complsp2.miz
    
    begin
    
    reserve i,j for
    Element of 
    NAT , 
    
x,y,z for
    FinSequence of 
    COMPLEX , 
    
c for
    Element of 
    COMPLEX , 
    
R,R1,R2 for
    Element of (i 
    -tuples_on  
    COMPLEX ); 
    
    definition
    
      let z be
    FinSequence of 
    COMPLEX ; 
    
      :: original:
    *'
    
      redefine
    
      :: 
    
    COMPLSP2:def1
    
      func z
    
    *' -> 
    FinSequence of 
    COMPLEX means 
    
      :
    
    Def1: ( 
    len it ) 
    = ( 
    len z) & for i be 
    Nat st 1 
    <= i & i 
    <= ( 
    len z) holds (it 
    . i) 
    = ((z 
    . i) 
    *' ); 
    
      coherence
    
      proof
    
        set f = (z
    *' ); 
    
        
    
        
    
    A1: ( 
    dom f) 
    = ( 
    dom z) by 
    COMSEQ_2:def 1;
    
        ex n be
    Nat st ( 
    dom z) 
    = ( 
    Seg n) by 
    FINSEQ_1:def 2;
    
        then
    
        
    
    A2: f is 
    FinSequence by 
    A1,
    FINSEQ_1:def 2;
    
        (
    rng f) 
    c=  
    COMPLEX  
    
        proof
    
          let y be
    object;
    
          thus thesis by
    XCMPLX_0:def 2;
    
        end;
    
        hence thesis by
    A2,
    FINSEQ_1:def 4;
    
      end;
    
      compatibility
    
      proof
    
        let IT be
    FinSequence of 
    COMPLEX ; 
    
        thus IT
    = (z 
    *' ) implies ( 
    len IT) 
    = ( 
    len z) & for i be 
    Nat st 1 
    <= i & i 
    <= ( 
    len z) holds (IT 
    . i) 
    = ((z 
    . i) 
    *' ) 
    
        proof
    
          assume
    
          
    
    A3: IT 
    = (z 
    *' ); 
    
          then (
    dom IT) 
    = ( 
    dom z) by 
    COMSEQ_2:def 1;
    
          hence thesis by
    A3,
    COMSEQ_2:def 1,
    FINSEQ_3: 25,
    FINSEQ_3: 29;
    
        end;
    
        assume that
    
        
    
    A4: ( 
    len IT) 
    = ( 
    len z) and 
    
        
    
    A5: for i be 
    Nat st 1 
    <= i & i 
    <= ( 
    len z) holds (IT 
    . i) 
    = ((z 
    . i) 
    *' ); 
    
        
    
        
    
    A6: ( 
    dom IT) 
    = ( 
    dom z) by 
    A4,
    FINSEQ_3: 29;
    
        now
    
          let i be
    set;
    
          assume
    
          
    
    A7: i 
    in ( 
    dom IT); 
    
          then
    
          reconsider j = i as
    Nat;
    
          1
    <= j & j 
    <= ( 
    len z) by 
    A4,
    A7,
    FINSEQ_3: 25;
    
          hence (IT
    . i) 
    = ((z 
    . i) 
    *' ) by 
    A5;
    
        end;
    
        hence IT
    = (z 
    *' ) by 
    A6,
    COMSEQ_2:def 1;
    
      end;
    
    end
    
    
    
    
    
    Lm1: (c 
    * x) 
    = (( 
    multcomplex  
    [;] (c,( 
    id  
    COMPLEX ))) 
    * x) 
    
    proof
    
      (c
    multcomplex ) 
    = ( 
    multcomplex  
    [;] (c,( 
    id  
    COMPLEX ))) by 
    SEQ_4:def 4;
    
      hence thesis by
    SEQ_4:def 9;
    
    end;
    
    theorem :: 
    
    COMPLSP2:1
    
    i
    in ( 
    dom (x 
    + y)) implies ((x 
    + y) 
    . i) 
    = ((x 
    . i) 
    + (y 
    . i)) by 
    VALUED_1:def 1;
    
    theorem :: 
    
    COMPLSP2:2
    
    i
    in ( 
    dom (x 
    - y)) implies ((x 
    - y) 
    . i) 
    = ((x 
    . i) 
    - (y 
    . i)) by 
    VALUED_1: 13;
    
    definition
    
      let i, R1, R2;
    
      :: original:
    -
    
      redefine
    
      func R1
    
    - R2 -> 
    Element of (i 
    -tuples_on  
    COMPLEX ) ; 
    
      coherence
    
      proof
    
        (R1
    - R2) 
    = ( 
    diffcomplex  
    .: (R1,R2)) by 
    SEQ_4:def 7;
    
        hence thesis by
    FINSEQ_2: 120;
    
      end;
    
    end
    
    definition
    
      let i, R1, R2;
    
      :: original:
    +
    
      redefine
    
      func R1
    
    + R2 -> 
    Element of (i 
    -tuples_on  
    COMPLEX ) ; 
    
      coherence
    
      proof
    
        (R1
    + R2) 
    = ( 
    addcomplex  
    .: (R1,R2)) by 
    SEQ_4:def 6;
    
        hence thesis by
    FINSEQ_2: 120;
    
      end;
    
    end
    
    definition
    
      let i, R;
    
      let r be
    Complex;
    
      :: original:
    *
    
      redefine
    
      func r
    
    * R -> 
    Element of (i 
    -tuples_on  
    COMPLEX ) ; 
    
      coherence
    
      proof
    
        reconsider q = r as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
        (q
    * R) 
    = (( 
    multcomplex  
    [;] (q,( 
    id  
    COMPLEX ))) 
    * R) by 
    Lm1;
    
        hence thesis by
    FINSEQ_2: 113;
    
      end;
    
    end
    
    
    
    
    
    Lm2: for F be 
    complex-valued  
    FinSequence holds F is 
    FinSequence of 
    COMPLEX  
    
    proof
    
      let F be
    complex-valued  
    FinSequence;
    
      (
    rng F) 
    c=  
    COMPLEX by 
    VALUED_0:def 1;
    
      hence thesis by
    FINSEQ_1:def 4;
    
    end;
    
    theorem :: 
    
    COMPLSP2:3
    
    
    
    
    
    Th3: for a be 
    Complex, x be 
    complex-valued  
    FinSequence holds ( 
    len (a 
    (#) x)) 
    = ( 
    len x) 
    
    proof
    
      let a be
    Complex, x be 
    complex-valued  
    FinSequence;
    
      set n = (
    len x); 
    
      x is
    FinSequence of 
    COMPLEX by 
    Lm2;
    
      then
    
      reconsider z = x as
    Element of (n 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 92;
    
      reconsider a9 = a as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      (
    len (a9 
    * z)) 
    = n by 
    CARD_1:def 7;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLSP2:4
    
    for x be
    complex-valued  
    FinSequence holds ( 
    dom x) 
    = ( 
    dom ( 
    - x)) by 
    VALUED_1: 8;
    
    theorem :: 
    
    COMPLSP2:5
    
    
    
    
    
    Th5: for x be 
    complex-valued  
    FinSequence holds ( 
    len ( 
    - x)) 
    = ( 
    len x) 
    
    proof
    
      let x be
    complex-valued  
    FinSequence;
    
      (
    dom ( 
    - x)) 
    = ( 
    dom x) by 
    VALUED_1: 8;
    
      hence thesis by
    FINSEQ_3: 29;
    
    end;
    
    theorem :: 
    
    COMPLSP2:6
    
    
    
    
    
    Th6: for x1,x2 be 
    complex-valued  
    FinSequence st ( 
    len x1) 
    = ( 
    len x2) holds ( 
    len (x1 
    + x2)) 
    = ( 
    len x1) 
    
    proof
    
      let x1,x2 be
    complex-valued  
    FinSequence;
    
      set n = (
    len x1); 
    
      
    
      
    
    A1: x2 is 
    FinSequence of 
    COMPLEX by 
    Lm2;
    
      x1 is
    FinSequence of 
    COMPLEX by 
    Lm2;
    
      then
    
      reconsider z1 = x1 as
    Element of (( 
    len x1) 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 92;
    
      assume (
    len x1) 
    = ( 
    len x2); 
    
      then
    
      reconsider z2 = x2 as
    Element of (n 
    -tuples_on  
    COMPLEX ) by 
    A1,
    FINSEQ_2: 92;
    
      (
    dom (z1 
    + z2)) 
    = ( 
    Seg n) by 
    FINSEQ_2: 124;
    
      hence thesis by
    FINSEQ_1:def 3;
    
    end;
    
    theorem :: 
    
    COMPLSP2:7
    
    
    
    
    
    Th7: for x1,x2 be 
    complex-valued  
    FinSequence st ( 
    len x1) 
    = ( 
    len x2) holds ( 
    len (x1 
    - x2)) 
    = ( 
    len x1) 
    
    proof
    
      let x1,x2 be
    complex-valued  
    FinSequence;
    
      set n = (
    len x1); 
    
      
    
      
    
    A1: x2 is 
    FinSequence of 
    COMPLEX by 
    Lm2;
    
      x1 is
    FinSequence of 
    COMPLEX by 
    Lm2;
    
      then
    
      reconsider z1 = x1 as
    Element of (( 
    len x1) 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 92;
    
      assume (
    len x1) 
    = ( 
    len x2); 
    
      then
    
      reconsider z2 = x2 as
    Element of (n 
    -tuples_on  
    COMPLEX ) by 
    A1,
    FINSEQ_2: 92;
    
      (
    dom (z1 
    - z2)) 
    = ( 
    Seg n) by 
    FINSEQ_2: 124;
    
      hence thesis by
    FINSEQ_1:def 3;
    
    end;
    
    theorem :: 
    
    COMPLSP2:8
    
    for f be
    complex-valued  
    FinSequence holds f is 
    Element of ( 
    COMPLEX ( 
    len f)) 
    
    proof
    
      let f be
    complex-valued  
    FinSequence;
    
      f is
    FinSequence of 
    COMPLEX by 
    Lm2;
    
      then f is
    Element of ( 
    COMPLEX  
    * ) by 
    FINSEQ_1:def 11;
    
      then f
    in { s where s be 
    Element of ( 
    COMPLEX  
    * ) : ( 
    len s) 
    = ( 
    len f) }; 
    
      then f
    in (( 
    len f) 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2:def 4;
    
      hence thesis by
    SEQ_4:def 11;
    
    end;
    
    ::$Canceled
    
    theorem :: 
    
    COMPLSP2:13
    
    
    
    
    
    Th9: for x be 
    FinSequence of 
    COMPLEX holds (( 
    - x) 
    . i) 
    = ( 
    - (x 
    . i)) 
    
    proof
    
      let x be
    FinSequence of 
    COMPLEX ; 
    
      per cases ;
    
        suppose
    
        
    
    A1: not i 
    in ( 
    dom ( 
    - x)); 
    
        then
    
        
    
    A2: not i 
    in ( 
    dom x) by 
    VALUED_1: 8;
    
        
    
        thus ((
    - x) 
    . i) 
    = ( 
    -  
    0 ) by 
    A1,
    FUNCT_1:def 2
    
        .= (
    - (x 
    . i)) by 
    A2,
    FUNCT_1:def 2;
    
      end;
    
        suppose
    
        
    
    A3: i 
    in ( 
    dom ( 
    - x)); 
    
        set r = (x
    . i); 
    
        (
    - x) 
    = ( 
    compcomplex  
    * x) by 
    SEQ_4:def 8;
    
        then ((
    - x) 
    . i) 
    = ( 
    compcomplex  
    . r) by 
    A3,
    FUNCT_1: 12;
    
        hence thesis by
    BINOP_2:def 1;
    
      end;
    
    end;
    
    definition
    
      let i, R;
    
      :: original:
    -
    
      redefine
    
      func
    
    - R -> 
    Element of (i 
    -tuples_on  
    COMPLEX ) ; 
    
      coherence
    
      proof
    
        (
    - R) 
    = ( 
    compcomplex  
    * R) by 
    SEQ_4:def 8;
    
        hence thesis by
    FINSEQ_2: 113;
    
      end;
    
    end
    
    theorem :: 
    
    COMPLSP2:14
    
    c
    = (R 
    . j) implies (( 
    - R) 
    . j) 
    = ( 
    - c) by 
    Th9;
    
    theorem :: 
    
    COMPLSP2:15
    
    
    
    
    
    Th11: for a be 
    Complex holds ( 
    dom (a 
    * x)) 
    = ( 
    dom x) 
    
    proof
    
      let a be
    Complex;
    
      (
    dom (a 
    multcomplex )) 
    =  
    COMPLEX by 
    FUNCT_2:def 1;
    
      then (
    rng x) 
    c= ( 
    dom (a 
    multcomplex )) by 
    FINSEQ_1:def 4;
    
      
    
      hence (
    dom x) 
    = ( 
    dom ((a 
    multcomplex ) 
    * x)) by 
    RELAT_1: 27
    
      .= (
    dom (a 
    * x)) by 
    SEQ_4:def 9;
    
    end;
    
    theorem :: 
    
    COMPLSP2:16
    
    
    
    
    
    Th12: for i be 
    Nat, a be 
    Complex holds ((a 
    * x) 
    . i) 
    = (a 
    * (x 
    . i)) 
    
    proof
    
      let i be
    Nat, a be 
    Complex;
    
      reconsider aa = a as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      per cases ;
    
        suppose
    
        
    
    A1: not i 
    in ( 
    dom (a 
    * x)); 
    
        then
    
        
    
    A2: not i 
    in ( 
    dom x) by 
    Th11;
    
        
    
        thus ((a
    * x) 
    . i) 
    = (a 
    *  
    0 ) by 
    A1,
    FUNCT_1:def 2
    
        .= (a
    * (x 
    . i)) by 
    A2,
    FUNCT_1:def 2;
    
      end;
    
        suppose
    
        
    
    A3: i 
    in ( 
    dom (a 
    * x)); 
    
        set a9 = (x
    . i); 
    
        
    
        
    
    A4: (a 
    * x) 
    = (( 
    multcomplex  
    [;] (aa,( 
    id  
    COMPLEX ))) 
    * x) by 
    Lm1;
    
        then
    
        
    
    A5: a9 
    in ( 
    dom ( 
    multcomplex  
    [;] (aa,( 
    id  
    COMPLEX )))) by 
    A3,
    FUNCT_1: 11;
    
        
    
        thus ((a
    * x) 
    . i) 
    = (( 
    multcomplex  
    [;] (aa,( 
    id  
    COMPLEX ))) 
    . a9) by 
    A3,
    A4,
    FUNCT_1: 12
    
        .= (
    multcomplex  
    . (a,(( 
    id  
    COMPLEX ) 
    . a9))) by 
    A5,
    FUNCOP_1: 32
    
        .= (a
    * (x 
    . i)) by 
    BINOP_2:def 5;
    
      end;
    
    end;
    
    theorem :: 
    
    COMPLSP2:17
    
    
    
    
    
    Th13: for a be 
    Complex holds ((a 
    * x) 
    *' ) 
    = ((a 
    *' ) 
    * (x 
    *' )) 
    
    proof
    
      let a be
    Complex;
    
      reconsider aa = a as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      (
    len ((a 
    *' ) 
    * (x 
    *' ))) 
    = ( 
    len (x 
    *' )) by 
    Th3;
    
      then
    
      
    
    A1: ( 
    len ((a 
    *' ) 
    * (x 
    *' ))) 
    = ( 
    len x) by 
    Def1;
    
      
    
      
    
    A2: ( 
    len (a 
    * x)) 
    = ( 
    len x) by 
    Th3;
    
      
    
    A3: 
    
      now
    
        let i be
    Nat;
    
        assume that
    
        
    
    A4: 1 
    <= i and 
    
        
    
    A5: i 
    <= ( 
    len ((a 
    * x) 
    *' )); 
    
        
    
        
    
    A6: i 
    <= ( 
    len (a 
    * x)) by 
    A5,
    Def1;
    
        
    
        hence (((a
    * x) 
    *' ) 
    . i) 
    = (((a 
    * x) 
    . i) 
    *' ) by 
    A4,
    Def1
    
        .= ((aa
    * (x 
    . i)) 
    *' ) by 
    Th12
    
        .= ((aa
    *' ) 
    * ((x 
    . i) 
    *' )) by 
    COMPLEX1: 35
    
        .= ((a
    *' ) 
    * ((x 
    *' ) 
    . i)) by 
    A2,
    A4,
    A6,
    Def1
    
        .= (((a
    *' ) 
    * (x 
    *' )) 
    . i) by 
    Th12;
    
      end;
    
      (
    len ((a 
    * x) 
    *' )) 
    = ( 
    len (a 
    * x)) by 
    Def1;
    
      hence thesis by
    A1,
    A3,
    Th3;
    
    end;
    
    theorem :: 
    
    COMPLSP2:18
    
    
    
    
    
    Th14: ((R1 
    + R2) 
    . j) 
    = ((R1 
    . j) 
    + (R2 
    . j)) 
    
    proof
    
      per cases ;
    
        suppose
    
        
    
    A1: not j 
    in ( 
    Seg i); 
    
        then
    
        
    
    A2: not j 
    in ( 
    dom R2) by 
    FINSEQ_2: 124;
    
        
    
        
    
    A3: not j 
    in ( 
    dom R1) by 
    A1,
    FINSEQ_2: 124;
    
         not j
    in ( 
    dom (R1 
    + R2)) by 
    A1,
    FINSEQ_2: 124;
    
        
    
        hence ((R1
    + R2) 
    . j) 
    = ( 
    0  
    +  
    0 ) by 
    FUNCT_1:def 2
    
        .= ((R1
    . j) 
    +  
    0 ) by 
    A3,
    FUNCT_1:def 2
    
        .= ((R1
    . j) 
    + (R2 
    . j)) by 
    A2,
    FUNCT_1:def 2;
    
      end;
    
        suppose j
    in ( 
    Seg i); 
    
        then j
    in ( 
    dom (R1 
    + R2)) by 
    FINSEQ_2: 124;
    
        hence thesis by
    VALUED_1:def 1;
    
      end;
    
    end;
    
    theorem :: 
    
    COMPLSP2:19
    
    
    
    
    
    Th15: for x1,x2 be 
    FinSequence of 
    COMPLEX st ( 
    len x1) 
    = ( 
    len x2) holds ((x1 
    + x2) 
    *' ) 
    = ((x1 
    *' ) 
    + (x2 
    *' )) 
    
    proof
    
      let x1,x2 be
    FinSequence of 
    COMPLEX ; 
    
      reconsider x9 = x1 as
    Element of (( 
    len x1) 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 92;
    
      reconsider y9 = x2 as
    Element of (( 
    len x2) 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 92;
    
      reconsider x3 = (x1
    *' ) as 
    Element of (( 
    len (x1 
    *' )) 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 92;
    
      reconsider x4 = (x2
    *' ) as 
    Element of (( 
    len (x2 
    *' )) 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 92;
    
      assume
    
      
    
    A1: ( 
    len x1) 
    = ( 
    len x2); 
    
      then
    
      
    
    A2: ( 
    len (x1 
    + x2)) 
    = ( 
    len x1) by 
    Th6;
    
      
    
      
    
    A3: ( 
    len x1) 
    = ( 
    len (x1 
    *' )) & ( 
    len x2) 
    = ( 
    len (x2 
    *' )) by 
    Def1;
    
      
    
    A4: 
    
      now
    
        let i be
    Nat;
    
        
    
        
    
    A5: i 
    in  
    NAT by 
    ORDINAL1:def 12;
    
        assume that
    
        
    
    A6: 1 
    <= i and 
    
        
    
    A7: i 
    <= ( 
    len ((x1 
    + x2) 
    *' )); 
    
        
    
        
    
    A8: i 
    <= ( 
    len (x1 
    + x2)) by 
    A7,
    Def1;
    
        
    
        hence (((x1
    + x2) 
    *' ) 
    . i) 
    = (((x1 
    + x2) 
    . i) 
    *' ) by 
    A6,
    Def1
    
        .= (((x9
    . i) 
    + (y9 
    . i)) 
    *' ) by 
    A1,
    A5,
    Th14
    
        .= (((x1
    . i) 
    *' ) 
    + ((x2 
    . i) 
    *' )) by 
    COMPLEX1: 32
    
        .= (((x1
    *' ) 
    . i) 
    + ((x2 
    . i) 
    *' )) by 
    A2,
    A6,
    A8,
    Def1
    
