complsp2.miz



    begin

    reserve i,j for Element of NAT ,

x,y,z for FinSequence of COMPLEX ,

c for Element of COMPLEX ,

R,R1,R2 for Element of (i -tuples_on COMPLEX );

    definition

      let z be FinSequence of COMPLEX ;

      :: original: *'

      redefine

      :: COMPLSP2:def1

      func z *' -> FinSequence of COMPLEX means

      : Def1: ( len it ) = ( len z) & for i be Nat st 1 <= i & i <= ( len z) holds (it . i) = ((z . i) *' );

      coherence

      proof

        set f = (z *' );

        

         A1: ( dom f) = ( dom z) by COMSEQ_2:def 1;

        ex n be Nat st ( dom z) = ( Seg n) by FINSEQ_1:def 2;

        then

         A2: f is FinSequence by A1, FINSEQ_1:def 2;

        ( rng f) c= COMPLEX

        proof

          let y be object;

          thus thesis by XCMPLX_0:def 2;

        end;

        hence thesis by A2, FINSEQ_1:def 4;

      end;

      compatibility

      proof

        let IT be FinSequence of COMPLEX ;

        thus IT = (z *' ) implies ( len IT) = ( len z) & for i be Nat st 1 <= i & i <= ( len z) holds (IT . i) = ((z . i) *' )

        proof

          assume

           A3: IT = (z *' );

          then ( dom IT) = ( dom z) by COMSEQ_2:def 1;

          hence thesis by A3, COMSEQ_2:def 1, FINSEQ_3: 25, FINSEQ_3: 29;

        end;

        assume that

         A4: ( len IT) = ( len z) and

         A5: for i be Nat st 1 <= i & i <= ( len z) holds (IT . i) = ((z . i) *' );

        

         A6: ( dom IT) = ( dom z) by A4, FINSEQ_3: 29;

        now

          let i be set;

          assume

           A7: i in ( dom IT);

          then

          reconsider j = i as Nat;

          1 <= j & j <= ( len z) by A4, A7, FINSEQ_3: 25;

          hence (IT . i) = ((z . i) *' ) by A5;

        end;

        hence IT = (z *' ) by A6, COMSEQ_2:def 1;

      end;

    end

    

     Lm1: (c * x) = (( multcomplex [;] (c,( id COMPLEX ))) * x)

    proof

      (c multcomplex ) = ( multcomplex [;] (c,( id COMPLEX ))) by SEQ_4:def 4;

      hence thesis by SEQ_4:def 9;

    end;

    theorem :: COMPLSP2:1

    i in ( dom (x + y)) implies ((x + y) . i) = ((x . i) + (y . i)) by VALUED_1:def 1;

    theorem :: COMPLSP2:2

    i in ( dom (x - y)) implies ((x - y) . i) = ((x . i) - (y . i)) by VALUED_1: 13;

    definition

      let i, R1, R2;

      :: original: -

      redefine

      func R1 - R2 -> Element of (i -tuples_on COMPLEX ) ;

      coherence

      proof

        (R1 - R2) = ( diffcomplex .: (R1,R2)) by SEQ_4:def 7;

        hence thesis by FINSEQ_2: 120;

      end;

    end

    definition

      let i, R1, R2;

      :: original: +

      redefine

      func R1 + R2 -> Element of (i -tuples_on COMPLEX ) ;

      coherence

      proof

        (R1 + R2) = ( addcomplex .: (R1,R2)) by SEQ_4:def 6;

        hence thesis by FINSEQ_2: 120;

      end;

    end

    definition

      let i, R;

      let r be Complex;

      :: original: *

      redefine

      func r * R -> Element of (i -tuples_on COMPLEX ) ;

      coherence

      proof

        reconsider q = r as Element of COMPLEX by XCMPLX_0:def 2;

        (q * R) = (( multcomplex [;] (q,( id COMPLEX ))) * R) by Lm1;

        hence thesis by FINSEQ_2: 113;

      end;

    end

    

     Lm2: for F be complex-valued FinSequence holds F is FinSequence of COMPLEX

    proof

      let F be complex-valued FinSequence;

      ( rng F) c= COMPLEX by VALUED_0:def 1;

      hence thesis by FINSEQ_1:def 4;

    end;

    theorem :: COMPLSP2:3

    

     Th3: for a be Complex, x be complex-valued FinSequence holds ( len (a (#) x)) = ( len x)

    proof

      let a be Complex, x be complex-valued FinSequence;

      set n = ( len x);

      x is FinSequence of COMPLEX by Lm2;

      then

      reconsider z = x as Element of (n -tuples_on COMPLEX ) by FINSEQ_2: 92;

      reconsider a9 = a as Element of COMPLEX by XCMPLX_0:def 2;

      ( len (a9 * z)) = n by CARD_1:def 7;

      hence thesis;

    end;

    theorem :: COMPLSP2:4

    for x be complex-valued FinSequence holds ( dom x) = ( dom ( - x)) by VALUED_1: 8;

    theorem :: COMPLSP2:5

    

     Th5: for x be complex-valued FinSequence holds ( len ( - x)) = ( len x)

    proof

      let x be complex-valued FinSequence;

      ( dom ( - x)) = ( dom x) by VALUED_1: 8;

      hence thesis by FINSEQ_3: 29;

    end;

    theorem :: COMPLSP2:6

    

     Th6: for x1,x2 be complex-valued FinSequence st ( len x1) = ( len x2) holds ( len (x1 + x2)) = ( len x1)

    proof

      let x1,x2 be complex-valued FinSequence;

      set n = ( len x1);

      

       A1: x2 is FinSequence of COMPLEX by Lm2;

      x1 is FinSequence of COMPLEX by Lm2;

      then

      reconsider z1 = x1 as Element of (( len x1) -tuples_on COMPLEX ) by FINSEQ_2: 92;

      assume ( len x1) = ( len x2);

      then

      reconsider z2 = x2 as Element of (n -tuples_on COMPLEX ) by A1, FINSEQ_2: 92;

      ( dom (z1 + z2)) = ( Seg n) by FINSEQ_2: 124;

      hence thesis by FINSEQ_1:def 3;

    end;

    theorem :: COMPLSP2:7

    

     Th7: for x1,x2 be complex-valued FinSequence st ( len x1) = ( len x2) holds ( len (x1 - x2)) = ( len x1)

    proof

      let x1,x2 be complex-valued FinSequence;

      set n = ( len x1);

      

       A1: x2 is FinSequence of COMPLEX by Lm2;

      x1 is FinSequence of COMPLEX by Lm2;

      then

      reconsider z1 = x1 as Element of (( len x1) -tuples_on COMPLEX ) by FINSEQ_2: 92;

      assume ( len x1) = ( len x2);

      then

      reconsider z2 = x2 as Element of (n -tuples_on COMPLEX ) by A1, FINSEQ_2: 92;

      ( dom (z1 - z2)) = ( Seg n) by FINSEQ_2: 124;

      hence thesis by FINSEQ_1:def 3;

    end;

    theorem :: COMPLSP2:8

    for f be complex-valued FinSequence holds f is Element of ( COMPLEX ( len f))

    proof

      let f be complex-valued FinSequence;

      f is FinSequence of COMPLEX by Lm2;

      then f is Element of ( COMPLEX * ) by FINSEQ_1:def 11;

      then f in { s where s be Element of ( COMPLEX * ) : ( len s) = ( len f) };

      then f in (( len f) -tuples_on COMPLEX ) by FINSEQ_2:def 4;

      hence thesis by SEQ_4:def 11;

    end;

    ::$Canceled

    theorem :: COMPLSP2:13

    

     Th9: for x be FinSequence of COMPLEX holds (( - x) . i) = ( - (x . i))

    proof

      let x be FinSequence of COMPLEX ;

      per cases ;

        suppose

         A1: not i in ( dom ( - x));

        then

         A2: not i in ( dom x) by VALUED_1: 8;

        

        thus (( - x) . i) = ( - 0 ) by A1, FUNCT_1:def 2

        .= ( - (x . i)) by A2, FUNCT_1:def 2;

      end;

        suppose

         A3: i in ( dom ( - x));

        set r = (x . i);

        ( - x) = ( compcomplex * x) by SEQ_4:def 8;

        then (( - x) . i) = ( compcomplex . r) by A3, FUNCT_1: 12;

        hence thesis by BINOP_2:def 1;

      end;

    end;

    definition

      let i, R;

      :: original: -

      redefine

      func - R -> Element of (i -tuples_on COMPLEX ) ;

      coherence

      proof

        ( - R) = ( compcomplex * R) by SEQ_4:def 8;

        hence thesis by FINSEQ_2: 113;

      end;

    end

    theorem :: COMPLSP2:14

    c = (R . j) implies (( - R) . j) = ( - c) by Th9;

    theorem :: COMPLSP2:15

    

     Th11: for a be Complex holds ( dom (a * x)) = ( dom x)

    proof

      let a be Complex;

      ( dom (a multcomplex )) = COMPLEX by FUNCT_2:def 1;

      then ( rng x) c= ( dom (a multcomplex )) by FINSEQ_1:def 4;

      

      hence ( dom x) = ( dom ((a multcomplex ) * x)) by RELAT_1: 27

      .= ( dom (a * x)) by SEQ_4:def 9;

    end;

    theorem :: COMPLSP2:16

    

     Th12: for i be Nat, a be Complex holds ((a * x) . i) = (a * (x . i))

    proof

      let i be Nat, a be Complex;

      reconsider aa = a as Element of COMPLEX by XCMPLX_0:def 2;

      per cases ;

        suppose

         A1: not i in ( dom (a * x));

        then

         A2: not i in ( dom x) by Th11;

        

        thus ((a * x) . i) = (a * 0 ) by A1, FUNCT_1:def 2

        .= (a * (x . i)) by A2, FUNCT_1:def 2;

      end;

        suppose

         A3: i in ( dom (a * x));

        set a9 = (x . i);

        

         A4: (a * x) = (( multcomplex [;] (aa,( id COMPLEX ))) * x) by Lm1;

        then

         A5: a9 in ( dom ( multcomplex [;] (aa,( id COMPLEX )))) by A3, FUNCT_1: 11;

        

        thus ((a * x) . i) = (( multcomplex [;] (aa,( id COMPLEX ))) . a9) by A3, A4, FUNCT_1: 12

        .= ( multcomplex . (a,(( id COMPLEX ) . a9))) by A5, FUNCOP_1: 32

        .= (a * (x . i)) by BINOP_2:def 5;

      end;

    end;

    theorem :: COMPLSP2:17

    

     Th13: for a be Complex holds ((a * x) *' ) = ((a *' ) * (x *' ))

    proof

      let a be Complex;

      reconsider aa = a as Element of COMPLEX by XCMPLX_0:def 2;

      ( len ((a *' ) * (x *' ))) = ( len (x *' )) by Th3;

      then

       A1: ( len ((a *' ) * (x *' ))) = ( len x) by Def1;

      

       A2: ( len (a * x)) = ( len x) by Th3;

       A3:

      now

        let i be Nat;

        assume that

         A4: 1 <= i and

         A5: i <= ( len ((a * x) *' ));

        

         A6: i <= ( len (a * x)) by A5, Def1;

        

        hence (((a * x) *' ) . i) = (((a * x) . i) *' ) by A4, Def1

        .= ((aa * (x . i)) *' ) by Th12

        .= ((aa *' ) * ((x . i) *' )) by COMPLEX1: 35

        .= ((a *' ) * ((x *' ) . i)) by A2, A4, A6, Def1

        .= (((a *' ) * (x *' )) . i) by Th12;

      end;

      ( len ((a * x) *' )) = ( len (a * x)) by Def1;

      hence thesis by A1, A3, Th3;

    end;

    theorem :: COMPLSP2:18

    

     Th14: ((R1 + R2) . j) = ((R1 . j) + (R2 . j))

    proof

      per cases ;

        suppose

         A1: not j in ( Seg i);

        then

         A2: not j in ( dom R2) by FINSEQ_2: 124;

        

         A3: not j in ( dom R1) by A1, FINSEQ_2: 124;

         not j in ( dom (R1 + R2)) by A1, FINSEQ_2: 124;

        

        hence ((R1 + R2) . j) = ( 0 + 0 ) by FUNCT_1:def 2

        .= ((R1 . j) + 0 ) by A3, FUNCT_1:def 2

        .= ((R1 . j) + (R2 . j)) by A2, FUNCT_1:def 2;

      end;

        suppose j in ( Seg i);

        then j in ( dom (R1 + R2)) by FINSEQ_2: 124;

        hence thesis by VALUED_1:def 1;

      end;

    end;

    theorem :: COMPLSP2:19

    

     Th15: for x1,x2 be FinSequence of COMPLEX st ( len x1) = ( len x2) holds ((x1 + x2) *' ) = ((x1 *' ) + (x2 *' ))

    proof

      let x1,x2 be FinSequence of COMPLEX ;

      reconsider x9 = x1 as Element of (( len x1) -tuples_on COMPLEX ) by FINSEQ_2: 92;

      reconsider y9 = x2 as Element of (( len x2) -tuples_on COMPLEX ) by FINSEQ_2: 92;

      reconsider x3 = (x1 *' ) as Element of (( len (x1 *' )) -tuples_on COMPLEX ) by FINSEQ_2: 92;

      reconsider x4 = (x2 *' ) as Element of (( len (x2 *' )) -tuples_on COMPLEX ) by FINSEQ_2: 92;

      assume

       A1: ( len x1) = ( len x2);

      then

       A2: ( len (x1 + x2)) = ( len x1) by Th6;

      

       A3: ( len x1) = ( len (x1 *' )) & ( len x2) = ( len (x2 *' )) by Def1;

       A4:

      now

        let i be Nat;

        

         A5: i in NAT by ORDINAL1:def 12;

        assume that

         A6: 1 <= i and

         A7: i <= ( len ((x1 + x2) *' ));

