fib_num2.miz
begin
reserve n,k,r,m,i,j for
Nat;
theorem ::
FIB_NUM2:1
for n be non
zero
Element of
NAT holds ((n
-' 1)
+ 2)
= (n
+ 1)
proof
let n be non
zero
Element of
NAT ;
n
>= 1 by
NAT_2: 19;
then ((n
-' 1)
+ 2)
= ((n
+ 2)
-' 1) by
NAT_D: 38
.= ((n
+ 2)
- 1) by
NAT_D: 37;
hence thesis;
end;
theorem ::
FIB_NUM2:2
Th2: for n be
odd
Integer holds ((
- 1)
to_power n)
= (
- 1)
proof
let n be
odd
Integer;
((
- 1)
to_power n)
= (
- (1
to_power n)) by
POWER: 48
.= (
- 1) by
POWER: 26;
hence thesis;
end;
theorem ::
FIB_NUM2:3
Th3: for n be
even
Integer holds ((
- 1)
to_power n)
= 1
proof
let n be
even
Integer;
((
- 1)
to_power n)
= (1
to_power n) by
POWER: 47;
hence thesis by
POWER: 26;
end;
theorem ::
FIB_NUM2:4
Th4: for m be non
zero
Real, n be
Integer holds (((
- 1)
* m)
to_power n)
= (((
- 1)
to_power n)
* (m
to_power n))
proof
let m be non
zero
Real, n be
Integer;
per cases ;
suppose
A1: n is
odd;
then ((
- m)
to_power n)
= (
- (m
to_power n)) by
POWER: 48
.= ((
- 1)
* (m
to_power n))
.= (((
- 1)
to_power n)
* (m
to_power n)) by
A1,
Th2;
hence thesis;
end;
suppose
A2: n is
even;
then ((
- m)
to_power n)
= (1
* (m
to_power n)) by
POWER: 47
.= (((
- 1)
to_power n)
* (m
to_power n)) by
A2,
Th3;
hence thesis;
end;
end;
theorem ::
FIB_NUM2:5
Th5: for a be
Real holds (a
to_power (k
+ m))
= ((a
to_power k)
* (a
to_power m))
proof
let a be
Real;
thus (a
to_power (k
+ m))
= (a
|^ (k
+ m)) by
POWER: 41
.= ((a
|^ k)
* (a
|^ m)) by
NEWTON: 8
.= ((a
to_power k)
* (a
|^ m)) by
POWER: 41
.= ((a
to_power k)
* (a
to_power m)) by
POWER: 41;
end;
theorem ::
FIB_NUM2:6
Th6: for k be non
zero
Real, m be
odd
Integer holds ((k
to_power m)
to_power n)
= (k
to_power (m
* n))
proof
let k be non
zero
Real, m be
odd
Integer;
(k
to_power (m
* n))
= (k
#Z (m
* n)) by
POWER:def 2
.= ((k
#Z m)
#Z n) by
PREPOWER: 45
.= ((k
to_power m)
#Z n) by
POWER:def 2
.= ((k
to_power m)
to_power n) by
POWER:def 2;
hence thesis;
end;
theorem ::
FIB_NUM2:7
Th7: (((
- 1)
to_power (
- n))
^2 )
= 1
proof
(((
- 1)
to_power (
- n))
^2 )
= (((
- 1)
#Z (
- n))
^2 ) by
POWER:def 2
.= ((1
/ ((
- 1)
#Z n))
^2 ) by
PREPOWER: 41
.= ((1
/ ((
- 1)
#Z n))
to_power 2) by
POWER: 46
.= ((1
/ ((
- 1)
#Z n))
|^ 2) by
POWER: 41
.= (1
/ (((
- 1)
#Z n)
|^ 2)) by
PREPOWER: 7
.= (1
/ (((
- 1)
#Z n)
#Z 2)) by
PREPOWER: 36
.= (1
/ ((
- 1)
#Z (n
* 2))) by
PREPOWER: 45
.= (1
/ ((
- 1)
|^ (2
* n))) by
PREPOWER: 36
.= (1
/ (1
|^ (2
* n))) by
WSIERP_1: 2
.= (1
/ ((1
|^ 2)
|^ n))
.= (1
/ (1
|^ n))
.= (1
/ 1);
hence thesis;
end;
theorem ::
FIB_NUM2:8
Th8: for a be non
zero
Real holds ((a
to_power (
- k))
* (a
to_power (
- m)))
= (a
to_power ((
- k)
- m))
proof
set K = (
- k);
set M = (
- m);
let a be non
zero
Real;
((a
to_power (
- k))
* (a
to_power (
- m)))
= ((a
#Z (
- k))
* (a
to_power (
- m))) by
POWER:def 2
.= ((a
#Z K)
* (a
#Z M)) by
POWER:def 2
.= (a
#Z (K
+ M)) by
PREPOWER: 44
.= (a
to_power ((
- k)
- m)) by
POWER:def 2;
hence thesis;
end;
theorem ::
FIB_NUM2:9
Th9: ((
- 1)
to_power (
- (2
* n)))
= 1
proof
((
- 1)
to_power (
- (2
* n)))
= ((
- 1)
#Z ((
- 1)
* (2
* n))) by
POWER:def 2
.= (((
- 1)
#Z (
- 1))
#Z (2
* n)) by
PREPOWER: 45
.= ((1
/ ((
- 1)
#Z 1))
#Z (2
* n)) by
PREPOWER: 41
.= ((1
/ (
- 1))
#Z (2
* n)) by
PREPOWER: 35
.= ((
- 1)
|^ (2
* n)) by
PREPOWER: 36
.= (1
|^ (2
* n)) by
WSIERP_1: 2
.= ((1
|^ 2)
|^ n)
.= (1
|^ n)
.= 1;
hence thesis;
end;
theorem ::
FIB_NUM2:10
Th10: for a be non
zero
Real holds ((a
to_power k)
* (a
to_power (
- k)))
= 1
proof
let a be non
zero
Real;
((a
to_power k)
* (a
to_power (
- k)))
= ((a
#Z k)
* (a
to_power (
- k))) by
POWER:def 2
.= ((a
#Z k)
* (a
#Z (
- k))) by
POWER:def 2
.= (a
#Z (k
+ (
- k))) by
PREPOWER: 44
.= 1 by
PREPOWER: 34;
hence thesis;
end;
registration
let n be
odd
Integer;
cluster (
- n) ->
odd;
coherence
proof
(
- 1)
= ((2
* (
- 1))
+ 1);
then
reconsider e = (
- 1) as
odd
Integer;
(e
* n) is
odd;
hence thesis;
end;
end
registration
let n be
even
Integer;
cluster (
- n) ->
even;
coherence
proof
reconsider e = (
- 1) as
Integer;
(e
* n) is
even;
hence thesis;
end;
end
theorem ::
FIB_NUM2:11
Th11: ((
- 1)
to_power (
- n))
= ((
- 1)
to_power n)
proof
per cases ;
suppose n is
odd;
then
reconsider n as
odd
Integer;
((
- 1)
to_power (
- n))
= (
- 1) by
Th2
.= ((
- 1)
to_power n) by
Th2;
hence thesis;
end;
suppose n is
even;
then
reconsider n as
even
Integer;
((
- 1)
to_power (
- n))
= 1 by
Th3
.= ((
- 1)
to_power n) by
Th3;
hence thesis;
end;
end;
theorem ::
FIB_NUM2:12
Th12: for k,m,m1,n1 be
Element of
NAT st k
divides m & k
divides n holds k
divides ((m
* m1)
+ (n
* n1))
proof
let k,m,m1,n1 be
Element of
NAT ;
assume k
divides m & k
divides n;
then k
divides (m
* m1) & k
divides (n
* n1) by
NAT_D: 9;
hence thesis by
NAT_D: 8;
end;
registration
cluster
finite non
empty
natural-membered
with_non-empty_elements for
set;
existence
proof
take X =
{1};
thus X is
finite non
empty;
thus X is
natural-membered;
thus thesis;
end;
end
registration
let f be
sequence of
NAT ;
let A be
finite
natural-membered
with_non-empty_elements
set;
cluster (f
| A) ->
FinSubsequence-like;
coherence
proof
per cases ;
suppose A is non
empty;
then
reconsider A9 = A as non
empty
finite
natural-membered
with_non-empty_elements
set;
reconsider k = (
max A9) as
Element of
NAT by
ORDINAL1:def 12;
A1: (
dom (f
| A))
c= A by
RELAT_1: 58;
(
dom (f
| A))
c= (
Seg k)
proof
let x be
object;
assume
A2: x
in (
dom (f
| A));
then
reconsider x9 = x as
Nat by
A1;
reconsider x9 as
Element of
NAT by
ORDINAL1:def 12;
1
<= x9 & x9
<= k by
A1,
A2,
NAT_1: 14,
XXREAL_2:def 8;
hence thesis;
end;
hence thesis;
end;
suppose A is
empty;
hence thesis;
end;
end;
end
theorem ::
FIB_NUM2:13
for p be
FinSubsequence holds (
rng (
Seq p))
c= (
rng p) by
RELAT_1: 26;
definition
let f be
sequence of
NAT ;
let A be
finite
with_non-empty_elements
natural-membered
set;
::
FIB_NUM2:def1
func
Prefix (f,A) ->
FinSequence of
NAT equals (
Seq (f
| A));
coherence
proof
(
rng (
Seq (f
| A)))
c=
NAT by
RELAT_1:def 19;
hence thesis by
FINSEQ_1:def 4;
end;
end
theorem ::
FIB_NUM2:14
Th14: for k be
Element of
NAT st k
<>
0 holds (k
+ m)
<= n implies m
< n
proof
let k be
Element of
NAT ;
assume
A1: k
<>
0 ;
assume
A2: (k
+ m)
<= n;
per cases by
A2,
XXREAL_0: 1;
suppose (k
+ m)
< n;
hence thesis by
NAT_1: 12;
end;
suppose
A3: (k
+ m)
= n;
assume not m
< n;
then (m
+ k)
>= (n
+ k) by
XREAL_1: 7;
then (n
- n)
>= ((n
+ k)
- n) by
A3,
XREAL_1: 9;
hence contradiction by
A1;
end;
end;
registration
cluster
NAT ->
bounded_below;
coherence ;
end
theorem ::
FIB_NUM2:15
Th15: for x,y be
set st
0
< i & i
< j holds
{
[i, x],
[j, y]} is
FinSubsequence
proof
let x,y be
set;
assume that
A1:
0
< i and
A2: i
< j;
reconsider X =
{
[i, x],
[j, y]} as
Function by
A2,
GRFUNC_1: 8;
A3: (
0
+ 1)
<= i by
A1,
NAT_1: 13;
now
let x be
object;
assume x
in
{i, j};
then
A4: x
= i or x
= j by
TARSKI:def 2;
thus x
in (
Seg j) by
A2,
A3,
A4,
FINSEQ_1: 3;
end;
then (
dom X)
=
{i, j} &
{i, j}
c= (
Seg j) by
RELAT_1: 10;
hence thesis by
FINSEQ_1:def 12;
end;
theorem ::
FIB_NUM2:16
Th16: for x,y be
set, q be
FinSubsequence st i
< j & q
=
{
[i, x],
[j, y]} holds (
Seq q)
=
<*x, y*>
proof
let x,y be
set, q be
FinSubsequence;
assume that
A1: i
< j and
A2: q
=
{
[i, x],
[j, y]};
A3: q
= ((i,j)
--> (x,y)) by
A1,
A2,
FUNCT_4: 67;
[i, x]
in q by
A2,
TARSKI:def 2;
then
A4: i
in (
dom q) by
XTUPLE_0:def 12;
[j, y]
in q by
A2,
TARSKI:def 2;
then
A5: j
in (
dom q) by
XTUPLE_0:def 12;
A6: (
dom q)
=
{i, j} by
A2,
RELAT_1: 10;
ex k be
Nat st (
dom q)
c= (
Seg k) by
FINSEQ_1:def 12;
then i
>= (
0
+ 1) by
A4,
FINSEQ_1: 1;
then (
Seq q)
= (q
*
<*i, j*>) by
A1,
A6,
FINSEQ_3: 45
.=
<*(q
. i), (q
. j)*> by
A4,
A5,
FINSEQ_2: 125
.=
<*x, (q
. j)*> by
A1,
A3,
FUNCT_4: 63
.=
<*x, y*> by
A3,
FUNCT_4: 63;
hence thesis;
end;
registration
let n be
Nat;
cluster (
Seg n) ->
with_non-empty_elements;
coherence
proof
not
0
in (
Seg n) by
FINSEQ_1: 1;
hence thesis by
SETFAM_1:def 8;
end;
