diff_1.miz
begin
reserve n,m,k,i for
Nat,
h,r,r1,r2,x0,x1,x2,x for
Real,
S for
Functional_Sequence of
REAL ,
REAL ,
y for
set;
definition
let f be
PartFunc of
REAL ,
REAL ;
let h be
Real;
::
DIFF_1:def1
func
Shift (f,h) ->
PartFunc of
REAL ,
REAL means
:
Def1: (
dom it )
= ((
- h)
++ (
dom f)) & for x st x
in ((
- h)
++ (
dom f)) holds (it
. x)
= (f
. (x
+ h));
existence
proof
deffunc
F(
Real) = (
In ((f
. ($1
+ h)),
REAL ));
set X = ((
- h)
++ (
dom f));
defpred
P[
set] means $1
in X;
consider F be
PartFunc of
REAL ,
REAL such that
A1: (for x be
Element of
REAL holds x
in (
dom F) iff
P[x]) & for x be
Element of
REAL st x
in (
dom F) holds (F
. x)
=
F(x) from
SEQ_1:sch 3;
take F;
for y be
object st y
in X holds y
in (
dom F) by
A1;
then
A2: X
c= (
dom F) by
TARSKI:def 3;
for y be
object st y
in (
dom F) holds y
in X by
A1;
then (
dom F)
c= X by
TARSKI:def 3;
hence (
dom F)
= X by
A2,
XBOOLE_0:def 10;
for x st x
in X holds (F
. x)
= (f
. (x
+ h))
proof
let x;
assume x
in X;
then (F
. x)
=
F(x) by
A1;
hence thesis;
end;
hence thesis;
end;
uniqueness
proof
let f1,f2 be
PartFunc of
REAL ,
REAL ;
set X = ((
- h)
++ (
dom f));
assume that
A3: (
dom f1)
= X and
A4: for x st x
in X holds (f1
. x)
= (f
. (x
+ h)) and
A5: (
dom f2)
= X and
A6: for x st x
in X holds (f2
. x)
= (f
. (x
+ h));
for x be
Element of
REAL st x
in (
dom f1) holds (f1
. x)
= (f2
. x)
proof
let x be
Element of
REAL ;
assume
A7: x
in (
dom f1);
then (f1
. x)
= (f
. (x
+ h)) by
A3,
A4;
hence thesis by
A3,
A6,
A7;
end;
hence f1
= f2 by
A3,
A5,
PARTFUN1: 5;
end;
end
definition
let f be
Function of
REAL ,
REAL ;
let h be
Real;
:: original:
Shift
redefine
::
DIFF_1:def2
func
Shift (f,h) ->
Function of
REAL ,
REAL means
:
Def2: for x holds (it
. x)
= (f
. (x
+ h));
coherence
proof
(
dom (
Shift (f,h)))
= ((
- h)
++ (
dom f)) & (
dom f)
=
REAL by
Def1,
FUNCT_2:def 1;
then (
dom (
Shift (f,h)))
=
REAL by
MEASURE6: 24;
hence thesis by
FUNCT_2:def 1;
end;
compatibility
proof
for IT be
Function of
REAL ,
REAL holds IT
= (
Shift (f,h)) iff for x holds (IT
. x)
= (f
. (x
+ h))
proof
let IT be
Function of
REAL ,
REAL ;
hereby
assume
A1: IT
= (
Shift (f,h));
let x;
(
dom (
Shift (f,h)))
=
REAL by
A1,
FUNCT_2:def 1;
then x
in (
dom (
Shift (f,h))) by
XREAL_0:def 1;
then x
in ((
- h)
++ (
dom f)) by
Def1;
hence (IT
. x)
= (f
. (x
+ h)) by
A1,
Def1;
end;
(
dom (
Shift (f,h)))
= ((
- h)
++ (
dom f)) & (
dom f)
=
REAL by
Def1,
FUNCT_2:def 1;
then (
dom (
Shift (f,h)))
=
REAL by
MEASURE6: 24;
then
A2: (
dom IT)
= (
dom (
Shift (f,h))) by
FUNCT_2:def 1;
assume
A3: for x holds (IT
. x)
= (f
. (x
+ h));
for x be
Element of
REAL st x
in (
dom IT) holds (IT
. x)
= ((
Shift (f,h))
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom IT);
then
A4: x
in ((
- h)
++ (
dom f)) by
A2,
Def1;
(IT
. x)
= (f
. (x
+ h)) by
A3;
hence thesis by
A4,
Def1;
end;
hence thesis by
A2,
PARTFUN1: 5;
end;
hence thesis;
end;
end
definition
let f be
PartFunc of
REAL ,
REAL , h be
Real;
::
DIFF_1:def3
func
fD (f,h) ->
PartFunc of
REAL ,
REAL equals ((
Shift (f,h))
- f);
coherence ;
end
registration
let f be
Function of
REAL ,
REAL , h be
Real;
cluster (
fD (f,h)) ->
quasi_total;
coherence
proof
(
dom (
fD (f,h)))
= ((
dom (
Shift (f,h)))
/\ (
dom f)) by
VALUED_1: 12
.= (
REAL
/\ (
dom f)) by
FUNCT_2:def 1
.= (
REAL
/\
REAL ) by
FUNCT_2:def 1
.=
REAL ;
hence thesis by
FUNCT_2:def 1;
end;
end
definition
let f be
PartFunc of
REAL ,
REAL , h be
Real;
::
DIFF_1:def4
func
bD (f,h) ->
PartFunc of
REAL ,
REAL equals (f
- (
Shift (f,(
- h))));
coherence ;
end
registration
let f be
Function of
REAL ,
REAL , h be
Real;
cluster (
bD (f,h)) ->
quasi_total;
coherence
proof
(
dom (
bD (f,h)))
= ((
dom (
Shift (f,(
- h))))
/\ (
dom f)) by
VALUED_1: 12
.= (
REAL
/\ (
dom f)) by
FUNCT_2:def 1
.= (
REAL
/\
REAL ) by
FUNCT_2:def 1
.=
REAL ;
hence thesis by
FUNCT_2:def 1;
end;
end
definition
let f be
PartFunc of
REAL ,
REAL , h be
Real;
::
DIFF_1:def5
func
cD (f,h) ->
PartFunc of
REAL ,
REAL equals ((
Shift (f,(h
/ 2)))
- (
Shift (f,(
- (h
/ 2)))));
coherence ;
end
registration
let f be
Function of
REAL ,
REAL , h be
Real;
cluster (
cD (f,h)) ->
quasi_total;
coherence
proof
(
dom (
cD (f,h)))
= ((
dom (
Shift (f,(h
/ 2))))
/\ (
dom (
Shift (f,(
- (h
/ 2)))))) by
VALUED_1: 12
.= (
REAL
/\ (
dom (
Shift (f,(
- (h
/ 2)))))) by
FUNCT_2:def 1
.= (
REAL
/\
REAL ) by
FUNCT_2:def 1
.=
REAL ;
hence thesis by
FUNCT_2:def 1;
end;
end
definition
let f be
PartFunc of
REAL ,
REAL ;
let h be
Real;
::
DIFF_1:def6
func
forward_difference (f,h) ->
Functional_Sequence of
REAL ,
REAL means
:
Def6: (it
.
0 )
= f & for n be
Nat holds (it
. (n
+ 1))
= (
fD ((it
. n),h));
existence
proof
reconsider fZ = f as
Element of (
PFuncs (
REAL ,
REAL )) by
PARTFUN1: 45;
defpred
R[
set,
set,
set] means ex g be
PartFunc of
REAL ,
REAL st $2
= g & $3
= (
fD (g,h));
A1: for n be
Nat holds for x be
Element of (
PFuncs (
REAL ,
REAL )) holds ex y be
Element of (
PFuncs (
REAL ,
REAL )) st
R[n, x, y]
proof
let n be
Nat;
let x be
Element of (
PFuncs (
REAL ,
REAL ));
reconsider x9 = x as
PartFunc of
REAL ,
REAL by
PARTFUN1: 46;
reconsider y = (
fD (x9,h)) as
Element of (
PFuncs (
REAL ,
REAL )) by
PARTFUN1: 45;
ex w be
PartFunc of
REAL ,
REAL st x
= w & y
= (
fD (w,h));
hence thesis;
end;
consider g be
sequence of (
PFuncs (
REAL ,
REAL )) such that
A2: (g
.
0 )
= fZ & for n be
Nat holds
R[n, (g
. n), (g
. (n
+ 1))] from
RECDEF_1:sch 2(
A1);
reconsider g as
Functional_Sequence of
REAL ,
REAL ;
take g;
thus (g
.
0 )
= f by
A2;
let i be
Nat;
R[i, (g
. i), (g
. (i
+ 1))] by
A2;
hence thesis;
end;
uniqueness
proof
let seq1,seq2 be
Functional_Sequence of
REAL ,
REAL ;
assume that
A3: (seq1
.
0 )
= f and
A4: for n be
Nat holds (seq1
. (n
+ 1))
= (
fD ((seq1
. n),h)) and
A5: (seq2
.
0 )
= f and
A6: for n be
Nat holds (seq2
. (n
+ 1))
= (
fD ((seq2
. n),h));
defpred
P[
Nat] means (seq1
. $1)
= (seq2
. $1);
A7: for k st
P[k] holds
P[(k
+ 1)]
proof
let k;
assume
A8:
P[k];
thus (seq1
. (k
+ 1))
= (
fD ((seq1
. k),h)) by
A4
.= (seq2
. (k
+ 1)) by
A6,
A8;
end;
A9:
P[
0 ] by
A3,
A5;
for n holds
P[n] from
NAT_1:sch 2(
A9,
A7);
then for n be
Element of
NAT holds
P[n];
hence seq1
= seq2 by
FUNCT_2: 63;
end;
end
notation
let f be
PartFunc of
REAL ,
REAL ;
let h be
Real;
synonym
fdif (f,h) for
forward_difference (f,h);
end
reserve f,f1,f2 for
Function of
REAL ,
REAL ;
theorem ::
DIFF_1:1
for f be
PartFunc of
REAL ,
REAL st x
in (
dom f) & (x
+ h)
in (
dom f) holds ((
fD (f,h))
. x)
= ((f
. (x
+ h))
- (f
. x))
proof
let f be
PartFunc of
REAL ,
REAL ;
assume
A1: x
in (
dom f) & (x
+ h)
in (
dom f);
A2: (
dom (
Shift (f,h)))
= ((
- h)
++ (
dom f)) by
Def1;
A3: ((
- h)
+ (x
+ h))
in ((
- h)
++ (
dom f)) by
A1,
MEASURE6: 46;
then
A4: ((
Shift (f,h))
. x)
= (f
. (x
+ h)) by
Def1;
x
in ((
dom (
Shift (f,h)))
/\ (
dom f)) by
A3,
A2,
A1,
XBOOLE_0:def 4;
then x
in (
dom (
fD (f,h))) by
VALUED_1: 12;
hence ((
fD (f,h))
. x)
= ((f
. (x
+ h))
- (f
. x)) by
A4,
VALUED_1: 13;
end;
theorem ::
DIFF_1:2
Th2: for n be
Nat holds ((
fdif (f,h))
. n) is
Function of
REAL ,
REAL
proof
defpred
X[
Nat] means ((
fdif (f,h))
. $1) is
Function of
REAL ,
REAL ;
A1: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat;
assume ((
fdif (f,h))
. k) is
Function of
REAL ,
REAL ;
then (
fD (((
fdif (f,h))
. k),h)) is
Function of
REAL ,
REAL ;
hence thesis by
Def6;
end;
A2:
X[
0 ] by
Def6;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A2,
A1);
hence thesis;
end;
theorem ::
DIFF_1:3
Th3: ((
fD (f,h))
. x)
= ((f
. (x
+ h))
- (f
. x))
proof
reconsider xx = x as
Element of
REAL by
XREAL_0:def 1;
(
dom ((
Shift (f,h))
- f))
=
REAL by
FUNCT_2:def 1;
hence ((
fD (f,h))
. x)
= (((
Shift (f,h))
. xx)
- (f
. xx)) by
VALUED_1: 13
.= ((f
. (x
+ h))
- (f
. x)) by
Def2;
end;
theorem ::
DIFF_1:4
Th4: ((
bD (f,h))
. x)
= ((f
. x)
- (f
. (x
- h)))
proof
thus ((
bD (f,h))
. x)
= ((
- (
fD (f,(
- h))))
. x) by
RFUNCT_1: 19
.= (
- ((
fD (f,(
- h)))
. x)) by
VALUED_1: 8
.= (
- ((f
. (x
+ (
- h)))
- (f
. x))) by
Th3
.= ((f
. x)
- (f
. (x
- h)));
end;
theorem ::
DIFF_1:5
Th5: ((
cD (f,h))
. x)
= ((f
. (x
+ (h
/ 2)))
- (f
. (x
- (h
/ 2))))
proof
reconsider xx = x as
Element of
REAL by
XREAL_0:def 1;
(
dom ((
Shift (f,(h
/ 2)))
- (
Shift (f,(
- (h
/ 2))))))
=
REAL by
FUNCT_2:def 1;
hence ((
cD (f,h))
. x)
= (((
Shift (f,(h
/ 2)))
. xx)
- ((
Shift (f,(
- (h
/ 2))))
. xx)) by
VALUED_1: 13
.= ((f
. (x
+ (h
/ 2)))
- ((
Shift (f,(
- (h
/ 2))))
. x)) by
Def2
.= ((f
. (x
+ (h
/ 2)))
- (f
. (x
+ (
- (h
/ 2))))) by
Def2
.= ((f
. (x
+ (h
/ 2)))
- (f
. (x
- (h
/ 2))));
end;
theorem ::
DIFF_1:6
f is
constant implies for x holds (((
fdif (f,h))
. (n
+ 1))
. x)
=
0
proof
assume
A1: f is
constant;
A2: for x holds ((f
. (x
+ h))
- (f
. x))
=
0
proof
let x;
(x
+ h)
in
REAL by
XREAL_0:def 1;
then
A3: (x
+ h)
in (
dom f) by
FUNCT_2:def 1;
x
in
REAL by
XREAL_0:def 1;
then x
in (
dom f) by
FUNCT_2:def 1;
then (f
. x)
= (f
. (x
+ h)) by
A1,
A3,
FUNCT_1:def 10;
hence thesis;
end;
for x holds (((
fdif (f,h))
. (n
+ 1))
. x)
=
0
proof
defpred
X[
Nat] means for x holds (((
fdif (f,h))
. ($1
+ 1))
. x)
=
0 ;
A4: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A5: for x holds (((
fdif (f,h))
. (k
+ 1))
. x)
=
0 ;
let x;
A6: (((
fdif (f,h))
. (k
+ 1))
. (x
+ h))
=
0 by
A5;
A7: ((
fdif (f,h))
. (k
+ 1)) is
Function of
REAL ,
REAL by
Th2;
(((
fdif (f,h))
. (k
+ 2))
. x)
= (((
fdif (f,h))
. ((k
+ 1)
+ 1))
. x)
.= ((
fD (((
fdif (f,h))
. (k
+ 1)),h))
. x) by
Def6
.= ((((
fdif (f,h))
. (k
+ 1))
. (x
+ h))
- (((
fdif (f,h))
. (k
+ 1))
. x)) by
A7,
Th3
.= (
0
-
0 ) by
A5,
A6
.=
0 ;
hence thesis;
end;
A8:
X[
0 ]
proof
let x;
thus (((
fdif (f,h))
. (
0
+ 1))
. x)
= ((
fD (((
fdif (f,h))
.
