fdiff_5.miz
begin
reserve y for
set,
x,a,b for
Real,
n for
Element of
NAT ,
Z for
open
Subset of
REAL ,
f,f1,f2,g for
PartFunc of
REAL ,
REAL ;
Lm1: Z
c= (
dom (f1
+ f2)) & (for x st x
in Z holds (f1
. x)
= a) & f2
= (
#Z 2) implies (f1
+ f2)
is_differentiable_on Z & for x st x
in Z holds (((f1
+ f2)
`| Z)
. x)
= (2
* x)
proof
assume that
A1: Z
c= (
dom (f1
+ f2)) and
A2: for x st x
in Z holds (f1
. x)
= a and
A3: f2
= (
#Z 2);
A4: for x st x
in Z holds f2
is_differentiable_in x by
A3,
TAYLOR_1: 2;
A5: Z
c= ((
dom f1)
/\ (
dom f2)) by
A1,
VALUED_1:def 1;
then
A6: Z
c= (
dom f1) by
XBOOLE_1: 18;
A7: for x st x
in Z holds (f1
. x)
= ((
0
* x)
+ a) by
A2;
then
A8: f1
is_differentiable_on Z by
A6,
FDIFF_1: 23;
Z
c= (
dom f2) by
A5,
XBOOLE_1: 18;
then
A9: f2
is_differentiable_on Z by
A4,
FDIFF_1: 9;
A10: for x st x
in Z holds ((f2
`| Z)
. x)
= (2
* (x
#Z (2
- 1)))
proof
let x;
assume
A11: x
in Z;
(
diff (f2,x))
= (2
* (x
#Z (2
- 1))) by
A3,
TAYLOR_1: 2;
hence thesis by
A9,
A11,
FDIFF_1:def 7;
end;
for x st x
in Z holds (((f1
+ f2)
`| Z)
. x)
= (2
* x)
proof
let x;
assume
A12: x
in Z;
then (((f1
+ f2)
`| Z)
. x)
= ((
diff (f1,x))
+ (
diff (f2,x))) by
A1,
A8,
A9,
FDIFF_1: 18;
hence (((f1
+ f2)
`| Z)
. x)
= (((f1
`| Z)
. x)
+ (
diff (f2,x))) by
A8,
A12,
FDIFF_1:def 7
.= (((f1
`| Z)
. x)
+ ((f2
`| Z)
. x)) by
A9,
A12,
FDIFF_1:def 7
.= (
0
+ ((f2
`| Z)
. x)) by
A6,
A7,
A12,
FDIFF_1: 23
.= (2
* (x
#Z (2
- 1))) by
A10,
A12
.= (2
* (x
|^ 1)) by
PREPOWER: 36
.= (2
* x);
end;
hence thesis by
A1,
A8,
A9,
FDIFF_1: 18;
end;
Lm2: Z
c= (
dom (f1
- f2)) & (for x st x
in Z holds (f1
. x)
= a) & f2
= (
#Z 2) implies (f1
- f2)
is_differentiable_on Z & for x st x
in Z holds (((f1
- f2)
`| Z)
. x)
= (
- (2
* x))
proof
assume that
A1: Z
c= (
dom (f1
- f2)) and
A2: for x st x
in Z holds (f1
. x)
= a and
A3: f2
= (
#Z 2);
A4: for x st x
in Z holds f2
is_differentiable_in x by
A3,
TAYLOR_1: 2;
A5: Z
c= ((
dom f1)
/\ (
dom f2)) by
A1,
VALUED_1: 12;
then
A6: Z
c= (
dom f1) by
XBOOLE_1: 18;
A7: for x st x
in Z holds (f1
. x)
= ((
0
* x)
+ a) by
A2;
then
A8: f1
is_differentiable_on Z by
A6,
FDIFF_1: 23;
Z
c= (
dom f2) by
A5,
XBOOLE_1: 18;
then
A9: f2
is_differentiable_on Z by
A4,
FDIFF_1: 9;
A10: for x st x
in Z holds ((f2
`| Z)
. x)
= (2
* (x
#Z (2
- 1)))
proof
let x;
assume
A11: x
in Z;
(
diff (f2,x))
= (2
* (x
#Z (2
- 1))) by
A3,
TAYLOR_1: 2;
hence thesis by
A9,
A11,
FDIFF_1:def 7;
end;
for x st x
in Z holds (((f1
- f2)
`| Z)
. x)
= (
- (2
* x))
proof
let x;
assume
A12: x
in Z;
then (((f1
- f2)
`| Z)
. x)
= ((
diff (f1,x))
- (
diff (f2,x))) by
A1,
A8,
A9,
FDIFF_1: 19;
hence (((f1
- f2)
`| Z)
. x)
= (((f1
`| Z)
. x)
- (
diff (f2,x))) by
A8,
A12,
FDIFF_1:def 7
.= (((f1
`| Z)
. x)
- ((f2
`| Z)
. x)) by
A9,
A12,
FDIFF_1:def 7
.= (
0
- ((f2
`| Z)
. x)) by
A6,
A7,
A12,
FDIFF_1: 23
.= (
0
- (2
* (x
#Z (2
- 1)))) by
A10,
A12
.= (
0
- (2
* (x
|^ 1))) by
PREPOWER: 36
.= (
- (2
* (x
|^ 1)))
.= (
- (2
* x));
end;
hence thesis by
A1,
A8,
A9,
FDIFF_1: 19;
end;
Lm3: Z
c= (
dom (
#R (1
/ 2))) implies (
#R (1
/ 2))
is_differentiable_on Z & for x st x
in Z holds (((
#R (1
/ 2))
`| Z)
. x)
= ((1
/ 2)
* (x
#R (
- (1
/ 2))))
proof
assume
A1: Z
c= (
dom (
#R (1
/ 2)));
A2: for x st x
in Z holds (
#R (1
/ 2))
is_differentiable_in x
proof
let x;
assume x
in Z;
then x
in (
dom (
#R (1
/ 2))) by
A1;
then x
in (
right_open_halfline
0 ) by
TAYLOR_1:def 4;
then x
>
0 by
XXREAL_1: 4;
hence thesis by
TAYLOR_1: 21;
end;
then
A3: (
#R (1
/ 2))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
#R (1
/ 2))
`| Z)
. x)
= ((1
/ 2)
* (x
#R (
- (1
/ 2))))
proof
let x;
assume
A4: x
in Z;
then x
in (
dom (
#R (1
/ 2))) by
A1;
then x
in (
right_open_halfline
0 ) by
TAYLOR_1:def 4;
then x
>
0 by
XXREAL_1: 4;
then (
diff ((
#R (1
/ 2)),x))
= ((1
/ 2)
* (x
#R ((1
/ 2)
- 1))) by
TAYLOR_1: 21
.= ((1
/ 2)
* (x
#R (
- (1
/ 2))));
hence thesis by
A3,
A4,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A2,
FDIFF_1: 9;
end;
theorem ::
FDIFF_5:1
Z
c= (
dom (f1
/ f2)) & (for x st x
in Z holds (f1
. x)
= (a
+ x) & (f2
. x)
= (a
- x) & (f2
. x)
<>
0 ) implies (f1
/ f2)
is_differentiable_on Z & for x st x
in Z holds (((f1
/ f2)
`| Z)
. x)
= ((2
* a)
/ ((a
- x)
^2 ))
proof
assume that
A1: Z
c= (
dom (f1
/ f2)) and
A2: for x st x
in Z holds (f1
. x)
= (a
+ x) & (f2
. x)
= (a
- x) & (f2
. x)
<>
0 ;
A3: Z
c= ((
dom f1)
/\ ((
dom f2)
\ (f2
"
{
0 }))) by
A1,
RFUNCT_1:def 1;
then
A4: Z
c= (
dom f1) by
XBOOLE_1: 18;
A5: for x st x
in Z holds (f1
. x)
= ((1
* x)
+ a) by
A2;
then
A6: f1
is_differentiable_on Z by
A4,
FDIFF_1: 23;
A7: for x st x
in Z holds (f2
. x)
= (((
- 1)
* x)
+ a)
proof
let x;
assume x
in Z;
then (f2
. x)
= (a
- x) by
A2;
hence thesis;
end;
A8: Z
c= (
dom f2) by
A3,
XBOOLE_1: 1;
then
A9: f2
is_differentiable_on Z by
A7,
FDIFF_1: 23;
A10: for x st x
in Z holds (f2
. x)
<>
0 by
A2;
then
A11: (f1
/ f2)
is_differentiable_on Z by
A6,
A9,
FDIFF_2: 21;
for x st x
in Z holds (((f1
/ f2)
`| Z)
. x)
= ((2
* a)
/ ((a
- x)
^2 ))
proof
let x;
assume
A12: x
in Z;
then
A13: (f2
. x)
<>
0 by
A2;
A14: (f1
. x)
= (a
+ x) & (f2
. x)
= (a
- x) by
A2,
A12;
f1
is_differentiable_in x & f2
is_differentiable_in x by
A6,
A9,
A12,
FDIFF_1: 9;
then (
diff ((f1
/ f2),x))
= ((((
diff (f1,x))
* (f2
. x))
- ((
diff (f2,x))
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A13,
FDIFF_2: 14
.= (((((f1
`| Z)
. x)
* (f2
. x))
- ((
diff (f2,x))
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A6,
A12,
FDIFF_1:def 7
.= (((((f1
`| Z)
. x)
* (f2
. x))
- (((f2
`| Z)
. x)
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A9,
A12,
FDIFF_1:def 7
.= (((1
* (f2
. x))
- (((f2
`| Z)
. x)
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A4,
A5,
A12,
FDIFF_1: 23
.= (((1
* (f2
. x))
- ((
- 1)
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A8,
A7,
A12,
FDIFF_1: 23
.= ((2
* a)
/ ((a
- x)
^2 )) by
A14;
hence thesis by
A11,
A12,
FDIFF_1:def 7;
end;
hence thesis by
A6,
A9,
A10,
FDIFF_2: 21;
end;
theorem ::
FDIFF_5:2
Z
c= (
dom (f1
/ f2)) & (for x st x
in Z holds (f1
. x)
= (x
- a) & (f2
. x)
= (x
+ a) & (f2
. x)
<>
0 ) implies (f1
/ f2)
is_differentiable_on Z & for x st x
in Z holds (((f1
/ f2)
`| Z)
. x)
= ((2
* a)
/ ((x
+ a)
^2 ))
proof
assume that
A1: Z
c= (
dom (f1
/ f2)) and
A2: for x st x
in Z holds (f1
. x)
= (x
- a) & (f2
. x)
= (x
+ a) & (f2
. x)
<>
0 ;
A3: for x st x
in Z holds (f2
. x)
= ((1
* x)
+ a) by
A2;
A4: Z
c= ((
dom f1)
/\ ((
dom f2)
\ (f2
"
{
0 }))) by
A1,
RFUNCT_1:def 1;
then
A5: Z
c= (
dom f1) by
XBOOLE_1: 18;
A6: Z
c= (
dom f2) by
A4,
XBOOLE_1: 1;
then
A7: f2
is_differentiable_on Z by
A3,
FDIFF_1: 23;
A8: for x st x
in Z holds (f1
. x)
= ((1
* x)
+ (
- a))
proof
let x;
A9: ((1
* x)
+ (
- a))
= ((1
* x)
- a);
assume x
in Z;
hence thesis by
A2,
A9;
end;
then
A10: f1
is_differentiable_on Z by
A5,
FDIFF_1: 23;
A11: for x st x
in Z holds (f2
. x)
<>
0 by
A2;
then
A12: (f1
/ f2)
is_differentiable_on Z by
A10,
A7,
FDIFF_2: 21;
for x st x
in Z holds (((f1
/ f2)
`| Z)
. x)
= ((2
* a)
/ ((x
+ a)
^2 ))
proof
let x;
assume
A13: x
in Z;
then
A14: (f2
. x)
<>
0 by
A2;
A15: (f1
. x)
= (x
- a) & (f2
. x)
= (x
+ a) by
A2,
A13;
f1
is_differentiable_in x & f2
is_differentiable_in x by
A10,
A7,
A13,
FDIFF_1: 9;
then (
diff ((f1
/ f2),x))
= ((((
diff (f1,x))
* (f2
. x))
- ((
diff (f2,x))
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A14,
FDIFF_2: 14
.= (((((f1
`| Z)
. x)
* (f2
. x))
- ((
diff (f2,x))
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A10,
A13,
FDIFF_1:def 7
.= (((((f1
`| Z)
. x)
* (f2
. x))
- (((f2
`| Z)
. x)
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A7,
A13,
FDIFF_1:def 7
.= (((1
* (f2
. x))
- (((f2
`| Z)
. x)
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A5,
A8,
A13,
FDIFF_1: 23
.= (((1
* (f2
. x))
- (1
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A6,
A3,
A13,
FDIFF_1: 23
.= ((2
* a)
/ ((x
+ a)
^2 )) by
A15;
hence thesis by
A12,
A13,
FDIFF_1:def 7;
end;
hence thesis by
A10,
A7,
A11,
FDIFF_2: 21;
end;
theorem ::
FDIFF_5:3
Z
c= (
dom (f1
/ f2)) & (for x st x
in Z holds (f1
. x)
= (x
- a) & (f2
. x)
= (x
- b) & (f2
. x)
<>