end
registration
let A be
with_non-empty_elements
set;
cluster ->
with_non-empty_elements for
Subset of A;
coherence
proof
let L be
Subset of A;
not
0
in L;
hence thesis by
SETFAM_1:def 8;
end;
end
registration
let A be
with_non-empty_elements
set;
let B be
set;
cluster (A
/\ B) ->
with_non-empty_elements;
coherence
proof
reconsider AB = (A
/\ B) as
Subset of A by
XBOOLE_1: 17;
AB is
with_non-empty_elements;
hence thesis;
end;
cluster (B
/\ A) ->
with_non-empty_elements;
coherence ;
end
theorem ::
FIB_NUM2:17
Th17: for k be
Element of
NAT , a be
set st k
>= 1 holds
{
[k, a]} is
FinSubsequence
proof
let k be
Element of
NAT , a be
set;
reconsider H =
{
[k, a]} as
Function;
A1: (
dom H)
=
{k} by
RELAT_1: 9;
assume
A2: k
>= 1;
(
dom H)
c= (
Seg k)
proof
let x be
object;
assume x
in (
dom H);
then x
= k by
A1,
TARSKI:def 1;
hence thesis by
A2;
end;
hence thesis by
FINSEQ_1:def 12;
end;
theorem ::
FIB_NUM2:18
Th18: for i be
Element of
NAT , y be
set, f be
FinSubsequence st f
=
{
[1, y]} holds (
Shift (f,i))
=
{
[(1
+ i), y]}
proof
let i be
Element of
NAT , y be
set, f be
FinSubsequence;
set g = (
Shift (f,i));
assume
A1: f
=
{
[1, y]};
then (
card f)
= 1 by
CARD_2: 42;
then (
card (
Shift (f,i)))
= 1 by
VALUED_1: 42;
then
A2: ex x be
object st (
Shift (f,i))
=
{x} by
CARD_2: 42;
A3: (
dom f)
=
{1} by
A1,
RELAT_1: 9;
(
dom g)
=
{(1
+ i)}
proof
hereby
let x be
object;
assume x
in (
dom g);
then x
in { (o
+ i) where o be
Nat : o
in (
dom f) } by
VALUED_1:def 12;
then
consider w be
Nat such that
A4: (w
+ i)
= x and
A5: w
in (
dom f);
w
= 1 by
A3,
A5,
TARSKI:def 1;
hence x
in
{(1
+ i)} by
A4,
TARSKI:def 1;
end;
let x be
object;
assume x
in
{(1
+ i)};
then
A6: x
= (1
+ i) by
TARSKI:def 1;
1
in (
dom f) by
A3,
TARSKI:def 1;
then x
in { (o
+ i) where o be
Nat : o
in (
dom f) } by
A6;
hence thesis by
VALUED_1:def 12;
end;
then
A7: (1
+ i)
in (
dom g) by
TARSKI:def 1;
1
in (
dom f) by
A3,
TARSKI:def 1;
then (g
. (1
+ i))
= (f
. 1) by
VALUED_1:def 12
.= y by
A1,
GRFUNC_1: 6;
then
[(1
+ i), y]
in g by
A7,
FUNCT_1:def 2;
hence thesis by
A2,
TARSKI:def 1;
end;
theorem ::
FIB_NUM2:19
Th19: for q be
FinSubsequence, k,n be
Element of
NAT st (
dom q)
c= (
Seg k) & n
> k holds ex p be
FinSequence st q
c= p & (
dom p)
= (
Seg n)
proof
let q be
FinSubsequence, k,n be
Element of
NAT ;
assume that
A1: (
dom q)
c= (
Seg k) and
A2: n
> k;
reconsider IK = (
id (
Seg n)) as
Function;
set IS = (IK
+* q);
A3: (
Seg k)
c= (
Seg n) by
A2,
FINSEQ_1: 5;
A4: (
dom IS)
= ((
dom IK)
\/ (
dom q)) by
FUNCT_4:def 1
.= ((
Seg n)
\/ (
dom q))
.= (
Seg n) by
A1,
A3,
XBOOLE_1: 1,
XBOOLE_1: 12;
then
reconsider IS as
FinSequence by
FINSEQ_1:def 2;
q
c= IS by
FUNCT_4: 25;
hence thesis by
A4;
end;
theorem ::
FIB_NUM2:20
Th20: for q be
FinSubsequence holds ex p be
FinSequence st q
c= p
proof
let q be
FinSubsequence;
consider k be
Nat such that
A1: (
dom q)
c= (
Seg k) by
FINSEQ_1:def 12;
reconsider IK = (
id (
Seg k)) as
Function;
set IS = (IK
+* q);
(
dom IS)
= ((
dom IK)
\/ (
dom q)) by
FUNCT_4:def 1
.= ((
Seg k)
\/ (
dom q))
.= (
Seg k) by
A1,
XBOOLE_1: 12;
then
reconsider IS as
FinSequence by
FINSEQ_1:def 2;
q
c= IS by
FUNCT_4: 25;
hence thesis;
end;
begin
scheme ::
FIB_NUM2:sch1
FibInd1 { P[
set] } :
for k be non
zero
Nat holds P[k]
provided
A1: P[1]
and
A2: P[2]
and
A3: for k be non
zero
Nat st P[k] & P[(k
+ 1)] holds P[(k
+ 2)];
let k be non
zero
Nat;
defpred
Q[
Nat] means P[$1] & P[($1
+ 1)];
A4: for k be non
zero
Nat st
Q[k] holds
Q[(k
+ 1)]
proof
let k be non
zero
Nat;
A5: (k
+ 2)
= ((k
+ 1)
+ 1);
assume
Q[k];
hence thesis by
A3,
A5;
end;
A6:
Q[1] by
A1,
A2;
for k be non
zero
Nat holds
Q[k] from
NAT_1:sch 10(
A6,
A4);
hence thesis;
end;
scheme ::
FIB_NUM2:sch2
FibInd2 { P[
set] } :
for k be non
trivial
Nat holds P[k]
provided
A1: P[2]
and
A2: P[3]
and
A3: for k be non
trivial
Nat st P[k] & P[(k
+ 1)] holds P[(k
+ 2)];
defpred
Q[
Nat] means P[($1
+ 1)] & P[($1
+ 2)];
A4: for k be non
zero
Nat st
Q[k] holds
Q[(k
+ 1)]
proof
let k be non
zero
Nat;
(k
+ 1)
<> (
0
+ 1);
then
A5: (k
+ 1) is non
trivial
Nat by
NAT_2:def 1;
assume
A6:
Q[k];
then P[((k
+ 1)
+ 1)];
hence thesis by
A3,
A5,
A6;
end;
let k be non
trivial
Nat;
k
<> 1 by
NAT_2:def 1;
then
A7: k
> 1 by
NAT_2: 19;
then (k
- 1)
> (1
- 1) by
XREAL_1: 9;
then
A8: (k
- 1)
>
0 ;
A9:
Q[1] by
A1,
A2;
A10: for k be non
zero
Nat holds
Q[k] from
NAT_1:sch 10(
A9,
A4);
((k
-' 1)
+ 1)
= k by
A7,
XREAL_1: 235;
hence thesis by
A10,
A8;
end;
theorem ::
FIB_NUM2:21
Th21: (
Fib 2)
= 1
proof
(
Fib 2)
= (
Fib ((
0
+ 1)
+ 1))
.= 1 by
PRE_FF: 1;
hence thesis;
end;
theorem ::
FIB_NUM2:22
Th22: (
Fib 3)
= 2
proof
(
Fib 3)
= (
Fib ((1
+ 1)
+ 1))
.= 2 by
Th21,
PRE_FF: 1;
hence thesis;
end;
theorem ::
FIB_NUM2:23
Th23: (
Fib 4)
= 3
proof
(
Fib 4)
= (
Fib ((2
+ 1)
+ 1))
.= 3 by
Th21,
Th22,
PRE_FF: 1;
hence thesis;
end;
theorem ::
FIB_NUM2:24
Th24: for n be
Nat holds (
Fib (n
+ 2))
= ((
Fib n)
+ (
Fib (n
+ 1)))
proof
defpred
P[
Nat] means (
Fib ($1
+ 2))
= ((
Fib $1)
+ (
Fib ($1
+ 1)));
let n be
Nat;
A1: for k be
Nat st
P[k] &
P[(k
+ 1)] holds
P[(k
+ 2)]
proof
let k be
Nat;
assume
P[k];
assume
P[(k
+ 1)];
(
Fib ((k
+ 2)
+ 2))
= (
Fib (((k
+ 2)
+ 1)
+ 1))
.= ((
Fib (k
+ 2))
+ (
Fib ((k
+ 2)
+ 1))) by
PRE_FF: 1;
hence thesis;
end;
(
Fib (
0
+ 2))
= (
Fib ((
0
+ 1)
+ 1))
.= ((
Fib
0 )
+ (
Fib 1)) by
PRE_FF: 1;
then
A2:
P[
0 ];
A3:
P[1] by
PRE_FF: 1;
for n be
Nat holds
P[n] from
FIB_NUM:sch 1(
A2,
A3,
A1);
hence thesis;
end;
theorem ::
FIB_NUM2:25
Th25: for n be
Nat holds (
Fib (n
+ 3))
= ((
Fib (n
+ 2))
+ (
Fib (n
+ 1)))
proof
let n be
Nat;
(
Fib (n
+ 3))
= (
Fib ((n
+ 1)
+ 2))
.= ((
Fib ((n
+ 1)
+ 1))
+ (
Fib (n
+ 1))) by
Th24
.= ((
Fib (n
+ 2))
+ (
Fib (n
+ 1)));
hence thesis;
end;
theorem ::
FIB_NUM2:26
Th26: (
Fib (n
+ 4))
= ((
Fib (n
+ 2))
+ (
Fib (n
+ 3)))
proof
(
Fib (n
+ 4))
= (
Fib (((n
+ 2)
+ 1)
+ 1))
.= ((
Fib (n
+ 2))
+ (
Fib ((n
+ 2)
+ 1))) by
PRE_FF: 1;
hence thesis;
end;
theorem ::
FIB_NUM2:27
Th27: (
Fib (n
+ 5))
= ((
Fib (n
+ 3))
+ (
Fib (n
+ 4)))
proof
(
Fib (n
+ 5))
= (
Fib (((n
+ 3)
+ 1)
+ 1))
.= ((
Fib (n
+ 3))
+ (
Fib ((n
+ 3)
+ 1))) by
PRE_FF: 1;
hence thesis;
end;
Lm1: for k be
Nat holds (
Fib ((2
* (k
+ 2))
+ 1))
= ((
Fib ((2
* k)
+ 3))
+ (
Fib ((2
* k)
+ 4)))
proof
let k be
Nat;
(
Fib ((2
* (k
+ 2))
+ 1))
= ((
Fib (((2
* k)
+ 2)
+ 1))
+ (
Fib ((((2
* k)
+ 2)
+ 1)
+ 1))) by
PRE_FF: 1
.= ((
Fib ((2
* k)
+ 3))
+ (
Fib ((2
* k)
+ 4)));
hence thesis;
end;
theorem ::
FIB_NUM2:28
Th28: (
Fib (n
+ 2))
= ((
Fib (n
+ 3))
- (
Fib (n
+ 1)))
proof
(
Fib (n
+ 3))
= (
Fib (((n
+ 1)
+ 1)
+ 1))
.= ((
Fib (n
+ 1))
+ (
Fib (n
+ 2))) by
PRE_FF: 1;
hence thesis;
end;
theorem ::
FIB_NUM2:29
Th29: for n be
Nat holds (
Fib (n
+ 1))
= ((
Fib (n
+ 2))
- (
Fib n))
proof
let n be
Nat;
((
Fib (n
+ 2))
- (
Fib n))
= ((
Fib ((n
+ 1)
+ 1))
- (
Fib n))
.= (((
Fib n)
+ (
Fib (n
+ 1)))
- (
Fib n)) by
PRE_FF: 1
.= (
Fib (n
+ 1));
hence thesis;
end;
theorem ::
FIB_NUM2:30
Th30: (
Fib n)
= ((
Fib (n
+ 2))
- (
Fib (n
+ 1)))
proof
((
Fib (n
+ 2))
- (
Fib (n
+ 1)))
= (((
Fib n)
+ (
Fib (n
+ 1)))
- (
Fib (n
+ 1))) by
Th24
.= (
Fib n);
hence thesis;
end;
begin
theorem ::
FIB_NUM2:31
Th31: (((
Fib n)
* (
Fib (n
+ 2)))
- ((
Fib (n
+ 1))
^2 ))
= ((
- 1)
|^ (n
+ 1))
proof
defpred
P[
Nat] means (((
Fib $1)
* (
Fib ($1
+ 2)))
- ((
Fib ($1
+ 1))
^2 ))
= ((
- 1)
|^ ($1
+ 1));
A1: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
A2: ((
Fib (k
+ 2))
- (
Fib (k
+ 1)))
= (((
Fib (k
+ 1))
+ (
Fib k))
- (
Fib (k
+ 1))) by
Th24
.= (
Fib k);
A3: ((
Fib (k
+ 3))
- (
Fib (k
+ 1)))
= (((
Fib (k
+ 2))
+ (
Fib (k
+ 1)))
- (
Fib (k
+ 1))) by
Th25
.= (
Fib (k
+ 2));
assume
P[k];
then ((
- 1)
|^ ((k
+ 1)
+ 1))
= ((
- 1)
* (((
Fib k)
* (
Fib (k
+ 2)))
- ((
Fib (k
+ 1))
^2 ))) by
NEWTON: 6
.= (((
Fib (k
+ 1))
* (
Fib ((k
+ 1)
+ 2)))
- ((
Fib ((k
+ 1)
+ 1))
^2 )) by
A2,
A3;
hence thesis;
end;
A4:
P[
0 ] by
PRE_FF: 1;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A4,
A1);
