dualsp01.miz



    begin

    reserve V for non empty RealLinearSpace;

    definition

      let X be RealLinearSpace;

      :: DUALSP01:def1

      func MultF_Real* (X) -> Function of [:the carrier of F_Real , the carrier of X:], the carrier of X equals the Mult of X;

      correctness ;

    end

    theorem :: DUALSP01:1

    

     Lm01: for X be RealLinearSpace holds ModuleStr (# the carrier of X, the addF of X, the ZeroF of X, ( MultF_Real* X) #) is VectSp of F_Real

    proof

      let X be RealLinearSpace;

      set XP = ModuleStr (# the carrier of X, the addF of X, the ZeroF of X, ( MultF_Real* X) #);

      

       Q1: XP is scalar-distributive vector-distributive scalar-associative scalar-unital

      proof

        now

          let x,y be Element of F_Real ;

          let v be Element of XP;

          reconsider v1 = v as Element of X;

          reconsider x1 = x, y1 = y as Real;

          ((x + y) * v) = ((x1 + y1) * v1) = ((x1 * v1) + (y1 * v1)) by RLVECT_1:def 6;

          hence ((x + y) * v) = ((x * v) + (y * v));

        end;

        hence XP is scalar-distributive;

        now

          let x be Element of F_Real ;

          let v,w be Element of XP;

          reconsider v1 = v, w1 = w as Element of X;

          reconsider x1 = x as Real;

          (x * (v + w)) = (x1 * (v1 + w1))

          .= ((x1 * v1) + (x1 * w1)) by RLVECT_1:def 5;

          hence (x * (v + w)) = ((x * v) + (x * w));

        end;

        hence XP is vector-distributive;

        now

          let x,y be Element of F_Real ;

          let v be Element of XP;

          reconsider v1 = v as Element of X;

          reconsider x1 = x, y1 = y as Real;

          ((x * y) * v) = ((x1 * y1) * v1)

          .= (x1 * (y1 * v1)) by RLVECT_1:def 7;

          hence ((x * y) * v) = (x * (y * v));

        end;

        hence XP is scalar-associative;

        now

          let v be Element of XP;

          reconsider v1 = v as Element of X;

          (( 1. F_Real ) * v) = (1 * v1);

          hence (( 1. F_Real ) * v) = v by RLVECT_1:def 8;

        end;

        hence XP is scalar-unital;

      end;

      now

        let u,v,w be Element of XP;

        reconsider u1 = u, v1 = v, w1 = w as Element of X;

        (u + (v + w)) = (u1 + (v1 + w1))

        .= ((u1 + v1) + w1) by RLVECT_1:def 3;

        hence (u + (v + w)) = ((u + v) + w);

      end;

      then

       Q2: XP is add-associative;

      now

        let v be Element of XP;

        reconsider v1 = v as Element of X;

        (v + ( 0. XP)) = (v1 + ( 0. X));

        hence (v + ( 0. XP)) = v;

      end;

      then

       Q3: XP is right_zeroed;

      now

        let v be Element of XP;

        reconsider v1 = v as Element of X;

        consider w1 be Element of X such that

         A1: (v1 + w1) = ( 0. X) by ALGSTR_0:def 11;

        reconsider w = w1 as Element of XP;

        (v + w) = ( 0. XP) by A1;

        hence v is right_complementable;

      end;

      then

       Q4: XP is right_complementable;

      now

        let v,w be Element of XP;

        reconsider v1 = v, w1 = w as Element of X;

        (v + w) = (v1 + w1)

        .= (w1 + v1);

        hence (v + w) = (w + v);

      end;

      then XP is Abelian;

      hence XP is VectSp of F_Real by Q1, Q2, Q3, Q4;

    end;

    definition

      let X be RealLinearSpace;

      :: DUALSP01:def2

      func RLSp2RVSp X -> VectSp of F_Real equals ModuleStr (# the carrier of X, the addF of X, the ZeroF of X, ( MultF_Real* X) #);

      correctness by Lm01;

    end

    definition

      let X be ModuleStr over F_Real ;

      :: DUALSP01:def3

      func MultReal* (X) -> Function of [: REAL , the carrier of X:], the carrier of X equals the lmult of X;

      correctness ;

    end

    theorem :: DUALSP01:2

    

     Lm02: for X be VectSp of F_Real holds RLSStruct (# the carrier of X, the ZeroF of X, the addF of X, ( MultReal* X) #) is RealLinearSpace

    proof

      let X be VectSp of F_Real ;

      set XQ = RLSStruct (# the carrier of X, the ZeroF of X, the addF of X, ( MultReal* X) #);

      

       A1: for vZ1,wZ1 be Element of X, v,w be Element of XQ st v = vZ1 & w = wZ1 holds (v + w) = (vZ1 + wZ1);

      XQ is Abelian add-associative right_zeroed right_complementable scalar-distributive vector-distributive scalar-associative scalar-unital

      proof

        hereby

          let v,w be VECTOR of XQ;

          reconsider vZ1 = v, wZ1 = w as Element of X;

          

          thus (v + w) = (wZ1 + vZ1) by A1

          .= (w + v);

        end;

        hereby

          let u,v,w be VECTOR of XQ;

          reconsider uZ1 = u, vZ1 = v, wZ1 = w as Element of X;

          ((u + v) + w) = ((uZ1 + vZ1) + wZ1)

          .= (uZ1 + (vZ1 + wZ1)) by RLVECT_1:def 3;

          hence ((u + v) + w) = (u + (v + w));

        end;

        hereby

          let v be VECTOR of XQ;

          reconsider vZ1 = v as Element of X;

          

          thus (v + ( 0. XQ)) = (vZ1 + ( 0. X))

          .= v;

        end;

        thus XQ is right_complementable

        proof

          let v be VECTOR of XQ;

          reconsider vZ1 = v as Element of X;

          consider wZ1 be Element of X such that

           A2: (vZ1 + wZ1) = ( 0. X) by ALGSTR_0:def 11;

          reconsider w = wZ1 as VECTOR of XQ;

          take w;

          thus (v + w) = ( 0. XQ) by A2;

        end;

        hereby

          let a,b be Real, v be VECTOR of XQ;

          reconsider vZ1 = v as Element of X;

          reconsider aZ1 = a, bZ1 = b as Element of F_Real by XREAL_0:def 1;

          ((a + b) * v) = ((aZ1 + bZ1) * vZ1)

          .= ((aZ1 * vZ1) + (bZ1 * vZ1)) by VECTSP_1:def 15;

          hence ((a + b) * v) = ((a * v) + (b * v));

        end;

        hereby

          let a be Real, v,w be VECTOR of XQ;

          reconsider aZ1 = a as Element of F_Real by XREAL_0:def 1;

          reconsider vZ1 = v, wZ1 = w as Element of X;

          (a * (v + w)) = (aZ1 * (vZ1 + wZ1))

          .= ((aZ1 * vZ1) + (aZ1 * wZ1)) by VECTSP_1:def 14;

          hence (a * (v + w)) = ((a * v) + (a * w));

        end;

        hereby

          let a,b be Real, v be VECTOR of XQ;

          reconsider vZ1 = v as Element of X;

          reconsider aZ1 = a, bZ1 = b as Element of F_Real by XREAL_0:def 1;

          ((a * b) * v) = ((aZ1 * bZ1) * vZ1)

          .= (aZ1 * (bZ1 * vZ1)) by VECTSP_1:def 16;

          hence ((a * b) * v) = (a * (b * v));

        end;

        let v be VECTOR of XQ;

        reconsider vZ1 = v as Element of X;

        

        thus (1 * v) = (( 1. F_Real ) * vZ1)

        .= v by VECTSP_1:def 17;

      end;

      hence thesis;

    end;

    definition

      let X be VectSp of F_Real ;

      :: DUALSP01:def4

      func RVSp2RLSp X -> RealLinearSpace equals RLSStruct (# the carrier of X, the ZeroF of X, the addF of X, ( MultReal* X) #);

      correctness by Lm02;

    end

    theorem :: DUALSP01:3

    for X be RealLinearSpace, v,w be Element of X, v1,w1 be Element of ( RLSp2RVSp X) st v = v1 & w = w1 holds (v + w) = (v1 + w1) & (v - w) = (v1 - w1)

    proof

      let X be RealLinearSpace, v,w be Element of X, v1,w1 be Element of ( RLSp2RVSp X);

      assume

       AS: v = v1 & w = w1;

      hence (v + w) = (v1 + w1);

      ( - w) = (( - 1) * w) by RLVECT_1: 16

      .= (( - ( 1. F_Real )) * w1) by AS

      .= ( - w1) by VECTSP_1: 14;

      hence (v - w) = (v1 - w1) by AS;

    end;

    theorem :: DUALSP01:4

    for X be VectSp of F_Real , v,w be Element of X, v1,w1 be Element of ( RVSp2RLSp X) st v = v1 & w = w1 holds (v + w) = (v1 + w1) & (v - w) = (v1 - w1)

    proof

      let X be VectSp of F_Real , v,w be Element of X, v1,w1 be Element of ( RVSp2RLSp X);

      assume

       AS: v = v1 & w = w1;

      ( - w1) = (( - 1) * w1) by RLVECT_1: 16

      .= (( - ( 1. F_Real )) * w) by AS

      .= ( - w) by VECTSP_1: 14;

      hence (v + w) = (v1 + w1) & (v - w) = (v1 - w1) by AS;

    end;

    definition

      let V be non empty RealLinearSpace;

      :: DUALSP01:def5

      func V *' -> strict non empty RealLinearSpace means

      : def2: ex X be non empty VectSp of F_Real st X = ( RLSp2RVSp V) & it = ( RVSp2RLSp (X *' ));

      correctness

      proof

        reconsider X = ( RLSp2RVSp V) as non empty VectSp of F_Real ;

        ( RVSp2RLSp (X *' )) is non empty RealLinearSpace;

        hence thesis;

      end;

    end

    theorem :: DUALSP01:5

    

     Th1: for x be object holds x in the carrier of (V *' ) iff x is linear-Functional of V

    proof

      let x be object;

      consider X be non empty VectSp of F_Real such that

       AS1: X = ( RLSp2RVSp V) & (V *' ) = ( RVSp2RLSp (X *' )) by def2;

      x is linear-Functional of X iff x is linear-Functional of V

      proof

        hereby

          assume

           A21: x is linear-Functional of X;

          then

          reconsider f = x as Functional of V by AS1;

          reconsider g = x as linear-Functional of X by A21;

          

           A1: f is additive

          proof

            let v,w be Element of V;

            reconsider v1 = v, w1 = w as Element of X by AS1;

            (f . (v + w)) = (g . (v1 + w1)) by AS1

            .= ((g . v1) + (g . w1)) by VECTSP_1:def 20;

            hence (f . (v + w)) = ((f . v) + (f . w));

          end;

          f is homogeneous

          proof

            let v be VECTOR of V, r be Real;

            reconsider v1 = v as Element of X by AS1;

            reconsider r1 = r as Scalar of X by XREAL_0:def 1;

            (f . (r * v)) = (g . (r1 * v1)) by AS1

            .= (r1 * (g . v1)) by HAHNBAN1:def 8;

            hence (f . (r * v)) = (r * (f . v));

          end;

          hence x is linear-Functional of V by A1;

        end;

        assume

         A21: x is linear-Functional of V;

        then

        reconsider f = x as Functional of X by AS1;

        reconsider g = x as linear-Functional of V by A21;

        

         A1: f is additive

        proof

          let v,w be Element of X;

          reconsider v1 = v, w1 = w as VECTOR of V by AS1;

          (f . (v + w)) = (g . (v1 + w1)) by AS1;

          hence (f . (v + w)) = ((f . v) + (f . w)) by HAHNBAN:def 2;

        end;

        f is homogeneous

        proof

          let v be Element of X, r be Element of F_Real ;

          reconsider v1 = v as Element of V by AS1;

          reconsider r1 = r as Element of REAL ;

          (f . (r * v)) = (g . (r1 * v1)) by AS1;

          hence (f . (r * v)) = (r * (f . v)) by HAHNBAN:def 3;

        end;

        hence x is linear-Functional of X by A1;

      end;

      hence thesis by AS1, HAHNBAN1:def 10;

    end;

    registration

      let V be non empty RealLinearSpace;

      cluster (V *' ) -> constituted-Functions;

      coherence

      proof

        the carrier of (V *' ) is functional by Th1;

        hence thesis by MONOID_0: 80;

      end;

    end

    definition

      let V be non empty RealLinearSpace;

      let f be Element of (V *' );

      let v be VECTOR of V;