        .= (((x1
    *' ) 
    . i) 
    + ((x2 
    *' ) 
    . i)) by 
    A1,
    A2,
    A6,
    A8,
    Def1
    
        .= ((x3
    + x4) 
    . i) by 
    A1,
    A3,
    A5,
    Th14;
    
      end;
    
      (
    len ((x1 
    *' ) 
    + (x2 
    *' ))) 
    = ( 
    len x1) by 
    A1,
    A3,
    Th6;
    
      hence thesis by
    A4,
    A2,
    Def1;
    
    end;
    
    theorem :: 
    
    COMPLSP2:20
    
    
    
    
    
    Th16: ((R1 
    - R2) 
    . j) 
    = ((R1 
    . j) 
    - (R2 
    . j)) 
    
    proof
    
      per cases ;
    
        suppose
    
        
    
    A1: not j 
    in ( 
    Seg i); 
    
        then
    
        
    
    A2: not j 
    in ( 
    dom R2) by 
    FINSEQ_2: 124;
    
        
    
        
    
    A3: not j 
    in ( 
    dom R1) by 
    A1,
    FINSEQ_2: 124;
    
         not j
    in ( 
    dom (R1 
    - R2)) by 
    A1,
    FINSEQ_2: 124;
    
        
    
        hence ((R1
    - R2) 
    . j) 
    = ( 
    0  
    -  
    0 ) by 
    FUNCT_1:def 2
    
        .= ((R1
    . j) 
    -  
    0 ) by 
    A3,
    FUNCT_1:def 2
    
        .= ((R1
    . j) 
    - (R2 
    . j)) by 
    A2,
    FUNCT_1:def 2;
    
      end;
    
        suppose j
    in ( 
    Seg i); 
    
        then j
    in ( 
    dom (R1 
    - R2)) by 
    FINSEQ_2: 124;
    
        hence thesis by
    VALUED_1: 13;
    
      end;
    
    end;
    
    theorem :: 
    
    COMPLSP2:21
    
    
    
    
    
    Th17: for x1,x2 be 
    FinSequence of 
    COMPLEX st ( 
    len x1) 
    = ( 
    len x2) holds ((x1 
    - x2) 
    *' ) 
    = ((x1 
    *' ) 
    - (x2 
    *' )) 
    
    proof
    
      let x1,x2 be
    FinSequence of 
    COMPLEX ; 
    
      reconsider x9 = x1 as
    Element of (( 
    len x1) 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 92;
    
      reconsider y9 = x2 as
    Element of (( 
    len x2) 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 92;
    
      reconsider x3 = (x1
    *' ) as 
    Element of (( 
    len (x1 
    *' )) 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 92;
    
      reconsider x4 = (x2
    *' ) as 
    Element of (( 
    len (x2 
    *' )) 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 92;
    
      assume
    
      
    
    A1: ( 
    len x1) 
    = ( 
    len x2); 
    
      then
    
      
    
    A2: ( 
    len (x1 
    - x2)) 
    = ( 
    len x1) by 
    Th7;
    
      
    
      
    
    A3: ( 
    len x1) 
    = ( 
    len (x1 
    *' )) & ( 
    len x2) 
    = ( 
    len (x2 
    *' )) by 
    Def1;
    
      
    
    A4: 
    
      now
    
        let i be
    Nat;
    
        
    
        
    
    A5: i 
    in  
    NAT by 
    ORDINAL1:def 12;
    
        assume that
    
        
    
    A6: 1 
    <= i and 
    
        
    
    A7: i 
    <= ( 
    len ((x1 
    - x2) 
    *' )); 
    
        
    
        
    
    A8: i 
    <= ( 
    len (x1 
    - x2)) by 
    A7,
    Def1;
    
        
    
        hence (((x1
    - x2) 
    *' ) 
    . i) 
    = (((x1 
    - x2) 
    . i) 
    *' ) by 
    A6,
    Def1
    
        .= (((x9
    . i) 
    - (y9 
    . i)) 
    *' ) by 
    A1,
    A5,
    Th16
    
        .= (((x1
    . i) 
    *' ) 
    - ((x2 
    . i) 
    *' )) by 
    COMPLEX1: 34
    
        .= (((x1
    *' ) 
    . i) 
    - ((x2 
    . i) 
    *' )) by 
    A2,
    A6,
    A8,
    Def1
    
        .= (((x1
    *' ) 
    . i) 
    - ((x2 
    *' ) 
    . i)) by 
    A1,
    A2,
    A6,
    A8,
    Def1
    
        .= ((x3
    - x4) 
    . i) by 
    A1,
    A3,
    A5,
    Th16;
    
      end;
    
      (
    len ((x1 
    *' ) 
    - (x2 
    *' ))) 
    = ( 
    len x1) by 
    A1,
    A3,
    Th7;
    
      hence thesis by
    A4,
    A2,
    Def1;
    
    end;
    
    theorem :: 
    
    COMPLSP2:22
    
    for z be
    FinSequence of 
    COMPLEX holds ((z 
    *' ) 
    *' ) 
    = z; 
    
    theorem :: 
    
    COMPLSP2:23
    
    for z be
    FinSequence of 
    COMPLEX holds (( 
    - z) 
    *' ) 
    = ( 
    - (z 
    *' )) 
    
    proof
    
      let z be
    FinSequence of 
    COMPLEX ; 
    
      
    
      thus ((
    - z) 
    *' ) 
    = ((( 
    -  
    1r ) 
    *' ) 
    * (z 
    *' )) by 
    Th13,
    COMPLEX1:def 4
    
      .= (
    - (z 
    *' )) by 
    COMPLEX1: 30,
    COMPLEX1: 33,
    COMPLEX1:def 4;
    
    end;
    
    theorem :: 
    
    COMPLSP2:24
    
    
    
    
    
    Th20: for z be 
    Complex holds (z 
    + (z 
    *' )) 
    = (2 
    * ( 
    Re z)) 
    
    proof
    
      let z be
    Complex;
    
      (z
    + (z 
    *' )) 
    = ((( 
    Re z) 
    + ( 
    Re (z 
    *' ))) 
    + ((( 
    Im z) 
    + ( 
    Im (z 
    *' ))) 
    *  
    <i> )) by 
    COMPLEX1: 81
    
      .= (((
    Re z) 
    + ( 
    Re (z 
    *' ))) 
    + ((( 
    Im z) 
    + ( 
    - ( 
    Im z))) 
    *  
    <i> )) by 
    COMPLEX1: 27
    
      .= ((
    Re z) 
    + ( 
    Re z)) by 
    COMPLEX1: 27
    
      .= (2
    * ( 
    Re z)); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLSP2:25
    
    
    
    
    
    Th21: for x,y be 
    complex-valued  
    FinSequence st ( 
    len x) 
    = ( 
    len y) holds ((x 
    - y) 
    . i) 
    = ((x 
    . i) 
    - (y 
    . i)) 
    
    proof
    
      let x,y be
    complex-valued  
    FinSequence;
    
      
    
      
    
    A1: x is 
    FinSequence of 
    COMPLEX & y is 
    FinSequence of 
    COMPLEX by 
    Lm2;
    
      then
    
      reconsider x2 = x as
    Element of (( 
    len x) 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 92;
    
      reconsider y2 = y as
    Element of (( 
    len y) 
    -tuples_on  
    COMPLEX ) by 
    A1,
    FINSEQ_2: 92;
    
      reconsider y29 = (x2
    - y2) as 
    Element of (( 
    len (x2 
    - y2)) 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 92;
    
      assume
    
      
    
    A2: ( 
    len x) 
    = ( 
    len y); 
    
      then
    
      
    
    A3: ( 
    len (x 
    - y)) 
    = ( 
    len x) by 
    Th7;
    
      per cases ;
    
        suppose
    
        
    
    A4: not i 
    in ( 
    Seg ( 
    len x)); 
    
        then
    
        
    
    A5: not i 
    in ( 
    dom x2) by 
    FINSEQ_2: 124;
    
        
    
        
    
    A6: not i 
    in ( 
    dom y2) by 
    A2,
    A4,
    FINSEQ_2: 124;
    
         not i
    in ( 
    dom y29) by 
    A3,
    A4,
    FINSEQ_2: 124;
    
        
    
        then ((x2
    - y2) 
    . i) 
    = ( 
    0  
    -  
    0 ) by 
    FUNCT_1:def 2
    
        .= ((x2
    . i) 
    -  
    0 ) by 
    A5,
    FUNCT_1:def 2
    
        .= ((x2
    . i) 
    - (y2 
    . i)) by 
    A6,
    FUNCT_1:def 2;
    
        hence thesis;
    
      end;
    
        suppose i
    in ( 
    Seg ( 
    len x)); 
    
        then i
    in ( 
    dom y29) by 
    A3,
    FINSEQ_2: 124;
    
        hence thesis by
    VALUED_1: 13;
    
      end;
    
    end;
    
    theorem :: 
    
    COMPLSP2:26
    
    
    
    
    
    Th22: for x,y be 
    complex-valued  
    FinSequence st ( 
    len x) 
    = ( 
    len y) holds ((x 
    + y) 
    . i) 
    = ((x 
    . i) 
    + (y 
    . i)) 
    
    proof
    
      let x,y be
    complex-valued  
    FinSequence;
    
      
    
      
    
    A1: x is 
    FinSequence of 
    COMPLEX & y is 
    FinSequence of 
    COMPLEX by 
    Lm2;
    
      then
    
      reconsider x2 = x as
    Element of (( 
    len x) 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 92;
    
      reconsider y2 = y as
    Element of (( 
    len y) 
    -tuples_on  
    COMPLEX ) by 
    A1,
    FINSEQ_2: 92;
    
      reconsider y29 = (x2
    + y2) as 
    Element of (( 
    len (x2 
    + y2)) 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 92;
    
      assume
    
      
    
    A2: ( 
    len x) 
    = ( 
    len y); 
    
      then
    
      
    
    A3: ( 
    len (x 
    + y)) 
    = ( 
    len x) by 
    Th6;
    
      per cases ;
    
        suppose
    
        
    
    A4: not i 
    in ( 
    Seg ( 
    len x)); 
    
        then
    
        
    
    A5: not i 
    in ( 
    dom x2) by 
    FINSEQ_2: 124;
    
        
    
        
    
    A6: not i 
    in ( 
    dom y2) by 
    A2,
    A4,
    FINSEQ_2: 124;
    
         not i
    in ( 
    dom y29) by 
    A3,
    A4,
    FINSEQ_2: 124;
    
        
    
        then ((x2
    + y2) 
    . i) 
    = ( 
    0  
    +  
    0 ) by 
    FUNCT_1:def 2
    
        .= ((x2
    . i) 
    +  
    0 ) by 
    A5,
    FUNCT_1:def 2
    
        .= ((x2
    . i) 
    + (y2 
    . i)) by 
    A6,
    FUNCT_1:def 2;
    
        hence thesis;
    
      end;
    
        suppose i
    in ( 
    Seg ( 
    len x)); 
    
        then i
    in ( 
    dom y29) by 
    A3,
    FINSEQ_2: 124;
    
        hence thesis by
    VALUED_1:def 1;
    
      end;
    
    end;
    
    definition
    
      let z be
    FinSequence of 
    COMPLEX ; 
    
      :: 
    
    COMPLSP2:def2
    
      func
    
    Re z -> 
    FinSequence of 
    REAL equals ((1 
    / 2) 
    * (z 
    + (z 
    *' ))); 
    
      coherence
    
      proof
    
        
    
        
    
    A1: ( 
    len z) 
    = ( 
    len (z 
    *' )) by 
    Def1;
    
        
    
        
    
    A2: ( 
    len ((1 
    / 2) 
    * (z 
    + (z 
    *' )))) 
    = ( 
    len (z 
    + (z 
    *' ))) by 
    Th3
    
        .= (
    len z) by 
    A1,
    Th6;
    
        (
    rng ((1 
    / 2) 
    * (z 
    + (z 
    *' )))) 
    c=  
    REAL  
    
        proof
    
          let w be
    object;
    
          assume w
    in ( 
    rng ((1 
    / 2) 
    * (z 
    + (z 
    *' )))); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A3: x 
    in ( 
    dom ((1 
    / 2) 
    * (z 
    + (z 
    *' )))) and 
    
          
    
    A4: w 
    = (((1 
    / 2) 
    * (z 
    + (z 
    *' ))) 
    . x) by 
    FUNCT_1:def 3;
    
          reconsider i = x as
    Element of 
    NAT by 
    A3;
    
          x
    in ( 
    Seg ( 
    len ((1 
    / 2) 
    * (z 
    + (z 
    *' ))))) by 
    A3,
    FINSEQ_1:def 3;
    
          then
    
          
    
    A5: 1 
    <= i & i 
    <= ( 
    len z) by 
    A2,
    FINSEQ_1: 1;
    
          (((1
    / 2) 
    * (z 
    + (z 
    *' ))) 
    . i) 
    = ((1 
    / 2) 
    * ((z 
    + (z 
    *' )) 
    . i)) by 
    Th12
    
          .= ((1
    / 2) 
    * ((z 
    . i) 
    + ((z 
    *' ) 
    . i))) by 
    A1,
    Th22
    
          .= ((1
    / 2) 
    * ((z 
    . i) 
    + ((z 
    . i) 
    *' ))) by 
    A5,
    Def1
    
          .= ((1
    / 2) 
    * (2 
    * ( 
    Re (z 
    . i)))) by 
    Th20;
    
          hence thesis by
    A4;
    
        end;
    
        hence thesis by
    FINSEQ_1:def 4;
    
      end;
    
    end
    
    theorem :: 
    
    COMPLSP2:27
    
    
    
    
    
    Th23: for z be 
    Complex holds (z 
    - (z 
    *' )) 
    = ((2 
    * ( 
    Im z)) 
    *  
    <i> ) 
    
    proof
    
      let z be
    Complex;
    
      (z
    - (z 
    *' )) 
    = ((( 
    Re z) 
    - ( 
    Re (z 
    *' ))) 
    + ((( 
    Im z) 
    - ( 
    Im (z 
    *' ))) 
    *  
    <i> )) by 
    COMPLEX1: 84
    
      .= (((
    Re z) 
    - ( 
    Re (z 
    *' ))) 
    + ((( 
    Im z) 
    - ( 
    - ( 
    Im z))) 
    *  
    <i> )) by 
    COMPLEX1: 27
    
      .= (((
    Re z) 
    - ( 
    Re z)) 
    + ((( 
    Im z) 
    - ( 
    - ( 
    Im z))) 
    *  
    <i> )) by 
    COMPLEX1: 27
    
      .= ((2
    * ( 
    Im z)) 
    *  
    <i> ); 
    
      hence thesis;
    
    end;
    
    definition
    
      let z be
    FinSequence of 
    COMPLEX ; 
    
      :: 
    
    COMPLSP2:def3
    
      func
    
    Im z -> 
    FinSequence of 
    REAL equals (( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * (z 
    - (z 
    *' ))); 
    
      coherence
    
      proof
    
        
    
        
    
    A1: ( 
    len z) 
    = ( 
    len (z 
    *' )) by 
    Def1;
    
        
    
        
    
    A2: ( 
    len (( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * (z 
    - (z 
    *' )))) 
    = ( 
    len (z 
    - (z 
    *' ))) by 
    Th3
    
        .= (
    len z) by 
    A1,
    Th7;
    
        (
    rng (( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * (z 
    - (z 
    *' )))) 
    c=  
    REAL  
    
        proof
    
          let w be
    object;
    
          assume w
    in ( 
    rng (( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * (z 
    - (z 
    *' )))); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A3: x 
    in ( 
    dom (( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * (z 
    - (z 
    *' )))) and 
    
          
    
    A4: w 
    = ((( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * (z 
    - (z 
    *' ))) 
    . x) by 
    FUNCT_1:def 3;
    
          reconsider i = x as
    Element of 
    NAT by 
    A3;
    
          x
    in ( 
    Seg ( 
    len (( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * (z 
    - (z 
    *' ))))) by 
    A3,
    FINSEQ_1:def 3;
    
          then
    
          
    
    A5: 1 
    <= i & i 
    <= ( 
    len z) by 
    A2,
    FINSEQ_1: 1;
    
          (((
    - ((1 
    / 2) 
    *  
    <i> )) 
    * (z 
    - (z 
    *' ))) 
    . i) 
    = (( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * ((z 
    - (z 
    *' )) 
    . i)) by 
    Th12
    
          .= ((
    - ((1 
    / 2) 
    *  
    <i> )) 
    * ((z 
    . i) 
    - ((z 
    *' ) 
    . i))) by 
    A1,
    Th21
    
          .= ((
    - ((1 
    / 2) 
    *  
    <i> )) 
    * ((z 
    . i) 
    - ((z 
    . i) 
    *' ))) by 
    A5,
    Def1
    
          .= ((
    - ((1 
    / 2) 
    *  
    <i> )) 
    * ((2 
    * ( 
    Im (z 
    . i))) 
    *  
    <i> )) by 
    Th23;
    
          hence thesis by
    A4;
    
        end;
    
        hence thesis by
    FINSEQ_1:def 4;
    
      end;
    
    end
    
    definition
    
      let x,y be
    FinSequence of 
    COMPLEX ; 
    
      :: 
    
    COMPLSP2:def4
    
      func
    
    |(x,y)| ->
    Element of 
    COMPLEX equals ((( 
    |((
    Re x), ( 
    Re y))| 
    - ( 
    <i>  
    *  
    |((
    Re x), ( 
    Im y))|)) 
    + ( 
    <i>  
    *  
    |((
    Im x), ( 
    Re y))|)) 
    +  
    |((
    Im x), ( 
    Im y))|); 
    
      coherence by
    XCMPLX_0:def 2;
    
    end
    
    theorem :: 
    
    COMPLSP2:28
    
    
    
    
    
    Th24: for x,y,z be 
    complex-valued  
    FinSequence st ( 
    len x) 
    = ( 
    len y) & ( 
    len y) 
    = ( 
    len z) holds (x 
    + (y 
    + z)) 
    = ((x 
    + y) 
    + z) 
    
    proof
    
      let x,y,z be
    complex-valued  
    FinSequence;
    
      reconsider x1 = x, y1 = y, z1 = z as
    FinSequence of 
    COMPLEX by 
    Lm2;
    
      assume
    
      
    
    A1: ( 
    len x) 
    = ( 
    len y) & ( 
    len y) 
    = ( 
    len z); 
    
      reconsider z9 = z1 as
    Element of (( 
    len z) 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 92;
    
      reconsider y9 = y1 as
    Element of (( 
    len y) 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 92;
    
      reconsider x9 = x1 as
    Element of (( 
    len x) 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 92;
    
      (x
    + (y 
    + z)) 
    = ( 
    addcomplex  
    .: (x1,(y1 
    + z1))) by 
    SEQ_4:def 6
    
      .= (
    addcomplex  
    .: (x1,( 
    addcomplex  
    .: (y1,z1)))) by 
    SEQ_4:def 6
    
      .= (
    addcomplex  
    .: (( 
    addcomplex  
    .: (x9,y9)),z9)) by 
    A1,
    FINSEQOP: 28
    
      .= (
    addcomplex  
    .: ((x1 
    + y1),z1)) by 
    SEQ_4:def 6
    
      .= ((x
    + y) 
    + z) by 
    SEQ_4:def 6;
    
      hence thesis;
    
    end;
    
    ::$Canceled
    
    theorem :: 
    
    COMPLSP2:30
    
    
    
    
    
    Th25: for c be 
    Complex, x,y be 
    FinSequence of 
    COMPLEX st ( 
    len x) 
    = ( 
    len y) holds (c 
    * (x 
    + y)) 
    = ((c 
    * x) 
    + (c 
    * y)) 
    
    proof
    
      let c be
    Complex, x,y be 
    FinSequence of 
    COMPLEX ; 
    
      assume
    
      
    
    A1: ( 
    len x) 
    = ( 
    len y); 
    
      set cM = (c
    multcomplex ); 
    
      reconsider y9 = y as
    Element of (( 
    len y) 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 92;
    
      reconsider x9 = x as
    Element of (( 
    len x) 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 92;
    
      
    
      
    
    A2: c is 
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      (c
    * (x 
    + y)) 
    = (cM 
    * (x 
    + y)) by 
    SEQ_4:def 9
    
      .= (cM
    * ( 
    addcomplex  
    .: (x,y))) by 
    SEQ_4:def 6
    
      .= (
    addcomplex  
    .: ((cM 
    * x9),(cM 
    * y9))) by 
    A1,
    A2,
    FINSEQOP: 51,
    SEQ_4: 56
    