hence thesis;
end;
theorem ::
FIB_NUM2:32
for n be non
zero
Element of
NAT holds (((
Fib (n
-' 1))
* (
Fib (n
+ 1)))
- ((
Fib n)
^2 ))
= ((
- 1)
|^ n)
proof
let n be non
zero
Element of
NAT ;
set a = (n
-' 1);
A1: n
>= 1 by
NAT_2: 19;
then n
= (a
+ 1) by
XREAL_1: 235;
then (((
Fib (n
-' 1))
* (
Fib (n
+ 1)))
- ((
Fib n)
^2 ))
= (((
Fib a)
* (
Fib (a
+ 2)))
- ((
Fib (a
+ 1))
^2 ))
.= ((
- 1)
|^ ((n
-' 1)
+ 1)) by
Th31
.= ((
- 1)
|^ n) by
A1,
XREAL_1: 235;
hence thesis;
end;
theorem ::
FIB_NUM2:33
Th33:
tau
>
0
proof
(
sqrt 5)
>
0 by
SQUARE_1: 25;
hence thesis by
FIB_NUM:def 1;
end;
theorem ::
FIB_NUM2:34
Th34:
tau_bar
= ((
-
tau )
to_power (
- 1))
proof
A1: (1
- (
sqrt 5))
<>
0 by
SQUARE_1: 20,
SQUARE_1: 27;
((
-
tau )
to_power (
- 1))
= ((((
- 1)
- (
sqrt 5))
/ 2)
#Z (
- 1)) by
FIB_NUM:def 1,
POWER:def 2
.= (1
/ ((((
- 1)
- (
sqrt 5))
/ 2)
#Z 1)) by
PREPOWER: 41
.= (1
/ (((
- 1)
- (
sqrt 5))
/ 2)) by
PREPOWER: 35
.= (2
/ (
- (1
+ (
sqrt 5)))) by
XCMPLX_1: 57
.= (
- (2
/ (1
+ (
sqrt 5)))) by
XCMPLX_1: 188
.= ((
- 2)
/ (1
+ (
sqrt 5))) by
XCMPLX_1: 187
.= (((
- 2)
* (1
- (
sqrt 5)))
/ ((1
+ (
sqrt 5))
* (1
- (
sqrt 5)))) by
A1,
XCMPLX_1: 91
.= (((
- 2)
* (1
- (
sqrt 5)))
/ ((1
^2 )
- ((
sqrt 5)
^2 )))
.= (((
- 2)
* (1
- (
sqrt 5)))
/ (1
- 5)) by
SQUARE_1:def 2
.=
tau_bar by
FIB_NUM:def 2;
hence thesis;
end;
theorem ::
FIB_NUM2:35
Th35: ((
-
tau )
to_power ((
- 1)
* n))
= (((
-
tau )
to_power (
- 1))
to_power n)
proof
((
-
tau )
to_power ((
- 1)
* n))
= ((
-
tau )
#Z ((
- 1)
* n)) by
POWER:def 2
.= (((
-
tau )
#Z (
- 1))
#Z n) by
PREPOWER: 45
.= ((1
/ ((
-
tau )
#Z 1))
#Z n) by
PREPOWER: 41
.= ((1
/ (
-
tau ))
#Z n) by
PREPOWER: 35
.= ((1
/ (
-
tau ))
to_power n) by
POWER:def 2
.= (((1
/ (
-
tau ))
to_power 1)
to_power n) by
POWER: 25
.= (((1
/ (
-
tau ))
#Z 1)
to_power n) by
POWER:def 2
.= ((1
/ ((
-
tau )
#Z 1))
to_power n) by
PREPOWER: 42
.= (((
-
tau )
#Z (
- 1))
to_power n) by
PREPOWER: 41;
hence thesis by
POWER:def 2;
end;
theorem ::
FIB_NUM2:36
Th36: (
- (1
/
tau ))
=
tau_bar
proof
A1: (1
- (
sqrt 5))
<>
0 by
SQUARE_1: 20,
SQUARE_1: 27;
(
- (1
/
tau ))
= (
- (1
* (2
/ (1
+ (
sqrt 5))))) by
FIB_NUM:def 1,
XCMPLX_1: 57
.= (
- (1
* ((2
* (1
- (
sqrt 5)))
/ ((1
+ (
sqrt 5))
* (1
- (
sqrt 5)))))) by
A1,
XCMPLX_1: 91
.= (
- (1
* ((2
* (1
- (
sqrt 5)))
/ (1
- ((
sqrt 5)
^2 )))))
.= (
- (1
* ((2
* (1
- (
sqrt 5)))
/ (1
- 5)))) by
SQUARE_1:def 2
.= ((1
- (
sqrt 5))
/ 2);
hence thesis by
FIB_NUM:def 2;
end;
theorem ::
FIB_NUM2:37
Th37: ((((
tau
to_power r)
^2 )
- (2
* ((
- 1)
to_power r)))
+ ((
tau
to_power (
- r))
^2 ))
= (((
tau
to_power r)
- (
tau_bar
to_power r))
^2 )
proof
((
- 1)
/
tau )
<
0 by
Th33;
then (
- (1
/
tau ))
<
0 by
XCMPLX_1: 187;
then
A1: (1
/
tau )
> (
-
0 qua
Nat);
(((
tau
to_power r)
- (
tau_bar
to_power r))
^2 )
= ((((
tau
to_power r)
^2 )
- ((2
* (
tau
to_power r))
* ((
- (1
/
tau ))
to_power r)))
+ (((
- (1
/
tau ))
to_power r)
^2 )) by
Th36
.= ((((
tau
to_power r)
^2 )
- ((2
* (
tau
to_power r))
* (((
- 1)
* (1
/
tau ))
#Z r)))
+ (((
- (1
/
tau ))
to_power r)
^2 )) by
POWER:def 2
.= ((((
tau
to_power r)
^2 )
- ((2
* (
tau
to_power r))
* (((
- 1)
#Z r)
* ((1
/
tau )
#Z r))))
+ (((
- (1
/
tau ))
to_power r)
^2 )) by
PREPOWER: 40
.= ((((
tau
to_power r)
^2 )
- ((2
* (
tau
to_power r))
* (((1
/
tau )
|^ r)
* ((
- 1)
#Z r))))
+ (((
- (1
/
tau ))
to_power r)
^2 )) by
PREPOWER: 36
.= ((((
tau
to_power r)
^2 )
- ((2
* (
tau
|^ r))
* (((1
/
tau )
|^ r)
* ((
- 1)
#Z r))))
+ (((
- (1
/
tau ))
to_power r)
^2 )) by
POWER: 41
.= ((((
tau
to_power r)
^2 )
- ((2
* ((
tau
|^ r)
* ((1
/
tau )
|^ r)))
* ((
- 1)
#Z r)))
+ (((
- (1
/
tau ))
to_power r)
^2 ))
.= ((((
tau
to_power r)
^2 )
- ((2
* ((
tau
* (1
/
tau ))
|^ r))
* ((
- 1)
#Z r)))
+ (((
- (1
/
tau ))
to_power r)
^2 )) by
NEWTON: 7
.= ((((
tau
to_power r)
^2 )
- ((2
* (1
|^ r))
* ((
- 1)
#Z r)))
+ (((
- (1
/
tau ))
to_power r)
^2 )) by
Th33,
XCMPLX_1: 106
.= ((((
tau
to_power r)
^2 )
- ((2
* 1)
* ((
- 1)
#Z r)))
+ (((
- (1
/
tau ))
to_power r)
^2 ))
.= ((((
tau
to_power r)
^2 )
- (2
* ((
- 1)
to_power r)))
+ (((
- (1
/
tau ))
to_power r)
^2 )) by
POWER:def 2
.= ((((
tau
to_power r)
^2 )
- (2
* ((
- 1)
to_power r)))
+ (((
- (1
/
tau ))
#Z r)
^2 )) by
POWER:def 2
.= ((((
tau
to_power r)
^2 )
- (2
* ((
- 1)
to_power r)))
+ (((
- (1
/
tau ))
* (
- (1
/
tau )))
#Z r)) by
PREPOWER: 40
.= ((((
tau
to_power r)
^2 )
- (2
* ((
- 1)
to_power r)))
+ (((
- (1
/
tau ))
^2 )
|^ r)) by
PREPOWER: 36
.= ((((
tau
to_power r)
^2 )
- (2
* ((
- 1)
to_power r)))
+ (((1
/
tau )
^2 )
to_power r)) by
POWER: 41
.= ((((
tau
to_power r)
^2 )
- (2
* ((
- 1)
to_power r)))
+ (((1
/
tau )
to_power r)
^2 )) by
A1,
POWER: 30
.= ((((
tau
to_power r)
^2 )
- (2
* ((
- 1)
to_power r)))
+ ((
tau
to_power (
- r))
^2 )) by
Th33,
POWER: 32;
hence thesis;
end;
theorem ::
FIB_NUM2:38
for n,r be non
zero
Element of
NAT st r
<= n holds (((
Fib n)
^2 )
- ((
Fib (n
+ r))
* (
Fib (n
-' r))))
= (((
- 1)
|^ (n
-' r))
* ((
Fib r)
^2 ))
proof
set T =
tau ;
set S = (1
/ (
sqrt 5));
reconsider T as non
zero
Real by
Th33;
let n,r be non
zero
Element of
NAT such that
A1: r
<= n;
set Y = (n
-' r);
set X = (n
+ r);
A2: (X
+ Y)
= ((r
+ n)
+ (n
- r)) by
A1,
XREAL_1: 233
.= (((r
+ n)
+ n)
- r)
.= ((r
+ (2
* n))
-' r) by
NAT_1: 12,
XREAL_1: 233
.= ((r
-' r)
+ (2
* n)) by
NAT_D: 38
.= (
0
+ (2
* n)) by
XREAL_1: 232
.= (2
* n);
A3: (X
- Y)
= ((n
+ r)
- (n
- r)) by
A1,
XREAL_1: 233
.= (2
* r);
set tyu = (T
to_power (
- Y));
set txu = (T
to_power (
- X));
set tnu = (T
to_power (
- n));
set ty = (T
to_power Y);
set tx = (T
to_power X);
set tn = (T
to_power n);
A4: (
- T)
<>
0 & (
- 1)
= ((2
* (
- 1))
+ 1);
(((
Fib n)
^2 )
- ((
Fib X)
* (
Fib Y)))
= ((((tn
- (
tau_bar
to_power n))
/ (
sqrt 5))
^2 )
- ((
Fib X)
* (
Fib Y))) by
FIB_NUM: 7
.= ((((tn
- (
tau_bar
to_power n))
/ (
sqrt 5))
^2 )
- (((tx
- (
tau_bar
to_power X))
/ (
sqrt 5))
* (
Fib Y))) by
FIB_NUM: 7
.= ((((tn
- (
tau_bar
to_power n))
/ (
sqrt 5))
^2 )
- (((tx
- (
tau_bar
to_power X))
/ (
sqrt 5))
* ((ty
- (
tau_bar
to_power Y))
/ (
sqrt 5)))) by
FIB_NUM: 7
.= ((((tn
- (
tau_bar
to_power n))
* S)
^2 )
- (((tx
- (
tau_bar
to_power X))
/ (
sqrt 5))
* ((ty
- (
tau_bar
to_power Y))
/ (
sqrt 5)))) by
XCMPLX_1: 99
.= ((((tn
- (
tau_bar
to_power n))
* S)
^2 )
- (((tx
- (
tau_bar
to_power X))
* S)
* ((ty
- (
tau_bar
to_power Y))
/ (
sqrt 5)))) by
XCMPLX_1: 99
.= ((((tn
- (
tau_bar
to_power n))
* S)
^2 )
- (((tx
- (
tau_bar
to_power X))
* S)
* ((ty
- (
tau_bar
to_power Y))
* S))) by
XCMPLX_1: 99
.= ((S
^2 )
* ((((tn
^2 )
- ((2
* tn)
* (((
- T)
to_power (
- 1))
to_power n)))
+ ((((
- T)
to_power (
- 1))
to_power n)
^2 ))
- ((tx
- (((
- T)
to_power (
- 1))
to_power X))
* (ty
- (((
- T)
to_power (
- 1))
to_power Y))))) by
Th34
.= ((S
^2 )
* ((((tn
^2 )
- ((2
* tn)
* ((
- T)
to_power ((
- 1)
* n))))
+ ((((
- T)
to_power (
- 1))
to_power n)
^2 ))
- ((tx
- (((
- T)
to_power (
- 1))
to_power X))
* (ty
- (((
- T)
to_power (
- 1))
to_power Y))))) by
A4,
Th6
.= ((S
^2 )
* ((((tn
^2 )
- ((2
* tn)
* ((
- T)
to_power (
- n))))
+ (((
- T)
to_power ((
- 1)
* n))
^2 ))
- ((tx
- (((
- T)
to_power (
- 1))
to_power X))
* (ty
- (((
- T)
to_power (
- 1))
to_power Y))))) by
A4,
Th6
.= ((S
^2 )
* ((((tn
^2 )
- ((2
* tn)
* ((
- T)
to_power (
- n))))
+ (((
- T)
to_power (
- n))
^2 ))
- ((tx
- ((
- T)
to_power ((
- 1)
* X)))
* (ty
- (((
- T)
to_power (
- 1))
to_power Y))))) by
Th35
.= ((S
^2 )
* ((((tn
^2 )
- ((2
* tn)
* ((
- T)
to_power (
- n))))
+ (((
- T)
to_power (
- n))
^2 ))
- ((tx
- ((
- T)
to_power (
- X)))
* (ty
- ((
- T)
to_power ((
- 1)
* Y)))))) by
Th35
.= ((S
^2 )
* (((((((tn
^2 )
- ((2
* tn)
* (((
- 1)
* T)
to_power (
- n))))
+ ((((
- 1)
* T)
to_power (
- n))
^2 ))
- (tx
* ty))
+ (tx
* (((
- 1)
* T)
to_power (
- Y))))
+ ((((
- 1)
* T)
to_power (
- X))
* ty))
- ((((
- 1)
* T)
to_power (
- X))
* (((
- 1)
* T)
to_power (
- Y)))))
.= ((S
^2 )
* (((((((tn
^2 )
- ((2
* tn)
* (((
- 1)
* T)
to_power (