      :: original: .

      redefine

      func f . v -> Element of REAL ;

      coherence

      proof

        reconsider f as Functional of V by Th1;

        (f . v) is Element of REAL ;

        hence thesis;

      end;

    end

    theorem :: DUALSP01:6

    for V be non empty RealLinearSpace, f,g,h be VECTOR of (V *' ) holds h = (f + g) iff for x be VECTOR of V holds (h . x) = ((f . x) + (g . x))

    proof

      let V be non empty RealLinearSpace;

      let f,g,h be VECTOR of (V *' );

      consider Y be non empty VectSp of F_Real such that

       AS1: Y = ( RLSp2RVSp V) & (V *' ) = ( RVSp2RLSp (Y *' )) by def2;

      reconsider f1 = f, g1 = g, h1 = h as linear-Functional of Y by AS1, HAHNBAN1:def 10;

       A2:

      now

        assume

         A3: h = (f + g);

        let x be Element of V;

        reconsider x1 = x as Element of Y by AS1;

        h1 = (f1 + g1) by A3, AS1, HAHNBAN1:def 10;

        then (h1 . x1) = ((f1 . x1) + (g1 . x1)) by HAHNBAN1:def 3;

        hence (h . x) = ((f . x) + (g . x));

      end;

      now

        assume for x be Element of V holds (h . x) = ((f . x) + (g . x));

        then for x be Element of Y holds (h1 . x) = ((f1 . x) + (g1 . x)) by AS1;

        then h1 = (f1 + g1) by HAHNBAN1:def 3;

        hence h = (f + g) by AS1, HAHNBAN1:def 10;

      end;

      hence thesis by A2;

    end;

    theorem :: DUALSP01:7

    for V be non empty RealLinearSpace, f,h be VECTOR of (V *' ), a be Real holds h = (a * f) iff for x be VECTOR of V holds (h . x) = (a * (f . x))

    proof

      let V be non empty RealLinearSpace, f,h be VECTOR of (V *' ), a be Real;

      reconsider a1 = a as Element of F_Real by XREAL_0:def 1;

      consider Y be non empty VectSp of F_Real such that

       AS1: Y = ( RLSp2RVSp V) & (V *' ) = ( RVSp2RLSp (Y *' )) by def2;

      reconsider f1 = f, h1 = h as linear-Functional of Y by AS1, HAHNBAN1:def 10;

      hereby

        assume

         A3: h = (a * f);

        hereby

          let x be Element of V;

          reconsider x1 = x as Element of Y by AS1;

          h1 = (a1 * f1) by A3, AS1, HAHNBAN1:def 10;

          then (h1 . x1) = (a1 * (f1 . x1)) by HAHNBAN1:def 6;

          hence (h . x) = (a * (f . x));

        end;

      end;

      assume for x be Element of V holds (h . x) = (a * (f . x));

      then for x be Element of Y holds (h1 . x) = (a1 * (f1 . x)) by AS1;

      then h1 = (a1 * f1) by HAHNBAN1:def 6;

      hence h = (a * f) by AS1, HAHNBAN1:def 10;

    end;

    theorem :: DUALSP01:8

    for V be non empty RealLinearSpace holds ( 0. (V *' )) = (the carrier of V --> 0 )

    proof

      let V be non empty RealLinearSpace;

      consider Y be non empty VectSp of F_Real such that

       AS1: Y = ( RLSp2RVSp V) & (V *' ) = ( RVSp2RLSp (Y *' )) by def2;

      ( 0. (V *' )) = ( 0. (Y *' )) by AS1

      .= ( 0Functional Y) by HAHNBAN1:def 10

      .= (( [#] Y) --> ( 0. F_Real )) by HAHNBAN1:def 7;

      hence ( 0. (V *' )) = (the carrier of V --> 0 ) by AS1;

    end;

    theorem :: DUALSP01:9

    

     Th23: for X be RealLinearSpace holds (the carrier of X --> 0 ) is linear-Functional of X

    proof

      let X be RealLinearSpace;

      set f = (the carrier of X --> 0 );

      reconsider f as Functional of X by FUNCOP_1: 45, XREAL_0:def 1;

      

       A1: f is additive

      proof

        let x,y be VECTOR of X;

        thus (f . (x + y)) = ((f . x) + (f . y));

      end;

      f is homogeneous

      proof

        let x be VECTOR of X, r be Real;

        thus (f . (r * x)) = (r * (f . x));

      end;

      hence thesis by A1;

    end;

    definition

      let X be RealLinearSpace;

      :: DUALSP01:def6

      func LinearFunctionals X -> Subset of ( RealVectSpace the carrier of X) means

      : Def7: for x be object holds x in it iff x is linear-Functional of X;

      existence

      proof

        defpred P[ object] means $1 is linear-Functional of X;

        consider IT be set such that

         A1: for x be object holds x in IT iff x in ( Funcs (the carrier of X, REAL )) & P[x] from XBOOLE_0:sch 1;

        for x be object st x in IT holds x in ( Funcs (the carrier of X, REAL )) by A1;

        then

        reconsider IT as Subset of ( RealVectSpace the carrier of X) by TARSKI:def 3;

        take IT;

        let x be object;

        thus x in IT implies x is linear-Functional of X by A1;

        assume

         A3: x is linear-Functional of X;

        then x in ( Funcs (the carrier of X, REAL )) by FUNCT_2: 8;

        hence thesis by A1, A3;

      end;

      uniqueness

      proof

        let X1,X2 be Subset of ( RealVectSpace the carrier of X);

        assume that

         A4: for x be object holds x in X1 iff x is linear-Functional of X and

         A5: for x be object holds x in X2 iff x is linear-Functional of X;

        now

          let x be object;

          assume x in X1;

          then x is linear-Functional of X by A4;

          hence x in X2 by A5;

        end;

        then

         A6: X1 c= X2;

        now

          let x be object;

          assume x in X2;

          then x is linear-Functional of X by A5;

          hence x in X1 by A4;

        end;

        then X2 c= X1;

        hence thesis by A6;

      end;

    end

    registration

      let X be RealNormSpace;

      cluster ( LinearFunctionals X) -> non empty;

      coherence

      proof

        (the carrier of X --> 0 ) is linear-Functional of X by Th23;

        hence thesis by Def7;

      end;

    end

    registration

      let X be RealLinearSpace;

      cluster ( LinearFunctionals X) -> non empty functional;

      coherence

      proof

        (the carrier of X --> 0 ) is linear-Functional of X by Th23;

        hence ( LinearFunctionals X) is non empty by Def7;

        let x be object;

        assume x in ( LinearFunctionals X);

        hence thesis;

      end;

    end

    theorem :: DUALSP01:10

    

     Th17: for X be RealLinearSpace holds ( LinearFunctionals X) is linearly-closed

    proof

      let X be RealLinearSpace;

      set W = ( LinearFunctionals X);

      

       A1: for v,u be VECTOR of ( RealVectSpace the carrier of X) st v in ( LinearFunctionals X) & u in ( LinearFunctionals X) holds (v + u) in ( LinearFunctionals X)

      proof

        let v,u be VECTOR of ( RealVectSpace the carrier of X) such that

         A2: v in W & u in W;

        reconsider f = (v + u) as Functional of X by FUNCT_2: 66;

        

         A3: f is additive

        proof

          let x,y be VECTOR of X;

          reconsider vZ1 = v, uZ1 = u as Element of ( Funcs (the carrier of X, REAL ));

          

           A4: uZ1 is linear-Functional of X by A2, Def7;

          reconsider uZ11 = uZ1 as additive homogeneous Functional of X by A2, Def7;

          reconsider x1 = x, y1 = y as Element of X;

          

           A5: vZ1 is linear-Functional of X by A2, Def7;

          (f . (x + y)) = ((uZ1 . (x + y)) + (vZ1 . (x + y))) by FUNCSDOM: 1

          .= (((uZ1 . x) + (uZ1 . y)) + (vZ1 . (x + y))) by A4, HAHNBAN:def 2

          .= (((uZ1 . x) + (uZ1 . y)) + ((vZ1 . x) + (vZ1 . y))) by A5, HAHNBAN:def 2

          .= ((((uZ1 . x) + (vZ1 . x)) + (uZ1 . y)) + (vZ1 . y))

          .= (((f . x) + (uZ1 . y)) + (vZ1 . y)) by FUNCSDOM: 1

          .= ((f . x) + ((uZ1 . y) + (vZ1 . y)));

          hence (f . (x + y)) = ((f . x) + (f . y)) by FUNCSDOM: 1;

        end;

        f is homogeneous

        proof

          let x be VECTOR of X, s be Real;

          reconsider v1 = v, u1 = u as Element of ( Funcs (the carrier of X, REAL ));

          

           A6: u1 is linear-Functional of X & v1 is linear-Functional of X by A2, Def7;

          (f . (s * x)) = ((u1 . (s * x)) + (v1 . (s * x))) by FUNCSDOM: 1

          .= ((s * (u1 . x)) + (v1 . (s * x))) by A6, HAHNBAN:def 3

          .= ((s * (u1 . x)) + (s * (v1 . x))) by A6, HAHNBAN:def 3

          .= (s * ((u1 . x) + (v1 . x)));

          hence (f . (s * x)) = (s * (f . x)) by FUNCSDOM: 1;

        end;

        hence (v + u) in W by A3, Def7;

      end;

      for a be Real, v be VECTOR of ( RealVectSpace the carrier of X) st v in W holds (a * v) in W

      proof

        let a be Real;

        let v be VECTOR of ( RealVectSpace the carrier of X) such that

         A8: v in W;

        reconsider f = (a * v) as Functional of X by FUNCT_2: 66;

        

         A9: f is additive

        proof

          let x,y be VECTOR of X;

          reconsider vZ1 = v as Element of ( Funcs (the carrier of X, REAL ));

          

           A10: vZ1 is linear-Functional of X by Def7, A8;

          (f . (x + y)) = (a * (vZ1 . (x + y))) by FUNCSDOM: 4

          .= (a * ((vZ1 . x) + (vZ1 . y))) by A10, HAHNBAN:def 2

          .= ((a * (vZ1 . x)) + (a * (vZ1 . y)))

          .= ((f . x) + (a * (vZ1 . y))) by FUNCSDOM: 4;

          hence (f . (x + y)) = ((f . x) + (f . y)) by FUNCSDOM: 4;

        end;

        f is homogeneous

        proof

          let x be VECTOR of X, s be Real;

          reconsider vZ1 = v as Element of ( Funcs (the carrier of X, REAL ));

          

           A11: vZ1 is linear-Functional of X by Def7, A8;

          (f . (s * x)) = (a * (vZ1 . (s * x))) by FUNCSDOM: 4

          .= (a * (s * (vZ1 . x))) by A11, HAHNBAN:def 3

          .= (s * (a * (vZ1 . x)));

          hence (f . (s * x)) = (s * (f . x)) by FUNCSDOM: 4;

        end;

        hence thesis by A9, Def7;

      end;

      hence thesis by A1;

    end;

    theorem :: DUALSP01:11

    for X be RealLinearSpace holds RLSStruct (# ( LinearFunctionals X), ( Zero_ (( LinearFunctionals X),( RealVectSpace the carrier of X))), ( Add_ (( LinearFunctionals X),( RealVectSpace the carrier of X))), ( Mult_ (( LinearFunctionals X),( RealVectSpace the carrier of X))) #) is Subspace of ( RealVectSpace the carrier of X) by Th17, RSSPACE: 11;

    registration

      let X be RealLinearSpace;

      cluster RLSStruct (# ( LinearFunctionals X), ( Zero_ (( LinearFunctionals X),( RealVectSpace the carrier of X))), ( Add_ (( LinearFunctionals X),( RealVectSpace the carrier of X))), ( Mult_ (( LinearFunctionals X),( RealVectSpace the carrier of X))) #) -> Abelian add-associative right_zeroed right_complementable scalar-distributive vector-distributive scalar-associative scalar-unital;

      coherence by Th17, RSSPACE: 11;

    end

    definition

      let X be RealLinearSpace;

