complsp2.miz
begin
reserve i,j for
Element of
NAT ,
x,y,z for
FinSequence of
COMPLEX ,
c for
Element of
COMPLEX ,
R,R1,R2 for
Element of (i
-tuples_on
COMPLEX );
definition
let z be
FinSequence of
COMPLEX ;
:: original:
*'
redefine
::
COMPLSP2:def1
func z
*' ->
FinSequence of
COMPLEX means
:
Def1: (
len it )
= (
len z) & for i be
Nat st 1
<= i & i
<= (
len z) holds (it
. i)
= ((z
. i)
*' );
coherence
proof
set f = (z
*' );
A1: (
dom f)
= (
dom z) by
COMSEQ_2:def 1;
ex n be
Nat st (
dom z)
= (
Seg n) by
FINSEQ_1:def 2;
then
A2: f is
FinSequence by
A1,
FINSEQ_1:def 2;
(
rng f)
c=
COMPLEX
proof
let y be
object;
thus thesis by
XCMPLX_0:def 2;
end;
hence thesis by
A2,
FINSEQ_1:def 4;
end;
compatibility
proof
let IT be
FinSequence of
COMPLEX ;
thus IT
= (z
*' ) implies (
len IT)
= (
len z) & for i be
Nat st 1
<= i & i
<= (
len z) holds (IT
. i)
= ((z
. i)
*' )
proof
assume
A3: IT
= (z
*' );
then (
dom IT)
= (
dom z) by
COMSEQ_2:def 1;
hence thesis by
A3,
COMSEQ_2:def 1,
FINSEQ_3: 25,
FINSEQ_3: 29;
end;
assume that
A4: (
len IT)
= (
len z) and
A5: for i be
Nat st 1
<= i & i
<= (
len z) holds (IT
. i)
= ((z
. i)
*' );
A6: (
dom IT)
= (
dom z) by
A4,
FINSEQ_3: 29;
now
let i be
set;
assume
A7: i
in (
dom IT);
then
reconsider j = i as
Nat;
1
<= j & j
<= (
len z) by
A4,
A7,
FINSEQ_3: 25;
hence (IT
. i)
= ((z
. i)
*' ) by
A5;
end;
hence IT
= (z
*' ) by
A6,
COMSEQ_2:def 1;
end;
end
Lm1: (c
* x)
= ((
multcomplex
[;] (c,(
id
COMPLEX )))
* x)
proof
(c
multcomplex )
= (
multcomplex
[;] (c,(
id
COMPLEX ))) by
SEQ_4:def 4;
hence thesis by
SEQ_4:def 9;
end;
theorem ::
COMPLSP2:1
i
in (
dom (x
+ y)) implies ((x
+ y)
. i)
= ((x
. i)
+ (y
. i)) by
VALUED_1:def 1;
theorem ::
COMPLSP2:2
i
in (
dom (x
- y)) implies ((x
- y)
. i)
= ((x
. i)
- (y
. i)) by
VALUED_1: 13;
definition
let i, R1, R2;
:: original:
-
redefine
func R1
- R2 ->
Element of (i
-tuples_on
COMPLEX ) ;
coherence
proof
(R1
- R2)
= (
diffcomplex
.: (R1,R2)) by
SEQ_4:def 7;
hence thesis by
FINSEQ_2: 120;
end;
end
definition
let i, R1, R2;
:: original:
+
redefine
func R1
+ R2 ->
Element of (i
-tuples_on
COMPLEX ) ;
coherence
proof
(R1
+ R2)
= (
addcomplex
.: (R1,R2)) by
SEQ_4:def 6;
hence thesis by
FINSEQ_2: 120;
end;
end
definition
let i, R;
let r be
Complex;
:: original:
*
redefine
func r
* R ->
Element of (i
-tuples_on
COMPLEX ) ;
coherence
proof
reconsider q = r as
Element of
COMPLEX by
XCMPLX_0:def 2;
(q
* R)
= ((
multcomplex
[;] (q,(
id
COMPLEX )))
* R) by
Lm1;
hence thesis by
FINSEQ_2: 113;
end;
end
Lm2: for F be
complex-valued
FinSequence holds F is
FinSequence of
COMPLEX
proof
let F be
complex-valued
FinSequence;
(
rng F)
c=
COMPLEX by
VALUED_0:def 1;
hence thesis by
FINSEQ_1:def 4;
end;
theorem ::
COMPLSP2:3
Th3: for a be
Complex, x be
complex-valued
FinSequence holds (
len (a
(#) x))
= (
len x)
proof
let a be
Complex, x be
complex-valued
FinSequence;
set n = (
len x);
x is
FinSequence of
COMPLEX by
Lm2;
then
reconsider z = x as
Element of (n
-tuples_on
COMPLEX ) by
FINSEQ_2: 92;
reconsider a9 = a as
Element of
COMPLEX by
XCMPLX_0:def 2;
(
len (a9
* z))
= n by
CARD_1:def 7;
hence thesis;
end;
theorem ::
COMPLSP2:4
for x be
complex-valued
FinSequence holds (
dom x)
= (
dom (
- x)) by
VALUED_1: 8;
theorem ::
COMPLSP2:5
Th5: for x be
complex-valued
FinSequence holds (
len (
- x))
= (
len x)
proof
let x be
complex-valued
FinSequence;
(
dom (
- x))
= (
dom x) by
VALUED_1: 8;
hence thesis by
FINSEQ_3: 29;
end;
theorem ::
COMPLSP2:6
Th6: for x1,x2 be
complex-valued
FinSequence st (
len x1)
= (
len x2) holds (
len (x1
+ x2))
= (
len x1)
proof
let x1,x2 be
complex-valued
FinSequence;
set n = (
len x1);
A1: x2 is
FinSequence of
COMPLEX by
Lm2;
x1 is
FinSequence of
COMPLEX by
Lm2;
then
reconsider z1 = x1 as
Element of ((
len x1)
-tuples_on
COMPLEX ) by
FINSEQ_2: 92;
assume (
len x1)
= (
len x2);
then
reconsider z2 = x2 as
Element of (n
-tuples_on
COMPLEX ) by
A1,
FINSEQ_2: 92;
(
dom (z1
+ z2))
= (
Seg n) by
FINSEQ_2: 124;
hence thesis by
FINSEQ_1:def 3;
end;
theorem ::
COMPLSP2:7
Th7: for x1,x2 be
complex-valued
FinSequence st (
len x1)
= (
len x2) holds (
len (x1
- x2))
= (
len x1)
proof
let x1,x2 be
complex-valued
FinSequence;
set n = (
len x1);
A1: x2 is
FinSequence of
COMPLEX by
Lm2;
x1 is
FinSequence of
COMPLEX by
Lm2;
then
reconsider z1 = x1 as
Element of ((
len x1)
-tuples_on
COMPLEX ) by
FINSEQ_2: 92;
assume (
len x1)
= (
len x2);
then
reconsider z2 = x2 as
Element of (n
-tuples_on
COMPLEX ) by
A1,
FINSEQ_2: 92;
(
dom (z1
- z2))
= (
Seg n) by
FINSEQ_2: 124;
hence thesis by
FINSEQ_1:def 3;
end;
theorem ::
COMPLSP2:8
for f be
complex-valued
FinSequence holds f is
Element of (
COMPLEX (
len f))
proof
let f be
complex-valued
FinSequence;
f is
FinSequence of
COMPLEX by
Lm2;
then f is
Element of (
COMPLEX
* ) by
FINSEQ_1:def 11;
then f
in { s where s be
Element of (
COMPLEX
* ) : (
len s)
= (
len f) };
then f
in ((
len f)
-tuples_on
COMPLEX ) by
FINSEQ_2:def 4;
hence thesis by
SEQ_4:def 11;
end;
::$Canceled
theorem ::
COMPLSP2:13
Th9: for x be
FinSequence of
COMPLEX holds ((
- x)
. i)
= (
- (x
. i))
proof
let x be
FinSequence of
COMPLEX ;
per cases ;
suppose
A1: not i
in (
dom (
- x));
then
A2: not i
in (
dom x) by
VALUED_1: 8;
thus ((
- x)
. i)
= (
-
0 ) by
A1,
FUNCT_1:def 2
.= (
- (x
. i)) by
A2,
FUNCT_1:def 2;
end;
suppose
A3: i
in (
dom (
- x));
set r = (x
. i);
(
- x)
= (
compcomplex
* x) by
SEQ_4:def 8;
then ((
- x)
. i)
= (
compcomplex
. r) by
A3,
FUNCT_1: 12;
hence thesis by
BINOP_2:def 1;
end;
end;
definition
let i, R;
:: original:
-
redefine
func
- R ->
Element of (i
-tuples_on
COMPLEX ) ;
coherence
proof
(
- R)
= (
compcomplex
* R) by
SEQ_4:def 8;
hence thesis by
FINSEQ_2: 113;
end;
end
theorem ::
COMPLSP2:14
c
= (R
. j) implies ((
- R)
. j)
= (
- c) by
Th9;
theorem ::
COMPLSP2:15
Th11: for a be
Complex holds (
dom (a
* x))
= (
dom x)
proof
let a be
Complex;
(
dom (a
multcomplex ))
=
COMPLEX by
FUNCT_2:def 1;
then (
rng x)
c= (
dom (a
multcomplex )) by
FINSEQ_1:def 4;
hence (
dom x)
= (
dom ((a
multcomplex )
* x)) by
RELAT_1: 27
.= (
dom (a
* x)) by
SEQ_4:def 9;
end;
theorem ::
COMPLSP2:16
Th12: for i be
Nat, a be
Complex holds ((a
* x)
. i)
= (a
* (x
. i))
proof
let i be
Nat, a be
Complex;
reconsider aa = a as
Element of
COMPLEX by
XCMPLX_0:def 2;
per cases ;
suppose
A1: not i
in (
dom (a
* x));
then
A2: not i
in (
dom x) by
Th11;
thus ((a
* x)
. i)
= (a
*
0 ) by
A1,
FUNCT_1:def 2
.= (a
* (x
. i)) by
A2,
FUNCT_1:def 2;
end;
suppose
A3: i
in (
dom (a
* x));
set a9 = (x
. i);
A4: (a
* x)
= ((
multcomplex
[;] (aa,(
id
COMPLEX )))
* x) by
Lm1;
then
A5: a9
in (
dom (
multcomplex
[;] (aa,(
id
COMPLEX )))) by
A3,
FUNCT_1: 11;
thus ((a
* x)
. i)
= ((
multcomplex
[;] (aa,(
id
COMPLEX )))
. a9) by
A3,
A4,
FUNCT_1: 12
.= (
multcomplex
. (a,((
id
COMPLEX )
. a9))) by
A5,
FUNCOP_1: 32
.= (a
* (x
. i)) by
BINOP_2:def 5;
end;
end;
theorem ::
COMPLSP2:17
Th13: for a be
Complex holds ((a
* x)
*' )
= ((a
*' )
* (x
*' ))
proof
let a be
Complex;
reconsider aa = a as
Element of
COMPLEX by
XCMPLX_0:def 2;
(
len ((a
*' )
* (x
*' )))
= (
len (x
*' )) by
Th3;
then
A1: (
len ((a
*' )
* (x
*' )))
= (
len x) by
Def1;
A2: (
len (a
* x))
= (
len x) by
Th3;
A3:
now
let i be
Nat;
assume that
A4: 1
<= i and
A5: i
<= (
len ((a
* x)
*' ));
A6: i
<= (
len (a
* x)) by
A5,
Def1;
hence (((a
* x)
*' )
. i)
= (((a
* x)
. i)
*' ) by
A4,
Def1
.= ((aa
* (x
. i))
*' ) by
Th12
.= ((aa
*' )
* ((x
. i)
*' )) by
COMPLEX1: 35
.= ((a
*' )
* ((x
*' )
. i)) by
A2,
A4,
A6,
Def1
.= (((a
*' )
* (x
*' ))
. i) by
Th12;
end;
(
len ((a
* x)
*' ))
= (
len (a
* x)) by
Def1;
hence thesis by
A1,
A3,
Th3;
end;
theorem ::
COMPLSP2:18
Th14: ((R1
+ R2)
. j)
= ((R1
. j)
+ (R2
. j))
proof
per cases ;
suppose
A1: not j
in (
Seg i);
then
A2: not j
in (
dom R2) by
FINSEQ_2: 124;
A3: not j
in (
dom R1) by
A1,
FINSEQ_2: 124;
not j
in (
dom (R1
+ R2)) by
A1,
FINSEQ_2: 124;
hence ((R1
+ R2)
. j)
= (
0
+
0 ) by
FUNCT_1:def 2
.= ((R1
. j)
+
0 ) by
A3,
FUNCT_1:def 2
.= ((R1
. j)
+ (R2
. j)) by
A2,
FUNCT_1:def 2;
end;
suppose j
in (
Seg i);
then j
in (
dom (R1
+ R2)) by
FINSEQ_2: 124;
hence thesis by
VALUED_1:def 1;
end;
end;
theorem ::
COMPLSP2:19
Th15: for x1,x2 be
FinSequence of
COMPLEX st (
len x1)
= (
len x2) holds ((x1
+ x2)
*' )
= ((x1
*' )
+ (x2
*' ))
proof
let x1,x2 be
FinSequence of
COMPLEX ;
reconsider x9 = x1 as
Element of ((
len x1)
-tuples_on
COMPLEX ) by
FINSEQ_2: 92;
reconsider y9 = x2 as
Element of ((
len x2)
-tuples_on
COMPLEX ) by
FINSEQ_2: 92;
reconsider x3 = (x1
