fib_num4.miz
begin
Lm1: for m,n be
Nat holds (
- m)
<= (m
* ((
- 1)
to_power n))
proof
let m,n be
Nat;
n is
even or n is
odd;
then ((
- 1)
to_power n)
= 1 or ((
- 1)
to_power n)
= (
- 1) by
FIB_NUM2: 2,
FIB_NUM2: 3;
hence thesis;
end;
Lm2: for m,n be
Nat holds (
- (m
* ((
- 1)
to_power n)))
>= (
- m)
proof
let m,n be
Nat;
n is
even or n is
odd;
then ((
- 1)
to_power n)
= 1 or ((
- 1)
to_power n)
= (
- 1) by
FIB_NUM2: 2,
FIB_NUM2: 3;
hence thesis;
end;
theorem ::
FIB_NUM4:1
Th1: for a,b be
Real, c be
Nat holds ((a
/ b)
to_power c)
= ((a
to_power c)
/ (b
to_power c))
proof
let a,b be
Real;
let c be
Nat;
((a
/ b)
to_power c)
= ((a
* (1
/ b))
|^ c) by
XCMPLX_1: 99
.= ((a
to_power c)
* ((1
/ b)
|^ c)) by
NEWTON: 7
.= ((a
to_power c)
* (1
/ (b
|^ c))) by
PREPOWER: 7
.= ((a
to_power c)
/ (b
|^ c)) by
XCMPLX_1: 99;
hence thesis;
end;
theorem ::
FIB_NUM4:2
Th2: for a be
Real, b,c be
Integer st a
<>
0 holds (a
to_power (b
+ c))
= ((a
to_power b)
* (a
to_power c))
proof
let a be
Real;
let b,c be
Integer;
assume
A1: a
<>
0 ;
thus ((a
to_power b)
* (a
to_power c))
= ((a
#Z b)
* (a
to_power c)) by
POWER: 43
.= ((a
#Z b)
* (a
#Z c)) by
POWER: 43
.= (a
#Z (b
+ c)) by
A1,
PREPOWER: 44
.= (a
to_power (b
+ c)) by
POWER: 43;
end;
theorem ::
FIB_NUM4:3
Th3: for n be
Nat, a be
Real st n is
even & a
<>
0 holds ((
- a)
to_power n)
= (a
to_power n) by
POWER: 47;
theorem ::
FIB_NUM4:4
Th4: for n be
Nat, a be
Real st n is
odd & a
<>
0 holds ((
- a)
to_power n)
= (
- (a
to_power n)) by
POWER: 48;
Lm3: (
tau
*
tau_bar )
= (
- 1)
proof
(
tau
*
tau_bar )
= (((1
^2 )
- ((
sqrt 5)
^2 ))
/ 4) by
FIB_NUM:def 1,
FIB_NUM:def 2
.= ((1
- 5)
/ 4) by
SQUARE_1:def 2;
hence thesis;
end;
Lm4: (
tau_bar
/
tau )
= (((
sqrt 5)
- 3)
/ 2)
proof
(
sqrt 5)
> 1 by
SQUARE_1: 18,
SQUARE_1: 27;
then (
- (
sqrt 5))
< (
- 1) by
XREAL_1: 24;
then
A1: ((
- (
sqrt 5))
+ 1)
< ((
- 1)
+ 1) by
XREAL_1: 6;
(
tau_bar
/
tau )
= (((1
- (
sqrt 5))
* 2)
/ ((1
+ (
sqrt 5))
* 2)) by
FIB_NUM:def 1,
FIB_NUM:def 2,
XCMPLX_1: 84
.= ((1
- (
sqrt 5))
/ (1
+ (
sqrt 5))) by
XCMPLX_1: 91
.= (((1
- (
sqrt 5))
* (1
- (
sqrt 5)))
/ ((1
+ (
sqrt 5))
* (1
- (
sqrt 5)))) by
A1,
XCMPLX_1: 91
.= (((1
- (2
* (
sqrt 5)))
+ ((
sqrt 5)
^2 ))
/ ((1
^2 )
- ((
sqrt 5)
^2 )))
.= (((1
- (2
* (
sqrt 5)))
+ 5)
/ ((1
^2 )
- ((
sqrt 5)
^2 ))) by
SQUARE_1:def 2
.= ((6
- (2
* (
sqrt 5)))
/ ((1
^2 )
- 5)) by
SQUARE_1:def 2
.= ((2
* (3
- (
sqrt 5)))
/ ((
- 2)
* 2));
hence thesis;
end;
Lm5: (
tau
/
tau_bar )
= (((
- 3)
- (
sqrt 5))
/ 2)
proof
A1: (
sqrt 5)
>
0 by
SQUARE_1: 25;
(
tau
/
tau_bar )
= (((1
+ (
sqrt 5))
* 2)
/ ((1
- (
sqrt 5))
* 2)) by
FIB_NUM:def 1,
FIB_NUM:def 2,
XCMPLX_1: 84
.= ((1
+ (
sqrt 5))
/ (1
- (
sqrt 5))) by
XCMPLX_1: 91
.= (((1
+ (
sqrt 5))
* (1
+ (
sqrt 5)))
/ ((1
- (
sqrt 5))
* (1
+ (
sqrt 5)))) by
A1,
XCMPLX_1: 91
.= (((1
+ (
sqrt 5))
* (1
+ (
sqrt 5)))
/ (1
- ((
sqrt 5)
^2 )))
.= (((1
+ (
sqrt 5))
* (1
+ (
sqrt 5)))
/ (1
- 5)) by
SQUARE_1:def 2
.= (((1
+ (2
* (
sqrt 5)))
+ ((
sqrt 5)
^2 ))
/ (
- 4))
.= (((1
+ (2
* (
sqrt 5)))
+ 5)
/ (
- 4)) by
SQUARE_1:def 2;
hence thesis;
end;
Lm6: (
tau
to_power 2)
= ((3
+ (
sqrt 5))
/ 2)
proof
(
tau
to_power 2)
= (((1
+ (
sqrt 5))
/ 2)
^2 ) by
FIB_NUM:def 1,
POWER: 46
.= ((((1
^2 )
+ ((2
* 1)
* (
sqrt 5)))
+ ((
sqrt 5)
^2 ))
/ 4)
.= (((1
+ (2
* (
sqrt 5)))
+ 5)
/ 4) by
SQUARE_1:def 2
.= ((2
* (3
+ (
sqrt 5)))
/ (2
* 2));
hence thesis;
end;
Lm7: (
tau_bar
to_power 2)
= ((3
- (
sqrt 5))
/ 2)
proof
(
tau_bar
to_power 2)
= (((1
- (
sqrt 5))
/ 2)
^2 ) by
FIB_NUM:def 2,
POWER: 46
.= ((((1
^2 )
- ((2
* 1)
* (
sqrt 5)))
+ ((
sqrt 5)
^2 ))
/ 4)
.= (((1
- (2
* (
sqrt 5)))
+ 5)
/ 4) by
SQUARE_1:def 2
.= ((2
* (3
- (
sqrt 5)))
/ (2
* 2));
hence thesis;
end;
Lm8: (
tau_bar
to_power 3)
= (2
- (
sqrt 5))
proof
1
< (
sqrt 5) by
SQUARE_1: 18,
SQUARE_1: 27;
then
A1: (1
- (
sqrt 5))
< ((
sqrt 5)
- (
sqrt 5)) by
XREAL_1: 9;
thus (
tau_bar
to_power 3)
= (((1
- (
sqrt 5))
/ 2)
to_power (2
+ 1)) by
FIB_NUM:def 2
.= ((((1
- (
sqrt 5))
/ 2)
to_power 2)
* (((1
- (
sqrt 5))
/ 2)
to_power 1)) by
Th2,
A1
.= ((((1
- (
sqrt 5))
/ 2)
to_power 2)
* ((1
- (
sqrt 5))
/ 2))
.= ((((1
- (
sqrt 5))
/ 2)
^2 )
* ((1
- (
sqrt 5))
/ 2)) by
POWER: 46
.= ((((1
- ((2
* 1)
* (
sqrt 5)))
+ ((
sqrt 5)
^2 ))
* (1
- (
sqrt 5)))
/ 8)
.= ((((1
- (2
* (
sqrt 5)))
+ 5)
* (1
- (
sqrt 5)))
/ 8) by
SQUARE_1:def 2
.= (((6
- (8
* (
sqrt 5)))
+ (2
* ((
sqrt 5)
^2 )))
/ 8)
.= (((6
- (8
* (
sqrt 5)))
+ (2
* 5))
/ 8) by
SQUARE_1:def 2
.= (2
- (
sqrt 5));
end;
Lm9: (
tau_bar
to_power 6)
= (9
- (4
* (
sqrt 5)))
proof
thus (
tau_bar
to_power 6)
= (
tau_bar
to_power (3
* 2))
.= ((2
- (
sqrt 5))
to_power 2) by
Lm8,
NEWTON: 9
.= ((2
- (
sqrt 5))
^2 ) by
POWER: 46
.= (((2
^2 )
- ((2
* 2)
* (
sqrt 5)))
+ ((
sqrt 5)
^2 ))
.= ((4
- (4
* (
sqrt 5)))
+ 5) by
SQUARE_1:def 2
.= (9
- (4
* (
sqrt 5)));
end;
theorem ::
FIB_NUM4:5
Th5:
|.
tau_bar .|
< 1
proof
(
sqrt 5)
< (
sqrt (3
^2 )) by
SQUARE_1: 27;
then (
sqrt 5)
< 3 by
SQUARE_1:def 2;
then ((
sqrt 5)
- 1)
< ((2
+ 1)
- 1) by
XREAL_1: 9;
then (
- ((
sqrt 5)
- 1))
> (
- 2) by
XREAL_1: 24;
then ((1
- (
sqrt 5))
/ 2)
> ((
- 2)
/ 2) by
XREAL_1: 74;
then
A1:
|.
tau_bar .|
< (
|.(
- 1).|
+
|.
0 .|) by
FIB_NUM:def 2,
MEASURE6: 37;
|.(
- 1).|
= (
- (
- 1)) by
ABSVALUE:def 1;
then
|.
tau_bar .|
< (1
+
0 ) by
A1;
hence thesis;
end;
Lm10: for n be
Nat holds ((
|.
tau_bar .|
to_power n)
* (1
/ (
sqrt 5)))
>
0
proof
let n be
Nat;
set b =
tau_bar ;
(
sqrt 5)
>
0 by
SQUARE_1: 25;
then (
|.b.|
to_power n)
>
0 & (1
/ (
sqrt 5))
>
0 by
POWER: 34;
hence thesis;
end;
Lm11: for n be
Nat holds ((
|.
tau_bar .|
to_power n)
* (1
/ (
sqrt 5)))
< (1
/ 2)
proof
let n be
Nat;
A1: 2
< (
sqrt 5) by
SQUARE_1: 20,
SQUARE_1: 27;
then
A2: (2
/ 2)
< ((
sqrt 5)
/ 2) by
XREAL_1: 74;
set b =
tau_bar ;
A3: (
sqrt 5)
<>
0 by
SQUARE_1: 17,
SQUARE_1: 27;
A4: (
sqrt 5)
>
0 by
SQUARE_1: 25;
per cases ;
suppose
A5: n
<>
0 ;
|.b.|
< 1 &
|.b.|
>
0 by
Th5;
then (
|.b.|
to_power n)
< (1
to_power n) by
A5,
POWER: 37;
then (
|.b.|
to_power n)
< 1;
then (
|.b.|
to_power n)
< ((
sqrt 5)
/ 2) by
A2,
XXREAL_0: 2;
then ((
|.b.|
to_power n)
/ ((
sqrt 5)
/ 1))
< (((
sqrt 5)
/ 2)
/ ((
sqrt 5)
/ 1)) by
A4,
XREAL_1: 74;
then ((
|.b.|
to_power n)
/ (
sqrt 5))
< ((1
* (
sqrt 5))
/ (2
* (
sqrt 5))) by
XCMPLX_1: 84;
then ((
|.b.|
to_power n)
* (1
/ (
sqrt 5)))
< ((1
* (
sqrt 5))
/ (2
* (
sqrt 5))) by
XCMPLX_1: 99;
hence thesis by
A3,
XCMPLX_1: 91;
end;
suppose n
=
0 ;
then (
|.
tau_bar .|
to_power n)
= 1 by
POWER: 24;
hence thesis by
A1,
XREAL_1: 76;
end;
end;
theorem ::
FIB_NUM4:6
Th6: for n be
Nat, r be non
zero
Real st n is
even holds (r
to_power n)
>
0
proof
let n be
Nat;
let r be non
zero
Real;
assume
A1: n is
even;
per cases ;
suppose r
>
0 ;
hence thesis by
POWER: 34;
end;
suppose
A2: r
<
0 ;
(r
to_power n)
= ((
- r)
to_power n) by
Th3,
A1;
hence thesis by
A2,
POWER: 34;
end;
end;
theorem ::
FIB_NUM4:7
Th7: for n be
Nat, r be
Real st n is
odd & r
<
0 holds (r
to_power n)
<
0
proof
let n be
Nat;
let r be
Real;
assume
A1: n is
odd;
assume
A2: r
<
0 ;
A3: (r
to_power n)
= ((
- (
- r))
to_power n)
.= (
- ((
- r)
to_power n)) by
Th4,
A1,
A2;
((
- r)
to_power n)
>
0 by
A2,
POWER: 34;
hence thesis by
A3;
end;
theorem ::
FIB_NUM4:8
Th8: for n be
Nat st n
<>
0 holds (
tau_bar
to_power n)
< (1
/ 2)
proof
let n be
Nat;
assume n
<>
0 ;
then (n
+ 1)
> (
0
+ 1) by
XREAL_1: 8;
then (n
+ 1)
>= (1
+ 1) by
NAT_1: 13;
then
A1: (n
+ 1)
= 2 or n
>= 2 by
NAT_1: 8;
per cases by
A1;
suppose n
= 1;
hence thesis;
end;
suppose n
>= 2;
then n
<>
0 & n
<> 1;
then
A2: n is non
trivial
Nat by
NAT_2:def 1;
(
tau_bar
to_power n)
< (1
/ 2)
proof
defpred
P[
Nat] means (
|.
tau_bar .|
to_power $1)
< (1
/ 2);
A3: (
|.
tau_bar .|
to_power 2)
= ((
-
tau_bar )
to_power 2) by
ABSVALUE:def 1
.= ((
-
tau_bar )
^2 ) by
POWER: 46
.= ((((1
^2 )
- ((2
* 1)
* (
sqrt 5)))
+ ((
sqrt 5)
^2 ))
/ 4) by
FIB_NUM:def 2
.= (((1
- (2
* (
sqrt 5)))
+ 5)
/ 4) by
SQUARE_1:def 2
.= ((3
- (
sqrt 5))
/ 2);
(
sqrt 5)
> 2 by
SQUARE_1: 20,
SQUARE_1: 27;
then (
- (
sqrt 5))
< (
- 2) by
XREAL_1: 24;
then ((
- (
sqrt 5))
+ 3)
< ((
- 2)
+ 3) by
XREAL_1: 8;
then
A4:
P[2] by
A3,
XREAL_1: 74;
A5: for k be non
trivial
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be non
trivial
Nat;
assume
P[k];
then ((
|.
tau_bar .|
to_power k)
*
|.
tau_bar .|)
< ((1
/ 2)
*
|.
tau_bar .|) by
XREAL_1: 68;
then
A6: ((
|.
tau_bar .|
to_power k)
* (
|.
tau_bar .|
to_power 1))
< ((1
/ 2)
*
|.
tau_bar .|);
((1
/ 2)
*
|.
tau_bar .|)
< ((1
/ 2)
* 1) by
Th5,
XREAL_1: 68;
then ((
|.
tau_bar .|
to_power k)
* (
|.
tau_bar .|
to_power 1))
< (1
/ 2) by
A6,
XXREAL_0: 2;
hence thesis by
Th2;
end;
A7: for n be non
trivial
Nat holds
P[n] from
NAT_2:sch 2(
A4,
A5);
for n be non
trivial
Nat holds (
tau_bar
to_power n)
< (1
/ 2)
proof
let n be non
trivial
Nat;
(
|.
tau_bar .|
to_power n)
< (1
/ 2) by
A7;
then
|.(
tau_bar
to_power n).|
< (1
/ 2) & (
tau_bar
to_power n)
<=
|.(
tau_bar
to_power n).| by
ABSVALUE: 4,
SERIES_1: 2;
hence thesis by
XXREAL_0: 2;
end;
hence thesis by
A2;
end;
hence thesis;
end;
end;
theorem ::
FIB_NUM4:9
for n,m be
Nat, r be
Real st m is
odd & n
>= m & r
<
0 & r
> (
- 1) holds (r
to_power n)
>= (r
to_power m)
proof
let n,m be
Nat;
let r be
Real;
assume
A1: m is
odd;
assume
A2: n
>= m;
assume
A3: r
<
0 & r
> (
- 1);
A4: (n
+ 1)
> (m
+
0 ) by
A2,
XREAL_1: 8;
per cases by
A4,
NAT_1: 22;
suppose n
= m;
hence thesis;
end;
suppose
A5: n
> m;
then
reconsider t = (n
- m) as
Nat by
NAT_1: 21;
A6: ((r
to_power n)
- (r
to_power m))
= ((r
to_power (t
+ m))
- (r
to_power m))
.= (((r
to_power t)
* (r
to_power m))
- (1
* (r
to_power m))) by
Th2,
A3
.= (((r
to_power t)
- 1)
* (r
to_power m));
A7: (r
to_power m)
<=
0 by
Th7,
A3,
A1;
A8: t
<>
0 by
A5;
A9:
|.r.|
<= 1 by
A3,
ABSVALUE: 5;
|.r.|
<> 1
proof
assume
|.r.|
= 1;
then
|.r.|
=
|.1.|;
hence thesis by
A3,
ABSVALUE: 28;
end;
then
A10:
|.r.|
< 1 by
A9,
XXREAL_0: 1;
|.r.|
>
0 & t
>
0 by
A8,
A3;
then (
|.r.|
to_power t)
< (1
to_power t) by
A10,
POWER: 37;
then (
|.r.|
to_power t)
< 1;
then
|.(r
to_power t).|
< 1 & (r
to_power t)
<=
|.(r
to_power t).| by
ABSVALUE: 4,
SERIES_1: 2;
then (r
to_power t)
< 1 by
XXREAL_0: 2;
then ((r
to_power t)
- 1)
<= (1
- 1) by
XREAL_1: 9;
then (((r
to_power n)
- (r
to_power m))
+ (r
to_power m))
>= (
0
+ (r
to_power m)) by
A6,
A7,
XREAL_1: 6;
hence thesis;
end;
end;
theorem ::
FIB_NUM4:10
Th10: for n,m be
Nat st m is
odd & n
>= m holds (
tau_bar
to_power n)
>= (
tau_bar
to_power m)
proof
let n,m be
Nat;
assume
A1: m is
odd;
assume n
>= m;
then
A2: (n
+ 1)
> (m
+
0 ) by
XREAL_1: 8;
per cases by
A2,
NAT_1: 22;
suppose n
= m;
hence thesis;
end;
suppose
A3: n
> m;
then
reconsider t = (n
- m) as
Nat by
NAT_1: 21;
A4: ((
tau_bar
to_power n)
- (
tau_bar
to_power m))
= ((
tau_bar
to_power (t
+ m))
- (
tau_bar
to_power m))
.= (((
tau_bar
to_power t)
* (
tau_bar
to_power m))
- (1
* (
tau_bar
to_power m))) by
Th2
.= (((
tau_bar
to_power t)
- 1)
* (
tau_bar
to_power m));
A5: (
tau_bar
to_power m)
<=
0 by
Th7,
A1;
t
<>
0 by
A3;
then
|.
tau_bar .|
>
0 & t
>
0 ;
then (
|.
tau_bar .|
to_power t)
< (1
to_power t) by
Th5,
POWER: 37;
then (
|.
tau_bar .|
to_power t)
< 1;
then
|.(
tau_bar
to_power t).|
< 1 & (
tau_bar
to_power t)
<=
|.(
tau_bar
to_power t).| by
ABSVALUE: 4,
SERIES_1: 2;
then (
tau_bar
to_power t)
< 1 by
XXREAL_0: 2;
then ((
tau_bar
to_power t)
- 1)
<= (1
- 1) by
XREAL_1: 9;
then (((
tau_bar
to_power n)
- (
tau_bar
to_power m))
+ (
tau_bar
to_power m))
>= (
0
+ (
tau_bar
to_power m)) by
A4,
A5,
XREAL_1: 6;
hence thesis;
end;
end;
theorem ::
FIB_NUM4:11
Th11: for n,m be
Nat st n is
even & m is
even & n
>= m holds (
tau_bar
to_power n)
<= (
tau_bar
to_power m)
proof
let n,m be
Nat;
assume
A1: n is
even & m is
even & n
>= m;
then
A2: (n
+ 1)
> (m
+
0 ) by
XREAL_1: 8;
per cases by
A2,
NAT_1: 22;
suppose n
= m;
hence thesis;
end;
suppose
A3: n
> m;
then
reconsider t = (n
- m) as
Nat by
NAT_1: 21;
A4: ((
tau_bar
to_power n)
- (
tau_bar
to_power m))
= ((
tau_bar
to_power (t
+ m))
- (
tau_bar
to_power m))
.= (((
tau_bar
to_power t)
* (
tau_bar
to_power m))
- (1
* (
tau_bar
to_power m))) by
Th2
.= (((
tau_bar
to_power t)
- 1)
* (
tau_bar
to_power m));
A5: (
tau_bar
to_power m)
>
0 by
Th6,
A1;
(n
- m)
> (m
- m) by
A3,
XREAL_1: 9;
then (
tau_bar
to_power t)
< 1 by
Th8,
XXREAL_0: 2;
then ((
tau_bar
to_power t)
- 1)
< (1
- 1) by
XREAL_1: 9;
then (((
tau_bar
to_power n)
- (
tau_bar
to_power m))
+ (
tau_bar
to_power m))
< (
0
+ (
tau_bar
to_power m)) by
A4,
A5,
XREAL_1: 6;
hence thesis;
end;
end;
theorem ::
FIB_NUM4:12
Th12: for m,n be non
zero
Nat st m
>= n holds (
Lucas m)
>= (
Lucas n)
proof
let m,n be non
zero
Nat;
assume
A1: m
>= n;
per cases by
A1,
XXREAL_0: 1;
suppose m
= n;
hence thesis;
end;
suppose
A2: m
> n;
then
consider k be
Nat such that
A3: m
= (n
+ k) by
NAT_1: 10;
A4: for k,n be non
zero
Nat holds (
Lucas (n
+ k))
>= (
Lucas n)
proof
defpred
P[
Nat] means for n be non
zero
Nat holds (
Lucas (n
+ $1))
>= (
Lucas n);
A5:
P[1]
proof
let n be non
zero
Nat;
(n
-
0 ) is
Element of
NAT & (n
+ 1) is
Element of
NAT by
ORDINAL1:def 12;
hence thesis by
FIB_NUM3: 18;
end;
A6: for k be non
zero
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be non
zero
Nat;
assume
A7:
P[k];
for n be non
zero
Nat holds (
Lucas (n
+ (k
+ 1)))
>= (
Lucas n)
proof
let n be non
zero
Nat;
reconsider p = (n
+ k) as
Element of
NAT by
ORDINAL1:def 12;
p is non
zero
Element of
NAT ;
then (
Lucas (n
+ k))
>= (
Lucas n) & (
Lucas ((n
+ k)
+ 1))
>= (
Lucas (n
+ k)) by
A7,
FIB_NUM3: 18;
hence thesis by
XXREAL_0: 2;
end;
hence thesis;
end;
for k be non
zero
Nat holds
P[k] from
NAT_1:sch 10(
A5,
A6);
hence thesis;
end;
k is non
zero
Nat & n is non
zero
Nat by
A3,
A2;
hence thesis by
A3,
A4;
end;
end;
Lm12: (
tau_bar
^2 )
= ((3
- (
sqrt 5))
/ 2) by
Lm7,
POWER: 46;
Lm13: (
sqrt 5)
>
0 by
SQUARE_1: 25;
then ((
sqrt 5)
+ 3)
> ((
- (
sqrt 5))
+ 3) by
XREAL_1: 6;
then (((
sqrt 5)
+ 3)
/ 2)
> (((
- (
sqrt 5))
+ 3)
/ 2) by
XREAL_1: 74;
then
Lm14: (
tau
^2 )
> (
tau_bar
^2 ) by
Lm6,
Lm12,
POWER: 46;
(
sqrt 5)
< (
sqrt (3
^2 )) by
SQUARE_1: 27;
then (
sqrt 5)
< 3 by
SQUARE_1:def 2;
then ((
sqrt 5)
- 3)
< (3
- 3) by
XREAL_1: 9;
then
Lm15: (((
sqrt 5)
- 3)
/ 2)
<
0 ;
theorem ::
FIB_NUM4:13
for n be non
zero
Nat holds (
tau
to_power n)
> (
tau_bar
to_power n)
proof
let n be non
zero
Nat;
set tb =
tau_bar ;
per cases ;
suppose
A1: n is
even;
consider k be
Nat such that
A2: n
= (2
* k) by
A1,
ABIAN:def 2;
A3: k
>
0 by
A2;
A4: (
tau
to_power n)
= ((
tau
to_power 2)
to_power k) by
A2,
NEWTON: 9
.= ((
tau
^2 )
to_power k) by
POWER: 46;
(
tau_bar
to_power n)
= ((
tau_bar
to_power 2)
to_power k) by
A2,
NEWTON: 9
.= ((
tau_bar
^2 )
to_power k) by
POWER: 46;
hence thesis by
A3,
A4,
Lm14,
POWER: 37;
end;
suppose n is
odd;
then
consider k be
Nat such that
A5: n
= ((2
* k)
+ 1) by
ABIAN: 9;
set kk = (
tau
to_power (2
* k));
A6: ((
tau
/ tb)
to_power (2
* k))
= (((
tau
/ tb)
to_power 2)
to_power k) by
NEWTON: 9
.= (((
tau
/ tb)
^2 )
to_power k) by
POWER: 46;
(tb
to_power (2
* k))
= ((tb
to_power 2)
to_power k) by
NEWTON: 9
.= ((
tau_bar
^2 )
to_power k) by
POWER: 46;
then
A7: (tb
to_power (2
* k))
>
0 by
POWER: 34;
((
tau
/ tb)
to_power (2
* k))
> (((
sqrt 5)
- 3)
/ 2) by
A6,
Lm15,
POWER: 34;
then (((
tau
/ tb)
to_power (2
* k))
* (((
- 3)
- (
sqrt 5))
/ 2))
< ((tb
/
tau )
* (((
- 3)
- (
sqrt 5))
/ 2)) by
Lm13,
Lm4,
XREAL_1: 69;
then (((
tau
/ tb)
to_power (2
* k))
* (
tau
/ tb))
< 1 by
Lm5,
XCMPLX_1: 112;
then ((kk
/ (tb
to_power (2
* k)))
* (
tau
/ tb))
< 1 by
Th1;
then ((kk
* (1
/ (tb
to_power (2
* k))))
* (
tau
/ tb))
< 1 by
XCMPLX_1: 99;
then (((kk
* (1
/ (tb
to_power (2
* k))))
* (
tau
/ tb))
* (tb
to_power (2
* k)))
< (1
* (tb
to_power (2
* k))) by
A7,
XREAL_1: 68;
