dblseq_1.miz
begin
reserve Rseq,Rseq1,Rseq2 for
Function of
[:
NAT ,
NAT :],
REAL ;
reserve rseq1,rseq2 for
convergent
Real_Sequence;
reserve n,m,N,M for
Nat;
reserve e,r for
Real;
definition
let Rseq;
::
DBLSEQ_1:def1
attr Rseq is
P-convergent means ex p be
Real st for e be
Real st
0
< e holds ex N be
Nat st for n,m be
Nat st n
>= N & m
>= N holds
|.((Rseq
. (n,m))
- p).|
< e;
end
definition
let Rseq;
assume
A1: Rseq is
P-convergent;
::
DBLSEQ_1:def2
func
P-lim Rseq ->
Real means
:
def6: for e be
Real st
0
< e holds ex N be
Nat st for n,m be
Nat st n
>= N & m
>= N holds
|.((Rseq
. (n,m))
- it ).|
< e;
existence by
A1;
uniqueness
proof
given g1,g2 be
Real such that
A2: for e st
0
< e holds ex N st for n, m st n
>= N & m
>= N holds
|.((Rseq
. (n,m))
- g1).|
< e and
A3: for e st
0
< e holds ex N st for n, m st n
>= N & m
>= N holds
|.((Rseq
. (n,m))
- g2).|
< e and
A4: g1
<> g2;
A5:
now
assume
|.(g1
- g2).|
=
0 ;
then (g1
- g2)
=
0 by
ABSVALUE: 2;
hence contradiction by
A4;
end;
A6:
0
<=
|.(g1
- g2).| by
COMPLEX1: 46;
then
consider N1 be
Nat such that
A7: for n, m st N1
<= n & N1
<= m holds
|.((Rseq
. (n,m))
- g1).|
< (
|.(g1
- g2).|
/ 4) by
A2,
A5;
consider N2 be
Nat such that
A8: for n, m st N2
<= n & N2
<= m holds
|.((Rseq
. (n,m))
- g2).|
< (
|.(g1
- g2).|
/ 4) by
A3,
A5,
A6;
(N1
+ N2)
>= N1 & (N1
+ N2)
>= N2 by
NAT_1: 11;
then
|.((Rseq
. ((N1
+ N2),(N1
+ N2)))
- g1).|
< (
|.(g1
- g2).|
/ 4) &
|.((Rseq
. ((N1
+ N2),(N1
+ N2)))
- g2).|
< (
|.(g1
- g2).|
/ 4) by
A7,
A8;
then
A10: (
|.((Rseq
. ((N1
+ N2),(N1
+ N2)))
- g2).|
+
|.((Rseq
. ((N1
+ N2),(N1
+ N2)))
- g1).|)
< ((
|.(g1
- g2).|
/ 4)
+ (
|.(g1
- g2).|
/ 4)) by
XREAL_1: 8;
|.(g1
- g2).|
=
|.((
- ((Rseq
. ((N1
+ N2),(N1
+ N2)))
- g1))
+ ((Rseq
. ((N1
+ N2),(N1
+ N2)))
- g2)).|;
then
|.(g1
- g2).|
<= (
|.(
- ((Rseq
. ((N1
+ N2),(N1
+ N2)))
- g1)).|
+
|.((Rseq
. ((N1
+ N2),(N1
+ N2)))
- g2).|) by
COMPLEX1: 56;
then
A11:
|.(g1
- g2).|
<= (
|.((Rseq
. ((N1
+ N2),(N1
+ N2)))
- g1).|
+
|.((Rseq
. ((N1
+ N2),(N1
+ N2)))
- g2).|) by
COMPLEX1: 52;
(
|.(g1
- g2).|
/ 2)
<
|.(g1
- g2).| by
A5,
A6,
XREAL_1: 216;
hence contradiction by
A10,
A11,
XXREAL_0: 2;
end;
end
definition
let Rseq;
::
DBLSEQ_1:def3
attr Rseq is
convergent_in_cod1 means for m be
Element of
NAT holds (
ProjMap2 (Rseq,m)) is
convergent;
::
DBLSEQ_1:def4
attr Rseq is
convergent_in_cod2 means for n be
Element of
NAT holds (
ProjMap1 (Rseq,n)) is
convergent;
end
definition
let Rseq;
::
DBLSEQ_1:def5
func
lim_in_cod1 Rseq ->
Function of
NAT ,
REAL means
:
def32: for m be
Element of
NAT holds (it
. m)
= (
lim (
ProjMap2 (Rseq,m)));
existence
proof
defpred
P[
Element of
NAT ,
set] means $2
= (
lim (
ProjMap2 (Rseq,$1)));
a1:
now
let m be
Element of
NAT ;
reconsider n = (
lim (
ProjMap2 (Rseq,m))) as
Element of
REAL by
XREAL_0:def 1;
take n;
thus
P[m, n];
end;
consider IT be
Function of
NAT ,
REAL such that
a2: for m be
Element of
NAT holds
P[m, (IT
. m)] from
FUNCT_2:sch 3(
a1);
take IT;
thus thesis by
a2;
end;
uniqueness
proof
let f1,f2 be
Function of
NAT ,
REAL ;
assume that
a3: for m be
Element of
NAT holds (f1
. m)
= (
lim (
ProjMap2 (Rseq,m))) and
a4: for m be
Element of
NAT holds (f2
. m)
= (
lim (
ProjMap2 (Rseq,m)));
now
let m be
Element of
NAT ;
thus (f1
. m)
= (
lim (
ProjMap2 (Rseq,m))) by
a3
.= (f2
. m) by
a4;
end;
hence f1
= f2 by
FUNCT_2: 63;
end;
end
definition
let Rseq;
::
DBLSEQ_1:def6
func
lim_in_cod2 Rseq ->
Function of
NAT ,
REAL means
:
def33: for n be
Element of
NAT holds (it
. n)
= (
lim (
ProjMap1 (Rseq,n)));
existence
proof
defpred
P[
Element of
NAT ,
set] means $2
= (
lim (
ProjMap1 (Rseq,$1)));
a1:
now
let m be
Element of
NAT ;
reconsider n = (
lim (
ProjMap1 (Rseq,m))) as
Element of
REAL by
XREAL_0:def 1;
take n;
thus
P[m, n];
end;
consider IT be
Function of
NAT ,
REAL such that
a2: for m be
Element of
NAT holds
P[m, (IT
. m)] from
FUNCT_2:sch 3(
a1);
take IT;
thus thesis by
a2;
end;
uniqueness
proof
let f1,f2 be
Function of
NAT ,
REAL ;
assume that
a3: for n be
Element of
NAT holds (f1
. n)
= (
lim (
ProjMap1 (Rseq,n))) and
a4: for n be
Element of
NAT holds (f2
. n)
= (
lim (
ProjMap1 (Rseq,n)));
now
let n be
Element of
NAT ;
thus (f1
. n)
= (
lim (
ProjMap1 (Rseq,n))) by
a3
.= (f2
. n) by
a4;
end;
hence f1
= f2 by
FUNCT_2: 63;
end;
end
definition
let Rseq;
assume
a2: (
lim_in_cod1 Rseq) is
convergent;
::
DBLSEQ_1:def7
func
cod1_major_iterated_lim Rseq ->
Real means
:
def34: for e be
Real st
0
< e holds ex M be
Nat st for m be
Nat st m
>= M holds
|.(((
lim_in_cod1 Rseq)
. m)
- it ).|
< e;
existence by
a2,
SEQ_2:def 6;
uniqueness
proof
let z1,z2 be
Real;
assume that
a4: for e st
0
< e holds ex M st for m st m
>= M holds
|.(((
lim_in_cod1 Rseq)
. m)
- z1).|
< e and
a5: for e st
0
< e holds ex M st for m st m
>= M holds
|.(((
lim_in_cod1 Rseq)
. m)
- z2).|
< e;
assume
a6: z1
<> z2;
set p = (
|.(z1
- z2).|
/ 2);
a7:
|.(z1
- z2).|
>
0 by
a6,
COMPLEX1: 62;
then
consider M1 be
Nat such that
a8: for m st M1
<= m holds
|.(((
lim_in_cod1 Rseq)
. m)
- z1).|
< p by
a4;
consider M2 be
Nat such that
a9: for m st M2
<= m holds
|.(((
lim_in_cod1 Rseq)
. m)
- z2).|
< p by
a5,
a7;
set M = (
max (M1,M2));
a0: M is
Nat by
TARSKI: 1;
for m st M
<= m holds (2
* p)
< (2
* p)
proof
let m;
set s = (
lim_in_cod1 Rseq);
assume
a10: M
<= m;
M2
<= M by
XXREAL_0: 25;
then (M
+ M2)
<= (M
+ m) by
a10,
XREAL_1: 7;
then M2
<= m by
XREAL_1: 6;
then
a11:
|.((s
. m)
- z2).|
< p by
a9;
|.(z1
- z2).|
=
|.((z1
- (s
. m))
- (z2
- (s
. m))).|;
then
|.(z1
- z2).|
<= (
|.(z1
- (s
. m)).|
+
|.(z2
- (s
. m)).|) by
COMPLEX1: 57;
then
a12:
|.(z1
- z2).|
<= (
|.((s
. m)
- z1).|
+
|.(z2
- (s
. m)).|) by
COMPLEX1: 60;
M1
<= M by
XXREAL_0: 25;
then (M
+ M1)
<= (M
+ m) by
a10,
XREAL_1: 7;
then M1
<= m by
XREAL_1: 6;
then
|.((s
. m)
- z1).|
< p by
a8;
then (
|.((s
. m)
- z1).|
+
|.((s
. m)
- z2).|)
< (p
+ p) by
a11,
XREAL_1: 8;
hence thesis by
a12,
COMPLEX1: 60;
end;
hence contradiction by
a0;
end;
end
definition
let Rseq;
assume
a2: (
lim_in_cod2 Rseq) is
convergent;
::
DBLSEQ_1:def8
func
cod2_major_iterated_lim Rseq ->
Real means
:
def35: for e be
Real st
0
< e holds ex N be
Nat st for n be
Nat st n
>= N holds
|.(((
lim_in_cod2 Rseq)
. n)
- it ).|
< e;
existence by
a2,
SEQ_2:def 6;
uniqueness
proof
let z1,z2 be
Real;
assume that
a4: for e st
0
< e holds ex M st for m st m
>= M holds
|.(((
lim_in_cod2 Rseq)
. m)
- z1).|
< e and
a5: for e st
0
< e holds ex M st for m st m
>= M holds
|.(((
lim_in_cod2 Rseq)
. m)
- z2).|
< e;
assume
a6: z1
<> z2;
set p = (
|.(z1
- z2).|
/ 2);
a7:
|.(z1
- z2).|
>
0 by
a6,
COMPLEX1: 62;
then
consider M1 be
Nat such that
a8: for m st M1
<= m holds
|.(((
lim_in_cod2 Rseq)
. m)
- z1).|
< p by
a4;
consider M2 be
Nat such that
a9: for m st M2
<= m holds
|.(((
lim_in_cod2 Rseq)
. m)
- z2).|
< p by
a5,
a7;
set M = (
max (M1,M2));
a0: M is
Nat by
TARSKI: 1;
for m st M
<= m holds (2
* p)
< (2
* p)
proof
let m;
set s = (
lim_in_cod2 Rseq);
assume
a10: M
<= m;
M2
<= M by
XXREAL_0: 25;
then (M
+ M2)
<= (M
+ m) by
a10,
XREAL_1: 7;
then M2
<= m by
XREAL_1: 6;
then
a11:
|.((s
. m)
- z2).|
< p by
a9;
|.(z1
- z2).|
=
|.((z1
- (s
. m))
- (z2
- (s
. m))).|;
then
|.(z1
- z2).|
<= (
|.(z1
- (s
. m)).|
+
|.(z2
- (s
. m)).|) by
COMPLEX1: 57;
then
a12:
|.(z1
- z2).|
<= (
|.((s
. m)
- z1).|
+
|.(z2
- (s
. m)).|) by
COMPLEX1: 60;
M1
<= M by
XXREAL_0: 25;
then (M
+ M1)
<= (M
+ m) by
a10,
XREAL_1: 7;
then M1
<= m by
XREAL_1: 6;
then
|.((s
. m)
- z1).|
< p by
a8;
then (
|.((s
. m)
- z1).|
+
|.((s
. m)
- z2).|)
< (p
+ p) by
a11,
XREAL_1: 8;
hence thesis by
a12,
COMPLEX1: 60;
end;
hence contradiction by
a0;
end;
end
definition
let Rseq be
Function of
[:
NAT ,
NAT :],
REAL ;
::
DBLSEQ_1:def9
attr Rseq is
uniformly_convergent_in_cod1 means Rseq is
convergent_in_cod1 & for e be
Real st e
>
0 holds ex M be
Nat st for m be
Nat st m
>= M holds for n be
Nat holds
|.((Rseq
. (n,m))
- ((
lim_in_cod1 Rseq)
. n)).|
< e;
end
definition
let Rseq be
Function of
[:
NAT ,
NAT :],
REAL ;
::
DBLSEQ_1:def10
attr Rseq is
uniformly_convergent_in_cod2 means Rseq is
convergent_in_cod2 & for e be
Real st e
>
0 holds ex N be
Nat st for n be
Nat st n
>= N holds for m be
Nat holds
|.((Rseq
. (n,m))
- ((
lim_in_cod2 Rseq)
. m)).|
< e;
end
definition
let Rseq;
::
DBLSEQ_1:def11
attr Rseq is
non-decreasing means for n1,m1,n2,m2 be
Nat st n1
>= n2 & m1
>= m2 holds (Rseq
. (n1,m1))
>= (Rseq
. (n2,m2));
::
DBLSEQ_1:def12
attr Rseq is
non-increasing means for n1,m1,n2,m2 be
Nat st n1
>= n2 & m1
>= m2 holds (Rseq
. (n1,m1))
<= (Rseq
. (n2,m2));
end
theorem ::
DBLSEQ_1:1
th28: for a,b,c be
Real st a
<= b & b
<= c holds
|.b.|
<=
|.a.| or
|.b.|
<=
|.c.|
proof
let a,b,c be
Real;
assume
a1: a
<= b & b
<= c;
per cases ;
suppose b
>=
0 ;
then
|.b.|
= b &
|.c.|
= c by
a1,
ABSVALUE:def 1;
hence thesis by
a1;
end;
suppose b
<
0 ;
then
|.a.|
= (
- a) &
|.b.|
= (
- b) by
a1,
ABSVALUE:def 1;
hence thesis by
a1,
XREAL_1: 24;
end;
end;
registration
cluster
non-decreasing
P-convergent ->
bounded_below
bounded_above for
Function of
[:
NAT ,
NAT :],
REAL ;
coherence
proof
let Rseq be
Function of
[:
NAT ,
NAT :],
REAL ;
assume
a1: Rseq is
non-decreasing
P-convergent;
then
consider p be
Real such that
a3: for e st
0
< e holds ex N st for n, m st n
>= N & m
>= N holds
|.((Rseq
. (n,m))
- p).|
< e;
consider N such that
a4: for n, m st n
>= N & m
>= N holds
|.((Rseq
. (n,m))
- p).|
< 1 by
a3;
a5: for n, m st n
>= N & m
>= N holds
|.(Rseq
. (n,m)).|
< (1
+
|.p.|)
proof
let n, m;
assume n
>= N & m
>= N;
then
a6:
|.((Rseq
. (n,m))
- p).|
< 1 by
a4;
|.((Rseq
. (n,m))
- p).|
>= (
|.(Rseq
. (n,m)).|
-
|.p.|) by
COMPLEX1: 59;
then (
|.(Rseq
. (n,m)).|
-
|.p.|)
< 1 by
a6,
XXREAL_0: 2;
hence
|.(Rseq
. (n,m)).|
< (1
+
|.p.|) by
XREAL_1: 19;
end;
deffunc
F(
Element of
NAT ) = $1;
deffunc
F1(
Nat) =
|.(Rseq
. (1,$1)).|;
reconsider E2 = {
F(m) where m be
Element of
NAT : m
<= N } as
finite non
empty
Subset of
NAT from
ASYMPT_0:sch 2;
reconsider EE =
[:E2, E2:] as
finite
set;
c1: E2 is
finite;
deffunc
F(
Element of
NAT ,
Element of
NAT ) =
|.(Rseq
. ($1,$2)).|;
a9: {
F(m,n) where m be
Element of
NAT , n be
Element of
NAT : m
in E2 & n
in E2 } is
finite from
FRAENKEL:sch 22(
c1,
c1);
set F = {
F(m,n) where m be
Element of
NAT , n be
Element of
NAT : m
in E2 & n
in E2 };
N is
Element of
NAT by
ORDINAL1:def 12;
then N
in E2;
then
b1:
|.(Rseq
. (N,N)).|
in F;
now
let x be
object;
assume x
in F;
then
consider p be
Element of
NAT , q be
Element of
NAT such that
a10: x
=
F(p,q) & p
in E2 & q
in E2;
thus x is
real by
a10;
end;
then
reconsider F as non
empty
real-membered
set by
b1,
MEMBERED:def 3;
reconsider M1 = (
sup F) as
Element of
REAL by
a9,
XXREAL_2: 16;
set M = (
max (M1,(1
+
|.p.|)));
a14: M
>= (1
+
|.p.|) & (1
+
|.p.|)
>= 1 & M
>= M1 & M
>= M1 by
XXREAL_0: 25,
XREAL_1: 31,
COMPLEX1: 46;
c1: for n, m holds
|.(Rseq
. (n,m)).|
<= M
proof
let n, m;
c0: n is
Element of
NAT & m is
Element of
NAT & N is
Element of
NAT by
ORDINAL1:def 12;
per cases ;
suppose n
>= N & m
>= N;
then
|.(Rseq
. (n,m)).|
< (1
+
|.p.|) by
a5;
hence
|.(Rseq
. (n,m)).|
<= M by
a14,
XXREAL_0: 2;
end;
suppose n
< N & m
< N;
then n
in E2 & m
in E2 by
c0;
then
|.(Rseq
. (n,m)).|
in F;
then
a15:
|.(Rseq
. (n,m)).|