- n))))
+ ((((
- 1)
* T)
to_power (
- n))
^2 ))
- (tx
* ty))
+ (tx
* (((
- 1)
* T)
to_power (
- Y))))
+ ((((
- 1)
* T)
to_power (
- X))
* ty))
- ((((
- 1)
* T)
to_power (
- X))
* (((
- 1)
to_power (
- Y))
* tyu)))) by
Th4
.= ((S
^2 )
* (((((((tn
^2 )
- ((2
* tn)
* (((
- 1)
to_power (
- n))
* tnu)))
+ ((((
- 1)
* T)
to_power (
- n))
^2 ))
- (tx
* ty))
+ (tx
* (((
- 1)
* T)
to_power (
- Y))))
+ ((((
- 1)
* T)
to_power (
- X))
* ty))
- ((((
- 1)
* T)
to_power (
- X))
* (((
- 1)
to_power (
- Y))
* tyu)))) by
Th4
.= ((S
^2 )
* (((((((tn
^2 )
- ((2
* tn)
* (((
- 1)
to_power (
- n))
* tnu)))
+ ((((
- 1)
to_power (
- n))
* tnu)
^2 ))
- (tx
* ty))
+ (tx
* (((
- 1)
* T)
to_power (
- Y))))
+ ((((
- 1)
* T)
to_power (
- X))
* ty))
- ((((
- 1)
* T)
to_power (
- X))
* (((
- 1)
to_power (
- Y))
* tyu)))) by
Th4
.= ((S
^2 )
* (((((((tn
^2 )
- ((2
* tn)
* (((
- 1)
to_power (
- n))
* tnu)))
+ ((((
- 1)
to_power (
- n))
* tnu)
^2 ))
- (tx
* ty))
+ (tx
* (((
- 1)
to_power (
- Y))
* tyu)))
+ ((((
- 1)
* T)
to_power (
- X))
* ty))
- ((((
- 1)
* T)
to_power (
- X))
* (((
- 1)
to_power (
- Y))
* tyu)))) by
Th4
.= ((S
^2 )
* (((((((tn
^2 )
- ((2
* tn)
* (((
- 1)
to_power (
- n))
* tnu)))
+ ((((
- 1)
to_power (
- n))
* tnu)
^2 ))
- (tx
* ty))
+ (tx
* (((
- 1)
to_power (
- Y))
* tyu)))
+ ((((
- 1)
to_power (
- X))
* txu)
* ty))
- ((((
- 1)
* T)
to_power (
- X))
* (((
- 1)
to_power (
- Y))
* tyu)))) by
Th4
.= ((S
^2 )
* (((((((tn
^2 )
- ((2
* tn)
* (((
- 1)
to_power (
- n))
* tnu)))
+ ((((
- 1)
to_power (
- n))
* tnu)
^2 ))
- (tx
* ty))
+ (tx
* (((
- 1)
to_power (
- Y))
* tyu)))
+ ((((
- 1)
to_power (
- X))
* txu)
* ty))
- ((((
- 1)
to_power (
- X))
* txu)
* (((
- 1)
to_power (
- Y))
* tyu)))) by
Th4
.= ((S
^2 )
* (((((((tn
^2 )
- ((2
* (tn
* tnu))
* ((
- 1)
to_power (
- n))))
+ ((((
- 1)
to_power (
- n))
^2 )
* (tnu
^2 )))
- (tx
* ty))
+ ((tx
* ((
- 1)
to_power (
- Y)))
* tyu))
+ ((((
- 1)
to_power (
- X))
* txu)
* ty))
- (((((
- 1)
to_power (
- X))
* txu)
* ((
- 1)
to_power (
- Y)))
* tyu)))
.= ((S
^2 )
* (((((((tn
^2 )
- ((2
* 1)
* ((
- 1)
to_power (
- n))))
+ ((((
- 1)
to_power (
- n))
^2 )
* (tnu
^2 )))
- (tx
* ty))
+ ((tx
* ((
- 1)
to_power (
- Y)))
* tyu))
+ ((((
- 1)
to_power (
- X))
* txu)
* ty))
- (((((
- 1)
to_power (
- X))
* txu)
* ((
- 1)
to_power (
- Y)))
* tyu))) by
Th10
.= ((S
^2 )
* (((((((tn
^2 )
- (2
* ((
- 1)
to_power (
- n))))
+ (1
* (tnu
^2 )))
- (tx
* ty))
+ ((tx
* tyu)
* ((
- 1)
to_power (
- Y))))
+ ((((
- 1)
to_power (
- X))
* txu)
* ty))
- (((((
- 1)
to_power (
- X))
* ((
- 1)
to_power (
- Y)))
* txu)
* tyu))) by
Th7
.= ((S
^2 )
* (((((((tn
^2 )
- (2
* ((
- 1)
to_power (
- n))))
+ (tnu
^2 ))
- (tx
* ty))
+ ((tx
* (1
/ ty))
* ((
- 1)
to_power (
- Y))))
+ ((((
- 1)
to_power (
- X))
* txu)
* ty))
- (((((
- 1)
to_power (
- X))
* ((
- 1)
to_power (
- Y)))
* txu)
* tyu))) by
Th33,
POWER: 28
.= ((S
^2 )
* (((((((tn
^2 )
- (2
* ((
- 1)
to_power (
- n))))
+ (tnu
^2 ))
- (tx
* ty))
+ ((tx
/ ty)
* ((
- 1)
to_power (
- Y))))
+ ((((
- 1)
to_power (
- X))
* txu)
* ty))
- (((((
- 1)
to_power (
- X))
* ((
- 1)
to_power (
- Y)))
* txu)
* tyu))) by
XCMPLX_1: 99
.= ((S
^2 )
* (((((((tn
^2 )
- (2
* ((
- 1)
to_power (
- n))))
+ (tnu
^2 ))
- (tx
* ty))
+ ((T
to_power (X
- Y))
* ((
- 1)
to_power (
- Y))))
+ ((((
- 1)
to_power (
- X))
* txu)
* ty))
- (((((
- 1)
to_power (
- X))
* ((
- 1)
to_power (
- Y)))
* txu)
* tyu))) by
Th33,
POWER: 29
.= ((S
^2 )
* (((((((tn
^2 )
- (2
* ((
- 1)
to_power (
- n))))
+ (tnu
^2 ))
- (T
to_power (X
+ Y)))
+ ((T
to_power (X
- Y))
* ((
- 1)
to_power (
- Y))))
+ (((
- 1)
to_power (
- X))
* (ty
* txu)))
- ((((
- 1)
to_power (
- X))
* ((
- 1)
to_power (
- Y)))
* (txu
* tyu)))) by
Th33,
POWER: 27
.= ((S
^2 )
* (((((((tn
^2 )
- (2
* ((
- 1)
to_power (
- n))))
+ (tnu
^2 ))
- (T
to_power (X
+ Y)))
+ ((T
to_power (X
- Y))
* ((
- 1)
to_power (
- Y))))
+ (((
- 1)
to_power (
- X))
* (ty
* (1
/ tx))))
- ((((
- 1)
to_power (
- X))
* ((
- 1)
to_power (
- Y)))
* (txu
* tyu)))) by
Th33,
POWER: 28
.= ((S
^2 )
* (((((((tn
^2 )
- (2
* ((
- 1)
to_power (
- n))))
+ (tnu
^2 ))
- (T
to_power (X
+ Y)))
+ ((T
to_power (X
- Y))
* ((
- 1)
to_power (
- Y))))
+ (((
- 1)
to_power (
- X))
* (ty
/ tx)))
- ((((
- 1)
to_power (
- X))
* ((
- 1)
to_power (
- Y)))
* (txu
* tyu)))) by
XCMPLX_1: 99
.= ((S
^2 )
* (((((((tn
^2 )
- (2
* ((
- 1)
to_power (
- n))))
+ (tnu
^2 ))
- (T
to_power (X
+ Y)))
+ ((T
to_power (X
- Y))
* ((
- 1)
to_power (
- Y))))
+ (((
- 1)
to_power (
- X))
* (T
to_power (Y
- X))))
- ((((
- 1)
to_power (
- X))
* ((
- 1)
to_power (
- Y)))
* (txu
* tyu)))) by
Th33,
POWER: 29
.= ((S
^2 )
* (((((((tn
^2 )
- (2
* ((
- 1)
to_power (
- n))))
+ (tnu
^2 ))
- (T
to_power (X
+ Y)))
+ ((T
to_power (X
- Y))
* ((
- 1)
to_power (
- Y))))
+ (((
- 1)
to_power (
- X))
* (T
to_power (Y
- X))))
- (((
- 1)
to_power ((
- X)
- Y))
* (txu
* tyu)))) by
Th8
.= ((S
^2 )
* (((((((tn
^2 )
- (2
* ((
- 1)
to_power (
- n))))
+ (tnu
^2 ))
- (T
to_power (2
* n)))
+ ((T
to_power (2
* r))
* ((
- 1)
to_power (
- Y))))
+ (((
- 1)
to_power (
- X))
* (T
to_power (
- (2
* r)))))
- (((
- 1)
to_power (
- (2
* n)))
* (T
to_power (
- (2
* n)))))) by
A2,
Th8
.= ((S
^2 )
* (((((((tn
^2 )
- (2
* ((
- 1)
to_power (
- n))))
+ (tnu
^2 ))
- (T
to_power (2
* n)))
+ ((T
to_power (2
* r))
* ((
- 1)
to_power (
- Y))))
+ (((
- 1)
to_power (
- X))
* (T
to_power (
- (2
* r)))))
- (1
* (T
to_power (
- (2
* n)))))) by
Th9
.= ((S
^2 )
* (((((((tn
to_power 2)
- (2
* ((
- 1)
to_power (
- n))))
+ (tnu
^2 ))
- (T
to_power (2
* n)))
+ ((T
to_power (2
* r))
* ((
- 1)
to_power (
- Y))))
+ (((
- 1)
to_power (
- X))
* (T
to_power (
- (2
* r)))))
- (1
* (T
to_power (
- (2
* n)))))) by
POWER: 46
.= ((S
^2 )
* (((((((T
to_power (2
* n))
- (2
* ((
- 1)
to_power (
- n))))
+ (tnu
^2 ))
- (T
to_power (2
* n)))
+ ((T
to_power (2
* r))
* ((
- 1)
to_power (
- Y))))
+ (((
- 1)
to_power (
- X))
* (T
to_power (
- (2
* r)))))
- (T
to_power (
- (2
* n))))) by
Th33,
POWER: 33
.= ((S
^2 )
* (((((((T
to_power (2
* n))
- (2
* ((
- 1)
to_power n)))
+ (tnu
^2 ))
- (T
to_power (2
* n)))
+ ((T
to_power (2
* r))
* ((
- 1)
to_power (
- Y))))
+ (((
- 1)
to_power (
- X))
* (T
to_power (
- (2
* r)))))
- (T
to_power (
- (2
* n))))) by
Th11
.= ((S
^2 )
* (((((((T
to_power (2
* n))
- (T
to_power (2
* n)))
- (2
* ((
- 1)
to_power n)))
+ (tnu
^2 ))
+ ((T
to_power (2
* r))
* ((
- 1)
to_power Y)))
+ (((
- 1)
to_power (
- X))
* (T
to_power (
- (2
* r)))))
- (T
to_power (
- (2
* n))))) by
Th11
.= ((S
^2 )
* (((((
- (2
* ((
- 1)
to_power n)))
+ (tnu
^2 ))
+ ((T
to_power (2
* r))
* ((
- 1)
to_power Y)))
+ (((
- 1)
to_power X)
* (T
to_power (
- (2
* r)))))
- (T
to_power (2
* (
- n))))) by
Th11
.= ((S
^2 )
* (((((
- (2
* ((
- 1)
to_power n)))
+ (tnu
^2 ))
+ ((T
to_power (2
* r))
* ((
- 1)
to_power Y)))
+ (((
- 1)
to_power X)
* (T
to_power (
- (2
* r)))))
- ((T
to_power (
- n))
to_power 2))) by
Th33,
POWER: 33
.= ((S
^2 )
* (((((
- (2
* ((
- 1)
to_power n)))
+ ((T
to_power (2
* r))
* ((
- 1)
to_power Y)))
+ (((
- 1)
to_power X)
* (T
to_power (
- (2
* r)))))
+ (tnu
^2 ))
- (tnu
^2 ))) by
POWER: 46
.= ((S
^2 )
* (((
- (2
* ((
- 1)
to_power ((n
-' r)
+ r))))
+ (((
- 1)
to_power Y)
* (T
to_power (2
* r))))
+ (((
- 1)
to_power ((2
* r)
+ Y))
* (T
to_power (
- (2
* r)))))) by
A3
.= ((S
^2 )
* (((
- (2
* (((
- 1)
to_power r)
* ((
- 1)
to_power (n
-' r)))))
+ (((
- 1)
to_power Y)
* (T
to_power (2
* r))))
+ (((
- 1)
to_power ((2
* r)
+ Y))
* (T
to_power (
- (2
* r)))))) by
Th5
.= ((S
^2 )
* (((
- (2
* (((
- 1)
to_power r)
* ((
- 1)
to_power (n
-' r)))))
+ (((
- 1)
to_power (n
-' r))
* (T
to_power (2
* r))))
+ ((((
- 1)
to_power (2
* r))
* ((
- 1)
to_power (n
-' r)))
* (T
to_power (
- (2
* r)))))) by
Th5
.= (((S
^2 )
* (((
- (2
* ((
- 1)
to_power r)))
+ (T
to_power (2
* r)))
+ ((T
to_power (
- (2
* r)))
* ((
- 1)
to_power (2
* r)))))
* ((
- 1)
to_power (n
-' r)))
.= (((S
^2 )
* (((
- (2
* ((
- 1)
to_power r)))
+ (T
to_power (2
* r)))
+ ((T
to_power (