0 ),h))
. x) by
Def6
.= ((
fD (f,h))
. x) by
Def6
.= ((f
. (x
+ h))
- (f
. x)) by
Th3
.=
0 by
A2;
end;
for n holds
X[n] from
NAT_1:sch 2(
A8,
A4);
hence thesis;
end;
hence thesis;
end;
theorem ::
DIFF_1:7
Th7: (((
fdif ((r
(#) f),h))
. (n
+ 1))
. x)
= (r
* (((
fdif (f,h))
. (n
+ 1))
. x))
proof
defpred
X[
Nat] means for x holds (((
fdif ((r
(#) f),h))
. ($1
+ 1))
. x)
= (r
* (((
fdif (f,h))
. ($1
+ 1))
. x));
A1: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A2: for x holds (((
fdif ((r
(#) f),h))
. (k
+ 1))
. x)
= (r
* (((
fdif (f,h))
. (k
+ 1))
. x));
let x;
A3: (((
fdif ((r
(#) f),h))
. (k
+ 1))
. x)
= (r
* (((
fdif (f,h))
. (k
+ 1))
. x)) & (((
fdif ((r
(#) f),h))
. (k
+ 1))
. (x
+ h))
= (r
* (((
fdif (f,h))
. (k
+ 1))
. (x
+ h))) by
A2;
A4: ((
fdif ((r
(#) f),h))
. (k
+ 1)) is
Function of
REAL ,
REAL by
Th2;
A5: ((
fdif (f,h))
. (k
+ 1)) is
Function of
REAL ,
REAL by
Th2;
(((
fdif ((r
(#) f),h))
. ((k
+ 1)
+ 1))
. x)
= ((
fD (((
fdif ((r
(#) f),h))
. (k
+ 1)),h))
. x) by
Def6
.= ((r
* (((
fdif (f,h))
. (k
+ 1))
. (x
+ h)))
- (r
* (((
fdif (f,h))
. (k
+ 1))
. x))) by
A3,
A4,
Th3
.= (r
* ((((
fdif (f,h))
. (k
+ 1))
. (x
+ h))
- (((
fdif (f,h))
. (k
+ 1))
. x)))
.= (r
* ((
fD (((
fdif (f,h))
. (k
+ 1)),h))
. x)) by
A5,
Th3
.= (r
* (((
fdif (f,h))
. ((k
+ 1)
+ 1))
. x)) by
Def6;
hence thesis;
end;
A6:
X[
0 ]
proof
let x;
x
in
REAL by
XREAL_0:def 1;
then
A7: x
in (
dom (r
(#) f)) by
FUNCT_2:def 1;
(x
+ h)
in
REAL by
XREAL_0:def 1;
then
A8: (x
+ h)
in (
dom (r
(#) f)) by
FUNCT_2:def 1;
(((
fdif ((r
(#) f),h))
. (
0
+ 1))
. x)
= ((
fD (((
fdif ((r
(#) f),h))
.
0 ),h))
. x) by
Def6
.= ((
fD ((r
(#) f),h))
. x) by
Def6
.= (((r
(#) f)
. (x
+ h))
- ((r
(#) f)
. x)) by
Th3
.= ((r
* (f
. (x
+ h)))
- ((r
(#) f)
. x)) by
A8,
VALUED_1:def 5
.= ((r
* (f
. (x
+ h)))
- (r
* (f
. x))) by
A7,
VALUED_1:def 5
.= (r
* ((f
. (x
+ h))
- (f
. x)))
.= (r
* ((
fD (f,h))
. x)) by
Th3
.= (r
* ((
fD (((
fdif (f,h))
.
0 ),h))
. x)) by
Def6
.= (r
* (((
fdif (f,h))
. (
0
+ 1))
. x)) by
Def6;
hence thesis;
end;
for n holds
X[n] from
NAT_1:sch 2(
A6,
A1);
hence thesis;
end;
theorem ::
DIFF_1:8
Th8: (((
fdif ((f1
+ f2),h))
. (n
+ 1))
. x)
= ((((
fdif (f1,h))
. (n
+ 1))
. x)
+ (((
fdif (f2,h))
. (n
+ 1))
. x))
proof
defpred
X[
Nat] means for x holds (((
fdif ((f1
+ f2),h))
. ($1
+ 1))
. x)
= ((((
fdif (f1,h))
. ($1
+ 1))
. x)
+ (((
fdif (f2,h))
. ($1
+ 1))
. x));
A1: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A2: for x holds (((
fdif ((f1
+ f2),h))
. (k
+ 1))
. x)
= ((((
fdif (f1,h))
. (k
+ 1))
. x)
+ (((
fdif (f2,h))
. (k
+ 1))
. x));
let x;
A3: (((
fdif ((f1
+ f2),h))
. (k
+ 1))
. x)
= ((((
fdif (f1,h))
. (k
+ 1))
. x)
+ (((
fdif (f2,h))
. (k
+ 1))
. x)) & (((
fdif ((f1
+ f2),h))
. (k
+ 1))
. (x
+ h))
= ((((
fdif (f1,h))
. (k
+ 1))
. (x
+ h))
+ (((
fdif (f2,h))
. (k
+ 1))
. (x
+ h))) by
A2;
A4: ((
fdif ((f1
+ f2),h))
. (k
+ 1)) is
Function of
REAL ,
REAL by
Th2;
A5: ((
fdif (f2,h))
. (k
+ 1)) is
Function of
REAL ,
REAL by
Th2;
A6: ((
fdif (f1,h))
. (k
+ 1)) is
Function of
REAL ,
REAL by
Th2;
(((
fdif ((f1
+ f2),h))
. ((k
+ 1)
+ 1))
. x)
= ((
fD (((
fdif ((f1
+ f2),h))
. (k
+ 1)),h))
. x) by
Def6
.= ((((
fdif ((f1
+ f2),h))
. (k
+ 1))
. (x
+ h))
- (((
fdif ((f1
+ f2),h))
. (k
+ 1))
. x)) by
A4,
Th3
.= (((((
fdif (f1,h))
. (k
+ 1))
. (x
+ h))
- (((
fdif (f1,h))
. (k
+ 1))
. x))
+ ((((
fdif (f2,h))
. (k
+ 1))
. (x
+ h))
- (((
fdif (f2,h))
. (k
+ 1))
. x))) by
A3
.= (((
fD (((
fdif (f1,h))
. (k
+ 1)),h))
. x)
+ ((((
fdif (f2,h))
. (k
+ 1))
. (x
+ h))
- (((
fdif (f2,h))
. (k
+ 1))
. x))) by
A6,
Th3
.= (((
fD (((
fdif (f1,h))
. (k
+ 1)),h))
. x)
+ ((
fD (((
fdif (f2,h))
. (k
+ 1)),h))
. x)) by
A5,
Th3
.= ((((
fdif (f1,h))
. ((k
+ 1)
+ 1))
. x)
+ ((
fD (((
fdif (f2,h))
. (k
+ 1)),h))
. x)) by
Def6
.= ((((
fdif (f1,h))
. ((k
+ 1)
+ 1))
. x)
+ (((
fdif (f2,h))
. ((k
+ 1)
+ 1))
. x)) by
Def6;
hence thesis;
end;
A7:
X[
0 ]
proof
let x;
reconsider xx = x, h as
Element of
REAL by
XREAL_0:def 1;
(((
fdif ((f1
+ f2),h))
. (
0
+ 1))
. x)
= ((
fD (((
fdif ((f1
+ f2),h))
.
0 ),h))
. x) by
Def6
.= ((
fD ((f1
+ f2),h))
. x) by
Def6
.= (((f1
+ f2)
. (x
+ h))
- ((f1
+ f2)
. x)) by
Th3
.= (((f1
. (xx
+ h))
+ (f2
. (xx
+ h)))
- ((f1
+ f2)
. xx)) by
VALUED_1: 1
.= (((f1
. (x
+ h))
+ (f2
. (x
+ h)))
- ((f1
. x)
+ (f2
. x))) by
VALUED_1: 1
.= (((f1
. (x
+ h))
- (f1
. x))
+ ((f2
. (x
+ h))
- (f2
. x)))
.= (((
fD (f1,h))
. x)
+ ((f2
. (x
+ h))
- (f2
. x))) by
Th3
.= (((
fD (f1,h))
. x)
+ ((
fD (f2,h))
. x)) by
Th3
.= (((
fD (((
fdif (f1,h))
.
0 ),h))
. x)
+ ((
fD (f2,h))
. x)) by
Def6
.= (((
fD (((
fdif (f1,h))
.
0 ),h))
. x)
+ ((
fD (((
fdif (f2,h))
.
0 ),h))
. x)) by
Def6
.= ((((
fdif (f1,h))
. (
0
+ 1))
. x)
+ ((
fD (((
fdif (f2,h))
.
0 ),h))
. x)) by
Def6
.= ((((
fdif (f1,h))
. (
0
+ 1))
. x)
+ (((
fdif (f2,h))
. (
0
+ 1))
. x)) by
Def6;
hence thesis;
end;
for n holds
X[n] from
NAT_1:sch 2(
A7,
A1);
hence thesis;
end;
theorem ::
DIFF_1:9
(((
fdif ((f1
- f2),h))
. (n
+ 1))
. x)
= ((((
fdif (f1,h))
. (n
+ 1))
. x)
- (((
fdif (f2,h))
. (n
+ 1))
. x))
proof
defpred
X[
Nat] means for x holds (((
fdif ((f1
- f2),h))
. ($1
+ 1))
. x)
= ((((
fdif (f1,h))
. ($1
+ 1))
. x)
- (((
fdif (f2,h))
. ($1
+ 1))
. x));
A1:
X[
0 ]
proof
let x;
x
in
REAL by
XREAL_0:def 1;
then x
in (
dom f1) & x
in (
dom f2) by
FUNCT_2:def 1;
then x
in ((
dom f1)
/\ (
dom f2)) by
XBOOLE_0:def 4;
then
A2: x
in (
dom (f1
- f2)) by
VALUED_1: 12;
(x
+ h)
in
REAL by
XREAL_0:def 1;
then (x
+ h)
in (
dom f1) & (x
+ h)
in (
dom f2) by
FUNCT_2:def 1;
then (x
+ h)
in ((
dom f1)
/\ (
dom f2)) by
XBOOLE_0:def 4;
then
A3: (x
+ h)
in (
dom (f1
- f2)) by
VALUED_1: 12;
(((
fdif ((f1
- f2),h))
. (
0
+ 1))
. x)
= ((
fD (((
fdif ((f1
- f2),h))
.
0 ),h))
. x) by
Def6
.= ((
fD ((f1
- f2),h))
. x) by
Def6
.= (((f1
- f2)
. (x
+ h))
- ((f1
- f2)
. x)) by
Th3
.= (((f1
. (x
+ h))
- (f2
. (x
+ h)))
- ((f1
- f2)
. x)) by
A3,
VALUED_1: 13
.= (((f1
. (x
+ h))
- (f2
. (x
+ h)))
- ((f1
. x)
- (f2
. x))) by
A2,
VALUED_1: 13
.= (((f1
. (x
+ h))
- (f1
. x))
- ((f2
. (x
+ h))
- (f2
. x)))
.= (((
fD (f1,h))
. x)
- ((f2
. (x
+ h))
- (f2
. x))) by
Th3
.= (((
fD (f1,h))
. x)
- ((
fD (f2,h))
. x)) by
Th3
.= (((
fD (((
fdif (f1,h))
.
0 ),h))
. x)
- ((
fD (f2,h))
. x)) by
Def6
.= (((
fD (((
fdif (f1,h))
.
0 ),h))
. x)
- ((
fD (((
fdif (f2,h))
.
0 ),h))
. x)) by
Def6
.= ((((
fdif (f1,h))
. (
0
+ 1))
. x)
- ((
fD (((
fdif (f2,h))
.
0 ),h))
. x)) by
Def6
.= ((((
fdif (f1,h))
. (
0
+ 1))
. x)
- (((
fdif (f2,h))
. (
0
+ 1))
. x)) by
Def6;
hence thesis;
end;
A4: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A5: for x holds (((
fdif ((f1
- f2),h))
. (k
+ 1))
. x)
= ((((
fdif (f1,h))
. (k
+ 1))
. x)
- (((
fdif (f2,h))
. (k
+ 1))
. x));
let x;
A6: (((
fdif ((f1
- f2),h))
. (k
+ 1))
. x)
= ((((
fdif (f1,h))
. (k
+ 1))
. x)
- (((
fdif (f2,h))
. (k
+ 1))
. x)) & (((
fdif ((f1
- f2),h))
. (k
+ 1))
. (x
+ h))
= ((((
fdif (f1,h))
. (k
+ 1))
. (x
+ h))
- (((
fdif (f2,h))
. (k
+ 1))
. (x
+ h))) by
A5;
A7: ((
fdif ((f1
- f2),h))
. (k
+ 1)) is
Function of
REAL ,
REAL by
Th2;
A8: ((
fdif (f2,h))
. (k
+ 1)) is
Function of
REAL ,
REAL by
Th2;
A9: ((
fdif (f1,h))
. (k
+ 1)) is
Function of
REAL ,
REAL by
Th2;
(((
fdif ((f1
- f2),h))
. ((k
+ 1)
+ 1))
. x)
= ((
fD (((
fdif ((f1
- f2),h))
. (k
+ 1)),h))
. x) by
Def6
.= ((((
fdif ((f1
- f2),h))
. (k
+ 1))
. (x
+ h))
- (((
fdif ((f1
- f2),h))
. (k
+ 1))
. x)) by
A7,
Th3
.= (((((
fdif (f1,h))
. (k
+ 1))
. (x
+ h))
- (((
fdif (f1,h))
. (k
+ 1))
. x))
- ((((
fdif (f2,h))
. (k
+ 1))
. (x
+ h))
- (((
fdif (f2,h))
. (k
+ 1))
. x))) by
A6
.= (((
fD (((
fdif (f1,h))
. (k
+ 1)),h))
. x)
- ((((
fdif (f2,h))
. (k
+ 1))
. (x
+ h))
- (((
fdif (f2,h))
. (k
+ 1))
. x))) by
A9,
Th3
.= (((
fD (((
fdif (f1,h))
. (k
+ 1)),h))
. x)
- ((
fD (((
fdif (f2,h))
. (k
+ 1)),h))
. x)) by
A8,
Th3
.= ((((
fdif (f1,h))
. ((k
+ 1)
+ 1))
. x)
- ((
fD (((
fdif (f2,h))
. (k
+ 1)),h))
. x)) by
Def6
.= ((((
fdif (f1,h))
. ((k
+ 1)
+ 1))
. x)
- (((
fdif (f2,h))
. ((k
+ 1)
+ 1))
. x)) by
Def6;
hence thesis;
end;
for n holds
X[n] from
NAT_1:sch 2(
A1,
A4);
hence thesis;
end;
theorem ::
DIFF_1:10
(((
fdif (((r1
(#) f1)
+ (r2
(#) f2)),h))
. (n
+ 1))
. x)
= ((r1
* (((
fdif (f1,h))
. (n
+ 1))
. x))
+ (r2
* (((
fdif (f2,h))
. (n
+ 1))
. x)))
proof
set g1 = (r1
(#) f1);
set g2 = (r2
(#) f2);
(((
fdif (((r1
(#) f1)
+ (r2
(#) f2)),h))
. (n
+ 1))
. x)
= ((((
fdif (g1,h))
. (n
+ 1))
. x)
+ (((
fdif (g2,h))
. (n
+ 1))
. x)) by
Th8
.= ((r1
* (((
fdif (f1,h))
. (n
+ 1))
. x))
+ (((
fdif (g2,h))
. (n
+ 1))
. x)) by
Th7
.= ((r1
* (((
fdif (f1,h))
. (n
+ 1))
. x))
+ (r2
* (((
fdif (f2,h))
. (n
+ 1))
. x))) by
Th7;
hence thesis;
end;
theorem ::
DIFF_1:11
(((
fdif (f,h))
. 1)
. x)
= (((
Shift (f,h))
. x)
- (f
. x))
proof
set f1 = (
Shift (f,h));
(((
fdif (f,h))
. 1)
. x)
= (((
fdif (f,h))
. (
0
+ 1))
. x)
.= ((
fD (((
fdif (f,h))
.