<= M1 by
XXREAL_2: 4;
M
>= M1 by
XXREAL_0: 25;
hence
|.(Rseq
. (n,m)).|
<= M by
a15,
XXREAL_0: 2;
end;
suppose
a18: n
< N & m
>= N;
then
a19: (Rseq
. (n,N))
<= (Rseq
. (n,m)) & (Rseq
. (n,m))
<= (Rseq
. (N,m)) by
a1;
n
in E2 & N
in E2 by
a18,
c0;
then
|.(Rseq
. (n,N)).|
in F;
then
a20:
|.(Rseq
. (n,N)).|
<= M1 by
XXREAL_2: 4;
a21:
|.(Rseq
. (N,m)).|
< (1
+
|.p.|) by
a5,
a18;
per cases by
a19,
th28;
suppose
|.(Rseq
. (n,m)).|
<=
|.(Rseq
. (n,N)).|;
then
|.(Rseq
. (n,m)).|
<= M1 by
a20,
XXREAL_0: 2;
hence
|.(Rseq
. (n,m)).|
<= M by
a14,
XXREAL_0: 2;
end;
suppose
|.(Rseq
. (n,m)).|
<=
|.(Rseq
. (N,m)).|;
then
|.(Rseq
. (n,m)).|
<= (1
+
|.p.|) by
a21,
XXREAL_0: 2;
hence
|.(Rseq
. (n,m)).|
<= M by
a14,
XXREAL_0: 2;
end;
end;
suppose
a22: n
>= N & m
< N;
then
a23: (Rseq
. (N,m))
<= (Rseq
. (n,m)) & (Rseq
. (n,m))
<= (Rseq
. (n,N)) by
a1;
N
in E2 & m
in E2 by
a22,
c0;
then
|.(Rseq
. (N,m)).|
in F;
then
a24:
|.(Rseq
. (N,m)).|
<= M1 by
XXREAL_2: 4;
a25:
|.(Rseq
. (n,N)).|
< (1
+
|.p.|) by
a5,
a22;
per cases by
a23,
th28;
suppose
|.(Rseq
. (n,m)).|
<=
|.(Rseq
. (N,m)).|;
then
|.(Rseq
. (n,m)).|
<= M1 by
a24,
XXREAL_0: 2;
hence
|.(Rseq
. (n,m)).|
<= M by
a14,
XXREAL_0: 2;
end;
suppose
|.(Rseq
. (n,m)).|
<=
|.(Rseq
. (n,N)).|;
then
|.(Rseq
. (n,m)).|
<= (1
+
|.p.|) by
a25,
XXREAL_0: 2;
hence
|.(Rseq
. (n,m)).|
<= M by
a14,
XXREAL_0: 2;
end;
end;
end;
now
let a be
ExtReal;
assume a
in (Rseq
.:
[:
NAT ,
NAT :]);
then
consider x be
Element of
[:
NAT ,
NAT qua non
empty
set:] such that
b2: x
in
[:
NAT ,
NAT :] & a
= (Rseq
. x) by
FUNCT_2: 65;
consider n,m be
object such that
b3: n
in
NAT & m
in
NAT & x
=
[n, m] by
ZFMISC_1:def 2;
reconsider n, m as
Element of
NAT by
b3;
|.(Rseq
. (n,m)).|
<= M by
c1;
hence (
- M)
<= a & a
<= M by
b2,
b3,
ABSVALUE: 5;
end;
then (for a be
ExtReal st a
in (Rseq
.:
[:
NAT ,
NAT :]) holds (
- M)
<= a) & (for a be
ExtReal st a
in (Rseq
.:
[:
NAT ,
NAT :]) holds a
<= M);
then (
- M) is
LowerBound of (Rseq
.:
[:
NAT ,
NAT :]) & M is
UpperBound of (Rseq
.:
[:
NAT ,
NAT :]) by
XXREAL_2:def 1,
XXREAL_2:def 2;
hence thesis by
XXREAL_2:def 9,
XXREAL_2:def 10;
end;
end
registration
cluster
non-increasing
P-convergent ->
bounded_below
bounded_above for
Function of
[:
NAT ,
NAT :],
REAL ;
coherence
proof
let Rseq be
Function of
[:
NAT ,
NAT :],
REAL ;
assume
a1: Rseq is
non-increasing
P-convergent;
then
consider p be
Real such that
a3: for e st
0
< e holds ex N st for n, m st n
>= N & m
>= N holds
|.((Rseq
. (n,m))
- p).|
< e;
consider N such that
a4: for n, m st n
>= N & m
>= N holds
|.((Rseq
. (n,m))
- p).|
< 1 by
a3;
a5: for n, m st n
>= N & m
>= N holds
|.(Rseq
. (n,m)).|
< (1
+
|.p.|)
proof
let n, m;
assume n
>= N & m
>= N;
then
a6:
|.((Rseq
. (n,m))
- p).|
< 1 by
a4;
|.((Rseq
. (n,m))
- p).|
>= (
|.(Rseq
. (n,m)).|
-
|.p.|) by
COMPLEX1: 59;
then (
|.(Rseq
. (n,m)).|
-
|.p.|)
< 1 by
a6,
XXREAL_0: 2;
hence
|.(Rseq
. (n,m)).|
< (1
+
|.p.|) by
XREAL_1: 19;
end;
deffunc
F1(
Element of
NAT ) =
|.(Rseq
. (1,$1)).|;
deffunc
F(
Element of
NAT ) = $1;
reconsider E2 = {
F(m) where m be
Element of
NAT : m
<= N } as
finite non
empty
Subset of
NAT from
ASYMPT_0:sch 2;
reconsider EE =
[:E2, E2:] as
finite
set;
c1: E2 is
finite;
deffunc
F(
Element of
NAT ,
Element of
NAT ) =
|.(Rseq
. ($1,$2)).|;
a9: {
F(m,n) where m be
Element of
NAT , n be
Element of
NAT : m
in E2 & n
in E2 } is
finite from
FRAENKEL:sch 22(
c1,
c1);
set F = {
F(m,n) where m be
Element of
NAT , n be
Element of
NAT : m
in E2 & n
in E2 };
N is
Element of
NAT by
ORDINAL1:def 12;
then N
in E2;
then
b1:
|.(Rseq
. (N,N)).|
in F;
now
let x be
object;
assume x
in F;
then
consider p be
Element of
NAT , q be
Element of
NAT such that
a10: x
=
F(p,q) & p
in E2 & q
in E2;
thus x is
real by
a10;
end;
then
reconsider F as non
empty
real-membered
set by
b1,
MEMBERED:def 3;
reconsider M1 = (
sup F) as
Element of
REAL by
a9,
XXREAL_2: 16;
set M = (
max (M1,(1
+
|.p.|)));
a14: M
>= (1
+
|.p.|) & (1
+
|.p.|)
>= 1 & M
>= M1 & M
>= M1 by
XXREAL_0: 25,
XREAL_1: 31,
COMPLEX1: 46;
c1: for n, m holds
|.(Rseq
. (n,m)).|
<= M
proof
let n, m;
c0: n is
Element of
NAT & m is
Element of
NAT & N is
Element of
NAT by
ORDINAL1:def 12;
per cases ;
suppose n
>= N & m
>= N;
then
|.(Rseq
. (n,m)).|
< (1
+
|.p.|) by
a5;
hence
|.(Rseq
. (n,m)).|
<= M by
a14,
XXREAL_0: 2;
end;
suppose n
< N & m
< N;
then n
in E2 & m
in E2 by
c0;
then
|.(Rseq
. (n,m)).|
in F;
then
a15:
|.(Rseq
. (n,m)).|
<= M1 by
XXREAL_2: 4;
M
>= M1 by
XXREAL_0: 25;
hence
|.(Rseq
. (n,m)).|
<= M by
a15,
XXREAL_0: 2;
end;
suppose
a18: n
< N & m
>= N;
then
a19: (Rseq
. (n,N))
>= (Rseq
. (n,m)) & (Rseq
. (n,m))
>= (Rseq
. (N,m)) by
a1;
n
in E2 & N
in E2 by
a18,
c0;
then
|.(Rseq
. (n,N)).|
in F;
then
a20:
|.(Rseq
. (n,N)).|
<= M1 by
XXREAL_2: 4;
a21:
|.(Rseq
. (N,m)).|
< (1
+
|.p.|) by
a5,
a18;
per cases by
a19,
th28;
suppose
|.(Rseq
. (n,m)).|
<=
|.(Rseq
. (n,N)).|;
then
|.(Rseq
. (n,m)).|
<= M1 by
a20,
XXREAL_0: 2;
hence
|.(Rseq
. (n,m)).|
<= M by
a14,
XXREAL_0: 2;
end;
suppose
|.(Rseq
. (n,m)).|
<=
|.(Rseq
. (N,m)).|;
then
|.(Rseq
. (n,m)).|
<= (1
+
|.p.|) by
a21,
XXREAL_0: 2;
hence
|.(Rseq
. (n,m)).|
<= M by
a14,
XXREAL_0: 2;
end;
end;
suppose
a22: n
>= N & m
< N;
then
a23: (Rseq
. (N,m))
>= (Rseq
. (n,m)) & (Rseq
. (n,m))
>= (Rseq
. (n,N)) by
a1;
N
in E2 & m
in E2 by
a22,
c0;
then
|.(Rseq
. (N,m)).|
in F;
then
a24:
|.(Rseq
. (N,m)).|
<= M1 by
XXREAL_2: 4;
a25:
|.(Rseq
. (n,N)).|
< (1
+
|.p.|) by
a5,
a22;
per cases by
a23,
th28;
suppose
|.(Rseq
. (n,m)).|
<=
|.(Rseq
. (N,m)).|;
then
|.(Rseq
. (n,m)).|
<= M1 by
a24,
XXREAL_0: 2;
hence
|.(Rseq
. (n,m)).|
<= M by
a14,
XXREAL_0: 2;
end;
suppose
|.(Rseq
. (n,m)).|
<=
|.(Rseq
. (n,N)).|;
then
|.(Rseq
. (n,m)).|
<= (1
+
|.p.|) by
a25,
XXREAL_0: 2;
hence
|.(Rseq
. (n,m)).|
<= M by
a14,
XXREAL_0: 2;
end;
end;
end;
now
let a be
ExtReal;
assume a
in (Rseq
.:
[:
NAT ,
NAT :]);
then
consider x be
Element of
[:
NAT ,
NAT :] such that
b2: x
in
[:
NAT ,
NAT :] & a
= (Rseq
. x) by
FUNCT_2: 65;
consider n,m be
object such that
b3: n
in
NAT & m
in
NAT & x
=
[n, m] by
ZFMISC_1:def 2;
reconsider n, m as
Element of
NAT by
b3;
|.(Rseq
. (n,m)).|
<= M by
c1;
hence (
- M)
<= a & a
<= M by
b3,
b2,
ABSVALUE: 5;
end;
then (for a be
ExtReal st a
in (Rseq
.:
[:
NAT ,
NAT :]) holds (
- M)
<= a) & (for a be
ExtReal st a
in (Rseq
.:
[:
NAT ,
NAT :]) holds a
<= M);
then (
- M) is
LowerBound of (Rseq
.:
[:
NAT ,
NAT :]) & M is
UpperBound of (Rseq
.:
[:
NAT ,
NAT :]) by
XXREAL_2:def 1,
XXREAL_2:def 2;
hence thesis by
XXREAL_2:def 9,
XXREAL_2:def 10;
end;
end
LM111: for r be
Element of
REAL holds (
[:
NAT ,
NAT :]
--> r) is
P-convergent & (
[:
NAT ,
NAT :]
--> r) is
convergent_in_cod1 & (
[:
NAT ,
NAT :]
--> r) is
convergent_in_cod2
proof
let r be
Element of
REAL ;
set Rseq = (
[:
NAT ,
NAT :]
--> r);
a1: for n,m be
Nat holds (Rseq
. (n,m))
= r
proof
let n,m be
Nat;
n is
Element of
NAT & m is
Element of
NAT by
ORDINAL1:def 12;
hence (Rseq
. (n,m))
= r by
FUNCOP_1: 70;
end;
a3:
now
let e be
Real;
assume
a2:
0
< e;
a4:
now
let n, m such that n
>=
0 & m
>=
0 ;
(Rseq
. (n,m))
= r by
a1;
hence
|.((Rseq
. (n,m))
- r).|
< e by
a2,
COMPLEX1: 44;
end;
reconsider N =
0 as
Nat;
take N;
thus for n, m st n
>= N & m
>= N holds
|.((Rseq
. (n,m))
- r).|
< e by
a4;
end;
b1:
now
let m be
Element of
NAT ;
now
let e be
Real;
assume
b3:
0
< e;
now
let n be
Nat;
assume
0
<= n;
b4: n is
Element of
NAT by
ORDINAL1:def 12;
then ((
ProjMap2 (Rseq,m))
. n)
= (Rseq
. (n,m)) by
MESFUNC9:def 7;
then ((
ProjMap2 (Rseq,m))
. n)
= r by
b4,
FUNCOP_1: 70;
hence
|.(((
ProjMap2 (Rseq,m))
. n)
- r).|
< e by
b3,
ABSVALUE: 2;
end;
hence ex N be
Nat st for n be
Nat st N
<= n holds
|.(((
ProjMap2 (Rseq,m))
. n)
- r).|
< e;
end;
hence (
ProjMap2 (Rseq,m)) is
convergent by
SEQ_2:def 6;
end;
now
let n be
Element of
NAT ;
now
let e be
Real;
assume
c3:
0
< e;
now
let m be
Nat;
assume
0
<= m;
c4: m is
Element of
NAT by
ORDINAL1:def 12;
then ((
ProjMap1 (Rseq,n))
. m)
= (Rseq
. (n,m)) by
MESFUNC9:def 6;
then ((
ProjMap1 (Rseq,n))
. m)
= r by
c4,
FUNCOP_1: 70;
hence
|.(((
ProjMap1 (Rseq,n))
. m)
- r).|
< e by
c3,
ABSVALUE: 2;
end;
hence ex M be
Nat st for m be
Nat st M
<= m holds
|.(((
ProjMap1 (Rseq,n))
. m)
- r).|
< e;
end;
hence (
ProjMap1 (Rseq,n)) is
convergent by
SEQ_2:def 6;
end;
hence thesis by
a3,
b1;
end;
registration
let r be
Element of
REAL ;
cluster (
[:
NAT ,
NAT :]
--> r) ->
P-convergent
convergent_in_cod1
convergent_in_cod2;
coherence by
LM111;
end
theorem ::
DBLSEQ_1:2
for r be
Element of
REAL holds (
P-lim (
[:
NAT ,
NAT :]
--> r))
= r
proof
let r be
Element of
REAL ;
set Rseq = (
[:
NAT ,
NAT :]
--> r);
a1: for n,m be
Nat holds (Rseq
. (n,m))
= r
proof
let n,m be
Nat;
n is
Element of
NAT & m is
Element of
NAT by
ORDINAL1:def 12;
hence (Rseq
. (n,m))
= r by
FUNCOP_1: 70;
end;
now
let e be
Real;
assume
a2:
0
< e;
a4:
now
let n, m such that n
>=
0 & m
>=
0 ;
(Rseq
. (n,m))
= r by
a1;
hence
|.((Rseq
. (n,m))
- r).|
< e by
a2,
COMPLEX1: 44;
end;
reconsider N =
0 as
Nat;
take N;
thus for n, m st n
>= N & m
>= N holds
|.((Rseq
. (n,m))
- r).|
< e by
a4;
end;
hence (
P-lim (
[:
NAT ,
NAT :]
--> r))
= r by
def6;
end;
registration
cluster
P-convergent
convergent_in_cod1
convergent_in_cod2 for
Function of
[:
NAT ,
NAT :],
REAL ;
existence
proof
a1: 1 is
Element of
REAL by
XREAL_0:def 1;
then
reconsider f = (
[:
NAT ,
NAT :]
--> 1) as
Function of
[:
NAT ,
NAT :],
REAL by
FUNCOP_1: 46;
f is
P-convergent
convergent_in_cod1
convergent_in_cod2 by
a1;
hence thesis;
end;
end
reserve Pseq for
P-convergent
Function of
[:
NAT ,
NAT :],
REAL ;
registration
let Pseq2 be
P-convergent
convergent_in_cod2
Function of
[:
NAT ,
NAT :],
REAL ;
cluster (
lim_in_cod2 Pseq2) ->
convergent;
coherence
proof
Pseq2 is
P-convergent;
then
consider z be
Real such that
a3: for e st
0
< e holds ex N1 be
Nat st for n, m st n
>= N1 & m
>= N1 holds
|.((Pseq2
. (n,m))
- z).|
< e;
for e st
0
< e holds ex N st for n st n
>= N holds
|.(((
lim_in_cod2 Pseq2)
. n)
- z).|
< e
proof
let e;
assume
a8:
0
< e;
then
consider N1 be
Nat such that
a15: for n, m st n
>= N1 & m
>= N1 holds
|.((Pseq2
. (n,m))
- z).|
< (e
/ 2) by
a3;
a12: for n be
Element of
NAT st n
>= N1 holds ex N2 be
Nat st for m st m
>= N2 holds
|.(((
ProjMap1 (Pseq2,n))
. m)
- ((
lim_in_cod2 Pseq2)
. n)).|
< (e
/ 2)
proof
let n be
Element of
NAT ;
assume n
>= N1;
Pseq2 is
convergent_in_cod2;
then (
ProjMap1 (Pseq2,n)) is
convergent;
then
consider N2 be
Nat such that
a9: for m be
Nat st m
>= N2 holds
|.(((
ProjMap1 (Pseq2,n))
. m)
- (
lim (
ProjMap1 (Pseq2,n)))).|
< (e
/ 2) by
a8,
SEQ_2:def 7;
take N2;
thus for m st m
>= N2 holds
|.(((
ProjMap1 (Pseq2,n))
. m)
- ((
lim_in_cod2 Pseq2)
. n)).|
< (e
/ 2)
proof
let m;
assume m
>= N2;
then
|.(((
ProjMap1 (Pseq2,n))
. m)
- (
lim (
ProjMap1 (Pseq2,n)))).|
< (e
/ 2) by
a9;
hence thesis by
def33;
end;
end;
take N1;
thus for n st n
>= N1 holds
|.(((
lim_in_cod2 Pseq2)
. n)
- z).|
< e
proof
let n;
reconsider n1 = n as
Element of
NAT by
ORDINAL1:def 12;
assume
a14: n
>= N1;
then
consider N2 be
Nat such that
a13: for m st m
>= N2 holds
|.(((
ProjMap1 (Pseq2,n1))
. m)
- ((
lim_in_cod2 Pseq2)
. n1)).|
< (e
/ 2) by
a12;
reconsider M = (
max (N2,N1)) as
Element of
NAT by