- (2
* r)))
* 1)))
* ((
- 1)
to_power (n
-' r))) by
Th3
.= (((S
^2 )
* (((T
to_power (2
* r))
- (2
* ((
- 1)
to_power r)))
+ (T
to_power (2
* (
- r)))))
* ((
- 1)
to_power (n
-' r)))
.= (((S
^2 )
* ((((T
to_power r)
to_power 2)
- (2
* ((
- 1)
to_power r)))
+ (T
to_power ((
- r)
* 2))))
* ((
- 1)
to_power (n
-' r))) by
Th33,
POWER: 33
.= (((S
^2 )
* ((((T
to_power r)
^2 )
- (2
* ((
- 1)
to_power r)))
+ (T
to_power ((
- r)
* 2))))
* ((
- 1)
to_power (n
-' r))) by
POWER: 46
.= (((
- 1)
to_power (n
-' r))
* ((S
^2 )
* ((((T
to_power r)
^2 )
- (2
* ((
- 1)
to_power r)))
+ ((T
to_power (
- r))
to_power 2)))) by
Th33,
POWER: 33
.= (((
- 1)
to_power (n
-' r))
* ((S
^2 )
* ((((T
to_power r)
^2 )
- (2
* ((
- 1)
to_power r)))
+ ((T
to_power (
- r))
^2 )))) by
POWER: 46
.= (((
- 1)
to_power (n
-' r))
* ((S
^2 )
* (((
tau
to_power r)
- (
tau_bar
to_power r))
^2 ))) by
Th37
.= (((
- 1)
to_power (n
-' r))
* ((((
tau
to_power r)
- (
tau_bar
to_power r))
* S)
^2 ))
.= (((
- 1)
to_power (n
-' r))
* ((((
tau
to_power r)
- (
tau_bar
to_power r))
/ (
sqrt 5))
^2 )) by
XCMPLX_1: 99
.= (((
- 1)
|^ (n
-' r))
* ((((T
to_power r)
- (
tau_bar
to_power r))
/ (
sqrt 5))
^2 )) by
POWER: 41
.= (((
- 1)
|^ (n
-' r))
* ((
Fib r)
^2 )) by
FIB_NUM: 7;
hence thesis;
end;
theorem ::
FIB_NUM2:39
(((
Fib n)
^2 )
+ ((
Fib (n
+ 1))
^2 ))
= (
Fib ((2
* n)
+ 1))
proof
defpred
P[
Nat] means (((
Fib $1)
^2 )
+ ((
Fib ($1
+ 1))
^2 ))
= (
Fib ((2
* $1)
+ 1));
A1:
P[
0 ] by
PRE_FF: 1;
A2: for k be
Nat st
P[k] &
P[(k
+ 1)] holds
P[(k
+ 2)]
proof
let k be
Nat;
assume
A3:
P[k];
assume
A4:
P[(k
+ 1)];
(
Fib ((2
* (k
+ 2))
+ 1))
= ((
Fib ((2
* k)
+ 3))
+ (
Fib ((2
* k)
+ 4))) by
Lm1
.= ((
Fib ((2
* k)
+ 3))
+ ((
Fib ((2
* k)
+ 3))
+ (
Fib ((2
* k)
+ 2)))) by
Th26
.= (((
Fib ((2
* k)
+ 3))
+ (
Fib ((2
* k)
+ 3)))
+ (
Fib ((2
* k)
+ 2)))
.= ((2
* (
Fib ((2
* k)
+ 3)))
+ ((
Fib ((2
* k)
+ 3))
- (
Fib ((2
* k)
+ 1)))) by
Th28
.= (((2
* ((
Fib (k
+ 1))
^2 ))
+ (2
* ((
Fib (k
+ 2))
^2 )))
+ (((
Fib (k
+ 2))
- (
Fib k))
* ((
Fib (k
+ 2))
+ (
Fib k)))) by
A3,
A4
.= (((2
* ((
Fib (k
+ 1))
^2 ))
+ (2
* ((
Fib (k
+ 2))
^2 )))
+ ((
Fib (k
+ 1))
* ((
Fib (k
+ 2))
+ (
Fib k)))) by
Th29
.= (((
Fib (k
+ 1))
* ((
Fib (k
+ 1))
+ ((
Fib (k
+ 1))
+ (
Fib k))))
+ ((
Fib (k
+ 2))
* ((
Fib (k
+ 2))
+ ((
Fib (k
+ 2))
+ (
Fib (k
+ 1))))))
.= (((
Fib (k
+ 1))
* ((
Fib (k
+ 1))
+ (
Fib (k
+ 2))))
+ ((
Fib (k
+ 2))
* ((
Fib (k
+ 2))
+ ((
Fib (k
+ 2))
+ (
Fib (k
+ 1)))))) by
Th24
.= (((
Fib (k
+ 1))
* ((
Fib (k
+ 2))
+ (
Fib (k
+ 1))))
+ ((
Fib (k
+ 2))
* ((
Fib (k
+ 2))
+ (
Fib (k
+ 3))))) by
Th25
.= (((
Fib (k
+ 1))
* (
Fib (k
+ 3)))
+ (((
Fib (k
+ 2))
* (
Fib (k
+ 2)))
+ ((
Fib (k
+ 2))
* (
Fib (k
+ 3))))) by
Th25
.= (((
Fib (k
+ 3))
* ((
Fib (k
+ 1))
+ (
Fib (k
+ 2))))
+ ((
Fib (k
+ 2))
^2 ))
.= (((
Fib (k
+ 3))
^2 )
+ ((
Fib (k
+ 2))
^2 )) by
Th25;
hence thesis;
end;
A5:
P[1] by
Th21,
PRE_FF: 1;
for n be
Nat holds
P[n] from
FIB_NUM:sch 1(
A1,
A5,
A2);
hence thesis;
end;
theorem ::
FIB_NUM2:40
Th40: for k be non
zero
Element of
NAT holds (
Fib (n
+ k))
= (((
Fib k)
* (
Fib (n
+ 1)))
+ ((
Fib (k
-' 1))
* (
Fib n)))
proof
defpred
P[
Nat] means (
Fib (n
+ $1))
= (((
Fib $1)
* (
Fib (n
+ 1)))
+ ((
Fib ($1
-' 1))
* (
Fib n)));
(((
Fib 1)
* (
Fib (n
+ 1)))
+ ((
Fib (1
-' 1))
* (
Fib n)))
= ((1
* (
Fib (n
+ 1)))
+ (
0
* (
Fib n))) by
PRE_FF: 1,
XREAL_1: 232
.= (
Fib (n
+ 1));
then
A1:
P[1];
A2: for m be non
zero
Nat st
P[m] &
P[(m
+ 1)] holds
P[(m
+ 2)]
proof
let m be non
zero
Nat;
A3: m
>= 1 by
NAT_2: 19;
set F2 = ((
Fib (m
+ 2))
* (
Fib (n
+ 1)));
set F1 = ((
Fib (n
+ 1))
* (
Fib (m
+ 2)));
set k = (m
-' 1);
assume
A4:
P[m] &
P[(m
+ 1)];
(
Fib (n
+ (m
+ 2)))
= (
Fib ((n
+ m)
+ 2))
.= ((
Fib (n
+ m))
+ (
Fib ((n
+ m)
+ 1))) by
Th24
.= ((((
Fib m)
* (
Fib (n
+ 1)))
+ ((
Fib k)
* (
Fib n)))
+ (((
Fib (m
+ 1))
* (
Fib (n
+ 1)))
+ ((
Fib (m
+ (1
-' 1)))
* (
Fib n)))) by
A4,
NAT_D: 38
.= ((((
Fib m)
* (
Fib (n
+ 1)))
+ ((
Fib k)
* (
Fib n)))
+ (((
Fib (m
+ 1))
* (
Fib (n
+ 1)))
+ ((
Fib (m
+
0 qua
Nat))
* (
Fib n)))) by
XREAL_1: 232
.= (((
Fib (n
+ 1))
* ((
Fib m)
+ (
Fib (m
+ 1))))
+ ((
Fib n)
* ((
Fib k)
+ (
Fib m))))
.= (F1
+ ((
Fib n)
* ((
Fib k)
+ (
Fib m)))) by
Th24
.= (F1
+ ((
Fib n)
* ((
Fib k)
+ (
Fib (k
+ 1))))) by
A3,
XREAL_1: 235
.= (F2
+ ((
Fib n)
* (
Fib ((m
-' 1)
+ 2)))) by
Th24
.= (F2
+ ((
Fib ((m
+ 2)
-' 1))
* (
Fib n))) by
A3,
NAT_D: 38;
hence thesis;
end;
(2
-' 1)
= (2
- 1) by
NAT_D: 39;
then
A5:
P[2] by
Th21,
Th24,
PRE_FF: 1;
for k be non
zero
Nat holds
P[k] from
FibInd1(
A1,
A5,
A2);
hence thesis;
end;
theorem ::
FIB_NUM2:41
Th41: for n be non
zero
Element of
NAT holds (
Fib n)
divides (
Fib (n
* k))
proof
let n be non
zero
Element of
NAT ;
defpred
P[
Nat] means (
Fib n)
divides (
Fib (n
* $1));
A1: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
A2:
P[k];
(
Fib (n
* (k
+ 1)))
= (
Fib ((n
* k)
+ n))
.= (((
Fib n)
* (
Fib ((n
* k)
+ 1)))
+ ((
Fib (n
* k))
* (
Fib (n
-' 1)))) by
Th40;
hence thesis by
A2,
Th12;
end;
A3:
P[
0 ] by
NAT_D: 6,
PRE_FF: 1;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A3,
A1);
hence thesis;
end;
theorem ::
FIB_NUM2:42
Th42: for k be non
zero
Element of
NAT holds k
divides n implies (
Fib k)
divides (
Fib n)
proof
let k be non
zero
Element of
NAT ;
assume k
divides n;
then ex m be
Nat st n
= (k
* m) by
NAT_D:def 3;
hence thesis by
Th41;
end;
theorem ::
FIB_NUM2:43
Th43: (
Fib n)
<= (
Fib (n
+ 1))
proof
defpred
P[
Nat] means (
Fib $1)
<= (
Fib ($1
+ 1));
A1:
P[
0 ] by
PRE_FF: 1;
A2: for k be
Nat st
P[k] &
P[(k
+ 1)] holds
P[(k
+ 2)]
proof
let k be
Nat;
assume
A3:
P[k];
assume
P[(k
+ 1)];
then ((
Fib k)
+ (
Fib (k
+ 1)))
<= ((
Fib (k
+ 1))
+ (
Fib (k
+ 2))) by
A3,
XREAL_1: 7;
then (
Fib (k
+ 2))
<= ((
Fib (k
+ 1))
+ (
Fib (k
+ 2))) by
Th24;
then (
Fib (k
+ 2))
<= (
Fib (k
+ 3)) by
Th25;
hence thesis;
end;
A4:
P[1] by
Th21,
PRE_FF: 1;
for n be
Nat holds
P[n] from
FIB_NUM:sch 1(
A1,
A4,
A2);
hence thesis;
end;
theorem ::
FIB_NUM2:44
Th44: for n be
Nat st n
> 1 holds (
Fib n)
< (
Fib (n
+ 1))
proof
defpred
P[
Nat] means (
Fib $1)
< (
Fib ($1
+ 1));
let n be
Nat;
assume n
> 1;
then
A1: n is non
trivial by
NAT_2:def 1;
A2:
P[3] by
Th22,
Th23;
A3: for k be non
trivial
Nat st
P[k] &
P[(k
+ 1)] holds
P[(k
+ 2)]
proof
let k be non
trivial
Nat;
assume
A4:
P[k];
assume
P[(k
+ 1)];
then ((
Fib k)
+ (
Fib (k
+ 1)))
< ((
Fib (k
+ 1))
+ (
Fib (k
+ 2))) by
A4,
XREAL_1: 8;
then (
Fib (k
+ 2))
< ((
Fib (k
+ 1))
+ (
Fib (k
+ 2))) by
Th24;
then (
Fib (k
+ 2))
< (
Fib (k
+ 3)) by
Th25;
hence thesis;
end;
A5:
P[2] by
Th21,
Th22;
for n be non
trivial
Nat holds
P[n] from
FibInd2(
A5,
A2,
A3);
hence thesis by
A1;
end;
theorem ::
FIB_NUM2:45
for m, n st m
>= n holds (
Fib m)
>= (
Fib n)
proof
let m, n;
assume m
>= n;
then
consider k be
Nat such that
A1: m
= (n
+ k) by
NAT_1: 10;
for k,n be
Nat holds (
Fib (n
+ k))
>= (
Fib n)
proof
defpred
P[
Nat] means for n be
Nat holds (
Fib (n
+ $1))
>= (
Fib n);
A2: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k;
assume
A3:
P[k];
let n;
(n
+ (k
+ 1))
= ((n
+ k)
+ 1);
then
A4: (
Fib (n
+ (k
+ 1)))
>= (
Fib (n
+ k)) by
Th43;
(
Fib (n
+ k))
>= (
Fib n) by
A3;
hence thesis by
A4,
XXREAL_0: 2;
end;
let k;
let n;
A5:
P[
0 ];
for k holds
P[k] from
NAT_1:sch 2(
A5,
A2);
hence thesis;
end;
hence thesis by
A1;
end;
theorem ::
FIB_NUM2:46
Th46: for k be
Nat st k
> 1 holds k
< n implies (
Fib k)
< (
Fib n)
proof
let k be
Nat such that
A1: k
> 1;
assume
A2: k
< n;
then
consider m be
Nat such that
A3: n
= (k
+ m) by
NAT_1: 10;
reconsider k as non
zero
Element of
NAT by
A1,
ORDINAL1:def 12;
reconsider m as non
zero
Element of
NAT by
A2,
A3,
ORDINAL1:def 12;
for k,m be non
zero
Element of
NAT st k
> 1 holds (
Fib k)
< (
Fib (k
+ m))
proof
let k,m be non
zero
Element of
NAT such that
A4: k
> 1;
defpred
P[
Nat] means (
Fib k)
< (
Fib (k
+ $1));
A5: for r be non
zero
Nat st
P[r] holds
P[(r
+ 1)]
proof
let r be non
zero
Nat;
(k
+ r)
> (
0
+ 1) by
