rsspace3.miz
begin
definition
::
RSSPACE3:def1
func
the_set_of_l1RealSequences ->
Subset of
Linear_Space_of_RealSequences means
:
Def1: for x be
object holds x
in it iff x
in
the_set_of_RealSequences & (
seq_id x) is
absolutely_summable;
existence
proof
defpred
P[
object] means (
seq_id $1) is
absolutely_summable;
consider IT be
set such that
A1: for x be
object holds x
in IT iff x
in
the_set_of_RealSequences &
P[x] from
XBOOLE_0:sch 1;
for x be
object st x
in IT holds x
in
the_set_of_RealSequences by
A1;
then IT is
Subset of
the_set_of_RealSequences by
TARSKI:def 3;
hence thesis by
A1;
end;
uniqueness
proof
let X1,X2 be
Subset of
Linear_Space_of_RealSequences ;
assume that
A2: for x be
object holds x
in X1 iff x
in
the_set_of_RealSequences & (
seq_id x) is
absolutely_summable and
A3: for x be
object holds x
in X2 iff x
in
the_set_of_RealSequences & (
seq_id x) is
absolutely_summable;
for x be
object st x
in X2 holds x
in X1
proof
let x be
object;
assume x
in X2;
then x
in
the_set_of_RealSequences & (
seq_id x) is
absolutely_summable by
A3;
hence thesis by
A2;
end;
then
A4: X2
c= X1 by
TARSKI:def 3;
for x be
object st x
in X1 holds x
in X2
proof
let x be
object;
assume x
in X1;
then x
in
the_set_of_RealSequences & (
seq_id x) is
absolutely_summable by
A2;
hence thesis by
A3;
end;
then X1
c= X2 by
TARSKI:def 3;
hence thesis by
A4,
XBOOLE_0:def 10;
end;
end
theorem ::
RSSPACE3:1
Th1: for c be
Real, seq be
Real_Sequence st seq is
convergent holds for rseq be
Real_Sequence st (for i be
Nat holds (rseq
. i)
=
|.((seq
. i)
- c).|) holds rseq is
convergent & (
lim rseq)
=
|.((
lim seq)
- c).|
proof
let c be
Real;
reconsider cc = c as
Element of
REAL by
XREAL_0:def 1;
set cseq = (
seq_const c);
let seq be
Real_Sequence such that
A1: seq is
convergent;
A2: (seq
- cseq) is
convergent by
A1;
then
A3: (
abs (seq
- cseq)) is
convergent;
let rseq be
Real_Sequence such that
A4: for i be
Nat holds (rseq
. i)
=
|.((seq
. i)
- c).|;
now
let i be
Nat;
thus (rseq
. i)
=
|.((seq
. i)
- c).| by
A4
.=
|.((seq
. i)
- (cseq
. i)).| by
SEQ_1: 57
.=
|.((seq
. i)
+ (
- (cseq
. i))).|
.=
|.((seq
. i)
+ ((
- cseq)
. i)).| by
SEQ_1: 10
.=
|.((seq
+ (
- cseq))
. i).| by
SEQ_1: 7
.=
|.((seq
- cseq)
. i).| by
SEQ_1: 11
.= ((
abs (seq
- cseq))
. i) by
SEQ_1: 12;
end;
then
A5: for x be
object st x
in
NAT holds (rseq
. x)
= ((
abs (seq
- cseq))
. x);
(
lim (
abs (seq
- cseq)))
=
|.(
lim (seq
- cseq)).| by
A2,
SEQ_4: 14
.=
|.((
lim seq)
- (
lim cseq)).| by
A1,
SEQ_2: 12
.=
|.((
lim seq)
- (cseq
.
0 )).| by
SEQ_4: 26
.=
|.((
lim seq)
- c).| by
SEQ_1: 57;
hence thesis by
A5,
A3,
FUNCT_2: 12;
end;
registration
cluster
the_set_of_l1RealSequences -> non
empty;
coherence
proof
(
seq_id
Zeroseq ) is
absolutely_summable
proof
reconsider rseq = (
seq_id
Zeroseq ) as
Real_Sequence;
for n be
Nat holds (rseq
. n)
=
0 ;
hence thesis by
COMSEQ_3: 3;
end;
hence thesis by
Def1;
end;
end
registration
cluster
the_set_of_l1RealSequences ->
linearly-closed;
coherence
proof
set W =
the_set_of_l1RealSequences ;
A1: for v,u be
VECTOR of
Linear_Space_of_RealSequences st v
in
the_set_of_l1RealSequences & u
in
the_set_of_l1RealSequences holds (v
+ u)
in
the_set_of_l1RealSequences
proof
let v,u be
VECTOR of
Linear_Space_of_RealSequences such that
A2: v
in W and
A3: u
in W;
(
seq_id (v
+ u)) is
absolutely_summable
proof
set r = (
abs (
seq_id (v
+ u)));
set q = (
abs (
seq_id u));
set p = (
abs (
seq_id v));
A4: for n be
Nat holds
0
<= (r
. n)
proof
let n be
Nat;
(r
. n)
=
|.((
seq_id (v
+ u))
. n).| by
SEQ_1: 12;
hence thesis by
COMPLEX1: 46;
end;
A5: for n be
Nat holds (r
. n)
<= ((p
+ q)
. n)
proof
let n be
Nat;
A6: (
|.((
seq_id v)
. n).|
+
|.((
seq_id u)
. n).|)
= (((
abs (
seq_id v))
. n)
+
|.((
seq_id u)
. n).|) by
SEQ_1: 12
.= (((
abs (
seq_id v))
. n)
+ ((
abs (
seq_id u))
. n)) by
SEQ_1: 12
.= ((p
+ q)
. n) by
SEQ_1: 7;
(r
. n)
=
|.((
seq_id (v
+ u))
. n).| by
SEQ_1: 12
.=
|.((
seq_id ((
seq_id v)
+ (
seq_id u)))
. n).| by
RSSPACE: 2
.=
|.(((
seq_id v)
. n)
+ ((
seq_id u)
. n)).| by
SEQ_1: 7;
hence thesis by
A6,
COMPLEX1: 56;
end;
(
seq_id u) is
absolutely_summable by
A3,
Def1;
then
A7: q is
summable by
SERIES_1:def 4;
(
seq_id v) is
absolutely_summable by
A2,
Def1;
then p is
summable by
SERIES_1:def 4;
then (p
+ q) is
summable by
A7,
SERIES_1: 7;
then r is
summable by
A4,
A5,
SERIES_1: 20;
hence thesis by
SERIES_1:def 4;
end;
hence thesis by
Def1;
end;
for a be
Real holds for v be
VECTOR of
Linear_Space_of_RealSequences st v
in W holds (a
* v)
in W
proof
let a be
Real;
let v be
VECTOR of
Linear_Space_of_RealSequences such that
A8: v
in W;
(
seq_id (a
* v)) is
absolutely_summable
proof
set r1 = (
|.a.|
(#) (
abs (
seq_id v)));
set q1 = (
abs (
seq_id (a
* v)));
A9: for n be
Nat holds
0
<= (q1