ORDINAL1:def 12;
a17: ((
ProjMap1 (Pseq2,n1))
. M)
= (Pseq2
. (n,M)) by
MESFUNC9:def 6;
a16: M
>= N2 & M
>= N1 by
XXREAL_0: 25;
a18:
|.(((
lim_in_cod2 Pseq2)
. n)
- z).|
<= (
|.(((
lim_in_cod2 Pseq2)
. n)
- ((
ProjMap1 (Pseq2,n1))
. M)).|
+
|.((Pseq2
. (n,M))
- z).|) by
a17,
COMPLEX1: 63;
|.(((
lim_in_cod2 Pseq2)
. n)
- ((
ProjMap1 (Pseq2,n1))
. M)).|
=
|.(((
ProjMap1 (Pseq2,n1))
. M)
- ((
lim_in_cod2 Pseq2)
. n)).| by
COMPLEX1: 60;
then
a20:
|.(((
lim_in_cod2 Pseq2)
. n)
- ((
ProjMap1 (Pseq2,n1))
. M)).|
< (e
/ 2) by
a13,
XXREAL_0: 25;
|.((Pseq2
. (n1,M))
- z).|
< (e
/ 2) by
a15,
a16,
a14;
then (
|.(((
lim_in_cod2 Pseq2)
. n)
- ((
ProjMap1 (Pseq2,n1))
. M)).|
+
|.((Pseq2
. (n,M))
- z).|)
< ((e
/ 2)
+ (e
/ 2)) by
a20,
XREAL_1: 8;
hence
|.(((
lim_in_cod2 Pseq2)
. n)
- z).|
< e by
a18,
XXREAL_0: 2;
end;
end;
hence (
lim_in_cod2 Pseq2) is
convergent by
SEQ_2:def 6;
end;
end
theorem ::
DBLSEQ_1:3
Rseq is
P-convergent
convergent_in_cod2 implies (
P-lim Rseq)
= (
cod2_major_iterated_lim Rseq)
proof
assume
a1: Rseq is
P-convergent
convergent_in_cod2;
then
consider z be
Real such that
a3: for e st
0
< e holds ex N1 be
Nat st for n, m st n
>= N1 & m
>= N1 holds
|.((Rseq
. (n,m))
- z).|
< e;
for e st
0
< e holds ex N st for n st n
>= N holds
|.(((
lim_in_cod2 Rseq)
. n)
- z).|
< e
proof
let e;
assume
a8:
0
< e;
then
consider N1 be
Nat such that
a15: for n, m st n
>= N1 & m
>= N1 holds
|.((Rseq
. (n,m))
- z).|
< (e
/ 2) by
a3;
a12: for n be
Element of
NAT st n
>= N1 holds ex N2 be
Nat st for m st m
>= N2 holds
|.(((
ProjMap1 (Rseq,n))
. m)
- ((
lim_in_cod2 Rseq)
. n)).|
< (e
/ 2)
proof
let n be
Element of
NAT ;
assume n
>= N1;
(
ProjMap1 (Rseq,n)) is
convergent by
a1;
then
consider N2 be
Nat such that
a9: for m be
Nat st m
>= N2 holds
|.(((
ProjMap1 (Rseq,n))
. m)
- (
lim (
ProjMap1 (Rseq,n)))).|
< (e
/ 2) by
a8,
SEQ_2:def 7;
take N2;
thus for m st m
>= N2 holds
|.(((
ProjMap1 (Rseq,n))
. m)
- ((
lim_in_cod2 Rseq)
. n)).|
< (e
/ 2)
proof
let m;
assume m
>= N2;
then
|.(((
ProjMap1 (Rseq,n))
. m)
- (
lim (
ProjMap1 (Rseq,n)))).|
< (e
/ 2) by
a9;
hence thesis by
def33;
end;
end;
take N1;
thus for n st n
>= N1 holds
|.(((
lim_in_cod2 Rseq)
. n)
- z).|
< e
proof
let n;
reconsider n1 = n as
Element of
NAT by
ORDINAL1:def 12;
assume
a14: n
>= N1;
then
consider N2 be
Nat such that
a13: for m st m
>= N2 holds
|.(((
ProjMap1 (Rseq,n1))
. m)
- ((
lim_in_cod2 Rseq)
. n1)).|
< (e
/ 2) by
a12;
reconsider M = (
max (N2,N1)) as
Element of
NAT by
ORDINAL1:def 12;
a17: ((
ProjMap1 (Rseq,n1))
. M)
= (Rseq
. (n,M)) by
MESFUNC9:def 6;
a16: M
>= N2 & M
>= N1 by
XXREAL_0: 25;
a18:
|.(((
lim_in_cod2 Rseq)
. n)
- z).|
<= (
|.(((
lim_in_cod2 Rseq)
. n)
- ((
ProjMap1 (Rseq,n1))
. M)).|
+
|.((Rseq
. (n,M))
- z).|) by
a17,
COMPLEX1: 63;
|.(((
lim_in_cod2 Rseq)
. n)
- ((
ProjMap1 (Rseq,n1))
. M)).|
=
|.(((
ProjMap1 (Rseq,n1))
. M)
- ((
lim_in_cod2 Rseq)
. n)).| by
COMPLEX1: 60;
then
a20:
|.(((
lim_in_cod2 Rseq)
. n)
- ((
ProjMap1 (Rseq,n1))
. M)).|
< (e
/ 2) by
a13,
XXREAL_0: 25;
|.((Rseq
. (n1,M))
- z).|
< (e
/ 2) by
a15,
a16,
a14;
then (
|.(((
lim_in_cod2 Rseq)
. n)
- ((
ProjMap1 (Rseq,n1))
. M)).|
+
|.((Rseq
. (n,M))
- z).|)
< ((e
/ 2)
+ (e
/ 2)) by
a20,
XREAL_1: 8;
hence
|.(((
lim_in_cod2 Rseq)
. n)
- z).|
< e by
a18,
XXREAL_0: 2;
end;
end;
then
a21: (
lim_in_cod2 Rseq) is
convergent by
SEQ_2:def 6;
for e st
0
< e holds ex N st for n st n
>= N holds
|.(((
lim_in_cod2 Rseq)
. n)
- (
P-lim Rseq)).|
< e
proof
let e;
assume
a22:
0
< e;
then
consider N1 be
Nat such that
a23: for n, m st n
>= N1 & m
>= N1 holds
|.((Rseq
. (n,m))
- (
P-lim Rseq)).|
< (e
/ 2) by
a1,
def6;
take N = N1;
hereby
let n;
assume n
>= N;
then
a27: for m st m
>= N1 holds
|.((Rseq
. (n,m))
- (
P-lim Rseq)).|
< (e
/ 2) by
a23;
reconsider n1 = n as
Element of
NAT by
ORDINAL1:def 12;
(
ProjMap1 (Rseq,n1)) is
convergent by
a1;
then
consider N3 be
Nat such that
a29: for m st m
>= N3 holds
|.(((
ProjMap1 (Rseq,n1))
. m)
- (
lim (
ProjMap1 (Rseq,n1)))).|
< (e
/ 2) by
a22,
SEQ_2:def 7;
reconsider M = (
max (N1,N3)) as
Element of
NAT by
ORDINAL1:def 12;
a31:
|.((Rseq
. (n,M))
- (
P-lim Rseq)).|
< (e
/ 2) by
a27,
XXREAL_0: 25;
((
ProjMap1 (Rseq,n1))
. M)
= (Rseq
. (n,M)) by
MESFUNC9:def 6;
then
|.((Rseq
. (n,M))
- (
lim (
ProjMap1 (Rseq,n1)))).|
< (e
/ 2) by
a29,
XXREAL_0: 25;
then
|.((Rseq
. (n,M))
- ((
lim_in_cod2 Rseq)
. n)).|
< (e
/ 2) by
def33;
then
|.(((
lim_in_cod2 Rseq)
. n)
- (Rseq
. (n,M))).|
< (e
/ 2) by
COMPLEX1: 60;
then
a32: (
|.(((
lim_in_cod2 Rseq)
. n)
- (Rseq
. (n,M))).|
+
|.((Rseq
. (n,M))
- (
P-lim Rseq)).|)
< ((e
/ 2)
+ (e
/ 2)) by
a31,
XREAL_1: 8;
|.(((
lim_in_cod2 Rseq)
. n)
- (
P-lim Rseq)).|
<= (
|.(((
lim_in_cod2 Rseq)
. n)
- (Rseq
. (n,M))).|
+
|.((Rseq
. (n,M))
- (
P-lim Rseq)).|) by
COMPLEX1: 63;
hence
|.(((
lim_in_cod2 Rseq)
. n)
- (
P-lim Rseq)).|
< e by
a32,
XXREAL_0: 2;
end;
end;
hence thesis by
a21,
def35;
end;
registration
let Pseq1 be
P-convergent
convergent_in_cod1
Function of
[:
NAT ,
NAT :],
REAL ;
cluster (
lim_in_cod1 Pseq1) ->
convergent;
coherence
proof
Pseq1 is
P-convergent;
then
consider z be
Real such that
a3: for e st
0
< e holds ex N1 be
Nat st for n, m st n
>= N1 & m
>= N1 holds
|.((Pseq1
. (n,m))
- z).|
< e;
for e st
0
< e holds ex N st for n st n
>= N holds
|.(((
lim_in_cod1 Pseq1)
. n)
- z).|
< e
proof
let e;
assume
a8:
0
< e;
then
consider N1 be
Nat such that
a15: for n, m st n
>= N1 & m
>= N1 holds
|.((Pseq1
. (n,m))
- z).|
< (e
/ 2) by
a3;
a12: for n be
Element of
NAT st n
>= N1 holds ex N2 be
Nat st for m st m
>= N2 holds
|.(((
ProjMap2 (Pseq1,n))
. m)
- ((
lim_in_cod1 Pseq1)
. n)).|
< (e
/ 2)
proof
let n be
Element of
NAT ;
assume n
>= N1;
Pseq1 is
convergent_in_cod1;
then (
ProjMap2 (Pseq1,n)) is
convergent;
then
consider N2 be
Nat such that
a9: for m st m
>= N2 holds
|.(((
ProjMap2 (Pseq1,n))
. m)
- (
lim (
ProjMap2 (Pseq1,n)))).|
< (e
/ 2) by
a8,
SEQ_2:def 7;
take N2;
thus for m st m
>= N2 holds
|.(((
ProjMap2 (Pseq1,n))
. m)
- ((
lim_in_cod1 Pseq1)
. n)).|
< (e
/ 2)
proof
let m;
assume m
>= N2;
then
|.(((
ProjMap2 (Pseq1,n))
. m)
- (
lim (
ProjMap2 (Pseq1,n)))).|
< (e
/ 2) by
a9;
hence thesis by
def32;
end;
end;
take N1;
thus for n st n
>= N1 holds
|.(((
lim_in_cod1 Pseq1)
. n)
- z).|
< e
proof
let n be
Nat;
reconsider n1 = n as
Element of
NAT by
ORDINAL1:def 12;
assume
a14: n
>= N1;
then
consider N2 be
Nat such that
a13: for m st m
>= N2 holds
|.(((
ProjMap2 (Pseq1,n1))
. m)
- ((
lim_in_cod1 Pseq1)
. n)).|
< (e
/ 2) by
a12;
reconsider M = (
max (N2,N1)) as
Element of
NAT by
ORDINAL1:def 12;
a17: ((
ProjMap2 (Pseq1,n1))
. M)
= (Pseq1
. (M,n)) by
MESFUNC9:def 7;
a16: M
>= N2 & M
>= N1 by
XXREAL_0: 25;
a18:
|.(((
lim_in_cod1 Pseq1)
. n)
- z).|
<= (
|.(((
lim_in_cod1 Pseq1)
. n)
- ((
ProjMap2 (Pseq1,n1))
. M)).|
+
|.((Pseq1
. (M,n))
- z).|) by
a17,
COMPLEX1: 63;
|.(((
lim_in_cod1 Pseq1)
. n)
- ((
ProjMap2 (Pseq1,n1))
. M)).|
=
|.(((
ProjMap2 (Pseq1,n1))
. M)
- ((
lim_in_cod1 Pseq1)
. n)).| by
COMPLEX1: 60;
then
a20:
|.(((
lim_in_cod1 Pseq1)
. n)
- ((
ProjMap2 (Pseq1,n1))
. M)).|
< (e
/ 2) by
a13,
XXREAL_0: 25;
|.((Pseq1
. (M,n1))
- z).|
< (e
/ 2) by
a15,
a16,
a14;
then (
|.(((
lim_in_cod1 Pseq1)
. n)
- ((
ProjMap2 (Pseq1,n1))
. M)).|
+
|.((Pseq1
. (M,n))
- z).|)
< ((e
/ 2)
+ (e
/ 2)) by
a20,
XREAL_1: 8;
hence
|.(((
lim_in_cod1 Pseq1)
. n)
- z).|
< e by
a18,
XXREAL_0: 2;
end;
end;
hence (
lim_in_cod1 Pseq1) is
convergent by
SEQ_2:def 6;
end;
end
theorem ::
DBLSEQ_1:4
Rseq is
P-convergent
convergent_in_cod1 implies (
P-lim Rseq)
= (
cod1_major_iterated_lim Rseq)
proof
assume
a1: Rseq is
P-convergent
convergent_in_cod1;
then
consider z be
Real such that
a3: for e st
0
< e holds ex N1 be
Nat st for n, m st n
>= N1 & m
>= N1 holds
|.((Rseq
. (n,m))
- z).|
< e;
for e st
0
< e holds ex N st for n st n
>= N holds
|.(((
lim_in_cod1 Rseq)
. n)
- z).|
< e
proof
let e;
assume
a8:
0
< e;
then
consider N1 be
Nat such that
a15: for n, m st n
>= N1 & m
>= N1 holds
|.((Rseq
. (n,m))
- z).|
< (e
/ 2) by
a3;
a12: for n be
Element of
NAT st n
>= N1 holds ex N2 be
Nat st for m st m
>= N2 holds
|.(((
ProjMap2 (Rseq,n))
. m)
- ((
lim_in_cod1 Rseq)
. n)).|
< (e
/ 2)
proof
let n be
Element of
NAT ;
assume n
>= N1;
(
ProjMap2 (Rseq,n)) is
convergent by
a1;
then
consider N2 be
Nat such that
a9: for m st m
>= N2 holds
|.(((
ProjMap2 (Rseq,n))
. m)
- (
lim (
ProjMap2 (Rseq,n)))).|
< (e
/ 2) by
a8,
SEQ_2:def 7;
take N2;
thus for m st m
>= N2 holds
|.(((
ProjMap2 (Rseq,n))
. m)
- ((
lim_in_cod1 Rseq)
. n)).|
< (e
/ 2)
proof
let m;
assume m
>= N2;
then
|.(((
ProjMap2 (Rseq,n))
. m)
- (
lim (
ProjMap2 (Rseq,n)))).|
< (e
/ 2) by
a9;
hence thesis by
def32;
end;
end;
take N1;
thus for n st n
>= N1 holds
|.(((
lim_in_cod1 Rseq)
. n)
- z).|
< e
proof
let n be
Nat;
reconsider n1 = n as
Element of
NAT by
ORDINAL1:def 12;
assume
a14: n
>= N1;
then
consider N2 be
Nat such that
a13: for m st m
>= N2 holds
|.(((
ProjMap2 (Rseq,n1))
. m)
- ((
lim_in_cod1 Rseq)
. n)).|
< (e
/ 2) by
a12;
reconsider M = (
max (N2,N1)) as
Element of
NAT by
ORDINAL1:def 12;
a17: ((
ProjMap2 (Rseq,n1))
. M)
= (Rseq
. (M,n)) by
MESFUNC9:def 7;
a16: M
>= N2 & M
>= N1 by
XXREAL_0: 25;
a18:
|.(((
lim_in_cod1 Rseq)
. n)
- z).|
<= (
|.(((
lim_in_cod1 Rseq)
. n)
- ((
ProjMap2 (Rseq,n1))
. M)).|
+
|.((Rseq
. (M,n))
- z).|) by
a17,
COMPLEX1: 63;
|.(((
lim_in_cod1 Rseq)
. n)
- ((
ProjMap2 (Rseq,n1))
. M)).|
=
|.(((
ProjMap2 (Rseq,n1))
. M)
- ((
lim_in_cod1 Rseq)
. n)).| by
COMPLEX1: 60;
then
a20:
|.(((
lim_in_cod1 Rseq)
. n)
- ((
ProjMap2 (Rseq,n1))
. M)).|
< (e
/ 2) by
a13,
XXREAL_0: 25;
|.((Rseq
. (M,n1))
- z).|
< (e
/ 2) by
a15,
a16,
a14;
then (
|.(((
lim_in_cod1 Rseq)
. n)
- ((
ProjMap2 (Rseq,n1))
. M)).|
+
|.((Rseq
. (M,n))
- z).|)
< ((e
/ 2)
+ (e
/ 2)) by
a20,
XREAL_1: 8;
hence
|.(((
lim_in_cod1 Rseq)
. n)
- z).|
< e by
a18,
XXREAL_0: 2;
end;
end;
then
a21: (
lim_in_cod1 Rseq) is
convergent by
SEQ_2:def 6;
for e st
0
< e holds ex N st for n st n
>= N holds
|.(((
lim_in_cod1 Rseq)
. n)
- (
P-lim Rseq)).|
< e
proof
let e;
assume
a22:
0
< e;
then
consider N1 be
Nat such that
a23: for n, m st n
>= N1 & m
>= N1 holds
|.((Rseq
. (n,m))
- (
P-lim Rseq)).|
< (e
/ 2) by
a1,
def6;
take N = N1;
hereby
let n;
assume n
>= N;
then
a27: for m st m
>= N1 holds
|.((Rseq
. (m,n))
- (
P-lim Rseq)).|
< (e
/ 2) by
a23;
reconsider n1 = n as
Element of
NAT by
ORDINAL1:def 12;
(
ProjMap2 (Rseq,n1)) is
convergent by
a1;
then
consider N3 be
Nat such that
a29: for m st m
>= N3 holds
|.(((
ProjMap2 (Rseq,n1))
. m)
- (
lim (
ProjMap2 (Rseq,n1)))).|
< (e
/ 2) by
a22,
SEQ_2:def 7;
reconsider M = (
max (N1,N3)) as
Element of
NAT by
ORDINAL1:def 12;
a31:
|.((Rseq
. (M,n))
- (
P-lim Rseq)).|
< (e
/ 2) by
a27,
XXREAL_0: 25;
((
ProjMap2 (Rseq,n1))
. M)
= (Rseq
. (M,n)) by
MESFUNC9:def 7;
then
|.((Rseq
. (M,n))
- (
lim (
ProjMap2 (Rseq,n1)))).|
< (e
/ 2) by
a29,
XXREAL_0: 25;
then
|.((Rseq
. (M,n))
- ((
lim_in_cod1 Rseq)
. n)).|
< (e
/ 2) by
def32;
then
|.(((
lim_in_cod1 Rseq)
. n)
- (Rseq
. (M,n))).|
< (e
/ 2) by
COMPLEX1: 60;
then
a32: (
|.(((
lim_in_cod1 Rseq)
. n)
- (Rseq
. (M,n))).|
+
|.((Rseq
. (M,n))
- (
P-lim Rseq)).|)
< ((e
/ 2)
+ (e
/ 2)) by
a31,
XREAL_1: 8;
|.(((
lim_in_cod1 Rseq)
. n)
- (
P-lim Rseq)).|
<= (
