funct_9.miz
begin
reserve x,t,t1,t2,r,a,b for
Real;
reserve F,G for
real-valued
Function;
reserve k for
Nat;
reserve i for non
zero
Integer;
definition
let t be
Real;
let F be
Function;
::
FUNCT_9:def1
attr F is t
-periodic means t
<>
0 & for x holds (x
in (
dom F) iff (x
+ t)
in (
dom F)) & (x
in (
dom F) implies (F
. x)
= (F
. (x
+ t)));
end
definition
let F be
Function;
::
FUNCT_9:def2
attr F is
periodic means
:
Def2: ex t st F is t
-periodic;
end
theorem ::
FUNCT_9:1
Th1: F is t
-periodic iff t
<>
0 & for x st x
in (
dom F) holds (x
+ t)
in (
dom F) & (x
- t)
in (
dom F) & (F
. x)
= (F
. (x
+ t))
proof
thus F is t
-periodic implies t
<>
0 & for x st x
in (
dom F) holds (x
+ t)
in (
dom F) & (x
- t)
in (
dom F) & (F
. x)
= (F
. (x
+ t))
proof
assume
A1: F is t
-periodic;
for x st x
in (
dom F) holds (x
+ t)
in (
dom F) & (x
- t)
in (
dom F) & (F
. x)
= (F
. (x
+ t))
proof
let x;
assume x
in (
dom F);
then ((x
- t)
+ t)
in (
dom F);
hence thesis by
A1;
end;
hence thesis by
A1;
end;
assume
A2: t
<>
0 & for x st x
in (
dom F) holds ((x
+ t)
in (
dom F) & (x
- t)
in (
dom F)) & (F
. x)
= (F
. (x
+ t));
for x holds (x
in (
dom F) iff (x
+ t)
in (
dom F)) & (x
in (
dom F) implies (F
. x)
= (F
. (x
+ t)))
proof
let x;
x
in (
dom F) iff (x
+ t)
in (
dom F)
proof
(x
+ t)
in (
dom F) implies x
in (
dom F)
proof
assume (x
+ t)
in (
dom F);
then ((x
+ t)
- t)
in (
dom F) by
A2;
hence thesis;
end;
hence thesis by
A2;
end;
hence thesis by
A2;
end;
hence thesis by
A2;
end;
theorem ::
FUNCT_9:2
Th2: F is t
-periodic & G is t
-periodic implies (F
+ G) is t
-periodic
proof
assume that
A1: F is t
-periodic and
A2: G is t
-periodic;
A3: t
<>
0 & for x st x
in (
dom F) holds ((x
+ t)
in (
dom F) & (x
- t)
in (
dom F)) & (F
. x)
= (F
. (x
+ t)) by
A1,
Th1;
for x st x
in (
dom (F
+ G)) holds ((x
+ t)
in (
dom (F
+ G)) & (x
- t)
in (
dom (F
+ G))) & ((F
+ G)
. x)
= ((F
+ G)
. (x
+ t))
proof
let x;
assume
A4: x
in (
dom (F
+ G));
then
A5: x
in ((
dom F)
/\ (
dom G)) by
VALUED_1:def 1;
A6: ((
dom F)
/\ (
dom G))
c= (
dom F) & ((
dom F)
/\ (
dom G))
c= (
dom G) by
XBOOLE_1: 17;
then
A7: (x
+ t)
in (
dom F) & (x
- t)
in (
dom F) by
A1,
Th1,
A5;
(x
+ t)
in (
dom G) & (x
- t)
in (
dom G) by
A2,
Th1,
A5,
A6;
then
A8: (x
+ t)
in ((
dom F)
/\ (
dom G)) & (x
- t)
in ((
dom F)
/\ (
dom G)) by
A7,
XBOOLE_0:def 4;
then
A9: (x
+ t)
in (
dom (F
+ G)) & (x
- t)
in (
dom (F
+ G)) by
VALUED_1:def 1;
((F
+ G)
. x)
= ((F
. x)
+ (G
. x)) by
A4,
VALUED_1:def 1
.= ((F
. (x
+ t))
+ (G
. x)) by
A1,
A5,
A6
.= ((F
. (x
+ t))
+ (G
. (x
+ t))) by
A2,
A5,
A6
.= ((F
+ G)
. (x
+ t)) by
A9,
VALUED_1:def 1;
hence thesis by
A8,
VALUED_1:def 1;
end;
hence thesis by
A3,
Th1;
end;
Lm1: t
<>
0 implies (
REAL
--> a) is t
-periodic
proof
set F = (
REAL
--> a);
assume t
<>
0 ;
hence t
<>
0 ;
let x;
A1: x
in
REAL & (x
+ t)
in
REAL by
XREAL_0:def 1;
hence x
in (
dom F) iff (x
+ t)
in (
dom F);
assume x
in (
dom F);
thus (F
. x)
= a by
A1,
FUNCOP_1: 7
.= (F
. (x
+ t)) by
A1,
FUNCOP_1: 7;
end;
theorem ::
FUNCT_9:3
Th3: F is t
-periodic & G is t
-periodic implies (F
- G) is t
-periodic
proof
assume that
A1: F is t
-periodic and
A2: G is t
-periodic;
A3: t
<>
0 & for x st x
in (
dom F) holds ((x
+ t)
in (
dom F) & (x
- t)
in (
dom F)) & (F
. x)
= (F
. (x
+ t)) by
A1,
Th1;
for x st x
in (
dom (F
- G)) holds ((x
+ t)
in (
dom (F
- G)) & (x
- t)
in (
dom (F
- G))) & ((F
- G)
. x)
= ((F
- G)
. (x
+ t))
proof
let x;
assume
A4: x
in (
dom (F
- G));
then
A5: x
in ((
dom F)
/\ (
dom G)) by
VALUED_1: 12;
A6: ((
dom F)
/\ (
dom G))
c= (
dom F) & ((
dom F)
/\ (
dom G))
c= (
dom G) by
XBOOLE_1: 17;
then
A7: (x
+ t)
in (
dom F) & (x
- t)
in (
dom F) by
A1,
A5,
Th1;
(x
+ t)
in (
dom G) & (x
- t)
in (
dom G) by
A2,
Th1,
A5,
A6;
then
A8: (x
+ t)
in ((
dom F)
/\ (
dom G)) & (x
- t)
in ((
dom F)
/\ (
dom G)) by
A7,
XBOOLE_0:def 4;
then
A9: (x
+ t)
in (
dom (F
- G)) & (x
- t)
in (
dom (F
- G)) by
VALUED_1: 12;
((F
- G)
. x)
= ((F
. x)
- (G
. x)) by
A4,
VALUED_1: 13
.= ((F
. (x
+ t))
- (G
. x)) by
A1,
A5,
A6
.= ((F
. (x
+ t))
- (G
. (x
+ t))) by
A2,
A5,
A6
.= ((F
- G)
. (x
+ t)) by
A9,
VALUED_1: 13;
hence thesis by
A8,
VALUED_1: 12;
end;
hence thesis by
A3,
Th1;
end;
theorem ::
FUNCT_9:4
Th4: F is t
-periodic & G is t
-periodic implies (F
(#) G) is t
-periodic
proof
assume that
A1: F is t
-periodic and
A2: G is t
-periodic;
A3: t
<>
0 & for x st x
in (
dom F) holds ((x
+ t)
in (
dom F) & (x
- t)
in (
dom F)) & (F
. x)
= (F
. (x
+ t)) by
A1,
Th1;
for x st x
in (
dom (F
(#) G)) holds ((x
+ t)
in (
dom (F
(#) G)) & (x
- t)
in (
dom (F
(#) G))) & ((F
(#) G)
. x)
= ((F
(#) G)
. (x
+ t))
proof
let x;
assume
A4: x
in (
dom (F
(#) G));
then
A5: x
in ((
dom F)
/\ (
dom G)) by
VALUED_1:def 4;
A6: ((
dom F)
/\ (
dom G))
c= (
dom F) & ((
dom F)
/\ (
dom G))
c= (
dom G) by
XBOOLE_1: 17;
then
A7: (x
+ t)
in (
dom F) & (x
- t)
in (
dom F) by
A1,
Th1,
A5;
(x
+ t)
in (
dom G) & (x
- t)
in (
dom G) by
A2,
Th1,
A5,
A6;
then
A8: (x
+ t)
in ((
dom F)
/\ (
dom G)) & (x
- t)
in ((
dom F)
/\ (
dom G)) by
A7,
XBOOLE_0:def 4;
then
A9: (x
+ t)
in (
dom (F
(#) G)) & (x
- t)
in (
dom (F
(#) G)) by
VALUED_1:def 4;
((F
(#) G)
. x)
= ((F
. x)
* (G
. x)) by
A4,
VALUED_1:def 4
.= ((F
. (x
+ t))
* (G
. x)) by
A1,