        

         A8: i <= ( len (x1 + x2)) by A7, Def1;

        

        hence (((x1 + x2) *' ) . i) = (((x1 + x2) . i) *' ) by A6, Def1

        .= (((x9 . i) + (y9 . i)) *' ) by A1, A5, Th14

        .= (((x1 . i) *' ) + ((x2 . i) *' )) by COMPLEX1: 32

        .= (((x1 *' ) . i) + ((x2 . i) *' )) by A2, A6, A8, Def1

        .= (((x1 *' ) . i) + ((x2 *' ) . i)) by A1, A2, A6, A8, Def1

        .= ((x3 + x4) . i) by A1, A3, A5, Th14;

      end;

      ( len ((x1 *' ) + (x2 *' ))) = ( len x1) by A1, A3, Th6;

      hence thesis by A4, A2, Def1;

    end;

    theorem :: COMPLSP2:20

    

     Th16: ((R1 - R2) . j) = ((R1 . j) - (R2 . j))

    proof

      per cases ;

        suppose

         A1: not j in ( Seg i);

        then

         A2: not j in ( dom R2) by FINSEQ_2: 124;

        

         A3: not j in ( dom R1) by A1, FINSEQ_2: 124;

         not j in ( dom (R1 - R2)) by A1, FINSEQ_2: 124;

        

        hence ((R1 - R2) . j) = ( 0 - 0 ) by FUNCT_1:def 2

        .= ((R1 . j) - 0 ) by A3, FUNCT_1:def 2

        .= ((R1 . j) - (R2 . j)) by A2, FUNCT_1:def 2;

      end;

        suppose j in ( Seg i);

        then j in ( dom (R1 - R2)) by FINSEQ_2: 124;

        hence thesis by VALUED_1: 13;

      end;

    end;

    theorem :: COMPLSP2:21

    

     Th17: for x1,x2 be FinSequence of COMPLEX st ( len x1) = ( len x2) holds ((x1 - x2) *' ) = ((x1 *' ) - (x2 *' ))

    proof

      let x1,x2 be FinSequence of COMPLEX ;

      reconsider x9 = x1 as Element of (( len x1) -tuples_on COMPLEX ) by FINSEQ_2: 92;

      reconsider y9 = x2 as Element of (( len x2) -tuples_on COMPLEX ) by FINSEQ_2: 92;

      reconsider x3 = (x1 *' ) as Element of (( len (x1 *' )) -tuples_on COMPLEX ) by FINSEQ_2: 92;

      reconsider x4 = (x2 *' ) as Element of (( len (x2 *' )) -tuples_on COMPLEX ) by FINSEQ_2: 92;

      assume

       A1: ( len x1) = ( len x2);

      then

       A2: ( len (x1 - x2)) = ( len x1) by Th7;

      

       A3: ( len x1) = ( len (x1 *' )) & ( len x2) = ( len (x2 *' )) by Def1;

       A4:

      now

        let i be Nat;

        

         A5: i in NAT by ORDINAL1:def 12;

        assume that

         A6: 1 <= i and

         A7: i <= ( len ((x1 - x2) *' ));

        

         A8: i <= ( len (x1 - x2)) by A7, Def1;

        

        hence (((x1 - x2) *' ) . i) = (((x1 - x2) . i) *' ) by A6, Def1

        .= (((x9 . i) - (y9 . i)) *' ) by A1, A5, Th16

        .= (((x1 . i) *' ) - ((x2 . i) *' )) by COMPLEX1: 34

        .= (((x1 *' ) . i) - ((x2 . i) *' )) by A2, A6, A8, Def1

        .= (((x1 *' ) . i) - ((x2 *' ) . i)) by A1, A2, A6, A8, Def1

        .= ((x3 - x4) . i) by A1, A3, A5, Th16;

      end;

      ( len ((x1 *' ) - (x2 *' ))) = ( len x1) by A1, A3, Th7;

      hence thesis by A4, A2, Def1;

    end;

    theorem :: COMPLSP2:22

    for z be FinSequence of COMPLEX holds ((z *' ) *' ) = z;

    theorem :: COMPLSP2:23

    for z be FinSequence of COMPLEX holds (( - z) *' ) = ( - (z *' ))

    proof

      let z be FinSequence of COMPLEX ;

      

      thus (( - z) *' ) = ((( - 1r ) *' ) * (z *' )) by Th13, COMPLEX1:def 4

      .= ( - (z *' )) by COMPLEX1: 30, COMPLEX1: 33, COMPLEX1:def 4;

    end;

    theorem :: COMPLSP2:24

    

     Th20: for z be Complex holds (z + (z *' )) = (2 * ( Re z))

    proof

      let z be Complex;

      (z + (z *' )) = ((( Re z) + ( Re (z *' ))) + ((( Im z) + ( Im (z *' ))) * <i> )) by COMPLEX1: 81

      .= ((( Re z) + ( Re (z *' ))) + ((( Im z) + ( - ( Im z))) * <i> )) by COMPLEX1: 27

      .= (( Re z) + ( Re z)) by COMPLEX1: 27

      .= (2 * ( Re z));

      hence thesis;

    end;

    theorem :: COMPLSP2:25

    

     Th21: for x,y be complex-valued FinSequence st ( len x) = ( len y) holds ((x - y) . i) = ((x . i) - (y . i))

    proof

      let x,y be complex-valued FinSequence;

      

       A1: x is FinSequence of COMPLEX & y is FinSequence of COMPLEX by Lm2;

      then

      reconsider x2 = x as Element of (( len x) -tuples_on COMPLEX ) by FINSEQ_2: 92;

      reconsider y2 = y as Element of (( len y) -tuples_on COMPLEX ) by A1, FINSEQ_2: 92;

      reconsider y29 = (x2 - y2) as Element of (( len (x2 - y2)) -tuples_on COMPLEX ) by FINSEQ_2: 92;

      assume

       A2: ( len x) = ( len y);

      then

       A3: ( len (x - y)) = ( len x) by Th7;

      per cases ;

        suppose

         A4: not i in ( Seg ( len x));

        then

         A5: not i in ( dom x2) by FINSEQ_2: 124;

        

         A6: not i in ( dom y2) by A2, A4, FINSEQ_2: 124;

         not i in ( dom y29) by A3, A4, FINSEQ_2: 124;

        

        then ((x2 - y2) . i) = ( 0 - 0 ) by FUNCT_1:def 2

        .= ((x2 . i) - 0 ) by A5, FUNCT_1:def 2

        .= ((x2 . i) - (y2 . i)) by A6, FUNCT_1:def 2;

        hence thesis;

      end;

        suppose i in ( Seg ( len x));

        then i in ( dom y29) by A3, FINSEQ_2: 124;

        hence thesis by VALUED_1: 13;

      end;

    end;

    theorem :: COMPLSP2:26

    

     Th22: for x,y be complex-valued FinSequence st ( len x) = ( len y) holds ((x + y) . i) = ((x . i) + (y . i))

    proof

      let x,y be complex-valued FinSequence;

      

       A1: x is FinSequence of COMPLEX & y is FinSequence of COMPLEX by Lm2;

      then

      reconsider x2 = x as Element of (( len x) -tuples_on COMPLEX ) by FINSEQ_2: 92;

      reconsider y2 = y as Element of (( len y) -tuples_on COMPLEX ) by A1, FINSEQ_2: 92;

      reconsider y29 = (x2 + y2) as Element of (( len (x2 + y2)) -tuples_on COMPLEX ) by FINSEQ_2: 92;

      assume

       A2: ( len x) = ( len y);

      then

       A3: ( len (x + y)) = ( len x) by Th6;

      per cases ;

        suppose

         A4: not i in ( Seg ( len x));

        then

         A5: not i in ( dom x2) by FINSEQ_2: 124;

        

         A6: not i in ( dom y2) by A2, A4, FINSEQ_2: 124;

         not i in ( dom y29) by A3, A4, FINSEQ_2: 124;

        

        then ((x2 + y2) . i) = ( 0 + 0 ) by FUNCT_1:def 2

        .= ((x2 . i) + 0 ) by A5, FUNCT_1:def 2

        .= ((x2 . i) + (y2 . i)) by A6, FUNCT_1:def 2;

        hence thesis;

      end;

        suppose i in ( Seg ( len x));

        then i in ( dom y29) by A3, FINSEQ_2: 124;

        hence thesis by VALUED_1:def 1;

      end;

    end;

    definition

      let z be FinSequence of COMPLEX ;

      :: COMPLSP2:def2

      func Re z -> FinSequence of REAL equals ((1 / 2) * (z + (z *' )));

      coherence

      proof

        

         A1: ( len z) = ( len (z *' )) by Def1;

        

         A2: ( len ((1 / 2) * (z + (z *' )))) = ( len (z + (z *' ))) by Th3

        .= ( len z) by A1, Th6;

        ( rng ((1 / 2) * (z + (z *' )))) c= REAL

        proof

          let w be object;

          assume w in ( rng ((1 / 2) * (z + (z *' ))));

          then

          consider x be object such that

           A3: x in ( dom ((1 / 2) * (z + (z *' )))) and

           A4: w = (((1 / 2) * (z + (z *' ))) . x) by FUNCT_1:def 3;

          reconsider i = x as Element of NAT by A3;

          x in ( Seg ( len ((1 / 2) * (z + (z *' ))))) by A3, FINSEQ_1:def 3;

          then

           A5: 1 <= i & i <= ( len z) by A2, FINSEQ_1: 1;

          (((1 / 2) * (z + (z *' ))) . i) = ((1 / 2) * ((z + (z *' )) . i)) by Th12

          .= ((1 / 2) * ((z . i) + ((z *' ) . i))) by A1, Th22

          .= ((1 / 2) * ((z . i) + ((z . i) *' ))) by A5, Def1

          .= ((1 / 2) * (2 * ( Re (z . i)))) by Th20;

          hence thesis by A4;

        end;

        hence thesis by FINSEQ_1:def 4;

      end;

    end

    theorem :: COMPLSP2:27

    

     Th23: for z be Complex holds (z - (z *' )) = ((2 * ( Im z)) * <i> )

    proof

      let z be Complex;

      (z - (z *' )) = ((( Re z) - ( Re (z *' ))) + ((( Im z) - ( Im (z *' ))) * <i> )) by COMPLEX1: 84

      .= ((( Re z) - ( Re (z *' ))) + ((( Im z) - ( - ( Im z))) * <i> )) by COMPLEX1: 27

      .= ((( Re z) - ( Re z)) + ((( Im z) - ( - ( Im z))) * <i> )) by COMPLEX1: 27

      .= ((2 * ( Im z)) * <i> );

      hence thesis;

    end;

    definition

      let z be FinSequence of COMPLEX ;

      :: COMPLSP2:def3

      func Im z -> FinSequence of REAL equals (( - ((1 / 2) * <i> )) * (z - (z *' )));

      coherence

      proof

        

         A1: ( len z) = ( len (z *' )) by Def1;

        

         A2: ( len (( - ((1 / 2) * <i> )) * (z - (z *' )))) = ( len (z - (z *' ))) by Th3

        .= ( len z) by A1, Th7;

        ( rng (( - ((1 / 2) * <i> )) * (z - (z *' )))) c= REAL

        proof

          let w be object;

          assume w in ( rng (( - ((1 / 2) * <i> )) * (z - (z *' ))));

          then

          consider x be object such that

           A3: x in ( dom (( - ((1 / 2) * <i> )) * (z - (z *' )))) and

           A4: w = ((( - ((1 / 2) * <i> )) * (z - (z *' ))) . x) by FUNCT_1:def 3;

          reconsider i = x as Element of NAT by A3;

          x in ( Seg ( len (( - ((1 / 2) * <i> )) * (z - (z *' ))))) by A3, FINSEQ_1:def 3;

          then

           A5: 1 <= i & i <= ( len z) by A2, FINSEQ_1: 1;

          ((( - ((1 / 2) * <i> )) * (z - (z *' ))) . i) = (( - ((1 / 2) * <i> )) * ((z - (z *' )) . i)) by Th12

          .= (( - ((1 / 2) * <i> )) * ((z . i) - ((z *' ) . i))) by A1, Th21

          .= (( - ((1 / 2) * <i> )) * ((z . i) - ((z . i) *' ))) by A5, Def1

          .= (( - ((1 / 2) * <i> )) * ((2 * ( Im (z . i))) * <i> )) by Th23;

          hence thesis by A4;

        end;

        hence thesis by FINSEQ_1:def 4;

      end;

    end

    definition

      let x,y be FinSequence of COMPLEX ;

      :: COMPLSP2:def4

      func |(x,y)| -> Element of COMPLEX equals ((( |(( Re x), ( Re y))| - ( <i> * |(( Re x), ( Im y))|)) + ( <i> * |(( Im x), ( Re y))|)) + |(( Im x), ( Im y))|);

      coherence by XCMPLX_0:def 2;

    end

    theorem :: COMPLSP2:28

    

     Th24: for x,y,z be complex-valued FinSequence st ( len x) = ( len y) & ( len y) = ( len z) holds (x + (y + z)) = ((x + y) + z)

    proof

      let x,y,z be complex-valued FinSequence;

      reconsider x1 = x, y1 = y, z1 = z as FinSequence of COMPLEX by Lm2;

      assume

       A1: ( len x) = ( len y) & ( len y) = ( len z);

      reconsider z9 = z1 as Element of (( len z) -tuples_on COMPLEX ) by FINSEQ_2: 92;

      reconsider y9 = y1 as Element of (( len y) -tuples_on COMPLEX ) by FINSEQ_2: 92;

      reconsider x9 = x1 as Element of (( len x) -tuples_on COMPLEX ) by FINSEQ_2: 92;

