polyeq_2.miz
begin
4
= (2
* 2);
then 2
divides 4 by
INT_1:def 3;
then
Lm1: 4 is
even by
ABIAN:def 1;
3
= ((2
* 1)
+ 1);
then
Lm2: 3 is
odd by
ABIAN: 1;
definition
let a,b,c,d,e,x be
Complex;
::
POLYEQ_2:def1
func
Polynom (a,b,c,d,e,x) ->
set equals (((((a
* (x
|^ 4))
+ (b
* (x
|^ 3)))
+ (c
* (x
^2 )))
+ (d
* x))
+ e);
correctness ;
end
registration
let a,b,c,d,e,x be
Complex;
cluster (
Polynom (a,b,c,d,e,x)) ->
complex;
coherence ;
end
registration
let a,b,c,d,e,x be
Real;
cluster (
Polynom (a,b,c,d,e,x)) ->
real;
coherence ;
end
theorem ::
POLYEQ_2:1
for a,c,e,x be
Real st a
<>
0 & e
<>
0 & ((c
^2 )
- ((4
* a)
* e))
>
0 holds (
Polynom (a,
0 ,c,
0 ,e,x))
=
0 implies x
<>
0 & (x
= (
sqrt (((
- c)
+ (
sqrt (
delta (a,c,e))))
/ (2
* a))) or x
= (
sqrt (((
- c)
- (
sqrt (
delta (a,c,e))))
/ (2
* a))) or x
= (
- (
sqrt (((
- c)
+ (
sqrt (
delta (a,c,e))))
/ (2
* a)))) or x
= (
- (
sqrt (((
- c)
- (
sqrt (
delta (a,c,e))))
/ (2
* a)))))
proof
let a,c,e,x be
Real;
assume that
A1: a
<>
0 and
A2: e
<>
0 and
A3: ((c
^2 )
- ((4
* a)
* e))
>
0 ;
set y = (x
^2 );
assume
A4: (
Polynom (a,
0 ,c,
0 ,e,x))
=
0 ;
A5:
now
assume x
=
0 ;
then (((a
*
0 )
+ (
0
* (
0
|^ 3)))
+ e)
=
0 by
A4,
NEWTON: 11;
hence contradiction by
A2;
end;
per cases by
A5,
XXREAL_0: 1;
suppose
A6: x
>
0 ;
(x
|^ 4)
= (x
to_power (2
+ 2)) by
POWER: 41
.= ((x
to_power 2)
* (x
to_power 2)) by
A6,
POWER: 27
.= ((x
^2 )
* (x
to_power 2)) by
POWER: 46
.= ((x
^2 )
* (x
^2 )) by
POWER: 46;
then (((a
* (y
^2 ))
+ (c
* y))
+ e)
=
0 by
A4;
then
A7: (
Polynom (a,c,e,y))
=
0 by
POLYEQ_1:def 2;
(
delta (a,c,e))
>=
0 by
A3,
QUIN_1:def 1;
then y
= (((
- c)
+ (
sqrt (
delta (a,c,e))))
/ (2
* a)) or y
= (((
- c)
- (
sqrt (
delta (a,c,e))))
/ (2
* a)) by
A1,
A7,
POLYEQ_1: 5;
then
|.x.|
= (
sqrt (((
- c)
+ (
sqrt (
delta (a,c,e))))
/ (2
* a))) or
|.x.|
= (
sqrt (((
- c)
- (
sqrt (
delta (a,c,e))))
/ (2
* a))) by
COMPLEX1: 72;
hence thesis by
A6,
ABSVALUE:def 1;
end;
suppose
A8: x
<
0 ;
then
A9:
0
< (
- x) by
XREAL_1: 58;
((
- x)
|^ 4)
= (x
|^ 4) by
Lm1,
POWER: 1;
then (x
|^ 4)
= ((
- x)
to_power (2
+ 2)) by
POWER: 41
.= (((
- x)
to_power 2)
* ((
- x)
to_power 2)) by
A9,
POWER: 27
.= (((
- x)
^2 )
* ((
- x)
to_power 2)) by
POWER: 46
.= ((x
^2 )
* (x
^2 )) by
POWER: 46;
then (((a
* (y
^2 ))
+ (c
* y))
+ e)
=
0 by
A4;
then
A10: (
Polynom (a,c,e,y))
=
0 by
POLYEQ_1:def 2;
((c
^2 )
- ((4
* a)
* e))
= (
delta (a,c,e)) by
QUIN_1:def 1;
then y
= (((
- c)
+ (
sqrt (
delta (a,c,e))))
/ (2
* a)) or y
= (((
- c)
- (
sqrt (
delta (a,c,e))))
/ (2
* a)) by
A1,
A3,
A10,
POLYEQ_1: 5;
then
|.x.|
= (
sqrt (((
- c)
+ (
sqrt (
delta (a,c,e))))
/ (2
* a))) or
|.x.|
= (
sqrt (((
- c)
- (
sqrt (
delta (a,c,e))))
/ (2
* a))) by
COMPLEX1: 72;
then ((
- 1)
* (
- x))
= ((
- 1)
* (
sqrt (((
- c)
+ (
sqrt (
delta (a,c,e))))