0 ),h))
. x) by
Def6
.= ((
fD (f,h))
. x) by
Def6
.= ((f
. (x
+ h))
- (f
. x)) by
Th3
.= ((f1
. x)
- (f
. x)) by
Def2;
hence thesis;
end;
definition
let f be
PartFunc of
REAL ,
REAL ;
let h be
Real;
::
DIFF_1:def7
func
backward_difference (f,h) ->
Functional_Sequence of
REAL ,
REAL means
:
Def7: (it
.
0 )
= f & for n be
Nat holds (it
. (n
+ 1))
= (
bD ((it
. n),h));
existence
proof
reconsider fZ = f as
Element of (
PFuncs (
REAL ,
REAL )) by
PARTFUN1: 45;
defpred
R[
set,
set,
set] means ex g be
PartFunc of
REAL ,
REAL st $2
= g & $3
= (
bD (g,h));
A1: for n be
Nat holds for x be
Element of (
PFuncs (
REAL ,
REAL )) holds ex y be
Element of (
PFuncs (
REAL ,
REAL )) st
R[n, x, y]
proof
let n be
Nat;
let x be
Element of (
PFuncs (
REAL ,
REAL ));
reconsider x9 = x as
PartFunc of
REAL ,
REAL by
PARTFUN1: 46;
reconsider y = (
bD (x9,h)) as
Element of (
PFuncs (
REAL ,
REAL )) by
PARTFUN1: 45;
ex w be
PartFunc of
REAL ,
REAL st x
= w & y
= (
bD (w,h));
hence thesis;
end;
consider g be
sequence of (
PFuncs (
REAL ,
REAL )) such that
A2: (g
.
0 )
= fZ & for n be
Nat holds
R[n, (g
. n), (g
. (n
+ 1))] from
RECDEF_1:sch 2(
A1);
reconsider g as
Functional_Sequence of
REAL ,
REAL ;
take g;
thus (g
.
0 )
= f by
A2;
let i be
Nat;
R[i, (g
. i), (g
. (i
+ 1))] by
A2;
hence thesis;
end;
uniqueness
proof
let seq1,seq2 be
Functional_Sequence of
REAL ,
REAL ;
assume that
A3: (seq1
.
0 )
= f and
A4: for n be
Nat holds (seq1
. (n
+ 1))
= (
bD ((seq1
. n),h)) and
A5: (seq2
.
0 )
= f and
A6: for n be
Nat holds (seq2
. (n
+ 1))
= (
bD ((seq2
. n),h));
defpred
P[
Nat] means (seq1
. $1)
= (seq2
. $1);
A7: for k st
P[k] holds
P[(k
+ 1)]
proof
let k;
assume
A8:
P[k];
thus (seq1
. (k
+ 1))
= (
bD ((seq1
. k),h)) by
A4
.= (seq2
. (k
+ 1)) by
A6,
A8;
end;
A9:
P[
0 ] by
A3,
A5;
for n holds
P[n] from
NAT_1:sch 2(
A9,
A7);
then for n be
Element of
NAT holds
P[n];
hence seq1
= seq2 by
FUNCT_2: 63;
end;
end
notation
let f be
PartFunc of
REAL ,
REAL ;
let h be
Real;
synonym
bdif (f,h) for
backward_difference (f,h);
end
theorem ::
DIFF_1:12
Th12: for n be
Nat holds ((
bdif (f,h))
. n) is
Function of
REAL ,
REAL
proof
defpred
X[
Nat] means ((
bdif (f,h))
. $1) is
Function of
REAL ,
REAL ;
A1: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat;
assume ((
bdif (f,h))
. k) is
Function of
REAL ,
REAL ;
then (
bD (((
bdif (f,h))
. k),h)) is
Function of
REAL ,
REAL ;
hence thesis by
Def7;
end;
A2:
X[
0 ] by
Def7;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A2,
A1);
hence thesis;
end;
theorem ::
DIFF_1:13
f is
constant implies for x holds (((
bdif (f,h))
. (n
+ 1))
. x)
=
0
proof
assume
A1: f is
constant;
A2: for x holds ((f
. x)
- (f
. (x
- h)))
=
0
proof
let x;
(x
- h)
in
REAL by
XREAL_0:def 1;
then
A3: (x
- h)
in (
dom f) by
FUNCT_2:def 1;
x
in
REAL by
XREAL_0:def 1;
then x
in (
dom f) by
FUNCT_2:def 1;
then (f
. x)
= (f
. (x
- h)) by
A1,
A3,
FUNCT_1:def 10;
hence thesis;
end;
for x holds (((
bdif (f,h))
. (n
+ 1))
. x)
=
0
proof
defpred
X[
Nat] means for x holds (((
bdif (f,h))
. ($1
+ 1))
. x)
=
0 ;
A4: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A5: for x holds (((
bdif (f,h))
. (k
+ 1))
. x)
=
0 ;
let x;
A6: (((
bdif (f,h))
. (k
+ 1))
. (x
- h))
=
0 by
A5;
A7: ((
bdif (f,h))
. (k
+ 1)) is
Function of
REAL ,
REAL by
Th12;
(((
bdif (f,h))
. (k
+ 2))
. x)
= (((
bdif (f,h))
. ((k
+ 1)
+ 1))
. x)
.= ((
bD (((
bdif (f,h))
. (k
+ 1)),h))
. x) by
Def7
.= ((((
bdif (f,h))
. (k
+ 1))
. x)
- (((
bdif (f,h))
. (k
+ 1))
. (x
- h))) by
A7,
Th4
.=
0 by
A5,
A6;
hence thesis;
end;
A8:
X[
0 ]
proof
let x;
thus (((
bdif (f,h))
. (
0
+ 1))
. x)
= ((
bD (((
bdif (f,h))
.
0 ),h))
. x) by
Def7
.= ((
bD (f,h))
. x) by
Def7
.= ((f
. x)
- (f
. (x
- h))) by
Th4
.=
0 by
A2;
end;
for n holds
X[n] from
NAT_1:sch 2(
A8,
A4);
hence thesis;
end;
hence thesis;
end;
theorem ::
DIFF_1:14
Th14: (((
bdif ((r
(#) f),h))
. (n
+ 1))
. x)
= (r
* (((
bdif (f,h))
. (n
+ 1))
. x))
proof
defpred
X[
Nat] means for x holds (((
bdif ((r
(#) f),h))
. ($1
+ 1))
. x)
= (r
* (((
bdif (f,h))
. ($1
+ 1))
. x));
A1: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A2: for x holds (((
bdif ((r
(#) f),h))
. (k
+ 1))
. x)
= (r
* (((
bdif (f,h))
. (k
+ 1))
. x));
let x;
A3: (((
bdif ((r
(#) f),h))
. (k
+ 1))
. x)
= (r
* (((
bdif (f,h))
. (k
+ 1))
. x)) & (((
bdif ((r
(#) f),h))
. (k
+ 1))
. (x
- h))
= (r
* (((
bdif (f,h))
. (k
+ 1))
. (x
- h))) by
A2;
A4: ((
bdif ((r
(#) f),h))
. (k
+ 1)) is
Function of
REAL ,
REAL by
Th12;
A5: ((
bdif (f,h))
. (k
+ 1)) is
Function of
REAL ,
REAL by
Th12;
(((
bdif ((r
(#) f),h))
. ((k
+ 1)
+ 1))
. x)
= ((
bD (((
bdif ((r
(#) f),h))
. (k
+ 1)),h))
. x) by
Def7
.= ((((
bdif ((r
(#) f),h))
. (k
+ 1))
. x)
- (((
bdif ((r
(#) f),h))
. (k
+ 1))
. (x
- h))) by
A4,
Th4
.= (r
* ((((
bdif (f,h))
. (k
+ 1))
. x)
- (((
bdif (f,h))
. (k
+ 1))
. (x
- h)))) by
A3
.= (r
* ((
bD (((
bdif (f,h))
. (k
+ 1)),h))
. x)) by
A5,
Th4
.= (r
* (((
bdif (f,h))
. ((k
+ 1)
+ 1))
. x)) by
Def7;
hence thesis;
end;
A6:
X[
0 ]
proof
let x;
x
in
REAL by
XREAL_0:def 1;
then
A7: x
in (
dom (r
(#) f)) by
FUNCT_2:def 1;
(x
- h)
in
REAL by
XREAL_0:def 1;
then
A8: (x
- h)
in (
dom (r
(#) f)) by
FUNCT_2:def 1;
(((
bdif ((r
(#) f),h))
. (
0
+ 1))
. x)
= ((
bD (((
bdif ((r
(#) f),h))
.
0 ),h))
. x) by
Def7
.= ((
bD ((r
(#) f),h))
. x) by
Def7
.= (((r
(#) f)
. x)
- ((r
(#) f)
. (x
- h))) by
Th4
.= (((r
(#) f)
. x)
- (r
* (f
. (x
- h)))) by
A8,
VALUED_1:def 5
.= ((r
* (f
. x))
- (r
* (f
. (x
- h)))) by
A7,
VALUED_1:def 5
.= (r
* ((f
. x)
- (f
. (x
- h))))
.= (r
* ((
bD (f,h))
. x)) by
Th4
.= (r
* ((
bD (((
bdif (f,h))
.
0 ),h))
. x)) by
Def7
.= (r
* (((
bdif (f,h))
. (
0
+ 1))
. x)) by
Def7;
hence thesis;
end;
for n holds
X[n] from
NAT_1:sch 2(
A6,
A1);
hence thesis;
end;
theorem ::
DIFF_1:15
Th15: (((
bdif ((f1
+ f2),h))
. (n
+ 1))
. x)
= ((((
bdif (f1,h))
. (n
+ 1))
. x)
+ (((
bdif (f2,h))
. (n
+ 1))
. x))
proof
defpred
X[
Nat] means for x holds (((
bdif ((f1
+ f2),h))
. ($1
+ 1))
. x)
= ((((
bdif (f1,h))
. ($1
+ 1))
. x)
+ (((
bdif (f2,h))
. ($1
+ 1))
. x));
A1: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A2: for x holds (((
bdif ((f1
+ f2),h))
. (k
+ 1))
. x)
= ((((
bdif (f1,h))
. (k
+ 1))
. x)
+ (((
bdif (f2,h))
. (k
+ 1))
. x));
let x;
A3: (((
bdif ((f1
+ f2),h))
. (k
+ 1))
. x)
= ((((
bdif (f1,h))
. (k
+ 1))
. x)
+ (((
bdif (f2,h))
. (k
+ 1))
. x)) & (((
bdif ((f1
+ f2),h))
. (k
+ 1))
. (x
- h))
= ((((
bdif (f1,h))
. (k
+ 1))
. (x
- h))
+ (((
bdif (f2,h))
. (k
+ 1))
. (x
- h))) by
A2;
A4: ((
bdif ((f1
+ f2),h))
. (k
+ 1)) is
Function of
REAL ,
REAL by
Th12;
A5: ((
bdif (f2,h))
. (k
+ 1)) is
Function of
REAL ,
REAL by
Th12;
A6: ((
bdif (f1,h))
. (k
+ 1)) is
Function of
REAL ,
REAL by
Th12;
(((
bdif ((f1
+ f2),h))
. ((k
+ 1)
+ 1))
. x)
= ((
bD (((
bdif ((f1
+ f2),h))
. (k
+ 1)),h))
. x) by
Def7
.= ((((
bdif ((f1
+ f2),h))
. (k
+ 1))
. x)
- (((
bdif ((f1
+ f2),h))
. (k
+ 1))
. (x
- h))) by
A4,
Th4
.= (((((
bdif (f1,h))
. (k
+ 1))
. x)
- (((
bdif (f1,h))
. (k
+ 1))
. (x
- h)))
+ ((((
bdif (f2,h))
. (k
+ 1))
. x)
- (((
bdif (f2,h))
. (k
+ 1))
. (x
- h)))) by
A3
.= (((
bD (((
bdif (f1,h))
. (k
+ 1)),h))
. x)
+ ((((
bdif (f2,h))
. (k
+ 1))
. x)
- (((
bdif (f2,h))
. (k
+ 1))
. (x
- h)))) by
A6,
Th4
.= (((
bD (((
bdif (f1,h))
. (k
+ 1)),h))
. x)
+ ((
bD (((
bdif (f2,h))
. (k
+ 1)),h))
. x)) by
A5,
Th4
.= ((((
bdif (f1,h))
. ((k
+ 1)
+ 1))
. x)
+ ((
bD (((
bdif (f2,h))
. (k
+ 1)),h))
. x)) by
Def7
.= ((((
bdif (f1,h))
. ((k
+ 1)
+ 1))
. x)
+ (((
bdif (f2,h))
. ((k
+ 1)
+ 1))
. x)) by
Def7;
hence thesis;
end;
A7:
X[
0 ]
proof
let x;
reconsider xx = x, h as
Element of
REAL by
XREAL_0:def 1;
(((
bdif ((f1
+ f2),h))
. (
0
+ 1))
. x)
= ((
bD (((
bdif ((f1
+ f2),h))
.
0 ),h))
. x) by
Def7
.= ((
bD ((f1
+ f2),h))
. x) by
Def7
.= (((f1
+ f2)
. x)
- ((f1
+ f2)
. (x
- h))) by
Th4
.= (((f1
. xx)
+ (f2
. xx))
- ((f1
+ f2)
. (xx
- h))) by
VALUED_1: 1
.= (((f1
. x)
+ (f2
. x))
- ((f1
. (x
- h))
+ (f2
. (x
- h)))) by
VALUED_1: 1
.= (((f1
. x)
- (f1
. (x
- h)))
+ ((f2
. x)
- (f2
. (x
- h))))
.= (((
bD (f1,h))
. x)
+ ((f2
. x)
- (f2
. (x
- h)))) by
Th4
.= (((
bD (f1,h))
. x)
+ ((
bD (f2,h))
. x)) by
Th4
.= (((
bD (((
bdif (f1,h))
.
0 ),h))
. x)
+ ((
bD (f2,h))
. x)) by
Def7
.= (((
bD (((
bdif (f1,h))
.
0 ),h))
. x)
+ ((
bD (((
bdif (f2,h))
.
0 ),h))
. x)) by
Def7
.= ((((
bdif (f1,h))
. (
0
+ 1))
. x)
+ ((
bD (((
bdif (f2,h))
.
0 ),h))
. x)) by
Def7
.= ((((
bdif (f1,h))
. (
0
+ 1))
. x)
+ (((
bdif (f2,h))
. (
0
+ 1))
. x)) by
Def7;
hence thesis;
end;
for n holds
X[n] from
NAT_1:sch 2(
A7,
A1);
hence thesis;
end;
theorem ::
DIFF_1:16
(((
bdif ((f1
- f2),h))
. (n
+ 1))
. x)
= ((((
bdif (f1,h))
. (n
+ 1))
. x)
- (((
bdif (f2,h))
. (n
+ 1))
. x))
proof
defpred
X[
Nat] means for x holds (((
bdif ((f1
- f2),h))
. ($1
+ 1))
. x)
= ((((
bdif (f1,h))
. ($1
+ 1))
. x)
- (((
bdif (f2,h))
. ($1
+ 1))
. x));
A1:
X[
0 ]
proof
let x;
x
in
REAL by
XREAL_0:def 1;
then x
in (
dom f1) & x
in (
dom f2) by
FUNCT_2:def 1;
then x
in ((
dom f1)
/\ (
dom f2)) by
XBOOLE_0:def 4;
then
A2: x
in (
dom (f1
- f2)) by
VALUED_1: 12;
(x
- h)
in
REAL by
XREAL_0:def 1;
then (x
- h)
in (
dom f1) & (x
- h)
in (
dom f2) by
FUNCT_2:def 1;
then (x
- h)
in ((
dom f1)
/\ (
dom f2)) by
XBOOLE_0:def 4;
then
A3: (x
- h)
in (
dom (f1
- f2)) by
VALUED_1: 12;
(((
bdif ((f1
- f2),h))
. (
0
+ 1))
. x)
= ((
bD (((
bdif ((f1
- f2),h))
.
