cqc_the2.miz
begin
reserve A for
QC-alphabet;
reserve X,T for
Subset of (
CQC-WFF A);
reserve F,G,H,p,q,r,t for
Element of (
CQC-WFF A);
reserve s,h for
QC-formula of A;
reserve x,y for
bound_QC-variable of A;
reserve f for
FinSequence of
[:(
CQC-WFF A),
Proof_Step_Kinds :];
reserve i,j for
Element of
NAT ;
theorem ::
CQC_THE2:1
Th1: (p
=> (q
=> r)) is
valid implies ((p
'&' q)
=> r) is
valid
proof
A1: ((p
=> (q
=> r))
=> ((p
'&' q)
=> r))
in (
TAUT A) by
PROCAL_1: 32;
assume (p
=> (q
=> r))
in (
TAUT A);
hence ((p
'&' q)
=> r)
in (
TAUT A) by
A1,
CQC_THE1: 46;
end;
theorem ::
CQC_THE2:2
Th2: (p
=> (q
=> r)) is
valid implies ((q
'&' p)
=> r) is
valid
proof
assume (p
=> (q
=> r))
in (
TAUT A);
then (p
=> (q
=> r)) is
valid;
then ((p
'&' q)
=> r) is
valid by
Th1;
then
A1: ((p
'&' q)
=> r)
in (
TAUT A);
((q
'&' p)
=> (p
'&' q))
in (
TAUT A) by
CQC_THE1: 45;
hence ((q
'&' p)
=> r)
in (
TAUT A) by
A1,
LUKASI_1: 3;
end;
theorem ::
CQC_THE2:3
Th3: ((p
'&' q)
=> r) is
valid implies (p
=> (q
=> r)) is
valid
proof
A1: (((p
'&' q)
=> r)
=> (p
=> (q
=> r)))
in (
TAUT A) by
PROCAL_1: 31;
assume ((p
'&' q)
=> r)
in (
TAUT A);
hence (p
=> (q
=> r))
in (
TAUT A) by
A1,
CQC_THE1: 46;
end;
theorem ::
CQC_THE2:4
Th4: ((p
'&' q)
=> r) is
valid implies (q
=> (p
=> r)) is
valid
proof
A1: ((q
'&' p)
=> (p
'&' q))
in (
TAUT A) by
CQC_THE1: 45;
assume ((p
'&' q)
=> r)
in (
TAUT A);
then ((q
'&' p)
=> r)
in (
TAUT A) by
A1,
LUKASI_1: 3;
then ((q
'&' p)
=> r) is
valid;
then (q
=> (p
=> r)) is
valid by
Th3;
hence (q
=> (p
=> r))
in (
TAUT A);
end;
Lm1: ((p
'&' q)
=> p) is
valid & ((p
'&' q)
=> q) is
valid by
PROCAL_1: 19,
PROCAL_1: 21;
Lm2: (p
'&' q) is
valid implies p is
valid & q is
valid
proof
assume
A1: (p
'&' q) is
valid;
((p
'&' q)
=> p) is
valid & ((p
'&' q)
=> q) is
valid by
Lm1;
hence thesis by
A1,
CQC_THE1: 65;
end;
Lm3: (p
=> q) is
valid & (p
=> r) is
valid implies (p
=> (q
'&' r)) is
valid by
PROCAL_1: 52;
Lm4: (p
=> q) is
valid & (r
=> t) is
valid implies ((p
'or' r)
=> (q
'or' t)) is
valid by
PROCAL_1: 57;
Lm5: (p
=> q) is
valid & (r
=> t) is
valid implies ((p
'&' r)
=> (q
'&' t)) is
valid by
PROCAL_1: 56;
Lm6: (p
=> (p
'or' q)) is
valid & (p
=> (q
'or' p)) is
valid by
PROCAL_1: 3,
PROCAL_1: 4;
Lm7: (p
=> q) is
valid & (r
=> q) is
valid implies ((p
'or' r)
=> q) is
valid by
PROCAL_1: 53;
Lm8: p is
valid & q is
valid implies (p
'&' q) is
valid by
PROCAL_1: 47;
Lm9: (p
=> q) is
valid implies ((r
'&' p)
=> (r
'&' q)) is
valid by
PROCAL_1: 50;
Lm10: (p
=> q) is
valid implies ((p
'or' r)
=> (q
'or' r)) is
valid by
PROCAL_1: 48;
Lm11: ((p
'or' q)
=> ((
'not' p)
=> q)) is
valid by
PROCAL_1: 5;
Lm12: (((
'not' p)
=> q)
=> (p
'or' q)) is
valid
proof
((
'not' (
'not' p))
=> p)
in (
TAUT A) by
LUKASI_1: 25;
then (((
'not' p)
=> q)
=> ((
'not' (
'not' p))
'or' q))
in (
TAUT A) & (((
'not' (
'not' p))
'or' q)
=> (p
'or' q))
in (
TAUT A) by
PROCAL_1: 14,
PROCAL_1: 48;
hence (((
'not' p)
=> q)
=> (p
'or' q))
in (
TAUT A) by
LUKASI_1: 3;
end;
Lm13: (p
<=> p) is
valid
proof
((p
=> p)
'&' (p
=> p)) is
valid by
Lm8;
hence thesis by
QC_LANG2:def 4;
end;
Lm14: (p
=> q) is
valid & (q
=> p) is
valid iff (p
<=> q) is
valid
proof
thus (p
=> q) is
valid & (q
=> p) is
valid implies (p
<=> q) is
valid
proof
assume (p
=> q) is
valid & (q
=> p) is
valid;
then ((p
=> q)
'&' (q
=> p)) is
valid by
Lm8;
hence thesis by
QC_LANG2:def 4;
end;
assume (p
<=> q) is
valid;
then ((p
=> q)
'&' (q
=> p)) is
valid by
QC_LANG2:def 4;
hence thesis by
Lm2;
end;
Lm15: (p
<=> q) is
valid implies (p is
valid iff q is
valid)
proof
assume
A1: (p
<=> q)
in (
TAUT A);
((p
<=> q)
=> (p
=> q))
in (
TAUT A) by
PROCAL_1: 23;
then
A2: (p
=> q)
in (
TAUT A) by
A1,
CQC_THE1: 46;
thus p is
valid implies q is
valid by
A2,
CQC_THE1: 46;
assume
A3: q
in (
TAUT A);
((p
<=> q)
=> (q
=> p))
in (
TAUT A) by
PROCAL_1: 24;
then (q
=> p)
in (
TAUT A) by
A1,
CQC_THE1: 46;
hence p
in (
TAUT A) by
A3,
CQC_THE1: 46;
end;
Lm16: (p
=> (q
=> r)) is
valid & (r
=> t) is
valid implies (p
=> (q
=> t)) is
valid
proof
assume that
A1: (p
=> (q
=> r)) is
valid and
A2: (r
=> t) is
valid;
((p
'&' q)
=> r) is
valid by
A1,
Th1;
then ((p
'&' q)
=> t) is
valid by
A2,
LUKASI_1: 42;
hence thesis by
Th3;
end;
theorem ::
CQC_THE2:5
Th5: y
in (
still_not-bound_in (
All (x,s))) iff y
in (
still_not-bound_in s) & y
<> x
proof
(
still_not-bound_in (
All (x,s)))
= ((
still_not-bound_in s)
\
{x}) by
QC_LANG3: 12;
hence thesis by
ZFMISC_1: 56;
end;
theorem ::
CQC_THE2:6
Th6: y
in (
still_not-bound_in (
Ex (x,s))) iff y
in (
still_not-bound_in s) & y
<> x
proof
(
still_not-bound_in (
Ex (x,s)))
= ((
still_not-bound_in s)
\
{x}) by
QC_LANG3: 19;
hence thesis by
ZFMISC_1: 56;
end;
theorem ::
CQC_THE2:7
Th7: y
in (
still_not-bound_in (s
=> h)) iff y
in (
still_not-bound_in s) or y
in (
still_not-bound_in h)
proof
(
still_not-bound_in (s
=> h))
= ((
still_not-bound_in s)
\/ (
still_not-bound_in h)) by
QC_LANG3: 16;
hence thesis by
XBOOLE_0:def 3;
end;
theorem ::
CQC_THE2:8
Th8: y
in (
still_not-bound_in (s
'&' h)) iff y
in (
still_not-bound_in s) or y
in (
still_not-bound_in h)
proof
(
still_not-bound_in (s
'&' h))
= ((
still_not-bound_in s)
\/ (
still_not-bound_in h)) by
QC_LANG3: 10;
hence thesis by
XBOOLE_0:def 3;
end;
theorem ::
CQC_THE2:9
Th9: y
in (
still_not-bound_in (s
'or' h)) iff y
in (
still_not-bound_in s) or y
in (
still_not-bound_in h)
proof
(
still_not-bound_in (s
'or' h))
= ((
still_not-bound_in s)
\/ (
still_not-bound_in h)) by
QC_LANG3: 14;
hence thesis by
XBOOLE_0:def 3;
end;
theorem ::
CQC_THE2:10
not x
in (
still_not-bound_in (
All (x,y,s))) & not y
in (
still_not-bound_in (
All (x,y,s)))
proof
not y
in (
still_not-bound_in (
All (y,s))) by
Th5;
then
A1: not y
in (
still_not-bound_in (
All (x,(
All (y,s))))) by
Th5;
not x
in (
still_not-bound_in (
All (x,(
All (y,s))))) by
Th5;
hence thesis by
A1,
QC_LANG2: 14;
end;
theorem ::
CQC_THE2:11
not x
in (
still_not-bound_in (
Ex (x,y,s))) & not y
in (
still_not-bound_in (
Ex (x,y,s)))
proof
not y
in (
still_not-bound_in (
Ex (y,s))) by
Th6;
then
A1: not y
in (
still_not-bound_in (
Ex (x,(
Ex (y,s))))) by
Th6;
not x
in (
still_not-bound_in (
Ex (x,(
Ex (y,s))))) by
Th6;
hence thesis by
A1,
QC_LANG2: 14;
end;
theorem ::
CQC_THE2:12
Th12: ((s
=> h)
. x)
= ((s
. x)
=> (h
. x))
proof
(s
=> h)
= (
'not' (s
'&' (
'not' h))) by
QC_LANG2:def 2;
hence ((s
=> h)
. x)