0 ) implies (f1
/ f2)
is_differentiable_on Z & for x st x
in Z holds (((f1
/ f2)
`| Z)
. x)
= ((a
- b)
/ ((x
- b)
^2 ))
proof
assume that
A1: Z
c= (
dom (f1
/ f2)) and
A2: for x st x
in Z holds (f1
. x)
= (x
- a) & (f2
. x)
= (x
- b) & (f2
. x)
<>
0 ;
A3: for x st x
in Z holds (f1
. x)
= ((1
* x)
+ (
- a)) & (f2
. x)
= ((1
* x)
+ (
- b))
proof
let x;
A4: ((1
* x)
+ (
- a))
= ((1
* x)
- a) & ((1
* x)
+ (
- b))
= ((1
* x)
- b);
assume x
in Z;
hence thesis by
A2,
A4;
end;
then
A5: for x st x
in Z holds (f1
. x)
= ((1
* x)
+ (
- a));
A6: Z
c= ((
dom f1)
/\ ((
dom f2)
\ (f2
"
{
0 }))) by
A1,
RFUNCT_1:def 1;
then
A7: Z
c= (
dom f1) by
XBOOLE_1: 18;
then
A8: f1
is_differentiable_on Z by
A5,
FDIFF_1: 23;
A9: for x st x
in Z holds (f2
. x)
= ((1
* x)
+ (
- b)) by
A3;
A10: Z
c= (
dom f2) by
A6,
XBOOLE_1: 1;
then
A11: f2
is_differentiable_on Z by
A9,
FDIFF_1: 23;
A12: for x st x
in Z holds (f2
. x)
<>
0 by
A2;
then
A13: (f1
/ f2)
is_differentiable_on Z by
A8,
A11,
FDIFF_2: 21;
for x st x
in Z holds (((f1
/ f2)
`| Z)
. x)
= ((a
- b)
/ ((x
- b)
^2 ))
proof
let x;
assume
A14: x
in Z;
then
A15: (f2
. x)
<>
0 by
A2;
A16: (f1
. x)
= (x
- a) & (f2
. x)
= (x
- b) by
A2,
A14;
f1
is_differentiable_in x & f2
is_differentiable_in x by
A8,
A11,
A14,
FDIFF_1: 9;
then (
diff ((f1
/ f2),x))
= ((((
diff (f1,x))
* (f2
. x))
- ((
diff (f2,x))
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A15,
FDIFF_2: 14
.= (((((f1
`| Z)
. x)
* (f2
. x))
- ((
diff (f2,x))
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A8,
A14,
FDIFF_1:def 7
.= (((((f1
`| Z)
. x)
* (f2
. x))
- (((f2
`| Z)
. x)
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A11,
A14,
FDIFF_1:def 7
.= (((1
* (f2
. x))
- (((f2
`| Z)
. x)
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A7,
A5,
A14,
FDIFF_1: 23
.= (((1
* (f2
. x))
- (1
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A10,
A9,
A14,
FDIFF_1: 23
.= ((a
- b)
/ ((x
- b)
^2 )) by
A16;
hence thesis by
A13,
A14,
FDIFF_1:def 7;
end;
hence thesis by
A8,
A11,
A12,
FDIFF_2: 21;
end;
theorem ::
FDIFF_5:4
Th4: not
0
in Z implies ((
id Z)
^ )
is_differentiable_on Z & for x st x
in Z holds ((((
id Z)
^ )
`| Z)
. x)
= (
- (1
/ (x
^2 )))
proof
set f = (
id Z);
A1: Z
c= (
dom f) & for x st x
in Z holds (f
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 17;
then
A2: f
is_differentiable_on Z by
FDIFF_1: 23;
assume
A3: not
0
in Z;
then
A4: for x st x
in Z holds (f
. x)
<>
0 by
FUNCT_1: 18;
then
A5: (f
^ )
is_differentiable_on Z by
A2,
FDIFF_2: 22;
now
let x;
assume
A6: x
in Z;
then
A7: (f
. x)
<>
0 & f
is_differentiable_in x by
A3,
A2,
FDIFF_1: 9,
FUNCT_1: 18;
(((f
^ )
`| Z)
. x)
= (
diff ((f
^ ),x)) by
A5,
A6,
FDIFF_1:def 7
.= (
- ((
diff (f,x))
/ ((f
. x)
^2 ))) by
A7,
FDIFF_2: 15
.= (
- (((f
`| Z)
. x)
/ ((f
. x)
^2 ))) by
A2,
A6,
FDIFF_1:def 7
.= (
- (1
/ ((f
. x)
^2 ))) by
A1,
A6,
FDIFF_1: 23
.= (
- (1
/ (x
^2 ))) by
A6,
FUNCT_1: 18;
hence (((f
^ )
`| Z)
. x)
= (
- (1
/ (x
^2 )));
end;
hence thesis by
A2,
A4,
FDIFF_2: 22;
end;
Lm4: not
0
in Z implies (
dom (
sin
* ((
id Z)
^ )))
= Z
proof
A1: (
rng ((
id Z)
^ ))
c=
REAL by
RELAT_1:def 19;
assume
A2: not
0
in Z;
((
id Z)
"
{
0 })
c=
{}
proof
let x be
object;
assume
A3: x
in ((
id Z)
"
{
0 });
then x
in (
dom (
id Z)) by
FUNCT_1:def 7;
then
A4: x
in Z by
FUNCT_1: 17;
((
id Z)
. x)
in
{
0 } by
A3,
FUNCT_1:def 7;
then x
in
{
0 } by
A4,
FUNCT_1: 18;
hence thesis by
A2,
A4,
TARSKI:def 1;
end;
then
A5: ((
id Z)
"
{
0 })
=
{} by
XBOOLE_1: 3;
(
dom ((
id Z)
^ ))
= ((
dom (
id Z))
\ ((
id Z)
"
{
0 })) by
RFUNCT_1:def 2
.= Z by
A5,
FUNCT_1: 17;
hence thesis by
A1,
RELAT_1: 27,
SIN_COS: 24;
end;
theorem ::
FDIFF_5:5
Th5: not
0
in Z implies (
sin
* ((
id Z)
^ ))
is_differentiable_on Z & for x st x
in Z holds (((
sin
* ((
id Z)
^ ))
`| Z)
. x)
= (
- ((1
/ (x
^2 ))
* (
cos
. (1
/ x))))
proof
set f = (
id Z);
assume
A1: not
0
in Z;
then
A2: Z
c= (
dom (
sin
* (f
^ ))) by
Lm4;
then for y be
object st y
in Z holds y
in (
dom (f
^ )) by
FUNCT_1: 11;
then
A3: Z
c= (
dom (f
^ ));
A4: (f
^ )
is_differentiable_on Z by
A1,
Th4;
A5: for x st x
in Z holds (
sin
* (f
^ ))
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A6: (f
^ )
is_differentiable_in x by
A4,
FDIFF_1: 9;
sin
is_differentiable_in ((f
^ )
. x) by
SIN_COS: 64;
hence thesis by
A6,
FDIFF_2: 13;
end;
then
A7: (
sin
* (f
^ ))
is_differentiable_on Z by
A2,
FDIFF_1: 9;
for x st x
in Z holds (((
sin
* (f
^ ))
`| Z)
. x)
= (
- ((1
/ (x
^2 ))
* (
cos
. (1
/ x))))
proof
let x;
A8:
sin
is_differentiable_in ((f
^ )
. x) by
SIN_COS: 64;
assume
A9: x
in Z;
then (f
^ )
is_differentiable_in x by
A4,
FDIFF_1: 9;
then (
diff ((
sin
* (f
^ )),x))
= ((
diff (
sin ,((f
^ )
. x)))
* (
diff ((f
^ ),x))) by
A8,
FDIFF_2: 13
.= ((
cos
. ((f
^ )
. x))
* (
diff ((f
^ ),x))) by
SIN_COS: 64
.= ((
cos
. ((f
. x)
" ))
* (
diff ((f
^ ),x))) by
A3,
A9,
RFUNCT_1:def 2
.= ((
cos
. ((f
. x)
" ))
* (((f
^ )
`| Z)
. x)) by
A4,
A9,
FDIFF_1:def 7
.= ((
cos
. ((f
. x)
" ))
* (
- (1
/ (x
^2 )))) by
A1,
A9,
Th4
.= ((
cos
. (1
* (x
" )))
* (
- (1
/ (x
^2 )))) by
A9,
FUNCT_1: 18
.= ((
cos
. (1
/ x))
* (
- (1
/ (x
^2 )))) by
XCMPLX_0:def 9;
hence thesis by
A7,
A9,
FDIFF_1:def 7;
end;
hence thesis by
A2,
A5,
FDIFF_1: 9;
end;
theorem ::
FDIFF_5:6
Th6: not
0
in Z & Z
c= (
dom (
cos
* ((
id Z)
^ ))) implies (
cos
* ((
id Z)
^ ))
is_differentiable_on Z & for x st x
in Z holds (((
cos
* ((
id Z)
^ ))
`| Z)
. x)
= ((1
/ (x
^2 ))
* (
sin
. (1
/ x)))
proof
set f = (
id Z);
assume that
A1: not
0
in Z and
A2: Z
c= (
dom (
cos
* (f
^ )));
for y be
object st y
in Z holds y
in (
dom (f
^ )) by
A2,
FUNCT_1: 11;
then
A3: Z
c= (
dom (f
^ ));
A4: (f
^ )
is_differentiable_on Z by
A1,
Th4;
A5: for x st x
in Z holds (
cos
* (f
^ ))
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A6: (f
^ )
is_differentiable_in x by
A4,
FDIFF_1: 9;
cos
is_differentiable_in ((f
^ )
. x) by
SIN_COS: 63;
hence thesis by
A6,
FDIFF_2: 13;
end;
then
A7: (
cos
* (f
^ ))
is_differentiable_on Z by
A2,
FDIFF_1: 9;
for x st x
in Z holds (((
cos
* (f
^ ))
`| Z)
. x)
= ((1
/ (x
^2 ))
* (
sin
. (1
/ x)))
proof
let x;
A8: (
diff (
cos ,((f
^ )
. x)))
= (
- (
sin
. ((f
^ )
. x))) by
SIN_COS: 63;
A9:
cos
is_differentiable_in ((f
^ )
. x) by
SIN_COS: 63;
assume
A10: x
in Z;
then (f
^ )
is_differentiable_in x by
A4,
FDIFF_1: 9;
then (
diff ((
cos
* (f
^ )),x))
= ((
diff (
cos ,((f
^ )
. x)))
* (
diff ((f
^ ),x))) by
A9,
FDIFF_2: 13
.= (
- ((
sin
. ((f
^ )
. x))
* (
diff ((f
^ ),x)))) by
A8
.= (
- ((
sin
. ((f
. x)
" ))
* (
diff ((f
^ ),x)))) by
A3,
A10,
RFUNCT_1:def 2
.= (
- ((
sin
. ((f
. x)
" ))
* (((f
^ )
`| Z)
. x))) by
A4,
A10,
FDIFF_1:def 7
.= (
- ((
sin
. ((f
. x)
" ))
* (
- (1
/ (x
^2 ))))) by
A1,
A10,
Th4
.= (
- ((
sin
. (1
* (x
" )))
* (
- (1
/ (x
^2 ))))) by
A10,
FUNCT_1: 18
.= (
- ((
sin
. (1
/ x))
* (
- (1
/ (x
^2 ))))) by
XCMPLX_0:def 9
.= ((
sin
. (1
/ x))
* (1
/ (x
^2 )));
hence thesis by
A7,
A10,
FDIFF_1:def 7;
end;
hence thesis by
A2,
A5,
FDIFF_1: 9;
end;
theorem ::
FDIFF_5:7
Z
c= (
dom ((
id Z)
(#) (
sin
* ((
id Z)
^ )))) & not
0
in Z implies ((
id Z)
(#) (
sin
* ((
id Z)
^ )))
is_differentiable_on Z & for x st x
in Z holds ((((
id Z)
(#) (
sin
* ((
id Z)
^ )))
`| Z)
. x)
= ((
sin
. (1
/ x))
- ((1
/ x)
* (
cos
. (1
/ x))))
proof
set f = (
id Z);
assume that
A1: Z
c= (
dom ((
id Z)
(#) (
sin
* (f
^ )))) and
A2: not
0
in Z;
A3: (
sin
* (f
^ ))
is_differentiable_on Z by
A2,
Th5;
A4: Z
c= ((
dom (
id Z))
/\ (
dom (
sin
* (f
^ )))) by
A1,
VALUED_1:def 4;
then
A5: Z
c= (
dom (
id Z)) by
XBOOLE_1: 18;
A6: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
then
A7: (
id Z)
is_differentiable_on Z by
A5,
FDIFF_1: 23;
A8: Z
c= (
dom (
sin
* (f
^ ))) by
A4,
XBOOLE_1: 18;
then for y be
object st y
in Z holds y
in (
dom (f
^ )) by
FUNCT_1: 11;
then
A9: Z
c= (
dom (f
^ ));
now
let x;
assume
A10: x
in Z;
then ((((
id Z)
(#) (
sin
* (f
^ )))
`| Z)
. x)
= ((((
sin
* (f
^ ))
. x)
* (
diff ((
id Z),x)))
+ (((
id Z)
. x)
* (
diff ((
sin
* (f
^ )),x)))) by
A1,
A3,
A7,
FDIFF_1: 21
.= ((((
sin
* (f
^ ))
. x)
* (((
id Z)
`| Z)
. x))
+ (((
id Z)
. x)
* (
diff ((
sin
* (f
^ )),x)))) by
A7,
A10,