then ((kk
* (
tau
/ tb))
* ((tb
to_power (2
* k))
* (1
/ (tb
to_power (2
* k)))))
< (1
* (tb
to_power (2
* k)));
then ((kk
* (
tau
/ tb))
* ((tb
to_power (2
* k))
/ (tb
to_power (2
* k))))
< (1
* (tb
to_power (2
* k))) by
XCMPLX_1: 99;
then ((kk
* (
tau
/ tb))
* 1)
< (tb
to_power (2
* k)) by
A7,
XCMPLX_1: 60;
then ((kk
* (
tau
* (1
/ tb)))
* 1)
< (tb
to_power (2
* k)) by
XCMPLX_1: 99;
then (((kk
* (
tau
* (1
/ tb)))
* 1)
* tb)
> ((tb
to_power (2
* k))
* tb) by
XREAL_1: 69;
then ((kk
*
tau )
* (((1
/ tb)
* 1)
* tb))
> ((tb
to_power (2
* k))
* tb);
then ((kk
*
tau )
* (tb
/ tb))
> ((tb
to_power (2
* k))
* tb) by
XCMPLX_1: 99;
then ((kk
*
tau )
* 1)
> ((tb
to_power (2
* k))
* tb) by
XCMPLX_1: 60;
then (kk
*
tau )
> ((tb
to_power (2
* k))
* (tb
to_power 1));
then (kk
*
tau )
> (tb
to_power ((2
* k)
+ 1)) by
Th2;
then (kk
* (
tau
to_power 1))
> (tb
to_power ((2
* k)
+ 1));
hence thesis by
A5,
Th2;
end;
end;
theorem ::
FIB_NUM4:14
Th14: for n be
Nat st n
> 1 holds (
- (1
/ 2))
< (
tau_bar
to_power n)
proof
let n be
Nat;
assume
A1: n
> 1;
A2: (n
+ 1)
> (1
+ 1) by
A1,
XREAL_1: 8;
per cases ;
suppose n is
even;
then
consider k be
Nat such that
A3: n
= (2
* k) by
ABIAN:def 2;
A4: (
0
^2 )
=
0 ;
(
tau_bar
to_power n)
= ((
tau_bar
to_power k)
to_power 2) by
A3,
NEWTON: 9
.= ((
tau_bar
to_power k)
^2 ) by
POWER: 46;
hence thesis by
A4,
SQUARE_1: 12;
end;
suppose
A5: n is
odd;
n
>= 2 by
A2,
NAT_1: 13;
then n
= 2 or n
> 2 by
XXREAL_0: 1;
then (n
+ 1)
> (2
+ 1) by
A5,
POLYFORM: 5,
XREAL_1: 6;
then n
>= 3 by
NAT_1: 13;
then
A6: (
tau_bar
to_power n)
>= (
tau_bar
to_power 3) by
Th10,
POLYFORM: 6;
(
sqrt 5)
< (
sqrt ((5
/ 2)
^2 )) by
SQUARE_1: 27;
then (
sqrt 5)
< (5
/ 2) by
SQUARE_1:def 2;
then (2
* (
sqrt 5))
< (2
* (5
/ 2)) by
XREAL_1: 68;
then (
- (2
* (
sqrt 5)))
> (
- 5) by
XREAL_1: 24;
then ((
- (2
* (
sqrt 5)))
+ 4)
> ((
- 5)
+ 4) by
XREAL_1: 6;
then ((2
* (2
- (
sqrt 5)))
/ 2)
> ((
- 1)
/ 2) by
XREAL_1: 74;
hence thesis by
A6,
Lm8,
XXREAL_0: 2;
end;
end;
theorem ::
FIB_NUM4:15
Th15: for n be
Nat st n
> 2 holds (
tau_bar
to_power n)
>= (
- (1
/ (
sqrt 5)))
proof
let n be
Nat;
assume n
> 2;
then n
>= (2
+ 1) by
NAT_1: 13;
then
A1: (
tau_bar
to_power n)
>= (
tau_bar
to_power 3) by
Th10,
POLYFORM: 6;
A2: (
sqrt 5)
>
0 by
SQUARE_1: 25;
(
sqrt 5)
>= 2 by
SQUARE_1: 20,
SQUARE_1: 26;
then (2
* (
sqrt 5))
>= (2
* 2) by
XREAL_1: 64;
then ((2
* (
sqrt 5))
- 5)
>= (4
- 5) by
XREAL_1: 9;
then ((2
* (
sqrt 5))
- ((
sqrt 5)
^2 ))
>= (
- 1) by
SQUARE_1:def 2;
then (((2
- (
sqrt 5))
* (
sqrt 5))
/ (
sqrt 5))
>= ((
- 1)
/ (
sqrt 5)) by
A2,
XREAL_1: 72;
then (((2
- (
sqrt 5))
* (
sqrt 5))
/ (
sqrt 5))
>= (
- (1
/ (
sqrt 5))) by
XCMPLX_1: 187;
then (2
- (
sqrt 5))
>= (
- (1
/ (
sqrt 5))) by
A2,
XCMPLX_1: 89;
hence thesis by
A1,
Lm8,
XXREAL_0: 2;
end;
theorem ::
FIB_NUM4:16
Th16: for n be
Nat st n
>= 2 holds (
tau_bar
to_power n)
<= (1
/ (
sqrt 5))
proof
let n be
Nat;
assume
A1: n
>= 2;
per cases ;
suppose
A2: n is
even;
A3: (
sqrt 5)
>
0 by
SQUARE_1: 25;
A4: (
tau_bar
to_power n)
<= ((3
- (
sqrt 5))
/ 2) by
Lm7,
A1,
A2,
Th11,
POLYFORM: 5;
(
sqrt 5)
<= (
sqrt ((7
/ 3)
^2 )) by
SQUARE_1: 26;
then (
sqrt 5)
<= (7
/ 3) by
SQUARE_1:def 2;
then (3
* (
sqrt 5))
<= ((7
/ 3)
* 3) by
XREAL_1: 64;
then ((3
* (
sqrt 5))
- 5)
<= (7
- 5) by
XREAL_1: 9;
then ((3
* (
sqrt 5))
- ((
sqrt 5)
^2 ))
<= 2 by
SQUARE_1:def 2;
then (((3
* (
sqrt 5))
- ((
sqrt 5)
* (
sqrt 5)))
/ 2)
<= (2
/ 2) by
XREAL_1: 72;
then ((((3
- (
sqrt 5))
/ 2)
* (
sqrt 5))
/ (
sqrt 5))
<= (1
/ (
sqrt 5)) by
A3,
XREAL_1: 72;
then ((3
- (
sqrt 5))
/ 2)
<= (1
/ (
sqrt 5)) by
A3,
XCMPLX_1: 89;
hence thesis by
A4,
XXREAL_0: 2;
end;
suppose n is
odd;
then
A5: (
tau_bar
to_power n)
<
0 by
Th7;
(
sqrt 5)
>= (
sqrt
0 ) by
SQUARE_1: 26;
hence thesis by
A5,
SQUARE_1: 17;
end;
end;
theorem ::
FIB_NUM4:17
Th17: for n be
Nat holds (((
tau_bar
to_power n)
/ (
sqrt 5))
+ (1
/ 2))
>
0 & (((
tau_bar
to_power n)
/ (
sqrt 5))
+ (1
/ 2))
< 1
proof
let n be
Nat;
set b = ((1
- (
sqrt 5))
/ 2);
A1:
|.b.|
= (
- b) by
ABSVALUE:def 1,
FIB_NUM:def 2;
A2: ((
|.b.|
to_power n)
* (1
/ (
sqrt 5)))
< (1
/ 2) by
Lm11,
FIB_NUM:def 2;
(((b
to_power n)
* (1
/ (
sqrt 5)))
+ (1
/ 2))
>
0 & (((b
to_power n)
* (1
/ (
sqrt 5)))
+ (1
/ 2))
< 1
proof
per cases ;
suppose n is
even;
then (
|.b.|
to_power n)
= (b
to_power n) by
Th3,
A1,
FIB_NUM:def 2;
then ((b
to_power n)
* (1
/ (
sqrt 5)))
>
0 & ((b
to_power n)
* (1
/ (
sqrt 5)))
< (1
/ 2) by
Lm10,
Lm11,
FIB_NUM:def 2;
then ((b
to_power n)
* (1
/ (
sqrt 5)))
>
0 & (((b
to_power n)
* (1
/ (
sqrt 5)))
+ (1
/ 2))
< ((1
/ 2)
+ (1
/ 2)) by
XREAL_1: 8;
hence thesis;
end;
suppose n is
odd;
then (
|.b.|
to_power n)
= (
- (b
to_power n)) by
Th4,
A1,
FIB_NUM:def 2;
then ((
- (b
to_power n))
* (1
/ (
sqrt 5)))
>
0 & (
- ((b
to_power n)
* (1
/ (
sqrt 5))))
< (1
/ 2) by
Lm10,
A2,
FIB_NUM:def 2;
then (
- ((b
to_power n)
/ (
sqrt 5)))
>
0 & (
- ((b
to_power n)
/ (
sqrt 5)))
< (1
/ 2) by
XCMPLX_1: 99;
then ((b
to_power n)
/ (
sqrt 5))
<
0 & (
- (
- ((b
to_power n)
/ (
sqrt 5))))
> (
- (1
/ 2)) by
XREAL_1: 24;
then (((b
to_power n)
/ (
sqrt 5))
+ (1
/ 2))
< (
0
+ (1
/ 2)) & (((b
to_power n)
/ (
sqrt 5))
+ (1
/ 2))
> ((
- (1
/ 2))
+ (1
/ 2)) by
XREAL_1: 8;
then (((b
to_power n)
/ (
sqrt 5))
+ (1
/ 2))
< 1 & (((b
to_power n)
/ (
sqrt 5))
+ (1
/ 2))
>
0 by
XXREAL_0: 2;
hence thesis by
XCMPLX_1: 99;
end;
end;
hence thesis by
FIB_NUM:def 2,
XCMPLX_1: 99;
end;
begin
theorem ::
FIB_NUM4:18
for n be
Nat holds
[\(((
tau
to_power n)
/ (
sqrt 5))
+ (1
/ 2))/]
= (
Fib n)
proof
let n be
Nat;
set tn = (
tau_bar
to_power n);
A1: (
Fib n)
= (((((
tau
to_power n)
- tn)
/ (
sqrt 5))
+ (1
/ 2))
- (1
/ 2)) by
FIB_NUM: 7
.= (((((
tau
to_power n)
/ (
sqrt 5))
- (tn
/ (
sqrt 5)))
+ (1
/ 2))
- (1
/ 2)) by
XCMPLX_1: 120
.= ((((
tau
to_power n)
/ (
sqrt 5))
+ (1
/ 2))
- ((tn
/ (
sqrt 5))
+ (1
/ 2)));
((tn
/ (
sqrt 5))
+ (1
/ 2))
>
0 by
Th17;
then
A2: (((tn
/ (
sqrt 5))
+ (1
/ 2))
+ (
Fib n))
> (
0
+ (
Fib n)) by
XREAL_1: 6;
((tn
/ (
sqrt 5))
+ (1
/ 2))
< 1 by
Th17;
then (((tn
/ (
sqrt 5))
+ (1
/ 2))
- (1
/ 2))
< (1
- (1
/ 2)) by
XREAL_1: 9;
then (
- (tn
/ (
sqrt 5)))
> (
- (1
/ 2)) by
XREAL_1: 24;
then ((
- (tn
/ (
sqrt 5)))
+ ((
tau
to_power n)
/ (
sqrt 5)))
> ((
- (1
/ 2))
+ ((
tau
to_power n)
/ (
sqrt 5))) by
XREAL_1: 6;
then (((
tau
to_power n)
/ (
sqrt 5))
- (tn
/ (
sqrt 5)))
> ((
- (1
/ 2))
+ ((
tau
to_power n)
/ (
sqrt 5)));
then (((
tau
to_power n)
- tn)
/ (
sqrt 5))
> ((
- (1
/ 2))
+ ((
tau
to_power n)
/ (
sqrt 5))) by
XCMPLX_1: 120;
then (
Fib n)
> ((((
tau
to_power n)
/ (
sqrt 5))
+ (1
/ 2))
- 1) by
FIB_NUM: 7;
hence thesis by
A2,
A1,
INT_1:def 6;
end;
theorem ::
FIB_NUM4:19
for n be
Nat st n
<>
0 holds
[/(((
tau
to_power n)
/ (
sqrt 5))
- (1
/ 2))\]
= (
Fib n)
proof
let n be
Nat;
set tn = (
tau
to_power n);
set tbn = (
tau_bar
to_power n);
assume
A1: n
<>
0 ;
A2: (
sqrt 5)
>
0 by
SQUARE_1: 25;
A3: ((tn
/ (
sqrt 5))
- (1
/ 2))
<= (
Fib n)
proof
1
<= (
sqrt 5) by
SQUARE_1: 18,
SQUARE_1: 26;
then (1
/ 2)
<= ((
sqrt 5)
/ 2) by
XREAL_1: 72;
then tbn
<= ((
sqrt 5)
/ 2) by
A1,
Th8,
XXREAL_0: 2;
then (tbn
/ (
sqrt 5))
<= (((
sqrt 5)
/ 2)
/ (
sqrt 5)) by
A2,
XREAL_1: 72;
then (tbn
/ (
sqrt 5))
<= (((
sqrt 5)
/ (
sqrt 5))
/ 2) by
XCMPLX_1: 48;
then (tbn
/ (
sqrt 5))
<= (1
/ 2) by
A2,
XCMPLX_1: 60;
then (
- (tbn
/ (
sqrt 5)))
>= (
- (1
/ 2)) by
XREAL_1: 24;
then ((
- (tbn
/ (
sqrt 5)))
+ (tn
/ (
sqrt 5)))
>= ((
- (1
/ 2))
+ (tn
/ (
sqrt 5))) by
XREAL_1: 6;
then ((tn
/ (
sqrt 5))
- (tbn
/ (
sqrt 5)))
>= ((
- (1
/ 2))
+ (tn
/ (
sqrt 5)));
then ((tn
- tbn)
/ (
sqrt 5))
>= ((tn
/ (
sqrt 5))
- (1
/ 2)) by
XCMPLX_1: 120;
hence thesis by
FIB_NUM: 7;
end;
(((tn
/ (
sqrt 5))
- (1
/ 2))
+ 1)
> (
Fib n)
proof
(n
+ 1)
> (
0
+ 1) by
A1,
XREAL_1: 6;
then
A4: n
>= 1 by
NAT_1: 13;
per cases by
A4,
XXREAL_0: 1;
suppose
A5: n
= 1;
then
A6: (((tn
/ (
sqrt 5))
- (1
/ 2))
+ 1)
= (((
tau
/ (
sqrt 5))
- (1
/ 2))
+ 1)
.= ((((1
+ (
sqrt 5))
/ 2)
/ (
sqrt 5))
+ (1
- (1
/ 2))) by
FIB_NUM:def 1
.= ((((1
+ (
sqrt 5))
/ (
sqrt 5))
/ 2)
+ (1
/ 2)) by
XCMPLX_1: 48
.= ((((1
+ (
sqrt 5))
/ (
sqrt 5))
+ 1)
/ 2)
.= ((((1
/ (
sqrt 5))
+ ((
sqrt 5)
/ (
sqrt 5)))
+ 1)
/ 2) by
XCMPLX_1: 62
.= ((((1
/ (
sqrt 5))
+ 1)
+ 1)
/ 2) by
A2,
XCMPLX_1: 60
.= (((1
/ (
sqrt 5))
/ 2)
+ (2
/ 2));
(((1
/ (
sqrt 5))
/ 2)
+ 1)
> (
0
+ 1) by
A2,
XREAL_1: 6;
hence thesis by
A5,
A6,
PRE_FF: 1;
end;
suppose
A7: n
> 1;
1
< (
sqrt 5) by
SQUARE_1: 18,
SQUARE_1: 27;
then (1
/ 2)
< ((
sqrt 5)
/ 2) by
XREAL_1: 74;
then
A8: (
- (1
/ 2))
> (
- ((
sqrt 5)
/ 2)) by
XREAL_1: 24;
tbn
> (
- (1
/ 2)) by
A7,
Th14;
then tbn
> (
- ((
sqrt 5)
/ 2)) by
A8,
XXREAL_0: 2;
then (tbn
/ (
sqrt 5))
> ((
- ((
sqrt 5)
/ 2))
/ (
sqrt 5)) by
A2,
XREAL_1: 74;
then (tbn
/ (
sqrt 5))
> (
- (((
sqrt 5)
/ 2)
/ (
sqrt 5))) by
XCMPLX_1: 187;
then (tbn
/ (
sqrt 5))
> (
- (((
sqrt 5)
/ (
sqrt 5))
/ 2)) by
XCMPLX_1: 48;
then (tbn
/ (
sqrt 5))
> (
- (1
/ 2)) by
A2,
XCMPLX_1: 60;
then (
- (tbn
/ (
sqrt 5)))
< (
- (
- (1
/ 2))) by
XREAL_1: 24;
then ((
- (tbn
/ (
sqrt 5)))
+ (tn
/ (
sqrt 5)))
< ((1
/ 2)
+ (tn
/ (
sqrt 5))) by
XREAL_1: 6;
then ((tn
/ (
sqrt 5))
- (tbn
/ (
sqrt 5)))
< ((1
/ 2)
+ (tn
/ (
sqrt 5)));
then ((tn
- tbn)
/ (
sqrt 5))
< ((1
/ 2)
+ (tn
/ (
sqrt 5))) by
XCMPLX_1: 120;
hence thesis by
FIB_NUM: 7;
end;
end;
hence thesis by
A3,
INT_1:def 7;
end;
set s5 = (
sqrt 5);
Lm16: 1
< s5 by
SQUARE_1: 18,
SQUARE_1: 27;
(1
- s5)
<>
0 by
SQUARE_1: 18,
SQUARE_1: 27;
then ((1
- s5)
^2 )
>
0 by
SQUARE_1: 12;
then
Lm17: ((1
- s5)
to_power 2)
>
0 by
POWER: 46;
Lm18: s5
>
0 by
SQUARE_1: 25;
(2
* 1)
< (2
* s5) by
Lm16,
XREAL_1: 68;
then (
- (2
* s5))
< (
- 2) by
XREAL_1: 24;
then ((
- (2
* s5))
+ 6)
< ((
- 2)
+ 6) by
XREAL_1: 8;
then ((1
- (2
* s5))
+ 5)
< 4;
then (((1
^2 )
- ((2
* 1)
* s5))
+ (s5
^2 ))
< 4 by
SQUARE_1:def 2;
then ((1
- s5)
^2 )
< (2
^2 );
then ((1
- s5)
^2 )
< (2
to_power 2) by
POWER: 46;
then
Lm19: ((1
- s5)
to_power 2)
< (2
to_power 2) by
POWER: 46;
theorem ::
FIB_NUM4:20
for n be
Nat st n
<>
0 holds
[\((
tau
to_power (2
* n))
/ (
sqrt 5))/]
= (
Fib (2
* n))
proof
let n be
Nat;
assume
A1: n
<>
0 ;
A2: (((
tau
to_power (2
* n))
/ s5)
- 1)
< (
Fib (2
* n))
proof
A3: (2
to_power (2
* n))
>
0 by
POWER: 34;
(((1
- s5)
to_power 2)
to_power n)
< ((2
to_power 2)
to_power n) by
A1,
Lm17,
Lm19,
POWER: 37;
then (((1
- s5)
to_power 2)
to_power n)
< (2
to_power (2
* n)) by
POWER: 33;
then ((1
- s5)
to_power (2
* n))
< (2
to_power (2
* n)) by
NEWTON: 9;
then (((1
- s5)
to_power (2
* n))
/ (2
to_power (2
* n)))
< ((2
to_power (2
* n))
/ (2
to_power (2
* n))) by
A3,
XREAL_1: 74;
then (((1
- s5)
to_power (2
* n))
/ (2
to_power (2
* n)))
< 1 by
A3,
XCMPLX_1: 60;
then (
tau_bar
to_power (2
* n))
< 1 by
Th1,
FIB_NUM:def 2;
then (
tau_bar
to_power (2
* n))
< s5 by
Lm16,
XXREAL_0: 2;
then ((
tau_bar
to_power (2
* n))
/ s5)
< (s5
/ s5) by
Lm18,
XREAL_1: 74;
then ((
tau_bar
to_power (2
* n))
/ s5)
< 1 by
Lm18,
XCMPLX_1: 60;
then (
- ((
tau_bar
to_power (2
* n))
/ s5))
> (
- 1) by
XREAL_1: 24;
then ((
- ((
tau_bar
to_power (2
* n))
/ s5))
+ ((
tau
to_power (2
* n))
/ s5))
> ((
- 1)
+ ((
tau
to_power (2
* n))
/ s5)) by
XREAL_1: 8;
then (((
tau
to_power (2
* n))
/ s5)
- ((
tau_bar
to_power (2
* n))
/ s5))
> ((
- 1)
+ ((
tau
to_power (2
* n))
/ s5));
then (((
tau
to_power (2
* n))
- (
tau_bar
to_power (2
* n)))
/ s5)
> ((
- 1)
+ ((
tau
to_power (2
* n))
/ (
sqrt 5))) by
XCMPLX_1: 120;
hence thesis by
FIB_NUM: 7;
end;
(
tau_bar
to_power (2
* n))
= ((
tau_bar
to_power 2)
|^ n) by
NEWTON: 9
.= ((
tau_bar
^2 )
to_power n) by
POWER: 46;
then (
tau_bar
to_power (2
* n))
>
0 by
POWER: 34;
then ((
- ((
tau_bar
to_power (2
* n))
/ (
sqrt 5)))
+ ((
tau
to_power (2
* n))
/ s5))
< (
0
+ ((
tau
to_power (2
* n))
/ s5)) by
Lm18,
XREAL_1: 8;
then (((
tau
to_power (2
* n))
/ s5)
- ((
tau_bar
to_power (2
* n))
/ s5))
< ((
tau
to_power (2
* n))
/ s5);
then (((
tau
to_power (2
* n))
- (
tau_bar
to_power (2
* n)))
/ s5)
< ((
tau
to_power (2
* n))
/ s5) by
XCMPLX_1: 120;
then (
Fib (2
* n))
<= ((
tau
to_power (2
* n))
/ s5) by
FIB_NUM: 7;
hence thesis by
A2,
INT_1:def 6;
end;
theorem ::
FIB_NUM4:21
for n be
Nat holds
[/((
tau
to_power ((2
* n)
+ 1))
/ (
sqrt 5))\]
= (
Fib ((2
* n)
+ 1))
proof
let n be
Nat;
A1: (
Fib ((2
* n)
+ 1))
= (((
tau
to_power ((2
* n)
+ 1))
- (
tau_bar
to_power ((2
* n)
+ 1)))
/ (
sqrt 5)) by
FIB_NUM: 7
.= (((
tau
to_power ((2
* n)
+ 1))
/ (
sqrt 5))
- ((
tau_bar
to_power ((2
* n)
+ 1))
/ (
sqrt 5))) by
XCMPLX_1: 120;
A2: (
sqrt 5)
>
0 by
SQUARE_1: 17,
SQUARE_1: 27;
(
tau_bar
to_power ((2
* n)
+ 1))
<
0
proof
set t = (
-
tau_bar );
A3: (
tau_bar
to_power ((2
* n)
+ 1))
= ((
- t)
to_power ((2
* n)
+ 1))
.= (
- (t
to_power ((2
* n)
+ 1))) by
Th4;
(t
to_power ((2
* n)
+ 1))
>
0 by
POWER: 34;
hence thesis by
A3;
end;
then
A4: ((
tau
to_power ((2
* n)
+ 1))
/ (
sqrt 5))
<= (
Fib ((2
* n)
+ 1)) by
A1,
A2,
XREAL_1: 46;
(((
tau_bar
to_power ((2
* n)
+ 1))
/ (
sqrt 5))
+ (1
/ 2))
>
0 by
Th17;
then ((((
tau_bar
to_power ((2
* n)
+ 1))
/ (
sqrt 5))
+ (1
/ 2))
- (1
/ 2))
> (
0
- (1
/ 2)) by
XREAL_1: 9;
then ((
tau_bar
to_power ((2
* n)
+ 1))
/ (
sqrt 5))
> (
- 1) by
XXREAL_0: 2;
then (
- ((
tau_bar
to_power ((2
* n)
+ 1))
/ (
sqrt 5)))
< (
- (
- 1)) by
XREAL_1: 24;
then ((
- ((
tau_bar
to_power ((2
* n)
+ 1))
/ (
sqrt 5)))
+ ((
tau
to_power ((2
* n)
+ 1))
/ (
sqrt 5)))
< (1
+ ((
tau
to_power ((2
* n)
+ 1))
/ (
sqrt 5))) by
XREAL_1: 8;
then (((
tau
to_power ((2
* n)
+ 1))
/ (
sqrt 5))
- ((
tau_bar
to_power ((2
* n)
+ 1))
/ (
sqrt 5)))
< (1
+ ((
tau
to_power ((2
* n)
+ 1))
/ (
sqrt 5)));
then (((
tau
to_power ((2
* n)
+ 1))
- (
tau_bar
to_power ((2
* n)
+ 1)))
/ (
sqrt 5))
< (1
+ ((
tau
to_power ((2
* n)
+ 1))
/ (
sqrt 5))) by
XCMPLX_1: 120;
then (
Fib ((2
* n)
+ 1))
< (((
tau
to_power ((2
* n)
+ 1))
/ (
sqrt 5))
+ 1) by
FIB_NUM: 7;
hence thesis by
A4,
INT_1:def 7;
end;
theorem ::
FIB_NUM4:22
Th22: for n be
Nat st n
>= 2 & n is
even holds (
Fib (n
+ 1))
=
[\((
tau
* (
Fib n))
+ 1)/]
proof
let n be
Nat;
assume
A1: n
>= 2 & n is
even;
set t =
tau ;
set tb =
tau_bar ;
A2: (
sqrt 5)
>
0 by
SQUARE_1: 17,
SQUARE_1: 27;
A3: (t
* tb)
= (((1
^2 )
- ((
sqrt 5)
^2 ))
/ 4) by
FIB_NUM:def 1,
FIB_NUM:def 2
.= ((1
- 5)
/ 4) by
SQUARE_1:def 2
.= (
- 1);
(tb
to_power n)
= ((
- tb)
to_power n) by
A1,
Th3;
then
A4: (tb
to_power n)
>
0 by
POWER: 34;
A5: ((tb
to_power 2)
+ 1)
= ((tb
^2 )
+ 1) by
POWER: 46
.= (((((1
^2 )
- ((2
* 1)
* (
sqrt 5)))
+ ((
sqrt 5)
^2 ))
/ 4)
+ 1) by
FIB_NUM:def 2
.= ((((1
- (2
* (
sqrt 5)))
+ 5)
/ 4)
+ 1) by
SQUARE_1:def 2
.= ((5
- (
sqrt 5))
/ 2)
.= ((((
sqrt 5)
^2 )
- (
sqrt 5))
/ 2) by
SQUARE_1:def 2
.= (
- ((
sqrt 5)
* tb)) by
FIB_NUM:def 2;
(t
* (
Fib n))
= (t
* (((t
to_power n)
- (tb
to_power n))
/ (
sqrt 5))) by
FIB_NUM: 7
.= ((t
* ((t
to_power n)
- (tb
to_power n)))
/ (
sqrt 5)) by
XCMPLX_1: 74
.= (((t
* (t
to_power n))
- (t
* (tb
to_power n)))
/ (
sqrt 5))
.= ((((t
to_power 1)
* (t
to_power n))
- (t
* (tb
to_power n)))
/ (
sqrt 5))
.= (((t
to_power (n
+ 1))
- (t
* (tb
to_power ((n
- 1)
+ 1))))
/ (
sqrt 5)) by
POWER: 27
.= (((t
to_power (n
+ 1))
- (t
* ((tb
to_power (n
- 1))
* (tb
to_power 1))))
/ (
sqrt 5)) by
Th2
.= (((t
to_power (n
+ 1))
- (t
* ((tb
to_power (n
- 1))
* tb)))
/ (
sqrt 5))
.= (((t
to_power (n
+ 1))
- ((t
* tb)
* (tb
to_power (n
- 1))))
/ (
sqrt 5))
.= (((((t
to_power (n
+ 1))
- ((
- 1)
* (tb
to_power (n
- 1))))
+ (tb
to_power (n
- 1)))
- (tb
to_power (n
- 1)))
/ (
sqrt 5)) by
A3
.= ((((t
to_power (n
+ 1))
- (tb
to_power (n
+ 1)))
+ ((tb
to_power (n
- 1))
+ (tb
to_power (n
+ 1))))
/ (
sqrt 5))
.= ((((t
to_power (n
+ 1))
- (tb
to_power (n
+ 1)))
/ (
sqrt 5))
+ (((tb
to_power (n
- 1))
+ (tb
to_power ((n
- 1)
+ 2)))
/ (
sqrt 5))) by
XCMPLX_1: 62
.= ((
Fib (n
+ 1))
+ (((tb