A5,
A6
.= ((F
. (x
+ t))
* (G
. (x
+ t))) by
A2,
A5,
A6
.= ((F
(#) G)
. (x
+ t)) by
A9,
VALUED_1:def 4;
hence thesis by
A8,
VALUED_1:def 4;
end;
hence thesis by
A3,
Th1;
end;
theorem ::
FUNCT_9:5
Th5: F is t
-periodic & G is t
-periodic implies (F
/" G) is t
-periodic
proof
assume that
A1: F is t
-periodic and
A2: G is t
-periodic;
A3: t
<>
0 & for x st x
in (
dom F) holds ((x
+ t)
in (
dom F) & (x
- t)
in (
dom F)) & (F
. x)
= (F
. (x
+ t)) by
A1,
Th1;
for x st x
in (
dom (F
/" G)) holds ((x
+ t)
in (
dom (F
/" G)) & (x
- t)
in (
dom (F
/" G))) & ((F
/" G)
. x)
= ((F
/" G)
. (x
+ t))
proof
let x;
assume x
in (
dom (F
/" G));
then
A4: x
in ((
dom F)
/\ (
dom G)) by
VALUED_1: 16;
A5: ((
dom F)
/\ (
dom G))
c= (
dom F) & ((
dom F)
/\ (
dom G))
c= (
dom G) by
XBOOLE_1: 17;
then
A6: (x
+ t)
in (
dom F) & (x
- t)
in (
dom F) by
A1,
Th1,
A4;
(x
+ t)
in (
dom G) & (x
- t)
in (
dom G) by
A2,
Th1,
A4,
A5;
then
A7: (x
+ t)
in ((
dom F)
/\ (
dom G)) & (x
- t)
in ((
dom F)
/\ (
dom G)) by
A6,
XBOOLE_0:def 4;
((F
/" G)
. x)
= ((F
. x)
/ (G
. x)) by
VALUED_1: 17
.= ((F
. (x
+ t))
/ (G
. x)) by
A1,
A4,
A5
.= ((F
. (x
+ t))
/ (G
. (x
+ t))) by
A2,
A4,
A5
.= ((F
/" G)
. (x
+ t)) by
VALUED_1: 17;
hence thesis by
A7,
VALUED_1: 16;
end;
hence thesis by
A3,
Th1;
end;
theorem ::
FUNCT_9:6
Th6: F is t
-periodic implies (
- F) is t
-periodic
proof
assume
A1: F is t
-periodic;
then
A2: t
<>
0 & for x st x
in (
dom F) holds ((x
+ t)
in (
dom F) & (x
- t)
in (
dom F)) & (F
. x)
= (F
. (x
+ t)) by
Th1;
for x st x
in (
dom (
- F)) holds ((x
+ t)
in (
dom (
- F)) & (x
- t)
in (
dom (
- F))) & ((
- F)
. x)
= ((
- F)
. (x
+ t))
proof
let x;
assume x
in (
dom (
- F));
then
A3: x
in (
dom F) by
VALUED_1: 8;
then
A4: (x
+ t)
in (
dom F) & (x
- t)
in (
dom F) by
A1,
Th1;
((
- F)
. x)
= (
- (F
. x)) by
VALUED_1: 8
.= (
- (F
. (x
+ t))) by
A1,
A3
.= ((
- F)
. (x
+ t)) by
VALUED_1: 8;
hence thesis by
A4,
VALUED_1: 8;
end;
hence thesis by
A2,
Th1;
end;
theorem ::
FUNCT_9:7
Th7: F is t
-periodic implies (r
(#) F) is t
-periodic
proof
assume
A1: F is t
-periodic;
then
A2: t
<>
0 & for x st x
in (
dom F) holds ((x
+ t)
in (
dom F) & (x
- t)
in (
dom F)) & (F
. x)
= (F
. (x
+ t)) by
Th1;
for x st x
in (
dom (r
(#) F)) holds ((x
+ t)
in (
dom (r
(#) F)) & (x
- t)
in (
dom (r
(#) F))) & ((r
(#) F)
. x)
= ((r
(#) F)
. (x
+ t))
proof
let x;
assume
A3: x
in (
dom (r
(#) F));
then
A4: x
in (
dom F) by
VALUED_1:def 5;
then
A5: (x
+ t)
in (
dom F) & (x
- t)
in (
dom F) by
A1,
Th1;
then
A6: (x
+ t)
in (
dom (r
(#) F)) & (x
- t)
in (
dom (r
(#) F)) by
VALUED_1:def 5;
((r
(#) F)
. x)
= (r
* (F
. x)) by
A3,
VALUED_1:def 5
.= (r
* (F
. (x
+ t))) by
A1,
A4
.= ((r
(#) F)
. (x
+ t)) by
A6,
VALUED_1:def 5;
hence thesis by
A5,
VALUED_1:def 5;
end;
hence thesis by
A2,
Th1;
end;
theorem ::
FUNCT_9:8
Th8: F is t
-periodic implies (r
+ F) is t
-periodic
proof
assume
A1: F is t
-periodic;
then
A2: t
<>
0 & for x st x
in (
dom F) holds ((x
+ t)
in (
dom F) & (x
- t)
in (
dom F)) & (F
. x)
= (F
. (x
+ t)) by
Th1;
for x st x
in (
dom (r
+ F)) holds ((x
+ t)
in (
dom (r
+ F)) & (x
- t)
in (
dom (r
+ F))) & ((r
+ F)
. x)
= ((r
+ F)
. (x
+ t))
proof
let x;
assume
A3: x
in (
dom (r
+ F));
then
A4: x
in (
dom F) by
VALUED_1:def 2;
then
A5: (x
+ t)
in (
dom F) & (x
- t)
in (
dom F) by
A1,
Th1;
then
A6: (x
+ t)
in (
dom (r
+ F)) & (x
- t)
in (
dom (r
+ F)) by
VALUED_1:def 2;
((r
+ F)
. x)
= (r
+ (F
. x)) by
A3,
VALUED_1:def 2
.= (r
+ (F
. (x
+ t))) by
A1,
A4
.= ((r
+ F)
. (x
+ t)) by
A6,
VALUED_1:def 2;
hence thesis by
A5,
VALUED_1:def 2;
end;
hence thesis by
A2,
Th1;
end;
theorem ::
FUNCT_9:9
F is t
-periodic implies (F
- r) is t
-periodic by
Th8;
theorem ::
FUNCT_9:10
Th10: F is t
-periodic implies
|.F.| is t
-periodic
proof
assume
A1: F is t
-periodic;
then
A2: t
<>
0 & for x st x
in (
dom F) holds ((x
+ t)
in (
dom F) & (x
- t)
in (
dom F)) & (F
. x)
= (F
. (x
+ t)) by
Th1;
for x st x
in (
dom
|.F.|) holds ((x
+ t)
in (
dom
|.F.|) & (x
- t)
in (
dom
|.F.|)) & (
|.F.|
. x)
= (
|.F.|
. (x
+ t))
proof
let x;
assume
A3: x
in (
dom
|.F.|);
then
A4: x
in (
dom F) by
VALUED_1:def 11;
then
A5: (x
+ t)
in (
dom F) & (x
- t)
in (
dom F) by
A1,
Th1;
then
A6: (x
+ t)
in (
dom
|.F.|) & (x
- t)
in (
dom
|.F.|) by
VALUED_1:def 11;
(
|.F.|
. x)
=
|.(F
. x).| by
A3,
VALUED_1:def 11
.=
|.(F
. (x
+ t)).| by
A1,
A4
.= (
|.F.|
. (x
+ t)) by
A6,
VALUED_1:def 11;
hence thesis by
A5,
VALUED_1:def 11;
end;
hence thesis by
A2,
Th1;
end;
theorem ::
FUNCT_9:11
Th11: F is t
-periodic implies (F
" ) is t
-periodic
proof
assume
A1: F is t
-periodic;
then
A2: t
<>
0 & for x st x
in (
dom F) holds ((x
+ t)
in (
dom F) & (x
- t)
in (
dom F)) & (F
. x)
= (F
. (x
+ t)) by
Th1;
for x st x
in (
dom (F
" )) holds ((x
+ t)
in (
dom (F
" )) & (x
- t)
in (
dom (F
" ))) & ((F
" )
. x)
= ((F
" )
. (x
+ t))
proof
let x;
assume
A3: x
in (
dom (F
" ));
then
A4: x
in (
dom F) by
VALUED_1:def 7;
then
A5: (x
+ t)
in (
dom F) & (x
- t)
in (
dom F) by
A1,
Th1;
then
A6: (x
+ t)
in (
dom (F
" )) & (x
- t)
in (
dom (F
" )) by
VALUED_1:def 7;
((F
" )
. x)
= ((F
. x)
" ) by
A3,
VALUED_1:def 7
.= ((F
. (x
+ t))
" ) by
A1,
A4
.= ((F
" )
. (x
+ t)) by
A6,
VALUED_1:def 7;
hence thesis by
A5,
VALUED_1:def 7;
end;
hence thesis by