      (x + (y + z)) = ( addcomplex .: (x1,(y1 + z1))) by SEQ_4:def 6

      .= ( addcomplex .: (x1,( addcomplex .: (y1,z1)))) by SEQ_4:def 6

      .= ( addcomplex .: (( addcomplex .: (x9,y9)),z9)) by A1, FINSEQOP: 28

      .= ( addcomplex .: ((x1 + y1),z1)) by SEQ_4:def 6

      .= ((x + y) + z) by SEQ_4:def 6;

      hence thesis;

    end;

    ::$Canceled

    theorem :: COMPLSP2:30

    

     Th25: for c be Complex, x,y be FinSequence of COMPLEX st ( len x) = ( len y) holds (c * (x + y)) = ((c * x) + (c * y))

    proof

      let c be Complex, x,y be FinSequence of COMPLEX ;

      assume

       A1: ( len x) = ( len y);

      set cM = (c multcomplex );

      reconsider y9 = y as Element of (( len y) -tuples_on COMPLEX ) by FINSEQ_2: 92;

      reconsider x9 = x as Element of (( len x) -tuples_on COMPLEX ) by FINSEQ_2: 92;

      

       A2: c is Element of COMPLEX by XCMPLX_0:def 2;

      (c * (x + y)) = (cM * (x + y)) by SEQ_4:def 9

      .= (cM * ( addcomplex .: (x,y))) by SEQ_4:def 6

      .= ( addcomplex .: ((cM * x9),(cM * y9))) by A1, A2, FINSEQOP: 51, SEQ_4: 56

      .= ((cM * x) + (cM * y)) by SEQ_4:def 6

      .= ((c * x) + (cM * y)) by SEQ_4:def 9

      .= ((c * x) + (c * y)) by SEQ_4:def 9;

      hence thesis;

    end;

    ::$Canceled

    theorem :: COMPLSP2:32

    

     Th26: for x,y be complex-valued FinSequence st ( len x) = ( len y) & (x + y) = ( 0c ( len x)) holds x = ( - y) & y = ( - x)

    proof

      let x,y be complex-valued FinSequence;

      assume that

       A1: ( len x) = ( len y) and

       A2: (x + y) = ( 0c ( len x));

      reconsider x1 = x, y1 = y as FinSequence of COMPLEX by Lm2;

      reconsider x9 = x1 as Element of (( len x) -tuples_on COMPLEX ) by FINSEQ_2: 92;

      reconsider y9 = y1 as Element of (( len y) -tuples_on COMPLEX ) by FINSEQ_2: 92;

      

       A3: (x + y) = ( addcomplex .: (x1,y1)) & ( - y) = ( compcomplex * y1) by SEQ_4:def 6, SEQ_4:def 8;

      (x + y) = (( len x) |-> 0c ) by A2, SEQ_4:def 12;

      then x9 = ( - y9) by A1, A3, BINOP_2: 1, FINSEQOP: 74, SEQ_4: 51, SEQ_4: 52;

      hence thesis;

    end;

    theorem :: COMPLSP2:33

    

     Th27: for x be complex-valued FinSequence holds (x + ( 0c ( len x))) = x

    proof

      let x be complex-valued FinSequence;

      

       A1: x is FinSequence of COMPLEX by Lm2;

      then

      reconsider x9 = x as Element of (( len x) -tuples_on COMPLEX ) by FINSEQ_2: 92;

      (x + ( 0c ( len x))) = (x + (( len x) |-> 0c )) by SEQ_4:def 12

      .= ( addcomplex .: (x,(( len x) |-> 0c ))) by A1, SEQ_4:def 6

      .= x9 by BINOP_2: 1, FINSEQOP: 56;

      hence thesis;

    end;

    theorem :: COMPLSP2:34

    

     Th28: for x be complex-valued FinSequence holds (x + ( - x)) = ( 0c ( len x))

    proof

      let x be complex-valued FinSequence;

      

       A1: x is FinSequence of COMPLEX & ( - x) is FinSequence of COMPLEX by Lm2;

      then

      reconsider x9 = x as Element of (( len x) -tuples_on COMPLEX ) by FINSEQ_2: 92;

      (x + ( - x)) = ( addcomplex .: (x,( - x))) by A1, SEQ_4:def 6

      .= ( addcomplex .: (x,( compcomplex * x))) by A1, SEQ_4:def 8

      .= (( len x9) |-> 0c ) by BINOP_2: 1, FINSEQOP: 73, SEQ_4: 51, SEQ_4: 52

      .= ( 0c ( len x9)) by SEQ_4:def 12;

      hence thesis;

    end;

    theorem :: COMPLSP2:35

    

     Th29: for x,y be complex-valued FinSequence st ( len x) = ( len y) holds ( - (x + y)) = (( - x) + ( - y))

    proof

      let x,y be complex-valued FinSequence;

      assume

       A1: ( len x) = ( len y);

      

       A2: ( len ( - y)) = ( len y) by Th5;

      then

       A3: ( len (( - x) + ( - y))) = ( len ( - x)) by A1, Th5, Th6;

      

       A4: ( len ( - x)) = ( len x) by Th5;

      

       A5: ( len (x + y)) = ( len x) by A1, Th6;

      

      then ((x + y) + (( - x) + ( - y))) = (((y + x) + ( - x)) + ( - y)) by A1, A2, A4, Th24

      .= ((y + (x + ( - x))) + ( - y)) by A1, A4, Th24

      .= ((y + ( 0c ( len x))) + ( - y)) by Th28

      .= (y + ( - y)) by A1, Th27

      .= ( 0c ( len y)) by Th28;

      hence thesis by A1, A4, A5, A3, Th26;

    end;

    theorem :: COMPLSP2:36

    

     Th30: for x,y,z be complex-valued FinSequence st ( len x) = ( len y) & ( len y) = ( len z) holds ((x - y) - z) = (x - (y + z))

    proof

      let x,y,z be complex-valued FinSequence;

      assume that

       A1: ( len x) = ( len y) and

       A2: ( len y) = ( len z);

      ( len ( - y)) = ( len y) & ( len ( - z)) = ( len z) by Th5;

      

      then ((x - y) - z) = (x + (( - y) + ( - z))) by A1, A2, Th24

      .= (x - (y + z)) by A2, Th29;

      hence thesis;

    end;

    theorem :: COMPLSP2:37

    

     Th31: for x,y,z be complex-valued FinSequence st ( len x) = ( len y) & ( len y) = ( len z) holds (x + (y - z)) = ((x + y) - z)

    proof

      let x,y,z be complex-valued FinSequence;

      assume

       A1: ( len x) = ( len y) & ( len y) = ( len z);

      ( len ( - z)) = ( len z) by Th5;

      hence thesis by A1, Th24;

    end;

    ::$Canceled

    theorem :: COMPLSP2:39

    

     Th32: for x,y be complex-valued FinSequence st ( len x) = ( len y) holds ( - (x - y)) = (( - x) + y)

    proof

      let x,y be complex-valued FinSequence;

      assume

       A1: ( len x) = ( len y);

      ( len ( - y)) = ( len y) by Th5;

      

      then ( - (x - y)) = (( - x) + ( - ( - y))) by A1, Th29

      .= (( - x) + y);

      hence thesis;

    end;

    theorem :: COMPLSP2:40

    

     Th33: for x,y,z be complex-valued FinSequence st ( len x) = ( len y) & ( len y) = ( len z) holds (x - (y - z)) = ((x - y) + z)

    proof

      let x,y,z be complex-valued FinSequence;

      assume that

       A1: ( len x) = ( len y) and

       A2: ( len y) = ( len z);

      

       A3: ( len ( - y)) = ( len y) by Th5;

      (x - (y - z)) = (x + (( - y) + z)) by A2, Th32

      .= ((x - y) + z) by A1, A2, A3, Th24;

      hence thesis;

    end;

    theorem :: COMPLSP2:41

    

     Th34: for c be Complex holds (c * ( 0c ( len x))) = ( 0c ( len x))

    proof

      let c be Complex;

      reconsider cc = c as Element of COMPLEX by XCMPLX_0:def 2;

      

       A1: ( rng ( 0c ( len x))) c= COMPLEX by FINSEQ_1:def 4;

      (c * ( 0c ( len x))) = (( multcomplex [;] (cc,( id COMPLEX ))) * ( 0c ( len x))) by Lm1

      .= ( multcomplex [;] (cc,(( id COMPLEX ) * ( 0c ( len x))))) by FUNCOP_1: 34

      .= ( multcomplex [;] (cc,( 0c ( len x)))) by A1, RELAT_1: 53

      .= ( multcomplex [;] (cc,(( len x) |-> 0c ))) by SEQ_4:def 12

      .= (( len x) |-> ( multcomplex . (cc, 0c ))) by FINSEQOP: 18

      .= (( len x) |-> (cc * 0c )) by BINOP_2:def 5

      .= ( 0c ( len x)) by SEQ_4:def 12;

      hence thesis;

    end;

    theorem :: COMPLSP2:42

    

     Th35: for c be Complex holds ( - (c * x)) = (c * ( - x))

    proof

      let c be Complex;

      

       A1: ( len (c * ( - x))) = ( len ( - x)) & ( len (c * x)) = ( len x) by Th3;

      

       A2: ( len x) = ( len ( - x)) by Th5;

      

      then ((c * ( - x)) + (c * x)) = (c * (x + ( - x))) by Th25

      .= (c * ( 0c ( len x))) by Th28

      .= ( 0c ( len x)) by Th34;

      hence thesis by A2, A1, Th26;

    end;

    theorem :: COMPLSP2:43

    

     Th36: for c be Complex, x,y be FinSequence of COMPLEX st ( len x) = ( len y) holds (c * (x - y)) = ((c * x) - (c * y))

    proof

      let c be Complex, x,y be FinSequence of COMPLEX ;

      assume

       A1: ( len x) = ( len y);

      reconsider cc = c as Element of COMPLEX by XCMPLX_0:def 2;

      reconsider y9 = y as Element of (( len y) -tuples_on COMPLEX ) by FINSEQ_2: 92;

      reconsider x9 = x as Element of (( len x) -tuples_on COMPLEX ) by FINSEQ_2: 92;

      set cM = (cc multcomplex );

      (c * (x - y)) = (cM * (x + ( - y))) by SEQ_4:def 9

      .= (cM * ( addcomplex .: (x,( - y)))) by SEQ_4:def 6

      .= ( addcomplex .: ((cM * x9),(cM * ( - y9)))) by A1, FINSEQOP: 51, SEQ_4: 56

      .= ((cM * x) + (cM * ( - y))) by SEQ_4:def 6

      .= ((c * x) + (cM * ( - y))) by SEQ_4:def 9

      .= ((c * x) + (c * ( - y))) by SEQ_4:def 9

      .= ((c * x) - (c * y)) by Th35;

      hence thesis;

    end;

    theorem :: COMPLSP2:44

    for x1,y1 be Element of COMPLEX holds for x2,y2 be Real st x1 = x2 & y1 = y2 holds ( addcomplex . (x1,y1)) = ( addreal . (x2,y2))

    proof

      let x1,y1 be Element of COMPLEX ;

      let x2,y2 be Real;

      

       A1: ( addcomplex . (x1,y1)) = (x1 + y1) by BINOP_2:def 3;

      assume x1 = x2 & y1 = y2;

      hence thesis by A1, BINOP_2:def 9;

    end;

    reserve C for Function of [: COMPLEX , COMPLEX :], COMPLEX ;

    reserve G for Function of [: REAL , REAL :], REAL ;

    theorem :: COMPLSP2:45

    

     Th38: for x1,y1 be FinSequence of COMPLEX holds for x2,y2 be FinSequence of REAL st x1 = x2 & y1 = y2 & ( len x1) = ( len y2) & (for i st i in ( dom x1) holds (C . ((x1 . i),(y1 . i))) = (G . ((x2 . i),(y2 . i)))) holds (C .: (x1,y1)) = (G .: (x2,y2))

    proof

      let x1,y1 be FinSequence of COMPLEX ;

      let x2,y2 be FinSequence of REAL ;

      assume that

       A1: x1 = x2 and

       A2: y1 = y2 and

       A3: ( len x1) = ( len y2) and

       A4: for i st i in ( dom x1) holds (C . ((x1 . i),(y1 . i))) = (G . ((x2 . i),(y2 . i)));

      

       A5: ( len (G .: (x2,y2))) = ( len x1) by A1, A3, FINSEQ_2: 72;

      now

        let i be Nat;

        assume that

         A6: 1 <= i and

         A7: i <= ( len (C .: (x1,y1)));

        

         A8: i <= ( len x1) by A2, A3, A7, FINSEQ_2: 72;

        then

         A9: i in ( dom x1) by A6, FINSEQ_3: 25;

        

         A10: i in ( dom (G .: (x2,y2))) by A5, A6, A8, FINSEQ_3: 25;

        i in ( dom (C .: (x1,y1))) by A6, A7, FINSEQ_3: 25;

        

        hence ((C .: (x1,y1)) . i) = (C . ((x1 . i),(y1 . i))) by FUNCOP_1: 22

        .= (G . ((x2 . i),(y2 . i))) by A4, A9

        .= ((G .: (x2,y2)) . i) by A10, FUNCOP_1: 22;

      end;

      hence thesis by A5, A2, A3, FINSEQ_2: 72;

    end;

    theorem :: COMPLSP2:46

    for x1,y1 be FinSequence of COMPLEX holds for x2,y2 be FinSequence of REAL st x1 = x2 & y1 = y2 & ( len x1) = ( len y2) holds ( addcomplex .: (x1,y1)) = ( addreal .: (x2,y2))

    proof

      let x1,y1 be FinSequence of COMPLEX ;

      let x2,y2 be FinSequence of REAL ;

      assume that

       A1: x1 = x2 & y1 = y2 and

       A2: ( len x1) = ( len y2);

      for i st i in ( dom x1) holds ( addcomplex . ((x1 . i),(y1 . i))) = ( addreal . ((x2 . i),(y2 . i)))

      proof

        let i;