FDIFF_1:def 7
.= ((((
sin
* (f
^ ))
. x)
* 1)
+ (((
id Z)
. x)
* (
diff ((
sin
* (f
^ )),x)))) by
A5,
A6,
A10,
FDIFF_1: 23
.= (((
sin
* (f
^ ))
. x)
+ (x
* (
diff ((
sin
* (f
^ )),x)))) by
A10,
FUNCT_1: 18
.= (((
sin
* (f
^ ))
. x)
+ (x
* (((
sin
* (f
^ ))
`| Z)
. x))) by
A3,
A10,
FDIFF_1:def 7
.= (((
sin
* (f
^ ))
. x)
+ (x
* (
- ((1
/ (x
^2 ))
* (
cos
. (1
/ x)))))) by
A2,
A10,
Th5
.= (((
sin
* (f
^ ))
. x)
- ((x
* (1
/ (x
* x)))
* (
cos
. (1
/ x))))
.= (((
sin
* (f
^ ))
. x)
- ((x
* ((1
/ x)
* (1
/ x)))
* (
cos
. (1
/ x)))) by
XCMPLX_1: 102
.= (((
sin
* (f
^ ))
. x)
- (((x
* (1
/ x))
* (1
/ x))
* (
cos
. (1
/ x))))
.= (((
sin
* (f
^ ))
. x)
- ((1
* (1
/ x))
* (
cos
. (1
/ x)))) by
A2,
A10,
XCMPLX_1: 106
.= ((
sin
. ((f
^ )
. x))
- ((1
/ x)
* (
cos
. (1
/ x)))) by
A8,
A10,
FUNCT_1: 12
.= ((
sin
. ((f
. x)
" ))
- ((1
/ x)
* (
cos
. (1
/ x)))) by
A9,
A10,
RFUNCT_1:def 2
.= ((
sin
. (1
* (x
" )))
- ((1
/ x)
* (
cos
. (1
/ x)))) by
A10,
FUNCT_1: 18
.= ((
sin
. (1
/ x))
- ((1
/ x)
* (
cos
. (1
/ x)))) by
XCMPLX_0:def 9;
hence ((((
id Z)
(#) (
sin
* (f
^ )))
`| Z)
. x)
= ((
sin
. (1
/ x))
- ((1
/ x)
* (
cos
. (1
/ x))));
end;
hence thesis by
A1,
A3,
A7,
FDIFF_1: 21;
end;
theorem ::
FDIFF_5:8
Z
c= (
dom ((
id Z)
(#) (
cos
* ((
id Z)
^ )))) & not
0
in Z implies ((
id Z)
(#) (
cos
* ((
id Z)
^ )))
is_differentiable_on Z & for x st x
in Z holds ((((
id Z)
(#) (
cos
* ((
id Z)
^ )))
`| Z)
. x)
= ((
cos
. (1
/ x))
+ ((1
/ x)
* (
sin
. (1
/ x))))
proof
set f = (
id Z);
assume that
A1: Z
c= (
dom ((
id Z)
(#) (
cos
* (f
^ )))) and
A2: not
0
in Z;
A3: Z
c= ((
dom (
id Z))
/\ (
dom (
cos
* (f
^ )))) by
A1,
VALUED_1:def 4;
then
A4: Z
c= (
dom (
cos
* (f
^ ))) by
XBOOLE_1: 18;
then
A5: (
cos
* (f
^ ))
is_differentiable_on Z by
A2,
Th6;
A6: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
A7: Z
c= (
dom (
id Z)) by
A3,
XBOOLE_1: 18;
then
A8: (
id Z)
is_differentiable_on Z by
A6,
FDIFF_1: 23;
for y be
object st y
in Z holds y
in (
dom (f
^ )) by
A4,
FUNCT_1: 11;
then
A9: Z
c= (
dom (f
^ ));
now
let x;
assume
A10: x
in Z;
then ((((
id Z)
(#) (
cos
* (f
^ )))
`| Z)
. x)
= ((((
cos
* (f
^ ))
. x)
* (
diff ((
id Z),x)))
+ (((
id Z)
. x)
* (
diff ((
cos
* (f
^ )),x)))) by
A1,
A5,
A8,
FDIFF_1: 21
.= ((((
cos
* (f
^ ))
. x)
* (((
id Z)
`| Z)
. x))
+ (((
id Z)
. x)
* (
diff ((
cos
* (f
^ )),x)))) by
A8,
A10,
FDIFF_1:def 7
.= ((((
cos
* (f
^ ))
. x)
* 1)
+ (((
id Z)
. x)
* (
diff ((
cos
* (f
^ )),x)))) by
A7,
A6,
A10,
FDIFF_1: 23
.= (((
cos
* (f
^ ))
. x)
+ (x
* (
diff ((
cos
* (f
^ )),x)))) by
A10,
FUNCT_1: 18
.= (((
cos
* (f
^ ))
. x)
+ (x
* (((
cos
* (f
^ ))
`| Z)
. x))) by
A5,
A10,
FDIFF_1:def 7
.= (((
cos
* (f
^ ))
. x)
+ (x
* ((1
/ (x
^2 ))
* (
sin
. (1
/ x))))) by
A2,
A4,
A10,
Th6
.= (((
cos
* (f
^ ))
. x)
+ ((x
* (1
/ (x
* x)))
* (
sin
. (1
/ x))))
.= (((
cos
* (f
^ ))
. x)
+ ((x
* ((1
/ x)
* (1
/ x)))
* (
sin
. (1
/ x)))) by
XCMPLX_1: 102
.= (((
cos
* (f
^ ))
. x)
+ (((x
* (1
/ x))
* (1
/ x))
* (
sin
. (1
/ x))))
.= (((
cos
* (f
^ ))
. x)
+ ((1
* (1
/ x))
* (
sin
. (1
/ x)))) by
A2,
A10,
XCMPLX_1: 106
.= ((
cos
. ((f
^ )
. x))
+ ((1
/ x)
* (
sin
. (1
/ x)))) by
A4,
A10,
FUNCT_1: 12
.= ((
cos
. ((f
. x)
" ))
+ ((1
/ x)
* (
sin
. (1
/ x)))) by
A9,
A10,
RFUNCT_1:def 2
.= ((
cos
. (1
* (x
" )))
+ ((1
/ x)
* (
sin
. (1
/ x)))) by
A10,
FUNCT_1: 18
.= ((
cos
. (1
/ x))
+ ((1
/ x)
* (
sin
. (1
/ x)))) by
XCMPLX_0:def 9;
hence ((((
id Z)
(#) (
cos
* (f
^ )))
`| Z)
. x)
= ((
cos
. (1
/ x))
+ ((1
/ x)
* (
sin
. (1
/ x))));
end;
hence thesis by
A1,
A5,
A8,
FDIFF_1: 21;
end;
theorem ::
FDIFF_5:9
Z
c= (
dom ((
sin
* ((
id Z)
^ ))
(#) (
cos
* ((
id Z)
^ )))) & not
0
in Z implies ((
sin
* ((
id Z)
^ ))
(#) (
cos
* ((
id Z)
^ )))
is_differentiable_on Z & for x st x
in Z holds ((((
sin
* ((
id Z)
^ ))
(#) (
cos
* ((
id Z)
^ )))
`| Z)
. x)
= ((1
/ (x
^2 ))
* (((
sin
. (1
/ x))
^2 )
- ((
cos
. (1
/ x))
^2 )))
proof
set f = (
id Z);
assume that
A1: Z
c= (
dom ((
sin
* (f
^ ))
(#) (
cos
* (f
^ )))) and
A2: not
0
in Z;
A3: (
sin
* (f
^ ))
is_differentiable_on Z by
A2,
Th5;
A4: Z
c= ((
dom (
sin
* (f
^ )))
/\ (
dom (
cos
* (f
^ )))) by
A1,
VALUED_1:def 4;
then
A5: Z
c= (
dom (
cos
* (f
^ ))) by
XBOOLE_1: 18;
then
A6: (
cos
* (f
^ ))
is_differentiable_on Z by
A2,
Th6;
A7: Z
c= (
dom (
sin
* (f
^ ))) by
A4,
XBOOLE_1: 18;
then for y be
object st y
in Z holds y
in (
dom (f
^ )) by
FUNCT_1: 11;
then
A8: Z
c= (
dom (f
^ ));
now
let x;
assume
A9: x
in Z;
then ((((
sin
* (f
^ ))
(#) (
cos
* (f
^ )))
`| Z)
. x)
= ((((
cos
* (f
^ ))
. x)
* (
diff ((
sin
* (f
^ )),x)))
+ (((
sin
* (f
^ ))
. x)
* (
diff ((
cos
* (f
^ )),x)))) by
A1,
A6,
A3,
FDIFF_1: 21
.= ((((
cos
* (f
^ ))
. x)
* (((
sin
* (f
^ ))
`| Z)
. x))
+ (((
sin
* (f
^ ))
. x)
* (
diff ((
cos
* (f
^ )),x)))) by
A3,
A9,
FDIFF_1:def 7
.= ((((
cos
* (f
^ ))
. x)
* (
- ((1
/ (x
^2 ))
* (
cos
. (1
/ x)))))
+ (((
sin
* (f
^ ))
. x)
* (
diff ((
cos
* (f
^ )),x)))) by
A2,
A9,
Th5
.= ((((
cos
* (f
^ ))
. x)
* (
- ((1
/ (x
^2 ))
* (
cos
. (1
/ x)))))
+ (((
sin
* (f
^ ))
. x)
* (((
cos
* (f
^ ))
`| Z)
. x))) by
A6,
A9,
FDIFF_1:def 7
.= ((((
cos
* (f
^ ))
. x)
* (
- ((1
/ (x
^2 ))
* (
cos
. (1
/ x)))))
+ (((
sin
* (f
^ ))
. x)
* ((1
/ (x
^2 ))
* (
sin
. (1
/ x))))) by
A2,
A5,
A9,
Th6
.= (((
cos
. ((f
^ )
. x))
* (
- ((1
/ (x
^2 ))
* (
cos
. (1
/ x)))))
+ (((
sin
* (f
^ ))
. x)
* ((1
/ (x
^2 ))
* (
sin
. (1
/ x))))) by
A5,
A9,
FUNCT_1: 12
.= (((
cos
. ((f
. x)
" ))
* (
- ((1
/ (x
^2 ))
* (
cos
. (1
/ x)))))
+ (((
sin
* (f
^ ))
. x)
* ((1
/ (x
^2 ))
* (
sin
. (1
/ x))))) by
A8,
A9,
RFUNCT_1:def 2
.= (((
cos
. (1
* (x
" )))
* (
- ((1
/ (x
^2 ))
* (
cos
. (1
/ x)))))
+ (((
sin
* (f
^ ))
. x)
* ((1
/ (x
^2 ))
* (
sin
. (1
/ x))))) by
A9,
FUNCT_1: 18
.= (((
cos
. (1
/ x))
* (
- ((1
/ (x
^2 ))
* (
cos
. (1
/ x)))))
+ (((
sin
* (f
^ ))
. x)
* ((1
/ (x
^2 ))
* (
sin
. (1
/ x))))) by
XCMPLX_0:def 9
.= (((
cos
. (1
/ x))
* (
- ((1
/ (x
^2 ))
* (
cos
. (1
/ x)))))
+ ((
sin
. ((f
^ )
. x))
* ((1
/ (x
^2 ))
* (
sin
. (1
/ x))))) by
A7,
A9,
FUNCT_1: 12
.= (((
cos
. (1
/ x))
* (
- ((1
/ (x
^2 ))
* (
cos
. (1
/ x)))))
+ ((
sin
. ((f
. x)
" ))
* ((1
/ (x
^2 ))
* (
sin
. (1
/ x))))) by
A8,
A9,
RFUNCT_1:def 2
.= (((
cos
. (1
/ x))
* (
- ((1
/ (x
^2 ))
* (
cos
. (1
/ x)))))
+ ((
sin
. (1
* (x
" )))
* ((1
/ (x
^2 ))
* (
sin
. (1
/ x))))) by
A9,
FUNCT_1: 18
.= ((
- (((
cos
. (1
/ x))
* (1
/ (x
^2 )))
* (
cos
. (1
/ x))))
+ ((
sin
. (1
/ x))
* ((1
/ (x
^2 ))
* (
sin
. (1
/ x))))) by
XCMPLX_0:def 9
.= ((1
/ (x
^2 ))
* (((
sin
. (1
/ x))
^2 )
- ((
cos
. (1
/ x))
^2 )));
hence ((((
sin
* (f
^ ))
(#) (
cos
* (f
^ )))
`| Z)
. x)
= ((1
/ (x
^2 ))
* (((
sin
. (1
/ x))
^2 )
- ((
cos
. (1
/ x))
^2 )));
end;
hence thesis by
A1,
A6,
A3,
FDIFF_1: 21;
end;
theorem ::
FDIFF_5:10
Z
c= (
dom ((
sin
* f)
(#) ((
#Z n)
*
sin ))) & n
>= 1 & (for x st x
in Z holds (f
. x)
= (n
* x)) implies ((
sin
* f)
(#) ((
#Z n)
*
sin ))
is_differentiable_on Z & for x st x
in Z holds ((((
sin
* f)
(#) ((
#Z n)
*
sin ))
`| Z)
. x)
= ((n
* ((
sin
. x)
#Z (n
- 1)))
* (
sin
. ((n
+ 1)
* x)))
proof
assume that
A1: Z
c= (
dom ((
sin
* f)
(#) ((
#Z n)
*
sin ))) and
A2: n
>= 1 and
A3: for x st x
in Z holds (f
. x)
= (n
* x);
A4: for x st x
in Z holds (f
. x)
= ((n
* x)
+
0 ) by
A3;
A5: Z
c= ((
dom (
sin
* f))
/\ (
dom ((
#Z n)
*
sin ))) by
A1,
VALUED_1:def 4;
then
A6: Z
c= (
dom (
sin
* f)) by
XBOOLE_1: 18;
then for y be
object st y
in Z holds y
in (
dom f) by
FUNCT_1: 11;
then
A7: Z
c= (
dom f);
then
A8: f
is_differentiable_on Z by
A4,
FDIFF_1: 23;
for x st x
in Z holds (
sin
* f)
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A9: f
is_differentiable_in x by
A8,
FDIFF_1: 9;
sin
is_differentiable_in (f
. x) by
SIN_COS: 64;
hence thesis by
A9,
FDIFF_2: 13;
end;
then
A10: (
sin
* f)
is_differentiable_on Z by
A6,
FDIFF_1: 9;
A11: for x st x
in Z holds (((
sin
* f)
`| Z)
. x)
= (n
* (
cos
. (n
* x)))
proof
let x;
A12:
sin
is_differentiable_in (f
. x) by
SIN_COS: 64;
assume
A13: x
in Z;
then f
is_differentiable_in x by
A8,
FDIFF_1: 9;
then (
diff ((
sin
* f),x))
= ((
diff (
sin ,(f
. x)))
* (
diff (f,x))) by
A12,
FDIFF_2: 13
.= ((
cos
. (f
. x))