*' ) as
Element of ((
len (x1
*' ))
-tuples_on
COMPLEX ) by
FINSEQ_2: 92;
reconsider x4 = (x2
*' ) as
Element of ((
len (x2
*' ))
-tuples_on
COMPLEX ) by
FINSEQ_2: 92;
assume
A1: (
len x1)
= (
len x2);
then
A2: (
len (x1
+ x2))
= (
len x1) by
Th6;
A3: (
len x1)
= (
len (x1
*' )) & (
len x2)
= (
len (x2
*' )) by
Def1;
A4:
now
let i be
Nat;
A5: i
in
NAT by
ORDINAL1:def 12;
assume that
A6: 1
<= i and
A7: i
<= (
len ((x1
+ x2)
*' ));
A8: i
<= (
len (x1
+ x2)) by
A7,
Def1;
hence (((x1
+ x2)
*' )
. i)
= (((x1
+ x2)
. i)
*' ) by
A6,
Def1
.= (((x9
. i)
+ (y9
. i))
*' ) by
A1,
A5,
Th14
.= (((x1
. i)
*' )
+ ((x2
. i)
*' )) by
COMPLEX1: 32
.= (((x1
*' )
. i)
+ ((x2
. i)
*' )) by
A2,
A6,
A8,
Def1
.= (((x1
*' )
. i)
+ ((x2
*' )
. i)) by
A1,
A2,
A6,
A8,
Def1
.= ((x3
+ x4)
. i) by
A1,
A3,
A5,
Th14;
end;
(
len ((x1
*' )
+ (x2
*' )))
= (
len x1) by
A1,
A3,
Th6;
hence thesis by
A4,
A2,
Def1;
end;
theorem ::
COMPLSP2:20
Th16: ((R1
- R2)
. j)
= ((R1
. j)
- (R2
. j))
proof
per cases ;
suppose
A1: not j
in (
Seg i);
then
A2: not j
in (
dom R2) by
FINSEQ_2: 124;
A3: not j
in (
dom R1) by
A1,
FINSEQ_2: 124;
not j
in (
dom (R1
- R2)) by
A1,
FINSEQ_2: 124;
hence ((R1
- R2)
. j)
= (
0
-
0 ) by
FUNCT_1:def 2
.= ((R1
. j)
-
0 ) by
A3,
FUNCT_1:def 2
.= ((R1
. j)
- (R2
. j)) by
A2,
FUNCT_1:def 2;
end;
suppose j
in (
Seg i);
then j
in (
dom (R1
- R2)) by
FINSEQ_2: 124;
hence thesis by
VALUED_1: 13;
end;
end;
theorem ::
COMPLSP2:21
Th17: for x1,x2 be
FinSequence of
COMPLEX st (
len x1)
= (
len x2) holds ((x1
- x2)
*' )
= ((x1
*' )
- (x2
*' ))
proof
let x1,x2 be
FinSequence of
COMPLEX ;
reconsider x9 = x1 as
Element of ((
len x1)
-tuples_on
COMPLEX ) by
FINSEQ_2: 92;
reconsider y9 = x2 as
Element of ((
len x2)
-tuples_on
COMPLEX ) by
FINSEQ_2: 92;
reconsider x3 = (x1
*' ) as
Element of ((
len (x1
*' ))
-tuples_on
COMPLEX ) by
FINSEQ_2: 92;
reconsider x4 = (x2
*' ) as
Element of ((
len (x2
*' ))
-tuples_on
COMPLEX ) by
FINSEQ_2: 92;
assume
A1: (
len x1)
= (
len x2);
then
A2: (
len (x1
- x2))
= (
len x1) by
Th7;
A3: (
len x1)
= (
len (x1
*' )) & (
len x2)
= (
len (x2
*' )) by
Def1;
A4:
now
let i be
Nat;
A5: i
in
NAT by
ORDINAL1:def 12;
assume that
A6: 1
<= i and
A7: i
<= (
len ((x1
- x2)
*' ));
A8: i
<= (
len (x1
- x2)) by
A7,
Def1;
hence (((x1
- x2)
*' )
. i)
= (((x1
- x2)
. i)
*' ) by
A6,
Def1
.= (((x9
. i)
- (y9
. i))
*' ) by
A1,
A5,
Th16
.= (((x1
. i)
*' )
- ((x2
. i)
*' )) by
COMPLEX1: 34
.= (((x1
*' )
. i)
- ((x2
. i)
*' )) by
A2,
A6,
A8,
Def1
.= (((x1
*' )
. i)
- ((x2
*' )
. i)) by
A1,
A2,
A6,
A8,
Def1
.= ((x3
- x4)
. i) by
A1,
A3,
A5,
Th16;
end;
(
len ((x1
*' )
- (x2
*' )))
= (
len x1) by
A1,
A3,
Th7;
hence thesis by
A4,
A2,
Def1;
end;
theorem ::
COMPLSP2:22
for z be
FinSequence of
COMPLEX holds ((z
*' )
*' )
= z;
theorem ::
COMPLSP2:23
for z be
FinSequence of
COMPLEX holds ((
- z)
*' )
= (
- (z
*' ))
proof
let z be
FinSequence of
COMPLEX ;
thus ((
- z)
*' )
= (((
-
1r )
*' )
* (z
*' )) by
Th13,
COMPLEX1:def 4
.= (
- (z
*' )) by
COMPLEX1: 30,
COMPLEX1: 33,
COMPLEX1:def 4;
end;
theorem ::
COMPLSP2:24
Th20: for z be
Complex holds (z
+ (z
*' ))
= (2
* (
Re z))
proof
let z be
Complex;
(z
+ (z
*' ))
= (((
Re z)
+ (
Re (z
*' )))
+ (((
Im z)
+ (
Im (z
*' )))
*
<i> )) by
COMPLEX1: 81
.= (((
Re z)
+ (
Re (z
*' )))
+ (((
Im z)
+ (
- (
Im z)))
*
<i> )) by
COMPLEX1: 27
.= ((
Re z)
+ (
Re z)) by
COMPLEX1: 27
.= (2
* (
Re z));
hence thesis;
end;
theorem ::
COMPLSP2:25
Th21: for x,y be
complex-valued
FinSequence st (
len x)
= (
len y) holds ((x
- y)
. i)
= ((x
. i)
- (y
. i))
proof
let x,y be
complex-valued
FinSequence;
A1: x is
FinSequence of
COMPLEX & y is
FinSequence of
COMPLEX by
Lm2;
then
reconsider x2 = x as
Element of ((
len x)
-tuples_on
COMPLEX ) by
FINSEQ_2: 92;
reconsider y2 = y as
Element of ((
len y)
-tuples_on
COMPLEX ) by
A1,
FINSEQ_2: 92;
reconsider y29 = (x2
- y2) as
Element of ((
len (x2
- y2))
-tuples_on
COMPLEX ) by
FINSEQ_2: 92;
assume
A2: (
len x)
= (
len y);
then
A3: (
len (x
- y))
= (
len x) by
Th7;
per cases ;
suppose
A4: not i
in (
Seg (
len x));
then
A5: not i
in (
dom x2) by
FINSEQ_2: 124;
A6: not i
in (
dom y2) by
A2,
A4,
FINSEQ_2: 124;
not i
in (
dom y29) by
A3,
A4,
FINSEQ_2: 124;
then ((x2
- y2)
. i)
= (
0
-
0 ) by
FUNCT_1:def 2
.= ((x2
. i)
-
0 ) by
A5,
FUNCT_1:def 2
.= ((x2
. i)
- (y2
. i)) by
A6,
FUNCT_1:def 2;
hence thesis;
end;
suppose i
in (
Seg (
len x));
then i
in (
dom y29) by
A3,
FINSEQ_2: 124;
hence thesis by
VALUED_1: 13;
end;
end;
theorem ::
COMPLSP2:26
Th22: for x,y be
complex-valued
FinSequence st (
len x)
= (
len y) holds ((x
+ y)
. i)
= ((x
. i)
+ (y
. i))
proof
let x,y be
complex-valued
FinSequence;
A1: x is
FinSequence of
COMPLEX & y is
FinSequence of
COMPLEX by
Lm2;
then
reconsider x2 = x as
Element of ((
len x)
-tuples_on
COMPLEX ) by
FINSEQ_2: 92;
reconsider y2 = y as
Element of ((
len y)
-tuples_on
COMPLEX ) by
A1,
FINSEQ_2: 92;
reconsider y29 = (x2
+ y2) as
Element of ((
len (x2
+ y2))
-tuples_on
COMPLEX ) by
FINSEQ_2: 92;
assume
A2: (
len x)
= (
len y);
then
A3: (
len (x
+ y))
= (
len x) by
Th6;
per cases ;
suppose
A4: not i
in (
Seg (
len x));
then
A5: not i
in (
dom x2) by
FINSEQ_2: 124;
A6: not i
in (
dom y2) by
A2,
A4,
FINSEQ_2: 124;
not i
in (
dom y29) by
A3,
A4,
FINSEQ_2: 124;
then ((x2
+ y2)
. i)
= (
0
+
0 ) by
FUNCT_1:def 2
.= ((x2
. i)
+
0 ) by
A5,
FUNCT_1:def 2
.= ((x2
. i)
+ (y2
. i)) by
A6,
FUNCT_1:def 2;
hence thesis;
end;
suppose i
in (
Seg (
len x));
then i
in (
dom y29) by
A3,
FINSEQ_2: 124;
hence thesis by
VALUED_1:def 1;
end;
end;
definition
let z be
FinSequence of
COMPLEX ;
::
COMPLSP2:def2
func
Re z ->
FinSequence of
REAL equals ((1
/ 2)
* (z
+ (z
*' )));
coherence
proof
A1: (
len z)
= (
len (z
*' )) by
Def1;
A2: (
len ((1
/ 2)
* (z
+ (z
*' ))))
= (
len (z
+ (z
*' ))) by
Th3
.= (
len z) by
A1,
Th6;
(
rng ((1
/ 2)
* (z
+ (z
*' ))))
c=
REAL
proof
let w be
object;
assume w
in (
rng ((1
/ 2)
* (z
+ (z
*' ))));
then
consider x be
object such that
A3: x
in (
dom ((1
/ 2)
* (z
+ (z
*' )))) and
A4: w
= (((1
/ 2)
* (z
+ (z
*' )))
. x) by
FUNCT_1:def 3;
reconsider i = x as
Element of
NAT by
A3;
x
in (
Seg (
len ((1
/ 2)
* (z
+ (z
*' ))))) by
A3,
FINSEQ_1:def 3;
then
A5: 1
<= i & i
<= (
len z) by
A2,
FINSEQ_1: 1;
(((1
/ 2)
* (z
+ (z
*' )))
. i)
= ((1
/ 2)
* ((z
+ (z
*' ))
. i)) by
Th12
.= ((1
/ 2)
* ((z
. i)
+ ((z
*' )
. i))) by
A1,
Th22
.= ((1
/ 2)
* ((z
. i)
+ ((z
. i)
*' ))) by
A5,
Def1
.= ((1
/ 2)
* (2
* (
Re (z
. i)))) by
Th20;
hence thesis by
A4;
end;
hence thesis by
FINSEQ_1:def 4;
end;
end
theorem ::
COMPLSP2:27
Th23: for z be
Complex holds (z
- (z
*' ))
= ((2
* (
Im z))
*
<i> )
proof
let z be
Complex;
(z
- (z
*' ))
= (((
Re z)
- (
Re (z
*' )))
+ (((
Im z)
- (
Im (z
*' )))
*
<i> )) by
COMPLEX1: 84
.= (((
Re z)
- (
Re (z
*' )))
+ (((
Im z)
- (
- (
Im z)))
*
<i> )) by
COMPLEX1: 27
.= (((
Re z)
- (
Re z))
+ (((
Im z)
- (
- (
Im z)))
*
<i> )) by
COMPLEX1: 27
.= ((2
* (
Im z))
*
<i> );
hence thesis;
end;
definition
let z be
FinSequence of
COMPLEX ;
::
COMPLSP2:def3
func
Im z ->
FinSequence of
REAL equals ((
- ((1
/ 2)
*
<i> ))
* (z
- (z
*' )));
coherence
proof
A1: (
len z)
= (
len (z
*' )) by
Def1;
A2: (
len ((
- ((1
/ 2)
*
<i> ))
* (z
- (z
*' ))))
= (
len (z
- (z
*' ))) by
Th3
.= (
len z) by
A1,
Th7;
(
rng ((
- ((1
/ 2)
*
<i> ))
* (z
- (z
*' ))))
c=
REAL
proof
let w be
object;
assume w
in (
rng ((
- ((1
/ 2)
*
<i> ))
* (z
- (z
*' ))));
then
consider x be
object such that
A3: x
in (
dom ((
- ((1
/ 2)
*
<i> ))
* (z
- (z
*' )))) and
A4: w
= (((
- ((1
/ 2)
*
<i> ))
* (z
- (z
*' )))
. x) by
FUNCT_1:def 3;
reconsider i = x as
Element of
NAT by
A3;
x
in (
Seg (
len ((
- ((1
/ 2)
*
<i> ))
* (z
- (z
*' ))))) by
A3,
FINSEQ_1:def 3;
then
A5: 1
<= i & i
<= (
len z) by
A2,
FINSEQ_1: 1;
(((
- ((1
/ 2)
*
<i> ))
* (z
- (z
*' )))
. i)
= ((
- ((1
/ 2)
*
<i> ))
* ((z
- (z
*' ))
. i)) by
Th12
.= ((
- ((1
/ 2)
*
<i> ))
* ((z
. i)
- ((z
*' )
. i))) by
A1,
Th21
.= ((
- ((1
/ 2)
*
<i> ))
* ((z
. i)
- ((z
. i)
*' ))) by
A5,
Def1
.= ((
- ((1
/ 2)
*
<i> ))
* ((2
* (
Im (z
. i)))
*
<i> )) by
Th23;
hence thesis by
A4;
end;
hence thesis by
FINSEQ_1:def 4;
end;
end
definition
let x,y be
FinSequence of
COMPLEX ;
::
COMPLSP2:def4
func
|(x,y)| ->
Element of
COMPLEX equals (((
|((
Re x), (
Re y))|
- (
<i>
*
|((
Re x), (
Im y))|))
+ (
<i>
*
|((
Im x), (
Re y))|))
+
|((
Im x), (
Im y))|);
coherence by
XCMPLX_0:def 2;
end
theorem ::
COMPLSP2:28
Th24: for x,y,z be
complex-valued
FinSequence st (
len x)
= (
len y) & (
len y)
= (
len z) holds (x
+ (y
+ z))
= ((x
+ y)
