
    + x))) 
    - c); 
    
          
    
          then
    
          
    
    A10: (a 
    * ((x 
    ^2 ) 
    + (1 
    / (x 
    ^2 )))) 
    = (( 
    - (b 
    * ((x 
    * ((x 
    ^2 ) 
    " )) 
    + x))) 
    - c) by 
    XCMPLX_1: 215
    
          .= ((
    - (b 
    * ((x 
    * (1 
    / (x 
    ^2 ))) 
    + x))) 
    - c) by 
    XCMPLX_1: 215;
    
          (1
    / (x 
    * x)) 
    = ((1 
    / x) 
    * (1 
    / x)) by 
    XCMPLX_1: 102;
    
          then (a
    * ((x 
    ^2 ) 
    + (1 
    / (x 
    ^2 )))) 
    = (( 
    - (b 
    * (((x 
    * (1 
    / x)) 
    * (1 
    / x)) 
    + x))) 
    - c) by 
    A10;
    
          then
    
          
    
    A11: (a 
    * ((x 
    ^2 ) 
    + (1 
    / (x 
    ^2 )))) 
    = (( 
    - (b 
    * ((1 
    * (1 
    / x)) 
    + x))) 
    - c) by 
    A8,
    XCMPLX_1: 106;
    
          (x
    * y) 
    = ((x 
    * x) 
    + (x 
    * (1 
    / x))) by 
    A2;
    
          then ((x
    * y) 
    +  
    0 ) 
    = ((x 
    ^2 ) 
    + 1) by 
    A4,
    XCMPLX_1: 106;
    
          hence (a
    * ((x 
    ^2 ) 
    + (1 
    / (x 
    ^2 )))) 
    = (( 
    - (b 
    * (x 
    + (1 
    / x)))) 
    - c) & (((x 
    ^2 ) 
    - (x 
    * y)) 
    + 1) 
    =  
    0 by 
    A11;
    
        end;
    
          case
    
          
    
    A12: x 
    <  
    0 ; 
    
          set n = (
    - ((b 
    * x) 
    + a)); 
    
          set m = ((a
    * (x 
    ^2 )) 
    + ((b 
    * x) 
    + c)); 
    
          (((
    - x) 
    |^ 3) 
    + (x 
    |^ 3)) 
    = ( 
    - ((x 
    |^ 3) 
    + ( 
    - (x 
    |^ 3)))) by 
    Lm2,
    POWER: 2
    
          .= ((x
    |^ 3) 
    - (x 
    |^ 3)); 
    
          then
    
          
    
    A13: (x 
    |^ 3) 
    = ( 
    - (( 
    - x) 
    |^ 3)); 
    
          
    
          
    
    A14: 
    0  
    < ( 
    - x) by 
    A12,
    XREAL_1: 58;
    
          ((
    - x) 
    |^ 4) 
    = (x 
    |^ 4) by 
    Lm1,
    POWER: 1;
    
          
    
          then
    
          
    
    A15: (x 
    |^ 4) 
    = (( 
    - x) 
    to_power (2 
    + 2)) by 
    POWER: 41
    
          .= (((
    - x) 
    to_power 2) 
    * (( 
    - x) 
    to_power 2)) by 
    A14,
    POWER: 27
    
          .= (((
    - x) 
    ^2 ) 
    * (( 
    - x) 
    to_power 2)) by 
    POWER: 46
    
          .= ((x
    ^2 ) 
    * (( 
    - x) 
    ^2 )) by 
    POWER: 46;
    
          ((
    - x) 
    |^ 3) 
    = (( 
    - x) 
    to_power (2 
    + 1)) by 
    POWER: 41
    
          .= (((
    - x) 
    to_power 2) 
    * (( 
    - x) 
    to_power 1)) by 
    A14,
    POWER: 27;
    
          then
    
          
    
    A16: (( 
    - x) 
    |^ 3) 
    = ((( 
    - x) 
    to_power 2) 
    * ( 
    - x)); 
    
          ((
    - x) 
    to_power 2) 
    = (( 
    - x) 
    ^2 ) by 
    POWER: 46
    
          .= (x
    ^2 ); 
    
          then (m
    * (x 
    ^2 )) 
    = (n 
    * 1) by 
    A3,
    A15,
    A16,
    A13;
    
          then (m
    / 1) 
    = (n 
    / (x 
    ^2 )) by 
    A5,
    XCMPLX_1: 94;
    
          
    
          then m
    = (n 
    * (1 
    / (x 
    ^2 ))) by 
    XCMPLX_1: 99
    
          .= (n
    * ((x 
    ^2 ) 
    " )) by 
    XCMPLX_1: 215
    
          .= ((
    - (b 
    * (x 
    * ((x 
    ^2 ) 
    " )))) 
    - (a 
    * ((x 
    ^2 ) 
    " ))); 
    
          then (a
    * ((x 
    ^2 ) 
    + ((x 
    ^2 ) 
    " ))) 
    = (( 
    - (b 
    * ((x 
    * ((x 
    ^2 ) 
    " )) 
    + x))) 
    - c); 
    
          
    
          then (a
    * ((x 
    ^2 ) 
    + (1 
    / (x 
    ^2 )))) 
    = (( 
    - (b 
    * ((x 
    * ((x 
    ^2 ) 
    " )) 
    + x))) 
    - c) by 
    XCMPLX_1: 215
    
          .= ((
    - (b 
    * ((x 
    * (1 
    / (x 
    ^2 ))) 
    + x))) 
    - c) by 
    XCMPLX_1: 215;
    
          
    
          then (a
    * ((x 
    ^2 ) 
    + (1 
    / (x 
    ^2 )))) 
    = (( 
    - (b 
    * ((x 
    * ((1 
    / x) 
    * (1 
    / x))) 
    + x))) 
    - c) by 
    XCMPLX_1: 102
    
          .= ((
    - (b 
    * (((x 
    * (1 
    / x)) 
    * (1 
    / x)) 
    + x))) 
    - c); 
    
          then
    
          
    
    A17: (a 
    * ((x 
    ^2 ) 
    + (1 
    / (x 
    ^2 )))) 
    = (( 
    - (b 
    * ((1 
    * (1 
    / x)) 
    + x))) 
    - c) by 
    A12,
    XCMPLX_1: 106;
    