A2,
Th1;
end;
theorem ::
FUNCT_9:12
F is t
-periodic implies (F
^2 ) is t
-periodic by
Th4;
theorem ::
FUNCT_9:13
Th13: F is t
-periodic implies for x st x
in (
dom F) holds (F
. x)
= (F
. (x
- t))
proof
assume
A1: F is t
-periodic;
let x;
assume x
in (
dom F);
then (x
+ t)
in (
dom F) & (x
- t)
in (
dom F) by
A1,
Th1;
then (F
. (x
- t))
= (F
. ((x
- t)
+ t)) by
A1
.= (F
. x);
hence thesis;
end;
theorem ::
FUNCT_9:14
Th14: F is t
-periodic implies F is (
- t)
-periodic
proof
assume
A1: F is t
-periodic;
then
A2: (
- t)
<>
0 ;
for x st x
in (
dom F) holds ((x
+ (
- t))
in (
dom F) & (x
- (
- t))
in (
dom F)) & (F
. x)
= (F
. (x
+ (
- t)))
proof
let x;
assume x
in (
dom F);
then (x
+ t)
in (
dom F) & (x
- t)
in (
dom F) by
A1,
Th1;
hence thesis by
A1,
Th13;
end;
hence thesis by
A2,
Th1;
end;
theorem ::
FUNCT_9:15
F is t1
-periodic & F is t2
-periodic & (t1
+ t2)
<>
0 implies F is (t1
+ t2)
-periodic
proof
assume
A1: F is t1
-periodic & F is t2
-periodic & (t1
+ t2)
<>
0 ;
for x st x
in (
dom F) holds ((x
+ (t1
+ t2))
in (
dom F) & (x
- (t1
+ t2))
in (
dom F)) & (F
. x)
= (F
. (x
+ (t1
+ t2)))
proof
let x;
assume
A2: x
in (
dom F);
then (x
+ t1)
in (
dom F) & (x
- t1)
in (
dom F) by
A1,
Th1;
then ((x
+ t1)
+ t2)
in (
dom F) & ((x
- t1)
- t2)
in (
dom F) & (F
. (x
+ t1))
= (F
. ((x
+ t1)
+ t2)) by
A1,
Th1;
hence thesis by
A1,
A2;
end;
hence thesis by
A1,
Th1;
end;
theorem ::
FUNCT_9:16
F is t1
-periodic & F is t2
-periodic & (t1
- t2)
<>
0 implies F is (t1
- t2)
-periodic
proof
assume
A1: F is t1
-periodic & F is t2
-periodic & (t1
- t2)
<>
0 ;
for x st x
in (
dom F) holds ((x
+ (t1
- t2))
in (
dom F) & (x
- (t1
- t2))
in (
dom F)) & (F
. x)
= (F
. (x
+ (t1
- t2)))
proof
let x;
assume
A2: x
in (
dom F);
then (x
+ t1)
in (
dom F) & (x
- t1)
in (
dom F) by
A1,
Th1;
then
A3: ((x
+ t1)
- t2)
in (
dom F) & ((x
- t1)
+ t2)
in (
dom F) by
A1,
Th1;
A4: (x
- t2)
in (
dom F) by
A1,
Th1,
A2;
then (F
. ((x
- t2)
+ t1))
= (F
. (x
- t2)) by
A1
.= (F
. ((x
- t2)
+ t2)) by
A1,
A4
.= (F
. x);
hence thesis by
A3;
end;
hence thesis by
A1,
Th1;
end;
theorem ::
FUNCT_9:17
(t
<>
0 & for x st x
in (
dom F) holds ((x
+ t)
in (
dom F) & (x
- t)
in (
dom F) & (F
. (x
+ t))
= (F
. (x
- t)))) implies F is (2
* t)
-periodic & F is
periodic
proof
assume that
A1: t
<>
0 and
A2: for x st x
in (
dom F) holds ((x
+ t)
in (
dom F) & (x
- t)
in (
dom F) & (F
. (x
+ t))
= (F
. (x
- t)));
for x st x
in (
dom F) holds ((x
+ (2
* t))
in (
dom F) & (x
- (2
* t))
in (
dom F)) & (F
. x)
= (F
. (x
+ (2
* t)))
proof
let x;
assume x
in (
dom F);
then
A3: (x
+ t)
in (
dom F) & (x
- t)
in (
dom F) by
A2;
then
A4: ((x
+ t)
+ t)
in (
dom F) & ((x
- t)
- t)
in (
dom F) by
A2;
(F
. (x
+ (2
* t)))
= (F
. ((x
+ t)
+ t))
.= (F
. ((x
+ t)
- t)) by
A2,
A3
.= (F
. x);
hence thesis by
A4;
end;
then F is (2
* t)
-periodic by
A1,
Th1;
hence thesis;
end;
theorem ::
FUNCT_9:18
((t1
+ t2)
<>
0 & for x st x
in (
dom F) holds ((x
+ t1)
in (
dom F) & (x
- t1)
in (
dom F) & (x
+ t2)
in (
dom F) & (x
- t2)
in (
dom F) & (F
. (x
+ t1))
= (F
. (x
- t2)))) implies F is (t1
+ t2)
-periodic & F is
periodic
proof
assume that
A1: (t1
+ t2)
<>
0 and
A2: for x st x
in (
dom F) holds ((x
+ t1)
in (
dom F) & (x
- t1)
in (
dom F) & (x
+ t2)
in (
dom F) & (x
- t2)
in (
dom F) & (F
. (x
+ t1))
= (F
. (x
- t2)));
for x st x
in (
dom F) holds ((x
+ (t1
+ t2))
in (
dom F) & (x
- (t1
+ t2))
in (
dom F)) & (F
. x)
= (F
. (x
+ (t1
+ t2)))
proof
let x;
assume x
in (
dom F);
then
A3: (x
+ t1)
in (
dom F) & (x
- t1)
in (
dom F) & (x
+ t2)
in (
dom F) & (x
- t2)
in (
dom F) by
A2;
then
A4: ((x
+ t1)
+ t2)
in (
dom F) & ((x
- t1)
- t2)
in (
dom F) by
A2;
(F
. (x
+ (t1
+ t2)))
= (F
. ((x
+ t2)
+ t1))
.= (F
. ((x
+ t2)
- t2)) by
A2,
A3
.= (F
. x);
hence thesis by
A4;
end;
then F is (t1
+ t2)
-periodic by
Th1,
A1;
hence thesis;
end;
theorem ::
FUNCT_9:19
((t1
- t2)
<>
0 & for x st x
in (
dom F) holds ((x
+ t1)
in (
dom F) & (x
- t1)
in (
dom F) & (x
+ t2)
in (
dom F) & (x
- t2)
in (
dom F) & (F
. (x
+ t1))
= (F
. (x
+ t2)))) implies F is (t1
- t2)
-periodic & F is
periodic
proof
assume that
A1: (t1
- t2)
<>
0 and
A2: for x st x
in (
dom F) holds ((x
+ t1)
in (
dom F) & (x
- t1)
in (
dom F) & (x
+ t2)
in (
dom F) & (x
- t2)
in (
dom F) & (F
. (x
+ t1))
= (F
. (x
+ t2)));
for x st x
in (
dom F) holds ((x
+ (t1
- t2))
in (
dom F) & (x
- (t1
- t2))
in (
dom F)) & (F
. x)
= (F
. (x
+ (t1
- t2)))
proof
let x;
assume x
in (
dom F);
then
A3: (x
+ t1)
in (
dom F) & (x
- t1)
in (
dom F) & (x
+ t2)
in (
dom F) & (x
- t2)
in (
dom F) by
A2;
then
A4: ((x
+ t1)
- t2)
in (
dom F) & ((x
- t1)
+ t2)
in (
dom F) by
A2;
(F
. (x
+ (t1
- t2)))
= (F
. ((x
- t2)
+ t1))
.= (F
. ((x
- t2)
+ t2)) by
A2,
A3
.= (F
. x);
hence thesis by
A4;
end;
then F is (t1
- t2)
-periodic by
Th1,
A1;
hence thesis;
end;
theorem ::
FUNCT_9:20
(t
<>
0 & for x st x
in (
dom F) holds ((x
+ t)
in (
dom F) & (x
- t)
in (
dom F) & (F
. (x
+ t))
= ((F
. x)
" ))) implies F is (2
* t)
-periodic & F is
periodic
proof
assume that
A1: t
<>
0 and
A2: for x st x
in (
dom F) holds ((x
+ t)
in (
dom F) & (x
- t)
in (
dom F) & (F
. (x
+ t))
= ((F
. x)
" ));
for x st x
in (
dom F) holds ((x
+ (2
* t))
in (
dom F) & (x
- (2
* t))
in (
dom F)) & (F
. x)