+ z)
proof
let x,y,z be
complex-valued
FinSequence;
reconsider x1 = x, y1 = y, z1 = z as
FinSequence of
COMPLEX by
Lm2;
assume
A1: (
len x)
= (
len y) & (
len y)
= (
len z);
reconsider z9 = z1 as
Element of ((
len z)
-tuples_on
COMPLEX ) by
FINSEQ_2: 92;
reconsider y9 = y1 as
Element of ((
len y)
-tuples_on
COMPLEX ) by
FINSEQ_2: 92;
reconsider x9 = x1 as
Element of ((
len x)
-tuples_on
COMPLEX ) by
FINSEQ_2: 92;
(x
+ (y
+ z))
= (
addcomplex
.: (x1,(y1
+ z1))) by
SEQ_4:def 6
.= (
addcomplex
.: (x1,(
addcomplex
.: (y1,z1)))) by
SEQ_4:def 6
.= (
addcomplex
.: ((
addcomplex
.: (x9,y9)),z9)) by
A1,
FINSEQOP: 28
.= (
addcomplex
.: ((x1
+ y1),z1)) by
SEQ_4:def 6
.= ((x
+ y)
+ z) by
SEQ_4:def 6;
hence thesis;
end;
::$Canceled
theorem ::
COMPLSP2:30
Th25: for c be
Complex, x,y be
FinSequence of
COMPLEX st (
len x)
= (
len y) holds (c
* (x
+ y))
= ((c
* x)
+ (c
* y))
proof
let c be
Complex, x,y be
FinSequence of
COMPLEX ;
assume
A1: (
len x)
= (
len y);
set cM = (c
multcomplex );
reconsider y9 = y as
Element of ((
len y)
-tuples_on
COMPLEX ) by
FINSEQ_2: 92;
reconsider x9 = x as
Element of ((
len x)
-tuples_on
COMPLEX ) by
FINSEQ_2: 92;
A2: c is
Element of
COMPLEX by
XCMPLX_0:def 2;
(c
* (x
+ y))
= (cM
* (x
+ y)) by
SEQ_4:def 9
.= (cM
* (
addcomplex
.: (x,y))) by
SEQ_4:def 6
.= (
addcomplex
.: ((cM
* x9),(cM
* y9))) by
A1,
A2,
FINSEQOP: 51,
SEQ_4: 56
.= ((cM
* x)
+ (cM
* y)) by
SEQ_4:def 6
.= ((c
* x)
+ (cM
* y)) by
SEQ_4:def 9
.= ((c
* x)
+ (c
* y)) by
SEQ_4:def 9;
hence thesis;
end;
::$Canceled
theorem ::
COMPLSP2:32
Th26: for x,y be
complex-valued
FinSequence st (
len x)
= (
len y) & (x
+ y)
= (
0c (
len x)) holds x
= (
- y) & y
= (
- x)
proof
let x,y be
complex-valued
FinSequence;
assume that
A1: (
len x)
= (
len y) and
A2: (x
+ y)
= (
0c (
len x));
reconsider x1 = x, y1 = y as
FinSequence of
COMPLEX by
Lm2;
reconsider x9 = x1 as
Element of ((
len x)
-tuples_on
COMPLEX ) by
FINSEQ_2: 92;
reconsider y9 = y1 as
Element of ((
len y)
-tuples_on
COMPLEX ) by
FINSEQ_2: 92;
A3: (x
+ y)
= (
addcomplex
.: (x1,y1)) & (
- y)
= (
compcomplex
* y1) by
SEQ_4:def 6,
SEQ_4:def 8;
(x
+ y)
= ((
len x)
|->
0c ) by
A2,
SEQ_4:def 12;
then x9
= (
- y9) by
A1,
A3,
BINOP_2: 1,
FINSEQOP: 74,
SEQ_4: 51,
SEQ_4: 52;
hence thesis;
end;
theorem ::
COMPLSP2:33
Th27: for x be
complex-valued
FinSequence holds (x
+ (
0c (
len x)))
= x
proof
let x be
complex-valued
FinSequence;
A1: x is
FinSequence of
COMPLEX by
Lm2;
then
reconsider x9 = x as
Element of ((
len x)
-tuples_on
COMPLEX ) by
FINSEQ_2: 92;
(x
+ (
0c (
len x)))
= (x
+ ((
len x)
|->
0c )) by
SEQ_4:def 12
.= (
addcomplex
.: (x,((
len x)
|->
0c ))) by
A1,
SEQ_4:def 6
.= x9 by
BINOP_2: 1,
FINSEQOP: 56;
hence thesis;
end;
theorem ::
COMPLSP2:34
Th28: for x be
complex-valued
FinSequence holds (x
+ (
- x))
= (
0c (
len x))
proof
let x be
complex-valued
FinSequence;
A1: x is
FinSequence of
COMPLEX & (
- x) is
FinSequence of
COMPLEX by
Lm2;
then
reconsider x9 = x as
Element of ((
len x)
-tuples_on
COMPLEX ) by
FINSEQ_2: 92;
(x
+ (
- x))
= (
addcomplex
.: (x,(
- x))) by
A1,
SEQ_4:def 6
.= (
addcomplex
.: (x,(
compcomplex
* x))) by
A1,
SEQ_4:def 8
.= ((
len x9)
|->
0c ) by
BINOP_2: 1,
FINSEQOP: 73,
SEQ_4: 51,
SEQ_4: 52
.= (
0c (
len x9)) by
SEQ_4:def 12;
hence thesis;
end;
theorem ::
COMPLSP2:35
Th29: for x,y be
complex-valued
FinSequence st (
len x)
= (
len y) holds (
- (x
+ y))
= ((
- x)
+ (
- y))
proof
let x,y be
complex-valued
FinSequence;
assume
A1: (
len x)
= (
len y);
A2: (
len (
- y))
= (
len y) by
Th5;
then
A3: (
len ((
- x)
+ (
- y)))
= (
len (
- x)) by
A1,
Th5,
Th6;
A4: (
len (
- x))
= (
len x) by
Th5;
A5: (
len (x
+ y))
= (
len x) by
A1,
Th6;
then ((x
+ y)
+ ((
- x)
+ (
- y)))
= (((y
+ x)
+ (
- x))
+ (
- y)) by
A1,
A2,
A4,
Th24
.= ((y
+ (x
+ (
- x)))
+ (
- y)) by
A1,
A4,
Th24
.= ((y
+ (
0c (
len x)))
+ (
- y)) by
Th28
.= (y
+ (
- y)) by
A1,
Th27
.= (
0c (
len y)) by
Th28;
hence thesis by
A1,
A4,
A5,
A3,
Th26;
end;
theorem ::
COMPLSP2:36
Th30: for x,y,z be
complex-valued
FinSequence st (
len x)
= (
len y) & (
len y)
= (
len z) holds ((x
- y)
- z)
= (x
- (y
+ z))
proof
let x,y,z be
complex-valued
FinSequence;
assume that
A1: (
len x)
= (
len y) and
A2: (
len y)
= (
len z);
(
len (
- y))
= (
len y) & (
len (
- z))
= (
len z) by
Th5;
then ((x
- y)
- z)
= (x
+ ((
- y)
+ (
- z))) by
A1,
A2,
Th24
.= (x
- (y
+ z)) by
A2,
Th29;
hence thesis;
end;
theorem ::
COMPLSP2:37
Th31: for x,y,z be
complex-valued
FinSequence st (
len x)
= (
len y) & (
len y)
= (
len z) holds (x
+ (y
- z))
= ((x
+ y)
- z)
proof
let x,y,z be
complex-valued
FinSequence;
assume
A1: (
len x)
= (
len y) & (
len y)
= (
len z);
(
len (
- z))
= (
len z) by
Th5;
hence thesis by
A1,
Th24;
end;
::$Canceled
theorem ::
COMPLSP2:39
Th32: for x,y be
complex-valued
FinSequence st (
len x)
= (
len y) holds (
- (x
- y))
= ((
- x)
+ y)
proof
let x,y be
complex-valued
FinSequence;
assume
A1: (
len x)
= (
len y);
(
len (
- y))
= (
len y) by
Th5;
then (
- (x
- y))
= ((
- x)
+ (
- (
- y))) by
A1,
Th29
.= ((
- x)
+ y);
hence thesis;
end;
theorem ::
COMPLSP2:40
Th33: for x,y,z be
complex-valued
FinSequence st (
len x)
= (
len y) & (
len y)
= (
len z) holds (x
- (y
- z))
= ((x
- y)
+ z)
proof
let x,y,z be
complex-valued
FinSequence;
assume that
A1: (
len x)
= (
len y) and
A2: (
len y)
= (
len z);
A3: (
len (
- y))
= (
len y) by
Th5;
(x
- (y
- z))
= (x
+ ((
- y)
+ z)) by
A2,
Th32
.= ((x
- y)
+ z) by
A1,
A2,
A3,
Th24;
hence thesis;
end;
theorem ::
COMPLSP2:41
Th34: for c be
Complex holds (c
* (
0c (
len x)))
= (
0c (
len x))
proof
let c be
Complex;
reconsider cc = c as
Element of
COMPLEX by
XCMPLX_0:def 2;
A1: (
rng (
0c (
len x)))
c=
COMPLEX by
FINSEQ_1:def 4;
(c
* (
0c (
len x)))
= ((
multcomplex
[;] (cc,(
id
COMPLEX )))
* (
0c (
len x))) by
Lm1
.= (
multcomplex
[;] (cc,((
id
COMPLEX )
* (
0c (
len x))))) by
FUNCOP_1: 34
.= (
multcomplex
[;] (cc,(
0c (
len x)))) by
A1,
RELAT_1: 53
.= (
multcomplex
[;] (cc,((
len x)
|->
0c ))) by
SEQ_4:def 12
.= ((
len x)
|-> (
multcomplex
. (cc,
0c ))) by
FINSEQOP: 18
.= ((
len x)
|-> (cc
*
0c )) by
BINOP_2:def 5
.= (
0c (
len x)) by
SEQ_4:def 12;
hence thesis;
end;
theorem ::
COMPLSP2:42
Th35: for c be
Complex holds (
- (c
* x))
= (c
* (
- x))
proof
let c be
Complex;
A1: (
len (c
* (
- x)))
= (
len (
- x)) & (
len (c
* x))
= (
len x) by
Th3;
A2: (
len x)
= (
len (
- x)) by
Th5;
then ((c
* (
- x))
+ (c
* x))
= (c
* (x
+ (
- x))) by
Th25
.= (c
* (
0c (
len x))) by
Th28
.= (
0c (
len x)) by
Th34;
hence thesis by
A2,
A1,
Th26;
end;
theorem ::
COMPLSP2:43
Th36: for c be
Complex, x,y be
FinSequence of
COMPLEX st (
len x)
= (
len y) holds (c
* (x
- y))
= ((c
* x)
- (c
* y))
proof
let c be
Complex, x,y be
FinSequence of
COMPLEX ;
assume
A1: (
len x)
= (
len y);
reconsider cc = c as
Element of
COMPLEX by
XCMPLX_0:def 2;
reconsider y9 = y as
Element of ((
len y)
-tuples_on
COMPLEX ) by
FINSEQ_2: 92;
reconsider x9 = x as
Element of ((
len x)
-tuples_on
COMPLEX ) by
FINSEQ_2: 92;
set cM = (cc
multcomplex );
(c
* (x
- y))
= (cM
* (x
+ (
- y))) by
SEQ_4:def 9
.= (cM
* (
addcomplex
.: (x,(
- y)))) by
SEQ_4:def 6
.= (
addcomplex
.: ((cM
* x9),(cM
* (
- y9)))) by
A1,
FINSEQOP: 51,
SEQ_4: 56
.= ((cM
* x)
+ (cM
* (
- y))) by
SEQ_4:def 6
.= ((c
* x)
+ (cM
* (
- y))) by
SEQ_4:def 9
.= ((c
* x)
+ (c
* (
- y))) by
SEQ_4:def 9
.= ((c
* x)
- (c
* y)) by
Th35;
hence thesis;
end;
theorem ::
COMPLSP2:44
for x1,y1 be
Element of
COMPLEX holds for x2,y2 be
Real st x1
= x2 & y1
= y2 holds (
addcomplex
. (x1,y1))
= (
addreal
. (x2,y2))
proof
let x1,y1 be
Element of
COMPLEX ;
let x2,y2 be
Real;
A1: (
addcomplex
. (x1,y1))
= (x1
+ y1) by
BINOP_2:def 3;
assume x1
= x2 & y1
= y2;
hence thesis by
A1,
BINOP_2:def 9;
end;
reserve C for
Function of
[:
COMPLEX ,
COMPLEX :],
COMPLEX ;
reserve G for
Function of
[:
REAL ,
REAL :],
REAL ;
theorem ::
COMPLSP2:45
Th38: for x1,y1 be
FinSequence of
COMPLEX holds for x2,y2 be
FinSequence of
REAL st x1
= x2 & y1
= y2 & (
len x1)
= (
len y2) & (for i st i
in (
dom x1) holds (C
. ((x1
. i),(y1
. i)))
= (G
. ((x2
. i),(y2
. i)))) holds (C
.: (x1,y1))
= (G
.: (x2,y2))
proof
let x1,y1 be
FinSequence of
COMPLEX ;
let x2,y2 be
FinSequence of
REAL ;
assume that
A1: x1
= x2 and
A2: y1
= y2 and
A3: (
len x1)
= (
len y2) and
A4: for i st i
in (
dom x1) holds (C
. ((x1
. i),(y1
. i)))
= (G
. ((x2
. i),(y2
. i)));
A5: (
len (G
.: (x2,y2)))
= (
len x1) by
A1,
A3,
FINSEQ_2: 72;
now
let i be
Nat;
assume that
A6: 1
<= i and
A7: i
<= (
len (C
.: (x1,y1)));
A8: i
<= (
len x1) by