. n)
proof
let n be
Nat;
(q1
. n)
=
|.((
seq_id (a
* v))
. n).| by
SEQ_1: 12;
hence thesis by
COMPLEX1: 46;
end;
A10: for n be
Nat holds (q1
. n)
<= (r1
. n)
proof
let n be
Nat;
(q1
. n)
=
|.((
seq_id (a
* v))
. n).| by
SEQ_1: 12
.=
|.((
seq_id (a
(#) (
seq_id v)))
. n).| by
RSSPACE: 3
.= ((
abs (a
(#) (
seq_id v)))
. n) by
SEQ_1: 12;
hence thesis by
SEQ_1: 56;
end;
(
seq_id v) is
absolutely_summable by
A8,
Def1;
then (
abs (
seq_id v)) is
summable by
SERIES_1:def 4;
then r1 is
summable by
SERIES_1: 10;
then q1 is
summable by
A9,
A10,
SERIES_1: 20;
hence thesis by
SERIES_1:def 4;
end;
hence thesis by
Def1;
end;
hence thesis by
A1,
RLSUB_1:def 1;
end;
end
Lm1:
RLSStruct (#
the_set_of_l1RealSequences , (
Zero_ (
the_set_of_l1RealSequences ,
Linear_Space_of_RealSequences )), (
Add_ (
the_set_of_l1RealSequences ,
Linear_Space_of_RealSequences )), (
Mult_ (
the_set_of_l1RealSequences ,
Linear_Space_of_RealSequences )) #) is
Subspace of
Linear_Space_of_RealSequences by
RSSPACE: 11;
registration
cluster
RLSStruct (#
the_set_of_l1RealSequences , (
Zero_ (
the_set_of_l1RealSequences ,
Linear_Space_of_RealSequences )), (
Add_ (
the_set_of_l1RealSequences ,
Linear_Space_of_RealSequences )), (
Mult_ (
the_set_of_l1RealSequences ,
Linear_Space_of_RealSequences )) #) ->
Abelian
add-associative
right_zeroed
right_complementable
vector-distributive
scalar-distributive
scalar-associative
scalar-unital;
coherence by
RSSPACE: 11;
end
Lm2:
RLSStruct (#
the_set_of_l1RealSequences , (
Zero_ (
the_set_of_l1RealSequences ,
Linear_Space_of_RealSequences )), (
Add_ (
the_set_of_l1RealSequences ,
Linear_Space_of_RealSequences )), (
Mult_ (
the_set_of_l1RealSequences ,
Linear_Space_of_RealSequences )) #) is
RealLinearSpace;
definition
::
RSSPACE3:def2
func
l_norm ->
Function of
the_set_of_l1RealSequences ,
REAL means
:
Def2: for x be
object st x
in
the_set_of_l1RealSequences holds (it
. x)
= (
Sum (
abs (
seq_id x)));
existence
proof
deffunc
F(
object) = (
Sum (
abs (
seq_id $1)));
A1: for z be
object st z
in
the_set_of_l1RealSequences holds
F(z)
in
REAL by
XREAL_0:def 1;
ex f be
Function of
the_set_of_l1RealSequences ,
REAL st for x be
object st x
in
the_set_of_l1RealSequences holds (f
. x)
=
F(x) from
FUNCT_2:sch 2(
A1);
hence thesis;
end;
uniqueness
proof
let NORM1,NORM2 be
Function of
the_set_of_l1RealSequences ,
REAL such that
A2: for x be
object st x
in
the_set_of_l1RealSequences holds (NORM1
. x)
= (
Sum (
abs (
seq_id x))) and
A3: for x be
object st x
in
the_set_of_l1RealSequences holds (NORM2
. x)
= (
Sum (
abs (
seq_id x)));
A4: for z be
object st z
in
the_set_of_l1RealSequences holds (NORM1
. z)
= (NORM2
. z)
proof
let z be
object such that
A5: z
in
the_set_of_l1RealSequences ;
(NORM1
. z)
= (
Sum (
abs (
seq_id z))) by
A2,
A5;
hence thesis by
A3,
A5;
end;
(
dom NORM1)
=
the_set_of_l1RealSequences & (
dom NORM2)
=
the_set_of_l1RealSequences by
FUNCT_2:def 1;
hence thesis by
A4,
FUNCT_1: 2;
end;
end
registration
let X be non
empty
set, Z be
Element of X, A be
BinOp of X, M be
Function of
[:
REAL , X:], X, N be
Function of X,
REAL ;
cluster
NORMSTR (# X, Z, A, M, N #) -> non
empty;
coherence ;
end
theorem ::
RSSPACE3:2
for l be
NORMSTR st the RLSStruct of l is
RealLinearSpace holds l is
RealLinearSpace by
RSSPACE: 15;
theorem ::
RSSPACE3:3
Th3: for rseq be
Real_Sequence st (for n be
Nat holds (rseq
. n)
=
0 ) holds rseq is
absolutely_summable & (
Sum (
abs rseq))
=
0
proof
let rseq be
Real_Sequence such that
A1: for n be
Nat holds (rseq
. n)
=
0 ;
A2: for n be
Nat holds ((
abs rseq)
. n)
=
0
proof
let n be
Nat;
(rseq
. n)
=
0 & ((
abs rseq)
. n)
=
|.(rseq
. n).| by
A1,
SEQ_1: 12;
hence thesis by
ABSVALUE: 2;
end;
A3: for m be
Nat holds ((
Partial_Sums (
abs rseq))
. m)
=
0
proof
defpred
P[
Nat] means ((
abs rseq)
. $1)
= ((
Partial_Sums (
abs rseq))
. $1);
let m be
Nat;
A4: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A5: ((
abs rseq)
. k)
= ((
Partial_Sums (
abs rseq))
. k);
thus ((
abs rseq)
. (k
+ 1))
= (
0
+ ((
abs rseq)
. (k
+ 1)))
.= (((
abs rseq)
. k)
+ ((
abs rseq)
. (k
+ 1))) by
A2
.= ((
Partial_Sums (
abs rseq))
. (k
+ 1)) by
A5,
SERIES_1:def 1;
end;
A6:
P[
0 ] by
SERIES_1:def 1;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A6,
A4);
hence ((
Partial_Sums (
abs rseq))
. m)
= ((
abs rseq)
. m)
.=
0 by
A2;
end;
A7: for p be
Real st
0
< p holds ex n be
Nat st for m be
Nat st n
<= m holds
|.(((
Partial_Sums (
abs rseq))
. m)
-
0 ).|
< p
proof
let p be
Real such that
A8:
0
< p;
take
0 ;
let m be
Nat such that
0
<= m;
|.(((
Partial_Sums (
abs rseq))
. m)
-
0 ).|
=
|.(
0
-
0 ).| by
A3
.=
0 by
ABSVALUE:def 1;
hence thesis by
A8;
end;
then
A9: (
Partial_Sums (
abs rseq)) is
convergent by
SEQ_2:def 6;
then
A10: (
abs rseq) is
summable by