= (F
. (x
+ (2
* t)))
proof
let x;
assume
A3: x
in (
dom F);
then
A4: (x
+ t)
in (
dom F) & (x
- t)
in (
dom F) by
A2;
then
A5: ((x
+ t)
+ t)
in (
dom F) & ((x
- t)
- t)
in (
dom F) by
A2;
(F
. (x
+ (2
* t)))
= (F
. ((x
+ t)
+ t))
.= ((F
. (x
+ t))
" ) by
A2,
A4
.= (((F
. x)
" )
" ) by
A2,
A3
.= (F
. x);
hence thesis by
A5;
end;
then F is (2
* t)
-periodic by
A1,
Th1;
hence thesis;
end;
Lm2:
sin is (2
*
PI )
-periodic by
SIN_COS: 24,
SIN_COS: 78,
XREAL_0:def 1;
registration
cluster
periodic
real-valued for
Function;
existence by
Lm2,
Def2;
cluster
periodic for
PartFunc of
REAL ,
REAL ;
existence
proof
take
sin ;
thus thesis by
Lm2;
end;
end
registration
let t be non
zero
Real;
cluster (
REAL
--> t) -> t
-periodic;
coherence by
Lm1;
cluster t
-periodic
real-valued for
Function;
existence
proof
take (
REAL
--> t);
thus thesis;
end;
end
registration
let t be non
zero
Real;
let F,G be t
-periodic
real-valued
Function;
cluster (F
+ G) -> t
-periodic;
coherence by
Th2;
cluster (F
- G) -> t
-periodic;
coherence by
Th3;
cluster (F
(#) G) -> t
-periodic;
coherence by
Th4;
cluster (F
/" G) -> t
-periodic;
coherence by
Th5;
end
registration
let F be
periodic
real-valued
Function;
cluster (
- F) ->
periodic;
coherence
proof
consider t such that
A1: F is t
-periodic by
Def2;
(
- F) is t
-periodic by
A1,
Th6;
hence thesis;
end;
end
registration
let F be
periodic
real-valued
Function;
let r be
Real;
cluster (r
(#) F) ->
periodic;
coherence
proof
consider t such that
A1: F is t
-periodic by
Def2;
(r
(#) F) is t
-periodic by
A1,
Th7;
hence thesis;
end;
cluster (r
+ F) ->
periodic;
coherence
proof
consider t such that
A2: F is t
-periodic by
Def2;
(r
+ F) is t
-periodic by
A2,
Th8;
hence thesis;
end;
cluster (F
- r) ->
periodic;
coherence ;
end
registration
let F be
periodic
real-valued
Function;
cluster
|.F.| ->
periodic;
coherence
proof
consider t such that
A1: F is t
-periodic by
Def2;
|.F.| is t
-periodic by
A1,
Th10;
hence thesis;
end;
cluster (F
" ) ->
periodic;
coherence
proof
consider t such that
A2: F is t
-periodic by
Def2;
(F
" ) is t
-periodic by
A2,
Th11;
hence thesis;
end;
cluster (F
^2 ) ->
periodic;
coherence
proof
consider t such that
A3: F is t
-periodic by
Def2;
(F
^2 ) is t
-periodic by
A3;
hence thesis;
end;
end
begin
Lm3:
cos is (2
*
PI )
-periodic by
SIN_COS: 24,
SIN_COS: 78,
XREAL_0:def 1;
registration
cluster
sin ->
periodic;
coherence by
Lm2;
cluster
cos ->
periodic;
coherence by
Lm3;
end
Lm4:
sin is ((2
*
PI )
* (k
+ 1))
-periodic
proof
defpred
X[
Nat] means
sin is ((2
*
PI )
* ($1
+ 1))
-periodic;
A1:
X[
0 ] by
Lm2;
A2: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat such that
A3:
sin is ((2
*
PI )
* (k
+ 1))
-periodic;
sin is ((2
*
PI )
* ((k
+ 1)
+ 1))
-periodic
proof
for x st x
in (
dom
sin ) holds (
sin
. x)
= (
sin
. (x
+ ((2
*
PI )
* ((k
+ 1)
+ 1))))
proof
let x;
assume
A4: x
in (
dom
sin );
(
sin
. (x
+ ((2
*
PI )
* (k
+ 1))))
= (
sin
. ((x
+ ((2
*
PI )
* (k
+ 1)))
+ (2
*
PI ))) by
SIN_COS: 78;
hence thesis by
A3,
A4;
end;
then ((2
*
PI )
* ((k
+ 1)
+ 1))
<>
0 & for x st x
in (
dom
sin ) holds ((x
+ ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom
sin ) & (x
- ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom
sin )) & (
sin
. x)
= (
sin
. (x
+ ((2
*
PI )
* ((k
+ 1)
+ 1)))) by
SIN_COS: 24,
XREAL_0:def 1;
hence thesis by
Th1;
end;
hence thesis;
end;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
FUNCT_9:21
sin is ((2
*
PI )
* i)
-periodic
proof
i
in
INT by
INT_1:def 2;
then
consider k be
Nat such that
A1: i
= k or i
= (
- k) by
INT_1:def 1;
per cases by
A1;
suppose i
= k;
then ex m be
Nat st i
= (m
+ 1) by
NAT_1: 6;
hence thesis by
Lm4;
end;
suppose
A2: i
= (
- k);
then
consider m be
Nat such that
A3: (
- i)
= (m
+ 1) by
NAT_1: 6;
sin is ((2
*
PI )
* (m
+ 1))
-periodic by
Lm4;
then
sin is (
- ((2
*
PI )
* (m
+ 1)))
-periodic by
Th14;
hence thesis by
A2,
A3;
end;
end;
Lm5:
cos is ((2
*
PI )
* (k
+ 1))
-periodic
proof
defpred
X[
Nat] means
cos is ((2
*
PI )
* ($1
+ 1))
-periodic;
A1:
X[
0 ] by
Lm3;
A2: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat such that
A3:
cos is ((2
*
PI )
* (k
+ 1))
-periodic;
cos is ((2
*
PI )
* ((k
+ 1)
+ 1))
-periodic
proof
for x st x
in (
dom
cos ) holds (
cos
. x)
= (
cos
. (x
+ ((2
*
PI )
* ((k
+ 1)
+ 1))))
proof
let x;
assume
A4: x
in (
dom
cos );
(
cos
. (x
+ ((2
*
PI )
* (k
+ 1))))
= (
cos
. ((x
+ ((2
*
PI )
* (k
+ 1)))
+ (2
*
PI ))) by
SIN_COS: 78;
hence thesis by
A3,
A4;
end;
then ((2
*
PI )
* ((k
+ 1)
+ 1))
<>
0 & for x st x
in (
dom
cos ) holds ((x
+ ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom
cos ) & (x
- ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom
cos )) & (
cos
. x)
= (
cos
. (x
+ ((2
*
PI )
* ((k
+ 1)
+ 1)))) by
SIN_COS: 24,
XREAL_0:def 1;
hence thesis by
Th1;
end;
hence thesis;
end;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
FUNCT_9:22
cos is ((2
*
PI )
* i)
-periodic
proof
i
in
INT by
INT_1:def 2;
then
consider k be
Nat such that
A1: i
= k or i
= (
- k) by
INT_1:def 1;
per cases by
A1;
suppose i
= k;
then ex m be
Nat st i
= (m
+ 1) by
NAT_1: 6;
hence thesis by
Lm5;
end;
suppose
A2: i
= (
- k);
then
consider m be
Nat such that
A3: (
- i)
= (m
+ 1) by
NAT_1: 6;
cos is ((2