= (
'not' ((s
'&' (
'not' h))
. x)) by
CQC_LANG: 19
.= (
'not' ((s
. x)
'&' ((
'not' h)
. x))) by
CQC_LANG: 21
.= (
'not' ((s
. x)
'&' (
'not' (h
. x)))) by
CQC_LANG: 19
.= ((s
. x)
=> (h
. x)) by
QC_LANG2:def 2;
end;
theorem ::
CQC_THE2:13
((s
'or' h)
. x)
= ((s
. x)
'or' (h
. x))
proof
thus ((s
'or' h)
. x)
= ((
'not' ((
'not' s)
'&' (
'not' h)))
. x) by
QC_LANG2:def 3
.= (
'not' (((
'not' s)
'&' (
'not' h))
. x)) by
CQC_LANG: 19
.= (
'not' (((
'not' s)
. x)
'&' ((
'not' h)
. x))) by
CQC_LANG: 21
.= (
'not' ((
'not' (s
. x))
'&' ((
'not' h)
. x))) by
CQC_LANG: 19
.= (
'not' ((
'not' (s
. x))
'&' (
'not' (h
. x)))) by
CQC_LANG: 19
.= ((s
. x)
'or' (h
. x)) by
QC_LANG2:def 3;
end;
theorem ::
CQC_THE2:14
x
<> y implies ((
Ex (x,p))
. y)
= (
Ex (x,(p
. y)))
proof
assume
A1: x
<> y;
thus ((
Ex (x,p))
. y)
= ((
'not' (
All (x,(
'not' p))))
. y) by
QC_LANG2:def 5
.= (
'not' ((
All (x,(
'not' p)))
. y)) by
CQC_LANG: 19
.= (
'not' (
All (x,((
'not' p)
. y)))) by
A1,
CQC_LANG: 25
.= (
'not' (
All (x,(
'not' (p
. y))))) by
CQC_LANG: 19
.= (
Ex (x,(p
. y))) by
QC_LANG2:def 5;
end;
theorem ::
CQC_THE2:15
Th15: (p
=> (
Ex (x,p))) is
valid
proof
((
All (x,(
'not' p)))
=> (
'not' p)) is
valid by
CQC_THE1: 66;
then ((
'not' (
'not' p))
=> (
'not' (
All (x,(
'not' p))))) is
valid by
LUKASI_1: 52;
then
A1: ((
'not' (
'not' p))
=> (
Ex (x,p))) is
valid by
QC_LANG2:def 5;
(((
'not' (
'not' p))
=> (
Ex (x,p)))
=> (p
=> (
Ex (x,p)))) is
valid;
hence thesis by
A1,
CQC_THE1: 65;
end;
theorem ::
CQC_THE2:16
Th16: p is
valid implies (
Ex (x,p)) is
valid
proof
assume
A1: p is
valid;
(p
=> (
Ex (x,p))) is
valid by
Th15;
hence thesis by
A1,
CQC_THE1: 65;
end;
theorem ::
CQC_THE2:17
((
All (x,p))
=> (
Ex (x,p))) is
valid
proof
((
All (x,p))
=> p) is
valid & (p
=> (
Ex (x,p))) is
valid by
Th15,
CQC_THE1: 66;
hence thesis by
LUKASI_1: 42;
end;
theorem ::
CQC_THE2:18
((
All (x,p))
=> (
Ex (y,p))) is
valid
proof
((
All (x,p))
=> p) is
valid & (p
=> (
Ex (y,p))) is
valid by
Th15,
CQC_THE1: 66;
hence thesis by
LUKASI_1: 42;
end;
theorem ::
CQC_THE2:19
Th19: (p
=> q) is
valid & not x
in (
still_not-bound_in q) implies ((
Ex (x,p))
=> q) is
valid
proof
assume (p
=> q) is
valid & not x
in (
still_not-bound_in q);
then ((
'not' q)
=> (
'not' p)) is
valid & not x
in (
still_not-bound_in (
'not' q)) by
LUKASI_1: 52,
QC_LANG3: 7;
then ((
'not' q)
=> (
All (x,(
'not' p)))) is
valid by
CQC_THE1: 67;
then ((
'not' (
All (x,(
'not' p))))
=> (
'not' (
'not' q))) is
valid by
LUKASI_1: 52;
then ((
Ex (x,p))
=> (
'not' (
'not' q))) is
valid by
QC_LANG2:def 5;
hence thesis by
LUKASI_1: 55;
end;
theorem ::
CQC_THE2:20
Th20: not x
in (
still_not-bound_in p) implies ((
Ex (x,p))
=> p) is
valid
proof
A1: (p
=> p) is
valid;
assume not x
in (
still_not-bound_in p);
hence thesis by
A1,
Th19;
end;
theorem ::
CQC_THE2:21
not x
in (
still_not-bound_in p) & (
Ex (x,p)) is
valid implies p is
valid
proof
assume that
A1: not x
in (
still_not-bound_in p) and
A2: (
Ex (x,p)) is
valid;
((
Ex (x,p))
=> p) is
valid by
A1,
Th20;
hence thesis by
A2,
CQC_THE1: 65;
end;
theorem ::
CQC_THE2:22
Th22: p
= (h
. x) & q
= (h
. y) & not y
in (
still_not-bound_in h) implies (p
=> (
Ex (y,q))) is
valid
proof
assume that
A1: p
= (h
. x) and
A2: q
= (h
. y) and
A3: not y
in (
still_not-bound_in h);
A4: ((h
=> (
Ex (y,q)))
. x)
= ((h
. x)
=> ((
Ex (y,q))
. x)) by
Th12
.= (p
=> (
Ex (y,q))) by
A1,
CQC_LANG: 27;
not y
in (
still_not-bound_in (
Ex (y,q))) by
Th6;
then
A5: not y
in (
still_not-bound_in (h
=> (
Ex (y,q)))) by
A3,
Th7;
A6: (q
=> (
Ex (y,q))) is
valid by
Th15;
((h
=> (
Ex (y,q)))
. y)
= ((h
. y)
=> ((
Ex (y,q))
. y)) by
Th12
.= (q
=> (
Ex (y,q))) by
A2,
CQC_LANG: 27;
hence thesis by
A6,
A4,
A5,
CQC_THE1: 68;
end;
theorem ::
CQC_THE2:23
Th23: p is
valid implies (
All (x,p)) is
valid
proof
A1: (p
=> (((
All (x,p))
=> (
All (x,p)))
=> p)) is
valid;
not x
in (
still_not-bound_in (
All (x,p))) by
Th5;
then
A2: not x
in (
still_not-bound_in ((
All (x,p))
=> (
All (x,p)))) by
Th7;
assume p is
valid;
then (((
All (x,p))
=> (
All (x,p)))
=> p) is
valid by
A1,
CQC_THE1: 65;
then (((
All (x,p))
=> (
All (x,p)))
=> (
All (x,p))) is
valid by
A2,
CQC_THE1: 67;
hence thesis by
CQC_THE1: 65;
end;
theorem ::
CQC_THE2:24
Th24: not x
in (
still_not-bound_in p) implies (p
=> (
All (x,p))) is
valid
proof
A1: (p
=> p) is
valid;
assume not x
in (
still_not-bound_in p);
hence thesis by
A1,
CQC_THE1: 67;
end;
theorem ::
CQC_THE2:25
Th25: p
= (h
. x) & q
= (h
. y) & not x
in (
still_not-bound_in h) implies ((
All (x,p))
=> q) is
valid
proof
assume that
A1: p
= (h
. x) and
A2: q
= (h
. y) and
A3: not x
in (
still_not-bound_in h);
A4: (((
All (x,p))
=> h)
. y)
= (((
All (x,p))
. y)
=> q) by
A2,
Th12
.= ((
All (x,p))
=> q) by
CQC_LANG: 27;
not x
in (
still_not-bound_in (
All (x,p))) by
Th5;
then
A5: ((
All (x,p))
=> p) is
valid & not x
in (
still_not-bound_in ((
All (x,p))
=> h)) by
A3,
Th7,
CQC_THE1: 66;
(((
All (x,p))
=> h)
. x)
= (((
All (x,p))
. x)
=> p) by
A1,
Th12
.= ((
All (x,p))
=> p) by
CQC_LANG: 27;
hence thesis by
A4,
A5,
CQC_THE1: 68;
end;
theorem ::
CQC_THE2:26
not y
in (
still_not-bound_in p) implies ((
All (x,p))
=> (
All (y,p))) is
valid
proof
assume not y
in (
still_not-bound_in p);
then ((
All (x,p))
=> p) is
valid & not y
in (
still_not-bound_in (
All (x,p))) by
Th5,
CQC_THE1: 66;
hence thesis by
CQC_THE1: 67;
end;
theorem ::
CQC_THE2:27
p
= (h
. x) & q
= (h
. y) & not x
in (
still_not-bound_in h) & not y
in (
still_not-bound_in p) implies ((
All (x,p))
=> (
All (y,q))) is
valid
proof
assume p
= (h
. x) & q
= (h
. y) & not x
in (
still_not-bound_in h) & not y
in (
still_not-bound_in p);
then ( not y
in (
still_not-bound_in (
All (x,p)))) & ((
All (x,p))
=> q) is
valid by
Th5,
Th25;
hence thesis by
CQC_THE1: 67;
end;
theorem ::
CQC_THE2:28
not x
in (
still_not-bound_in p) implies ((
Ex (x,p))
=> (
Ex (y,p))) is
valid
proof
assume not x
in (
still_not-bound_in p);
then
A1: not x
in (
still_not-bound_in (
Ex (y,p))) by
Th6;
(p
=> (
Ex (y,p))) is
valid by
Th15;
hence thesis by
A1,
Th19;
end;
theorem ::
CQC_THE2:29
p
= (h
. x) & q
= (h
. y) & not x
in (
still_not-bound_in q) & not y
in (
still_not-bound_in h) implies ((
Ex (x,p))
=> (
Ex (y,q))) is
valid
proof
assume p
= (h
. x) & q
= (h
. y) & not x
in (
still_not-bound_in q) & not y
in (
still_not-bound_in h);
then ( not x
in (