SERIES_1:def 2;
(
lim (
Partial_Sums (
abs rseq)))
=
0 by
A7,
A9,
SEQ_2:def 7;
hence thesis by
A10,
SERIES_1:def 3,
SERIES_1:def 4;
end;
theorem ::
RSSPACE3:4
Th4: for rseq be
Real_Sequence st rseq is
absolutely_summable & (
Sum (
abs rseq))
=
0 holds for n be
Nat holds (rseq
. n)
=
0
proof
let rseq be
Real_Sequence such that
A1: rseq is
absolutely_summable and
A2: (
Sum (
abs rseq))
=
0 ;
reconsider arseq = (
abs rseq) as
Real_Sequence;
A3: for n be
Nat holds
0
<= ((
abs rseq)
. n)
proof
let n be
Nat;
0
<=
|.(rseq
. n).| by
COMPLEX1: 46;
hence thesis by
SEQ_1: 12;
end;
A4: arseq is
summable by
A1,
SERIES_1:def 4;
let n be
Nat;
((
abs rseq)
. n)
=
0 by
A2,
A4,
A3,
RSSPACE: 17;
then
|.(rseq
. n).|
=
0 by
SEQ_1: 12;
hence thesis by
ABSVALUE: 2;
end;
theorem ::
RSSPACE3:5
Th5:
NORMSTR (#
the_set_of_l1RealSequences , (
Zero_ (
the_set_of_l1RealSequences ,
Linear_Space_of_RealSequences )), (
Add_ (
the_set_of_l1RealSequences ,
Linear_Space_of_RealSequences )), (
Mult_ (
the_set_of_l1RealSequences ,
Linear_Space_of_RealSequences )),
l_norm #) is
RealLinearSpace by
Lm2,
RSSPACE: 15;
definition
::
RSSPACE3:def3
func
l1_Space -> non
empty
NORMSTR equals
NORMSTR (#
the_set_of_l1RealSequences , (
Zero_ (
the_set_of_l1RealSequences ,
Linear_Space_of_RealSequences )), (
Add_ (
the_set_of_l1RealSequences ,
Linear_Space_of_RealSequences )), (
Mult_ (
the_set_of_l1RealSequences ,
Linear_Space_of_RealSequences )),
l_norm #);
coherence ;
end
begin
theorem ::
RSSPACE3:6
Th6: the
carrier of
l1_Space
=
the_set_of_l1RealSequences & (for x be
set holds x is
VECTOR of
l1_Space iff x is
Real_Sequence & (
seq_id x) is
absolutely_summable) & (
0.
l1_Space )
=
Zeroseq & (for u be
VECTOR of
l1_Space holds u
= (
seq_id u)) & (for u,v be
VECTOR of
l1_Space holds (u
+ v)
= ((
seq_id u)
+ (
seq_id v))) & (for r be
Real holds for u be
VECTOR of
l1_Space holds (r
* u)
= (r
(#) (
seq_id u))) & (for u be
VECTOR of
l1_Space holds (
- u)
= (
- (
seq_id u)) & (
seq_id (
- u))
= (
- (
seq_id u))) & (for u,v be
VECTOR of
l1_Space holds (u
- v)
= ((
seq_id u)
- (
seq_id v))) & (for v be
VECTOR of
l1_Space holds (
seq_id v) is
absolutely_summable) & for v be
VECTOR of
l1_Space holds
||.v.||
= (
Sum (
abs (
seq_id v)))
proof
set l1 =
l1_Space ;
A1: for x be
set holds x is
Element of l1 iff x is
Real_Sequence & (
seq_id x) is
absolutely_summable
proof
let x be
set;
x
in
the_set_of_RealSequences iff x is
Real_Sequence by
FUNCT_2: 8,
FUNCT_2: 66;
hence thesis by
Def1;
end;
A2: for u,v be
VECTOR of l1 holds (u
+ v)
= ((
seq_id u)
+ (
seq_id v))
proof
let u,v be
VECTOR of l1;
reconsider u1 = u, v1 = v as
VECTOR of
Linear_Space_of_RealSequences by
Lm1,
RLSUB_1: 10;
set L1 =
Linear_Space_of_RealSequences ;
set W =
the_set_of_l1RealSequences ;
(
dom the
addF of L1)
=
[:the
carrier of L1, the
carrier of L1:] by
FUNCT_2:def 1;
then (
dom (the
addF of
Linear_Space_of_RealSequences
|| W))
=
[:W, W:] by
RELAT_1: 62,
ZFMISC_1: 96;
then
A3:
[u, v]
in (
dom (the
addF of
Linear_Space_of_RealSequences
|| W)) by
ZFMISC_1: 87;
(u
+ v)
= ((the
addF of
Linear_Space_of_RealSequences
|| W)
.
[u, v]) by
RSSPACE:def 8
.= (u1
+ v1) by
A3,
FUNCT_1: 47;
hence thesis by
RSSPACE: 2;
end;
A4: for r be
Real holds for u be
VECTOR of l1 holds (r
* u)
= (r
(#) (
seq_id u))
proof
let r be
Real;
let u be
VECTOR of l1;
reconsider r as
Element of
REAL by
XREAL_0:def 1;
reconsider u1 = u as
VECTOR of
Linear_Space_of_RealSequences by
Lm1,
RLSUB_1: 10;
set L1 =
Linear_Space_of_RealSequences ;
set W =
the_set_of_l1RealSequences ;
(
dom the
Mult of L1)
=
[:
REAL , the
carrier of L1:] by
FUNCT_2:def 1;
then (
dom (the
Mult of
Linear_Space_of_RealSequences
|
[:
REAL , W:]))
=
[:
REAL , W:] by
RELAT_1: 62,
ZFMISC_1: 96;
then
A5:
[r, u]
in (
dom (the
Mult of
Linear_Space_of_RealSequences
|
[:
REAL , W:])) by
ZFMISC_1: 87;
(r
* u)
= ((the
Mult of
Linear_Space_of_RealSequences
|
[:
REAL , W:])
.
[r, u]) by
RSSPACE:def 9
.= (r
* u1) by
A5,
FUNCT_1: 47;
hence thesis by
RSSPACE: 3;
end;
A6: for u be
VECTOR of l1 holds u
= (
seq_id u)
proof
let u be
VECTOR of l1;
u is
VECTOR of
Linear_Space_of_RealSequences by
Lm1,
RLSUB_1: 10;
hence thesis;
end;
A7: for u be
VECTOR of l1 holds (
- u)
= (
- (
seq_id u)) & (
seq_id (
- u))
= (
- (
seq_id u))
proof
let u be
VECTOR of l1;
(
- u)
= ((
- 1)
* u) by
Th5,
RLVECT_1: 16
.= ((
- 1)
(#) (
seq_id u)) by
A4
.= (
- (
seq_id u)) by
SEQ_1: 17;
hence thesis;
end;
A8: for u,v be
VECTOR of l1 holds (u
- v)
= ((
seq_id u)
- (
seq_id v))
proof
let u,v be
VECTOR of l1;
thus (u
- v)
= ((
seq_id u)
+ (
seq_id (
- v))) by
A2
.= ((
seq_id u)
+ (
- (
seq_id v))) by
A7
.= ((
seq_id u)
- (
seq_id v)) by
SEQ_1: 11;
end;
A9: for v be
VECTOR of l1 holds
||.v.||
= (
Sum (
abs (
seq_id v))) by
Def2;
(
0. l1)
= (
0.