      :: DUALSP01:def7

      func X *' -> strict RealLinearSpace equals RLSStruct (# ( LinearFunctionals X), ( Zero_ (( LinearFunctionals X),( RealVectSpace the carrier of X))), ( Add_ (( LinearFunctionals X),( RealVectSpace the carrier of X))), ( Mult_ (( LinearFunctionals X),( RealVectSpace the carrier of X))) #);

      coherence ;

    end

    registration

      let X be RealLinearSpace;

      cluster (X *' ) -> constituted-Functions;

      coherence by MONOID_0: 80;

    end

    definition

      let X be RealLinearSpace;

      let f be Element of (X *' );

      let v be VECTOR of X;

      :: original: .

      redefine

      func f . v -> Element of REAL ;

      coherence

      proof

        reconsider f as Functional of X by Def7;

        (f . v) is Element of REAL ;

        hence thesis;

      end;

    end

    theorem :: DUALSP01:12

    

     Th20b: for X be RealLinearSpace, f,g,h be VECTOR of (X *' ) holds h = (f + g) iff for x be VECTOR of X holds (h . x) = ((f . x) + (g . x))

    proof

      let X be RealLinearSpace, f,g,h be VECTOR of (X *' );

      

       A1: (X *' ) is Subspace of ( RealVectSpace the carrier of X) by Th17, RSSPACE: 11;

      then

      reconsider f1 = f, g1 = g, h1 = h as VECTOR of ( RealVectSpace the carrier of X) by RLSUB_1: 10;

      hereby

        assume

         A3: h = (f + g);

        let x be Element of X;

        h1 = (f1 + g1) by A1, A3, RLSUB_1: 13;

        hence (h . x) = ((f . x) + (g . x)) by FUNCSDOM: 1;

      end;

      assume for x be Element of X holds (h . x) = ((f . x) + (g . x));

      then h1 = (f1 + g1) by FUNCSDOM: 1;

      hence h = (f + g) by A1, RLSUB_1: 13;

    end;

    theorem :: DUALSP01:13

    

     Th21b: for X be RealLinearSpace, f,h be VECTOR of (X *' ), a be Real holds h = (a * f) iff for x be VECTOR of X holds (h . x) = (a * (f . x))

    proof

      let X be RealLinearSpace;

      let f,h be VECTOR of (X *' );

      let a be Real;

      

       A1: (X *' ) is Subspace of ( RealVectSpace the carrier of X) by Th17, RSSPACE: 11;

      then

      reconsider f1 = f, h1 = h as VECTOR of ( RealVectSpace the carrier of X) by RLSUB_1: 10;

      hereby

        assume

         A3: h = (a * f);

        let x be Element of X;

        h1 = (a * f1) by A1, A3, RLSUB_1: 14;

        hence (h . x) = (a * (f . x)) by FUNCSDOM: 4;

      end;

      assume for x be Element of X holds (h . x) = (a * (f . x));

      then h1 = (a * f1) by FUNCSDOM: 4;

      hence h = (a * f) by A1, RLSUB_1: 14;

    end;

    theorem :: DUALSP01:14

    

     Th22b: for X be RealLinearSpace holds ( 0. (X *' )) = (the carrier of X --> 0 )

    proof

      let X be RealLinearSpace;

      

       A1: (X *' ) is Subspace of ( RealVectSpace the carrier of X) by Th17, RSSPACE: 11;

      ( 0. ( RealVectSpace the carrier of X)) = (the carrier of X --> 0 );

      hence thesis by A1, RLSUB_1: 11;

    end;

    begin

    reserve S for Real_Sequence;

    reserve k,n,m,m1 for Nat;

    reserve g,h,r,x for Real;

    definition

      let S be Real_Sequence;

      let x be Real;

      :: DUALSP01:def8

      func S - x -> Real_Sequence means

      : Def14: for n holds (it . n) = ((S . n) - x);

      existence

      proof

        deffunc F( Nat) = ((S . $1) - x);

        consider S be Real_Sequence such that

         A1: for n be Nat holds (S . n) = F(n) from SEQ_1:sch 1;

        take S;

        let n;

        thus thesis by A1;

      end;

      uniqueness

      proof

        let S1,S2 be Real_Sequence;

        assume that

         A2: for n holds (S1 . n) = ((S . n) - x) and

         A3: for n holds (S2 . n) = ((S . n) - x);

        for n be Nat holds (S1 . n) = (S2 . n)

        proof

          let n be Nat;

          (S1 . n) = ((S . n) - x) by A2;

          hence thesis by A3;

        end;

        hence thesis;

      end;

    end

    theorem :: DUALSP01:15

    

     Th121: S is convergent implies (S - x) is convergent & ( lim (S - x)) = (( lim S) - x)

    proof

      assume

       B1: S is convergent;

      set g = ( lim S);

      set h = (g - x);

       X1:

      now

        let r;

        assume 0 < r;

        then

        consider m1 such that

         A2: for n st m1 <= n holds |.((S . n) - g).| < r by B1, SEQ_2:def 7;

        take k = m1;

        let n;

        assume

         B3: k <= n;

         |.((S . n) - g).| = |.(((S . n) - x) - h).|

        .= |.(((S - x) . n) - h).| by Def14;

        hence |.(((S - x) . n) - h).| < r by A2, B3;

      end;

      hence (S - x) is convergent;

      hence ( lim (S - x)) = (( lim S) - x) by X1, SEQ_2:def 7;

    end;

    definition

      let X be RealNormSpace;

      let IT be Functional of X;

      :: DUALSP01:def9

      attr IT is Lipschitzian means

      : Def8: ex K be Real st 0 <= K & for x be VECTOR of X holds |.(IT . x).| <= (K * ||.x.||);

    end

    theorem :: DUALSP01:16

    

     Th21: for X be RealNormSpace, f be Functional of X st (for x be VECTOR of X holds (f . x) = 0 ) holds f is Lipschitzian

    proof

      let X be RealNormSpace;

      let f be Functional of X;

      assume

       A1: for x be VECTOR of X holds (f . x) = 0 ;

      take 0 ;

      thus thesis by A1, COMPLEX1: 44;

    end;

    

     Th21X: for X be RealNormSpace, F be Functional of X st F = (the carrier of X --> 0 ) holds F is linear-Functional of X & F is Lipschitzian

    proof

      let X be RealNormSpace, F be Functional of X;

      assume

       A1: F = (the carrier of X --> 0 );

      then

      reconsider F as linear-Functional of X by Th23;

      for x be VECTOR of X holds (F . x) = 0 by A1;

      hence thesis by Th21;

    end;

    registration

      let X be RealNormSpace;

      cluster Lipschitzian for linear-Functional of X;

      existence

      proof

        set f = (the carrier of X --> 0 );

        reconsider f as Function of the carrier of X, REAL by FUNCOP_1: 45, XREAL_0:def 1;

        reconsider f as Functional of X;

        reconsider f as linear-Functional of X by Th21X;

        f is Lipschitzian by Th21X;

        hence thesis;

      end;

    end

    definition

      let X be RealNormSpace;

      :: DUALSP01:def10

      func BoundedLinearFunctionals X -> Subset of (X *' ) means

      : Def9: for x be set holds x in it iff x is Lipschitzian linear-Functional of X;

      existence

      proof

        defpred P[ object] means $1 is Lipschitzian linear-Functional of X;

        consider IT be set such that

         A1: for x be object holds x in IT iff x in ( LinearFunctionals X) & P[x] from XBOOLE_0:sch 1;

        take IT;

        for x be object st x in IT holds x in ( LinearFunctionals X) by A1;

        hence IT is Subset of (X *' ) by TARSKI:def 3;

        let x be set;

        thus x in IT implies x is Lipschitzian linear-Functional of X by A1;

        assume

         A2: x is Lipschitzian linear-Functional of X;

        then x in ( LinearFunctionals X) by Def7;

        hence thesis by A1, A2;

      end;

      uniqueness

      proof

        let X1,X2 be Subset of (X *' );

        assume that

         A3: for x be set holds x in X1 iff x is Lipschitzian linear-Functional of X and

         A4: for x be set holds x in X2 iff x is Lipschitzian linear-Functional of X;

        now

          let x be object;

          assume x in X2;

          then x is Lipschitzian linear-Functional of X by A4;

          hence x in X1 by A3;

        end;

        then

         A5: X2 c= X1;

        now

          let x be object;

          assume x in X1;

          then x is Lipschitzian linear-Functional of X by A3;

          hence x in X2 by A4;

        end;

        then X1 c= X2;

        hence thesis by A5;

      end;

    end

    registration

      let X be RealNormSpace;

      cluster ( BoundedLinearFunctionals X) -> non empty;

      coherence

      proof

        set f = the Lipschitzian linear-Functional of X;

        f in ( BoundedLinearFunctionals X) by Def9;

        hence thesis;

      end;

    end

    theorem :: DUALSP01:17

    

     Th22: for X be RealNormSpace holds ( BoundedLinearFunctionals X) is linearly-closed

    proof

      let X be RealNormSpace;

      set W = ( BoundedLinearFunctionals X);

      

       A1: for v,u be VECTOR of (X *' ) st v in W & u in W holds (v + u) in W

      proof

        let v,u be VECTOR of (X *' ) such that

         A2: v in W & u in W;

        reconsider f = (v + u) as linear-Functional of X by Def7;

        f is Lipschitzian

        proof

          reconsider v1 = v, u1 = u as Lipschitzian Functional of X by A2, Def9;

          consider K2 be Real such that

           A4: 0 <= K2 and

           A5: for x be VECTOR of X holds |.(v1 . x).| <= (K2 * ||.x.||) by Def8;

          consider K1 be Real such that

           A6: 0 <= K1 and

           A7: for x be VECTOR of X holds |.(u1 . x).| <= (K1 * ||.x.||) by Def8;

          take K3 = (K1 + K2);

          now

            let x be VECTOR of X;

            

             A8: |.((u1 . x) + (v1 . x)).| <= ( |.(u1 . x).| + |.(v1 . x).|) by COMPLEX1: 56;

            

             A9: |.(v1 . x).| <= (K2 * ||.x.||) by A5;

             |.(u1 . x).| <= (K1 * ||.x.||) by A7;

            then

             A10: ( |.(u1 . x).| + |.(v1 . x).|) <= ((K1 * ||.x.||) + (K2 * ||.x.||)) by A9, XREAL_1: 7;

             |.(f . x).| = |.((u1 . x) + (v1 . x)).| by Th20b;

            hence |.(f . x).| <= (K3 * ||.x.||) by A8, A10, XXREAL_0: 2;

          end;

          hence thesis by A6, A4;

        end;

        hence thesis by Def9;

      end;

      for a be Real, v be VECTOR of (X *' ) st v in W holds (a * v) in W

      proof

        let a be Real;

        let v be VECTOR of (X *' ) such that

         A11: v in W;

        reconsider f = (a * v) as linear-Functional of X by Def7;

        f is Lipschitzian

        proof

          reconsider v1 = v as Lipschitzian Functional of X by A11, Def9;

          consider K be Real such that

           A12: 0 <= K and

           A13: for x be VECTOR of X holds |.(v1 . x).| <= (K * ||.x.||) by Def8;

          take ( |.a.| * K);

           A14:

          now

            let x be VECTOR of X;

             0 <= |.a.| by COMPLEX1: 46;

            then

             A15: ( |.a.| * |.(v1 . x).|) <= ( |.a.| * (K * ||.x.||)) by A13, XREAL_1: 64;

             |.(a * (v1 . x)).| = ( |.a.| * |.(v1 . x).|) by COMPLEX1: 65;

            hence |.(f . x).| <= (( |.a.| * K) * ||.x.||) by A15, Th21b;

          end;

           0 <= |.a.| by COMPLEX1: 46;

          hence thesis by A12, A14;

        end;

        hence thesis by Def9;

      end;

      hence thesis by A1;

    end;

    theorem :: DUALSP01:18

    for X be RealNormSpace holds RLSStruct (# ( BoundedLinearFunctionals X), ( Zero_ (( BoundedLinearFunctionals X),(X *' ))), ( Add_ (( BoundedLinearFunctionals X),(X *' ))), ( Mult_ (( BoundedLinearFunctionals X),(X *' ))) #) is Subspace of (X *' ) by Th22, RSSPACE: 11;

    registration

      let X be RealNormSpace;

      cluster RLSStruct (# ( BoundedLinearFunctionals X), ( Zero_ (( BoundedLinearFunctionals X),(X *' ))), ( Add_ (( BoundedLinearFunctionals X),(X *' ))), ( Mult_ (( BoundedLinearFunctionals X),(X *' ))) #) -> Abelian add-associative right_zeroed right_complementable vector-distributive scalar-distributive scalar-associative scalar-unital;

      coherence by Th22, RSSPACE: 11;

    end

    definition

      let X be RealNormSpace;