* (
diff (f,x))) by
SIN_COS: 64
.= ((
cos
. (n
* x))
* (
diff (f,x))) by
A3,
A13
.= ((
cos
. (n
* x))
* ((f
`| Z)
. x)) by
A8,
A13,
FDIFF_1:def 7
.= (n
* (
cos
. (n
* x))) by
A7,
A4,
A13,
FDIFF_1: 23;
hence thesis by
A10,
A13,
FDIFF_1:def 7;
end;
A14: Z
c= (
dom ((
#Z n)
*
sin )) by
A5,
XBOOLE_1: 18;
now
let x;
assume x
in Z;
sin
is_differentiable_in x by
SIN_COS: 64;
hence ((
#Z n)
*
sin )
is_differentiable_in x by
TAYLOR_1: 3;
end;
then
A15: ((
#Z n)
*
sin )
is_differentiable_on Z by
A14,
FDIFF_1: 9;
A16: for x st x
in Z holds ((((
#Z n)
*
sin )
`| Z)
. x)
= ((n
* ((
sin
. x)
#Z (n
- 1)))
* (
cos
. x))
proof
let x;
sin
is_differentiable_in x by
SIN_COS: 64;
then
A17: (
diff (((
#Z n)
*
sin ),x))
= ((n
* ((
sin
. x)
#Z (n
- 1)))
* (
diff (
sin ,x))) by
TAYLOR_1: 3
.= ((n
* ((
sin
. x)
#Z (n
- 1)))
* (
cos
. x)) by
SIN_COS: 64;
assume x
in Z;
hence thesis by
A15,
A17,
FDIFF_1:def 7;
end;
now
let x;
A18: (n
- 1) is
Element of
NAT by
A2,
NAT_1: 21;
assume
A19: x
in Z;
then ((((
sin
* f)
(#) ((
#Z n)
*
sin ))
`| Z)
. x)
= (((((
#Z n)
*
sin )
. x)
* (
diff ((
sin
* f),x)))
+ (((
sin
* f)
. x)
* (
diff (((
#Z n)
*
sin ),x)))) by
A1,
A10,
A15,
FDIFF_1: 21
.= ((((
#Z n)
. (
sin
. x))
* (
diff ((
sin
* f),x)))
+ (((
sin
* f)
. x)
* (
diff (((
#Z n)
*
sin ),x)))) by
A14,
A19,
FUNCT_1: 12
.= ((((
sin
. x)
#Z n)
* (
diff ((
sin
* f),x)))
+ (((
sin
* f)
. x)
* (
diff (((
#Z n)
*
sin ),x)))) by
TAYLOR_1:def 1
.= ((((
sin
. x)
#Z n)
* (((
sin
* f)
`| Z)
. x))
+ (((
sin
* f)
. x)
* (
diff (((
#Z n)
*
sin ),x)))) by
A10,
A19,
FDIFF_1:def 7
.= ((((
sin
. x)
#Z n)
* (n
* (
cos
. (n
* x))))
+ (((
sin
* f)
. x)
* (
diff (((
#Z n)
*
sin ),x)))) by
A11,
A19
.= ((((
sin
. x)
#Z n)
* (n
* (
cos
. (n
* x))))
+ ((
sin
. (f
. x))
* (
diff (((
#Z n)
*
sin ),x)))) by
A6,
A19,
FUNCT_1: 12
.= ((((
sin
. x)
#Z n)
* (n
* (
cos
. (n
* x))))
+ ((
sin
. (n
* x))
* (
diff (((
#Z n)
*
sin ),x)))) by
A3,
A19
.= ((((
sin
. x)
#Z n)
* (n
* (
cos
. (n
* x))))
+ ((
sin
. (n
* x))
* ((((
#Z n)
*
sin )
`| Z)
. x))) by
A15,
A19,
FDIFF_1:def 7
.= ((((
sin
. x)
#Z n)
* (n
* (
cos
. (n
* x))))
+ ((
sin
. (n
* x))
* ((n
* ((
sin
. x)
#Z (n
- 1)))
* (
cos
. x)))) by
A16,
A19
.= ((((
sin
. x)
#Z ((n
- 1)
+ 1))
* (n
* (
cos
. (n
* x))))
+ ((((
sin
. (n
* x))
* n)
* ((
sin
. x)
#Z (n
- 1)))
* (
cos
. x)))
.= (((((
sin
. x)
#Z (n
- 1))
* ((
sin
. x)
#Z 1))
* (n
* (
cos
. (n
* x))))
+ ((((
sin
. (n
* x))
* n)
* ((
sin
. x)
#Z (n
- 1)))
* (
cos
. x))) by
A18,
TAYLOR_1: 1
.= (((((
sin
. x)
#Z (n
- 1))
* (
sin
. x))
* (n
* (
cos
. (n
* x))))
+ ((((
sin
. (n
* x))
* n)
* ((
sin
. x)
#Z (n
- 1)))
* (
cos
. x))) by
PREPOWER: 35
.= ((n
* ((
sin
. x)
#Z (n
- 1)))
* (((
sin
. x)
* (
cos
. (n
* x)))
+ ((
cos
. x)
* (
sin
. (n
* x)))))
.= ((n
* ((
sin
. x)
#Z (n
- 1)))
* (
sin
. (x
+ (n
* x)))) by
SIN_COS: 74
.= ((n
* ((
sin
. x)
#Z (n
- 1)))
* (
sin
. ((n
+ 1)
* x)));
hence ((((
sin
* f)
(#) ((
#Z n)
*
sin ))
`| Z)
. x)
= ((n
* ((
sin
. x)
#Z (n
- 1)))
* (
sin
. ((n
+ 1)
* x)));
end;
hence thesis by
A1,
A10,
A15,
FDIFF_1: 21;
end;
theorem ::
FDIFF_5:11
Z
c= (
dom ((
cos
* f)
(#) ((
#Z n)
*
sin ))) & n
>= 1 & (for x st x
in Z holds (f
. x)
= (n
* x)) implies ((
cos
* f)
(#) ((
#Z n)
*
sin ))
is_differentiable_on Z & for x st x
in Z holds ((((
cos
* f)
(#) ((
#Z n)
*
sin ))
`| Z)
. x)
= ((n
* ((
sin
. x)
#Z (n
- 1)))
* (
cos
. ((n
+ 1)
* x)))
proof
assume that
A1: Z
c= (
dom ((
cos
* f)
(#) ((
#Z n)
*
sin ))) and
A2: n
>= 1 and
A3: for x st x
in Z holds (f
. x)
= (n
* x);
A4: for x st x
in Z holds (f
. x)
= ((n
* x)
+
0 ) by
A3;
A5: Z
c= ((
dom (
cos
* f))
/\ (
dom ((
#Z n)
*
sin ))) by
A1,
VALUED_1:def 4;
then
A6: Z
c= (
dom (
cos
* f)) by
XBOOLE_1: 18;
then for y be
object st y
in Z holds y
in (
dom f) by
FUNCT_1: 11;
then
A7: Z
c= (
dom f);
then
A8: f
is_differentiable_on Z by
A4,
FDIFF_1: 23;
for x st x
in Z holds (
cos
* f)
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A9: f
is_differentiable_in x by
A8,
FDIFF_1: 9;
cos
is_differentiable_in (f
. x) by
SIN_COS: 63;
hence thesis by
A9,
FDIFF_2: 13;
end;
then
A10: (
cos
* f)
is_differentiable_on Z by
A6,
FDIFF_1: 9;
A11: for x st x
in Z holds (((
cos
* f)
`| Z)
. x)
= (
- (n
* (
sin
. (n
* x))))
proof
let x;
A12:
cos
is_differentiable_in (f
. x) by
SIN_COS: 63;
assume
A13: x
in Z;
then f
is_differentiable_in x by
A8,
FDIFF_1: 9;
then (
diff ((
cos
* f),x))
= ((
diff (
cos ,(f
. x)))
* (
diff (f,x))) by
A12,
FDIFF_2: 13
.= ((
- (
sin
. (f
. x)))
* (
diff (f,x))) by
SIN_COS: 63
.= ((
- (
sin
. (n
* x)))
* (
diff (f,x))) by
A3,
A13
.= ((
- (
sin
. (n
* x)))
* ((f
`| Z)
. x)) by
A8,
A13,
FDIFF_1:def 7
.= ((
- (
sin
. (n
* x)))
* n) by
A7,
A4,
A13,
FDIFF_1: 23
.= (
- (n
* (
sin
. (n
* x))));
hence thesis by
A10,
A13,
FDIFF_1:def 7;
end;
A14: Z
c= (
dom ((
#Z n)
*
sin )) by
A5,
XBOOLE_1: 18;
now
let x;
assume x
in Z;
sin
is_differentiable_in x by
SIN_COS: 64;
hence ((
#Z n)
*
sin )
is_differentiable_in x by
TAYLOR_1: 3;
end;
then
A15: ((
#Z n)
*
sin )
is_differentiable_on Z by
A14,
FDIFF_1: 9;
A16: for x st x
in Z holds ((((
#Z n)
*
sin )
`| Z)
. x)
= ((n
* ((
sin
. x)
#Z (n
- 1)))
* (
cos
. x))
proof
let x;
sin
is_differentiable_in x by
SIN_COS: 64;
then
A17: (
diff (((
#Z n)
*
sin ),x))
= ((n
* ((
sin
. x)
#Z (n
- 1)))
* (
diff (
sin ,x))) by
TAYLOR_1: 3
.= ((n
* ((
sin
. x)
#Z (n
- 1)))
* (
cos
. x)) by
SIN_COS: 64;
assume x
in Z;
hence thesis by
A15,
A17,
FDIFF_1:def 7;
end;
now
let x;
A18: (n
- 1) is
Element of
NAT by
A2,
NAT_1: 21;
assume
A19: x
in Z;
then ((((
cos
* f)
(#) ((
#Z n)
*
sin ))
`| Z)
. x)
= (((((
#Z n)
*
sin )
. x)
* (
diff ((
cos
* f),x)))
+ (((
cos
* f)
. x)
* (
diff (((
#Z n)
*
sin ),x)))) by
A1,
A10,
A15,
FDIFF_1: 21
.= ((((
#Z n)
. (
sin
. x))
* (
diff ((
cos
* f),x)))
+ (((
cos
* f)
. x)
* (
diff (((
#Z n)
*
sin ),x)))) by
A14,
A19,
FUNCT_1: 12
.= ((((
sin
. x)
#Z n)
* (
diff ((
cos
* f),x)))
+ (((
cos
* f)
. x)
* (
diff (((
#Z n)
*
sin ),x)))) by
TAYLOR_1:def 1
.= ((((
sin
. x)
#Z n)
* (((
cos
* f)
`| Z)
. x))
+ (((
cos
* f)
. x)
* (
diff (((
#Z n)
*
sin ),x)))) by
A10,
A19,
FDIFF_1:def 7
.= ((((
sin
. x)
#Z n)
* (
- (n
* (
sin
. (n
* x)))))
+ (((
cos
* f)
. x)
* (
diff (((
#Z n)
*
sin ),x)))) by
A11,
A19
.= ((((
sin
. x)
#Z n)
* (
- (n
* (
sin
. (n
* x)))))
+ ((
cos
. (f
. x))
* (
diff (((
#Z n)
*
sin ),x)))) by
A6,
A19,
FUNCT_1: 12
.= ((((
sin
. x)
#Z n)
* (
- (n
* (
sin
. (n
* x)))))
+ ((
cos
. (n
* x))
* (
diff (((
#Z n)
*
sin ),x)))) by
A3,
A19
.= ((((
sin
. x)
#Z n)
* (
- (n
* (
sin
. (n
* x)))))
+ ((
cos
. (n
* x))
* ((((
#Z n)
*
sin )
`| Z)
. x))) by
A15,
A19,
FDIFF_1:def 7
.= ((((
sin
. x)
#Z n)
* (
- (n
* (
sin
. (n
* x)))))
+ ((
cos
. (n
* x))
* ((n
* ((
sin
. x)
#Z (n
- 1)))
* (
cos
. x)))) by
A16,
A19
.= ((((
sin
. x)
#Z ((n
- 1)
+ 1))
* (
- (n
* (
sin
. (n
* x)))))
+ ((((
cos
. (n
* x))
* n)
* ((
sin
. x)
#Z (n
- 1)))
* (
cos
. x)))
.= (((((
sin
. x)
#Z (n
- 1))
* ((
sin
. x)
#Z 1))
* (
- (n
* (
sin
. (n
* x)))))
+ ((((
cos
. (n
* x))
* n)
* ((
sin
. x)
#Z (n
- 1)))
* (
cos
. x))) by
A18,
TAYLOR_1: 1
.= (((((
sin
. x)
#Z (n
- 1))
* (
sin
. x))
* (
- (n
* (
sin
. (n
* x)))))
+ ((((
cos
. (n
* x))
* n)
* ((
sin
. x)
#Z (n
- 1)))
* (
cos
. x))) by
PREPOWER: 35
.= ((n
* ((
sin
. x)
#Z (n
- 1)))
* (((
cos
. (n
* x))
* (
cos
. x))
- ((
sin
. x)
* (
sin
. (n
* x)))))
.= ((n
* ((
sin
. x)
#Z (n
- 1)))
* (
cos
. (x
+ (n
* x)))) by
SIN_COS: 74
.= ((n
* ((
sin
. x)
#Z (n
- 1)))
* (
cos
. ((n
+ 1)
* x)));
hence ((((
cos
* f)
(#) ((
#Z n)
*
sin ))
`| Z)
. x)
= ((n
* ((
sin
. x)
#Z (n
- 1)))
* (
cos
. ((n
+ 1)
* x)));
end;
hence thesis by
A1,
A10,
A15,
FDIFF_1: 21;
end;
theorem ::
FDIFF_5:12
Z
c= (
dom ((
cos
* f)
(#) ((
#Z n)
*
cos ))) & n
>= 1 & (for x st x
in Z holds (f
. x)
= (n
* x)) implies ((
cos
* f)
(#) ((
#Z n)
*
cos ))
is_differentiable_on Z & for x st x
in Z holds ((((
cos
* f)
(#) ((
#Z n)
*
cos ))
`| Z)
. x)
= (
- ((n
* ((
cos
. x)
#Z (n
- 1)))
* (
sin
. ((n
+ 1)
* x))))
proof
assume that
A1: Z
c= (
dom ((
cos
* f)
(#) ((
#Z n)
*
cos ))) and
A2: n
>= 1 and
A3: for x st x
in Z holds (f
. x)
= (n
* x);
A4: for x st x
in Z holds (f
. x)
= ((n
* x)
+
0 ) by