Linear_Space_of_RealSequences ) by
RSSPACE:def 10
.=
Zeroseq ;
hence thesis by
A1,
A6,
A2,
A4,
A7,
A8,
A9;
end;
theorem ::
RSSPACE3:7
Th7: for x,y be
Point of
l1_Space , a be
Real holds (
||.x.||
=
0 iff x
= (
0.
l1_Space )) &
0
<=
||.x.|| &
||.(x
+ y).||
<= (
||.x.||
+
||.y.||) &
||.(a
* x).||
= (
|.a.|
*
||.x.||)
proof
let x,y be
Point of
l1_Space ;
let a be
Real;
A1: for n be
Nat holds
0
<= ((
abs (
seq_id x))
. n)
proof
let n be
Nat;
0
<=
|.((
seq_id x)
. n).| by
COMPLEX1: 46;
hence thesis by
SEQ_1: 12;
end;
A2:
now
let n be
Nat;
((
abs (
seq_id (x
+ y)))
. n)
=
|.((
seq_id (x
+ y))
. n).| by
SEQ_1: 12;
hence
0
<= ((
abs (
seq_id (x
+ y)))
. n) by
COMPLEX1: 46;
end;
A3: for n be
Nat holds ((
abs (
seq_id (x
+ y)))
. n)
=
|.(((
seq_id x)
. n)
+ ((
seq_id y)
. n)).|
proof
let n be
Nat;
((
abs (
seq_id (x
+ y)))
. n)
= ((
abs (
seq_id ((
seq_id x)
+ (
seq_id y))))
. n) by
Th6
.=
|.(((
seq_id x)
+ (
seq_id y))
. n).| by
SEQ_1: 12
.=
|.(((
seq_id x)
. n)
+ ((
seq_id y)
. n)).| by
SEQ_1: 7;
hence thesis;
end;
A4: for n be
Nat holds ((
abs (
seq_id (x
+ y)))
. n)
<= (((
abs (
seq_id x))
. n)
+ ((
abs (
seq_id y))
. n))
proof
let n be
Nat;
|.(((
seq_id x)
. n)
+ ((
seq_id y)
. n)).|
<= (
|.((
seq_id x)
. n).|
+
|.((
seq_id y)
. n).|) by
COMPLEX1: 56;
then ((
abs (
seq_id (x
+ y)))
. n)
<= (
|.((
seq_id x)
. n).|
+
|.((
seq_id y)
. n).|) by
A3;
then ((
abs (
seq_id (x
+ y)))
. n)
<= (((
abs (
seq_id x))
. n)
+
|.((
seq_id y)
. n).|) by
SEQ_1: 12;
hence thesis by
SEQ_1: 12;
end;
A5: for n be
Nat holds ((
abs (
seq_id (x
+ y)))
. n)
<= (((
abs (
seq_id x))
+ (
abs (
seq_id y)))
. n)
proof
let n be
Nat;
(((
abs (
seq_id x))
. n)
+ ((
abs (
seq_id y))
. n))
= (((
abs (
seq_id x))
+ (
abs (
seq_id y)))
. n) by
SEQ_1: 7;
hence thesis by
A4;
end;
(
seq_id y) is
absolutely_summable by
Def1;
then
A6: (
abs (
seq_id y)) is
summable by
SERIES_1:def 4;
(
seq_id x) is
absolutely_summable by
Def1;
then (
abs (
seq_id x)) is
summable by
SERIES_1:def 4;
then ((
abs (
seq_id x))
+ (
abs (
seq_id y))) is
summable by
A6,
SERIES_1: 7;
then
A7: (
Sum (
abs (
seq_id (x
+ y))))
<= (
Sum ((
abs (
seq_id x))
+ (
abs (
seq_id y)))) by
A5,
A2,
SERIES_1: 20;
A8:
now
assume x
= (
0.
l1_Space );
then
A9: for n be
Nat holds ((
seq_id x)
. n)
=
0 by
Th6;
thus
||.x.||
= (
Sum (
abs (
seq_id x))) by
Def2
.=
0 by
A9,
Th3;
end;
A10: (
Sum (
abs (
seq_id (x
+ y))))
=
||.(x
+ y).|| by
Th6;
A11:
now
A12: x
in
the_set_of_RealSequences by
Def1;
assume
A13:
||.x.||
=
0 ;
||.x.||
= (
Sum (
abs (
seq_id x))) & (
seq_id x) is
absolutely_summable by
Th6;
then for n be
Nat holds
0
= ((
seq_id x)
. n) by
A13,
Th4;
hence x
= (
0.
l1_Space ) by
A12,
Th6,
RSSPACE: 5;
end;
A14:
||.x.||
= (
Sum (
abs (
seq_id x))) &
||.y.||
= (
Sum (
abs (
seq_id y))) by
Th6;
A15: for n be
Nat holds ((
abs (a
(#) (
seq_id x)))
. n)
= (
|.a.|
* ((
abs (
seq_id x))
. n))
proof
let n be
Nat;
((
abs (a
(#) (
seq_id x)))
. n)
=
|.((a
(#) (
seq_id x))
. n).| by
SEQ_1: 12
.=
|.(a
* ((
seq_id x)
. n)).| by
SEQ_1: 9
.= (
|.a.|
*
|.((
seq_id x)
. n).|) by
COMPLEX1: 65
.= (
|.a.|
* ((
abs (
seq_id x))
. n)) by
SEQ_1: 12;
hence thesis;
end;
(
seq_id x) is
absolutely_summable by
Def1;
then
A16: (
abs (
seq_id x)) is
summable by
SERIES_1:def 4;
(
seq_id x) is
absolutely_summable by
Def1;
then
A17: (
abs (
seq_id x)) is
summable by
SERIES_1:def 4;
||.(a
* x).||
= (
Sum (
abs (
seq_id (a
* x)))) by
Th6
.= (
Sum
|.(
seq_id (a
(#) (
seq_id x))).|) by
Th6
.= (
Sum (
|.a.|
(#) (
abs (
seq_id x)))) by
A15,
SEQ_1: 9
.= (
|.a.|
* (
Sum (
abs (
seq_id x)))) by
A16,
SERIES_1: 10
.= (
|.a.|
*
||.x.||) by
Th6;
hence thesis by
A11,
A8,
A1,
A17,
A14,
A10,
A6,
A7,
SERIES_1: 7,
SERIES_1: 18;
end;
registration
cluster
l1_Space ->
reflexive
discerning
RealNormSpace-like
vector-distributive
scalar-distributive
scalar-associative
scalar-unital
Abelian
add-associative
right_zeroed
right_complementable;
coherence by
Th7,
Lm2,
NORMSP_1:def 1,
RSSPACE: 15;
end
Lm3: for c be
Real, seq,seq1 be
Real_Sequence st seq is
convergent & seq1 is
convergent holds for rseq be
Real_Sequence st (for i be
Nat holds (rseq
. i)
= (
|.((seq
. i)
- c).|
+ (seq1
. i))) holds rseq is
convergent & (
lim rseq)
= (
|.((
lim seq)
- c).|
+ (
lim seq1))
proof
let c be
Real;
let seq,seq1 be
Real_Sequence such that
A1: seq is
convergent and
A2: seq1 is
convergent;
reconsider cc = c as
Element of
REAL by
XREAL_0:def 1;
set cseq = (
seq_const c);
A3: (seq
- cseq) is
convergent by
A1;
then
A4: (
abs (seq
- cseq)) is
convergent;
let rseq be
Real_Sequence such that
A5: for i be
Nat holds (rseq
. i)
= (
|.((seq
. i)
- c).|
+ (seq1
. i));
now
let i be
Element of
NAT ;
thus (rseq
. i)
= (
|.((seq
. i)
- c).|
+ (seq1
. i)) by
A5
.= (
|.((seq
. i)
- (cseq
. i)).|
+ (seq1
. i)) by
SEQ_1: 57
.= (
|.((seq
. i)
+ (
- (cseq
. i))).|
+ (seq1
. i))
.= (
|.((seq
. i)
+ ((
- cseq)
. i)).|
+ (seq1
. i)) by
SEQ_1: 10
.= (
|.((seq
+ (
- cseq))
. i).|
+ (seq1
. i)) by
SEQ_1: 7
.= (
|.((seq
- cseq)
. i).|
+ (seq1
. i)) by
SEQ_1: 11
.= (((
abs (seq
- cseq))
. i)
+ (seq1
. i)) by
SEQ_1: 12
.= (((
abs (seq
- cseq))
+ seq1)
. i) by
SEQ_1: 7;
end;
then
A6: rseq
= ((
abs (seq
- cseq))
+ seq1) by
FUNCT_2: 63;
(
lim (
abs (seq
- cseq)))
=
|.(
lim (seq
- cseq)).| by
A3,
SEQ_4: 14
.=
|.((
lim seq)
- (
lim cseq)).| by
A1,
SEQ_2: 12
.=
|.((
lim seq)
- (cseq
.