0 ),h))
. x) by
Def7
.= ((
bD ((f1
- f2),h))
. x) by
Def7
.= (((f1
- f2)
. x)
- ((f1
- f2)
. (x
- h))) by
Th4
.= (((f1
. x)
- (f2
. x))
- ((f1
- f2)
. (x
- h))) by
A2,
VALUED_1: 13
.= (((f1
. x)
- (f2
. x))
- ((f1
. (x
- h))
- (f2
. (x
- h)))) by
A3,
VALUED_1: 13
.= (((f1
. x)
- (f1
. (x
- h)))
- ((f2
. x)
- (f2
. (x
- h))))
.= (((
bD (f1,h))
. x)
- ((f2
. x)
- (f2
. (x
- h)))) by
Th4
.= (((
bD (f1,h))
. x)
- ((
bD (f2,h))
. x)) by
Th4
.= (((
bD (((
bdif (f1,h))
.
0 ),h))
. x)
- ((
bD (f2,h))
. x)) by
Def7
.= (((
bD (((
bdif (f1,h))
.
0 ),h))
. x)
- ((
bD (((
bdif (f2,h))
.
0 ),h))
. x)) by
Def7
.= ((((
bdif (f1,h))
. (
0
+ 1))
. x)
- ((
bD (((
bdif (f2,h))
.
0 ),h))
. x)) by
Def7
.= ((((
bdif (f1,h))
. (
0
+ 1))
. x)
- (((
bdif (f2,h))
. (
0
+ 1))
. x)) by
Def7;
hence thesis;
end;
A4: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A5: for x holds (((
bdif ((f1
- f2),h))
. (k
+ 1))
. x)
= ((((
bdif (f1,h))
. (k
+ 1))
. x)
- (((
bdif (f2,h))
. (k
+ 1))
. x));
let x;
A6: (((
bdif ((f1
- f2),h))
. (k
+ 1))
. x)
= ((((
bdif (f1,h))
. (k
+ 1))
. x)
- (((
bdif (f2,h))
. (k
+ 1))
. x)) & (((
bdif ((f1
- f2),h))
. (k
+ 1))
. (x
- h))
= ((((
bdif (f1,h))
. (k
+ 1))
. (x
- h))
- (((
bdif (f2,h))
. (k
+ 1))
. (x
- h))) by
A5;
A7: ((
bdif ((f1
- f2),h))
. (k
+ 1)) is
Function of
REAL ,
REAL by
Th12;
A8: ((
bdif (f2,h))
. (k
+ 1)) is
Function of
REAL ,
REAL by
Th12;
A9: ((
bdif (f1,h))
. (k
+ 1)) is
Function of
REAL ,
REAL by
Th12;
(((
bdif ((f1
- f2),h))
. ((k
+ 1)
+ 1))
. x)
= ((
bD (((
bdif ((f1
- f2),h))
. (k
+ 1)),h))
. x) by
Def7
.= ((((
bdif ((f1
- f2),h))
. (k
+ 1))
. x)
- (((
bdif ((f1
- f2),h))
. (k
+ 1))
. (x
- h))) by
A7,
Th4
.= (((((
bdif (f1,h))
. (k
+ 1))
. x)
- (((
bdif (f1,h))
. (k
+ 1))
. (x
- h)))
- ((((
bdif (f2,h))
. (k
+ 1))
. x)
- (((
bdif (f2,h))
. (k
+ 1))
. (x
- h)))) by
A6
.= (((
bD (((
bdif (f1,h))
. (k
+ 1)),h))
. x)
- ((((
bdif (f2,h))
. (k
+ 1))
. x)
- (((
bdif (f2,h))
. (k
+ 1))
. (x
- h)))) by
A9,
Th4
.= (((
bD (((
bdif (f1,h))
. (k
+ 1)),h))
. x)
- ((
bD (((
bdif (f2,h))
. (k
+ 1)),h))
. x)) by
A8,
Th4
.= ((((
bdif (f1,h))
. ((k
+ 1)
+ 1))
. x)
- ((
bD (((
bdif (f2,h))
. (k
+ 1)),h))
. x)) by
Def7
.= ((((
bdif (f1,h))
. ((k
+ 1)
+ 1))
. x)
- (((
bdif (f2,h))
. ((k
+ 1)
+ 1))
. x)) by
Def7;
hence thesis;
end;
for n holds
X[n] from
NAT_1:sch 2(
A1,
A4);
hence thesis;
end;
theorem ::
DIFF_1:17
(((
bdif (((r1
(#) f1)
+ (r2
(#) f2)),h))
. (n
+ 1))
. x)
= ((r1
* (((
bdif (f1,h))
. (n
+ 1))
. x))
+ (r2
* (((
bdif (f2,h))
. (n
+ 1))
. x)))
proof
set g1 = (r1
(#) f1);
set g2 = (r2
(#) f2);
(((
bdif (((r1
(#) f1)
+ (r2
(#) f2)),h))
. (n
+ 1))
. x)
= ((((
bdif (g1,h))
. (n
+ 1))
. x)
+ (((
bdif (g2,h))
. (n
+ 1))
. x)) by
Th15
.= ((r1
* (((
bdif (f1,h))
. (n
+ 1))
. x))
+ (((
bdif (g2,h))
. (n
+ 1))
. x)) by
Th14
.= ((r1
* (((
bdif (f1,h))
. (n
+ 1))
. x))
+ (r2
* (((
bdif (f2,h))
. (n
+ 1))
. x))) by
Th14;
hence thesis;
end;
theorem ::
DIFF_1:18
(((
bdif (f,h))
. 1)
. x)
= ((f
. x)
- ((
Shift (f,(
- h)))
. x))
proof
set f2 = (
Shift (f,(
- h)));
(((
bdif (f,h))
. 1)
. x)
= (((
bdif (f,h))
. (
0
+ 1))
. x)
.= ((
bD (((
bdif (f,h))
.
0 ),h))
. x) by
Def7
.= ((
bD (f,h))
. x) by
Def7
.= ((f
. x)
- (f
. (x
- h))) by
Th4
.= ((f
. x)
- (f
. (x
+ (
- h))))
.= ((f
. x)
- (f2
. x)) by
Def2;
hence thesis;
end;
definition
let f be
PartFunc of
REAL ,
REAL ;
let h be
Real;
::
DIFF_1:def8
func
central_difference (f,h) ->
Functional_Sequence of
REAL ,
REAL means
:
Def8: (it
.
0 )
= f & for n be
Nat holds (it
. (n
+ 1))
= (
cD ((it
. n),h));
existence
proof
reconsider fZ = f as
Element of (
PFuncs (
REAL ,
REAL )) by
PARTFUN1: 45;
defpred
R[
set,
set,
set] means ex g be
PartFunc of
REAL ,
REAL st $2
= g & $3
= (
cD (g,h));
A1: for n be
Nat holds for x be
Element of (
PFuncs (
REAL ,
REAL )) holds ex y be
Element of (
PFuncs (
REAL ,
REAL )) st
R[n, x, y]
proof
let n be
Nat;
let x be
Element of (
PFuncs (
REAL ,
REAL ));
reconsider x9 = x as
PartFunc of
REAL ,
REAL by
PARTFUN1: 46;
reconsider y = (
cD (x9,h)) as
Element of (
PFuncs (
REAL ,
REAL )) by
PARTFUN1: 45;
ex w be
PartFunc of
REAL ,
REAL st x
= w & y
= (
cD (w,h));
hence thesis;
end;
consider g be
sequence of (
PFuncs (
REAL ,
REAL )) such that
A2: (g
.
0 )
= fZ & for n be
Nat holds
R[n, (g
. n), (g
. (n
+ 1))] from
RECDEF_1:sch 2(
A1);
reconsider g as
Functional_Sequence of
REAL ,
REAL ;
take g;
thus (g
.
0 )
= f by
A2;
let i be
Nat;
R[i, (g
. i), (g
. (i
+ 1))] by
A2;
hence thesis;
end;
uniqueness
proof
let seq1,seq2 be
Functional_Sequence of
REAL ,
REAL ;
assume that
A3: (seq1
.
0 )
= f and
A4: for n be
Nat holds (seq1
. (n
+ 1))
= (
cD ((seq1
. n),h)) and
A5: (seq2
.
0 )
= f and
A6: for n be
Nat holds (seq2
. (n
+ 1))
= (
cD ((seq2
. n),h));
defpred
P[
Nat] means (seq1
. $1)
= (seq2
. $1);
A7: for k st
P[k] holds
P[(k
+ 1)]
proof
let k;
assume
A8:
P[k];
thus (seq1
. (k
+ 1))
= (
cD ((seq1
. k),h)) by
A4
.= (seq2
. (k
+ 1)) by
A6,
A8;
end;
A9:
P[
0 ] by
A3,
A5;
for n holds
P[n] from
NAT_1:sch 2(
A9,
A7);
then for n be
Element of
NAT holds
P[n];
hence seq1
= seq2 by
FUNCT_2: 63;
end;
end
notation
let f be
PartFunc of
REAL ,
REAL ;
let h be
Real;
synonym
cdif (f,h) for
central_difference (f,h);
end
theorem ::
DIFF_1:19
Th19: for n be
Nat holds ((
cdif (f,h))
. n) is
Function of
REAL ,
REAL
proof
defpred
X[
Nat] means ((
cdif (f,h))
. $1) is
Function of
REAL ,
REAL ;
A1: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat;
assume ((
cdif (f,h))
. k) is
Function of
REAL ,
REAL ;
then (
cD (((
cdif (f,h))
. k),h)) is
Function of
REAL ,
REAL ;
hence thesis by
Def8;
end;
A2:
X[
0 ] by
Def8;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A2,
A1);
hence thesis;
end;
theorem ::
DIFF_1:20
f is
constant implies for x holds (((
cdif (f,h))
. (n
+ 1))
. x)
=
0
proof
defpred
X[
Nat] means for x holds (((
cdif (f,h))
. ($1
+ 1))
. x)
=
0 ;
assume
A1: f is
constant;
A2: for x holds ((f
. (x
+ (h
/ 2)))
- (f
. (x
- (h
/ 2))))
=
0
proof
let x;
(x
- (h
/ 2))
in
REAL by
XREAL_0:def 1;
then
A3: (x
- (h
/ 2))
in (
dom f) by
FUNCT_2:def 1;
(x
+ (h
/ 2))
in
REAL by
XREAL_0:def 1;
then (x
+ (h
/ 2))
in (
dom f) by
FUNCT_2:def 1;
then (f
. (x
+ (h
/ 2)))
= (f
. (x
- (h
/ 2))) by
A1,
A3,
FUNCT_1:def 10;
hence thesis;
end;
A4:
X[
0 ]
proof
let x;
thus (((
cdif (f,h))
. (
0
+ 1))
. x)
= ((
cD (((
cdif (f,h))
.
0 ),h))
. x) by
Def8
.= ((
cD (f,h))
. x) by
Def8
.= ((f
. (x
+ (h
/ 2)))
- (f
. (x
- (h
/ 2)))) by
Th5
.=
0 by
A2;
end;
A5: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A6: for x holds (((
cdif (f,h))
. (k
+ 1))
. x)
=
0 ;
let x;
A7: (((
cdif (f,h))
. (k
+ 1))
. (x
- (h
/ 2)))
=
0 by
A6;
A8: ((
cdif (f,h))
. (k
+ 1)) is
Function of
REAL ,
REAL by
Th19;
(((
cdif (f,h))
. (k
+ 2))
. x)
= (((
cdif (f,h))
. ((k
+ 1)
+ 1))
. x)
.= ((
cD (((
cdif (f,h))
. (k
+ 1)),h))
. x) by
Def8
.= ((((
cdif (f,h))
. (k
+ 1))
. (x
+ (h
/ 2)))
- (((
cdif (f,h))
. (k
+ 1))
. (x
- (h
/ 2)))) by
A8,
Th5
.=
0 by
A6,
A7;
hence thesis;
end;
for n holds
X[n] from
NAT_1:sch 2(
A4,
A5);
hence thesis;
end;
theorem ::
DIFF_1:21
Th21: (((
cdif ((r
(#) f),h))
. (n
+ 1))
. x)
= (r
* (((
cdif (f,h))
. (n
+ 1))
. x))
proof
defpred
X[
Nat] means for x holds (((
cdif ((r
(#) f),h))
. ($1
+ 1))
. x)
= (r
* (((
cdif (f,h))
. ($1
+ 1))
. x));
A1: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A2: for x holds (((
cdif ((r
(#) f),h))
. (k
+ 1))
. x)
= (r
* (((
cdif (f,h))
. (k
+ 1))
. x));
let x;
A3: (((
cdif ((r
(#) f),h))
. (k
+ 1))
. (x
- (h
/ 2)))
= (r
* (((
cdif (f,h))
. (k
+ 1))
. (x
- (h
/ 2)))) & (((
cdif ((r
(#) f),h))
. (k
+ 1))
. (x
+ (h
/ 2)))
= (r
* (((
cdif (f,h))
. (k
+ 1))
. (x
+ (h
/ 2)))) by
A2;
A4: ((
cdif ((r
(#) f),h))
. (k
+ 1)) is
Function of
REAL ,
REAL by
Th19;
A5: ((
cdif (f,h))
. (k
+ 1)) is
Function of
REAL ,
REAL by
Th19;
(((
cdif ((r
(#) f),h))
. ((k
+ 1)
+ 1))
. x)
= ((
cD (((
cdif ((r
(#) f),h))
. (k
+ 1)),h))
. x) by
Def8
.= ((((
cdif ((r
(#) f),h))
. (k
+ 1))
. (x
+ (h
/ 2)))
- (((
cdif ((r
(#) f),h))
. (k
+ 1))
. (x
- (h
/ 2)))) by
A4,
Th5
.= (r
* ((((
cdif (f,h))
. (k
+ 1))
. (x
+ (h
/ 2)))
- (((
cdif (f,h))
. (k
+ 1))
. (x
- (h
/ 2))))) by
A3
.= (r
* ((
cD (((
cdif (f,h))
. (k
+ 1)),h))
. x)) by
A5,
Th5
.= (r
* (((
cdif (f,h))
. ((k
+ 1)
+ 1))
. x)) by
Def8;
hence thesis;
end;
A6:
X[
0 ]
proof
let x;
(x
+ (h
/ 2))
in
REAL by
XREAL_0:def 1;
then
A7: (x
+ (h
/ 2))
in (
dom (r
(#) f)) by
FUNCT_2:def 1;
(x
- (h
/ 2))
in
REAL by
XREAL_0:def 1;
then
A8: (x
- (h
/ 2))
in (
dom (r
(#) f)) by
FUNCT_2:def 1;
(((
cdif ((r
(#) f),h))
. (
0
+ 1))
. x)
= ((
cD (((
cdif ((r
(#) f),h))
.