      :: DUALSP01:def11

      func R_VectorSpace_of_BoundedLinearFunctionals X -> strict RealLinearSpace equals RLSStruct (# ( BoundedLinearFunctionals X), ( Zero_ (( BoundedLinearFunctionals X),(X *' ))), ( Add_ (( BoundedLinearFunctionals X),(X *' ))), ( Mult_ (( BoundedLinearFunctionals X),(X *' ))) #);

      coherence ;

    end

    registration

      let X be RealNormSpace;

      cluster -> Function-like Relation-like for Element of ( R_VectorSpace_of_BoundedLinearFunctionals X);

      coherence ;

    end

    definition

      let X be RealNormSpace;

      let f be Element of ( R_VectorSpace_of_BoundedLinearFunctionals X);

      let v be VECTOR of X;

      :: original: .

      redefine

      func f . v -> Element of REAL ;

      coherence

      proof

        reconsider f as Functional of X by Def9;

        (f . v) is Element of REAL ;

        hence thesis;

      end;

    end

    theorem :: DUALSP01:19

    

     Th24: for X be RealNormSpace, f,g,h be VECTOR of ( R_VectorSpace_of_BoundedLinearFunctionals X) holds h = (f + g) iff for x be VECTOR of X holds (h . x) = ((f . x) + (g . x))

    proof

      let X be RealNormSpace;

      let f,g,h be VECTOR of ( R_VectorSpace_of_BoundedLinearFunctionals X);

      

       A1: ( R_VectorSpace_of_BoundedLinearFunctionals X) is Subspace of (X *' ) by Th22, RSSPACE: 11;

      then

      reconsider f1 = f, h1 = h, g1 = g as VECTOR of (X *' ) by RLSUB_1: 10;

      hereby

        assume

         A2: h = (f + g);

        let x be Element of X;

        h1 = (f1 + g1) by A1, A2, RLSUB_1: 13;

        hence (h . x) = ((f . x) + (g . x)) by Th20b;

      end;

      assume for x be Element of X holds (h . x) = ((f . x) + (g . x));

      then h1 = (f1 + g1) by Th20b;

      hence thesis by A1, RLSUB_1: 13;

    end;

    theorem :: DUALSP01:20

    

     Th25: for X be RealNormSpace, f,h be VECTOR of ( R_VectorSpace_of_BoundedLinearFunctionals X), a be Real holds h = (a * f) iff for x be VECTOR of X holds (h . x) = (a * (f . x))

    proof

      let X be RealNormSpace;

      let f,h be VECTOR of ( R_VectorSpace_of_BoundedLinearFunctionals X);

      let a be Real;

      

       A1: ( R_VectorSpace_of_BoundedLinearFunctionals X) is Subspace of (X *' ) by Th22, RSSPACE: 11;

      then

      reconsider f1 = f, h1 = h as VECTOR of (X *' ) by RLSUB_1: 10;

      hereby

        assume

         A2: h = (a * f);

        let x be Element of X;

        h1 = (a * f1) by A1, A2, RLSUB_1: 14;

        hence (h . x) = (a * (f . x)) by Th21b;

      end;

      assume for x be Element of X holds (h . x) = (a * (f . x));

      then h1 = (a * f1) by Th21b;

      hence thesis by A1, RLSUB_1: 14;

    end;

    theorem :: DUALSP01:21

    

     Th26: for X be RealNormSpace holds ( 0. ( R_VectorSpace_of_BoundedLinearFunctionals X)) = (the carrier of X --> 0 )

    proof

      let X be RealNormSpace;

      

       A1: ( 0. (X *' )) = (the carrier of X --> 0 ) by Th22b;

      ( R_VectorSpace_of_BoundedLinearFunctionals X) is Subspace of (X *' ) by Th22, RSSPACE: 11;

      hence thesis by A1, RLSUB_1: 11;

    end;

    definition

      let X be RealNormSpace;

      let f be object;

      :: DUALSP01:def12

      func Bound2Lipschitz (f,X) -> Lipschitzian linear-Functional of X equals ( In (f,( BoundedLinearFunctionals X)));

      coherence by Def9;

    end

    definition

      let X be RealNormSpace;

      let u be linear-Functional of X;

      :: DUALSP01:def13

      func PreNorms u -> non empty Subset of REAL equals { |.(u . t).| where t be VECTOR of X : ||.t.|| <= 1 };

      coherence

      proof

         A1:

        now

          let x be object;

          now

            assume x in { |.(u . t).| where t be VECTOR of X : ||.t.|| <= 1 };

            then ex t be VECTOR of X st x = |.(u . t).| & ||.t.|| <= 1;

            hence x in REAL by XREAL_0:def 1;

          end;

          hence x in { |.(u . t).| where t be VECTOR of X : ||.t.|| <= 1 } implies x in REAL ;

        end;

         ||.( 0. X).|| = 0 ;

        then |.(u . ( 0. X)).| in { |.(u . t).| where t be VECTOR of X : ||.t.|| <= 1 };

        hence thesis by A1, TARSKI:def 3;

      end;

    end

    

     Th27: for X be RealNormSpace, g be Lipschitzian linear-Functional of X holds ( PreNorms g) is bounded_above

    proof

      let X be RealNormSpace;

      let g be Lipschitzian linear-Functional of X;

      consider K be Real such that

       A1: 0 <= K & for x be VECTOR of X holds |.(g . x).| <= (K * ||.x.||) by Def8;

      take K;

      let r be ExtReal;

      assume r in ( PreNorms g);

      then

      consider t be VECTOR of X such that

       A3: r = |.(g . t).| & ||.t.|| <= 1;

      

       A5: |.(g . t).| <= (K * ||.t.||) by A1;

      (K * ||.t.||) <= (K * 1) by A1, A3, XREAL_1: 64;

      hence r <= K by A3, A5, XXREAL_0: 2;

    end;

    registration

      let X be RealNormSpace, g be Lipschitzian linear-Functional of X;

      cluster ( PreNorms g) -> bounded_above;

      coherence by Th27;

    end

    theorem :: DUALSP01:22

    for X be RealNormSpace, g be linear-Functional of X holds g is Lipschitzian iff ( PreNorms g) is bounded_above

    proof

      let X be RealNormSpace;

      let g be linear-Functional of X;

      now

        reconsider K = ( upper_bound ( PreNorms g)) as Real;

        assume

         A1: ( PreNorms g) is bounded_above;

         A2:

        now

          let t be VECTOR of X;

          per cases ;

            suppose

             A3: t = ( 0. X);

            then

             A4: ||.t.|| = 0 ;

            (g . t) = (g . ( 0 * ( 0. X))) by A3

            .= ( 0 * (g . ( 0. X))) by HAHNBAN:def 3

            .= 0 ;

            hence |.(g . t).| <= (K * ||.t.||) by A4, COMPLEX1: 44;

          end;

            suppose

             A5: t <> ( 0. X);

            reconsider t1 = (( ||.t.|| " ) * t) as VECTOR of X;

            

             A6: ||.t.|| <> 0 by A5, NORMSP_0:def 5;

            

             A7: (( |.(g . t).| / ||.t.||) * ||.t.||) = (( |.(g . t).| * ( ||.t.|| " )) * ||.t.||) by XCMPLX_0:def 9

            .= ( |.(g . t).| * (( ||.t.|| " ) * ||.t.||))

            .= ( |.(g . t).| * 1) by A6, XCMPLX_0:def 7

            .= |.(g . t).|;

            

             A8: |.( ||.t.|| " ).| = |.(1 * ( ||.t.|| " )).|

            .= |.(1 / ||.t.||).| by XCMPLX_0:def 9

            .= (1 / ||.t.||) by ABSVALUE:def 1

            .= (1 * ( ||.t.|| " )) by XCMPLX_0:def 9

            .= ( ||.t.|| " );

             ||.t1.|| = ( |.( ||.t.|| " ).| * ||.t.||) by NORMSP_1:def 1

            .= 1 by A6, A8, XCMPLX_0:def 7;

            then

             A9: |.(g . t1).| in { |.(g . s).| where s be VECTOR of X : ||.s.|| <= 1 };

            ( |.(g . t).| / ||.t.||) = ( |.(g . t).| * ( ||.t.|| " )) by XCMPLX_0:def 9

            .= |.(( ||.t.|| " ) * (g . t)).| by A8, COMPLEX1: 65

            .= |.(g . t1).| by HAHNBAN:def 3;

            then ( |.(g . t).| / ||.t.||) <= K by A1, A9, SEQ_4:def 1;

            hence |.(g . t).| <= (K * ||.t.||) by A7, XREAL_1: 64;

          end;

        end;

        take K;

         0 <= K

        proof

          consider r0 be object such that

           A10: r0 in ( PreNorms g) by XBOOLE_0:def 1;

          reconsider r0 as Real by A10;

          now

            let r be Real;

            assume r in ( PreNorms g);

            then ex t be VECTOR of X st r = |.(g . t).| & ||.t.|| <= 1;

            hence 0 <= r by COMPLEX1: 46;

          end;

          then 0 <= r0 by A10;

          hence thesis by A1, A10, SEQ_4:def 1;

        end;

        hence g is Lipschitzian by A2;

      end;

      hence thesis;

    end;

    definition

      let X be RealNormSpace;

      :: DUALSP01:def14

      func BoundedLinearFunctionalsNorm X -> Function of ( BoundedLinearFunctionals X), REAL means

      : Def13: for x be object st x in ( BoundedLinearFunctionals X) holds (it . x) = ( upper_bound ( PreNorms ( Bound2Lipschitz (x,X))));

      existence

      proof

        deffunc F( object) = ( upper_bound ( PreNorms ( Bound2Lipschitz ($1,X))));

        

         A1: for z be object st z in ( BoundedLinearFunctionals X) holds F(z) in REAL by XREAL_0:def 1;

        thus ex f be Function of ( BoundedLinearFunctionals X), REAL st for x be object st x in ( BoundedLinearFunctionals X) holds (f . x) = F(x) from FUNCT_2:sch 2( A1);

      end;

      uniqueness

      proof

        let NORM1,NORM2 be Function of ( BoundedLinearFunctionals X), REAL such that

         A2: for x be object st x in ( BoundedLinearFunctionals X) holds (NORM1 . x) = ( upper_bound ( PreNorms ( Bound2Lipschitz (x,X)))) and

         A3: for x be object st x in ( BoundedLinearFunctionals X) holds (NORM2 . x) = ( upper_bound ( PreNorms ( Bound2Lipschitz (x,X))));

        for z be object st z in ( BoundedLinearFunctionals X) holds (NORM1 . z) = (NORM2 . z)

        proof

          let z be object such that

           A5: z in ( BoundedLinearFunctionals X);

          (NORM1 . z) = ( upper_bound ( PreNorms ( Bound2Lipschitz (z,X)))) by A2, A5;

          hence thesis by A3, A5;

        end;

        hence thesis;

      end;

    end

    theorem :: DUALSP01:23

    

     Th29: for X be RealNormSpace, f be Lipschitzian linear-Functional of X holds ( Bound2Lipschitz (f,X)) = f

    proof

      let X be RealNormSpace;

      let f be Lipschitzian linear-Functional of X;

      f in ( BoundedLinearFunctionals X) by Def9;

      hence thesis by SUBSET_1:def 8;

    end;

    theorem :: DUALSP01:24

    

     Th30: for X be RealNormSpace, f be Lipschitzian linear-Functional of X holds (( BoundedLinearFunctionalsNorm X) . f) = ( upper_bound ( PreNorms f))

    proof

      let X be RealNormSpace;

      let f be Lipschitzian linear-Functional of X;

      reconsider f9 = f as set;

      f in ( BoundedLinearFunctionals X) by Def9;

      

      hence (( BoundedLinearFunctionalsNorm X) . f) = ( upper_bound ( PreNorms ( Bound2Lipschitz (f9,X)))) by Def13