        ((x1 . i) + (y1 . i)) = ( addcomplex . ((x1 . i),(y1 . i))) by BINOP_2:def 3;

        hence thesis by A1, BINOP_2:def 9;

      end;

      hence thesis by A1, A2, Th38;

    end;

    ::$Canceled

    theorem :: COMPLSP2:48

    

     Th40: for x be FinSequence of COMPLEX holds ( len ( Re x)) = ( len x) & ( len ( Im x)) = ( len x)

    proof

      let x be FinSequence of COMPLEX ;

      

       A1: ( len x) = ( len (x *' )) by Def1;

      

       A2: ( len ( Im x)) = ( len (x - (x *' ))) by Th3

      .= ( len x) by A1, Th7;

      ( len ( Re x)) = ( len (x + (x *' ))) by Th3

      .= ( len x) by A1, Th6;

      hence thesis by A2;

    end;

    theorem :: COMPLSP2:49

    

     Th41: for x,y be FinSequence of COMPLEX st ( len x) = ( len y) holds ( Re (x + y)) = (( Re x) + ( Re y)) & ( Im (x + y)) = (( Im x) + ( Im y))

    proof

      let x,y be FinSequence of COMPLEX ;

      

       A1: ( len ( - (x *' ))) = ( len (x *' )) by Th5;

      assume

       A2: ( len x) = ( len y);

      then

       A3: ( len (x + y)) = ( len x) by Th6;

      

       A4: ( len y) = ( len (y *' )) by Def1;

      then

       A5: ( len (y + (y *' ))) = ( len y) by Th6;

      

       A6: ( len x) = ( len (x *' )) by Def1;

      then

       A7: ( len (x + (x *' ))) = ( len x) by Th6;

      

       A8: ( len (x - (x *' ))) = ( len x) by A6, Th7;

      

       A9: ( len (y - (y *' ))) = ( len y) by A4, Th7;

      

      thus ( Re (x + y)) = ((1 / 2) * ((x + y) + ((x *' ) + (y *' )))) by A2, Th15

      .= ((1 / 2) * (((x + y) + (x *' )) + (y *' ))) by A2, A4, A6, A3, Th24

      .= ((1 / 2) * (((x + (x *' )) + y) + (y *' ))) by A2, A6, Th24

      .= ((1 / 2) * ((x + (x *' )) + (y + (y *' )))) by A2, A4, A7, Th24

      .= (( Re x) + ( Re y)) by A2, A7, A5, Th25;

      

      thus ( Im (x + y)) = (( - ((1 / 2) * <i> )) * ((x + y) - ((x *' ) + (y *' )))) by A2, Th15

      .= (( - ((1 / 2) * <i> )) * (((x + y) - (x *' )) - (y *' ))) by A2, A4, A6, A3, Th30

      .= (( - ((1 / 2) * <i> )) * (((x + ( - (x *' ))) + y) - (y *' ))) by A2, A6, A1, Th24

      .= (( - ((1 / 2) * <i> )) * ((x - (x *' )) + (y - (y *' )))) by A2, A4, A8, Th31

      .= (( Im x) + ( Im y)) by A2, A8, A9, Th25;

    end;

    theorem :: COMPLSP2:50

    for x1,y1 be FinSequence of COMPLEX holds for x2,y2 be FinSequence of REAL st x1 = x2 & y1 = y2 & ( len x1) = ( len y2) holds ( diffcomplex .: (x1,y1)) = ( diffreal .: (x2,y2))

    proof

      let x1,y1 be FinSequence of COMPLEX , x2,y2 be FinSequence of REAL ;

      assume that

       A1: x1 = x2 & y1 = y2 and

       A2: ( len x1) = ( len y2);

      for i st i in ( dom x1) holds ( diffcomplex . ((x1 . i),(y1 . i))) = ( diffreal . ((x2 . i),(y2 . i)))

      proof

        let i;

        ((x1 . i) - (y1 . i)) = ( diffcomplex . ((x1 . i),(y1 . i))) by BINOP_2:def 4;

        hence thesis by A1, BINOP_2:def 10;

      end;

      hence thesis by A1, A2, Th38;

    end;

    ::$Canceled

    theorem :: COMPLSP2:52

    

     Th43: for x,y be FinSequence of COMPLEX st ( len x) = ( len y) holds ( Re (x - y)) = (( Re x) - ( Re y)) & ( Im (x - y)) = (( Im x) - ( Im y))

    proof

      let x,y be FinSequence of COMPLEX ;

      assume

       A1: ( len x) = ( len y);

      then

       A2: ( len (x - y)) = ( len x) by Th7;

      

       A3: ( len x) = ( len (x *' )) by Def1;

      then

       A4: ( len (x + (x *' ))) = ( len x) by Th6;

      

       A5: ( len y) = ( len (y *' )) by Def1;

      then

       A6: ( len (y + (y *' ))) = ( len y) by Th6;

      

      thus ( Re (x - y)) = ((1 / 2) * ((x - y) + ((x *' ) - (y *' )))) by A1, Th17

      .= ((1 / 2) * (((x *' ) + (x - y)) - (y *' ))) by A1, A5, A3, A2, Th31

      .= ((1 / 2) * ((x *' ) + ((x - y) - (y *' )))) by A1, A5, A3, A2, Th31

      .= ((1 / 2) * ((x *' ) + (x - (y + (y *' ))))) by A1, A5, Th30

      .= ((1 / 2) * ((x + (x *' )) - (y + (y *' )))) by A1, A3, A6, Th31

      .= (( Re x) - ( Re y)) by A1, A4, A6, Th36;

      

       A7: ( len (x - (x *' ))) = ( len x) by A3, Th7;

      

       A8: ( len (y - (y *' ))) = ( len y) by A5, Th7;

      

      thus ( Im (x - y)) = (( - ((1 / 2) * <i> )) * ((x - y) - ((x *' ) - (y *' )))) by A1, Th17

      .= (( - ((1 / 2) * <i> )) * (((x - y) - (x *' )) + (y *' ))) by A1, A5, A3, A2, Th33

      .= (( - ((1 / 2) * <i> )) * ((x - ((x *' ) + y)) + (y *' ))) by A1, A3, Th30

      .= (( - ((1 / 2) * <i> )) * (((x - (x *' )) - y) + (y *' ))) by A1, A3, Th30

      .= (( - ((1 / 2) * <i> )) * ((x - (x *' )) - (y - (y *' )))) by A1, A5, A7, Th33

      .= (( Im x) - ( Im y)) by A1, A7, A8, Th36;

    end;

    theorem :: COMPLSP2:53

    

     Th44: for a,b be Complex holds (a * (b * z)) = ((a * b) * z)

    proof

      let a,b be Complex;

      reconsider aa = a, bb = b, ab = (a * b) as Element of COMPLEX by XCMPLX_0:def 2;

      

      thus ((a * b) * z) = (( multcomplex [;] (ab,( id COMPLEX ))) * z) by Lm1

      .= (( multcomplex [;] (( multcomplex . (aa,bb)),( id COMPLEX ))) * z) by BINOP_2:def 5

      .= (( multcomplex [;] (aa,( multcomplex [;] (bb,( id COMPLEX ))))) * z) by FUNCOP_1: 62

      .= ((( multcomplex [;] (aa,( id COMPLEX ))) * ( multcomplex [;] (bb,( id COMPLEX )))) * z) by FUNCOP_1: 55

      .= (( multcomplex [;] (aa,( id COMPLEX ))) * (( multcomplex [;] (bb,( id COMPLEX ))) * z)) by RELAT_1: 36

      .= (( multcomplex [;] (aa,( id COMPLEX ))) * (b * z)) by Lm1

      .= (a * (b * z)) by Lm1;

    end;

    

     Lm3: ( - ( 0c ( len x))) = ( 0c ( len x))

    proof

      ( - ( 0c ( len x))) = ( - (( len x) |-> 0c )) by SEQ_4:def 12

      .= ( compcomplex * (( len x) |-> 0c )) by SEQ_4:def 8

      .= (( len x) |-> ( compcomplex . 0c )) by FINSEQOP: 16

      .= (( len x) |-> ( - 0c )) by BINOP_2:def 1

      .= ( 0c ( len x)) by SEQ_4:def 12;

      hence thesis;

    end;

    theorem :: COMPLSP2:54

    

     Th45: for c be Complex holds (( - c) * x) = ( - (c * x))

    proof

      let c be Complex;

      

       A1: ( len (( - c) * x)) = ( len x) by Th3;

      

       A2: ( len (c * x)) = ( len x) by Th3;

      ((( - c) * x) + (c * x)) = (((( - 1) * c) * x) + (c * x))

      .= (( - (c * x)) + (c * x)) by Th44

      .= ( - ((c * x) - (c * x))) by A2, Th32

      .= ( - ( 0c ( len x))) by A2, Th28

      .= ( 0c ( len x)) by Lm3;

      hence thesis by A1, A2, Th26;

    end;

    reserve h for Function of COMPLEX , COMPLEX ,

g for Function of REAL , REAL ;

    theorem :: COMPLSP2:55

    

     Th46: for y1 be FinSequence of COMPLEX holds for y2 be FinSequence of REAL st ( len y1) = ( len y2) & (for i st i in ( dom y1) holds (h . (y1 . i)) = (g . (y2 . i))) holds (h * y1) = (g * y2)

    proof

      let y1 be FinSequence of COMPLEX ;

      let y2 be FinSequence of REAL ;

      assume that

       A1: ( len y1) = ( len y2) and

       A2: for i st i in ( dom y1) holds (h . (y1 . i)) = (g . (y2 . i));

      

       A3: ( len (g * y2)) = ( len y1) by A1, FINSEQ_2: 33;

      now

        let i be Nat;

        assume that

         A4: 1 <= i and

         A5: i <= ( len (h * y1));

        

         A6: i <= ( len y1) by A5, FINSEQ_2: 33;

        then

         A7: i in ( dom y1) by A4, FINSEQ_3: 25;

        

         A8: i in ( dom (g * y2)) by A3, A4, A6, FINSEQ_3: 25;

        i in ( dom (h * y1)) by A4, A5, FINSEQ_3: 25;

        

        hence ((h * y1) . i) = (h . (y1 . i)) by FUNCT_1: 12

        .= (g . (y2 . i)) by A2, A7

        .= ((g * y2) . i) by A8, FUNCT_1: 12;

      end;

      hence thesis by A3, FINSEQ_2: 33;

    end;

    theorem :: COMPLSP2:56

    for y1 be FinSequence of COMPLEX holds for y2 be FinSequence of REAL st y1 = y2 & ( len y1) = ( len y2) holds ( compcomplex * y1) = ( compreal * y2)

    proof

      let y1 be FinSequence of COMPLEX ;

      let y2 be FinSequence of REAL ;

      assume that

       A1: y1 = y2 and

       A2: ( len y1) = ( len y2);

      for i st i in ( dom y1) holds ( compcomplex . (y1 . i)) = ( compreal . (y2 . i))

      proof

        let i;

        assume i in ( dom y1);

        ( - (y1 . i)) = ( compcomplex . (y1 . i)) by BINOP_2:def 1;

        hence thesis by A1, BINOP_2:def 7;

      end;

      hence thesis by A2, Th46;

    end;

    ::$Canceled

    theorem :: COMPLSP2:58

    

     Th48: for x be FinSequence of COMPLEX holds ( Re ( <i> * x)) = ( - ( Im x)) & ( Im ( <i> * x)) = ( Re x)

    proof

      let x be FinSequence of COMPLEX ;

      

       A1: ( len (x *' )) = ( len x) by Def1;

      

       A2: ( Im ( <i> * x)) = ((( - (1 / 2)) * <i> ) * (( <i> * x) - (( - <i> ) * (x *' )))) by Th13, COMPLEX1: 31

      .= ((( - (1 / 2)) * <i> ) * (( <i> * x) + ( - ( - ( <i> * (x *' )))))) by Th45

      .= ((( - (1 / 2)) * <i> ) * ( <i> * (x + (x *' )))) by A1, Th25

      .= (((( - (1 / 2)) * <i> ) * <i> ) * (x + (x *' ))) by Th44

      .= ( Re x);

      ( Re ( <i> * x)) = ((1 / 2) * (( <i> * x) + (( - <i> ) * (x *' )))) by Th13, COMPLEX1: 31

      .= ((1 / 2) * (( <i> * x) - ( <i> * (x *' )))) by Th45

      .= ((1 / 2) * ( <i> * (x - (x *' )))) by A1, Th36

      .= (((1 / 2) * <i> ) * (x - (x *' ))) by Th44

      .= ((( - 1) * (( - (1 / 2)) * <i> )) * (x - (x *' )))

      .= ( - ( Im x)) by Th44;

      hence thesis by A2;

    end;

    theorem :: COMPLSP2:59

    

     Th49: for x,y be FinSequence of COMPLEX st ( len x) = ( len y) holds |(( <i> * x), y)| = ( <i> * |(x, y)|)

    proof

      let x,y be FinSequence of COMPLEX ;

      assume

       A1: ( len x) = ( len y);

      

       A2: ( len ( Im y)) = ( len y) by Th40;

      

       A3: ( len ( Re y)) = ( len y) by Th40;

      

       A4: ( len ( Im x)) = ( len x) by Th40;

       |(( <i> * x), y)| = ((( |(( - ( Im x)), ( Re y))| - ( <i> * |(( Re ( <i> * x)), ( Im y))|)) + ( <i> * |(( Im ( <i> * x)), ( Re y))|)) + |(( Im ( <i> * x)), ( Im y))|) by Th48

      .= ((( |(( - ( Im x)), ( Re y))| - ( <i> * |(( - ( Im x)), ( Im y))|)) + ( <i> * |(( Im ( <i> * x)), ( Re y))|)) + |(( Im ( <i> * x)), ( Im y))|) by Th48