A3;
A5: Z
c= ((
dom (
cos
* f))
/\ (
dom ((
#Z n)
*
cos ))) by
A1,
VALUED_1:def 4;
then
A6: Z
c= (
dom (
cos
* f)) by
XBOOLE_1: 18;
then for y be
object st y
in Z holds y
in (
dom f) by
FUNCT_1: 11;
then
A7: Z
c= (
dom f);
then
A8: f
is_differentiable_on Z by
A4,
FDIFF_1: 23;
for x st x
in Z holds (
cos
* f)
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A9: f
is_differentiable_in x by
A8,
FDIFF_1: 9;
cos
is_differentiable_in (f
. x) by
SIN_COS: 63;
hence thesis by
A9,
FDIFF_2: 13;
end;
then
A10: (
cos
* f)
is_differentiable_on Z by
A6,
FDIFF_1: 9;
A11: for x st x
in Z holds (((
cos
* f)
`| Z)
. x)
= (
- (n
* (
sin
. (n
* x))))
proof
let x;
A12:
cos
is_differentiable_in (f
. x) by
SIN_COS: 63;
assume
A13: x
in Z;
then f
is_differentiable_in x by
A8,
FDIFF_1: 9;
then (
diff ((
cos
* f),x))
= ((
diff (
cos ,(f
. x)))
* (
diff (f,x))) by
A12,
FDIFF_2: 13
.= ((
- (
sin
. (f
. x)))
* (
diff (f,x))) by
SIN_COS: 63
.= (
- ((
sin
. (f
. x))
* (
diff (f,x))))
.= (
- ((
sin
. (n
* x))
* (
diff (f,x)))) by
A3,
A13
.= (
- ((
sin
. (n
* x))
* ((f
`| Z)
. x))) by
A8,
A13,
FDIFF_1:def 7
.= (
- (n
* (
sin
. (n
* x)))) by
A7,
A4,
A13,
FDIFF_1: 23;
hence thesis by
A10,
A13,
FDIFF_1:def 7;
end;
A14: Z
c= (
dom ((
#Z n)
*
cos )) by
A5,
XBOOLE_1: 18;
now
let x;
assume x
in Z;
cos
is_differentiable_in x by
SIN_COS: 63;
hence ((
#Z n)
*
cos )
is_differentiable_in x by
TAYLOR_1: 3;
end;
then
A15: ((
#Z n)
*
cos )
is_differentiable_on Z by
A14,
FDIFF_1: 9;
A16: for x st x
in Z holds ((((
#Z n)
*
cos )
`| Z)
. x)
= (
- ((n
* ((
cos
. x)
#Z (n
- 1)))
* (
sin
. x)))
proof
let x;
cos
is_differentiable_in x by
SIN_COS: 63;
then
A17: (
diff (((
#Z n)
*
cos ),x))
= ((n
* ((
cos
. x)
#Z (n
- 1)))
* (
diff (
cos ,x))) by
TAYLOR_1: 3
.= ((n
* ((
cos
. x)
#Z (n
- 1)))
* (
- (
sin
. x))) by
SIN_COS: 63
.= (
- ((n
* ((
cos
. x)
#Z (n
- 1)))
* (
sin
. x)));
assume x
in Z;
hence thesis by
A15,
A17,
FDIFF_1:def 7;
end;
now
let x;
A18: (n
- 1) is
Element of
NAT by
A2,
NAT_1: 21;
assume
A19: x
in Z;
then ((((
cos
* f)
(#) ((
#Z n)
*
cos ))
`| Z)
. x)
= (((((
#Z n)
*
cos )
. x)
* (
diff ((
cos
* f),x)))
+ (((
cos
* f)
. x)
* (
diff (((
#Z n)
*
cos ),x)))) by
A1,
A10,
A15,
FDIFF_1: 21
.= ((((
#Z n)
. (
cos
. x))
* (
diff ((
cos
* f),x)))
+ (((
cos
* f)
. x)
* (
diff (((
#Z n)
*
cos ),x)))) by
A14,
A19,
FUNCT_1: 12
.= ((((
cos
. x)
#Z n)
* (
diff ((
cos
* f),x)))
+ (((
cos
* f)
. x)
* (
diff (((
#Z n)
*
cos ),x)))) by
TAYLOR_1:def 1
.= ((((
cos
. x)
#Z n)
* (((
cos
* f)
`| Z)
. x))
+ (((
cos
* f)
. x)
* (
diff (((
#Z n)
*
cos ),x)))) by
A10,
A19,
FDIFF_1:def 7
.= ((((
cos
. x)
#Z n)
* (
- (n
* (
sin
. (n
* x)))))
+ (((
cos
* f)
. x)
* (
diff (((
#Z n)
*
cos ),x)))) by
A11,
A19
.= ((((
cos
. x)
#Z n)
* (
- (n
* (
sin
. (n
* x)))))
+ ((
cos
. (f
. x))
* (
diff (((
#Z n)
*
cos ),x)))) by
A6,
A19,
FUNCT_1: 12
.= ((((
cos
. x)
#Z n)
* (
- (n
* (
sin
. (n
* x)))))
+ ((
cos
. (n
* x))
* (
diff (((
#Z n)
*
cos ),x)))) by
A3,
A19
.= ((((
cos
. x)
#Z n)
* (
- (n
* (
sin
. (n
* x)))))
+ ((
cos
. (n
* x))
* ((((
#Z n)
*
cos )
`| Z)
. x))) by
A15,
A19,
FDIFF_1:def 7
.= ((((
cos
. x)
#Z ((n
- 1)
+ 1))
* (
- (n
* (
sin
. (n
* x)))))
+ ((
cos
. (n
* x))
* (
- ((n
* ((
cos
. x)
#Z (n
- 1)))
* (
sin
. x))))) by
A16,
A19
.= (((((
cos
. x)
#Z (n
- 1))
* ((
cos
. x)
#Z 1))
* (
- (n
* (
sin
. (n
* x)))))
+ ((
cos
. (n
* x))
* (
- ((n
* ((
cos
. x)
#Z (n
- 1)))
* (
sin
. x))))) by
A18,
TAYLOR_1: 1
.= (((((
cos
. x)
#Z (n
- 1))
* (
cos
. x))
* (
- (n
* (
sin
. (n
* x)))))
+ ((
cos
. (n
* x))
* (
- ((n
* ((
cos
. x)
#Z (n
- 1)))
* (
sin
. x))))) by
PREPOWER: 35
.= (
- ((n
* ((
cos
. x)
#Z (n
- 1)))
* (((
sin
. (n
* x))
* (
cos
. x))
+ ((
cos
. (n
* x))
* (
sin
. x)))))
.= (
- ((n
* ((
cos
. x)
#Z (n
- 1)))
* (
sin
. (x
+ (n
* x))))) by
SIN_COS: 74
.= (
- ((n
* ((
cos
. x)
#Z (n
- 1)))
* (
sin
. ((n
+ 1)
* x))));
hence ((((
cos
* f)
(#) ((
#Z n)
*
cos ))
`| Z)
. x)
= (
- ((n
* ((
cos
. x)
#Z (n
- 1)))
* (
sin
. ((n
+ 1)
* x))));
end;
hence thesis by
A1,
A10,
A15,
FDIFF_1: 21;
end;
theorem ::
FDIFF_5:13
Z
c= (
dom ((
sin
* f)
(#) ((
#Z n)
*
cos ))) & n
>= 1 & (for x st x
in Z holds (f
. x)
= (n
* x)) implies ((
sin
* f)
(#) ((
#Z n)
*
cos ))
is_differentiable_on Z & for x st x
in Z holds ((((
sin
* f)
(#) ((
#Z n)
*
cos ))
`| Z)
. x)
= ((n
* ((
cos
. x)
#Z (n
- 1)))
* (
cos
. ((n
+ 1)
* x)))
proof
assume that
A1: Z
c= (
dom ((
sin
* f)
(#) ((
#Z n)
*
cos ))) and
A2: n
>= 1 and
A3: for x st x
in Z holds (f
. x)
= (n
* x);
A4: for x st x
in Z holds (f
. x)
= ((n
* x)
+
0 ) by
A3;
A5: Z
c= ((
dom (
sin
* f))
/\ (
dom ((
#Z n)
*
cos ))) by
A1,
VALUED_1:def 4;
then
A6: Z
c= (
dom (
sin
* f)) by
XBOOLE_1: 18;
then for y be
object st y
in Z holds y
in (
dom f) by
FUNCT_1: 11;
then
A7: Z
c= (
dom f);
then
A8: f
is_differentiable_on Z by
A4,
FDIFF_1: 23;
for x st x
in Z holds (
sin
* f)
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A9: f
is_differentiable_in x by
A8,
FDIFF_1: 9;
sin
is_differentiable_in (f
. x) by
SIN_COS: 64;
hence thesis by
A9,
FDIFF_2: 13;
end;
then
A10: (
sin
* f)
is_differentiable_on Z by
A6,
FDIFF_1: 9;
A11: for x st x
in Z holds (((
sin
* f)
`| Z)
. x)
= (n
* (
cos
. (n
* x)))
proof
let x;
A12:
sin
is_differentiable_in (f
. x) by
SIN_COS: 64;
assume
A13: x
in Z;
then f
is_differentiable_in x by
A8,
FDIFF_1: 9;
then (
diff ((
sin
* f),x))
= ((
diff (
sin ,(f
. x)))
* (
diff (f,x))) by
A12,
FDIFF_2: 13
.= ((
cos
. (f
. x))
* (
diff (f,x))) by
SIN_COS: 64
.= ((
cos
. (n
* x))
* (
diff (f,x))) by
A3,
A13
.= ((
cos
. (n
* x))
* ((f
`| Z)
. x)) by
A8,
A13,
FDIFF_1:def 7
.= (n
* (
cos
. (n
* x))) by
A7,
A4,
A13,
FDIFF_1: 23;
hence thesis by
A10,
A13,
FDIFF_1:def 7;
end;
A14: Z
c= (
dom ((
#Z n)
*
cos )) by
A5,
XBOOLE_1: 18;
now
let x;
assume x
in Z;
cos
is_differentiable_in x by
SIN_COS: 63;
hence ((
#Z n)
*
cos )
is_differentiable_in x by
TAYLOR_1: 3;
end;
then
A15: ((
#Z n)
*
cos )
is_differentiable_on Z by
A14,
FDIFF_1: 9;
A16: for x st x
in Z holds ((((
#Z n)
*
cos )
`| Z)
. x)
= (
- ((n
* ((
cos
. x)
#Z (n
- 1)))
* (
sin
. x)))
proof
let x;
cos
is_differentiable_in x by
SIN_COS: 63;
then
A17: (
diff (((
#Z n)
*
cos ),x))
= ((n
* ((
cos
. x)
#Z (n
- 1)))
* (
diff (
cos ,x))) by
TAYLOR_1: 3
.= ((n
* ((
cos
. x)
#Z (n
- 1)))
* (
- (
sin
. x))) by
SIN_COS: 63
.= (
- ((n
* ((
cos
. x)
#Z (n
- 1)))
* (
sin
. x)));
assume x
in Z;
hence thesis by
A15,
A17,
FDIFF_1:def 7;
end;
now
let x;
A18: (n
- 1) is
Element of
NAT by
A2,
NAT_1: 21;
assume
A19: x
in Z;
then ((((
sin
* f)
(#) ((
#Z n)
*
cos ))
`| Z)
. x)
= (((((
#Z n)
*
cos )
. x)
* (
diff ((
sin
* f),x)))
+ (((
sin
* f)
. x)
* (
diff (((
#Z n)
*
cos ),x)))) by
A1,
A10,
A15,
FDIFF_1: 21
.= ((((
#Z n)
. (
cos
. x))
* (
diff ((
sin
* f),x)))
+ (((
sin
* f)
. x)
* (
diff (((
#Z n)
*
cos ),x)))) by
A14,
A19,
FUNCT_1: 12
.= ((((
cos
. x)
#Z n)
* (
diff ((
sin
* f),x)))
+ (((
sin
* f)
. x)
* (
diff (((
#Z n)
*
cos ),x)))) by
TAYLOR_1:def 1
.= ((((
cos
. x)
#Z n)
* (((
sin
* f)
`| Z)
. x))
+ (((
sin
* f)
. x)
* (
diff (((
#Z n)
*
cos ),x)))) by
A10,
A19,
FDIFF_1:def 7
.= ((((
cos
. x)
#Z n)
* (n
* (
cos
. (n
* x))))
+ (((
sin
* f)
. x)
* (
diff (((
#Z n)
*
cos ),x)))) by
A11,
A19
.= ((((
cos
. x)
#Z n)
* (n
* (
cos
. (n
* x))))
+ ((
sin
. (f
. x))
* (
diff (((
#Z n)
*
cos ),x)))) by
A6,
A19,
FUNCT_1: 12
.= ((((
cos
. x)
#Z n)
* (n
* (
cos
. (n
* x))))
+ ((
sin
. (n
* x))
* (
diff (((
#Z n)
*
cos ),x)))) by
A3,
A19
.= ((((
cos
. x)
#Z n)
* (n
* (
cos
. (n
* x))))
+ ((
sin
. (n
* x))
* ((((
#Z n)
*
cos )
`| Z)
. x))) by
A15,
A19,
FDIFF_1:def 7
.= ((((
cos
. x)
#Z ((n
- 1)
+ 1))
* (n
* (
cos
. (n
* x))))
+ ((
sin
. (n
* x))
* (
- ((n
* ((
cos
. x)
#Z (n
- 1)))
* (
sin
. x))))) by
A16,
A19
.= (((((
cos
. x)
#Z (n
- 1))
* ((
cos
. x)
#Z 1))
* (n
* (
cos
. (n
* x))))
+ ((
sin
. (n
* x))
* (
- ((n
* ((
cos
. x)
#Z (n
- 1)))
* (
sin
. x))))) by
A18,
TAYLOR_1: 1
.= (((((
cos
. x)
#Z (n
- 1))
* ((
cos
. x)
#Z 1))
* (n
* (
cos
. (n
* x))))
- ((((
sin
. (n
* x))
* n)
* ((
cos
. x)
#Z (n
- 1)))
* (
sin
. x)))
.= (((((
cos
. x)
#Z (n
- 1))
* (
cos
. x))
* (n
* (
cos
. (n
* x))))
- ((((
sin
. (n
* x))