          (x
    * y) 
    = ((x 
    * x) 
    + (x 
    * (1 
    / x))) by 
    A2
    
          .= ((x
    * x) 
    + 1) by 
    A12,
    XCMPLX_1: 106;
    
          hence (a
    * ((x 
    ^2 ) 
    + (1 
    / (x 
    ^2 )))) 
    = (( 
    - (b 
    * (x 
    + (1 
    / x)))) 
    - c) & (((x 
    ^2 ) 
    - (x 
    * y)) 
    + 1) 
    =  
    0 by 
    A17;
    
        end;
    
      end;
    
      (y
    ^2 ) 
    = (((x 
    ^2 ) 
    + (2 
    * (x 
    * (1 
    / x)))) 
    + ((1 
    / x) 
    ^2 )) by 
    A2
    
      .= (((x
    ^2 ) 
    + (2 
    * 1)) 
    + ((1 
    / x) 
    ^2 )) by 
    A4,
    XCMPLX_1: 106
    
      .= (((x
    ^2 ) 
    + 2) 
    + ((1 
    ^2 ) 
    / (x 
    ^2 ))) by 
    XCMPLX_1: 76
    
      .= ((x
    ^2 ) 
    - (( 
    - 2) 
    - (1 
    / (x 
    ^2 )))); 
    
      then ((a
    * (y 
    ^2 )) 
    - (2 
    * a)) 
    = (( 
    - (b 
    * y)) 
    - c) by 
    A2,
    A7;
    
      hence thesis by
    A4;
    
    end;
    
    theorem :: 
    
    POLYEQ_2:3
    
    for a,b,c,x,y be
    Real st a 
    <>  
    0 & (((b 
    ^2 ) 
    - ((4 
    * a) 
    * c)) 
    + (8 
    * (a 
    ^2 ))) 
    >  
    0 & y 
    = (x 
    + (1 
    / x)) holds ( 
    Polynom (a,b,c,b,a,x)) 
    =  
    0 implies for y1,y2 be 
    Real st y1 
    = ((( 
    - b) 
    + ( 
    sqrt (((b 
    ^2 ) 
    - ((4 
    * a) 
    * c)) 
    + (8 
    * (a 
    ^2 ))))) 
    / (2 
    * a)) & y2 
    = ((( 
    - b) 
    - ( 
    sqrt (((b 
    ^2 ) 
    - ((4 
    * a) 
    * c)) 
    + (8 
    * (a 
    ^2 ))))) 
    / (2 
    * a)) holds x 
    <>  
    0 & (x 
    = ((y1 
    + ( 
    sqrt ( 
    delta (1,( 
    - y1),1)))) 
    / 2) or x 
    = ((y2 
    + ( 
    sqrt ( 
    delta (1,( 
    - y2),1)))) 
    / 2) or x 
    = ((y1 
    - ( 
    sqrt ( 
    delta (1,( 
    - y1),1)))) 
    / 2) or x 
    = ((y2 
    - ( 
    sqrt ( 
    delta (1,( 
    - y2),1)))) 
    / 2)) 
    
    proof
    
      let a,b,c,x,y be
    Real;
    
      assume that
    
      
    
    A1: a 
    <>  
    0 and 
    
      
    
    A2: (((b 
    ^2 ) 
    - ((4 
    * a) 
    * c)) 
    + (8 
    * (a 
    ^2 ))) 
    >  
    0 and 
    
      
    
    A3: y 
    = (x 
    + (1 
    / x)) and 
    
      
    
    A4: ( 
    Polynom (a,b,c,b,a,x)) 
    =  
    0 ; 
    
      
    
      
    
    A5: x 
    <>  
    0 by 
    A1,
    A3,
    A4,
    Th2;
    
      set f = (c
    - (2 
    * a)); 
    
      ((((a
    * (y 
    ^2 )) 
    + (b 
    * y)) 
    + c) 
    - (2 
    * a)) 
    =  
    0 by 
    A1,
    A3,
    A4,
    Th2;
    
      then (((a
    * (y 
    ^2 )) 
    + (b 
    * y)) 
    + (c 
    - (2 
    * a))) 
    =  
    0 ; 
    
      then
    
      
    
    A6: ( 
    Polynom (a,b,f,y)) 
    =  
    0 by 
    POLYEQ_1:def 2;
    
      let y1,y2 be
    Real;
    
      assume
    
      
    
    A7: y1 
    = ((( 
    - b) 
    + ( 
    sqrt (((b 
    ^2 ) 
    - ((4 
    * a) 
    * c)) 
    + (8 
    * (a 
    ^2 ))))) 
    / (2 
    * a)) & y2 
    = ((( 
    - b) 
    - ( 
    sqrt (((b 
    ^2 ) 
    - ((4 
    * a) 
    * c)) 
    + (8 
    * (a 
    ^2 ))))) 
    / (2 
    * a)); 
    
      (x
    * y) 
    = ((x 
    ^2 ) 
    + (x 
    * (1 
    / x))) by 
    A3;
    
      then ((x
    * y) 
    +  
    0 ) 
    = ((x 
    ^2 ) 
    + 1) by 
    A5,
    XCMPLX_1: 106;
    
      then (((1
    * (x 
    ^2 )) 
    + (( 
    - y) 
    * x)) 
    + 1) 
    =  
    0 ; 
    
      then
    
      
    
    A8: ( 
    Polynom (1,( 
    - y),1,x)) 
    =  
    0 by 
    POLYEQ_1:def 2;
    
      (
    delta (1,( 
    - y),1)) 
    = ((( 
    - y) 
    ^2 ) 
    - ((4 
    * 1) 
    * 1)) by 
    QUIN_1:def 1
    
      .= ((((x
    ^2 ) 
    + (2 
    * (x 
    * (1 
    / x)))) 
    + ((1 
    / x) 
    ^2 )) 
    - 4) by 
    A3
    
      .= ((((x
    ^2 ) 
    + (2 
    * 1)) 
    + ((1 
    / x) 
    ^2 )) 
    - 4) by 
    A5,
    XCMPLX_1: 106
    
      .= ((x
    ^2 ) 
    + (( 
    - (2 
    * 1)) 
    + ((1 
    / x) 
    ^2 ))) 
    