|.(((
lim_in_cod1 Rseq)
. n)
- (Rseq
. (M,n))).|
+
|.((Rseq
. (M,n))
- (
P-lim Rseq)).|) by
COMPLEX1: 63;
hence
|.(((
lim_in_cod1 Rseq)
. n)
- (
P-lim Rseq)).|
< e by
a32,
XXREAL_0: 2;
end;
end;
hence thesis by
a21,
def34;
end;
LM112: Rseq is
non-decreasing
bounded_above implies Rseq is
P-convergent
convergent_in_cod1
convergent_in_cod2
proof
assume that
a1: Rseq is
non-decreasing and
a2: Rseq is
bounded_above;
reconsider M = (
sup (Rseq
.:
[:
NAT ,
NAT :])) as
Element of
REAL by
a2,
XXREAL_2: 16;
b2:
[:
NAT ,
NAT :]
= (
dom Rseq) by
FUNCT_2:def 1;
then
b3: (
rng Rseq)
= (Rseq
.:
[:
NAT ,
NAT :]) by
RELAT_1: 113;
a3: for e st
0
< e holds ex N st (Rseq
. (N,N))
> (M
- e)
proof
let e;
assume
a4:
0
< e;
assume
a7: for n holds (Rseq
. (n,n))
<= (M
- e);
now
let a be
ExtReal;
assume a
in (Rseq
.:
[:
NAT ,
NAT :]);
then
consider x be
object such that
a5: x
in (
dom Rseq) & a
= (Rseq
. x) by
b3,
FUNCT_1:def 3;
consider i,j be
object such that
a6: i
in
NAT & j
in
NAT & x
=
[i, j] by
a5,
ZFMISC_1:def 2;
reconsider i, j as
Nat by
a6;
a0: (
max (i,j)) is
Nat by
TARSKI: 1;
(
max (i,j))
>= i & (
max (i,j))
>= j by
XXREAL_0: 25;
then
a8: (Rseq
. ((
max (i,j)),(
max (i,j))))
>= (Rseq
. (i,j)) by
a1,
a0;
(Rseq
. ((
max (i,j)),(
max (i,j))))
<= (M
- e) by
a7,
a0;
hence a
<= (M
- e) by
a5,
a6,
a8,
XXREAL_0: 2;
end;
then (M
- e) is
UpperBound of (Rseq
.:
[:
NAT ,
NAT :]) by
XXREAL_2:def 1;
hence contradiction by
a4,
XREAL_1: 44,
XXREAL_2:def 3;
end;
for e st
0
< e holds ex N st for n, m st n
>= N & m
>= N holds
|.((Rseq
. (n,m))
- M).|
< e
proof
let e;
assume
a5:
0
< e;
then
consider N such that
a10: (Rseq
. (N,N))
> (M
- e) by
a3;
take N;
hereby
let n, m;
assume n
>= N & m
>= N;
then
a11: (Rseq
. (N,N))
<= (Rseq
. (n,m)) by
a1;
n
in
NAT & m
in
NAT by
ORDINAL1:def 12;
then
[n, m]
in
[:
NAT ,
NAT :] by
ZFMISC_1:def 2;
then
a12: (Rseq
. (n,m))
<= M by
b2,
b3,
FUNCT_1: 3,
XXREAL_2: 4;
M
< (M
+ e) by
a5,
XREAL_1: 29;
then (M
- e)
< (Rseq
. (n,m)) & (Rseq
. (n,m))
< (M
+ e) by
a10,
a11,
a12,
XXREAL_0: 2;
hence
|.((Rseq
. (n,m))
- M).|
< e by
RINFSUP1: 1;
end;
end;
hence Rseq is
P-convergent;
for m be
Element of
NAT holds (
ProjMap2 (Rseq,m)) is
convergent
proof
let m be
Element of
NAT ;
NAT
= (
dom (
ProjMap2 (Rseq,m))) by
FUNCT_2:def 1;
then
c3: (
rng (
ProjMap2 (Rseq,m)))
= ((
ProjMap2 (Rseq,m))
.:
NAT ) by
RELAT_1: 113;
now
let a be
object;
assume a
in ((
ProjMap2 (Rseq,m))
.:
NAT );
then
consider i be
object such that
c4: i
in (
dom (
ProjMap2 (Rseq,m))) & a
= ((
ProjMap2 (Rseq,m))
. i) by
c3,
FUNCT_1:def 3;
reconsider i as
Element of
NAT by
c4;
[i, m]
in
[:
NAT ,
NAT :] by
ZFMISC_1:def 2;
then (Rseq
. (i,m))
in (Rseq
.:
[:
NAT ,
NAT :]) by
b2,
b3,
FUNCT_1: 3;
hence a
in (Rseq
.:
[:
NAT ,
NAT :]) by
c4,
MESFUNC9:def 7;
end;
then
c5: (
ProjMap2 (Rseq,m)) is
bounded_above by
a2,
XXREAL_2: 43,
TARSKI:def 3;
now
let n;
n is
Element of
NAT by
ORDINAL1:def 12;
then
c6: ((
ProjMap2 (Rseq,m))
. n)
= (Rseq
. (n,m)) & ((
ProjMap2 (Rseq,m))
. (n
+ 1))
= (Rseq
. ((n
+ 1),m)) by
MESFUNC9:def 7;
n
<= (n
+ 1) by
NAT_1: 11;
hence ((
ProjMap2 (Rseq,m))
. n)
<= ((
ProjMap2 (Rseq,m))
. (n
+ 1)) by
a1,
c6;
end;
then (
ProjMap2 (Rseq,m)) is
non-decreasing by
SEQM_3:def 8;
hence (
ProjMap2 (Rseq,m)) is
convergent by
c5;
end;
hence Rseq is
convergent_in_cod1;
for m be
Element of
NAT holds (
ProjMap1 (Rseq,m)) is
convergent
proof
let m be
Element of
NAT ;
NAT
= (
dom (
ProjMap1 (Rseq,m))) by
FUNCT_2:def 1;
then
c3: (
rng (
ProjMap1 (Rseq,m)))
= ((
ProjMap1 (Rseq,m))
.:
NAT ) by
RELAT_1: 113;
now
let a be
object;
assume a
in ((
ProjMap1 (Rseq,m))
.:
NAT );
then
consider i be
object such that
c4: i
in (
dom (
ProjMap1 (Rseq,m))) & a
= ((
ProjMap1 (Rseq,m))
. i) by
c3,
FUNCT_1:def 3;
reconsider i as
Element of
NAT by
c4;
[m, i]
in
[:
NAT ,
NAT :] by
ZFMISC_1:def 2;
then (Rseq
. (m,i))
in (Rseq
.:
[:
NAT ,
NAT :]) by
b2,
b3,
FUNCT_1: 3;
hence a
in (Rseq
.:
[:
NAT ,
NAT :]) by
c4,
MESFUNC9:def 6;
end;
then
c5: (
ProjMap1 (Rseq,m)) is
bounded_above by
a2,
XXREAL_2: 43,
TARSKI:def 3;
now
let n;
n is
Element of
NAT by
ORDINAL1:def 12;
then
c6: ((
ProjMap1 (Rseq,m))
. n)
= (Rseq
. (m,n)) & ((
ProjMap1 (Rseq,m))
. (n
+ 1))
= (Rseq
. (m,(n
+ 1))) by
MESFUNC9:def 6;
n
<= (n
+ 1) by
NAT_1: 11;
hence ((
ProjMap1 (Rseq,m))
. n)
<= ((
ProjMap1 (Rseq,m))
. (n
+ 1)) by
a1,
c6;
end;
then (
ProjMap1 (Rseq,m)) is
non-decreasing by
SEQM_3:def 8;
hence (
ProjMap1 (Rseq,m)) is
convergent by
c5;
end;
hence Rseq is
convergent_in_cod2;
end;
registration
cluster
non-decreasing
bounded_above ->
P-convergent
convergent_in_cod1
convergent_in_cod2 for
Function of
[:
NAT ,
NAT :],
REAL ;
coherence by
LM112;
end
LM113: Rseq is
non-increasing
bounded_below implies Rseq is
P-convergent
convergent_in_cod1
convergent_in_cod2
proof
assume that
a1: Rseq is
non-increasing and
a2: Rseq is
bounded_below;
reconsider M = (
inf (Rseq
.:
[:
NAT ,
NAT :])) as
Element of
REAL by
a2,
XXREAL_2: 15;
b2:
[:
NAT ,
NAT :]
= (
dom Rseq) by
FUNCT_2:def 1;
then
b3: (
rng Rseq)
= (Rseq
.:
[:
NAT ,
NAT :]) by
RELAT_1: 113;
a3: for e st
0
< e holds ex N st (Rseq
. (N,N))
< (M
+ e)
proof
let e;
assume
a4:
0
< e;
assume
a7: for n holds (Rseq
. (n,n))
>= (M
+ e);
now
let a be
ExtReal;
assume a
in (Rseq
.:
[:
NAT ,
NAT :]);
then
consider x be
object such that
a5: x
in (
dom Rseq) & a
= (Rseq
. x) by
b3,
FUNCT_1:def 3;
consider i,j be
object such that
a6: i
in
NAT & j
in
NAT & x
=
[i, j] by
a5,
ZFMISC_1:def 2;
reconsider i, j as
Nat by
a6;
a0: (
max (i,j)) is
Nat by
TARSKI: 1;
(
max (i,j))
>= i & (
max (i,j))
>= j by
XXREAL_0: 25;
then
a8: (Rseq
. ((
max (i,j)),(
max (i,j))))
<= (Rseq
. (i,j)) by
a1,
a0;
(Rseq
. ((
max (i,j)),(
max (i,j))))
>= (M
+ e) by
a7,
a0;
hence a
>= (M
+ e) by
a5,
a6,
a8,
XXREAL_0: 2;
end;
then (M
+ e) is
LowerBound of (Rseq
.:
[:
NAT ,
NAT :]) by
XXREAL_2:def 2;
hence contradiction by
a4,
XREAL_1: 29,
XXREAL_2:def 4;
end;
for e st
0
< e holds ex N st for n, m st n
>= N & m
>= N holds
|.((Rseq
. (n,m))
- M).|
< e
proof
let e;
assume
a5:
0
< e;
then
consider N such that
a10: (Rseq
. (N,N))
< (M
+ e) by
a3;
take N;
hereby
let n, m;
assume n
>= N & m
>= N;
then
a11: (Rseq
. (N,N))
>= (Rseq
. (n,m)) by
a1;
n
in
NAT & m
in
NAT by
ORDINAL1:def 12;
then
[n, m]
in
[:
NAT ,
NAT :] by
ZFMISC_1:def 2;
then
a12: (Rseq
. (n,m))
>= M by
b2,
b3,
FUNCT_1: 3,
XXREAL_2: 3;
M
> (M
- e) by
a5,
XREAL_1: 44;
then (M
- e)
< (Rseq
. (n,m)) & (Rseq
. (n,m))
< (M
+ e) by
a10,
a11,
a12,
XXREAL_0: 2;
hence
|.((Rseq
. (n,m))
- M).|
< e by
RINFSUP1: 1;
end;
end;
hence Rseq is
P-convergent;
for m be
Element of
NAT holds (
ProjMap2 (Rseq,m)) is
convergent
proof
let m be
Element of
NAT ;
NAT
= (
dom (
ProjMap2 (Rseq,m))) by
FUNCT_2:def 1;
then
c3: (
rng (
ProjMap2 (Rseq,m)))
= ((
ProjMap2 (Rseq,m))
.:
NAT ) by
RELAT_1: 113;
now
let a be
object;
assume a
in ((
ProjMap2 (Rseq,m))
.:
NAT );
then
consider i be
object such that
c4: i
in (
dom (
ProjMap2 (Rseq,m))) & a
= ((
ProjMap2 (Rseq,m))
. i) by
c3,
FUNCT_1:def 3;
reconsider i as
Element of
NAT by
c4;
[i, m]
in
[:
NAT ,
NAT :] by
ZFMISC_1:def 2;
then (Rseq
. (i,m))
in (Rseq
.:
[:
NAT ,
NAT :]) by
b2,
b3,
FUNCT_1: 3;
hence a
in (Rseq
.:
[:
NAT ,
NAT :]) by
c4,
MESFUNC9:def 7;
end;
then
c5: (
ProjMap2 (Rseq,m)) is
bounded_below by
a2,
XXREAL_2: 44,
TARSKI:def 3;
now
let n;
n is
Element of
NAT by
ORDINAL1:def 12;
then
c6: ((
ProjMap2 (Rseq,m))
. n)
= (Rseq
. (n,m)) & ((
ProjMap2 (Rseq,m))
. (n
+ 1))
= (Rseq
. ((n
+ 1),m)) by
MESFUNC9:def 7;
n
<= (n
+ 1) by
NAT_1: 11;
hence ((
ProjMap2 (Rseq,m))
. n)
>= ((
ProjMap2 (Rseq,m))
. (n
+ 1)) by
a1,
c6;
end;
then (
ProjMap2 (Rseq,m)) is
non-increasing by
SEQM_3:def 9;
hence (
ProjMap2 (Rseq,m)) is
convergent by
c5;
end;
hence Rseq is
convergent_in_cod1;
for m be
Element of
NAT holds (
ProjMap1 (Rseq,m)) is
convergent
proof
let m be
Element of
NAT ;
NAT
= (
dom (
ProjMap1 (Rseq,m))) by
FUNCT_2:def 1;
then
c3: (
rng (
ProjMap1 (Rseq,m)))
= ((
ProjMap1 (Rseq,m))
.:
NAT ) by
RELAT_1: 113;
now
let a be
object;
assume a
in ((
ProjMap1 (Rseq,m))
.:
NAT );
then
consider i be
object such that
c4: i
in (
dom (
ProjMap1 (Rseq,m))) & a
= ((
ProjMap1 (Rseq,m))
. i) by
c3,
FUNCT_1:def 3;
reconsider i as
Element of
NAT by
c4;
[m, i]
in
[:
NAT ,
NAT :] by
ZFMISC_1:def 2;
then (Rseq
. (m,i))
in (Rseq
.:
[:
NAT ,
NAT :]) by
b2,
b3,
FUNCT_1: 3;
hence a
in (Rseq
.:
[:
NAT ,
NAT :]) by
c4,
MESFUNC9:def 6;
end;
then
c5: (
ProjMap1 (Rseq,m)) is
bounded_below by
a2,
XXREAL_2: 44,
TARSKI:def 3;
now
let n;
n is
Element of
NAT by
ORDINAL1:def 12;
then
c6: ((
ProjMap1 (Rseq,m))
. n)
= (Rseq
. (m,n)) & ((
ProjMap1 (Rseq,m))
. (n
+ 1))
= (Rseq
. (m,(n
+ 1))) by
MESFUNC9:def 6;
n
<= (n
+ 1) by
NAT_1: 11;
hence ((
ProjMap1 (Rseq,m))
. n)
>= ((
ProjMap1 (Rseq,m))
. (n
+ 1)) by
a1,
c6;
end;
then (
ProjMap1 (Rseq,m)) is
non-increasing by
SEQM_3:def 9;
hence (
ProjMap1 (Rseq,m)) is
convergent by
c5;
end;
hence Rseq is
convergent_in_cod2;
end;
registration
cluster
non-increasing
bounded_below ->
P-convergent
convergent_in_cod1
convergent_in_cod2 for
Function of
[:
NAT ,
NAT :],
REAL ;
coherence by
LM113;
end
theorem ::
DBLSEQ_1:5
Rseq is
uniformly_convergent_in_cod1 & (
lim_in_cod1 Rseq) is
convergent implies Rseq is
P-convergent & (
P-lim Rseq)
= (
cod1_major_iterated_lim Rseq)
proof
assume that
a3: Rseq is
uniformly_convergent_in_cod1 and
a2: (
lim_in_cod1 Rseq) is
convergent;
a4:
now
let e be
Real;
assume
a5:
0
< e;
then
consider N1 be
Nat such that
a6: for m st m
>= N1 holds for n holds
|.((Rseq
. (n,m))
- ((
lim_in_cod1 Rseq)
. n)).|
< (e
/ 2) by
a3;
consider z be
Real such that
a7: for e st e
>
0 holds ex N2 be
Nat st for m st m
>= N2 holds
|.(((
lim_in_cod1 Rseq)
. m)
- z).|
< e by
a2,
SEQ_2:def 6;
a8: z
= (
cod1_major_iterated_lim Rseq) by
a2,
a7,
def34;
consider N2 be
Nat such that
a9: for n st n
>= N2 holds
|.(((
lim_in_cod1 Rseq)
. n)
- z).|
< (e
/ 2) by
a5,
a7;
set N = (
max (N1,N2));
a0: N is
Nat by
TARSKI: 1;
for n, m st n
>= N & m
>= N holds
|.((Rseq
. (n,m))
- (
cod1_major_iterated_lim Rseq)).|
< e
proof
let n, m;
assume
a10: n
>= N & m
>= N;
N
>= N1 & N
>= N2 by
XXREAL_0: 25;
then n
>= N2 & m
>= N1 by
a10,
XXREAL_0: 2;
then
|.((Rseq
. (n,m))
- ((
lim_in_cod1 Rseq)
. n)).|
< (e
/ 2) &
|.(((
lim_in_cod1 Rseq)
. n)
- z).|
< (e
/ 2) by
a6,
a9;
then
a12: (
|.((Rseq
. (n,m))
- ((
lim_in_cod1 Rseq)
. n)).|
+
|.(((
lim_in_cod1 Rseq)
. n)
- z).|)
< ((e
/ 2)
+ (e
/ 2)) by
XREAL_1: 8;
|.((Rseq
. (n,m))
- (
cod1_major_iterated_lim Rseq)).|
<= (
|.((Rseq
. (n,m))
- ((
lim_in_cod1 Rseq)
. n)).|
+
|.(((
lim_in_cod1 Rseq)
. n)
- (
cod1_major_iterated_lim Rseq)).|) by
COMPLEX1: 63;
hence
|.((Rseq
. (n,m))
- (
cod1_major_iterated_lim Rseq)).|
< e by
a8,
a12,
XXREAL_0: 2;
end;
hence ex N st for n, m st n
>= N & m
>= N holds
|.((Rseq
. (n,m))
- (
cod1_major_iterated_lim Rseq)).|
< e by
a0;
end;
hence Rseq is
P-convergent;
hence thesis by
a4,
def6;
end;
theorem ::
DBLSEQ_1:6
Rseq is
uniformly_convergent_in_cod2 & (
lim_in_cod2 Rseq) is
convergent implies Rseq is
P-convergent & (
P-lim Rseq)
= (
cod2_major_iterated_lim Rseq)
proof
assume that
a3: Rseq is
uniformly_convergent_in_cod2 and
a2: (
lim_in_cod2 Rseq) is
convergent;
a4:
now
let e;
assume
a5:
0
< e;