* n)
* ((
cos
. x)
#Z (n
- 1)))
* (
sin
. x))) by
PREPOWER: 35
.= ((n
* ((
cos
. x)
#Z (n
- 1)))
* (((
cos
. (n
* x))
* (
cos
. x))
- ((
sin
. x)
* (
sin
. (n
* x)))))
.= ((n
* ((
cos
. x)
#Z (n
- 1)))
* (
cos
. (x
+ (n
* x)))) by
SIN_COS: 74
.= ((n
* ((
cos
. x)
#Z (n
- 1)))
* (
cos
. ((n
+ 1)
* x)));
hence ((((
sin
* f)
(#) ((
#Z n)
*
cos ))
`| Z)
. x)
= ((n
* ((
cos
. x)
#Z (n
- 1)))
* (
cos
. ((n
+ 1)
* x)));
end;
hence thesis by
A1,
A10,
A15,
FDIFF_1: 21;
end;
theorem ::
FDIFF_5:14
not
0
in Z & Z
c= (
dom (((
id Z)
^ )
(#)
sin )) implies (((
id Z)
^ )
(#)
sin )
is_differentiable_on Z & for x st x
in Z holds (((((
id Z)
^ )
(#)
sin )
`| Z)
. x)
= (((1
/ x)
* (
cos
. x))
- ((1
/ (x
^2 ))
* (
sin
. x)))
proof
set f = (
id Z);
assume that
A1: not
0
in Z and
A2: Z
c= (
dom ((f
^ )
(#)
sin ));
A3: (f
^ )
is_differentiable_on Z by
A1,
Th4;
A4:
sin
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 68;
Z
c= ((
dom (f
^ ))
/\ (
dom
sin )) by
A2,
VALUED_1:def 4;
then
A5: Z
c= (
dom (f
^ )) by
XBOOLE_1: 18;
now
let x;
assume
A6: x
in Z;
hence ((((f
^ )
(#)
sin )
`| Z)
. x)
= (((
sin
. x)
* (
diff ((f
^ ),x)))
+ (((f
^ )
. x)
* (
diff (
sin ,x)))) by
A2,
A3,
A4,
FDIFF_1: 21
.= (((
sin
. x)
* (((f
^ )
`| Z)
. x))
+ (((f
^ )
. x)
* (
diff (
sin ,x)))) by
A3,
A6,
FDIFF_1:def 7
.= (((
sin
. x)
* (
- (1
/ (x
^2 ))))
+ (((f
^ )
. x)
* (
diff (
sin ,x)))) by
A1,
A6,
Th4
.= (((
sin
. x)
* (
- (1
/ (x
^2 ))))
+ (((f
^ )
. x)
* (
cos
. x))) by
SIN_COS: 64
.= (((
sin
. x)
* (
- (1
/ (x
^2 ))))
+ (((f
. x)
" )
* (
cos
. x))) by
A5,
A6,
RFUNCT_1:def 2
.= (((
sin
. x)
* (
- (1
/ (x
^2 ))))
+ ((1
* (x
" ))
* (
cos
. x))) by
A6,
FUNCT_1: 18
.= ((
- ((1
/ (x
^2 ))
* (
sin
. x)))
+ ((1
/ x)
* (
cos
. x))) by
XCMPLX_0:def 9
.= (((1
/ x)
* (
cos
. x))
- ((1
/ (x
^2 ))
* (
sin
. x)));
end;
hence thesis by
A2,
A3,
A4,
FDIFF_1: 21;
end;
theorem ::
FDIFF_5:15
not
0
in Z & Z
c= (
dom (((
id Z)
^ )
(#)
cos )) implies (((
id Z)
^ )
(#)
cos )
is_differentiable_on Z & for x st x
in Z holds (((((
id Z)
^ )
(#)
cos )
`| Z)
. x)
= ((
- ((1
/ x)
* (
sin
. x)))
- ((1
/ (x
^2 ))
* (
cos
. x)))
proof
set f = (
id Z);
assume that
A1: not
0
in Z and
A2: Z
c= (
dom (((
id Z)
^ )
(#)
cos ));
A3: (f
^ )
is_differentiable_on Z by
A1,
Th4;
A4:
cos
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 67;
Z
c= ((
dom (f
^ ))
/\ (
dom
cos )) by
A2,
VALUED_1:def 4;
then
A5: Z
c= (
dom (f
^ )) by
XBOOLE_1: 18;
now
let x;
assume
A6: x
in Z;
hence ((((f
^ )
(#)
cos )
`| Z)
. x)
= (((
cos
. x)
* (
diff ((f
^ ),x)))
+ (((f
^ )
. x)
* (
diff (
cos ,x)))) by
A2,
A3,
A4,
FDIFF_1: 21
.= (((
cos
. x)
* (((f
^ )
`| Z)
. x))
+ (((f
^ )
. x)
* (
diff (
cos ,x)))) by
A3,
A6,
FDIFF_1:def 7
.= (((
cos
. x)
* (
- (1
/ (x
^2 ))))
+ (((f
^ )
. x)
* (
diff (
cos ,x)))) by
A1,
A6,
Th4
.= (((
cos
. x)
* (
- (1
/ (x
^2 ))))
+ (((f
^ )
. x)
* (
- (
sin
. x)))) by
SIN_COS: 63
.= (((
cos
. x)
* (
- (1
/ (x
^2 ))))
+ (((f
. x)
" )
* (
- (
sin
. x)))) by
A5,
A6,
RFUNCT_1:def 2
.= (((
cos
. x)
* (
- (1
/ (x
^2 ))))
+ ((1
* (x
" ))
* (
- (
sin
. x)))) by
A6,
FUNCT_1: 18
.= ((
- ((1
/ (x
^2 ))
* (
cos
. x)))
+ ((1
/ x)
* (
- (
sin
. x)))) by
XCMPLX_0:def 9
.= ((
- ((1
/ x)
* (
sin
. x)))
- ((1
/ (x
^2 ))
* (
cos
. x)));
end;
hence thesis by
A2,
A3,
A4,
FDIFF_1: 21;
end;
theorem ::
FDIFF_5:16
Z
c= (
dom (
sin
+ (
#R (1
/ 2)))) implies (
sin
+ (
#R (1
/ 2)))
is_differentiable_on Z & for x st x
in Z holds (((
sin
+ (
#R (1
/ 2)))
`| Z)
. x)
= ((
cos
. x)
+ ((1
/ 2)
* (x
#R (
- (1
/ 2)))))
proof
assume
A1: Z
c= (
dom (
sin
+ (
#R (1
/ 2))));
then Z
c= ((
dom (
#R (1
/ 2)))
/\ (
dom
sin )) by
VALUED_1:def 1;
then
A2: Z
c= (
dom (
#R (1
/ 2))) by
XBOOLE_1: 18;
then
A3: (
#R (1
/ 2))
is_differentiable_on Z by
Lm3;
A4:
sin
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 68;
now
let x;
assume
A5: x
in Z;
then (((
sin
+ (
#R (1
/ 2)))
`| Z)
. x)
= ((
diff (
sin ,x))
+ (
diff ((
#R (1
/ 2)),x))) by
A1,
A3,
A4,
FDIFF_1: 18
.= ((
cos
. x)
+ (
diff ((
#R (1
/ 2)),x))) by
SIN_COS: 64
.= ((
cos
. x)
+ (((
#R (1
/ 2))
`| Z)
. x)) by
A3,
A5,
FDIFF_1:def 7
.= ((
cos
. x)
+ ((1
/ 2)
* (x
#R (
- (1
/ 2))))) by
A2,
A5,
Lm3;
hence (((
sin
+ (
#R (1
/ 2)))
`| Z)
. x)
= ((
cos
. x)
+ ((1
/ 2)
* (x
#R (
- (1
/ 2)))));
end;
hence thesis by
A1,
A3,
A4,
FDIFF_1: 18;
end;
theorem ::
FDIFF_5:17
not
0
in Z & Z
c= (
dom (g
(#) (
sin
* ((
id Z)
^ )))) & g
= (
#Z 2) implies (g
(#) (
sin
* ((
id Z)
^ )))
is_differentiable_on Z & for x st x
in Z holds (((g
(#) (
sin
* ((
id Z)
^ )))
`| Z)
. x)
= (((2
* x)
* (
sin
. (1
/ x)))
- (
cos
. (1
/ x)))
proof
set f = (
id Z);
assume that
A1: not
0
in Z and
A2: Z
c= (
dom (g
(#) (
sin
* (f
^ )))) and
A3: g
= (
#Z 2);
A4: for x st x
in Z holds g
is_differentiable_in x by
A3,
TAYLOR_1: 2;
A5: Z
c= ((
dom g)
/\ (
dom (
sin
* (f
^ )))) by
A2,
VALUED_1:def 4;
then Z
c= (
dom g) by
XBOOLE_1: 18;
then
A6: g
is_differentiable_on Z by
A4,
FDIFF_1: 9;
A7: for x st x
in Z holds ((g
`| Z)
. x)
= (2
* x)
proof
let x;
assume
A8: x
in Z;
(
diff (g,x))
= (2
* (x
#Z (2
- 1))) by
A3,
TAYLOR_1: 2
.= (2
* x) by
PREPOWER: 35;
hence thesis by
A6,
A8,
FDIFF_1:def 7;
end;
A9: (
sin
* (f
^ ))
is_differentiable_on Z by
A1,
Th5;
A10: Z
c= (
dom (
sin
* (f
^ ))) by
A5,
XBOOLE_1: 18;
then for y be
object st y
in Z holds y
in (
dom (f
^ )) by
FUNCT_1: 11;
then
A11: Z
c= (
dom (f
^ ));
now
let x;
assume
A12: x
in Z;
then (((g
(#) (
sin
* (f
^ )))
`| Z)
. x)
= ((((
sin
* (f
^ ))
. x)
* (
diff (g,x)))
+ ((g
. x)
* (
diff ((
sin
* (f
^ )),x)))) by
A2,
A9,
A6,
FDIFF_1: 21
.= ((((
sin
* (f
^ ))
. x)
* ((g
`| Z)
. x))
+ ((g
. x)
* (
diff ((
sin
* (f
^ )),x)))) by
A6,
A12,
FDIFF_1:def 7
.= ((((
sin
* (f
^ ))
. x)
* (2
* x))
+ ((g
. x)
* (
diff ((
sin
* (f
^ )),x)))) by
A7,
A12
.= ((((
sin
* (f
^ ))
. x)
* (2
* x))
+ ((x
#Z 2)
* (
diff ((
sin
* (f
^ )),x)))) by
A3,
TAYLOR_1:def 1
.= ((((
sin
* (f
^ ))
. x)
* (2
* x))
+ ((x
#Z 2)
* (((
sin
* (f
^ ))
`| Z)
. x))) by
A9,
A12,
FDIFF_1:def 7
.= ((((
sin
* (f
^ ))
. x)
* (2
* x))
+ ((x
#Z 2)
* (
- ((1
/ (x
^2 ))
* (
cos
. (1
/ x)))))) by
A1,
A12,
Th5
.= ((((
sin
* (f
^ ))
. x)
* (2
* x))
- ((x
#Z (1
+ 1))
* ((1
/ (x
^2 ))
* (
cos
. (1
/ x)))))
.= ((((
sin
* (f
^ ))
. x)
* (2
* x))
- (((x
#Z 1)
* (x
#Z 1))
* ((1
/ (x
^2 ))
* (
cos
. (1
/ x))))) by
TAYLOR_1: 1
.= ((((
sin
* (f
^ ))
. x)
* (2
* x))
- ((x
* (x
#Z 1))
* ((1
/ (x
^2 ))
* (
cos
. (1
/ x))))) by
PREPOWER: 35
.= ((((
sin
* (f
^ ))
. x)
* (2
* x))
- ((x
* x)
* (((1
* 1)
/ (x
* x))
* (
cos
. (1
/ x))))) by
PREPOWER: 35
.= ((((
sin
* (f
^ ))
. x)
* (2
* x))
- ((x
* x)
* (((1
/ x)
* (1
/ x))
* (
cos
. (1
/ x))))) by
XCMPLX_1: 102
.= ((((
sin
* (f
^ ))
. x)
* (2
* x))
- (((x
* (1
/ x))
* (x
* (1
/ x)))
* (
cos
. (1
/ x))))
.= ((((
sin
* (f
^ ))
. x)
* (2
* x))
- (((x
* (1
/ x))
* 1)
* (
cos
. (1
/ x)))) by
A1,
A12,
XCMPLX_1: 106
.= ((((
sin
* (f
^ ))
. x)
* (2
* x))
- ((1
* 1)
* (
cos
. (1
/ x)))) by
A1,
A12,
XCMPLX_1: 106
.= (((
sin
. ((f
^ )
. x))
* (2
* x))
- (
cos
. (1
/ x))) by
A10,
A12,
FUNCT_1: 12
.= (((
sin
. ((f
. x)
" ))
* (2
* x))
- (
cos
. (1
/ x))) by
A11,
A12,
RFUNCT_1:def 2
.= (((
sin
. (1
* (x
" )))
* (2
* x))
- (
cos
. (1
/ x))) by
A12,
FUNCT_1: 18
.= (((2
* x)
* (
sin
. (1
/ x)))
- (
cos
. (1
/ x))) by
XCMPLX_0:def 9;
hence (((g
(#) (
sin
* (f
^ )))
`| Z)
. x)
= (((2
* x)
* (
sin
. (1
/ x)))
- (
cos
. (1
/ x)));
end;
hence thesis by
A2,
A9,
A6,
FDIFF_1: 21;
end;
theorem ::
FDIFF_5:18
not
0
in Z & Z
c= (
dom (g
(#) (
cos
* ((
id Z)
^ )))) & g
= (
#Z 2) implies (g
(#) (
cos
* ((
id Z)
^ )))
is_differentiable_on Z & for x st x
in Z holds (((g
(#) (
cos
* ((
id Z)
^ )))
`| Z)
. x)
= (((2
* x)
* (
cos
. (1
/ x)))
+ (
sin
. (1
/ x)))
proof
set f = (
id Z);
assume that
A1: not
0
in Z and
A2: Z
c= (
dom (g
(#) (
cos
* (f
^ )))) and
A3: g
= (
#Z 2);
A4: for x st x
in Z holds g
is_differentiable_in x by
A3,
TAYLOR_1: 2;
A5: Z
c= ((
dom g)
/\ (
dom (
cos
* (f
^ )))) by
A2,
VALUED_1:def 4;
then
A6: Z
c= (
dom (
cos
* (f
^ ))) by
XBOOLE_1: 18;
then
A7: (
cos
* (f
^ ))
is_differentiable_on Z by
A1,
Th6;
Z
c= (
dom g) by
A5,
XBOOLE_1: 18;
then
A8: g
is_differentiable_on Z by
A4,