A2,
A3,
A7,
FINSEQ_2: 72;
then
A9: i
in (
dom x1) by
A6,
FINSEQ_3: 25;
A10: i
in (
dom (G
.: (x2,y2))) by
A5,
A6,
A8,
FINSEQ_3: 25;
i
in (
dom (C
.: (x1,y1))) by
A6,
A7,
FINSEQ_3: 25;
hence ((C
.: (x1,y1))
. i)
= (C
. ((x1
. i),(y1
. i))) by
FUNCOP_1: 22
.= (G
. ((x2
. i),(y2
. i))) by
A4,
A9
.= ((G
.: (x2,y2))
. i) by
A10,
FUNCOP_1: 22;
end;
hence thesis by
A5,
A2,
A3,
FINSEQ_2: 72;
end;
theorem ::
COMPLSP2:46
for x1,y1 be
FinSequence of
COMPLEX holds for x2,y2 be
FinSequence of
REAL st x1
= x2 & y1
= y2 & (
len x1)
= (
len y2) holds (
addcomplex
.: (x1,y1))
= (
addreal
.: (x2,y2))
proof
let x1,y1 be
FinSequence of
COMPLEX ;
let x2,y2 be
FinSequence of
REAL ;
assume that
A1: x1
= x2 & y1
= y2 and
A2: (
len x1)
= (
len y2);
for i st i
in (
dom x1) holds (
addcomplex
. ((x1
. i),(y1
. i)))
= (
addreal
. ((x2
. i),(y2
. i)))
proof
let i;
((x1
. i)
+ (y1
. i))
= (
addcomplex
. ((x1
. i),(y1
. i))) by
BINOP_2:def 3;
hence thesis by
A1,
BINOP_2:def 9;
end;
hence thesis by
A1,
A2,
Th38;
end;
::$Canceled
theorem ::
COMPLSP2:48
Th40: for x be
FinSequence of
COMPLEX holds (
len (
Re x))
= (
len x) & (
len (
Im x))
= (
len x)
proof
let x be
FinSequence of
COMPLEX ;
A1: (
len x)
= (
len (x
*' )) by
Def1;
A2: (
len (
Im x))
= (
len (x
- (x
*' ))) by
Th3
.= (
len x) by
A1,
Th7;
(
len (
Re x))
= (
len (x
+ (x
*' ))) by
Th3
.= (
len x) by
A1,
Th6;
hence thesis by
A2;
end;
theorem ::
COMPLSP2:49
Th41: for x,y be
FinSequence of
COMPLEX st (
len x)
= (
len y) holds (
Re (x
+ y))
= ((
Re x)
+ (
Re y)) & (
Im (x
+ y))
= ((
Im x)
+ (
Im y))
proof
let x,y be
FinSequence of
COMPLEX ;
A1: (
len (
- (x
*' )))
= (
len (x
*' )) by
Th5;
assume
A2: (
len x)
= (
len y);
then
A3: (
len (x
+ y))
= (
len x) by
Th6;
A4: (
len y)
= (
len (y
*' )) by
Def1;
then
A5: (
len (y
+ (y
*' )))
= (
len y) by
Th6;
A6: (
len x)
= (
len (x
*' )) by
Def1;
then
A7: (
len (x
+ (x
*' )))
= (
len x) by
Th6;
A8: (
len (x
- (x
*' )))
= (
len x) by
A6,
Th7;
A9: (
len (y
- (y
*' )))
= (
len y) by
A4,
Th7;
thus (
Re (x
+ y))
= ((1
/ 2)
* ((x
+ y)
+ ((x
*' )
+ (y
*' )))) by
A2,
Th15
.= ((1
/ 2)
* (((x
+ y)
+ (x
*' ))
+ (y
*' ))) by
A2,
A4,
A6,
A3,
Th24
.= ((1
/ 2)
* (((x
+ (x
*' ))
+ y)
+ (y
*' ))) by
A2,
A6,
Th24
.= ((1
/ 2)
* ((x
+ (x
*' ))
+ (y
+ (y
*' )))) by
A2,
A4,
A7,
Th24
.= ((
Re x)
+ (
Re y)) by
A2,
A7,
A5,
Th25;
thus (
Im (x
+ y))
= ((
- ((1
/ 2)
*
<i> ))
* ((x
+ y)
- ((x
*' )
+ (y
*' )))) by
A2,
Th15
.= ((
- ((1
/ 2)
*
<i> ))
* (((x
+ y)
- (x
*' ))
- (y
*' ))) by
A2,
A4,
A6,
A3,
Th30
.= ((
- ((1
/ 2)
*
<i> ))
* (((x
+ (
- (x
*' )))
+ y)
- (y
*' ))) by
A2,
A6,
A1,
Th24
.= ((
- ((1
/ 2)
*
<i> ))
* ((x
- (x
*' ))
+ (y
- (y
*' )))) by
A2,
A4,
A8,
Th31
.= ((
Im x)
+ (
Im y)) by
A2,
A8,
A9,
Th25;
end;
theorem ::
COMPLSP2:50
for x1,y1 be
FinSequence of
COMPLEX holds for x2,y2 be
FinSequence of
REAL st x1
= x2 & y1
= y2 & (
len x1)
= (
len y2) holds (
diffcomplex
.: (x1,y1))
= (
diffreal
.: (x2,y2))
proof
let x1,y1 be
FinSequence of
COMPLEX , x2,y2 be
FinSequence of
REAL ;
assume that
A1: x1
= x2 & y1
= y2 and
A2: (
len x1)
= (
len y2);
for i st i
in (
dom x1) holds (
diffcomplex
. ((x1
. i),(y1
. i)))
= (
diffreal
. ((x2
. i),(y2
. i)))
proof
let i;
((x1
. i)
- (y1
. i))
= (
diffcomplex
. ((x1
. i),(y1
. i))) by
BINOP_2:def 4;
hence thesis by
A1,
BINOP_2:def 10;
end;
hence thesis by
A1,
A2,
Th38;
end;
::$Canceled
theorem ::
COMPLSP2:52
Th43: for x,y be
FinSequence of
COMPLEX st (
len x)
= (
len y) holds (
Re (x
- y))
= ((
Re x)
- (
Re y)) & (
Im (x
- y))
= ((
Im x)
- (
Im y))
proof
let x,y be
FinSequence of
COMPLEX ;
assume
A1: (
len x)
= (
len y);
then
A2: (
len (x
- y))
= (
len x) by
Th7;
A3: (
len x)
= (
len (x
*' )) by
Def1;
then
A4: (
len (x
+ (x
*' )))
= (
len x) by
Th6;
A5: (
len y)
= (
len (y
*' )) by
Def1;
then
A6: (
len (y
+ (y
*' )))
= (
len y) by
Th6;
thus (
Re (x
- y))
= ((1
/ 2)
* ((x
- y)
+ ((x
*' )
- (y
*' )))) by
A1,
Th17
.= ((1
/ 2)
* (((x
*' )
+ (x
- y))
- (y
*' ))) by
A1,
A5,
A3,
A2,
Th31
.= ((1
/ 2)
* ((x
*' )
+ ((x
- y)
- (y
*' )))) by
A1,
A5,
A3,
A2,
Th31
.= ((1
/ 2)
* ((x
*' )
+ (x
- (y
+ (y
*' ))))) by
A1,
A5,
Th30
.= ((1
/ 2)
* ((x
+ (x
*' ))
- (y
+ (y
*' )))) by
A1,
A3,
A6,
Th31
.= ((
Re x)
- (
Re y)) by
A1,
A4,
A6,
Th36;
A7: (
len (x
- (x
*' )))
= (
len x) by
A3,
Th7;
A8: (
len (y
- (y
*' )))
= (
len y) by
A5,
Th7;
thus (
Im (x
- y))
= ((
- ((1
/ 2)
*
<i> ))
* ((x
- y)
- ((x
*' )
- (y
*' )))) by
A1,
Th17
.= ((
- ((1
/ 2)
*
<i> ))
* (((x
- y)
- (x
*' ))
+ (y
*' ))) by
A1,
A5,
A3,
A2,
Th33
.= ((
- ((1
/ 2)
*
<i> ))
* ((x
- ((x
*' )
+ y))
+ (y
*' ))) by
A1,
A3,
Th30
.= ((
- ((1
/ 2)
*
<i> ))
* (((x
- (x
*' ))
- y)
+ (y
*' ))) by
A1,
A3,
Th30
.= ((
- ((1
/ 2)
*
<i> ))
* ((x
- (x
*' ))
- (y
- (y
*' )))) by
A1,
A5,
A7,
Th33
.= ((
Im x)
- (
Im y)) by
A1,
A7,
A8,
Th36;
end;
theorem ::
COMPLSP2:53
Th44: for a,b be
Complex holds (a
* (b
* z))
= ((a
* b)
* z)
proof
let a,b be
Complex;
reconsider aa = a, bb = b, ab = (a
* b) as
Element of
COMPLEX by
XCMPLX_0:def 2;
thus ((a
* b)
* z)
= ((
multcomplex
[;] (ab,(
id
COMPLEX )))
* z) by
Lm1
.= ((
multcomplex
[;] ((
multcomplex
. (aa,bb)),(
id
COMPLEX )))
* z) by
BINOP_2:def 5
.= ((
multcomplex
[;] (aa,(
multcomplex
[;] (bb,(
id
COMPLEX )))))
* z) by
FUNCOP_1: 62
.= (((
multcomplex
[;] (aa,(
id
COMPLEX )))
* (
multcomplex
[;] (bb,(
id
COMPLEX ))))
* z) by
FUNCOP_1: 55
.= ((
multcomplex
[;] (aa,(
id
COMPLEX )))
* ((
multcomplex
[;] (bb,(
id
COMPLEX )))
* z)) by
RELAT_1: 36
.= ((
multcomplex
[;] (aa,(
id
COMPLEX )))
* (b
* z)) by
Lm1
.= (a
* (b
* z)) by
Lm1;
end;
Lm3: (
- (
0c (
len x)))
= (
0c (
len x))
proof
(
- (
0c (
len x)))
= (
- ((
len x)
|->
0c )) by
SEQ_4:def 12
.= (
compcomplex
* ((
len x)
|->
0c )) by
SEQ_4:def 8
.= ((
len x)
|-> (
compcomplex
.
0c )) by
FINSEQOP: 16
.= ((
len x)
|-> (
-
0c )) by
BINOP_2:def 1
.= (
0c (
len x)) by
SEQ_4:def 12;
hence thesis;
end;
theorem ::
COMPLSP2:54
Th45: for c be
Complex holds ((
- c)
* x)
= (
- (c
* x))
proof
let c be
Complex;
A1: (
len ((
- c)
* x))
= (
len x) by
Th3;
A2: (
len (c
* x))
= (
len x) by
Th3;
(((
- c)
* x)
+ (c
* x))
= ((((
- 1)
* c)
* x)
+ (c
* x))
.= ((
- (c
* x))
+ (c
* x)) by
Th44
.= (
- ((c
* x)
- (c
* x))) by
A2,
Th32
.= (
- (
0c (
len x))) by
A2,
Th28
.= (
0c (
len x)) by
Lm3;
hence thesis by
A1,
A2,
Th26;
end;
reserve h for
Function of
COMPLEX ,
COMPLEX ,
g for
Function of
REAL ,
REAL ;
theorem ::
COMPLSP2:55
Th46: for y1 be
FinSequence of
COMPLEX holds for y2 be
FinSequence of
REAL st (
len y1)
= (
len y2) & (for i st i
in (
dom y1) holds (h
. (y1
. i))
= (g
. (y2
. i))) holds (h
* y1)
= (g
* y2)
proof
let y1 be
FinSequence of
COMPLEX ;
let y2 be
FinSequence of
REAL ;
assume that
A1: (
len y1)
= (
len y2) and
A2: for i st i
in (
dom y1) holds (h
. (y1
. i))
= (g
. (y2
. i));
A3: (
len (g
* y2))
= (
len y1) by
A1,
FINSEQ_2: 33;
now
let i be
Nat;
assume that
A4: 1
<= i and
A5: i
<= (
len (h
* y1));
A6: i
<= (
len y1) by
A5,
FINSEQ_2: 33;
then
A7: i
in (
dom y1) by
A4,
FINSEQ_3: 25;
A8: i
in (
dom (g
* y2)) by
A3,
A4,
A6,
FINSEQ_3: 25;
i
in (
dom (h
* y1)) by
A4,
A5,
FINSEQ_3: 25;
hence ((h
* y1)
. i)
= (h
. (y1
. i)) by
FUNCT_1: 12
.= (g
. (y2
. i)) by
A2,
A7
.= ((g
* y2)
. i) by
A8,
FUNCT_1: 12;
end;
hence thesis by
A3,
FINSEQ_2: 33;
end;
theorem ::
COMPLSP2:56
for y1 be
FinSequence of
COMPLEX holds for y2 be
FinSequence of
REAL st y1
= y2 & (
len y1)
= (
len y2) holds (
compcomplex
* y1)
= (
compreal
* y2)
proof
let y1 be
FinSequence of
COMPLEX ;
let y2 be
FinSequence of
REAL ;
assume that
A1: y1
= y2 and
A2: (
len y1)
= (
len y2);
for i st i
in (
dom y1) holds (
compcomplex
. (y1
. i))
= (
compreal
. (y2
. i))
proof
let i;
assume i
in (
dom y1);
(
- (y1
. i))
= (
compcomplex
. (y1
. i)) by
BINOP_2:def 1;
hence thesis by
A1,
BINOP_2:def 7;
end;
hence thesis by
A2,
Th46;
end;
::$Canceled
theorem ::
COMPLSP2:58
Th48: for x be
FinSequence of
COMPLEX holds (
Re (
<i>
* x))
= (
- (
Im x)) & (
Im (
<i>
* x))
= (
Re x)
proof
let x be
FinSequence of
COMPLEX ;
A1: (
len (x
*' ))
= (
len x) by
Def1;
A2: (
Im (
<i>
* x))
= (((
- (1
/ 2))
*
<i> )
* ((
<i>
* x)
- ((
-
<i> )
* (x
*' )))) by
Th13,
COMPLEX1: 31
.= (((
- (1
/ 2))
*
<i> )
* ((
<i>
* x)
+ (
- (
- (
<i>
* (x
*' )))))) by
Th45
.= (((
- (1
/ 2))
*
<i> )
* (
<i>
* (x
+ (x
*' )))) by
A1,
Th25
.= ((((
- (1
/ 2))
*
<i> )
*
<i> )
* (x
+ (x
*' ))) by
Th44
.= (
Re x);
(
Re (
<i>
* x))
= ((1
/ 2)
* ((
<i>
* x)
+ ((
-
<i> )
* (x
*' )))) by
Th13,
COMPLEX1: 31
.= ((1
/ 2)
* ((
<i>
* x)
- (
<i>
* (x
*' )))) by
Th45
.= ((1
/ 2)
* (
<i>
* (x
- (x