0 )).| by
SEQ_4: 26
.=
|.((
lim seq)
- c).| by
SEQ_1: 57;
hence thesis by
A2,
A6,
A4,
SEQ_2: 6;
end;
definition
let X be non
empty
NORMSTR, x,y be
Point of X;
::
RSSPACE3:def4
func
dist (x,y) ->
Real equals
||.(x
- y).||;
coherence ;
end
reserve NRM for non
empty
RealNormSpace;
reserve seq for
sequence of NRM;
definition
let NRM be non
empty
NORMSTR;
let seqt be
sequence of NRM;
::
RSSPACE3:def5
attr seqt is
CCauchy means for r1 be
Real st r1
>
0 holds ex k1 be
Nat st for n1,m1 be
Nat st n1
>= k1 & m1
>= k1 holds (
dist ((seqt
. n1),(seqt
. m1)))
< r1;
end
notation
let NRM be non
empty
NORMSTR;
let seqt be
sequence of NRM;
synonym seqt is
Cauchy_sequence_by_Norm for seqt is
CCauchy;
end
theorem ::
RSSPACE3:8
Th8: seq is
Cauchy_sequence_by_Norm iff for r be
Real st r
>
0 holds ex k be
Nat st for n,m be
Nat st n
>= k & m
>= k holds
||.((seq
. n)
- (seq
. m)).||
< r
proof
thus seq is
Cauchy_sequence_by_Norm implies for r be
Real st r
>
0 holds ex k be
Nat st for n,m be
Nat st n
>= k & m
>= k holds
||.((seq
. n)
- (seq
. m)).||
< r
proof
assume
A1: seq is
Cauchy_sequence_by_Norm;
let r be
Real;
assume r
>
0 ;
then
consider k be
Nat such that
A2: for n,m be
Nat st n
>= k & m
>= k holds (
dist ((seq
. n),(seq
. m)))
< r by
A1;
for n,m be
Nat st n
>= k & m
>= k holds
||.((seq
. n)
- (seq
. m)).||
< r
proof
let n,m be
Nat;
assume n
>= k & m
>= k;
then (
dist ((seq
. n),(seq
. m)))
< r by
A2;
hence thesis;
end;
hence thesis;
end;
assume
A3: for r be
Real st r
>
0 holds ex k be
Nat st for n,m be
Nat st n
>= k & m
>= k holds
||.((seq
. n)
- (seq
. m)).||
< r;
now
let r be
Real;
assume
A4: r
>
0 ;
now
consider k be
Nat such that
A5: for n,m be
Nat st n
>= k & m
>= k holds
||.((seq
. n)
- (seq
. m)).||
< r by
A3,
A4;
for n,m be
Nat st n
>= k & m
>= k holds (
dist ((seq
. n),(seq
. m)))
< r by
A5;
hence ex k be
Nat st for n,m be
Nat st n
>= k & m
>= k holds (
dist ((seq
. n),(seq
. m)))
< r;
end;
hence ex k be
Nat st for n,m be
Nat st n
>= k & m
>= k holds (
dist ((seq
. n),(seq
. m)))
< r;
end;
hence thesis;
end;
theorem ::
RSSPACE3:9
for vseq be
sequence of
l1_Space st vseq is
Cauchy_sequence_by_Norm holds vseq is
convergent
proof
let vseq be
sequence of
l1_Space such that
A1: vseq is
Cauchy_sequence_by_Norm;
defpred
P[
object,
object] means ex i be
Nat st $1
= i & ex rseqi be
Real_Sequence st (for n be
Nat holds (rseqi
. n)
= ((
seq_id (vseq
. n))
. i)) & rseqi is
convergent & $2
= (
lim rseqi);
A2: for x be
object st x
in
NAT holds ex y be
object st y
in
REAL &
P[x, y]
proof
let x be
object;
assume x
in
NAT ;
then
reconsider i = x as
Nat;
deffunc
F(
Nat) = ((
seq_id (vseq
. $1))
. i);
consider rseqi be
Real_Sequence such that
A3: for n be
Nat holds (rseqi
. n)
=
F(n) from
SEQ_1:sch 1;
reconsider lr = (
lim rseqi) as
Element of
REAL by
XREAL_0:def 1;
take lr;
now
let e be
Real such that
A4: e
>
0 ;
thus ex k be
Nat st for m be
Nat st k
<= m holds
|.((rseqi
. m)
- (rseqi
. k)).|
< e
proof
consider k be
Nat such that
A5: for n,m be
Nat st n
>= k & m
>= k holds
||.((vseq
. n)
- (vseq
. m)).||
< e by
A1,
A4,
Th8;
for m be
Nat st k
<= m holds
|.((rseqi
. m)
- (rseqi
. k)).|
< e
proof
let m be
Nat such that
A6: k
<= m;
A7: for i be
Nat holds
0
<= (
|.(
seq_id ((vseq
. m)
- (vseq
. k))).|
. i)
proof
let i be
Nat;
0
<=
|.((
seq_id ((vseq
. m)
- (vseq
. k)))
. i).| by
COMPLEX1: 46;
hence thesis by
SEQ_1: 12;
end;
(
seq_id ((vseq
. m)
- (vseq
. k))) is
absolutely_summable by
Def1;
then (
abs (
seq_id ((vseq
. m)
- (vseq
. k)))) is
summable by
SERIES_1:def 4;
then
A8: ((
abs (
seq_id ((vseq
. m)
- (vseq
. k))))
. i)
<= (
Sum
|.(
seq_id ((vseq
. m)
- (vseq
. k))).|) by
A7,
RSSPACE2: 3;
(
seq_id ((vseq
. m)
- (vseq
. k)))
= (
seq_id ((
seq_id (vseq
. m))
- (
seq_id (vseq
. k)))) by
Th6
.= ((
seq_id (vseq
. m))
+ (
- (
seq_id (vseq
. k)))) by
SEQ_1: 11;
then ((
seq_id ((vseq
. m)
- (vseq
. k)))
. i)
= (((
seq_id (vseq
. m))
. i)
+ ((
- (
seq_id (vseq
. k)))
. i)) by
SEQ_1: 7
.= (((
seq_id (vseq
. m))
. i)
+ (
- ((
seq_id (vseq
. k))