      .= ((cM
    * x) 
    + (cM 
    * y)) by 
    SEQ_4:def 6
    
      .= ((c
    * x) 
    + (cM 
    * y)) by 
    SEQ_4:def 9
    
      .= ((c
    * x) 
    + (c 
    * y)) by 
    SEQ_4:def 9;
    
      hence thesis;
    
    end;
    
    ::$Canceled
    
    theorem :: 
    
    COMPLSP2:32
    
    
    
    
    
    Th26: for x,y be 
    complex-valued  
    FinSequence st ( 
    len x) 
    = ( 
    len y) & (x 
    + y) 
    = ( 
    0c ( 
    len x)) holds x 
    = ( 
    - y) & y 
    = ( 
    - x) 
    
    proof
    
      let x,y be
    complex-valued  
    FinSequence;
    
      assume that
    
      
    
    A1: ( 
    len x) 
    = ( 
    len y) and 
    
      
    
    A2: (x 
    + y) 
    = ( 
    0c ( 
    len x)); 
    
      reconsider x1 = x, y1 = y as
    FinSequence of 
    COMPLEX by 
    Lm2;
    
      reconsider x9 = x1 as
    Element of (( 
    len x) 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 92;
    
      reconsider y9 = y1 as
    Element of (( 
    len y) 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 92;
    
      
    
      
    
    A3: (x 
    + y) 
    = ( 
    addcomplex  
    .: (x1,y1)) & ( 
    - y) 
    = ( 
    compcomplex  
    * y1) by 
    SEQ_4:def 6,
    SEQ_4:def 8;
    
      (x
    + y) 
    = (( 
    len x) 
    |->  
    0c ) by 
    A2,
    SEQ_4:def 12;
    
      then x9
    = ( 
    - y9) by 
    A1,
    A3,
    BINOP_2: 1,
    FINSEQOP: 74,
    SEQ_4: 51,
    SEQ_4: 52;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLSP2:33
    
    
    
    
    
    Th27: for x be 
    complex-valued  
    FinSequence holds (x 
    + ( 
    0c ( 
    len x))) 
    = x 
    
    proof
    
      let x be
    complex-valued  
    FinSequence;
    
      
    
      
    
    A1: x is 
    FinSequence of 
    COMPLEX by 
    Lm2;
    
      then
    
      reconsider x9 = x as
    Element of (( 
    len x) 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 92;
    
      (x
    + ( 
    0c ( 
    len x))) 
    = (x 
    + (( 
    len x) 
    |->  
    0c )) by 
    SEQ_4:def 12
    
      .= (
    addcomplex  
    .: (x,(( 
    len x) 
    |->  
    0c ))) by 
    A1,
    SEQ_4:def 6
    
      .= x9 by
    BINOP_2: 1,
    FINSEQOP: 56;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLSP2:34
    
    
    
    
    
    Th28: for x be 
    complex-valued  
    FinSequence holds (x 
    + ( 
    - x)) 
    = ( 
    0c ( 
    len x)) 
    
    proof
    
      let x be
    complex-valued  
    FinSequence;
    
      
    
      
    
    A1: x is 
    FinSequence of 
    COMPLEX & ( 
    - x) is 
    FinSequence of 
    COMPLEX by 
    Lm2;
    
      then
    
      reconsider x9 = x as
    Element of (( 
    len x) 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 92;
    
      (x
    + ( 
    - x)) 
    = ( 
    addcomplex  
    .: (x,( 
    - x))) by 
    A1,
    SEQ_4:def 6
    
      .= (
    addcomplex  
    .: (x,( 
    compcomplex  
    * x))) by 
    A1,
    SEQ_4:def 8
    
      .= ((
    len x9) 
    |->  
    0c ) by 
    BINOP_2: 1,
    FINSEQOP: 73,
    SEQ_4: 51,
    SEQ_4: 52
    
      .= (
    0c ( 
    len x9)) by 
    SEQ_4:def 12;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLSP2:35
    
    
    
    
    
    Th29: for x,y be 
    complex-valued  
    FinSequence st ( 
    len x) 
    = ( 
    len y) holds ( 
    - (x 
    + y)) 
    = (( 
    - x) 
    + ( 
    - y)) 
    
    proof
    
      let x,y be
    complex-valued  
    FinSequence;
    
      assume
    
      
    
    A1: ( 
    len x) 
    = ( 
    len y); 
    
      
    
      
    
    A2: ( 
    len ( 
    - y)) 
    = ( 
    len y) by 
    Th5;
    
      then
    
      
    
    A3: ( 
    len (( 
    - x) 
    + ( 
    - y))) 
    = ( 
    len ( 
    - x)) by 
    A1,
    Th5,
    Th6;
    
      
    
      
    
    A4: ( 
    len ( 
    - x)) 
    = ( 
    len x) by 
    Th5;
    
      
    
      
    
    A5: ( 
    len (x 
    + y)) 
    = ( 
    len x) by 
    A1,
    Th6;
    
      
    
      then ((x
    + y) 
    + (( 
    - x) 
    + ( 
    - y))) 
    = (((y 
    + x) 
    + ( 
    - x)) 
    + ( 
    - y)) by 
    A1,
    A2,
    A4,
    Th24
    
      .= ((y
    + (x 
    + ( 
    - x))) 
    + ( 
    - y)) by 
    A1,
    A4,
    Th24
    
      .= ((y
    + ( 
    0c ( 
    len x))) 
    + ( 
    - y)) by 
    Th28
    
      .= (y
    + ( 
    - y)) by 
    A1,
    Th27
    
      .= (
    0c ( 
    len y)) by 
    Th28;
    
      hence thesis by
    A1,
    A4,
    A5,
    A3,
    Th26;
    
    end;
    
    theorem :: 
    
    COMPLSP2:36
    
    
    
    
    
    Th30: for x,y,z be 
    complex-valued  
    FinSequence st ( 
    len x) 
    = ( 
    len y) & ( 
    len y) 
    = ( 
    len z) holds ((x 
    - y) 
    - z) 
    = (x 
    - (y 
    + z)) 
    
    proof
    
      let x,y,z be
    complex-valued  
    FinSequence;
    
      assume that
    
      
    
    A1: ( 
    len x) 
    = ( 
    len y) and 
    
      
    
    A2: ( 
    len y) 
    = ( 
    len z); 
    
      (
    len ( 
    - y)) 
    = ( 
    len y) & ( 
    len ( 
    - z)) 
    = ( 
    len z) by 
    Th5;
    
      
    
      then ((x
    - y) 
    - z) 
    = (x 
    + (( 
    - y) 
    + ( 
    - z))) by 
    A1,
    A2,
    Th24
    
      .= (x
    - (y 
    + z)) by 
    A2,
    Th29;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLSP2:37
    
    
    
    
    
    Th31: for x,y,z be 
    complex-valued  
    FinSequence st ( 
    len x) 
    = ( 
    len y) & ( 
    len y) 
    = ( 
    len z) holds (x 
    + (y 
    - z)) 
    = ((x 
    + y) 
    - z) 
    
    proof
    
      let x,y,z be
    complex-valued  
    FinSequence;
    
      assume
    
      
    
    A1: ( 
    len x) 
    = ( 
    len y) & ( 
    len y) 
    = ( 
    len z); 
    
      (
    len ( 
    - z)) 
    = ( 
    len z) by 
    Th5;
    
      hence thesis by
    A1,
    Th24;
    
    end;
    
    ::$Canceled
    
    theorem :: 
    
    COMPLSP2:39
    
    
    
    
    
    Th32: for x,y be 
    complex-valued  
    FinSequence st ( 
    len x) 
    = ( 
    len y) holds ( 
    - (x 
    - y)) 
    = (( 
    - x) 
    + y) 
    
    proof
    
      let x,y be
    complex-valued  
    FinSequence;
    
      assume
    
      
    
    A1: ( 
    len x) 
    = ( 
    len y); 
    
      (
    len ( 
    - y)) 
    = ( 
    len y) by 
    Th5;
    
      
    
      then (
    - (x 
    - y)) 
    = (( 
    - x) 
    + ( 
    - ( 
    - y))) by 
    A1,
    Th29
    
      .= ((
    - x) 
    + y); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLSP2:40
    
    
    
    
    
    Th33: for x,y,z be 
    complex-valued  
    FinSequence st ( 
    len x) 
    = ( 
    len y) & ( 
    len y) 
    = ( 
    len z) holds (x 
    - (y 
    - z)) 
    = ((x 
    - y) 
    + z) 
    
    proof
    
      let x,y,z be
    complex-valued  
    FinSequence;
    
      assume that
    
      
    
    A1: ( 
    len x) 
    = ( 
    len y) and 
    
      
    
    A2: ( 
    len y) 
    = ( 
    len z); 
    
      
    
      
    
    A3: ( 
    len ( 
    - y)) 
    = ( 
    len y) by 
    Th5;
    
      (x
    - (y 
    - z)) 
    = (x 
    + (( 
    - y) 
    + z)) by 
    A2,
    Th32
    
      .= ((x
    - y) 
    + z) by 
    A1,
    A2,
    A3,
    Th24;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLSP2:41
    
    
    
    
    
    Th34: for c be 
    Complex holds (c 
    * ( 
    0c ( 
    len x))) 
    = ( 
    0c ( 
    len x)) 
    
    proof
    
      let c be
    Complex;
    
      reconsider cc = c as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      
    
      
    
    A1: ( 
    rng ( 
    0c ( 
    len x))) 
    c=  
    COMPLEX by 
    FINSEQ_1:def 4;
    
      (c
    * ( 
    0c ( 
    len x))) 
    = (( 
    multcomplex  
    [;] (cc,( 
    id  
    COMPLEX ))) 
    * ( 
    0c ( 
    len x))) by 
    Lm1
    
      .= (
    multcomplex  
    [;] (cc,(( 
    id  
    COMPLEX ) 
    * ( 
    0c ( 
    len x))))) by 
    FUNCOP_1: 34
    
      .= (
    multcomplex  
    [;] (cc,( 
    0c ( 
    len x)))) by 
    A1,
    RELAT_1: 53
    
      .= (
    multcomplex  
    [;] (cc,(( 
    len x) 
    |->  
    0c ))) by 
    SEQ_4:def 12
    
      .= ((
    len x) 
    |-> ( 
    multcomplex  
    . (cc, 
    0c ))) by 
    FINSEQOP: 18
    
      .= ((
    len x) 
    |-> (cc 
    *  
    0c )) by 
    BINOP_2:def 5
    
      .= (
    0c ( 
    len x)) by 
    SEQ_4:def 12;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLSP2:42
    
    
    
    
    
    Th35: for c be 
    Complex holds ( 
    - (c 
    * x)) 
    = (c 
    * ( 
    - x)) 
    
    proof
    
      let c be
    Complex;
    
      
    
      
    
    A1: ( 
    len (c 
    * ( 
    - x))) 
    = ( 
    len ( 
    - x)) & ( 
    len (c 
    * x)) 
    = ( 
    len x) by 
    Th3;
    
      
    
      
    
    A2: ( 
    len x) 
    = ( 
    len ( 
    - x)) by 
    Th5;
    
      
    
      then ((c
    * ( 
    - x)) 
    + (c 
    * x)) 
    = (c 
    * (x 
    + ( 
    - x))) by 
    Th25
    
      .= (c
    * ( 
    0c ( 
    len x))) by 
    Th28
    
      .= (
    0c ( 
    len x)) by 
    Th34;
    
      hence thesis by
    A2,
    A1,
    Th26;
    
    end;
    
    theorem :: 
    
    COMPLSP2:43
    
    
    
    
    
    Th36: for c be 
    Complex, x,y be 
    FinSequence of 
    COMPLEX st ( 
    len x) 
    = ( 
    len y) holds (c 
    * (x 
    - y)) 
    = ((c 
    * x) 
    - (c 
    * y)) 
    
    proof
    
      let c be
    Complex, x,y be 
    FinSequence of 
    COMPLEX ; 
    
      assume
    
      
    
    A1: ( 
    len x) 
    = ( 
    len y); 
    
      reconsider cc = c as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      reconsider y9 = y as
    Element of (( 
    len y) 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 92;
    
      reconsider x9 = x as
    Element of (( 
    len x) 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 92;
    
      set cM = (cc
    multcomplex ); 
    
      (c
    * (x 
    - y)) 
    = (cM 
    * (x 
    + ( 
    - y))) by 
    SEQ_4:def 9
    
      .= (cM
    * ( 
    addcomplex  
    .: (x,( 
    - y)))) by 
    SEQ_4:def 6
    
      .= (
    addcomplex  
    .: ((cM 
    * x9),(cM 
    * ( 
    - y9)))) by 
    A1,
    FINSEQOP: 51,
    SEQ_4: 56
    
      .= ((cM
    * x) 
    + (cM 
    * ( 
    - y))) by 
    SEQ_4:def 6
    
      .= ((c
    * x) 
    + (cM 
    * ( 
    - y))) by 
    SEQ_4:def 9
    
      .= ((c
    * x) 
    + (c 
    * ( 
    - y))) by 
    SEQ_4:def 9
    
      .= ((c
    * x) 
    - (c 
    * y)) by 
    Th35;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLSP2:44
    
    for x1,y1 be
    Element of 
    COMPLEX holds for x2,y2 be 
    Real st x1 
    = x2 & y1 
    = y2 holds ( 
    addcomplex  
    . (x1,y1)) 
    = ( 
    addreal  
    . (x2,y2)) 
    
    proof
    
      let x1,y1 be
    Element of 
    COMPLEX ; 
    
      let x2,y2 be
    Real;
    
      
    
      
    
    A1: ( 
    addcomplex  
    . (x1,y1)) 
    = (x1 
    + y1) by 
    BINOP_2:def 3;
    
      assume x1
    = x2 & y1 
    = y2; 
    
      hence thesis by
    A1,
    BINOP_2:def 9;
    
    end;
    
    reserve C for
    Function of 
    [:
    COMPLEX , 
    COMPLEX :], 
    COMPLEX ; 
    
    reserve G for
    Function of 
    [:
    REAL , 
    REAL :], 
    REAL ; 
    
    theorem :: 
    
    COMPLSP2:45
    
    
    
    
    
    Th38: for x1,y1 be 
    FinSequence of 
    COMPLEX holds for x2,y2 be 
    FinSequence of 
    REAL st x1 
    = x2 & y1 
    = y2 & ( 
    len x1) 
    = ( 
    len y2) & (for i st i 
    in ( 
    dom x1) holds (C 
    . ((x1 
    . i),(y1 
    . i))) 
    = (G 
    . ((x2 
    . i),(y2 
    . i)))) holds (C 
    .: (x1,y1)) 
    = (G 
    .: (x2,y2)) 
    
    proof
    
      let x1,y1 be
    FinSequence of 
    COMPLEX ; 
    
      let x2,y2 be
    FinSequence of 
    REAL ; 
    
      assume that
    
      
    
    A1: x1 
    = x2 and 
    
      
    
    A2: y1 
    = y2 and 
    
      
    
    A3: ( 
    len x1) 
    = ( 
    len y2) and 
    
      
    
    A4: for i st i 
    in ( 
    dom x1) holds (C 
    . ((x1 
    . i),(y1 
    . i))) 
    = (G 
    . ((x2 
    . i),(y2 
    . i))); 
    
      
    
      
    
    A5: ( 
    len (G 
    .: (x2,y2))) 
    = ( 
    len x1) by 
    A1,
    A3,
    FINSEQ_2: 72;
    
      now
    
        let i be
    Nat;
    
        assume that
    
        
    
    A6: 1 
    <= i and 
    
        
    
    A7: i 
    <= ( 
    len (C 
    .: (x1,y1))); 
    
        
    
        
    
    A8: i 
    <= ( 
    len x1) by 
    A2,
    A3,
    A7,
    FINSEQ_2: 72;
    
        then
    
        
    
    A9: i 
    in ( 
    dom x1) by 
    A6,
    FINSEQ_3: 25;
    
        
    
        
    
    A10: i 
    in ( 
    dom (G 
    .: (x2,y2))) by 
    A5,
    A6,
    A8,
    FINSEQ_3: 25;
    
        i
    in ( 
    dom (C 
    .: (x1,y1))) by 
    A6,
    A7,
    FINSEQ_3: 25;
    
        
    
        hence ((C
    .: (x1,y1)) 
    . i) 
    = (C 
    . ((x1 
    . i),(y1 
    . i))) by 
    FUNCOP_1: 22
    
        .= (G
    . ((x2 
    . i),(y2 
    . i))) by 
    A4,
    A9
    
        .= ((G
    .: (x2,y2)) 
    . i) by 
    A10,
    FUNCOP_1: 22;
    
      end;
    
      hence thesis by
    A5,
    A2,
    A3,
    FINSEQ_2: 72;
    
    end;
    
    theorem :: 
    
    COMPLSP2:46
    
    for x1,y1 be
    FinSequence of 
    COMPLEX holds for x2,y2 be 
    FinSequence of 
    REAL st x1 
    = x2 & y1 
    = y2 & ( 
    len x1) 
    = ( 
    len y2) holds ( 
    addcomplex  
    .: (x1,y1)) 
    = ( 
    addreal  
    .: (x2,y2)) 
    
    proof
    
      let x1,y1 be
    FinSequence of 
    COMPLEX ; 
    
      let x2,y2 be
    FinSequence of 
    REAL ; 
    
      assume that
    
      
    
    A1: x1 
    = x2 & y1 
    = y2 and 
    
      
    
    A2: ( 
    len x1) 
    = ( 
    len y2); 
    
      for i st i
    in ( 
    dom x1) holds ( 
    addcomplex  
    . ((x1 
    . i),(y1 
    . i))) 
    = ( 
    addreal  
    . ((x2 
    . i),(y2 
    . i))) 
    
      proof
    
        let i;
    
        ((x1
    . i) 
    + (y1 
    . i)) 
    = ( 
    addcomplex  
    . ((x1 
    . i),(y1 
    . i))) by 
    BINOP_2:def 3;
    
        hence thesis by
    A1,
    BINOP_2:def 9;
    
      end;
    
      hence thesis by
    A1,
    A2,
    Th38;
    
    end;
    
    ::$Canceled
    
    theorem :: 
    
    COMPLSP2:48
    
    
    
    
    
    Th40: for x be 
    FinSequence of 
    COMPLEX holds ( 
    len ( 
    Re x)) 
    = ( 
    len x) & ( 
    len ( 
    Im x)) 
    = ( 
    len x) 
    
    proof
    
      let x be
    FinSequence of 
    COMPLEX ; 
    
      
    
      
    
    A1: ( 
    len x) 
    = ( 
    len (x 
    *' )) by 
    Def1;
    
      
    
      
    
    A2: ( 
    len ( 
    Im x)) 
    = ( 
    len (x 
    - (x 
    *' ))) by 
    Th3
    
      .= (
    len x) by 
    A1,
    Th7;
    
      (
    len ( 
    Re x)) 
    = ( 
    len (x 
    + (x 
    *' ))) by 
    Th3
    
      .= (
    len x) by 
    A1,
    Th6;
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    COMPLSP2:49
    
    
    
    
    
    Th41: for x,y be 
    FinSequence of 
    COMPLEX st ( 
    len x) 
    = ( 
    len y) holds ( 
    Re (x 
    + y)) 
    = (( 
    Re x) 
    + ( 
    Re y)) & ( 
    Im (x 
    + y)) 
    = (( 
    Im x) 
    + ( 
    Im y)) 
    
    proof
    
      let x,y be
    FinSequence of 
    COMPLEX ; 
    
      
    
      
    
    A1: ( 
    len ( 
    - (x 
    *' ))) 
    = ( 
    len (x 
    *' )) by 
    Th5;
    
      assume
    
      
    
    A2: ( 
    len x) 
    = ( 
    len y); 
    
      then
    
      
    
    A3: ( 
    len (x 
    + y)) 
    = ( 
    len x) by 
    Th6;
    
      
    
      
    
    A4: ( 
    len y) 
    = ( 
    len (y 
    *' )) by 
    Def1;
    
      then
    
      
    
    A5: ( 
    len (y 
    + (y 
    *' ))) 
    = ( 
    len y) by 
    Th6;
    
      
    
      
    
    A6: ( 
    len x) 
    = ( 
    len (x 
    *' )) by 
    Def1;
    
      then
    
      
    
    A7: ( 
    len (x 
    + (x 
    *' ))) 
    = ( 
    len x) by 
    Th6;
    