      .= ((x
    ^2 ) 
    + (( 
    - (2 
    * (x 
    * (1 
    / x)))) 
    + ((1 
    / x) 
    ^2 ))) by 
    A5,
    XCMPLX_1: 106
    
      .= ((x
    - (1 
    / x)) 
    ^2 ); 
    
      then
    
      
    
    A9: x 
    = ((( 
    - ( 
    - y)) 
    + ( 
    sqrt ( 
    delta (1,( 
    - y),1)))) 
    / (2 
    * 1)) or x 
    = ((( 
    - ( 
    - y)) 
    - ( 
    sqrt ( 
    delta (1,( 
    - y),1)))) 
    / (2 
    * 1)) by 
    A8,
    POLYEQ_1: 5,
    XREAL_1: 63;
    
      
    
      
    
    A10: ((b 
    ^2 ) 
    - ((4 
    * a) 
    * f)) 
    = (((b 
    ^2 ) 
    - ((4 
    * a) 
    * c)) 
    + (8 
    * (a 
    ^2 ))); 
    
      then (
    delta (a,b,f)) 
    >  
    0 by 
    A2,
    QUIN_1:def 1;
    
      then y
    = ((( 
    - b) 
    + ( 
    sqrt ( 
    delta (a,b,f)))) 
    / (2 
    * a)) or y 
    = ((( 
    - b) 
    - ( 
    sqrt ( 
    delta (a,b,f)))) 
    / (2 
    * a)) by 
    A1,
    A6,
    POLYEQ_1: 5;
    
      then y
    = y1 or y 
    = y2 by 
    A7,
    A10,
    QUIN_1:def 1;
    
      hence thesis by
    A1,
    A3,
    A4,
    A9,
    Th2;
    
    end;
    
    theorem :: 
    
    POLYEQ_2:4
    
    
    
    
    
    Th4: for x be 
    Real holds (x 
    |^ 3) 
    = ((x 
    ^2 ) 
    * x) & ((x 
    |^ 3) 
    * x) 
    = (x 
    |^ 4) & ((x 
    ^2 ) 
    * (x 
    ^2 )) 
    = (x 
    |^ 4) 
    
    proof
    
      let x be
    Real;
    
      per cases by
    XXREAL_0: 1;
    
        suppose x
    =  
    0 ; 
    
        hence thesis by
    NEWTON: 11;
    
      end;
    
        suppose
    
        
    
    A1: x 
    >  
    0 ; 
    
        ((x
    |^ 3) 
    * x) 
    = ((x 
    |^ 3) 
    * (x 
    to_power 1)) 
    
        .= ((x
    to_power 3) 
    * (x 
    to_power 1)); 
    
        then
    
        
    
    A2: ((x 
    |^ 3) 
    * x) 
    = (x 
    to_power (3 
    + 1)) by 
    A1,
    POWER: 27;
    
        (x
    ^2 ) 
    = (x 
    to_power 2) by 
    POWER: 46;
    
        
    
        then ((x
    ^2 ) 
    * x) 
    = ((x 
    to_power 2) 
    * (x 
    to_power 1)) 
    
        .= (x
    to_power (2 
    + 1)) by 
    A1,
    POWER: 27
    
        .= (x
    |^ 3) by 
    POWER: 41;
    
        hence thesis by
    A2,
    POWER: 41;
    
      end;
    
        suppose x
    <  
    0 ; 
    
        then
    
        
    
    A3: ( 
    - x) 
    >  
    0 by 
    XREAL_1: 58;
    
        (((
    - x) 
    |^ 3) 
    + (x 
    |^ 3)) 
    = ( 
    - ((x 
    |^ 3) 
    + ( 
    - (x 
    |^ 3)))) by 
    Lm2,
    POWER: 2
    
        .= ((x
    |^ 3) 
    - (x 
    |^ 3)); 
    
        then
    
        
    
    A4: ((x 
    |^ 3) 
    + ((( 
    - x) 
    |^ 3) 
    - (( 
    - x) 
    |^ 3))) 
    = ( 
    0  
    - (( 
    - x) 
    |^ 3)); 
    
        
    
        
    
    A5: (( 
    - x) 
    to_power 2) 
    = (( 
    - x) 
    ^2 ) by 
    POWER: 46
    
        .= (x
    ^2 ); 
    
        ((
    - x) 
    |^ 3) 
    = (( 
    - x) 
    to_power (2 
    + 1)) by 
    POWER: 41
    
        .= (((
    - x) 
    to_power 2) 
    * (( 
    - x) 
    to_power 1)) by 
    A3,
    POWER: 27;
    
        then
    
        
    
    A6: (( 
    - x) 
    |^ 3) 
    = ((( 
    - x) 
    to_power 2) 
    * ( 
    - x)); 
    
        ((
    - x) 
    |^ 4) 
    = (x 
    |^ 4) by 
    Lm1,
    POWER: 1;
    
        
    
        then (x
    |^ 4) 
    = (( 
    - x) 
    to_power (3 
    + 1)) by 
    POWER: 41
    
        .= (((
    - x) 
    to_power 3) 
    * (( 
    - x) 
    to_power 1)) by 
    A3,
    POWER: 27
    
        .= (((
    - x) 
    |^ 3) 
    * (( 
    - x) 
    to_power 1)); 
    
        
    
        then (x
    |^ 4) 
    = ((( 
    - x) 
    |^ 3) 
    * ( 
    - x)) 
    
        .= ((x
    ^2 ) 
    * (x 
    * x)) by 
    A6,
    A5;
    
        hence thesis by
    A6,
    A5,
    A4;
    
      end;
    
    end;
    
    theorem :: 
    
    POLYEQ_2:5
    
    
    
    
    
    Th5: for x,y be 
    Real st (x 
    + y) 
    <>  
    0 holds ((x 
    + y) 
    |^ 4) 
    = (((((x 
    |^ 3) 
    + (((3 
    * y) 
    * (x 
    ^2 )) 
    + ((3 
    * (y 
    ^2 )) 
    * x))) 
    + (y 
    |^ 3)) 
    * x) 
    + ((((x 
    |^ 3) 
    + (((3 
    * y) 
    * (x 
    ^2 )) 
    + ((3 
    * (y 
    ^2 )) 
    * x))) 
    + (y 
    |^ 3)) 
    * y)) 
    
    proof
    
      let x,y be
    Real;
    
      assume
    
      
    