      .= ( upper_bound ( PreNorms f)) by Th29;

    end;

    definition

      let X be RealNormSpace;

      :: DUALSP01:def15

      func DualSp X -> non empty NORMSTR equals NORMSTR (# ( BoundedLinearFunctionals X), ( Zero_ (( BoundedLinearFunctionals X),(X *' ))), ( Add_ (( BoundedLinearFunctionals X),(X *' ))), ( Mult_ (( BoundedLinearFunctionals X),(X *' ))), ( BoundedLinearFunctionalsNorm X) #);

      coherence ;

    end

    theorem :: DUALSP01:25

    

     Th31: for X be RealNormSpace holds (the carrier of X --> 0 ) = ( 0. ( DualSp X))

    proof

      let X be RealNormSpace;

      (the carrier of X --> 0 ) = ( 0. ( R_VectorSpace_of_BoundedLinearFunctionals X)) by Th26

      .= ( 0. ( DualSp X));

      hence thesis;

    end;

    theorem :: DUALSP01:26

    

     Th32: for X be RealNormSpace, f be Point of ( DualSp X), g be Lipschitzian linear-Functional of X st g = f holds for t be VECTOR of X holds |.(g . t).| <= ( ||.f.|| * ||.t.||)

    proof

      let X be RealNormSpace;

      let f be Point of ( DualSp X);

      let g be Lipschitzian linear-Functional of X such that

       A1: g = f;

      now

        let t be VECTOR of X;

        per cases ;

          suppose

           A3: t = ( 0. X);

          then

           A4: ||.t.|| = 0 ;

          (g . t) = (g . ( 0 * ( 0. X))) by A3

          .= ( 0 * (g . ( 0. X))) by HAHNBAN:def 3

          .= 0 ;

          hence |.(g . t).| <= ( ||.f.|| * ||.t.||) by A4, COMPLEX1: 44;

        end;

          suppose

           A5: t <> ( 0. X);

          reconsider t1 = (( ||.t.|| " ) * t) as VECTOR of X;

          

           A6: ||.t.|| <> 0 by A5, NORMSP_0:def 5;

          

           A7: |.( ||.t.|| " ).| = |.(1 * ( ||.t.|| " )).|

          .= |.(1 / ||.t.||).| by XCMPLX_0:def 9

          .= (1 / ||.t.||) by ABSVALUE:def 1

          .= (1 * ( ||.t.|| " )) by XCMPLX_0:def 9

          .= ( ||.t.|| " );

          

           A8: ( |.(g . t).| / ||.t.||) = ( |.(g . t).| * ( ||.t.|| " )) by XCMPLX_0:def 9

          .= |.(( ||.t.|| " ) * (g . t)).| by A7, COMPLEX1: 65

          .= |.(g . t1).| by HAHNBAN:def 3;

           ||.t1.|| = ( |.( ||.t.|| " ).| * ||.t.||) by NORMSP_1:def 1

          .= 1 by A6, A7, XCMPLX_0:def 7;

          then ( |.(g . t).| / ||.t.||) in { |.(g . s).| where s be VECTOR of X : ||.s.|| <= 1 } by A8;

          then ( |.(g . t).| / ||.t.||) <= ( upper_bound ( PreNorms g)) by SEQ_4:def 1;

          then

           A9: ( |.(g . t).| / ||.t.||) <= ||.f.|| by A1, Th30;

          (( |.(g . t).| / ||.t.||) * ||.t.||) = (( |.(g . t).| * ( ||.t.|| " )) * ||.t.||) by XCMPLX_0:def 9

          .= ( |.(g . t).| * (( ||.t.|| " ) * ||.t.||))

          .= ( |.(g . t).| * 1) by A6, XCMPLX_0:def 7

          .= |.(g . t).|;

          hence |.(g . t).| <= ( ||.f.|| * ||.t.||) by A9, XREAL_1: 64;

        end;

      end;

      hence thesis;

    end;

    theorem :: DUALSP01:27

    

     Th33: for X be RealNormSpace, f be Point of ( DualSp X) holds 0 <= ||.f.||

    proof

      let X be RealNormSpace;

      let f be Point of ( DualSp X);

      reconsider g = f as Lipschitzian linear-Functional of X by Def9;

      consider r0 be object such that

       A1: r0 in ( PreNorms g) by XBOOLE_0:def 1;

      reconsider r0 as Real by A1;

      

       A3: (( BoundedLinearFunctionalsNorm X) . f) = ( upper_bound ( PreNorms g)) by Th30;

      now

        let r be Real;

        assume r in ( PreNorms g);

        then ex t be VECTOR of X st r = |.(g . t).| & ||.t.|| <= 1;

        hence 0 <= r by COMPLEX1: 46;

      end;

      then 0 <= r0 by A1;

      hence thesis by A1, SEQ_4:def 1, A3;

    end;

    theorem :: DUALSP01:28

    

     Th34: for X,Y be RealNormSpace holds for f be Point of ( DualSp X) st f = ( 0. ( DualSp X)) holds 0 = ||.f.||

    proof

      let X,Y be RealNormSpace;

      let f be Point of ( DualSp X) such that

       A1: f = ( 0. ( DualSp X));

      thus ||.f.|| = 0

      proof

        reconsider g = f as Lipschitzian linear-Functional of X by Def9;

        set z = (the carrier of X --> 0 );

        reconsider z as Function of the carrier of X, REAL by FUNCOP_1: 45, XREAL_0:def 1;

        consider r0 be object such that

         A2: r0 in ( PreNorms g) by XBOOLE_0:def 1;

        reconsider r0 as Real by A2;

        

         A3: (for s be Real st s in ( PreNorms g) holds s <= 0 ) implies ( upper_bound ( PreNorms g)) <= 0 by SEQ_4: 45;

        

         A5: z = g by A1, Th31;

         A6:

        now

          let r be Real;

          assume r in ( PreNorms g);

          then ex t be VECTOR of X st r = |.(g . t).| & ||.t.|| <= 1;

          hence 0 <= r & r <= 0 by A5, COMPLEX1: 44;

        end;

        then 0 <= r0 by A2;

        then ( upper_bound ( PreNorms g)) = 0 by A6, A2, A3, SEQ_4:def 1;

        hence thesis by Th30;

      end;

    end;

    registration

      let X be RealNormSpace;

      cluster -> Function-like Relation-like for Element of ( DualSp X);

      coherence ;

    end

    definition

      let X be RealNormSpace;

      let f be Element of ( DualSp X);

      let v be VECTOR of X;

      :: original: .

      redefine

      func f . v -> Element of REAL ;

      coherence

      proof

        reconsider f as linear-Functional of X by Def9;

        (f . v) is Element of REAL ;

        hence thesis;

      end;

    end

    theorem :: DUALSP01:29

    

     Th35: for X be RealNormSpace, f,g,h be Point of ( DualSp X) holds h = (f + g) iff for x be VECTOR of X holds (h . x) = ((f . x) + (g . x))

    proof

      let X be RealNormSpace;

      let f,g,h be Point of ( DualSp X);

      reconsider f1 = f, g1 = g, h1 = h as VECTOR of ( R_VectorSpace_of_BoundedLinearFunctionals X);

      h = (f + g) iff h1 = (f1 + g1);

      hence thesis by Th24;

    end;

    theorem :: DUALSP01:30

    

     Th36: for X be RealNormSpace, f,h be Point of ( DualSp X), a be Real holds h = (a * f) iff for x be VECTOR of X holds (h . x) = (a * (f . x))

    proof

      let X be RealNormSpace;

      let f,h be Point of ( DualSp X);

      let a be Real;

      reconsider f1 = f, h1 = h as VECTOR of ( R_VectorSpace_of_BoundedLinearFunctionals X);

      h = (a * f) iff h1 = (a * f1);

      hence thesis by Th25;

    end;

    theorem :: DUALSP01:31

    

     Th37: for X be RealNormSpace, f,g be Point of ( DualSp X), a be Real holds ( ||.f.|| = 0 iff f = ( 0. ( DualSp X))) & ||.(a * f).|| = ( |.a.| * ||.f.||) & ||.(f + g).|| <= ( ||.f.|| + ||.g.||)

    proof

      let X be RealNormSpace;

      let f,g be Point of ( DualSp X);

      let a be Real;

       A1:

      now

        assume

         A2: f = ( 0. ( DualSp X));

        reconsider g = f as Lipschitzian linear-Functional of X by Def9;

        set z = (the carrier of X --> 0 );

        reconsider z as Function of the carrier of X, REAL by FUNCOP_1: 45, XREAL_0:def 1;

        consider r0 be object such that

         A3: r0 in ( PreNorms g) by XBOOLE_0:def 1;

        reconsider r0 as Real by A3;

        

         A4: (for s be Real st s in ( PreNorms g) holds s <= 0 ) implies ( upper_bound ( PreNorms g)) <= 0 by SEQ_4: 45;

        

         A6: z = g by A2, Th31;

         A7:

        now

          let r be Real;

          assume r in ( PreNorms g);

          then

          consider t be VECTOR of X such that

           A8: r = |.(g . t).| and ||.t.|| <= 1;

          thus 0 <= r & r <= 0 by A8, A6, COMPLEX1: 44;

        end;

        then 0 <= r0 by A3;

        then ( upper_bound ( PreNorms g)) = 0 by A7, A3, A4, SEQ_4:def 1;

        hence ||.f.|| = 0 by Th30;

      end;

      

       A9: ||.(f + g).|| <= ( ||.f.|| + ||.g.||)

      proof

        reconsider f1 = f, g1 = g, h1 = (f + g) as Lipschitzian linear-Functional of X by Def9;

        

         A10: (for s be Real st s in ( PreNorms h1) holds s <= ( ||.f.|| + ||.g.||)) implies ( upper_bound ( PreNorms h1)) <= ( ||.f.|| + ||.g.||) by SEQ_4: 45;

         A11:

        now

          let t be VECTOR of X such that

           A12: ||.t.|| <= 1;

           0 <= ||.f.|| & 0 <= ||.g.|| by Th33;

          then ( ||.f.|| * ||.t.||) <= ( ||.f.|| * 1) & ( ||.g.|| * ||.t.||) <= ( ||.g.|| * 1) by A12, XREAL_1: 64;

          then

           A14: (( ||.f.|| * ||.t.||) + ( ||.g.|| * ||.t.||)) <= (( ||.f.|| * 1) + ( ||.g.|| * 1)) by XREAL_1: 7;

          

           A15: |.((f1 . t) + (g1 . t)).| <= ( |.(f1 . t).| + |.(g1 . t).|) by COMPLEX1: 56;

           |.(g1 . t).| <= ( ||.g.|| * ||.t.||) & |.(f1 . t).| <= ( ||.f.|| * ||.t.||) by Th32;

          then ( |.(f1 . t).| + |.(g1 . t).|) <= (( ||.f.|| * ||.t.||) + ( ||.g.|| * ||.t.||)) by XREAL_1: 7;

          then

           A17: ( |.(f1 . t).| + |.(g1 . t).|) <= ( ||.f.|| + ||.g.||) by A14, XXREAL_0: 2;

           |.(h1 . t).| = |.((f1 . t) + (g1 . t)).| by Th35;

          hence |.(h1 . t).| <= ( ||.f.|| + ||.g.||) by A15, A17, XXREAL_0: 2;

        end;

        now

          let r be Real;

          assume r in ( PreNorms h1);

          then ex t be VECTOR of X st r = |.(h1 . t).| & ||.t.|| <= 1;

          hence r <= ( ||.f.|| + ||.g.||) by A11;

        end;

        hence thesis by A10, Th30;

      end;

      

       A19: ||.(a * f).|| = ( |.a.| * ||.f.||)

      proof

        reconsider f1 = f, h1 = (a * f) as Lipschitzian linear-Functional of X by Def9;

         A21:

        now

          

           A22: 0 <= ||.f.|| by Th33;

          let t be VECTOR of X;

          assume ||.t.|| <= 1;

          then

           A23: ( ||.f.|| * ||.t.||) <= ( ||.f.|| * 1) by A22, XREAL_1: 64;

           |.(f1 . t).| <= ( ||.f.|| * ||.t.||) by Th32;

          then

           A24: |.(f1 . t).| <= ||.f.|| by A23, XXREAL_0: 2;

          