0 ),h))
. x) by
Def8
.= ((
cD ((r
(#) f),h))
. x) by
Def8
.= (((r
(#) f)
. (x
+ (h
/ 2)))
- ((r
(#) f)
. (x
- (h
/ 2)))) by
Th5
.= ((r
* (f
. (x
+ (h
/ 2))))
- ((r
(#) f)
. (x
- (h
/ 2)))) by
A7,
VALUED_1:def 5
.= ((r
* (f
. (x
+ (h
/ 2))))
- (r
* (f
. (x
- (h
/ 2))))) by
A8,
VALUED_1:def 5
.= (r
* ((f
. (x
+ (h
/ 2)))
- (f
. (x
- (h
/ 2)))))
.= (r
* ((
cD (f,h))
. x)) by
Th5
.= (r
* ((
cD (((
cdif (f,h))
.
0 ),h))
. x)) by
Def8
.= (r
* (((
cdif (f,h))
. (
0
+ 1))
. x)) by
Def8;
hence thesis;
end;
for n holds
X[n] from
NAT_1:sch 2(
A6,
A1);
hence thesis;
end;
theorem ::
DIFF_1:22
Th22: (((
cdif ((f1
+ f2),h))
. (n
+ 1))
. x)
= ((((
cdif (f1,h))
. (n
+ 1))
. x)
+ (((
cdif (f2,h))
. (n
+ 1))
. x))
proof
defpred
X[
Nat] means for x holds (((
cdif ((f1
+ f2),h))
. ($1
+ 1))
. x)
= ((((
cdif (f1,h))
. ($1
+ 1))
. x)
+ (((
cdif (f2,h))
. ($1
+ 1))
. x));
A1: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A2: for x holds (((
cdif ((f1
+ f2),h))
. (k
+ 1))
. x)
= ((((
cdif (f1,h))
. (k
+ 1))
. x)
+ (((
cdif (f2,h))
. (k
+ 1))
. x));
let x;
A3: (((
cdif ((f1
+ f2),h))
. (k
+ 1))
. (x
- (h
/ 2)))
= ((((
cdif (f1,h))
. (k
+ 1))
. (x
- (h
/ 2)))
+ (((
cdif (f2,h))
. (k
+ 1))
. (x
- (h
/ 2)))) & (((
cdif ((f1
+ f2),h))
. (k
+ 1))
. (x
+ (h
/ 2)))
= ((((
cdif (f1,h))
. (k
+ 1))
. (x
+ (h
/ 2)))
+ (((
cdif (f2,h))
. (k
+ 1))
. (x
+ (h
/ 2)))) by
A2;
A4: ((
cdif ((f1
+ f2),h))
. (k
+ 1)) is
Function of
REAL ,
REAL by
Th19;
A5: ((
cdif (f2,h))
. (k
+ 1)) is
Function of
REAL ,
REAL by
Th19;
A6: ((
cdif (f1,h))
. (k
+ 1)) is
Function of
REAL ,
REAL by
Th19;
(((
cdif ((f1
+ f2),h))
. ((k
+ 1)
+ 1))
. x)
= ((
cD (((
cdif ((f1
+ f2),h))
. (k
+ 1)),h))
. x) by
Def8
.= ((((
cdif ((f1
+ f2),h))
. (k
+ 1))
. (x
+ (h
/ 2)))
- (((
cdif ((f1
+ f2),h))
. (k
+ 1))
. (x
- (h
/ 2)))) by
A4,
Th5
.= (((((
cdif (f1,h))
. (k
+ 1))
. (x
+ (h
/ 2)))
- (((
cdif (f1,h))
. (k
+ 1))
. (x
- (h
/ 2))))
+ ((((
cdif (f2,h))
. (k
+ 1))
. (x
+ (h
/ 2)))
- (((
cdif (f2,h))
. (k
+ 1))
. (x
- (h
/ 2))))) by
A3
.= (((
cD (((
cdif (f1,h))
. (k
+ 1)),h))
. x)
+ ((((
cdif (f2,h))
. (k
+ 1))
. (x
+ (h
/ 2)))
- (((
cdif (f2,h))
. (k
+ 1))
. (x
- (h
/ 2))))) by
A6,
Th5
.= (((
cD (((
cdif (f1,h))
. (k
+ 1)),h))
. x)
+ ((
cD (((
cdif (f2,h))
. (k
+ 1)),h))
. x)) by
A5,
Th5
.= ((((
cdif (f1,h))
. ((k
+ 1)
+ 1))
. x)
+ ((
cD (((
cdif (f2,h))
. (k
+ 1)),h))
. x)) by
Def8
.= ((((
cdif (f1,h))
. ((k
+ 1)
+ 1))
. x)
+ (((
cdif (f2,h))
. ((k
+ 1)
+ 1))
. x)) by
Def8;
hence thesis;
end;
A7:
X[
0 ]
proof
let x;
reconsider xx = x, hp = (h
/ 2) as
Element of
REAL by
XREAL_0:def 1;
(((
cdif ((f1
+ f2),h))
. (
0
+ 1))
. x)
= ((
cD (((
cdif ((f1
+ f2),h))
.
0 ),h))
. x) by
Def8
.= ((
cD ((f1
+ f2),h))
. x) by
Def8
.= (((f1
+ f2)
. (x
+ (h
/ 2)))
- ((f1
+ f2)
. (x
- (h
/ 2)))) by
Th5
.= (((f1
. (xx
+ (h
/ 2)))
+ (f2
. (xx
+ hp)))
- ((f1
+ f2)
. (xx
- hp))) by
VALUED_1: 1
.= (((f1
. (x
+ (h
/ 2)))
+ (f2
. (x
+ hp)))
- ((f1
. (x
- (h
/ 2)))
+ (f2
. (x
- hp)))) by
VALUED_1: 1
.= (((f1
. (x
+ (h
/ 2)))
- (f1
. (x
- (h
/ 2))))
+ ((f2
. (x
+ (h
/ 2)))
- (f2
. (x
- (h
/ 2)))))
.= (((
cD (f1,h))
. x)
+ ((f2
. (x
+ (h
/ 2)))
- (f2
. (x
- (h
/ 2))))) by
Th5
.= (((
cD (f1,h))
. x)
+ ((
cD (f2,h))
. x)) by
Th5
.= (((
cD (((
cdif (f1,h))
.
0 ),h))
. x)
+ ((
cD (f2,h))
. x)) by
Def8
.= (((
cD (((
cdif (f1,h))
.
0 ),h))
. x)
+ ((
cD (((
cdif (f2,h))
.
0 ),h))
. x)) by
Def8
.= ((((
cdif (f1,h))
. (
0
+ 1))
. x)
+ ((
cD (((
cdif (f2,h))
.
0 ),h))
. x)) by
Def8
.= ((((
cdif (f1,h))
. (
0
+ 1))
. x)
+ (((
cdif (f2,h))
. (
0
+ 1))
. x)) by
Def8;
hence thesis;
end;
for n holds
X[n] from
NAT_1:sch 2(
A7,
A1);
hence thesis;
end;
theorem ::
DIFF_1:23
(((
cdif ((f1
- f2),h))
. (n
+ 1))
. x)
= ((((
cdif (f1,h))
. (n
+ 1))
. x)
- (((
cdif (f2,h))
. (n
+ 1))
. x))
proof
defpred
X[
Nat] means for x holds (((
cdif ((f1
- f2),h))
. ($1
+ 1))
. x)
= ((((
cdif (f1,h))
. ($1
+ 1))
. x)
- (((
cdif (f2,h))
. ($1
+ 1))
. x));
A1:
X[
0 ]
proof
let x;
(x
- (h
/ 2))
in
REAL by
XREAL_0:def 1;
then (x
- (h
/ 2))
in (
dom f1) & (x
- (h
/ 2))
in (
dom f2) by
FUNCT_2:def 1;
then (x
- (h
/ 2))
in ((
dom f1)
/\ (
dom f2)) by
XBOOLE_0:def 4;
then
A2: (x
- (h
/ 2))
in (
dom (f1
- f2)) by
VALUED_1: 12;
(x
+ (h
/ 2))
in
REAL by
XREAL_0:def 1;
then (x
+ (h
/ 2))
in (
dom f1) & (x
+ (h
/ 2))
in (
dom f2) by
FUNCT_2:def 1;
then (x
+ (h
/ 2))
in ((
dom f1)
/\ (
dom f2)) by
XBOOLE_0:def 4;
then
A3: (x
+ (h
/ 2))
in (
dom (f1
- f2)) by
VALUED_1: 12;
(((
cdif ((f1
- f2),h))
. (
0
+ 1))
. x)
= ((
cD (((
cdif ((f1
- f2),h))
.
0 ),h))
. x) by
Def8
.= ((
cD ((f1
- f2),h))
. x) by
Def8
.= (((f1
- f2)
. (x
+ (h
/ 2)))
- ((f1
- f2)
. (x
- (h
/ 2)))) by
Th5
.= (((f1
. (x
+ (h
/ 2)))
- (f2
. (x
+ (h
/ 2))))
- ((f1
- f2)
. (x
- (h
/ 2)))) by
A3,
VALUED_1: 13
.= (((f1
. (x
+ (h
/ 2)))
- (f2
. (x
+ (h
/ 2))))
- ((f1
. (x
- (h
/ 2)))
- (f2
. (x
- (h
/ 2))))) by
A2,
VALUED_1: 13
.= (((f1
. (x
+ (h
/ 2)))
- (f1
. (x
- (h
/ 2))))
- ((f2
. (x
+ (h
/ 2)))
- (f2
. (x
- (h
/ 2)))))
.= (((
cD (f1,h))
. x)
- ((f2
. (x
+ (h
/ 2)))
- (f2
. (x
- (h
/ 2))))) by
Th5
.= (((
cD (f1,h))
. x)
- ((
cD (f2,h))
. x)) by
Th5
.= (((
cD (((
cdif (f1,h))
.
0 ),h))
. x)
- ((
cD (f2,h))
. x)) by
Def8
.= (((
cD (((
cdif (f1,h))
.
0 ),h))
. x)
- ((
cD (((
cdif (f2,h))
.
0 ),h))
. x)) by
Def8
.= ((((
cdif (f1,h))
. (
0
+ 1))
. x)
- ((
cD (((
cdif (f2,h))
.
0 ),h))
. x)) by
Def8
.= ((((
cdif (f1,h))
. (
0
+ 1))
. x)
- (((
cdif (f2,h))
. (
0
+ 1))
. x)) by
Def8;
hence thesis;
end;
A4: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A5: for x holds (((
cdif ((f1
- f2),h))
. (k
+ 1))
. x)
= ((((
cdif (f1,h))
. (k
+ 1))
. x)
- (((
cdif (f2,h))
. (k
+ 1))
. x));
let x;
A6: (((
cdif ((f1
- f2),h))
. (k
+ 1))
. (x
- (h
/ 2)))
= ((((
cdif (f1,h))
. (k
+ 1))
. (x
- (h
/ 2)))
- (((
cdif (f2,h))
. (k
+ 1))
. (x
- (h
/ 2)))) & (((
cdif ((f1
- f2),h))
. (k
+ 1))
. (x
+ (h
/ 2)))
= ((((
cdif (f1,h))
. (k
+ 1))
. (x
+ (h
/ 2)))
- (((
cdif (f2,h))
. (k
+ 1))
. (x
+ (h
/ 2)))) by
A5;
A7: ((
cdif ((f1
- f2),h))
. (k
+ 1)) is
Function of
REAL ,
REAL by
Th19;
A8: ((
cdif (f2,h))
. (k
+ 1)) is
Function of
REAL ,
REAL by
Th19;
A9: ((
cdif (f1,h))
. (k
+ 1)) is
Function of
REAL ,
REAL by
Th19;
(((
cdif ((f1
- f2),h))
. ((k
+ 1)
+ 1))
. x)
= ((
cD (((
cdif ((f1
- f2),h))
. (k
+ 1)),h))
. x) by
Def8
.= ((((
cdif ((f1
- f2),h))
. (k
+ 1))
. (x
+ (h
/ 2)))
- (((
cdif ((f1
- f2),h))
. (k
+ 1))
. (x
- (h
/ 2)))) by
A7,
Th5
.= (((((
cdif (f1,h))
. (k
+ 1))
. (x
+ (h
/ 2)))
- (((
cdif (f1,h))
. (k
+ 1))
. (x
- (h
/ 2))))
- ((((
cdif (f2,h))
. (k
+ 1))
. (x
+ (h
/ 2)))
- (((
cdif (f2,h))
. (k
+ 1))
. (x
- (h
/ 2))))) by
A6
.= (((
cD (((
cdif (f1,h))
. (k
+ 1)),h))
. x)
- ((((
cdif (f2,h))
. (k
+ 1))
. (x
+ (h
/ 2)))
- (((
cdif (f2,h))
. (k
+ 1))
. (x
- (h
/ 2))))) by
A9,
Th5
.= (((
cD (((
cdif (f1,h))
. (k
+ 1)),h))
. x)
- ((
cD (((
cdif (f2,h))
. (k
+ 1)),h))
. x)) by
A8,
Th5
.= ((((
cdif (f1,h))
. ((k
+ 1)
+ 1))
. x)
- ((
cD (((
cdif (f2,h))
. (k
+ 1)),h))
. x)) by
Def8
.= ((((
cdif (f1,h))
. ((k
+ 1)
+ 1))
. x)
- (((
cdif (f2,h))
. ((k
+ 1)
+ 1))
. x)) by
Def8;
hence thesis;
end;
for n holds
X[n] from
NAT_1:sch 2(
A1,
A4);
hence thesis;
end;
theorem ::
DIFF_1:24
(((
cdif (((r1
(#) f1)
+ (r2
(#) f2)),h))
. (n
+ 1))
. x)
= ((r1
* (((
cdif (f1,h))
. (n
+ 1))
. x))
+ (r2
* (((
cdif (f2,h))
. (n
+ 1))
. x)))
proof
set g1 = (r1
(#) f1);
set g2 = (r2
(#) f2);
(((
cdif (((r1
(#) f1)
+ (r2
(#) f2)),h))
. (n
+ 1))
. x)
= ((((
cdif (g1,h))
. (n
+ 1))
. x)
+ (((
cdif (g2,h))
. (n
+ 1))
. x)) by
Th22
.= ((r1
* (((
cdif (f1,h))
. (n
+ 1))
. x))
+ (((
cdif (g2,h))
. (n
+ 1))
. x)) by
Th21
.= ((r1
* (((
cdif (f1,h))
. (n
+ 1))
. x))
+ (r2
* (((
cdif (f2,h))
. (n
+ 1))
. x))) by
Th21;
hence thesis;
end;
theorem ::
DIFF_1:25
(((
cdif (f,h))
. 1)
. x)
= (((
Shift (f,(h
/ 2)))
. x)
- ((
Shift (f,(
- (h
/ 2))))
. x))
proof
set f2 = (
Shift (f,(
- (h
/ 2))));
set f1 = (
Shift (f,(h
/ 2)));
(((
cdif (f,h))
. 1)
. x)
= (((
cdif (f,h))
. (
0
+ 1))
. x)
.= ((
cD (((
cdif (f,h))
.