*
PI )
* (m
+ 1))
-periodic by
Lm5;
then
cos is (
- ((2
*
PI )
* (m
+ 1)))
-periodic by
Th14;
hence thesis by
A2,
A3;
end;
end;
Lm6:
cosec is (2
*
PI )
-periodic
proof
for x st x
in (
dom
cosec ) holds ((x
+ (2
*
PI ))
in (
dom
cosec ) & (x
- (2
*
PI ))
in (
dom
cosec )) & (
cosec
. x)
= (
cosec
. (x
+ (2
*
PI )))
proof
let x;
assume
A1: x
in (
dom
cosec );
then x
in ((
dom
sin )
\ (
sin
"
{
0 })) by
RFUNCT_1:def 2;
then x
in (
dom
sin ) & not x
in (
sin
"
{
0 }) by
XBOOLE_0:def 5;
then
A2: not (
sin
. x)
in
{
0 } by
FUNCT_1:def 7;
then (
sin
. x)
<>
0 by
TARSKI:def 1;
then (
sin
. (x
+ (2
*
PI )))
<>
0 by
SIN_COS: 78;
then not (
sin
. (x
+ (2
*
PI )))
in
{
0 } by
TARSKI:def 1;
then (x
+ (2
*
PI ))
in (
dom
sin ) & not (x
+ (2
*
PI ))
in (
sin
"
{
0 }) by
FUNCT_1:def 7,
SIN_COS: 24,
XREAL_0:def 1;
then
A3: (x
+ (2
*
PI ))
in ((
dom
sin )
\ (
sin
"
{
0 })) by
XBOOLE_0:def 5;
(x
- (2
*
PI ))
in (
dom
sin ) by
SIN_COS: 24,
XREAL_0:def 1;
then (
sin
. (x
- (2
*
PI )))
= (
sin
. ((x
- (2
*
PI ))
+ (2
*
PI ))) by
Lm2;
then (x
- (2
*
PI ))
in (
dom
sin ) & not (x
- (2
*
PI ))
in (
sin
"
{
0 }) by
A2,
FUNCT_1:def 7,
SIN_COS: 24,
XREAL_0:def 1;
then
A4: (x
- (2
*
PI ))
in ((
dom
sin )
\ (
sin
"
{
0 })) by
XBOOLE_0:def 5;
then (x
+ (2
*
PI ))
in (
dom
cosec ) & (x
- (2
*
PI ))
in (
dom
cosec ) by
A3,
RFUNCT_1:def 2;
then (
cosec
. (x
+ (2
*
PI )))
= ((
sin
. (x
+ (2
*
PI )))
" ) by
RFUNCT_1:def 2
.= ((
sin
. x)
" ) by
SIN_COS: 78
.= (
cosec
. x) by
A1,
RFUNCT_1:def 2;
hence thesis by
A3,
A4,
RFUNCT_1:def 2;
end;
hence thesis by
Th1;
end;
Lm7:
sec is (2
*
PI )
-periodic
proof
for x st x
in (
dom
sec ) holds ((x
+ (2
*
PI ))
in (
dom
sec ) & (x
- (2
*
PI ))
in (
dom
sec )) & (
sec
. x)
= (
sec
. (x
+ (2
*
PI )))
proof
let x;
assume
A1: x
in (
dom
sec );
then x
in ((
dom
cos )
\ (
cos
"
{
0 })) by
RFUNCT_1:def 2;
then x
in (
dom
cos ) & not x
in (
cos
"
{
0 }) by
XBOOLE_0:def 5;
then
A2: not (
cos
. x)
in
{
0 } by
FUNCT_1:def 7;
then (
cos
. x)
<>
0 by
TARSKI:def 1;
then (
cos
. (x
+ (2
*
PI )))
<>
0 by
SIN_COS: 78;
then not (
cos
. (x
+ (2
*
PI )))
in
{
0 } by
TARSKI:def 1;
then (x
+ (2
*
PI ))
in (
dom
cos ) & not (x
+ (2
*
PI ))
in (
cos
"
{
0 }) by
FUNCT_1:def 7,
SIN_COS: 24,
XREAL_0:def 1;
then
A3: (x
+ (2
*
PI ))
in ((
dom
cos )
\ (
cos
"
{
0 })) by
XBOOLE_0:def 5;
(x
- (2
*
PI ))
in (
dom
cos ) by
SIN_COS: 24,
XREAL_0:def 1;
then (
cos
. (x
- (2
*
PI )))
= (
cos
. ((x
- (2
*
PI ))
+ (2
*
PI ))) by
Lm3;
then (x
- (2
*
PI ))
in (
dom
cos ) & not (x
- (2
*
PI ))
in (
cos
"
{
0 }) by
A2,
FUNCT_1:def 7,
SIN_COS: 24,
XREAL_0:def 1;
then
A4: (x
- (2
*
PI ))
in ((
dom
cos )
\ (
cos
"
{
0 })) by
XBOOLE_0:def 5;
then (x
+ (2
*
PI ))
in (
dom
sec ) & (x
- (2
*
PI ))
in (
dom
sec ) by
A3,
RFUNCT_1:def 2;
then (
sec
. (x
+ (2
*
PI )))
= ((
cos
. (x
+ (2
*
PI )))
" ) by
RFUNCT_1:def 2
.= ((
cos
. x)
" ) by
SIN_COS: 78
.= (
sec
. x) by
A1,
RFUNCT_1:def 2;
hence thesis by
A3,
A4,
RFUNCT_1:def 2;
end;
hence thesis by
Th1;
end;
registration
cluster
cosec ->
periodic;
coherence by
Lm6;
cluster
sec ->
periodic;
coherence by
Lm7;
end
Lm8:
sec is ((2
*
PI )
* (k
+ 1))
-periodic
proof
defpred
X[
Nat] means
sec is ((2
*
PI )
* ($1
+ 1))
-periodic;
A1:
X[
0 ] by
Lm7;
A2: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat such that
A3:
sec is ((2
*
PI )
* (k
+ 1))
-periodic;
sec is ((2
*
PI )
* ((k
+ 1)
+ 1))
-periodic
proof
for x st x
in (
dom
sec ) holds ((x
+ ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom
sec ) & (x
- ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom
sec )) & (
sec
. x)
= (
sec
. (x
+ ((2
*
PI )
* ((k
+ 1)
+ 1))))
proof
let x;
assume x
in (
dom
sec );
then
A4: (x
+ ((2
*
PI )
* (k
+ 1)))
in (
dom
sec ) & (x
- ((2
*
PI )
* (k
+ 1)))
in (
dom
sec ) & (
sec
. x)
= (
sec
. (x
+ ((2
*
PI )
* (k
+ 1)))) by
A3,
Th1;
then (x
+ ((2
*
PI )
* (k
+ 1)))
in ((
dom
cos )
\ (
cos
"
{
0 })) & (x
- ((2
*
PI )
* (k
+ 1)))
in ((
dom
cos )
\ (
cos
"
{
0 })) by
RFUNCT_1:def 2;
then (x
+ ((2
*
PI )
* (k
+ 1)))
in (
dom
cos ) & not (x
+ ((2
*
PI )
* (k
+ 1)))
in (
cos
"
{
0 }) & (x
- ((2
*
PI )
* (k
+ 1)))
in (
dom
cos ) & not (x
- ((2
*
PI )
* (k
+ 1)))
in (
cos
"
{
0 }) by
XBOOLE_0:def 5;
then
A5: not (
cos
. (x
+ ((2
*
PI )
* (k
+ 1))))
in
{
0 } & not (
cos
. (x
- ((2
*
PI )
* (k
+ 1))))
in
{
0 } by
FUNCT_1:def 7;
then (
cos
. (x
+ ((2
*
PI )
* (k
+ 1))))
<>
0 by
TARSKI:def 1;
then (
cos
. ((x
+ ((2
*
PI )
* (k
+ 1)))
+ (2
*
PI )))
<>
0 by
SIN_COS: 78;
then not (
cos
. ((x
+ ((2
*
PI )
* (k
+ 1)))
+ (2
*
PI )))
in
{
0 } by
TARSKI:def 1;
then ((x
+ ((2
*
PI )
* (k
+ 1)))
+ (2
*
PI ))
in (
dom
cos ) & not ((x
+ ((2
*
PI )
* (k
+ 1)))
+ (2
*
PI ))
in (
cos
"
{
0 }) by
FUNCT_1:def 7,
SIN_COS: 24,
XREAL_0:def 1;
then
A6: (x
+ ((2
*
PI )
* ((k
+ 1)
+ 1)))
in ((
dom
cos )
\ (
cos
"
{
0 })) by
XBOOLE_0:def 5;
(x
- ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom
cos ) by
SIN_COS: 24,
XREAL_0:def 1;
then (
cos
. (x
- ((2
*
PI )
* ((k
+ 1)
+ 1))))
= (
cos
. ((x
- ((2
*
PI )
* ((k
+ 1)
+ 1)))
+ (2
*
PI ))) by
Lm3;
then (x
- ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom
cos ) & not (x
- ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
cos
"
{
0 }) by
A5,
FUNCT_1:def 7,
SIN_COS: 24,
XREAL_0:def 1;