still_not-bound_in (
Ex (y,q)))) & (p
=> (
Ex (y,q))) is
valid by
Th6,
Th22;
hence thesis by
Th19;
end;
theorem ::
CQC_THE2:30
Th30: ((
All (x,(p
=> q)))
=> ((
All (x,p))
=> (
All (x,q)))) is
valid
proof
((
All (x,(p
=> q)))
=> (p
=> q)) is
valid by
CQC_THE1: 66;
then
A1: (p
=> ((
All (x,(p
=> q)))
=> q)) is
valid by
LUKASI_1: 44;
((
All (x,p))
=> p) is
valid by
CQC_THE1: 66;
then ((
All (x,p))
=> ((
All (x,(p
=> q)))
=> q)) is
valid by
A1,
LUKASI_1: 42;
then
A2: (((
All (x,(p
=> q)))
'&' (
All (x,p)))
=> q) is
valid by
Th2;
( not x
in (
still_not-bound_in (
All (x,(p
=> q))))) & not x
in (
still_not-bound_in (
All (x,p))) by
Th5;
then not x
in (
still_not-bound_in ((
All (x,(p
=> q)))
'&' (
All (x,p)))) by
Th8;
then (((
All (x,(p
=> q)))
'&' (
All (x,p)))
=> (
All (x,q))) is
valid by
A2,
CQC_THE1: 67;
hence thesis by
Th3;
end;
theorem ::
CQC_THE2:31
Th31: (
All (x,(p
=> q))) is
valid implies ((
All (x,p))
=> (
All (x,q))) is
valid
proof
assume
A1: (
All (x,(p
=> q))) is
valid;
((
All (x,(p
=> q)))
=> ((
All (x,p))
=> (
All (x,q)))) is
valid by
Th30;
hence thesis by
A1,
CQC_THE1: 65;
end;
theorem ::
CQC_THE2:32
Th32: ((
All (x,(p
<=> q)))
=> ((
All (x,p))
<=> (
All (x,q)))) is
valid
proof
A1: ((
All (x,((p
=> q)
'&' (q
=> p))))
=> ((p
=> q)
'&' (q
=> p))) is
valid by
CQC_THE1: 66;
((p
<=> q)
=> (p
<=> q)) is
valid;
then ((p
<=> q)
=> ((p
=> q)
'&' (q
=> p))) is
valid by
QC_LANG2:def 4;
then (
All (x,((p
<=> q)
=> ((p
=> q)
'&' (q
=> p))))) is
valid by
Th23;
then
A2: ((
All (x,(p
<=> q)))
=> (
All (x,((p
=> q)
'&' (q
=> p))))) is
valid by
Th31;
((
All (x,(p
=> q)))
=> ((
All (x,p))
=> (
All (x,q)))) is
valid & ((
All (x,(q
=> p)))
=> ((
All (x,q))
=> (
All (x,p)))) is
valid by
Th30;
then (((
All (x,(p
=> q)))
'&' (
All (x,(q
=> p))))
=> (((
All (x,p))
=> (
All (x,q)))
'&' ((
All (x,q))
=> (
All (x,p))))) is
valid by
Lm5;
then
A3: (((
All (x,(p
=> q)))
'&' (
All (x,(q
=> p))))
=> ((
All (x,p))
<=> (
All (x,q)))) is
valid by
QC_LANG2:def 4;
A4: not x
in (
still_not-bound_in (
All (x,((p
=> q)
'&' (q
=> p))))) by
Th5;
(((p
=> q)
'&' (q
=> p))
=> (q
=> p)) is
valid by
Lm1;
then ((
All (x,((p
=> q)
'&' (q
=> p))))
=> (q
=> p)) is
valid by
A1,
LUKASI_1: 42;
then
A5: ((
All (x,((p
=> q)
'&' (q
=> p))))
=> (
All (x,(q
=> p)))) is
valid by
A4,
CQC_THE1: 67;
(((p
=> q)
'&' (q
=> p))
=> (p
=> q)) is
valid by
Lm1;
then ((
All (x,((p
=> q)
'&' (q
=> p))))
=> (p
=> q)) is
valid by
A1,
LUKASI_1: 42;
then ((
All (x,((p
=> q)
'&' (q
=> p))))
=> (
All (x,(p
=> q)))) is
valid by
A4,
CQC_THE1: 67;
then ((
All (x,((p
=> q)
'&' (q
=> p))))
=> ((
All (x,(p
=> q)))
'&' (
All (x,(q
=> p))))) is
valid by
A5,
Lm3;
then ((
All (x,((p
=> q)
'&' (q
=> p))))
=> ((
All (x,p))
<=> (
All (x,q)))) is
valid by
A3,
LUKASI_1: 42;
hence thesis by
A2,
LUKASI_1: 42;
end;
theorem ::
CQC_THE2:33
(
All (x,(p
<=> q))) is
valid implies ((
All (x,p))
<=> (
All (x,q))) is
valid
proof
assume
A1: (
All (x,(p
<=> q))) is
valid;
((
All (x,(p
<=> q)))
=> ((
All (x,p))
<=> (
All (x,q)))) is
valid by
Th32;
hence thesis by
A1,
CQC_THE1: 65;
end;
theorem ::
CQC_THE2:34
Th34: ((
All (x,(p
=> q)))
=> ((
Ex (x,p))
=> (
Ex (x,q)))) is
valid
proof
((
All (x,(p
=> q)))
=> (p
=> q)) is
valid by
CQC_THE1: 66;
then
A1: ((p
'&' (
All (x,(p
=> q))))
=> q) is
valid by
Th2;
(q
=> (
Ex (x,q))) is
valid by
Th15;
then ((p
'&' (
All (x,(p
=> q))))
=> (
Ex (x,q))) is
valid by
A1,
LUKASI_1: 42;
then
A2: (p
=> ((
All (x,(p
=> q)))
=> (
Ex (x,q)))) is
valid by
Th3;
( not x
in (
still_not-bound_in (
All (x,(p
=> q))))) & not x
in (
still_not-bound_in (
Ex (x,q))) by
Th5,
Th6;
then not x
in (
still_not-bound_in ((
All (x,(p
=> q)))
=> (
Ex (x,q)))) by
Th7;
then ((
Ex (x,p))
=> ((
All (x,(p
=> q)))
=> (
Ex (x,q)))) is
valid by
A2,
Th19;
hence thesis by
LUKASI_1: 44;
end;
theorem ::
CQC_THE2:35
Th35: (
All (x,(p
=> q))) is
valid implies ((
Ex (x,p))
=> (
Ex (x,q))) is
valid
proof
assume
A1: (
All (x,(p
=> q))) is
valid;
((
All (x,(p
=> q)))
=> ((
Ex (x,p))
=> (
Ex (x,q)))) is
valid by
Th34;
hence thesis by
A1,
CQC_THE1: 65;
end;
theorem ::
CQC_THE2:36
Th36: ((
All (x,(p
'&' q)))
=> ((
All (x,p))
'&' (
All (x,q)))) is
valid & (((
All (x,p))
'&' (
All (x,q)))
=> (
All (x,(p
'&' q)))) is
valid
proof
((
All (x,p))
=> p) is
valid & ((
All (x,q))
=> q) is
valid by
CQC_THE1: 66;
then
A1: (((
All (x,p))
'&' (
All (x,q)))
=> (p
'&' q)) is
valid by
Lm5;
(
All (x,((p
'&' q)
=> q))) is
valid & ((
All (x,((p
'&' q)
=> q)))
=> ((
All (x,(p
'&' q)))
=> (
All (x,q)))) is
valid by
Lm1,
Th23,
Th30;
then
A2: ((
All (x,(p
'&' q)))
=> (
All (x,q))) is
valid by
CQC_THE1: 65;
(
All (x,((p
'&' q)
=> p))) is
valid & ((
All (x,((p
'&' q)
=> p)))
=> ((
All (x,(p
'&' q)))
=> (
All (x,p)))) is
valid by
Lm1,
Th23,
Th30;
then ((
All (x,(p
'&' q)))
=> (
All (x,p))) is
valid by
CQC_THE1: 65;
hence ((
All (x,(p
'&' q)))
=> ((
All (x,p))
'&' (
All (x,q)))) is
valid by
A2,
Lm3;
( not x
in (
still_not-bound_in (
All (x,p)))) & not x
in (
still_not-bound_in (
All (x,q))) by
Th5;
then not x
in (
still_not-bound_in ((
All (x,p))
'&' (
All (x,q)))) by
Th8;
hence thesis by
A1,
CQC_THE1: 67;
end;
theorem ::
CQC_THE2:37
Th37: ((
All (x,(p
'&' q)))
<=> ((
All (x,p))
'&' (
All (x,q)))) is
valid
proof
((
All (x,(p
'&' q)))
=> ((
All (x,p))
'&' (
All (x,q)))) is
valid & (((
All (x,p))
'&' (
All (x,q)))
=> (
All (x,(p
'&' q)))) is
valid by
Th36;
hence thesis by
Lm14;
end;
theorem ::
CQC_THE2:38
(
All (x,(p
'&' q))) is
valid iff ((
All (x,p))
'&' (
All (x,q))) is
valid
proof
((
All (x,(p
'&' q)))
<=> ((
All (x,p))
'&' (
All (x,q)))) is
valid by
Th37;
hence thesis by
Lm15;
end;
theorem ::
CQC_THE2:39
Th39: (((
All (x,p))
'or' (
All (x,q)))
=> (
All (x,(p
'or' q)))) is
valid
proof
(
All (x,(q
=> (p
'or' q)))) is
valid & ((
All (x,(q
=> (p
'or' q))))
=> ((
All (x,q))
=> (
All (x,(p
'or' q))))) is
valid by
Lm6,
Th23,
Th30;
then
A1: ((
All (x,q))
=> (
All (x,(p
'or' q)))) is
valid by
CQC_THE1: 65;
(
All (x,(p
=> (p
'or' q)))) is
valid & ((
All (x,(p
=> (p
'or' q))))
=> ((
All (x,p))
=> (
All (x,(p
'or' q))))) is
valid by
Lm6,
Th23,
Th30;
then ((
All (x,p))
=> (
All (x,(p
'or' q)))) is
valid by
CQC_THE1: 65;
hence thesis by
A1,
Lm7;
end;
theorem ::
CQC_THE2:40
Th40: ((
Ex (x,(p
'or' q)))
=> ((
Ex (x,p))
'or' (
Ex (x,q)))) is
valid & (((
Ex (x,p))
'or' (
Ex (x,q)))
=> (
Ex (x,(p
'or' q)))) is
valid
proof
( not x
in (
still_not-bound_in (