0 ),h))
. x) by
Def8
.= ((
cD (f,h))
. x) by
Def8
.= ((f
. (x
+ (h
/ 2)))
- (f
. (x
- (h
/ 2)))) by
Th5
.= ((f1
. x)
- (f
. (x
+ (
- (h
/ 2))))) by
Def2
.= ((f1
. x)
- (f2
. x)) by
Def2;
hence thesis;
end;
theorem ::
DIFF_1:26
(((
fdif (f,h))
. n)
. x)
= (((
bdif (f,h))
. n)
. (x
+ (n
* h)))
proof
defpred
X[
Nat] means for x holds (((
fdif (f,h))
. $1)
. x)
= (((
bdif (f,h))
. $1)
. (x
+ ($1
* h)));
A1: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A2: for x holds (((
fdif (f,h))
. k)
. x)
= (((
bdif (f,h))
. k)
. (x
+ (k
* h)));
let x;
A3: (((
fdif (f,h))
. k)
. (x
+ h))
= (((
bdif (f,h))
. k)
. ((x
+ h)
+ (k
* h))) by
A2;
A4: ((
fdif (f,h))
. k) is
Function of
REAL ,
REAL by
Th2;
A5: ((
bdif (f,h))
. k) is
Function of
REAL ,
REAL by
Th12;
(((
fdif (f,h))
. (k
+ 1))
. x)
= ((
fD (((
fdif (f,h))
. k),h))
. x) by
Def6
.= ((((
fdif (f,h))
. k)
. (x
+ h))
- (((
fdif (f,h))
. k)
. x)) by
A4,
Th3
.= ((((
bdif (f,h))
. k)
. ((x
+ h)
+ (k
* h)))
- (((
bdif (f,h))
. k)
. (x
+ (k
* h)))) by
A2,
A3
.= ((((
bdif (f,h))
. k)
. (x
+ ((k
+ 1)
* h)))
- (((
bdif (f,h))
. k)
. ((x
+ ((k
+ 1)
* h))
- h)))
.= ((
bD (((
bdif (f,h))
. k),h))
. (x
+ ((k
+ 1)
* h))) by
A5,
Th4
.= (((
bdif (f,h))
. (k
+ 1))
. (x
+ ((k
+ 1)
* h))) by
Def7;
hence thesis;
end;
A6:
X[
0 ]
proof
let x;
(((
fdif (f,h))
.
0 )
. x)
= (f
. x) by
Def6
.= (((
bdif (f,h))
.
0 )
. (x
+ (
0
* h))) by
Def7;
hence thesis;
end;
for n holds
X[n] from
NAT_1:sch 2(
A6,
A1);
hence thesis;
end;
theorem ::
DIFF_1:27
(((
fdif (f,h))
. (2
* n))
. x)
= (((
cdif (f,h))
. (2
* n))
. (x
+ (n
* h)))
proof
defpred
X[
Nat] means for x holds (((
fdif (f,h))
. (2
* $1))
. x)
= (((
cdif (f,h))
. (2
* $1))
. (x
+ ($1
* h)));
A1: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A2: for x holds (((
fdif (f,h))
. (2
* k))
. x)
= (((
cdif (f,h))
. (2
* k))
. (x
+ (k
* h)));
let x;
A3: (((
fdif (f,h))
. (2
* k))
. ((x
+ h)
+ h))
= (((
cdif (f,h))
. (2
* k))
. (((x
+ h)
+ h)
+ (k
* h))) by
A2
.= (((
cdif (f,h))
. (2
* k))
. (x
+ ((k
+ 2)
* h)));
A4: (((
fdif (f,h))
. (2
* k))
. (x
+ h))
= (((
cdif (f,h))
. (2
* k))
. ((x
+ h)
+ (k
* h))) by
A2
.= (((
cdif (f,h))
. (2
* k))
. (x
+ ((k
+ 1)
* h)));
set r3 = (((
cdif (f,h))
. (2
* k))
. (x
+ (k
* h)));
set r2 = (((
cdif (f,h))
. (2
* k))
. (x
+ ((k
+ 1)
* h)));
set r1 = (((
cdif (f,h))
. (2
* k))
. (x
+ ((k
+ 2)
* h)));
A5: ((
fdif (f,h))
. ((2
* k)
+ 1)) is
Function of
REAL ,
REAL by
Th2;
A6: ((
cdif (f,h))
. (2
* k)) is
Function of
REAL ,
REAL by
Th19;
A7: ((
cdif (f,h))
. ((2
* k)
+ 1)) is
Function of
REAL ,
REAL by
Th19;
A8: ((
fdif (f,h))
. (2
* k)) is
Function of
REAL ,
REAL by
Th2;
A9: (((
cdif (f,h))
. ((2
* k)
+ 1))
. ((x
+ ((k
+ 1)
* h))
- (h
/ 2)))
= ((
cD (((
cdif (f,h))
. (2
* k)),h))
. ((x
+ ((k
+ 1)
* h))
- (h
/ 2))) by
Def8
.= ((((
cdif (f,h))
. (2
* k))
. (((x
+ ((k
+ 1)
* h))
- (h
/ 2))
+ (h
/ 2)))
- (((
cdif (f,h))
. (2
* k))
. (((x
+ ((k
+ 1)
* h))
- (h
/ 2))
- (h
/ 2)))) by
A6,
Th5
.= ((((
cdif (f,h))
. (2
* k))
. (x
+ ((k
+ 1)
* h)))
- (((
cdif (f,h))
. (2
* k))
. (x
+ (k
* h))));
A10: (((
cdif (f,h))
. ((2
* k)
+ 1))
. ((x
+ ((k
+ 1)
* h))
+ (h
/ 2)))
= ((
cD (((
cdif (f,h))
. (2
* k)),h))
. ((x
+ ((k
+ 1)
* h))
+ (h
/ 2))) by
Def8
.= ((((
cdif (f,h))
. (2
* k))
. (((x
+ ((k
+ 1)
* h))
+ (h
/ 2))
+ (h
/ 2)))
- (((
cdif (f,h))
. (2
* k))
. (((x
+ ((k
+ 1)
* h))
+ (h
/ 2))
- (h
/ 2)))) by
A6,
Th5
.= ((((
cdif (f,h))
. (2
* k))
. (x
+ ((k
+ 2)
* h)))
- (((
cdif (f,h))
. (2
* k))
. (x
+ ((k
+ 1)
* h))));
A11: (((
cdif (f,h))
. (2
* (k
+ 1)))
. (x
+ ((k
+ 1)
* h)))
= (((
cdif (f,h))
. (((2
* k)
+ 1)
+ 1))
. (x
+ ((k
+ 1)
* h)))
.= ((
cD (((
cdif (f,h))
. ((2
* k)
+ 1)),h))
. (x
+ ((k
+ 1)
* h))) by
Def8
.= ((r1
- r2)
- (r2
- r3)) by
A7,
A10,
A9,
Th5;
(((
fdif (f,h))
. (2
* (k
+ 1)))
. x)
= (((
fdif (f,h))
. (((2
* k)
+ 1)
+ 1))
. x)
.= ((
fD (((
fdif (f,h))
. ((2
* k)
+ 1)),h))
. x) by
Def6
.= ((((
fdif (f,h))
. ((2
* k)
+ 1))
. (x
+ h))
- (((
fdif (f,h))
. ((2
* k)
+ 1))
. x)) by
A5,
Th3
.= (((
fD (((
fdif (f,h))
. (2
* k)),h))
. (x
+ h))
- (((
fdif (f,h))
. ((2
* k)
+ 1))
. x)) by
Def6
.= (((
fD (((
fdif (f,h))
. (2
* k)),h))
. (x
+ h))
- ((
fD (((
fdif (f,h))
. (2
* k)),h))
. x)) by
Def6
.= (((((
fdif (f,h))
. (2
* k))
. ((x
+ h)
+ h))
- (((
fdif (f,h))
. (2
* k))
. (x
+ h)))
- ((
fD (((
fdif (f,h))
. (2
* k)),h))
. x)) by
A8,
Th3
.= (((((
fdif (f,h))
. (2
* k))
. ((x
+ h)
+ h))
- (((
fdif (f,h))
. (2
* k))
. (x
+ h)))
- ((((
fdif (f,h))
. (2
* k))
. (x
+ h))
- (((
fdif (f,h))
. (2
* k))
. x))) by
A8,
Th3
.= (((((
cdif (f,h))
. (2
* k))
. (x
+ ((k
+ 2)
* h)))
- (((
cdif (f,h))
. (2
* k))
. (x
+ ((k
+ 1)
* h))))
- ((((
cdif (f,h))
. (2
* k))
. (x
+ ((k
+ 1)
* h)))
- (((
cdif (f,h))
. (2
* k))
. (x
+ (k
* h))))) by
A2,
A3,
A4;
hence thesis by
A11;
end;
A12:
X[
0 ]
proof
let x;
(((
fdif (f,h))
. (2
*
0 ))
. x)
= (f
. x) by
Def6
.= (((
cdif (f,h))
. (2
*
0 ))
. (x
+ (
0
* h))) by
Def8;
hence thesis;
end;
for n holds
X[n] from
NAT_1:sch 2(
A12,
A1);
hence thesis;
end;
theorem ::
DIFF_1:28
(((
fdif (f,h))
. ((2
* n)
+ 1))
. x)
= (((
cdif (f,h))
. ((2
* n)
+ 1))
. ((x
+ (n
* h))
+ (h
/ 2)))
proof
defpred
X[
Nat] means for x holds (((
fdif (f,h))
. ((2
* $1)
+ 1))
. x)
= (((
cdif (f,h))
. ((2
* $1)
+ 1))
. ((x
+ ($1
* h))
+ (h
/ 2)));
A1: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A2: for x holds (((
fdif (f,h))
. ((2
* k)
+ 1))
. x)
= (((
cdif (f,h))
. ((2
* k)
+ 1))
. ((x
+ (k
* h))
+ (h
/ 2)));
let x;
A3: (((
fdif (f,h))
. ((2
* k)
+ 1))
. ((x
+ h)
+ h))
= (((
cdif (f,h))
. ((2
* k)
+ 1))
. ((((x
+ h)
+ h)
+ (k
* h))
+ (h
/ 2))) by
A2
.= (((
cdif (f,h))
. ((2
* k)
+ 1))
. ((x
+ ((k
+ 2)
* h))
+ (h
/ 2)));
A4: (((
fdif (f,h))
. ((2
* k)
+ 1))
. (x
+ h))
= (((
cdif (f,h))
. ((2
* k)
+ 1))
. (((x
+ h)
+ (k
* h))
+ (h
/ 2))) by
A2
.= (((
cdif (f,h))
. ((2
* k)
+ 1))
. ((x
+ ((k
+ 1)
* h))
+ (h
/ 2)));
set r3 = (((
cdif (f,h))
. ((2
* k)
+ 1))
. ((x
+ (k
* h))
+ (h
/ 2)));
set r2 = (((
cdif (f,h))
. ((2
* k)
+ 1))
. ((x
+ ((k
+ 1)
* h))
+ (h
/ 2)));
set r1 = (((
cdif (f,h))
. ((2
* k)
+ 1))
. ((x
+ ((k
+ 2)
* h))
+ (h
/ 2)));
A5: ((
fdif (f,h))
. (2
* (k
+ 1))) is
Function of
REAL ,
REAL by
Th2;
A6: ((
cdif (f,h))
. ((2
* k)
+ 1)) is
Function of
REAL ,
REAL by
Th19;
A7: ((
cdif (f,h))
. (2
* (k
+ 1))) is
Function of
REAL ,
REAL by
Th19;
A8: ((
fdif (f,h))
. ((2
* k)
+ 1)) is
Function of
REAL ,
REAL by
Th2;
A9: (((
cdif (f,h))
. (2
* (k
+ 1)))
. (x
+ ((k
+ 1)
* h)))
= (((
cdif (f,h))
. (((2
* k)
+ 1)
+ 1))
. (x
+ ((k
+ 1)
* h)))
.= ((
cD (((
cdif (f,h))
. ((2
* k)
+ 1)),h))
. (x
+ ((k
+ 1)
* h))) by
Def8
.= ((((
cdif (f,h))
. ((2
* k)
+ 1))
. ((x
+ ((k
+ 1)
* h))
+ (h
/ 2)))
- (((
cdif (f,h))
. ((2
* k)
+ 1))
. ((x
+ ((k
+ 1)
* h))
- (h
/ 2)))) by
A6,
Th5
.= ((((
cdif (f,h))
. ((2
* k)
+ 1))
. ((x
+ ((k
+ 1)
* h))
+ (h
/ 2)))
- (((
cdif (f,h))
. ((2
* k)
+ 1))
. ((x
+ (k
* h))
+ (h
/ 2))));
A10: (((
cdif (f,h))
. (2
* (k
+ 1)))
. (x
+ ((k
+ 2)
* h)))
= (((
cdif (f,h))
. (((2
* k)
+ 1)
+ 1))
. (x
+ ((k
+ 2)
* h)))
.= ((
cD (((
cdif (f,h))
. ((2
* k)
+ 1)),h))
. (x
+ ((k
+ 2)
* h))) by
Def8
.= ((((
cdif (f,h))
. ((2
* k)
+ 1))
. ((x
+ ((k
+ 2)
* h))
+ (h
/ 2)))
- (((
cdif (f,h))
. ((2
* k)
+ 1))
. ((x
+ ((k
+ 2)
* h))
- (h
/ 2)))) by
A6,
Th5
.= ((((
cdif (f,h))
. ((2
* k)
+ 1))
. ((x
+ ((k
+ 2)
* h))
+ (h
/ 2)))
- (((
cdif (f,h))
. ((2
* k)
+ 1))
. ((x
+ ((k
+ 1)
* h))
+ (h
/ 2))));
A11: (((
cdif (f,h))
. ((2
* (k
+ 1))
+ 1))
. ((x
+ ((k
+ 1)
* h))
+ (h
/ 2)))
= ((
cD (((
cdif (f,h))
. (2
* (k
+ 1))),h))
. ((x
+ ((k
+ 1)
* h))
+ (h
/ 2))) by
Def8
.= ((((
cdif (f,h))
. (2
* (k
+ 1)))
. (((x
+ ((k
+ 1)
* h))
+ (h
/ 2))
+ (h
/ 2)))
- (((
cdif (f,h))
. (2
* (k
+ 1)))
. (((x
+ ((k
+ 1)
* h))
+ (h
/ 2))
- (h
/ 2)))) by
A7,
Th5
.= ((r1
- r2)
- (r2
- r3)) by
A10,
A9;
(((
fdif (f,h))
. ((2
* (k
+ 1))
+ 1))
. x)
= ((
fD (((
fdif (f,h))
. (2
* (k
+ 1))),h))
. x) by
Def6
.= ((((
fdif (f,h))
. (2
* (k
+ 1)))
. (x
+ h))
- (((
fdif (f,h))
. (2
* (k
+ 1)))
. x)) by
A5,
Th3
.= (((
fD (((
fdif (f,h))
. ((2
* k)
+ 1)),h))
. (x
+ h))
- (((
fdif (f,h))
. (((2
* k)
+ 1)
+ 1))
. x)) by
Def6
.= (((
fD (((
fdif (f,h))
. ((2
* k)
+ 1)),h))
. (x
+ h))
- ((
fD (((
fdif (f,h))
. ((2
* k)
+ 1)),h))
. x)) by
Def6
.= (((((
fdif (f,h))
. ((2
* k)
+ 1))
. ((x
+ h)
+ h))
- (((
fdif (f,h))
. ((2
* k)
+ 1))
. (x
+ h)))
- ((
fD (((
fdif (f,h))
. ((2
* k)
+ 1)),h))
. x)) by
A8,
Th3
.= (((((
fdif (f,h))
. ((2
* k)
+ 1))
. ((x
+ h)
+ h))
- (((
fdif (f,h))
. ((2
* k)
+ 1))
. (x
+ h)))
- ((((
fdif (f,h))
. ((2
* k)
+ 1))
. (x
+ h))
- (((
fdif (f,h))
. ((2
* k)
+ 1))
. x))) by
A8,
Th3
.= ((r1
- r2)
- (r2
- r3)) by
A2,
A3,
A4;
hence thesis by
A11;
end;
A12:
X[
0 ]
proof
let x;
(((
fdif (f,h))
. ((2
*
0 )
+ 1))
. x)
= ((
fD (((
fdif (f,h))
.