then
A7: (x
- ((2
*
PI )
* ((k
+ 1)
+ 1)))
in ((
dom
cos )
\ (
cos
"
{
0 })) by
XBOOLE_0:def 5;
then (x
+ ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom
sec ) & (x
- ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom
sec ) by
A6,
RFUNCT_1:def 2;
then (
sec
. (x
+ ((2
*
PI )
* ((k
+ 1)
+ 1))))
= ((
cos
. ((x
+ ((2
*
PI )
* (k
+ 1)))
+ (2
*
PI )))
" ) by
RFUNCT_1:def 2
.= ((
cos
. (x
+ ((2
*
PI )
* (k
+ 1))))
" ) by
SIN_COS: 78
.= (
sec
. x) by
A4,
RFUNCT_1:def 2;
hence thesis by
A6,
A7,
RFUNCT_1:def 2;
end;
hence thesis by
Th1;
end;
hence thesis;
end;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
FUNCT_9:23
sec is ((2
*
PI )
* i)
-periodic
proof
i
in
INT by
INT_1:def 2;
then
consider k be
Nat such that
A1: i
= k or i
= (
- k) by
INT_1:def 1;
per cases by
A1;
suppose i
= k;
then ex m be
Nat st i
= (m
+ 1) by
NAT_1: 6;
hence thesis by
Lm8;
end;
suppose
A2: i
= (
- k);
then
consider m be
Nat such that
A3: (
- i)
= (m
+ 1) by
NAT_1: 6;
sec is ((2
*
PI )
* (m
+ 1))
-periodic by
Lm8;
then
sec is (
- ((2
*
PI )
* (m
+ 1)))
-periodic by
Th14;
hence thesis by
A2,
A3;
end;
end;
Lm9:
cosec is ((2
*
PI )
* (k
+ 1))
-periodic
proof
defpred
X[
Nat] means
cosec is ((2
*
PI )
* ($1
+ 1))
-periodic;
A1:
X[
0 ] by
Lm6;
A2: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat such that
A3:
cosec is ((2
*
PI )
* (k
+ 1))
-periodic;
cosec is ((2
*
PI )
* ((k
+ 1)
+ 1))
-periodic
proof
for x st x
in (
dom
cosec ) holds ((x
+ ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom
cosec ) & (x
- ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom
cosec )) & (
cosec
. x)
= (
cosec
. (x
+ ((2
*
PI )
* ((k
+ 1)
+ 1))))
proof
let x;
assume x
in (
dom
cosec );
then
A4: (x
+ ((2
*
PI )
* (k
+ 1)))
in (
dom
cosec ) & (x
- ((2
*
PI )
* (k
+ 1)))
in (
dom
cosec ) & (
cosec
. x)
= (
cosec
. (x
+ ((2
*
PI )
* (k
+ 1)))) by
A3,
Th1;
then (x
+ ((2
*
PI )
* (k
+ 1)))
in ((
dom
sin )
\ (
sin
"
{
0 })) & (x
- ((2
*
PI )
* (k
+ 1)))
in ((
dom
sin )
\ (
sin
"
{
0 })) by
RFUNCT_1:def 2;
then (x
+ ((2
*
PI )
* (k
+ 1)))
in (
dom
sin ) & not (x
+ ((2
*
PI )
* (k
+ 1)))
in (
sin
"
{
0 }) & (x
- ((2
*
PI )
* (k
+ 1)))
in (
dom
sin ) & not (x
- ((2
*
PI )
* (k
+ 1)))
in (
sin
"
{
0 }) by
XBOOLE_0:def 5;
then
A5: not (
sin
. (x
+ ((2
*
PI )
* (k
+ 1))))
in
{
0 } & not (
sin
. (x
- ((2
*
PI )
* (k
+ 1))))
in
{
0 } by
FUNCT_1:def 7;
then (
sin
. (x
+ ((2
*
PI )
* (k
+ 1))))
<>
0 by
TARSKI:def 1;
then (
sin
. ((x
+ ((2
*
PI )
* (k
+ 1)))
+ (2
*
PI )))
<>
0 by
SIN_COS: 78;
then not (
sin
. ((x
+ ((2
*
PI )
* (k
+ 1)))
+ (2
*
PI )))
in
{
0 } by
TARSKI:def 1;
then ((x
+ ((2
*
PI )
* (k
+ 1)))
+ (2
*
PI ))
in (
dom
sin ) & not ((x
+ ((2
*
PI )
* (k
+ 1)))
+ (2
*
PI ))
in (
sin
"
{
0 }) by
FUNCT_1:def 7,
SIN_COS: 24,
XREAL_0:def 1;
then
A6: (x
+ ((2
*
PI )
* ((k
+ 1)
+ 1)))
in ((
dom
sin )
\ (
sin
"
{
0 })) by
XBOOLE_0:def 5;
(x
- ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom
sin ) by
SIN_COS: 24,
XREAL_0:def 1;
then (
sin
. (x
- ((2
*
PI )
* ((k
+ 1)
+ 1))))
= (
sin
. ((x
- ((2
*
PI )
* ((k
+ 1)
+ 1)))
+ (2
*
PI ))) by
Lm2;
then (x
- ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom
sin ) & not (x
- ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
sin
"
{
0 }) by
A5,
FUNCT_1:def 7,
SIN_COS: 24,
XREAL_0:def 1;
then
A7: (x
- ((2
*
PI )
* ((k
+ 1)
+ 1)))
in ((
dom
sin )
\ (
sin
"
{
0 })) by
XBOOLE_0:def 5;
then (x
+ ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom
cosec ) & (x
- ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom
cosec ) by
A6,
RFUNCT_1:def 2;
then (
cosec
. (x
+ ((2
*
PI )
* ((k
+ 1)
+ 1))))
= ((
sin
. ((x
+ ((2
*
PI )
* (k
+ 1)))
+ (2
*
PI )))
" ) by
RFUNCT_1:def 2
.= ((
sin
. (x
+ ((2
*
PI )
* (k
+ 1))))
" ) by
SIN_COS: 78
.= (
cosec
. x) by
A4,
RFUNCT_1:def 2;
hence thesis by
A6,
A7,
RFUNCT_1:def 2;
end;
hence thesis by
Th1;
end;
hence thesis;
end;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
FUNCT_9:24
cosec is ((2
*
PI )
* i)
-periodic
proof
i
in
INT by
INT_1:def 2;
then
consider k be
Nat such that
A1: i
= k or i
= (
- k) by
INT_1:def 1;
per cases by
A1;
suppose i
= k;
then ex m be
Nat st i
= (m
+ 1) by
NAT_1: 6;
hence thesis by
Lm9;
end;
suppose
A2: i
= (
- k);
then
consider m be
Nat such that
A3: (
- i)
= (m
+ 1) by
NAT_1: 6;
cosec is ((2
*
PI )
* (m
+ 1))
-periodic by
Lm9;
then
cosec is (
- ((2
*
PI )
* (m
+ 1)))
-periodic by
Th14;
hence thesis by
A2,
A3;
end;
end;
Lm10:
tan is
PI
-periodic
proof
for x st x
in (
dom
tan ) holds ((x
+
PI )
in (
dom
tan ) & (x
-
PI )
in (
dom
tan )) & (
tan
. x)
= (
tan
. (x
+
PI ))
proof
let x;
assume
A1: x
in (
dom
tan );
then x
in ((
dom
sin )
/\ ((
dom
cos )
\ (
cos
"
{
0 }))) by
RFUNCT_1:def 1;
then x
in (
dom
sin ) & x
in ((
dom
cos )
\ (
cos
"
{
0 })) by
XBOOLE_0:def 4;
then x
in (
dom
sin ) & x
in (
dom
cos ) & not x
in (
cos
"
{
0 }) by
XBOOLE_0:def 5;
then not (
cos
. x)
in
{
0 } by
FUNCT_1:def 7;
then
A2: (
cos
. x)
<>
0 by
TARSKI:def 1;
A3: (
cos
. (x
+
PI ))
= (
- (
cos
. x)) by
SIN_COS: 78;
then not (
cos
. (x
+
PI ))
in
{
0 } by
A2,
TARSKI:def 1;
then (x
+
PI )
in (
dom
sin ) & (x
+
PI )
in (
dom
cos ) & not (x
+
PI )
in (
cos
"
{
0 }) by
FUNCT_1:def 7,
SIN_COS: 24,
XREAL_0:def 1;
then (x
+
PI )
in (
dom
sin ) & (x