    A1: (x 
    + y) 
    <>  
    0 ; 
    
      per cases by
    A1,
    XXREAL_0: 1;
    
        suppose
    
        
    
    A2: (x 
    + y) 
    >  
    0 ; 
    
        ((x
    + y) 
    |^ 4) 
    = ((x 
    + y) 
    to_power (3 
    + 1)) by 
    POWER: 41
    
        .= (((x
    + y) 
    to_power 3) 
    * ((x 
    + y) 
    to_power 1)) by 
    A2,
    POWER: 27
    
        .= (((x
    + y) 
    to_power 3) 
    * (x 
    + y)); 
    
        
    
        then ((x
    + y) 
    |^ 4) 
    = (((x 
    + y) 
    |^ 3) 
    * (x 
    + y)) 
    
        .= ((((x
    |^ 3) 
    + (((3 
    * y) 
    * (x 
    ^2 )) 
    + ((3 
    * (y 
    ^2 )) 
    * x))) 
    + (y 
    |^ 3)) 
    * (x 
    + y)) by 
    POLYEQ_1: 14;
    
        hence thesis;
    
      end;
    
        suppose (x
    + y) 
    <  
    0 ; 
    
        then
    
        
    
    A3: ( 
    - (x 
    + y)) 
    >  
    0 by 
    XREAL_1: 58;
    
        ((
    - (x 
    + y)) 
    |^ 4) 
    = ((x 
    + y) 
    |^ 4) by 
    Lm1,
    POWER: 1;
    
        
    
        then ((x
    + y) 
    |^ 4) 
    = (( 
    - (x 
    + y)) 
    to_power (3 
    + 1)) by 
    POWER: 41
    
        .= (((
    - (x 
    + y)) 
    to_power 3) 
    * (( 
    - (x 
    + y)) 
    to_power 1)) by 
    A3,
    POWER: 27
    
        .= (((
    - (x 
    + y)) 
    |^ 3) 
    * (( 
    - (x 
    + y)) 
    to_power 1)); 
    
        then ((x
    + y) 
    |^ 4) 
    = ((( 
    - (x 
    + y)) 
    |^ 3) 
    * ( 
    - (x 
    + y))); 
    
        
    
        then ((x
    + y) 
    |^ 4) 
    = (( 
    - ((x 
    + y) 
    |^ 3)) 
    * ( 
    - (x 
    + y))) by 
    Lm2,
    POWER: 2
    
        .= (((x
    + y) 
    |^ 3) 
    * (x 
    + y)) 
    
        .= ((((x
    |^ 3) 
    + (((3 
    * y) 
    * (x 
    ^2 )) 
    + ((3 
    * (y 
    ^2 )) 
    * x))) 
    + (y 
    |^ 3)) 
    * (x 
    + y)) by 
    POLYEQ_1: 14;
    
        hence thesis;
    
      end;
    
    end;
    
    theorem :: 
    
    POLYEQ_2:6
    
    for x,y be
    Real st (x 
    + y) 
    <>  
    0 holds ((x 
    + y) 
    |^ 4) 
    = (((x 
    |^ 4) 
    + ((((4 
    * y) 
    * (x 
    |^ 3)) 
    + ((6 
    * (y 
    ^2 )) 
    * (x 
    ^2 ))) 
    + ((4 
    * (y 
    |^ 3)) 
    * x))) 
    + (y 
    |^ 4)) 
    
    proof
    
      let x,y be
    Real;
    
      set g = ((((x
    |^ 3) 
    + (((3 
    * y) 
    * (x 
    ^2 )) 
    + ((3 
    * (y 
    ^2 )) 
    * x))) 
    + (y 
    |^ 3)) 
    * x); 
    
      set h = ((((x
    |^ 3) 
    + (((3 
    * y) 
    * (x 
    ^2 )) 
    + ((3 
    * (y 
    ^2 )) 
    * x))) 
    + (y 
    |^ 3)) 
    * y); 
    
      set p = (y
    |^ 3), q = (x 
    |^ 3), u = (x 
    |^ 4), v = (y 
    |^ 4); 
    
      
    
      
    
    A1: g 
    = ((((x 
    |^ 3) 
    * x) 
    + ((((3 
    * y) 
    * (x 
    ^2 )) 
    + ((3 
    * (y 
    ^2 )) 
    * x)) 
    * x)) 
    + ((y 
    |^ 3) 
    * x)); 
    
      
    
      
    
    A2: (y 
    |^ 3) 
    = ((y 
    ^2 ) 
    * y) by 
    Th4;
    
      assume (x
    + y) 
    <>  
    0 ; 
    
      then
    
      
    
    A3: ((x 
    + y) 
    |^ 4) 
    = (g 
    + h) by 
    Th5;
    
      h
    = ((((x 
    |^ 3) 
    * y) 
    + ((((3 
    * y) 
    * (x 
    ^2 )) 
    + ((3 
    * (y 
    ^2 )) 
    * x)) 
    * y)) 
    + ((y 
    |^ 3) 
    * y)) 
    
      .= ((((x
    |^ 3) 
    * y) 
    + ((((3 
    * y) 
    * (x 
    ^2 )) 
    + ((3 
    * (y 
    ^2 )) 
    * x)) 
    * y)) 
    + (y 
    |^ 4)) by 
    Th4;
    
      
    
      then ((x
    + y) 
    |^ 4) 
    = (((u 
    + (((3 
    * y) 
    * ((x 
    ^2 ) 
    * x)) 
    - (( 
    - ((3 
    * (y 
    ^2 )) 
    * x)) 
    * x))) 
    + (p 
    * x)) 
    + (((q 
    * y) 
    + ((((3 
    * y) 
    * (x 
    ^2 )) 
    + ((3 
    * (y 
    ^2 )) 
    * x)) 
    * y)) 
    + v)) by 
    A3,
    A1,
    Th4
    