to_power (n
- 1))
+ (tb
to_power ((n
- 1)
+ 2)))
/ (
sqrt 5))) by
FIB_NUM: 7
.= ((
Fib (n
+ 1))
+ ((((tb
to_power (n
- 1))
* 1)
+ ((tb
to_power (n
- 1))
* (tb
to_power 2)))
/ (
sqrt 5))) by
Th2
.= ((
Fib (n
+ 1))
+ (((tb
to_power (n
- 1))
* (1
+ (tb
to_power 2)))
/ (
sqrt 5)))
.= ((
Fib (n
+ 1))
+ (((tb
to_power (n
- 1))
* (
- ((
sqrt 5)
* tb)))
/ (
sqrt 5))) by
A5
.= ((
Fib (n
+ 1))
+ (((((
- 1)
* (tb
to_power (n
- 1)))
* tb)
* (
sqrt 5))
/ (
sqrt 5)))
.= ((
Fib (n
+ 1))
+ (((
- 1)
* (tb
to_power (n
- 1)))
* tb)) by
A2,
XCMPLX_1: 89
.= ((
Fib (n
+ 1))
- ((tb
to_power (n
- 1))
* tb))
.= ((
Fib (n
+ 1))
- ((tb
to_power (n
- 1))
* (tb
to_power 1)))
.= ((
Fib (n
+ 1))
- (tb
to_power ((n
- 1)
+ 1))) by
Th2
.= ((
Fib (n
+ 1))
- (tb
to_power n));
then
A6: (
Fib (n
+ 1))
= (((t
* (
Fib n))
+ 1)
- (1
- (tb
to_power n)));
(tb
to_power n)
< 1 by
Th8,
A1,
XXREAL_0: 2;
then (
- (tb
to_power n))
> (
- 1) by
XREAL_1: 24;
then ((
- (tb
to_power n))
+ 1)
> ((
- 1)
+ 1) by
XREAL_1: 8;
then
A7: (
Fib (n
+ 1))
< ((t
* (
Fib n))
+ 1) by
A6,
XREAL_1: 44;
((t
* (
Fib n))
+ 1)
< ((
Fib (n
+ 1))
+ 1)
proof
A8: (t
* (
Fib n))
= (t
* (((t
to_power n)
- (tb
to_power n))
/ (
sqrt 5))) by
FIB_NUM: 7
.= ((t
* ((t
to_power n)
- (tb
to_power n)))
/ (
sqrt 5)) by
XCMPLX_1: 74
.= (((t
* (t
to_power n))
- (t
* (tb
to_power n)))
/ (
sqrt 5))
.= ((((t
to_power 1)
* (t
to_power n))
- (t
* (tb
to_power n)))
/ (
sqrt 5))
.= (((t
to_power (n
+ 1))
- (t
* (tb
to_power n)))
/ (
sqrt 5)) by
POWER: 27
.= (((t
to_power (n
+ 1))
/ (
sqrt 5))
- ((t
* (tb
to_power n))
/ (
sqrt 5))) by
XCMPLX_1: 120;
A9: (
Fib (n
+ 1))
= (((t
to_power (n
+ 1))
- (tb
to_power (n
+ 1)))
/ (
sqrt 5)) by
FIB_NUM: 7
.= (((t
to_power (n
+ 1))
/ (
sqrt 5))
- ((tb
to_power (n
+ 1))
/ (
sqrt 5))) by
XCMPLX_1: 120;
((tb
to_power n)
* t)
> ((tb
to_power n)
* tb) by
A4,
XREAL_1: 68;
then ((tb
to_power n)
* t)
> ((tb
to_power n)
* (tb
to_power 1));
then ((t
* (tb
to_power n))
/ (
sqrt 5))
> (((tb
to_power n)
* (tb
to_power 1))
/ (
sqrt 5)) by
A2,
XREAL_1: 74;
then ((t
* (tb
to_power n))
/ (
sqrt 5))
> ((tb
to_power (n
+ 1))
/ (
sqrt 5)) by
Th2;
then (
- ((t
* (tb
to_power n))
/ (
sqrt 5)))
< (
- ((tb
to_power (n
+ 1))
/ (
sqrt 5))) by
XREAL_1: 24;
then ((
- ((t
* (tb
to_power n))
/ (
sqrt 5)))
+ ((t
to_power (n
+ 1))
/ (
sqrt 5)))
< ((
- ((tb
to_power (n
+ 1))
/ (
sqrt 5)))
+ ((t
to_power (n
+ 1))
/ (
sqrt 5))) by
XREAL_1: 8;
hence thesis by
A8,
A9,
XREAL_1: 8;
end;
then (((t
* (
Fib n))
+ 1)
- 1)
< (((
Fib (n
+ 1))
+ 1)
- 1) by
XREAL_1: 9;
hence thesis by
A7,
INT_1:def 6;
end;
theorem ::
FIB_NUM4:23
Th23: for n be
Nat st n
>= 2 & n is
odd holds (
Fib (n
+ 1))
=
[/((
tau
* (
Fib n))
- 1)\]
proof
let n be
Nat;
assume
A1: n
>= 2 & n is
odd;
A2: (
sqrt 5)
>
0 by
SQUARE_1: 17,
SQUARE_1: 27;
((
tau
* (
tau_bar
to_power n))
+ (
sqrt 5))
>= (
tau_bar
to_power (n
+ 1))
proof
set tbn = (
tau_bar
to_power n);
A3: tbn
<
0 by
A1,
Th7;
(
tau
+ ((
sqrt 5)
/ tbn))
<=
tau_bar
proof
n
> 1 by
A1,
XXREAL_0: 2;
then tbn
>= (
- (1
/ 2)) by
Th14;
then tbn
> (
- 1) by
XXREAL_0: 2;
then (tbn
+ 1)
>= ((
- 1)
+ 1) by
XREAL_1: 6;
then ((tbn
+ 1)
/ tbn)
<= (
0
/ tbn) by
A3;
then ((tbn
/ tbn)
+ (1
/ tbn))
<=
0 by
XCMPLX_1: 62;
then (1
+ (1
/ tbn))
<=
0 by
A3,
XCMPLX_1: 60;
then ((1
+ (1
/ tbn))
* (
sqrt 5))
<= (
0
* (
sqrt 5)) by
A2;
then ((1
* (
sqrt 5))
+ ((1
/ tbn)
* (
sqrt 5)))
<=
0 ;
then ((
sqrt 5)
+ ((
sqrt 5)
/ tbn))
<=
0 by
XCMPLX_1: 74;
then (((((
sqrt 5)
/ 2)
+ ((
sqrt 5)
/ tbn))
+ ((
sqrt 5)
/ 2))
- ((
sqrt 5)
/ 2))
<= (
0
- ((
sqrt 5)
/ 2)) by
XREAL_1: 9;
then ((((
sqrt 5)
/ 2)
+ ((
sqrt 5)
/ tbn))
+ (1
/ 2))
<= ((
- ((
sqrt 5)
/ 2))
+ (1
/ 2)) by
XREAL_1: 6;
hence thesis by
FIB_NUM:def 1,
FIB_NUM:def 2;
end;
then ((
tau
+ ((
sqrt 5)
/ tbn))
* tbn)
>= (
tau_bar
* tbn) by
A3,
XREAL_1: 65;
then ((
tau
+ ((
sqrt 5)
/ tbn))
* tbn)
>= ((
tau_bar
to_power 1)
* tbn);
then ((
tau
* tbn)
+ (((
sqrt 5)
/ tbn)
* tbn))
>= (
tau_bar
to_power (n
+ 1)) by
Th2;
hence thesis by
A3,
XCMPLX_1: 87;
end;
then (
- ((
tau
* (
tau_bar
to_power n))
+ (
sqrt 5)))
<= (
- (
tau_bar
to_power (n
+ 1))) by
XREAL_1: 24;
then (((
- (
tau
* (
tau_bar
to_power n)))
- (
sqrt 5))
+ (
tau
to_power (n
+ 1)))
<= ((
- (
tau_bar
to_power (n
+ 1)))
+ (
tau
to_power (n
+ 1))) by
XREAL_1: 6;
then (((
tau
to_power (n
+ 1))
- (
tau
* (
tau_bar
to_power n)))
- (
sqrt 5))
<= ((
tau
to_power (n
+ 1))
- (
tau_bar
to_power (n
+ 1)));
then ((((
tau
to_power 1)
* (
tau
to_power n))
- (
tau
* (
tau_bar
to_power n)))
- (
sqrt 5))
<= ((
tau
to_power (n
+ 1))
- (
tau_bar
to_power (n
+ 1))) by
POWER: 27;
then (((
tau
* (
tau
to_power n))
- (
tau
* (
tau_bar
to_power n)))
- (
sqrt 5))
<= ((
tau
to_power (n
+ 1))
- (
tau_bar
to_power (n
+ 1)));
then (((
tau
* ((
tau
to_power n)
- (
tau_bar
to_power n)))
- (
sqrt 5))
/ (
sqrt 5))
<= (((
tau
to_power (n
+ 1))
- (
tau_bar
to_power (n
+ 1)))
/ (
sqrt 5)) by
A2,
XREAL_1: 72;
then (((
tau
* ((
tau
to_power n)
- (
tau_bar
to_power n)))
/ (
sqrt 5))
- ((
sqrt 5)
/ (
sqrt 5)))
<= (((
tau
to_power (n
+ 1))
- (
tau_bar
to_power (n
+ 1)))
/ (
sqrt 5)) by
XCMPLX_1: 120;
then ((
tau
* (((
tau
to_power n)
- (
tau_bar
to_power n))
/ (
sqrt 5)))
- ((
sqrt 5)
/ (
sqrt 5)))
<= (((
tau
to_power (n
+ 1))
- (
tau_bar
to_power (n
+ 1)))
/ (
sqrt 5)) by
XCMPLX_1: 74;
then ((
tau
* (((
tau
to_power n)
- (
tau_bar
to_power n))
/ (
sqrt 5)))
- 1)
<= (((
tau
to_power (n
+ 1))
- (
tau_bar
to_power (n
+ 1)))
/ (
sqrt 5)) by
A2,
XCMPLX_1: 60;
then ((
tau
* (((
tau
to_power n)
- (
tau_bar
to_power n))
/ (
sqrt 5)))
- 1)
<= (
Fib (n
+ 1)) by
FIB_NUM: 7;
then
A4: ((
tau
* (
Fib n))
- 1)
<= (
Fib (n
+ 1)) by
FIB_NUM: 7;
(((
tau
* (
Fib n))
- 1)
+ 1)
> (
Fib (n
+ 1))
proof
set tn = (
tau
to_power n);
set tbn = (
tau_bar
to_power n);
A5: (
tau
* (
Fib n))
= (
tau
* ((tn
- tbn)
/ (
sqrt 5))) by
FIB_NUM: 7
.= ((
tau
* (tn
- tbn))
/ (
sqrt 5)) by
XCMPLX_1: 74;
A6: tbn
<
0 by
Th7,
A1;
(
tau
* tbn)
< ((
tau_bar
to_power 1)
* tbn) by
A6,
XREAL_1: 69;
then (
tau
* tbn)
< (
tau_bar
to_power (n
+ 1)) by
Th2;
then (
- (
tau
* tbn))
> (
- (
tau_bar
to_power (n
+ 1))) by
XREAL_1: 24;
then ((
- (
tau
* tbn))
+ (
tau
to_power (n
+ 1)))
> ((
- (
tau_bar
to_power (n
+ 1)))
+ (
tau
to_power (n
+ 1))) by
XREAL_1: 6;
then ((
tau
to_power (n
+ 1))
- (
tau
* tbn))
> ((
tau
to_power (n
+ 1))
- (
tau_bar
to_power (n
+ 1)));
then (((
tau
to_power 1)
* tn)
- (
tau
* tbn))
> ((
tau
to_power (n
+ 1))
- (
tau_bar
to_power (n
+ 1))) by
Th2;
then ((
tau
* tn)
- (
tau
* tbn))
> ((
tau
to_power (n
+ 1))
- (
tau_bar
to_power (n
+ 1)));
then ((
tau
* (tn
- tbn))
/ (
sqrt 5))
> (((
tau
to_power (n
+ 1))
- (
tau_bar
to_power (n
+ 1)))
/ (
sqrt 5)) by
A2,
XREAL_1: 74;
hence thesis by
A5,
FIB_NUM: 7;
end;
hence thesis by
A4,
INT_1:def 7;
end;
theorem ::
FIB_NUM4:24
Th24: for n be
Nat st n
>= 2 holds (
Fib (n
+ 1))
=
[\((((
Fib n)
+ ((
sqrt 5)
* (
Fib n)))
+ 1)
/ 2)/]
proof
let n be
Nat;
assume
A1: n
>= 2;
A2: (
sqrt 5)
>
0 by
SQUARE_1: 25;
set tn = (
tau
to_power n);
set tb =
tau_bar ;
set s5 = (
sqrt 5);
set tbn = (tb
to_power n);
per cases ;
suppose
A3: n is
even;
then
A4: tbn
>
0 by
Th6;
A5: ((((
Fib n)
+ ((
sqrt 5)
* (
Fib n)))
+ 1)
/ 2)
>= (
Fib (n
+ 1))
proof
tbn
<= (1
/ 2) by
Th8,
A1;
then (2
* tbn)
<= (2
* (1
/ 2)) by
XREAL_1: 64;
then ((2
* tbn)
/ tbn)
<= (1
/ tbn) by
A4,
XREAL_1: 72;
then 2
<= (1
/ tbn) by
A4,
XCMPLX_1: 89;
then (2
* s5)
<= ((1
/ tbn)
* s5) by
A2,
XREAL_1: 64;
then (s5
+ s5)
<= ((1
* s5)
/ tbn) by
XCMPLX_1: 74;
then ((s5
+ s5)
- s5)
<= (((1
* s5)
/ tbn)
- s5) by
XREAL_1: 9;
then (
- s5)
>= (
- ((s5
/ tbn)
- s5)) by
XREAL_1: 24;
then ((
- s5)
+ 1)
>= (((
- (s5
/ tbn))
+ s5)
+ 1) by
XREAL_1: 6;
then
tau_bar
>= (((s5
+ 1)
- (s5
/ tbn))
/ 2) by
FIB_NUM:def 2,
XREAL_1: 72;
then (
tau_bar
* tbn)
>= ((
tau
- ((s5
/ tbn)
/ 2))
* tbn) by
A4,
FIB_NUM:def 1,
XREAL_1: 64;
then (tb
* tbn)
>= ((
tau
- (((
sqrt 5)
/ 2)
/ tbn))
* tbn) by
XCMPLX_1: 48;
then (tb
* tbn)
>= ((
tau
* tbn)
- (((s5
/ 2)
/ tbn)
* tbn));
then (tb
* tbn)
>= ((
tau
* tbn)
- (s5
/ 2)) by
A4,
XCMPLX_1: 87;
then ((tb
to_power 1)
* tbn)
>= ((
tau
* tbn)
- (s5
/ 2));
then (tb
to_power (n
+ 1))
>= ((
tau
* tbn)
- (s5
/ 2)) by
Th2;
then (
- (tb
to_power (n
+ 1)))
<= (
- ((
tau
* tbn)
- (s5
/ 2))) by
XREAL_1: 24;
then ((
- (tb
to_power (n
+ 1)))
+ (
tau
to_power (n
+ 1)))
<= (((
- (
tau
* tbn))
+ ((
sqrt 5)
/ 2))
+ (
tau
to_power (n
+ 1))) by
XREAL_1: 6;
then ((
- (tb
to_power (n
+ 1)))
+ (
tau
to_power (n
+ 1)))
<= (((
tau
to_power (n
+ 1))
- (
tau
* tbn))
+ (s5
/ 2));
then ((
- (tb
to_power (n
+ 1)))
+ (
tau
to_power (n
+ 1)))
<= (((tn
* (
tau
to_power 1))
- (
tau
* tbn))
+ (s5
/ 2)) by
Th2;
then ((
- (tb
to_power (n
+ 1)))
+ (
tau
to_power (n
+ 1)))
<= (((tn
*
tau )
- (
tau
* tbn))
+ (s5
/ 2));
then (((
tau
to_power (n
+ 1))
- (
tau_bar
to_power (n
+ 1)))
/ (
sqrt 5))
<= (((
tau
* (tn
- tbn))
+ (s5
/ 2))
/ s5) by
A2,
XREAL_1: 72;
then (
Fib (n
+ 1))
<= (((
tau
* (tn
- tbn))
+ (s5
/ 2))
/ s5) by
FIB_NUM: 7;
then (
Fib (n
+ 1))
<= (((
tau
* (tn
- tbn))
/ s5)
+ ((s5
/ 2)
/ s5)) by
XCMPLX_1: 62;
then (
Fib (n
+ 1))
<= ((
tau
* ((tn
- tbn)
/ s5))
+ ((s5
/ 2)
/ s5)) by
XCMPLX_1: 74;
then (
Fib (n
+ 1))
<= ((
tau
* (
Fib n))
+ ((s5
/ 2)
/ (
sqrt 5))) by
FIB_NUM: 7;
then (
Fib (n
+ 1))
<= ((
tau
* (
Fib n))
+ ((s5
/ s5)
/ 2)) by
XCMPLX_1: 48;
then (
Fib (n
+ 1))
<= ((
tau
* (
Fib n))
+ (1
/ 2)) by
A2,
XCMPLX_1: 60;
hence thesis by
FIB_NUM:def 1;
end;
(((((
Fib n)
+ (s5
* (
Fib n)))
+ 1)
/ 2)
- 1)
< (
Fib (n
+ 1))
proof
(
Fib (n
+ 1))
=
[\((
tau
* (
Fib n))
+ 1)/] by
A1,
A3,
Th22;
then
A6: (((
tau
* (
Fib n))
+ 1)
- 1)
< (
Fib (n
+ 1)) by
INT_1:def 6;
(((
Fib n)
+ (s5
* (
Fib n)))
+ 1)
<= (((
Fib n)
+ (s5
* (
Fib n)))
+ 2) by
XREAL_1: 6;
then ((((
Fib n)
+ (s5
* (
Fib n)))
+ 1)
/ 2)
<= ((((
Fib n)
+ (s5
* (
Fib n)))
+ 2)
/ 2) by
XREAL_1: 72;
then (((((
Fib n)
+ (s5
* (
Fib n)))
+ 1)
/ 2)
- 1)
<= (((
tau
* (
Fib n))
+ 1)
- 1) by
FIB_NUM:def 1,
XREAL_1: 9;
hence thesis by
A6,
XXREAL_0: 2;
end;
hence thesis by
A5,
INT_1:def 6;
end;
suppose
A7: n is
odd;
A8: ((((
Fib n)
+ ((
sqrt 5)
* (
Fib n)))
+ 1)
/ 2)
>= (
Fib (n
+ 1))
proof
(
Fib (n
+ 1))
=
[/((
tau
* (
Fib n))
- 1)\] by
A1,
A7,
Th23;
then
A9: (((
tau
* (
Fib n))
- 1)
+ 1)
> (
Fib (n
+ 1)) by
INT_1:def 7;
(1
+ ((
Fib n)
+ ((
sqrt 5)
* (
Fib n))))
> (
0
+ ((
Fib n)
+ ((
sqrt 5)
* (
Fib n)))) by
XREAL_1: 6;
then ((((
Fib n)
+ ((
sqrt 5)
* (
Fib n)))
+ 1)
/ 2)
> (((
Fib n)
+ ((
sqrt 5)
* (
Fib n)))
/ 2) by
XREAL_1: 74;
hence thesis by
A9,
FIB_NUM:def 1,
XXREAL_0: 2;
end;
(((((
Fib n)
+ ((
sqrt 5)
* (
Fib n)))
+ 1)
/ 2)
- 1)
< (
Fib (n
+ 1))
proof
n
> 1 by
A1,
XXREAL_0: 2;
then ((2
* (
sqrt 5))
* tbn)
> ((2
* (
sqrt 5))
* (
- (1
/ 2))) by
A2,
Th14,
XREAL_1: 68;
then (
- ((2
* (
sqrt 5))
* tbn))
< (
- ((2
* (
sqrt 5))
* (
- (1
/ 2)))) by
XREAL_1: 24;
then (((((((1
* tn)
+ ((
sqrt 5)
* tn))
- ((2
*
tau )
* tn))
+ ((2
* tb)
* tbn))
- ((
sqrt 5)
* tbn))
- (1
* tbn))
+ ((2
*
tau )
* tn))
< ((
sqrt 5)
+ ((2
*
tau )
* tn)) by
FIB_NUM:def 1,
FIB_NUM:def 2,
XREAL_1: 6;
then (((((tn
+ ((
sqrt 5)
* tn))
+ ((2
* tb)
* tbn))
- ((
sqrt 5)
* tbn))
- tbn)
- ((2
* tb)
* tbn))
< (((
sqrt 5)
+ ((2
*
tau )
* tn))
- ((2
* tb)
* tbn)) by
XREAL_1: 9;
then (((1
+ (
sqrt 5))
* (tn
- tbn))
/ (
sqrt 5))
< ((((
sqrt 5)
+ ((2
*
tau )
* tn))
- ((2
* tb)
* tbn))
/ (
sqrt 5)) by
A2,
XREAL_1: 74;
then ((1
+ (
sqrt 5))
* ((tn
- tbn)
/ (
sqrt 5)))
< ((((
sqrt 5)
+ (2
* (
tau
* tn)))
- ((2
* tb)
* tbn))
/ (
sqrt 5)) by
XCMPLX_1: 74;
then ((1
+ (
sqrt 5))
* (
Fib n))
< ((((
sqrt 5)
+ (2
* (
tau
* tn)))
- ((2
* tb)
* tbn))
/ (
sqrt 5)) by
FIB_NUM: 7;
then ((1
+ (
sqrt 5))
* (
Fib n))
< ((((
sqrt 5)
+ (2
* ((
tau
to_power 1)
* tn)))
- ((2
* tb)
* tbn))
/ (
sqrt 5));
then ((1
+ (
sqrt 5))
* (
Fib n))
< ((((
sqrt 5)
+ (2
* (
tau
to_power (n
+ 1))))
- (2
* (tb
* tbn)))
/ (
sqrt 5)) by
Th2;
then ((1
+ (
sqrt 5))
* (
Fib n))
< ((((
sqrt 5)
+ (2
* (
tau
to_power (n
+ 1))))
- (2
* ((tb
to_power 1)
* tbn)))
/ (
sqrt 5));
then ((1
+ (
sqrt 5))
* (
Fib n))
< ((((
sqrt 5)
+ (2
* (
tau
to_power (n
+ 1))))
- (2
* (tb
to_power (n
+ 1))))
/ (
sqrt 5)) by
Th2;
then ((1
+ (
sqrt 5))
* (
Fib n))
< (((
sqrt 5)
+ (2
* ((
tau
to_power (n
+ 1))
- (tb
to_power (n
+ 1)))))
/ (
sqrt 5));
then ((1
+ (
sqrt 5))
* (
Fib n))
< (((
sqrt 5)
/ (
sqrt 5))
+ ((2
* ((
tau
to_power (n
+ 1))
- (tb
to_power (n
+ 1))))
/ (
sqrt 5))) by
XCMPLX_1: 62;
then ((1
+ (
sqrt 5))
* (
Fib n))
< (((
sqrt 5)
/ (
sqrt 5))
+ (2
* (((
tau
to_power (n
+ 1))
- (tb
to_power (n
+ 1)))
/ (
sqrt 5)))) by
XCMPLX_1: 74;
then ((1
+ (
sqrt 5))
* (
Fib n))
< (((
sqrt 5)
/ (
sqrt 5))
+ (2
* (
Fib (n
+ 1)))) by
FIB_NUM: 7;
then ((1
+ (
sqrt 5))
* (
Fib n))
< (1
+ (2
* (
Fib (n
+ 1)))) by
A2,
XCMPLX_1: 60;
then (((1
+ (
sqrt 5))
* (
Fib n))
/ 2)
< ((1
+ (2
* (
Fib (n
+ 1))))
/ 2) by
XREAL_1: 74;
then ((((1
+ (
sqrt 5))
* (
Fib n))
/ 2)
- (1
/ 2))
< (((1
/ 2)
+ (
Fib (n
+ 1)))
- (1
/ 2)) by
XREAL_1: 9;
hence thesis;
end;
hence thesis by
A8,
INT_1:def 6;
end;
end;
theorem ::
FIB_NUM4:25
for n be
Nat st n
>= 2 holds (
Fib (n
+ 1))
=
[/((((
Fib n)
+ ((
sqrt 5)
* (
Fib n)))
- 1)
/ 2)\]
proof
let n be
Nat;
assume
A1: n
>= 2;
then (
Fib (n
+ 1))
=
[\((((
Fib n)
+ ((
sqrt 5)
* (
Fib n)))
+ 1)
/ 2)/] by
Th24;
then
A2: (((((
Fib n)
+ ((
sqrt 5)
* (
Fib n)))
+ 1)
/ 2)
- 1)
< (
Fib (n
+ 1)) by
INT_1:def 6;
(((((
Fib n)
+ ((
sqrt 5)
* (
Fib n)))
- 1)
/ 2)
+ 1)
> (
Fib (n
+ 1))
proof
(
Fib (n
+ 1))
=
[\((((
Fib n)
+ ((
sqrt 5)
* (
Fib n)))
+ 1)
/ 2)/] by
Th24,
A1;
then
A3: (((((
Fib n)
+ ((
sqrt 5)
* (
Fib n)))
- 1)
/ 2)
+ 1)
>= (
Fib (n
+ 1)) by
INT_1:def 6;
(((((
Fib n)
+ ((
sqrt 5)
* (
Fib n)))
- 1)
/ 2)
+ 1)
<> (
Fib (n
+ 1))
proof
set tn = (
tau
to_power n);
set tbn = (
tau_bar
to_power n);
set t1 = (
tau
to_power (n
+ 1));
set t2 = (
tau_bar
to_power (n
+ 1));
set s5 = (
sqrt 5);
A4: s5
>
0 by
SQUARE_1: 25;
assume (((((
Fib n)
+ (s5
* (
Fib n)))
- 1)
/ 2)
+ 1)
= (
Fib (n
+ 1));
then (((
Fib n)
* (1
+ s5))
+ 1)
= (2
* (
Fib (n
+ 1)));
then ((((tn
- tbn)
/ s5)
* (1
+ s5))
+ 1)
= (2
* (
Fib (n
+ 1))) by
FIB_NUM: 7;
then (((((tn
- tbn)
/ s5)
* (1
+ s5))
+ 1)
* s5)
= ((2
* ((t1
- t2)
/ s5))
* s5) by
FIB_NUM: 7;
then (((((tn
- tbn)
/ s5)
* (1
+ s5))
* s5)
+ (1
* s5))
= (2
* (((t1
- t2)
/ s5)
* s5));
then (((((tn
- tbn)
/ s5)
* (1
+ s5))
* s5)
+ s5)
= (2
* (t1
- t2)) by
A4,
XCMPLX_1: 87;
then (((((tn
- tbn)
* (1
+ s5))
/ s5)
* s5)
+ s5)
= ((2
* t1)
- (2
* t2)) by
XCMPLX_1: 74;
then (((tn
- tbn)
* (1
+ s5))
+ s5)
= ((2
* t1)
- (2
* t2)) by
A4,
XCMPLX_1: 87;
then (((tn
* (1
+ s5))
- (tbn
+ (tbn
* s5)))
+ s5)
= ((2
* (tn
* (
tau
to_power 1)))
- (2
* t2)) by
Th2;
then (((tn
* (1
+ s5))
- (tbn
* (1
+ s5)))
+ s5)
= ((2
* (tn
* (
tau
to_power 1)))
- (2
* (tbn
* (
tau_bar
to_power 1)))) by
Th2;
then (((tn
* (1
+ s5))
- (tbn
* (1
+ s5)))
+ s5)
= ((2
* (tn
*
tau ))
- (2
* (tbn
* (
tau_bar
to_power 1))));
then (((tn
- tbn)
* (1
+ s5))
+ s5)
= ((2
* (tn
*
tau ))
- (2
* (tbn
*
tau_bar )));
then (((tn
* ((1
+ s5)
- (2
*
tau )))
+ (tbn
* ((2
*
tau_bar )
- (1
+ s5))))
+ s5)
=
0 ;
then (((
- (2
* tbn))
+ 1)
* (
sqrt 5))
=
0 by
FIB_NUM:def 1,
FIB_NUM:def 2;
then ((
- (2
* tbn))
+ 1)
=
0 by
A4;
hence contradiction by
Th8,
A1;
end;
hence thesis by
A3,
XXREAL_0: 1;
end;
hence thesis by
A2,
INT_1:def 7;
end;
theorem ::
FIB_NUM4:26
for n be
Nat holds (
Fib (n
+ 1))
= (((
Fib n)
+ (
sqrt ((5
* ((
Fib n)
^2 ))
+ (4
* ((
- 1)
to_power n)))))
/ 2)
proof
let n be
Nat;
A1: (n
-
0 ) is
Element of
NAT by
NAT_1: 21;
A2: (2
* (
Fib (n
+ 1)))
= ((
Fib n)
+ (
Lucas n)) by
FIB_NUM3: 24;
A3: (((
Lucas n)
^2 )
- (5
* ((
Fib n)
^2 )))
= (((
Lucas n)
to_power 2)
- (5
* ((
Fib n)
^2 ))) by
POWER: 46
.= (((
Lucas n)
to_power 2)
- (5
* ((
Fib n)
to_power 2))) by
POWER: 46
.= (
- ((5
* ((
Fib n)