then
consider N1 be
Nat such that
a6: for n st n
>= N1 holds for m holds
|.((Rseq
. (n,m))
- ((
lim_in_cod2 Rseq)
. m)).|
< (e
/ 2) by
a3;
consider z be
Real such that
a7: for e st e
>
0 holds ex N2 be
Nat st for n st n
>= N2 holds
|.(((
lim_in_cod2 Rseq)
. n)
- z).|
< e by
a2,
SEQ_2:def 6;
a8: z
= (
cod2_major_iterated_lim Rseq) by
a2,
a7,
def35;
consider N2 be
Nat such that
a9: for n st n
>= N2 holds
|.(((
lim_in_cod2 Rseq)
. n)
- z).|
< (e
/ 2) by
a5,
a7;
set N = (
max (N1,N2));
a0: N is
Nat by
TARSKI: 1;
for n, m st n
>= N & m
>= N holds
|.((Rseq
. (n,m))
- (
cod2_major_iterated_lim Rseq)).|
< e
proof
let n, m;
assume
a10: n
>= N & m
>= N;
N
>= N1 & N
>= N2 by
XXREAL_0: 25;
then n
>= N1 & m
>= N2 by
a10,
XXREAL_0: 2;
then
|.((Rseq
. (n,m))
- ((
lim_in_cod2 Rseq)
. m)).|
< (e
/ 2) &
|.(((
lim_in_cod2 Rseq)
. m)
- z).|
< (e
/ 2) by
a6,
a9;
then
a12: (
|.((Rseq
. (n,m))
- ((
lim_in_cod2 Rseq)
. m)).|
+
|.(((
lim_in_cod2 Rseq)
. m)
- z).|)
< ((e
/ 2)
+ (e
/ 2)) by
XREAL_1: 8;
|.((Rseq
. (n,m))
- (
cod2_major_iterated_lim Rseq)).|
<= (
|.((Rseq
. (n,m))
- ((
lim_in_cod2 Rseq)
. m)).|
+
|.(((
lim_in_cod2 Rseq)
. m)
- (
cod2_major_iterated_lim Rseq)).|) by
COMPLEX1: 63;
hence
|.((Rseq
. (n,m))
- (
cod2_major_iterated_lim Rseq)).|
< e by
a8,
a12,
XXREAL_0: 2;
end;
hence ex N st for n, m st n
>= N & m
>= N holds
|.((Rseq
. (n,m))
- (
cod2_major_iterated_lim Rseq)).|
< e by
a0;
end;
hence Rseq is
P-convergent;
hence thesis by
a4,
def6;
end;
definition
let Rseq;
::
DBLSEQ_1:def13
attr Rseq is
Cauchy means for e be
Real st e
>
0 holds ex N be
Nat st for n1,n2,m1,m2 be
Nat st N
<= n1 & n1
<= n2 & N
<= m1 & m1
<= m2 holds
|.((Rseq
. (n2,m2))
- (Rseq
. (n1,m1))).|
< e;
end
theorem ::
DBLSEQ_1:7
Rseq is
P-convergent iff Rseq is
Cauchy
proof
hereby
assume
a1: Rseq is
P-convergent;
now
let e;
assume
a2: e
>
0 ;
consider z be
Real such that
a3: for e st
0
< e holds ex N st for n, m st n
>= N & m
>= N holds
|.((Rseq
. (n,m))
- z).|
< e by
a1;
consider N such that
a4: for n, m st n
>= N & m
>= N holds
|.((Rseq
. (n,m))
- z).|
< (e
/ 2) by
a2,
a3;
now
let n1,n2,m1,m2 be
Nat;
assume
b1: N
<= n1 & n1
<= n2 & N
<= m1 & m1
<= m2;
then N
<= n2 & N
<= m2 by
XXREAL_0: 2;
then
|.((Rseq
. (n1,m1))
- z).|
< (e
/ 2) &
|.((Rseq
. (n2,m2))
- z).|
< (e
/ 2) by
a4,
b1;
then (
|.((Rseq
. (n2,m2))
- z).|
+
|.((Rseq
. (n1,m1))
- z).|)
< ((e
/ 2)
+ (e
/ 2)) by
XREAL_1: 8;
then
a5: (
|.((Rseq
. (n2,m2))
- z).|
+
|.(z
- (Rseq
. (n1,m1))).|)
< e by
COMPLEX1: 60;
|.((Rseq
. (n2,m2))
- (Rseq
. (n1,m1))).|
<= (
|.((Rseq
. (n2,m2))
- z).|
+
|.(z
- (Rseq
. (n1,m1))).|) by
COMPLEX1: 63;
hence
|.((Rseq
. (n2,m2))
- (Rseq
. (n1,m1))).|
< e by
a5,
XXREAL_0: 2;
end;
hence ex N st for n1,n2,m1,m2 be
Nat st N
<= n1 & n1
<= n2 & N
<= m1 & m1
<= m2 holds
|.((Rseq
. (n2,m2))
- (Rseq
. (n1,m1))).|
< e;
end;
hence Rseq is
Cauchy;
end;
assume
a6: Rseq is
Cauchy;
deffunc
F(
Element of
NAT ) = (Rseq
. ($1,$1));
consider seq be
Function of
NAT ,
REAL such that
a7: for n be
Element of
NAT holds (seq
. n)
=
F(n) from
FUNCT_2:sch 4;
reconsider seq as
Real_Sequence;
now
let e;
assume e
>
0 ;
then
consider N such that
a8: for n1,n2,m1,m2 be
Nat st N
<= n1 & n1
<= n2 & N
<= m1 & m1
<= m2 holds
|.((Rseq
. (n2,m2))
- (Rseq
. (n1,m1))).|
< e by
a6;
take N;
hereby
let n;
c1: n is
Element of
NAT & N is
Element of
NAT by
ORDINAL1:def 12;
assume n
>= N;
then
|.((Rseq
. (n,n))
- (Rseq
. (N,N))).|
< e by
a8;
then
|.((seq
. n)
- (Rseq
. (N,N))).|
< e by
a7,
c1;
hence
|.((seq
. n)
- (seq
. N)).|
< e by
a7,
c1;
end;
end;
then
a11: seq is
convergent by
SEQ_4: 41;
reconsider z = (
lim seq) as
Complex;
for e st
0
< e holds ex N st for n, m st n
>= N & m
>= N holds
|.((Rseq
. (n,m))
- z).|
< e
proof
let e;
assume
a12:
0
< e;
then
consider N1 be
Nat such that
a13: for n st n
>= N1 holds
|.((seq
. n)
- (
lim seq)).|
< (e
/ 2) by
a11,
SEQ_2:def 7;
consider N2 be
Nat such that
a14: for n1,n2,m1,m2 be
Nat st N2
<= n1 & n1
<= n2 & N2
<= m1 & m1
<= m2 holds
|.((Rseq
. (n2,m2))
- (Rseq
. (n1,m1))).|
< (e
/ 2) by
a6,
a12;
reconsider N = (
max (N1,N2)) as
Nat by
TARSKI: 1;
take N;
hereby
let n, m;
c2: N is
Element of
NAT by
ORDINAL1:def 12;
assume
a15: n
>= N & m
>= N;
a18: (Rseq
. (N,N))
= (seq
. N) by
a7,
c2;
N
>= N1 & N
>= N2 by
XXREAL_0: 25;
then
|.((Rseq
. (N,N))
- z).|
< (e
/ 2) &
|.((Rseq
. (n,m))
- (Rseq
. (N,N))).|
< (e
/ 2) by
a13,
a14,
a18,
a15;
then
b1: (
|.((Rseq
. (n,m))
- (Rseq
. (N,N))).|
+
|.((Rseq
. (N,N))
- z).|)
< ((e
/ 2)
+ (e
/ 2)) by
XREAL_1: 8;
|.((Rseq
. (n,m))
- z).|
<= (
|.((Rseq
. (n,m))
- (Rseq
. (N,N))).|
+
|.((Rseq
. (N,N))
- z).|) by
COMPLEX1: 63;
hence
|.((Rseq
. (n,m))
- z).|
< e by
b1,
XXREAL_0: 2;
end;
end;
hence Rseq is
P-convergent;
end;
theorem ::
DBLSEQ_1:8
for Rseq be
Function of
[:
NAT ,
NAT :],
REAL st Rseq is
non-decreasing or Rseq is
non-increasing holds Rseq is
P-convergent iff Rseq is
bounded_below
bounded_above;
definition
let X,Y be non
empty
set;
let H be
BinOp of Y;
let f,g be
Function of X, Y;
:: original:
*
redefine
func H
* (f,g) ->
Function of
[:X, X:], Y ;
coherence
proof
a1: (
dom H)
=
[:Y, Y:] & (
dom f)
= X & (
dom g)
= X by
FUNCT_2:def 1;
a2: (
rng
[:f, g:])
c=
[:Y, Y:];
(
dom (H
* (f,g)))
= (
dom (H
*
[:f, g:])) by
FINSEQOP:def 4;
then (
dom (H
* (f,g)))
= (
dom
[:f, g:]) by
a1,
a2,
RELAT_1: 27;
then
a3: (
dom (H
* (f,g)))
=
[:X, X:] by
FUNCT_2:def 1;
(
rng (H
* (f,g)))
= (
rng (H
*
[:f, g:])) by
FINSEQOP:def 4;
then (
rng (H
* (f,g)))
c= (
rng H) & (
rng H)
c= Y by
RELAT_1: 26,
RELAT_1:def 19;
hence (H
* (f,g)) is
Function of
[:X, X:], Y by
a3,
FUNCT_2: 2,
XBOOLE_1: 1;
end;
end
theorem ::
DBLSEQ_1:9
(
multreal
* (rseq1,rseq2)) is
convergent_in_cod1
convergent_in_cod2 & (
lim_in_cod1 (
multreal
* (rseq1,rseq2))) is
convergent & (
cod1_major_iterated_lim (
multreal
* (rseq1,rseq2)))
= ((
lim rseq1)
* (
lim rseq2)) & (
lim_in_cod2 (
multreal
* (rseq1,rseq2))) is
convergent & (
cod2_major_iterated_lim (
multreal
* (rseq1,rseq2)))
= ((
lim rseq1)
* (
lim rseq2)) & (
multreal
* (rseq1,rseq2)) is
P-convergent & (
P-lim (
multreal
* (rseq1,rseq2)))
= ((
lim rseq1)
* (
lim rseq2))
proof
set Rseq = (
multreal
* (rseq1,rseq2));
a2: for n, m holds (Rseq
. (n,m))
= ((rseq1
. n)
* (rseq2
. m))
proof
let n, m;
a1: n
in
NAT & m
in
NAT by
ORDINAL1:def 12;
(
dom Rseq)
=
[:
NAT ,
NAT :] by
FUNCT_2:def 1;
then
[n, m]
in (
dom Rseq) by
a1,
ZFMISC_1:def 2;
then (Rseq
. (n,m))
= (
multreal
. ((rseq1
. n),(rseq2
. m))) by
FINSEQOP: 77;
hence (Rseq
. (n,m))
= ((rseq1
. n)
* (rseq2
. m)) by
BINOP_2:def 11;
end;
x1: for m be
Element of
NAT , e be
Real st
0
< e holds ex N st for n st n
>= N holds
|.(((
ProjMap2 (Rseq,m))
. n)
- ((
lim rseq1)
* (rseq2
. m))).|
< e
proof
let m be
Element of
NAT , e be
Real;
assume
a3:
0
< e;
per cases ;
suppose (rseq2
. m)
<>
0 ;
then
a4:
|.(rseq2
. m).|
>
0 by
COMPLEX1: 47;
then
consider N such that
a5: for n st n
>= N holds
|.((rseq1
. n)
- (
lim rseq1)).|
< (e
/
|.(rseq2
. m).|) by
a3,
SEQ_2:def 7;
take N;
hereby
let n;
assume n
>= N;
then
a6:
|.((rseq1
. n)
- (
lim rseq1)).|
< (e
/
|.(rseq2
. m).|) by
a5;
n is
Element of
NAT by
ORDINAL1:def 12;
then
|.(((
ProjMap2 (Rseq,m))
. n)
- ((
lim rseq1)
* (rseq2
. m))).|
=
|.((Rseq
. (n,m))
- ((
lim rseq1)
* (rseq2
. m))).| by
MESFUNC9:def 7
.=
|.(((rseq1
. n)
* (rseq2
. m))
- ((
lim rseq1)
* (rseq2
. m))).| by
a2
.=
|.(((rseq1
. n)
- (
lim rseq1))
* (rseq2
. m)).|
.= (
|.((rseq1
. n)
- (
lim rseq1)).|
*
|.(rseq2
. m).|) by
COMPLEX1: 65;
then
|.(((
ProjMap2 (Rseq,m))
. n)
- ((
lim rseq1)
* (rseq2
. m))).|
< ((e
/
|.(rseq2
. m).|)
*
|.(rseq2
. m).|) by
a4,
a6,
XREAL_1: 68;
hence
|.(((
ProjMap2 (Rseq,m))
. n)
- ((
lim rseq1)
* (rseq2
. m))).|
< e by
a4,
XCMPLX_1: 87;
end;
end;
suppose
a7: (rseq2
. m)
=
0 ;
take
0 ;
hereby
let n;
assume n
>=
0 ;
n is
Element of
NAT by
ORDINAL1:def 12;
then
|.(((
ProjMap2 (Rseq,m))
. n)
- ((
lim rseq1)
* (rseq2
. m))).|
=
|.((Rseq
. (n,m))
- ((
lim rseq1)
* (rseq2
. m))).| by
MESFUNC9:def 7
.=
|.(((rseq1
. n)
* (rseq2
. m))
- ((
lim rseq1)
* (rseq2
. m))).| by
a2
.=
0 by
a7,
COMPLEX1: 44;
hence
|.(((
ProjMap2 (Rseq,m))
. n)
- ((
lim rseq1)
* (rseq2
. m))).|
< e by
a3;
end;
end;
end;
p1: for m be
Element of
NAT holds (
ProjMap2 (Rseq,m)) is
convergent
proof
let m be
Element of
NAT ;
for e st
0
< e holds ex N st for n st n
>= N holds
|.(((
ProjMap2 (Rseq,m))
. n)
- ((
lim rseq1)
* (rseq2
. m))).|
< e by
x1;
hence (
ProjMap2 (Rseq,m)) is
convergent by
SEQ_2:def 6;
end;
hence Rseq is
convergent_in_cod1;
x2: for m be
Element of
NAT , e be
Real st
0
< e holds ex N st for n st n
>= N holds
|.(((
ProjMap1 (Rseq,m))
. n)
- ((rseq1
. m)
* (
lim rseq2))).|
< e
proof
let m be
Element of
NAT , e be
Real;
assume
a3:
0
< e;
per cases ;
suppose (rseq1
. m)
<>
0 ;
then
a4:
|.(rseq1
. m).|
>
0 by
COMPLEX1: 47;
then
consider N be
Nat such that
a5: for n be
Nat st n
>= N holds
|.((rseq2
. n)
- (
lim rseq2)).|
< (e
/
|.(rseq1
. m).|) by
a3,
SEQ_2:def 7;
take N;
hereby
let n;
assume n
>= N;
then
a6:
|.((rseq2
. n)
- (
lim rseq2)).|
< (e
/
|.(rseq1
. m).|) by
a5;
n is
Element of
NAT by
ORDINAL1:def 12;
then
|.(((
ProjMap1 (Rseq,m))
. n)
- ((
lim rseq2)
* (rseq1
. m))).|
=
|.((Rseq
. (m,n))
- ((
lim rseq2)
* (rseq1
. m))).| by
MESFUNC9:def 6
.=
|.(((rseq2
. n)
* (rseq1
. m))
- ((
lim rseq2)
* (rseq1
. m))).| by
a2
.=
|.(((rseq2
. n)
- (
lim rseq2))
* (rseq1
. m)).|
.= (
|.((rseq2
. n)
- (
lim rseq2)).|
*
|.(rseq1
. m).|) by
COMPLEX1: 65;
then
|.(((
ProjMap1 (Rseq,m))
. n)
- ((
lim rseq2)
* (rseq1
. m))).|
< ((e
/
|.(rseq1
. m).|)
*
|.(rseq1
. m).|) by
a4,
a6,
XREAL_1: 68;
hence
|.(((
ProjMap1 (Rseq,m))
. n)
- ((rseq1
. m)
* (
lim rseq2))).|
< e by
a4,
XCMPLX_1: 87;
end;
end;
suppose
a7: (rseq1
. m)
=
0 ;
take
0 ;
hereby
let n;
assume n
>=
0 ;
n is
Element of
NAT by
ORDINAL1:def 12;
then
|.(((
ProjMap1 (Rseq,m))
. n)
- ((
lim rseq2)
* (rseq1
. m))).|
=
|.((Rseq
. (m,n))
- ((
lim rseq2)
* (rseq1
. m))).| by
MESFUNC9:def 6
.=
|.(((rseq2
. n)
* (rseq1
. m))
- ((
lim rseq2)
* (rseq1
. m))).| by
a2
.=
0 by
a7,
COMPLEX1: 44;
hence
|.(((
ProjMap1 (Rseq,m))
. n)
- ((rseq1
. m)
* (
lim rseq2))).|
< e by
a3;
end;
end;
end;
p2: for m be
Element of
NAT holds (
ProjMap1 (Rseq,m)) is
convergent
proof
let m be
Element of
NAT ;
for e st
0
< e holds ex N st for n st n
>= N holds
|.(((
ProjMap1 (Rseq,m))
. n)
- ((rseq1
. m)
* (
lim rseq2))).|
< e by
x2;
hence (
ProjMap1 (Rseq,m)) is
convergent by
SEQ_2:def 6;
end;
hence Rseq is
convergent_in_cod2;
x3: for e st
0
< e holds ex N st for n st n
>= N holds
|.(((
lim_in_cod1 Rseq)
. n)
- ((
lim rseq1)
* (
lim rseq2))).|
< e
proof
let e;
assume
a3:
0
< e;
a6: for n holds ((
lim_in_cod1 Rseq)
. n)
= ((
lim rseq1)
* (rseq2
. n))
proof
let n;
reconsider n1 = n as
Element of
NAT by
ORDINAL1:def 12;
a4: (
ProjMap2 (Rseq,n1)) is
convergent by
p1;
a5: ((
lim_in_cod1 Rseq)
. n)
= (
lim (
ProjMap2 (Rseq,n1))) by
def32;
for e st
0
< e holds ex N st for m st m
>= N holds
|.(((
ProjMap2 (Rseq,n1))
. m)
- ((
lim rseq1)
* (rseq2
. n))).|
< e by
x1;
hence ((
lim_in_cod1 Rseq)
. n)
= ((
lim rseq1)
* (rseq2
. n)) by
a5,
a4,
SEQ_2:def 7;
end;
per cases by
COMPLEX1: 46;
suppose
b1:
|.(
lim rseq1).|
>
0 ;
then
consider N such that
a7: for n st n
>= N holds