      .= (((u
    + (((3 
    * y) 
    * q) 
    - ( 
    - ((3 
    * (y 
    ^2 )) 
    * (x 
    ^2 ))))) 
    + (p 
    * x)) 
    + (((q 
    * y) 
    + ((((3 
    * y) 
    * (x 
    ^2 )) 
    + ((3 
    * (y 
    ^2 )) 
    * x)) 
    * y)) 
    + v)) by 
    Th4
    
      .= (((u
    + ((3 
    * y) 
    * q)) 
    + (((3 
    * (y 
    ^2 )) 
    * (x 
    ^2 )) 
    + (p 
    * x))) 
    + (((q 
    * y) 
    + (((3 
    * (y 
    ^2 )) 
    * (x 
    ^2 )) 
    + (((3 
    * (y 
    ^2 )) 
    * x) 
    * y))) 
    + v)); 
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    POLYEQ_2:7
    
    
    
    
    
    Th7: for a1,a2,a3,a4,a5,b1,b2,b3,b4,b5 be 
    Real holds (for x be 
    Real holds ( 
    Polynom (a1,a2,a3,a4,a5,x)) 
    = ( 
    Polynom (b1,b2,b3,b4,b5,x))) implies a5 
    = b5 & (((a1 
    - a2) 
    + a3) 
    - a4) 
    = (((b1 
    - b2) 
    + b3) 
    - b4) & (((a1 
    + a2) 
    + a3) 
    + a4) 
    = (((b1 
    + b2) 
    + b3) 
    + b4) 
    
    proof
    
      set x = (
    - 1); 
    
      let a1,a2,a3,a4,a5,b1,b2,b3,b4,b5 be
    Real;
    
      
    
      
    
    A1: ( 
    0  
    |^ 3) 
    =  
    0 & ( 
    0  
    |^ 4) 
    =  
    0 by 
    NEWTON: 11;
    
      assume
    
      
    
    A2: for x be 
    Real holds ( 
    Polynom (a1,a2,a3,a4,a5,x)) 
    = ( 
    Polynom (b1,b2,b3,b4,b5,x)); 
    
      then
    
      
    
    A3: ( 
    Polynom (a1,a2,a3,a4,a5,( 
    - 1))) 
    = ( 
    Polynom (b1,b2,b3,b4,b5,( 
    - 1))); 
    
      
    
      
    
    A5: (x 
    |^ 3) 
    = ((x 
    ^2 ) 
    * x) & ((x 
    |^ 3) 
    * x) 
    = (x 
    |^ 4) by 
    Th4;
    
      (
    Polynom (a1,a2,a3,a4,a5, 
    0 )) 
    = ( 
    Polynom (b1,b2,b3,b4,b5, 
    0 )) & ( 
    Polynom (a1,a2,a3,a4,a5,1)) 
    = ( 
    Polynom (b1,b2,b3,b4,b5,1)) by 
    A2;
    
      hence thesis by
    A1,
    A3,
    A5;
    
    end;
    
    theorem :: 
    
    POLYEQ_2:8
    
    
    
    
    
    Th8: for a1,a2,a3,a4,a5,b1,b2,b3,b4,b5 be 
    Real holds (for x be 
    Real holds ( 
    Polynom (a1,a2,a3,a4,a5,x)) 
    = ( 
    Polynom (b1,b2,b3,b4,b5,x))) implies (a1 
    - b1) 
    = (b3 
    - a3) & (a2 
    - b2) 
    = (b4 
    - a4) 
    
    proof
    
      let a1,a2,a3,a4,a5,b1,b2,b3,b4,b5 be
    Real;
    
      assume for x be
    Real holds ( 
    Polynom (a1,a2,a3,a4,a5,x)) 
    = ( 
    Polynom (b1,b2,b3,b4,b5,x)); 
    
      then (((a1
    - a2) 
    + a3) 
    - a4) 
    = (((b1 
    - b2) 
    + b3) 
    - b4) & (((a1 
    + a2) 
    + a3) 
    + a4) 
    = (((b1 
    + b2) 
    + b3) 
    + b4) by 
    Th7;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    POLYEQ_2:9
    
    
    
    
    
    Th9: for a1,a2,a3,a4,a5,b1,b2,b3,b4,b5 be 
    Real st (for x be 
    Real holds ( 
    Polynom (a1,a2,a3,a4,a5,x)) 
    = ( 
    Polynom (b1,b2,b3,b4,b5,x))) holds a1 
    = b1 & a2 
    = b2 & a3 
    = b3 & a4 
    = b4 & a5 
    = b5 
    
    proof
    
      
    
      
    
    A1: (( 
    - 2) 
    |^ 3) 
    = ((( 
    - 2) 
    ^2 ) 
    * ( 
    - 2)) by 
    Th4
    
      .= (
    - (4 
    * 2)); 
    
      
    
      
    
    A2: (( 
    - 2) 
    |^ 4) 
    = 16 by 
    Lm1,
    POWER: 1,
    POWER: 62;
    
      let a1,a2,a3,a4,a5,b1,b2,b3,b4,b5 be
    Real;
    
      assume
    
      
    
    A3: for x be 
    Real holds ( 
    Polynom (a1,a2,a3,a4,a5,x)) 
    = ( 
    Polynom (b1,b2,b3,b4,b5,x)); 
    
      then
    
      
    
    A4: ( 
    Polynom (a1,a2,a3,a4,a5,( 
    - 2))) 
    = ( 
    Polynom (b1,b2,b3,b4,b5,( 
    - 2))); 
    
      
    
      
    
    A5: a5 
    = b5 & ( 
    Polynom (a1,a2,a3,a4,a5,2)) 
    = ( 
    Polynom (b1,b2,b3,b4,b5,2)) by 
    A3,
    Th7;
    
      (a1
    - b1) 
    = (b3 
    - a3) & (a2 
    - b2) 
    = (b4 
    - a4) by 
    A3,
    Th8;
    
      hence thesis by
    A5,
    A4,
    A2,
    A1,
    POWER: 61,
    POWER: 62;
    
    end;
    
    definition
    
      let a1,x1,x2,x3,x4,x be
    Real;
    
      :: 
    