|^ 2))
- ((
Lucas n)
|^ 2)))
.= (
- (4
* ((
- 1)
to_power (n
+ 1)))) by
A1,
FIB_NUM3: 30
.= ((
- 1)
* (((
- 1)
to_power (n
+ 1))
* 4))
.= (((
- 1)
to_power 1)
* (((
- 1)
to_power (n
+ 1))
* 4))
.= ((((
- 1)
to_power 1)
* ((
- 1)
to_power (n
+ 1)))
* 4)
.= (((
- 1)
to_power ((n
+ 1)
+ 1))
* 4) by
Th2
.= (((
- 1)
to_power (n
+ 2))
* 4)
.= ((((
- 1)
to_power n)
* ((
- 1)
to_power 2))
* 4) by
Th2
.= ((((
- 1)
to_power n)
* 1)
* 4) by
FIB_NUM2: 3,
POLYFORM: 5;
(
Fib (n
+ 1))
= (((
Fib n)
+ (
Lucas n))
/ 2) by
A2;
hence thesis by
A3,
SQUARE_1:def 2;
end;
theorem ::
FIB_NUM4:27
for n be
Nat st n
>= 2 holds (
Fib (n
+ 1))
=
[\((((
Fib n)
+ 1)
+ (
sqrt (((5
* ((
Fib n)
^2 ))
- (2
* (
Fib n)))
+ 1)))
/ 2)/]
proof
let n be
Nat;
assume
A1: n
>= 2;
A2: (n
-
0 ) is
Element of
NAT by
NAT_1: 21;
A3: (n
- 1)
>= (2
- 1) by
A1,
XREAL_1: 9;
(((n
+ 1)
-' 1)
+ 1)
= (((n
+ 1)
- 1)
+ 1) by
NAT_D: 37
.= (((n
- 1)
+ 1)
+ 1)
.= (((n
-' 1)
+ 1)
+ 1) by
A3,
NAT_D: 39;
then
A4: (
Fib (n
+ 1))
= (
Fib (((n
-' 1)
+ 1)
+ 1)) by
NAT_D: 34
.= ((
Fib (n
-' 1))
+ (
Fib ((n
-' 1)
+ 1))) by
PRE_FF: 1
.= ((
Fib (n
-' 1))
+ (
Fib ((n
+ 1)
-' 1))) by
A1,
NAT_D: 38,
XXREAL_0: 2
.= ((
Fib (n
-' 1))
+ (
Fib n)) by
NAT_D: 34;
(n
+ 2)
>= (2
+ 2) by
A1,
XREAL_1: 6;
then
reconsider p = ((n
+ 2)
- 1) as
Nat by
NAT_1: 21,
XXREAL_0: 2;
A5: ((
Lucas n)
- (
Fib n))
= ((
Lucas ((n
+ 1)
-' 1))
- (
Fib n)) by
NAT_D: 34
.= ((
Lucas ((n
-' 1)
+ 1))
- (
Fib n)) by
A1,
NAT_D: 38,
XXREAL_0: 2
.= (((
Fib (n
-' 1))
+ (
Fib ((n
-' 1)
+ 2)))
- (
Fib n)) by
FIB_NUM3: 20
.= (((
Fib (n
-' 1))
+ (
Fib ((n
+ 2)
-' 1)))
- (
Fib n)) by
A1,
NAT_D: 38,
XXREAL_0: 2
.= (((
Fib (n
-' 1))
+ (
Fib p))
- (
Fib n)) by
NAT_D: 37
.= (2
* (
Fib (n
-' 1))) by
A4;
A6: (((
Lucas n)
^2 )
- (5
* ((
Fib n)
^2 )))
= (((
Lucas n)
^2 )
- (5
* ((
Fib n)
to_power 2))) by
POWER: 46
.= (((
Lucas n)
to_power 2)
- (5
* ((
Fib n)
|^ 2))) by
POWER: 46
.= ((
- 1)
* ((5
* ((
Fib n)
|^ 2))
- ((
Lucas n)
|^ 2)))
.= ((
- 1)
* (4
* ((
- 1)
to_power (n
+ 1)))) by
A2,
FIB_NUM3: 30
.= (4
* ((
- 1)
* ((
- 1)
to_power (n
+ 1))))
.= (4
* (((
- 1)
to_power 1)
* ((
- 1)
to_power (n
+ 1))))
.= (4
* ((
- 1)
to_power (1
+ (n
+ 1)))) by
Th2
.= (4
* ((
- 1)
to_power (n
+ 2)))
.= (4
* (((
- 1)
to_power n)
* ((
- 1)
to_power 2))) by
Th2
.= (4
* (((
- 1)
to_power n)
* ((
- 1)
^2 ))) by
POWER: 46
.= (4
* ((
- 1)
to_power n));
(n
-' 1)
>= (2
-' 1) & (2
- 1)
>= 1 by
A1,
NAT_D: 42;
then (n
-' 1)
>= (2
- 1) by
NAT_D: 39;
then
A7: (
Fib (n
-' 1))
>= 1 by
FIB_NUM2: 45,
PRE_FF: 1;
1
>= ((
- 1)
to_power n)
proof
per cases ;
suppose n is
even;
hence thesis by
FIB_NUM2: 3;
end;
suppose n is
odd;
hence thesis by
FIB_NUM2: 2;
end;
end;
then ((
- 1)
to_power n)
<= (
Fib (n
-' 1)) by
A7,
XXREAL_0: 2;
then (((
Lucas n)
^2 )
- (5
* ((
Fib n)
^2 )))
<= ((2
* 2)
* (
Fib (n
-' 1))) by
A6,
XREAL_1: 64;
then ((((
Lucas n)
^2 )
- (5
* ((
Fib n)
^2 )))
- (2
* (
Lucas n)))
<= (((2
* (
Lucas n))
- (2
* (
Fib n)))
- (2
* (
Lucas n))) by
A5,
XREAL_1: 9;
then (((((
Lucas n)
^2 )
- (5
* ((
Fib n)
^2 )))
- (2
* (
Lucas n)))
+ 1)
<= ((
- (2
* (
Fib n)))
+ 1) by
XREAL_1: 6;
then
A8: ((((((
Lucas n)
^2 )
- (5
* ((
Fib n)
^2 )))
- (2
* (
Lucas n)))
+ 1)
+ (5
* ((
Fib n)
^2 )))
<= (((
- (2
* (
Fib n)))
+ 1)
+ (5
* ((
Fib n)
^2 ))) by
XREAL_1: 6;
A9: ((n
+ 2)
-' 1)
= ((n
+ 2)
- 1) by
NAT_D: 37
.= (n
+ 1);
A10: (
Lucas n)
= (
Lucas ((n
+ 1)
-' 1)) by
NAT_D: 34
.= (
Lucas ((n
-' 1)
+ 1)) by
A1,
NAT_D: 38,
XXREAL_0: 2
.= ((
Fib (n
-' 1))
+ (
Fib ((n
-' 1)
+ 2))) by
FIB_NUM3: 20
.= ((
Fib (n
-' 1))
+ (
Fib ((n
+ 2)
-' 1))) by
A1,
NAT_D: 38,
XXREAL_0: 2
.= ((2
* (
Fib (n
+ 1)))
- (
Fib n)) by
A4,
A9;
A11: (2
* (
Fib (n
-' 1)))
>= (2
*
0 );
n
>= 1 by
A1,
XXREAL_0: 2;
then
A12: (
Fib n)
>= 1 by
FIB_NUM2: 45,
PRE_FF: 1;
then (
- (
Fib n))
<= (
- 1) by
XREAL_1: 24;
then ((
- (
Fib n))
+ 1)
<= ((
- 1)
+ 1) by
XREAL_1: 6;
then ((2
* (
Fib (n
-' 1)))
+ (
Fib n))
>= (((
- (
Fib n))
+ 1)
+ (
Fib n)) by
A11,
XREAL_1: 6;
then
A13: (((2
* (
Fib (n
-' 1)))
+ (
Fib n))
- 1)
>= (1
- 1) by
XREAL_1: 9;
(
sqrt ((((2
* (
Fib (n
+ 1)))
- (
Fib n))
- 1)
^2 ))
<= (
sqrt (((5
* ((
Fib n)
^2 ))
- (2
* (
Fib n)))
+ 1)) by
A10,
A8,
SQUARE_1: 26;
then (((2
* (
Fib (n
+ 1)))
- (
Fib n))
- 1)
<= (
sqrt (((5
* ((
Fib n)
^2 ))
- (2
* (
Fib n)))
+ 1)) by
A4,
A13,
SQUARE_1: 22;
then ((((2
* (
Fib (n
+ 1)))
- (
Fib n))
- 1)
+ (
Fib n))
<= ((
sqrt (((5
* ((
Fib n)
^2 ))
- (2
* (
Fib n)))
+ 1))
+ (
Fib n)) by
XREAL_1: 6;
then (((((2
* (
Fib (n
+ 1)))
- (
Fib n))
- 1)
+ (
Fib n))
+ 1)
<= (((
sqrt (((5
* ((
Fib n)
^2 ))
- (2
* (
Fib n)))
+ 1))
+ (
Fib n))
+ 1) by
XREAL_1: 6;
then
A14: ((2
* (
Fib (n
+ 1)))
/ 2)
<= ((((
sqrt (((5
* ((
Fib n)
^2 ))
- (2
* (
Fib n)))
+ 1))
+ (
Fib n))
+ 1)
/ 2) by
XREAL_1: 72;
A15: ((5
* ((
Fib n)
^2 ))
- (2
* (
Fib n)))
= (((5
* (
Fib n))
- 2)
* (
Fib n));
(5
* (
Fib n))
>= (5
* 1) by
A12,
XREAL_1: 64;
then ((5
* (
Fib n))
- 2)
>= (5
- 2) by
XREAL_1: 9;
then
A16: ((5
* (
Fib n))
- 2)
>=
0 by
XXREAL_0: 2;
A17: ((((
Fib (n
+ 1))
+ (
Fib (n
+ 1)))
- (
Fib n))
+ 1)
= (((
Fib (n
+ 1))
+ (
Fib (n
-' 1)))
+ 1) by
A4;
(((
Lucas n)
^2 )
- (5
* ((
Fib n)
^2 )))
> (
- (2
* ((
Lucas n)
+ (
Fib n))))
proof
A18: (
Fib n)
>
0 by
A1,
FIB_NUM2: 21,
FIB_NUM2: 45;
(
Lucas n)
>= n by
FIB_NUM3: 17;
then (
Lucas n)
>= 2 by
A1,
XXREAL_0: 2;
then ((
Lucas n)
+ (
Fib n))
> (
0
+ 2) by
A18,
XREAL_1: 8;
then (((
Lucas n)
+ (
Fib n))
* 2)
> (2
* 2) by
XREAL_1: 68;
then
A19: (
- (((
Lucas n)
+ (
Fib n))
* 2))
< (
- 4) by
XREAL_1: 24;
(
- 4)
<= (4
* ((
- 1)
to_power n)) by
Lm1;
hence thesis by
A6,
A19,
XXREAL_0: 2;
end;
then ((((
Lucas n)
^2 )
- (5
* ((
Fib n)
^2 )))
+ (2
* (
Lucas n)))
> ((
- (2
* ((
Lucas n)
+ (
Fib n))))
+ (2
* (
Lucas n))) by
XREAL_1: 6;
then (((((
Lucas n)
^2 )
- (5
* ((
Fib n)
^2 )))
+ (2
* (
Lucas n)))
+ (5
* ((
Fib n)
^2 )))
> ((
- (2
* (
Fib n)))
+ (5
* ((
Fib n)
^2 ))) by
XREAL_1: 6;
then ((((
Lucas n)
^2 )
+ ((2
* (
Lucas n))
* 1))
+ (1
^2 ))
> (((
- (2
* (
Fib n)))
+ (5
* ((
Fib n)
^2 )))
+ (1
^2 )) by
XREAL_1: 6;
then (
sqrt ((((2
* (
Fib (n
+ 1)))
- (
Fib n))
+ 1)
^2 ))
> (
sqrt (((
- (2
* (
Fib n)))
+ (5
* ((
Fib n)
^2 )))
+ 1)) by
A16,
A15,
A10,
SQUARE_1: 27;
then (((2
* (
Fib (n
+ 1)))
- (
Fib n))
+ 1)
> (
sqrt (((
- (2
* (
Fib n)))
+ (5
* ((
Fib n)
^2 )))
+ 1)) by
A17,
SQUARE_1: 22;
then ((((2
* (
Fib (n
+ 1)))
- (
Fib n))
+ 1)
- 1)
> ((
sqrt (((
- (2
* (
Fib n)))
+ (5
* ((
Fib n)
^2 )))
+ 1))
- 1) by
XREAL_1: 9;
then (((2
* (
Fib (n
+ 1)))
- (
Fib n))
+ (
Fib n))
> (((
sqrt (((
- (2
* (
Fib n)))
+ (5
* ((
Fib n)
^2 )))
+ 1))
- 1)
+ (
Fib n)) by
XREAL_1: 6;
then ((2
* (
Fib (n
+ 1)))
/ 2)
> ((((
sqrt (((
- (2
* (
Fib n)))
+ (5
* ((
Fib n)
^2 )))
+ 1))
- 1)
+ (
Fib n))
/ 2) by
XREAL_1: 74;
then (((((
Fib n)
+ 1)
+ (
sqrt (((5
* ((
Fib n)
^2 ))
- (2
* (
Fib n)))
+ 1)))
/ 2)
- 1)
< (
Fib (n
+ 1));
hence thesis by
A14,
INT_1:def 6;
end;
Lm20: (
sqrt 5)
>
0 by
SQUARE_1: 25;
Lm21: ((
sqrt 5)
/ (((
sqrt 5)
- 5)
*
tau ))
= ((
sqrt 5)
/ (((
sqrt 5)
- ((
sqrt 5)
^2 ))
*
tau )) by
SQUARE_1:def 2
.= ((
sqrt 5)
/ ((
sqrt 5)
* ((1
- (
sqrt 5))
*
tau )))
.= (((
sqrt 5)
/ (
sqrt 5))
/ ((1
- (
sqrt 5))
*
tau )) by
XCMPLX_1: 78
.= (1
/ (((1
- (
sqrt 5))
* (1
+ (
sqrt 5)))
/ 2)) by
Lm20,
FIB_NUM:def 1,
XCMPLX_1: 60
.= ((1
* 2)
/ ((1
- (
sqrt 5))
* (1
+ (
sqrt 5)))) by
XCMPLX_1: 77
.= (2
/ ((1
^2 )
- ((
sqrt 5)
^2 )))
.= (2
/ ((1
^2 )
- 5)) by
SQUARE_1:def 2
.= (
- (1
/ 2));
theorem ::
FIB_NUM4:28
for n be
Nat st n
>= 2 holds (
Fib n)
=
[\((1
/
tau )
* ((
Fib (n
+ 1))
+ (1
/ 2)))/]
proof
let n be
Nat;
assume
A1: n
>= 2;
then
A2: n
> 1 by
XXREAL_0: 2;
set tbn = (
tau_bar
to_power n);
(
sqrt 5)
< (
sqrt (5
^2 )) by
SQUARE_1: 27;
then (
sqrt 5)
< 5 by
SQUARE_1:def 2;
then
A3: ((
sqrt 5)
- 5)
< (5
- 5) by
XREAL_1: 9;
A4: ((1
/
tau )
* ((
Fib (n
+ 1))
+ (1
/ 2)))
>= (
Fib n)
proof
set tbm = (
tau_bar
to_power (n
+ 1));
set tn = (
tau
to_power n);
((tbm
/
tau )
- ((
sqrt 5)
/ (2
*
tau )))
<= tbn
proof
per cases ;
suppose
A5: n is
even;
((
sqrt 5)
/ (((
sqrt 5)
- 5)
*
tau ))
<= tbn by
Lm21,
A2,
Th14;
then (((
sqrt 5)
/ (((
sqrt 5)
- 5)
*
tau ))
* (((
sqrt 5)
- 5)
*
tau ))
>= (tbn
* (((
sqrt 5)
- 5)
*
tau )) by
A3,
XREAL_1: 65;
then
A6: (
sqrt 5)
>= (tbn
* (((
sqrt 5)
- 5)
*
tau )) by
A3,
XCMPLX_1: 87;
A7: tbn
>
0 by
Th6,
A5;
then ((
sqrt 5)
/ tbn)
>= (((
tau
* ((
sqrt 5)
- 5))
* tbn)
/ tbn) by
A6,
XREAL_1: 72;
then ((
sqrt 5)
/ tbn)
>= (
tau
* ((
sqrt 5)
- 5)) by
A7,
XCMPLX_1: 89;
then (((
sqrt 5)
/ tbn)
/
tau )
>= ((((
sqrt 5)
- 5)
*
tau )
/
tau ) by
XREAL_1: 72;
then (((
sqrt 5)
/ tbn)
/
tau )
>= ((
sqrt 5)
- 5) by
XCMPLX_1: 89;
then ((
sqrt 5)
/ (tbn
*
tau ))
>= ((
sqrt 5)
- 5) by
XCMPLX_1: 78;
then (((
sqrt 5)
/ (tbn
*
tau ))
+ ((
- (
sqrt 5))
+ 5))
>= (((
sqrt 5)
- 5)
+ ((
- (
sqrt 5))
+ 5)) by
XREAL_1: 6;
then (
- ((((
sqrt 5)
/ (tbn
*
tau ))
- (
sqrt 5))
+ 5))
<=
0 ;
then ((((
- ((
sqrt 5)
/ (tbn
*
tau )))
+ (
sqrt 5))
- 5)
+ 2)
<= (
0
+ 2) by
XREAL_1: 6;
then (((
- ((
sqrt 5)
/ (tbn
*
tau )))
+ ((
sqrt 5)
- 3))
/ 2)
<= (2
/ 2) by
XREAL_1: 72;
then ((
- (((
sqrt 5)
/ (tbn
*
tau ))
/ 2))
+ (
tau_bar
/
tau ))
<= 1 by
Lm4;
then ((
- ((
sqrt 5)
/ ((tbn
*
tau )
* 2)))
+ (
tau_bar
/
tau ))
<= 1 by
XCMPLX_1: 78;
then (((
tau_bar
/
tau )
- ((
sqrt 5)
/ ((2
* tbn)
*
tau )))
* tbn)
<= (1
* tbn) by
A7,
XREAL_1: 64;
then (((
tau_bar
/
tau )
* tbn)
- (((
sqrt 5)
/ ((2
* tbn)
*
tau ))
* tbn))
<= tbn;
then (((
tau_bar
* tbn)
/
tau )
- (((
sqrt 5)
/ ((2
* tbn)
*
tau ))
* tbn))
<= tbn by
XCMPLX_1: 74;
then ((((
tau_bar
to_power 1)
* tbn)
/
tau )
- (((
sqrt 5)
/ ((2
* tbn)
*
tau ))
* tbn))
<= tbn;
then (((
tau_bar
to_power (n
+ 1))
/
tau )
- (((
sqrt 5)
/ ((2
*
tau )
* tbn))
* tbn))
<= tbn by
Th2;
then (((
tau_bar
to_power (n
+ 1))
/
tau )
- ((((
sqrt 5)
/ (2
*
tau ))
/ tbn)
* tbn))
<= tbn by
XCMPLX_1: 78;
hence thesis by
A7,
XCMPLX_1: 87;
end;
suppose n is
odd;
then
A8: tbn
<
0 by
Th7;
((
sqrt 5)
/ (
tau
* ((
sqrt 5)
- 5)))
<= tbn by
Lm21,
A2,
Th14;
then (((
sqrt 5)
/ (
tau
* ((
sqrt 5)
- 5)))
* ((
sqrt 5)
- 5))
>= (tbn
* ((
sqrt 5)
- 5)) by
A3,
XREAL_1: 65;
then ((((
sqrt 5)
/
tau )
/ ((
sqrt 5)
- 5))
* ((
sqrt 5)
- 5))
>= (tbn
* ((
sqrt 5)
- 5)) by
XCMPLX_1: 78;
then ((
sqrt 5)
/
tau )
>= (tbn
* ((
sqrt 5)
- 5)) by
A3,
XCMPLX_1: 87;
then (((
sqrt 5)
/
tau )
/ tbn)
<= ((tbn
* ((
sqrt 5)
- 5))
/ tbn) by
A8,
XREAL_1: 73;
then ((
sqrt 5)
/ (
tau
* tbn))
<= ((tbn
* ((
sqrt 5)
- 5))
/ tbn) by
XCMPLX_1: 78;
then ((
sqrt 5)
/ (
tau
* tbn))
<= ((
sqrt 5)
- 5) by
A8,
XCMPLX_1: 89;
then (
- ((
sqrt 5)
/ (
tau
* tbn)))
>= (
- ((
sqrt 5)
- 5)) by
XREAL_1: 24;
then ((
- ((
sqrt 5)
/ (
tau
* tbn)))
+ ((
sqrt 5)
- 3))
>= (((
- (
sqrt 5))
+ 5)
+ ((
sqrt 5)
- 3)) by
XREAL_1: 6;
then (((
- ((
sqrt 5)
/ (
tau
* tbn)))
+ ((
sqrt 5)
- 3))
/ 2)
>= (2
/ 2) by
XREAL_1: 72;
then ((
tau_bar
/
tau )
- (((
sqrt 5)
/ (
tau
* tbn))
/ 2))
>= 1 by
Lm4;
then ((
tau_bar
/
tau )
- ((
sqrt 5)
/ ((
tau
* tbn)
* 2)))
>= 1 by
XCMPLX_1: 78;
then (((
tau_bar
/
tau )
- ((
sqrt 5)
/ ((
tau
* tbn)
* 2)))
* tbn)
<= (1
* tbn) by
A8,
XREAL_1: 65;
then (((
tau_bar
/
tau )
* tbn)
- (((
sqrt 5)
/ ((
tau
* 2)
* tbn))
* tbn))
<= tbn;
then (((
tau_bar
/
tau )
* tbn)
- ((((
sqrt 5)
/ (
tau
* 2))
/ tbn)
* tbn))
<= tbn by
XCMPLX_1: 78;
then (((
tau_bar
/
tau )
* tbn)
- ((
sqrt 5)
/ (
tau
* 2)))
<= tbn by
A8,
XCMPLX_1: 87;
then (((
tau_bar
* tbn)
/
tau )
- ((
sqrt 5)
/ (
tau
* 2)))
<= tbn by
XCMPLX_1: 74;
then ((((
tau_bar
to_power 1)
* tbn)
/
tau )
- ((
sqrt 5)
/ (
tau
* 2)))
<= tbn;
hence thesis by
Th2;
end;
end;
then (
- ((tbm
/
tau )
- ((
sqrt 5)
/ (2
*
tau ))))
>= (
- tbn) by
XREAL_1: 24;
then (((
- (tbm
/
tau ))
+ ((
sqrt 5)
/ (2
*
tau )))
+ ((tn
*
tau )
/
tau ))
>= ((
- tbn)
+ ((tn
*
tau )
/
tau )) by
XREAL_1: 6;
then ((((tn
*
tau )
/
tau )
- (tbm
/
tau ))
+ ((
sqrt 5)
/ (2
*
tau )))
>= ((
- tbn)
+ ((tn
*
tau )
/
tau ));
then ((((tn
*
tau )
- tbm)
/
tau )
+ ((
sqrt 5)
/ (2
*
tau )))
>= ((
- tbn)
+ ((tn
*
tau )
/
tau )) by
XCMPLX_1: 120;
then ((((tn
*
tau )
- tbm)
/
tau )
+ ((
sqrt 5)
/ (2
*
tau )))
>= ((
- tbn)
+ tn) by
XCMPLX_1: 89;
then ((((tn
* (
tau
to_power 1))
- tbm)
/
tau )
+ ((
sqrt 5)
/ (2
*
tau )))
>= (tn
- tbn);
then ((((
tau
to_power (n
+ 1))
- tbm)
/
tau )
+ ((
sqrt 5)
/ (2
*
tau )))
>= (tn
- tbn) by
Th2;
then (((((
tau
to_power (n
+ 1))
- tbm)
/
tau )
+ ((
sqrt 5)
/ (2
*
tau )))
/ (
sqrt 5))
>= ((tn
- tbn)
/ (
sqrt 5)) by
Lm20,
XREAL_1: 72;
then (((((
tau
to_power (n
+ 1))
- tbm)
/
tau )
+ ((
sqrt 5)
/ (2
*
tau )))
/ (
sqrt 5))
>= (
Fib n) by
FIB_NUM: 7;
then (((((
tau
to_power (n
+ 1))
- tbm)
/
tau )
/ (
sqrt 5))
+ (((
sqrt 5)
/ (2
*
tau ))
/ (
sqrt 5)))
>= (
Fib n) by
XCMPLX_1: 62;
then (((((
tau
to_power (n
+ 1))
- tbm)
/ (
sqrt 5))
/
tau )
+ (((
sqrt 5)
/ (2
*
tau ))
/ (
sqrt 5)))
>= (
Fib n) by
XCMPLX_1: 48;
then (((
Fib (n
+ 1))
/
tau )
+ (((
sqrt 5)
/ (2
*
tau ))
/ (
sqrt 5)))
>= (
Fib n) by
FIB_NUM: 7;
then (((
Fib (n
+ 1))
/
tau )
+ ((1
/ (2
*
tau ))
* ((
sqrt 5)
/ (
sqrt 5))))
>= (
Fib n) by
XCMPLX_1: 104;
then (((
Fib (n
+ 1))
/
tau )
+ ((1
/ (2
*
tau ))
* 1))
>= (
Fib n) by
Lm20,
XCMPLX_1: 60;
then (((
Fib (n
+ 1))
/
tau )
+ ((1
/ 2)
/
tau ))
>= (
Fib n) by
XCMPLX_1: 78;
then (((
Fib (n
+ 1))
+ (1
/ 2))
/
tau )
>= (
Fib n) by
XCMPLX_1: 62;
hence thesis by
XCMPLX_1: 99;
end;
(((1
/
tau )
* ((
Fib (n
+ 1))
+ (1
/ 2)))
- 1)
< (
Fib n)
proof
1
< (
sqrt 5) by
SQUARE_1: 18,
SQUARE_1: 27;
then (1
/ 2)
< ((
sqrt 5)
/ 2) by
XREAL_1: 74;
then tbn
< ((
sqrt 5)
/ 2) by
Th8,
A1,
XXREAL_0: 2;
then (tbn
* (
sqrt 5))
< ((
tau
- (1
/ 2))
* (
sqrt 5)) by
Lm20,
FIB_NUM:def 1,
XREAL_1: 68;
then ((tbn
*
tau )
- (tbn
*
tau_bar ))
< ((
tau
* (
sqrt 5))
- ((1
* (
sqrt 5))
/ 2)) by
FIB_NUM:def 1,
FIB_NUM:def 2;
then ((tbn
*
tau )
- (tbn
* (
tau_bar
to_power 1)))
< ((
tau
* (
sqrt 5))
- ((
sqrt 5)
/ 2));
then ((tbn
*
tau )
- (
tau_bar
to_power (n
+ 1)))
< ((
tau
* (
sqrt 5))
- ((
sqrt 5)
/ 2)) by
Th2;
then (((tbn
*
tau )
- (
tau_bar
to_power (n
+ 1)))
+ ((
sqrt 5)
/ 2))
< (((
tau
* (
sqrt 5))
- ((
sqrt 5)
/ 2))
+ ((
sqrt 5)
/ 2)) by
XREAL_1: 6;
then ((((tbn
*
tau )
- (
tau_bar
to_power (n
+ 1)))
+ ((
sqrt 5)
/ 2))
- (tbn
*
tau ))
< ((
tau
* (
sqrt 5))
- (tbn
*
tau )) by
XREAL_1: 9;
then (((
- (
tau_bar
to_power (n
+ 1)))
+ ((
sqrt 5)
/ 2))
- (
tau
* (
sqrt 5)))
< (((
tau
* (
sqrt 5))
- (tbn
*
tau ))
- (
tau
* (
sqrt 5))) by
XREAL_1: 9;
then ((((
- (
tau_bar
to_power (n
+ 1)))
+ ((
sqrt 5)
/ 2))
- (
tau
* (
sqrt 5)))
/
tau )
< ((
- (tbn
*
tau ))
/
tau ) by
XREAL_1: 74;
then ((((
- (
tau_bar
to_power (n
+ 1)))
/
tau )
+ (((
sqrt 5)
/ 2)
/
tau ))
- ((
tau
* (
sqrt 5))
/
tau ))
< ((
- (tbn
*
tau ))
/
tau ) by
XCMPLX_1: 124;
then (((
- ((
tau_bar
to_power (n
+ 1))
/
tau ))
+ (((
sqrt 5)
/ 2)
/
tau ))
- ((
tau
* (
sqrt 5))
/
tau ))
< (((
- tbn)
*
tau )
/
tau ) by
XCMPLX_1: 187;
then (((
- ((
tau_bar
to_power (n
+ 1))
/
tau ))
+ (((
sqrt 5)
/ 2)
/
tau ))
- ((
tau
* (
sqrt 5))
/
tau ))
< (
- tbn) by
XCMPLX_1: 89;
then (((
- ((
tau_bar
to_power (n
+ 1))
/
tau ))
+ (((
sqrt 5)
/ 2)
/
tau ))
- (
sqrt 5))
< (
- tbn) by
XCMPLX_1: 89;
then ((((
- ((
tau_bar
to_power (n
+ 1))
/
tau ))
+ (((
sqrt 5)
/ 2)
/
tau ))
- (
sqrt 5))
+ ((
tau
to_power n)
* 1))
< ((
- tbn)
+ (
tau
to_power n)) by
XREAL_1: 6;
then (((((
- ((
tau_bar
to_power (n
+ 1))
/
tau ))
+ (((
sqrt 5)
/ 2)
/
tau ))
- (
sqrt 5))
+ ((
tau
to_power n)
* 1))
/ (
sqrt 5))
< (((
tau
to_power n)
- tbn)
/ (
sqrt 5)) by
Lm20,
XREAL_1: 74;
then (((((
- ((
tau_bar
to_power (n
+ 1))
/
tau ))
+ (((
sqrt 5)
/ 2)
/
tau ))
- (
sqrt 5))
+ ((
tau
to_power n)
* 1))
/ (
sqrt 5))
< (
Fib n) by
FIB_NUM: 7;
then (((((
- ((
tau_bar
to_power (n
+ 1))
/
tau ))
+ (((
sqrt 5)
/ 2)
/
tau ))
- (
sqrt 5))
+ ((
tau
to_power n)
* (
tau
/
tau )))
/ (
sqrt 5))
< (
Fib n) by
XCMPLX_1: 60;
then (((((