      
    
      
    
    A8: ( 
    len (x 
    - (x 
    *' ))) 
    = ( 
    len x) by 
    A6,
    Th7;
    
      
    
      
    
    A9: ( 
    len (y 
    - (y 
    *' ))) 
    = ( 
    len y) by 
    A4,
    Th7;
    
      
    
      thus (
    Re (x 
    + y)) 
    = ((1 
    / 2) 
    * ((x 
    + y) 
    + ((x 
    *' ) 
    + (y 
    *' )))) by 
    A2,
    Th15
    
      .= ((1
    / 2) 
    * (((x 
    + y) 
    + (x 
    *' )) 
    + (y 
    *' ))) by 
    A2,
    A4,
    A6,
    A3,
    Th24
    
      .= ((1
    / 2) 
    * (((x 
    + (x 
    *' )) 
    + y) 
    + (y 
    *' ))) by 
    A2,
    A6,
    Th24
    
      .= ((1
    / 2) 
    * ((x 
    + (x 
    *' )) 
    + (y 
    + (y 
    *' )))) by 
    A2,
    A4,
    A7,
    Th24
    
      .= ((
    Re x) 
    + ( 
    Re y)) by 
    A2,
    A7,
    A5,
    Th25;
    
      
    
      thus (
    Im (x 
    + y)) 
    = (( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * ((x 
    + y) 
    - ((x 
    *' ) 
    + (y 
    *' )))) by 
    A2,
    Th15
    
      .= ((
    - ((1 
    / 2) 
    *  
    <i> )) 
    * (((x 
    + y) 
    - (x 
    *' )) 
    - (y 
    *' ))) by 
    A2,
    A4,
    A6,
    A3,
    Th30
    
      .= ((
    - ((1 
    / 2) 
    *  
    <i> )) 
    * (((x 
    + ( 
    - (x 
    *' ))) 
    + y) 
    - (y 
    *' ))) by 
    A2,
    A6,
    A1,
    Th24
    
      .= ((
    - ((1 
    / 2) 
    *  
    <i> )) 
    * ((x 
    - (x 
    *' )) 
    + (y 
    - (y 
    *' )))) by 
    A2,
    A4,
    A8,
    Th31
    
      .= ((
    Im x) 
    + ( 
    Im y)) by 
    A2,
    A8,
    A9,
    Th25;
    
    end;
    
    theorem :: 
    
    COMPLSP2:50
    
    for x1,y1 be
    FinSequence of 
    COMPLEX holds for x2,y2 be 
    FinSequence of 
    REAL st x1 
    = x2 & y1 
    = y2 & ( 
    len x1) 
    = ( 
    len y2) holds ( 
    diffcomplex  
    .: (x1,y1)) 
    = ( 
    diffreal  
    .: (x2,y2)) 
    
    proof
    
      let x1,y1 be
    FinSequence of 
    COMPLEX , x2,y2 be 
    FinSequence of 
    REAL ; 
    
      assume that
    
      
    
    A1: x1 
    = x2 & y1 
    = y2 and 
    
      
    
    A2: ( 
    len x1) 
    = ( 
    len y2); 
    
      for i st i
    in ( 
    dom x1) holds ( 
    diffcomplex  
    . ((x1 
    . i),(y1 
    . i))) 
    = ( 
    diffreal  
    . ((x2 
    . i),(y2 
    . i))) 
    
      proof
    
        let i;
    
        ((x1
    . i) 
    - (y1 
    . i)) 
    = ( 
    diffcomplex  
    . ((x1 
    . i),(y1 
    . i))) by 
    BINOP_2:def 4;
    
        hence thesis by
    A1,
    BINOP_2:def 10;
    
      end;
    
      hence thesis by
    A1,
    A2,
    Th38;
    
    end;
    
    ::$Canceled
    
    theorem :: 
    
    COMPLSP2:52
    
    
    
    
    
    Th43: for x,y be 
    FinSequence of 
    COMPLEX st ( 
    len x) 
    = ( 
    len y) holds ( 
    Re (x 
    - y)) 
    = (( 
    Re x) 
    - ( 
    Re y)) & ( 
    Im (x 
    - y)) 
    = (( 
    Im x) 
    - ( 
    Im y)) 
    
    proof
    
      let x,y be
    FinSequence of 
    COMPLEX ; 
    
      assume
    
      
    
    A1: ( 
    len x) 
    = ( 
    len y); 
    
      then
    
      
    
    A2: ( 
    len (x 
    - y)) 
    = ( 
    len x) by 
    Th7;
    
      
    
      
    
    A3: ( 
    len x) 
    = ( 
    len (x 
    *' )) by 
    Def1;
    
      then
    
      
    
    A4: ( 
    len (x 
    + (x 
    *' ))) 
    = ( 
    len x) by 
    Th6;
    
      
    
      
    
    A5: ( 
    len y) 
    = ( 
    len (y 
    *' )) by 
    Def1;
    
      then
    
      
    
    A6: ( 
    len (y 
    + (y 
    *' ))) 
    = ( 
    len y) by 
    Th6;
    
      
    
      thus (
    Re (x 
    - y)) 
    = ((1 
    / 2) 
    * ((x 
    - y) 
    + ((x 
    *' ) 
    - (y 
    *' )))) by 
    A1,
    Th17
    
      .= ((1
    / 2) 
    * (((x 
    *' ) 
    + (x 
    - y)) 
    - (y 
    *' ))) by 
    A1,
    A5,
    A3,
    A2,
    Th31
    
      .= ((1
    / 2) 
    * ((x 
    *' ) 
    + ((x 
    - y) 
    - (y 
    *' )))) by 
    A1,
    A5,
    A3,
    A2,
    Th31
    
      .= ((1
    / 2) 
    * ((x 
    *' ) 
    + (x 
    - (y 
    + (y 
    *' ))))) by 
    A1,
    A5,
    Th30
    
      .= ((1
    / 2) 
    * ((x 
    + (x 
    *' )) 
    - (y 
    + (y 
    *' )))) by 
    A1,
    A3,
    A6,
    Th31
    
      .= ((
    Re x) 
    - ( 
    Re y)) by 
    A1,
    A4,
    A6,
    Th36;
    
      
    
      
    
    A7: ( 
    len (x 
    - (x 
    *' ))) 
    = ( 
    len x) by 
    A3,
    Th7;
    
      
    
      
    
    A8: ( 
    len (y 
    - (y 
    *' ))) 
    = ( 
    len y) by 
    A5,
    Th7;
    
      
    
      thus (
    Im (x 
    - y)) 
    = (( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * ((x 
    - y) 
    - ((x 
    *' ) 
    - (y 
    *' )))) by 
    A1,
    Th17
    
      .= ((
    - ((1 
    / 2) 
    *  
    <i> )) 
    * (((x 
    - y) 
    - (x 
    *' )) 
    + (y 
    *' ))) by 
    A1,
    A5,
    A3,
    A2,
    Th33
    
      .= ((
    - ((1 
    / 2) 
    *  
    <i> )) 
    * ((x 
    - ((x 
    *' ) 
    + y)) 
    + (y 
    *' ))) by 
    A1,
    A3,
    Th30
    
      .= ((
    - ((1 
    / 2) 
    *  
    <i> )) 
    * (((x 
    - (x 
    *' )) 
    - y) 
    + (y 
    *' ))) by 
    A1,
    A3,
    Th30
    
      .= ((
    - ((1 
    / 2) 
    *  
    <i> )) 
    * ((x 
    - (x 
    *' )) 
    - (y 
    - (y 
    *' )))) by 
    A1,
    A5,
    A7,
    Th33
    
      .= ((
    Im x) 
    - ( 
    Im y)) by 
    A1,
    A7,
    A8,
    Th36;
    
    end;
    
    theorem :: 
    
    COMPLSP2:53
    
    
    
    
    
    Th44: for a,b be 
    Complex holds (a 
    * (b 
    * z)) 
    = ((a 
    * b) 
    * z) 
    
    proof
    
      let a,b be
    Complex;
    
      reconsider aa = a, bb = b, ab = (a
    * b) as 
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      
    
      thus ((a
    * b) 
    * z) 
    = (( 
    multcomplex  
    [;] (ab,( 
    id  
    COMPLEX ))) 
    * z) by 
    Lm1
    
      .= ((
    multcomplex  
    [;] (( 
    multcomplex  
    . (aa,bb)),( 
    id  
    COMPLEX ))) 
    * z) by 
    BINOP_2:def 5
    
      .= ((
    multcomplex  
    [;] (aa,( 
    multcomplex  
    [;] (bb,( 
    id  
    COMPLEX ))))) 
    * z) by 
    FUNCOP_1: 62
    
      .= (((
    multcomplex  
    [;] (aa,( 
    id  
    COMPLEX ))) 
    * ( 
    multcomplex  
    [;] (bb,( 
    id  
    COMPLEX )))) 
    * z) by 
    FUNCOP_1: 55
    
      .= ((
    multcomplex  
    [;] (aa,( 
    id  
    COMPLEX ))) 
    * (( 
    multcomplex  
    [;] (bb,( 
    id  
    COMPLEX ))) 
    * z)) by 
    RELAT_1: 36
    
      .= ((
    multcomplex  
    [;] (aa,( 
    id  
    COMPLEX ))) 
    * (b 
    * z)) by 
    Lm1
    
      .= (a
    * (b 
    * z)) by 
    Lm1;
    
    end;
    
    
    
    
    
    Lm3: ( 
    - ( 
    0c ( 
    len x))) 
    = ( 
    0c ( 
    len x)) 
    
    proof
    
      (
    - ( 
    0c ( 
    len x))) 
    = ( 
    - (( 
    len x) 
    |->  
    0c )) by 
    SEQ_4:def 12
    
      .= (
    compcomplex  
    * (( 
    len x) 
    |->  
    0c )) by 
    SEQ_4:def 8
    
      .= ((
    len x) 
    |-> ( 
    compcomplex  
    .  
    0c )) by 
    FINSEQOP: 16
    
      .= ((
    len x) 
    |-> ( 
    -  
    0c )) by 
    BINOP_2:def 1
    
      .= (
    0c ( 
    len x)) by 
    SEQ_4:def 12;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLSP2:54
    
    
    
    
    
    Th45: for c be 
    Complex holds (( 
    - c) 
    * x) 
    = ( 
    - (c 
    * x)) 
    
    proof
    
      let c be
    Complex;
    
      
    
      
    
    A1: ( 
    len (( 
    - c) 
    * x)) 
    = ( 
    len x) by 
    Th3;
    
      
    
      
    
    A2: ( 
    len (c 
    * x)) 
    = ( 
    len x) by 
    Th3;
    
      (((
    - c) 
    * x) 
    + (c 
    * x)) 
    = (((( 
    - 1) 
    * c) 
    * x) 
    + (c 
    * x)) 
    
      .= ((
    - (c 
    * x)) 
    + (c 
    * x)) by 
    Th44
    
      .= (
    - ((c 
    * x) 
    - (c 
    * x))) by 
    A2,
    Th32
    
      .= (
    - ( 
    0c ( 
    len x))) by 
    A2,
    Th28
    
      .= (
    0c ( 
    len x)) by 
    Lm3;
    
      hence thesis by
    A1,
    A2,
    Th26;
    
    end;
    
    reserve h for
    Function of 
    COMPLEX , 
    COMPLEX , 
    
g for
    Function of 
    REAL , 
    REAL ; 
    
    theorem :: 
    
    COMPLSP2:55
    
    
    
    
    
    Th46: for y1 be 
    FinSequence of 
    COMPLEX holds for y2 be 
    FinSequence of 
    REAL st ( 
    len y1) 
    = ( 
    len y2) & (for i st i 
    in ( 
    dom y1) holds (h 
    . (y1 
    . i)) 
    = (g 
    . (y2 
    . i))) holds (h 
    * y1) 
    = (g 
    * y2) 
    
    proof
    
      let y1 be
    FinSequence of 
    COMPLEX ; 
    
      let y2 be
    FinSequence of 
    REAL ; 
    
      assume that
    
      
    
    A1: ( 
    len y1) 
    = ( 
    len y2) and 
    
      
    
    A2: for i st i 
    in ( 
    dom y1) holds (h 
    . (y1 
    . i)) 
    = (g 
    . (y2 
    . i)); 
    
      
    
      
    
    A3: ( 
    len (g 
    * y2)) 
    = ( 
    len y1) by 
    A1,
    FINSEQ_2: 33;
    
      now
    
        let i be
    Nat;
    
        assume that
    
        
    
    A4: 1 
    <= i and 
    
        
    
    A5: i 
    <= ( 
    len (h 
    * y1)); 
    
        
    
        
    
    A6: i 
    <= ( 
    len y1) by 
    A5,
    FINSEQ_2: 33;
    
        then
    
        
    
    A7: i 
    in ( 
    dom y1) by 
    A4,
    FINSEQ_3: 25;
    
        
    
        
    
    A8: i 
    in ( 
    dom (g 
    * y2)) by 
    A3,
    A4,
    A6,
    FINSEQ_3: 25;
    
        i
    in ( 
    dom (h 
    * y1)) by 
    A4,
    A5,
    FINSEQ_3: 25;
    
        
    
        hence ((h
    * y1) 
    . i) 
    = (h 
    . (y1 
    . i)) by 
    FUNCT_1: 12
    
        .= (g
    . (y2 
    . i)) by 
    A2,
    A7
    
        .= ((g
    * y2) 
    . i) by 
    A8,
    FUNCT_1: 12;
    
      end;
    
      hence thesis by
    A3,
    FINSEQ_2: 33;
    
    end;
    
    theorem :: 
    
    COMPLSP2:56
    
    for y1 be
    FinSequence of 
    COMPLEX holds for y2 be 
    FinSequence of 
    REAL st y1 
    = y2 & ( 
    len y1) 
    = ( 
    len y2) holds ( 
    compcomplex  
    * y1) 
    = ( 
    compreal  
    * y2) 
    
    proof
    
      let y1 be
    FinSequence of 
    COMPLEX ; 
    
      let y2 be
    FinSequence of 
    REAL ; 
    
      assume that
    
      
    
    A1: y1 
    = y2 and 
    
      
    
    A2: ( 
    len y1) 
    = ( 
    len y2); 
    
      for i st i
    in ( 
    dom y1) holds ( 
    compcomplex  
    . (y1 
    . i)) 
    = ( 
    compreal  
    . (y2 
    . i)) 
    
      proof
    
        let i;
    
        assume i
    in ( 
    dom y1); 
    
        (
    - (y1 
    . i)) 
    = ( 
    compcomplex  
    . (y1 
    . i)) by 
    BINOP_2:def 1;
    
        hence thesis by
    A1,
    BINOP_2:def 7;
    
      end;
    
      hence thesis by
    A2,
    Th46;
    
    end;
    
    ::$Canceled
    
    theorem :: 
    
    COMPLSP2:58
    
    
    
    
    
    Th48: for x be 
    FinSequence of 
    COMPLEX holds ( 
    Re ( 
    <i>  
    * x)) 
    = ( 
    - ( 
    Im x)) & ( 
    Im ( 
    <i>  
    * x)) 
    = ( 
    Re x) 
    
    proof
    
      let x be
    FinSequence of 
    COMPLEX ; 
    
      
    
      
    
    A1: ( 
    len (x 
    *' )) 
    = ( 
    len x) by 
    Def1;
    
      
    
      
    
    A2: ( 
    Im ( 
    <i>  
    * x)) 
    = ((( 
    - (1 
    / 2)) 
    *  
    <i> ) 
    * (( 
    <i>  
    * x) 
    - (( 
    -  
    <i> ) 
    * (x 
    *' )))) by 
    Th13,
    COMPLEX1: 31
    
      .= (((
    - (1 
    / 2)) 
    *  
    <i> ) 
    * (( 
    <i>  
    * x) 
    + ( 
    - ( 
    - ( 
    <i>  
    * (x 
    *' )))))) by 
    Th45
    
      .= (((
    - (1 
    / 2)) 
    *  
    <i> ) 
    * ( 
    <i>  
    * (x 
    + (x 
    *' )))) by 
    A1,
    Th25
    
      .= ((((
    - (1 
    / 2)) 
    *  
    <i> ) 
    *  
    <i> ) 
    * (x 
    + (x 
    *' ))) by 
    Th44
    
      .= (
    Re x); 
    
      (
    Re ( 
    <i>  
    * x)) 
    = ((1 
    / 2) 
    * (( 
    <i>  
    * x) 
    + (( 
    -  
    <i> ) 
    * (x 
    *' )))) by 
    Th13,
    COMPLEX1: 31
    
      .= ((1
    / 2) 
    * (( 
    <i>  
    * x) 
    - ( 
    <i>  
    * (x 
    *' )))) by 
    Th45
    
      .= ((1
    / 2) 
    * ( 
    <i>  
    * (x 
    - (x 
    *' )))) by 
    A1,
    Th36
    
      .= (((1
    / 2) 
    *  
    <i> ) 
    * (x 
    - (x 
    *' ))) by 
    Th44
    
      .= (((
    - 1) 
    * (( 
    - (1 
    / 2)) 
    *  
    <i> )) 
    * (x 
    - (x 
    *' ))) 
    
      .= (
    - ( 
    Im x)) by 
    Th44;
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    COMPLSP2:59
    
    
    
    
    
    Th49: for x,y be 
    FinSequence of 
    COMPLEX st ( 
    len x) 
    = ( 
    len y) holds 
    |((
    <i>  
    * x), y)| 
    = ( 
    <i>  
    *  
    |(x, y)|)
    
    proof
    
      let x,y be
    FinSequence of 
    COMPLEX ; 
    
      assume
    
      
    
    A1: ( 
    len x) 
    = ( 
    len y); 
    
      
    
      
    
    A2: ( 
    len ( 
    Im y)) 
    = ( 
    len y) by 
    Th40;
    
      
    
      
    
    A3: ( 
    len ( 
    Re y)) 
    = ( 
    len y) by 
    Th40;
    
      
    
      
    
    A4: ( 
    len ( 
    Im x)) 
    = ( 
    len x) by 
    Th40;
    
      
    |((
    <i>  
    * x), y)| 
    = ((( 
    |((
    - ( 
    Im x)), ( 
    Re y))| 
    - ( 
    <i>  
    *  
    |((
    Re ( 
    <i>  
    * x)), ( 
    Im y))|)) 
    + ( 
    <i>  
    *  
    |((
    Im ( 
    <i>  
    * x)), ( 
    Re y))|)) 
    +  
    |((
    Im ( 
    <i>  
    * x)), ( 
    Im y))|) by 
    Th48
    
      .= (((
    |((
    - ( 
    Im x)), ( 
    Re y))| 
    - ( 
    <i>  
    *  
    |((
    - ( 
    Im x)), ( 
    Im y))|)) 
    + ( 
    <i>  
    *  
    |((
    Im ( 
    <i>  
    * x)), ( 
    Re y))|)) 
    +  
    |((
    Im ( 
    <i>  
    * x)), ( 
    Im y))|) by 
    Th48
    
      .= (((
    |((
    - ( 
    Im x)), ( 
    Re y))| 
    - ( 
    <i>  
    *  
    |((
    - ( 
    Im x)), ( 
    Im y))|)) 
    + ( 
    <i>  
    *  
    |((
    Re x), ( 
    Re y))|)) 
    +  
    |((
    Im ( 
    <i>  
    * x)), ( 
    Im y))|) by 
    Th48
    
      .= (((
    |((
    - ( 
    Im x)), ( 
    Re y))| 
    - ( 
    <i>  
    *  
    |((
    - ( 
    Im x)), ( 
    Im y))|)) 
    + ( 
    <i>  
    *  
    |((
    Re x), ( 
    Re y))|)) 
    +  
    |((
    Re x), ( 
    Im y))|) by 
    Th48
    
      .= ((((
    -  
    |((
    Im x), ( 
    Re y))|) 
    - ( 
    <i>  
    *  
    |((
    - ( 
    Im x)), ( 
    Im y))|)) 
    + ( 
    <i>  
    *  
    |((
    Re x), ( 
    Re y))|)) 
    +  
    |((
    Re x), ( 
    Im y))|) by 
    A1,
    A3,
    A4,
    RVSUM_1: 122
    
      .= ((((
    -  
    |((
    Im x), ( 
    Re y))|) 
    - ( 
    <i>  
    * ( 
    -  
    |((
    Im x), ( 
    Im y))|))) 
    + ( 
    <i>  
    *  
    |((
    Re x), ( 
    Re y))|)) 
    +  
    |((
    Re x), ( 
    Im y))|) by 
    A1,
    A4,
    A2,
    RVSUM_1: 122
    