A4,
XREAL_1: 8;
then
A6: (
Fib (k
+ r))
< (
Fib ((k
+ r)
+ 1)) by
Th44;
assume
P[r];
hence thesis by
A6,
XXREAL_0: 2;
end;
A7:
P[1] by
A4,
Th44;
for k be non
zero
Nat holds
P[k] from
NAT_1:sch 10(
A7,
A5);
hence thesis;
end;
then (
Fib k)
< (
Fib (k
+ m)) by
A1;
hence thesis by
A3;
end;
theorem ::
FIB_NUM2:47
Th47: (
Fib k)
= 1 iff k
= 1 or k
= 2
proof
(
Fib k)
= 1 implies k
= 1 or k
= 2
proof
assume
A1: (
Fib k)
= 1;
assume that
A2: not k
= 1 and
A3: not k
= 2;
A4: k
< 2 or k
> 2 by
A3,
XXREAL_0: 1;
k
=
0 or k
> 1 by
A2,
NAT_2: 19;
hence contradiction by
A1,
A4,
Th21,
Th46,
PRE_FF: 1;
end;
hence thesis by
Th21,
PRE_FF: 1;
end;
theorem ::
FIB_NUM2:48
Th48: for k,n be
Element of
NAT st n
> 1 & k
<>
0 & k
<> 1 holds (
Fib k)
= (
Fib n) iff k
= n
proof
let k,n be
Element of
NAT such that
A1: n
> 1 and
A2: k
<>
0 & k
<> 1;
k is non
trivial by
A2,
NAT_2:def 1;
then k
>= (1
+ 1) by
NAT_2: 29;
then
A3: k
> 1 by
NAT_1: 13;
(
Fib k)
= (
Fib n) implies k
= n
proof
assume
A4: (
Fib k)
= (
Fib n);
assume
A5: k
<> n;
per cases by
A5,
XXREAL_0: 1;
suppose k
> n;
hence contradiction by
A1,
A4,
Th46;
end;
suppose k
< n;
hence contradiction by
A3,
A4,
Th46;
end;
end;
hence thesis;
end;
theorem ::
FIB_NUM2:49
Th49: for n be
Element of
NAT st n
> 1 & n
<> 4 holds n is non
prime implies ex k be non
zero
Element of
NAT st k
<> 1 & k
<> 2 & k
<> n & k
divides n
proof
let n be
Element of
NAT such that
A1: n
> 1 and
A2: n
<> 4;
assume
A3: n is non
prime;
per cases by
A3,
INT_2:def 4;
suppose n
<= 1;
hence thesis by
A1;
end;
suppose not for k be
Nat holds k
divides n implies k
= 1 or k
= n;
then
consider k be
Nat such that
A4: k
divides n and
A5: k
<> 1 & k
<> n;
consider m be
Nat such that
A6: n
= (k
* m) by
A4,
NAT_D:def 3;
A7: m
divides n & m is non
zero
Element of
NAT by
A1,
A6,
NAT_D:def 3,
ORDINAL1:def 12;
A8: k is non
zero
Element of
NAT by
A1,
A4,
INT_2: 3,
ORDINAL1:def 12;
A9: k
<> 2 or m
<> 2 by
A2,
A6;
m
<> 1 & m
<> n by
A1,
A5,
A6,
XCMPLX_1: 7;
hence thesis by
A4,
A5,
A8,
A7,
A9;
end;
end;
theorem ::
FIB_NUM2:50
for n be
Element of
NAT st n
> 1 & n
<> 4 holds (
Fib n) is
prime implies n is
prime
proof
let n be
Element of
NAT such that
A1: n
> 1 and
A2: n
<> 4;
assume
A3: (
Fib n) is
prime;
assume not n is
prime;
then
consider k be non
zero
Element of
NAT such that
A4: k
<> 1 and
A5: k
<> 2 and
A6: k
<> n and
A7: k
divides n by
A1,
A2,
Th49;
A8: (
Fib k)
<> (
Fib n) by
A1,
A4,
A6,
Th48;
(
Fib k)
<> 1 & (
Fib k)
divides (
Fib n) by
A4,
A5,
A7,
Th42,
Th47;
hence contradiction by
A3,
A8,
INT_2:def 4;
end;
begin
definition
::
FIB_NUM2:def2
func
FIB ->
sequence of
NAT means
:
Def2: for k be
Element of
NAT holds (it
. k)
= (
Fib k);
existence
proof
ex f be
sequence of
NAT st for x be
Element of
NAT holds (f
. x)
= (
Fib x) from
FUNCT_2:sch 4;
hence thesis;
end;
uniqueness
proof
A1: for f1,f2 be
sequence of
NAT st (for x be
Element of
NAT holds (f1
. x)
= (
Fib x)) & (for x be
Element of
NAT holds (f2
. x)
= (
Fib x)) holds f1
= f2 from
BINOP_2:sch 1;
let f1,f2 be
sequence of
NAT ;
assume (for k be
Element of
NAT holds (f1
. k)
= (
Fib k)) & for k be
Element of
NAT holds (f2
. k)
= (
Fib k);
hence thesis by
A1;
end;
end
definition
::
FIB_NUM2:def3
func
EvenNAT ->
Subset of
NAT equals the set of all (2
* k) where k be
Nat;
coherence
proof
the set of all (2
* k) where k be
Nat
c=
NAT
proof
let x be
object;
assume x
in the set of all (2
* k) where k be
Nat;
then ex k be
Nat st x
= (2
* k);
hence thesis by
ORDINAL1:def 12;
end;
hence thesis;
end;
::
FIB_NUM2:def4
func
OddNAT ->
Subset of
NAT equals the set of all ((2
* k)
+ 1) where k be
Element of
NAT ;
coherence
proof
defpred
P[
set] means not contradiction;
deffunc
F(
Element of
NAT ) = ((2
* $1)
+ 1);
{
F(k) where k be
Element of
NAT :
P[k] } is
Subset of
NAT from
DOMAIN_1:sch 8;
hence thesis;
end;
end
theorem ::
FIB_NUM2:51
Th51: for k be
Nat holds (2
* k)
in
EvenNAT & not ((2
* k)
+ 1)
in
EvenNAT
proof
let k be
Nat;
thus (2
* k)
in
EvenNAT ;
assume ((2
* k)
+ 1)
in
EvenNAT ;
then ex p be
Nat st ((2
* k)
+ 1)
= (2
* p);
hence thesis;
end;
theorem ::
FIB_NUM2:52
Th52: for k be
Element of
NAT holds ((2
* k)
+ 1)
in
OddNAT & not (2
* k)
in
OddNAT
proof
let k be
Element of
NAT ;
thus ((2
* k)
+ 1)
in
OddNAT ;
assume (2
* k)
in
OddNAT ;
then ex p be
Element of
NAT st (2
* k)
= ((2
* p)
+ 1);
hence thesis;
end;
definition
let n be
Nat;
::
FIB_NUM2:def5
func
EvenFibs (n) ->
FinSequence of
NAT equals (
Prefix (
FIB ,(
EvenNAT
/\ (
Seg n))));
coherence ;
::
FIB_NUM2:def6
func
OddFibs (n) ->
FinSequence of
NAT equals (
Prefix (
FIB ,(
OddNAT
/\ (
Seg n))));
coherence ;
end
theorem ::
FIB_NUM2:53
Th53: (
EvenFibs
0 )
=
{} ;
theorem ::
FIB_NUM2:54
(
Seq (
FIB
|
{2}))
=
<*1*>
proof
reconsider H =
{
[2, (
FIB
. 2)]} as
Function;
A1: (
dom H)
=
{2} by
RELAT_1: 9;
(
dom H)
c= (
Seg 2)
proof
let x be
object;
assume x
in (
dom H);
then x
= 2 by
A1,
TARSKI:def 1;
hence thesis;
end;
then
reconsider H as
FinSubsequence by
FINSEQ_1:def 12;
2
in
NAT ;
then 2
in (
dom
FIB ) by
FUNCT_2:def 1;
then (
Seq (
FIB
|
{2}))
= (
Seq H) by
GRFUNC_1: 28
.=
<*(
FIB
. 2)*> by
FINSEQ_3: 157
.=
<*1*> by
Def2,
Th21;
hence thesis;
end;
theorem ::
FIB_NUM2:55
Th55: (
EvenFibs 2)
=
<*1*>
proof
now
let x be
object;
assume
A1: x
in (
EvenNAT
/\
{1, 2});
then
A2: x
in
EvenNAT by
XBOOLE_0:def 4;
A3: x
in
{1, 2} by
A1,
XBOOLE_0:def 4;
per cases by
A3,
TARSKI:def 2;
suppose x
= 1;
then x
= (
0
+ 1);
then
A4: x
= ((2
*
0 qua
Nat)
+ 1);
ex k be
Nat st x
= (2
* k) by
A2;
hence x
in
{2} by
A4;
end;
suppose x
= (2
* 1);
hence x
in
{2} by
TARSKI:def 1;
end;
end;
then
A5: (
EvenNAT
/\
{1, 2})
c=
{2};
set q =
{
[2, (
FIB
. 2)]};
reconsider q as
FinSubsequence by
Th17;
2
in
NAT ;
then
A6: 2
in (
dom
FIB ) by
FUNCT_2:def 1;
now
let x be
object;
assume x
in
{2};
then x
= (2
* 1) by
TARSKI:def 1;
then x
in
EvenNAT & x
in
{1, 2} by
TARSKI:def 2;
hence x
in (
EvenNAT
/\
{1, 2}) by
XBOOLE_0:def 4;
end;
then
{2}
c= (
EvenNAT
/\
{1, 2});
then (
EvenNAT
/\
{1, 2})
=
{2} by
A5;
then (
EvenFibs 2)
= (
Seq q) by
A6,
FINSEQ_1: 2,
GRFUNC_1: 28
.=
<*(
FIB
. 2)*> by
FINSEQ_3: 157
.=
<*1*> by
Def2,
Th21;
hence thesis;
end;
theorem ::
FIB_NUM2:56
(
EvenFibs 4)
=
<*1, 3*>
proof
now
let x be
object;
assume
A1: x
in (
EvenNAT
/\
{1, 2, 3, 4});
then
A2: x
in
EvenNAT by
XBOOLE_0:def 4;
A3: x
in
{1, 2, 3, 4} by
A1,
XBOOLE_0:def 4;
per cases by
A3,
ENUMSET1:def 2;
suppose x
= ((2
*
0 qua
Nat)
+ 1);
hence x
in
{2, 4} by
A2,
Th51;
end;
suppose x
= (2
* 1);
hence x
in
{2, 4} by
TARSKI:def 2;
end;
suppose x
= ((2
* 1)
+ 1);
hence x
in
{2, 4} by
A2,
Th51;
end;
suppose x
= (2
* 2);
hence x
in
{2, 4} by
TARSKI:def 2;
end;
end;
then
A4: (
EvenNAT
/\
{1, 2, 3, 4})
c=
{2, 4};
set q =
{
[2, (
FIB
. 2)],
[4, (
FIB
. 4)]};
4
in
NAT ;
then
A5: 4
in (
dom
FIB ) by
FUNCT_2:def 1;
reconsider q as
FinSubsequence by
Th15;
2
in
NAT ;
then
A6: 2
in (
dom
FIB ) by
FUNCT_2:def 1;
A7: (
FIB
| (
{2}
\/
{4}))
= ((
FIB
|
{2})
\/ (
FIB
|
{4})) by
RELAT_1: 78
.= (
{
[2, (
FIB
. 2)]}
\/ (
FIB
|
{4})) by
A6,
GRFUNC_1: 28
.= (
{
[2, (
FIB
. 2)]}
\/
{
[4, (
FIB
. 4)]}) by
A5,
GRFUNC_1: 28
.= q by
ENUMSET1: 1;
now
let x be
object;
assume
A8: x
in
{2, 4};
then x
= (2
* 1) or x
= (2
* 2) by
TARSKI:def 2;
then
A9: x
in
EvenNAT ;
x
= 2 or x
= 4 by
A8,
TARSKI:def 2;
then x
in
{1, 2, 3, 4} by
ENUMSET1:def 2;
hence x
in (
EvenNAT
/\
{1, 2, 3, 4}) by
A9,
XBOOLE_0:def 4;
end;
then
{2, 4}
c= (
EvenNAT
/\
{1, 2, 3, 4});
then (
EvenNAT
/\
{1, 2, 3, 4})
=
{2, 4} by
A4;
then (
EvenFibs 4)
= (
Seq q) by
A7,
ENUMSET1: 1,
FINSEQ_3: 2
.=
<*(
FIB
. 2), (
FIB
. 4)*> by
Th16
.=
<*(
Fib 2), (
FIB
. 4)*> by
Def2
.=
<*1, 3*> by
Def2,
Th21,
Th23;
hence thesis;
end;
theorem ::
FIB_NUM2:57
Th57: for k be
Nat holds ((
EvenNAT
/\ (
Seg ((2
* k)
+ 2)))
\/
{((2
* k)
+ 4)})
= (
EvenNAT
/\ (
Seg ((2
* k)
+ 4)))
proof
let k be
Nat;
((2
* k)
+ 4)
= (2
* (k
+ 2));
then
A1: ((2
* k)
+ 4)
in
EvenNAT ;
((2
* k)
+ 3)
= ((2
* (k
+ 1))
+ 1);