      .= ((( |(( - ( Im x)), ( Re y))| - ( <i> * |(( - ( Im x)), ( Im y))|)) + ( <i> * |(( Re x), ( Re y))|)) + |(( Im ( <i> * x)), ( Im y))|) by Th48

      .= ((( |(( - ( Im x)), ( Re y))| - ( <i> * |(( - ( Im x)), ( Im y))|)) + ( <i> * |(( Re x), ( Re y))|)) + |(( Re x), ( Im y))|) by Th48

      .= (((( - |(( Im x), ( Re y))|) - ( <i> * |(( - ( Im x)), ( Im y))|)) + ( <i> * |(( Re x), ( Re y))|)) + |(( Re x), ( Im y))|) by A1, A3, A4, RVSUM_1: 122

      .= (((( - |(( Im x), ( Re y))|) - ( <i> * ( - |(( Im x), ( Im y))|))) + ( <i> * |(( Re x), ( Re y))|)) + |(( Re x), ( Im y))|) by A1, A4, A2, RVSUM_1: 122

      .= ( <i> * |(x, y)|);

      hence thesis;

    end;

    theorem :: COMPLSP2:60

    

     Th50: for x,y be FinSequence of COMPLEX st ( len x) = ( len y) holds |(x, ( <i> * y))| = ( - ( <i> * |(x, y)|))

    proof

      let x,y be FinSequence of COMPLEX ;

      assume

       A1: ( len x) = ( len y);

      

       A2: ( len ( Im x)) = ( len x) by Th40;

      

       A3: ( len ( Re x)) = ( len x) by Th40;

      

       A4: ( len ( Im y)) = ( len y) by Th40;

       |(x, ( <i> * y))| = ((( |(( Re x), ( - ( Im y)))| - ( <i> * |(( Re x), ( Im ( <i> * y)))|)) + ( <i> * |(( Im x), ( Re ( <i> * y)))|)) + |(( Im x), ( Im ( <i> * y)))|) by Th48

      .= ((( |(( Re x), ( - ( Im y)))| - ( <i> * |(( Re x), ( Re y))|)) + ( <i> * |(( Im x), ( Re ( <i> * y)))|)) + |(( Im x), ( Im ( <i> * y)))|) by Th48

      .= ((( |(( Re x), ( - ( Im y)))| - ( <i> * |(( Re x), ( Re y))|)) + ( <i> * |(( Im x), ( - ( Im y)))|)) + |(( Im x), ( Im ( <i> * y)))|) by Th48

      .= ((( |(( Re x), ( - ( Im y)))| - ( <i> * |(( Re x), ( Re y))|)) + ( <i> * |(( Im x), ( - ( Im y)))|)) + |(( Im x), ( Re y))|) by Th48

      .= (((( - |(( Re x), ( Im y))|) - ( <i> * |(( Re x), ( Re y))|)) + ( <i> * |(( Im x), ( - ( Im y)))|)) + |(( Im x), ( Re y))|) by A1, A3, A4, RVSUM_1: 122

      .= (((( - |(( Re x), ( Im y))|) - ( <i> * |(( Re x), ( Re y))|)) + ( <i> * ( - |(( Im x), ( Im y))|))) + |(( Im x), ( Re y))|) by A1, A2, A4, RVSUM_1: 122

      .= ( - ( <i> * |(x, y)|));

      hence thesis;

    end;

    theorem :: COMPLSP2:61

    for a1 be Element of COMPLEX , y1 be FinSequence of COMPLEX holds for a2 be Element of REAL , y2 be FinSequence of REAL st a1 = a2 & y1 = y2 & ( len y1) = ( len y2) holds ((a1 multcomplex ) * y1) = ((a2 multreal ) * y2)

    proof

      let a1 be Element of COMPLEX , y1 be FinSequence of COMPLEX ;

      let a2 be Element of REAL , y2 be FinSequence of REAL ;

      assume that

       A1: a1 = a2 & y1 = y2 and

       A2: ( len y1) = ( len y2);

      for i st i in ( dom y1) holds ((a1 multcomplex ) . (y1 . i)) = ((a2 multreal ) . (y2 . i))

      proof

        let i;

        reconsider y2i = (y2 . i) as Element of REAL by XREAL_0:def 1;

        assume i in ( dom y1);

        

         A3: ((a2 * y2) . i) = (a2 * (y2 . i)) by RVSUM_1: 44

        .= ( multreal . (a2,(( id REAL ) . y2i))) by BINOP_2:def 11

        .= (( multreal [;] (a2,( id REAL ))) . y2i) by FUNCOP_1: 53

        .= ((a2 multreal ) . (y2 . i)) by RVSUM_1:def 3;

        ((a1 * y1) . i) = (a1 * (y1 . i)) by Th12

        .= ( multcomplex . (a1,(( id COMPLEX ) . (y1 . i)))) by BINOP_2:def 5

        .= (( multcomplex [;] (a1,( id COMPLEX ))) . (y1 . i)) by FUNCOP_1: 53

        .= ((a1 multcomplex ) . (y1 . i)) by SEQ_4:def 4;

        hence thesis by A1, A3;

      end;

      hence thesis by A2, Th46;

    end;

    ::$Canceled

    theorem :: COMPLSP2:63

    

     Th52: for a,b be Complex holds ((a + b) * z) = ((a * z) + (b * z))

    proof

      let a,b be Complex;

      reconsider aa = a, bb = b, ab = (a + b) as Element of COMPLEX by XCMPLX_0:def 2;

      set c1M = ( multcomplex [;] (aa,( id COMPLEX ))), c2M = ( multcomplex [;] (bb,( id COMPLEX )));

      

      thus ((a + b) * z) = (( multcomplex [;] (ab,( id COMPLEX ))) * z) by Lm1

      .= (( multcomplex [;] (( addcomplex . (aa,bb)),( id COMPLEX ))) * z) by BINOP_2:def 3

      .= (( addcomplex .: (c1M,c2M)) * z) by FINSEQOP: 35, SEQ_4: 54

      .= ( addcomplex .: ((c1M * z),(c2M * z))) by FUNCOP_1: 25

      .= ((c1M * z) + (c2M * z)) by SEQ_4:def 6

      .= ((a * z) + (c2M * z)) by Lm1

      .= ((a * z) + (b * z)) by Lm1;

    end;

    theorem :: COMPLSP2:64

    

     Th53: for a,b be Complex holds ((a - b) * z) = ((a * z) - (b * z))

    proof

      let a,b be Complex;

      reconsider aa = a, bb = b as Element of COMPLEX by XCMPLX_0:def 2;

      ((a - b) * z) = ((a + ( - b)) * z)

      .= ((aa * z) + (( - bb) * z)) by Th52

      .= ((a * z) - (b * z)) by Th45;

      hence thesis;

    end;

    theorem :: COMPLSP2:65

    

     Th54: for a be Element of COMPLEX , x be FinSequence of COMPLEX holds ( Re (a * x)) = ((( Re a) * ( Re x)) - (( Im a) * ( Im x))) & ( Im (a * x)) = ((( Im a) * ( Re x)) + (( Re a) * ( Im x)))

    proof

      let a be Element of COMPLEX , x be FinSequence of COMPLEX ;

      reconsider z5 = ( Re a), z6 = ( Im a) as Element of COMPLEX by XCMPLX_0:def 2;

      

       A1: ( len (x *' )) = ( len x) by Def1;

      ( len (((1 / 2) * z5) * x)) = ( len x) by Th3;

      then

       A2: ( len (((((1 / 2) * <i> ) * z6) * x) + (((1 / 2) * z5) * x))) = ( len ((((1 / 2) * <i> ) * z6) * x)) by Th3, Th6;

      

       A3: ( len (((1 / 2) * z5) * x)) = ( len x) by Th3;

      

       A4: ( len (z5 * x)) = ( len x) & ( len (( <i> * z6) * x)) = ( len x) by Th3;

      

       A5: (( Re a) * ( Re x)) = ((z5 * (1 / 2)) * (x + (x *' ))) by Th44

      .= ((((z5 * 1) / 2) * x) + (((z5 * 1) / 2) * (x *' ))) by A1, Th25;

      

       A6: ( len ( Re x)) = ( len x) & ( len (( Re a) * ( Re x))) = ( len ( Re x)) by Th40, RVSUM_1: 117;

      

       A7: ( len ((z5 - (z6 * <i> )) * (x *' ))) = ( len (x *' )) & ( len ((z5 + ( <i> * z6)) * x)) = ( len x) by Th3;

      

       A8: ( len ((( - ((1 / 2) * <i> )) * z6) * (x *' ))) = ( len (x *' )) by Th3;

      

       A9: (( Im a) * ( Im x)) = ((z6 * ( - ((1 / 2) * <i> ))) * (x - (x *' ))) by Th44

      .= (((( - ((1 / 2) * <i> )) * z6) * x) - ((( - ((1 / 2) * <i> )) * z6) * (x *' ))) by A1, Th36;

      

       A10: ( len ((( - ((1 / 2) * <i> )) * z6) * x)) = ( len x) by Th3;

      

       A11: ( len (z5 * (x *' ))) = ( len (x *' )) & ( len ((z6 * <i> ) * (x *' ))) = ( len (x *' )) by Th3;

      

       A12: ( len (((1 / 2) * z5) * (x *' ))) = ( len (x *' )) & ( len ((((1 / 2) * <i> ) * z6) * x)) = ( len x) by Th3;

      

       A13: ( Re (a * x)) = ((1 / 2) * (((a *' ) * (x *' )) + (a * x))) by Th13

      .= ((1 / 2) * (((a *' ) * (x *' )) + ((z5 + ( <i> * z6)) * x))) by COMPLEX1: 13

      .= ((1 / 2) * (((z5 - (z6 * <i> )) * (x *' )) + ((z5 + ( <i> * z6)) * x))) by COMPLEX1:def 11

      .= (((1 / 2) * ((z5 - (z6 * <i> )) * (x *' ))) + ((1 / 2) * ((z5 + ( <i> * z6)) * x))) by A7, Th25, Def1

      .= (((1 / 2) * ((z5 - (z6 * <i> )) * (x *' ))) + ((1 / 2) * ((z5 * x) + (( <i> * z6) * x)))) by Th52

      .= (((1 / 2) * ((z5 * (x *' )) - ((z6 * <i> ) * (x *' )))) + ((1 / 2) * ((z5 * x) + (( <i> * z6) * x)))) by Th53

      .= (((1 / 2) * ((z5 * (x *' )) - ((z6 * <i> ) * (x *' )))) + (((1 / 2) * (z5 * x)) + ((1 / 2) * (( <i> * z6) * x)))) by A4, Th25

      .= ((((1 / 2) * (z5 * (x *' ))) - ((1 / 2) * ((z6 * <i> ) * (x *' )))) + (((1 / 2) * (z5 * x)) + ((1 / 2) * (( <i> * z6) * x)))) by A11, Th36

      .= ((((1 / 2) * (z5 * (x *' ))) - ((1 / 2) * (( <i> * z6) * (x *' )))) + (((1 / 2) * (z5 * x)) + (((1 / 2) * ( <i> * z6)) * x))) by Th44

      .= ((((1 / 2) * (z5 * (x *' ))) + ( - ((((1 / 2) * <i> ) * z6) * (x *' )))) + (((1 / 2) * (z5 * x)) + ((((1 / 2) * <i> ) * z6) * x))) by Th44

      .= ((((1 / 2) * (z5 * (x *' ))) + (( - (((1 / 2) * <i> ) * z6)) * (x *' ))) + (((1 / 2) * (z5 * x)) + ((((1 / 2) * <i> ) * z6) * x))) by Th45

      .= (((((1 / 2) * z5) * (x *' )) + ((( - ((1 / 2) * <i> )) * z6) * (x *' ))) + (((1 / 2) * (z5 * x)) + ((((1 / 2) * <i> ) * z6) * x))) by Th44

      .= (((((1 / 2) * z5) * x) + ((((1 / 2) * <i> ) * z6) * x)) + ((((1 / 2) * z5) * (x *' )) + ((( - ((1 / 2) * <i> )) * z6) * (x *' )))) by Th44

      .= (((((((1 / 2) * <i> ) * z6) * x) + (((1 / 2) * z5) * x)) + (((1 / 2) * z5) * (x *' ))) + ((( - ((1 / 2) * <i> )) * z6) * (x *' ))) by A1, A8, A12, A2, Th24

      .= ((((((1 / 2) * z5) * x) + (((1 / 2) * z5) * (x *' ))) + (( - (( - ((1 / 2) * <i> )) * z6)) * x)) + ((( - ((1 / 2) * <i> )) * z6) * (x *' ))) by A1, A3, A12, Th24

      .= ((((((1 / 2) * z5) * x) + (((1 / 2) * z5) * (x *' ))) - ((( - ((1 / 2) * <i> )) * z6) * x)) + ((( - ((1 / 2) * <i> )) * z6) * (x *' ))) by Th45

      .= ((( Re a) * ( Re x)) - (( Im a) * ( Im x))) by A1, A5, A9, A6, A10, A8, Th33;

      

       A14: ( len ((((1 / 2) * <i> ) * z5) * (x *' ))) = ( len (x *' )) by Th3;

      

       A15: (( Im a) * ( Re x)) = ((z6 * (1 / 2)) * (x + (x *' ))) by Th44

      .= ((((1 / 2) * z6) * x) + (((1 / 2) * z6) * (x *' ))) by A1, Th25;

      

       A16: ( len (( <i> * z6) * (x *' ))) = ( len (x *' )) & ( len (( - z5) * (x *' ))) = ( len (x *' )) by Th3;

      

       A17: ( len ((1 / 2) * (z6 * x))) = ( len (z6 * x)) by Th3;

      