. i))) by
SEQ_1: 10
.= (((
seq_id (vseq
. m))
. i)
- ((
seq_id (vseq
. k))
. i))
.= ((rseqi
. m)
- ((
seq_id (vseq
. k))
. i)) by
A3
.= ((rseqi
. m)
- (rseqi
. k)) by
A3;
then
A9:
|.((rseqi
. m)
- (rseqi
. k)).|
= ((
abs (
seq_id ((vseq
. m)
- (vseq
. k))))
. i) by
SEQ_1: 12;
||.((vseq
. m)
- (vseq
. k)).||
= (
Sum
|.(
seq_id ((vseq
. m)
- (vseq
. k))).|) by
Th6;
then (
Sum
|.(
seq_id ((vseq
. m)
- (vseq
. k))).|)
< e by
A5,
A6;
hence thesis by
A8,
A9,
XXREAL_0: 2;
end;
hence thesis;
end;
end;
then rseqi is
convergent by
SEQ_4: 41;
hence thesis by
A3;
end;
consider f be
sequence of
REAL such that
A10: for x be
object st x
in
NAT holds
P[x, (f
. x)] from
FUNCT_2:sch 1(
A2);
reconsider tseq = f as
Real_Sequence;
A11:
now
let i be
Nat;
reconsider x = i as
set;
i
in
NAT by
ORDINAL1:def 12;
then ex i0 be
Nat st x
= i0 & ex rseqi be
Real_Sequence st (for n be
Nat holds (rseqi
. n)
= ((
seq_id (vseq
. n))
. i0)) & rseqi is
convergent & (f
. x)
= (
lim rseqi) by
A10;
hence ex rseqi be
Real_Sequence st (for n be
Nat holds (rseqi
. n)
= ((
seq_id (vseq
. n))
. i)) & rseqi is
convergent & (tseq
. i)
= (
lim rseqi);
end;
A12: for e be
Real st e
>
0 holds ex k be
Nat st for n be
Nat st n
>= k holds (
abs ((
seq_id tseq)
- (
seq_id (vseq
. n)))) is
summable & (
Sum (
abs ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
< e
proof
let e1 be
Real such that
A13: e1
>
0 ;
reconsider e1 as
Real;
set e = (e1
/ 2);
A14: e
< e1 by
A13,
XREAL_1: 216;
e
>
0 by
A13,
XREAL_1: 215;
then
consider k be
Nat such that
A15: for n,m be
Nat st n
>= k & m
>= k holds
||.((vseq
. n)
- (vseq
. m)).||
< e by
A1,
Th8;
A16: for m,n be
Nat st n
>= k & m
>= k holds ((
abs (
seq_id ((vseq
. n)
- (vseq
. m)))) is
summable & (
Sum (
abs (
seq_id ((vseq
. n)
- (vseq
. m)))))
< e & for i be
Nat holds
0
<= ((
abs (
seq_id ((vseq
. n)
- (vseq
. m))))
. i))
proof
let m,n be
Nat;
assume n
>= k & m
>= k;
then
||.((vseq
. n)
- (vseq
. m)).||
< e by
A15;
then
A17: (the
normF of
l1_Space
. ((vseq
. n)
- (vseq
. m)))
< e;
A18: for i be
Nat holds
0
<= ((
abs (
seq_id ((vseq
. n)
- (vseq
. m))))
. i)
proof
let i be
Nat;
0
<=
|.((
seq_id ((vseq
. n)
- (vseq
. m)))
. i).| by
COMPLEX1: 46;
hence thesis by
SEQ_1: 12;
end;
(
seq_id ((vseq
. n)
- (vseq
. m))) is
absolutely_summable by
Def1;
hence thesis by
A17,
A18,
Def2,
SERIES_1:def 4;
end;
A19: for n be
Nat holds for i be
Nat holds for rseq be
Real_Sequence st (for m be
Nat holds (rseq
. m)
= ((
Partial_Sums (
abs (
seq_id ((vseq
. m)
- (vseq
. n)))))
. i)) holds rseq is
convergent & (
lim rseq)
= ((
Partial_Sums (
abs ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
. i)
proof
let n be
Nat;
defpred
P[
Nat] means for rseq be
Real_Sequence st for m be
Nat holds (rseq
. m)
= ((
Partial_Sums (
abs (
seq_id ((vseq
. m)
- (vseq
. n)))))
. $1) holds rseq is
convergent & (
lim rseq)
= ((
Partial_Sums (
abs ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
. $1);
A20: for m,k be
Nat holds (
seq_id ((vseq
. m)
- (vseq
. k)))
= ((
seq_id (vseq
. m))
- (
seq_id (vseq
. k)))
proof
let m,k be
Nat;
(
seq_id ((vseq
. m)
- (vseq
. k)))
= (
seq_id ((
seq_id (vseq
. m))
- (
seq_id (vseq
. k)))) by
Th6;
hence thesis;
end;
now
let i be
Nat such that
A21: for rseq be
Real_Sequence st (for m be
Nat holds (rseq
. m)
= ((
Partial_Sums (
abs (
seq_id ((vseq
. m)
- (vseq
. n)))))
. i)) holds rseq is
convergent & (
lim rseq)
= ((
Partial_Sums (
abs ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
. i);
thus for rseq be
Real_Sequence st (for m be
Nat holds (rseq
. m)
= ((
Partial_Sums (
abs (
seq_id ((vseq
. m)
- (vseq
. n)))))
. (i
+ 1))) holds rseq is
convergent & (
lim rseq)
= ((
Partial_Sums (
abs ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
. (i
+ 1))
proof
deffunc
F(
Nat) = ((
Partial_Sums (
abs (
seq_id ((vseq
. $1)
- (vseq
. n)))))
. i);
consider rseqb be
Real_Sequence such that
A22: for m be
Nat holds (rseqb
. m)
=
F(m) from
SEQ_1:sch 1;
consider rseq0 be
Real_Sequence such that
A23: for m be
Nat holds (rseq0