           A25: |.(a * (f1 . t)).| = ( |.a.| * |.(f1 . t).|) by COMPLEX1: 65;

          

           A26: 0 <= |.a.| by COMPLEX1: 46;

           |.(h1 . t).| = |.(a * (f1 . t)).| by Th36;

          hence |.(h1 . t).| <= ( |.a.| * ||.f.||) by A25, A24, A26, XREAL_1: 64;

        end;

         A27:

        now

          let r be Real;

          assume r in ( PreNorms h1);

          then ex t be VECTOR of X st r = |.(h1 . t).| & ||.t.|| <= 1;

          hence r <= ( |.a.| * ||.f.||) by A21;

        end;

         A28:

        now

          per cases ;

            case

             A29: a <> 0 ;

             A30:

            now

              

               A31: 0 <= ||.(a * f).|| by Th33;

              let t be VECTOR of X;

              assume ||.t.|| <= 1;

              then

               A32: ( ||.(a * f).|| * ||.t.||) <= ( ||.(a * f).|| * 1) by A31, XREAL_1: 64;

               |.(h1 . t).| <= ( ||.(a * f).|| * ||.t.||) by Th32;

              then

               A33: |.(h1 . t).| <= ||.(a * f).|| by A32, XXREAL_0: 2;

              (h1 . t) = (a * (f1 . t)) by Th36;

              

              then

               A34: ((a " ) * (h1 . t)) = (((a " ) * a) * (f1 . t))

              .= (1 * (f1 . t)) by A29, XCMPLX_0:def 7

              .= (f1 . t);

              

               A35: |.(a " ).| = |.(1 * (a " )).|

              .= |.(1 / a).| by XCMPLX_0:def 9

              .= (1 / |.a.|) by ABSVALUE: 7

              .= (1 * ( |.a.| " )) by XCMPLX_0:def 9

              .= ( |.a.| " );

              

               A36: 0 <= |.(a " ).| by COMPLEX1: 46;

               |.((a " ) * (h1 . t)).| = ( |.(a " ).| * |.(h1 . t).|) by COMPLEX1: 65;

              hence |.(f1 . t).| <= (( |.a.| " ) * ||.(a * f).||) by A34, A33, A36, A35, XREAL_1: 64;

            end;

             A37:

            now

              let r be Real;

              assume r in ( PreNorms f1);

              then ex t be VECTOR of X st r = |.(f1 . t).| & ||.t.|| <= 1;

              hence r <= (( |.a.| " ) * ||.(a * f).||) by A30;

            end;

            

             A38: (for s be Real st s in ( PreNorms f1) holds s <= (( |.a.| " ) * ||.(a * f).||)) implies ( upper_bound ( PreNorms f1)) <= (( |.a.| " ) * ||.(a * f).||) by SEQ_4: 45;

            

             A39: 0 <= |.a.| by COMPLEX1: 46;

             ||.f.|| <= (( |.a.| " ) * ||.(a * f).||) by A37, A38, Th30;

            then ( |.a.| * ||.f.||) <= ( |.a.| * (( |.a.| " ) * ||.(a * f).||)) by A39, XREAL_1: 64;

            then

             A40: ( |.a.| * ||.f.||) <= (( |.a.| * ( |.a.| " )) * ||.(a * f).||);

             |.a.| <> 0 by A29, COMPLEX1: 47;

            then ( |.a.| * ||.f.||) <= (1 * ||.(a * f).||) by A40, XCMPLX_0:def 7;

            hence ( |.a.| * ||.f.||) <= ||.(a * f).||;

          end;

            case

             A41: a = 0 ;

            reconsider fz = f as VECTOR of ( R_VectorSpace_of_BoundedLinearFunctionals X);

            

             A42: (a * f) = (a * fz)

            .= ( 0. ( R_VectorSpace_of_BoundedLinearFunctionals X)) by A41, RLVECT_1: 10

            .= ( 0. ( DualSp X));

            

            thus ( |.a.| * ||.f.||) = ( 0 * ||.f.||) by A41, ABSVALUE: 2

            .= ||.(a * f).|| by A42, Th34;

          end;

        end;

        (( BoundedLinearFunctionalsNorm X) . (a * f)) = ( upper_bound ( PreNorms h1)) by Th30;

        then ||.(a * f).|| <= ( |.a.| * ||.f.||) by A27, SEQ_4: 45;

        hence thesis by A28, XXREAL_0: 1;

      end;

      now

        reconsider g = f as Lipschitzian linear-Functional of X by Def9;

        set z = (the carrier of X --> 0 );

        reconsider z as Function of the carrier of X, REAL by FUNCOP_1: 45, XREAL_0:def 1;

        assume

         A43: ||.f.|| = 0 ;

        now

          let t be VECTOR of X;

           |.(g . t).| <= ( ||.f.|| * ||.t.||) by Th32;

          then |.(g . t).| = 0 by A43, COMPLEX1: 46;

          

          hence (g . t) = 0 by COMPLEX1: 45

          .= (z . t);

        end;

        then g = z;

        hence f = ( 0. ( DualSp X)) by Th31;

      end;

      hence thesis by A1, A19, A9;

    end;

    registration

      let X be RealNormSpace;

      cluster ( DualSp X) -> reflexive discerning RealNormSpace-like;

      correctness by Th37;

    end

    theorem :: DUALSP01:32

    

     Th39: for X be RealNormSpace holds ( DualSp X) is RealNormSpace

    proof

      let X be RealNormSpace;

       RLSStruct (# ( BoundedLinearFunctionals X), ( Zero_ (( BoundedLinearFunctionals X),(X *' ))), ( Add_ (( BoundedLinearFunctionals X),(X *' ))), ( Mult_ (( BoundedLinearFunctionals X),(X *' ))) #) is RealLinearSpace;

      hence thesis by RSSPACE3: 2;

    end;

    registration

      let X be RealNormSpace;

      cluster ( DualSp X) -> reflexive discerning RealNormSpace-like vector-distributive scalar-distributive scalar-associative scalar-unital Abelian add-associative right_zeroed right_complementable;

      coherence by Th39;

    end

    theorem :: DUALSP01:33

    

     Th40: for X be RealNormSpace, f,g,h be Point of ( DualSp X) holds h = (f - g) iff for x be VECTOR of X holds (h . x) = ((f . x) - (g . x))

    proof

      let X be RealNormSpace;

      let f,g,h be Point of ( DualSp X);

      reconsider f9 = f, g9 = g, h9 = h as Lipschitzian linear-Functional of X by Def9;

      hereby

        assume h = (f - g);

        then (h + g) = (f - (g - g)) by RLVECT_1: 29;

        then

         A11: (h + g) = (f - ( 0. ( DualSp X))) by RLVECT_1: 15;

        now

          let x be VECTOR of X;

          (f9 . x) = ((h9 . x) + (g9 . x)) by A11, Th35;

          hence ((f9 . x) - (g9 . x)) = (h9 . x);

        end;

        hence for x be VECTOR of X holds (h . x) = ((f . x) - (g . x));

      end;

      assume

       A2: for x be VECTOR of X holds (h . x) = ((f . x) - (g . x));

      now

        let x be VECTOR of X;

        (h9 . x) = ((f9 . x) - (g9 . x)) by A2;

        hence ((h9 . x) + (g9 . x)) = (f9 . x);

      end;

      then f = (h + g) by Th35;

      then (f - g) = (h + (g - g)) by RLVECT_1:def 3;

      then (f - g) = (h + ( 0. ( DualSp X))) by RLVECT_1: 15;

      hence thesis;

    end;

    

     Lm3: for e be Real, seq be Real_Sequence st (seq is convergent & ex k be Nat st for i be Nat st k <= i holds (seq . i) <= e) holds ( lim seq) <= e

    proof

      let e be Real;

      let seq be Real_Sequence such that

       A1: seq is convergent and

       A2: ex k be Nat st for i be Nat st k <= i holds (seq . i) <= e;

      consider k be Nat such that

       A3: for i be Nat st k <= i holds (seq . i) <= e by A2;

      reconsider ee = e as Element of REAL by XREAL_0:def 1;

      set cseq = ( seq_const e);

      

       A4: ( lim cseq) = (cseq . 0 ) by SEQ_4: 26

      .= e;

       A5:

      now

        let i be Nat;

        

         A6: ((seq ^\ k) . i) = (seq . (k + i)) by NAT_1:def 3;

        (seq . (k + i)) <= e by A3, NAT_1: 11;

        hence ((seq ^\ k) . i) <= (cseq . i) by A6, SEQ_1: 57;

      end;

      ( lim (seq ^\ k)) = ( lim seq) by A1, SEQ_4: 20;

      hence thesis by A1, A5, A4, SEQ_2: 18;

    end;

    definition

      let X be RealNormSpace;

      let s be sequence of ( DualSp X), n be Nat;

      :: original: .

      redefine

      func s . n -> Element of ( DualSp X) ;

      coherence

      proof

        reconsider n as Element of NAT by ORDINAL1:def 12;

        (s . n) is Element of ( DualSp X);

        hence thesis;

      end;

    end

    theorem :: DUALSP01:34

    

     Th42: for X be RealNormSpace, seq be sequence of ( DualSp X) st seq is Cauchy_sequence_by_Norm holds seq is convergent

    proof

      let X be RealNormSpace;

      let vseq be sequence of ( DualSp X) such that

       A2: vseq is Cauchy_sequence_by_Norm;

      defpred P[ set, set] means ex xseq be sequence of REAL st (for n be Nat holds (xseq . n) = (( Bound2Lipschitz ((vseq . n),X)) . $1)) & xseq is convergent & $2 = ( lim xseq);

      

       A3: for x be Element of X holds ex y be Element of REAL st P[x, y]

      proof

        let x be Element of X;

        deffunc F( Nat) = (( Bound2Lipschitz ((vseq . $1),X)) . x);

        consider xseq be Real_Sequence such that

         A4: for n be Nat holds (xseq . n) = F(n) from SEQ_1:sch 1;

        reconsider y = ( lim xseq) as Element of REAL by XREAL_0:def 1;

        take y;

        

         A6: for m,k be Nat holds |.((xseq . m) - (xseq . k)).| <= ( ||.((vseq . m) - (vseq . k)).|| * ||.x.||)

        proof

          let m,k be Nat;

          reconsider h1 = ((vseq . m) - (vseq . k)) as Lipschitzian linear-Functional of X by Def9;

          

           A7: (xseq . k) = (( Bound2Lipschitz ((vseq . k),X)) . x) & (xseq . m) = (( Bound2Lipschitz ((vseq . m),X)) . x) by A4;

          (vseq . m) is Lipschitzian linear-Functional of X & (vseq . k) is Lipschitzian linear-Functional of X by Def9;

          then ( Bound2Lipschitz ((vseq . m),X)) = (vseq . m) & ( Bound2Lipschitz ((vseq . k),X)) = (vseq . k) by Th29;

          then ((xseq . m) - (xseq . k)) = (h1 . x) by A7, Th40;

          hence thesis by Th32;

        end;

        now

          let e be Real such that

           A10: e > 0 ;

          per cases ;

            suppose

             A11: x = ( 0. X);

            reconsider k = 0 as Nat;

            take k;

            thus for n be Nat st n >= k holds |.((xseq . n) - (xseq . k)).| < e

            proof

              let n be Nat such that n >= k;

              

               A12: (xseq . k) = (( Bound2Lipschitz ((vseq . k),X)) . ( 0 * x)) by A4, A11

              .= ( 0 * (( Bound2Lipschitz ((vseq . k),X)) . x)) by HAHNBAN:def 3;

              (xseq . n) = (( Bound2Lipschitz ((vseq . n),X)) . ( 0 * x)) by A4, A11

              .= ( 0 * (( Bound2Lipschitz ((vseq . n),X)) . x)) by HAHNBAN:def 3;

              hence thesis by A10, A12, COMPLEX1: 44;

            end;

          end;

            suppose x <> ( 0. X);

            then

             A13: ||.x.|| <> 0 by NORMSP_0:def 5;

            then

            consider k be Nat such that

             X2: for n,m be Nat st n >= k & m >= k holds ||.((vseq . n) - (vseq . m)).|| < (e / ||.x.||) by A10, A2, RSSPACE3: 8;

            take k;

            thus for n be Nat st n >= k holds |.((xseq . n) - (xseq . k)).| < e

            proof

              let n be Nat;

              assume n >= k;

              then ||.((vseq . n) - (vseq . k)).|| < (e / ||.x.||) by X2;

              then

               A18: ( ||.((vseq . n) - (vseq . k)).|| * ||.x.||) < ((e / ||.x.||) * ||.x.||) by A13, XREAL_1: 68;