       A18: ( len (z6 * (x *' ))) = ( len (x *' )) & ( len ((1 / 2) * (z6 * (x *' )))) = ( len (z6 * (x *' ))) by Th3;

      then

       A19: ( len (((1 / 2) * (z6 * x)) + ((1 / 2) * (z6 * (x *' ))))) = ( len ((1 / 2) * (z6 * x))) by A1, A17, Th3, Th6;

      

       A20: ( len ((( - ((1 / 2) * <i> )) * z5) * x)) = ( len x) by Th3;

      then

       A21: ( len (((1 / 2) * (z6 * x)) + ((( - ((1 / 2) * <i> )) * z5) * x))) = ( len ((1 / 2) * (z6 * x))) by A17, Th3, Th6;

      

       A22: (( Re a) * ( Im x)) = ((z5 * ( - ((1 / 2) * <i> ))) * (x - (x *' ))) by Th44

      .= (((( - ((1 / 2) * <i> )) * z5) * x) - ((( - ((1 / 2) * <i> )) * z5) * (x *' ))) by A1, Th36;

      

       A23: ( len (z6 * x)) = ( len x) by Th3;

      ( len ((a * x) *' )) = ( len (a * x)) & ( len ( - ((a * x) *' ))) = ( len ((a * x) *' )) by Def1, Th5;

      

      then ( Im (a * x)) = ((( - ((1 / 2) * <i> )) * ( - ((a * x) *' ))) + (( - ((1 / 2) * <i> )) * (a * x))) by Th25

      .= ((( - ((1 / 2) * <i> )) * ( - ((a *' ) * (x *' )))) + (( - ((1 / 2) * <i> )) * (a * x))) by Th13

      .= ((( - ((1 / 2) * <i> )) * ( - ((a *' ) * (x *' )))) + (( - ((1 / 2) * <i> )) * ((z5 + ( <i> * z6)) * x))) by COMPLEX1: 13

      .= ((( - ((1 / 2) * <i> )) * ( - ((z5 - (z6 * <i> )) * (x *' )))) + (( - ((1 / 2) * <i> )) * ((z5 + ( <i> * z6)) * x))) by COMPLEX1:def 11

      .= ((( - ((1 / 2) * <i> )) * (( - (z5 - (z6 * <i> ))) * (x *' ))) + (( - ((1 / 2) * <i> )) * ((z5 + ( <i> * z6)) * x))) by Th45

      .= ((( - ((1 / 2) * <i> )) * ((( - z5) + (z6 * <i> )) * (x *' ))) + (( - ((1 / 2) * <i> )) * ((z5 + ( <i> * z6)) * x)))

      .= ((( - ((1 / 2) * <i> )) * ((( - z5) * (x *' )) + (( <i> * z6) * (x *' )))) + (( - ((1 / 2) * <i> )) * ((z5 + ( <i> * z6)) * x))) by Th52

      .= ((( - ((1 / 2) * <i> )) * ((( - z5) * (x *' )) + (( <i> * z6) * (x *' )))) + (( - ((1 / 2) * <i> )) * ((z5 * x) + (( <i> * z6) * x)))) by Th52

      .= ((( - ((1 / 2) * <i> )) * ((( - z5) * (x *' )) + (( <i> * z6) * (x *' )))) + ((( - ((1 / 2) * <i> )) * (z5 * x)) + (( - ((1 / 2) * <i> )) * (( <i> * z6) * x)))) by A4, Th25

      .= (((( - ((1 / 2) * <i> )) * (( - z5) * (x *' ))) + (( - ((1 / 2) * <i> )) * (( <i> * z6) * (x *' )))) + ((( - ((1 / 2) * <i> )) * (z5 * x)) + (( - ((1 / 2) * <i> )) * (( <i> * z6) * x)))) by A16, Th25

      .= ((((( - ((1 / 2) * <i> )) * ( - z5)) * (x *' )) + (( - ((1 / 2) * <i> )) * (( <i> * z6) * (x *' )))) + ((( - ((1 / 2) * <i> )) * (z5 * x)) + (( - ((1 / 2) * <i> )) * (( <i> * z6) * x)))) by Th44

      .= ((((( - ((1 / 2) * <i> )) * ( - z5)) * (x *' )) + (( - ((1 / 2) * <i> )) * ( <i> * (z6 * (x *' ))))) + ((( - ((1 / 2) * <i> )) * (z5 * x)) + (( - ((1 / 2) * <i> )) * (( <i> * z6) * x)))) by Th44

      .= ((((( - ((1 / 2) * <i> )) * ( - z5)) * (x *' )) + ((( - ((1 / 2) * <i> )) * <i> ) * (z6 * (x *' )))) + ((( - ((1 / 2) * <i> )) * (z5 * x)) + (( - ((1 / 2) * <i> )) * (( <i> * z6) * x)))) by Th44

      .= ((((( - ((1 / 2) * <i> )) * ( - z5)) * (x *' )) + ((( - ((1 / 2) * <i> )) * <i> ) * (z6 * (x *' )))) + (((( - ((1 / 2) * <i> )) * z5) * x) + (( - ((1 / 2) * <i> )) * (( <i> * z6) * x)))) by Th44

      .= ((((( - ((1 / 2) * <i> )) * ( - z5)) * (x *' )) + ((( - ((1 / 2) * <i> )) * <i> ) * (z6 * (x *' )))) + (((( - ((1 / 2) * <i> )) * z5) * x) + (( - ((1 / 2) * <i> )) * ( <i> * (z6 * x))))) by Th44

      .= ((((1 / 2) * (z6 * x)) + ((( - ((1 / 2) * <i> )) * z5) * x)) + (((1 / 2) * (z6 * (x *' ))) + ((((1 / 2) * <i> ) * z5) * (x *' )))) by Th44

      .= (((((1 / 2) * (z6 * x)) + ((( - ((1 / 2) * <i> )) * z5) * x)) + ((1 / 2) * (z6 * (x *' )))) + ((((1 / 2) * <i> ) * z5) * (x *' ))) by A1, A23, A17, A18, A14, A21, Th24

      .= (((((1 / 2) * (z6 * x)) + ((1 / 2) * (z6 * (x *' )))) + ((( - ((1 / 2) * <i> )) * z5) * x)) + ((((1 / 2) * <i> ) * z5) * (x *' ))) by A1, A23, A17, A20, A18, Th24

      .= ((((1 / 2) * (z6 * x)) + ((1 / 2) * (z6 * (x *' )))) + (((( - ((1 / 2) * <i> )) * z5) * x) + ((((1 / 2) * <i> ) * z5) * (x *' )))) by A1, A23, A17, A20, A14, A19, Th24

      .= (((((1 / 2) * z6) * x) + ((1 / 2) * (z6 * (x *' )))) + (((( - ((1 / 2) * <i> )) * z5) * x) + ((((1 / 2) * <i> ) * z5) * (x *' )))) by Th44

      .= (((((1 / 2) * z6) * x) + (((1 / 2) * z6) * (x *' ))) + (((( - ((1 / 2) * <i> )) * z5) * x) + (( - (( - ((1 / 2) * <i> )) * z5)) * (x *' )))) by Th44

      .= ((( Im a) * ( Re x)) + (( Re a) * ( Im x))) by A15, A22, Th45;

      hence thesis by A13;

    end;

    begin

    theorem :: COMPLSP2:66

    

     Th55: for x1,x2,y be FinSequence of COMPLEX st ( len x1) = ( len x2) & ( len x2) = ( len y) holds |((x1 + x2), y)| = ( |(x1, y)| + |(x2, y)|)

    proof

      let x1,x2,y be FinSequence of COMPLEX ;

      assume that

       A1: ( len x1) = ( len x2) and

       A2: ( len x2) = ( len y);

      

       A3: ( len ( Re x1)) = ( len x1) & ( len ( Re x2)) = ( len x2) by Th40;

      

       A4: ( len ( Im y)) = ( len y) by Th40;

      

       A5: ( len ( Im x1)) = ( len x1) & ( len ( Im x2)) = ( len x2) by Th40;

      

       A6: ( len ( Re y)) = ( len y) by Th40;

       |((x1 + x2), y)| = ((( |((( Re x1) + ( Re x2)), ( Re y))| - ( <i> * |(( Re (x1 + x2)), ( Im y))|)) + ( <i> * |(( Im (x1 + x2)), ( Re y))|)) + |(( Im (x1 + x2)), ( Im y))|) by A1, Th41

      .= ((( |((( Re x1) + ( Re x2)), ( Re y))| - ( <i> * |((( Re x1) + ( Re x2)), ( Im y))|)) + ( <i> * |(( Im (x1 + x2)), ( Re y))|)) + |(( Im (x1 + x2)), ( Im y))|) by A1, Th41

      .= ((( |((( Re x1) + ( Re x2)), ( Re y))| - ( <i> * |((( Re x1) + ( Re x2)), ( Im y))|)) + ( <i> * |((( Im x1) + ( Im x2)), ( Re y))|)) + |(( Im (x1 + x2)), ( Im y))|) by A1, Th41

      .= ((( |((( Re x1) + ( Re x2)), ( Re y))| - ( <i> * |((( Re x1) + ( Re x2)), ( Im y))|)) + ( <i> * |((( Im x1) + ( Im x2)), ( Re y))|)) + |((( Im x1) + ( Im x2)), ( Im y))|) by A1, Th41

      .= (((( |(( Re x1), ( Re y))| + |(( Re x2), ( Re y))|) - ( <i> * |((( Re x1) + ( Re x2)), ( Im y))|)) + ( <i> * |((( Im x1) + ( Im x2)), ( Re y))|)) + |((( Im x1) + ( Im x2)), ( Im y))|) by A1, A2, A3, A6, RVSUM_1: 120

      .= (((( |(( Re x1), ( Re y))| + |(( Re x2), ( Re y))|) - ( <i> * ( |(( Re x1), ( Im y))| + |(( Re x2), ( Im y))|))) + ( <i> * |((( Im x1) + ( Im x2)), ( Re y))|)) + |((( Im x1) + ( Im x2)), ( Im y))|) by A1, A2, A3, A4, RVSUM_1: 120

      .= (((( |(( Re x1), ( Re y))| + |(( Re x2), ( Re y))|) - ( <i> * ( |(( Re x1), ( Im y))| + |(( Re x2), ( Im y))|))) + ( <i> * ( |(( Im x1), ( Re y))| + |(( Im x2), ( Re y))|))) + |((( Im x1) + ( Im x2)), ( Im y))|) by A1, A2, A6, A5, RVSUM_1: 120

      .= (((( |(( Re x1), ( Re y))| + |(( Re x2), ( Re y))|) - ( <i> * ( |(( Re x1), ( Im y))| + |(( Re x2), ( Im y))|))) + ( <i> * ( |(( Im x1), ( Re y))| + |(( Im x2), ( Re y))|))) + ( |(( Im x1), ( Im y))| + |(( Im x2), ( Im y))|)) by A1, A2, A5, A4, RVSUM_1: 120

      .= ( |(x1, y)| + |(x2, y)|);

      hence thesis;

    end;

    theorem :: COMPLSP2:67

    

     Th56: for x1,x2 be FinSequence of COMPLEX st ( len x1) = ( len x2) holds |(( - x1), x2)| = ( - |(x1, x2)|)

    proof

      let x1,x2 be FinSequence of COMPLEX ;

      assume

       A1: ( len x1) = ( len x2);

      

       A2: ( len ( <i> * x1)) = ( len x1) by Th3;

       |(( - x1), x2)| = |((( <i> * <i> ) * x1), x2)|

      .= |(( <i> * ( <i> * x1)), x2)| by Th44

      .= ( <i> * |(( <i> * x1), x2)|) by A1, A2, Th49

      .= ( <i> * ( <i> * |(x1, x2)|)) by A1, Th49

      .= (( - 1) * |(x1, x2)|);

      hence thesis;

    end;

    theorem :: COMPLSP2:68

    

     Th57: for x1,x2 be FinSequence of COMPLEX st ( len x1) = ( len x2) holds |(x1, ( - x2))| = ( - |(x1, x2)|)

    proof

      let x1,x2 be FinSequence of COMPLEX ;

      assume

       A1: ( len x1) = ( len x2);

      

       A2: ( len ( <i> * x2)) = ( len x2) by Th3;

       |(x1, ( - x2))| = |(x1, (( <i> * <i> ) * x2))|

      .= |(x1, ( <i> * ( <i> * x2)))| by Th44

      .= ( - ( <i> * |(x1, ( <i> * x2))|)) by A1, A2, Th50

      .= ( - ( <i> * ( - ( <i> * |(x1, x2)|)))) by A1, Th50

      .= ( - |(x1, x2)|);

      hence thesis;

    end;

    theorem :: COMPLSP2:69

    for x1,x2 be FinSequence of COMPLEX st ( len x1) = ( len x2) holds |(( - x1), ( - x2))| = |(x1, x2)|

    proof

      let x1,x2 be FinSequence of COMPLEX ;

      assume

       A1: ( len x1) = ( len x2);

      then ( len ( - x2)) = ( len x1) by Th5;

      

      then |(( - x1), ( - x2))| = ( - |(x1, ( - x2))|) by Th56

      .= ( - ( - |(x1, x2)|)) by A1, Th57;

      hence thesis;

    end;

    theorem :: COMPLSP2:70

    

     Th59: for x1,x2,x3 be FinSequence of COMPLEX st ( len x1) = ( len x2) & ( len x2) = ( len x3) holds |((x1 - x2), x3)| = ( |(x1, x3)| - |(x2, x3)|)

    proof

      let x1,x2,x3 be FinSequence of COMPLEX ;

      assume that

       A1: ( len x1) = ( len x2) and

       A2: ( len x2) = ( len x3);

      ( len ( - x2)) = ( len x2) by Th5;

      

      then |((x1 - x2), x3)| = ( |(x1, x3)| + |(( - x2), x3)|) by A1, A2, Th55

      .= ( |(x1, x3)| + ( - |(x2, x3)|)) by A2, Th56;

      hence thesis;

    end;

    theorem :: COMPLSP2:71

    