/ (2
* a)))) or ((
- 1)
* (
- x))
= ((
- 1)
* (
sqrt (((
- c)
- (
sqrt (
delta (a,c,e))))
/ (2
* a)))) by
A8,
ABSVALUE:def 1;
hence thesis by
A5;
end;
end;
theorem ::
POLYEQ_2:2
Th2: for a,b,c,x,y be
Real st a
<>
0 & y
= (x
+ (1
/ x)) holds (
Polynom (a,b,c,b,a,x))
=
0 implies x
<>
0 & ((((a
* (y
^2 ))
+ (b
* y))
+ c)
- (2
* a))
=
0
proof
let a,b,c,x,y be
Real;
assume that
A1: a
<>
0 and
A2: y
= (x
+ (1
/ x));
assume
A3: (
Polynom (a,b,c,b,a,x))
=
0 ;
A4: x
<>
0
proof
assume x
=
0 ;
then (((a
* (
0
to_power 4))
+ (b
* (
0
|^ 3)))
+ a)
=
0 by
A3;
then (((a
*
0 )
+ (b
* (
0
|^ 3)))
+ a)
=
0 by
POWER:def 2;
then (((a
*
0 )
+ (b
*
0 ))
+ a)
=
0 by
NEWTON: 11;
hence contradiction by
A1;
end;
then
A5: (x
^2 )
>
0 by
SQUARE_1: 12;
A6: (x
|^ 4)
= (x
to_power (2
+ 2)) by
POWER: 41;
A7:
now
per cases by
A4,
XXREAL_0: 1;
case
A8: x
>
0 ;
set n = (
- ((b
* x)
+ a));
set m = ((a
* (x
^2 ))
+ ((b
* x)
+ c));
(x
|^ 3)
= (x
to_power (2
+ 1)) by
POWER: 41
.= ((x
to_power 2)
* (x
to_power 1)) by
A8,
POWER: 27;
then
A9: (x
|^ 3)
= ((x
to_power 2)
* x)
.= ((x
^2 )
* x) by
POWER: 46;
(x
|^ 4)
= ((x
to_power 2)
* (x
to_power 2)) by
A6,
A8,
POWER: 27
.= ((x
^2 )
* (x
to_power 2)) by
POWER: 46
.= ((x
^2 )
* (x
^2 )) by
POWER: 46;
then (m
* (x
^2 ))
= (n
* 1) by
A3,
A9;
then (m
/ 1)
= (n
/ (x
^2 )) by
A5,
XCMPLX_1: 94;
then ((a
* (x
^2 ))
+ ((b
* x)
+ c))
= ((
- ((b
* x)
+ a))
* (1
/ (x
^2 ))) by
XCMPLX_1: 99
.= ((
- ((b
* x)
+ a))
* ((x
^2 )
" )) by
XCMPLX_1: 215
.= ((
- (b
* (x
* ((x
^2 )
" ))))
- (a
* ((x
^2 )
" )));
then (a
* ((x
^2 )
+ ((x
^2 )
" )))
= ((
- (b
* ((x
* ((x
^2 )
" ))
+ x)))
- c);
then
A10: (a
* ((x
^2 )
+ (1
/ (x
^2 ))))
= ((
- (b
* ((x
* ((x
^2 )
" ))
+ x)))
- c) by
XCMPLX_1: 215
.= ((
- (b
* ((x
* (1
/ (x
^2 )))
+ x)))
- c) by
XCMPLX_1: 215;
(1
/ (x
* x))
= ((1
/ x)
* (1
/ x)) by
XCMPLX_1: 102;
then (a
* ((x
^2 )
+ (1
/ (x
^2 ))))
= ((
- (b
* (((x
* (1
/ x))
* (1
/ x))
+ x)))
- c) by
A10;
then
A11: (a
* ((x
^2 )
+ (1
/ (x
^2 ))))
= ((
- (b
* ((1
* (1
/ x))
+ x)))
- c) by
A8,
XCMPLX_1: 106;
(x
* y)
= ((x
* x)
+ (x
* (1
/ x))) by
A2;
then ((x
* y)
+
0 )
= ((x
^2 )
+ 1) by
A4,
XCMPLX_1: 106;
hence (a
* ((x
^2 )
+ (1
/ (x
^2 ))))
= ((
- (b
* (x
+ (1
/ x))))
- c) & (((x
^2 )
- (x
* y))
+ 1)
=
0 by
A11;
end;
case
A12: x
<
0 ;
set n = (
- ((b
* x)
+ a));
set m = ((a
* (x
^2 ))
+ ((b
* x)
+ c));
(((
- x)
|^ 3)
+ (x
|^ 3))
= (
- ((x
|^ 3)
+ (
- (x
|^ 3)))) by
Lm2,
POWER: 2
.= ((x
|^ 3)
- (x
|^ 3));
then
A13: (x
|^ 3)
= (
- ((
- x)
|^ 3));
A14:
0
< (
- x) by
A12,
XREAL_1: 58;
((
- x)
|^ 4)
= (x
|^ 4) by
Lm1,
POWER: 1;
then
A15: (x
|^ 4)
= ((
- x)
to_power (2
+ 2)) by
POWER: 41
.= (((
- x)
to_power 2)
* ((
- x)
to_power 2)) by
A14,
POWER: 27
.= (((
- x)
^2 )
* ((
- x)
to_power 2)) by
POWER: 46
.= ((x
^2 )
* ((
- x)
^2 )) by
POWER: 46;
((
- x)