. m)
= ((
seq_id (vseq
. m))
. (i
+ 1)) and
A24: rseq0 is
convergent and
A25: (tseq
. (i
+ 1))
= (
lim rseq0) by
A11;
let rseq be
Real_Sequence such that
A26: for m be
Nat holds (rseq
. m)
= ((
Partial_Sums (
abs (
seq_id ((vseq
. m)
- (vseq
. n)))))
. (i
+ 1));
A27:
now
let m be
Nat;
thus (rseq
. m)
= ((
Partial_Sums (
abs (
seq_id ((vseq
. m)
- (vseq
. n)))))
. (i
+ 1)) by
A26
.= (((
abs (
seq_id ((vseq
. m)
- (vseq
. n))))
. (i
+ 1))
+ ((
Partial_Sums (
abs (
seq_id ((vseq
. m)
- (vseq
. n)))))
. i)) by
SERIES_1:def 1
.= (((
abs ((
seq_id (vseq
. m))
- (
seq_id (vseq
. n))))
. (i
+ 1))
+ ((
Partial_Sums (
abs (
seq_id ((vseq
. m)
- (vseq
. n)))))
. i)) by
A20
.= (((
abs ((
seq_id (vseq
. m))
- (
seq_id (vseq
. n))))
. (i
+ 1))
+ (rseqb
. m)) by
A22
.= (
|.(((
seq_id (vseq
. m))
- (
seq_id (vseq
. n)))
. (i
+ 1)).|
+ (rseqb
. m)) by
SEQ_1: 12
.= (
|.(((
seq_id (vseq
. m))
+ (
- (
seq_id (vseq
. n))))
. (i
+ 1)).|
+ (rseqb
. m)) by
SEQ_1: 11
.= (
|.(((
seq_id (vseq
. m))
. (i
+ 1))
+ ((
- (
seq_id (vseq
. n)))
. (i
+ 1))).|
+ (rseqb
. m)) by
SEQ_1: 7
.= (
|.(((
seq_id (vseq
. m))
. (i
+ 1))
+ (
- ((
seq_id (vseq
. n))
. (i
+ 1)))).|
+ (rseqb
. m)) by
SEQ_1: 10
.= (
|.(((
seq_id (vseq
. m))
. (i
+ 1))
- ((
seq_id (vseq
. n))
. (i
+ 1))).|
+ (rseqb
. m))
.= (
|.((rseq0
. m)
- ((
seq_id (vseq
. n))
. (i
+ 1))).|
+ (rseqb
. m)) by
A23;
end;
A28: rseqb is
convergent by
A21,
A22;
then (
lim rseq)
= (
|.((
lim rseq0)
- ((
seq_id (vseq
. n))
. (i
+ 1))).|
+ (
lim rseqb)) by
A24,
A27,
Lm3
.= (
|.((tseq
. (i
+ 1))
+ (
- ((
seq_id (vseq
. n))
. (i
+ 1)))).|
+ (
lim rseqb)) by
A25
.= (
|.((tseq
. (i
+ 1))
+ ((
- (
seq_id (vseq
. n)))
. (i
+ 1))).|
+ (
lim rseqb)) by
SEQ_1: 10
.= (
|.((tseq
+ (
- (
seq_id (vseq
. n))))
. (i
+ 1)).|
+ (
lim rseqb)) by
SEQ_1: 7
.= (
|.((tseq
- (
seq_id (vseq
. n)))
. (i
+ 1)).|
+ (
lim rseqb)) by
SEQ_1: 11
.= (((
abs (tseq
- (
seq_id (vseq
. n))))
. (i
+ 1))
+ (
lim rseqb)) by
SEQ_1: 12
.= (((
abs (tseq
- (
seq_id (vseq
. n))))
. (i
+ 1))
+ ((
Partial_Sums (
abs ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
. i)) by
A21,
A22
.= ((
Partial_Sums (
abs ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
. (i
+ 1)) by
SERIES_1:def 1;
hence thesis by
A28,
A24,
A27,
Lm3;
end;
end;
then
A29: for i be
Nat st
P[i] holds
P[(i
+ 1)];
now
let rseq be
Real_Sequence such that
A30: for m be
Nat holds (rseq
. m)
= ((
Partial_Sums (
abs (
seq_id ((vseq
. m)
- (vseq
. n)))))
.
0 );
thus rseq is
convergent & (
lim rseq)
= ((
Partial_Sums (
abs ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
.
0 )
proof
consider rseq0 be
Real_Sequence such that
A31: for m be
Nat holds (rseq0
. m)
= ((
seq_id (vseq
. m))
.
0 ) and
A32: rseq0 is
convergent and
A33: (tseq
.
0 )
= (
lim rseq0) by
A11;
A34: for m be
Nat holds (rseq
. m)
=
|.((rseq0
. m)
- ((
seq_id (vseq
. n))
.
0 )).|
proof
let m be
Nat;
(rseq
. m)
= ((
Partial_Sums (
abs (
seq_id ((vseq
. m)
- (vseq
. n)))))
.
0 ) by
A30
.= ((
abs (
seq_id ((vseq
. m)
- (vseq
. n))))
.
0 ) by
SERIES_1:def 1
.= ((
abs ((
seq_id (vseq
. m))
- (
seq_id (vseq
. n))))
.
0 ) by
A20
.= ((
abs ((
seq_id (vseq
. m))
+ (
- (
seq_id (vseq
. n)))))
.
0 ) by
SEQ_1: 11
.=
|.(((
seq_id (vseq
. m))
+ (
- (
seq_id (vseq
. n))))
.
0 ).| by
SEQ_1: 12
.=
|.(((
seq_id (vseq
. m))
.
0 )
+ ((
- (
seq_id (vseq
. n)))
.
0 )).| by
SEQ_1: 7
.=
|.(((
seq_id (vseq
. m))
.
0 )
+ (
- ((
seq_id (vseq
. n))
.
0 ))).| by
SEQ_1: 10
.=
|.(((
seq_id (vseq
. m))
.
0 )
- ((
seq_id (vseq
. n))
.
0 )).|;
hence thesis by
A31;
end;
then (
lim rseq)
=
|.((
lim rseq0)
- ((
seq_id (vseq
. n))
.
0 )).| by
A32,
Th1
.=
|.((tseq
.
0 )
+ (
- ((
seq_id (vseq
. n))
.
0 ))).| by
A33
.=
|.((tseq
.
0 )
+ ((
- (
seq_id (vseq
. n)))
.
0 )).| by
SEQ_1: 10
.=
|.((tseq
+ (
- (
seq_id (vseq
. n))))
.
0 ).| by
SEQ_1: 7
.=
|.((tseq
- (
seq_id (vseq
. n)))
.
0 ).| by
SEQ_1: 11
.= ((
abs ((
seq_id tseq)
- (
seq_id (vseq
. n))))
.
0 ) by
SEQ_1: 12
.= ((
Partial_Sums (
abs ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
.