- ((
tau_bar
to_power (n
+ 1))
/
tau ))
+ (((
sqrt 5)
/ 2)
/
tau ))
+ ((
tau
to_power n)
* (
tau
/
tau )))
- (
sqrt 5))
/ (
sqrt 5))
< (
Fib n);
then (((((
- ((
tau_bar
to_power (n
+ 1))
/
tau ))
+ (((
sqrt 5)
/ 2)
/
tau ))
+ (((
tau
to_power n)
*
tau )
/
tau ))
- (
sqrt 5))
/ (
sqrt 5))
< (
Fib n) by
XCMPLX_1: 74;
then (((((
- ((
tau_bar
to_power (n
+ 1))
/
tau ))
+ (((
sqrt 5)
/ 2)
/
tau ))
+ (((
tau
to_power n)
*
tau )
/
tau ))
/ (
sqrt 5))
- ((
sqrt 5)
/ (
sqrt 5)))
< (
Fib n) by
XCMPLX_1: 120;
then (((((
- ((
tau_bar
to_power (n
+ 1))
/
tau ))
+ (((
sqrt 5)
/ 2)
/
tau ))
+ (((
tau
to_power n)
*
tau )
/
tau ))
/ (
sqrt 5))
- 1)
< (
Fib n) by
Lm20,
XCMPLX_1: 60;
then ((((((
- (
tau_bar
to_power (n
+ 1)))
/
tau )
+ (((
sqrt 5)
/ 2)
/
tau ))
+ (((
tau
to_power n)
*
tau )
/
tau ))
/ (
sqrt 5))
- 1)
< (
Fib n) by
XCMPLX_1: 187;
then ((((((
- (
tau_bar
to_power (n
+ 1)))
+ ((
sqrt 5)
/ 2))
+ ((
tau
to_power n)
*
tau ))
/
tau )
/ (
sqrt 5))
- 1)
< (
Fib n) by
XCMPLX_1: 63;
then ((((((
- (
tau_bar
to_power (n
+ 1)))
+ ((
sqrt 5)
/ 2))
+ ((
tau
to_power n)
*
tau ))
/ (
sqrt 5))
/
tau )
- 1)
< (
Fib n) by
XCMPLX_1: 48;
then ((((((
- (
tau_bar
to_power (n
+ 1)))
+ ((
tau
to_power n)
*
tau ))
+ ((
sqrt 5)
/ 2))
/ (
sqrt 5))
* (1
/
tau ))
- 1)
< (
Fib n) by
XCMPLX_1: 99;
then ((((((
- (
tau_bar
to_power (n
+ 1)))
+ ((
tau
to_power n)
*
tau ))
/ (
sqrt 5))
+ (((
sqrt 5)
/ 2)
/ (
sqrt 5)))
* (1
/
tau ))
- 1)
< (
Fib n) by
XCMPLX_1: 62;
then ((((((
- (
tau_bar
to_power (n
+ 1)))
+ ((
tau
to_power n)
* (
tau
to_power 1)))
/ (
sqrt 5))
+ (((
sqrt 5)
/ 2)
/ (
sqrt 5)))
* (1
/
tau ))
- 1)
< (
Fib n);
then ((((((
- (
tau_bar
to_power (n
+ 1)))
+ (
tau
to_power (n
+ 1)))
/ (
sqrt 5))
+ (((
sqrt 5)
/ 2)
/ (
sqrt 5)))
* (1
/
tau ))
- 1)
< (
Fib n) by
Th2;
then ((((((
tau
to_power (n
+ 1))
- (
tau_bar
to_power (n
+ 1)))
/ (
sqrt 5))
+ (((
sqrt 5)
/ 2)
/ (
sqrt 5)))
* (1
/
tau ))
- 1)
< (
Fib n);
then ((((
Fib (n
+ 1))
+ (((
sqrt 5)
/ 2)
/ (
sqrt 5)))
* (1
/
tau ))
- 1)
< (
Fib n) by
FIB_NUM: 7;
then ((((
Fib (n
+ 1))
+ (((
sqrt 5)
/ (
sqrt 5))
/ 2))
* (1
/
tau ))
- 1)
< (
Fib n) by
XCMPLX_1: 48;
hence thesis by
Lm20,
XCMPLX_1: 60;
end;
hence thesis by
A4,
INT_1:def 6;
end;
Lm22: (
sqrt 5)
> 1 by
SQUARE_1: 18,
SQUARE_1: 27;
then
Lm23: ((
sqrt 5)
- 1)
> (1
- 1) & (
sqrt 5)
>
0 by
XREAL_1: 9;
(
sqrt 5)
> 2 by
SQUARE_1: 20,
SQUARE_1: 27;
then (
- (
sqrt 5))
< (
- 2) by
XREAL_1: 24;
then ((
- (
sqrt 5))
+ 5)
< ((
- 2)
+ 5) by
XREAL_1: 6;
then ((
- (
sqrt 5))
+ ((
sqrt 5)
^2 ))
< 3 by
SQUARE_1:def 2;
then (((
sqrt 5)
* ((
sqrt 5)
- 1))
/ 5)
< (3
/ 5) by
XREAL_1: 74;
then (((
sqrt 5)
- 1)
* ((
sqrt 5)
/ 5))
< (6
/ 10);
then (((
sqrt 5)
- 1)
* ((
sqrt 5)
/ ((
sqrt 5)
^2 )))
< (6
/ 10) by
SQUARE_1:def 2;
then (((
sqrt 5)
- 1)
* ((1
* (
sqrt 5))
/ ((
sqrt 5)
* (
sqrt 5))))
< (6
/ 10) & (
sqrt 5)
>
0 by
SQUARE_1: 25;
then (((
sqrt 5)
- 1)
* (1
/ (
sqrt 5)))
< (6
/ 10) by
XCMPLX_1: 91;
then
Lm24: (((
sqrt 5)
- 1)
/ (
sqrt 5))
< (6
/ 10) by
XCMPLX_1: 99;
(
sqrt ((3
/ 2)
^2 ))
<= (
sqrt 5) by
SQUARE_1: 26;
then (3
/ 2)
<= (
sqrt 5) by
SQUARE_1:def 2;
then ((3
/ 2)
* 2)
<= ((
sqrt 5)
* 2) by
XREAL_1: 64;
then
Lm25: (3
/ 4)
<= ((2
* (
sqrt 5))
/ (2
* 2)) by
XREAL_1: 72;
Lm26: ((
sqrt 5)
- 1)
> (1
- 1) & (
sqrt 5)
>
0 by
Lm22,
XREAL_1: 9;
((
- 1)
+ (
sqrt 5))
< (
0
+ (
sqrt 5)) & (
sqrt 5)
>
0 by
SQUARE_1: 25,
XREAL_1: 6;
then (((
sqrt 5)
- 1)
/ (
sqrt 5))
< ((
sqrt 5)
/ (
sqrt 5)) & (
sqrt 5)
>
0 by
XREAL_1: 74;
then
Lm27: (((
sqrt 5)
- 1)
/ (
sqrt 5))
< 1 by
XCMPLX_1: 60;
(
sqrt 5)
< (
sqrt (3
^2 )) by
SQUARE_1: 27;
then (
sqrt 5)
< 3 by
SQUARE_1:def 2;
then (
- (
sqrt 5))
> (
- 3) by
XREAL_1: 24;
then
Lm28: ((
- (
sqrt 5))
+ 3)
> ((
- 3)
+ 3) by
XREAL_1: 6;
(
- (
sqrt 5))
< (
- 1) by
Lm22,
XREAL_1: 24;
then ((
- (
sqrt 5))
+ 3)
< ((
- 1)
+ 3) by
XREAL_1: 6;
then
Lm29: ((3
- (
sqrt 5))
/ 2)
< (2
/ 2) by
XREAL_1: 74;
theorem ::
FIB_NUM4:29
for n,k be
Nat st (n
>= k & k
> 1) or (k
= 1 & n
> k) holds
[\(((
tau
to_power k)
* (
Fib n))
+ (1
/ 2))/]
= (
Fib (n
+ k))
proof
let n,k be
Nat;
set tb =
tau_bar ;
set tk = (
tau
to_power k);
set tbk = (
tau_bar
to_power k);
set ts = (
tau
to_power (n
+ k));
set tbs = (
tau_bar
to_power (n
+ k));
set tn = (
tau
to_power n);
set tbn = (
tau_bar
to_power n);
assume
A1: (n
>= k & k
> 1) or (k
= 1 & n
> k);
A2: (tk
* (
Fib n))
= (tk
* ((tn
- tbn)
/ (
sqrt 5))) by
FIB_NUM: 7
.= ((tk
* (tn
- tbn))
/ (
sqrt 5)) by
XCMPLX_1: 74
.= ((((tk
* tn)
- tbs)
+ (tbs
- (tk
* tbn)))
/ (
sqrt 5))
.= (((ts
- tbs)
+ (tbs
- (tk
* tbn)))
/ (
sqrt 5)) by
Th2
.= (((ts
- tbs)
/ (
sqrt 5))
+ ((tbs
- (tk
* tbn))
/ (
sqrt 5))) by
XCMPLX_1: 62
.= ((
Fib (n
+ k))
+ ((tbs
- (tk
* tbn))
/ (
sqrt 5))) by
FIB_NUM: 7
.= ((
Fib (n
+ k))
+ (((tbn
* tbk)
- (tk
* tbn))
/ (
sqrt 5))) by
Th2
.= ((
Fib (n
+ k))
+ (((
- tbn)
* (tk
- tbk))
/ (
sqrt 5)))
.= ((
Fib (n
+ k))
+ ((
- tbn)
* ((tk
- tbk)
/ (
sqrt 5)))) by
XCMPLX_1: 74
.= ((
Fib (n
+ k))
+ ((
- tbn)
* (
Fib k))) by
FIB_NUM: 7
.= ((
Fib (n
+ k))
- (tbn
* (
Fib k)));
A3: ((tk
* (
Fib n))
+ (1
/ 2))
>= (
Fib (n
+ k))
proof
(tbn
* (
Fib k))
<= (1
/ 2)
proof
per cases ;
suppose
A4: n is
even;
consider m be
Nat such that
A5: n
= (k
+ m) by
A1,
NAT_1: 10;
A6: (
sqrt 5)
>
0 by
SQUARE_1: 25;
set tbm = (
tau_bar
to_power m);
(tbm
* (((
- 1)
to_power k)
- (tb
to_power (2
* k))))
<= ((
sqrt 5)
/ 2)
proof
per cases ;
suppose
A7: k is
even;
(tb
to_power (2
* k))
>
0 by
Th6;
then
A8: ((
- (tb
to_power (2
* k)))
+ 1)
< (
0
+ 1) by
XREAL_1: 6;
(tb
to_power (2
* k))
< 1 by
Th8,
A1,
XXREAL_0: 2;
then (
- (tb
to_power (2
* k)))
> (
- 1) by
XREAL_1: 24;
then
A9: ((
- (tb
to_power (2
* k)))
+ 1)
> ((
- 1)
+ 1) by
XREAL_1: 6;
m is
even by
A4,
A5,
A7;
then
A10: tbm
>
0 by
Th6;
tbm
<= ((
sqrt 5)
/ 2)
proof
A11: (
sqrt 5)
> 2 by
SQUARE_1: 20,
SQUARE_1: 27;
per cases ;
suppose
A12: m
=
0 ;
((
sqrt 5)
/ 2)
>= (2
/ 2) by
A11,
XREAL_1: 72;
hence thesis by
A12,
POWER: 24;
end;
suppose
A13: m
>
0 ;
(
sqrt 5)
>= 1 by
A11,
XXREAL_0: 2;
then ((
sqrt 5)
/ 2)
>= (1
/ 2) by
XREAL_1: 72;
hence thesis by
A13,
Th8,
XXREAL_0: 2;
end;
end;
then
|.tbm.|
<= ((
sqrt 5)
/ 2) by
A10,
ABSVALUE:def 1;
then
A14: (
|.tbm.|
* (1
- (tb
to_power (2
* k))))
<= (((
sqrt 5)
/ 2)
* 1) by
A8,
A9,
XREAL_1: 66;
(tbm
* (1
- (tb
to_power (2
* k))))
<= (
|.tbm.|
* (1
- (tb
to_power (2
* k)))) by
A9,
ABSVALUE: 4,
XREAL_1: 64;
then (tbm
* (1
- (tb
to_power (2
* k))))
<= ((
sqrt 5)
/ 2) by
A14,
XXREAL_0: 2;
hence thesis by
A7,
FIB_NUM2: 3;
end;
suppose
A15: k is
odd;
then
A16: m is
odd by
A4,
A5;
m
<>
0 by
A15,
A4,
A5;
then
A17: m
>= 1 by
NAT_1: 14;
per cases by
A17,
XXREAL_0: 1;
suppose
A18: m
= 1;
(tb
* ((
- 1)
- (tb
to_power (2
* k))))
<= ((
sqrt 5)
/ 2)
proof
A19: (tb
to_power (2
* k))
>
0 by
Th6;
(tb
to_power (2
* k))
< (1
/ 2) by
Th8,
A1;
then ((tb
to_power (2
* k))
+ 1)
< ((1
/ 2)
+ 1) by
XREAL_1: 6;
then ((((
sqrt 5)
- 1)
/ (
sqrt 5))
* (1
+ (tb
to_power (2
* k))))
< ((6
/ 10)
* (3
/ 2)) by
Lm23,
Lm24,
A19,
XREAL_1: 98;
then ((((
sqrt 5)
- 1)
/ (
sqrt 5))
* (1
+ (tb
to_power (2
* k))))
< 1 & (
sqrt 5)
>
0 by
SQUARE_1: 25,
XXREAL_0: 2;
then (((((
sqrt 5)
- 1)
/ (
sqrt 5))
* (1
+ (tb
to_power (2
* k))))
* (
sqrt 5))
< (1
* (
sqrt 5)) by
XREAL_1: 68;
then (((((
sqrt 5)
- 1)
* (1
/ (
sqrt 5)))
* (1
+ (tb
to_power (2
* k))))
* (
sqrt 5))
< (
sqrt 5) by
XCMPLX_1: 99;
then ((((
sqrt 5)
- 1)
* (1
+ (tb
to_power (2
* k))))
* ((
sqrt 5)
* (1
/ (
sqrt 5))))
< (
sqrt 5);
then ((((
sqrt 5)
- 1)
* (1
+ (tb
to_power (2
* k))))
* ((
sqrt 5)
/ (
sqrt 5)))
< (1
* (
sqrt 5)) & (
sqrt 5)
>
0 by
SQUARE_1: 25,
XCMPLX_1: 99;
then ((((
sqrt 5)
- 1)
* (1
+ (tb
to_power (2
* k))))
* 1)
< (
sqrt 5) by
XCMPLX_1: 60;
then (((1
- (
sqrt 5))
* ((
- 1)
- (tb
to_power (2
* k))))
/ 2)
< ((
sqrt 5)
/ 2) by
XREAL_1: 74;
hence thesis by
FIB_NUM:def 2;
end;
then (tbm
* ((
- 1)
- (tb
to_power (2
* k))))
<= ((
sqrt 5)
/ 2) by
A18;
hence thesis by
A15,
FIB_NUM2: 2;
end;
suppose
A20: m
> 1;
A21: tbm
<
0 by
A16,
Th7;
A22: (tbm
* ((
- 1)
- (tb
to_power (2
* k))))
= (
- (tbm
* (1
+ (tb
to_power (2
* k)))));
A23: (tb
to_power (2
* k))
>
0 by
Th6;
(tb
to_power (2
* k))
<= (1
/ 2) by
A1,
Th8;
then
A24: ((tb
to_power (2
* k))
+ 1)
<= ((1
/ 2)
+ 1) by
XREAL_1: 6;
tbm
> (
- (1
/ 2)) by
Th14,
A20;
then (
- tbm)
< (
- (
- (1
/ 2))) by
XREAL_1: 24;
then ((
- tbm)
* (1
+ (tb
to_power (2
* k))))
<= ((1
/ 2)
* (3
/ 2)) by
A21,
A23,
A24,
XREAL_1: 66;
then (
- (tbm
* (1
+ (tb
to_power (2
* k)))))
<= ((
sqrt 5)
/ 2) by
Lm25,
XXREAL_0: 2;
hence thesis by
A15,
A22,
FIB_NUM2: 2;
end;
end;
end;
then (tbm
* ((tk
* tbk)
- (tb
to_power (k
+ k))))
<= ((
sqrt 5)
/ 2) by
Lm3,
NEWTON: 7;
then (tbm
* ((tk
* tbk)
- (tbk
* tbk)))
<= ((
sqrt 5)
/ 2) by
Th2;
then (((tbm
* tbk)
* (tk
- tbk))
/ (
sqrt 5))
<= (((
sqrt 5)
/ 2)
/ (
sqrt 5)) by
A6,
XREAL_1: 72;
then ((tbm
* tbk)
* ((tk
- tbk)
/ (
sqrt 5)))
<= (((
sqrt 5)
/ 2)
/ (
sqrt 5)) by
XCMPLX_1: 74;
then ((tbm
* tbk)
* (
Fib k))
<= (((
sqrt 5)
/ 2)
/ (
sqrt 5)) by
FIB_NUM: 7;
then (tbn
* (
Fib k))
<= (((
sqrt 5)
/ 2)
/ (
sqrt 5)) by
A5,
Th2;
then (tbn
* (
Fib k))
<= ((1
* (
sqrt 5))
/ (2
* (
sqrt 5))) by
XCMPLX_1: 78;
hence thesis by
A6,
XCMPLX_1: 91;
end;
suppose n is
odd;
then tbn
<
0 by
Th7;
hence thesis;
end;
end;
then (
- (tbn
* (
Fib k)))
>= (
- (1
/ 2)) by
XREAL_1: 24;
then ((
- (tbn
* (
Fib k)))
+ (1
/ 2))
>= ((
- (1
/ 2))
+ (1
/ 2)) by
XREAL_1: 6;
then (((
- (tbn
* (
Fib k)))
+ (1
/ 2))
+ (
Fib (n
+ k)))
>= (
0
+ (
Fib (n
+ k))) by
XREAL_1: 6;
hence thesis by
A2;
end;
(((tk
* (
Fib n))
+ (1
/ 2))
- 1)
< (
Fib (n
+ k))
proof
(tbn
* (
Fib k))
> (
- (1
/ 2))
proof
per cases ;
suppose n is
even;
then tbn
>
0 by
Th6;
hence thesis;
end;
suppose
A25: n is
odd;
consider m be
Nat such that
A26: n
= (k
+ m) by
A1,
NAT_1: 10;
set tbm = (
tau_bar
to_power m);
per cases ;
suppose
A27: k is
even;
then
A28: m is
odd by
A25,
A26;
then
A29: tbm
<
0 by
Th7;
A30: m
>= 1 by
A28,
NAT_1: 14;
per cases by
A30,
XXREAL_0: 1;
suppose
A31: m
= 1;
(((3
- (
sqrt 5))
/ 2)
to_power k)
< (1
to_power k) by
Lm29,
Lm28,
A1,
POWER: 37;
then (((3
- (
sqrt 5))
/ 2)
to_power k)
< 1;
then (
- (((3
- (
sqrt 5))
/ 2)
to_power k))
> (
- 1) by
XREAL_1: 24;
then
A32: ((
- (((3
- (
sqrt 5))
/ 2)
to_power k))
+ 1)
> ((
- 1)
+ 1) by
XREAL_1: 6;
(((3
- (
sqrt 5))
/ 2)
to_power k)
>
0 by
Lm28,
POWER: 34;
then
A33: ((
- (((3
- (
sqrt 5))
/ 2)
to_power k))
+ 1)
< (
0
+ 1) by
XREAL_1: 6;
A34: (1
- (tb
to_power (2
* k)))
= (((
- 1)
to_power k)
- (tb
to_power (2
* k))) by
A27,
FIB_NUM2: 3
.= ((tk
* tbk)
- (tb
to_power (k
+ k))) by
Lm3,
NEWTON: 7
.= ((tk
* tbk)
- (tbk
* tbk)) by
Th2
.= (tbk
* (tk
- tbk));
((((
sqrt 5)
- 1)
/ (
sqrt 5))
* (1
- (((3
- (
sqrt 5))
/ 2)
to_power k)))
< (1
* 1) by
Lm26,
Lm27,
A32,
A33,
XREAL_1: 98;
then (
- ((((
sqrt 5)
- 1)
/ (
sqrt 5))
* (1
- (((3
- (
sqrt 5))
/ 2)
to_power k))))
> (
- 1) by
XREAL_1: 24;
then ((
- (((
sqrt 5)
- 1)
/ (
sqrt 5)))
* (1
- (((3
- (
sqrt 5))
/ 2)
to_power k)))
> (
- 1);
then (((
- ((
sqrt 5)
- 1))
/ (
sqrt 5))
* (1
- (((3
- (
sqrt 5))
/ 2)
to_power k)))
> (
- 1) by
XCMPLX_1: 187;
then (((1
- (
sqrt 5))
/ (
sqrt 5))
* (1
- (tb
to_power (2
* k))))
> (
- 1) by
Lm7,
NEWTON: 9;
then ((((1
- (
sqrt 5))
/ (
sqrt 5))
* (1
- (tb
to_power (2
* k))))
/ 2)
> ((
- 1)
/ 2) by
XREAL_1: 74;
then (((1
- (
sqrt 5))
/ (
sqrt 5))
* ((1
- (tb
to_power (2
* k)))
/ 2))
> ((
- 1)
/ 2);
then (((1
- (
sqrt 5))
* (1
/ (
sqrt 5)))
* ((1
- (tb
to_power (2
* k)))
* (1
/ 2)))
> ((
- 1)
/ 2) by
XCMPLX_1: 99;
then ((tb
* (1
/ (
sqrt 5)))
* (1
- (tb
to_power (2
* k))))
> (
- (1
/ 2)) by
FIB_NUM:def 2;
then ((tb
* (1
/ (
sqrt 5)))
* (tbk
* (tk
- tbk)))
> (
- (1
/ 2)) by
A34;
then ((tb
* tbk)
* ((tk
- tbk)
* (1
/ (
sqrt 5))))
> (
- (1
/ 2));
then ((tb
* tbk)
* ((tk
- tbk)
/ (
sqrt 5)))
> (
- (1
/ 2)) by
XCMPLX_1: 99;
then (((tb
to_power 1)
* tbk)
* ((tk
- tbk)
/ (
sqrt 5)))
> (
- (1
/ 2));
then ((tb
to_power (1
+ k))
* ((tk
- tbk)
/ (
sqrt 5)))
> (
- (1
/ 2)) by
Th2;
hence thesis by
A31,
A26,
FIB_NUM: 7;
end;
suppose m
> 1;
then tbm
> (
- (1
/ 2)) by
Th14;
then
A35: (
- tbm)
< (
- (
- (1
/ 2))) by
XREAL_1: 24;
(
sqrt 5)
> 1 by
SQUARE_1: 18,
SQUARE_1: 27;
then (
- (
sqrt 5))
< (
- 1) by
XREAL_1: 24;
then
A36: ((
- (
sqrt 5))
/ 2)
< ((
- 1)
/ 2) by
XREAL_1: 74;
(tb
to_power (2
* k))
>
0 & (tb
to_power (2
* k))
< (1
/ 2) by
Th6,
Th8,
A1;
then (
- (tb
to_power (2
* k)))
<
0 & (
- (tb
to_power (2
* k)))
> (
- (1
/ 2)) by
XREAL_1: 24;
then ((
- (tb
to_power (2
* k)))
+ 1)
< (
0
+ 1) & ((
- (tb
to_power (2
* k)))
+ 1)
> ((
- (1
/ 2))
+ 1) by
XREAL_1: 6;
then ((
- tbm)
* (1
- (tb
to_power (2
* k))))
< ((1
/ 2)
* 1) by
A35,
A29,
XREAL_1: 98;
then (
- (
- (tbm
* (1
- (tb
to_power (2
* k))))))
> (
- (1
/ 2)) by
XREAL_1: 24;
then (tbm
* (((
- 1)
to_power k)
- (tb
to_power (2
* k))))
> (
- (1
/ 2)) by
A27,
FIB_NUM2: 3;
then (tbm
* (((
- 1)
to_power k)
- (tb
to_power (2
* k))))
> (
- ((
sqrt 5)
/ 2)) by
A36,
XXREAL_0: 2;
then (tbm
* ((tk
* tbk)
- (tb
to_power (k
+ k))))
> (
- ((
sqrt 5)
/ 2)) by
Lm3,
NEWTON: 7;
then (tbm
* ((tk
* tbk)
- (tbk
* tbk)))
> (
- ((
sqrt 5)
/ 2)) by
Th2;
then ((tbm
* tbk)
* (tk
- tbk))
> (
- ((
sqrt 5)
/ 2));
then (tbn
* (tk
- tbk))
> (
- ((
sqrt 5)
/ 2)) & (
sqrt 5)
>
0 by
Th2,
A26,
SQUARE_1: 25;
then ((tbn
* (tk
- tbk))
/ (
sqrt 5))
> ((
- ((
sqrt 5)
/ 2))
/ (
sqrt 5)) by
XREAL_1: 74;
then (tbn
* ((tk
- tbk)
/ (
sqrt 5)))
> ((
- ((
sqrt 5)
/ 2))
/ (
sqrt 5)) by
XCMPLX_1: 74;
then (tbn
* (
Fib k))
> (((
- (
sqrt 5))
/ 2)
/ (
sqrt 5)) by
FIB_NUM: 7;
then (tbn
* (
Fib k))
> (((
- 1)
* (
sqrt 5))
/ (2
* (
sqrt 5))) & (
sqrt 5)
>
0 by
SQUARE_1: 25,
XCMPLX_1: 78;
then (tbn
* (
Fib k))
> ((
- 1)
/ 2) by
XCMPLX_1: 91;
hence thesis;
end;
end;
suppose
A37: k is
odd;
then
A38: m is
even by
A25,
A26;
per cases ;
suppose
A39: m
=
0 ;
per cases by
A1;
suppose k
= 1;
hence thesis by
A1,
A39,
A26;
end;
suppose k
> 1;
then k
>= (1
+ 1) by
NAT_1: 13;
then k
= 2 or k
> 2 by
XXREAL_0: 1;
then (k
+ 1)
> (2
+ 1) by
A37,
POLYFORM: 5,
XREAL_1: 6;
then k
>= 3 by
NAT_1: 13;
then (k
* 2)
>= (3
* 2) by
XREAL_1: 64;
then (tb
to_power (k
* 2))
<= (tb
to_power (3
* 2)) by
Th11;
then
A40: ((tb
to_power (2
* k))
+ 1)
<= ((9
- (4
* (
sqrt 5)))
+ 1) by
Lm9,
XREAL_1: 6;
(
sqrt ((20
/ 9)
^2 ))
< (
sqrt 5) by
SQUARE_1: 27;
then (20
/ 9)
< (
sqrt 5) by
SQUARE_1:def 2;
then ((20
/ 9)
* 9)
< (9
* (
sqrt 5)) by
XREAL_1: 68;
then (20
- (8
* (
sqrt 5)))
< (((
sqrt 5)
+ (8
* (
sqrt 5)))
- (8
* (
sqrt 5))) by
XREAL_1: 9;
then ((20
- (8
* (
sqrt 5)))
/ 2)
< ((
sqrt 5)
/ 2) by
XREAL_1: 74;
then ((tb
to_power (2
* k))
+ 1)
< ((
sqrt 5)
/ 2) by
A40,
XXREAL_0: 2;
then (
- ((tb
to_power (2
* k))
+ 1))
> (
- ((
sqrt 5)
/ 2)) by
XREAL_1: 24;
then ((
- (tb
to_power (2
* k)))
+ (
- 1))
> (
- ((
sqrt 5)
/ 2));
then ((
- (tb
to_power (2
* k)))
+ ((
- 1)
to_power k))
> (
- ((
sqrt 5)
/ 2)) by
A37,
FIB_NUM2: 2;
then ((
- (tb
to_power (k
+ k)))
+ (tk
* tbk))
> (
- ((
sqrt 5)
/ 2)) by
Lm3,
NEWTON: 7;
then ((
- (tbk
* tbk))
+ (tk
* tbk))
> (
- ((
sqrt 5)
/ 2)) by
Th2;
then (tbk
* ((
- tbk)
+ tk))
> (
- ((
sqrt 5)
/ 2)) & (
sqrt 5)
>
0 by
SQUARE_1: 25;
then ((tbk
* ((
- tbk)
+ tk))
/ (
sqrt 5))
> ((
- ((
sqrt 5)
/ 2))
/ (
sqrt 5)) by
XREAL_1: 74;
then (tbk
* ((tk
- tbk)
/ (
sqrt 5)))
> ((
- ((
sqrt 5)
/ 2))
/ (
sqrt 5)) by
XCMPLX_1: 74;
then (tbk
* (
Fib k))
> ((
- ((
sqrt 5)
/ 2))
/ (
sqrt 5)) by
FIB_NUM: 7;
then (tbk
* (
Fib k))
> (
- (((
sqrt 5)
/ 2)
/ (
sqrt 5))) by
XCMPLX_1: 187;
then (tbk
* (
Fib k))
> (
- (((
sqrt 5)
/ (
sqrt 5))
/ 2)) & (
sqrt 5)
>
0 by
SQUARE_1: 25,
XCMPLX_1: 48;
hence thesis by
A39,
A26,
XCMPLX_1: 60;
end;
end;
suppose m
>
0 ;
then
A41: tbm
>
0 & tbm
< (1
/ 2) by
A38,
Th6,
Th8;
(
sqrt ((3
/ 2)
^2 ))
< (
sqrt 5) by
SQUARE_1: 27;
then (3
/ 2)
< (
sqrt 5) by
SQUARE_1:def 2;
then ((3