*' )))) by
A1,
Th36
.= (((1
/ 2)
*
<i> )
* (x
- (x
*' ))) by
Th44
.= (((
- 1)
* ((
- (1
/ 2))
*
<i> ))
* (x
- (x
*' )))
.= (
- (
Im x)) by
Th44;
hence thesis by
A2;
end;
theorem ::
COMPLSP2:59
Th49: for x,y be
FinSequence of
COMPLEX st (
len x)
= (
len y) holds
|((
<i>
* x), y)|
= (
<i>
*
|(x, y)|)
proof
let x,y be
FinSequence of
COMPLEX ;
assume
A1: (
len x)
= (
len y);
A2: (
len (
Im y))
= (
len y) by
Th40;
A3: (
len (
Re y))
= (
len y) by
Th40;
A4: (
len (
Im x))
= (
len x) by
Th40;
|((
<i>
* x), y)|
= (((
|((
- (
Im x)), (
Re y))|
- (
<i>
*
|((
Re (
<i>
* x)), (
Im y))|))
+ (
<i>
*
|((
Im (
<i>
* x)), (
Re y))|))
+
|((
Im (
<i>
* x)), (
Im y))|) by
Th48
.= (((
|((
- (
Im x)), (
Re y))|
- (
<i>
*
|((
- (
Im x)), (
Im y))|))
+ (
<i>
*
|((
Im (
<i>
* x)), (
Re y))|))
+
|((
Im (
<i>
* x)), (
Im y))|) by
Th48
.= (((
|((
- (
Im x)), (
Re y))|
- (
<i>
*
|((
- (
Im x)), (
Im y))|))
+ (
<i>
*
|((
Re x), (
Re y))|))
+
|((
Im (
<i>
* x)), (
Im y))|) by
Th48
.= (((
|((
- (
Im x)), (
Re y))|
- (
<i>
*
|((
- (
Im x)), (
Im y))|))
+ (
<i>
*
|((
Re x), (
Re y))|))
+
|((
Re x), (
Im y))|) by
Th48
.= ((((
-
|((
Im x), (
Re y))|)
- (
<i>
*
|((
- (
Im x)), (
Im y))|))
+ (
<i>
*
|((
Re x), (
Re y))|))
+
|((
Re x), (
Im y))|) by
A1,
A3,
A4,
RVSUM_1: 122
.= ((((
-
|((
Im x), (
Re y))|)
- (
<i>
* (
-
|((
Im x), (
Im y))|)))
+ (
<i>
*
|((
Re x), (
Re y))|))
+
|((
Re x), (
Im y))|) by
A1,
A4,
A2,
RVSUM_1: 122
.= (
<i>
*
|(x, y)|);
hence thesis;
end;
theorem ::
COMPLSP2:60
Th50: for x,y be
FinSequence of
COMPLEX st (
len x)
= (
len y) holds
|(x, (
<i>
* y))|
= (
- (
<i>
*
|(x, y)|))
proof
let x,y be
FinSequence of
COMPLEX ;
assume
A1: (
len x)
= (
len y);
A2: (
len (
Im x))
= (
len x) by
Th40;
A3: (
len (
Re x))
= (
len x) by
Th40;
A4: (
len (
Im y))
= (
len y) by
Th40;
|(x, (
<i>
* y))|
= (((
|((
Re x), (
- (
Im y)))|
- (
<i>
*
|((
Re x), (
Im (
<i>
* y)))|))
+ (
<i>
*
|((
Im x), (
Re (
<i>
* y)))|))
+
|((
Im x), (
Im (
<i>
* y)))|) by
Th48
.= (((
|((
Re x), (
- (
Im y)))|
- (
<i>
*
|((
Re x), (
Re y))|))
+ (
<i>
*
|((
Im x), (
Re (
<i>
* y)))|))
+
|((
Im x), (
Im (
<i>
* y)))|) by
Th48
.= (((
|((
Re x), (
- (
Im y)))|
- (
<i>
*
|((
Re x), (
Re y))|))
+ (
<i>
*
|((
Im x), (
- (
Im y)))|))
+
|((
Im x), (
Im (
<i>
* y)))|) by
Th48
.= (((
|((
Re x), (
- (
Im y)))|
- (
<i>
*
|((
Re x), (
Re y))|))
+ (
<i>
*
|((
Im x), (
- (
Im y)))|))
+
|((
Im x), (
Re y))|) by
Th48
.= ((((
-
|((
Re x), (
Im y))|)
- (
<i>
*
|((
Re x), (
Re y))|))
+ (
<i>
*
|((
Im x), (
- (
Im y)))|))
+
|((
Im x), (
Re y))|) by
A1,
A3,
A4,
RVSUM_1: 122
.= ((((
-
|((
Re x), (
Im y))|)
- (
<i>
*
|((
Re x), (
Re y))|))
+ (
<i>
* (
-
|((
Im x), (
Im y))|)))
+
|((
Im x), (
Re y))|) by
A1,
A2,
A4,
RVSUM_1: 122
.= (
- (
<i>
*
|(x, y)|));
hence thesis;
end;
theorem ::
COMPLSP2:61
for a1 be
Element of
COMPLEX , y1 be
FinSequence of
COMPLEX holds for a2 be
Element of
REAL , y2 be
FinSequence of
REAL st a1
= a2 & y1
= y2 & (
len y1)
= (
len y2) holds ((a1
multcomplex )
* y1)
= ((a2
multreal )
* y2)
proof
let a1 be
Element of
COMPLEX , y1 be
FinSequence of
COMPLEX ;
let a2 be
Element of
REAL , y2 be
FinSequence of
REAL ;
assume that
A1: a1
= a2 & y1
= y2 and
A2: (
len y1)
= (
len y2);
for i st i
in (
dom y1) holds ((a1
multcomplex )
. (y1
. i))
= ((a2
multreal )
. (y2
. i))
proof
let i;
reconsider y2i = (y2
. i) as
Element of
REAL by
XREAL_0:def 1;
assume i
in (
dom y1);
A3: ((a2
* y2)
. i)
= (a2
* (y2
. i)) by
RVSUM_1: 44
.= (
multreal
. (a2,((
id
REAL )
. y2i))) by
BINOP_2:def 11
.= ((
multreal
[;] (a2,(
id
REAL )))
. y2i) by
FUNCOP_1: 53
.= ((a2
multreal )
. (y2
. i)) by
RVSUM_1:def 3;
((a1
* y1)
. i)
= (a1
* (y1
. i)) by
Th12
.= (
multcomplex
. (a1,((
id
COMPLEX )
. (y1
. i)))) by
BINOP_2:def 5
.= ((
multcomplex
[;] (a1,(
id
COMPLEX )))
. (y1
. i)) by
FUNCOP_1: 53
.= ((a1
multcomplex )
. (y1
. i)) by
SEQ_4:def 4;
hence thesis by
A1,
A3;
end;
hence thesis by
A2,
Th46;
end;
::$Canceled
theorem ::
COMPLSP2:63
Th52: for a,b be
Complex holds ((a
+ b)
* z)
= ((a
* z)
+ (b
* z))
proof
let a,b be
Complex;
reconsider aa = a, bb = b, ab = (a
+ b) as
Element of
COMPLEX by
XCMPLX_0:def 2;
set c1M = (
multcomplex
[;] (aa,(
id
COMPLEX ))), c2M = (
multcomplex
[;] (bb,(
id
COMPLEX )));
thus ((a
+ b)
* z)
= ((
multcomplex
[;] (ab,(
id
COMPLEX )))
* z) by
Lm1
.= ((
multcomplex
[;] ((
addcomplex
. (aa,bb)),(
id
COMPLEX )))
* z) by
BINOP_2:def 3
.= ((
addcomplex
.: (c1M,c2M))
* z) by
FINSEQOP: 35,
SEQ_4: 54
.= (
addcomplex
.: ((c1M
* z),(c2M
* z))) by
FUNCOP_1: 25
.= ((c1M
* z)
+ (c2M
* z)) by
SEQ_4:def 6
.= ((a
* z)
+ (c2M
* z)) by
Lm1
.= ((a
* z)
+ (b
* z)) by
Lm1;
end;
theorem ::
COMPLSP2:64
Th53: for a,b be
Complex holds ((a
- b)
* z)
= ((a
* z)
- (b
* z))
proof
let a,b be
Complex;
reconsider aa = a, bb = b as
Element of
COMPLEX by
XCMPLX_0:def 2;
((a
- b)
* z)
= ((a
+ (
- b))
* z)
.= ((aa
* z)
+ ((
- bb)
* z)) by
Th52
.= ((a
* z)
- (b
* z)) by
Th45;
hence thesis;
end;
theorem ::
COMPLSP2:65
Th54: for a be
Element of
COMPLEX , x be
FinSequence of
COMPLEX holds (
Re (a
* x))
= (((
Re a)
* (
Re x))
- ((
Im a)
* (
Im x))) & (
Im (a
* x))
= (((
Im a)
* (
Re x))
+ ((
Re a)
* (
Im x)))
proof
let a be
Element of
COMPLEX , x be
FinSequence of
COMPLEX ;
reconsider z5 = (
Re a), z6 = (
Im a) as
Element of
COMPLEX by
XCMPLX_0:def 2;
A1: (
len (x
*' ))
= (
len x) by
Def1;
(
len (((1
/ 2)
* z5)
* x))
= (
len x) by
Th3;
then
A2: (
len (((((1
/ 2)
*
<i> )
* z6)
* x)
+ (((1
/ 2)
* z5)
* x)))
= (
len ((((1
/ 2)
*
<i> )
* z6)
* x)) by
Th3,
Th6;
A3: (
len (((1
/ 2)
* z5)
* x))
= (
len x) by
Th3;
A4: (
len (z5
* x))
= (
len x) & (
len ((
<i>
* z6)
* x))
= (
len x) by
Th3;
A5: ((
Re a)
* (
Re x))
= ((z5
* (1
/ 2))
* (x
+ (x
*' ))) by
Th44
.= ((((z5
* 1)
/ 2)
* x)
+ (((z5
* 1)
/ 2)
* (x
*' ))) by
A1,
Th25;
A6: (
len (
Re x))
= (
len x) & (
len ((
Re a)
* (
Re x)))
= (
len (
Re x)) by
Th40,
RVSUM_1: 117;
A7: (
len ((z5
- (z6
*
<i> ))
* (x
*' )))
= (
len (x
*' )) & (
len ((z5
+ (
<i>
* z6))
* x))
= (
len x) by
Th3;
A8: (
len (((
- ((1
/ 2)
*
<i> ))
* z6)
* (x
*' )))
= (
len (x
*' )) by
Th3;
A9: ((
Im a)
* (
Im x))
= ((z6
* (
- ((1
/ 2)
*
<i> )))
* (x
- (x
*' ))) by
Th44
.= ((((
- ((1
/ 2)
*
<i> ))
* z6)
* x)
- (((
- ((1
/ 2)
*
<i> ))
* z6)
* (x
*' ))) by
A1,
Th36;
A10: (
len (((
- ((1
/ 2)
*
<i> ))
* z6)
* x))
= (
len x) by
Th3;
A11: (
len (z5
* (x
*' )))
= (
len (x
*' )) & (
len ((z6
*
<i> )
* (x
*' )))
= (
len (x
*' )) by
Th3;
A12: (
len (((1
/ 2)
* z5)
* (x
*' )))
= (
len (x
*' )) & (
len ((((1
/ 2)
*
<i> )
* z6)
* x))
= (
len x) by
Th3;
A13: (
Re (a
* x))
= ((1
/ 2)
* (((a
*' )
* (x
*' ))
+ (a
* x))) by
Th13
.= ((1
/ 2)
* (((a
*' )
* (x
*' ))
+ ((z5
+ (
<i>
* z6))
* x))) by
COMPLEX1: 13
.= ((1
/ 2)
* (((z5
- (z6
*
<i> ))
* (x
*' ))
+ ((z5
+ (
<i>
* z6))
* x))) by
COMPLEX1:def 11
.= (((1
/ 2)
* ((z5
- (z6
*
<i> ))
* (x
*' )))
+ ((1
/ 2)
* ((z5
+ (
<i>
* z6))
* x))) by
A7,
Th25,
Def1
.= (((1
/ 2)
* ((z5
- (z6
*
<i> ))
* (x
*' )))
+ ((1
/ 2)
* ((z5
* x)
+ ((
<i>
* z6)
* x)))) by
Th52
.= (((1
/ 2)
* ((z5
* (x
*' ))
- ((z6
*
<i> )
* (x
*' ))))
+ ((1
/ 2)
* ((z5
* x)
+ ((
<i>
* z6)
* x)))) by
Th53
.= (((1
/ 2)
* ((z5
* (x
*' ))
- ((z6
*
<i> )
* (x
*' ))))
+ (((1
/ 2)
* (z5
* x))
+ ((1
/ 2)
* ((
<i>
* z6)
* x)))) by
A4,
Th25
.= ((((1
/ 2)
* (z5
* (x
*' )))
- ((1
/ 2)
* ((z6
*
<i> )
* (x
*' ))))
+ (((1
/ 2)
* (z5
* x))
+ ((1
/ 2)
* ((
<i>
* z6)
* x)))) by
A11,
Th36
.= ((((1
/ 2)
* (z5
* (x
*' )))
- ((1
/ 2)
* ((
<i>
* z6)
* (x
*' ))))
+ (((1
/ 2)
* (z5
* x))
+ (((1
/ 2)
* (
<i>
* z6))
* x))) by
Th44
.= ((((1
/ 2)
* (z5
* (x
*' )))
+ (
- ((((1
/ 2)
*
<i> )
* z6)
* (x
*' ))))
+ (((1
/ 2)
* (z5
* x))
+ ((((1
/ 2)
*
<i> )
* z6)
* x))) by
Th44
.= ((((1
/ 2)
* (z5
* (x
*' )))
+ ((
- (((1
/ 2)
*
<i> )
* z6))
* (x
*' )))
+ (((1
/ 2)
* (z5
* x))
+ ((((1
/ 2)
*
<i> )
* z6)
* x))) by
Th45
.= (((((1
/ 2)
* z5)
* (x
*' ))
+ (((
- ((1
/ 2)
*
<i> ))
* z6)
* (x
*' )))
+ (((1
/ 2)
* (z5
* x))
+ ((((1
/ 2)
*
<i> )
* z6)
* x))) by
Th44
.= (((((1
/ 2)
* z5)
* x)
+ ((((1
/ 2)
*
<i> )
* z6)
* x))
+ ((((1
/ 2)
* z5)
* (x
*' ))
+ (((
- ((1
/ 2)
*
<i> ))
* z6)
* (x
*' )))) by
Th44
.= (((((((1
/ 2)
*
<i> )
* z6)
* x)
+ (((1
/ 2)
* z5)
* x))
+ (((1
/ 2)
* z5)
* (x
*' )))
+ (((
- ((1
/ 2)
*
<i> ))
* z6)
* (x
*' ))) by
A1,
A8,
A12,
A2,
Th24
.= ((((((1
/ 2)
* z5)
* x)
+ (((1
/ 2)
* z5)
* (x
*' )))
+ ((
- ((
- ((1
/ 2)
*
<i> ))
* z6))
* x))
+ (((
- ((1
/ 2)
*
<i> ))
* z6)
* (x
*' ))) by
A1,
A3,
A12,
Th24
.= ((((((1
/ 2)
* z5)
* x)
+ (((1
/ 2)
* z5)
* (x
*' )))
- (((
- ((1
/ 2)
*
<i> ))
* z6)