FDIFF_1: 9;
A9: for x st x
in Z holds ((g
`| Z)
. x)
= (2
* x)
proof
let x;
assume
A10: x
in Z;
(
diff (g,x))
= (2
* (x
#Z (2
- 1))) by
A3,
TAYLOR_1: 2
.= (2
* x) by
PREPOWER: 35;
hence thesis by
A8,
A10,
FDIFF_1:def 7;
end;
for y be
object st y
in Z holds y
in (
dom (f
^ )) by
A6,
FUNCT_1: 11;
then
A11: Z
c= (
dom (f
^ ));
now
let x;
assume
A12: x
in Z;
then (((g
(#) (
cos
* (f
^ )))
`| Z)
. x)
= ((((
cos
* (f
^ ))
. x)
* (
diff (g,x)))
+ ((g
. x)
* (
diff ((
cos
* (f
^ )),x)))) by
A2,
A7,
A8,
FDIFF_1: 21
.= ((((
cos
* (f
^ ))
. x)
* ((g
`| Z)
. x))
+ ((g
. x)
* (
diff ((
cos
* (f
^ )),x)))) by
A8,
A12,
FDIFF_1:def 7
.= ((((
cos
* (f
^ ))
. x)
* (2
* x))
+ ((g
. x)
* (
diff ((
cos
* (f
^ )),x)))) by
A9,
A12
.= ((((
cos
* (f
^ ))
. x)
* (2
* x))
+ ((x
#Z 2)
* (
diff ((
cos
* (f
^ )),x)))) by
A3,
TAYLOR_1:def 1
.= ((((
cos
* (f
^ ))
. x)
* (2
* x))
+ ((x
#Z 2)
* (((
cos
* (f
^ ))
`| Z)
. x))) by
A7,
A12,
FDIFF_1:def 7
.= ((((
cos
* (f
^ ))
. x)
* (2
* x))
+ ((x
#Z (1
+ 1))
* ((1
/ (x
^2 ))
* (
sin
. (1
/ x))))) by
A1,
A6,
A12,
Th6
.= ((((
cos
* (f
^ ))
. x)
* (2
* x))
+ (((x
#Z 1)
* (x
#Z 1))
* ((1
/ (x
^2 ))
* (
sin
. (1
/ x))))) by
TAYLOR_1: 1
.= ((((
cos
* (f
^ ))
. x)
* (2
* x))
+ ((x
* (x
#Z 1))
* ((1
/ (x
^2 ))
* (
sin
. (1
/ x))))) by
PREPOWER: 35
.= ((((
cos
* (f
^ ))
. x)
* (2
* x))
+ ((x
* x)
* (((1
* 1)
/ (x
* x))
* (
sin
. (1
/ x))))) by
PREPOWER: 35
.= ((((
cos
* (f
^ ))
. x)
* (2
* x))
+ ((x
* x)
* (((1
/ x)
* (1
/ x))
* (
sin
. (1
/ x))))) by
XCMPLX_1: 102
.= ((((
cos
* (f
^ ))
. x)
* (2
* x))
+ (((x
* (1
/ x))
* (x
* (1
/ x)))
* (
sin
. (1
/ x))))
.= ((((
cos
* (f
^ ))
. x)
* (2
* x))
+ (((x
* (1
/ x))
* 1)
* (
sin
. (1
/ x)))) by
A1,
A12,
XCMPLX_1: 106
.= ((((
cos
* (f
^ ))
. x)
* (2
* x))
+ ((1
* 1)
* (
sin
. (1
/ x)))) by
A1,
A12,
XCMPLX_1: 106
.= (((
cos
. ((f
^ )
. x))
* (2
* x))
+ (
sin
. (1
/ x))) by
A6,
A12,
FUNCT_1: 12
.= (((
cos
. ((f
. x)
" ))
* (2
* x))
+ (
sin
. (1
/ x))) by
A11,
A12,
RFUNCT_1:def 2
.= (((
cos
. (1
* (x
" )))
* (2
* x))
+ (
sin
. (1
/ x))) by
A12,
FUNCT_1: 18
.= (((2
* x)
* (
cos
. (1
/ x)))
+ (
sin
. (1
/ x))) by
XCMPLX_0:def 9;
hence (((g
(#) (
cos
* (f
^ )))
`| Z)
. x)
= (((2
* x)
* (
cos
. (1
/ x)))
+ (
sin
. (1
/ x)));
end;
hence thesis by
A2,
A7,
A8,
FDIFF_1: 21;
end;
Lm5: x
in (
dom
ln ) implies x
>
0 by
TAYLOR_1: 18,
XXREAL_1: 4;
theorem ::
FDIFF_5:19
Th19: Z
c= (
dom
ln ) implies
ln
is_differentiable_on Z & for x st x
in Z holds ((
ln
`| Z)
. x)
= (1
/ x)
proof
assume
A1: Z
c= (
dom
ln );
then
A2: for x st x
in Z holds
ln
is_differentiable_in x by
Lm5,
TAYLOR_1: 18;
then
A3:
ln
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds ((
ln
`| Z)
. x)
= (1
/ x)
proof
let x;
assume
A4: x
in Z;
then (
diff (
ln ,x))
= (1
/ x) by
A1,
TAYLOR_1: 18;
hence thesis by
A3,
A4,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A2,
FDIFF_1: 9;
end;
theorem ::
FDIFF_5:20
Z
c= (
dom ((
id Z)
(#)
ln )) implies ((
id Z)
(#)
ln )
is_differentiable_on Z & for x st x
in Z holds ((((
id Z)
(#)
ln )
`| Z)
. x)
= (1
+ (
ln
. x))
proof
set f =
ln ;
assume
A1: Z
c= (
dom ((
id Z)
(#)
ln ));
then
A2: Z
c= ((
dom (
id Z))
/\ (
dom f)) by
VALUED_1:def 4;
then
A3: Z
c= (
dom (
id Z)) by
XBOOLE_1: 18;
A4: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
then
A5: (
id Z)
is_differentiable_on Z by
A3,
FDIFF_1: 23;
A6: Z
c= (
dom f) by
A2,
XBOOLE_1: 18;
then
A7: f
is_differentiable_on Z by
Th19;
for x st x
in Z holds ((((
id Z)
(#) f)
`| Z)
. x)
= (1
+ (
ln
. x))
proof
let x;
assume
A8: x
in Z;
then
A9: x
<>
0 by
A6,
TAYLOR_1: 18,
XXREAL_1: 4;
((((
id Z)
(#) f)
`| Z)
. x)
= ((((
id Z)
. x)
* (
diff (f,x)))
+ ((f
. x)
* (
diff ((
id Z),x)))) by
A1,
A5,
A7,
A8,
FDIFF_1: 21
.= ((((
id Z)
. x)
* ((f
`| Z)
. x))
+ ((f
. x)
* (
diff ((
id Z),x)))) by
A7,
A8,
FDIFF_1:def 7
.= ((((
id Z)
. x)
* (1
/ x))
+ ((f
. x)
* (
diff ((
id Z),x)))) by
A6,
A8,
Th19
.= ((x
* (1
/ x))
+ ((f
. x)
* (
diff ((
id Z),x)))) by
A8,
FUNCT_1: 18
.= ((x
* (1
/ x))
+ ((f
. x)
* (((
id Z)
`| Z)
. x))) by
A5,
A8,
FDIFF_1:def 7
.= ((x
* (1
/ x))
+ ((f
. x)
* 1)) by
A3,
A4,
A8,
FDIFF_1: 23
.= (1
+ (
ln
. x)) by
A9,
XCMPLX_1: 106;
hence thesis;
end;
hence thesis by
A1,
A5,
A7,
FDIFF_1: 21;
end;
theorem ::
FDIFF_5:21
Z
c= (
dom (g
(#)
ln )) & g
= (
#Z 2) & (for x st x
in Z holds x
>
0 ) implies (g
(#)
ln )
is_differentiable_on Z & for x st x
in Z holds (((g
(#)
ln )
`| Z)
. x)
= (x
+ ((2
* x)
* (
ln
. x)))
proof
set f =
ln ;
assume that
A1: Z
c= (
dom (g
(#) f)) and
A2: g
= (
#Z 2) and
A3: for x st x
in Z holds x
>
0 ;
A4: for x st x
in Z holds g
is_differentiable_in x by
A2,
TAYLOR_1: 2;
A5: Z
c= ((
dom g)
/\ (
dom f)) by
A1,
VALUED_1:def 4;
then
A6: Z
c= (
dom f) by
XBOOLE_1: 18;
then
A7: f
is_differentiable_on Z by
Th19;
Z
c= (
dom g) by
A5,
XBOOLE_1: 18;
then
A8: g
is_differentiable_on Z by
A4,
FDIFF_1: 9;
A9: for x st x
in Z holds ((g
`| Z)
. x)
= (2
* x)
proof
let x;
assume
A10: x
in Z;
(
diff (g,x))
= (2
* (x
#Z (2
- 1))) by
A2,
TAYLOR_1: 2
.= (2
* x) by
PREPOWER: 35;
hence thesis by
A8,
A10,
FDIFF_1:def 7;
end;
now
let x;
assume
A11: x
in Z;
then
A12: x
<>
0 by
A3;
(((g
(#) f)
`| Z)
. x)
= (((g
. x)
* (
diff (f,x)))
+ ((f
. x)
* (
diff (g,x)))) by
A1,
A8,
A7,
A11,
FDIFF_1: 21
.= (((g
. x)
* ((f
`| Z)
. x))
+ ((f
. x)
* (
diff (g,x)))) by
A7,
A11,
FDIFF_1:def 7
.= (((g
. x)
* (1
/ x))
+ ((f
. x)
* (
diff (g,x)))) by
A6,
A11,
Th19
.= (((x
#Z 2)
* (1
/ x))
+ ((f
. x)
* (
diff (g,x)))) by
A2,
TAYLOR_1:def 1
.= (((x
#Z 2)
* (1
/ x))
+ ((f
. x)
* ((g
`| Z)
. x))) by
A8,
A11,
FDIFF_1:def 7
.= (((x
#Z (1
+ 1))
* (1
/ x))
+ ((2
* x)
* (
ln
. x))) by
A9,
A11
.= ((((x
#Z 1)
* (x
#Z 1))
* (1
/ x))
+ ((2
* x)
* (
ln
. x))) by
TAYLOR_1: 1
.= ((((x
#Z 1)
* x)
* (1
/ x))
+ ((2
* x)
* (
ln
. x))) by
PREPOWER: 35
.= (((x
* x)
* (1
/ x))
+ ((2
* x)
* (
ln
. x))) by
PREPOWER: 35
.= ((x
* (x
* (1
/ x)))
+ ((2
* x)
* (
ln
. x)))
.= ((x
* 1)
+ ((2
* x)
* (
ln
. x))) by
A12,
XCMPLX_1: 106
.= (x
+ ((2
* x)
* (
ln
. x)));
hence (((g
(#) f)
`| Z)
. x)
= (x
+ ((2
* x)
* (
ln
. x)));
end;
hence thesis by
A1,
A8,
A7,
FDIFF_1: 21;
end;
theorem ::
FDIFF_5:22
Th22: Z
c= (
dom ((f1
+ f2)
/ (f1
- f2))) & (for x st x
in Z holds (f1
. x)
= a) & f2
= (
#Z 2) & (for x st x
in Z holds ((f1
- f2)
. x)
>
0 ) implies ((f1
+ f2)
/ (f1
- f2))
is_differentiable_on Z & for x st x
in Z holds ((((f1
+ f2)
/ (f1
- f2))
`| Z)
. x)
= (((4
* a)
* x)
/ ((a
- (x
|^ 2))
|^ 2))
proof
assume that
A1: Z
c= (
dom ((f1
+ f2)
/ (f1
- f2))) and
A2: for x st x
in Z holds (f1
. x)
= a and
A3: f2
= (
#Z 2) and
A4: for x st x
in Z holds ((f1
- f2)
. x)
>
0 ;
A5: Z
c= ((
dom (f1
+ f2))
/\ ((
dom (f1
- f2))
\ ((f1
- f2)
"
{
0 }))) by
A1,
RFUNCT_1:def 1;
then
A6: Z
c= (
dom (f1
+ f2)) by
XBOOLE_1: 18;
then
A7: (f1
+ f2)
is_differentiable_on Z by
A2,
A3,
Lm1;
A8: Z
c= (
dom (f1
- f2)) by
A5,
XBOOLE_1: 1;
then
A9: (f1
- f2)
is_differentiable_on Z by
A2,
A3,
Lm2;
A10: for x st x
in Z holds ((f1
- f2)
. x)
<>
0 by
A4;
then
A11: ((f1
+ f2)
/ (f1
- f2))
is_differentiable_on Z by
A7,
A9,
FDIFF_2: 21;
for x st x
in Z holds ((((f1
+ f2)
/ (f1
- f2))
`| Z)
. x)
= (((4
* a)
* x)
/ ((a
- (x
|^ 2))
|^ 2))
proof
let x;
assume
A12: x
in Z;
then
A13: (f1
. x)
= a by
A2;
A14: ((f1
- f2)
. x)
<>
0 by
A4,
A12;
(f1
+ f2)
is_differentiable_in x & (f1
- f2)
is_differentiable_in x by
A7,
A9,
A12,
FDIFF_1: 9;
then (
diff (((f1
+ f2)
/ (f1
- f2)),x))
= ((((
diff ((f1
+ f2),x))
* ((f1
- f2)
. x))
- ((
diff ((f1
- f2),x))
* ((f1
+ f2)
. x)))
/ (((f1
- f2)
. x)
^2 )) by
A14,
FDIFF_2: 14
.= ((((
diff ((f1
+ f2),x))
* ((f1
. x)
- (f2
. x)))
- ((
diff ((f1
- f2),x))
* ((f1
+ f2)
. x)))
/ (((f1
- f2)
. x)
^2 )) by
A8,
A12,
VALUED_1: 13
.= ((((
diff ((f1
+ f2),x))
* ((f1
. x)
- (f2
. x)))
- ((
diff ((f1
- f2),x))
* ((f1
. x)
+ (f2
. x))))
/ (((f1
- f2)
. x)
^2 )) by
A6,
A12,
VALUED_1:def 1
.= ((((
diff ((f1
+ f2),x))
* ((f1
. x)
- (f2
. x)))
- ((
diff ((f1
- f2),x))
* ((f1
. x)
+ (f2
. x))))
/ (((f1
. x)
- (f2
. x))
^2 )) by
A8,
A12,
VALUED_1: 13
.= ((((((f1
+ f2)
`| Z)
. x)
* ((f1
. x)
- (f2
. x)))
- ((
diff ((f1
- f2),x))
* ((f1
. x)
+ (f2
. x))))
/ (((f1
. x)
- (f2
. x))
^2 )) by