|.((rseq2
. n)
- (
lim rseq2)).|
< (e
/
|.(
lim rseq1).|) by
a3,
SEQ_2:def 7;
take N;
hereby
let n;
assume n
>= N;
then
a8:
|.((rseq2
. n)
- (
lim rseq2)).|
< (e
/
|.(
lim rseq1).|) by
a7;
|.(((
lim_in_cod1 Rseq)
. n)
- ((
lim rseq1)
* (
lim rseq2))).|
=
|.(((
lim rseq1)
* (rseq2
. n))
- ((
lim rseq1)
* (
lim rseq2))).| by
a6
.=
|.((
lim rseq1)
* ((rseq2
. n)
- (
lim rseq2))).|
.= (
|.(
lim rseq1).|
*
|.((rseq2
. n)
- (
lim rseq2)).|) by
COMPLEX1: 65;
hence
|.(((
lim_in_cod1 Rseq)
. n)
- ((
lim rseq1)
* (
lim rseq2))).|
< e by
a8,
b1,
XREAL_1: 79;
end;
end;
suppose
a9:
|.(
lim rseq1).|
=
0 ;
take
0 ;
hereby
let n;
assume n
>=
0 ;
|.(((
lim_in_cod1 Rseq)
. n)
- ((
lim rseq1)
* (
lim rseq2))).|
=
|.(((
lim rseq1)
* (rseq2
. n))
- ((
lim rseq1)
* (
lim rseq2))).| by
a6
.=
|.((
lim rseq1)
* ((rseq2
. n)
- (
lim rseq2))).|
.= (
|.(
lim rseq1).|
*
|.((rseq2
. n)
- (
lim rseq2)).|) by
COMPLEX1: 65
.=
0 by
a9;
hence
|.(((
lim_in_cod1 Rseq)
. n)
- ((
lim rseq1)
* (
lim rseq2))).|
< e by
a3;
end;
end;
end;
hence (
lim_in_cod1 Rseq) is
convergent by
SEQ_2:def 6;
hence (
cod1_major_iterated_lim Rseq)
= ((
lim rseq1)
* (
lim rseq2)) by
x3,
def34;
x4: for e st
0
< e holds ex N st for n st n
>= N holds
|.(((
lim_in_cod2 Rseq)
. n)
- ((
lim rseq1)
* (
lim rseq2))).|
< e
proof
let e;
assume
a3:
0
< e;
a6: for n holds ((
lim_in_cod2 Rseq)
. n)
= ((rseq1
. n)
* (
lim rseq2))
proof
let n;
reconsider n1 = n as
Element of
NAT by
ORDINAL1:def 12;
a4: (
ProjMap1 (Rseq,n1)) is
convergent by
p2;
a5: ((
lim_in_cod2 Rseq)
. n)
= (
lim (
ProjMap1 (Rseq,n1))) by
def33;
for e st
0
< e holds ex N st for m st m
>= N holds
|.(((
ProjMap1 (Rseq,n1))
. m)
- ((rseq1
. n)
* (
lim rseq2))).|
< e by
x2;
hence ((
lim_in_cod2 Rseq)
. n)
= ((rseq1
. n)
* (
lim rseq2)) by
a5,
a4,
SEQ_2:def 7;
end;
per cases by
COMPLEX1: 46;
suppose
b1:
|.(
lim rseq2).|
>
0 ;
then
consider N such that
a7: for n st n
>= N holds
|.((rseq1
. n)
- (
lim rseq1)).|
< (e
/
|.(
lim rseq2).|) by
a3,
SEQ_2:def 7;
take N;
hereby
let n;
assume n
>= N;
then
a8:
|.((rseq1
. n)
- (
lim rseq1)).|
< (e
/
|.(
lim rseq2).|) by
a7;
|.(((
lim_in_cod2 Rseq)
. n)
- ((
lim rseq1)
* (
lim rseq2))).|
=
|.(((rseq1
. n)
* (
lim rseq2))
- ((
lim rseq1)
* (
lim rseq2))).| by
a6
.=
|.(((rseq1
. n)
- (
lim rseq1))
* (
lim rseq2)).|
.= (
|.(
lim rseq2).|
*
|.((rseq1
. n)
- (
lim rseq1)).|) by
COMPLEX1: 65;
hence
|.(((
lim_in_cod2 Rseq)
. n)
- ((
lim rseq1)
* (
lim rseq2))).|
< e by
a8,
b1,
XREAL_1: 79;
end;
end;
suppose
a9:
|.(
lim rseq2).|
=
0 ;
take
0 ;
hereby
let n;
assume n
>=
0 ;
|.(((
lim_in_cod2 Rseq)
. n)
- ((
lim rseq1)
* (
lim rseq2))).|
=
|.(((rseq1
. n)
* (
lim rseq2))
- ((
lim rseq1)
* (
lim rseq2))).| by
a6
.=
|.((
lim rseq2)
* ((rseq1
. n)
- (
lim rseq1))).|
.= (
|.(
lim rseq2).|
*
|.((rseq1
. n)
- (
lim rseq1)).|) by
COMPLEX1: 65
.=
0 by
a9;
hence
|.(((
lim_in_cod2 Rseq)
. n)
- ((
lim rseq1)
* (
lim rseq2))).|
< e by
a3;
end;
end;
end;
hence (
lim_in_cod2 Rseq) is
convergent by
SEQ_2:def 6;
hence (
cod2_major_iterated_lim Rseq)
= ((
lim rseq1)
* (
lim rseq2)) by
x4,
def35;
x5: for e st
0
< e holds ex N st for n, m st n
>= N & m
>= N holds
|.((Rseq
. (n,m))
- ((
lim rseq1)
* (
lim rseq2))).|
< e
proof
let e;
assume
c1:
0
< e;
consider K be
Real such that
c2:
0
< K & for n holds
|.(rseq1
. n).|
< K by
SEQ_2: 3;
set b = (
max (K,
|.(
lim rseq2).|));
c10: b
>= K & b
>=
|.(
lim rseq2).| by
XXREAL_0: 25;
then
consider N1 be
Nat such that
c4: for n st n
>= N1 holds
|.((rseq1
. n)
- (
lim rseq1)).|
< (e
/ (2
* b)) by
c1,
c2,
SEQ_2:def 7;
consider N2 be
Nat such that
c5: for n st n
>= N2 holds
|.((rseq2
. n)
- (
lim rseq2)).|
< (e
/ (2
* b)) by
c1,
c2,
c10,
SEQ_2:def 7;
reconsider N = (
max (N1,N2)) as
Nat by
TARSKI: 1;
take N;
thus for n, m st n
>= N & m
>= N holds
|.((Rseq
. (n,m))
- ((
lim rseq1)
* (
lim rseq2))).|
< e
proof
let n, m;
assume
c13: n
>= N & m
>= N;
(
max (N1,N2))
>= N1 & (
max (N1,N2))
>= N2 by
XXREAL_0: 25;
then
c6: n
>= N1 & m
>= N2 by
c13,
XXREAL_0: 2;
c7:
|.((Rseq
. (n,m))
- ((
lim rseq1)
* (
lim rseq2))).|
<= (
|.((Rseq
. (n,m))
- ((rseq1
. n)
* (
lim rseq2))).|
+
|.(((rseq1
. n)
* (
lim rseq2))
- ((
lim rseq1)
* (
lim rseq2))).|) by
COMPLEX1: 63;
c11:
|.((rseq1
. n)
- (
lim rseq1)).|
>=
0 &
|.((rseq2
. m)
- (
lim rseq2)).|
>=
0 by
COMPLEX1: 46;
c12:
|.(rseq1
. n).|
< b &
|.(
lim rseq2).|
<= b by
c2,
c10,
XXREAL_0: 2;
|.((Rseq
. (n,m))
- ((rseq1
. n)
* (
lim rseq2))).|
=
|.(((rseq1
. n)
* (rseq2
. m))
- ((rseq1
. n)
* (
lim rseq2))).| by
a2
.=
|.((rseq1
. n)
* ((rseq2
. m)
- (
lim rseq2))).|
.= (
|.(rseq1
. n).|
*
|.((rseq2
. m)
- (
lim rseq2)).|) by
COMPLEX1: 65;
then
c8:
|.((Rseq
. (n,m))
- ((rseq1
. n)
* (
lim rseq2))).|
<= (b
*
|.((rseq2
. m)
- (
lim rseq2)).|) by
c11,
c12,
XREAL_1: 64;
|.((rseq2
. m)
- (
lim rseq2)).|
< (e
/ (2
* b)) by
c5,
c6;
then (b
*
|.((rseq2
. m)
- (
lim rseq2)).|)
< (b
* (e
/ (2
* b))) by
c2,
c10,
XREAL_1: 68;
then
|.((Rseq
. (n,m))
- ((rseq1
. n)
* (
lim rseq2))).|
< (b
* (e
/ (2
* b))) by
c8,
XXREAL_0: 2;
then
|.((Rseq
. (n,m))
- ((rseq1
. n)
* (
lim rseq2))).|
< (e
/ ((2
* b)
/ b)) by
XCMPLX_1: 81;
then
c15:
|.((Rseq
. (n,m))
- ((rseq1
. n)
* (
lim rseq2))).|
< (e
/ 2) by
c2,
c10,
XCMPLX_1: 89;
|.(((rseq1
. n)
* (
lim rseq2))
- ((
lim rseq1)
* (
lim rseq2))).|
=
|.((
lim rseq2)
* ((rseq1
. n)
- (
lim rseq1))).|
.= (
|.(
lim rseq2).|
*
|.((rseq1
. n)
- (
lim rseq1)).|) by
COMPLEX1: 65;
then
c9:
|.(((rseq1
. n)
* (
lim rseq2))
- ((
lim rseq1)
* (
lim rseq2))).|
<= (b
*
|.((rseq1
. n)
- (
lim rseq1)).|) by
c11,
XXREAL_0: 25,
XREAL_1: 64;
|.((rseq1
. n)
- (
lim rseq1)).|
< (e
/ (2
* b)) by
c4,
c6;
then (b
*
|.((rseq1
. n)
- (
lim rseq1)).|)
< (b
* (e
/ (2
* b))) by
c2,
c10,
XREAL_1: 68;
then
|.(((rseq1
. n)
* (
lim rseq2))
- ((
lim rseq1)
* (
lim rseq2))).|
< (b
* (e
/ (2
* b))) by
c9,
XXREAL_0: 2;
then
|.(((rseq1
. n)
* (
lim rseq2))
- ((
lim rseq1)
* (
lim rseq2))).|
< (e
/ ((2
* b)
/ b)) by
XCMPLX_1: 81;
then
|.(((rseq1
. n)
* (
lim rseq2))
- ((
lim rseq1)
* (
lim rseq2))).|
< (e
/ 2) by
c2,
c10,
XCMPLX_1: 89;
then (
|.((Rseq
. (n,m))
- ((rseq1
. n)
* (
lim rseq2))).|
+
|.(((rseq1
. n)
* (
lim rseq2))
- ((
lim rseq1)
* (
lim rseq2))).|)
< ((e
/ 2)
+ (e
/ 2)) by
c15,
XREAL_1: 8;
hence
|.((Rseq
. (n,m))
- ((
lim rseq1)
* (
lim rseq2))).|
< e by
c7,
XXREAL_0: 2;
end;
end;
hence Rseq is
P-convergent;
hence (
P-lim Rseq)
= ((
lim rseq1)
* (
lim rseq2)) by
x5,
def6;
end;
theorem ::
DBLSEQ_1:10
(
addreal
* (rseq1,rseq2)) is
convergent_in_cod1
convergent_in_cod2 & (
lim_in_cod1 (
addreal
* (rseq1,rseq2))) is
convergent & (
cod1_major_iterated_lim (
addreal
* (rseq1,rseq2)))
= ((
lim rseq1)
+ (
lim rseq2)) & (
lim_in_cod2 (
addreal
* (rseq1,rseq2))) is
convergent & (
cod2_major_iterated_lim (
addreal
* (rseq1,rseq2)))
= ((
lim rseq1)
+ (
lim rseq2)) & (
addreal
* (rseq1,rseq2)) is
P-convergent & (
P-lim (
addreal
* (rseq1,rseq2)))
= ((
lim rseq1)
+ (
lim rseq2))
proof
set Rseq = (
addreal
* (rseq1,rseq2));
a2: for n, m holds (Rseq
. (n,m))
= ((rseq1
. n)
+ (rseq2
. m))
proof
let n, m;
a1: n
in
NAT & m
in
NAT by
ORDINAL1:def 12;
(
dom Rseq)
=
[:
NAT ,
NAT :] by
FUNCT_2:def 1;
then
[n, m]
in (
dom Rseq) by
a1,
ZFMISC_1:def 2;
then (Rseq
. (n,m))
= (
addreal
. ((rseq1
. n),(rseq2
. m))) by
FINSEQOP: 77;
hence (Rseq
. (n,m))
= ((rseq1
. n)
+ (rseq2
. m)) by
BINOP_2:def 9;
end;
x1: for m be
Element of
NAT , e be
Real st
0
< e holds ex N be
Nat st for n be
Nat st n
>= N holds
|.(((
ProjMap2 (Rseq,m))
. n)
- ((
lim rseq1)
+ (rseq2
. m))).|
< e
proof
let m be
Element of
NAT , e be
Real;
assume
0
< e;
then
consider N be
Nat such that
a3: for n be
Nat st n
>= N holds
|.((rseq1
. n)
- (
lim rseq1)).|
< e by
SEQ_2:def 7;
take N;
hereby
let n be
Nat;
assume
a4: n
>= N;
n is
Element of
NAT by
ORDINAL1:def 12;
then
|.(((
ProjMap2 (Rseq,m))
. n)
- ((
lim rseq1)
+ (rseq2
. m))).|
=
|.((Rseq
. (n,m))
- ((
lim rseq1)
+ (rseq2
. m))).| by
MESFUNC9:def 7
.=
|.(((rseq1
. n)
+ (rseq2
. m))
- ((
lim rseq1)
+ (rseq2
. m))).| by
a2
.=
|.((rseq1
. n)
- (
lim rseq1)).|;
hence
|.(((
ProjMap2 (Rseq,m))
. n)
- ((
lim rseq1)
+ (rseq2
. m))).|
< e by
a3,
a4;
end;
end;
p1: for m be
Element of
NAT holds (
ProjMap2 (Rseq,m)) is
convergent
proof
let m be
Element of
NAT ;
for e st
0
< e holds ex N st for n st n
>= N holds
|.(((
ProjMap2 (Rseq,m))
. n)
- ((
lim rseq1)
+ (rseq2
. m))).|
< e by
x1;
hence (
ProjMap2 (Rseq,m)) is
convergent by
SEQ_2:def 6;
end;
hence Rseq is
convergent_in_cod1;
x2: for m be
Element of
NAT , e be
Real st
0
< e holds ex N st for n st n
>= N holds
|.(((
ProjMap1 (Rseq,m))
. n)
- ((rseq1
. m)
+ (
lim rseq2))).|
< e
proof
let m be
Element of
NAT , e be
Real;
assume
0
< e;
then
consider N such that
a3: for n st n
>= N holds
|.((rseq2
. n)
- (
lim rseq2)).|
< e by
SEQ_2:def 7;
take N;
hereby
let n;
assume
a4: n
>= N;
n is
Element of
NAT by
ORDINAL1:def 12;
then
|.(((
ProjMap1 (Rseq,m))
. n)
- ((
lim rseq2)
+ (rseq1
. m))).|
=
|.((Rseq
. (m,n))
- ((
lim rseq2)
+ (rseq1
. m))).| by
MESFUNC9:def 6
.=
|.(((rseq2
. n)
+ (rseq1
. m))
- ((
lim rseq2)
+ (rseq1
. m))).| by
a2
.=
|.((rseq2
. n)
- (
lim rseq2)).|;
hence
|.(((
ProjMap1 (Rseq,m))
. n)
- ((rseq1
. m)
+ (
lim rseq2))).|
< e by
a3,
a4;
end;
end;
p2: for m be
Element of
NAT holds (
ProjMap1 (Rseq,m)) is
convergent
proof
let m be
Element of
NAT ;
for e st
0
< e holds ex N st for n st n
>= N holds
|.(((
ProjMap1 (Rseq,m))
. n)
- ((rseq1
. m)
+ (
lim rseq2))).|
< e by
x2;
hence (
ProjMap1 (Rseq,m)) is
convergent by
SEQ_2:def 6;
end;
hence Rseq is
convergent_in_cod2;
x3: for e st
0
< e holds ex N st for n st n
>= N holds
|.(((
lim_in_cod1 Rseq)
. n)
- ((
lim rseq1)
+ (
lim rseq2))).|
< e
proof
let e;
assume
0
< e;
then
consider N such that
a3: for n st n
>= N holds
|.((rseq2
. n)
- (
lim rseq2)).|
< e by
SEQ_2:def 7;
take N;
hereby
let n;
assume n
>= N;
then
a4:
|.((rseq2
. n)
- (
lim rseq2)).|
< e by
a3;
reconsider n1 = n as
Element of
NAT by
ORDINAL1:def 12;
a5: (
ProjMap2 (Rseq,n1)) is
convergent by
p1;
a6: ((
lim_in_cod1 Rseq)
. n)
= (
lim (
ProjMap2 (Rseq,n1))) by
def32;
for e st
0
< e holds ex N st for m st m
>= N holds
|.(((
ProjMap2 (Rseq,n1))
. m)
- ((
lim rseq1)
+ (rseq2
. n))).|
< e by
x1;
then
|.(((
lim_in_cod1 Rseq)
. n)
- ((
lim rseq1)
+ (
lim rseq2))).|
=
|.(((
lim rseq1)
+ (rseq2
. n))
- ((
lim rseq1)
+ (
lim rseq2))).| by
a5,
a6,
SEQ_2:def 7;
hence
|.(((
lim_in_cod1 Rseq)
. n)
- ((
lim rseq1)
+ (
lim rseq2))).|
< e by
a4;
end;
end;
hence (
lim_in_cod1 Rseq) is
convergent by
SEQ_2:def 6;
hence (
cod1_major_iterated_lim Rseq)
= ((
lim rseq1)
+ (
lim rseq2)) by
x3,
def34;
x4: for e st
0
< e holds ex N st for n st n
>= N holds
|.(((
lim_in_cod2 Rseq)
. n)
- ((
lim rseq1)
+ (
lim rseq2))).|
< e
proof
let e;
assume
0
< e;
then
consider N such that
a3: for n st n
>= N holds
|.((rseq1
. n)
- (
lim rseq1)).|
< e by
SEQ_2:def 7;
take N;
hereby
let n;
assume n
>= N;
then
a4:
|.((rseq1
. n)
- (
lim rseq1)).|
< e by
a3;
reconsider n1 = n as
Element of
NAT by
ORDINAL1:def 12;
a5: (
ProjMap1 (Rseq,n1)) is
convergent by
p2;
a6: ((
lim_in_cod2 Rseq)
. n)
= (
lim (
ProjMap1 (Rseq,n1))) by
def33;
for e st
0
< e holds ex N st for m st m
>= N holds
|.(((
ProjMap1 (Rseq,n1))
. m)
- ((rseq1
. n)
+ (