* x))
+ (((
- ((1
/ 2)
*
<i> ))
* z6)
* (x
*' ))) by
Th45
.= (((
Re a)
* (
Re x))
- ((
Im a)
* (
Im x))) by
A1,
A5,
A9,
A6,
A10,
A8,
Th33;
A14: (
len ((((1
/ 2)
*
<i> )
* z5)
* (x
*' )))
= (
len (x
*' )) by
Th3;
A15: ((
Im a)
* (
Re x))
= ((z6
* (1
/ 2))
* (x
+ (x
*' ))) by
Th44
.= ((((1
/ 2)
* z6)
* x)
+ (((1
/ 2)
* z6)
* (x
*' ))) by
A1,
Th25;
A16: (
len ((
<i>
* z6)
* (x
*' )))
= (
len (x
*' )) & (
len ((
- z5)
* (x
*' )))
= (
len (x
*' )) by
Th3;
A17: (
len ((1
/ 2)
* (z6
* x)))
= (
len (z6
* x)) by
Th3;
A18: (
len (z6
* (x
*' )))
= (
len (x
*' )) & (
len ((1
/ 2)
* (z6
* (x
*' ))))
= (
len (z6
* (x
*' ))) by
Th3;
then
A19: (
len (((1
/ 2)
* (z6
* x))
+ ((1
/ 2)
* (z6
* (x
*' )))))
= (
len ((1
/ 2)
* (z6
* x))) by
A1,
A17,
Th3,
Th6;
A20: (
len (((
- ((1
/ 2)
*
<i> ))
* z5)
* x))
= (
len x) by
Th3;
then
A21: (
len (((1
/ 2)
* (z6
* x))
+ (((
- ((1
/ 2)
*
<i> ))
* z5)
* x)))
= (
len ((1
/ 2)
* (z6
* x))) by
A17,
Th3,
Th6;
A22: ((
Re a)
* (
Im x))
= ((z5
* (
- ((1
/ 2)
*
<i> )))
* (x
- (x
*' ))) by
Th44
.= ((((
- ((1
/ 2)
*
<i> ))
* z5)
* x)
- (((
- ((1
/ 2)
*
<i> ))
* z5)
* (x
*' ))) by
A1,
Th36;
A23: (
len (z6
* x))
= (
len x) by
Th3;
(
len ((a
* x)
*' ))
= (
len (a
* x)) & (
len (
- ((a
* x)
*' )))
= (
len ((a
* x)
*' )) by
Def1,
Th5;
then (
Im (a
* x))
= (((
- ((1
/ 2)
*
<i> ))
* (
- ((a
* x)
*' )))
+ ((
- ((1
/ 2)
*
<i> ))
* (a
* x))) by
Th25
.= (((
- ((1
/ 2)
*
<i> ))
* (
- ((a
*' )
* (x
*' ))))
+ ((
- ((1
/ 2)
*
<i> ))
* (a
* x))) by
Th13
.= (((
- ((1
/ 2)
*
<i> ))
* (
- ((a
*' )
* (x
*' ))))
+ ((
- ((1
/ 2)
*
<i> ))
* ((z5
+ (
<i>
* z6))
* x))) by
COMPLEX1: 13
.= (((
- ((1
/ 2)
*
<i> ))
* (
- ((z5
- (z6
*
<i> ))
* (x
*' ))))
+ ((
- ((1
/ 2)
*
<i> ))
* ((z5
+ (
<i>
* z6))
* x))) by
COMPLEX1:def 11
.= (((
- ((1
/ 2)
*
<i> ))
* ((
- (z5
- (z6
*
<i> )))
* (x
*' )))
+ ((
- ((1
/ 2)
*
<i> ))
* ((z5
+ (
<i>
* z6))
* x))) by
Th45
.= (((
- ((1
/ 2)
*
<i> ))
* (((
- z5)
+ (z6
*
<i> ))
* (x
*' )))
+ ((
- ((1
/ 2)
*
<i> ))
* ((z5
+ (
<i>
* z6))
* x)))
.= (((
- ((1
/ 2)
*
<i> ))
* (((
- z5)
* (x
*' ))
+ ((
<i>
* z6)
* (x
*' ))))
+ ((
- ((1
/ 2)
*
<i> ))
* ((z5
+ (
<i>
* z6))
* x))) by
Th52
.= (((
- ((1
/ 2)
*
<i> ))
* (((
- z5)
* (x
*' ))
+ ((
<i>
* z6)
* (x
*' ))))
+ ((
- ((1
/ 2)
*
<i> ))
* ((z5
* x)
+ ((
<i>
* z6)
* x)))) by
Th52
.= (((
- ((1
/ 2)
*
<i> ))
* (((
- z5)
* (x
*' ))
+ ((
<i>
* z6)
* (x
*' ))))
+ (((
- ((1
/ 2)
*
<i> ))
* (z5
* x))
+ ((
- ((1
/ 2)
*
<i> ))
* ((
<i>
* z6)
* x)))) by
A4,
Th25
.= ((((
- ((1
/ 2)
*
<i> ))
* ((
- z5)
* (x
*' )))
+ ((
- ((1
/ 2)
*
<i> ))
* ((
<i>
* z6)
* (x
*' ))))
+ (((
- ((1
/ 2)
*
<i> ))
* (z5
* x))
+ ((
- ((1
/ 2)
*
<i> ))
* ((
<i>
* z6)
* x)))) by
A16,
Th25
.= (((((
- ((1
/ 2)
*
<i> ))
* (
- z5))
* (x
*' ))
+ ((
- ((1
/ 2)
*
<i> ))
* ((
<i>
* z6)
* (x
*' ))))
+ (((
- ((1
/ 2)
*
<i> ))
* (z5
* x))
+ ((
- ((1
/ 2)
*
<i> ))
* ((
<i>
* z6)
* x)))) by
Th44
.= (((((
- ((1
/ 2)
*
<i> ))
* (
- z5))
* (x
*' ))
+ ((
- ((1
/ 2)
*
<i> ))
* (
<i>
* (z6
* (x
*' )))))
+ (((
- ((1
/ 2)
*
<i> ))
* (z5
* x))
+ ((
- ((1
/ 2)
*
<i> ))
* ((
<i>
* z6)
* x)))) by
Th44
.= (((((
- ((1
/ 2)
*
<i> ))
* (
- z5))
* (x
*' ))
+ (((
- ((1
/ 2)
*
<i> ))
*
<i> )
* (z6
* (x
*' ))))
+ (((
- ((1
/ 2)
*
<i> ))
* (z5
* x))
+ ((
- ((1
/ 2)
*
<i> ))
* ((
<i>
* z6)
* x)))) by
Th44
.= (((((
- ((1
/ 2)
*
<i> ))
* (
- z5))
* (x
*' ))
+ (((
- ((1
/ 2)
*
<i> ))
*
<i> )
* (z6
* (x
*' ))))
+ ((((
- ((1
/ 2)
*
<i> ))
* z5)
* x)
+ ((
- ((1
/ 2)
*
<i> ))
* ((
<i>
* z6)
* x)))) by
Th44
.= (((((
- ((1
/ 2)
*
<i> ))
* (
- z5))
* (x
*' ))
+ (((
- ((1
/ 2)
*
<i> ))
*
<i> )
* (z6
* (x
*' ))))
+ ((((
- ((1
/ 2)
*
<i> ))
* z5)
* x)
+ ((
- ((1
/ 2)
*
<i> ))
* (
<i>
* (z6
* x))))) by
Th44
.= ((((1
/ 2)
* (z6
* x))
+ (((
- ((1
/ 2)
*
<i> ))
* z5)
* x))
+ (((1
/ 2)
* (z6
* (x
*' )))
+ ((((1
/ 2)
*
<i> )
* z5)
* (x
*' )))) by
Th44
.= (((((1
/ 2)
* (z6
* x))
+ (((
- ((1
/ 2)
*
<i> ))
* z5)
* x))
+ ((1
/ 2)
* (z6
* (x
*' ))))
+ ((((1
/ 2)
*
<i> )
* z5)
* (x
*' ))) by
A1,
A23,
A17,
A18,
A14,
A21,
Th24
.= (((((1
/ 2)
* (z6
* x))
+ ((1
/ 2)
* (z6
* (x
*' ))))
+ (((
- ((1
/ 2)
*
<i> ))
* z5)
* x))
+ ((((1
/ 2)
*
<i> )
* z5)
* (x
*' ))) by
A1,
A23,
A17,
A20,
A18,
Th24
.= ((((1
/ 2)
* (z6
* x))
+ ((1
/ 2)
* (z6
* (x
*' ))))
+ ((((
- ((1
/ 2)
*
<i> ))
* z5)
* x)
+ ((((1
/ 2)
*
<i> )
* z5)
* (x
*' )))) by
A1,
A23,
A17,
A20,
A14,
A19,
Th24
.= (((((1
/ 2)
* z6)
* x)
+ ((1
/ 2)
* (z6
* (x
*' ))))
+ ((((
- ((1
/ 2)
*
<i> ))
* z5)
* x)
+ ((((1
/ 2)
*
<i> )
* z5)
* (x
*' )))) by
Th44
.= (((((1
/ 2)
* z6)
* x)
+ (((1
/ 2)
* z6)
* (x
*' )))
+ ((((
- ((1
/ 2)
*
<i> ))
* z5)
* x)
+ ((
- ((
- ((1
/ 2)
*
<i> ))
* z5))
* (x
*' )))) by
Th44
.= (((
Im a)
* (
Re x))
+ ((
Re a)
* (
Im x))) by
A15,
A22,
Th45;
hence thesis by
A13;
end;
begin
theorem ::
COMPLSP2:66
Th55: for x1,x2,y be
FinSequence of
COMPLEX st (
len x1)
= (
len x2) & (
len x2)
= (
len y) holds
|((x1
+ x2), y)|
= (
|(x1, y)|
+
|(x2, y)|)
proof
let x1,x2,y be
FinSequence of
COMPLEX ;
assume that
A1: (
len x1)
= (
len x2) and
A2: (
len x2)
= (
len y);
A3: (
len (
Re x1))
= (
len x1) & (
len (
Re x2))
= (
len x2) by
Th40;
A4: (
len (
Im y))
= (
len y) by
Th40;
A5: (
len (
Im x1))
= (
len x1) & (
len (
Im x2))
= (
len x2) by
Th40;
A6: (
len (
Re y))
= (
len y) by
Th40;
|((x1
+ x2), y)|
= (((
|(((
Re x1)
+ (
Re x2)), (
Re y))|
- (
<i>
*
|((
Re (x1
+ x2)), (
Im y))|))
+ (
<i>
*
|((
Im (x1
+ x2)), (
Re y))|))
+
|((
Im (x1
+ x2)), (
Im y))|) by
A1,
Th41
.= (((
|(((
Re x1)
+ (
Re x2)), (
Re y))|
- (
<i>
*
|(((
Re x1)
+ (
Re x2)), (
Im y))|))
+ (
<i>
*
|((
Im (x1
+ x2)), (
Re y))|))
+
|((
Im (x1
+ x2)), (
Im y))|) by
A1,
Th41
.= (((
|(((
Re x1)
+ (
Re x2)), (
Re y))|
- (
<i>
*
|(((
Re x1)
+ (
Re x2)), (
Im y))|))
+ (
<i>
*
|(((
Im x1)
+ (
Im x2)), (
Re y))|))
+
|((
Im (x1
+ x2)), (
Im y))|) by
A1,
Th41
.= (((
|(((
Re x1)
+ (
Re x2)), (
Re y))|
- (
<i>
*
|(((
Re x1)
+ (
Re x2)), (
Im y))|))
+ (
<i>
*
|(((
Im x1)
+ (
Im x2)), (
Re y))|))
+
|(((
Im x1)
+ (
Im x2)), (
Im y))|) by
A1,
Th41
.= ((((
|((
Re x1), (
Re y))|
+
|((
Re x2), (
Re y))|)
- (
<i>
*
|(((
Re x1)
+ (
Re x2)), (
Im y))|))
+ (
<i>
*
|(((
Im x1)
+ (
Im x2)), (
Re y))|))
+
|(((
Im x1)
+ (
Im x2)), (
Im y))|) by
A1,
A2,
A3,
A6,
RVSUM_1: 120
.= ((((
|((
Re x1), (
Re y))|
+
|((
Re x2), (
Re y))|)
- (
<i>
* (
|((
Re x1), (
Im y))|
+
|((
Re x2), (
Im y))|)))
+ (
<i>
*
|(((
Im x1)
+ (
Im x2)), (
Re y))|))
+
|(((
Im x1)
+ (
Im x2)), (
Im y))|) by
A1,
A2,
A3,
A4,
RVSUM_1: 120
.= ((((
|((
Re x1), (
Re y))|
+
|((
Re x2), (
Re y))|)
- (
<i>
* (
|((
Re x1), (
Im y))|
+
|((
Re x2), (
Im y))|)))
+ (
<i>
* (
|((
Im x1), (
Re y))|
+
|((
Im x2), (
Re y))|)))
+
|(((
Im x1)
+ (
Im x2)), (
Im y))|) by
A1,
A2,
A6,
A5,
RVSUM_1: 120
.= ((((
|((
Re x1), (
Re y))|
+
|((
Re x2), (
Re y))|)
- (
<i>
* (
|((
Re x1), (
Im y))|
+
|((
Re x2), (
Im y))|)))
+ (
<i>
* (
|((
Im x1), (
Re y))|
+
|((
Im x2), (
Re y))|)))
+ (
|((
Im x1), (
Im y))|
+
|((
Im x2), (
Im y))|)) by
A1,
A2,
A5,
A4,
RVSUM_1: 120
.= (
|(x1, y)|
+
|(x2, y)|);
hence thesis;
end;
theorem ::
COMPLSP2:67
Th56: for x1,x2 be
FinSequence of
COMPLEX st (
len x1)
= (
len x2) holds
|((
- x1), x2)|
= (
-
|(x1, x2)|)
proof
let x1,x2 be
FinSequence of
COMPLEX ;
assume
A1: (
len x1)
= (
len x2);
A2: (
len (
<i>
* x1))
= (
len x1) by
Th3;
|((
- x1), x2)|
=
|(((
<i>
*
<i> )
* x1), x2)|
.=
|((
<i>
* (
<i>
* x1)), x2)| by
Th44
.= (
<i>
*
|((
<i>
* x1), x2)|) by
A1,
A2,
Th49
.= (
<i>
* (
<i>
*
|(x1, x2)|)) by
A1,
Th49
.= ((
- 1)
*
|(x1, x2)|);
hence thesis;
end;
theorem ::
COMPLSP2:68
Th57: for x1,x2 be
FinSequence of
COMPLEX st (
len x1)
= (
len x2) holds
|(x1, (
- x2))|
= (
-
|(x1, x2)|)
proof
let x1,x2 be
FinSequence of
COMPLEX ;
assume
A1: (
len x1)
= (
len x2);
A2: (
len (
<i>
* x2))
= (
len x2) by
Th3;
|(x1, (
- x2))|
=
|(x1, ((
<i>
*
<i> )
* x2))|
.=
|(x1, (
<i>
* (
<i>
* x2)))| by
Th44
.= (
- (
<i>
*
|(x1, (
<i>
* x2))|)) by
A1,
A2,
Th50
.= (
- (
<i>
* (
- (
<i>
*
|(x1, x2)|)))) by
A1,
Th50
.= (
-
|(x1, x2)|);
hence thesis;
end;
theorem ::
COMPLSP2:69
for x1,x2 be
FinSequence of
COMPLEX st (
len x1)
= (
len x2) holds
|((
- x1), (
- x2))|
=
|(x1, x2)|
proof
let x1,x2 be
FinSequence of
COMPLEX ;
assume
A1: (
len x1)
= (
len x2);
then (
len (
- x2))
= (
len x1) by
Th5;
then
|((
- x1), (
- x2))|
= (
-
|(x1, (
- x2))|) by
Th56
.= (
- (
-
|(x1, x2)|)) by
A1,
Th57;
hence thesis;
end;
theorem ::
COMPLSP2:70
Th59: for x1,x2,x3 be
FinSequence of
COMPLEX st (
len x1)
= (
len x2) & (
len x2)
= (
len x3) holds
|((x1
- x2), x3)|
= (
|(x1, x3)|
-
|(x2, x3)|)
proof
let x1,x2,x3 be