     Th60: for x,y1,y2 be FinSequence of COMPLEX st ( len x) = ( len y1) & ( len y1) = ( len y2) holds |(x, (y1 + y2))| = ( |(x, y1)| + |(x, y2)|)

    proof

      let x,y1,y2 be FinSequence of COMPLEX ;

      assume that

       A1: ( len x) = ( len y1) and

       A2: ( len y1) = ( len y2);

      

       A3: ( len ( Re y1)) = ( len y1) & ( len ( Re y2)) = ( len y2) by Th40;

      

       A4: ( len ( Im x)) = ( len x) by Th40;

      

       A5: ( len ( Im y1)) = ( len y1) & ( len ( Im y2)) = ( len y2) by Th40;

      

       A6: ( len ( Re x)) = ( len x) by Th40;

       |(x, (y1 + y2))| = ((( |(( Re x), (( Re y1) + ( Re y2)))| - ( <i> * |(( Re x), ( Im (y1 + y2)))|)) + ( <i> * |(( Im x), ( Re (y1 + y2)))|)) + |(( Im x), ( Im (y1 + y2)))|) by A2, Th41

      .= ((( |(( Re x), (( Re y1) + ( Re y2)))| - ( <i> * |(( Re x), ( Im (y1 + y2)))|)) + ( <i> * |(( Im x), ( Re (y1 + y2)))|)) + |(( Im x), (( Im y1) + ( Im y2)))|) by A2, Th41

      .= ((( |(( Re x), (( Re y1) + ( Re y2)))| - ( <i> * |(( Re x), (( Im y1) + ( Im y2)))|)) + ( <i> * |(( Im x), ( Re (y1 + y2)))|)) + |(( Im x), (( Im y1) + ( Im y2)))|) by A2, Th41

      .= ((( |(( Re x), (( Re y1) + ( Re y2)))| - ( <i> * |(( Re x), (( Im y1) + ( Im y2)))|)) + ( <i> * |(( Im x), (( Re y1) + ( Re y2)))|)) + |(( Im x), (( Im y1) + ( Im y2)))|) by A2, Th41

      .= (((( |(( Re x), ( Re y1))| + |(( Re x), ( Re y2))|) - ( <i> * |(( Re x), (( Im y1) + ( Im y2)))|)) + ( <i> * |(( Im x), (( Re y1) + ( Re y2)))|)) + |(( Im x), (( Im y1) + ( Im y2)))|) by A1, A2, A3, A6, RVSUM_1: 120

      .= (((( |(( Re x), ( Re y1))| + |(( Re x), ( Re y2))|) - ( <i> * |(( Re x), (( Im y1) + ( Im y2)))|)) + ( <i> * |(( Im x), (( Re y1) + ( Re y2)))|)) + ( |(( Im x), ( Im y1))| + |(( Im x), ( Im y2))|)) by A1, A2, A5, A4, RVSUM_1: 120

      .= (((( |(( Re x), ( Re y1))| + |(( Re x), ( Re y2))|) - ( <i> * ( |(( Re x), ( Im y1))| + |(( Re x), ( Im y2))|))) + ( <i> * |(( Im x), (( Re y1) + ( Re y2)))|)) + ( |(( Im x), ( Im y1))| + |(( Im x), ( Im y2))|)) by A1, A2, A6, A5, RVSUM_1: 120

      .= (((( |(( Re x), ( Re y1))| + |(( Re x), ( Re y2))|) - ( <i> * ( |(( Re x), ( Im y1))| + |(( Re x), ( Im y2))|))) + ( <i> * ( |(( Im x), ( Re y1))| + |(( Im x), ( Re y2))|))) + ( |(( Im x), ( Im y1))| + |(( Im x), ( Im y2))|)) by A1, A2, A3, A4, RVSUM_1: 120

      .= ( |(x, y1)| + |(x, y2)|);

      hence thesis;

    end;

    theorem :: COMPLSP2:72

    

     Th61: for x,y1,y2 be FinSequence of COMPLEX st ( len x) = ( len y1) & ( len y1) = ( len y2) holds |(x, (y1 - y2))| = ( |(x, y1)| - |(x, y2)|)

    proof

      let x,y1,y2 be FinSequence of COMPLEX ;

      assume that

       A1: ( len x) = ( len y1) and

       A2: ( len y1) = ( len y2);

      

       A3: ( len ( Re y1)) = ( len y1) & ( len ( Re y2)) = ( len y2) by Th40;

      

       A4: ( len ( Im x)) = ( len x) by Th40;

      

       A5: ( len ( Im y1)) = ( len y1) & ( len ( Im y2)) = ( len y2) by Th40;

      

       A6: ( len ( Re x)) = ( len x) by Th40;

       |(x, (y1 - y2))| = ((( |(( Re x), (( Re y1) - ( Re y2)))| - ( <i> * |(( Re x), ( Im (y1 - y2)))|)) + ( <i> * |(( Im x), ( Re (y1 - y2)))|)) + |(( Im x), ( Im (y1 - y2)))|) by A2, Th43

      .= ((( |(( Re x), (( Re y1) - ( Re y2)))| - ( <i> * |(( Re x), ( Im (y1 - y2)))|)) + ( <i> * |(( Im x), ( Re (y1 - y2)))|)) + |(( Im x), (( Im y1) - ( Im y2)))|) by A2, Th43

      .= ((( |(( Re x), (( Re y1) - ( Re y2)))| - ( <i> * |(( Re x), (( Im y1) - ( Im y2)))|)) + ( <i> * |(( Im x), ( Re (y1 - y2)))|)) + |(( Im x), (( Im y1) - ( Im y2)))|) by A2, Th43

      .= ((( |(( Re x), (( Re y1) - ( Re y2)))| - ( <i> * |(( Re x), (( Im y1) - ( Im y2)))|)) + ( <i> * |(( Im x), (( Re y1) - ( Re y2)))|)) + |(( Im x), (( Im y1) - ( Im y2)))|) by A2, Th43

      .= (((( |(( Re x), ( Re y1))| - |(( Re x), ( Re y2))|) - ( <i> * |(( Re x), (( Im y1) - ( Im y2)))|)) + ( <i> * |(( Im x), (( Re y1) - ( Re y2)))|)) + |(( Im x), (( Im y1) - ( Im y2)))|) by A1, A2, A3, A6, RVSUM_1: 124

      .= (((( |(( Re x), ( Re y1))| - |(( Re x), ( Re y2))|) - ( <i> * |(( Re x), (( Im y1) - ( Im y2)))|)) + ( <i> * |(( Im x), (( Re y1) - ( Re y2)))|)) + ( |(( Im x), ( Im y1))| - |(( Im x), ( Im y2))|)) by A1, A2, A5, A4, RVSUM_1: 124

      .= (((( |(( Re x), ( Re y1))| - |(( Re x), ( Re y2))|) - ( <i> * ( |(( Re x), ( Im y1))| - |(( Re x), ( Im y2))|))) + ( <i> * |(( Im x), (( Re y1) - ( Re y2)))|)) + ( |(( Im x), ( Im y1))| - |(( Im x), ( Im y2))|)) by A1, A2, A6, A5, RVSUM_1: 124

      .= (((( |(( Re x), ( Re y1))| - |(( Re x), ( Re y2))|) - ( <i> * ( |(( Re x), ( Im y1))| - |(( Re x), ( Im y2))|))) + ( <i> * ( |(( Im x), ( Re y1))| - |(( Im x), ( Re y2))|))) + ( |(( Im x), ( Im y1))| - |(( Im x), ( Im y2))|)) by A1, A2, A3, A4, RVSUM_1: 124

      .= ( |(x, y1)| - |(x, y2)|);

      hence thesis;

    end;

    theorem :: COMPLSP2:73

    

     Th62: for x1,x2,y1,y2 be FinSequence of COMPLEX st ( len x1) = ( len x2) & ( len x2) = ( len y1) & ( len y1) = ( len y2) holds |((x1 + x2), (y1 + y2))| = ((( |(x1, y1)| + |(x1, y2)|) + |(x2, y1)|) + |(x2, y2)|)

    proof

      let x1,x2,y1,y2 be FinSequence of COMPLEX ;

      assume that

       A1: ( len x1) = ( len x2) and

       A2: ( len x2) = ( len y1) and

       A3: ( len y1) = ( len y2);

       |((x1 + x2), y2)| = ( |(x1, y2)| + |(x2, y2)|) by A1, A2, A3, Th55;

      then

       A4: ( |((x1 + x2), y1)| + |((x1 + x2), y2)|) = (( |(x1, y1)| + |(x2, y1)|) + ( |(x1, y2)| + |(x2, y2)|)) by A1, A2, Th55;

      ( len (x1 + x2)) = ( len x1) by A1, Th6;

      hence thesis by A1, A2, A3, A4, Th60;

    end;

    theorem :: COMPLSP2:74

    

     Th63: for x1,x2,y1,y2 be FinSequence of COMPLEX st ( len x1) = ( len x2) & ( len x2) = ( len y1) & ( len y1) = ( len y2) holds |((x1 - x2), (y1 - y2))| = ((( |(x1, y1)| - |(x1, y2)|) - |(x2, y1)|) + |(x2, y2)|)

    proof

      let x1,x2,y1,y2 be FinSequence of COMPLEX ;

      assume that

       A1: ( len x1) = ( len x2) and

       A2: ( len x2) = ( len y1) and

       A3: ( len y1) = ( len y2);

       |(x1, (y1 - y2))| = ( |(x1, y1)| - |(x1, y2)|) by A1, A2, A3, Th61;

      then

       A4: ( |(x1, (y1 - y2))| - |(x2, (y1 - y2))|) = (( |(x1, y1)| - |(x1, y2)|) - ( |(x2, y1)| - |(x2, y2)|)) by A2, A3, Th61;

      ( len (y1 - y2)) = ( len y1) by A3, Th7;

      hence thesis by A1, A2, A4, Th59;

    end;

    theorem :: COMPLSP2:75

    

     Th64: for x,y be FinSequence of COMPLEX holds |(x, y)| = ( |(y, x)| *' )

    proof

      let x,y be FinSequence of COMPLEX ;

      set x1 = |(( Re y), ( Re x))|, x2 = |(( Re y), ( Im x))|, y1 = |(( Im y), ( Re x))|, y2 = |(( Im y), ( Im x))|;

      reconsider x19 = x1, x29 = x2, y19 = y1, y29 = y2 as Element of REAL by XREAL_0:def 1;

      

       A1: ( Im x19) = 0 by COMPLEX1:def 2;

      

       A2: ( Im x29) = 0 by COMPLEX1:def 2;

      

       A3: ( Im y29) = 0 by COMPLEX1:def 2;

      

       A4: ( Im y19) = 0 by COMPLEX1:def 2;

      reconsider x19 = x1, x29 = x2, y19 = y1, y29 = y2 as Element of COMPLEX by XCMPLX_0:def 2;

      ( |(y, x)| *' ) = (((x19 + y29) + ( <i> * (y19 - x29))) *' )

      .= (((x19 + y29) *' ) + (( <i> * (y19 - x29)) *' )) by COMPLEX1: 32

      .= (((x19 *' ) + (y29 *' )) + (( <i> * (y19 - x29)) *' )) by COMPLEX1: 32

      .= ((x19 + (y29 *' )) + (( <i> * (y19 - x29)) *' )) by A1, COMPLEX1: 38

      .= ((x19 + y29) + (( <i> * (y19 - x29)) *' )) by A3, COMPLEX1: 38

      .= ((x19 + y29) + (( - <i> ) * ((y19 - x29) *' ))) by COMPLEX1: 31, COMPLEX1: 35

      .= ((x19 + y29) + (( - <i> ) * ((y19 *' ) - (x29 *' )))) by COMPLEX1: 34

      .= ((x19 + y29) + (( - <i> ) * (y19 - (x29 *' )))) by A4, COMPLEX1: 38

      .= ((x19 + y29) + (( - <i> ) * (y19 - x29))) by A2, COMPLEX1: 38

      .= |(x, y)|;

      hence thesis;

    end;

    theorem :: COMPLSP2:76

    for x,y be FinSequence of COMPLEX st ( len x) = ( len y) holds |((x + y), (x + y))| = (( |(x, x)| + (2 * ( Re |(x, y)|))) + |(y, y)|)

    proof

      let x,y be FinSequence of COMPLEX ;

      set z = |(x, y)|;

      assume ( len x) = ( len y);

      

      then |((x + y), (x + y))| = ((( |(x, x)| + |(x, y)|) + |(y, x)|) + |(y, y)|) by Th62

      .= ((( |(x, x)| + |(x, y)|) + ( |(x, y)| *' )) + |(y, y)|) by Th64

      .= (( |(x, x)| + (z + (z *' ))) + |(y, y)|)

      .= (( |(x, x)| + (2 * ( Re |(x, y)|))) + |(y, y)|) by Th20;

      hence thesis;

    end;

    theorem :: COMPLSP2:77

    for x,y be FinSequence of COMPLEX st ( len x) = ( len y) holds |((x - y), (x - y))| = (( |(x, x)| - (2 * ( Re |(x, y)|))) + |(y, y)|)

    proof

      let x,y be FinSequence of COMPLEX ;

      set z = |(x, y)|;

      assume ( len x) = ( len y);

      

      then |((x - y), (x - y))| = ((( |(x, x)| - |(x, y)|) - |(y, x)|) + |(y, y)|) by Th63

      .= ((( |(x, x)| - |(x, y)|) - ( |(x, y)| *' )) + |(y, y)|) by Th64

      .= (( |(x, x)| - (z + (z *' ))) + |(y, y)|)

      .= (( |(x, x)| - (2 * ( Re |(x, y)|))) + |(y, y)|) by Th20;

      hence thesis;

    end;

    theorem :: COMPLSP2:78

    