A7,
A12,
FDIFF_1:def 7
.= ((((2
* x)
* ((f1
. x)
- (f2
. x)))
- ((
diff ((f1
- f2),x))
* ((f1
. x)
+ (f2
. x))))
/ (((f1
. x)
- (f2
. x))
^2 )) by
A2,
A3,
A6,
A12,
Lm1
.= ((((2
* x)
* ((f1
. x)
- (f2
. x)))
- ((((f1
- f2)
`| Z)
. x)
* ((f1
. x)
+ (f2
. x))))
/ (((f1
. x)
- (f2
. x))
^2 )) by
A9,
A12,
FDIFF_1:def 7
.= ((((2
* x)
* ((f1
. x)
- (f2
. x)))
- ((
- (2
* x))
* ((f1
. x)
+ (f2
. x))))
/ (((f1
. x)
- (f2
. x))
^2 )) by
A2,
A3,
A8,
A12,
Lm2
.= (((4
* x)
* a)
/ ((a
- (x
#Z 2))
^2 )) by
A3,
A13,
TAYLOR_1:def 1
.= (((4
* x)
* a)
/ ((a
- (x
|^ 2))
^2 )) by
PREPOWER: 36
.= (((4
* x)
* a)
/ (((a
- (x
|^ 2))
|^ 1)
* (a
- (x
|^ 2))))
.= (((4
* x)
* a)
/ ((a
- (x
|^ 2))
|^ (1
+ 1))) by
NEWTON: 6
.= (((4
* a)
* x)
/ ((a
- (x
|^ 2))
|^ 2));
hence thesis by
A11,
A12,
FDIFF_1:def 7;
end;
hence thesis by
A7,
A9,
A10,
FDIFF_2: 21;
end;
theorem ::
FDIFF_5:23
Z
c= (
dom (
ln
* ((f1
+ f2)
/ (f1
- f2)))) & (for x st x
in Z holds (f1
. x)
= a) & f2
= (
#Z 2) & (for x st x
in Z holds ((f1
- f2)
. x)
>
0 ) & (for x st x
in Z holds ((f1
+ f2)
. x)
>
0 ) implies (
ln
* ((f1
+ f2)
/ (f1
- f2)))
is_differentiable_on Z & for x st x
in Z holds (((
ln
* ((f1
+ f2)
/ (f1
- f2)))
`| Z)
. x)
= (((4
* a)
* x)
/ ((a
|^ 2)
- (x
|^ 4)))
proof
assume that
A1: Z
c= (
dom (
ln
* ((f1
+ f2)
/ (f1
- f2)))) and
A2: for x st x
in Z holds (f1
. x)
= a and
A3: f2
= (
#Z 2) and
A4: for x st x
in Z holds ((f1
- f2)
. x)
>
0 and
A5: for x st x
in Z holds ((f1
+ f2)
. x)
>
0 ;
for y be
object st y
in Z holds y
in (
dom ((f1
+ f2)
/ (f1
- f2))) by
A1,
FUNCT_1: 11;
then
A6: Z
c= (
dom ((f1
+ f2)
/ (f1
- f2)));
then
A7: ((f1
+ f2)
/ (f1
- f2))
is_differentiable_on Z by
A2,
A3,
A4,
Th22;
A8: Z
c= ((
dom (f1
+ f2))
/\ ((
dom (f1
- f2))
\ ((f1
- f2)
"
{
0 }))) by
A6,
RFUNCT_1:def 1;
then
A9: Z
c= (
dom (f1
+ f2)) by
XBOOLE_1: 18;
A10: Z
c= (
dom (f1
- f2)) by
A8,
XBOOLE_1: 1;
A11: for x st x
in Z holds (((f1
+ f2)
/ (f1
- f2))
. x)
>
0
proof
let x;
assume
A12: x
in Z;
then x
in (
dom ((f1
+ f2)
/ (f1
- f2))) by
A1,
FUNCT_1: 11;
then
A13: (((f1
+ f2)
/ (f1
- f2))
. x)
= (((f1
+ f2)
. x)
* (((f1
- f2)
. x)
" )) by
RFUNCT_1:def 1
.= (((f1
+ f2)
. x)
/ ((f1
- f2)
. x)) by
XCMPLX_0:def 9;
((f1
+ f2)
. x)
>
0 & ((f1
- f2)
. x)
>
0 by
A4,
A5,
A12;
hence thesis by
A13,
XREAL_1: 139;
end;
A14: for x st x
in Z holds (
ln
* ((f1
+ f2)
/ (f1
- f2)))
is_differentiable_in x
proof
let x;
assume x
in Z;
then ((f1
+ f2)
/ (f1
- f2))
is_differentiable_in x & (((f1
+ f2)
/ (f1
- f2))
. x)
>
0 by
A7,
A11,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 20;
end;
then
A15: (
ln
* ((f1
+ f2)
/ (f1
- f2)))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
ln
* ((f1
+ f2)
/ (f1
- f2)))
`| Z)
. x)
= (((4
* a)
* x)
/ ((a
|^ 2)
- (x
|^ 4)))
proof
let x;
assume
A16: x
in Z;
then
A17: x
in (
dom ((f1
+ f2)
/ (f1
- f2))) by
A1,
FUNCT_1: 11;
A18: ((f1
- f2)
. x)
<>
0 by
A4,
A16;
A19: (f1
. x)
= a by
A2,
A16;
((f1
+ f2)
/ (f1
- f2))
is_differentiable_in x & (((f1
+ f2)
/ (f1
- f2))
. x)
>
0 by
A7,
A11,
A16,
FDIFF_1: 9;
then (
diff ((
ln
* ((f1
+ f2)
/ (f1
- f2))),x))
= ((
diff (((f1
+ f2)
/ (f1
- f2)),x))
/ (((f1
+ f2)
/ (f1
- f2))
. x)) by
TAYLOR_1: 20
.= (((((f1
+ f2)
/ (f1
- f2))
`| Z)
. x)
/ (((f1
+ f2)
/ (f1
- f2))
. x)) by
A7,
A16,
FDIFF_1:def 7
.= (((((f1
+ f2)
/ (f1
- f2))
`| Z)
. x)
/ (((f1
+ f2)
. x)
* (((f1
- f2)
. x)
" ))) by
A17,
RFUNCT_1:def 1
.= ((((4
* a)
* x)
/ (((f1
. x)
- (x
|^ 2))
|^ 2))
/ (((f1
+ f2)
. x)
* (((f1
- f2)
. x)
" ))) by
A2,
A3,
A4,
A6,
A16,
A19,
Th22
.= ((((4
* a)
* x)
/ (((f1
. x)
- (x
#Z 2))
|^ 2))
/ (((f1
+ f2)
. x)
* (((f1
- f2)
. x)
" ))) by
PREPOWER: 36
.= ((((4
* a)
* x)
/ (((f1
. x)
- (f2
. x))
|^ 2))
/ (((f1
+ f2)
. x)
* (((f1
- f2)
. x)
" ))) by
A3,
TAYLOR_1:def 1
.= ((((4
* a)
* x)
/ (((f1
- f2)
. x)
|^ 2))
/ (((f1
+ f2)
. x)
* (((f1
- f2)
. x)
" ))) by
A10,
A16,
VALUED_1: 13
.= ((((4
* a)
* x)
/ (((f1
- f2)
. x)
|^ (1
+ 1)))
/ (((f1
+ f2)
. x)
/ ((f1
- f2)
. x))) by
XCMPLX_0:def 9
.= ((((4
* a)
* x)
/ ((((f1
- f2)
. x)
|^ 1)
* ((f1
- f2)
. x)))
/ (((f1
+ f2)
. x)
/ ((f1
- f2)
. x))) by
NEWTON: 6
.= ((((4
* a)
* x)
/ (((f1
- f2)
. x)
* ((f1
- f2)
. x)))
/ (((f1
+ f2)
. x)
/ ((f1
- f2)
. x)))
.= (((((4
* a)
* x)
/ ((f1
- f2)
. x))
/ ((f1
- f2)
. x))
/ (((f1
+ f2)
. x)
/ ((f1
- f2)
. x))) by
XCMPLX_1: 78
.= (((((4
* a)
* x)
/ ((f1
- f2)
. x))
/ (((f1
+ f2)
. x)
/ ((f1
- f2)
. x)))
/ ((f1
- f2)
. x)) by
XCMPLX_1: 48
.= ((((4
* a)
* x)
/ ((f1
+ f2)
. x))
/ ((f1
- f2)
. x)) by
A18,
XCMPLX_1: 55
.= (((4
* a)
* x)
/ (((f1
+ f2)
. x)
* ((f1
- f2)
. x))) by
XCMPLX_1: 78
.= (((4
* a)
* x)
/ (((f1
. x)
+ (f2
. x))
* ((f1
- f2)
. x))) by
A9,
A16,
VALUED_1:def 1
.= (((4
* a)
* x)
/ (((f1
. x)
+ (f2
. x))
* ((f1
. x)
- (f2
. x)))) by
A10,
A16,
VALUED_1: 13
.= (((4
* a)
* x)
/ ((a
* a)
- ((f2
. x)
* (f2
. x)))) by
A19
.= (((4
* a)
* x)
/ ((a
* a)
- ((x
#Z 2)
* (f2
. x)))) by
A3,
TAYLOR_1:def 1
.= (((4
* a)
* x)
/ ((a
* a)
- ((x
#Z 2)
* (x
#Z 2)))) by
A3,
TAYLOR_1:def 1
.= (((4
* a)
* x)
/ (((a
|^ 1)
* a)
- ((x
#Z 2)
* (x
#Z 2))))
.= (((4
* a)
* x)
/ ((a
|^ (1
+ 1))
- ((x
#Z 2)
* (x
#Z 2)))) by
NEWTON: 6
.= (((4
* a)
* x)
/ ((a
|^ (1
+ 1))
- ((x
|^ 2)
* (x
#Z 2)))) by
PREPOWER: 36
.= (((4
* a)
* x)
/ ((a
|^ 2)
- ((x
|^ 2)
* (x
|^ 2)))) by
PREPOWER: 36
.= (((4
* a)
* x)
/ ((a
|^ 2)
- (x
|^ (2
+ 2)))) by
NEWTON: 8
.= (((4
* a)
* x)
/ ((a
|^ 2)
- (x
|^ 4)));
hence thesis by
A15,
A16,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A14,
FDIFF_1: 9;
end;
theorem ::
FDIFF_5:24
Z
c= (
dom (((
id Z)
^ )
(#)
ln )) & (for x st x
in Z holds x
>
0 ) implies (((
id Z)
^ )
(#)
ln )
is_differentiable_on Z & for x st x
in Z holds (((((
id Z)
^ )
(#)
ln )
`| Z)
. x)
= ((1
/ (x
^2 ))
* (1
- (
ln
. x)))
proof
set f = (
id Z), g =
ln ;
assume that
A1: Z
c= (
dom ((f
^ )
(#) g)) and
A2: for x st x
in Z holds x
>
0 ;
A3: not
0
in Z by
A2;
then
A4: (f
^ )
is_differentiable_on Z by
Th4;
A5: Z
c= ((
dom (f
^ ))
/\ (
dom g)) by
A1,
VALUED_1:def 4;
then
A6: Z
c= (
dom g) by
XBOOLE_1: 18;
then
A7: g
is_differentiable_on Z by
Th19;
A8: Z
c= (
dom (f
^ )) by
A5,
XBOOLE_1: 18;
now
let x;
assume
A9: x
in Z;
then ((((f
^ )
(#) g)
`| Z)
. x)
= (((g
. x)
* (
diff ((f
^ ),x)))
+ (((f
^ )
. x)
* (
diff (g,x)))) by
A1,
A4,
A7,
FDIFF_1: 21
.= (((g
. x)
* (((f
^ )
`| Z)
. x))
+ (((f
^ )
. x)
* (
diff (g,x)))) by
A4,
A9,
FDIFF_1:def 7
.= (((g
. x)
* (
- (1
/ (x
^2 ))))
+ (((f
^ )
. x)
* (
diff (g,x)))) by
A3,
A9,
Th4
.= (((g
. x)
* (
- (1
/ (x
^2 ))))
+ (((f
^ )
. x)
* ((g
`| Z)
. x))) by
A7,
A9,
FDIFF_1:def 7
.= (((g
. x)
* (
- (1
/ (x
^2 ))))
+ (((f
^ )
. x)
* (1
/ x))) by
A6,
A9,
Th19
.= (((g
. x)
* (
- (1
/ (x
^2 ))))
+ (((f
. x)
" )
* (1
/ x))) by
A8,
A9,
RFUNCT_1:def 2
.= (((g
. x)
* (
- (1
/ (x
^2 ))))
+ ((1
* (x
" ))
* (1
/ x))) by
A9,
FUNCT_1: 18
.= ((
- ((1
/ (x
^2 ))
* (g
. x)))
+ ((1
/ x)
* (1
/ x))) by
XCMPLX_0:def 9
.= ((
- ((1
/ (x
^2 ))
* (
ln
. x)))
+ (1
/ (x
^2 ))) by
XCMPLX_1: 102
.= ((1
/ (x
^2 ))
* (1
- (
ln
. x)));
hence ((((f
^ )
(#) g)
`| Z)
. x)
= ((1
/ (x
^2 ))
* (1
- (
ln
. x)));
end;
hence thesis by
A1,
A4,
A7,
FDIFF_1: 21;
end;
theorem ::
FDIFF_5:25
Z
c= (
dom (
ln
^ )) & (for x st x
in Z holds (
ln
. x)
<>
0 ) implies (
ln
^ )
is_differentiable_on Z & for x st x
in Z holds (((
ln
^ )
`| Z)
. x)
= (
- (1
/ (x
* ((
ln
. x)
^2 ))))
proof
set f =
ln ;
assume that
A1: Z
c= (
dom (
ln
^ )) and
A2: for x st x
in Z holds (
ln
. x)
<>
0 ;
(
dom (f
^ ))
c= (
dom f) by
RFUNCT_1: 1;
then
A3: Z
c= (
dom f) by
A1;
then
A4: f
is_differentiable_on Z by
Th19;
then
A5: (f
^ )
is_differentiable_on Z by
A2,
FDIFF_2: 22;
for x st x
in Z holds (((f
^ )
`| Z)
. x)
= (
- (1
/ (x
* ((
ln
. x)
^2 ))))
proof
let x;
assume
A6: x
in Z;
then
A7: (f
. x)
<>
0 & f
is_differentiable_in x by
A2,
A4,
FDIFF_1: 9;
(((f
^ )
`| Z)
. x)
= (
diff ((f
^ ),x)) by
A5,
A6,
FDIFF_1:def 7
.= (
- ((
diff (f,x))
/ ((f
. x)
^2 ))) by
A7,
FDIFF_2: 15
.= (
- (((f
`| Z)
. x)
/ ((f
. x)
^2 ))) by
A4,
A6,
FDIFF_1:def 7
.= (
- ((1
/ x)
/ ((
ln
. x)
^2 ))) by
A3,
A6,
Th19
.= (
- (1
/ (x
* ((
ln
. x)
^2 )))) by
XCMPLX_1: 78;
hence thesis;
end;
hence thesis by
A2,
A4,
FDIFF_2: 22;
end;