FinSequence of
COMPLEX ;
assume that
A1: (
len x1)
= (
len x2) and
A2: (
len x2)
= (
len x3);
(
len (
- x2))
= (
len x2) by
Th5;
then
|((x1
- x2), x3)|
= (
|(x1, x3)|
+
|((
- x2), x3)|) by
A1,
A2,
Th55
.= (
|(x1, x3)|
+ (
-
|(x2, x3)|)) by
A2,
Th56;
hence thesis;
end;
theorem ::
COMPLSP2:71
Th60: for x,y1,y2 be
FinSequence of
COMPLEX st (
len x)
= (
len y1) & (
len y1)
= (
len y2) holds
|(x, (y1
+ y2))|
= (
|(x, y1)|
+
|(x, y2)|)
proof
let x,y1,y2 be
FinSequence of
COMPLEX ;
assume that
A1: (
len x)
= (
len y1) and
A2: (
len y1)
= (
len y2);
A3: (
len (
Re y1))
= (
len y1) & (
len (
Re y2))
= (
len y2) by
Th40;
A4: (
len (
Im x))
= (
len x) by
Th40;
A5: (
len (
Im y1))
= (
len y1) & (
len (
Im y2))
= (
len y2) by
Th40;
A6: (
len (
Re x))
= (
len x) by
Th40;
|(x, (y1
+ y2))|
= (((
|((
Re x), ((
Re y1)
+ (
Re y2)))|
- (
<i>
*
|((
Re x), (
Im (y1
+ y2)))|))
+ (
<i>
*
|((
Im x), (
Re (y1
+ y2)))|))
+
|((
Im x), (
Im (y1
+ y2)))|) by
A2,
Th41
.= (((
|((
Re x), ((
Re y1)
+ (
Re y2)))|
- (
<i>
*
|((
Re x), (
Im (y1
+ y2)))|))
+ (
<i>
*
|((
Im x), (
Re (y1
+ y2)))|))
+
|((
Im x), ((
Im y1)
+ (
Im y2)))|) by
A2,
Th41
.= (((
|((
Re x), ((
Re y1)
+ (
Re y2)))|
- (
<i>
*
|((
Re x), ((
Im y1)
+ (
Im y2)))|))
+ (
<i>
*
|((
Im x), (
Re (y1
+ y2)))|))
+
|((
Im x), ((
Im y1)
+ (
Im y2)))|) by
A2,
Th41
.= (((
|((
Re x), ((
Re y1)
+ (
Re y2)))|
- (
<i>
*
|((
Re x), ((
Im y1)
+ (
Im y2)))|))
+ (
<i>
*
|((
Im x), ((
Re y1)
+ (
Re y2)))|))
+
|((
Im x), ((
Im y1)
+ (
Im y2)))|) by
A2,
Th41
.= ((((
|((
Re x), (
Re y1))|
+
|((
Re x), (
Re y2))|)
- (
<i>
*
|((
Re x), ((
Im y1)
+ (
Im y2)))|))
+ (
<i>
*
|((
Im x), ((
Re y1)
+ (
Re y2)))|))
+
|((
Im x), ((
Im y1)
+ (
Im y2)))|) by
A1,
A2,
A3,
A6,
RVSUM_1: 120
.= ((((
|((
Re x), (
Re y1))|
+
|((
Re x), (
Re y2))|)
- (
<i>
*
|((
Re x), ((
Im y1)
+ (
Im y2)))|))
+ (
<i>
*
|((
Im x), ((
Re y1)
+ (
Re y2)))|))
+ (
|((
Im x), (
Im y1))|
+
|((
Im x), (
Im y2))|)) by
A1,
A2,
A5,
A4,
RVSUM_1: 120
.= ((((
|((
Re x), (
Re y1))|
+
|((
Re x), (
Re y2))|)
- (
<i>
* (
|((
Re x), (
Im y1))|
+
|((
Re x), (
Im y2))|)))
+ (
<i>
*
|((
Im x), ((
Re y1)
+ (
Re y2)))|))
+ (
|((
Im x), (
Im y1))|
+
|((
Im x), (
Im y2))|)) by
A1,
A2,
A6,
A5,
RVSUM_1: 120
.= ((((
|((
Re x), (
Re y1))|
+
|((
Re x), (
Re y2))|)
- (
<i>
* (
|((
Re x), (
Im y1))|
+
|((
Re x), (
Im y2))|)))
+ (
<i>
* (
|((
Im x), (
Re y1))|
+
|((
Im x), (
Re y2))|)))
+ (
|((
Im x), (
Im y1))|
+
|((
Im x), (
Im y2))|)) by
A1,
A2,
A3,
A4,
RVSUM_1: 120
.= (
|(x, y1)|
+
|(x, y2)|);
hence thesis;
end;
theorem ::
COMPLSP2:72
Th61: for x,y1,y2 be
FinSequence of
COMPLEX st (
len x)
= (
len y1) & (
len y1)
= (
len y2) holds
|(x, (y1
- y2))|
= (
|(x, y1)|
-
|(x, y2)|)
proof
let x,y1,y2 be
FinSequence of
COMPLEX ;
assume that
A1: (
len x)
= (
len y1) and
A2: (
len y1)
= (
len y2);
A3: (
len (
Re y1))
= (
len y1) & (
len (
Re y2))
= (
len y2) by
Th40;
A4: (
len (
Im x))
= (
len x) by
Th40;
A5: (
len (
Im y1))
= (
len y1) & (
len (
Im y2))
= (
len y2) by
Th40;
A6: (
len (
Re x))
= (
len x) by
Th40;
|(x, (y1
- y2))|
= (((
|((
Re x), ((
Re y1)
- (
Re y2)))|
- (
<i>
*
|((
Re x), (
Im (y1
- y2)))|))
+ (
<i>
*
|((
Im x), (
Re (y1
- y2)))|))
+
|((
Im x), (
Im (y1
- y2)))|) by
A2,
Th43
.= (((
|((
Re x), ((
Re y1)
- (
Re y2)))|
- (
<i>
*
|((
Re x), (
Im (y1
- y2)))|))
+ (
<i>
*
|((
Im x), (
Re (y1
- y2)))|))
+
|((
Im x), ((
Im y1)
- (
Im y2)))|) by
A2,
Th43
.= (((
|((
Re x), ((
Re y1)
- (
Re y2)))|
- (
<i>
*
|((
Re x), ((
Im y1)
- (
Im y2)))|))
+ (
<i>
*
|((
Im x), (
Re (y1
- y2)))|))
+
|((
Im x), ((
Im y1)
- (
Im y2)))|) by
A2,
Th43
.= (((
|((
Re x), ((
Re y1)
- (
Re y2)))|
- (
<i>
*
|((
Re x), ((
Im y1)
- (
Im y2)))|))
+ (
<i>
*
|((
Im x), ((
Re y1)
- (
Re y2)))|))
+
|((
Im x), ((
Im y1)
- (
Im y2)))|) by
A2,
Th43
.= ((((
|((
Re x), (
Re y1))|
-
|((
Re x), (
Re y2))|)
- (
<i>
*
|((
Re x), ((
Im y1)
- (
Im y2)))|))
+ (
<i>
*
|((
Im x), ((
Re y1)
- (
Re y2)))|))
+
|((
Im x), ((
Im y1)
- (
Im y2)))|) by
A1,
A2,
A3,
A6,
RVSUM_1: 124
.= ((((
|((
Re x), (
Re y1))|
-
|((
Re x), (
Re y2))|)
- (
<i>
*
|((
Re x), ((
Im y1)
- (
Im y2)))|))
+ (
<i>
*
|((
Im x), ((
Re y1)
- (
Re y2)))|))
+ (
|((
Im x), (
Im y1))|
-
|((
Im x), (
Im y2))|)) by
A1,
A2,
A5,
A4,
RVSUM_1: 124
.= ((((
|((
Re x), (
Re y1))|
-
|((
Re x), (
Re y2))|)
- (
<i>
* (
|((
Re x), (
Im y1))|
-
|((
Re x), (
Im y2))|)))
+ (
<i>
*
|((
Im x), ((
Re y1)
- (
Re y2)))|))
+ (
|((
Im x), (
Im y1))|
-
|((
Im x), (
Im y2))|)) by
A1,
A2,
A6,
A5,
RVSUM_1: 124
.= ((((
|((
Re x), (
Re y1))|
-
|((
Re x), (
Re y2))|)
- (
<i>
* (
|((
Re x), (
Im y1))|
-
|((
Re x), (
Im y2))|)))
+ (
<i>
* (
|((
Im x), (
Re y1))|
-
|((
Im x), (
Re y2))|)))
+ (
|((
Im x), (
Im y1))|
-
|((
Im x), (
Im y2))|)) by
A1,
A2,
A3,
A4,
RVSUM_1: 124
.= (
|(x, y1)|
-
|(x, y2)|);
hence thesis;
end;
theorem ::
COMPLSP2:73
Th62: for x1,x2,y1,y2 be
FinSequence of
COMPLEX st (
len x1)
= (
len x2) & (
len x2)
= (
len y1) & (
len y1)
= (
len y2) holds
|((x1
+ x2), (y1
+ y2))|
= (((
|(x1, y1)|
+
|(x1, y2)|)
+
|(x2, y1)|)
+
|(x2, y2)|)
proof
let x1,x2,y1,y2 be
FinSequence of
COMPLEX ;
assume that
A1: (
len x1)
= (
len x2) and
A2: (
len x2)
= (
len y1) and
A3: (
len y1)
= (
len y2);
|((x1
+ x2), y2)|
= (
|(x1, y2)|
+
|(x2, y2)|) by
A1,
A2,
A3,
Th55;
then
A4: (
|((x1
+ x2), y1)|
+
|((x1
+ x2), y2)|)
= ((
|(x1, y1)|
+
|(x2, y1)|)
+ (
|(x1, y2)|
+
|(x2, y2)|)) by
A1,
A2,
Th55;
(
len (x1
+ x2))
= (
len x1) by
A1,
Th6;
hence thesis by
A1,
A2,
A3,
A4,
Th60;
end;
theorem ::
COMPLSP2:74
Th63: for x1,x2,y1,y2 be
FinSequence of
COMPLEX st (
len x1)
= (
len x2) & (
len x2)
= (
len y1) & (
len y1)
= (
len y2) holds
|((x1
- x2), (y1
- y2))|
= (((
|(x1, y1)|
-
|(x1, y2)|)
-
|(x2, y1)|)
+
|(x2, y2)|)
proof
let x1,x2,y1,y2 be
FinSequence of
COMPLEX ;
assume that
A1: (
len x1)
= (
len x2) and
A2: (
len x2)
= (
len y1) and
A3: (
len y1)
= (
len y2);
|(x1, (y1
- y2))|
= (
|(x1, y1)|
-
|(x1, y2)|) by
A1,
A2,
A3,
Th61;
then
A4: (
|(x1, (y1
- y2))|
-
|(x2, (y1
- y2))|)
= ((
|(x1, y1)|
-
|(x1, y2)|)
- (
|(x2, y1)|
-
|(x2, y2)|)) by
A2,
A3,
Th61;
(
len (y1
- y2))
= (
len y1) by
A3,
Th7;
hence thesis by
A1,
A2,
A4,
Th59;
end;
theorem ::
COMPLSP2:75
Th64: for x,y be
FinSequence of
COMPLEX holds
|(x, y)|
= (
|(y, x)|
*' )
proof
let x,y be
FinSequence of
COMPLEX ;
set x1 =
|((
Re y), (
Re x))|, x2 =
|((
Re y), (
Im x))|, y1 =
|((
Im y), (
Re x))|, y2 =
|((
Im y), (
Im x))|;
reconsider x19 = x1, x29 = x2, y19 = y1, y29 = y2 as
Element of
REAL by
XREAL_0:def 1;
A1: (
Im x19)
=
0 by
COMPLEX1:def 2;
A2: (
Im x29)
=
0 by
COMPLEX1:def 2;
A3: (
Im y29)
=
0 by
COMPLEX1:def 2;
A4: (
Im y19)
=
0 by
COMPLEX1:def 2;
reconsider x19 = x1, x29 = x2, y19 = y1, y29 = y2 as
Element of
COMPLEX by
XCMPLX_0:def 2;
(
|(y, x)|
*' )
= (((x19
+ y29)
+ (
<i>
* (y19
- x29)))
*' )
.= (((x19
+ y29)
*' )
+ ((
<i>
* (y19
- x29))
*' )) by
COMPLEX1: 32
.= (((x19
*' )
+ (y29
*' ))
+ ((
<i>
* (y19
- x29))
*' )) by
COMPLEX1: 32
.= ((x19
+ (y29
*' ))
+ ((
<i>
* (y19
- x29))
*' )) by
A1,
COMPLEX1: 38
.= ((x19
+ y29)
+ ((
<i>
* (y19
- x29))
*' )) by
A3,
COMPLEX1: 38
.= ((x19
+ y29)
+ ((
-
<i> )
* ((y19
- x29)
*' ))) by
COMPLEX1: 31,
COMPLEX1: 35
.= ((x19
+ y29)
+ ((
-
<i> )
* ((y19
*' )
- (x29
*' )))) by
COMPLEX1: 34
.= ((x19
+ y29)
+ ((
-
<i> )
* (y19
- (x29
*' )))) by
A4,
COMPLEX1: 38
.= ((x19
+ y29)
+ ((
-
<i> )
* (y19
- x29))) by
A2,
COMPLEX1: 38
.=
|(x, y)|;
hence thesis;
end;
theorem ::
COMPLSP2:76
for x,y be
FinSequence of
COMPLEX st (
len x)
= (
len y) holds
|((x
+ y), (x
+ y))|
= ((
|(x, x)|
+ (2
* (
Re
|(x, y)|)))
+
|(y, y)|)
proof
let x,y be
FinSequence of
COMPLEX ;
set z =
|(x, y)|;
assume (
len x)
= (
len y);
then
|((x
+ y), (x
+ y))|
= (((
|(x, x)|
+
|(x, y)|)
+
|(y, x)|)
+
|(y, y)|) by
Th62
.= (((
|(x, x)|
+
|(x, y)|)
+ (
|(x, y)|
*' ))
+
|(y, y)|) by
Th64
.= ((
|(x, x)|
+ (z
+ (z
*' )))
+
|(y, y)|)
.= ((
|(x, x)|
+ (2
* (
Re
|(x, y)|)))
+
|(y, y)|) by
Th20;
hence thesis;
end;
theorem ::
COMPLSP2:77
for x,y be
FinSequence of
COMPLEX st (
len x)
= (
len y) holds
|((x
- y), (x
- y))|
= ((
|(x, x)|
- (2
* (
Re
|(x, y)|)))
+
|(y, y)|)
proof
let x,y be
FinSequence of
COMPLEX ;
set z =
|(x, y)|;
assume (
len x)
= (
len y);
then
|((x
- y), (x
- y))|
= (((
|(x, x)|
-
|(x, y)|)
-
|(y, x)|)
+
|(y, y)|) by
Th63
.= (((
|(x, x)|
-
|(x, y)|)
- (
|(x, y)|
*' ))
+
|(y, y)|) by
Th64
.= ((
|(x, x)|
- (z
+ (z
*' )))
+
|(y, y)|)
.= ((
|(x, x)|
- (2
* (
Re
|(x, y)|)))
+
|(y, y)|) by
Th20;
hence thesis;
end;
theorem ::
COMPLSP2:78
Th67: for a be
Element of
COMPLEX , x,y be
FinSequence of