Ex (x,p)))) & not x
in (
still_not-bound_in (
Ex (x,q))) by
Th6;
then
A1: not x
in (
still_not-bound_in ((
Ex (x,p))
'or' (
Ex (x,q)))) by
Th9;
(p
=> (
Ex (x,p))) is
valid & (q
=> (
Ex (x,q))) is
valid by
Th15;
then ((p
'or' q)
=> ((
Ex (x,p))
'or' (
Ex (x,q)))) is
valid by
Lm4;
hence ((
Ex (x,(p
'or' q)))
=> ((
Ex (x,p))
'or' (
Ex (x,q)))) is
valid by
A1,
Th19;
(
All (x,(q
=> (p
'or' q)))) is
valid & ((
All (x,(q
=> (p
'or' q))))
=> ((
Ex (x,q))
=> (
Ex (x,(p
'or' q))))) is
valid by
Lm6,
Th23,
Th34;
then
A2: ((
Ex (x,q))
=> (
Ex (x,(p
'or' q)))) is
valid by
CQC_THE1: 65;
(
All (x,(p
=> (p
'or' q)))) is
valid & ((
All (x,(p
=> (p
'or' q))))
=> ((
Ex (x,p))
=> (
Ex (x,(p
'or' q))))) is
valid by
Lm6,
Th23,
Th34;
then ((
Ex (x,p))
=> (
Ex (x,(p
'or' q)))) is
valid by
CQC_THE1: 65;
hence thesis by
A2,
Lm7;
end;
theorem ::
CQC_THE2:41
Th41: ((
Ex (x,(p
'or' q)))
<=> ((
Ex (x,p))
'or' (
Ex (x,q)))) is
valid
proof
((
Ex (x,(p
'or' q)))
=> ((
Ex (x,p))
'or' (
Ex (x,q)))) is
valid & (((
Ex (x,p))
'or' (
Ex (x,q)))
=> (
Ex (x,(p
'or' q)))) is
valid by
Th40;
hence thesis by
Lm14;
end;
theorem ::
CQC_THE2:42
(
Ex (x,(p
'or' q))) is
valid iff ((
Ex (x,p))
'or' (
Ex (x,q))) is
valid
proof
((
Ex (x,(p
'or' q)))
<=> ((
Ex (x,p))
'or' (
Ex (x,q)))) is
valid by
Th41;
hence thesis by
Lm15;
end;
theorem ::
CQC_THE2:43
Th43: ((
Ex (x,(p
'&' q)))
=> ((
Ex (x,p))
'&' (
Ex (x,q)))) is
valid
proof
(
All (x,((p
'&' q)
=> q))) is
valid by
Lm1,
Th23;
then
A1: ((
Ex (x,(p
'&' q)))
=> (
Ex (x,q))) is
valid by
Th35;
(
All (x,((p
'&' q)
=> p))) is
valid by
Lm1,
Th23;
then ((
Ex (x,(p
'&' q)))
=> (
Ex (x,p))) is
valid by
Th35;
hence thesis by
A1,
Lm3;
end;
theorem ::
CQC_THE2:44
(
Ex (x,(p
'&' q))) is
valid implies ((
Ex (x,p))
'&' (
Ex (x,q))) is
valid
proof
assume
A1: (
Ex (x,(p
'&' q))) is
valid;
((
Ex (x,(p
'&' q)))
=> ((
Ex (x,p))
'&' (
Ex (x,q)))) is
valid by
Th43;
hence thesis by
A1,
CQC_THE1: 65;
end;
theorem ::
CQC_THE2:45
Th45: ((
All (x,(
'not' (
'not' p))))
=> (
All (x,p))) is
valid & ((
All (x,p))
=> (
All (x,(
'not' (
'not' p))))) is
valid
proof
(
All (x,((
'not' (
'not' p))
=> p))) is
valid & (
All (x,(p
=> (
'not' (
'not' p))))) is
valid by
Th23;
hence thesis by
Th31;
end;
theorem ::
CQC_THE2:46
((
All (x,(
'not' (
'not' p))))
<=> (
All (x,p))) is
valid
proof
((
All (x,(
'not' (
'not' p))))
=> (
All (x,p))) is
valid & ((
All (x,p))
=> (
All (x,(
'not' (
'not' p))))) is
valid by
Th45;
hence thesis by
Lm14;
end;
theorem ::
CQC_THE2:47
Th47: ((
Ex (x,(
'not' (
'not' p))))
=> (
Ex (x,p))) is
valid & ((
Ex (x,p))
=> (
Ex (x,(
'not' (
'not' p))))) is
valid
proof
(
All (x,((
'not' (
'not' p))
=> p))) is
valid & (
All (x,(p
=> (
'not' (
'not' p))))) is
valid by
Th23;
hence thesis by
Th35;
end;
theorem ::
CQC_THE2:48
((
Ex (x,(
'not' (
'not' p))))
<=> (
Ex (x,p))) is
valid
proof
((
Ex (x,(
'not' (
'not' p))))
=> (
Ex (x,p))) is
valid & ((
Ex (x,p))
=> (
Ex (x,(
'not' (
'not' p))))) is
valid by
Th47;
hence thesis by
Lm14;
end;
theorem ::
CQC_THE2:49
Th49: ((
'not' (
Ex (x,(
'not' p))))
=> (
All (x,p))) is
valid & ((
All (x,p))
=> (
'not' (
Ex (x,(
'not' p))))) is
valid
proof
A1: ((
All (x,(
'not' (
'not' p))))
=> (
All (x,p))) is
valid by
Th45;
A2: (
'not' (
Ex (x,(
'not' p))))
= (
'not' (
'not' (
All (x,(
'not' (
'not' p)))))) by
QC_LANG2:def 5;
then ((
'not' (
Ex (x,(
'not' p))))
=> (
All (x,(
'not' (
'not' p))))) is
valid;
hence ((
'not' (
Ex (x,(
'not' p))))
=> (
All (x,p))) is
valid by
A1,
LUKASI_1: 42;
((
All (x,p))
=> (
All (x,(
'not' (
'not' p))))) is
valid & ((
All (x,(
'not' (
'not' p))))
=> (
'not' (
'not' (
All (x,(
'not' (
'not' p))))))) is
valid by
Th45;
hence thesis by
A2,
LUKASI_1: 42;
end;
theorem ::
CQC_THE2:50
((
'not' (
Ex (x,(
'not' p))))
<=> (
All (x,p))) is
valid
proof
((
'not' (
Ex (x,(
'not' p))))
=> (
All (x,p))) is
valid & ((
All (x,p))
=> (
'not' (
Ex (x,(
'not' p))))) is
valid by
Th49;
hence thesis by
Lm14;
end;
theorem ::
CQC_THE2:51
Th51: ((
'not' (
All (x,p)))
=> (
Ex (x,(
'not' p)))) is
valid & ((
Ex (x,(
'not' p)))
=> (
'not' (
All (x,p)))) is
valid
proof
A1: (
Ex (x,(
'not' p)))
= (
'not' (
All (x,(
'not' (
'not' p))))) by
QC_LANG2:def 5;
((
All (x,(
'not' (
'not' p))))
=> (
All (x,p))) is
valid by
Th45;
hence ((
'not' (
All (x,p)))
=> (
Ex (x,(
'not' p)))) is
valid by
A1,
LUKASI_1: 52;
((
All (x,p))
=> (
All (x,(
'not' (
'not' p))))) is
valid by
Th45;
hence thesis by
A1,
LUKASI_1: 52;
end;
theorem ::
CQC_THE2:52
((
'not' (
All (x,p)))
<=> (
Ex (x,(
'not' p)))) is
valid
proof
((
'not' (
All (x,p)))
=> (
Ex (x,(
'not' p)))) is
valid & ((
Ex (x,(
'not' p)))
=> (
'not' (
All (x,p)))) is
valid by
Th51;
hence thesis by
Lm14;
end;
theorem ::
CQC_THE2:53
((
'not' (
Ex (x,p)))
=> (
All (x,(
'not' p)))) is
valid & ((
All (x,(
'not' p)))
=> (
'not' (
Ex (x,p)))) is
valid
proof
A1: (
'not' (
Ex (x,p)))
= (
'not' (
'not' (
All (x,(
'not' p))))) by
QC_LANG2:def 5;
hence ((
'not' (
Ex (x,p)))
=> (
All (x,(
'not' p)))) is
valid;
thus thesis by
A1;
end;
theorem ::
CQC_THE2:54
Th54: ((
All (x,(
'not' p)))
<=> (
'not' (
Ex (x,p)))) is
valid
proof
((
'not' (
'not' (
All (x,(
'not' p)))))
=> (
All (x,(
'not' p)))) is
valid;
then
A1: ((
'not' (
Ex (x,p)))
=> (
All (x,(
'not' p)))) is
valid by
QC_LANG2:def 5;
((
All (x,(
'not' p)))
=> (
'not' (
'not' (
All (x,(
'not' p)))))) is
valid;
then ((
All (x,(
'not' p)))
=> (
'not' (
Ex (x,p)))) is
valid by
QC_LANG2:def 5;
hence thesis by
A1,
Lm14;
end;
theorem ::
CQC_THE2:55
((
All (x,(
All (y,p))))
=> (
All (y,(
All (x,p))))) is
valid & ((
All (x,y,p))
=> (
All (y,x,p))) is
valid
proof
not y
in (
still_not-bound_in (
All (y,p))) by
Th5;
then
A1: not y
in (
still_not-bound_in (
All (x,(
All (y,p))))) by
Th5;
(
All (x,((
All (y,p))
=> p))) is
valid & ((
All (x,((
All (y,p))
=> p)))
=> ((
All (x,(
All (y,p))))
=> (
All (x,p)))) is
valid by
Th23,
Th30,
CQC_THE1: 66;
then ((
All (x,(
All (y,p))))
=> (
All (x,p))) is
valid by
CQC_THE1: 65;
hence ((
All (x,(
All (y,p))))
=> (
All (y,(
All (x,p))))) is
valid by
A1,
CQC_THE1: 67;
then ((
All (x,y,p))
=> (
All (y,(
All (x,p))))) is
valid by
QC_LANG2: 14;
hence thesis by
QC_LANG2: 14;
end;
theorem ::
CQC_THE2:56
p
= (h
. x) & q
= (h
. y) & not y
in (
still_not-bound_in h) implies ((
All (x,(
All (y,q))))
=> (
All (x,p))) is
valid
proof
assume p
= (h
. x) & q
= (h
. y) & not y
in (
still_not-bound_in h);
then (
All (x,((
All (y,q))