      .= (
    <i>  
    *  
    |(x, y)|);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLSP2:60
    
    
    
    
    
    Th50: for x,y be 
    FinSequence of 
    COMPLEX st ( 
    len x) 
    = ( 
    len y) holds 
    |(x, (
    <i>  
    * y))| 
    = ( 
    - ( 
    <i>  
    *  
    |(x, y)|))
    
    proof
    
      let x,y be
    FinSequence of 
    COMPLEX ; 
    
      assume
    
      
    
    A1: ( 
    len x) 
    = ( 
    len y); 
    
      
    
      
    
    A2: ( 
    len ( 
    Im x)) 
    = ( 
    len x) by 
    Th40;
    
      
    
      
    
    A3: ( 
    len ( 
    Re x)) 
    = ( 
    len x) by 
    Th40;
    
      
    
      
    
    A4: ( 
    len ( 
    Im y)) 
    = ( 
    len y) by 
    Th40;
    
      
    |(x, (
    <i>  
    * y))| 
    = ((( 
    |((
    Re x), ( 
    - ( 
    Im y)))| 
    - ( 
    <i>  
    *  
    |((
    Re x), ( 
    Im ( 
    <i>  
    * y)))|)) 
    + ( 
    <i>  
    *  
    |((
    Im x), ( 
    Re ( 
    <i>  
    * y)))|)) 
    +  
    |((
    Im x), ( 
    Im ( 
    <i>  
    * y)))|) by 
    Th48
    
      .= (((
    |((
    Re x), ( 
    - ( 
    Im y)))| 
    - ( 
    <i>  
    *  
    |((
    Re x), ( 
    Re y))|)) 
    + ( 
    <i>  
    *  
    |((
    Im x), ( 
    Re ( 
    <i>  
    * y)))|)) 
    +  
    |((
    Im x), ( 
    Im ( 
    <i>  
    * y)))|) by 
    Th48
    
      .= (((
    |((
    Re x), ( 
    - ( 
    Im y)))| 
    - ( 
    <i>  
    *  
    |((
    Re x), ( 
    Re y))|)) 
    + ( 
    <i>  
    *  
    |((
    Im x), ( 
    - ( 
    Im y)))|)) 
    +  
    |((
    Im x), ( 
    Im ( 
    <i>  
    * y)))|) by 
    Th48
    
      .= (((
    |((
    Re x), ( 
    - ( 
    Im y)))| 
    - ( 
    <i>  
    *  
    |((
    Re x), ( 
    Re y))|)) 
    + ( 
    <i>  
    *  
    |((
    Im x), ( 
    - ( 
    Im y)))|)) 
    +  
    |((
    Im x), ( 
    Re y))|) by 
    Th48
    
      .= ((((
    -  
    |((
    Re x), ( 
    Im y))|) 
    - ( 
    <i>  
    *  
    |((
    Re x), ( 
    Re y))|)) 
    + ( 
    <i>  
    *  
    |((
    Im x), ( 
    - ( 
    Im y)))|)) 
    +  
    |((
    Im x), ( 
    Re y))|) by 
    A1,
    A3,
    A4,
    RVSUM_1: 122
    
      .= ((((
    -  
    |((
    Re x), ( 
    Im y))|) 
    - ( 
    <i>  
    *  
    |((
    Re x), ( 
    Re y))|)) 
    + ( 
    <i>  
    * ( 
    -  
    |((
    Im x), ( 
    Im y))|))) 
    +  
    |((
    Im x), ( 
    Re y))|) by 
    A1,
    A2,
    A4,
    RVSUM_1: 122
    
      .= (
    - ( 
    <i>  
    *  
    |(x, y)|));
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLSP2:61
    
    for a1 be
    Element of 
    COMPLEX , y1 be 
    FinSequence of 
    COMPLEX holds for a2 be 
    Element of 
    REAL , y2 be 
    FinSequence of 
    REAL st a1 
    = a2 & y1 
    = y2 & ( 
    len y1) 
    = ( 
    len y2) holds ((a1 
    multcomplex ) 
    * y1) 
    = ((a2 
    multreal ) 
    * y2) 
    
    proof
    
      let a1 be
    Element of 
    COMPLEX , y1 be 
    FinSequence of 
    COMPLEX ; 
    
      let a2 be
    Element of 
    REAL , y2 be 
    FinSequence of 
    REAL ; 
    
      assume that
    
      
    
    A1: a1 
    = a2 & y1 
    = y2 and 
    
      
    
    A2: ( 
    len y1) 
    = ( 
    len y2); 
    
      for i st i
    in ( 
    dom y1) holds ((a1 
    multcomplex ) 
    . (y1 
    . i)) 
    = ((a2 
    multreal ) 
    . (y2 
    . i)) 
    
      proof
    
        let i;
    
        reconsider y2i = (y2
    . i) as 
    Element of 
    REAL by 
    XREAL_0:def 1;
    
        assume i
    in ( 
    dom y1); 
    
        
    
        
    
    A3: ((a2 
    * y2) 
    . i) 
    = (a2 
    * (y2 
    . i)) by 
    RVSUM_1: 44
    
        .= (
    multreal  
    . (a2,(( 
    id  
    REAL ) 
    . y2i))) by 
    BINOP_2:def 11
    
        .= ((
    multreal  
    [;] (a2,( 
    id  
    REAL ))) 
    . y2i) by 
    FUNCOP_1: 53
    
        .= ((a2
    multreal ) 
    . (y2 
    . i)) by 
    RVSUM_1:def 3;
    
        ((a1
    * y1) 
    . i) 
    = (a1 
    * (y1 
    . i)) by 
    Th12
    
        .= (
    multcomplex  
    . (a1,(( 
    id  
    COMPLEX ) 
    . (y1 
    . i)))) by 
    BINOP_2:def 5
    
        .= ((
    multcomplex  
    [;] (a1,( 
    id  
    COMPLEX ))) 
    . (y1 
    . i)) by 
    FUNCOP_1: 53
    
        .= ((a1
    multcomplex ) 
    . (y1 
    . i)) by 
    SEQ_4:def 4;
    
        hence thesis by
    A1,
    A3;
    
      end;
    
      hence thesis by
    A2,
    Th46;
    
    end;
    
    ::$Canceled
    
    theorem :: 
    
    COMPLSP2:63
    
    
    
    
    
    Th52: for a,b be 
    Complex holds ((a 
    + b) 
    * z) 
    = ((a 
    * z) 
    + (b 
    * z)) 
    
    proof
    
      let a,b be
    Complex;
    
      reconsider aa = a, bb = b, ab = (a
    + b) as 
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      set c1M = (
    multcomplex  
    [;] (aa,( 
    id  
    COMPLEX ))), c2M = ( 
    multcomplex  
    [;] (bb,( 
    id  
    COMPLEX ))); 
    
      
    
      thus ((a
    + b) 
    * z) 
    = (( 
    multcomplex  
    [;] (ab,( 
    id  
    COMPLEX ))) 
    * z) by 
    Lm1
    
      .= ((
    multcomplex  
    [;] (( 
    addcomplex  
    . (aa,bb)),( 
    id  
    COMPLEX ))) 
    * z) by 
    BINOP_2:def 3
    
      .= ((
    addcomplex  
    .: (c1M,c2M)) 
    * z) by 
    FINSEQOP: 35,
    SEQ_4: 54
    
      .= (
    addcomplex  
    .: ((c1M 
    * z),(c2M 
    * z))) by 
    FUNCOP_1: 25
    
      .= ((c1M
    * z) 
    + (c2M 
    * z)) by 
    SEQ_4:def 6
    
      .= ((a
    * z) 
    + (c2M 
    * z)) by 
    Lm1
    
      .= ((a
    * z) 
    + (b 
    * z)) by 
    Lm1;
    
    end;
    
    theorem :: 
    
    COMPLSP2:64
    
    
    
    
    
    Th53: for a,b be 
    Complex holds ((a 
    - b) 
    * z) 
    = ((a 
    * z) 
    - (b 
    * z)) 
    
    proof
    
      let a,b be
    Complex;
    
      reconsider aa = a, bb = b as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      ((a
    - b) 
    * z) 
    = ((a 
    + ( 
    - b)) 
    * z) 
    
      .= ((aa
    * z) 
    + (( 
    - bb) 
    * z)) by 
    Th52
    
      .= ((a
    * z) 
    - (b 
    * z)) by 
    Th45;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLSP2:65
    
    
    
    
    
    Th54: for a be 
    Element of 
    COMPLEX , x be 
    FinSequence of 
    COMPLEX holds ( 
    Re (a 
    * x)) 
    = ((( 
    Re a) 
    * ( 
    Re x)) 
    - (( 
    Im a) 
    * ( 
    Im x))) & ( 
    Im (a 
    * x)) 
    = ((( 
    Im a) 
    * ( 
    Re x)) 
    + (( 
    Re a) 
    * ( 
    Im x))) 
    
    proof
    
      let a be
    Element of 
    COMPLEX , x be 
    FinSequence of 
    COMPLEX ; 
    
      reconsider z5 = (
    Re a), z6 = ( 
    Im a) as 
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      
    
      
    
    A1: ( 
    len (x 
    *' )) 
    = ( 
    len x) by 
    Def1;
    
      (
    len (((1 
    / 2) 
    * z5) 
    * x)) 
    = ( 
    len x) by 
    Th3;
    
      then
    
      
    
    A2: ( 
    len (((((1 
    / 2) 
    *  
    <i> ) 
    * z6) 
    * x) 
    + (((1 
    / 2) 
    * z5) 
    * x))) 
    = ( 
    len ((((1 
    / 2) 
    *  
    <i> ) 
    * z6) 
    * x)) by 
    Th3,
    Th6;
    
      
    
      
    
    A3: ( 
    len (((1 
    / 2) 
    * z5) 
    * x)) 
    = ( 
    len x) by 
    Th3;
    
      
    
      
    
    A4: ( 
    len (z5 
    * x)) 
    = ( 
    len x) & ( 
    len (( 
    <i>  
    * z6) 
    * x)) 
    = ( 
    len x) by 
    Th3;
    
      
    
      
    
    A5: (( 
    Re a) 
    * ( 
    Re x)) 
    = ((z5 
    * (1 
    / 2)) 
    * (x 
    + (x 
    *' ))) by 
    Th44
    
      .= ((((z5
    * 1) 
    / 2) 
    * x) 
    + (((z5 
    * 1) 
    / 2) 
    * (x 
    *' ))) by 
    A1,
    Th25;
    
      
    
      
    
    A6: ( 
    len ( 
    Re x)) 
    = ( 
    len x) & ( 
    len (( 
    Re a) 
    * ( 
    Re x))) 
    = ( 
    len ( 
    Re x)) by 
    Th40,
    RVSUM_1: 117;
    
      
    
      
    
    A7: ( 
    len ((z5 
    - (z6 
    *  
    <i> )) 
    * (x 
    *' ))) 
    = ( 
    len (x 
    *' )) & ( 
    len ((z5 
    + ( 
    <i>  
    * z6)) 
    * x)) 
    = ( 
    len x) by 
    Th3;
    
      
    
      
    
    A8: ( 
    len ((( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * z6) 
    * (x 
    *' ))) 
    = ( 
    len (x 
    *' )) by 
    Th3;
    
      
    
      
    
    A9: (( 
    Im a) 
    * ( 
    Im x)) 
    = ((z6 
    * ( 
    - ((1 
    / 2) 
    *  
    <i> ))) 
    * (x 
    - (x 
    *' ))) by 
    Th44
    
      .= ((((
    - ((1 
    / 2) 
    *  
    <i> )) 
    * z6) 
    * x) 
    - ((( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * z6) 
    * (x 
    *' ))) by 
    A1,
    Th36;
    
      
    
      
    
    A10: ( 
    len ((( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * z6) 
    * x)) 
    = ( 
    len x) by 
    Th3;
    
      
    
      
    
    A11: ( 
    len (z5 
    * (x 
    *' ))) 
    = ( 
    len (x 
    *' )) & ( 
    len ((z6 
    *  
    <i> ) 
    * (x 
    *' ))) 
    = ( 
    len (x 
    *' )) by 
    Th3;
    
      
    
      
    
    A12: ( 
    len (((1 
    / 2) 
    * z5) 
    * (x 
    *' ))) 
    = ( 
    len (x 
    *' )) & ( 
    len ((((1 
    / 2) 
    *  
    <i> ) 
    * z6) 
    * x)) 
    = ( 
    len x) by 
    Th3;
    
      
    
      
    
    A13: ( 
    Re (a 
    * x)) 
    = ((1 
    / 2) 
    * (((a 
    *' ) 
    * (x 
    *' )) 
    + (a 
    * x))) by 
    Th13
    
      .= ((1
    / 2) 
    * (((a 
    *' ) 
    * (x 
    *' )) 
    + ((z5 
    + ( 
    <i>  
    * z6)) 
    * x))) by 
    COMPLEX1: 13
    
      .= ((1
    / 2) 
    * (((z5 
    - (z6 
    *  
    <i> )) 
    * (x 
    *' )) 
    + ((z5 
    + ( 
    <i>  
    * z6)) 
    * x))) by 
    COMPLEX1:def 11
    
      .= (((1
    / 2) 
    * ((z5 
    - (z6 
    *  
    <i> )) 
    * (x 
    *' ))) 
    + ((1 
    / 2) 
    * ((z5 
    + ( 
    <i>  
    * z6)) 
    * x))) by 
    A7,
    Th25,
    Def1
    
      .= (((1
    / 2) 
    * ((z5 
    - (z6 
    *  
    <i> )) 
    * (x 
    *' ))) 
    + ((1 
    / 2) 
    * ((z5 
    * x) 
    + (( 
    <i>  
    * z6) 
    * x)))) by 
    Th52
    
      .= (((1
    / 2) 
    * ((z5 
    * (x 
    *' )) 
    - ((z6 
    *  
    <i> ) 
    * (x 
    *' )))) 
    + ((1 
    / 2) 
    * ((z5 
    * x) 
    + (( 
    <i>  
    * z6) 
    * x)))) by 
    Th53
    
      .= (((1
    / 2) 
    * ((z5 
    * (x 
    *' )) 
    - ((z6 
    *  
    <i> ) 
    * (x 
    *' )))) 
    + (((1 
    / 2) 
    * (z5 
    * x)) 
    + ((1 
    / 2) 
    * (( 
    <i>  
    * z6) 
    * x)))) by 
    A4,
    Th25
    
      .= ((((1
    / 2) 
    * (z5 
    * (x 
    *' ))) 
    - ((1 
    / 2) 
    * ((z6 
    *  
    <i> ) 
    * (x 
    *' )))) 
    + (((1 
    / 2) 
    * (z5 
    * x)) 
    + ((1 
    / 2) 
    * (( 
    <i>  
    * z6) 
    * x)))) by 
    A11,
    Th36
    
      .= ((((1
    / 2) 
    * (z5 
    * (x 
    *' ))) 
    - ((1 
    / 2) 
    * (( 
    <i>  
    * z6) 
    * (x 
    *' )))) 
    + (((1 
    / 2) 
    * (z5 
    * x)) 
    + (((1 
    / 2) 
    * ( 
    <i>  
    * z6)) 
    * x))) by 
    Th44
    
      .= ((((1
    / 2) 
    * (z5 
    * (x 
    *' ))) 
    + ( 
    - ((((1 
    / 2) 
    *  
    <i> ) 
    * z6) 
    * (x 
    *' )))) 
    + (((1 
    / 2) 
    * (z5 
    * x)) 
    + ((((1 
    / 2) 
    *  
    <i> ) 
    * z6) 
    * x))) by 
    Th44
    
      .= ((((1
    / 2) 
    * (z5 
    * (x 
    *' ))) 
    + (( 
    - (((1 
    / 2) 
    *  
    <i> ) 
    * z6)) 
    * (x 
    *' ))) 
    + (((1 
    / 2) 
    * (z5 
    * x)) 
    + ((((1 
    / 2) 
    *  
    <i> ) 
    * z6) 
    * x))) by 
    Th45
    
      .= (((((1
    / 2) 
    * z5) 
    * (x 
    *' )) 
    + ((( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * z6) 
    * (x 
    *' ))) 
    + (((1 
    / 2) 
    * (z5 
    * x)) 
    + ((((1 
    / 2) 
    *  
    <i> ) 
    * z6) 
    * x))) by 
    Th44
    
      .= (((((1
    / 2) 
    * z5) 
    * x) 
    + ((((1 
    / 2) 
    *  
    <i> ) 
    * z6) 
    * x)) 
    + ((((1 
    / 2) 
    * z5) 
    * (x 
    *' )) 
    + ((( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * z6) 
    * (x 
    *' )))) by 
    Th44
    
      .= (((((((1
    / 2) 
    *  
    <i> ) 
    * z6) 
    * x) 
    + (((1 
    / 2) 
    * z5) 
    * x)) 
    + (((1 
    / 2) 
    * z5) 
    * (x 
    *' ))) 
    + ((( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * z6) 
    * (x 
    *' ))) by 
    A1,
    A8,
    A12,
    A2,
    Th24
    
      .= ((((((1
    / 2) 
    * z5) 
    * x) 
    + (((1 
    / 2) 
    * z5) 
    * (x 
    *' ))) 
    + (( 
    - (( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * z6)) 
    * x)) 
    + ((( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * z6) 
    * (x 
    *' ))) by 
    A1,
    A3,
    A12,
    Th24
    
      .= ((((((1
    / 2) 
    * z5) 
    * x) 
    + (((1 
    / 2) 
    * z5) 
    * (x 
    *' ))) 
    - ((( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * z6) 
    * x)) 
    + ((( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * z6) 
    * (x 
    *' ))) by 
    Th45
    
      .= (((
    Re a) 
    * ( 
    Re x)) 
    - (( 
    Im a) 
    * ( 
    Im x))) by 
    A1,
    A5,
    A9,
    A6,
    A10,
    A8,
    Th33;
    
      
    
      
    
    A14: ( 
    len ((((1 
    / 2) 
    *  
    <i> ) 
    * z5) 
    * (x 
    *' ))) 
    = ( 
    len (x 
    *' )) by 
    Th3;
    
      
    
      
    
    A15: (( 
    Im a) 
    * ( 
    Re x)) 
    = ((z6 
    * (1 
    / 2)) 
    * (x 
    + (x 
    *' ))) by 
    Th44
    
      .= ((((1
    / 2) 
    * z6) 
    * x) 
    + (((1 
    / 2) 
    * z6) 
    * (x 
    *' ))) by 
    A1,
    Th25;
    
      
    
      
    
    A16: ( 
    len (( 
    <i>  
    * z6) 
    * (x 
    *' ))) 
    = ( 
    len (x 
    *' )) & ( 
    len (( 
    - z5) 
    * (x 
    *' ))) 
    = ( 
    len (x 
    *' )) by 
    Th3;
    
      
    
      
    
    A17: ( 
    len ((1 
    / 2) 
    * (z6 
    * x))) 
    = ( 
    len (z6 
    * x)) by 
    Th3;
    
      
    
      
    
    A18: ( 
    len (z6 
    * (x 
    *' ))) 
    = ( 
    len (x 
    *' )) & ( 
    len ((1 
    / 2) 
    * (z6 
    * (x 
    *' )))) 
    = ( 
    len (z6 
    * (x 
    *' ))) by 
    Th3;
    
      then
    
      
    
    A19: ( 
    len (((1 
    / 2) 
    * (z6 
    * x)) 
    + ((1 
    / 2) 
    * (z6 
    * (x 
    *' ))))) 
    = ( 
    len ((1 
    / 2) 
    * (z6 
    * x))) by 
    A1,
    A17,
    Th3,
    Th6;
    
      
    
      
    
    A20: ( 
    len ((( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * z5) 
    * x)) 
    = ( 
    len x) by 
    Th3;
    
      then
    
      
    
    A21: ( 
    len (((1 
    / 2) 
    * (z6 
    * x)) 
    + ((( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * z5) 
    * x))) 
    = ( 
    len ((1 
    / 2) 
    * (z6 
    * x))) by 
    A17,
    Th3,
    Th6;
    
      
    
      
    
    A22: (( 
    Re a) 
    * ( 
    Im x)) 
    = ((z5 
    * ( 
    - ((1 
    / 2) 
    *  
    <i> ))) 
    * (x 
    - (x 
    *' ))) by 
    Th44
    