/ 2)
* 2)
< ((
sqrt 5)
* 2) by
XREAL_1: 68;
then
A42: (3
/ (2
* 2))
< ((2
* (
sqrt 5))
/ (2
* 2)) by
XREAL_1: 74;
A43: (tb
to_power (2
* k))
< (1
/ 2) & (tb
to_power (2
* k))
>
0 by
Th8,
A1,
Th6;
then ((tb
to_power (2
* k))
+ 1)
< ((1
/ 2)
+ 1) by
XREAL_1: 6;
then (tbm
* ((tb
to_power (2
* k))
+ 1))
< ((1
/ 2)
* ((1
/ 2)
+ 1)) by
A41,
A43,
XREAL_1: 96;
then (tbm
* ((tb
to_power (2
* k))
+ 1))
< ((
sqrt 5)
/ 2) by
A42,
XXREAL_0: 2;
then (
- (tbm
* ((tb
to_power (2
* k))
+ 1)))
> (
- ((
sqrt 5)
/ 2)) by
XREAL_1: 24;
then (tbm
* ((
- (tb
to_power (2
* k)))
+ (
- 1)))
> (
- ((
sqrt 5)
/ 2));
then (tbm
* ((
- (tb
to_power (2
* k)))
+ ((
- 1)
to_power k)))
> (
- ((
sqrt 5)
/ 2)) by
A37,
FIB_NUM2: 2;
then (tbm
* ((
- (tb
to_power (k
+ k)))
+ (tk
* tbk)))
> (
- ((
sqrt 5)
/ 2)) by
Lm3,
NEWTON: 7;
then (tbm
* ((
- (tbk
* tbk))
+ (tk
* tbk)))
> (
- ((
sqrt 5)
/ 2)) by
Th2;
then ((tbm
* tbk)
* (tk
- tbk))
> (
- ((
sqrt 5)
/ 2));
then (tbn
* (tk
- tbk))
> (
- ((
sqrt 5)
/ 2)) & (
sqrt 5)
>
0 by
A26,
Th2,
SQUARE_1: 25;
then ((tbn
* (tk
- tbk))
/ (
sqrt 5))
> ((
- ((
sqrt 5)
/ 2))
/ (
sqrt 5)) by
XREAL_1: 74;
then (tbn
* ((tk
- tbk)
/ (
sqrt 5)))
> ((
- ((
sqrt 5)
/ 2))
/ (
sqrt 5)) by
XCMPLX_1: 74;
then (tbn
* (
Fib k))
> (((
- (
sqrt 5))
/ 2)
/ (
sqrt 5)) by
FIB_NUM: 7;
then (tbn
* (
Fib k))
> (((
- 1)
* (
sqrt 5))
/ (2
* (
sqrt 5))) & (
sqrt 5)
>
0 by
SQUARE_1: 25,
XCMPLX_1: 78;
then (tbn
* (
Fib k))
> ((
- 1)
/ 2) by
XCMPLX_1: 91;
hence thesis;
end;
end;
end;
end;
then (
- (tbn
* (
Fib k)))
< (
- (
- (1
/ 2))) by
XREAL_1: 24;
then ((
- (tbn
* (
Fib k)))
+ (1
/ 2))
< ((1
/ 2)
+ (1
/ 2)) by
XREAL_1: 6;
then (((
- (tbn
* (
Fib k)))
+ (1
/ 2))
- 1)
< (1
- 1) by
XREAL_1: 9;
then ((((
- (tbn
* (
Fib k)))
+ (1
/ 2))
- 1)
+ (
Fib (n
+ k)))
< (
0
+ (
Fib (n
+ k))) by
XREAL_1: 6;
hence thesis by
A2;
end;
hence thesis by
A3,
INT_1:def 6;
end;
begin
theorem ::
FIB_NUM4:30
for n be
Nat st n
>= 2 holds (
Lucas n)
=
[\((
tau
to_power n)
+ (1
/ 2))/]
proof
let n be
Nat;
assume
A1: n
>= 2;
then (1
/ 2)
>= (
tau_bar
to_power n) by
Th8;
then ((
tau
to_power n)
+ (1
/ 2))
>= ((
tau
to_power n)
+ (
tau_bar
to_power n)) by
XREAL_1: 6;
then
A2: ((
tau
to_power n)
+ (1
/ 2))
>= (
Lucas n) by
FIB_NUM3: 21;
n
> 1 by
A1,
XXREAL_0: 2;
then ((1
/ 2)
- 1)
< (
tau_bar
to_power n) by
Th14;
then ((
tau
to_power n)
+ ((1
/ 2)
- 1))
< ((
tau
to_power n)
+ (
tau_bar
to_power n)) by
XREAL_1: 6;
then (((
tau
to_power n)
+ (1
/ 2))
- 1)
< (
Lucas n) by
FIB_NUM3: 21;
hence thesis by
A2,
INT_1:def 6;
end;
theorem ::
FIB_NUM4:31
for n be
Nat st n
>= 2 holds (
Lucas n)
=
[/((
tau
to_power n)
- (1
/ 2))\]
proof
let n be
Nat;
assume
A1: n
>= 2;
then n
> 1 by
XXREAL_0: 2;
then (
- (1
/ 2))
<= (
tau_bar
to_power n) by
Th14;
then ((
- (1
/ 2))
+ (
tau
to_power n))
<= ((
tau_bar
to_power n)
+ (
tau
to_power n)) by
XREAL_1: 6;
then
A2: ((
tau
to_power n)
- (1
/ 2))
<= (
Lucas n) by
FIB_NUM3: 21;
(
tau_bar
to_power n)
< (1
/ 2) by
Th8,
A1;
then ((
tau_bar
to_power n)
+ (
tau
to_power n))
< ((1
/ 2)
+ (
tau
to_power n)) by
XREAL_1: 6;
then (((
tau
to_power n)
- (1
/ 2))
+ 1)
> (
Lucas n) by
FIB_NUM3: 21;
hence thesis by
A2,
INT_1:def 7;
end;
theorem ::
FIB_NUM4:32
for n be
Nat st n
>= 2 holds (
Lucas (2
* n))
=
[/(
tau
to_power (2
* n))\]
proof
let n be
Nat;
assume
A1: n
>= 2;
A2: (
tau_bar
to_power (2
* n))
= ((
tau_bar
to_power n)
to_power 2) by
NEWTON: 9
.= ((
tau_bar
to_power n)
^2 ) by
POWER: 46;
(n
-
0 ) is
Element of
NAT by
NAT_1: 21;
then (
tau_bar
to_power n)
<>
0 by
FIB_NUM3: 1;
then (
tau_bar
to_power (2
* n))
>
0 by
A2,
SQUARE_1: 12;
then (
0
+ (
tau
to_power (2
* n)))
<= ((
tau
to_power (2
* n))
+ (
tau_bar
to_power (2
* n))) by
XREAL_1: 6;
then
A3: (
tau
to_power (2
* n))
<= (
Lucas (2
* n)) by
FIB_NUM3: 21;
(
tau_bar
to_power (2
* n))
< 1 by
Th8,
A1,
XXREAL_0: 2;
then ((
tau_bar
to_power (2
* n))
+ (
tau
to_power (2
* n)))
< (1
+ (
tau
to_power (2
* n))) by
XREAL_1: 6;
then ((
tau
to_power (2
* n))
+ 1)
> (
Lucas (2
* n)) by
FIB_NUM3: 21;
hence thesis by
A3,
INT_1:def 7;
end;
theorem ::
FIB_NUM4:33
for n be
Nat st n
>= 2 holds (
Lucas ((2
* n)
+ 1))
=
[\(
tau
to_power ((2
* n)
+ 1))/]
proof
let n be
Nat;
assume n
>= 2;
then (2
* n)
>= (2
* 2) by
XREAL_1: 64;
then ((2
* n)
+ 1)
>= (4
+ 1) by
XREAL_1: 6;
then
A1: ((2
* n)
+ 1)
> 1 by
XXREAL_0: 2;
(
tau_bar
to_power ((2
* n)
+ 1))
<=
0 by
Th7;
then ((
tau
to_power ((2
* n)
+ 1))
+
0 )
>= ((
tau
to_power ((2
* n)
+ 1))
+ (
tau_bar
to_power ((2
* n)
+ 1))) by
XREAL_1: 6;
then
A2: (
tau
to_power ((2
* n)
+ 1))
>= (
Lucas ((2
* n)
+ 1)) by
FIB_NUM3: 21;
(
- (1
/ 2))
<= (
tau_bar
to_power ((2
* n)
+ 1)) by
Th14,
A1;
then (
tau_bar
to_power ((2
* n)
+ 1))
> (
- 1) by
XXREAL_0: 2;
then ((
- 1)
+ (
tau
to_power ((2
* n)
+ 1)))
< ((
tau
to_power ((2
* n)
+ 1))
+ (
tau_bar
to_power ((2
* n)
+ 1))) by
XREAL_1: 6;
then ((
tau
to_power ((2
* n)
+ 1))
- 1)
< (
Lucas ((2
* n)
+ 1)) by
FIB_NUM3: 21;
hence thesis by
A2,
INT_1:def 6;
end;
theorem ::
FIB_NUM4:34
for n be
Nat st n
>= 2 & n is
odd holds (
Lucas (n
+ 1))
=
[\((
tau
* (
Lucas n))
+ 1)/]
proof
let n be
Nat;
set tn = (
tau_bar
to_power n);
assume
A1: n
>= 2 & n is
odd;
A2: ((
tau
* (
Lucas n))
+ 1)
>= (
Lucas (n
+ 1))
proof
per cases by
A1,
XXREAL_0: 1;
suppose
A3: n
= 2;
(
sqrt 5)
>= 1 by
SQUARE_1: 18,
SQUARE_1: 26;
then ((
sqrt 5)
* 3)
>= (1
* 3) by
XREAL_1: 64;
then (5
+ ((
sqrt 5)
* 3))
>= (3
+ 5) by
XREAL_1: 6;
then ((5
+ ((
sqrt 5)
* 3))
/ 2)
>= (8
/ 2) by
XREAL_1: 72;
hence thesis by
A3,
FIB_NUM:def 1,
FIB_NUM3: 14,
FIB_NUM3: 15;
end;
suppose
A4: n
> 2;
A5: (
sqrt 5)
>
0 by
SQUARE_1: 25;
tn
>= (
- (1
/ (
sqrt 5))) & (
sqrt 5)
>
0 by
Th15,
A4,
SQUARE_1: 25;
then (tn
* (
sqrt 5))
>= ((
- (1
/ (
sqrt 5)))
* (
sqrt 5)) by
XREAL_1: 64;
then (tn
* (
sqrt 5))
>= ((
sqrt 5)
* ((
- 1)
/ (
sqrt 5))) by
XCMPLX_1: 187;
then (tn
* (
sqrt 5))
>= (((
sqrt 5)
* (
- 1))
/ (
sqrt 5)) by
XCMPLX_1: 74;
then (tn
* (
sqrt 5))
>= (((
sqrt 5)
/ (
sqrt 5))
* (
- 1)) by
XCMPLX_1: 74;
then (tn
* (
sqrt 5))
>= (1
* (
- 1)) by
A5,
XCMPLX_1: 60;
then (
- ((
tau_bar
to_power n)
* (
sqrt 5)))
<= (
- (
- 1)) by
XREAL_1: 24;
then ((tn
*
tau_bar )
- (tn
*
tau ))
<= 1 by
FIB_NUM:def 1,
FIB_NUM:def 2;
then ((tn
* (
tau_bar
to_power 1))
- (tn
*
tau ))
<= 1;
then ((
tau_bar
to_power (n
+ 1))
- (tn
*
tau ))
<= 1 by
Th2;
then (((
tau_bar
to_power (n
+ 1))
- (tn
*
tau ))
+ (tn
*
tau ))
<= (1
+ (tn
*
tau )) by
XREAL_1: 6;
then (((tn
*
tau )
+ 1)
+ (
tau
to_power (n
+ 1)))
>= ((
tau_bar
to_power (n
+ 1))
+ (
tau
to_power (n
+ 1))) by
XREAL_1: 6;
then (((tn
*
tau )
+ 1)
+ ((
tau
to_power n)
* (
tau
to_power 1)))
>= ((
tau_bar
to_power (n
+ 1))
+ (
tau
to_power (n
+ 1))) by
Th2;
then (((tn
*
tau )
+ 1)
+ ((
tau
to_power n)
*
tau ))
>= ((
tau_bar
to_power (n
+ 1))
+ (
tau
to_power (n
+ 1)));
then (((tn
+ (
tau
to_power n))
*
tau )
+ 1)
>= ((
tau_bar
to_power (n
+ 1))
+ (
tau
to_power (n
+ 1)));
then (((
Lucas n)
*
tau )
+ 1)
>= ((
tau_bar
to_power (n
+ 1))
+ (
tau
to_power (n
+ 1))) by
FIB_NUM3: 21;
hence thesis by
FIB_NUM3: 21;
end;
end;
(((
tau
* (
Lucas n))
+ 1)
- 1)
< (
Lucas (n
+ 1))
proof
A6: (
Lucas (n
+ 1))
= ((
tau
to_power (n
+ 1))
+ (
tau_bar
to_power (n
+ 1))) by
FIB_NUM3: 21;
A7: (
tau
* (
Lucas n))
= (
tau
* ((
tau
to_power n)
+ tn)) by
FIB_NUM3: 21
.= ((
tau
* (
tau
to_power n))
+ (
tau
* (
tau_bar
to_power n)))
.= (((
tau
to_power 1)
* (
tau
to_power n))
+ (
tau
* (
tau_bar
to_power n)))
.= ((
tau
to_power (n
+ 1))
+ (
tau
* (
tau_bar
to_power n))) by
Th2;
tn
<
0 by
Th7,
A1;
then (
tau
* tn)
< (
tau_bar
* tn) by
XREAL_1: 69;
then (
tau
* tn)
< ((
tau_bar
to_power 1)
* tn);
then (
tau
* tn)
< (
tau_bar
to_power (n
+ 1)) by
Th2;
hence thesis by
A6,
A7,
XREAL_1: 6;
end;
hence thesis by
A2,
INT_1:def 6;
end;
theorem ::
FIB_NUM4:35
for n be
Nat st n
>= 2 & n is
even holds (
Lucas (n
+ 1))
=
[/((
tau
* (
Lucas n))
- 1)\]
proof
let n be
Nat;
set tn = (
tau_bar
to_power n);
assume
A1: n
>= 2 & n is
even;
A2: (
Lucas (n
+ 1))
= ((
tau
to_power (n
+ 1))
+ (
tau_bar
to_power (n
+ 1))) by
FIB_NUM3: 21;
A3: (
tau
* (
Lucas n))
= (
tau
* ((
tau
to_power n)
+ (
tau_bar
to_power n))) by
FIB_NUM3: 21
.= ((
tau
* (
tau
to_power n))
+ (
tau
* (
tau_bar
to_power n)))
.= (((
tau
to_power 1)
* (
tau
to_power n))
+ (
tau
* (
tau_bar
to_power n)))
.= ((
tau
to_power (n
+ 1))
+ (
tau
* tn)) by
Th2;
A4: ((
tau
* (
Lucas n))
- 1)
<= (
Lucas (n
+ 1))
proof
((
tau
* tn)
- 1)
<= (
tau_bar
to_power (n
+ 1))
proof
A5: tn
>
0 by
Th6,
A1;
tn
<= (1
/ (
sqrt 5)) by
Th16,
A1;
then (1
/ tn)
>= (1
/ (1
/ (
sqrt 5))) by
Th6,
A1,
XREAL_1: 118;
then (1
/ tn)
>= (
sqrt 5) by
XCMPLX_1: 52;
then ((1
/ tn)
* 2)
>= ((
sqrt 5)
* 2) by
XREAL_1: 64;
then (((1
/ tn)
* 2)
+ 1)
>= ((2
* (
sqrt 5))
+ 1) by
XREAL_1: 6;
then ((((1
/ tn)
* 2)
+ 1)
- (
sqrt 5))
>= (((2
* (
sqrt 5))
+ 1)
- (
sqrt 5)) by
XREAL_1: 13;
then ((((1
/ tn)
* 2)
+ (1
- (
sqrt 5)))
/ 2)
>= (((
sqrt 5)
+ 1)
/ 2) by
XREAL_1: 72;
then (((1
/ tn)
+
tau_bar )
* tn)
>= (
tau
* tn) by
A5,
FIB_NUM:def 1,
FIB_NUM:def 2,
XREAL_1: 64;
then (((1
/ tn)
* tn)
+ (
tau_bar
* tn))
>= (
tau
* tn);
then (((1
/ tn)
* tn)
+ ((
tau_bar
to_power 1)
* tn))
>= (
tau
* tn);
then (1
+ ((
tau_bar
to_power 1)
* tn))
>= (
tau
* tn) by
A5,
XCMPLX_1: 87;
then (1
+ (
tau_bar
to_power (n
+ 1)))
>= (
tau
* tn) by
Th2;
then ((1
+ (
tau_bar
to_power (n
+ 1)))
- 1)
>= ((
tau
* tn)
- 1) by
XREAL_1: 9;
hence thesis;
end;
then ((
tau
to_power (n
+ 1))
+ ((
tau
* tn)
- 1))
<= ((
tau
to_power (n
+ 1))
+ (
tau_bar
to_power (n
+ 1))) by
XREAL_1: 6;
hence thesis by
A3,
FIB_NUM3: 21;
end;
(((
tau
* (
Lucas n))
- 1)
+ 1)
> (
Lucas (n
+ 1))
proof
tn
= ((
-
tau_bar )
to_power n) by
A1,
Th3;
then tn
>
0 by
POWER: 34;
then (
tau
* tn)
> (
tau_bar
* tn) by
XREAL_1: 68;
then (
tau
* tn)
> ((
tau_bar
to_power 1)
* tn);
then (
tau
* tn)
> (
tau_bar
to_power (n
+ 1)) by
Th2;
hence thesis by
A2,
A3,
XREAL_1: 6;
end;
hence thesis by
A4,
INT_1:def 7;
end;
theorem ::
FIB_NUM4:36
for n be
Nat st n
<> 1 holds (
Lucas (n
+ 1))
= (((
Lucas n)
+ (
sqrt (5
* (((
Lucas n)
^2 )
- (4
* ((
- 1)
to_power n))))))
/ 2)
proof
let n be
Nat;
assume
A1: n
<> 1;
A2: (((
Lucas n)
^2 )
- (((
- 1)
to_power n)
* 4))
>=
0
proof
per cases by
A1,
NAT_1: 25;
suppose n
=
0 ;
then (((
Lucas n)
^2 )
- (((
- 1)
to_power n)
* 4))
= ((2
* 2)
- (1
* 4)) by
FIB_NUM3: 11,
POWER: 24;
hence thesis;
end;
suppose n
> 1;
then (n
+ 1)
> (1
+ 1) by
XREAL_1: 8;
then n
>= 2 & (
Lucas n)
>= n by
FIB_NUM3: 17,
NAT_1: 13;
then (
Lucas n)
>= 2 by
XXREAL_0: 2;
then ((
Lucas n)
^2 )
>= (2
^2 ) by
SQUARE_1: 15;
then ((
Lucas n)
^2 )
>= (2
* 2) & (
- (4
* ((
- 1)
to_power n)))
>= (
- 4) by
Lm2;
then (((
Lucas n)
^2 )
+ (
- (4
* ((
- 1)
to_power n))))
>= ((2
* 2)
+ (
- 4)) by
XREAL_1: 7;
hence thesis;
end;
end;
A3: (n
-
0 ) is
Element of
NAT by
NAT_1: 21;
then (2
* (
Lucas (n
+ 1)))
= (((
Lucas n)
* 1)
+ ((5
* (
Fib n))
* 1)) by
FIB_NUM3: 11,
FIB_NUM3: 26,
PRE_FF: 1;
then
A4: (
Lucas (n
+ 1))
= (((5
* (
Fib n))
+ (
Lucas n))
/ 2);
(((
Lucas n)
^2 )
- (5
* ((
Fib n)
^2 )))
= (((
Lucas n)
to_power 2)
- (5
* ((
Fib n)
^2 ))) by
POWER: 46
.= (((
Lucas n)
to_power 2)
- (5
* ((
Fib n)
to_power 2))) by
POWER: 46
.= (
- ((5
* ((
Fib n)
|^ 2))
- ((
Lucas n)
|^ 2)))
.= (
- (4
* ((
- 1)
to_power (n
+ 1)))) by
A3,
FIB_NUM3: 30
.= ((
- 1)
* (((
- 1)
to_power (n
+ 1))
* 4))
.= (((
- 1)
to_power 1)
* (((
- 1)
to_power (n
+ 1))
* 4))
.= ((((
- 1)
to_power 1)
* ((
- 1)
to_power (n
+ 1)))
* 4)
.= (((
- 1)
to_power ((n
+ 1)
+ 1))
* 4) by
Th2
.= (((
- 1)
to_power (n
+ 2))
* 4)
.= ((((
- 1)
to_power n)
* ((
- 1)
to_power 2))
* 4) by
Th2
.= ((((
- 1)
to_power n)
* 1)
* 4) by
FIB_NUM2: 3,
POLYFORM: 5;
then (
Fib n)
= (
sqrt ((((
Lucas n)
^2 )
- (((
- 1)
to_power n)
* 4))
/ 5)) by
SQUARE_1:def 2;
then (
Lucas (n
+ 1))
= (((5
* ((
sqrt (((
Lucas n)
^2 )
- (((
- 1)
to_power n)
* 4)))
/ (
sqrt 5)))
+ (
Lucas n))
/ 2) by
A2,
A4,
SQUARE_1: 30
.= (((((
sqrt (((
Lucas n)
^2 )
- (((
- 1)
to_power n)
* 4)))
* 5)
/ (
sqrt 5))
+ (
Lucas n))
/ 2) by
XCMPLX_1: 74
.= ((((
sqrt (((
Lucas n)
^2 )
- (((
- 1)
to_power n)
* 4)))
* (5
/ (
sqrt 5)))
+ (
Lucas n))
/ 2) by
XCMPLX_1: 74
.= ((((
sqrt (((
Lucas n)
^2 )
- (((
- 1)
to_power n)
* 4)))
* (
sqrt 5))
+ (
Lucas n))
/ 2) by
SQUARE_1: 34
.= (((
sqrt ((((
Lucas n)
^2 )
- (((
- 1)
to_power n)
* 4))
* 5))
+ (
Lucas n))
/ 2) by
A2,
SQUARE_1: 29;
hence thesis;
end;
theorem ::
FIB_NUM4:37
for n be
Nat st n
>= 4 holds (
Lucas (n
+ 1))
=
[\((((
Lucas n)
+ 1)
+ (
sqrt (((5
* ((
Lucas n)
^2 ))
- (2
* (
Lucas n)))
+ 1)))
/ 2)/]
proof
let n be
Nat;
set tb =
tau_bar ;
set tbn = (
tau_bar
to_power n);
set tn = (
tau
to_power n);
assume
A1: n
>= 4;
A2: (
sqrt 5)
>
0 by
SQUARE_1: 25;
A3: ((((
Lucas n)
+ 1)
+ (
sqrt (((5
* ((
Lucas n)
^2 ))
- (2
* (
Lucas n)))
+ 1)))
/ 2)
>= (
Lucas (n
+ 1))
proof
A4: (n
-
0 ) is non
zero
Element of
NAT by
A1,
NAT_1: 21;
(
Lucas (n
+ 1))
>= (n
+ 1) & (n
+ 1)
>= (
0
+ 1) by
FIB_NUM3: 17,
XREAL_1: 6;
then (
Lucas (n
+ 1))
>= (
Lucas n) & (
Lucas (n
+ 1))
>= 1 by
A4,
FIB_NUM3: 18,
XXREAL_0: 2;
then ((
Lucas (n
+ 1))
+ (
Lucas (n
+ 1)))
>= ((
Lucas n)
+ 1) by
XREAL_1: 7;
then (((
Lucas (n
+ 1))
+ (
Lucas (n
+ 1)))
- (
Lucas n))
>= (((
Lucas n)
+ 1)
- (
Lucas n)) by
XREAL_1: 9;
then
A5: (((2
* (
Lucas (n
+ 1)))
- (
Lucas n))
- 1)
>= (1
- 1) by
XREAL_1: 9;
(((2
* (
Lucas (n
+ 1)))
- (
Lucas n))
- 1)
= (((2
* (
Lucas (n
+ 1)))
- (tn
+ tbn))
- 1) by
FIB_NUM3: 21
.= (((2
* ((
tau
to_power (n
+ 1))
+ (
tau_bar
to_power (n
+ 1))))
- (tn
+ tbn))
- 1) by
FIB_NUM3: 21
.= (((2
* ((tn
* (
tau
to_power 1))
+ (
tau_bar
to_power (n
+ 1))))
- (tn
+ tbn))
- 1) by
Th2
.= (((2
* ((tn
*
tau )
+ (
tau_bar
to_power (n
+ 1))))
- (tn
+ tbn))
- 1)
.= (((2
* ((tn
*
tau )
+ (tbn
* (tb
to_power 1))))
- (tn
+ tbn))
- 1) by
Th2
.= (((2
* ((tn
*
tau )
+ (tbn
* tb)))
- (tn
+ tbn))
- 1)
.= (((tn
- tbn)
* (
sqrt 5))
- 1) by
FIB_NUM:def 1,
FIB_NUM:def 2
.= (((((tn
- tbn)
/ (
sqrt 5))
* (
sqrt 5))
* (
sqrt 5))
- 1) by
A2,
XCMPLX_1: 87
.= ((((
Fib n)
* (
sqrt 5))
* (
sqrt 5))
- 1) by
FIB_NUM: 7
.= (((
Fib n)
* ((
sqrt 5)
^2 ))
- 1)
.= ((5
* (
Fib n))
- 1) by
SQUARE_1:def 2;
then
A6: ((((2
* (
Lucas (n
+ 1)))
- (
Lucas n))
- 1)
^2 )
= ((((5
* (
Fib n))
^2 )
- ((2
* (5
* (
Fib n)))
* 1))
+ (1
^2 )) by
SQUARE_1: 5
.= (((25
* ((
Fib n)
^2 ))
- (10
* (
Fib n)))
+ 1);
((5
* ((
Lucas n)
^2 ))
- (2
* (
Lucas n)))
>= ((25
* ((
Fib n)
^2 ))
- (10
* (
Fib n)))
proof
per cases by
A1,
XXREAL_0: 1;
suppose n
= 4;
hence thesis by
FIB_NUM2: 23,
FIB_NUM3: 16;
end;
suppose n
> 4;
then
A7: n
>= (4
+ 1) by
NAT_1: 13;
set s5 = (
sqrt 5);
A8: ((5
* ((
Lucas n)
^2 ))
- (2
* (
Lucas n)))
= ((5
* ((
Lucas n)
^2 ))
- (2
* (tn
+ tbn))) by
FIB_NUM3: 21
.= ((5
* ((tn
+ tbn)
^2 ))
- (2
* (tn
+ tbn))) by
FIB_NUM3: 21
.= (((((5
* (tn
^2 ))
+ (((5
* 2)
* tn)
* tbn))
+ (5
* (tbn
^2 )))
- (2
* tn))
- (2
* tbn));
A9: ((25
* ((
Fib n)
^2 ))
- (10
* (
Fib n)))
= ((25
* ((
Fib n)
^2 ))
- (10
* ((tn
- tbn)
/ s5))) by
FIB_NUM: 7
.= ((25
* (((tn
- tbn)
/ s5)
^2 ))
- (10
* ((tn
- tbn)
/ s5))) by
FIB_NUM: 7
.= ((25
* (((tn
- tbn)
^2 )
/ (s5
^2 )))
- (10
* ((tn
- tbn)
/ s5))) by
XCMPLX_1: 76
.= ((25
* (((tn
- tbn)
^2 )
/ 5))
- (10
* ((tn
- tbn)
/ s5))) by
SQUARE_1:def 2
.= ((((5
* (tn
^2 ))
- (((5
* 2)
* tn)
* tbn))
+ (5
* (tbn
^2 )))
- (10
* (((tn
- tbn)
* s5)
/ (s5
^2 )))) by
A2,
XCMPLX_1: 91
.= ((((5
* (tn
^2 ))
- ((10
* tn)
* tbn))
+ (5
* (tbn
^2 )))
- (10
* (((tn
- tbn)
* s5)
/ 5))) by
SQUARE_1:def 2
.= (((((5
* (tn
^2 ))
- ((10
* tn)
* tbn))
+ (5
* (tbn
^2 )))
- ((2
* tn)
* s5))
+ ((2
* tbn)
* s5));
A10: ((n
-' 1)
+ 1)
= ((n
+ 1)
-' 1) by
A1,
NAT_D: 38,
XXREAL_0: 2
.= n by
NAT_D: 34;
A11: (
- 10)
<= (10
* ((
- 1)
to_power n)) by
Lm1;
(n
-' 1)
>= (5
-' 1) by
A7,
NAT_D: 42;
then (n
-' 1)
>= (5