=> p))) is
valid by
Th23,
Th25;
hence thesis by
Th31;
end;
theorem ::
CQC_THE2:57
((
Ex (x,(
Ex (y,p))))
=> (
Ex (y,(
Ex (x,p))))) is
valid & ((
Ex (x,y,p))
=> (
Ex (y,x,p))) is
valid
proof
not x
in (
still_not-bound_in (
Ex (x,p))) by
Th6;
then
A1: not x
in (
still_not-bound_in (
Ex (y,(
Ex (x,p))))) by
Th6;
(
All (y,(p
=> (
Ex (x,p))))) is
valid & ((
All (y,(p
=> (
Ex (x,p)))))
=> ((
Ex (y,p))
=> (
Ex (y,(
Ex (x,p)))))) is
valid by
Th15,
Th23,
Th34;
then ((
Ex (y,p))
=> (
Ex (y,(
Ex (x,p))))) is
valid by
CQC_THE1: 65;
hence ((
Ex (x,(
Ex (y,p))))
=> (
Ex (y,(
Ex (x,p))))) is
valid by
A1,
Th19;
then ((
Ex (x,y,p))
=> (
Ex (y,(
Ex (x,p))))) is
valid by
QC_LANG2: 14;
hence thesis by
QC_LANG2: 14;
end;
theorem ::
CQC_THE2:58
p
= (h
. x) & q
= (h
. y) & not y
in (
still_not-bound_in h) implies ((
Ex (x,p))
=> (
Ex (x,y,q))) is
valid
proof
assume p
= (h
. x) & q
= (h
. y) & not y
in (
still_not-bound_in h);
then (
All (x,(p
=> (
Ex (y,q))))) is
valid by
Th22,
Th23;
then ((
Ex (x,p))
=> (
Ex (x,(
Ex (y,q))))) is
valid by
Th35;
hence thesis by
QC_LANG2: 14;
end;
theorem ::
CQC_THE2:59
((
Ex (x,(
All (y,p))))
=> (
All (y,(
Ex (x,p))))) is
valid
proof
not x
in (
still_not-bound_in (
Ex (x,p))) by
Th6;
then
A1: not x
in (
still_not-bound_in (
All (y,(
Ex (x,p))))) by
Th5;
(
All (y,(p
=> (
Ex (x,p))))) is
valid & ((
All (y,(p
=> (
Ex (x,p)))))
=> ((
All (y,p))
=> (
All (y,(
Ex (x,p)))))) is
valid by
Th15,
Th23,
Th30;
then ((
All (y,p))
=> (
All (y,(
Ex (x,p))))) is
valid by
CQC_THE1: 65;
hence thesis by
A1,
Th19;
end;
theorem ::
CQC_THE2:60
(
Ex (x,(p
<=> p))) is
valid by
Lm13,
Th16;
theorem ::
CQC_THE2:61
Th61: ((
Ex (x,(p
=> q)))
=> ((
All (x,p))
=> (
Ex (x,q)))) is
valid & (((
All (x,p))
=> (
Ex (x,q)))
=> (
Ex (x,(p
=> q)))) is
valid
proof
((
All (x,p))
=> p) is
valid by
CQC_THE1: 66;
then
A1: ((p
=> q)
=> ((
All (x,p))
=> q)) is
valid by
LUKASI_1: 41;
( not x
in (
still_not-bound_in (
All (x,p)))) & not x
in (
still_not-bound_in (
Ex (x,q))) by
Th5,
Th6;
then
A2: not x
in (
still_not-bound_in ((
All (x,p))
=> (
Ex (x,q)))) by
Th7;
(q
=> (
Ex (x,q))) is
valid by
Th15;
then ((p
=> q)
=> ((
All (x,p))
=> (
Ex (x,q)))) is
valid by
A1,
Lm16;
hence ((
Ex (x,(p
=> q)))
=> ((
All (x,p))
=> (
Ex (x,q)))) is
valid by
A2,
Th19;
((
All (x,(p
'&' (
'not' q))))
=> ((
All (x,p))
'&' (
All (x,(
'not' q))))) is
valid by
Th36;
then
A3: ((
'not' ((
All (x,p))
'&' (
All (x,(
'not' q)))))
=> (
'not' (
All (x,(p
'&' (
'not' q)))))) is
valid by
LUKASI_1: 52;
((
'not' (
All (x,(p
'&' (
'not' q)))))
=> (
Ex (x,(
'not' (p
'&' (
'not' q)))))) is
valid by
Th51;
then ((
'not' ((
All (x,p))
'&' (
All (x,(
'not' q)))))
=> (
Ex (x,(
'not' (p
'&' (
'not' q)))))) is
valid by
A3,
LUKASI_1: 42;
then
A4: ((
'not' ((
All (x,p))
'&' (
All (x,(
'not' q)))))
=> (
Ex (x,(p
=> q)))) is
valid by
QC_LANG2:def 2;
((
All (x,(
'not' q)))
=> (
'not' (
'not' (
All (x,(
'not' q)))))) is
valid;
then
A5: (((
All (x,p))
'&' (
All (x,(
'not' q))))
=> ((
All (x,p))
'&' (
'not' (
'not' (
All (x,(
'not' q))))))) is
valid by
Lm9;
((
All (x,p))
=> (
Ex (x,q)))
= ((
All (x,p))
=> (
'not' (
All (x,(
'not' q))))) by
QC_LANG2:def 5
.= (
'not' ((
All (x,p))
'&' (
'not' (
'not' (
All (x,(
'not' q))))))) by
QC_LANG2:def 2;
then (((
All (x,p))
=> (
Ex (x,q)))
=> (
'not' ((
All (x,p))
'&' (
All (x,(
'not' q)))))) is
valid by
A5,
LUKASI_1: 52;
hence thesis by
A4,
LUKASI_1: 42;
end;
theorem ::
CQC_THE2:62
Th62: ((
Ex (x,(p
=> q)))
<=> ((
All (x,p))
=> (
Ex (x,q)))) is
valid
proof
((
Ex (x,(p
=> q)))
=> ((
All (x,p))
=> (
Ex (x,q)))) is
valid & (((
All (x,p))
=> (
Ex (x,q)))
=> (
Ex (x,(p
=> q)))) is
valid by
Th61;
hence thesis by
Lm14;
end;
theorem ::
CQC_THE2:63
(
Ex (x,(p
=> q))) is
valid iff ((
All (x,p))
=> (
Ex (x,q))) is
valid
proof
((
Ex (x,(p
=> q)))
<=> ((
All (x,p))
=> (
Ex (x,q)))) is
valid by
Th62;
hence thesis by
Lm15;
end;
theorem ::
CQC_THE2:64
Th64: ((
All (x,(p
'&' q)))
=> (p
'&' (
All (x,q)))) is
valid
proof
A1: ((
All (x,(p
'&' q)))
=> (p
'&' q)) is
valid by
CQC_THE1: 66;
A2: not x
in (
still_not-bound_in (
All (x,(p
'&' q)))) by
Th5;
((p
'&' q)
=> q) is
valid by
Lm1;
then ((
All (x,(p
'&' q)))
=> q) is
valid by
A1,
LUKASI_1: 42;
then
A3: ((
All (x,(p
'&' q)))
=> (
All (x,q))) is
valid by
A2,
CQC_THE1: 67;
((p
'&' q)
=> p) is
valid by
Lm1;
then ((
All (x,(p
'&' q)))
=> p) is
valid by
A1,
LUKASI_1: 42;
hence thesis by
A3,
Lm3;
end;
theorem ::
CQC_THE2:65
Th65: ((
All (x,(p
'&' q)))
=> ((
All (x,p))
'&' q)) is
valid
proof
A1: ((q
'&' (
All (x,p)))
=> ((
All (x,p))
'&' q)) is
valid by
CQC_THE1: 64;
(
All (x,((p
'&' q)
=> (q
'&' p)))) is
valid & ((
All (x,((p
'&' q)
=> (q
'&' p))))
=> ((
All (x,(p
'&' q)))
=> (
All (x,(q
'&' p))))) is
valid by
Th23,
Th30,
CQC_THE1: 64;
then
A2: ((
All (x,(p
'&' q)))
=> (
All (x,(q
'&' p)))) is
valid by
CQC_THE1: 65;
((
All (x,(q
'&' p)))
=> (q
'&' (
All (x,p)))) is
valid by
Th64;
then ((
All (x,(p
'&' q)))
=> (q
'&' (
All (x,p)))) is
valid by
A2,
LUKASI_1: 42;
hence thesis by
A1,
LUKASI_1: 42;
end;
theorem ::
CQC_THE2:66
Th66: not x
in (
still_not-bound_in p) implies ((p
'&' (
All (x,q)))
=> (
All (x,(p
'&' q)))) is
valid
proof
assume
A1: not x
in (
still_not-bound_in p);
((
All (x,q))
=> q) is
valid by
CQC_THE1: 66;
then
A2: ((p
'&' (
All (x,q)))
=> (p
'&' q)) is
valid by
Lm9;
not x
in (
still_not-bound_in (
All (x,q))) by
Th5;
then not x
in (
still_not-bound_in (p
'&' (
All (x,q)))) by
A1,
Th8;
hence thesis by
A2,
CQC_THE1: 67;
end;
theorem ::
CQC_THE2:67
not x
in (
still_not-bound_in p) & (p
'&' (
All (x,q))) is
valid implies (
All (x,(p
'&' q))) is
valid
proof
assume that
A1: not x
in (
still_not-bound_in p) and
A2: (p
'&' (
All (x,q))) is
valid;
((p
'&' (
All (x,q)))
=> (
All (x,(p
'&' q)))) is
valid by
A1,
Th66;
hence thesis by
A2,
CQC_THE1: 65;
end;
theorem ::
CQC_THE2:68
Th68: not x
in (
still_not-bound_in p) implies ((p
'or' (
All (x,q)))
=> (
All (x,(p
'or' q)))) is
valid & ((
All (x,(p
'or' q)))
=> (p
'or' (
All (x,q)))) is
valid
proof
A1: not x
in (
still_not-bound_in (
All (x,(p
'or' q)))) by
Th5;
((
All (x,(p
'or' q)))
=> (p
'or' q)) is
valid & ((p
'or' q)
=> ((
'not' p)
=> q)) is
valid by
Lm11,
CQC_THE1: 66;
then ((
All (x,(p
'or' q)))
=> ((
'not' p)
=> q)) is
valid by
LUKASI_1: 42;
then
A2: (((
All (x,(p
'or' q)))
'&' (
'not' p))
=> q) is
valid by
Th1;
assume
A3: not x
in (
still_not-bound_in p);
then not x
in (