|^ 3)
= ((
- x)
to_power (2
+ 1)) by
POWER: 41
.= (((
- x)
to_power 2)
* ((
- x)
to_power 1)) by
A14,
POWER: 27;
then
A16: ((
- x)
|^ 3)
= (((
- x)
to_power 2)
* (
- x));
((
- x)
to_power 2)
= ((
- x)
^2 ) by
POWER: 46
.= (x
^2 );
then (m
* (x
^2 ))
= (n
* 1) by
A3,
A15,
A16,
A13;
then (m
/ 1)
= (n
/ (x
^2 )) by
A5,
XCMPLX_1: 94;
then m
= (n
* (1
/ (x
^2 ))) by
XCMPLX_1: 99
.= (n
* ((x
^2 )
" )) by
XCMPLX_1: 215
.= ((
- (b
* (x
* ((x
^2 )
" ))))
- (a
* ((x
^2 )
" )));
then (a
* ((x
^2 )
+ ((x
^2 )
" )))
= ((
- (b
* ((x
* ((x
^2 )
" ))
+ x)))
- c);
then (a
* ((x
^2 )
+ (1
/ (x
^2 ))))
= ((
- (b
* ((x
* ((x
^2 )
" ))
+ x)))
- c) by
XCMPLX_1: 215
.= ((
- (b
* ((x
* (1
/ (x
^2 )))
+ x)))
- c) by
XCMPLX_1: 215;
then (a
* ((x
^2 )
+ (1
/ (x
^2 ))))
= ((
- (b
* ((x
* ((1
/ x)
* (1
/ x)))
+ x)))
- c) by
XCMPLX_1: 102
.= ((
- (b
* (((x
* (1
/ x))
* (1
/ x))
+ x)))
- c);
then
A17: (a
* ((x
^2 )
+ (1
/ (x
^2 ))))
= ((
- (b
* ((1
* (1
/ x))
+ x)))
- c) by
A12,
XCMPLX_1: 106;
(x
* y)
= ((x
* x)
+ (x
* (1
/ x))) by
A2
.= ((x
* x)
+ 1) by
A12,
XCMPLX_1: 106;
hence (a
* ((x
^2 )
+ (1
/ (x
^2 ))))
= ((
- (b
* (x
+ (1
/ x))))
- c) & (((x
^2 )
- (x
* y))
+ 1)
=
0 by
A17;
end;
end;
(y
^2 )
= (((x
^2 )
+ (2
* (x
* (1
/ x))))
+ ((1
/ x)
^2 )) by
A2
.= (((x
^2 )
+ (2
* 1))
+ ((1
/ x)
^2 )) by
A4,
XCMPLX_1: 106
.= (((x
^2 )
+ 2)
+ ((1
^2 )
/ (x
^2 ))) by
XCMPLX_1: 76
.= ((x
^2 )
- ((
- 2)
- (1
/ (x
^2 ))));
then ((a
* (y
^2 ))
- (2
* a))
= ((
- (b
* y))
- c) by
A2,
A7;
hence thesis by
A4;
end;
theorem ::
POLYEQ_2:3
for a,b,c,x,y be
Real st a
<>
0 & (((b
^2 )
- ((4
* a)
* c))
+ (8
* (a
^2 )))
>
0 & y
= (x
+ (1
/ x)) holds (
Polynom (a,b,c,b,a,x))
=
0 implies for y1,y2 be
Real st y1
= (((
- b)
+ (
sqrt (((b
^2 )
- ((4
* a)
* c))
+ (8
* (a
^2 )))))
/ (2
* a)) & y2
= (((
- b)
- (
sqrt (((b
^2 )
- ((4
* a)
* c))
+ (8
* (a
^2 )))))
/ (2
* a)) holds x
<>
0 & (x
= ((y1
+ (
sqrt (
delta (1,(
- y1),1))))
/ 2) or x
= ((y2
+ (
sqrt (
delta (1,(
- y2),1))))
/ 2) or x
= ((y1
- (
sqrt (
delta (1,(
- y1),1))))
/ 2) or x
= ((y2
- (
sqrt (
delta (1,(
- y2),1))))
/ 2))
proof
let a,b,c,x,y be
Real;
assume that
A1: a
<>
0 and
A2: (((b
^2 )
- ((4
* a)
* c))
+ (8
* (a
^2 )))
>
0 and
A3: y
= (x
+ (1
/ x)) and
A4: (
Polynom (a,b,c,b,a,x))
=
0 ;
A5: x
<>
0 by
A1,
A3,
A4,
Th2;
set f = (c
- (2
* a));
((((a
* (y
^2 ))
+ (b
* y))
+ c)
- (2
* a))
=
0 by
A1,
A3,
A4,
Th2;
then (((a
* (y
^2 ))
+ (b
* y))
+ (c
- (2
* a)))
=
0 ;
then
A6: (
Polynom (a,b,f,y))
=
0 by
POLYEQ_1:def 2;
let y1,y2 be
Real;
assume
A7: y1
= (((
- b)
+ (
sqrt (((b
^2 )
- ((4
* a)
* c))
+ (8
* (a
^2 )))))
/ (2
* a)) & y2
= (((
- b)
- (
sqrt (((b
^2 )
- ((4
* a)
* c))
+ (8
* (a
^2 )))))
/ (2
* a));
(x
* y)
= ((x
^2 )
+ (x
* (1
/ x))) by
A3;
then ((x
* y)
+
0 )
= ((x
^2 )
+ 1) by
A5,
XCMPLX_1: 106;
then (((1
* (x