- 1) by
NAT_D: 39;
then (
Lucas (n
-' 1))
>= 7 by
Th12,
FIB_NUM3: 16;
then (
Lucas (n
-' 1))
>= 5 by
XXREAL_0: 2;
then ((
Lucas (n
-' 1))
* (
- 2))
<= (5
* (
- 2)) by
XREAL_1: 65;
then ((
Lucas ((n
-' 1)
+ 1))
- ((2
* (
Lucas (n
-' 1)))
+ (
Lucas ((n
-' 1)
+ 1))))
<= (
- 10);
then ((
Lucas n)
- (5
* (
Fib n)))
<= (
- 10) by
A10,
FIB_NUM3: 22;
then ((tn
+ tbn)
- (5
* (
Fib n)))
<= (
- 10) by
FIB_NUM3: 21;
then ((tn
+ tbn)
- (5
* ((tn
- tbn)
/ s5)))
<= (
- 10) by
FIB_NUM: 7;
then ((tn
+ tbn)
- (5
* ((tn
- tbn)
* (1
/ s5))))
<= (
- 10) by
XCMPLX_1: 99;
then ((tn
+ tbn)
- ((5
* (1
/ s5))
* (tn
- tbn)))
<= (
- 10);
then ((tn
+ tbn)
- (((s5
^2 )
* (1
/ s5))
* (tn
- tbn)))
<= (
- 10) by
SQUARE_1:def 2;
then ((tn
+ tbn)
- ((s5
* (s5
* (1
/ s5)))
* (tn
- tbn)))
<= (
- 10);
then ((tn
+ tbn)
- ((s5
* (s5
/ s5))
* (tn
- tbn)))
<= (
- 10) by
XCMPLX_1: 99;
then ((tn
+ tbn)
- ((s5
* 1)
* (tn
- tbn)))
<= (
- 10) by
A2,
XCMPLX_1: 60;
then (((tn
+ tbn)
- (s5
* tn))
+ (s5
* tbn))
<= (10
* ((
tau
* tb)
to_power n)) by
Lm3,
A11,
XXREAL_0: 2;
then ((((tn
+ tbn)
- (s5
* tn))
+ ((
sqrt 5)
* tbn))
- (10
* ((
tau
* tb)
to_power n)))
<= ((10
* ((
tau
* tb)
to_power n))
- (10
* ((
tau
* tb)
to_power n))) by
XREAL_1: 9;
then (((((tn
+ tbn)
- (s5
* tn))
+ (s5
* tbn))
- (10
* ((
tau
* tb)
to_power n)))
+ ((
sqrt 5)
* tn))
<= (
0
+ (s5
* tn)) by
XREAL_1: 6;
then (((tn
+ tbn)
+ (s5
* tbn))
- (10
* ((
tau
* tb)
to_power n)))
<= (s5
* tn);
then (((tn
+ tbn)
+ (s5
* tbn))
- (10
* (tn
* tbn)))
<= (s5
* tn) by
NEWTON: 7;
then (((((
- ((10
* tn)
* tbn))
+ tn)
+ tbn)
+ (tbn
* s5))
* 2)
<= ((tn
* s5)
* 2) by
XREAL_1: 64;
then (
- ((((
- ((20
* tn)
* tbn))
+ (2
* tn))
+ (2
* tbn))
+ ((2
* tbn)
* s5)))
>= (
- ((2
* tn)
* s5)) by
XREAL_1: 24;
then (((((((10
* tn)
* tbn)
- (2
* tn))
- (2
* tbn))
- ((2
* tbn)
* s5))
+ ((10
* tn)
* tbn))
- ((10
* tn)
* tbn))
>= ((
- ((2
* tn)
* s5))
- ((10
* tn)
* tbn)) by
XREAL_1: 9;
then ((((((10
* tn)
* tbn)
- (2
* tn))
- (2
* tbn))
- ((2
* tbn)
* s5))
+ ((2
* tbn)
* s5))
>= (((
- ((10
* tn)
* tbn))
- ((2
* tn)
* s5))
+ ((2
* tbn)
* s5)) by
XREAL_1: 6;
then (((((10
* tn)
* tbn)
- (2
* tn))
- (2
* tbn))
+ (5
* (tbn
^2 )))
>= ((((
- ((10
* tn)
* tbn))
- ((2
* tn)
* s5))
+ ((2
* tbn)
* s5))
+ (5
* (tbn
^2 ))) by
XREAL_1: 6;
then ((((((10
* tn)
* tbn)
+ (5
* (tbn
^2 )))
- (2
* tn))
- (2
* tbn))
+ (5
* (tn
^2 )))
>= (((((
- ((10
* tn)
* tbn))
+ (5
* (tbn
^2 )))
- ((2
* tn)
* s5))
+ ((2
* tbn)
* s5))
+ (5
* (tn
^2 ))) by
XREAL_1: 6;
hence thesis by
A8,
A9;
end;
end;
then (((5
* ((
Lucas n)
^2 ))
- (2
* (
Lucas n)))
+ 1)
>= ((((2
* (
Lucas (n
+ 1)))
- (
Lucas n))
- 1)
^2 ) by
A6,
XREAL_1: 6;
then (
sqrt (((5
* ((
Lucas n)
^2 ))
- (2
* (
Lucas n)))
+ 1))
>= (
sqrt ((((2
* (
Lucas (n
+ 1)))
- (
Lucas n))
- 1)
^2 )) by
SQUARE_1: 26;
then (
sqrt (((5
* ((
Lucas n)
^2 ))
- (2
* (
Lucas n)))
+ 1))
>= (((2
* (
Lucas (n
+ 1)))
- (
Lucas n))
- 1) by
A5,
SQUARE_1:def 2;
then ((
sqrt (((5
* ((
Lucas n)
^2 ))
- (2
* (
Lucas n)))
+ 1))
+ ((
Lucas n)
+ 1))
>= ((((2
* (
Lucas (n
+ 1)))
- (
Lucas n))
- 1)
+ ((
Lucas n)
+ 1)) by
XREAL_1: 6;
then ((((
Lucas n)
+ 1)
+ (
sqrt (((5
* ((
Lucas n)
^2 ))
- (2
* (
Lucas n)))
+ 1)))
/ 2)
>= ((2
* (
Lucas (n
+ 1)))
/ 2) by
XREAL_1: 72;
hence thesis;
end;
(((((
Lucas n)
+ 1)
+ (
sqrt (((5
* ((
Lucas n)
^2 ))
- (2
* (
Lucas n)))
+ 1)))
/ 2)
- 1)
< (
Lucas (n
+ 1))
proof
(
Lucas n)
>= n by
FIB_NUM3: 17;
then
A12: (
Lucas n)
>= 4 by
A1,
XXREAL_0: 2;
then
A13: ((
Lucas n)
/ 5)
>= (4
/ 5) by
XREAL_1: 72;
(
Fib n)
>= 3 by
A1,
FIB_NUM2: 23,
FIB_NUM2: 45;
then ((
Fib n)
+ ((
Lucas n)
/ 5))
>= (3
+ (4
/ 5)) by
A13,
XREAL_1: 7;
then
A14: 2
< ((
Fib n)
+ ((
Lucas n)
/ 5)) by
XXREAL_0: 2;
n is
even or n is
odd;
then ((
- 1)
to_power n)
<= 1 by
FIB_NUM2: 2,
FIB_NUM2: 3;
then (2
* ((
- 1)
to_power n))
<= (2
* 1) by
XREAL_1: 64;
then (2
* ((
- 1)
to_power n))
< ((
Fib n)
+ ((
Lucas n)
/ 5)) by
A14,
XXREAL_0: 2;
then (2
* ((
- 1)
to_power n))
< (((tn
- tbn)
/ (
sqrt 5))
+ ((
Lucas n)
/ 5)) by
FIB_NUM: 7;
then (2
* ((
- 1)
to_power n))
< (((tn
- tbn)
/ (
sqrt 5))
+ ((tn
+ tbn)
/ 5)) by
FIB_NUM3: 21;
then ((2
* ((
- 1)
to_power n))
* 10)
< ((((tn
- tbn)
/ (
sqrt 5))
+ ((tn
+ tbn)
/ 5))
* 10) by
XREAL_1: 68;
then (20
* ((
- 1)
to_power n))
< ((((tn
- tbn)
/ (
sqrt 5))
* (2
* 5))
+ ((tn
+ tbn)
* 2));
then (20
* ((
- 1)
to_power n))
< ((((tn
- tbn)
/ (
sqrt 5))
* (2
* ((
sqrt 5)
^2 )))
+ ((tn
+ tbn)
* 2)) by
SQUARE_1:def 2;
then (20
* ((
- 1)
to_power n))
< (((((tn
- tbn)
/ (
sqrt 5))
* (
sqrt 5))
* ((
sqrt 5)
* 2))
+ ((tn
+ tbn)
* 2));
then (20
* ((
- 1)
to_power n))
< (((tn
- tbn)
* (2
* (
sqrt 5)))
+ ((tn
+ tbn)
* 2)) by
A2,
XCMPLX_1: 87;
then ((20
* ((
- 1)
to_power n))
+ (((5
* (tn
^2 ))
+ (5
* (tbn
^2 )))
+ 1))
< ((((tn
- tbn)
* (2
* (
sqrt 5)))
+ ((tn
+ tbn)
* 2))
+ (((5
* (tn
^2 ))
+ (5
* (tbn
^2 )))
+ 1)) by
XREAL_1: 6;
then (((20
* ((
- 1)
to_power n))
+ (((5
* (tn
^2 ))
+ (5
* (tbn
^2 )))
+ 1))
- ((tn
+ tbn)
* 2))
< (((((tn
- tbn)
* (2
* (
sqrt 5)))
+ ((tn
+ tbn)
* 2))
+ (((5
* (tn
^2 ))
+ (5
* (tbn
^2 )))
+ 1))
- ((tn
+ tbn)
* 2)) by
XREAL_1: 9;
then (((((((10
* ((
- 1)
to_power n))
+ (10
* ((
- 1)
to_power n)))
+ (5
* (tn
^2 )))
+ (5
* (tbn
^2 )))
+ 1)
- ((tn
+ tbn)
* 2))
- (10
* ((
- 1)
to_power n)))
< ((((tn
- tbn)
* (2
* (
sqrt 5)))
+ (((5
* (tn
^2 ))
+ (5
* (tbn
^2 )))
+ 1))
- (10
* ((
- 1)
to_power n))) by
XREAL_1: 9;
then ((((5
* (((2
* ((
tau
*
tau_bar )
to_power n))
+ (tn
^2 ))
+ (tbn
^2 )))
+ 1)
- (2
* tn))
- (2
* tbn))
< (((((((2
* (
sqrt 5))
* tn)
- ((2
* (
sqrt 5))
* tbn))
+ (5
* (tn
^2 )))
+ (5
* (tbn
^2 )))
- (10
* ((
- 1)
to_power n)))
+ 1) by
Lm3;
then ((((5
* (((2
* (tn
* tbn))
+ (tn
^2 ))
+ (tbn
^2 )))
+ 1)
- (2
* tn))
- (2
* tbn))
< (((((((2
* (
sqrt 5))
* tn)
- ((2
* (
sqrt 5))
* tbn))
+ (5
* (tn
^2 )))
+ (5
* (tbn
^2 )))
- ((5
* 2)
* ((
- 1)
to_power n)))
+ 1) by
NEWTON: 7;
then ((((5
* ((tn
+ tbn)
^2 ))
+ 1)
- (2
* tn))
- (2
* tbn))
< (((((2
* (
sqrt 5))
* tn)
- ((2
* (
sqrt 5))
* tbn))
+ (5
* (((tn
^2 )
+ (tbn
^2 ))
- (2
* ((
tau
*
tau_bar )
to_power n)))))
+ 1) by
Lm3;
then ((((5
* ((tn
+ tbn)
^2 ))
+ 1)
- (2
* tn))
- (2
* tbn))
< (((((2
* (
sqrt 5))
* tn)
- ((2
* (
sqrt 5))
* tbn))
+ (5
* (((tn
^2 )
+ (tbn
^2 ))
- (2
* (tn
* tbn)))))
+ 1) by
NEWTON: 7;
then
A15: (((5
* ((tn
+ tbn)
^2 ))
+ 1)
- (2
* (tn
+ tbn)))
< (((((2
* (
sqrt 5))
* tn)
- ((2
* (
sqrt 5))
* tbn))
+ (5
* ((tn
- tbn)
^2 )))
+ 1);
A16: (((5
* ((
Lucas n)
^2 ))
+ 1)
- (2
* (
Lucas n)))
>=
0
proof
(5
* (
Lucas n))
>= (5
* 4) by
A12,
XREAL_1: 66;
then ((5
* (
Lucas n))
- 2)
>= (20
- 2) by
XREAL_1: 9;
then ((
Lucas n)
* ((5
* (
Lucas n))
- 2))
>= (4
* 18) by
A12,
XREAL_1: 66;
then (((
Lucas n)
* ((5
* (
Lucas n))
- 2))
+ 1)
>= ((4
* 18)
+ 1) by
XREAL_1: 6;
hence thesis;
end;
A17: (((((2
* (
tau
to_power (n
+ 1)))
- tn)
+ (2
* (
tau_bar
to_power (n
+ 1))))
- tbn)
+ 1)
>
0
proof
(((((2
* (
tau
to_power (n
+ 1)))
- tn)
+ (2
* (
tau_bar
to_power (n
+ 1))))
- tbn)
+ 1)
= (((((2
* (tn
* (
tau
to_power 1)))
- tn)
+ (2
* (
tau_bar
to_power (n
+ 1))))
- tbn)
+ 1) by
Th2
.= (((((2
* (tn
* (
tau
to_power 1)))
- tn)
+ (2
* (tbn
* (tb
to_power 1))))
- tbn)
+ 1) by
Th2
.= (((((2
* (tn
*
tau ))
- tn)
+ (2
* (tbn
* (tb
to_power 1))))
- tbn)
+ 1)
.= ((((tn
* (
sqrt 5))
+ (2
* (tbn
* tb)))
- tbn)
+ 1) by
FIB_NUM:def 1
.= ((((
sqrt 5)
* (tn
- tbn))
* 1)
+ 1) by
FIB_NUM:def 2
.= ((((
sqrt 5)
* (tn
- tbn))
* ((
sqrt 5)
/ (
sqrt 5)))
+ 1) by
A2,
XCMPLX_1: 60
.= ((((
sqrt 5)
* (tn
- tbn))
* ((
sqrt 5)
* (1
/ (
sqrt 5))))
+ 1) by
XCMPLX_1: 99
.= ((((
sqrt 5)
* ((tn
- tbn)
* (1
/ (
sqrt 5))))
* (
sqrt 5))
+ 1)
.= ((((
sqrt 5)
* ((tn
- tbn)
/ (
sqrt 5)))
* (
sqrt 5))
+ 1) by
XCMPLX_1: 99
.= ((((
sqrt 5)
* (
Fib n))
* (
sqrt 5))
+ 1) by
FIB_NUM: 7
.= ((((
sqrt 5)
^2 )
* (
Fib n))
+ 1)
.= ((5
* (
Fib n))
+ 1) by
SQUARE_1:def 2;
hence thesis;
end;
(((((2
* (
sqrt 5))
* tn)
- ((2
* (
sqrt 5))
* tbn))
+ (5
* ((tn
- tbn)
^2 )))
+ 1)
= (((((2
* (
sqrt 5))
* tn)
- ((2
* (
sqrt 5))
* tbn))
+ (((
sqrt 5)
^2 )
* ((tn
- tbn)
^2 )))
+ 1) by
SQUARE_1:def 2
.= (((((((2
*
tau )
* tn)
- (1
* tn))
+ ((2
* tb)
* tbn))
- (1
* tbn))
+ 1)
^2 ) by
FIB_NUM:def 1,
FIB_NUM:def 2
.= (((((((2
* (
tau
to_power 1))
* tn)
- (1
* tn))
+ ((2
* tb)
* tbn))
- (1
* tbn))
+ 1)
^2 )
.= ((((((2
* ((
tau
to_power 1)
* tn))
- (1
* tn))
+ ((2
* (tb
to_power 1))
* tbn))
- (1
* tbn))
+ 1)
^2 )
.= ((((((2
* (
tau
to_power (n
+ 1)))
- tn)
+ (2
* ((tb
to_power 1)
* tbn)))
- tbn)
+ 1)
^2 ) by
Th2
.= ((((((2
* (
tau
to_power (n
+ 1)))
- tn)
+ (2
* (
tau_bar
to_power (n
+ 1))))
- tbn)
+ 1)
^2 ) by
Th2;
then (((5
* ((
Lucas n)
^2 ))
+ 1)
- (2
* (tn
+ tbn)))
< ((((((2
* (
tau
to_power (n
+ 1)))
- tn)
+ (2
* (
tau_bar
to_power (n
+ 1))))
- tbn)
+ 1)
^2 ) by
A15,
FIB_NUM3: 21;
then (((5
* ((
Lucas n)
^2 ))
+ 1)
- (2
* (
Lucas n)))
< ((((((2
* (
tau
to_power (n
+ 1)))
- tn)
+ (2
* (
tau_bar
to_power (n
+ 1))))
- tbn)
+ 1)
^2 ) by
FIB_NUM3: 21;
then (
sqrt (((5
* ((
Lucas n)
^2 ))
+ 1)
- (2
* (
Lucas n))))
< (
sqrt ((((((2
* (
tau
to_power (n
+ 1)))
- tn)
+ (2
* (
tau_bar
to_power (n
+ 1))))
- tbn)
+ 1)
^2 )) by
A16,
SQUARE_1: 27;
then (
sqrt (((5
* ((
Lucas n)
^2 ))
+ 1)
- (2
* (
Lucas n))))
< ((((2
* ((
tau
to_power (n
+ 1))
+ (
tau_bar
to_power (n
+ 1))))
- tn)
- tbn)
+ 1) by
A17,
SQUARE_1: 22;
then (
sqrt (((5
* ((
Lucas n)
^2 ))
- (2
* (
Lucas n)))
+ 1))
< ((((2
* (
Lucas (n
+ 1)))
- tn)
- tbn)
+ 1) by
FIB_NUM3: 21;
then (1
+ (
sqrt (((5
* ((
Lucas n)
^2 ))
- (2
* (
Lucas n)))
+ 1)))
< (((((2
* (
Lucas (n
+ 1)))
+ 1)
- tn)
- tbn)
+ 1) by
XREAL_1: 6;
then (((((tn
+ tbn)
+ 1)
+ (
sqrt (((5
* ((
Lucas n)
^2 ))
- (2
* (
Lucas n)))
+ 1)))
- tn)
- tbn)
< ((((2
* (
Lucas (n
+ 1)))
+ 2)
- tn)
- tbn);
then (((((
Lucas n)
+ 1)
+ (
sqrt (((5
* ((
Lucas n)
^2 ))
- (2
* (
Lucas n)))
+ 1)))
- tn)
- tbn)
< ((((2
* (
Lucas (n
+ 1)))
+ 2)
- tn)
- tbn) by
FIB_NUM3: 21;
then ((((
Lucas n)
+ 1)
+ (
sqrt (((5
* ((
Lucas n)
^2 ))
- (2
* (
Lucas n)))
+ 1)))
- tn)
< (((2
* (
Lucas (n
+ 1)))
+ 2)
- tn) by
XREAL_1: 9;
then (((((
Lucas n)
+ 1)
+ (
sqrt (((5
* ((
Lucas n)
^2 ))
- (2
* (
Lucas n)))
+ 1)))
- 2)
+ 2)
< ((2
* (
Lucas (n
+ 1)))
+ 2) by
XREAL_1: 9;
then ((((
Lucas n)
+ 1)
+ (
sqrt (((5
* ((
Lucas n)
^2 ))
- (2
* (
Lucas n)))
+ 1)))
- 2)
< (2
* (
Lucas (n
+ 1))) by
XREAL_1: 6;
then (((((
Lucas n)
+ 1)
+ (
sqrt (((5
* ((
Lucas n)
^2 ))
- (2
* (
Lucas n)))
+ 1)))
- 2)
/ 2)
< ((2
* (
Lucas (n
+ 1)))
/ 2) by
XREAL_1: 74;
hence thesis;
end;
hence thesis by
A3,
INT_1:def 6;
end;
theorem ::
FIB_NUM4:38
for n be
Nat st n
> 2 holds (
Lucas n)
=
[\((1
/
tau )
* ((
Lucas (n
+ 1))
+ (1
/ 2)))/]
proof
let n be
Nat;
assume
A1: n
> 2;
then
A2: n
> 1 by
XXREAL_0: 2;
A3: (
sqrt 5)
>
0 by
SQUARE_1: 25;
set tbn = (
tau_bar
to_power n);
A4: ((1
/
tau )
* ((
Lucas (n
+ 1))
+ (1
/ 2)))
>= (
Lucas n)
proof
tbn
<= (1
/ (2
* (
sqrt 5)))
proof
per cases ;
suppose
A5: n is
even;
n
>= (2
+ 1) by
A1,
NAT_1: 13;
then n
= 3 or n
> 3 by
XXREAL_0: 1;
then n
= 3 or n
>= (3
+ 1) by
NAT_1: 8;
then
A6: tbn
<= (
tau_bar
to_power 4) by
Th11,
A5,
POLYFORM: 6;
A7: (
tau_bar
to_power (3
+ 1))
= ((
tau_bar
to_power 3)
* (
tau_bar
to_power 1)) by
Th2
.= ((2
- (
sqrt 5))
*
tau_bar ) by
Lm8
.= ((((2
- (2
* (
sqrt 5)))
- (
sqrt 5))
+ ((
sqrt 5)
^2 ))
/ 2) by
FIB_NUM:def 2
.= (((2
- (3
* (
sqrt 5)))
+ 5)
/ 2) by
SQUARE_1:def 2
.= ((7
- (3
* (
sqrt 5)))
/ 2);
(
sqrt 5)
<= (
sqrt ((16
/ 7)
^2 )) by
SQUARE_1: 26;
then (
sqrt 5)
<= (16
/ 7) by
SQUARE_1:def 2;
then (7
* (
sqrt 5))
<= ((16
/ 7)
* 7) by
XREAL_1: 64;
then ((7
* (
sqrt 5))
- (3
* 5))
<= (16
- (3
* 5)) by
XREAL_1: 9;
then ((7
* (
sqrt 5))
- (3
* ((
sqrt 5)
^2 )))
<= 1 by
SQUARE_1:def 2;
then (((7
- (3
* (
sqrt 5)))
* (
sqrt 5))
/ (
sqrt 5))
<= (1
/ (
sqrt 5)) by
A3,
XREAL_1: 72;
then (7
- (3
* (
sqrt 5)))
<= (1
/ (
sqrt 5)) by
A3,
XCMPLX_1: 89;
then ((7
- (3
* (
sqrt 5)))
/ 2)
<= ((1
/ (
sqrt 5))
/ 2) by
XREAL_1: 72;
then (
tau_bar
to_power 4)
<= (1
/ (2
* (
sqrt 5))) by
A7,
XCMPLX_1: 78;
hence thesis by
A6,
XXREAL_0: 2;
end;
suppose n is
odd;
then tbn
<
0 by
Th7;
hence thesis by
A3;
end;
end;
then (tbn
* (
sqrt 5))
<= ((1
/ (2
* (
sqrt 5)))
* (
sqrt 5)) by
A3,
XREAL_1: 64;
then (tbn
* (
sqrt 5))
<= (1
/ 2) by
A3,
XCMPLX_1: 92;
then (
- (tbn
* (
sqrt 5)))
>= (
- (1
/ 2)) by
XREAL_1: 24;
then (((
tau_bar
* tbn)
- (
tau
* tbn))
+ ((1
/ 2)
+ (
tau
* tbn)))
>= ((
- (1
/ 2))
+ ((1
/ 2)
+ (
tau
* tbn))) by
FIB_NUM:def 1,
FIB_NUM:def 2,
XREAL_1: 6;
then (((
tau_bar
* tbn)
+ (1
/ 2))
/
tau )
>= ((tbn
*
tau )
/
tau ) by
XREAL_1: 72;
then (((
tau_bar
* tbn)
+ (1
/ 2))
/
tau )
>= tbn by
XCMPLX_1: 89;
then ((((
tau_bar
* tbn)
+ (1
/ 2))
/
tau )
+ ((
tau
to_power (n
+ 1))
/
tau ))
>= (tbn
+ ((
tau
to_power (n
+ 1))
/
tau )) by
XREAL_1: 6;
then ((((
tau_bar
* tbn)
+ (1
/ 2))
+ (
tau
to_power (n
+ 1)))
/
tau )
>= (tbn
+ ((
tau
to_power (n
+ 1))
/
tau )) by
XCMPLX_1: 62;
then (((((
tau_bar
to_power 1)
* tbn)
+ (1
/ 2))
+ (
tau
to_power (n
+ 1)))
/
tau )
>= (tbn
+ ((
tau
to_power (n
+ 1))
/
tau ));
then (((((
tau_bar
to_power 1)
* tbn)
+ (
tau
to_power (n
+ 1)))
+ (1
/ 2))
/
tau )
>= (tbn
+ (((
tau
to_power n)
* (
tau
to_power 1))
/
tau )) by
Th2;
then ((((
tau_bar
to_power (1
+ n))
+ (
tau
to_power (n
+ 1)))
+ (1
/ 2))
/
tau )
>= (tbn
+ (((
tau
to_power n)
* (
tau
to_power 1))
/
tau )) by
Th2;
then (((
Lucas (n
+ 1))
+ (1
/ 2))
/
tau )
>= (tbn
+ (((
tau
to_power n)
* (
tau
to_power 1))
/
tau )) by
FIB_NUM3: 21;
then (((
Lucas (n
+ 1))
+ (1
/ 2))
/
tau )
>= (tbn
+ (((
tau
to_power n)
*
tau )
/
tau ));
then (((
Lucas (n
+ 1))
+ (1
/ 2))
/
tau )
>= (tbn
+ (
tau
to_power n)) by
XCMPLX_1: 89;
then (((
Lucas (n
+ 1))
+ (1
/ 2))
/
tau )
>= (
Lucas n) by
FIB_NUM3: 21;
hence thesis by
XCMPLX_1: 99;
end;
(((1
/
tau )
* ((
Lucas (n
+ 1))
+ (1
/ 2)))
- 1)
< (
Lucas n)
proof
tbn
> (
- (1
/ 2)) by
Th14,
A2;
then (
- tbn)
< (
- (
- (1
/ 2))) by
XREAL_1: 24;
then ((
- tbn)
* (
sqrt 5))
< ((1
/ 2)
* (
sqrt 5)) by
A3,
XREAL_1: 68;
then (((tbn
*
tau_bar )
- (tbn
*
tau ))
+ ((tbn
*
tau )
+ (1
/ 2)))
< ((
tau
- (1
/ 2))
+ ((tbn
*
tau )
+ (1
/ 2))) by
FIB_NUM:def 1,
FIB_NUM:def 2,
XREAL_1: 6;
then (((tbn
*
tau_bar )
+ (1
/ 2))
-
tau )
< ((((
tau
- (1
/ 2))
+ (tbn
*
tau ))
+ (1
/ 2))
-
tau ) by
XREAL_1: 9;
then ((((tbn
*
tau_bar )
+ (1
/ 2))
-
tau )
/
tau )
< ((tbn
*
tau )
/
tau ) by
XREAL_1: 74;
then ((((tbn
*
tau_bar )
/
tau )
+ ((1
/ 2)
/
tau ))
- (
tau
/
tau ))
< ((tbn
*
tau )
/
tau ) by
XCMPLX_1: 124;
then ((((tbn
*
tau_bar )
/
tau )
+ ((1
/ 2)
/
tau ))
- (
tau
/
tau ))
< tbn by
XCMPLX_1: 89;
then ((((tbn
*
tau_bar )
/
tau )
+ ((1
/ 2)
/
tau ))
- 1)
< tbn by
XCMPLX_1: 60;
then (((((tbn
*
tau_bar )
/
tau )
+ ((1
/ 2)
/
tau ))
- 1)
+ (
tau
to_power n))
< (tbn
+ (
tau
to_power n)) by
XREAL_1: 6;
then (((((tbn
*
tau_bar )
/
tau )
+ ((1
/ 2)
/
tau ))
+ ((
tau
to_power n)
* 1))
- 1)
< (
Lucas n) by
FIB_NUM3: 21;
then (((((tbn
*
tau_bar )
/
tau )
+ ((1
/ 2)
/
tau ))
+ ((
tau
to_power n)
* (
tau
/
tau )))
- 1)
< (
Lucas n) by
XCMPLX_1: 60;
then (((((tbn
*
tau_bar )
/
tau )
+ ((1
/ 2)
/
tau ))
+ (((
tau
to_power n)
*
tau )
/
tau ))
- 1)
< (
Lucas n) by
XCMPLX_1: 74;
then (((((tbn
*
tau_bar )
+ (1
/ 2))
+ ((
tau
to_power n)
*
tau ))
/
tau )
- 1)
< (
Lucas n) by
XCMPLX_1: 63;
then (((((tbn
* (
tau_bar
to_power 1))
+ (1
/ 2))
+ ((
tau
to_power n)
*
tau ))
/
tau )
- 1)
< (
Lucas n);
then (((((tbn
* (
tau_bar
to_power 1))
+ (1
/ 2))
+ ((
tau
to_power n)
* (
tau
to_power 1)))
/
tau )
- 1)
< (
Lucas n);
then (((((
tau_bar
to_power (n
+ 1))
+ (1
/ 2))
+ ((
tau
to_power n)
* (
tau
to_power 1)))
/
tau )
- 1)
< (
Lucas n) by
Th2;
then (((((
tau_bar
to_power (n
+ 1))
+ (1
/ 2))
+ (
tau
to_power (n
+ 1)))
/
tau )
- 1)
< (
Lucas n) by
Th2;
then (((((
tau_bar
to_power (n
+ 1))
+ (
tau
to_power (n
+ 1)))
+ (1
/ 2))
/
tau )