              

               A19: ((e / ||.x.||) * ||.x.||) = ((e * ( ||.x.|| " )) * ||.x.||) by XCMPLX_0:def 9

              .= (e * (( ||.x.|| " ) * ||.x.||))

              .= (e * 1) by A13, XCMPLX_0:def 7;

               |.((xseq . n) - (xseq . k)).| <= ( ||.((vseq . n) - (vseq . k)).|| * ||.x.||) by A6;

              hence thesis by A18, A19, XXREAL_0: 2;

            end;

          end;

        end;

        hence thesis by A4, SEQ_4: 41;

      end;

      consider f be Function of the carrier of X, REAL such that

       A20: for x be Element of X holds P[x, (f . x)] from FUNCT_2:sch 3( A3);

      reconsider tseq = f as Function of the carrier of X, REAL ;

       A21:

      now

        let x,y be VECTOR of X;

        consider xseq be sequence of REAL such that

         A22: (for n be Nat holds (xseq . n) = (( Bound2Lipschitz ((vseq . n),X)) . x)) & xseq is convergent & (tseq . x) = ( lim xseq) by A20;

        consider zseq be sequence of REAL such that

         A25: (for n be Nat holds (zseq . n) = (( Bound2Lipschitz ((vseq . n),X)) . (x + y))) & zseq is convergent & (tseq . (x + y)) = ( lim zseq) by A20;

        consider yseq be sequence of REAL such that

         A27: (for n be Nat holds (yseq . n) = (( Bound2Lipschitz ((vseq . n),X)) . y)) & yseq is convergent & (tseq . y) = ( lim yseq) by A20;

        now

          let n be Nat;

          

          thus (zseq . n) = (( Bound2Lipschitz ((vseq . n),X)) . (x + y)) by A25

          .= ((( Bound2Lipschitz ((vseq . n),X)) . x) + (( Bound2Lipschitz ((vseq . n),X)) . y)) by HAHNBAN:def 2

          .= ((xseq . n) + (( Bound2Lipschitz ((vseq . n),X)) . y)) by A22

          .= ((xseq . n) + (yseq . n)) by A27;

        end;

        then zseq = (xseq + yseq) by SEQ_1: 7;

        hence (tseq . (x + y)) = ((tseq . x) + (tseq . y)) by A22, A27, A25, SEQ_2: 6;

      end;

      now

        let x be VECTOR of X;

        let a be Real;

        consider xseq be sequence of REAL such that

         A30: (for n be Nat holds (xseq . n) = (( Bound2Lipschitz ((vseq . n),X)) . x)) & xseq is convergent & (tseq . x) = ( lim xseq) by A20;

        consider zseq be sequence of REAL such that

         A33: (for n be Nat holds (zseq . n) = (( Bound2Lipschitz ((vseq . n),X)) . (a * x))) & zseq is convergent & (tseq . (a * x)) = ( lim zseq) by A20;

        now

          let n be Nat;

          

          thus (zseq . n) = (( Bound2Lipschitz ((vseq . n),X)) . (a * x)) by A33

          .= (a * (( Bound2Lipschitz ((vseq . n),X)) . x)) by HAHNBAN:def 3

          .= (a * (xseq . n)) by A30;

        end;

        then zseq = (a (#) xseq) by SEQ_1: 9;

        hence (tseq . (a * x)) = (a * (tseq . x)) by A30, A33, SEQ_2: 8;

      end;

      then

      reconsider tseq as linear-Functional of X by A21, HAHNBAN:def 2, HAHNBAN:def 3;

       B40:

      now

        let e be Real;

        assume e > 0 ;

        then

        consider k be Nat such that

         A36: for n,m be Nat st n >= k & m >= k holds ||.((vseq . n) - (vseq . m)).|| < e by A2, RSSPACE3: 8;

        take k;

        hereby

          let m be Nat;

          assume m >= k;

          then

           A37: ||.((vseq . m) - (vseq . k)).|| < e by A36;

          

           A38: ||.(vseq . m).|| = ( ||.vseq.|| . m) & ||.(vseq . k).|| = ( ||.vseq.|| . k) by NORMSP_0:def 4;

           |.( ||.(vseq . m).|| - ||.(vseq . k).||).| <= ||.((vseq . m) - (vseq . k)).|| by NORMSP_1: 9;

          hence |.(( ||.vseq.|| . m) - ( ||.vseq.|| . k)).| < e by A38, A37, XXREAL_0: 2;

        end;

      end;

      then

       A40: ||.vseq.|| is convergent by SEQ_4: 41;

      

       A41: tseq is Lipschitzian

      proof

        take ( lim ||.vseq.||);

         A42:

        now

          let x be VECTOR of X;

          consider xseq be sequence of REAL such that

           A43: (for n be Nat holds (xseq . n) = (( Bound2Lipschitz ((vseq . n),X)) . x)) & xseq is convergent & (tseq . x) = ( lim xseq) by A20;

          

           A46: |.(tseq . x).| = ( lim |.xseq.|) by A43, SEQ_4: 14;

          

           A49: for n be Nat holds ( |.xseq.| . n) <= (( ||.x.|| (#) ||.vseq.||) . n)

          proof

            let n be Nat;

            

             A50: ( |.xseq.| . n) = |.(xseq . n).| by SEQ_1: 12;

            

             A51: ||.(vseq . n).|| = ( ||.vseq.|| . n) by NORMSP_0:def 4;

            

             A48: (xseq . n) = (( Bound2Lipschitz ((vseq . n),X)) . x) by A43;

            (vseq . n) is Lipschitzian linear-Functional of X by Def9;

            then |.(xseq . n).| <= ( ||.(vseq . n).|| * ||.x.||) by A48, Th29, Th32;

            hence thesis by A50, A51, SEQ_1: 9;

          end;

          ( lim ( ||.x.|| (#) ||.vseq.||)) = (( lim ||.vseq.||) * ||.x.||) by B40, SEQ_4: 41, SEQ_2: 8;

          hence |.(tseq . x).| <= (( lim ||.vseq.||) * ||.x.||) by A46, A49, A40, SEQ_2: 18, A43;

        end;

        now

          let n be Nat;

           ||.(vseq . n).|| >= 0 ;

          hence ( ||.vseq.|| . n) >= 0 by NORMSP_0:def 4;

        end;

        hence thesis by B40, SEQ_4: 41, A42, SEQ_2: 17;

      end;

      

       A54: for e be Real st e > 0 holds ex k be Nat st for n be Nat st n >= k holds for x be VECTOR of X holds |.((( Bound2Lipschitz ((vseq . n),X)) . x) - (tseq . x)).| <= (e * ||.x.||)

      proof

        let e be Real;

        assume e > 0 ;

        then

        consider k be Nat such that

         A55: for n,m be Nat st n >= k & m >= k holds ||.((vseq . n) - (vseq . m)).|| < e by A2, RSSPACE3: 8;

        take k;

        now

          let n be Nat such that

           A56: n >= k;

          now

            let x be VECTOR of X;

            consider xseq be sequence of REAL such that

             A57: for n be Nat holds (xseq . n) = (( Bound2Lipschitz ((vseq . n),X)) . x) & xseq is convergent & (tseq . x) = ( lim xseq) by A20;

            

             A60: for m,k be Nat holds |.((xseq . m) - (xseq . k)).| <= ( ||.((vseq . m) - (vseq . k)).|| * ||.x.||)

            proof

              let m,k be Nat;

              reconsider h1 = ((vseq . m) - (vseq . k)) as Lipschitzian linear-Functional of X by Def9;

              

               A61: (xseq . k) = (( Bound2Lipschitz ((vseq . k),X)) . x) & (xseq . m) = (( Bound2Lipschitz ((vseq . m),X)) . x) by A57;

              (vseq . m) is Lipschitzian linear-Functional of X & (vseq . k) is Lipschitzian linear-Functional of X by Def9;

              then ( Bound2Lipschitz ((vseq . m),X)) = (vseq . m) & ( Bound2Lipschitz ((vseq . k),X)) = (vseq . k) by Th29;

              then ((xseq . m) - (xseq . k)) = (h1 . x) by A61, Th40;

              hence thesis by Th32;

            end;

            

             A64: for m be Nat st m >= k holds |.((xseq . n) - (xseq . m)).| <= (e * ||.x.||)

            proof

              let m be Nat;

              assume m >= k;

              then ||.((vseq . n) - (vseq . m)).|| < e by A55, A56;

              then

               A66: ( ||.((vseq . n) - (vseq . m)).|| * ||.x.||) <= (e * ||.x.||) by XREAL_1: 64;

               |.((xseq . n) - (xseq . m)).| <= ( ||.((vseq . n) - (vseq . m)).|| * ||.x.||) by A60;

              hence thesis by A66, XXREAL_0: 2;

            end;

             |.((xseq . n) - (tseq . x)).| <= (e * ||.x.||)

            proof

              deffunc F( Nat) = |.((xseq . $1) - (xseq . n)).|;

              consider rseq be Real_Sequence such that

               A67: for m be Nat holds (rseq . m) = F(m) from SEQ_1:sch 1;

              now

                let x be object;

                assume x in NAT ;

                then

                reconsider k = x as Nat;

                

                thus (rseq . x) = |.((xseq . k) - (xseq . n)).| by A67

                .= |.((xseq - (xseq . n)) . k).| by Def14

                .= ( |.(xseq - (xseq . n)).| . x) by SEQ_1: 12;

              end;

              then

               A68: rseq = |.(xseq - (xseq . n)).|;

              

               A69: (xseq - (xseq . n)) is convergent by A57, Th121;

              ( lim (xseq - (xseq . n))) = ((tseq . x) - (xseq . n)) by A57, Th121;

              then

               A70: ( lim rseq) = |.((tseq . x) - (xseq . n)).| by A57, Th121, A68, SEQ_4: 14;

              for m be Nat st m >= k holds (rseq . m) <= (e * ||.x.||)

              proof

                let m be Nat such that

                 A71: m >= k;

                (rseq . m) = |.((xseq . m) - (xseq . n)).| by A67

                .= |.((xseq . n) - (xseq . m)).| by COMPLEX1: 60;

                hence thesis by A64, A71;

              end;

              then ( lim rseq) <= (e * ||.x.||) by A69, A68, Lm3;

              hence thesis by A70, COMPLEX1: 60;

            end;

            hence |.((( Bound2Lipschitz ((vseq . n),X)) . x) - (tseq . x)).| <= (e * ||.x.||) by A57;

          end;

          hence for x be VECTOR of X holds |.((( Bound2Lipschitz ((vseq . n),X)) . x) - (tseq . x)).| <= (e * ||.x.||);

        end;

        hence thesis;

      end;

      reconsider tseq as Lipschitzian linear-Functional of X by A41;

      reconsider tv = tseq as Point of ( DualSp X) by Def9;

      

       A72: for e be Real st e > 0 holds ex k be Nat st for n be Nat st n >= k holds ||.((vseq . n) - tv).|| <= e

      proof

        let e be Real such that

         A73: e > 0 ;

        consider k be Nat such that

         A74: for n be Nat st n >= k holds for x be VECTOR of X holds |.((( Bound2Lipschitz ((vseq . n),X)) . x) - (tseq . x)).| <= (e * ||.x.||) by A54, A73;

        now

          set g1 = tseq;

          let n be Nat such that

           A75: n >= k;

          reconsider h1 = ((vseq . n) - tv) as Lipschitzian linear-Functional of X by Def9;

          set f1 = ( Bound2Lipschitz ((vseq . n),X));

           A76:

          now

            let t be VECTOR of X;

            assume ||.t.|| <= 1;

            then

             A77: (e * ||.t.||) <= (e * 1) by A73, XREAL_1: 64;

            

             A78: |.((f1 . t) - (g1 . t)).| <= (e * ||.t.||) by A74, A75;

            (vseq . n) is Lipschitzian linear-Functional of X by Def9;

            then ( Bound2Lipschitz ((vseq . n),X)) = (vseq . n) by Th29;

            then |.(h1 . t).| = |.((f1 . t) - (g1 . t)).| by Th40;

            hence |.(h1 . t).| <= e by A78, A77, XXREAL_0: 2;

          end;