^2 ))
+ ((
- y)
* x))
+ 1)
=
0 ;
then
A8: (
Polynom (1,(
- y),1,x))
=
0 by
POLYEQ_1:def 2;
(
delta (1,(
- y),1))
= (((
- y)
^2 )
- ((4
* 1)
* 1)) by
QUIN_1:def 1
.= ((((x
^2 )
+ (2
* (x
* (1
/ x))))
+ ((1
/ x)
^2 ))
- 4) by
A3
.= ((((x
^2 )
+ (2
* 1))
+ ((1
/ x)
^2 ))
- 4) by
A5,
XCMPLX_1: 106
.= ((x
^2 )
+ ((
- (2
* 1))
+ ((1
/ x)
^2 )))
.= ((x
^2 )
+ ((
- (2
* (x
* (1
/ x))))
+ ((1
/ x)
^2 ))) by
A5,
XCMPLX_1: 106
.= ((x
- (1
/ x))
^2 );
then
A9: x
= (((
- (
- y))
+ (
sqrt (
delta (1,(
- y),1))))
/ (2
* 1)) or x
= (((
- (
- y))
- (
sqrt (
delta (1,(
- y),1))))
/ (2
* 1)) by
A8,
POLYEQ_1: 5,
XREAL_1: 63;
A10: ((b
^2 )
- ((4
* a)
* f))
= (((b
^2 )
- ((4
* a)
* c))
+ (8
* (a
^2 )));
then (
delta (a,b,f))
>
0 by
A2,
QUIN_1:def 1;
then y
= (((
- b)
+ (
sqrt (
delta (a,b,f))))
/ (2
* a)) or y
= (((
- b)
- (
sqrt (
delta (a,b,f))))
/ (2
* a)) by
A1,
A6,
POLYEQ_1: 5;
then y
= y1 or y
= y2 by
A7,
A10,
QUIN_1:def 1;
hence thesis by
A1,
A3,
A4,
A9,
Th2;
end;
theorem ::
POLYEQ_2:4
Th4: for x be
Real holds (x
|^ 3)
= ((x
^2 )
* x) & ((x
|^ 3)
* x)
= (x
|^ 4) & ((x
^2 )
* (x
^2 ))
= (x
|^ 4)
proof
let x be
Real;
per cases by
XXREAL_0: 1;
suppose x
=
0 ;
hence thesis by
NEWTON: 11;
end;
suppose
A1: x
>
0 ;
((x
|^ 3)
* x)
= ((x
|^ 3)
* (x
to_power 1))
.= ((x
to_power 3)
* (x
to_power 1));
then
A2: ((x
|^ 3)
* x)
= (x
to_power (3
+ 1)) by
A1,
POWER: 27;
(x
^2 )
= (x
to_power 2) by
POWER: 46;
then ((x
^2 )
* x)
= ((x
to_power 2)
* (x
to_power 1))
.= (x
to_power (2
+ 1)) by
A1,
POWER: 27
.= (x
|^ 3) by
POWER: 41;
hence thesis by
A2,
POWER: 41;
end;
suppose x
<
0 ;
then
A3: (
- x)
>
0 by
XREAL_1: 58;
(((
- x)
|^ 3)
+ (x
|^ 3))
= (
- ((x
|^ 3)
+ (
- (x
|^ 3)))) by
Lm2,
POWER: 2
.= ((x
|^ 3)
- (x
|^ 3));
then
A4: ((x
|^ 3)
+ (((
- x)
|^ 3)
- ((
- x)
|^ 3)))
= (
0
- ((
- x)
|^ 3));
A5: ((
- x)
to_power 2)
= ((
- x)
^2 ) by
POWER: 46
.= (x
^2 );
((
- x)
|^ 3)
= ((
- x)
to_power (2
+ 1)) by
POWER: 41
.= (((
- x)
to_power 2)
* ((
- x)
to_power 1)) by
A3,
POWER: 27;
then
A6: ((
- x)
|^ 3)
= (((
- x)
to_power 2)
* (
- x));
((
- x)
|^ 4)
= (x
|^ 4) by
Lm1,
POWER: 1;
then (x
|^ 4)
= ((
- x)
to_power (3
+ 1)) by
POWER: 41
.= (((
- x)
to_power 3)
* ((
- x)
to_power 1)) by
A3,
POWER: 27
.= (((
- x)
|^ 3)
* ((
- x)
to_power 1));
then (x
|^ 4)
= (((
- x)
|^ 3)
* (
- x))
.= ((x
^2 )
* (x
* x)) by
A6,
A5;
hence thesis by
A6,
A5,
A4;
end;
end;
theorem ::
POLYEQ_2:5
Th5: for x,y be
Real st (x
+ y)
<>
0 holds ((x
+ y)
|^ 4)
= (((((x
|^ 3)
+ (((3
* y)
* (x
^2 ))
+ ((3
* (y
^2 ))
* x)))
+ (y
|^ 3))
* x)
+ ((((x
|^ 3)
+ (((3
* y)
* (x
^2 ))
+ ((3
* (y
^2 ))
* x)))
+ (y
|^ 3))
* y))
proof
let x,y be
Real;
assume
A1: (x
+ y)
<>
0 ;
per cases by
A1,
XXREAL_0: 1;
suppose
A2: (x
+ y)
>
0 ;
((x
+ y)
|^ 4)
= ((x
+ y)
to_power (3
+ 1)) by
POWER: 41
.= (((x
+ y)
to_power 3)
* ((x