still_not-bound_in (
'not' p)) by
QC_LANG3: 7;
then not x
in (
still_not-bound_in ((
All (x,(p
'or' q)))
'&' (
'not' p))) by
A1,
Th8;
then (((
All (x,(p
'or' q)))
'&' (
'not' p))
=> (
All (x,q))) is
valid by
A2,
CQC_THE1: 67;
then
A4: ((
All (x,(p
'or' q)))
=> ((
'not' p)
=> (
All (x,q)))) is
valid by
Th3;
(p
=> p) is
valid;
then (p
=> (
All (x,p))) is
valid by
A3,
CQC_THE1: 67;
then
A5: ((p
'or' (
All (x,q)))
=> ((
All (x,p))
'or' (
All (x,q)))) is
valid by
Lm10;
(((
All (x,p))
'or' (
All (x,q)))
=> (
All (x,(p
'or' q)))) is
valid by
Th39;
hence ((p
'or' (
All (x,q)))
=> (
All (x,(p
'or' q)))) is
valid by
A5,
LUKASI_1: 42;
(((
'not' p)
=> (
All (x,q)))
=> (p
'or' (
All (x,q)))) is
valid by
Lm12;
hence thesis by
A4,
LUKASI_1: 42;
end;
theorem ::
CQC_THE2:69
Th69: not x
in (
still_not-bound_in p) implies ((p
'or' (
All (x,q)))
<=> (
All (x,(p
'or' q)))) is
valid
proof
assume not x
in (
still_not-bound_in p);
then ((p
'or' (
All (x,q)))
=> (
All (x,(p
'or' q)))) is
valid & ((
All (x,(p
'or' q)))
=> (p
'or' (
All (x,q)))) is
valid by
Th68;
hence thesis by
Lm14;
end;
theorem ::
CQC_THE2:70
not x
in (
still_not-bound_in p) implies ((p
'or' (
All (x,q))) is
valid iff (
All (x,(p
'or' q))) is
valid)
proof
assume not x
in (
still_not-bound_in p);
then ((p
'or' (
All (x,q)))
<=> (
All (x,(p
'or' q)))) is
valid by
Th69;
hence thesis by
Lm15;
end;
theorem ::
CQC_THE2:71
Th71: not x
in (
still_not-bound_in p) implies ((p
'&' (
Ex (x,q)))
=> (
Ex (x,(p
'&' q)))) is
valid & ((
Ex (x,(p
'&' q)))
=> (p
'&' (
Ex (x,q)))) is
valid
proof
assume
A1: not x
in (
still_not-bound_in p);
((p
'&' q)
=> (
Ex (x,(p
'&' q)))) is
valid by
Th15;
then
A2: (q
=> (p
=> (
Ex (x,(p
'&' q))))) is
valid by
Th4;
not x
in (
still_not-bound_in (
Ex (x,(p
'&' q)))) by
Th6;
then not x
in (
still_not-bound_in (p
=> (
Ex (x,(p
'&' q))))) by
A1,
Th7;
then ((
Ex (x,q))
=> (p
=> (
Ex (x,(p
'&' q))))) is
valid by
A2,
Th19;
hence ((p
'&' (
Ex (x,q)))
=> (
Ex (x,(p
'&' q)))) is
valid by
Th2;
(q
=> (
Ex (x,q))) is
valid by
Th15;
then
A3: ((p
'&' q)
=> (p
'&' (
Ex (x,q)))) is
valid by
Lm9;
not x
in (
still_not-bound_in (
Ex (x,q))) by
Th6;
then not x
in (
still_not-bound_in (p
'&' (
Ex (x,q)))) by
A1,
Th8;
hence thesis by
A3,
Th19;
end;
theorem ::
CQC_THE2:72
Th72: not x
in (
still_not-bound_in p) implies ((p
'&' (
Ex (x,q)))
<=> (
Ex (x,(p
'&' q)))) is
valid
proof
assume not x
in (
still_not-bound_in p);
then ((p
'&' (
Ex (x,q)))
=> (
Ex (x,(p
'&' q)))) is
valid & ((
Ex (x,(p
'&' q)))
=> (p
'&' (
Ex (x,q)))) is
valid by
Th71;
hence thesis by
Lm14;
end;
theorem ::
CQC_THE2:73
not x
in (
still_not-bound_in p) implies ((p
'&' (
Ex (x,q))) is
valid iff (
Ex (x,(p
'&' q))) is
valid)
proof
assume not x
in (
still_not-bound_in p);
then ((p
'&' (
Ex (x,q)))
<=> (
Ex (x,(p
'&' q)))) is
valid by
Th72;
hence thesis by
Lm15;
end;
Lm17: not x
in (
still_not-bound_in p) implies ((
All (x,(p
=> q)))
=> (p
=> (
All (x,q)))) is
valid
proof
assume not x
in (
still_not-bound_in p);
then
A1: (p
=> (
All (x,p))) is
valid by
Th24;
((
All (x,(p
=> q)))
=> ((
All (x,p))
=> (
All (x,q)))) is
valid by
Th30;
then ((
All (x,p))
=> ((
All (x,(p
=> q)))
=> (
All (x,q)))) is
valid by
LUKASI_1: 44;
then (p
=> ((
All (x,(p
=> q)))
=> (
All (x,q)))) is
valid by
A1,
LUKASI_1: 42;
hence thesis by
LUKASI_1: 44;
end;
theorem ::
CQC_THE2:74
Th74: not x
in (
still_not-bound_in p) implies ((
All (x,(p
=> q)))
=> (p
=> (
All (x,q)))) is
valid & ((p
=> (
All (x,q)))
=> (
All (x,(p
=> q)))) is
valid
proof
assume
A1: not x
in (
still_not-bound_in p);
hence ((
All (x,(p
=> q)))
=> (p
=> (
All (x,q)))) is
valid by
Lm17;
not x
in (
still_not-bound_in (
All (x,q))) by
Th5;
then not x
in (
still_not-bound_in (p
=> (
All (x,q)))) by
A1,
Th7;
then
A2: ((
All (x,((p
=> (
All (x,q)))
=> (p
=> q))))
=> ((p
=> (
All (x,q)))
=> (
All (x,(p
=> q))))) is
valid by
Lm17;
(
All (x,(((
All (x,q))
=> q)
=> ((p
=> (
All (x,q)))
=> (p
=> q))))) is
valid & ((
All (x,(((
All (x,q))
=> q)
=> ((p
=> (
All (x,q)))
=> (p
=> q)))))
=> ((
All (x,((
All (x,q))
=> q)))
=> (
All (x,((p
=> (
All (x,q)))
=> (p
=> q)))))) is
valid by
Th23,
Th30;
then
A3: ((
All (x,((
All (x,q))
=> q)))
=> (
All (x,((p
=> (
All (x,q)))
=> (p
=> q))))) is
valid by
CQC_THE1: 65;
(
All (x,((
All (x,q))
=> q))) is
valid by
Th23,
CQC_THE1: 66;
then (
All (x,((p
=> (
All (x,q)))
=> (p
=> q)))) is
valid by
A3,
CQC_THE1: 65;
hence thesis by
A2,
CQC_THE1: 65;
end;
theorem ::
CQC_THE2:75
Th75: not x
in (
still_not-bound_in p) implies ((p
=> (
All (x,q)))
<=> (
All (x,(p
=> q)))) is
valid
proof
assume not x
in (
still_not-bound_in p);
then ((p
=> (
All (x,q)))
=> (
All (x,(p
=> q)))) is
valid & ((
All (x,(p
=> q)))
=> (p
=> (
All (x,q)))) is
valid by
Th74;
hence thesis by
Lm14;
end;
theorem ::
CQC_THE2:76
not x
in (
still_not-bound_in p) implies ((
All (x,(p
=> q))) is
valid iff (p
=> (
All (x,q))) is
valid)
proof
assume not x
in (
still_not-bound_in p);
then ((p
=> (
All (x,q)))
<=> (
All (x,(p
=> q)))) is
valid by
Th75;
hence thesis by
Lm15;
end;
theorem ::
CQC_THE2:77
Th77: not x
in (
still_not-bound_in q) implies ((
Ex (x,(p
=> q)))
=> ((
All (x,p))
=> q)) is
valid
proof
assume
A1: not x
in (
still_not-bound_in q);
not x
in (
still_not-bound_in (
All (x,p))) by
Th5;
then not x
in (
still_not-bound_in ((
All (x,p))
=> q)) by
A1,
Th7;
then
A2: ((
Ex (x,((
All (x,p))
=> q)))
=> ((
All (x,p))
=> q)) is
valid by
Th20;
((
All (x,p))
=> p) is
valid by
CQC_THE1: 66;
then
A3: (
All (x,((p
=> q)
=> ((
All (x,p))
=> q)))) is
valid by
Th23,
LUKASI_1: 41;
((
All (x,((p
=> q)
=> ((
All (x,p))
=> q))))
=> ((
Ex (x,(p
=> q)))
=> (
Ex (x,((
All (x,p))
=> q))))) is
valid by
Th34;
then ((
Ex (x,(p
=> q)))
=> (
Ex (x,((
All (x,p))
=> q)))) is
valid by
A3,
CQC_THE1: 65;
hence thesis by
A2,
LUKASI_1: 42;
end;
theorem ::
CQC_THE2:78
Th78: (((
All (x,p))
=> q)
=> (
Ex (x,(p
=> q)))) is
valid
proof
((
All (x,(p
'&' (
'not' q))))
=> ((
All (x,p))
'&' (
'not' q))) is
valid by
Th65;
then ((
'not' ((
All (x,p))
'&' (
'not' q)))
=> (
'not' (
All (x,(p
'&' (
'not' q)))))) is
valid by
LUKASI_1: 52;
then
A1: (((
All (x,p))
=> q)
=> (
'not' (
All (x,(p
'&' (
'not' q)))))) is
valid by
QC_LANG2:def 2;
(
All (x,((
'not' (
'not' (p
'&' (
'not' q))))
=> (p
'&' (
'not' q))))) is
valid & ((
All (x,((
'not' (
'not' (p
'&' (
'not' q))))
=> (p
'&' (
'not' q)))))
=> ((
All (x,(
'not' (
'not' (p
'&' (