           A79:

          now

            let r be Real;

            assume r in ( PreNorms h1);

            then ex t be VECTOR of X st r = |.(h1 . t).| & ||.t.|| <= 1;

            hence r <= e by A76;

          end;

          (for s be Real st s in ( PreNorms h1) holds s <= e) implies ( upper_bound ( PreNorms h1)) <= e by SEQ_4: 45;

          hence ||.((vseq . n) - tv).|| <= e by A79, Th30;

        end;

        hence thesis;

      end;

      for e be Real st e > 0 holds ex m be Nat st for n be Nat st n >= m holds ||.((vseq . n) - tv).|| < e

      proof

        let e be Real;

        assume

         A81: e > 0 ;

        then

        consider m be Nat such that

         A82: for n be Nat st n >= m holds ||.((vseq . n) - tv).|| <= (e / 2) by A72;

        take m;

        hereby

          let n be Nat;

          assume n >= m;

          then ||.((vseq . n) - tv).|| <= (e / 2) & (e / 2) < e by A82, A81, XREAL_1: 216;

          hence ||.((vseq . n) - tv).|| < e by XXREAL_0: 2;

        end;

      end;

      hence thesis;

    end;

    theorem :: DUALSP01:35

    

     Th43: for X be RealNormSpace holds ( DualSp X) is RealBanachSpace

    proof

      let X be RealNormSpace;

      for seq be sequence of ( DualSp X) st seq is Cauchy_sequence_by_Norm holds seq is convergent by Th42;

      hence thesis by LOPBAN_1:def 15;

    end;

    registration

      let X be RealNormSpace;

      cluster ( DualSp X) -> complete;

      coherence by Th43;

    end

    begin

    definition

      let V be RealNormSpace;

      :: DUALSP01:def16

      mode SubRealNormSpace of V -> RealNormSpace means

      : DefSubSP: the carrier of it c= the carrier of V & ( 0. it ) = ( 0. V) & the addF of it = (the addF of V || the carrier of it ) & the Mult of it = (the Mult of V | [: REAL , the carrier of it :]) & the normF of it = (the normF of V | the carrier of it );

      existence

      proof

        the addF of V = (the addF of V || the carrier of V) & the Mult of V = (the Mult of V | [: REAL , the carrier of V:]) & the normF of V = (the normF of V | the carrier of V);

        hence thesis;

      end;

    end

    theorem :: DUALSP01:36

    

     Th44: for V be RealNormSpace, X be SubRealNormSpace of V, f be Lipschitzian linear-Functional of X, F be Point of ( DualSp X) st f = F holds ex g be Lipschitzian linear-Functional of V, G be Point of ( DualSp V) st g = G & (g | the carrier of X) = f & ||.G.|| = ||.F.||

    proof

      let V be RealNormSpace, X be SubRealNormSpace of V, f be Lipschitzian linear-Functional of X, F be Point of ( DualSp X) such that

       A1: f = F;

      reconsider X0 = X as RealLinearSpace;

      

       B1: the carrier of X0 c= the carrier of V & ( 0. X0) = ( 0. V) & the addF of X0 = (the addF of V || the carrier of X0) & the Mult of X0 = (the Mult of V | [: REAL , the carrier of X0:]) by DefSubSP;

      then

      reconsider X0 as Subspace of V by RLSUB_1:def 2;

      reconsider fi0 = f as linear-Functional of X0;

      deffunc F( Element of the carrier of V) = ( ||.F.|| * ||.$1.||);

      

       D0: for v be Element of the carrier of V holds F(v) in REAL by XREAL_0:def 1;

      consider q be Function of the carrier of V, REAL such that

       D1: for v be Element of the carrier of V holds (q . v) = F(v) from FUNCT_2:sch 8( D0);

      q is Banach-Functional of V

      proof

        

         E0: q is subadditive

        proof

          let x,y be VECTOR of V;

          

           E2: (q . x) = ( ||.F.|| * ||.x.||) & (q . y) = ( ||.F.|| * ||.y.||) by D1;

          ( ||.F.|| * ||.(x + y).||) <= ( ||.F.|| * ( ||.x.|| + ||.y.||)) by XREAL_1: 64, NORMSP_1:def 1;

          hence thesis by D1, E2;

        end;

        q is absolutely_homogeneous

        proof

          let x be VECTOR of V, r be Real;

          

           E5: ||.(r * x).|| = ( |.r.| * ||.x.||) by NORMSP_1:def 1;

          (q . (r * x)) = ( ||.F.|| * ||.(r * x).||) by D1

          .= ( |.r.| * ( ||.F.|| * ||.x.||)) by E5;

          hence thesis by D1;

        end;

        hence thesis by E0;

      end;

      then

      reconsider q as Banach-Functional of V;

      for x be VECTOR of X0, v be VECTOR of V st x = v holds (fi0 . x) <= (q . v)

      proof

        let x0 be VECTOR of X0, v be VECTOR of V;

        assume

         D21: x0 = v;

        reconsider x = x0 as VECTOR of X;

        

         D22: (fi0 . x0) <= |.(fi0 . x0).| by ABSVALUE: 4;

        

         D23: |.(fi0 . x).| <= ( ||.F.|| * ||.x.||) by A1, Th32;

         ||.x.|| = ((the normF of V | the carrier of X) . v) by D21, DefSubSP

        .= ||.v.|| by FUNCT_1: 49, D21;

        then |.(fi0 . x0).| <= (q . v) by D1, D23;

        hence thesis by D22, XXREAL_0: 2;

      end;

      then

      consider g be linear-Functional of V such that

       A3: (g | the carrier of X0) = fi0 & for x be VECTOR of V holds (g . x) <= (q . x) by HAHNBAN: 22;

      

       B4: for x be VECTOR of V holds |.(g . x).| <= ( ||.F.|| * ||.x.||)

      proof

        let x be VECTOR of V;

        (g . x) <= (q . x) by A3;

        then

         A31: (g . x) <= ( ||.F.|| * ||.x.||) by D1;

        

         A32: ( - (g . x)) = (( - 1) * (g . x))

        .= (g . (( - 1) * x)) by HAHNBAN:def 3;

        (g . (( - 1) * x)) <= (q . (( - 1) * x)) by A3;

        then (g . (( - 1) * x)) <= ( ||.F.|| * ||.(( - 1) * x).||) by D1;

        then (g . (( - 1) * x)) <= ( ||.F.|| * ||.( - x).||) by RLVECT_1: 16;

        then ( - (g . x)) <= ( ||.F.|| * ||.x.||) by A32, NORMSP_1: 2;

        then ( - ( ||.F.|| * ||.x.||)) <= (g . x) by XREAL_1: 26;

        hence thesis by ABSVALUE: 5, A31;

      end;

      then

      reconsider g as Lipschitzian linear-Functional of V by Def8;

      reconsider G = g as Point of ( DualSp V) by Def9;

      now

        let r be Real;

        assume r in ( PreNorms g);

        then

        consider t be VECTOR of V such that

         C1: r = |.(g . t).| and

         C2: ||.t.|| <= 1;

        

         C3: |.(g . t).| <= ( ||.F.|| * ||.t.||) by B4;

        ( ||.F.|| * ||.t.||) <= ( ||.F.|| * 1) by C2, XREAL_1: 64;

        hence r <= ||.F.|| by C1, C3, XXREAL_0: 2;

      end;

      then ( upper_bound ( PreNorms g)) <= (( BoundedLinearFunctionalsNorm X) . f) by A1, SEQ_4: 45;

      then

       A41: (( BoundedLinearFunctionalsNorm V) . g) <= (( BoundedLinearFunctionalsNorm X) . f) by Th30;

      now

        let r be object;

        assume r in ( PreNorms f);

        then

        consider t be VECTOR of X such that

         C1: r = |.(f . t).| and

         C2: ||.t.|| <= 1;

        reconsider td = t as VECTOR of V by B1;

         ||.t.|| = ((the normF of V | the carrier of X) . td) by DefSubSP

        .= ||.td.|| by FUNCT_1: 49;

        then r = |.(g . td).| & ||.td.|| <= 1 by C1, A3, FUNCT_1: 49, C2;

        hence r in ( PreNorms g);

      end;

      then

       A42: ( PreNorms f) c= ( PreNorms g);

      ( upper_bound ( PreNorms f)) <= ( upper_bound ( PreNorms g)) by A42, SEQ_4: 48;

      then (( BoundedLinearFunctionalsNorm X) . f) <= ( upper_bound ( PreNorms g)) by Th30;

      then

       B4: (( BoundedLinearFunctionalsNorm X) . f) <= (( BoundedLinearFunctionalsNorm V) . g) by Th30;

      take g, G;

      thus thesis by A3, A1, A41, XXREAL_0: 1, B4;

    end;

    ::$Notion-Name

    theorem :: DUALSP01:37

    for V be RealNormSpace, X be SubRealNormSpace of V, f be Lipschitzian linear-Functional of X, F be Point of ( DualSp X) st (f = F & for x be VECTOR of X, v be VECTOR of V st x = v holds (f . x) <= ||.v.||) holds ex g be Lipschitzian linear-Functional of V, G be Point of ( DualSp V) st g = G & (g | the carrier of X) = f & for x be VECTOR of V holds (g . x) <= ||.x.|| & ||.G.|| = ||.F.||

    proof

      let V be RealNormSpace, X be SubRealNormSpace of V, f be Lipschitzian linear-Functional of X, F be Point of ( DualSp X) such that

       A11: f = F and

       A12: for x be VECTOR of X, v be VECTOR of V st x = v holds (f . x) <= ||.v.||;

      consider g be Lipschitzian linear-Functional of V, G be Point of ( DualSp V) such that

       A2: g = G & (g | the carrier of X) = f & ||.G.|| = ||.F.|| by A11, Th44;

      reconsider X0 = X as RealLinearSpace;

      

       B1: the carrier of X0 c= the carrier of V & ( 0. X0) = ( 0. V) & the addF of X0 = (the addF of V || the carrier of X0) & the Mult of X0 = (the Mult of V | [: REAL , the carrier of X0:]) by DefSubSP;

      now

        let r be Real;

        assume r in ( PreNorms f);

        then

        consider t be VECTOR of X such that

         C1: r = |.(f . t).| & ||.t.|| <= 1;

        reconsider td = t as VECTOR of V by B1;

        

         C7: ||.t.|| = ((the normF of V | the carrier of X) . td) by DefSubSP

        .= ||.td.|| by FUNCT_1: 49;

        

         C5: ( - (f . t)) = (( - 1) * (f . t))

        .= (f . (( - 1) * t)) by HAHNBAN:def 3;

        reconsider t0 = t as VECTOR of X0;

        

         D6: X0 is Subspace of V by B1, RLSUB_1:def 2;

        (( - 1) * td) = ( - td) & (( - 1) * t) = ( - t) by RLVECT_1: 16;

        then (( - 1) * td) = (( - 1) * t) by RLSUB_1: 15, D6;

        then (f . (( - 1) * t)) <= ||.(( - 1) * td).|| by A12;

        then (f . (( - 1) * t)) <= ||.( - td).|| by RLVECT_1: 16;

        then ( - (f . t)) <= ||.td.|| by C5, NORMSP_1: 2;

        then ( - ||.td.||) <= (f . t) by XREAL_1: 26;

        then |.(f . t).| <= ||.td.|| by A12, ABSVALUE: 5;

        hence r <= 1 by C1, C7, XXREAL_0: 2;

      end;

      then ( upper_bound ( PreNorms f)) <= 1 by SEQ_4: 45;

      then

       A3: ||.G.|| <= 1 by A2, A11, Th30;

      for x be VECTOR of V holds (g . x) <= ||.x.||

      proof

        let x be VECTOR of V;

        

         C1: (g . x) <= |.(g . x).| by ABSVALUE: 4;

         |.(g . x).| <= ( ||.G.|| * ||.x.||) by A2, Th32;

        then

         C2: (g . x) <= ( ||.G.|| * ||.x.||) by C1, XXREAL_0: 2;

        ( ||.G.|| * ||.x.||) <= (1 * ||.x.||) by A3, XREAL_1: 64;

        hence thesis by C2, XXREAL_0: 2;

      end;

      hence thesis by A2;

    end;