+ y)
to_power 1)) by
A2,
POWER: 27
.= (((x
+ y)
to_power 3)
* (x
+ y));
then ((x
+ y)
|^ 4)
= (((x
+ y)
|^ 3)
* (x
+ y))
.= ((((x
|^ 3)
+ (((3
* y)
* (x
^2 ))
+ ((3
* (y
^2 ))
* x)))
+ (y
|^ 3))
* (x
+ y)) by
POLYEQ_1: 14;
hence thesis;
end;
suppose (x
+ y)
<
0 ;
then
A3: (
- (x
+ y))
>
0 by
XREAL_1: 58;
((
- (x
+ y))
|^ 4)
= ((x
+ y)
|^ 4) by
Lm1,
POWER: 1;
then ((x
+ y)
|^ 4)
= ((
- (x
+ y))
to_power (3
+ 1)) by
POWER: 41
.= (((
- (x
+ y))
to_power 3)
* ((
- (x
+ y))
to_power 1)) by
A3,
POWER: 27
.= (((
- (x
+ y))
|^ 3)
* ((
- (x
+ y))
to_power 1));
then ((x
+ y)
|^ 4)
= (((
- (x
+ y))
|^ 3)
* (
- (x
+ y)));
then ((x
+ y)
|^ 4)
= ((
- ((x
+ y)
|^ 3))
* (
- (x
+ y))) by
Lm2,
POWER: 2
.= (((x
+ y)
|^ 3)
* (x
+ y))
.= ((((x
|^ 3)
+ (((3
* y)
* (x
^2 ))
+ ((3
* (y
^2 ))
* x)))
+ (y
|^ 3))
* (x
+ y)) by
POLYEQ_1: 14;
hence thesis;
end;
end;
theorem ::
POLYEQ_2:6
for x,y be
Real st (x
+ y)
<>
0 holds ((x
+ y)
|^ 4)
= (((x
|^ 4)
+ ((((4
* y)
* (x
|^ 3))
+ ((6
* (y
^2 ))
* (x
^2 )))
+ ((4
* (y
|^ 3))
* x)))
+ (y
|^ 4))
proof
let x,y be
Real;
set g = ((((x
|^ 3)
+ (((3
* y)
* (x
^2 ))
+ ((3
* (y
^2 ))
* x)))
+ (y
|^ 3))
* x);
set h = ((((x
|^ 3)
+ (((3
* y)
* (x
^2 ))
+ ((3
* (y
^2 ))
* x)))
+ (y
|^ 3))
* y);
set p = (y
|^ 3), q = (x
|^ 3), u = (x
|^ 4), v = (y
|^ 4);
A1: g
= ((((x
|^ 3)
* x)
+ ((((3
* y)
* (x
^2 ))
+ ((3
* (y
^2 ))
* x))
* x))
+ ((y
|^ 3)
* x));
A2: (y
|^ 3)
= ((y
^2 )
* y) by
Th4;
assume (x
+ y)
<>
0 ;
then
A3: ((x
+ y)
|^ 4)
= (g
+ h) by
Th5;
h
= ((((x
|^ 3)
* y)
+ ((((3
* y)
* (x
^2 ))
+ ((3
* (y
^2 ))
* x))
* y))
+ ((y
|^ 3)
* y))
.= ((((x
|^ 3)
* y)
+ ((((3
* y)
* (x
^2 ))
+ ((3
* (y
^2 ))
* x))
* y))
+ (y
|^ 4)) by
Th4;
then ((x
+ y)
|^ 4)
= (((u
+ (((3
* y)
* ((x
^2 )
* x))
- ((
- ((3
* (y
^2 ))
* x))
* x)))
+ (p
* x))
+ (((q
* y)
+ ((((3
* y)
* (x
^2 ))
+ ((3
* (y
^2 ))
* x))
* y))
+ v)) by
A3,
A1,
Th4
.= (((u
+ (((3
* y)
* q)
- (
- ((3
* (y
^2 ))
* (x
^2 )))))
+ (p
* x))
+ (((q
* y)
+ ((((3
* y)
* (x
^2 ))
+ ((3
* (y
^2 ))
* x))
* y))
+ v)) by
Th4
.= (((u
+ ((3
* y)
* q))
+ (((3
* (y
^2 ))
* (x
^2 ))
+ (p
* x)))
+ (((q
* y)
+ (((3
* (y
^2 ))
* (x
^2 ))
+ (((3
* (y
^2 ))
* x)
* y)))
+ v));
hence thesis by
A2;
end;
theorem ::
POLYEQ_2:7
Th7: for a1,a2,a3,a4,a5,b1,b2,b3,b4,b5 be
Real holds (for x be
Real holds (
Polynom (a1,a2,a3,a4,a5,x))
= (
Polynom (b1,b2,b3,b4,b5,x))) implies a5
= b5 & (((a1
- a2)
+ a3)
- a4)
= (((b1
- b2)
+ b3)
- b4) & (((a1
+ a2)
+ a3)
+ a4)
= (((b1
+ b2)
+ b3)
+ b4)
proof
set x = (
- 1);
let a1,a2,a3,a4,a5,b1,b2,b3,b4,b5 be
Real;
A1: (
0
|^ 3)
=
0 & (
0
|^ 4)
=
0 by
NEWTON: 11;
assume
A2: for x be
Real holds (
Polynom (a1,a2,a3,a4,a5,x))
= (
Polynom (b1,b2,b3,b4,b5,x));
then
A3: (
Polynom (a1,a2,a3,a4,a5,(
- 1)))
= (
Polynom (b1,b2,b3,b4,b5,(
- 1)));
A5: (x
|^ 3)
= ((x
^2 )
* x) & ((x
|^ 3)