COMPLEX st (
len x)
= (
len y) holds
|((a
* x), y)|
= (a
*
|(x, y)|)
proof
let a be
Element of
COMPLEX , x,y be
FinSequence of
COMPLEX ;
assume
A1: (
len x)
= (
len y);
A2: (
len ((
Re a)
* (
Im x)))
= (
len (
Im x)) & (
len ((
Im a)
* (
Re x)))
= (
len (
Re x)) by
RVSUM_1: 117;
A3: (
len ((
Re a)
* (
Re x)))
= (
len (
Re x)) & (
len ((
Im a)
* (
Im x)))
= (
len (
Im x)) by
RVSUM_1: 117;
A4: (
len (
Re x))
= (
len x) by
Th40;
A5: (
len (
Im y))
= (
len y) by
Th40;
A6: (
len (
Re y))
= (
len y) by
Th40;
A7: (
len (
Im x))
= (
len x) by
Th40;
|((a
* x), y)|
= (((
|((((
Re a)
* (
Re x))
- ((
Im a)
* (
Im x))), (
Re y))|
- (
<i>
*
|((
Re (a
* x)), (
Im y))|))
+ (
<i>
*
|((
Im (a
* x)), (
Re y))|))
+
|((
Im (a
* x)), (
Im y))|) by
Th54
.= (((
|((((
Re a)
* (
Re x))
- ((
Im a)
* (
Im x))), (
Re y))|
- (
<i>
*
|((((
Re a)
* (
Re x))
- ((
Im a)
* (
Im x))), (
Im y))|))
+ (
<i>
*
|((
Im (a
* x)), (
Re y))|))
+
|((
Im (a
* x)), (
Im y))|) by
Th54
.= (((
|((((
Re a)
* (
Re x))
- ((
Im a)
* (
Im x))), (
Re y))|
- (
<i>
*
|((((
Re a)
* (
Re x))
- ((
Im a)
* (
Im x))), (
Im y))|))
+ (
<i>
*
|((((
Im a)
* (
Re x))
+ ((
Re a)
* (
Im x))), (
Re y))|))
+
|((
Im (a
* x)), (
Im y))|) by
Th54
.= (((
|((((
Re a)
* (
Re x))
- ((
Im a)
* (
Im x))), (
Re y))|
- (
<i>
*
|((((
Re a)
* (
Re x))
- ((
Im a)
* (
Im x))), (
Im y))|))
+ (
<i>
*
|((((
Im a)
* (
Re x))
+ ((
Re a)
* (
Im x))), (
Re y))|))
+
|((((
Im a)
* (
Re x))
+ ((
Re a)
* (
Im x))), (
Im y))|) by
Th54
.= ((((
|(((
Re a)
* (
Re x)), (
Re y))|
-
|(((
Im a)
* (
Im x)), (
Re y))|)
- (
<i>
*
|((((
Re a)
* (
Re x))
- ((
Im a)
* (
Im x))), (
Im y))|))
+ (
<i>
*
|((((
Im a)
* (
Re x))
+ ((
Re a)
* (
Im x))), (
Re y))|))
+
|((((
Im a)
* (
Re x))
+ ((
Re a)
* (
Im x))), (
Im y))|) by
A1,
A4,
A6,
A7,
A3,
RVSUM_1: 124
.= ((((
|(((
Re a)
* (
Re x)), (
Re y))|
-
|(((
Im a)
* (
Im x)), (
Re y))|)
- (
<i>
* (
|(((
Re a)
* (
Re x)), (
Im y))|
-
|(((
Im a)
* (
Im x)), (
Im y))|)))
+ (
<i>
*
|((((
Im a)
* (
Re x))
+ ((
Re a)
* (
Im x))), (
Re y))|))
+
|((((
Im a)
* (
Re x))
+ ((
Re a)
* (
Im x))), (
Im y))|) by
A1,
A4,
A7,
A5,
A3,
RVSUM_1: 124
.= ((((
|(((
Re a)
* (
Re x)), (
Re y))|
-
|(((
Im a)
* (
Im x)), (
Re y))|)
- (
<i>
* (
|(((
Re a)
* (
Re x)), (
Im y))|
-
|(((
Im a)
* (
Im x)), (
Im y))|)))
+ (
<i>
* (
|(((
Im a)
* (
Re x)), (
Re y))|
+
|(((
Re a)
* (
Im x)), (
Re y))|)))
+
|((((
Im a)
* (
Re x))
+ ((
Re a)
* (
Im x))), (
Im y))|) by
A1,
A4,
A6,
A7,
A2,
RVSUM_1: 120
.= ((((
|(((
Re a)
* (
Re x)), (
Re y))|
-
|(((
Im a)
* (
Im x)), (
Re y))|)
- (
<i>
* (
|(((
Re a)
* (
Re x)), (
Im y))|
-
|(((
Im a)
* (
Im x)), (
Im y))|)))
+ (
<i>
* (
|(((
Im a)
* (
Re x)), (
Re y))|
+
|(((
Re a)
* (
Im x)), (
Re y))|)))
+ (
|(((
Im a)
* (
Re x)), (
Im y))|
+
|(((
Re a)
* (
Im x)), (
Im y))|)) by
A1,
A4,
A7,
A5,
A2,
RVSUM_1: 120
.= ((((
|(((
Re a)
* (
Re x)), (
Re y))|
-
|(((
Im a)
* (
Im x)), (
Re y))|)
- (
<i>
* (((
Re a)
*
|((
Re x), (
Im y))|)
-
|(((
Im a)
* (
Im x)), (
Im y))|)))
+ (
<i>
* (
|(((
Im a)
* (
Re x)), (
Re y))|
+
|(((
Re a)
* (
Im x)), (
Re y))|)))
+ (
|(((
Im a)
* (
Re x)), (
Im y))|
+
|(((
Re a)
* (
Im x)), (
Im y))|)) by
A1,
A4,
A5,
RVSUM_1: 121
.= ((((
|(((
Re a)
* (
Re x)), (
Re y))|
-
|(((
Im a)
* (
Im x)), (
Re y))|)
- (
<i>
* (((
Re a)
*
|((
Re x), (
Im y))|)
- ((
Im a)
*
|((
Im x), (
Im y))|))))
+ (
<i>
* (
|(((
Im a)
* (
Re x)), (
Re y))|
+
|(((
Re a)
* (
Im x)), (
Re y))|)))
+ (
|(((
Im a)
* (
Re x)), (
Im y))|
+
|(((
Re a)
* (
Im x)), (
Im y))|)) by
A1,
A7,
A5,
RVSUM_1: 121
.= ((((((
Re a)
*
|((
Re x), (
Re y))|)
-
|(((
Im a)
* (
Im x)), (
Re y))|)
- (
<i>
* (((
Re a)
*
|((
Re x), (
Im y))|)
- ((
Im a)
*
|((
Im x), (
Im y))|))))
+ (
<i>
* (
|(((
Im a)
* (
Re x)), (
Re y))|
+
|(((
Re a)
* (
Im x)), (
Re y))|)))
+ (
|(((
Im a)
* (
Re x)), (
Im y))|
+
|(((
Re a)
* (
Im x)), (
Im y))|)) by
A1,
A4,
A6,
RVSUM_1: 121
.= ((((((
Re a)
*
|((
Re x), (
Re y))|)
- ((
Im a)
*
|((
Im x), (
Re y))|))
- (
<i>
* (((
Re a)
*
|((
Re x), (
Im y))|)
- ((
Im a)
*
|((
Im x), (
Im y))|))))
+ (
<i>
* (
|(((
Im a)
* (
Re x)), (
Re y))|
+
|(((
Re a)
* (
Im x)), (
Re y))|)))
+ (
|(((
Im a)
* (
Re x)), (
Im y))|
+
|(((
Re a)
* (
Im x)), (
Im y))|)) by
A1,
A6,
A7,
RVSUM_1: 121
.= ((((((
Re a)
*
|((
Re x), (
Re y))|)
- ((
Im a)
*
|((
Im x), (
Re y))|))
- (
<i>
* (((
Re a)
*
|((
Re x), (
Im y))|)
- ((
Im a)
*
|((
Im x), (
Im y))|))))
+ (
<i>
* (((
Im a)
*
|((
Re x), (
Re y))|)
+
|(((
Re a)
* (
Im x)), (
Re y))|)))
+ (
|(((
Im a)
* (
Re x)), (
Im y))|
+
|(((
Re a)
* (
Im x)), (
Im y))|)) by
A1,
A4,
A6,
RVSUM_1: 121
.= ((((((
Re a)
*
|((
Re x), (
Re y))|)
- ((
Im a)
*
|((
Im x), (
Re y))|))
- (
<i>
* (((
Re a)
*
|((
Re x), (
Im y))|)
- ((
Im a)
*
|((
Im x), (
Im y))|))))
+ (
<i>
* (((
Im a)
*
|((
Re x), (
Re y))|)
+ ((
Re a)
*
|((
Im x), (
Re y))|))))
+ (
|(((
Im a)
* (
Re x)), (
Im y))|
+
|(((
Re a)
* (
Im x)), (
Im y))|)) by
A1,
A6,
A7,
RVSUM_1: 121
.= ((((((
Re a)
*
|((
Re x), (
Re y))|)
- ((
Im a)
*
|((
Im x), (
Re y))|))
- (
<i>
* (((
Re a)
*
|((
Re x), (
Im y))|)
- ((
Im a)
*
|((
Im x), (
Im y))|))))
+ (
<i>
* (((
Im a)
*
|((
Re x), (
Re y))|)
+ ((
Re a)
*
|((
Im x), (
Re y))|))))
+ (((
Im a)
*
|((
Re x), (
Im y))|)
+
|(((
Re a)
* (
Im x)), (
Im y))|)) by
A1,
A4,
A5,
RVSUM_1: 121
.= ((((((
Re a)
*
|((
Re x), (
Re y))|)
- ((
Im a)
*
|((
Im x), (
Re y))|))
- (
<i>
* (((
Re a)
*
|((
Re x), (
Im y))|)
- ((
Im a)
*
|((
Im x), (
Im y))|))))
+ (
<i>
* (((
Im a)
*
|((
Re x), (
Re y))|)
+ ((
Re a)
*
|((
Im x), (
Re y))|))))
+ (((
Im a)
*
|((
Re x), (
Im y))|)
+ ((
Re a)
*
|((
Im x), (
Im y))|))) by
A1,
A7,
A5,
RVSUM_1: 121
.= (((((((
Re a)
*
|((
Re x), (
Re y))|)
+ ((
<i>
* (
Im a))
*
|((
Re x), (
Re y))|))
- (((
Re a)
*
<i> )
*
|((
Re x), (
Im y))|))
+ ((
Im a)
*
|((
Re x), (
Im y))|))
+ (((
Re a)
* (
<i>
*
|((
Im x), (
Re y))|))
- ((
Im a)
*
|((
Im x), (
Re y))|)))
+ (((
Re a)
+ (
<i>
* (
Im a)))
*
|((
Im x), (
Im y))|))
.= (((((((
Re a)
*
|((
Re x), (
Re y))|)
+ ((
<i>
* (
Im a))
*
|((
Re x), (
Re y))|))
- (((
Re a)
*
<i> )
*
|((
Re x), (
Im y))|))
+ ((
Im a)
*
|((
Re x), (
Im y))|))
+ (((
Re a)
+ (
<i>
* (
Im a)))
* (
<i>
*
|((
Im x), (
Re y))|)))
+ (a
*
|((
Im x), (
Im y))|)) by
COMPLEX1: 13
.= ((((((
Re a)
*
|((
Re x), (
Re y))|)
+ ((
<i>
* (
Im a))
*
|((
Re x), (
Re y))|))
- (((
Re a)
+ (
<i>
* (
Im a)))
* (
<i>
*
|((
Re x), (
Im y))|)))
+ (a
* (
<i>
*
|((
Im x), (
Re y))|)))
+ (a
*
|((
Im x), (
Im y))|)) by
COMPLEX1: 13
.= ((((((
Re a)
+ (
<i>
* (
Im a)))
*
|((
Re x), (
Re y))|)
- (a
* (
<i>
*
|((
Re x), (
Im y))|)))
+ (a
* (
<i>
*
|((
Im x), (
Re y))|)))
+ (a
*
|((
Im x), (
Im y))|)) by
COMPLEX1: 13
.= ((((a
*
|((
Re x), (
Re y))|)
- (a
* (
<i>
*
|((
Re x), (
Im y))|)))
+ (a
* (
<i>
*
|((
Im x), (
Re y))|)))
+ (a
*
|((
Im x), (
Im y))|)) by
COMPLEX1: 13
.= (a
*
|(x, y)|);
hence thesis;
end;
theorem ::
COMPLSP2:79
Th68: for a be
Element of
COMPLEX , x,y be
FinSequence of
COMPLEX st (
len x)
= (
len y) holds
|(x, (a
* y))|
= ((a
*' )
*
|(x, y)|)
proof
let a be
Element of
COMPLEX , x,y be
FinSequence of
COMPLEX ;
assume
A1: (
len x)
= (
len y);
|(x, (a
* y))|
= (
|((a
* y), x)|
*' ) by
Th64
.= ((a
*
|(y, x)|)
*' ) by
A1,
Th67
.= ((a
*' )
* (
|(y, x)|
*' )) by
COMPLEX1: 35
.= ((a
*' )
*
|(x, y)|) by
Th64;
hence thesis;
end;
theorem ::
COMPLSP2:80
for a,b be
Element of
COMPLEX , x,y,z be
FinSequence of
COMPLEX st (
len x)
= (
len y) & (
len y)
= (
len z) holds
|(((a
* x)
+ (b
* y)), z)|
= ((a
*
|(x, z)|)
+ (b
*
|(y, z)|))
proof
let a,b be
Element of
COMPLEX , x,y,z be
FinSequence of
COMPLEX ;
assume that
A1: (
len x)
= (
len y) and
A2: (
len y)
= (
len z);
(
len (a
* x))
= (
len x) & (
len (b
* y))
= (
len y) by
Th3;
then
|(((a
* x)
+ (b
* y)), z)|
= (
|((a
* x), z)|
+
|((b
* y), z)|) by
A1,
A2,
Th55
.= ((a
*
|(x, z)|)
+
|((b
* y), z)|) by
A1,
A2,
Th67
.= ((a
*
|(x, z)|)
+ (b
*
|(y, z)|)) by
A2,
Th67;
hence thesis;
end;
theorem ::
COMPLSP2:81
for a,b be
Element of
COMPLEX , x,y,z be
FinSequence of
COMPLEX st (
len x)
= (
len y) & (
len y)
= (
len z) holds
|(x, ((a
* y)
+ (b
* z)))|
= (((a
*' )
*
|(x, y)|)
+ ((b
*' )
*
|(x, z)|))
proof
let a,b be
Element of
COMPLEX , x,y,z be
FinSequence of
COMPLEX ;
assume that
A1: (
len x)
= (
len y) and
A2: (
len y)
= (
len z);
(
len (a
* y))
= (
len y) & (
len (b
* z))
= (
len z) by
Th3;
then
|(x, ((a
* y)
+ (b
* z)))|
= (
|(x, (a
* y))|
+
|(x, (b
* z))|) by
A1,
A2,
Th60
.= (((a
*' )
*
|(x, y)|)
+
|(x, (b
* z))|) by
A1,
Th68
.= (((a
*' )
*
|(x, y)|)
+ ((b
*' )
*
|(x, z)|)) by
A1,
A2,
Th68;
hence thesis;
end;