0 ),h))
. x) by
Def6
.= ((
fD (f,h))
. x) by
Def6
.= ((f
. (x
+ h))
- (f
. x)) by
Th3
.= ((f
. ((x
+ (h
/ 2))
+ (h
/ 2)))
- (f
. ((x
+ (h
/ 2))
- (h
/ 2))))
.= ((
cD (f,h))
. (x
+ (h
/ 2))) by
Th5
.= ((
cD (((
cdif (f,h))
.
0 ),h))
. (x
+ (h
/ 2))) by
Def8
.= (((
cdif (f,h))
. ((2
*
0 )
+ 1))
. ((x
+ (
0
* h))
+ (h
/ 2))) by
Def8;
hence thesis;
end;
for n holds
X[n] from
NAT_1:sch 2(
A12,
A1);
hence thesis;
end;
definition
let f be
real-valued
Function;
let x0,x1 be
Real;
::
DIFF_1:def9
func
[!f,x0,x1!] ->
Real equals (((f
. x0)
- (f
. x1))
/ (x0
- x1));
correctness ;
end
definition
let f be
real-valued
Function;
let x0,x1,x2 be
Real;
::
DIFF_1:def10
func
[!f,x0,x1,x2!] ->
Real equals ((
[!f, x0, x1!]
-
[!f, x1, x2!])
/ (x0
- x2));
correctness ;
end
definition
let f be
real-valued
Function;
let x0,x1,x2,x3 be
Real;
::
DIFF_1:def11
func
[!f,x0,x1,x2,x3!] ->
Real equals ((
[!f, x0, x1, x2!]
-
[!f, x1, x2, x3!])
/ (x0
- x3));
correctness ;
end
theorem ::
DIFF_1:29
[!f, x0, x1!]
=
[!f, x1, x0!]
proof
thus
[!f, x0, x1!]
= ((
- ((f
. x1)
- (f
. x0)))
/ (
- (x1
- x0)))
.=
[!f, x1, x0!] by
XCMPLX_1: 191;
end;
theorem ::
DIFF_1:30
f is
constant implies
[!f, x0, x1!]
=
0
proof
x0
in
REAL by
XREAL_0:def 1;
then
A1: x0
in (
dom f) by
FUNCT_2:def 1;
x1
in
REAL by
XREAL_0:def 1;
then
A2: x1
in (
dom f) by
FUNCT_2:def 1;
assume f is
constant;
then (f
. x0)
= (f
. x1) by
A1,
A2,
FUNCT_1:def 10;
hence thesis;
end;
theorem ::
DIFF_1:31
Th31:
[!(r
(#) f), x0, x1!]
= (r
*
[!f, x0, x1!])
proof
x1
in
REAL by
XREAL_0:def 1;
then
A1: x1
in (
dom (r
(#) f)) by
FUNCT_2:def 1;
x0
in
REAL by
XREAL_0:def 1;
then x0
in (
dom (r
(#) f)) by
FUNCT_2:def 1;
then
[!(r
(#) f), x0, x1!]
= (((r
* (f
. x0))
- ((r
(#) f)
. x1))
/ (x0
- x1)) by
VALUED_1:def 5
.= (((r
* (f
. x0))
- (r
* (f
. x1)))
/ (x0
- x1)) by
A1,
VALUED_1:def 5
.= ((r
* ((f
. x0)
- (f
. x1)))
/ (x0
- x1))
.= (r
*
[!f, x0, x1!]) by
XCMPLX_1: 74;
hence thesis;
end;
theorem ::
DIFF_1:32
Th32:
[!(f1
+ f2), x0, x1!]
= (
[!f1, x0, x1!]
+
[!f2, x0, x1!])
proof
reconsider xx0 = x0, xx1 = x1 as
Element of
REAL by
XREAL_0:def 1;
[!(f1
+ f2), x0, x1!]
= ((((f1
. xx0)
+ (f2
. xx0))
- ((f1
+ f2)
. xx1))
/ (xx0
- xx1)) by
VALUED_1: 1
.= ((((f1
. x0)
+ (f2
. x0))
- ((f1
. x1)
+ (f2
. x1)))
/ (x0
- x1)) by
VALUED_1: 1
.= ((((f1
. x0)
- (f1
. x1))
+ ((f2
. x0)
- (f2
. x1)))
/ (x0
- x1))
.= (
[!f1, x0, x1!]
+
[!f2, x0, x1!]) by
XCMPLX_1: 62;
hence thesis;
end;
theorem ::
DIFF_1:33
[!((r1
(#) f1)
+ (r2
(#) f2)), x0, x1!]
= ((r1
*
[!f1, x0, x1!])
+ (r2
*
[!f2, x0, x1!]))
proof
[!((r1
(#) f1)
+ (r2
(#) f2)), x0, x1!]
= (
[!(r1
(#) f1), x0, x1!]
+
[!(r2
(#) f2), x0, x1!]) by
Th32
.= ((r1
*
[!f1, x0, x1!])
+
[!(r2
(#) f2), x0, x1!]) by
Th31
.= ((r1
*
[!f1, x0, x1!])
+ (r2
*
[!f2, x0, x1!])) by
Th31;
hence thesis;
end;
theorem ::
DIFF_1:34
Th34: (x0,x1,x2)
are_mutually_distinct implies
[!f, x0, x1, x2!]
=
[!f, x1, x2, x0!] &
[!f, x0, x1, x2!]
=
[!f, x2, x1, x0!]
proof
set x10 = (x1
- x0);
set x20 = (x2
- x0);
set x12 = (x1
- x2);
assume
A1: (x0,x1,x2)
are_mutually_distinct ;
then
A2: (x1
- x2)
<>
0 by
ZFMISC_1:def 5;
A3: (x1
- x0)
<>
0 by
A1,
ZFMISC_1:def 5;
A4:
[!f, x0, x1, x2!]
= (((((f
. x0)
- (f
. x1))
/ (
- (x1
- x0)))
- (((f
. x1)
- (f
. x2))
/ (x1
- x2)))
/ (
- (x2
- x0)))
.= (((
- (((f
. x0)
- (f
. x1))
/ (x1
- x0)))
- (((f
. x1)
- (f
. x2))
/ (x1
- x2)))
/ (
- (x2
- x0))) by
XCMPLX_1: 188
.= ((
- ((((f
. x0)
- (f
. x1))
/ (x1
- x0))
+ (((f
. x1)
- (f
. x2))
/ (x1
- x2))))
/ (
- (x2
- x0)))
.= (((((f
. x0)
- (f
. x1))
/ (x1
- x0))
+ (((f
. x1)
- (f
. x2))
/ (x1
- x2)))
/ (x2
- x0)) by
XCMPLX_1: 191
.= ((((((f
. x0)
- (f
. x1))
* x12)
+ (((f
. x1)
- (f
. x2))
* x10))
/ (x10
* x12))
/ x20) by
A2,
A3,
XCMPLX_1: 116
.= (((((f
. x0)
* x12)
+ ((f
. x1)
* x20))
- ((f
. x2)
* x10))
/ ((x10
* x12)
* x20)) by
XCMPLX_1: 78;
A5:
[!f, x2, x1, x0!]
= ((((
- ((f
. x1)
- (f
. x2)))
/ (
- (x1
- x2)))
- (((f
. x1)
- (f
. x0))
/ (x1
- x0)))
/ (x2
- x0))
.= (((((f
. x1)
- (f
. x2))
/ (x1
- x2))
- (((f
. x1)
- (f
. x0))
/ (x1
- x0)))
/ (x2
- x0)) by
XCMPLX_1: 191
.= ((((((f
. x1)
- (f
. x2))
* x10)
- (((f
. x1)
- (f
. x0))
* x12))
/ (x12
* x10))
/ x20) by
A2,
A3,
XCMPLX_1: 130
.=
[!f, x0, x1, x2!] by
A4,
XCMPLX_1: 78;
(x2
- x0)
<>
0 by
A1,
ZFMISC_1:def 5;
then
[!f, x1, x2, x0!]
= ((((((f
. x1)
- (f
. x2))
* x20)
- (((f
. x2)
- (f
. x0))
* x12))
/ (x12
* x20))
/ x10) by
A2,
XCMPLX_1: 130
.= (((((f
. x0)
* x12)
+ ((f
. x1)
* x20))
- ((f
. x2)
* x10))
/ ((x12
* x20)
* x10)) by
XCMPLX_1: 78
.=
[!f, x0, x1, x2!] by
A4;
hence thesis by
A5;
end;
theorem ::
DIFF_1:35
(x0,x1,x2)
are_mutually_distinct implies
[!f, x0, x1, x2!]
=
[!f, x2, x0, x1!] &
[!f, x0, x1, x2!]
=
[!f, x1, x0, x2!]
proof
assume
A1: (x0,x1,x2)
are_mutually_distinct ;
then
A2: x1
<> x2 by
ZFMISC_1:def 5;
x0
<> x1 & x0
<> x2 by
A1,
ZFMISC_1:def 5;
then
A3: (x2,x0,x1)
are_mutually_distinct by
A2,
ZFMISC_1:def 5;
then
[!f, x0, x1, x2!]
=
[!f, x2, x0, x1!] by
Th34;
hence thesis by
A3,
Th34;
end;
theorem ::
DIFF_1:36
(((
fdif (((
fdif (f,h))
. m),h))
. n)
. x)
= (((
fdif (f,h))
. (m
+ n))
. x)
proof
defpred
X[
Nat] means for x holds (((
fdif (((
fdif (f,h))
. m),h))
. $1)
. x)
= (((
fdif (f,h))
. (m
+ $1))
. x);
A1: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A2: for x holds (((
fdif (((
fdif (f,h))
. m),h))
. k)
. x)
= (((
fdif (f,h))
. (m
+ k))
. x);
let x;
A3: ((
fdif (f,h))
. (m
+ k)) is
Function of
REAL ,
REAL by
Th2;
((
fdif (f,h))
. m) is
Function of
REAL ,
REAL by
Th2;
then
A4: ((
fdif (((
fdif (f,h))
. m),h))
. k) is
Function of
REAL ,
REAL by
Th2;
(((
fdif (((
fdif (f,h))
. m),h))
. (k
+ 1))
. x)
= ((
fD (((
fdif (((
fdif (f,h))
. m),h))
. k),h))
. x) by
Def6
.= ((((
fdif (((
fdif (f,h))
. m),h))
. k)
. (x
+ h))
- (((
fdif (((
fdif (f,h))
. m),h))
. k)
. x)) by
A4,
Th3
.= ((((
fdif (f,h))
. (m
+ k))
. (x
+ h))
- (((
fdif (((
fdif (f,h))
. m),h))
. k)
. x)) by
A2
.= ((((
fdif (f,h))
. (m
+ k))
. (x
+ h))
- (((
fdif (f,h))
. (m
+ k))
. x)) by
A2
.= ((
fD (((
fdif (f,h))
. (m
+ k)),h))
. x) by
A3,
Th3
.= (((
fdif (f,h))
. ((m
+ k)
+ 1))
. x) by
Def6;
hence thesis;
end;
A5:
X[
0 ] by
Def6;
for n holds
X[n] from
NAT_1:sch 2(
A5,
A1);
hence thesis;
end;
definition
let S;
::
DIFF_1:def12
attr S is
Sequence-yielding means
:
Def12: for n holds (S
. n) is
Real_Sequence;
end
Lm1: ex S be
Functional_Sequence of
REAL ,
REAL st for n holds (S
. n) is
Real_Sequence
proof
set s1 = (
seq_const 1 qua
Real);
set S = (
NAT
--> s1);
A1: (
dom S)
=
NAT by
FUNCOP_1: 13;
A2: (
Funcs (
NAT ,
REAL ))
c= (
PFuncs (
NAT ,
REAL )) by
FUNCT_2: 72;
s1
in (
Funcs (
NAT ,
REAL )) by
FUNCT_2: 8;
then
A3: s1
in (
PFuncs (
NAT ,
REAL )) by
A2;
(
PFuncs (
NAT ,
REAL ))
c= (
PFuncs (
REAL ,
REAL )) by
NUMBERS: 19,
PARTFUN1: 50;
then
A4: s1
in (
PFuncs (
REAL ,
REAL )) by
A3;
A5:
{s1}
c= (
PFuncs (
REAL ,
REAL )) by
A4,
ZFMISC_1: 31;
(
rng S)
c= (
PFuncs (
REAL ,
REAL )) by
A5,
XBOOLE_1: 1;
then
reconsider S as
Functional_Sequence of
REAL ,
REAL by
A1,
FUNCT_2: 2;
take S;
let n;
n
in
NAT by
ORDINAL1:def 12;
then (S
. n)
= (
seq_const 1 qua
Real) by
FUNCOP_1: 7;
hence (S
. n) is
Real_Sequence;
end;
registration
cluster
Sequence-yielding for
Functional_Sequence of
REAL ,
REAL ;
existence by
Lm1,
Def12;
end
definition
mode
Seq_Sequence is
Sequence-yielding
Functional_Sequence of
REAL ,
REAL ;
end
definition
let S be
Seq_Sequence;
let n;
:: original:
.
redefine
func S
. n ->
Real_Sequence ;
coherence by
Def12;
end
reserve S for
Seq_Sequence;
Lm2: (((
fdif ((f1
(#) f2),h))
. 1)
. x)
= (((f1
. x)
* (((
fdif (f2,h))
. 1)
. x))
+ ((((
fdif (f1,h))
. 1)
. x)
* (f2
. (x
+ h))))
proof
(((
fdif ((f1
(#) f2),h))
. 1)
. x)
= (((
fdif ((f1
(#) f2),h))
. (
0
+ 1))
. x)
.= ((
fD (((
fdif ((f1
(#) f2),h))
.
0 ),h))
. x) by
Def6
.= ((
fD ((f1
(#) f2),h))
. x) by
Def6
.= (((f1
(#) f2)
. (x
+ h))
- ((f1
(#) f2)
. x)) by
Th3
.= (((f1
. (x
+ h))
* (f2
. (x
+ h)))
- ((f1
(#) f2)
. x)) by
VALUED_1: 5
.= (((f1
. (x
+ h))
* (f2
. (x
+ h)))
- ((f1
. x)
* (f2
. x))) by
VALUED_1: 5
.= (((f1
. x)
* ((f2
. (x
+ h))
- (f2
. x)))
+ (((f1
. (x
+ h))
- (f1
. x))
* (f2
. (x
+ h))))
.= (((f1
. x)
* ((
fD (f2,h))
. x))
+ (((f1
. (x
+ h))
- (f1
. x))
* (f2
. (x
+ h)))) by
Th3
.= (((f1
. x)
* ((
fD (f2,h))
. x))
+ (((
fD (f1,h))
. x)
* (f2
. (x
+ h)))) by
Th3
.= (((f1
. x)
* ((
fD (((
fdif (f2,h))
.
0 ),h))
. x))
+ (((
fD (f1,h))
. x)
* (f2
. (x
+ h)))) by
Def6
.= (((f1
. x)
* ((
fD (((
fdif (f2,h))
.
0 ),h))
. x))
+ (((
fD (((
fdif (f1,h))
.
0 ),h))
. x)
* (f2
. (x
+ h)))) by
Def6
.= (((f1
. x)
* (((
fdif (f2,h))
. (
0
+ 1))
. x))
+ (((
fD (((
fdif (f1,h))
.