+
PI )
in ((
dom
cos )
\ (
cos
"
{
0 })) by
XBOOLE_0:def 5;
then
A4: (x
+
PI )
in ((
dom
sin )
/\ ((
dom
cos )
\ (
cos
"
{
0 }))) by
XBOOLE_0:def 4;
(
cos
. (x
-
PI ))
= (
cos
. ((x
-
PI )
+ (2
*
PI ))) by
SIN_COS: 78
.= (
cos
. (x
+
PI ));
then not (
cos
. (x
-
PI ))
in
{
0 } by
A2,
A3,
TARSKI:def 1;
then (x
-
PI )
in (
dom
sin ) & (x
-
PI )
in (
dom
cos ) & not (x
-
PI )
in (
cos
"
{
0 }) by
FUNCT_1:def 7,
SIN_COS: 24,
XREAL_0:def 1;
then (x
-
PI )
in (
dom
sin ) & (x
-
PI )
in ((
dom
cos )
\ (
cos
"
{
0 })) by
XBOOLE_0:def 5;
then
A5: (x
-
PI )
in ((
dom
sin )
/\ ((
dom
cos )
\ (
cos
"
{
0 }))) by
XBOOLE_0:def 4;
then (x
+
PI )
in (
dom
tan ) & (x
-
PI )
in (
dom
tan ) by
A4,
RFUNCT_1:def 1;
then (
tan
. (x
+
PI ))
= ((
sin
. (x
+
PI ))
/ (
cos
. (x
+
PI ))) by
RFUNCT_1:def 1
.= ((
- (
sin
. x))
/ (
cos
. (x
+
PI ))) by
SIN_COS: 78
.= ((
- (
sin
. x))
/ (
- (
cos
. x))) by
SIN_COS: 78
.= ((
sin
. x)
/ (
cos
. x)) by
XCMPLX_1: 191
.= (
tan
. x) by
A1,
RFUNCT_1:def 1;
hence thesis by
A4,
A5,
RFUNCT_1:def 1;
end;
hence thesis by
Th1;
end;
Lm11:
cot is
PI
-periodic
proof
for x st x
in (
dom
cot ) holds ((x
+
PI )
in (
dom
cot ) & (x
-
PI )
in (
dom
cot )) & (
cot
. x)
= (
cot
. (x
+
PI ))
proof
let x;
assume
A1: x
in (
dom
cot );
then x
in ((
dom
cos )
/\ ((
dom
sin )
\ (
sin
"
{
0 }))) by
RFUNCT_1:def 1;
then x
in (
dom
cos ) & x
in ((
dom
sin )
\ (
sin
"
{
0 })) by
XBOOLE_0:def 4;
then x
in (
dom
cos ) & x
in (
dom
sin ) & not x
in (
sin
"
{
0 }) by
XBOOLE_0:def 5;
then not (
sin
. x)
in
{
0 } by
FUNCT_1:def 7;
then
A2: (
sin
. x)
<>
0 by
TARSKI:def 1;
A3: (
sin
. (x
+
PI ))
= (
- (
sin
. x)) by
SIN_COS: 78;
then not (
sin
. (x
+
PI ))
in
{
0 } by
A2,
TARSKI:def 1;
then (x
+
PI )
in (
dom
cos ) & (x
+
PI )
in (
dom
sin ) & not (x
+
PI )
in (
sin
"
{
0 }) by
FUNCT_1:def 7,
SIN_COS: 24,
XREAL_0:def 1;
then (x
+
PI )
in (
dom
cos ) & (x
+
PI )
in ((
dom
sin )
\ (
sin
"
{
0 })) by
XBOOLE_0:def 5;
then
A4: (x
+
PI )
in ((
dom
cos )
/\ ((
dom
sin )
\ (
sin
"
{
0 }))) by
XBOOLE_0:def 4;
(
sin
. (x
-
PI ))
= (
sin
. ((x
-
PI )
+ (2
*
PI ))) by
SIN_COS: 78
.= (
sin
. (x
+
PI ));
then not (
sin
. (x
-
PI ))
in
{
0 } by
A2,
A3,
TARSKI:def 1;
then (x
-
PI )
in (
dom
cos ) & (x
-
PI )
in (
dom
sin ) & not (x
-
PI )
in (
sin
"
{
0 }) by
FUNCT_1:def 7,
SIN_COS: 24,
XREAL_0:def 1;
then (x
-
PI )
in (
dom
cos ) & (x
-
PI )
in ((
dom
sin )
\ (
sin
"
{
0 })) by
XBOOLE_0:def 5;
then
A5: (x
-
PI )
in ((
dom
cos )
/\ ((
dom
sin )
\ (
sin
"
{
0 }))) by
XBOOLE_0:def 4;
then (x
+
PI )
in (
dom
cot ) & (x
-
PI )
in (
dom
cot ) by
A4,
RFUNCT_1:def 1;
then (
cot
. (x
+
PI ))
= ((
cos
. (x
+
PI ))
/ (
sin
. (x
+
PI ))) by
RFUNCT_1:def 1
.= ((
- (
cos
. x))
/ (
sin
. (x
+
PI ))) by
SIN_COS: 78
.= ((
- (
cos
. x))
/ (
- (
sin
. x))) by
SIN_COS: 78
.= ((
cos
. x)
/ (
sin
. x)) by
XCMPLX_1: 191
.= (
cot
. x) by
A1,
RFUNCT_1:def 1;
hence thesis by
A4,
A5,
RFUNCT_1:def 1;
end;
hence thesis by
Th1;
end;
registration
cluster
tan ->
periodic;
coherence by
Lm10;
cluster
cot ->
periodic;
coherence by
Lm11;
end
Lm12:
tan is (
PI
* (k
+ 1))
-periodic
proof
defpred
X[
Nat] means
tan is (
PI
* ($1
+ 1))
-periodic;
A1:
X[
0 ] by
Lm10;
A2: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat such that
A3:
tan is (
PI
* (k
+ 1))
-periodic;
tan is (
PI
* ((k
+ 1)
+ 1))
-periodic
proof
for x st x
in (
dom
tan ) holds ((x
+ (
PI
* ((k
+ 1)
+ 1)))
in (
dom
tan ) & (x
- (
PI
* ((k
+ 1)
+ 1)))
in (
dom
tan )) & (
tan
. x)
= (
tan
. (x
+ (
PI
* ((k
+ 1)
+ 1))))
proof
let x;
assume x
in (
dom
tan );
then
A4: (x
+ (
PI
* (k
+ 1)))
in (
dom
tan ) & (x
- (
PI
* (k
+ 1)))
in (
dom
tan ) & (
tan
. x)
= (
tan
. (x
+ (
PI
* (k
+ 1)))) by
A3,
Th1;
then (x
+ (
PI
* (k
+ 1)))
in ((
dom
sin )
/\ ((
dom
cos )
\ (
cos
"
{
0 }))) & (x
- (
PI
* (k
+ 1)))
in ((
dom
sin )
/\ ((
dom
cos )
\ (
cos
"
{
0 }))) by
RFUNCT_1:def 1;
then (x
+ (
PI
* (k
+ 1)))
in (
dom
sin ) & (x
+ (
PI
* (k
+ 1)))
in ((
dom
cos )
\ (
cos
"
{
0 })) & (x
- (
PI
* (k
+ 1)))
in (
dom
sin ) & (x
- (
PI
* (k
+ 1)))
in ((
dom
cos )
\ (
cos
"
{
0 })) by
XBOOLE_0:def 4;
then (x
+ (
PI
* (k
+ 1)))
in (
dom
sin ) & (x
+ (
PI
* (k
+ 1)))
in (
dom
cos ) & not (x
+ (
PI
* (k
+ 1)))
in (
cos
"
{
0 }) & (x
- (
PI
* (k
+ 1)))
in (
dom
sin ) & (x
- (
PI
* (k
+ 1)))
in (
dom
cos ) & not (x
- (
PI
* (k
+ 1)))
in (
cos
"
{
0 }) by
XBOOLE_0:def 5;
then not (
cos
. (x
+ (
PI
* (k
+ 1))))
in
{
0 } & not (
cos
. (x
- (
PI
* (k
+ 1))))
in
{
0 } by
FUNCT_1:def 7;
then
A5: (
cos
. (x
+ (
PI
* (k
+ 1))))
<>
0 & (
cos
. (x
- (
PI
* (k
+ 1))))
<>
0 by
TARSKI:def 1;
(
cos
. ((x
+ (
PI
* (k
+ 1)))
+
PI ))
= (
- (
cos
. (x
+ (
PI
* (k
+ 1))))) by
SIN_COS: 78;
then not (
cos
. ((x
+ (
PI
* (k
+ 1)))
+
PI ))
in
{
0 } by
A5,
TARSKI:def 1;
then ((x
+ (
PI
* (k
+ 1)))
+
PI )
in (
dom
sin ) & ((x
+ (
PI
* (k
+ 1)))
+
PI )
in (
dom
cos ) & not ((x
+ (
PI
* (k
+ 1)))
+
PI )
in (
cos
"
{
0 }) by
FUNCT_1:def 7,
SIN_COS: 24,
XREAL_0:def 1;
then ((x
+ (
PI
* (k
+ 1)))
+
PI )
in (
dom
sin ) & ((x
+ (
PI
* (k
+ 1)))
+
PI )
in ((
dom
cos )
\ (
cos
"
{
0 })) by
XBOOLE_0:def 5;
then
A6: ((x
+ (
PI
* (k
+ 1)))
+
PI )
in ((
dom
sin )
/\ ((
dom
cos )
\ (
cos
"
{
0 }))) by
XBOOLE_0:def 4;
(
cos
. ((x
- (
PI
* ((k
+ 1)
+ 1)))
+
PI ))
= (