      .= ((((
    - ((1 
    / 2) 
    *  
    <i> )) 
    * z5) 
    * x) 
    - ((( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * z5) 
    * (x 
    *' ))) by 
    A1,
    Th36;
    
      
    
      
    
    A23: ( 
    len (z6 
    * x)) 
    = ( 
    len x) by 
    Th3;
    
      (
    len ((a 
    * x) 
    *' )) 
    = ( 
    len (a 
    * x)) & ( 
    len ( 
    - ((a 
    * x) 
    *' ))) 
    = ( 
    len ((a 
    * x) 
    *' )) by 
    Def1,
    Th5;
    
      
    
      then (
    Im (a 
    * x)) 
    = ((( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * ( 
    - ((a 
    * x) 
    *' ))) 
    + (( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * (a 
    * x))) by 
    Th25
    
      .= (((
    - ((1 
    / 2) 
    *  
    <i> )) 
    * ( 
    - ((a 
    *' ) 
    * (x 
    *' )))) 
    + (( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * (a 
    * x))) by 
    Th13
    
      .= (((
    - ((1 
    / 2) 
    *  
    <i> )) 
    * ( 
    - ((a 
    *' ) 
    * (x 
    *' )))) 
    + (( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * ((z5 
    + ( 
    <i>  
    * z6)) 
    * x))) by 
    COMPLEX1: 13
    
      .= (((
    - ((1 
    / 2) 
    *  
    <i> )) 
    * ( 
    - ((z5 
    - (z6 
    *  
    <i> )) 
    * (x 
    *' )))) 
    + (( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * ((z5 
    + ( 
    <i>  
    * z6)) 
    * x))) by 
    COMPLEX1:def 11
    
      .= (((
    - ((1 
    / 2) 
    *  
    <i> )) 
    * (( 
    - (z5 
    - (z6 
    *  
    <i> ))) 
    * (x 
    *' ))) 
    + (( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * ((z5 
    + ( 
    <i>  
    * z6)) 
    * x))) by 
    Th45
    
      .= (((
    - ((1 
    / 2) 
    *  
    <i> )) 
    * ((( 
    - z5) 
    + (z6 
    *  
    <i> )) 
    * (x 
    *' ))) 
    + (( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * ((z5 
    + ( 
    <i>  
    * z6)) 
    * x))) 
    
      .= (((
    - ((1 
    / 2) 
    *  
    <i> )) 
    * ((( 
    - z5) 
    * (x 
    *' )) 
    + (( 
    <i>  
    * z6) 
    * (x 
    *' )))) 
    + (( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * ((z5 
    + ( 
    <i>  
    * z6)) 
    * x))) by 
    Th52
    
      .= (((
    - ((1 
    / 2) 
    *  
    <i> )) 
    * ((( 
    - z5) 
    * (x 
    *' )) 
    + (( 
    <i>  
    * z6) 
    * (x 
    *' )))) 
    + (( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * ((z5 
    * x) 
    + (( 
    <i>  
    * z6) 
    * x)))) by 
    Th52
    
      .= (((
    - ((1 
    / 2) 
    *  
    <i> )) 
    * ((( 
    - z5) 
    * (x 
    *' )) 
    + (( 
    <i>  
    * z6) 
    * (x 
    *' )))) 
    + ((( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * (z5 
    * x)) 
    + (( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * (( 
    <i>  
    * z6) 
    * x)))) by 
    A4,
    Th25
    
      .= ((((
    - ((1 
    / 2) 
    *  
    <i> )) 
    * (( 
    - z5) 
    * (x 
    *' ))) 
    + (( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * (( 
    <i>  
    * z6) 
    * (x 
    *' )))) 
    + ((( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * (z5 
    * x)) 
    + (( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * (( 
    <i>  
    * z6) 
    * x)))) by 
    A16,
    Th25
    
      .= (((((
    - ((1 
    / 2) 
    *  
    <i> )) 
    * ( 
    - z5)) 
    * (x 
    *' )) 
    + (( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * (( 
    <i>  
    * z6) 
    * (x 
    *' )))) 
    + ((( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * (z5 
    * x)) 
    + (( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * (( 
    <i>  
    * z6) 
    * x)))) by 
    Th44
    
      .= (((((
    - ((1 
    / 2) 
    *  
    <i> )) 
    * ( 
    - z5)) 
    * (x 
    *' )) 
    + (( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * ( 
    <i>  
    * (z6 
    * (x 
    *' ))))) 
    + ((( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * (z5 
    * x)) 
    + (( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * (( 
    <i>  
    * z6) 
    * x)))) by 
    Th44
    
      .= (((((
    - ((1 
    / 2) 
    *  
    <i> )) 
    * ( 
    - z5)) 
    * (x 
    *' )) 
    + ((( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    *  
    <i> ) 
    * (z6 
    * (x 
    *' )))) 
    + ((( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * (z5 
    * x)) 
    + (( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * (( 
    <i>  
    * z6) 
    * x)))) by 
    Th44
    
      .= (((((
    - ((1 
    / 2) 
    *  
    <i> )) 
    * ( 
    - z5)) 
    * (x 
    *' )) 
    + ((( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    *  
    <i> ) 
    * (z6 
    * (x 
    *' )))) 
    + (((( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * z5) 
    * x) 
    + (( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * (( 
    <i>  
    * z6) 
    * x)))) by 
    Th44
    
      .= (((((
    - ((1 
    / 2) 
    *  
    <i> )) 
    * ( 
    - z5)) 
    * (x 
    *' )) 
    + ((( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    *  
    <i> ) 
    * (z6 
    * (x 
    *' )))) 
    + (((( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * z5) 
    * x) 
    + (( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * ( 
    <i>  
    * (z6 
    * x))))) by 
    Th44
    
      .= ((((1
    / 2) 
    * (z6 
    * x)) 
    + ((( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * z5) 
    * x)) 
    + (((1 
    / 2) 
    * (z6 
    * (x 
    *' ))) 
    + ((((1 
    / 2) 
    *  
    <i> ) 
    * z5) 
    * (x 
    *' )))) by 
    Th44
    
      .= (((((1
    / 2) 
    * (z6 
    * x)) 
    + ((( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * z5) 
    * x)) 
    + ((1 
    / 2) 
    * (z6 
    * (x 
    *' )))) 
    + ((((1 
    / 2) 
    *  
    <i> ) 
    * z5) 
    * (x 
    *' ))) by 
    A1,
    A23,
    A17,
    A18,
    A14,
    A21,
    Th24
    
      .= (((((1
    / 2) 
    * (z6 
    * x)) 
    + ((1 
    / 2) 
    * (z6 
    * (x 
    *' )))) 
    + ((( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * z5) 
    * x)) 
    + ((((1 
    / 2) 
    *  
    <i> ) 
    * z5) 
    * (x 
    *' ))) by 
    A1,
    A23,
    A17,
    A20,
    A18,
    Th24
    
      .= ((((1
    / 2) 
    * (z6 
    * x)) 
    + ((1 
    / 2) 
    * (z6 
    * (x 
    *' )))) 
    + (((( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * z5) 
    * x) 
    + ((((1 
    / 2) 
    *  
    <i> ) 
    * z5) 
    * (x 
    *' )))) by 
    A1,
    A23,
    A17,
    A20,
    A14,
    A19,
    Th24
    
      .= (((((1
    / 2) 
    * z6) 
    * x) 
    + ((1 
    / 2) 
    * (z6 
    * (x 
    *' )))) 
    + (((( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * z5) 
    * x) 
    + ((((1 
    / 2) 
    *  
    <i> ) 
    * z5) 
    * (x 
    *' )))) by 
    Th44
    
      .= (((((1
    / 2) 
    * z6) 
    * x) 
    + (((1 
    / 2) 
    * z6) 
    * (x 
    *' ))) 
    + (((( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * z5) 
    * x) 
    + (( 
    - (( 
    - ((1 
    / 2) 
    *  
    <i> )) 
    * z5)) 
    * (x 
    *' )))) by 
    Th44
    
      .= (((
    Im a) 
    * ( 
    Re x)) 
    + (( 
    Re a) 
    * ( 
    Im x))) by 
    A15,
    A22,
    Th45;
    
      hence thesis by
    A13;
    
    end;
    
    begin
    
    theorem :: 
    
    COMPLSP2:66
    
    
    
    
    
    Th55: for x1,x2,y be 
    FinSequence of 
    COMPLEX st ( 
    len x1) 
    = ( 
    len x2) & ( 
    len x2) 
    = ( 
    len y) holds 
    |((x1
    + x2), y)| 
    = ( 
    |(x1, y)|
    +  
    |(x2, y)|)
    
    proof
    
      let x1,x2,y be
    FinSequence of 
    COMPLEX ; 
    
      assume that
    
      
    
    A1: ( 
    len x1) 
    = ( 
    len x2) and 
    
      
    
    A2: ( 
    len x2) 
    = ( 
    len y); 
    
      
    
      
    
    A3: ( 
    len ( 
    Re x1)) 
    = ( 
    len x1) & ( 
    len ( 
    Re x2)) 
    = ( 
    len x2) by 
    Th40;
    
      
    
      
    
    A4: ( 
    len ( 
    Im y)) 
    = ( 
    len y) by 
    Th40;
    
      
    
      
    
    A5: ( 
    len ( 
    Im x1)) 
    = ( 
    len x1) & ( 
    len ( 
    Im x2)) 
    = ( 
    len x2) by 
    Th40;
    
      
    
      
    
    A6: ( 
    len ( 
    Re y)) 
    = ( 
    len y) by 
    Th40;
    
      
    |((x1
    + x2), y)| 
    = ((( 
    |(((
    Re x1) 
    + ( 
    Re x2)), ( 
    Re y))| 
    - ( 
    <i>  
    *  
    |((
    Re (x1 
    + x2)), ( 
    Im y))|)) 
    + ( 
    <i>  
    *  
    |((
    Im (x1 
    + x2)), ( 
    Re y))|)) 
    +  
    |((
    Im (x1 
    + x2)), ( 
    Im y))|) by 
    A1,
    Th41
    
      .= (((
    |(((
    Re x1) 
    + ( 
    Re x2)), ( 
    Re y))| 
    - ( 
    <i>  
    *  
    |(((
    Re x1) 
    + ( 
    Re x2)), ( 
    Im y))|)) 
    + ( 
    <i>  
    *  
    |((
    Im (x1 
    + x2)), ( 
    Re y))|)) 
    +  
    |((
    Im (x1 
    + x2)), ( 
    Im y))|) by 
    A1,
    Th41
    
      .= (((
    |(((
    Re x1) 
    + ( 
    Re x2)), ( 
    Re y))| 
    - ( 
    <i>  
    *  
    |(((
    Re x1) 
    + ( 
    Re x2)), ( 
    Im y))|)) 
    + ( 
    <i>  
    *  
    |(((
    Im x1) 
    + ( 
    Im x2)), ( 
    Re y))|)) 
    +  
    |((
    Im (x1 
    + x2)), ( 
    Im y))|) by 
    A1,
    Th41
    
      .= (((
    |(((
    Re x1) 
    + ( 
    Re x2)), ( 
    Re y))| 
    - ( 
    <i>  
    *  
    |(((
    Re x1) 
    + ( 
    Re x2)), ( 
    Im y))|)) 
    + ( 
    <i>  
    *  
    |(((
    Im x1) 
    + ( 
    Im x2)), ( 
    Re y))|)) 
    +  
    |(((
    Im x1) 
    + ( 
    Im x2)), ( 
    Im y))|) by 
    A1,
    Th41
    
      .= ((((
    |((
    Re x1), ( 
    Re y))| 
    +  
    |((
    Re x2), ( 
    Re y))|) 
    - ( 
    <i>  
    *  
    |(((
    Re x1) 
    + ( 
    Re x2)), ( 
    Im y))|)) 
    + ( 
    <i>  
    *  
    |(((
    Im x1) 
    + ( 
    Im x2)), ( 
    Re y))|)) 
    +  
    |(((
    Im x1) 
    + ( 
    Im x2)), ( 
    Im y))|) by 
    A1,
    A2,
    A3,
    A6,
    RVSUM_1: 120
    
      .= ((((
    |((
    Re x1), ( 
    Re y))| 
    +  
    |((
    Re x2), ( 
    Re y))|) 
    - ( 
    <i>  
    * ( 
    |((
    Re x1), ( 
    Im y))| 
    +  
    |((
    Re x2), ( 
    Im y))|))) 
    + ( 
    <i>  
    *  
    |(((
    Im x1) 
    + ( 
    Im x2)), ( 
    Re y))|)) 
    +  
    |(((
    Im x1) 
    + ( 
    Im x2)), ( 
    Im y))|) by 
    A1,
    A2,
    A3,
    A4,
    RVSUM_1: 120
    
      .= ((((
    |((
    Re x1), ( 
    Re y))| 
    +  
    |((
    Re x2), ( 
    Re y))|) 
    - ( 
    <i>  
    * ( 
    |((
    Re x1), ( 
    Im y))| 
    +  
    |((
    Re x2), ( 
    Im y))|))) 
    + ( 
    <i>  
    * ( 
    |((
    Im x1), ( 
    Re y))| 
    +  
    |((
    Im x2), ( 
    Re y))|))) 
    +  
    |(((
    Im x1) 
    + ( 
    Im x2)), ( 
    Im y))|) by 
    A1,
    A2,
    A6,
    A5,
    RVSUM_1: 120
    
      .= ((((
    |((
    Re x1), ( 
    Re y))| 
    +  
    |((
    Re x2), ( 
    Re y))|) 
    - ( 
    <i>  
    * ( 
    |((
    Re x1), ( 
    Im y))| 
    +  
    |((
    Re x2), ( 
    Im y))|))) 
    + ( 
    <i>  
    * ( 
    |((
    Im x1), ( 
    Re y))| 
    +  
    |((
    Im x2), ( 
    Re y))|))) 
    + ( 
    |((
    Im x1), ( 
    Im y))| 
    +  
    |((
    Im x2), ( 
    Im y))|)) by 
    A1,
    A2,
    A5,
    A4,
    RVSUM_1: 120
    
      .= (
    |(x1, y)|
    +  
    |(x2, y)|);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLSP2:67
    
    
    
    
    
    Th56: for x1,x2 be 
    FinSequence of 
    COMPLEX st ( 
    len x1) 
    = ( 
    len x2) holds 
    |((
    - x1), x2)| 
    = ( 
    -  
    |(x1, x2)|)
    
    proof
    
      let x1,x2 be
    FinSequence of 
    COMPLEX ; 
    
      assume
    
      
    
    A1: ( 
    len x1) 
    = ( 
    len x2); 
    
      
    
      
    
    A2: ( 
    len ( 
    <i>  
    * x1)) 
    = ( 
    len x1) by 
    Th3;
    
      
    |((
    - x1), x2)| 
    =  
    |(((
    <i>  
    *  
    <i> ) 
    * x1), x2)| 
    
      .=
    |((
    <i>  
    * ( 
    <i>  
    * x1)), x2)| by 
    Th44
    
      .= (
    <i>  
    *  
    |((
    <i>  
    * x1), x2)|) by 
    A1,
    A2,
    Th49
    
      .= (
    <i>  
    * ( 
    <i>  
    *  
    |(x1, x2)|)) by
    A1,
    Th49
    
      .= ((
    - 1) 
    *  
    |(x1, x2)|);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLSP2:68
    
    
    
    
    
    Th57: for x1,x2 be 
    FinSequence of 
    COMPLEX st ( 
    len x1) 
    = ( 
    len x2) holds 
    |(x1, (
    - x2))| 
    = ( 
    -  
    |(x1, x2)|)
    
    proof
    
      let x1,x2 be
    FinSequence of 
    COMPLEX ; 
    
      assume
    
      
    
    A1: ( 
    len x1) 
    = ( 
    len x2); 
    
      
    
      
    
    A2: ( 
    len ( 
    <i>  
    * x2)) 
    = ( 
    len x2) by 
    Th3;
    
      
    |(x1, (
    - x2))| 
    =  
    |(x1, ((
    <i>  
    *  
    <i> ) 
    * x2))| 
    
      .=
    |(x1, (
    <i>  
    * ( 
    <i>  
    * x2)))| by 
    Th44
    
      .= (
    - ( 
    <i>  
    *  
    |(x1, (
    <i>  
    * x2))|)) by 
    A1,
    A2,
    Th50
    
      .= (
    - ( 
    <i>  
    * ( 
    - ( 
    <i>  
    *  
    |(x1, x2)|)))) by
    A1,
    Th50
    
      .= (
    -  
    |(x1, x2)|);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLSP2:69
    
    for x1,x2 be
    FinSequence of 
    COMPLEX st ( 
    len x1) 
    = ( 
    len x2) holds 
    |((
    - x1), ( 
    - x2))| 
    =  
    |(x1, x2)|
    
    proof
    
      let x1,x2 be
    FinSequence of 
    COMPLEX ; 
    
      assume
    
      
    
    A1: ( 
    len x1) 
    = ( 
    len x2); 
    
      then (
    len ( 
    - x2)) 
    = ( 
    len x1) by 
    Th5;
    
      
    
      then
    |((
    - x1), ( 
    - x2))| 
    = ( 
    -  
    |(x1, (
    - x2))|) by 
    Th56
    
      .= (
    - ( 
    -  
    |(x1, x2)|)) by
    A1,
    Th57;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLSP2:70
    
    
    
    
    
    Th59: for x1,x2,x3 be 
    FinSequence of 
    COMPLEX st ( 
    len x1) 
    = ( 
    len x2) & ( 
    len x2) 
    = ( 
    len x3) holds 
    |((x1
    - x2), x3)| 
    = ( 
    |(x1, x3)|
    -  
    |(x2, x3)|)
    
    proof
    
      let x1,x2,x3 be
    FinSequence of 
    COMPLEX ; 
    
      assume that
    
      
    
    A1: ( 
    len x1) 
    = ( 
    len x2) and 
    
      
    
    A2: ( 
    len x2) 
    = ( 
    len x3); 
    
      (
    len ( 
    - x2)) 
    = ( 
    len x2) by 
    Th5;
    
      
    
      then
    |((x1
    - x2), x3)| 
    = ( 
    |(x1, x3)|
    +  
    |((
    - x2), x3)|) by 
    A1,
    A2,
    Th55
    
      .= (
    |(x1, x3)|
    + ( 
    -  
    |(x2, x3)|)) by
    A2,
    Th56;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLSP2:71
    
    
    
    
    
    Th60: for x,y1,y2 be 
    FinSequence of 
    COMPLEX st ( 
    len x) 
    = ( 
    len y1) & ( 
    len y1) 
    = ( 
    len y2) holds 
    |(x, (y1
    + y2))| 
    = ( 
    |(x, y1)|
    +  
    |(x, y2)|)
    
    proof
    
      let x,y1,y2 be
    FinSequence of 
    COMPLEX ; 
    
      assume that
    
      
    
    A1: ( 
    len x) 
    = ( 
    len y1) and 
    
      
    
    A2: ( 
    len y1) 
    = ( 
    len y2); 
    
      
    
      
    
    A3: ( 
    len ( 
    Re y1)) 
    = ( 
    len y1) & ( 
    len ( 
    Re y2)) 
    = ( 
    len y2) by 
    Th40;
    
      
    
      
    
    A4: ( 
    len ( 
    Im x)) 
    = ( 
    len x) by 
    Th40;
    
      
    
      
    
    A5: ( 
    len ( 
    Im y1)) 
    = ( 
    len y1) & ( 
    len ( 
    Im y2)) 
    = ( 
    len y2) by 
    Th40;
    
      
    
      
    
    A6: ( 
    len ( 
    Re x)) 
    = ( 
    len x) by 
    Th40;
    
      
    |(x, (y1
    + y2))| 
    = ((( 
    |((
    Re x), (( 
    Re y1) 
    + ( 
    Re y2)))| 
    - ( 
    <i>  
    *  
    |((
    Re x), ( 
    Im (y1 
    + y2)))|)) 
    + ( 
    <i>  
    *  
    |((
    Im x), ( 
    Re (y1 
    + y2)))|)) 
    +  
    |((
    Im x), ( 
    Im (y1 
    + y2)))|) by 
    A2,
    Th41
    
      .= (((
    |((
    Re x), (( 
    Re y1) 
    + ( 
    Re y2)))| 
    - ( 
    <i>  
    *  
    |((
    Re x), ( 
    Im (y1 
    + y2)))|)) 
    + ( 
    <i>  
    *  
    |((
    Im x), ( 
    Re (y1 
    + y2)))|)) 
    +  
    |((
    Im x), (( 
    Im y1) 
    + ( 
    Im y2)))|) by 
    A2,
    Th41
    