then
A2:
{((2
* k)
+ 3)}
misses
EvenNAT by
Th51,
ZFMISC_1: 50;
(
EvenNAT
/\ (
Seg ((2
* k)
+ 4)))
= (
EvenNAT
/\ (
Seg (((2
* k)
+ 3)
+ 1)))
.= (
EvenNAT
/\ ((
Seg ((2
* k)
+ 3))
\/
{((2
* k)
+ 4)})) by
FINSEQ_1: 9
.= ((
EvenNAT
/\ (
Seg ((2
* k)
+ 3)))
\/ (
EvenNAT
/\
{((2
* k)
+ 4)})) by
XBOOLE_1: 23
.= ((
EvenNAT
/\ (
Seg (((2
* k)
+ 2)
+ 1)))
\/
{((2
* k)
+ 4)}) by
A1,
ZFMISC_1: 46
.= ((
EvenNAT
/\ ((
Seg ((2
* k)
+ 2))
\/
{((2
* k)
+ 3)}))
\/
{((2
* k)
+ 4)}) by
FINSEQ_1: 9
.= (((
EvenNAT
/\ (
Seg ((2
* k)
+ 2)))
\/ (
EvenNAT
/\
{((2
* k)
+ 3)}))
\/
{((2
* k)
+ 4)}) by
XBOOLE_1: 23
.= (((
EvenNAT
/\ (
Seg ((2
* k)
+ 2)))
\/
{} )
\/
{((2
* k)
+ 4)}) by
A2
.= ((
EvenNAT
/\ (
Seg ((2
* k)
+ 2)))
\/
{((2
* k)
+ 4)});
hence thesis;
end;
theorem ::
FIB_NUM2:58
Th58: for k be
Nat holds ((
FIB
| (
EvenNAT
/\ (
Seg ((2
* k)
+ 2))))
\/
{
[((2
* k)
+ 4), (
FIB
. ((2
* k)
+ 4))]})
= (
FIB
| (
EvenNAT
/\ (
Seg ((2
* k)
+ 4))))
proof
let k be
Nat;
A1: (
dom
FIB )
=
NAT by
FUNCT_2:def 1;
(
FIB
| (
EvenNAT
/\ (
Seg ((2
* k)
+ 4))))
= (
FIB
| ((
EvenNAT
/\ (
Seg ((2
* k)
+ 2)))
\/
{((2
* k)
+ 4)})) by
Th57
.= ((
FIB
| (
EvenNAT
/\ (
Seg ((2
* k)
+ 2))))
\/ (
FIB
|
{((2
* k)
+ 4)})) by
RELAT_1: 78
.= ((
FIB
| (
EvenNAT
/\ (
Seg ((2
* k)
+ 2))))
\/
{
[((2
* k)
+ 4), (
FIB
. ((2
* k)
+ 4))]}) by
A1,
GRFUNC_1: 28;
hence thesis;
end;
theorem ::
FIB_NUM2:59
Th59: for n be
Element of
NAT holds (
EvenFibs ((2
* n)
+ 2))
= ((
EvenFibs (2
* n))
^
<*(
Fib ((2
* n)
+ 2))*>)
proof
defpred
P[
Nat] means (
EvenFibs ((2
* $1)
+ 2))
= ((
EvenFibs (2
* $1))
^
<*(
Fib ((2
* $1)
+ 2))*>);
let n be
Element of
NAT ;
A1: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
reconsider ARR =
{
[1, (
FIB
. ((2
* k)
+ 4))]} as
FinSubsequence by
Th17;
assume
P[k];
set LEFTk = (
EvenFibs ((2
* (k
+ 1))
+ 2));
set RIGHTk = ((
EvenFibs (2
* (k
+ 1)))
^
<*(
Fib ((2
* (k
+ 1))
+ 2))*>);
reconsider RS = (
FIB
| (
EvenNAT
/\ (
Seg ((2
* k)
+ 2)))) as
FinSubsequence;
set RR = (
Shift (ARR,((2
* k)
+ 3)));
A2: ((2
* k)
+ 3)
> ((2
* k)
+ 2) by
XREAL_1: 6;
(
dom RS)
c= (
EvenNAT
/\ (
Seg ((2
* k)
+ 2))) & (
EvenNAT
/\ (
Seg ((2
* k)
+ 2)))
c= (
Seg ((2
* k)
+ 2)) by
RELAT_1: 58,
XBOOLE_1: 17;
then
consider p1 be
FinSequence such that
A3: RS
c= p1 and
A4: (
dom p1)
= (
Seg ((2
* k)
+ 3)) by
A2,
Th19,
XBOOLE_1: 1;
A5: ex p2 be
FinSequence st ARR
c= p2 by
Th20;
(1
+ ((2
* k)
+ 3))
= ((2
* k)
+ 4);
then
A6: RR
=
{
[((2
* k)
+ 4), (
FIB
. ((2
* k)
+ 4))]} by
Th18;
(
len p1)
= ((2
* k)
+ 3) by
A4,
FINSEQ_1:def 3;
then
consider RSR be
FinSubsequence such that
A7: RSR
= (RS
\/ RR) and
A8: ((
Seq RS)
^ (
Seq ARR))
= (
Seq RSR) by
A3,
A5,
VALUED_1: 64;
RIGHTk
= ((
Seq (
FIB
| (
EvenNAT
/\ (
Seg ((2
* k)
+ 2)))))
^
<*(
FIB
. ((2
* k)
+ 4))*>) by
Def2
.= (
Seq RSR) by
A8,
FINSEQ_3: 157
.= LEFTk by
A7,
A6,
Th58;
hence thesis;
end;
A9:
P[
0 ] by
Th21,
Th53,
Th55,
FINSEQ_1: 34;
for k be
Nat holds
P[k] from
NAT_1:sch 2(
A9,
A1);
hence thesis;
end;
theorem ::
FIB_NUM2:60
Th60: (
OddFibs 1)
=
<*1*>
proof
now
let x be
object;
assume
A1: x
in
{1};
then x
= ((2
*
0 qua
Nat)
+ 1) by
TARSKI:def 1;
then x
in
OddNAT ;
hence x
in (
OddNAT
/\
{1}) by
A1,
XBOOLE_0:def 4;
end;
then
A2:
{1}
c= (
OddNAT
/\
{1});
1
in
NAT ;
then
A3: 1
in (
dom
FIB ) by
FUNCT_2:def 1;
for x be
object st x
in (
OddNAT
/\
{1}) holds x
in
{1} by
XBOOLE_0:def 4;
then (
OddNAT
/\
{1})
c=
{1};
then (
OddNAT
/\
{1})
=
{1} by
A2;
then (
OddFibs 1)
=
<*(
FIB
. 1)*> by
A3,
FINSEQ_1: 2,
FINSEQ_3: 157,
GRFUNC_1: 28
.=
<*1*> by
Def2,
PRE_FF: 1;
hence thesis;
end;
theorem ::
FIB_NUM2:61
Th61: (
OddFibs 3)
=
<*1, 2*>
proof
now
let x be
object;
assume
A1: x
in (
OddNAT
/\
{1, 2, 3});
then
A2: x
in
OddNAT by
XBOOLE_0:def 4;
A3: x
in
{1, 2, 3} by
A1,
XBOOLE_0:def 4;
per cases by
A3,
ENUMSET1:def 1;
suppose x
= ((2
*
0 qua
Nat)
+ 1);
hence x
in
{1, 3} by
TARSKI:def 2;
end;
suppose x
= (2
* 1);
hence x
in
{1, 3} by
A2,
Th52;
end;
suppose x
= ((2
* 1)
+ 1);
hence x
in
{1, 3} by
TARSKI:def 2;
end;
end;
then
A4: (
OddNAT
/\
{1, 2, 3})
c=
{1, 3};
set q =
{
[1, (
FIB
. 1)],
[3, (
FIB
. 3)]};
3
in
NAT ;
then
A5: 3
in (
dom
FIB ) by
FUNCT_2:def 1;
reconsider q as
FinSubsequence by
Th15;
1
in
NAT ;
then
A6: 1
in (
dom
FIB ) by
FUNCT_2:def 1;
A7: (
FIB
| (
{1}
\/
{3}))
= ((
FIB
|
{1})
\/ (
FIB
|
{3})) by
RELAT_1: 78
.= (
{
[1, (
FIB
. 1)]}
\/ (
FIB
|
{3})) by
A6,
GRFUNC_1: 28
.= (
{
[1, (
FIB
. 1)]}
\/
{
[3, (
FIB
. 3)]}) by
A5,
GRFUNC_1: 28
.= q by
ENUMSET1: 1;
now
let x be
object;
assume
A8: x
in
{1, 3};
then x
= ((2
*
0 qua
Nat)
+ 1) or x
= ((2
* 1)
+ 1) by
TARSKI:def 2;
then
A9: x
in
OddNAT ;
x
= 1 or x
= 3 by
A8,
TARSKI:def 2;
then x
in
{1, 2, 3} by
ENUMSET1:def 1;
hence x
in (
OddNAT
/\
{1, 2, 3}) by
A9,
XBOOLE_0:def 4;
end;
then
{1, 3}
c= (
OddNAT
/\
{1, 2, 3});
then (
OddNAT
/\
{1, 2, 3})
=
{1, 3} by
A4;
then (
OddFibs 3)
= (
Seq (
FIB
| (
{1}
\/
{3}))) by
ENUMSET1: 1,
FINSEQ_3: 1
.=
<*(
FIB
. 1), (
FIB
. 3)*> by
A7,
Th16
.=
<*(
Fib 1), (
FIB
. 3)*> by
Def2
.=
<*1, 2*> by
Def2,
Th22,
PRE_FF: 1;
hence thesis;
end;
theorem ::
FIB_NUM2:62
Th62: for k be
Nat holds ((
OddNAT
/\ (
Seg ((2
* k)
+ 3)))
\/
{((2
* k)
+ 5)})
= (
OddNAT
/\ (
Seg ((2
* k)
+ 5)))
proof
let k be
Nat;
((2
* k)
+ 5)
= ((2
* (k
+ 2))
+ 1);
then
A1: ((2
* k)
+ 5)
in
OddNAT ;
((2
* k)
+ 4)
= (2
* ((k
+ 1)
+ 1));
then
A2:
{((2
* k)
+ 4)}
misses
OddNAT by
Th52,
ZFMISC_1: 50;
(
OddNAT
/\ (
Seg ((2
* k)
+ 5)))
= (
OddNAT
/\ (
Seg (((2
* k)
+ 4)
+ 1)))
.= (
OddNAT
/\ ((
Seg ((2
* k)
+ 4))
\/
{((2
* k)
+ 5)})) by
FINSEQ_1: 9
.= ((
OddNAT
/\ (
Seg (((2
* k)
+ 3)
+ 1)))
\/ (
OddNAT
/\
{((2
* k)
+ 5)})) by
XBOOLE_1: 23
.= ((
OddNAT
/\ ((
Seg ((2
* k)
+ 3))
\/
{((2
* k)
+ 4)}))
\/ (
OddNAT
/\
{((2
* k)
+ 5)})) by
FINSEQ_1: 9
.= (((
OddNAT
/\ (
Seg ((2
* k)
+ 3)))
\/ (
OddNAT
/\
{((2
* k)
+ 4)}))
\/ (
OddNAT
/\
{((2
* k)
+ 5)})) by
XBOOLE_1: 23
.= (((
OddNAT
/\ (
Seg ((2
* k)
+ 3)))
\/
{} )
\/ (
OddNAT
/\
{((2
* k)
+ 5)})) by
A2
.= ((
OddNAT
/\ (
Seg ((2
* k)
+ 3)))
\/
{((2
* k)
+ 5)}) by
A1,
ZFMISC_1: 46;
hence thesis;
end;
theorem ::
FIB_NUM2:63
Th63: for k be
Nat holds ((
FIB
| (
OddNAT
/\ (
Seg ((2
* k)
+ 3))))
\/
{
[((2
* k)
+ 5), (
FIB
. ((2
* k)
+ 5))]})
= (
FIB
| (
OddNAT
/\ (
Seg ((2
* k)
+ 5))))
proof
let k be
Nat;
A1: (
dom
FIB )
=
NAT by
FUNCT_2:def 1;
(
FIB
| (
OddNAT
/\ (
Seg ((2
* k)
+ 5))))
= (
FIB
| ((
OddNAT
/\ (
Seg ((2
* k)
+ 3)))
\/
{((2
* k)
+ 5)})) by
Th62
.= ((
FIB
| (
OddNAT
/\ (
Seg ((2
* k)
+ 3))))
\/ (
FIB
|
{((2
* k)
+ 5)})) by
RELAT_1: 78
.= ((
FIB
| (
OddNAT
/\ (
Seg ((2
* k)
+ 3))))
\/
{
[((2
* k)
+ 5), (
FIB
. ((2
* k)
+ 5))]}) by
A1,
GRFUNC_1: 28;
hence thesis;
end;
theorem ::
FIB_NUM2:64
Th64: for n be
Nat holds (
OddFibs ((2
* n)
+ 3))
= ((
OddFibs ((2
* n)
+ 1))
^
<*(
Fib ((2
* n)
+ 3))*>)
proof
defpred
P[
Nat] means (
OddFibs ((2
* $1)
+ 3))
= ((
OddFibs ((2
* $1)
+ 1))
^
<*(
Fib ((2
* $1)
+ 3))*>);
let n be
Nat;
A1: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
reconsider ARR =
{
[1, (
FIB
. ((2
* k)
+ 5))]} as
FinSubsequence by
Th17;
assume
P[k];
set LEFTk = (
OddFibs ((2
* (k
+ 1))
+ 3));
set RIGHTk = ((
OddFibs ((2
* (k
+ 1))
+ 1))
^
<*(
Fib ((2
* (k
+ 1))
+ 3))*>);
reconsider RS = (
FIB
| (
OddNAT
/\ (
Seg ((2
* k)
+ 3)))) as
FinSubsequence;
set RR = (
Shift (ARR,((2
* k)
+ 4)));
A2: ((2
* k)
+ 4)
> ((2
* k)
+ 3) by
XREAL_1: 6;
(
dom RS)
c= (
OddNAT
/\ (
Seg ((2
* k)
+ 3))) & (
OddNAT
/\ (
Seg ((2
* k)
+ 3)))
c= (
Seg ((2
* k)
+ 3)) by
RELAT_1: 58,
XBOOLE_1: 17;
then
consider p1 be
FinSequence such that
A3: RS
c= p1 and
A4: (
dom p1)
= (
Seg ((2
* k)
+ 4)) by
A2,
Th19,
XBOOLE_1: 1;
A5: ex p2 be
FinSequence st ARR
c= p2 by
Th20;
(1
+ ((2
* k)
+ 4))
= ((2
* k)
+ 5);
then
A6: RR
=
{
[((2
* k)
+ 5), (
FIB
. ((2
* k)
+ 5))]} by
Th18;
(
len p1)
= ((2
* k)
+ 4) by
A4,
FINSEQ_1:def 3;
then
consider RSR be
FinSubsequence such that
A7: RSR
= (RS
\/ RR) and
A8: ((
Seq RS)
^ (
Seq ARR))
= (
Seq RSR) by
A3,
A5,
VALUED_1: 64;
RIGHTk
= ((
Seq (
FIB