0 ) by
SERIES_1:def 1;
hence thesis by
A32,
A34,
Th1;
end;
end;
then
A35:
P[
0 ];
for i be
Nat holds
P[i] from
NAT_1:sch 2(
A35,
A29);
hence thesis;
end;
for n be
Nat st n
>= k holds (
abs ((
seq_id tseq)
- (
seq_id (vseq
. n)))) is
summable & (
Sum (
abs ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
< e1
proof
let n be
Nat such that
A36: n
>= k;
A37: for i be
Nat st
0
<= i holds ((
Partial_Sums (
abs ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
. i)
<= e
proof
let i be
Nat such that
0
<= i;
deffunc
F(
Nat) = ((
Partial_Sums (
abs (
seq_id ((vseq
. $1)
- (vseq
. n)))))
. i);
consider rseq be
Real_Sequence such that
A38: for m be
Nat holds (rseq
. m)
=
F(m) from
SEQ_1:sch 1;
A39: for m be
Nat st m
>= k holds (rseq
. m)
<= e
proof
let m be
Nat;
A40: (rseq
. m)
= ((
Partial_Sums (
abs (
seq_id ((vseq
. m)
- (vseq
. n)))))
. i) by
A38;
assume
A41: m
>= k;
then (
abs (
seq_id ((vseq
. m)
- (vseq
. n)))) is
summable & for i be
Nat holds
0
<= ((
abs (
seq_id ((vseq
. m)
- (vseq
. n))))
. i) by
A16,
A36;
then
A42: ((
Partial_Sums (
abs (
seq_id ((vseq
. m)
- (vseq
. n)))))
. i)
<= (
Sum (
abs (
seq_id ((vseq
. m)
- (vseq
. n))))) by
RSSPACE2: 3;
(
Sum (
abs (
seq_id ((vseq
. m)
- (vseq
. n)))))
< e by
A16,
A36,
A41;
hence thesis by
A42,
A40,
XXREAL_0: 2;
end;
rseq is
convergent & (
lim rseq)
= ((
Partial_Sums (
abs ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
. i) by
A19,
A38;
hence thesis by
A39,
RSSPACE2: 5;
end;
now
take e1;
let i be
Nat;
((
Partial_Sums (
abs ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
. i)
<= e by
A37,
NAT_1: 2;
hence ((
Partial_Sums (
abs ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
. i)
< e1 by
A14,
XXREAL_0: 2;
end;
then
A43: (
Partial_Sums (
abs ((
seq_id tseq)
- (
seq_id (vseq
. n))))) is
bounded_above by
SEQ_2:def 3;
A44: for i be
Nat holds
0
<= ((
abs ((
seq_id tseq)
- (
seq_id (vseq
. n))))
. i)
proof
let i be
Nat;
((
abs ((
seq_id tseq)
- (
seq_id (vseq
. n))))
. i)
=
|.(((
seq_id tseq)
- (
seq_id (vseq
. n)))
. i).| by
SEQ_1: 12;
hence thesis by
COMPLEX1: 46;
end;
then (
abs ((
seq_id tseq)
- (
seq_id (vseq
. n)))) is
summable by
A43,
SERIES_1: 17;
then (
Partial_Sums (
abs ((
seq_id tseq)
- (
seq_id (vseq
. n))))) is
convergent by
SERIES_1:def 2;
then (
Sum (
abs ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
= (
lim (
Partial_Sums (
abs ((
seq_id tseq)
- (
seq_id (vseq
. n)))))) & (
lim (
Partial_Sums (
abs ((
seq_id tseq)
- (
seq_id (vseq
. n))))))
<= e by
A37,
RSSPACE2: 5,
SERIES_1:def 3;
hence thesis by
A14,
A44,
A43,
SERIES_1: 17,
XXREAL_0: 2;
end;
hence thesis;
end;
(
abs (
seq_id tseq)) is
summable
proof
set d = (
abs (
seq_id tseq));
A45: for i be
Nat holds
0
<= ((
abs (
seq_id tseq))
. i)
proof
let i be
Nat;
((
abs (
seq_id tseq))
. i)
=
|.((
seq_id tseq)
. i).| by
SEQ_1: 12;
hence thesis by
COMPLEX1: 46;
end;
consider m be
Nat such that
A46: for n be
Nat st n
>= m holds (
abs ((
seq_id tseq)
- (
seq_id (vseq
. n)))) is
summable & (
Sum (
abs ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
< 1 by
A12;
set b = (
abs (
seq_id (vseq
. m)));
set a = (
abs ((
seq_id tseq)
- (
seq_id (vseq
. m))));
(
seq_id (vseq
. m)) is
absolutely_summable by
Def1;
then
A47: (
abs (
seq_id (vseq
. m))) is
summable by
SERIES_1:def 4;
A48: for i be
Nat holds (d
. i)
<= ((a
+ b)
. i)
proof
let i be
Nat;
A49: (b
. i)
=
|.((
seq_id (vseq
. m))
. i).| & (d
. i)
=
|.((
seq_id tseq)
. i).| by
SEQ_1: 12;
(a
. i)
=
|.(((
seq_id tseq)
- (
seq_id (vseq
. m)))
. i).| by
SEQ_1: 12
.=
|.(((
seq_id tseq)
+ (
- (
seq_id (vseq
. m))))
. i).| by
SEQ_1: 11
.=
|.(((
seq_id tseq)
. i)
+ ((
- (
seq_id (vseq
. m)))
. i)).| by
SEQ_1: 7
.=
|.(((
seq_id tseq)
. i)
+ (
- ((
seq_id (vseq
. m))
. i))).| by
SEQ_1: 10
.=
|.(((
seq_id tseq)
. i)
- ((
seq_id (vseq
. m))
. i)).|;
then ((d
. i)
- (b
. i))
<= (a
. i) by
A49,
COMPLEX1: 59;
then (((d
. i)
- (b
. i))
+ (b
. i))
<= ((a
. i)
+ (b
. i)) by
XREAL_1: 6;
hence thesis by
SEQ_1: 7;
end;
(
abs ((
seq_id tseq)
- (
seq_id (vseq
. m)))) is
summable by
A46;
then (a
+ b) is
summable by
A47,
SERIES_1: 7;
hence thesis by
A45,
A48,
SERIES_1: 20;
end;
then
A50: (
seq_id tseq) is
absolutely_summable by
SERIES_1:def 4;
A51: tseq
in
the_set_of_RealSequences by
FUNCT_2: 8;
then
reconsider tv = tseq as
Point of
l1_Space by
A50,
Def1;
for e be
Real st e
>
0 holds ex m be
Nat st for n be
Nat st n
>= m holds
||.((vseq
. n)
- tv).||
< e
proof
let e be
Real;
assume e
>
0 ;
then
consider m be
Nat such that
A52: for n be
Nat st n
>= m holds (
abs ((
seq_id tseq)
- (
seq_id (vseq
. n)))) is
summable & (
Sum (
abs ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
< e by
A12;
reconsider m as
Element of
NAT by
ORDINAL1:def 12;
take m;
reconsider u = tseq as
VECTOR of
l1_Space by
A50,
A51,
Def1;
let n be
Nat;
assume n
>= m;
then
A53: (
Sum (
abs ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
< e by
A52;
reconsider v = (vseq
. n) as
VECTOR of
l1_Space ;
(
seq_id (u
- v))
= (u
- v) by
Th6;
then (
Sum (
abs (
seq_id (u
- v))))
= (
Sum (
abs ((
seq_id tseq)
- (
seq_id (vseq
. n))))) by
Th6;
then
A54: (the
normF of
l1_Space
. (u
- v))
< e by
A53,
Def2;
||.((vseq
. n)
- tv).||
=
||.(
- (tv
- (vseq
. n))).|| by
RLVECT_1: 33
.=
||.(tv
- (vseq
. n)).|| by
NORMSP_1: 2;
hence
||.((vseq
. n)
- tv).||
< e by
A54;
end;
hence thesis by
NORMSP_1:def 6;
end;