- 1)
< (
Lucas n);
then ((((
Lucas (n
+ 1))
+ (1
/ 2))
/
tau )
- 1)
< (
Lucas n) by
FIB_NUM3: 21;
hence thesis by
XCMPLX_1: 99;
end;
hence thesis by
A4,
INT_1:def 6;
end;
theorem ::
FIB_NUM4:39
for n,k be
Nat st n
>= 4 & k
>= 1 & n
> k & n is
odd holds (
Lucas (n
+ k))
=
[\(((
tau
to_power k)
* (
Lucas n))
+ 1)/]
proof
let n,k be
Nat;
assume
A1: n
>= 4 & k
>= 1 & n
> k & n is
odd;
set tb =
tau_bar ;
set tk = (
tau
to_power k);
set tn = (
tau
to_power n);
set tbn = (
tau_bar
to_power n);
A2: (
sqrt 5)
> 1 by
SQUARE_1: 18,
SQUARE_1: 27;
A3: (((
tau
to_power k)
* (
Lucas n))
+ 1)
>= (
Lucas (n
+ k))
proof
((tk
* tbn)
+ 1)
>= (tb
to_power (n
+ k))
proof
consider m be
Nat such that
A4: n
= (k
+ m) by
A1,
NAT_1: 10;
A5: m is non
zero
Nat by
A1,
A4;
then
A6: m
>= 1 by
NAT_1: 14;
A7: (((((1
- (
sqrt 5))
to_power m)
* ((
- 1)
to_power k))
/ (2
to_power m))
+ 1)
>= (((1
- (
sqrt 5))
to_power ((2
* k)
+ m))
/ (2
to_power ((2
* k)
+ m)))
proof
per cases ;
suppose
A8: k is
even;
then
A9: m is
odd by
A1,
A4;
A10: (2
to_power m)
>
0 by
POWER: 34;
A11: (((((1
- (
sqrt 5))
to_power m)
* ((
- 1)
to_power k))
/ (2
to_power m))
+ 1)
= (((((1
- (
sqrt 5))
to_power m)
* 1)
/ (2
to_power m))
+ 1) by
A8,
FIB_NUM2: 3
.= ((((
- ((
- 1)
+ (
sqrt 5)))
to_power m)
/ (2
to_power m))
+ ((2
to_power m)
/ (2
to_power m))) by
A10,
XCMPLX_1: 60
.= (((((
- 1)
* ((
sqrt 5)
- 1))
to_power m)
+ (2
to_power m))
/ (2
to_power m)) by
XCMPLX_1: 62
.= (((((
- 1)
to_power m)
* (((
sqrt 5)
- 1)
to_power m))
+ (2
to_power m))
/ (2
to_power m)) by
NEWTON: 7
.= (((2
to_power m)
+ ((
- 1)
* (((
sqrt 5)
- 1)
to_power m)))
/ (2
to_power m)) by
A9,
FIB_NUM2: 2
.= (((2
to_power m)
- (((
sqrt 5)
- 1)
to_power m))
/ (2
to_power m));
A12: (
sqrt (3
^2 ))
> (
sqrt 5) & (
sqrt 5)
> (
sqrt 1) by
SQUARE_1: 27;
then 3
> (
sqrt 5) & (
sqrt 5)
> 1 by
SQUARE_1: 18,
SQUARE_1:def 2;
then (3
- 1)
> ((
sqrt 5)
- 1) & ((
sqrt 5)
- 1)
> (1
- 1) by
XREAL_1: 9;
then (2
to_power m)
> (((
sqrt 5)
- 1)
to_power m) by
A5,
POWER: 37;
then
A13: ((2
to_power m)
- (((
sqrt 5)
- 1)
to_power m))
> ((((
sqrt 5)
- 1)
to_power m)
- (((
sqrt 5)
- 1)
to_power m)) by
XREAL_1: 9;
A14: (((1
- (
sqrt 5))
to_power ((2
* k)
+ m))
/ (2
to_power ((2
* k)
+ m)))
= ((((
- 1)
* ((
- 1)
+ (
sqrt 5)))
to_power ((2
* k)
+ m))
/ (2
to_power ((2
* k)
+ m)))
.= ((((
- 1)
to_power ((2
* k)
+ m))
* (((
- 1)
+ (
sqrt 5))
to_power ((2
* k)
+ m)))
/ (2
to_power ((2
* k)
+ m))) by
NEWTON: 7
.= (((
- 1)
* (((
- 1)
+ (
sqrt 5))
to_power ((2
* k)
+ m)))
/ (2
to_power ((2
* k)
+ m))) by
A9,
FIB_NUM2: 2
.= ((
- 1)
* ((((
- 1)
+ (
sqrt 5))
to_power ((2
* k)
+ m))
/ (2
to_power ((2
* k)
+ m)))) by
XCMPLX_1: 74;
((
sqrt 5)
- 1)
> (1
- 1) by
A12,
SQUARE_1: 18,
XREAL_1: 9;
then (((
- 1)
+ (
sqrt 5))
to_power ((2
* k)
+ m))
>
0 by
POWER: 34;
then (((1
- (
sqrt 5))
to_power ((2
* k)
+ m))
/ (2
to_power ((2
* k)
+ m)))
<=
0 by
A14;
hence thesis by
A13,
A11;
end;
suppose
A15: k is
odd;
then
A16: m is
even by
A1,
A4;
A17: (2
to_power m)
>
0 by
POWER: 34;
A18: (2
to_power (2
* k))
>
0 by
POWER: 34;
m
> 1 by
A16,
A6,
POLYFORM: 4,
XXREAL_0: 1;
then
A19: (m
- 1) is non
zero
Nat by
NAT_1: 20;
A20: (((((1
- (
sqrt 5))
to_power m)
* ((
- 1)
to_power k))
/ (2
to_power m))
+ 1)
= (((((1
- (
sqrt 5))
to_power m)
* (
- 1))
/ (2
to_power m))
+ 1) by
A15,
FIB_NUM2: 2
.= (((((1
- (
sqrt 5))
to_power m)
* (
- 1))
/ (2
to_power m))
+ ((2
to_power m)
/ (2
to_power m))) by
A17,
XCMPLX_1: 60
.= ((((((
- 1)
* ((
- 1)
+ (
sqrt 5)))
to_power m)
* (
- 1))
+ (2
to_power m))
/ (2
to_power m)) by
XCMPLX_1: 62
.= ((((((
- 1)
to_power m)
* (((
- 1)
+ (
sqrt 5))
to_power m))
* (
- 1))
+ (2
to_power m))
/ (2
to_power m)) by
NEWTON: 7
.= ((((1
* (((
- 1)
+ (
sqrt 5))
to_power m))
* (
- 1))
+ (2
to_power m))
/ (2
to_power m)) by
A16,
FIB_NUM2: 3
.= ((((
- (((
- 1)
+ (
sqrt 5))
to_power m))
+ (2
to_power m))
* (2
to_power (2
* k)))
/ ((2
to_power m)
* (2
to_power (2
* k)))) by
A18,
XCMPLX_1: 91
.= (((
- ((((
- 1)
+ (
sqrt 5))
to_power m)
* (2
to_power (2
* k))))
+ ((2
to_power m)
* (2
to_power (2
* k))))
/ (2
to_power (m
+ (2
* k)))) by
Th2
.= (((
- ((((
- 1)
+ (
sqrt 5))
to_power m)
* (2
to_power (2
* k))))
+ (2
to_power (m
+ (2
* k))))
/ (2
to_power (m
+ (2
* k)))) by
Th2
.= (((2
to_power (m
+ (2
* k)))
- ((((
- 1)
+ (
sqrt 5))
to_power m)
* (2
to_power (2
* k))))
/ (2
to_power (m
+ (2
* k))));
A21: (((1
- (
sqrt 5))
to_power ((2
* k)
+ m))
/ (2
to_power ((2
* k)
+ m)))
= ((((
- 1)
* ((
- 1)
+ (
sqrt 5)))
to_power ((2
* k)
+ m))
/ (2
to_power ((2
* k)
+ m)))
.= ((((
- 1)
to_power ((2
* k)
+ m))
* (((
- 1)
+ (
sqrt 5))
to_power ((2
* k)
+ m)))
/ (2
to_power ((2
* k)
+ m))) by
NEWTON: 7
.= ((1
* (((
- 1)
+ (
sqrt 5))
to_power ((2
* k)
+ m)))
/ (2
to_power ((2
* k)
+ m))) by
A16,
FIB_NUM2: 3
.= ((((
sqrt 5)
- 1)
to_power ((2
* k)
+ m))
/ (2
to_power ((2
* k)
+ m)));
((2
to_power m)
- (((
sqrt 5)
- 1)
to_power m))
>= (((
sqrt 5)
- 1)
to_power m)
proof
defpred
P[
Nat] means ((2
to_power ($1
+ 1))
- (((
sqrt 5)
- 1)
to_power ($1
+ 1)))
>= (((
sqrt 5)
- 1)
to_power ($1
+ 1));
A22: ((2
to_power (1
+ 1))
- (((
sqrt 5)
- 1)
to_power (1
+ 1)))
= ((2
^2 )
- (((
sqrt 5)
- 1)
to_power 2)) by
POWER: 46
.= (4
- (((
sqrt 5)
- 1)
^2 )) by
POWER: 46
.= (4
- ((((
sqrt 5)
^2 )
- ((2
* (
sqrt 5))
* 1))
+ (1
^2 )))
.= (4
- ((5
- (2
* (
sqrt 5)))
+ 1)) by
SQUARE_1:def 2
.= ((2
* (
sqrt 5))
- 2);
A23: (((
sqrt 5)
- 1)
to_power (1
+ 1))
= (((
sqrt 5)
- 1)
^2 ) by
POWER: 46
.= ((((
sqrt 5)
^2 )
- ((2
* (
sqrt 5))
* 1))
+ (1
^2 ))
.= ((5
- (2
* (
sqrt 5)))
+ 1) by
SQUARE_1:def 2
.= (6
- (2
* (
sqrt 5)));
(
sqrt 5)
>= (
sqrt (2
^2 )) by
SQUARE_1: 27;
then (
sqrt 5)
>= 2 by
SQUARE_1:def 2;
then ((
sqrt 5)
* 4)
>= (2
* 4) by
XREAL_1: 64;
then ((((
sqrt 5)
* 2)
+ ((
sqrt 5)
* 2))
- 2)
>= ((6
+ 2)
- 2) by
XREAL_1: 9;
then (((((
sqrt 5)
* 2)
+ ((
sqrt 5)
* 2))
- 2)
- (2
* (
sqrt 5)))
>= (6
- (2
* (
sqrt 5))) by
XREAL_1: 9;
then
A24:
P[1] by
A22,
A23;
A25: for k be non
zero
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be non
zero
Nat;
A26: ((
sqrt 5)
- 1)
> (1
- 1) by
A2,
XREAL_1: 9;
assume
P[k];
then (((2
to_power (k
+ 1))
- (((
sqrt 5)
- 1)
to_power (k
+ 1)))
+ (((
sqrt 5)
- 1)
to_power (k
+ 1)))
>= ((((
sqrt 5)
- 1)
to_power (k
+ 1))
+ (((
sqrt 5)
- 1)
to_power (k
+ 1))) by
XREAL_1: 6;
then ((2
to_power (k
+ 1))
* ((
sqrt 5)
- 1))
>= ((2
* (((
sqrt 5)
- 1)
to_power (k
+ 1)))
* ((
sqrt 5)
- 1)) by
A26,
XREAL_1: 64;
then ((2
to_power (k
+ 1))
* ((
sqrt 5)
- 1))
>= (2
* ((((
sqrt 5)
- 1)
to_power (k
+ 1))
* ((
sqrt 5)
- 1)));
then ((2
to_power (k
+ 1))
* ((
sqrt 5)
- 1))
>= (2
* ((((
sqrt 5)
- 1)
to_power (k
+ 1))
* (((
sqrt 5)
- 1)
to_power 1)));
then
A27: ((2
to_power (k
+ 1))
* ((
sqrt 5)
- 1))
>= (2
* (((
sqrt 5)
- 1)
to_power ((k
+ 1)
+ 1))) by
Th2,
A26;
(
sqrt (3
^2 ))
>= (
sqrt 5) by
SQUARE_1: 27;
then 3
>= (
sqrt 5) by
SQUARE_1:def 2;
then (3
- 1)
>= ((
sqrt 5)
- 1) by
XREAL_1: 9;
then (2
* (2
to_power (k
+ 1)))
>= (((
sqrt 5)
- 1)
* (2
to_power (k
+ 1))) by
XREAL_1: 64;
then ((2
to_power 1)
* (2
to_power (k
+ 1)))
>= (((
sqrt 5)
- 1)
* (2
to_power (k
+ 1)));
then (2
to_power ((1
+ k)
+ 1))
>= (((
sqrt 5)
- 1)
* (2
to_power (k
+ 1))) by
Th2;
then (2
to_power ((1
+ k)
+ 1))
>= (2
* (((
sqrt 5)
- 1)
to_power ((k
+ 1)
+ 1))) by
A27,
XXREAL_0: 2;
then ((2
to_power ((1
+ k)
+ 1))
- (((
sqrt 5)
- 1)
to_power ((k
+ 1)
+ 1)))
>= ((2
* (((
sqrt 5)
- 1)
to_power ((k
+ 1)
+ 1)))
- (((
sqrt 5)
- 1)
to_power ((k
+ 1)
+ 1))) by
XREAL_1: 9;
hence thesis;
end;
for k be non
zero
Nat holds
P[k] from
NAT_1:sch 10(
A24,
A25);
then ((2
to_power ((m
- 1)
+ 1))
- (((
sqrt 5)
- 1)
to_power ((m
- 1)
+ 1)))
>= (((
sqrt 5)
- 1)
to_power ((m
- 1)
+ 1)) by
A19;
hence thesis;
end;
then (((2
to_power m)
- (((
sqrt 5)
- 1)
to_power m))
* (2
to_power (2
* k)))
>= ((((
sqrt 5)
- 1)
to_power m)
* (2
to_power (2
* k))) by
XREAL_1: 64;
then (((2
to_power m)
* (2
to_power (2
* k)))
- ((((
sqrt 5)
- 1)
to_power m)
* (2
to_power (2
* k))))
>= ((((
sqrt 5)
- 1)
to_power m)
* (2
to_power (2
* k)));
then ((2
to_power (m
+ (2
* k)))
- ((((
sqrt 5)
- 1)
to_power m)
* (2
to_power (2
* k))))
>= ((((
sqrt 5)
- 1)
to_power m)
* (2
to_power (2
* k))) by
Th2;
then (((2
to_power (m
+ (2
* k)))
- ((((
sqrt 5)
- 1)
to_power m)
* (2
to_power (2
* k))))
/ (2
to_power (m
+ (2
* k))))
>= (((((
sqrt 5)
- 1)
to_power m)
* (2
to_power (2
* k)))
/ (2
to_power (m
+ (2
* k)))) by
XREAL_1: 72;
then
A28: ((((2
to_power m)
* (2
to_power (2
* k)))
- ((((
sqrt 5)
- 1)
to_power m)
* (2
to_power (2
* k))))
/ (2
to_power (m
+ (2
* k))))
>= (((((
sqrt 5)
- 1)
to_power m)
* (2
to_power (2
* k)))
/ (2
to_power (m
+ (2
* k)))) by
Th2;
A29: ((
sqrt 5)
- 1)
> (1
- 1) by
A2,
XREAL_1: 9;
(
sqrt (3
^2 ))
> (
sqrt 5) & (
sqrt 5)
> (
sqrt 1) by
SQUARE_1: 27;
then 3
> (
sqrt 5) & (
sqrt 5)
> 1 by
SQUARE_1: 18,
SQUARE_1:def 2;
then
A30: (3
- 1)
> ((
sqrt 5)
- 1) & ((
sqrt 5)
- 1)
> (1
- 1) by
XREAL_1: 9;
then
A31: (((
sqrt 5)
- 1)
to_power m)
>
0 by
POWER: 34;
(2
to_power (2
* k))
>= (((
sqrt 5)
- 1)
to_power (2
* k)) by
A30,
A1,
POWER: 37;
then ((2
to_power (2
* k))
* (((
sqrt 5)
- 1)
to_power m))
>= ((((
sqrt 5)
- 1)
to_power (2
* k))
* (((
sqrt 5)
- 1)
to_power m)) by
A31,
XREAL_1: 64;
then (((2
to_power (2
* k))
* (((
sqrt 5)
- 1)
to_power m))
/ (2
to_power ((2
* k)
+ m)))
>= (((((
sqrt 5)
- 1)
to_power (2
* k))
* (((
sqrt 5)
- 1)
to_power m))
/ (2
to_power ((2
* k)
+ m))) by
XREAL_1: 72;
then ((((2
to_power m)
- (((
sqrt 5)
- 1)
to_power m))
* (2
to_power (2
* k)))
/ (2
to_power (m
+ (2
* k))))
>= (((((
sqrt 5)
- 1)
to_power (2
* k))
* (((
sqrt 5)
- 1)
to_power m))
/ (2
to_power ((2
* k)
+ m))) by
A28,
XXREAL_0: 2;
then ((((2
to_power m)
* (2
to_power (2
* k)))
- ((((
sqrt 5)
- 1)
to_power m)
* (2
to_power (2
* k))))
/ (2
to_power (m
+ (2
* k))))
>= ((((
sqrt 5)
- 1)
to_power ((2
* k)
+ m))
/ (2
to_power ((2
* k)
+ m))) by
Th2,
A29;
hence thesis by
A20,
A21,
Th2;
end;
end;
((
sqrt 5)
- 1)
> (1
- 1) by
A2,
XREAL_1: 9;
then
A32: (
- ((
sqrt 5)
- 1))
<
0 ;
(((1
+ (
sqrt 5))
* (1
- (
sqrt 5)))
/ (2
to_power 2))
= (((1
+ (
sqrt 5))
* (1
- (
sqrt 5)))
/ (2
^2 )) by
POWER: 46
.= (((1
^2 )
- ((
sqrt 5)
^2 ))
/ 4)
.= ((1
- 5)
/ 4) by
SQUARE_1:def 2
.= (
- 1);
then ((
- 1)
to_power k)
= ((((1
+ (
sqrt 5))
* (1
- (
sqrt 5)))
to_power k)
/ ((2
to_power 2)
to_power k)) by
Th1
.= ((((1
+ (
sqrt 5))
* (1
- (
sqrt 5)))
to_power k)
/ (2
to_power (2
* k))) by
NEWTON: 9;
then ((((((1
- (
sqrt 5))
to_power m)
* (((1
+ (
sqrt 5))
* (1
- (
sqrt 5)))
to_power k))
/ (2
to_power (2
* k)))
/ (2
to_power m))
+ 1)
>= (((1
- (
sqrt 5))
to_power ((2
* k)
+ m))
/ (2
to_power ((2
* k)
+ m))) by
A7,
XCMPLX_1: 74;
then (((((1
- (
sqrt 5))
to_power m)
* (((1
+ (
sqrt 5))
* (1
- (
sqrt 5)))
to_power k))
/ ((2
to_power (2
* k))
* (2
to_power m)))
+ 1)
>= (((1
- (
sqrt 5))
to_power ((2
* k)
+ m))
/ (2
to_power ((2
* k)
+ m))) by
XCMPLX_1: 78;
then (((((1
- (
sqrt 5))
to_power m)
* (((1
+ (
sqrt 5))
* (1
- (
sqrt 5)))
to_power k))
/ (2
to_power ((2
* k)
+ m)))
+ 1)
>= (((1
- (
sqrt 5))
to_power ((2
* k)
+ m))
/ (2
to_power ((2
* k)
+ m))) by
Th2;
then (((((1
- (
sqrt 5))
to_power m)
* (((1
+ (
sqrt 5))
to_power k)
* ((1
- (
sqrt 5))
to_power k)))
/ (2
to_power ((2
* k)
+ m)))
+ 1)
>= (((1
- (
sqrt 5))
to_power ((2
* k)
+ m))
/ (2
to_power ((2
* k)
+ m))) by
NEWTON: 7;
then ((((((1
- (
sqrt 5))
to_power m)
* ((1
- (
sqrt 5))
to_power k))
* ((1
+ (
sqrt 5))
to_power k))
/ (2
to_power ((2
* k)
+ m)))
+ 1)
>= (((1
- (
sqrt 5))
to_power ((2
* k)
+ m))
/ (2
to_power ((2
* k)
+ m)));
then (((((1
- (
sqrt 5))
to_power (m
+ k))
* ((1
+ (
sqrt 5))
to_power k))
/ (2
to_power ((k
+ k)
+ m)))
+ 1)
>= (((1
- (
sqrt 5))
to_power ((2
* k)
+ m))
/ (2
to_power ((2
* k)
+ m))) by
Th2,
A32;
then (((((1
- (
sqrt 5))
to_power n)
* ((1
+ (
sqrt 5))
to_power k))
/ (2
to_power (k
+ n)))
+ 1)
>= (((1
- (
sqrt 5))
/ 2)
to_power ((k
+ k)
+ m)) by
A4,
Th1;
then (((((1
- (
sqrt 5))
to_power n)
* ((1
+ (
sqrt 5))
to_power k))
/ ((2
to_power n)
* (2
to_power k)))
+ 1)
>= (tb
to_power (k
+ n)) by
Th2,
A4,
FIB_NUM:def 2;
then (((((1
- (
sqrt 5))
to_power n)
/ (2
to_power n))
* (((1
+ (
sqrt 5))
to_power k)
/ (2
to_power k)))
+ 1)
>= (tb
to_power (k
+ n)) by
XCMPLX_1: 76;
then (((((1
- (
sqrt 5))
/ 2)
to_power n)
* (((1
+ (
sqrt 5))
to_power k)
/ (2
to_power k)))
+ 1)
>= (tb
to_power (k
+ n)) by
Th1;
hence thesis by
Th1,
FIB_NUM:def 1,
FIB_NUM:def 2;
end;
then (((tk
* tbn)
+ 1)
+ (
tau
to_power (n
+ k)))
>= ((tb
to_power (n
+ k))
+ (
tau
to_power (n
+ k))) by
XREAL_1: 6;
then (((
tau
to_power (n
+ k))
+ (tk
* tbn))
+ 1)
>= ((
tau
to_power (n
+ k))
+ (tb
to_power (n
+ k)));
then (((tk
* tn)
+ (tk
* tbn))
+ 1)
>= ((
tau
to_power (n
+ k))
+ (tb
to_power (n
+ k))) by
Th2;
then ((tk
* (tn
+ tbn))
+ 1)
>= (
Lucas (n
+ k)) by
FIB_NUM3: 21;
hence thesis by
FIB_NUM3: 21;
end;
((((
tau
to_power k)
* (
Lucas n))
+ 1)
- 1)
< (
Lucas (n
+ k))
proof
defpred
P[
Nat] means ((
tau
to_power $1)
* (
Lucas n))
< (
Lucas (n
+ $1));
tbn
<
0 by
Th7,
A1;
then ((tbn
*
tau )
- (tbn
* tb))
<
0 ;
then ((tbn
*
tau )
- (tbn
* (tb
to_power 1)))
<
0 ;
then ((tbn
*
tau )
- (tb
to_power (n
+ 1)))
<
0 by
Th2;
then (((tbn
*
tau )
- (tb
to_power (n
+ 1)))
+ ((
tau
to_power (n
+ 1))
+ (tb
to_power (n
+ 1))))
< (
0
+ ((
tau
to_power (n
+ 1))
+ (tb
to_power (n
+ 1)))) by
XREAL_1: 6;
then ((tbn
*
tau )
+ (
tau
to_power (n
+ 1)))
< (
Lucas (n
+ 1)) by
FIB_NUM3: 21;
then ((tbn
*
tau )
+ (tn
* (
tau
to_power 1)))
< (
Lucas (n
+ 1)) by
Th2;
then ((tbn
*
tau )
+ (tn
*
tau ))
< (
Lucas (n
+ 1));
then ((tbn
+ tn)
*
tau )
< (
Lucas (n
+ 1));
then ((
Lucas n)
*
tau )
< (
Lucas (n
+ 1)) by
FIB_NUM3: 21;
then
A33:
P[1];
A34: for m be non
zero
Nat st
P[m] holds
P[(m
+ 1)]
proof
let m be non
zero
Nat;
assume
P[m];
A35: ((1
- (
sqrt 5))
to_power (m
+ 1))
< ((1
+ (
sqrt 5))
to_power (m
+ 1))
proof
reconsider s = (m
+ 1) as
Element of
NAT by
ORDINAL1:def 12;
((1
- (
sqrt 5))
to_power s)
<=
|.((1
- (
sqrt 5))
to_power s).| by
ABSVALUE: 4;
then
A36: ((1
- (
sqrt 5))
to_power s)
<= (
|.(1
- (
sqrt 5)).|
to_power s) by
SERIES_1: 2;
(
sqrt 5)
> (
sqrt 1) by
SQUARE_1: 27;
then (
- (
sqrt 5))
< (
- 1) by
SQUARE_1: 18,
XREAL_1: 24;
then
A37: ((
- (
sqrt 5))
+ 1)
< ((
- 1)
+ 1) by
XREAL_1: 6;
then
A38:
|.(1
- (
sqrt 5)).|
= (
- (1
- (
sqrt 5))) by
ABSVALUE:def 1;
(
- (1
- (
sqrt 5)))
= ((
- 1)
+ (
sqrt 5));
then (
- (1
- (
sqrt 5)))
< (1
+ (
sqrt 5)) by
XREAL_1: 6;
then (
|.(1
- (
sqrt 5)).|
to_power s)
< ((1
+ (
sqrt 5))
to_power s) by
A38,
A37,
POWER: 37;
hence thesis by
A36,
XXREAL_0: 2;
end;
(2
to_power (m
+ 1))
>
0 by
POWER: 34;
then (((1
- (
sqrt 5))
to_power (m
+ 1))
/ (2
to_power (m
+ 1)))
< (((1
+ (
sqrt 5))
to_power (m
+ 1))
/ (2
to_power (m
+ 1))) by
A35,
XREAL_1: 74;
then (((1
- (
sqrt 5))
/ 2)
to_power (m
+ 1))
< (((1
+ (
sqrt 5))
to_power (m
+ 1))
/ (2
to_power (m
+ 1))) by
Th1;
then (tb
to_power (m
+ 1))
< (
tau
to_power (m
+ 1)) & tbn
<
0 by
A1,
Th7,
Th1,
FIB_NUM:def 1,
FIB_NUM:def 2;
then ((tb
to_power (m
+ 1))
* tbn)
> ((
tau
to_power (m
+ 1))
* tbn) by
XREAL_1: 69;
then (((tb
to_power (m
+ 1))
* tbn)
+ (
tau
to_power ((n
+ m)
+ 1)))
> (((
tau
to_power (m
+ 1))
* tbn)
+ (
tau
to_power ((n
+ m)
+ 1))) by
XREAL_1: 6;
then ((tb
to_power ((m
+ 1)
+ n))
+ (
tau
to_power ((n
+ m)
+ 1)))
> (((
tau
to_power (m
+ 1))
* tbn)
+ (
tau
to_power ((n
+ m)
+ 1))) by
Th2;
then ((tb
to_power ((m
+ 1)
+ n))
+ (
tau
to_power ((n
+ m)
+ 1)))
> (((
tau
to_power (m
+ 1))
* tbn)
+ (tn
* (
tau
to_power (m
+ 1)))) by
Th2;
then (
Lucas ((n
+ m)
+ 1))
> ((
tau
to_power (m
+ 1))
* (tbn
+ tn)) by
FIB_NUM3: 21;
hence thesis by
FIB_NUM3: 21;
end;
for m be non
zero
Nat holds
P[m] from
NAT_1:sch 10(
A33,
A34);
hence thesis by
A1;
end;
hence thesis by
A3,
INT_1:def 6;
end;