    POLYEQ_2:def2
    
      func
    
    Four0 (a1,x1,x2,x3,x4,x) -> 
    set equals (a1 
    * ((((x 
    - x1) 
    * (x 
    - x2)) 
    * (x 
    - x3)) 
    * (x 
    - x4))); 
    
      correctness ;
    
    end
    
    registration
    
      let a1,x1,x2,x3,x4,x be
    Real;
    
      cluster ( 
    Four0 (a1,x1,x2,x3,x4,x)) -> 
    real;
    
      coherence ;
    
    end
    
    theorem :: 
    
    POLYEQ_2:10
    
    
    
    
    
    Th10: for a1,a2,a3,a4,a5,x,x1,x2,x3,x4 be 
    Real st a1 
    <>  
    0 holds (for x be 
    Real holds ( 
    Polynom (a1,a2,a3,a4,a5,x)) 
    = ( 
    Four0 (a1,x1,x2,x3,x4,x))) implies ((((((a1 
    * (x 
    |^ 4)) 
    + (a2 
    * (x 
    |^ 3))) 
    + (a3 
    * (x 
    ^2 ))) 
    + (a4 
    * x)) 
    + a5) 
    / a1) 
    = ((((((x 
    ^2 ) 
    * (x 
    ^2 )) 
    - (((x1 
    + x2) 
    + x3) 
    * ((x 
    ^2 ) 
    * x))) 
    + ((((x1 
    * x3) 
    + (x2 
    * x3)) 
    + (x1 
    * x2)) 
    * (x 
    ^2 ))) 
    - (((x1 
    * x2) 
    * x3) 
    * x)) 
    - ((((x 
    - x1) 
    * (x 
    - x2)) 
    * (x 
    - x3)) 
    * x4)) 
    
    proof
    
      let a1,a2,a3,a4,a5,x,x1,x2,x3,x4 be
    Real;
    
      assume
    
      
    
    A1: a1 
    <>  
    0 ; 
    
      set z = ((((x
    - x1) 
    * (x 
    - x2)) 
    * (x 
    - x3)) 
    * (x 
    - x4)); 
    
      set w = (((((a1
    * (x 
    |^ 4)) 
    + (a2 
    * (x 
    |^ 3))) 
    + (a3 
    * (x 
    ^2 ))) 
    + (a4 
    * x)) 
    + a5); 
    
      assume for x be
    Real holds ( 
    Polynom (a1,a2,a3,a4,a5,x)) 
    = ( 
    Four0 (a1,x1,x2,x3,x4,x)); 
    
      then (
    Polynom (a1,a2,a3,a4,a5,x)) 
    = ( 
    Four0 (a1,x1,x2,x3,x4,x)); 
    
      then (((w
    / a1) 
    * a1) 
    - (z 
    * a1)) 
    = ((z 
    * a1) 
    - (z 
    * a1)) by 
    A1,
    XCMPLX_1: 87;
    
      then (((w
    / a1) 
    - z) 
    * a1) 
    =  
    0 ; 
    
      then ((w
    / a1) 
    + ( 
    - z)) 
    = ( 
    0  
    -  
    0 ) by 
    A1,
    XCMPLX_1: 6;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    POLYEQ_2:11
    
    
    
    
    
    Th11: for a1,a2,a3,a4,a5,x,x1,x2,x3,x4 be 
    Real st a1 
    <>  
    0 holds (for x be 
    Real holds ( 
    Polynom (a1,a2,a3,a4,a5,x)) 
    = ( 
    Four0 (a1,x1,x2,x3,x4,x))) implies ((((((a1 
    * (x 
    |^ 4)) 
    + (a2 
    * (x 
    |^ 3))) 
    + (a3 
    * (x 
    ^2 ))) 
    + (a4 
    * x)) 
    + a5) 
    / a1) 
    = (((((x 
    |^ 4) 
    - ((((x1 
    + x2) 
    + x3) 
    + x4) 
    * (x 
    |^ 3))) 
    + ((((((x1 
    * x2) 
    + (x1 
    * x3)) 
    + (x1 
    * x4)) 
    + ((x2 
    * x3) 
    + (x2 
    * x4))) 
    + (x3 
    * x4)) 
    * (x 
    ^2 ))) 
    - ((((((x1 
    * x2) 
    * x3) 
    + ((x1 
    * x2) 
    * x4)) 
    + ((x1 
    * x3) 
    * x4)) 
    + ((x2 
    * x3) 
    * x4)) 
    * x)) 
    + (((x1 
    * x2) 
    * x3) 
    * x4)) 
    
    proof
    
      let a1,a2,a3,a4,a5,x,x1,x2,x3,x4 be
    Real;
    
      assume
    
      
    
    A1: a1 
    <>  
    0 ; 
    
      set w = (((((a1
    * (x 
    |^ 4)) 
    + (a2 
    * (x 
    |^ 3))) 
    + (a3 
    * (x 
    ^2 ))) 
    + (a4 
    * x)) 
    + a5); 
    
      assume for x be
    Real holds ( 
    Polynom (a1,a2,a3,a4,a5,x)) 
    = ( 
    Four0 (a1,x1,x2,x3,x4,x)); 
    
      then ((((((a1
    * (x 
    |^ 4)) 
    + (a2 
    * (x 
    |^ 3))) 
    + (a3 
    * (x 
    ^2 ))) 
    + (a4 
    * x)) 
    + a5) 
    / a1) 
    = ((((((x 
    ^2 ) 
    * (x 
    ^2 )) 
    - (((x1 
    + x2) 
    + x3) 
    * ((x 
    ^2 ) 
    * x))) 
    + ((((x1 
    * x3) 
    + (x2 
    * x3)) 
    + (x1 
    * x2)) 
    * (x 
    ^2 ))) 
    - (((x1 
    * x2) 
    * x3) 
    * x)) 
    - ((((x 
    - x1) 
    * (x 
    - x2)) 
    * (x 
    - x3)) 
    * x4)) by 
    A1,
    Th10;
    
      then (w
    / a1) 
    = ((((((x 
    ^2 ) 
    * (x 
    ^2 )) 
    - ((((x1 
    + x2) 
    + x3) 
    + x4) 
    * ((x 
    ^2 ) 
    * x))) 
    + (((((x1 
    * x3) 
    + (x2 
    * x3)) 
    + (x1 
    * x2)) 
    + (((x2 
    * x4) 
    + (x1 
    * x4)) 
    + (x3 
    * x4))) 
    * (x 
    ^2 ))) 
    - ((((((x1 
    * x2) 
    * x3) 
    + ((x1 
    * x2) 
    * x4)) 
    + ( 
    - ( 
    - ((x1 
    * x3) 
    * x4)))) 
    + ((x2 
    * x3) 
    * x4)) 
    * x)) 
    + (((x1 
    * x2) 
    * x3) 
    * x4)); 
    