      .= (((
    |((
    Re x), (( 
    Re y1) 
    + ( 
    Re y2)))| 
    - ( 
    <i>  
    *  
    |((
    Re x), (( 
    Im y1) 
    + ( 
    Im y2)))|)) 
    + ( 
    <i>  
    *  
    |((
    Im x), ( 
    Re (y1 
    + y2)))|)) 
    +  
    |((
    Im x), (( 
    Im y1) 
    + ( 
    Im y2)))|) by 
    A2,
    Th41
    
      .= (((
    |((
    Re x), (( 
    Re y1) 
    + ( 
    Re y2)))| 
    - ( 
    <i>  
    *  
    |((
    Re x), (( 
    Im y1) 
    + ( 
    Im y2)))|)) 
    + ( 
    <i>  
    *  
    |((
    Im x), (( 
    Re y1) 
    + ( 
    Re y2)))|)) 
    +  
    |((
    Im x), (( 
    Im y1) 
    + ( 
    Im y2)))|) by 
    A2,
    Th41
    
      .= ((((
    |((
    Re x), ( 
    Re y1))| 
    +  
    |((
    Re x), ( 
    Re y2))|) 
    - ( 
    <i>  
    *  
    |((
    Re x), (( 
    Im y1) 
    + ( 
    Im y2)))|)) 
    + ( 
    <i>  
    *  
    |((
    Im x), (( 
    Re y1) 
    + ( 
    Re y2)))|)) 
    +  
    |((
    Im x), (( 
    Im y1) 
    + ( 
    Im y2)))|) by 
    A1,
    A2,
    A3,
    A6,
    RVSUM_1: 120
    
      .= ((((
    |((
    Re x), ( 
    Re y1))| 
    +  
    |((
    Re x), ( 
    Re y2))|) 
    - ( 
    <i>  
    *  
    |((
    Re x), (( 
    Im y1) 
    + ( 
    Im y2)))|)) 
    + ( 
    <i>  
    *  
    |((
    Im x), (( 
    Re y1) 
    + ( 
    Re y2)))|)) 
    + ( 
    |((
    Im x), ( 
    Im y1))| 
    +  
    |((
    Im x), ( 
    Im y2))|)) by 
    A1,
    A2,
    A5,
    A4,
    RVSUM_1: 120
    
      .= ((((
    |((
    Re x), ( 
    Re y1))| 
    +  
    |((
    Re x), ( 
    Re y2))|) 
    - ( 
    <i>  
    * ( 
    |((
    Re x), ( 
    Im y1))| 
    +  
    |((
    Re x), ( 
    Im y2))|))) 
    + ( 
    <i>  
    *  
    |((
    Im x), (( 
    Re y1) 
    + ( 
    Re y2)))|)) 
    + ( 
    |((
    Im x), ( 
    Im y1))| 
    +  
    |((
    Im x), ( 
    Im y2))|)) by 
    A1,
    A2,
    A6,
    A5,
    RVSUM_1: 120
    
      .= ((((
    |((
    Re x), ( 
    Re y1))| 
    +  
    |((
    Re x), ( 
    Re y2))|) 
    - ( 
    <i>  
    * ( 
    |((
    Re x), ( 
    Im y1))| 
    +  
    |((
    Re x), ( 
    Im y2))|))) 
    + ( 
    <i>  
    * ( 
    |((
    Im x), ( 
    Re y1))| 
    +  
    |((
    Im x), ( 
    Re y2))|))) 
    + ( 
    |((
    Im x), ( 
    Im y1))| 
    +  
    |((
    Im x), ( 
    Im y2))|)) by 
    A1,
    A2,
    A3,
    A4,
    RVSUM_1: 120
    
      .= (
    |(x, y1)|
    +  
    |(x, y2)|);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLSP2:72
    
    
    
    
    
    Th61: for x,y1,y2 be 
    FinSequence of 
    COMPLEX st ( 
    len x) 
    = ( 
    len y1) & ( 
    len y1) 
    = ( 
    len y2) holds 
    |(x, (y1
    - y2))| 
    = ( 
    |(x, y1)|
    -  
    |(x, y2)|)
    
    proof
    
      let x,y1,y2 be
    FinSequence of 
    COMPLEX ; 
    
      assume that
    
      
    
    A1: ( 
    len x) 
    = ( 
    len y1) and 
    
      
    
    A2: ( 
    len y1) 
    = ( 
    len y2); 
    
      
    
      
    
    A3: ( 
    len ( 
    Re y1)) 
    = ( 
    len y1) & ( 
    len ( 
    Re y2)) 
    = ( 
    len y2) by 
    Th40;
    
      
    
      
    
    A4: ( 
    len ( 
    Im x)) 
    = ( 
    len x) by 
    Th40;
    
      
    
      
    
    A5: ( 
    len ( 
    Im y1)) 
    = ( 
    len y1) & ( 
    len ( 
    Im y2)) 
    = ( 
    len y2) by 
    Th40;
    
      
    
      
    
    A6: ( 
    len ( 
    Re x)) 
    = ( 
    len x) by 
    Th40;
    
      
    |(x, (y1
    - y2))| 
    = ((( 
    |((
    Re x), (( 
    Re y1) 
    - ( 
    Re y2)))| 
    - ( 
    <i>  
    *  
    |((
    Re x), ( 
    Im (y1 
    - y2)))|)) 
    + ( 
    <i>  
    *  
    |((
    Im x), ( 
    Re (y1 
    - y2)))|)) 
    +  
    |((
    Im x), ( 
    Im (y1 
    - y2)))|) by 
    A2,
    Th43
    
      .= (((
    |((
    Re x), (( 
    Re y1) 
    - ( 
    Re y2)))| 
    - ( 
    <i>  
    *  
    |((
    Re x), ( 
    Im (y1 
    - y2)))|)) 
    + ( 
    <i>  
    *  
    |((
    Im x), ( 
    Re (y1 
    - y2)))|)) 
    +  
    |((
    Im x), (( 
    Im y1) 
    - ( 
    Im y2)))|) by 
    A2,
    Th43
    
      .= (((
    |((
    Re x), (( 
    Re y1) 
    - ( 
    Re y2)))| 
    - ( 
    <i>  
    *  
    |((
    Re x), (( 
    Im y1) 
    - ( 
    Im y2)))|)) 
    + ( 
    <i>  
    *  
    |((
    Im x), ( 
    Re (y1 
    - y2)))|)) 
    +  
    |((
    Im x), (( 
    Im y1) 
    - ( 
    Im y2)))|) by 
    A2,
    Th43
    
      .= (((
    |((
    Re x), (( 
    Re y1) 
    - ( 
    Re y2)))| 
    - ( 
    <i>  
    *  
    |((
    Re x), (( 
    Im y1) 
    - ( 
    Im y2)))|)) 
    + ( 
    <i>  
    *  
    |((
    Im x), (( 
    Re y1) 
    - ( 
    Re y2)))|)) 
    +  
    |((
    Im x), (( 
    Im y1) 
    - ( 
    Im y2)))|) by 
    A2,
    Th43
    
      .= ((((
    |((
    Re x), ( 
    Re y1))| 
    -  
    |((
    Re x), ( 
    Re y2))|) 
    - ( 
    <i>  
    *  
    |((
    Re x), (( 
    Im y1) 
    - ( 
    Im y2)))|)) 
    + ( 
    <i>  
    *  
    |((
    Im x), (( 
    Re y1) 
    - ( 
    Re y2)))|)) 
    +  
    |((
    Im x), (( 
    Im y1) 
    - ( 
    Im y2)))|) by 
    A1,
    A2,
    A3,
    A6,
    RVSUM_1: 124
    
      .= ((((
    |((
    Re x), ( 
    Re y1))| 
    -  
    |((
    Re x), ( 
    Re y2))|) 
    - ( 
    <i>  
    *  
    |((
    Re x), (( 
    Im y1) 
    - ( 
    Im y2)))|)) 
    + ( 
    <i>  
    *  
    |((
    Im x), (( 
    Re y1) 
    - ( 
    Re y2)))|)) 
    + ( 
    |((
    Im x), ( 
    Im y1))| 
    -  
    |((
    Im x), ( 
    Im y2))|)) by 
    A1,
    A2,
    A5,
    A4,
    RVSUM_1: 124
    
      .= ((((
    |((
    Re x), ( 
    Re y1))| 
    -  
    |((
    Re x), ( 
    Re y2))|) 
    - ( 
    <i>  
    * ( 
    |((
    Re x), ( 
    Im y1))| 
    -  
    |((
    Re x), ( 
    Im y2))|))) 
    + ( 
    <i>  
    *  
    |((
    Im x), (( 
    Re y1) 
    - ( 
    Re y2)))|)) 
    + ( 
    |((
    Im x), ( 
    Im y1))| 
    -  
    |((
    Im x), ( 
    Im y2))|)) by 
    A1,
    A2,
    A6,
    A5,
    RVSUM_1: 124
    
      .= ((((
    |((
    Re x), ( 
    Re y1))| 
    -  
    |((
    Re x), ( 
    Re y2))|) 
    - ( 
    <i>  
    * ( 
    |((
    Re x), ( 
    Im y1))| 
    -  
    |((
    Re x), ( 
    Im y2))|))) 
    + ( 
    <i>  
    * ( 
    |((
    Im x), ( 
    Re y1))| 
    -  
    |((
    Im x), ( 
    Re y2))|))) 
    + ( 
    |((
    Im x), ( 
    Im y1))| 
    -  
    |((
    Im x), ( 
    Im y2))|)) by 
    A1,
    A2,
    A3,
    A4,
    RVSUM_1: 124
    
      .= (
    |(x, y1)|
    -  
    |(x, y2)|);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLSP2:73
    
    
    
    
    
    Th62: for x1,x2,y1,y2 be 
    FinSequence of 
    COMPLEX st ( 
    len x1) 
    = ( 
    len x2) & ( 
    len x2) 
    = ( 
    len y1) & ( 
    len y1) 
    = ( 
    len y2) holds 
    |((x1
    + x2), (y1 
    + y2))| 
    = ((( 
    |(x1, y1)|
    +  
    |(x1, y2)|)
    +  
    |(x2, y1)|)
    +  
    |(x2, y2)|)
    
    proof
    
      let x1,x2,y1,y2 be
    FinSequence of 
    COMPLEX ; 
    
      assume that
    
      
    
    A1: ( 
    len x1) 
    = ( 
    len x2) and 
    
      
    
    A2: ( 
    len x2) 
    = ( 
    len y1) and 
    
      
    
    A3: ( 
    len y1) 
    = ( 
    len y2); 
    
      
    |((x1
    + x2), y2)| 
    = ( 
    |(x1, y2)|
    +  
    |(x2, y2)|) by
    A1,
    A2,
    A3,
    Th55;
    
      then
    
      
    
    A4: ( 
    |((x1
    + x2), y1)| 
    +  
    |((x1
    + x2), y2)|) 
    = (( 
    |(x1, y1)|
    +  
    |(x2, y1)|)
    + ( 
    |(x1, y2)|
    +  
    |(x2, y2)|)) by
    A1,
    A2,
    Th55;
    
      (
    len (x1 
    + x2)) 
    = ( 
    len x1) by 
    A1,
    Th6;
    
      hence thesis by
    A1,
    A2,
    A3,
    A4,
    Th60;
    
    end;
    
    theorem :: 
    
    COMPLSP2:74
    
    
    
    
    
    Th63: for x1,x2,y1,y2 be 
    FinSequence of 
    COMPLEX st ( 
    len x1) 
    = ( 
    len x2) & ( 
    len x2) 
    = ( 
    len y1) & ( 
    len y1) 
    = ( 
    len y2) holds 
    |((x1
    - x2), (y1 
    - y2))| 
    = ((( 
    |(x1, y1)|
    -  
    |(x1, y2)|)
    -  
    |(x2, y1)|)
    +  
    |(x2, y2)|)
    
    proof
    
      let x1,x2,y1,y2 be
    FinSequence of 
    COMPLEX ; 
    
      assume that
    
      
    
    A1: ( 
    len x1) 
    = ( 
    len x2) and 
    
      
    
    A2: ( 
    len x2) 
    = ( 
    len y1) and 
    
      
    
    A3: ( 
    len y1) 
    = ( 
    len y2); 
    
      
    |(x1, (y1
    - y2))| 
    = ( 
    |(x1, y1)|
    -  
    |(x1, y2)|) by
    A1,
    A2,
    A3,
    Th61;
    
      then
    
      
    
    A4: ( 
    |(x1, (y1
    - y2))| 
    -  
    |(x2, (y1
    - y2))|) 
    = (( 
    |(x1, y1)|
    -  
    |(x1, y2)|)
    - ( 
    |(x2, y1)|
    -  
    |(x2, y2)|)) by
    A2,
    A3,
    Th61;
    
      (
    len (y1 
    - y2)) 
    = ( 
    len y1) by 
    A3,
    Th7;
    
      hence thesis by
    A1,
    A2,
    A4,
    Th59;
    
    end;
    
    theorem :: 
    
    COMPLSP2:75
    
    
    
    
    
    Th64: for x,y be 
    FinSequence of 
    COMPLEX holds 
    |(x, y)|
    = ( 
    |(y, x)|
    *' ) 
    
    proof
    
      let x,y be
    FinSequence of 
    COMPLEX ; 
    
      set x1 =
    |((
    Re y), ( 
    Re x))|, x2 = 
    |((
    Re y), ( 
    Im x))|, y1 = 
    |((
    Im y), ( 
    Re x))|, y2 = 
    |((
    Im y), ( 
    Im x))|; 
    
      reconsider x19 = x1, x29 = x2, y19 = y1, y29 = y2 as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
      
    
      
    
    A1: ( 
    Im x19) 
    =  
    0 by 
    COMPLEX1:def 2;
    
      
    
      
    
    A2: ( 
    Im x29) 
    =  
    0 by 
    COMPLEX1:def 2;
    
      
    
      
    
    A3: ( 
    Im y29) 
    =  
    0 by 
    COMPLEX1:def 2;
    
      
    
      
    
    A4: ( 
    Im y19) 
    =  
    0 by 
    COMPLEX1:def 2;
    
      reconsider x19 = x1, x29 = x2, y19 = y1, y29 = y2 as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      (
    |(y, x)|
    *' ) 
    = (((x19 
    + y29) 
    + ( 
    <i>  
    * (y19 
    - x29))) 
    *' ) 
    
      .= (((x19
    + y29) 
    *' ) 
    + (( 
    <i>  
    * (y19 
    - x29)) 
    *' )) by 
    COMPLEX1: 32
    
      .= (((x19
    *' ) 
    + (y29 
    *' )) 
    + (( 
    <i>  
    * (y19 
    - x29)) 
    *' )) by 
    COMPLEX1: 32
    
      .= ((x19
    + (y29 
    *' )) 
    + (( 
    <i>  
    * (y19 
    - x29)) 
    *' )) by 
    A1,
    COMPLEX1: 38
    
      .= ((x19
    + y29) 
    + (( 
    <i>  
    * (y19 
    - x29)) 
    *' )) by 
    A3,
    COMPLEX1: 38
    
      .= ((x19
    + y29) 
    + (( 
    -  
    <i> ) 
    * ((y19 
    - x29) 
    *' ))) by 
    COMPLEX1: 31,
    COMPLEX1: 35
    
      .= ((x19
    + y29) 
    + (( 
    -  
    <i> ) 
    * ((y19 
    *' ) 
    - (x29 
    *' )))) by 
    COMPLEX1: 34
    
      .= ((x19
    + y29) 
    + (( 
    -  
    <i> ) 
    * (y19 
    - (x29 
    *' )))) by 
    A4,
    COMPLEX1: 38
    
      .= ((x19
    + y29) 
    + (( 
    -  
    <i> ) 
    * (y19 
    - x29))) by 
    A2,
    COMPLEX1: 38
    
      .=
    |(x, y)|;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLSP2:76
    
    for x,y be
    FinSequence of 
    COMPLEX st ( 
    len x) 
    = ( 
    len y) holds 
    |((x
    + y), (x 
    + y))| 
    = (( 
    |(x, x)|
    + (2 
    * ( 
    Re  
    |(x, y)|)))
    +  
    |(y, y)|)
    
    proof
    
      let x,y be
    FinSequence of 
    COMPLEX ; 
    
      set z =
    |(x, y)|;
    
      assume (
    len x) 
    = ( 
    len y); 
    
      
    
      then
    |((x
    + y), (x 
    + y))| 
    = ((( 
    |(x, x)|
    +  
    |(x, y)|)
    +  
    |(y, x)|)
    +  
    |(y, y)|) by
    Th62
    
      .= (((
    |(x, x)|
    +  
    |(x, y)|)
    + ( 
    |(x, y)|
    *' )) 
    +  
    |(y, y)|) by
    Th64
    
      .= ((
    |(x, x)|
    + (z 
    + (z 
    *' ))) 
    +  
    |(y, y)|)
    
      .= ((
    |(x, x)|
    + (2 
    * ( 
    Re  
    |(x, y)|)))
    +  
    |(y, y)|) by
    Th20;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLSP2:77
    
    for x,y be
    FinSequence of 
    COMPLEX st ( 
    len x) 
    = ( 
    len y) holds 
    |((x
    - y), (x 
    - y))| 
    = (( 
    |(x, x)|
    - (2 
    * ( 
    Re  
    |(x, y)|)))
    +  
    |(y, y)|)
    
    proof
    
      let x,y be
    FinSequence of 
    COMPLEX ; 
    
      set z =
    |(x, y)|;
    
      assume (
    len x) 
    = ( 
    len y); 
    
      
    
      then
    |((x
    - y), (x 
    - y))| 
    = ((( 
    |(x, x)|
    -  
    |(x, y)|)
    -  
    |(y, x)|)
    +  
    |(y, y)|) by
    Th63
    
      .= (((
    |(x, x)|
    -  
    |(x, y)|)
    - ( 
    |(x, y)|
    *' )) 
    +  
    |(y, y)|) by
    Th64
    
      .= ((
    |(x, x)|
    - (z 
    + (z 
    *' ))) 
    +  
    |(y, y)|)
    
      .= ((
    |(x, x)|
    - (2 
    * ( 
    Re  
    |(x, y)|)))
    +  
    |(y, y)|) by
    Th20;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLSP2:78
    
    
    
    
    
    Th67: for a be 
    Element of 
    COMPLEX , x,y be 
    FinSequence of 
    COMPLEX st ( 
    len x) 
    = ( 
    len y) holds 
    |((a
    * x), y)| 
    = (a 
    *  
    |(x, y)|)
    
    proof
    
      let a be
    Element of 
    COMPLEX , x,y be 
    FinSequence of 
    COMPLEX ; 
    
      assume
    
      
    
    A1: ( 
    len x) 
    = ( 
    len y); 
    
      
    
      
    
    A2: ( 
    len (( 
    Re a) 
    * ( 
    Im x))) 
    = ( 
    len ( 
    Im x)) & ( 
    len (( 
    Im a) 
    * ( 
    Re x))) 
    = ( 
    len ( 
    Re x)) by 
    RVSUM_1: 117;
    
      
    
      
    
    A3: ( 
    len (( 
    Re a) 
    * ( 
    Re x))) 
    = ( 
    len ( 
    Re x)) & ( 
    len (( 
    Im a) 
    * ( 
    Im x))) 
    = ( 
    len ( 
    Im x)) by 
    RVSUM_1: 117;
    
      
    
      
    
    A4: ( 
    len ( 
    Re x)) 
    = ( 
    len x) by 
    Th40;
    
      
    
      
    
    A5: ( 
    len ( 
    Im y)) 
    = ( 
    len y) by 
    Th40;
    
      
    
      
    
    A6: ( 
    len ( 
    Re y)) 
    = ( 
    len y) by 
    Th40;
    
      
    
      
    
    A7: ( 
    len ( 
    Im x)) 
    = ( 
    len x) by 
    Th40;
    
      
    |((a
    * x), y)| 
    = ((( 
    |((((
    Re a) 
    * ( 
    Re x)) 
    - (( 
    Im a) 
    * ( 
    Im x))), ( 
    Re y))| 
    - ( 
    <i>  
    *  
    |((
    Re (a 
    * x)), ( 
    Im y))|)) 
    + ( 
    <i>  
    *  
    |((
    Im (a 
    * x)), ( 
    Re y))|)) 
    +  
    |((
    Im (a 
    * x)), ( 
    Im y))|) by 
    Th54
    