* x)
= (x
|^ 4) by
Th4;
(
Polynom (a1,a2,a3,a4,a5,
0 ))
= (
Polynom (b1,b2,b3,b4,b5,
0 )) & (
Polynom (a1,a2,a3,a4,a5,1))
= (
Polynom (b1,b2,b3,b4,b5,1)) by
A2;
hence thesis by
A1,
A3,
A5;
end;
theorem ::
POLYEQ_2:8
Th8: for a1,a2,a3,a4,a5,b1,b2,b3,b4,b5 be
Real holds (for x be
Real holds (
Polynom (a1,a2,a3,a4,a5,x))
= (
Polynom (b1,b2,b3,b4,b5,x))) implies (a1
- b1)
= (b3
- a3) & (a2
- b2)
= (b4
- a4)
proof
let a1,a2,a3,a4,a5,b1,b2,b3,b4,b5 be
Real;
assume for x be
Real holds (
Polynom (a1,a2,a3,a4,a5,x))
= (
Polynom (b1,b2,b3,b4,b5,x));
then (((a1
- a2)
+ a3)
- a4)
= (((b1
- b2)
+ b3)
- b4) & (((a1
+ a2)
+ a3)
+ a4)
= (((b1
+ b2)
+ b3)
+ b4) by
Th7;
hence thesis;
end;
theorem ::
POLYEQ_2:9
Th9: for a1,a2,a3,a4,a5,b1,b2,b3,b4,b5 be
Real st (for x be
Real holds (
Polynom (a1,a2,a3,a4,a5,x))
= (
Polynom (b1,b2,b3,b4,b5,x))) holds a1
= b1 & a2
= b2 & a3
= b3 & a4
= b4 & a5
= b5
proof
A1: ((
- 2)
|^ 3)
= (((
- 2)
^2 )
* (
- 2)) by
Th4
.= (
- (4
* 2));
A2: ((
- 2)
|^ 4)
= 16 by
Lm1,
POWER: 1,
POWER: 62;
let a1,a2,a3,a4,a5,b1,b2,b3,b4,b5 be
Real;
assume
A3: for x be
Real holds (
Polynom (a1,a2,a3,a4,a5,x))
= (
Polynom (b1,b2,b3,b4,b5,x));
then
A4: (
Polynom (a1,a2,a3,a4,a5,(
- 2)))
= (
Polynom (b1,b2,b3,b4,b5,(
- 2)));
A5: a5
= b5 & (
Polynom (a1,a2,a3,a4,a5,2))
= (
Polynom (b1,b2,b3,b4,b5,2)) by
A3,
Th7;
(a1
- b1)
= (b3
- a3) & (a2
- b2)
= (b4
- a4) by
A3,
Th8;
hence thesis by
A5,
A4,
A2,
A1,
POWER: 61,
POWER: 62;
end;
definition
let a1,x1,x2,x3,x4,x be
Real;
::
POLYEQ_2:def2
func
Four0 (a1,x1,x2,x3,x4,x) ->
set equals (a1
* ((((x
- x1)
* (x
- x2))
* (x
- x3))
* (x
- x4)));
correctness ;
end
registration
let a1,x1,x2,x3,x4,x be
Real;
cluster (
Four0 (a1,x1,x2,x3,x4,x)) ->
real;
coherence ;
end
theorem ::
POLYEQ_2:10
Th10: for a1,a2,a3,a4,a5,x,x1,x2,x3,x4 be
Real st a1
<>
0 holds (for x be
Real holds (
Polynom (a1,a2,a3,a4,a5,x))
= (
Four0 (a1,x1,x2,x3,x4,x))) implies ((((((a1
* (x
|^ 4))
+ (a2
* (x
|^ 3)))
+ (a3
* (x
^2 )))
+ (a4
* x))
+ a5)
/ a1)
= ((((((x
^2 )
* (x
^2 ))
- (((x1
+ x2)
+ x3)
* ((x
^2 )
* x)))
+ ((((x1
* x3)
+ (x2
* x3))
+ (x1
* x2))
* (x
^2 )))
- (((x1
* x2)
* x3)
* x))
- ((((x
- x1)
* (x
- x2))
* (x
- x3))
* x4))
proof
let a1,a2,a3,a4,a5,x,x1,x2,x3,x4 be
Real;
assume
A1: a1
<>
0 ;
set z = ((((x
- x1)
* (x
- x2))
* (x
- x3))
* (x
- x4));
set w = (((((a1
* (x
|^ 4))
+ (a2
* (x
|^ 3)))
+ (a3
* (x
^2 )))
+ (a4
* x))
+ a5);
assume for x be
Real holds (
Polynom (a1,a2,a3,a4,a5,x))
= (
Four0 (a1,x1,x2,x3,x4,x));
then (
Polynom (a1,a2,a3,a4,a5,x))
= (
Four0 (a1,x1,x2,x3,x4,x));
then (((w
/ a1)
* a1)
- (z
* a1))
= ((z
* a1)
- (z
* a1)) by
A1,
XCMPLX_1: 87;
then (((w
/ a1)
- z)
* a1)
=
0 ;
then ((w
/ a1)
+ (
- z))
= (
0
-
0 ) by
A1,
XCMPLX_1: 6;
hence thesis;
end;
theorem ::
POLYEQ_2:11
Th11: for a1,a2,a3,a4,a5,x,x1,x2,x3,x4 be