      then (w
    / a1) 
    = (((((x 
    |^ 4) 
    - ((((x1 
    + x2) 
    + x3) 
    + x4) 
    * ((x 
    ^2 ) 
    * x))) 
    + ((((((x1 
    * x2) 
    + (x1 
    * x3)) 
    + (x1 
    * x4)) 
    + ((x2 
    * x3) 
    + (x2 
    * x4))) 
    + (x3 
    * x4)) 
    * (x 
    ^2 ))) 
    - ((((((x1 
    * x2) 
    * x3) 
    + ((x1 
    * x2) 
    * x4)) 
    + ((x1 
    * x3) 
    * x4)) 
    + ((x2 
    * x3) 
    * x4)) 
    * x)) 
    + (((x1 
    * x2) 
    * x3) 
    * x4)) by 
    Th4;
    
      hence thesis by
    Th4;
    
    end;
    
    theorem :: 
    
    POLYEQ_2:12
    
    for a1,a2,a3,a4,a5,x1,x2,x3,x4 be
    Real st a1 
    <>  
    0 & (for x be 
    Real holds ( 
    Polynom (a1,a2,a3,a4,a5,x)) 
    = ( 
    Four0 (a1,x1,x2,x3,x4,x))) holds (a2 
    / a1) 
    = ( 
    - (((x1 
    + x2) 
    + x3) 
    + x4)) & (a3 
    / a1) 
    = (((((x1 
    * x2) 
    + (x1 
    * x3)) 
    + (x1 
    * x4)) 
    + ((x2 
    * x3) 
    + (x2 
    * x4))) 
    + (x3 
    * x4)) & (a4 
    / a1) 
    = ( 
    - (((((x1 
    * x2) 
    * x3) 
    + ((x1 
    * x2) 
    * x4)) 
    + ((x1 
    * x3) 
    * x4)) 
    + ((x2 
    * x3) 
    * x4))) & (a5 
    / a1) 
    = (((x1 
    * x2) 
    * x3) 
    * x4) 
    
    proof
    
      set b1 = 1;
    
      let a1,a2,a3,a4,a5,x1,x2,x3,x4 be
    Real;
    
      assume
    
      
    
    A1: a1 
    <>  
    0 ; 
    
      set b5 = (((x1
    * x2) 
    * x3) 
    * x4); 
    
      set b4 = (
    - (((((x1 
    * x2) 
    * x3) 
    + ((x1 
    * x2) 
    * x4)) 
    + ((x1 
    * x3) 
    * x4)) 
    + ((x2 
    * x3) 
    * x4))); 
    
      set b3 = (((((x1
    * x2) 
    + (x1 
    * x3)) 
    + (x1 
    * x4)) 
    + ((x2 
    * x3) 
    + (x2 
    * x4))) 
    + (x3 
    * x4)); 
    
      set b2 = (
    - (((x1 
    + x2) 
    + x3) 
    + x4)); 
    
      assume
    
      
    
    A2: for x be 
    Real holds ( 
    Polynom (a1,a2,a3,a4,a5,x)) 
    = ( 
    Four0 (a1,x1,x2,x3,x4,x)); 
    
      now
    
        let x be
    Real;
    
        set t = (((((b1
    * (x 
    |^ 4)) 
    + (b2 
    * (x 
    |^ 3))) 
    + (b3 
    * (x 
    ^2 ))) 
    + (b4 
    * x)) 
    + b5); 
    
        ((((((a1
    * (x 
    |^ 4)) 
    + (a2 
    * (x 
    |^ 3))) 
    + (a3 
    * (x 
    ^2 ))) 
    + (a4 
    * x)) 
    + a5) 
    / a1) 
    = (((((x 
    |^ 4) 
    - ((((x1 
    + x2) 
    + x3) 
    + x4) 
    * (x 
    |^ 3))) 
    + ((((((x1 
    * x2) 
    + (x1 
    * x3)) 
    + (x1 
    * x4)) 
    + ((x2 
    * x3) 
    + (x2 
    * x4))) 
    + (x3 
    * x4)) 
    * (x 
    ^2 ))) 
    - ((((((x1 
    * x2) 
    * x3) 
    + ((x1 
    * x2) 
    * x4)) 
    + ((x1 
    * x3) 
    * x4)) 
    + ((x2 
    * x3) 
    * x4)) 
    * x)) 
    + (((x1 
    * x2) 
    * x3) 
    * x4)) by 
    A1,
    A2,
    Th11;
    
        
    
        then t
    = ((a1 
    " ) 
    * ((((a1 
    * (x 
    |^ 4)) 
    + (a2 
    * (x 
    |^ 3))) 
    + ((a3 
    * (x 
    ^2 )) 
    + (a4 
    * x))) 
    + a5)) by 
    XCMPLX_0:def 9
    
        .= (((((a1
    " ) 
    * a1) 
    * (x 
    |^ 4)) 
    + ((a1 
    " ) 
    * (a2 
    * (x 
    |^ 3)))) 
    + ((((a1 
    " ) 
    * (a3 
    * (x 
    ^2 ))) 
    + ((a1 
    " ) 
    * (a4 
    * x))) 
    + ((a1 
    " ) 
    * a5))) 
    
        .= ((((a1
    / a1) 
    * (x 
    |^ 4)) 
    + ((a1 
    " ) 
    * (a2 
    * (x 
    |^ 3)))) 
    + ((((a1 
    " ) 
    * (a3 
    * (x 
    ^2 ))) 
    + ((a1 
    " ) 
    * (a4 
    * x))) 
    + ((a1 
    " ) 
    * a5))) by 
    XCMPLX_0:def 9
    