lim rseq2))).|
< e by
x2;
then
|.(((
lim_in_cod2 Rseq)
. n)
- ((
lim rseq1)
+ (
lim rseq2))).|
=
|.(((rseq1
. n)
+ (
lim rseq2))
- ((
lim rseq1)
+ (
lim rseq2))).| by
a5,
a6,
SEQ_2:def 7;
hence
|.(((
lim_in_cod2 Rseq)
. n)
- ((
lim rseq1)
+ (
lim rseq2))).|
< e by
a4;
end;
end;
hence (
lim_in_cod2 Rseq) is
convergent by
SEQ_2:def 6;
hence (
cod2_major_iterated_lim Rseq)
= ((
lim rseq1)
+ (
lim rseq2)) by
x4,
def35;
x5: for e st
0
< e holds ex N st for n, m st n
>= N & m
>= N holds
|.((Rseq
. (n,m))
- ((
lim rseq1)
+ (
lim rseq2))).|
< e
proof
let e;
assume
c1:
0
< e;
then
consider N1 be
Nat such that
c4: for n st n
>= N1 holds
|.((rseq1
. n)
- (
lim rseq1)).|
< (e
/ 2) by
SEQ_2:def 7;
consider N2 be
Nat such that
c5: for n st n
>= N2 holds
|.((rseq2
. n)
- (
lim rseq2)).|
< (e
/ 2) by
c1,
SEQ_2:def 7;
reconsider N = (
max (N1,N2)) as
Nat by
TARSKI: 1;
take N;
thus for n, m st n
>= N & m
>= N holds
|.((Rseq
. (n,m))
- ((
lim rseq1)
+ (
lim rseq2))).|
< e
proof
let n, m;
assume
c13: n
>= N & m
>= N;
(
max (N1,N2))
>= N1 & (
max (N1,N2))
>= N2 by
XXREAL_0: 25;
then
c6: n
>= N1 & m
>= N2 by
c13,
XXREAL_0: 2;
|.((Rseq
. (n,m))
- ((
lim rseq1)
+ (
lim rseq2))).|
=
|.(((rseq1
. n)
+ (rseq2
. m))
- ((
lim rseq1)
+ (
lim rseq2))).| by
a2
.=
|.(((rseq1
. n)
- (
lim rseq1))
+ ((rseq2
. m)
- (
lim rseq2))).|;
then
a8:
|.((Rseq
. (n,m))
- ((
lim rseq1)
+ (
lim rseq2))).|
<= (
|.((rseq1
. n)
- (
lim rseq1)).|
+
|.((rseq2
. m)
- (
lim rseq2)).|) by
COMPLEX1: 56;
|.((rseq1
. n)
- (
lim rseq1)).|
< (e
/ 2) &
|.((rseq2
. m)
- (
lim rseq2)).|
< (e
/ 2) by
c4,
c5,
c6;
then (
|.((rseq1
. n)
- (
lim rseq1)).|
+
|.((rseq2
. m)
- (
lim rseq2)).|)
< ((e
/ 2)
+ (e
/ 2)) by
XREAL_1: 8;
hence
|.((Rseq
. (n,m))
- ((
lim rseq1)
+ (
lim rseq2))).|
< e by
a8,
XXREAL_0: 2;
end;
end;
hence Rseq is
P-convergent;
hence (
P-lim Rseq)
= ((
lim rseq1)
+ (
lim rseq2)) by
x5,
def6;
end;
lmADD: for Rseq1,Rseq2 be
Function of
[:
NAT ,
NAT :],
REAL holds (
dom (Rseq1
+ Rseq2))
=
[:
NAT ,
NAT :] & (
dom (Rseq1
- Rseq2))
=
[:
NAT ,
NAT :] & (for n,m be
Nat holds ((Rseq1
+ Rseq2)
. (n,m))
= ((Rseq1
. (n,m))
+ (Rseq2
. (n,m)))) & (for n,m be
Nat holds ((Rseq1
- Rseq2)
. (n,m))
= ((Rseq1
. (n,m))
- (Rseq2
. (n,m))))
proof
let Rseq1,Rseq2 be
Function of
[:
NAT ,
NAT :],
REAL ;
thus
a1: (
dom (Rseq1
+ Rseq2))
=
[:
NAT ,
NAT :] & (
dom (Rseq1
- Rseq2))
=
[:
NAT ,
NAT :] by
FUNCT_2:def 1;
hereby
let n, m;
n
in
NAT & m
in
NAT by
ORDINAL1:def 12;
hence ((Rseq1
+ Rseq2)
. (n,m))
= ((Rseq1
. (n,m))
+ (Rseq2
. (n,m))) by
VALUED_1:def 1,
a1,
ZFMISC_1: 87;
end;
hereby
let n, m;
n
in
NAT & m
in
NAT by
ORDINAL1:def 12;
hence ((Rseq1
- Rseq2)
. (n,m))
= ((Rseq1
. (n,m))
- (Rseq2
. (n,m))) by
VALUED_1: 13,
a1,
ZFMISC_1: 87;
end;
end;
theorem ::
DBLSEQ_1:11
Rseq1 is
P-convergent & Rseq2 is
P-convergent implies (Rseq1
+ Rseq2) is
P-convergent & (
P-lim (Rseq1
+ Rseq2))
= ((
P-lim Rseq1)
+ (
P-lim Rseq2))
proof
assume
a1: Rseq1 is
P-convergent & Rseq2 is
P-convergent;
a2:
now
let e;
assume
a4:
0
< e;
then
consider N1 be
Nat such that
a5: for n, m st n
>= N1 & m
>= N1 holds
|.((Rseq1
. (n,m))
- (
P-lim Rseq1)).|
< (e
/ 2) by
a1,
def6;
consider N2 be
Nat such that
a6: for n, m st n
>= N2 & m
>= N2 holds
|.((Rseq2
. (n,m))
- (
P-lim Rseq2)).|
< (e
/ 2) by
a1,
a4,
def6;
reconsider N = (
max (N1,N2)) as
Nat by
TARSKI: 1;
take N;
now
let n, m;
assume
a8: n
>= N & m
>= N;
N
>= N1 & N
>= N2 by
XXREAL_0: 25;
then n
>= N1 & n
>= N2 & m
>= N1 & m
>= N2 by
a8,
XXREAL_0: 2;
then
|.((Rseq1
. (n,m))
- (
P-lim Rseq1)).|
< (e
/ 2) &
|.((Rseq2
. (n,m))
- (
P-lim Rseq2)).|
< (e
/ 2) by
a5,
a6;
then
a9: (
|.((Rseq1
. (n,m))
- (
P-lim Rseq1)).|
+
|.((Rseq2
. (n,m))
- (
P-lim Rseq2)).|)
< ((e
/ 2)
+ (e
/ 2)) by
XREAL_1: 8;
((Rseq1
+ Rseq2)
. (n,m))
= ((Rseq1
. (n,m))
+ (Rseq2
. (n,m))) by
lmADD;
then (((Rseq1
+ Rseq2)
. (n,m))
- ((
P-lim Rseq1)
+ (
P-lim Rseq2)))
= (((Rseq1
. (n,m))
- (
P-lim Rseq1))
+ ((Rseq2
. (n,m))
- (
P-lim Rseq2)));
then
|.(((Rseq1
+ Rseq2)
. (n,m))
- ((
P-lim Rseq1)
+ (
P-lim Rseq2))).|
<= (
|.((Rseq1
. (n,m))
- (
P-lim Rseq1)).|
+
|.((Rseq2
. (n,m))
- (
P-lim Rseq2)).|) by
COMPLEX1: 56;
hence
|.(((Rseq1
+ Rseq2)
. (n,m))
- ((
P-lim Rseq1)
+ (
P-lim Rseq2))).|
< e by
a9,
XXREAL_0: 2;
end;
hence for n,m be
Nat st n
>= N & m
>= N holds
|.(((Rseq1
+ Rseq2)
. (n,m))
- ((
P-lim Rseq1)
+ (
P-lim Rseq2))).|
< e;
end;
hence (Rseq1
+ Rseq2) is
P-convergent;
hence thesis by
a2,
def6;
end;
theorem ::
DBLSEQ_1:12
th54b: Rseq1 is
P-convergent & Rseq2 is
P-convergent implies (Rseq1
- Rseq2) is
P-convergent & (
P-lim (Rseq1
- Rseq2))
= ((
P-lim Rseq1)
- (
P-lim Rseq2))
proof
assume
a1: Rseq1 is
P-convergent & Rseq2 is
P-convergent;
a2:
now
let e;
assume
a4:
0
< e;
then
consider N1 be
Nat such that
a5: for n, m st n
>= N1 & m
>= N1 holds
|.((Rseq1
. (n,m))
- (
P-lim Rseq1)).|
< (e
/ 2) by
a1,
def6;
consider N2 be
Nat such that
a6: for n, m st n
>= N2 & m
>= N2 holds
|.((Rseq2
. (n,m))
- (
P-lim Rseq2)).|
< (e
/ 2) by
a1,
a4,
def6;
reconsider N = (
max (N1,N2)) as
Nat by
TARSKI: 1;
take N;
now
let n, m;
assume
a8: n
>= N & m
>= N;
N
>= N1 & N
>= N2 by
XXREAL_0: 25;
then n
>= N1 & n
>= N2 & m
>= N1 & m
>= N2 by
a8,
XXREAL_0: 2;
then
a10:
|.((Rseq1
. (n,m))
- (
P-lim Rseq1)).|
< (e
/ 2) &
|.((Rseq2
. (n,m))
- (
P-lim Rseq2)).|
< (e
/ 2) by
a5,
a6;
then
|.((
P-lim Rseq2)
- (Rseq2
. (n,m))).|
< (e
/ 2) by
COMPLEX1: 60;
then
a9: (
|.((Rseq1
. (n,m))
- (
P-lim Rseq1)).|
+
|.((
P-lim Rseq2)
- (Rseq2
. (n,m))).|)
< ((e
/ 2)
+ (e
/ 2)) by
a10,
XREAL_1: 8;
((Rseq1
- Rseq2)
. (n,m))
= ((Rseq1
. (n,m))
- (Rseq2
. (n,m))) by
lmADD;
then (((Rseq1
- Rseq2)
. (n,m))
- ((
P-lim Rseq1)
- (
P-lim Rseq2)))
= (((Rseq1
. (n,m))
- (
P-lim Rseq1))
+ ((
P-lim Rseq2)
- (Rseq2
. (n,m))));
then
|.(((Rseq1
- Rseq2)
. (n,m))
- ((
P-lim Rseq1)
- (
P-lim Rseq2))).|
<= (
|.((Rseq1
. (n,m))
- (
P-lim Rseq1)).|
+
|.((
P-lim Rseq2)
- (Rseq2
. (n,m))).|) by
COMPLEX1: 56;
hence
|.(((Rseq1
- Rseq2)
. (n,m))
- ((
P-lim Rseq1)
- (
P-lim Rseq2))).|
< e by
a9,
XXREAL_0: 2;
end;
hence for n,m be
Nat st n
>= N & m
>= N holds
|.(((Rseq1
- Rseq2)
. (n,m))
- ((
P-lim Rseq1)
- (
P-lim Rseq2))).|
< e;
end;
hence (Rseq1
- Rseq2) is
P-convergent;
hence thesis by
a2,
def6;
end;
lm55a: for a be
Real st (for n,m be
Nat holds (Rseq
. (n,m))
= a) holds Rseq is
P-convergent & (
P-lim Rseq)
= a
proof
let a be
Real;
assume
a1: for n,m be
Nat holds (Rseq
. (n,m))
= a;
a3:
now
let e be
Real;
assume
a2:
0
< e;
a4:
now
let n, m such that n
>=
0 & m
>=
0 ;
(Rseq
. (n,m))
= a by
a1;
hence
|.((Rseq
. (n,m))
- a).|
< e by
a2,
COMPLEX1: 44;
end;
reconsider N =
0 as
Nat;
take N;
thus for n, m st n
>= N & m
>= N holds
|.((Rseq
. (n,m))
- a).|
< e by
a4;
end;
hence Rseq is
P-convergent;
hence (
P-lim Rseq)
= a by
a3,
def6;
end;
theorem ::
DBLSEQ_1:13
for Rseq be
Function of
[:
NAT ,
NAT :],
REAL , r be
Real st Rseq is
P-convergent holds (r
(#) Rseq) is
P-convergent & (
P-lim (r
(#) Rseq))
= (r
* (
P-lim Rseq))
proof
let Rseq be
Function of
[:
NAT ,
NAT :],
REAL ;
let r be
Real;
assume
a1: Rseq is
P-convergent;
a4:
now
assume
a2: r
=
0 ;
a3:
now
let n, m;
((r
(#) Rseq)
. (n,m))
= (r
* (Rseq
. (n,m))) by
VALUED_1: 6;
hence ((r
(#) Rseq)
. (n,m))
=
0 by
a2;
end;
hence (r
(#) Rseq) is
P-convergent by
lm55a;
thus (
P-lim (r
(#) Rseq))
=
0 by
a3,
lm55a;
end;
now
assume r
<>
0 ;
then
a5:
|.r.|
>
0 by
COMPLEX1: 47;
a7:
now
let e be
Real;
assume
0
< e;
then
consider N such that
a6: for n, m st n
>= N & m
>= N holds
|.((Rseq
. (n,m))
- (
P-lim Rseq)).|
< (e
/
|.r.|) by
a1,
a5,
def6;
take N;
hereby
let n, m;
assume n
>= N & m
>= N;
then
|.((Rseq
. (n,m))
- (
P-lim Rseq)).|
< (e
/
|.r.|) by
a6;
then (
|.r.|
*
|.((Rseq
. (n,m))
- (
P-lim Rseq)).|)
< ((e
/
|.r.|)
*
|.r.|) by
a5,
XREAL_1: 68;
then (
|.r.|
*
|.((Rseq
. (n,m))
- (
P-lim Rseq)).|)
< (
|.r.|
/ (
|.r.|
/ e)) by
XCMPLX_1: 79;
then (
|.r.|
*
|.((Rseq
. (n,m))
- (
P-lim Rseq)).|)
< e by
a5,
XCMPLX_1: 52;
then
|.(r
* ((Rseq
. (n,m))
- (
P-lim Rseq))).|
< e by
COMPLEX1: 65;
then
|.((r
* (Rseq
. (n,m)))
- (r
* (
P-lim Rseq))).|
< e;
hence
|.(((r
(#) Rseq)
. (n,m))
- (r
* (
P-lim Rseq))).|
< e by
VALUED_1: 6;
end;
end;
hence (r
(#) Rseq) is
P-convergent;
hence (
P-lim (r
(#) Rseq))
= (r
* (
P-lim Rseq)) by
a7,
def6;
end;
hence thesis by
a4;
end;
theorem ::
DBLSEQ_1:14
th55b: Rseq is
P-convergent & (for n,m be
Nat holds (Rseq
. (n,m))
>= r) implies (
P-lim Rseq)
>= r
proof
assume
a1: Rseq is
P-convergent;
assume
a2: for n,m be
Nat holds (Rseq
. (n,m))
>= r;
assume not (
P-lim Rseq)
>= r;
then (r
- (
P-lim Rseq))
>
0 by
XREAL_1: 50;
then
consider N such that
a3: for n, m st n
>= N & m
>= N holds
|.((Rseq
. (n,m))
- (
P-lim Rseq)).|
< (r
- (
P-lim Rseq)) by
a1,
def6;
|.((Rseq
. (N,N))
- (
P-lim Rseq)).|
< (r
- (
P-lim Rseq)) by
a3;
then ((
P-lim Rseq)
+ (r
- (
P-lim Rseq)))
> (Rseq
. (N,N)) by
RINFSUP1: 1;
hence contradiction by
a2;
end;
theorem ::
DBLSEQ_1:15
Rseq1 is
P-convergent & Rseq2 is
P-convergent & (for n,m be
Nat holds (Rseq1
. (n,m))
<= (Rseq2
. (n,m))) implies (
P-lim Rseq1)
<= (
P-lim Rseq2)
proof
assume
a1: Rseq1 is
P-convergent & Rseq2 is
P-convergent;
assume
a2: for n,m be
Nat holds (Rseq1
. (n,m))
<= (Rseq2
. (n,m));
a3: (Rseq2
- Rseq1) is
P-convergent & (
P-lim (Rseq2
- Rseq1))
= ((
P-lim Rseq2)
- (
P-lim Rseq1)) by
a1,
th54b;
now
let n, m;
((Rseq2
- Rseq1)
. (n,m))
= ((Rseq2
. (n,m))
- (Rseq1
. (n,m))) by
lmADD;
hence ((Rseq2
- Rseq1)
. (n,m))
>=
0 by
a2,
XREAL_1: 48;
end;
hence (
P-lim Rseq1)
<= (
P-lim Rseq2) by
a3,
th55b,
XREAL_1: 49;
end;
theorem ::
DBLSEQ_1:16
Rseq1 is
P-convergent & Rseq2 is
P-convergent & (
P-lim Rseq1)
= (
P-lim Rseq2) & (for n,m be
Nat holds (Rseq1
. (n,m))
<= (Rseq
. (n,m)) & (Rseq
. (n,m))
<= (Rseq2
. (n,m))) implies Rseq is
P-convergent & (
P-lim Rseq)
= (
P-lim Rseq1)
proof
assume that
a1: Rseq1 is
P-convergent & Rseq2 is
P-convergent and
a2: (
P-lim Rseq1)
= (
P-lim Rseq2) and
a3: for n,m be
Nat holds (Rseq1
. (n,m))
<= (Rseq
. (n,m)) & (Rseq
. (n,m))
<= (Rseq2
. (n,m));
a4: for e st
0
< e holds ex N st for n, m st n
>= N & m
>= N holds
|.((Rseq
. (n,m))
- (
P-lim Rseq1)).|
< e
proof
let e;
assume
a5:
0
< e;
then
consider N1 be
Nat such that
a6: for n, m st n
>= N1 & m
>= N1 holds
|.((Rseq1
. (n,m))
- (
P-lim Rseq1)).|
< e by
a1,
def6;
consider N2 be
Nat such that
a7: for n, m st n
>= N2 & m
>= N2 holds
|.((Rseq2
. (n,m))
- (
P-lim Rseq1)).|
< e by
a1,
a2,
a5,
def6;
reconsider N = (
max (N1,N2)) as
Nat by
TARSKI: 1;
take N;
a8: (
max (N1,N2))
>= N1 & (
max (N1,N2))
>= N2 by
XXREAL_0: 25;
hereby
let n, m;
assume n
>= N & m
>= N;
then n
>= N1 & m
>= N1 & n
>= N2 & m
>= N2 by
a8,
XXREAL_0: 2;
then
a9:
|.((Rseq1
. (n,m))
- (
P-lim Rseq1)).|
< e &
|.((Rseq2
. (n,m))
- (
P-lim Rseq1)).|
< e by
a6,
a7;
then
a10: (
- e)
< (
-
|.((Rseq1
. (n,m))
- (
P-lim Rseq1)).|) by
XREAL_1: 24;
(
-
|.((Rseq1
. (n,m))
- (
P-lim Rseq1)).|)
<= ((Rseq1
. (n,m))
- (
P-lim Rseq1)) by
ABSVALUE: 4;
then
a11: (
- e)
< ((Rseq1
. (n,m))
- (
P-lim Rseq1)) by
a10,
XXREAL_0: 2;
((Rseq2
. (n,m))
- (
P-lim Rseq1))
<=
|.((Rseq2
. (n,m))
- (
P-lim Rseq1)).| by
ABSVALUE: 4;
then
a12: ((Rseq2
. (n,m))
- (
P-lim Rseq1))
< e by
a9,
XXREAL_0: 2;
a13: ((Rseq1
. (n,m))
- (
P-lim Rseq1))
<= ((Rseq