| (
OddNAT
/\ (
Seg ((2
* k)
+ 3)))))
^
<*(
FIB
. ((2
* k)
+ 5))*>) by
Def2
.= (
Seq RSR) by
A8,
FINSEQ_3: 157
.= LEFTk by
A7,
A6,
Th63;
hence thesis;
end;
A9:
P[
0 ] by
Th22,
Th60,
Th61;
for k be
Nat holds
P[k] from
NAT_1:sch 2(
A9,
A1);
hence thesis;
end;
theorem ::
FIB_NUM2:65
for n be
Element of
NAT holds (
Sum (
EvenFibs ((2
* n)
+ 2)))
= ((
Fib ((2
* n)
+ 3))
- 1)
proof
defpred
P[
Nat] means (
Sum (
EvenFibs ((2
* $1)
+ 2)))
= ((
Fib ((2
* $1)
+ 3))
- 1);
let n be
Element of
NAT ;
A1: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
reconsider EE = (
EvenFibs (2
* (k
+ 1))) as
FinSequence of
REAL by
FINSEQ_2: 24,
NUMBERS: 19;
assume
A2:
P[k];
(
Sum (
EvenFibs ((2
* (k
+ 1))
+ 2)))
= (
Sum ((
EvenFibs (2
* (k
+ 1))) qua
FinSequence of
NAT
^
<*(
Fib ((2
* (k
+ 1))
+ 2))*>)) by
Th59
.= ((
Sum EE)
+ (
Fib ((2
* (k
+ 1))
+ 2))) by
RVSUM_1: 74
.= (((
Fib ((2
* k)
+ 3))
+ (
Fib ((2
* k)
+ 4)))
- 1) by
A2
.= ((
Fib ((2
* k)
+ 5))
- 1) by
Th27;
hence thesis;
end;
A3:
P[
0 ] by
Th22,
Th55,
RVSUM_1: 73;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A3,
A1);
hence thesis;
end;
theorem ::
FIB_NUM2:66
for n be
Nat holds (
Sum (
OddFibs ((2
* n)
+ 1)))
= (
Fib ((2
* n)
+ 2))
proof
defpred
P[
Nat] means (
Sum (
OddFibs ((2
* $1)
+ 1)))
= (
Fib ((2
* $1)
+ 2));
let n be
Nat;
A1: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
reconsider EE = (
OddFibs ((2
* k)
+ 1)) as
FinSequence of
REAL by
FINSEQ_2: 24,
NUMBERS: 19;
assume
A2:
P[k];
(
Sum (
OddFibs ((2
* (k
+ 1))
+ 1)))
= (
Sum ((
OddFibs ((2
* k)
+ 1))
^
<*(
Fib ((2
* k)
+ 3)) qua
Element of
NAT *>)) by
Th64
.= ((
Sum EE)
+ (
Fib ((2
* k)
+ 3))) by
RVSUM_1: 74
.= (
Fib ((2
* k)
+ 4)) by
A2,
Th26;
hence thesis;
end;
A3:
P[
0 ] by
Th21,
Th60,
RVSUM_1: 73;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A3,
A1);
hence thesis;
end;
begin
theorem ::
FIB_NUM2:67
Th67: for n be
Element of
NAT holds ((
Fib n),(
Fib (n
+ 1)))
are_coprime
proof
let n be
Element of
NAT ;
A1: (n,(n
+ 1))
are_coprime by
PEPIN: 1;
((
Fib n)
gcd (
Fib (n
+ 1)))
= (
Fib (n
gcd (n
+ 1))) by
FIB_NUM: 5
.= 1 by
A1,
INT_2:def 3,
PRE_FF: 1;
hence thesis by
INT_2:def 3;
end;
theorem ::
FIB_NUM2:68
Th68: for n be non
zero
Nat, m be
Nat st m
<> 1 holds m
divides (
Fib n) implies not m
divides (
Fib (n
-' 1))
proof
let n be non
zero
Nat;
let m be
Nat;
assume
A1: m
<> 1;
assume
A2: m
divides (
Fib n);
n
>= 1 by
NAT_2: 19;
then n
= ((n
-' 1)
+ 1) by
XREAL_1: 235;
then ((
Fib (n
-' 1)),(
Fib n))
are_coprime by
Th67;
then
A3: ((
Fib (n
-' 1))
gcd (
Fib n))
= 1 by
INT_2:def 3;
assume m
divides (
Fib (n
-' 1));
then m
divides 1 by
A2,
A3,
NAT_D:def 5;
hence contradiction by
A1,
WSIERP_1: 15;
end;
::$Notion-Name
theorem ::
FIB_NUM2:69
for n be non
zero
Nat holds m is
prime & n is
prime & m
divides (
Fib n) implies for r be
Nat st r
< n & r
<>
0 holds not m
divides (
Fib r)
proof
let n be non
zero
Nat;
assume
A1: m is
prime;
defpred
R[
Element of
NAT ] means $1
< n & $1
<>
0 & m
divides (
Fib $1);
assume
A2: n is
prime;
reconsider C = { x where x be
Element of
NAT :
R[x] } as
Subset of
NAT from
DOMAIN_1:sch 7;
assume
A3: m
divides (
Fib n);
assume
A4: not for r be
Nat st (r
< n & r
<>
0 ) holds not m
divides (
Fib r);
C is non
empty
Subset of
NAT
proof
consider r be
Nat such that
A5: r
< n & r
<>
0 & m
divides (
Fib r) by
A4;
r
in
NAT by
ORDINAL1:def 12;
then r
in C by
A5;
hence thesis;
end;
then
reconsider C as non
empty
Subset of
NAT ;
reconsider r = (
min C) as
Nat by
TARSKI: 1;
defpred
P[
Nat] means (m
divides (
Fib (n
-' (r
* ($1
+ 1)))) & r
<= (n
/ ($1
+ 2)));
r
in C by
XXREAL_2:def 7;
then
A6: ex r9 be
Element of
NAT st r9
= r &
R[r9];
then
A7: (n
-' r)
< n by
NAT_2: 9;
m
<> 1 by
A1,
INT_2:def 4;
then
A8: not m
divides (
Fib (r
-' 1)) by
A6,
Th68;
A9: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
A10: m
divides ((
Fib r)
* (
Fib ((n
-' ((k
+ 2)
* r))
+ 1))) by
A6,
NAT_D: 9;
A11: (n
- (r
* (k
+ 2)))
<>
0
proof
assume
A12: (n
- (r
* (k
+ 2)))
=
0 ;
then
A13: r
divides n & (k
+ 2)
divides n by
NAT_D:def 3;
per cases by
A2,
A13,
INT_2:def 4;
suppose r
= 1 & (k
+ 2)
= n;
then m
= 1 by
A6,
PRE_FF: 1,
WSIERP_1: 15;
hence contradiction by
A1,
INT_2:def 4;
end;
suppose r
= 1 & (k
+ 2)
= 1;
hence contradiction by
A2,
A12,
INT_2:def 4;
end;
suppose r
= n & (k
+ 2)
= n;
hence contradiction by
A6;
end;
suppose r
= n & (k
+ 2)
= 1;
hence contradiction by
A6;
end;
end;
(
- r)
< (
-
0 qua
Nat) by
A6;
then ((
- r)
* (k
+ 2))
< (
0
* (k
+ 2));
then ((
- (r
* (k
+ 2)))
+ n)
< (
0 qua
Nat
+ n) by
XREAL_1: 6;
then
A14: (n
-' ((k
+ 2)
* r))
< n by
A11,
XREAL_0:def 2;
assume
A15:
P[k];
then
A16: (r
* (k
+ 2))
<= ((n
/ (k
+ 2))
* (k
+ 2)) by
XREAL_1: 64;
then
A17: (r
* (k
+ 2))
<= n by
XCMPLX_1: 87;
then
A18: (n
- (r
* (k
+ 2)))
>= ((r
* (k
+ 2))
- (r
* (k
+ 2))) by
XREAL_1: 9;
then
A19: (n
-' ((k
+ 2)
* r))
<>
0 by
A11,
XREAL_0:def 2;
(r
+ (r
* (k
+ 1)))
<= n by
A16,
XCMPLX_1: 87;
then (r
* (k
+ 1))
< n by
A6,
Th14;
then
A20: (((k
+ 1)
* r)
- ((k
+ 1)
* r))
< (n
- ((k
+ 1)
* r)) by
XREAL_1: 9;
((n
- ((k
+ 1)
* r))
- r)
>
0 by
A11,
A18;
then ((n
-' ((k
+ 1)
* r))
- r)
>
0 by
A20,
XREAL_0:def 2;
then
A21: ((n
-' ((k
+ 1)
* r))
-' r)
= ((n
-' ((k
+ 1)
* r))
- r) by
XREAL_0:def 2
.= ((n
- ((k
+ 1)
* r))
- r) by
A20,
XREAL_0:def 2
.= (n
-' ((k
+ 2)
* r)) by
A18,
XREAL_0:def 2;
(n
- (r
* (k
+ 1)))
>= ((r
+ (r
* (k
+ 1)))
- (r
* (k
+ 1))) by
A17,
XREAL_1: 9;
then r
<= (n
-' (r
* (k
+ 1))) by
XREAL_0:def 2;
then (
Fib (n
-' ((k
+ 1)
* r)))
= (
Fib ((n
-' ((k
+ 2)
* r))
+ r)) by
A21,
XREAL_1: 235
.= (((
Fib r)
* (
Fib ((n
-' ((k
+ 2)
* r))
+ 1)))
+ ((
Fib (r
-' 1))
* (
Fib (n
-' ((k
+ 2)
* r))))) by
A6,
Th40;
then
A22: m
divides ((
Fib (r
-' 1))
* (
Fib (n
-' ((k
+ 2)
* r)))) by
A15,
A10,
NAT_D: 10;
then m
divides (
Fib (n
-' ((k
+ 2)
* r))) by
A1,
A8,
NEWTON: 80;
then (n
-' ((k
+ 2)
* r))
in C by
A19,
A14;
then (n
-' ((k
+ 2)
* r))
>= r by
XXREAL_2:def 7;
then n
>= (r
+ ((k
+ 2)
* r)) by
A17,
NAT_D: 54;
then (n
* (1
/ ((1
+ k)
+ 2)))
>= ((r
* ((1
+ k)
+ 2))
* (1
/ ((1
+ k)
+ 2))) by
XREAL_1: 64;
then (n
* (1
/ ((1
+ k)
+ 2)))
>= ((r
* ((1
+ k)
+ 2))
/ ((1
+ k)
+ 2)) by
XCMPLX_1: 99;
then (n
/ ((1
+ k)
+ 2))
>= ((r
* ((1
+ k)
+ 2))
/ ((1
+ k)
+ 2)) by
XCMPLX_1: 99;
hence thesis by
A1,
A8,
A22,
NEWTON: 80,
XCMPLX_1: 89;
end;
(r
- r)
< (n
- r) by
A6,
XREAL_1: 9;
then
A23: (n
-' r)
<>
0 by
XREAL_0:def 2;
A24: m
divides ((
Fib r)
* (
Fib ((n
-' r)
+ 1))) by
A6,
NAT_D: 9;
(
Fib n)
= (
Fib ((n
-' r)
+ r)) by
A6,
XREAL_1: 235
.= (((
Fib r)
* (
Fib ((n
-' r)
+ 1)))
+ ((
Fib (r
-' 1))
* (
Fib (n
-' r)))) by
A6,
Th40;
then
A25: m
divides ((
Fib (r
-' 1))
* (
Fib (n
-' r))) by
A3,
A24,
NAT_D: 10;
then m
divides (
Fib (n
-' r)) by
A1,
A8,
NEWTON: 80;
then (n
-' r)
in C by
A7,
A23;
then (n
-' r)
>= r by
XXREAL_2:def 7;
then n
>= (r
+ r) by
A6,
NAT_D: 54;
then (n
/ 2)
>= ((2
* r)
/ 2) by
XREAL_1: 72;
then
A26:
P[
0 ] by
A1,
A8,
A25,
NEWTON: 80;
for k be
Nat holds
P[k] from
NAT_1:sch 2(
A26,
A9);
then (n
/ (n
+ 2))
< 1 & r
<= (n
/ (n
+ 2)) by
XREAL_1: 29,
XREAL_1: 191;
then r
< (1
+
0 ) by
XXREAL_0: 2;
hence contradiction by
A6,
NAT_1: 13;
end;
begin
theorem ::
FIB_NUM2:70
for n be non
zero
Element of
NAT holds
{((
Fib n)
* (
Fib (n
+ 3))), ((2
* (
Fib (n
+ 1)))
* (
Fib (n
+ 2))), (((
Fib (n
+ 1))
^2 )
+ ((
Fib (n
+ 2))
^2 ))} is
Pythagorean_triple
proof
let n be non
zero
Element of
NAT ;
((((
Fib n)
* (
Fib (n
+ 3)))
^2 )
+ (((2
* (
Fib (n
+ 1)))
* (
Fib (n
+ 2)))
^2 ))
= ((((
Fib n)
^2 )
* ((
Fib (n
+ 3))
^2 ))
+ (((2
* 2)
* ((
Fib (n
+ 1))
^2 ))
* ((
Fib (n
+ 2))
^2 )))
.= ((((
Fib n)
^2 )
* (((
Fib (n
+ 2))
+ (
Fib (n
+ 1)))
^2 ))
+ ((4
* ((
Fib (n
+ 1))
^2 ))
* ((
Fib (n
+ 2))
^2 ))) by
Th25
.= (((((
Fib (n
+ 2))
- (
Fib (n
+ 1)))
^2 )
* (((
Fib (n
+ 2))
+ (
Fib (n
+ 1)))
^2 ))
+ ((4
* ((
Fib (n
+ 1))
^2 ))
* ((
Fib (n
+ 2))
^2 ))) by
Th30
.= ((((
Fib (n
+ 1))
^2 )
+ ((
Fib (n
+ 2))
^2 ))
^2 );
hence thesis by
PYTHTRIP:def 4;
end;