        .= (((1
    * (x 
    |^ 4)) 
    + ((a1 
    " ) 
    * (a2 
    * (x 
    |^ 3)))) 
    + ((((a1 
    " ) 
    * (a3 
    * (x 
    ^2 ))) 
    + ((a1 
    " ) 
    * (a4 
    * x))) 
    + ((a1 
    " ) 
    * a5))) by 
    A1,
    XCMPLX_1: 60
    
        .= (((x
    |^ 4) 
    + (((a1 
    " ) 
    * a2) 
    * (x 
    |^ 3))) 
    + ((((a1 
    " ) 
    * (a3 
    * (x 
    ^2 ))) 
    + ((a1 
    " ) 
    * (a4 
    * x))) 
    + ((a1 
    " ) 
    * a5))) 
    
        .= (((x
    |^ 4) 
    + ((a2 
    / a1) 
    * (x 
    |^ 3))) 
    + (((((a1 
    " ) 
    * a3) 
    * (x 
    ^2 )) 
    + ((a1 
    " ) 
    * (a4 
    * x))) 
    + ((a1 
    " ) 
    * a5))) by 
    XCMPLX_0:def 9
    
        .= (((x
    |^ 4) 
    + ((a2 
    / a1) 
    * (x 
    |^ 3))) 
    + ((((a3 
    / a1) 
    * (x 
    ^2 )) 
    + (((a1 
    " ) 
    * a4) 
    * x)) 
    + ((a1 
    " ) 
    * a5))) by 
    XCMPLX_0:def 9
    
        .= (((x
    |^ 4) 
    + ((a2 
    / a1) 
    * (x 
    |^ 3))) 
    + ((((a3 
    / a1) 
    * (x 
    ^2 )) 
    + ((a4 
    / a1) 
    * x)) 
    + ((a1 
    " ) 
    * a5))) by 
    XCMPLX_0:def 9
    
        .= (((x
    |^ 4) 
    + ((a2 
    / a1) 
    * (x 
    |^ 3))) 
    + ((((a3 
    / a1) 
    * (x 
    ^2 )) 
    + ((a4 
    / a1) 
    * x)) 
    + (a5 
    / a1))) by 
    XCMPLX_0:def 9
    
        .= (
    Polynom (1,(a2 
    / a1),(a3 
    / a1),(a4 
    / a1),(a5 
    / a1),x)); 
    
        hence (
    Polynom (1,(a2 
    / a1),(a3 
    / a1),(a4 
    / a1),(a5 
    / a1),x)) 
    = ( 
    Polynom (b1,b2,b3,b4,b5,x)); 
    
      end;
    
      hence thesis by
    Th9;
    
    end;
    
    theorem :: 
    
    POLYEQ_2:13
    
    for a,k,y be
    Real st a 
    <>  
    0 holds (for x be 
    Real holds ((x 
    |^ 4) 
    + (a 
    |^ 4)) 
    = (((k 
    * a) 
    * x) 
    * ((x 
    ^2 ) 
    + (a 
    ^2 )))) implies ((((y 
    |^ 4) 
    - (k 
    * (y 
    |^ 3))) 
    - (k 
    * y)) 
    + 1) 
    =  
    0  
    
    proof
    
      let a,k,y be
    Real;
    
      assume that
    
      
    
    A1: a 
    <>  
    0 and 
    
      
    
    A2: for x be 
    Real holds ((x 
    |^ 4) 
    + (a 
    |^ 4)) 
    = (((k 
    * a) 
    * x) 
    * ((x 
    ^2 ) 
    + (a 
    ^2 ))); 
    
      (((a
    * y) 
    |^ 4) 
    + (a 
    |^ 4)) 
    = (((k 
    * a) 
    * (a 
    * y)) 
    * (((a 
    * y) 
    ^2 ) 
    + (a 
    ^2 ))) by 
    A2
    
      .= ((k
    * ((a 
    ^2 ) 
    * y)) 
    * (((a 
    ^2 ) 
    * (y 
    ^2 )) 
    + ((a 
    ^2 ) 
    * 1))); 
    
      
    
      then (((a
    * y) 
    |^ 4) 
    + (a 
    |^ 4)) 
    = (k 
    * ((((a 
    ^2 ) 
    * (a 
    ^2 )) 
    * y) 
    * ((y 
    ^2 ) 
    + 1))) 
    
      .= (k
    * (((a 
    |^ 4) 
    * y) 
    * ((y 
    ^2 ) 
    + 1))) by 
    Th4
    
      .= (((a
    |^ 4) 
    * (k 
    * y)) 
    * ((y 
    ^2 ) 
    + 1)); 
    
      then (((a
    |^ 4) 
    * (y 
    |^ 4)) 
    + ((a 
    |^ 4) 
    * 1)) 
    = ((a 
    |^ 4) 
    * ((k 
    * y) 
    * ((y 
    ^2 ) 
    + 1))) by 
    NEWTON: 7;
    
      then (((a
    |^ 4) 
    " ) 
    * ((a 
    |^ 4) 
    * (((y 
    |^ 4) 
    + 1) 
    - ((k 
    * y) 
    * ((y 
    ^2 ) 
    + 1))))) 
    =  
    0 ; 
    
      then ((((a
    |^ 4) 
    " ) 
    * (a 
    |^ 4)) 
    * (((y 
    |^ 4) 
    + 1) 
    - ((k 
    * y) 
    * ((y 
    ^2 ) 
    + 1)))) 
    =  
    0 ; 
    
      then
    
      
    
    A3: (((1 
    / (a 
    |^ 4)) 
    * (a 
    |^ 4)) 
    * (((y 
    |^ 4) 
    + 1) 
    - ((k 
    * y) 
    * ((y 
    ^2 ) 
    + 1)))) 
    =  
    0 by 
    XCMPLX_1: 215;
    
      (a
    |^ 4) 
    <>  
    0 by 
    A1,
    PREPOWER: 5;
    
      then (1
    * (((y 
    |^ 4) 
    + 1) 
    - ((k 
    * y) 
    * ((y 
    ^2 ) 
    + 1)))) 
    =  
    0 by 
    A3,
    XCMPLX_1: 106;
    
      then ((((y
    |^ 4) 
    - (k 
    * ((y 
    ^2 ) 
    * y))) 
    - (k 
    * y)) 
    + 1) 
    =  
    0 ; 
    
      hence thesis by
    Th4;
    
    end;