0 ),h))
. x)
* (f2
. (x
+ h)))) by
Def6
.= (((f1
. x)
* (((
fdif (f2,h))
. 1)
. x))
+ ((((
fdif (f1,h))
. 1)
. x)
* (f2
. (x
+ h)))) by
Def6;
hence thesis;
end;
theorem ::
DIFF_1:37
(for n holds for i st i
<= n holds ((S
. n)
. i)
= (((n
choose i)
* (((
fdif (f1,h))
. i)
. x))
* (((
fdif (f2,h))
. (n
-' i))
. (x
+ (i
* h))))) implies (((
fdif ((f1
(#) f2),h))
. 1)
. x)
= (
Sum ((S
. 1),1)) & (((
fdif ((f1
(#) f2),h))
. 2)
. x)
= (
Sum ((S
. 2),2))
proof
A1: (1
-'
0 )
= (1
-
0 ) by
XREAL_1: 233
.= 1;
A2: (1
-' 1)
= (1
- 1) by
XREAL_1: 233
.=
0 ;
A3: ((
fdif ((f1
(#) f2),h))
. 1) is
Function of
REAL ,
REAL by
Th2;
A4: (2
-' 1)
= (2
- 1) by
XREAL_1: 233
.= 1;
A5: ((
fdif (f2,h))
. 1) is
Function of
REAL ,
REAL by
Th2;
A6: (2
-' 2)
= (2
- 2) by
XREAL_1: 233
.=
0 ;
assume
A7: for n holds for i st i
<= n holds ((S
. n)
. i)
= (((n
choose i)
* (((
fdif (f1,h))
. i)
. x))
* (((
fdif (f2,h))
. (n
-' i))
. (x
+ (i
* h))));
then
A8: ((S
. 2)
. 1)
= (((2
choose 1)
* (((
fdif (f1,h))
. 1)
. x))
* (((
fdif (f2,h))
. (2
-' 1))
. (x
+ (1
* h))))
.= ((2
* (((
fdif (f1,h))
. 1)
. x))
* (((
fdif (f2,h))
. 1)
. (x
+ h))) by
A4,
NEWTON: 23;
A9: ((S
. 1)
. 1)
= (((1
choose 1)
* (((
fdif (f1,h))
. 1)
. x))
* (((
fdif (f2,h))
. (1
-' 1))
. (x
+ (1
* h)))) by
A7
.= ((1
* (((
fdif (f1,h))
. 1)
. x))
* (((
fdif (f2,h))
. (1
-' 1))
. (x
+ (1
* h)))) by
NEWTON: 21
.= ((((
fdif (f1,h))
. 1)
. x)
* (f2
. (x
+ h))) by
A2,
Def6;
A10: ((S
. 1)
.
0 )
= (((1
choose
0 )
* (((
fdif (f1,h))
.
0 )
. x))
* (((
fdif (f2,h))
. (1
-'
0 ))
. (x
+ (
0
* h)))) by
A7
.= ((1
* (((
fdif (f1,h))
.
0 )
. x))
* (((
fdif (f2,h))
. (1
-'
0 ))
. (x
+ (
0
* h)))) by
NEWTON: 19
.= ((f1
. x)
* (((
fdif (f2,h))
. 1)
. x)) by
A1,
Def6;
A11: (
Sum ((S
. 1),1))
= ((
Partial_Sums (S
. 1))
. (
0
+ 1)) by
SERIES_1:def 5
.= (((
Partial_Sums (S
. 1))
.
0 )
+ ((S
. 1)
. 1)) by
SERIES_1:def 1
.= (((S
. 1)
.
0 )
+ ((S
. 1)
. 1)) by
SERIES_1:def 1
.= (((
fdif ((f1
(#) f2),h))
. 1)
. x) by
A10,
A9,
Lm2;
A12: ((
fdif (f1,h))
. 1) is
Function of
REAL ,
REAL by
Th2;
A13: (((
fdif ((f1
(#) f2),h))
. 2)
. x)
= (((
fdif ((f1
(#) f2),h))
. (1
+ 1))
. x)
.= ((
fD (((
fdif ((f1
(#) f2),h))
. 1),h))
. x) by
Def6
.= ((((
fdif ((f1
(#) f2),h))
. 1)
. (x
+ h))
- (((
fdif ((f1
(#) f2),h))
. 1)
. x)) by
A3,
Th3
.= ((((f1
. (x
+ h))
* (((
fdif (f2,h))
. 1)
. (x
+ h)))
+ ((((
fdif (f1,h))
. 1)
. (x
+ h))
* (f2
. ((x
+ h)
+ h))))
- (((
fdif ((f1
(#) f2),h))
. 1)
. x)) by
Lm2
.= ((((f1
. (x
+ h))
* (((
fdif (f2,h))
. 1)
. (x
+ h)))
+ ((((
fdif (f1,h))
. 1)
. (x
+ h))
* (f2
. ((x
+ h)
+ h))))
- (((f1
. x)
* (((
fdif (f2,h))
. 1)
. x))
+ ((((
fdif (f1,h))
. 1)
. x)
* (f2
. (x
+ h))))) by
Lm2
.= (((((f1
. x)
* ((((
fdif (f2,h))
. 1)
. (x
+ h))
- (((
fdif (f2,h))
. 1)
. x)))
+ (((f1
. (x
+ h))
- (f1
. x))
* (((
fdif (f2,h))
. 1)
. (x
+ h))))
+ (((((
fdif (f1,h))
. 1)
. (x
+ h))
- (((
fdif (f1,h))
. 1)
. x))
* (f2
. ((x
+ h)
+ h))))
+ ((((
fdif (f1,h))
. 1)
. x)
* ((f2
. ((x
+ h)
+ h))
- (f2
. (x
+ h)))))
.= (((((f1
. x)
* ((
fD (((
fdif (f2,h))
. 1),h))
. x))
+ (((f1
. (x
+ h))
- (f1
. x))
* (((
fdif (f2,h))
. 1)
. (x
+ h))))
+ (((((
fdif (f1,h))
. 1)
. (x
+ h))
- (((
fdif (f1,h))
. 1)
. x))
* (f2
. ((x
+ h)
+ h))))
+ ((((
fdif (f1,h))
. 1)
. x)
* ((f2
. ((x
+ h)
+ h))
- (f2
. (x
+ h))))) by
A5,
Th3
.= (((((f1
. x)
* ((
fD (((
fdif (f2,h))
. 1),h))
. x))
+ (((
fD (f1,h))
. x)
* (((
fdif (f2,h))
. 1)
. (x
+ h))))
+ (((((
fdif (f1,h))
. 1)
. (x
+ h))
- (((
fdif (f1,h))
. 1)
. x))
* (f2
. ((x
+ h)
+ h))))
+ ((((
fdif (f1,h))
. 1)
. x)
* ((f2
. ((x
+ h)
+ h))
- (f2
. (x
+ h))))) by
Th3
.= (((((f1
. x)
* ((
fD (((
fdif (f2,h))
. 1),h))
. x))
+ (((
fD (f1,h))
. x)
* (((
fdif (f2,h))
. 1)
. (x
+ h))))
+ (((
fD (((
fdif (f1,h))
. 1),h))
. x)
* (f2
. ((x
+ h)
+ h))))
+ ((((
fdif (f1,h))
. 1)
. x)
* ((f2
. ((x
+ h)
+ h))
- (f2
. (x
+ h))))) by
A12,
Th3
.= (((((f1
. x)
* ((
fD (((
fdif (f2,h))
. 1),h))
. x))
+ (((
fD (f1,h))
. x)
* (((
fdif (f2,h))
. 1)
. (x
+ h))))
+ (((
fD (((
fdif (f1,h))
. 1),h))
. x)
* (f2
. ((x
+ h)
+ h))))
+ ((((
fdif (f1,h))
. 1)
. x)
* ((
fD (f2,h))
. (x
+ h)))) by
Th3
.= (((((f1
. x)
* (((
fdif (f2,h))
. (1
+ 1))
. x))
+ (((
fD (f1,h))
. x)
* (((
fdif (f2,h))
. 1)
. (x
+ h))))
+ (((
fD (((
fdif (f1,h))
. 1),h))
. x)
* (f2
. ((x
+ h)
+ h))))
+ ((((
fdif (f1,h))
. 1)
. x)
* ((
fD (f2,h))
. (x
+ h)))) by
Def6
.= (((((f1
. x)
* (((
fdif (f2,h))
. (1
+ 1))
. x))
+ (((
fD (((
fdif (f1,h))
.
0 ),h))
. x)
* (((
fdif (f2,h))
. 1)
. (x
+ h))))
+ (((
fD (((
fdif (f1,h))
. 1),h))
. x)
* (f2
. ((x
+ h)
+ h))))
+ ((((
fdif (f1,h))
. 1)
. x)
* ((
fD (f2,h))
. (x
+ h)))) by
Def6
.= (((((f1
. x)
* (((
fdif (f2,h))
. 2)
. x))
+ (((
fD (((
fdif (f1,h))
.
0 ),h))
. x)
* (((
fdif (f2,h))
. 1)
. (x
+ h))))
+ ((((
fdif (f1,h))
. 2)
. x)
* (f2
. (x
+ (2
* h)))))
+ ((((
fdif (f1,h))
. 1)
. x)
* ((
fD (f2,h))
. (x
+ h)))) by
Def6
.= (((((f1
. x)
* (((
fdif (f2,h))
. 2)
. x))
+ ((((
fdif (f1,h))
. (
0
+ 1))
. x)
* (((
fdif (f2,h))
. 1)
. (x
+ h))))
+ ((((
fdif (f1,h))
. 2)
. x)
* (f2
. (x
+ (2
* h)))))
+ ((((
fdif (f1,h))
. 1)
. x)
* ((
fD (f2,h))
. (x
+ h)))) by
Def6
.= (((((f1
. x)
* (((
fdif (f2,h))
. 2)
. x))
+ ((((
fdif (f1,h))
. 1)
. x)
* (((
fdif (f2,h))
. 1)
. (x
+ h))))
+ ((((
fdif (f1,h))
. 2)
. x)
* (f2
. (x
+ (2
* h)))))
+ ((((
fdif (f1,h))
. 1)
. x)
* ((
fD (((
fdif (f2,h))
.
0 ),h))
. (x
+ h)))) by
Def6
.= (((((f1
. x)
* (((
fdif (f2,h))
. 2)
. x))
+ ((((
fdif (f1,h))
. 1)
. x)
* (((
fdif (f2,h))
. 1)
. (x
+ h))))
+ ((((
fdif (f1,h))
. 2)
. x)
* (f2
. (x
+ (2
* h)))))
+ ((((
fdif (f1,h))
. 1)
. x)
* (((
fdif (f2,h))
. (
0
+ 1))
. (x
+ h)))) by
Def6
.= ((((f1
. x)
* (((
fdif (f2,h))
. 2)
. x))
+ (2
* ((((
fdif (f1,h))
. 1)
. x)
* (((
fdif (f2,h))
. 1)
. (x
+ h)))))
+ ((((
fdif (f1,h))
. 2)
. x)
* (f2
. (x
+ (2
* h)))));
A14: (2
-'
0 )
= (2
-
0 ) by
XREAL_1: 233
.= 2;
A15: ((S
. 2)
. 2)
= (((2
choose 2)
* (((
fdif (f1,h))
. 2)
. x))
* (((
fdif (f2,h))
. (2
-' 2))
. (x
+ (2
* h)))) by
A7
.= ((1
* (((
fdif (f1,h))
. 2)
. x))
* (((
fdif (f2,h))
. (2
-' 2))
. (x
+ (2
* h)))) by
NEWTON: 21
.= ((((
fdif (f1,h))
. 2)
. x)
* (f2
. (x
+ (2
* h)))) by
A6,
Def6;
A16: ((S
. 2)
.
0 )
= (((2
choose
0 )
* (((
fdif (f1,h))
.
0 )
. x))
* (((
fdif (f2,h))
. (2
-'
0 ))
. (x
+ (
0
* h)))) by
A7
.= ((1
* (((
fdif (f1,h))
.
0 )
. x))
* (((
fdif (f2,h))
. (2
-'
0 ))
. (x
+ (
0
* h)))) by
NEWTON: 19
.= ((f1
. x)
* (((
fdif (f2,h))
. 2)
. x)) by
A14,
Def6;
(
Sum ((S
. 2),2))
= ((
Partial_Sums (S
. 2))
. (1
+ 1)) by
SERIES_1:def 5
.= (((
Partial_Sums (S
. 2))
. (
0
+ 1))
+ ((S
. 2)
. 2)) by
SERIES_1:def 1
.= ((((
Partial_Sums (S
. 2))
.
0 )
+ ((S
. 2)
. 1))
+ ((S
. 2)
. 2)) by
SERIES_1:def 1
.= (((
fdif ((f1
(#) f2),h))
. 2)
. x) by
A13,
A16,
A8,
A15,
SERIES_1:def 1;
hence thesis by
A11;
end;
theorem ::
DIFF_1:38
for f be
PartFunc of
REAL ,
REAL st x
in (
dom f) & (x
- h)
in (
dom f) holds ((
bD (f,h))
. x)
= ((f
. x)
- (f
. (x
- h)))
proof
let f be
PartFunc of
REAL ,
REAL ;
assume
A1: x
in (
dom f) & (x
- h)
in (
dom f);
A2: (
dom (
Shift (f,(
- h))))
= ((
- (
- h))
++ (
dom f)) by
Def1;
A3: (h
+ (x
- (
- (
- h))))
in ((
- (
- h))
++ (
dom f)) by
A1,
MEASURE6: 46;
then
A4: ((
Shift (f,(
- h)))
. x)
= (f
. (x
+ (
- h))) by
Def1;
x
in ((
dom (
Shift (f,(
- h))))
/\ (
dom f)) by
A3,
A2,
A1,
XBOOLE_0:def 4;
then x
in (
dom (
bD (f,h))) by
VALUED_1: 12;
hence thesis by
A4,
VALUED_1: 13;
end;
theorem ::
DIFF_1:39
for f be
PartFunc of
REAL ,
REAL st (x
+ (h
/ 2))
in (
dom f) & (x
- (h
/ 2))
in (
dom f) holds ((
cD (f,h))
. x)
= ((f
. (x
+ (h
/ 2)))
- (f
. (x
- (h
/ 2))))
proof
let f be
PartFunc of
REAL ,
REAL ;
assume
A1: (x
+ (h
/ 2))
in (
dom f) & (x
- (h
/ 2))
in (
dom f);
A2: (
dom (
Shift (f,(
- (h
/ 2)))))
= ((
- (
- (h
/ 2)))
++ (
dom f)) by
Def1;
A3: (
dom (
Shift (f,(h
/ 2))))
= ((
- (h
/ 2))
++ (
dom f)) by
Def1;
A4: ((
- (h
/ 2))
+ (x
+ (h
/ 2)))
in ((
- (h
/ 2))
++ (
dom f)) by
A1,
MEASURE6: 46;
then
A5: ((
Shift (f,(h
/ 2)))
. x)
= (f
. (x
+ (h
/ 2))) by
Def1;
A6: ((h
/ 2)
+ (x
- (h
/ 2)))
in ((
- (
- (h
/ 2)))
++ (
dom f)) by
A1,
MEASURE6: 46;
then
A7: ((
Shift (f,(
- (h
/ 2))))
. x)
= (f
. (x
+ (
- (h
/ 2)))) by
Def1;
x
in ((
dom (
Shift (f,(h
/ 2))))
/\ (
dom (
Shift (f,(
- (h
/ 2)))))) by
A4,
A6,
A3,
A2,
XBOOLE_0:def 4;
then x
in (
dom (
cD (f,h))) by
VALUED_1: 12;
hence thesis by
A7,
A5,
VALUED_1: 13;
end;