Real st a1
<>
0 holds (for x be
Real holds (
Polynom (a1,a2,a3,a4,a5,x))
= (
Four0 (a1,x1,x2,x3,x4,x))) implies ((((((a1
* (x
|^ 4))
+ (a2
* (x
|^ 3)))
+ (a3
* (x
^2 )))
+ (a4
* x))
+ a5)
/ a1)
= (((((x
|^ 4)
- ((((x1
+ x2)
+ x3)
+ x4)
* (x
|^ 3)))
+ ((((((x1
* x2)
+ (x1
* x3))
+ (x1
* x4))
+ ((x2
* x3)
+ (x2
* x4)))
+ (x3
* x4))
* (x
^2 )))
- ((((((x1
* x2)
* x3)
+ ((x1
* x2)
* x4))
+ ((x1
* x3)
* x4))
+ ((x2
* x3)
* x4))
* x))
+ (((x1
* x2)
* x3)
* x4))
proof
let a1,a2,a3,a4,a5,x,x1,x2,x3,x4 be
Real;
assume
A1: a1
<>
0 ;
set w = (((((a1
* (x
|^ 4))
+ (a2
* (x
|^ 3)))
+ (a3
* (x
^2 )))
+ (a4
* x))
+ a5);
assume for x be
Real holds (
Polynom (a1,a2,a3,a4,a5,x))
= (
Four0 (a1,x1,x2,x3,x4,x));
then ((((((a1
* (x
|^ 4))
+ (a2
* (x
|^ 3)))
+ (a3
* (x
^2 )))
+ (a4
* x))
+ a5)
/ a1)
= ((((((x
^2 )
* (x
^2 ))
- (((x1
+ x2)
+ x3)
* ((x
^2 )
* x)))
+ ((((x1
* x3)
+ (x2
* x3))
+ (x1
* x2))
* (x
^2 )))
- (((x1
* x2)
* x3)
* x))
- ((((x
- x1)
* (x
- x2))
* (x
- x3))
* x4)) by
A1,
Th10;
then (w
/ a1)
= ((((((x
^2 )
* (x
^2 ))
- ((((x1
+ x2)
+ x3)
+ x4)
* ((x
^2 )
* x)))
+ (((((x1
* x3)
+ (x2
* x3))
+ (x1
* x2))
+ (((x2
* x4)
+ (x1
* x4))
+ (x3
* x4)))
* (x
^2 )))
- ((((((x1
* x2)
* x3)
+ ((x1
* x2)
* x4))
+ (
- (
- ((x1
* x3)
* x4))))
+ ((x2
* x3)
* x4))
* x))
+ (((x1
* x2)
* x3)
* x4));
then (w
/ a1)
= (((((x
|^ 4)
- ((((x1
+ x2)
+ x3)
+ x4)
* ((x
^2 )
* x)))
+ ((((((x1
* x2)
+ (x1
* x3))
+ (x1
* x4))
+ ((x2
* x3)
+ (x2
* x4)))
+ (x3
* x4))
* (x
^2 )))
- ((((((x1
* x2)
* x3)
+ ((x1
* x2)
* x4))
+ ((x1
* x3)
* x4))
+ ((x2
* x3)
* x4))
* x))
+ (((x1
* x2)
* x3)
* x4)) by
Th4;
hence thesis by
Th4;
end;
theorem ::
POLYEQ_2:12
for a1,a2,a3,a4,a5,x1,x2,x3,x4 be
Real st a1
<>
0 & (for x be
Real holds (
Polynom (a1,a2,a3,a4,a5,x))
= (
Four0 (a1,x1,x2,x3,x4,x))) holds (a2
/ a1)
= (
- (((x1
+ x2)
+ x3)
+ x4)) & (a3
/ a1)
= (((((x1
* x2)
+ (x1
* x3))
+ (x1
* x4))
+ ((x2
* x3)
+ (x2
* x4)))
+ (x3
* x4)) & (a4
/ a1)
= (
- (((((x1
* x2)
* x3)
+ ((x1
* x2)
* x4))
+ ((x1
* x3)
* x4))
+ ((x2
* x3)
* x4))) & (a5
/ a1)
= (((x1
* x2)
* x3)
* x4)
proof
set b1 = 1;
let a1,a2,a3,a4,a5,x1,x2,x3,x4 be
Real;
assume
A1: a1
<>
0 ;
set b5 = (((x1
* x2)
* x3)
* x4);
set b4 = (
- (((((x1
* x2)
* x3)
+ ((x1
* x2)
* x4))
+ ((x1
* x3)
* x4))
+ ((x2
* x3)
* x4)));
set b3 = (((((x1
* x2)
+ (x1
* x3))
+ (x1
* x4))
+ ((x2
* x3)
+ (x2
* x4)))
+ (x3
* x4));
set b2 = (
- (((x1
+ x2)
+ x3)
+ x4));
assume
A2: for x be
Real holds (
Polynom (a1,a2,a3,a4,a5,x))
= (
Four0 (a1,x1,x2,x3,x4,x));
now
let x be
Real;
set t = (((((b1
* (x
|^ 4))
+ (b2
* (x
|^ 3)))
+ (b3
* (x
^2 )))
+ (b4
* x))
+ b5);
((((((a1
* (x
|^ 4))
+ (a2
* (x
|^ 3)))
+ (a3
* (x
^2 )))
+ (a4
* x))
+ a5)
/ a1)
= (((((x
|^ 4)
- ((((x1
+ x2)
+ x3)
+ x4)
* (x
|^ 3)))
+ ((((((x1
* x2)
+ (x1
* x3))
+ (x1
* x4))
+ ((x2
* x3)