'not' q))))))
=> (
All (x,(p
'&' (
'not' q)))))) is
valid by
Th23,
Th30;
then ((
All (x,(
'not' (
'not' (p
'&' (
'not' q))))))
=> (
All (x,(p
'&' (
'not' q))))) is
valid by
CQC_THE1: 65;
then ((
'not' (
All (x,(p
'&' (
'not' q)))))
=> (
'not' (
All (x,(
'not' (
'not' (p
'&' (
'not' q)))))))) is
valid by
LUKASI_1: 52;
then (((
All (x,p))
=> q)
=> (
'not' (
All (x,(
'not' (
'not' (p
'&' (
'not' q)))))))) is
valid by
A1,
LUKASI_1: 42;
then (((
All (x,p))
=> q)
=> (
Ex (x,(
'not' (p
'&' (
'not' q)))))) is
valid by
QC_LANG2:def 5;
hence thesis by
QC_LANG2:def 2;
end;
theorem ::
CQC_THE2:79
not x
in (
still_not-bound_in q) implies (((
All (x,p))
=> q) is
valid iff (
Ex (x,(p
=> q))) is
valid)
proof
assume not x
in (
still_not-bound_in q);
then
A1: ((
Ex (x,(p
=> q)))
=> ((
All (x,p))
=> q)) is
valid by
Th77;
(((
All (x,p))
=> q)
=> (
Ex (x,(p
=> q)))) is
valid by
Th78;
then (((
All (x,p))
=> q)
<=> (
Ex (x,(p
=> q)))) is
valid by
A1,
Lm14;
hence thesis by
Lm15;
end;
theorem ::
CQC_THE2:80
Th80: not x
in (
still_not-bound_in q) implies (((
Ex (x,p))
=> q)
=> (
All (x,(p
=> q)))) is
valid & ((
All (x,(p
=> q)))
=> ((
Ex (x,p))
=> q)) is
valid
proof
assume
A1: not x
in (
still_not-bound_in q);
(p
=> (
Ex (x,p))) is
valid by
Th15;
then
A2: (((
Ex (x,p))
=> q)
=> (p
=> q)) is
valid by
LUKASI_1: 41;
not x
in (
still_not-bound_in (
Ex (x,p))) by
Th6;
then not x
in (
still_not-bound_in ((
Ex (x,p))
=> q)) by
A1,
Th7;
hence (((
Ex (x,p))
=> q)
=> (
All (x,(p
=> q)))) is
valid by
A2,
CQC_THE1: 67;
((
All (x,(p
=> q)))
=> ((
Ex (x,p))
=> (
Ex (x,q)))) is
valid by
Th34;
then
A3: (((
All (x,(p
=> q)))
'&' (
Ex (x,p)))
=> (
Ex (x,q))) is
valid by
Th1;
((
Ex (x,q))
=> q) is
valid by
A1,
Th20;
then (((
All (x,(p
=> q)))
'&' (
Ex (x,p)))
=> q) is
valid by
A3,
LUKASI_1: 42;
hence thesis by
Th3;
end;
theorem ::
CQC_THE2:81
Th81: not x
in (
still_not-bound_in q) implies (((
Ex (x,p))
=> q)
<=> (
All (x,(p
=> q)))) is
valid
proof
assume not x
in (
still_not-bound_in q);
then (((
Ex (x,p))
=> q)
=> (
All (x,(p
=> q)))) is
valid & ((
All (x,(p
=> q)))
=> ((
Ex (x,p))
=> q)) is
valid by
Th80;
hence thesis by
Lm14;
end;
theorem ::
CQC_THE2:82
not x
in (
still_not-bound_in q) implies (((
Ex (x,p))
=> q) is
valid iff (
All (x,(p
=> q))) is
valid)
proof
assume not x
in (
still_not-bound_in q);
then (((
Ex (x,p))
=> q)
<=> (
All (x,(p
=> q)))) is
valid by
Th81;
hence thesis by
Lm15;
end;
theorem ::
CQC_THE2:83
Th83: not x
in (
still_not-bound_in p) implies ((
Ex (x,(p
=> q)))
=> (p
=> (
Ex (x,q)))) is
valid
proof
assume
A1: not x
in (
still_not-bound_in p);
not x
in (
still_not-bound_in (
Ex (x,q))) by
Th6;
then not x
in (
still_not-bound_in (p
=> (
Ex (x,q)))) by
A1,
Th7;
then
A2: ((
Ex (x,(p
=> (
Ex (x,q)))))
=> (p
=> (
Ex (x,q)))) is
valid by
Th20;
(q
=> (
Ex (x,q))) is
valid by
Th15;
then
A3: (
All (x,((p
=> q)
=> (p
=> (
Ex (x,q)))))) is
valid by
Th23,
LUKASI_1: 51;
((
All (x,((p
=> q)
=> (p
=> (
Ex (x,q))))))
=> ((
Ex (x,(p
=> q)))
=> (
Ex (x,(p
=> (
Ex (x,q))))))) is
valid by
Th34;
then ((
Ex (x,(p
=> q)))
=> (
Ex (x,(p
=> (
Ex (x,q)))))) is
valid by
A3,
CQC_THE1: 65;
hence thesis by
A2,
LUKASI_1: 42;
end;
theorem ::
CQC_THE2:84
Th84: ((p
=> (
Ex (x,q)))
=> (
Ex (x,(p
=> q)))) is
valid
proof
(
All (x,((
'not' (
'not' (p
'&' (
'not' q))))
=> (p
'&' (
'not' q))))) is
valid & ((
All (x,((
'not' (
'not' (p
'&' (
'not' q))))
=> (p
'&' (
'not' q)))))
=> ((
All (x,(
'not' (
'not' (p
'&' (
'not' q))))))
=> (
All (x,(p
'&' (
'not' q)))))) is
valid by
Th23,
Th30;
then ((
All (x,(
'not' (
'not' (p
'&' (
'not' q))))))
=> (
All (x,(p
'&' (
'not' q))))) is
valid by
CQC_THE1: 65;
then
A1: ((
'not' (
All (x,(p
'&' (
'not' q)))))
=> (
'not' (
All (x,(
'not' (
'not' (p
'&' (
'not' q)))))))) is
valid by
LUKASI_1: 52;
((
All (x,(
'not' q)))
<=> (
'not' (
Ex (x,q)))) is
valid by
Th54;
then ((
All (x,(
'not' q)))
=> (
'not' (
Ex (x,q)))) is
valid by
Lm14;
then ((p
'&' (
All (x,(
'not' q))))
=> (p
'&' (
'not' (
Ex (x,q))))) is
valid by
Lm9;
then
A2: ((
'not' (p
'&' (
'not' (
Ex (x,q)))))
=> (
'not' (p
'&' (
All (x,(
'not' q)))))) is
valid by
LUKASI_1: 52;
((
All (x,(p
'&' (
'not' q))))
=> (p
'&' (
All (x,(
'not' q))))) is
valid by
Th64;
then ((
'not' (p
'&' (
All (x,(
'not' q)))))
=> (
'not' (
All (x,(p
'&' (
'not' q)))))) is
valid by
LUKASI_1: 52;
then ((
'not' (p
'&' (
'not' (
Ex (x,q)))))
=> (
'not' (
All (x,(p
'&' (
'not' q)))))) is
valid by
A2,
LUKASI_1: 42;
then ((p
=> (
Ex (x,q)))
=> (
'not' (
All (x,(p
'&' (
'not' q)))))) is
valid by
QC_LANG2:def 2;
then ((p
=> (
Ex (x,q)))
=> (
'not' (
All (x,(
'not' (
'not' (p
'&' (
'not' q)))))))) is
valid by
A1,
LUKASI_1: 42;
then ((p
=> (
Ex (x,q)))
=> (
'not' (
All (x,(
'not' (p
=> q)))))) is
valid by
QC_LANG2:def 2;
hence thesis by
QC_LANG2:def 5;
end;
theorem ::
CQC_THE2:85
Th85: not x
in (
still_not-bound_in p) implies ((p
=> (
Ex (x,q)))
<=> (
Ex (x,(p
=> q)))) is
valid
proof
assume not x
in (
still_not-bound_in p);
then
A1: ((
Ex (x,(p
=> q)))
=> (p
=> (
Ex (x,q)))) is
valid by
Th83;
((p
=> (
Ex (x,q)))
=> (
Ex (x,(p
=> q)))) is
valid by
Th84;
hence thesis by
A1,
Lm14;
end;
theorem ::
CQC_THE2:86
not x
in (
still_not-bound_in p) implies ((p
=> (
Ex (x,q))) is
valid iff (
Ex (x,(p
=> q))) is
valid)
proof
assume not x
in (
still_not-bound_in p);
then ((p
=> (
Ex (x,q)))
<=> (
Ex (x,(p
=> q)))) is
valid by
Th85;
hence thesis by
Lm15;
end;
theorem ::
CQC_THE2:87
{p}
|- p
proof
p
in
{p} &
{p}
c= (
Cn
{p}) by
CQC_THE1: 17,
TARSKI:def 1;
hence p
in (
Cn
{p});
end;
theorem ::
CQC_THE2:88
Th88: (
Cn (
{p}
\/
{q}))
= (
Cn
{(p
'&' q)})
proof
for t holds t
in (
Cn (
{p}
\/
{q})) iff for T st T is
being_a_theory &
{(p
'&' q)}
c= T holds t
in T
proof
let t;
thus t
in (
Cn (
{p}
\/
{q})) implies for T st T is
being_a_theory &
{(p
'&' q)}
c= T holds t
in T
proof
assume
A1: t
in (
Cn (
{p}
\/
{q}));
let T;
assume that
A2: T is
being_a_theory and
A3:
{(p
'&' q)}
c= T;
A4: (p
'&' q)
in T & (
TAUT A)
c= T by
A2,
A3,
CQC_THE1: 38,
ZFMISC_1: 31;
((p
'&' q)
=> q)
in (
TAUT A) by
PROCAL_1: 21;
then q
in T by
A2,
A4;
then
A5:
{q}
c= T by
ZFMISC_1: 31;
((p
'&' q)
=> p)
in (
TAUT A) by
PROCAL_1: 19;
then p
in T by
A2,
A4;
then
{p}
c= T by
ZFMISC_1: 31;
then (
{p}
\/
{q})
c= T by
A5,
XBOOLE_1: 8;
hence thesis by
A1,
A2,
CQC_THE1:def 2;
end;
thus (for T st T is
being_a_theory &
{(p
'&' q)}
c= T holds t
in T) implies t
in (