     Th67: for a be Element of COMPLEX , x,y be FinSequence of COMPLEX st ( len x) = ( len y) holds |((a * x), y)| = (a * |(x, y)|)

    proof

      let a be Element of COMPLEX , x,y be FinSequence of COMPLEX ;

      assume

       A1: ( len x) = ( len y);

      

       A2: ( len (( Re a) * ( Im x))) = ( len ( Im x)) & ( len (( Im a) * ( Re x))) = ( len ( Re x)) by RVSUM_1: 117;

      

       A3: ( len (( Re a) * ( Re x))) = ( len ( Re x)) & ( len (( Im a) * ( Im x))) = ( len ( Im x)) by RVSUM_1: 117;

      

       A4: ( len ( Re x)) = ( len x) by Th40;

      

       A5: ( len ( Im y)) = ( len y) by Th40;

      

       A6: ( len ( Re y)) = ( len y) by Th40;

      

       A7: ( len ( Im x)) = ( len x) by Th40;

       |((a * x), y)| = ((( |(((( Re a) * ( Re x)) - (( Im a) * ( Im x))), ( Re y))| - ( <i> * |(( Re (a * x)), ( Im y))|)) + ( <i> * |(( Im (a * x)), ( Re y))|)) + |(( Im (a * x)), ( Im y))|) by Th54

      .= ((( |(((( Re a) * ( Re x)) - (( Im a) * ( Im x))), ( Re y))| - ( <i> * |(((( Re a) * ( Re x)) - (( Im a) * ( Im x))), ( Im y))|)) + ( <i> * |(( Im (a * x)), ( Re y))|)) + |(( Im (a * x)), ( Im y))|) by Th54

      .= ((( |(((( Re a) * ( Re x)) - (( Im a) * ( Im x))), ( Re y))| - ( <i> * |(((( Re a) * ( Re x)) - (( Im a) * ( Im x))), ( Im y))|)) + ( <i> * |(((( Im a) * ( Re x)) + (( Re a) * ( Im x))), ( Re y))|)) + |(( Im (a * x)), ( Im y))|) by Th54

      .= ((( |(((( Re a) * ( Re x)) - (( Im a) * ( Im x))), ( Re y))| - ( <i> * |(((( Re a) * ( Re x)) - (( Im a) * ( Im x))), ( Im y))|)) + ( <i> * |(((( Im a) * ( Re x)) + (( Re a) * ( Im x))), ( Re y))|)) + |(((( Im a) * ( Re x)) + (( Re a) * ( Im x))), ( Im y))|) by Th54

      .= (((( |((( Re a) * ( Re x)), ( Re y))| - |((( Im a) * ( Im x)), ( Re y))|) - ( <i> * |(((( Re a) * ( Re x)) - (( Im a) * ( Im x))), ( Im y))|)) + ( <i> * |(((( Im a) * ( Re x)) + (( Re a) * ( Im x))), ( Re y))|)) + |(((( Im a) * ( Re x)) + (( Re a) * ( Im x))), ( Im y))|) by A1, A4, A6, A7, A3, RVSUM_1: 124

      .= (((( |((( Re a) * ( Re x)), ( Re y))| - |((( Im a) * ( Im x)), ( Re y))|) - ( <i> * ( |((( Re a) * ( Re x)), ( Im y))| - |((( Im a) * ( Im x)), ( Im y))|))) + ( <i> * |(((( Im a) * ( Re x)) + (( Re a) * ( Im x))), ( Re y))|)) + |(((( Im a) * ( Re x)) + (( Re a) * ( Im x))), ( Im y))|) by A1, A4, A7, A5, A3, RVSUM_1: 124

      .= (((( |((( Re a) * ( Re x)), ( Re y))| - |((( Im a) * ( Im x)), ( Re y))|) - ( <i> * ( |((( Re a) * ( Re x)), ( Im y))| - |((( Im a) * ( Im x)), ( Im y))|))) + ( <i> * ( |((( Im a) * ( Re x)), ( Re y))| + |((( Re a) * ( Im x)), ( Re y))|))) + |(((( Im a) * ( Re x)) + (( Re a) * ( Im x))), ( Im y))|) by A1, A4, A6, A7, A2, RVSUM_1: 120

      .= (((( |((( Re a) * ( Re x)), ( Re y))| - |((( Im a) * ( Im x)), ( Re y))|) - ( <i> * ( |((( Re a) * ( Re x)), ( Im y))| - |((( Im a) * ( Im x)), ( Im y))|))) + ( <i> * ( |((( Im a) * ( Re x)), ( Re y))| + |((( Re a) * ( Im x)), ( Re y))|))) + ( |((( Im a) * ( Re x)), ( Im y))| + |((( Re a) * ( Im x)), ( Im y))|)) by A1, A4, A7, A5, A2, RVSUM_1: 120

      .= (((( |((( Re a) * ( Re x)), ( Re y))| - |((( Im a) * ( Im x)), ( Re y))|) - ( <i> * ((( Re a) * |(( Re x), ( Im y))|) - |((( Im a) * ( Im x)), ( Im y))|))) + ( <i> * ( |((( Im a) * ( Re x)), ( Re y))| + |((( Re a) * ( Im x)), ( Re y))|))) + ( |((( Im a) * ( Re x)), ( Im y))| + |((( Re a) * ( Im x)), ( Im y))|)) by A1, A4, A5, RVSUM_1: 121

      .= (((( |((( Re a) * ( Re x)), ( Re y))| - |((( Im a) * ( Im x)), ( Re y))|) - ( <i> * ((( Re a) * |(( Re x), ( Im y))|) - (( Im a) * |(( Im x), ( Im y))|)))) + ( <i> * ( |((( Im a) * ( Re x)), ( Re y))| + |((( Re a) * ( Im x)), ( Re y))|))) + ( |((( Im a) * ( Re x)), ( Im y))| + |((( Re a) * ( Im x)), ( Im y))|)) by A1, A7, A5, RVSUM_1: 121

      .= (((((( Re a) * |(( Re x), ( Re y))|) - |((( Im a) * ( Im x)), ( Re y))|) - ( <i> * ((( Re a) * |(( Re x), ( Im y))|) - (( Im a) * |(( Im x), ( Im y))|)))) + ( <i> * ( |((( Im a) * ( Re x)), ( Re y))| + |((( Re a) * ( Im x)), ( Re y))|))) + ( |((( Im a) * ( Re x)), ( Im y))| + |((( Re a) * ( Im x)), ( Im y))|)) by A1, A4, A6, RVSUM_1: 121

      .= (((((( Re a) * |(( Re x), ( Re y))|) - (( Im a) * |(( Im x), ( Re y))|)) - ( <i> * ((( Re a) * |(( Re x), ( Im y))|) - (( Im a) * |(( Im x), ( Im y))|)))) + ( <i> * ( |((( Im a) * ( Re x)), ( Re y))| + |((( Re a) * ( Im x)), ( Re y))|))) + ( |((( Im a) * ( Re x)), ( Im y))| + |((( Re a) * ( Im x)), ( Im y))|)) by A1, A6, A7, RVSUM_1: 121

      .= (((((( Re a) * |(( Re x), ( Re y))|) - (( Im a) * |(( Im x), ( Re y))|)) - ( <i> * ((( Re a) * |(( Re x), ( Im y))|) - (( Im a) * |(( Im x), ( Im y))|)))) + ( <i> * ((( Im a) * |(( Re x), ( Re y))|) + |((( Re a) * ( Im x)), ( Re y))|))) + ( |((( Im a) * ( Re x)), ( Im y))| + |((( Re a) * ( Im x)), ( Im y))|)) by A1, A4, A6, RVSUM_1: 121

      .= (((((( Re a) * |(( Re x), ( Re y))|) - (( Im a) * |(( Im x), ( Re y))|)) - ( <i> * ((( Re a) * |(( Re x), ( Im y))|) - (( Im a) * |(( Im x), ( Im y))|)))) + ( <i> * ((( Im a) * |(( Re x), ( Re y))|) + (( Re a) * |(( Im x), ( Re y))|)))) + ( |((( Im a) * ( Re x)), ( Im y))| + |((( Re a) * ( Im x)), ( Im y))|)) by A1, A6, A7, RVSUM_1: 121

      .= (((((( Re a) * |(( Re x), ( Re y))|) - (( Im a) * |(( Im x), ( Re y))|)) - ( <i> * ((( Re a) * |(( Re x), ( Im y))|) - (( Im a) * |(( Im x), ( Im y))|)))) + ( <i> * ((( Im a) * |(( Re x), ( Re y))|) + (( Re a) * |(( Im x), ( Re y))|)))) + ((( Im a) * |(( Re x), ( Im y))|) + |((( Re a) * ( Im x)), ( Im y))|)) by A1, A4, A5, RVSUM_1: 121

      .= (((((( Re a) * |(( Re x), ( Re y))|) - (( Im a) * |(( Im x), ( Re y))|)) - ( <i> * ((( Re a) * |(( Re x), ( Im y))|) - (( Im a) * |(( Im x), ( Im y))|)))) + ( <i> * ((( Im a) * |(( Re x), ( Re y))|) + (( Re a) * |(( Im x), ( Re y))|)))) + ((( Im a) * |(( Re x), ( Im y))|) + (( Re a) * |(( Im x), ( Im y))|))) by A1, A7, A5, RVSUM_1: 121

      .= ((((((( Re a) * |(( Re x), ( Re y))|) + (( <i> * ( Im a)) * |(( Re x), ( Re y))|)) - ((( Re a) * <i> ) * |(( Re x), ( Im y))|)) + (( Im a) * |(( Re x), ( Im y))|)) + ((( Re a) * ( <i> * |(( Im x), ( Re y))|)) - (( Im a) * |(( Im x), ( Re y))|))) + ((( Re a) + ( <i> * ( Im a))) * |(( Im x), ( Im y))|))

      .= ((((((( Re a) * |(( Re x), ( Re y))|) + (( <i> * ( Im a)) * |(( Re x), ( Re y))|)) - ((( Re a) * <i> ) * |(( Re x), ( Im y))|)) + (( Im a) * |(( Re x), ( Im y))|)) + ((( Re a) + ( <i> * ( Im a))) * ( <i> * |(( Im x), ( Re y))|))) + (a * |(( Im x), ( Im y))|)) by COMPLEX1: 13

      .= (((((( Re a) * |(( Re x), ( Re y))|) + (( <i> * ( Im a)) * |(( Re x), ( Re y))|)) - ((( Re a) + ( <i> * ( Im a))) * ( <i> * |(( Re x), ( Im y))|))) + (a * ( <i> * |(( Im x), ( Re y))|))) + (a * |(( Im x), ( Im y))|)) by COMPLEX1: 13

      .= (((((( Re a) + ( <i> * ( Im a))) * |(( Re x), ( Re y))|) - (a * ( <i> * |(( Re x), ( Im y))|))) + (a * ( <i> * |(( Im x), ( Re y))|))) + (a * |(( Im x), ( Im y))|)) by COMPLEX1: 13

      .= ((((a * |(( Re x), ( Re y))|) - (a * ( <i> * |(( Re x), ( Im y))|))) + (a * ( <i> * |(( Im x), ( Re y))|))) + (a * |(( Im x), ( Im y))|)) by COMPLEX1: 13

      .= (a * |(x, y)|);

      hence thesis;

    end;

    theorem :: COMPLSP2:79

    

     Th68: for a be Element of COMPLEX , x,y be FinSequence of COMPLEX st ( len x) = ( len y) holds |(x, (a * y))| = ((a *' ) * |(x, y)|)

    proof

      let a be Element of COMPLEX , x,y be FinSequence of COMPLEX ;

      assume

       A1: ( len x) = ( len y);

       |(x, (a * y))| = ( |((a * y), x)| *' ) by Th64

      .= ((a * |(y, x)|) *' ) by A1, Th67

      .= ((a *' ) * ( |(y, x)| *' )) by COMPLEX1: 35

      .= ((a *' ) * |(x, y)|) by Th64;

      hence thesis;

    end;

    theorem :: COMPLSP2:80

    for a,b be Element of COMPLEX , x,y,z be FinSequence of COMPLEX st ( len x) = ( len y) & ( len y) = ( len z) holds |(((a * x) + (b * y)), z)| = ((a * |(x, z)|) + (b * |(y, z)|))

    proof

      let a,b be Element of COMPLEX , x,y,z be FinSequence of COMPLEX ;

      assume that

       A1: ( len x) = ( len y) and

       A2: ( len y) = ( len z);

      ( len (a * x)) = ( len x) & ( len (b * y)) = ( len y) by Th3;

      

      then |(((a * x) + (b * y)), z)| = ( |((a * x), z)| + |((b * y), z)|) by A1, A2, Th55

      .= ((a * |(x, z)|) + |((b * y), z)|) by A1, A2, Th67

      .= ((a * |(x, z)|) + (b * |(y, z)|)) by A2, Th67;

      hence thesis;

    end;

    theorem :: COMPLSP2:81

    for a,b be Element of COMPLEX , x,y,z be FinSequence of COMPLEX st ( len x) = ( len y) & ( len y) = ( len z) holds |(x, ((a * y) + (b * z)))| = (((a *' ) * |(x, y)|) + ((b *' ) * |(x, z)|))

    proof

      let a,b be Element of COMPLEX , x,y,z be FinSequence of COMPLEX ;

      assume that

       A1: ( len x) = ( len y) and

       A2: ( len y) = ( len z);

      ( len (a * y)) = ( len y) & ( len (b * z)) = ( len z) by Th3;

      

      then |(x, ((a * y) + (b * z)))| = ( |(x, (a * y))| + |(x, (b * z))|) by A1, A2, Th60

      .= (((a *' ) * |(x, y)|) + |(x, (b * z))|) by A1, Th68

      .= (((a *' ) * |(x, y)|) + ((b *' ) * |(x, z)|)) by A1, A2, Th68;

      hence thesis;

    end;