+ (x2
* x4)))
+ (x3
* x4))
* (x
^2 )))
- ((((((x1
* x2)
* x3)
+ ((x1
* x2)
* x4))
+ ((x1
* x3)
* x4))
+ ((x2
* x3)
* x4))
* x))
+ (((x1
* x2)
* x3)
* x4)) by
A1,
A2,
Th11;
then t
= ((a1
" )
* ((((a1
* (x
|^ 4))
+ (a2
* (x
|^ 3)))
+ ((a3
* (x
^2 ))
+ (a4
* x)))
+ a5)) by
XCMPLX_0:def 9
.= (((((a1
" )
* a1)
* (x
|^ 4))
+ ((a1
" )
* (a2
* (x
|^ 3))))
+ ((((a1
" )
* (a3
* (x
^2 )))
+ ((a1
" )
* (a4
* x)))
+ ((a1
" )
* a5)))
.= ((((a1
/ a1)
* (x
|^ 4))
+ ((a1
" )
* (a2
* (x
|^ 3))))
+ ((((a1
" )
* (a3
* (x
^2 )))
+ ((a1
" )
* (a4
* x)))
+ ((a1
" )
* a5))) by
XCMPLX_0:def 9
.= (((1
* (x
|^ 4))
+ ((a1
" )
* (a2
* (x
|^ 3))))
+ ((((a1
" )
* (a3
* (x
^2 )))
+ ((a1
" )
* (a4
* x)))
+ ((a1
" )
* a5))) by
A1,
XCMPLX_1: 60
.= (((x
|^ 4)
+ (((a1
" )
* a2)
* (x
|^ 3)))
+ ((((a1
" )
* (a3
* (x
^2 )))
+ ((a1
" )
* (a4
* x)))
+ ((a1
" )
* a5)))
.= (((x
|^ 4)
+ ((a2
/ a1)
* (x
|^ 3)))
+ (((((a1
" )
* a3)
* (x
^2 ))
+ ((a1
" )
* (a4
* x)))
+ ((a1
" )
* a5))) by
XCMPLX_0:def 9
.= (((x
|^ 4)
+ ((a2
/ a1)
* (x
|^ 3)))
+ ((((a3
/ a1)
* (x
^2 ))
+ (((a1
" )
* a4)
* x))
+ ((a1
" )
* a5))) by
XCMPLX_0:def 9
.= (((x
|^ 4)
+ ((a2
/ a1)
* (x
|^ 3)))
+ ((((a3
/ a1)
* (x
^2 ))
+ ((a4
/ a1)
* x))
+ ((a1
" )
* a5))) by
XCMPLX_0:def 9
.= (((x
|^ 4)
+ ((a2
/ a1)
* (x
|^ 3)))
+ ((((a3
/ a1)
* (x
^2 ))
+ ((a4
/ a1)
* x))
+ (a5
/ a1))) by
XCMPLX_0:def 9
.= (
Polynom (1,(a2
/ a1),(a3
/ a1),(a4
/ a1),(a5
/ a1),x));
hence (
Polynom (1,(a2
/ a1),(a3
/ a1),(a4
/ a1),(a5
/ a1),x))
= (
Polynom (b1,b2,b3,b4,b5,x));
end;
hence thesis by
Th9;
end;
theorem ::
POLYEQ_2:13
for a,k,y be
Real st a
<>
0 holds (for x be
Real holds ((x
|^ 4)
+ (a
|^ 4))
= (((k
* a)
* x)
* ((x
^2 )
+ (a
^2 )))) implies ((((y
|^ 4)
- (k
* (y
|^ 3)))
- (k
* y))
+ 1)
=
0
proof
let a,k,y be
Real;
assume that
A1: a
<>
0 and
A2: for x be
Real holds ((x
|^ 4)
+ (a
|^ 4))
= (((k
* a)
* x)
* ((x
^2 )
+ (a
^2 )));
(((a
* y)
|^ 4)
+ (a
|^ 4))
= (((k
* a)
* (a
* y))
* (((a
* y)
^2 )
+ (a
^2 ))) by
A2
.= ((k
* ((a
^2 )
* y))
* (((a
^2 )
* (y
^2 ))
+ ((a
^2 )
* 1)));
then (((a
* y)
|^ 4)
+ (a
|^ 4))
= (k
* ((((a
^2 )
* (a
^2 ))
* y)
* ((y
^2 )
+ 1)))
.= (k
* (((a
|^ 4)
* y)
* ((y
^2 )
+ 1))) by
Th4
.= (((a
|^ 4)
* (k
* y))
* ((y
^2 )
+ 1));
then (((a
|^ 4)
* (y
|^ 4))
+ ((a
|^ 4)
* 1))
= ((a
|^ 4)
* ((k
* y)
* ((y
^2 )
+ 1))) by
NEWTON: 7;
then (((a
|^ 4)
" )
* ((a
|^ 4)
* (((y
|^ 4)
+ 1)
- ((k
* y)
* ((y
^2 )
+ 1)))))
=
0 ;
then ((((a
|^ 4)
" )
* (a
|^ 4))
* (((y
|^ 4)
+ 1)
- ((k
* y)
* ((y
^2 )
+ 1))))
=
0 ;
then
A3: (((1
/ (a
|^ 4))
* (a
|^ 4))
* (((y
|^ 4)
+ 1)
- ((k
* y)
* ((y
^2 )
+ 1))))
=
0 by
XCMPLX_1: 215;
(a
|^ 4)
<>
0 by
A1,
PREPOWER: 5;
then (1
* (((y
|^ 4)
+ 1)
- ((k
* y)
* ((y
^2 )
+ 1))))
=
0 by
A3,
XCMPLX_1: 106;
then ((((y
|^ 4)
- (k
* ((y
^2 )
* y)))
- (k
* y))
+ 1)
=
0 ;
hence thesis by
Th4;
end;