Cn (
{p}
\/
{q}))
proof
assume
A6: for T st T is
being_a_theory &
{(p
'&' q)}
c= T holds t
in T;
for T st T is
being_a_theory & (
{p}
\/
{q})
c= T holds t
in T
proof
let T;
assume that
A7: T is
being_a_theory and
A8: (
{p}
\/
{q})
c= T;
{p}
c= (
{p}
\/
{q}) by
XBOOLE_1: 7;
then
{p}
c= T by
A8,
XBOOLE_1: 1;
then
A9: p
in T by
ZFMISC_1: 31;
{q}
c= (
{p}
\/
{q}) by
XBOOLE_1: 7;
then
{q}
c= T by
A8,
XBOOLE_1: 1;
then
A10: q
in T by
ZFMISC_1: 31;
(p
=> (q
=> (p
'&' q)))
in (
TAUT A) & (
TAUT A)
c= T by
A7,
CQC_THE1: 38,
PROCAL_1: 28;
then (q
=> (p
'&' q))
in T by
A7,
A9;
then (p
'&' q)
in T by
A7,
A10;
then
{(p
'&' q)}
c= T by
ZFMISC_1: 31;
hence thesis by
A6,
A7;
end;
hence thesis by
CQC_THE1:def 2;
end;
end;
hence thesis by
CQC_THE1:def 2;
end;
theorem ::
CQC_THE2:89
{p, q}
|- r iff
{(p
'&' q)}
|- r
proof
thus
{p, q}
|- r implies
{(p
'&' q)}
|- r
proof
assume r
in (
Cn
{p, q});
then r
in (
Cn (
{p}
\/
{q})) by
ENUMSET1: 1;
hence r
in (
Cn
{(p
'&' q)}) by
Th88;
end;
assume r
in (
Cn
{(p
'&' q)});
then r
in (
Cn (
{p}
\/
{q})) by
Th88;
hence r
in (
Cn
{p, q}) by
ENUMSET1: 1;
end;
theorem ::
CQC_THE2:90
Th90: X
|- p implies X
|- (
All (x,p))
proof
A1: X
|- (p
=> (((
All (x,p))
=> (
All (x,p)))
=> p)) by
CQC_THE1: 59;
not x
in (
still_not-bound_in (
All (x,p))) by
Th5;
then
A2: not x
in (
still_not-bound_in ((
All (x,p))
=> (
All (x,p)))) by
Th7;
assume X
|- p;
then X
|- (((
All (x,p))
=> (
All (x,p)))
=> p) by
A1,
CQC_THE1: 55;
then
A3: X
|- (((
All (x,p))
=> (
All (x,p)))
=> (
All (x,p))) by
A2,
CQC_THE1: 57;
X
|- ((
All (x,p))
=> (
All (x,p))) by
CQC_THE1: 59;
hence thesis by
A3,
CQC_THE1: 55;
end;
theorem ::
CQC_THE2:91
not x
in (
still_not-bound_in p) implies X
|- ((
All (x,(p
=> q)))
=> (p
=> (
All (x,q)))) by
Th74,
CQC_THE1: 59;
::$Notion-Name
theorem ::
CQC_THE2:92
F is
closed & (X
\/
{F})
|- G implies X
|- (F
=> G)
proof
assume that
A1: F is
closed and
A2: (X
\/
{F})
|- G;
G
in (
Cn (X
\/
{F})) by
A2;
then
consider f such that
A3: f
is_a_proof_wrt (X
\/
{F}) and
A4: (
Effect f)
= G by
CQC_THE1: 36;
f
<>
{} by
A3;
then
A5: G
= ((f
. (
len f))
`1 ) by
A4,
CQC_THE1:def 6;
defpred
P[
Nat] means 1
<= $1 & $1
<= (
len f) implies for H st H
= ((f
. $1)
`1 ) holds X
|- (F
=> H);
A6: for n be
Nat st for k be
Nat st k
< n holds
P[k] holds
P[n]
proof
let n be
Nat such that
A7: for k be
Nat st k
< n holds 1
<= k & k
<= (
len f) implies for H st H
= ((f
. k)
`1 ) holds X
|- (F
=> H);
assume that
A8: 1
<= n and
A9: n
<= (
len f);
A10: (f,n)
is_a_correct_step_wrt (X
\/
{F}) by
A3,
A8,
A9;
let H such that
A11: H
= ((f
. n)
`1 );
now
((f
. n)
`2 )
=
0 or ... or ((f
. n)
`2 )
= 9 by
A8,
A9,
CQC_THE1: 23;
per cases ;
suppose ((f
. n)
`2 )
=
0 ;
then H
in (X
\/
{F}) by
A11,
A10,
CQC_THE1:def 4;
then
A12: H
in X or H
in
{F} by
XBOOLE_0:def 3;
now
per cases by
A12,
TARSKI:def 1;
suppose
A13: H
in X;
X
c= (
Cn X) by
CQC_THE1: 17;
then
A14: X
|- H by
A13;
X
|- (H
=> (F
=> H)) by
CQC_THE1: 59;
hence thesis by
A14,
CQC_THE1: 55;
end;
suppose H
= F;
hence thesis by
CQC_THE1: 59;
end;
end;
hence thesis;
end;
suppose ((f
. n)
`2 )
= 1;
then H
= (
VERUM A) by
A11,
A10,
CQC_THE1:def 4;
hence thesis by
CQC_THE1: 59,
LUKASI_1: 46;
end;
suppose ((f
. n)
`2 )
= 2;
then ex p st H
= (((
'not' p)
=> p)
=> p) by
A11,
A10,
CQC_THE1:def 4;
then H is
valid by
CQC_THE1: 61;
hence thesis by
CQC_THE1: 59,
LUKASI_1: 61;
end;
suppose ((f
. n)
`2 )
= 3;
then ex p, q st H
= (p
=> ((
'not' p)
=> q)) by
A11,
A10,
CQC_THE1:def 4;
then H is
valid by
CQC_THE1: 62;
hence thesis by
CQC_THE1: 59,
LUKASI_1: 61;
end;
suppose ((f
. n)
`2 )
= 4;
then ex p, q, r st H
= ((p
=> q)
=> ((
'not' (q
'&' r))
=> (
'not' (p
'&' r)))) by
A11,
A10,
CQC_THE1:def 4;
then H is
valid by
CQC_THE1: 63;
hence thesis by
CQC_THE1: 59,
LUKASI_1: 61;
end;
suppose ((f
. n)
`2 )
= 5;
then ex p, q st H
= ((p
'&' q)
=> (q
'&' p)) by
A11,
A10,
CQC_THE1:def 4;
then H is
valid by
CQC_THE1: 64;
hence thesis by
CQC_THE1: 59,
LUKASI_1: 61;
end;
suppose ((f
. n)
`2 )
= 6;
then ex p, x st H
= ((
All (x,p))
=> p) by
A11,
A10,
CQC_THE1:def 4;
then H is
valid by
CQC_THE1: 66;
hence thesis by
CQC_THE1: 59,
LUKASI_1: 61;
end;
suppose ((f
. n)
`2 )
= 7;
then
consider i,j be
Nat, p, q such that
A15: 1
<= i and
A16: i
< n and
A17: 1
<= j and
A18: j
< i and
A19: p
= ((f
. j)
`1 ) and
A20: q
= H and
A21: ((f
. i)
`1 )
= (p
=> q) by
A11,
A10,
CQC_THE1:def 4;
i
<= (
len f) by
A9,
A16,
XXREAL_0: 2;
then
A22: X
|- (F
=> (p
=> q)) by
A7,
A15,
A16,
A21;
X
|- ((F
=> (p
=> q))
=> ((F
=> p)
=> (F
=> q))) by
CQC_THE1: 59;
then
A23: X
|- ((F
=> p)
=> (F
=> q)) by
A22,
CQC_THE1: 55;
j
< n by
A16,
A18,
XXREAL_0: 2;
then
A24: j
<= (
len f) by
A9,
XXREAL_0: 2;
j
< n by
A16,
A18,
XXREAL_0: 2;
then X
|- (F
=> p) by
A7,
A17,
A19,
A24;
hence thesis by
A20,
A23,
CQC_THE1: 55;
end;
suppose ((f
. n)
`2 )
= 8;
then
consider i be
Nat, p, q, x such that
A25: 1
<= i and
A26: i
< n and
A27: ((f
. i)
`1 )
= (p
=> q) and
A28: not x
in (
still_not-bound_in p) and
A29: H
= (p
=> (
All (x,q))) by
A11,
A10,
CQC_THE1:def 4;
A30: X
|- ((
All (x,(p
=> q)))
=> (p
=> (
All (x,q)))) by
A28,
Th74,
CQC_THE1: 59;
not x
in (
still_not-bound_in F) by
A1,
QC_LANG1:def 31;
then
A31: X
|- ((
All (x,(F
=> (p
=> q))))
=> (F
=> (
All (x,(p
=> q))))) by
Th74,
CQC_THE1: 59;
i
<= (
len f) by
A9,
A26,
XXREAL_0: 2;
then X
|- (
All (x,(F
=> (p
=> q)))) by
A7,
A25,
A26,
A27,
Th90;
then X
|- (F
=> (
All (x,(p
=> q)))) by
A31,
CQC_THE1: 55;
hence thesis by
A29,
A30,
LUKASI_1: 59;
end;
suppose ((f
. n)
`2 )
= 9;
then
consider i be
Nat, x, y, s such that
A32: 1
<= i and
A33: i
< n and
A34: (s
. x)
in (
CQC-WFF A) & (s
. y)
in (
CQC-WFF A) and
A35: not x
in (
still_not-bound_in s) and
A36: (s
. x)
= ((f
. i)
`1 ) and
A37: H
= (s
. y) by
A11,
A10,
CQC_THE1:def 4;
reconsider s1 = (s
. x), s2 = (s
. y) as
Element of (
CQC-WFF A) by
A34;
A38: X
|- ((
All (x,s1))
=> s2) by
A35,
Th25,
CQC_THE1: 59;
not x
in (
still_not-bound_in F) by
A1,
QC_LANG1:def 31;
then
A39: X
|- ((
All (x,(F
=> s1)))
=> (F
=> (
All (x,s1)))) by
Th74,
CQC_THE1: 59;
i
<= (
len f) by
A9,
A33,
XXREAL_0: 2;
then X
|- (
All (x,(F
=> s1))) by
A7,
A32,
A33,
A36,
Th90;
then X
|- (F
=> (
All (x,s1))) by
A39,
CQC_THE1: 55;
hence thesis by
A37,
A38,
LUKASI_1: 59;
end;
end;
hence thesis;
end;
A40: for n be
Nat holds
P[n] from
NAT_1:sch 4(
A6);
1
<= (
len f) by
A3,
CQC_THE1: 25;
hence thesis by
A40,
A5;
end;