      .= (((
    |((((
    Re a) 
    * ( 
    Re x)) 
    - (( 
    Im a) 
    * ( 
    Im x))), ( 
    Re y))| 
    - ( 
    <i>  
    *  
    |((((
    Re a) 
    * ( 
    Re x)) 
    - (( 
    Im a) 
    * ( 
    Im x))), ( 
    Im y))|)) 
    + ( 
    <i>  
    *  
    |((
    Im (a 
    * x)), ( 
    Re y))|)) 
    +  
    |((
    Im (a 
    * x)), ( 
    Im y))|) by 
    Th54
    
      .= (((
    |((((
    Re a) 
    * ( 
    Re x)) 
    - (( 
    Im a) 
    * ( 
    Im x))), ( 
    Re y))| 
    - ( 
    <i>  
    *  
    |((((
    Re a) 
    * ( 
    Re x)) 
    - (( 
    Im a) 
    * ( 
    Im x))), ( 
    Im y))|)) 
    + ( 
    <i>  
    *  
    |((((
    Im a) 
    * ( 
    Re x)) 
    + (( 
    Re a) 
    * ( 
    Im x))), ( 
    Re y))|)) 
    +  
    |((
    Im (a 
    * x)), ( 
    Im y))|) by 
    Th54
    
      .= (((
    |((((
    Re a) 
    * ( 
    Re x)) 
    - (( 
    Im a) 
    * ( 
    Im x))), ( 
    Re y))| 
    - ( 
    <i>  
    *  
    |((((
    Re a) 
    * ( 
    Re x)) 
    - (( 
    Im a) 
    * ( 
    Im x))), ( 
    Im y))|)) 
    + ( 
    <i>  
    *  
    |((((
    Im a) 
    * ( 
    Re x)) 
    + (( 
    Re a) 
    * ( 
    Im x))), ( 
    Re y))|)) 
    +  
    |((((
    Im a) 
    * ( 
    Re x)) 
    + (( 
    Re a) 
    * ( 
    Im x))), ( 
    Im y))|) by 
    Th54
    
      .= ((((
    |(((
    Re a) 
    * ( 
    Re x)), ( 
    Re y))| 
    -  
    |(((
    Im a) 
    * ( 
    Im x)), ( 
    Re y))|) 
    - ( 
    <i>  
    *  
    |((((
    Re a) 
    * ( 
    Re x)) 
    - (( 
    Im a) 
    * ( 
    Im x))), ( 
    Im y))|)) 
    + ( 
    <i>  
    *  
    |((((
    Im a) 
    * ( 
    Re x)) 
    + (( 
    Re a) 
    * ( 
    Im x))), ( 
    Re y))|)) 
    +  
    |((((
    Im a) 
    * ( 
    Re x)) 
    + (( 
    Re a) 
    * ( 
    Im x))), ( 
    Im y))|) by 
    A1,
    A4,
    A6,
    A7,
    A3,
    RVSUM_1: 124
    
      .= ((((
    |(((
    Re a) 
    * ( 
    Re x)), ( 
    Re y))| 
    -  
    |(((
    Im a) 
    * ( 
    Im x)), ( 
    Re y))|) 
    - ( 
    <i>  
    * ( 
    |(((
    Re a) 
    * ( 
    Re x)), ( 
    Im y))| 
    -  
    |(((
    Im a) 
    * ( 
    Im x)), ( 
    Im y))|))) 
    + ( 
    <i>  
    *  
    |((((
    Im a) 
    * ( 
    Re x)) 
    + (( 
    Re a) 
    * ( 
    Im x))), ( 
    Re y))|)) 
    +  
    |((((
    Im a) 
    * ( 
    Re x)) 
    + (( 
    Re a) 
    * ( 
    Im x))), ( 
    Im y))|) by 
    A1,
    A4,
    A7,
    A5,
    A3,
    RVSUM_1: 124
    
      .= ((((
    |(((
    Re a) 
    * ( 
    Re x)), ( 
    Re y))| 
    -  
    |(((
    Im a) 
    * ( 
    Im x)), ( 
    Re y))|) 
    - ( 
    <i>  
    * ( 
    |(((
    Re a) 
    * ( 
    Re x)), ( 
    Im y))| 
    -  
    |(((
    Im a) 
    * ( 
    Im x)), ( 
    Im y))|))) 
    + ( 
    <i>  
    * ( 
    |(((
    Im a) 
    * ( 
    Re x)), ( 
    Re y))| 
    +  
    |(((
    Re a) 
    * ( 
    Im x)), ( 
    Re y))|))) 
    +  
    |((((
    Im a) 
    * ( 
    Re x)) 
    + (( 
    Re a) 
    * ( 
    Im x))), ( 
    Im y))|) by 
    A1,
    A4,
    A6,
    A7,
    A2,
    RVSUM_1: 120
    
      .= ((((
    |(((
    Re a) 
    * ( 
    Re x)), ( 
    Re y))| 
    -  
    |(((
    Im a) 
    * ( 
    Im x)), ( 
    Re y))|) 
    - ( 
    <i>  
    * ( 
    |(((
    Re a) 
    * ( 
    Re x)), ( 
    Im y))| 
    -  
    |(((
    Im a) 
    * ( 
    Im x)), ( 
    Im y))|))) 
    + ( 
    <i>  
    * ( 
    |(((
    Im a) 
    * ( 
    Re x)), ( 
    Re y))| 
    +  
    |(((
    Re a) 
    * ( 
    Im x)), ( 
    Re y))|))) 
    + ( 
    |(((
    Im a) 
    * ( 
    Re x)), ( 
    Im y))| 
    +  
    |(((
    Re a) 
    * ( 
    Im x)), ( 
    Im y))|)) by 
    A1,
    A4,
    A7,
    A5,
    A2,
    RVSUM_1: 120
    
      .= ((((
    |(((
    Re a) 
    * ( 
    Re x)), ( 
    Re y))| 
    -  
    |(((
    Im a) 
    * ( 
    Im x)), ( 
    Re y))|) 
    - ( 
    <i>  
    * ((( 
    Re a) 
    *  
    |((
    Re x), ( 
    Im y))|) 
    -  
    |(((
    Im a) 
    * ( 
    Im x)), ( 
    Im y))|))) 
    + ( 
    <i>  
    * ( 
    |(((
    Im a) 
    * ( 
    Re x)), ( 
    Re y))| 
    +  
    |(((
    Re a) 
    * ( 
    Im x)), ( 
    Re y))|))) 
    + ( 
    |(((
    Im a) 
    * ( 
    Re x)), ( 
    Im y))| 
    +  
    |(((
    Re a) 
    * ( 
    Im x)), ( 
    Im y))|)) by 
    A1,
    A4,
    A5,
    RVSUM_1: 121
    
      .= ((((
    |(((
    Re a) 
    * ( 
    Re x)), ( 
    Re y))| 
    -  
    |(((
    Im a) 
    * ( 
    Im x)), ( 
    Re y))|) 
    - ( 
    <i>  
    * ((( 
    Re a) 
    *  
    |((
    Re x), ( 
    Im y))|) 
    - (( 
    Im a) 
    *  
    |((
    Im x), ( 
    Im y))|)))) 
    + ( 
    <i>  
    * ( 
    |(((
    Im a) 
    * ( 
    Re x)), ( 
    Re y))| 
    +  
    |(((
    Re a) 
    * ( 
    Im x)), ( 
    Re y))|))) 
    + ( 
    |(((
    Im a) 
    * ( 
    Re x)), ( 
    Im y))| 
    +  
    |(((
    Re a) 
    * ( 
    Im x)), ( 
    Im y))|)) by 
    A1,
    A7,
    A5,
    RVSUM_1: 121
    
      .= ((((((
    Re a) 
    *  
    |((
    Re x), ( 
    Re y))|) 
    -  
    |(((
    Im a) 
    * ( 
    Im x)), ( 
    Re y))|) 
    - ( 
    <i>  
    * ((( 
    Re a) 
    *  
    |((
    Re x), ( 
    Im y))|) 
    - (( 
    Im a) 
    *  
    |((
    Im x), ( 
    Im y))|)))) 
    + ( 
    <i>  
    * ( 
    |(((
    Im a) 
    * ( 
    Re x)), ( 
    Re y))| 
    +  
    |(((
    Re a) 
    * ( 
    Im x)), ( 
    Re y))|))) 
    + ( 
    |(((
    Im a) 
    * ( 
    Re x)), ( 
    Im y))| 
    +  
    |(((
    Re a) 
    * ( 
    Im x)), ( 
    Im y))|)) by 
    A1,
    A4,
    A6,
    RVSUM_1: 121
    
      .= ((((((
    Re a) 
    *  
    |((
    Re x), ( 
    Re y))|) 
    - (( 
    Im a) 
    *  
    |((
    Im x), ( 
    Re y))|)) 
    - ( 
    <i>  
    * ((( 
    Re a) 
    *  
    |((
    Re x), ( 
    Im y))|) 
    - (( 
    Im a) 
    *  
    |((
    Im x), ( 
    Im y))|)))) 
    + ( 
    <i>  
    * ( 
    |(((
    Im a) 
    * ( 
    Re x)), ( 
    Re y))| 
    +  
    |(((
    Re a) 
    * ( 
    Im x)), ( 
    Re y))|))) 
    + ( 
    |(((
    Im a) 
    * ( 
    Re x)), ( 
    Im y))| 
    +  
    |(((
    Re a) 
    * ( 
    Im x)), ( 
    Im y))|)) by 
    A1,
    A6,
    A7,
    RVSUM_1: 121
    
      .= ((((((
    Re a) 
    *  
    |((
    Re x), ( 
    Re y))|) 
    - (( 
    Im a) 
    *  
    |((
    Im x), ( 
    Re y))|)) 
    - ( 
    <i>  
    * ((( 
    Re a) 
    *  
    |((
    Re x), ( 
    Im y))|) 
    - (( 
    Im a) 
    *  
    |((
    Im x), ( 
    Im y))|)))) 
    + ( 
    <i>  
    * ((( 
    Im a) 
    *  
    |((
    Re x), ( 
    Re y))|) 
    +  
    |(((
    Re a) 
    * ( 
    Im x)), ( 
    Re y))|))) 
    + ( 
    |(((
    Im a) 
    * ( 
    Re x)), ( 
    Im y))| 
    +  
    |(((
    Re a) 
    * ( 
    Im x)), ( 
    Im y))|)) by 
    A1,
    A4,
    A6,
    RVSUM_1: 121
    
      .= ((((((
    Re a) 
    *  
    |((
    Re x), ( 
    Re y))|) 
    - (( 
    Im a) 
    *  
    |((
    Im x), ( 
    Re y))|)) 
    - ( 
    <i>  
    * ((( 
    Re a) 
    *  
    |((
    Re x), ( 
    Im y))|) 
    - (( 
    Im a) 
    *  
    |((
    Im x), ( 
    Im y))|)))) 
    + ( 
    <i>  
    * ((( 
    Im a) 
    *  
    |((
    Re x), ( 
    Re y))|) 
    + (( 
    Re a) 
    *  
    |((
    Im x), ( 
    Re y))|)))) 
    + ( 
    |(((
    Im a) 
    * ( 
    Re x)), ( 
    Im y))| 
    +  
    |(((
    Re a) 
    * ( 
    Im x)), ( 
    Im y))|)) by 
    A1,
    A6,
    A7,
    RVSUM_1: 121
    
      .= ((((((
    Re a) 
    *  
    |((
    Re x), ( 
    Re y))|) 
    - (( 
    Im a) 
    *  
    |((
    Im x), ( 
    Re y))|)) 
    - ( 
    <i>  
    * ((( 
    Re a) 
    *  
    |((
    Re x), ( 
    Im y))|) 
    - (( 
    Im a) 
    *  
    |((
    Im x), ( 
    Im y))|)))) 
    + ( 
    <i>  
    * ((( 
    Im a) 
    *  
    |((
    Re x), ( 
    Re y))|) 
    + (( 
    Re a) 
    *  
    |((
    Im x), ( 
    Re y))|)))) 
    + ((( 
    Im a) 
    *  
    |((
    Re x), ( 
    Im y))|) 
    +  
    |(((
    Re a) 
    * ( 
    Im x)), ( 
    Im y))|)) by 
    A1,
    A4,
    A5,
    RVSUM_1: 121
    
      .= ((((((
    Re a) 
    *  
    |((
    Re x), ( 
    Re y))|) 
    - (( 
    Im a) 
    *  
    |((
    Im x), ( 
    Re y))|)) 
    - ( 
    <i>  
    * ((( 
    Re a) 
    *  
    |((
    Re x), ( 
    Im y))|) 
    - (( 
    Im a) 
    *  
    |((
    Im x), ( 
    Im y))|)))) 
    + ( 
    <i>  
    * ((( 
    Im a) 
    *  
    |((
    Re x), ( 
    Re y))|) 
    + (( 
    Re a) 
    *  
    |((
    Im x), ( 
    Re y))|)))) 
    + ((( 
    Im a) 
    *  
    |((
    Re x), ( 
    Im y))|) 
    + (( 
    Re a) 
    *  
    |((
    Im x), ( 
    Im y))|))) by 
    A1,
    A7,
    A5,
    RVSUM_1: 121
    
      .= (((((((
    Re a) 
    *  
    |((
    Re x), ( 
    Re y))|) 
    + (( 
    <i>  
    * ( 
    Im a)) 
    *  
    |((
    Re x), ( 
    Re y))|)) 
    - ((( 
    Re a) 
    *  
    <i> ) 
    *  
    |((
    Re x), ( 
    Im y))|)) 
    + (( 
    Im a) 
    *  
    |((
    Re x), ( 
    Im y))|)) 
    + ((( 
    Re a) 
    * ( 
    <i>  
    *  
    |((
    Im x), ( 
    Re y))|)) 
    - (( 
    Im a) 
    *  
    |((
    Im x), ( 
    Re y))|))) 
    + ((( 
    Re a) 
    + ( 
    <i>  
    * ( 
    Im a))) 
    *  
    |((
    Im x), ( 
    Im y))|)) 
    
      .= (((((((
    Re a) 
    *  
    |((
    Re x), ( 
    Re y))|) 
    + (( 
    <i>  
    * ( 
    Im a)) 
    *  
    |((
    Re x), ( 
    Re y))|)) 
    - ((( 
    Re a) 
    *  
    <i> ) 
    *  
    |((
    Re x), ( 
    Im y))|)) 
    + (( 
    Im a) 
    *  
    |((
    Re x), ( 
    Im y))|)) 
    + ((( 
    Re a) 
    + ( 
    <i>  
    * ( 
    Im a))) 
    * ( 
    <i>  
    *  
    |((
    Im x), ( 
    Re y))|))) 
    + (a 
    *  
    |((
    Im x), ( 
    Im y))|)) by 
    COMPLEX1: 13
    
      .= ((((((
    Re a) 
    *  
    |((
    Re x), ( 
    Re y))|) 
    + (( 
    <i>  
    * ( 
    Im a)) 
    *  
    |((
    Re x), ( 
    Re y))|)) 
    - ((( 
    Re a) 
    + ( 
    <i>  
    * ( 
    Im a))) 
    * ( 
    <i>  
    *  
    |((
    Re x), ( 
    Im y))|))) 
    + (a 
    * ( 
    <i>  
    *  
    |((
    Im x), ( 
    Re y))|))) 
    + (a 
    *  
    |((
    Im x), ( 
    Im y))|)) by 
    COMPLEX1: 13
    
      .= ((((((
    Re a) 
    + ( 
    <i>  
    * ( 
    Im a))) 
    *  
    |((
    Re x), ( 
    Re y))|) 
    - (a 
    * ( 
    <i>  
    *  
    |((
    Re x), ( 
    Im y))|))) 
    + (a 
    * ( 
    <i>  
    *  
    |((
    Im x), ( 
    Re y))|))) 
    + (a 
    *  
    |((
    Im x), ( 
    Im y))|)) by 
    COMPLEX1: 13
    
      .= ((((a
    *  
    |((
    Re x), ( 
    Re y))|) 
    - (a 
    * ( 
    <i>  
    *  
    |((
    Re x), ( 
    Im y))|))) 
    + (a 
    * ( 
    <i>  
    *  
    |((
    Im x), ( 
    Re y))|))) 
    + (a 
    *  
    |((
    Im x), ( 
    Im y))|)) by 
    COMPLEX1: 13
    
      .= (a
    *  
    |(x, y)|);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLSP2:79
    
    
    
    
    
    Th68: for a be 
    Element of 
    COMPLEX , x,y be 
    FinSequence of 
    COMPLEX st ( 
    len x) 
    = ( 
    len y) holds 
    |(x, (a
    * y))| 
    = ((a 
    *' ) 
    *  
    |(x, y)|)
    
    proof
    
      let a be
    Element of 
    COMPLEX , x,y be 
    FinSequence of 
    COMPLEX ; 
    
      assume
    
      
    
    A1: ( 
    len x) 
    = ( 
    len y); 
    
      
    |(x, (a
    * y))| 
    = ( 
    |((a
    * y), x)| 
    *' ) by 
    Th64
    
      .= ((a
    *  
    |(y, x)|)
    *' ) by 
    A1,
    Th67
    
      .= ((a
    *' ) 
    * ( 
    |(y, x)|
    *' )) by 
    COMPLEX1: 35
    
      .= ((a
    *' ) 
    *  
    |(x, y)|) by
    Th64;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLSP2:80
    
    for a,b be
    Element of 
    COMPLEX , x,y,z be 
    FinSequence of 
    COMPLEX st ( 
    len x) 
    = ( 
    len y) & ( 
    len y) 
    = ( 
    len z) holds 
    |(((a
    * x) 
    + (b 
    * y)), z)| 
    = ((a 
    *  
    |(x, z)|)
    + (b 
    *  
    |(y, z)|))
    
    proof
    
      let a,b be
    Element of 
    COMPLEX , x,y,z be 
    FinSequence of 
    COMPLEX ; 
    
      assume that
    
      
    
    A1: ( 
    len x) 
    = ( 
    len y) and 
    
      
    
    A2: ( 
    len y) 
    = ( 
    len z); 
    
      (
    len (a 
    * x)) 
    = ( 
    len x) & ( 
    len (b 
    * y)) 
    = ( 
    len y) by 
    Th3;
    
      
    
      then
    |(((a
    * x) 
    + (b 
    * y)), z)| 
    = ( 
    |((a
    * x), z)| 
    +  
    |((b
    * y), z)|) by 
    A1,
    A2,
    Th55
    
      .= ((a
    *  
    |(x, z)|)
    +  
    |((b
    * y), z)|) by 
    A1,
    A2,
    Th67
    
      .= ((a
    *  
    |(x, z)|)
    + (b 
    *  
    |(y, z)|)) by
    A2,
    Th67;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLSP2:81
    
    for a,b be
    Element of 
    COMPLEX , x,y,z be 
    FinSequence of 
    COMPLEX st ( 
    len x) 
    = ( 
    len y) & ( 
    len y) 
    = ( 
    len z) holds 
    |(x, ((a
    * y) 
    + (b 
    * z)))| 
    = (((a 
    *' ) 
    *  
    |(x, y)|)
    + ((b 
    *' ) 
    *  
    |(x, z)|))
    
    proof
    
      let a,b be
    Element of 
    COMPLEX , x,y,z be 
    FinSequence of 
    COMPLEX ; 
    
      assume that
    
      
    
    A1: ( 
    len x) 
    = ( 
    len y) and 
    
      
    
    A2: ( 
    len y) 
    = ( 
    len z); 
    
      (
    len (a 
    * y)) 
    = ( 
    len y) & ( 
    len (b 
    * z)) 
    = ( 
    len z) by 
    Th3;
    
      
    
      then
    |(x, ((a
    * y) 
    + (b 
    * z)))| 
    = ( 
    |(x, (a
    * y))| 
    +  
    |(x, (b
    * z))|) by 
    A1,
    A2,
    Th60
    
      .= (((a
    *' ) 
    *  
    |(x, y)|)
    +  
    |(x, (b
    * z))|) by 
    A1,
    Th68
    
      .= (((a
    *' ) 
    *  
    |(x, y)|)
    + ((b 
    *' ) 
    *  
    |(x, z)|)) by
    A1,
    A2,
    Th68;
    
      hence thesis;
    
    end;