. (n,m))
- (
P-lim Rseq1)) & ((Rseq
. (n,m))
- (
P-lim Rseq1))
<= ((Rseq2
. (n,m))
- (
P-lim Rseq1)) by
a3,
XREAL_1: 9;
then (
- e)
< ((Rseq
. (n,m))
- (
P-lim Rseq1)) & ((Rseq
. (n,m))
- (
P-lim Rseq1))
< e by
a11,
a12,
XXREAL_0: 2;
then
a14:
|.((Rseq
. (n,m))
- (
P-lim Rseq1)).|
<= e by
ABSVALUE: 5;
(
- ((Rseq
. (n,m))
- (
P-lim Rseq1)))
<> e by
a3,
a11,
XREAL_1: 9;
then
|.((Rseq
. (n,m))
- (
P-lim Rseq1)).|
<> e by
a13,
a12,
ABSVALUE: 1;
hence
|.((Rseq
. (n,m))
- (
P-lim Rseq1)).|
< e by
a14,
XXREAL_0: 1;
end;
end;
hence Rseq is
P-convergent;
hence (
P-lim Rseq)
= (
P-lim Rseq1) by
a4,
def6;
end;
definition
let X be non
empty
set, seq be
Function of
[:
NAT ,
NAT :], X;
::
DBLSEQ_1:def14
mode
subsequence of seq ->
Function of
[:
NAT ,
NAT :], X means
:
def9: ex N,M be
increasing
sequence of
NAT st for n,m be
Nat holds (it
. (n,m))
= (seq
. ((N
. n),(M
. m)));
existence
proof
deffunc
F(
object,
object) = (seq
. (((
id
NAT )
. $1),((
id
NAT )
. $2)));
consider s be
Function such that
a1: (
dom s)
=
[:
NAT ,
NAT :] & for n,m be
object st n
in
NAT & m
in
NAT holds (s
. (n,m))
=
F(n,m) from
FUNCT_3:sch 2;
for z be
object st z
in
[:
NAT ,
NAT :] holds (s
. z)
in X
proof
let z be
object;
assume z
in
[:
NAT ,
NAT :];
then
consider n,m be
object such that
a2: n
in
NAT & m
in
NAT & z
=
[n, m] by
ZFMISC_1:def 2;
reconsider n, m as
Nat by
a2;
(s
. z)
= (s
. (n,m)) by
a2;
then (s
. z)
= (seq
. (((
id
NAT )
. n),((
id
NAT )
. m))) by
a1,
a2;
hence (s
. z)
in X;
end;
then
reconsider s as
Function of
[:
NAT ,
NAT :], X by
a1,
FUNCT_2: 3;
take s, (
id
NAT ), (
id
NAT );
hereby
let n,m be
Nat;
n is
Element of
NAT & m is
Element of
NAT by
ORDINAL1:def 12;
hence (s
. (n,m))
= (seq
. (((
id
NAT )
. n),((
id
NAT )
. m))) by
a1;
end;
end;
end
lem01: for seq be
increasing
sequence of
NAT , n be
Nat holds n
<= (seq
. n)
proof
let seq be
increasing
sequence of
NAT ;
let n be
Nat;
a1: seq is
Real_Sequence by
FUNCT_2: 7,
NUMBERS: 19;
(
rng seq)
c=
NAT by
RELAT_1:def 19;
hence n
<= (seq
. n) by
a1,
HEINE: 2;
end;
LM114: for Rseq1 be
subsequence of Rseq st Rseq is
P-convergent holds Rseq1 is
P-convergent & (
P-lim Rseq1)
= (
P-lim Rseq)
proof
let Rseq1 be
subsequence of Rseq;
assume
a1: Rseq is
P-convergent;
a2: for e st
0
< e holds ex N st for n, m st n
>= N & m
>= N holds
|.((Rseq1
. (n,m))
- (
P-lim Rseq)).|
< e
proof
let e;
assume
0
< e;
then
consider N such that
a3: for n, m st n
>= N & m
>= N holds
|.((Rseq
. (n,m))
- (
P-lim Rseq)).|
< e by
a1,
def6;
take N;
hereby
let n, m;
assume
a4: n
>= N & m
>= N;
consider I1,I2 be
increasing
sequence of
NAT such that
a5: for n, m holds (Rseq1
. (n,m))
= (Rseq
. ((I1
. n),(I2
. m))) by
def9;
(I1
. n)
>= n & (I2
. m)
>= m by
lem01;
then (I1
. n)
>= N & (I2
. m)
>= N by
a4,
XXREAL_0: 2;
then
|.((Rseq
. ((I1
. n),(I2
. m)))
- (
P-lim Rseq)).|
< e by
a3;
hence
|.((Rseq1
. (n,m))
- (
P-lim Rseq)).|
< e by
a5;
end;
end;
hence Rseq1 is
P-convergent;
hence (
P-lim Rseq1)
= (
P-lim Rseq) by
a2,
def6;
end;
th63d: Rseq is
convergent_in_cod1 implies for Rseq1 be
subsequence of Rseq holds Rseq1 is
convergent_in_cod1
proof
assume
a1: Rseq is
convergent_in_cod1;
hereby
let Rseq1 be
subsequence of Rseq;
consider I1,I2 be
increasing
sequence of
NAT such that
a7: for n, m holds (Rseq1
. (n,m))
= (Rseq
. ((I1
. n),(I2
. m))) by
def9;
for m be
Element of
NAT holds (
ProjMap2 (Rseq1,m)) is
convergent
proof
let m be
Element of
NAT ;
reconsider m2 = (I2
. m) as
Element of
NAT ;
a4: (
ProjMap2 (Rseq,m2)) is
convergent by
a1;
now
let e be
Real;
assume
0
< e;
then
consider N such that
a5: for n st n
>= N holds
|.(((
ProjMap2 (Rseq,m2))
. n)
- (
lim (
ProjMap2 (Rseq,m2)))).|
< e by
a4,
SEQ_2:def 7;
take N;
hereby
let n;
assume
a6: n
>= N;
x1: (I1
. n) is
Element of
NAT & n is
Element of
NAT by
ORDINAL1:def 12;
(I1
. n)
>= n by
lem01;
then (I1
. n)
>= N by
a6,
XXREAL_0: 2;
then
|.(((
ProjMap2 (Rseq,m2))
. (I1
. n))
- (
lim (
ProjMap2 (Rseq,m2)))).|
< e by
a5;
then
|.((Rseq
. ((I1
. n),(I2
. m)))
- (
lim (
ProjMap2 (Rseq,m2)))).|
< e by
MESFUNC9:def 7;
then
|.((Rseq1
. (n,m))
- (
lim (
ProjMap2 (Rseq,m2)))).|
< e by
a7;
hence
|.(((
ProjMap2 (Rseq1,m))
. n)
- (
lim (
ProjMap2 (Rseq,m2)))).|
< e by
x1,
MESFUNC9:def 7;
end;
end;
hence (
ProjMap2 (Rseq1,m)) is
convergent by
SEQ_2:def 6;
end;
hence Rseq1 is
convergent_in_cod1;
end;
end;
registration
let Pseq;
cluster ->
P-convergent for
subsequence of Pseq;
coherence by
LM114;
end
theorem ::
DBLSEQ_1:17
for Psubseq be
subsequence of Pseq holds (
P-lim Psubseq)
= (
P-lim Pseq) by
LM114;
registration
let Rseq be
convergent_in_cod1
Function of
[:
NAT ,
NAT :],
REAL ;
cluster ->
convergent_in_cod1 for
subsequence of Rseq;
coherence by
th63d;
end
theorem ::
DBLSEQ_1:18
for Rseq1 be
subsequence of Rseq st Rseq is
convergent_in_cod1 & (
lim_in_cod1 Rseq) is
convergent holds (
lim_in_cod1 Rseq1) is
convergent & (
cod1_major_iterated_lim Rseq1)
= (
cod1_major_iterated_lim Rseq)
proof
let Rseq1 be
subsequence of Rseq;
assume that
a1: Rseq is
convergent_in_cod1 & (
lim_in_cod1 Rseq) is
convergent;
consider I1,I2 be
increasing
sequence of
NAT such that
a7: for n,m be
Nat holds (Rseq1
. (n,m))
= (Rseq
. ((I1
. n),(I2
. m))) by
def9;
a8: Rseq1 is
convergent_in_cod1 by
a1;
a10: for e st
0
< e holds ex N st for m st m
>= N holds
|.(((
lim_in_cod1 Rseq1)
. m)
- (
cod1_major_iterated_lim Rseq)).|
< e
proof
let e;
assume
0
< e;
then
consider N such that
a11: for m st m
>= N holds
|.(((
lim_in_cod1 Rseq)
. m)
- (
cod1_major_iterated_lim Rseq)).|
< e by
a1,
def34;
take N;
hereby
let m;
assume
a12: m
>= N;
reconsider m2 = (I2
. m) as
Element of
NAT ;
reconsider m1 = m as
Element of
NAT by
ORDINAL1:def 12;
x2: (
ProjMap2 (Rseq1,m1)) is
convergent by
a8;
for p be
Real st
0
< p holds ex K be
Nat st for n be
Nat st n
>= K holds
|.(((
ProjMap2 (Rseq1,m1))
. n)
- (
lim (
ProjMap2 (Rseq,m2)))).|
< p
proof
let p be
Real;
assume
b1:
0
< p;
(
ProjMap2 (Rseq,m2)) is
convergent by
a1;
then
consider K be
Nat such that
b2: for n st n
>= K holds
|.(((
ProjMap2 (Rseq,m2))
. n)
- (
lim (
ProjMap2 (Rseq,m2)))).|
< p by
b1,
SEQ_2:def 7;
take K;
hereby
let n;
assume
b3: n
>= K;
x2: n is
Element of
NAT & (I1
. n) is
Element of
NAT & (I2
. m) is
Element of
NAT by
ORDINAL1:def 12;
(I1
. n)
>= n by
lem01;
then (I1
. n)
>= K by
b3,
XXREAL_0: 2;
then
|.(((
ProjMap2 (Rseq,m2))
. (I1
. n))
- (
lim (
ProjMap2 (Rseq,m2)))).|
< p by
b2;
then
|.((Rseq
. ((I1
. n),(I2
. m)))
- (
lim (
ProjMap2 (Rseq,m2)))).|
< p by
MESFUNC9:def 7;
then
|.((Rseq1
. (n,m))
- (
lim (
ProjMap2 (Rseq,m2)))).|
< p by
a7;
hence
|.(((
ProjMap2 (Rseq1,m1))
. n)
- (
lim (
ProjMap2 (Rseq,m2)))).|
< p by
x2,
MESFUNC9:def 7;
end;
end;
then
c1: (
lim (
ProjMap2 (Rseq1,m1)))
= (
lim (
ProjMap2 (Rseq,m2))) by
x2,
SEQ_2:def 7;
(I2
. m)
>= m by
lem01;
then (I2
. m)
>= N by
a12,
XXREAL_0: 2;
then
a13:
|.(((
lim_in_cod1 Rseq)
. (I2
. m))
- (
cod1_major_iterated_lim Rseq)).|
< e by
a11;
((
lim_in_cod1 Rseq)
. (I2
. m))
= (
lim (
ProjMap2 (Rseq,m2))) by
def32;
hence
|.(((
lim_in_cod1 Rseq1)
. m)
- (
cod1_major_iterated_lim Rseq)).|
< e by
def32,
a13,
c1;
end;
end;
hence (
lim_in_cod1 Rseq1) is
convergent by
SEQ_2:def 6;
hence thesis by
a10,
def34;
end;
th63c: Rseq is
convergent_in_cod2 implies for Rseq1 be
subsequence of Rseq holds Rseq1 is
convergent_in_cod2
proof
assume
a1: Rseq is
convergent_in_cod2;
hereby
let Rseq1 be
subsequence of Rseq;
consider I1,I2 be
increasing
sequence of
NAT such that
a7: for n, m holds (Rseq1
. (n,m))
= (Rseq
. ((I1
. n),(I2
. m))) by
def9;
for m be
Element of
NAT holds (
ProjMap1 (Rseq1,m)) is
convergent
proof
let m be
Element of
NAT ;
reconsider m1 = (I1
. m) as
Element of
NAT ;
a4: (
ProjMap1 (Rseq,m1)) is
convergent by
a1;
now
let e;
assume
0
< e;
then
consider N such that
a5: for n st n
>= N holds
|.(((
ProjMap1 (Rseq,m1))
. n)
- (
lim (
ProjMap1 (Rseq,m1)))).|
< e by
a4,
SEQ_2:def 7;
take N;
hereby
let n;
assume
a6: n
>= N;
x2: n is
Element of
NAT & (I1
. m) is
Element of
NAT & (I2
. n) is
Element of
NAT by
ORDINAL1:def 12;
(I2
. n)
>= n by
lem01;
then (I2
. n)
>= N by
a6,
XXREAL_0: 2;
then
|.(((
ProjMap1 (Rseq,m1))
. (I2
. n))
- (
lim (
ProjMap1 (Rseq,m1)))).|
< e by
a5;
then
|.((Rseq
. ((I1
. m),(I2
. n)))
- (
lim (
ProjMap1 (Rseq,m1)))).|
< e by
MESFUNC9:def 6;
then
|.((Rseq1
. (m,n))
- (
lim (
ProjMap1 (Rseq,m1)))).|
< e by
a7;
hence
|.(((
ProjMap1 (Rseq1,m))
. n)
- (
lim (
ProjMap1 (Rseq,m1)))).|
< e by
x2,
MESFUNC9:def 6;
end;
end;
hence (
ProjMap1 (Rseq1,m)) is
convergent by
SEQ_2:def 6;
end;
hence Rseq1 is
convergent_in_cod2;
end;
end;
registration
let Rseq be
convergent_in_cod2
Function of
[:
NAT ,
NAT :],
REAL ;
cluster ->
convergent_in_cod2 for
subsequence of Rseq;
coherence by
th63c;
end
theorem ::
DBLSEQ_1:19
for Rseq1 be
subsequence of Rseq st Rseq is
convergent_in_cod2 & (
lim_in_cod2 Rseq) is
convergent holds (
lim_in_cod2 Rseq1) is
convergent & (
cod2_major_iterated_lim Rseq1)
= (
cod2_major_iterated_lim Rseq)
proof
let Rseq1 be
subsequence of Rseq;
assume that
a1: Rseq is
convergent_in_cod2 & (
lim_in_cod2 Rseq) is
convergent;
consider I1,I2 be
increasing
sequence of
NAT such that
a7: for n, m holds (Rseq1
. (n,m))
= (Rseq
. ((I1
. n),(I2
. m))) by
def9;
a8: Rseq1 is
convergent_in_cod2 by
a1;
a10: for e st
0
< e holds ex N st for m st m
>= N holds
|.(((
lim_in_cod2 Rseq1)
. m)
- (
cod2_major_iterated_lim Rseq)).|
< e
proof
let e;
assume
0
< e;
then
consider N such that
a11: for m st m
>= N holds
|.(((
lim_in_cod2 Rseq)
. m)
- (
cod2_major_iterated_lim Rseq)).|
< e by
a1,
def35;
take N;
hereby
let m;
reconsider mm = m as
Element of
NAT by
ORDINAL1:def 12;
assume
a12: m
>= N;
reconsider m1 = (I1
. m) as
Element of
NAT ;
x2: (
ProjMap1 (Rseq1,mm)) is
convergent by
a8;
for p be
Real st
0
< p holds ex K be
Nat st for n be
Nat st n
>= K holds
|.(((
ProjMap1 (Rseq1,mm))
. n)
- (
lim (
ProjMap1 (Rseq,m1)))).|
< p
proof
let p be
Real;
assume
b1:
0
< p;
(
ProjMap1 (Rseq,m1)) is
convergent by
a1;
then
consider K be
Nat such that
b2: for n st n
>= K holds
|.(((
ProjMap1 (Rseq,m1))
. n)
- (
lim (
ProjMap1 (Rseq,m1)))).|
< p by
b1,
SEQ_2:def 7;
take K;
hereby
let n;
assume
b3: n
>= K;
x3: n is
Element of
NAT & (I1
. m) is
Element of
NAT & (I2
. n) is
Element of
NAT by
ORDINAL1:def 12;
(I2
. n)
>= n by
lem01;
then (I2
. n)
>= K by
b3,
XXREAL_0: 2;
then
|.(((
ProjMap1 (Rseq,m1))
. (I2
. n))
- (
lim (
ProjMap1 (Rseq,m1)))).|
< p by
b2;
then
|.((Rseq
. ((I1
. m),(I2
. n)))
- (
lim (
ProjMap1 (Rseq,m1)))).|
< p by
MESFUNC9:def 6;
then
|.((Rseq1
. (m,n))
- (
lim (
ProjMap1 (Rseq,m1)))).|
< p by
a7;
hence
|.(((
ProjMap1 (Rseq1,mm))
. n)
- (
lim (
ProjMap1 (Rseq,m1)))).|
< p by
x3,
MESFUNC9:def 6;
end;
end;
then
c1: (
lim (
ProjMap1 (Rseq1,mm)))
= (
lim (
ProjMap1 (Rseq,m1))) by
x2,
SEQ_2:def 7;
(I1
. m)
>= m by
lem01;
then (I1
. m)
>= N by
a12,
XXREAL_0: 2;
then
a13:
|.(((
lim_in_cod2 Rseq)
. (I1
. m))
- (
cod2_major_iterated_lim Rseq)).|
< e by
a11;
((
lim_in_cod2 Rseq)
. (I1
. m))
= (
lim (
ProjMap1 (Rseq,m1))) by
def33;
hence
|.(((
lim_in_cod2 Rseq1)
. m)
- (
cod2_major_iterated_lim Rseq)).|
< e by
def33,
a13,
c1;
end;
end;
hence (
lim_in_cod2 Rseq1) is
convergent by
SEQ_2:def 6;
hence thesis by
a10,
def35;
end;