- (
cos
. (x
- (
PI
* ((k
+ 1)
+ 1))))) by
SIN_COS: 78;
then (
cos
. (x
- (
PI
* ((k
+ 1)
+ 1))))
= (
- (
cos
. (x
- (
PI
* (k
+ 1)))));
then not (
cos
. (x
- (
PI
* ((k
+ 1)
+ 1))))
in
{
0 } by
A5,
TARSKI:def 1;
then (x
- (
PI
* ((k
+ 1)
+ 1)))
in (
dom
sin ) & (x
- (
PI
* ((k
+ 1)
+ 1)))
in (
dom
cos ) & not (x
- (
PI
* ((k
+ 1)
+ 1)))
in (
cos
"
{
0 }) by
FUNCT_1:def 7,
SIN_COS: 24,
XREAL_0:def 1;
then (x
- (
PI
* ((k
+ 1)
+ 1)))
in (
dom
sin ) & (x
- (
PI
* ((k
+ 1)
+ 1)))
in ((
dom
cos )
\ (
cos
"
{
0 })) by
XBOOLE_0:def 5;
then
A7: (x
- (
PI
* ((k
+ 1)
+ 1)))
in ((
dom
sin )
/\ ((
dom
cos )
\ (
cos
"
{
0 }))) by
XBOOLE_0:def 4;
then (x
+ (
PI
* ((k
+ 1)
+ 1)))
in (
dom
tan ) & (x
- (
PI
* ((k
+ 1)
+ 1)))
in (
dom
tan ) by
A6,
RFUNCT_1:def 1;
then (
tan
. (x
+ (
PI
* ((k
+ 1)
+ 1))))
= ((
sin
. ((x
+ (
PI
* (k
+ 1)))
+
PI ))
/ (
cos
. ((x
+ (
PI
* (k
+ 1)))
+
PI ))) by
RFUNCT_1:def 1
.= ((
- (
sin
. (x
+ (
PI
* (k
+ 1)))))
/ (
cos
. ((x
+ (
PI
* (k
+ 1)))
+
PI ))) by
SIN_COS: 78
.= ((
- (
sin
. (x
+ (
PI
* (k
+ 1)))))
/ (
- (
cos
. (x
+ (
PI
* (k
+ 1)))))) by
SIN_COS: 78
.= ((
sin
. (x
+ (
PI
* (k
+ 1))))
/ (
cos
. (x
+ (
PI
* (k
+ 1))))) by
XCMPLX_1: 191
.= (
tan
. x) by
A4,
RFUNCT_1:def 1;
hence thesis by
A7,
A6,
RFUNCT_1:def 1;
end;
hence thesis by
Th1;
end;
hence thesis;
end;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
FUNCT_9:25
tan is (
PI
* i)
-periodic
proof
i
in
INT by
INT_1:def 2;
then
consider k be
Nat such that
A1: i
= k or i
= (
- k) by
INT_1:def 1;
per cases by
A1;
suppose i
= k;
then ex m be
Nat st i
= (m
+ 1) by
NAT_1: 6;
hence thesis by
Lm12;
end;
suppose
A2: i
= (
- k);
then
consider m be
Nat such that
A3: (
- i)
= (m
+ 1) by
NAT_1: 6;
tan is (
PI
* (m
+ 1))
-periodic by
Lm12;
then
tan is (
- (
PI
* (m
+ 1)))
-periodic by
Th14;
hence thesis by
A2,
A3;
end;
end;
Lm13:
cot is (
PI
* (k
+ 1))
-periodic
proof
defpred
X[
Nat] means
cot is (
PI
* ($1
+ 1))
-periodic;
A1:
X[
0 ] by
Lm11;
A2: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat such that
A3:
cot is (
PI
* (k
+ 1))
-periodic;
cot is (
PI
* ((k
+ 1)
+ 1))
-periodic
proof
for x st x
in (
dom
cot ) holds ((x
+ (
PI
* ((k
+ 1)
+ 1)))
in (
dom
cot ) & (x
- (
PI
* ((k
+ 1)
+ 1)))
in (
dom
cot )) & (
cot
. x)
= (
cot
. (x
+ (
PI
* ((k
+ 1)
+ 1))))
proof
let x;
assume x
in (
dom
cot );
then
A4: (x
+ (
PI
* (k
+ 1)))
in (
dom
cot ) & (x
- (
PI
* (k
+ 1)))
in (
dom
cot ) & (
cot
. x)
= (
cot
. (x
+ (
PI
* (k
+ 1)))) by
A3,
Th1;
then (x
+ (
PI
* (k
+ 1)))
in ((
dom
cos )
/\ ((
dom
sin )
\ (
sin
"
{
0 }))) & (x
- (
PI
* (k
+ 1)))
in ((
dom
cos )
/\ ((
dom
sin )
\ (
sin
"
{
0 }))) by
RFUNCT_1:def 1;
then (x
+ (
PI
* (k
+ 1)))
in (
dom
cos ) & (x
+ (
PI
* (k
+ 1)))
in ((
dom
sin )
\ (
sin
"
{
0 })) & (x
- (
PI
* (k
+ 1)))
in (
dom
cos ) & (x
- (
PI
* (k
+ 1)))
in ((
dom
sin )
\ (
sin
"
{
0 })) by
XBOOLE_0:def 4;
then (x
+ (
PI
* (k
+ 1)))
in (
dom
cos ) & (x
+ (
PI
* (k
+ 1)))
in (
dom
sin ) & not (x
+ (
PI
* (k
+ 1)))
in (
sin
"
{
0 }) & (x
- (
PI
* (k
+ 1)))
in (
dom
cos ) & (x
- (
PI
* (k
+ 1)))
in (
dom
sin ) & not (x
- (
PI
* (k
+ 1)))
in (
sin
"
{
0 }) by
XBOOLE_0:def 5;
then not (
sin
. (x
+ (
PI
* (k
+ 1))))
in
{
0 } & not (
sin
. (x
- (
PI
* (k
+ 1))))
in
{
0 } by
FUNCT_1:def 7;
then
A5: (
sin
. (x
+ (
PI
* (k
+ 1))))
<>
0 & (
sin
. (x
- (
PI
* (k
+ 1))))
<>
0 by
TARSKI:def 1;
(
sin
. ((x
+ (
PI
* (k
+ 1)))
+
PI ))
= (
- (
sin
. (x
+ (
PI
* (k
+ 1))))) by
SIN_COS: 78;
then not (
sin
. ((x
+ (
PI
* (k
+ 1)))
+
PI ))
in
{
0 } by
A5,
TARSKI:def 1;
then ((x
+ (
PI
* (k
+ 1)))
+
PI )
in (
dom
cos ) & ((x
+ (
PI
* (k
+ 1)))
+
PI )
in (
dom
sin ) & not ((x
+ (
PI
* (k
+ 1)))
+
PI )
in (
sin
"
{
0 }) by
FUNCT_1:def 7,
SIN_COS: 24,
XREAL_0:def 1;
then ((x
+ (
PI
* (k
+ 1)))
+
PI )
in (
dom
cos ) & ((x
+ (
PI
* (k
+ 1)))
+
PI )
in ((
dom
sin )
\ (
sin
"
{
0 })) by
XBOOLE_0:def 5;
then
A6: ((x
+ (
PI
* (k
+ 1)))
+
PI )
in ((
dom
cos )
/\ ((
dom
sin )
\ (
sin
"
{
0 }))) by
XBOOLE_0:def 4;
(
sin
. ((x
- (
PI
* ((k
+ 1)
+ 1)))
+
PI ))
= (
- (
sin
. (x
- (
PI
* ((k
+ 1)
+ 1))))) by
SIN_COS: 78;
then (
sin
. (x
- (
PI
* ((k
+ 1)
+ 1))))
= (
- (
sin
. (x
- (
PI
* (k
+ 1)))));
then not (
sin
. (x
- (
PI
* ((k
+ 1)
+ 1))))
in
{
0 } by
A5,
TARSKI:def 1;
then (x
- (
PI
* ((k
+ 1)
+ 1)))
in (
dom
cos ) & (x
- (
PI
* ((k
+ 1)
+ 1)))
in (
dom
sin ) & not (x
- (
PI
* ((k
+ 1)
+ 1)))
in (
sin
"
{
0 }) by
FUNCT_1:def 7,
SIN_COS: 24,
XREAL_0:def 1;
then (x
- (
PI
* ((k
+ 1)
+ 1)))
in (
dom
cos ) & (x
- (
PI
* ((k
+ 1)
+ 1)))
in ((
dom
sin )
\ (
sin
"
{
0 })) by
XBOOLE_0:def 5;
then
A7: (x
- (
PI
* ((k
+ 1)
+ 1)))
in ((
dom
cos )
/\ ((
dom
sin )
\ (
sin
"
{
0 }))) by
XBOOLE_0:def 4;
then (x
+ (
PI
* ((k
+ 1)
+ 1)))
in (
dom
cot ) & (x
- (
PI
* ((k
+ 1)
+ 1)))
in (
dom
cot ) by
A6,
RFUNCT_1:def 1;
then (
cot
. (x
+ (
PI
* ((k
+ 1)
+ 1))))
= ((
cos
. ((x
+ (
PI
* (k
+ 1)))
+
PI ))
/ (
sin
. ((x
+ (
PI
* (k
+ 1)))
+
PI ))) by
RFUNCT_1:def 1
.= ((
- (
cos
. (x
+ (
PI
* (k
+ 1)))))
/ (
sin
. ((x
+ (
PI
* (k
+ 1)))
+
PI ))) by
SIN_COS: 78
.= ((
- (
cos
. (x
+ (
PI
* (k
+ 1)))))
/ (
- (
sin
. (x
+ (
PI
* (k
+ 1)))))) by
SIN_COS: 78
.= ((
cos
. (x
+ (
PI
* (k
+ 1))))
/ (
sin
. (x
+ (
PI
* (k
+ 1))))) by
XCMPLX_1: 191
.= (
cot
. x) by
A4,
RFUNCT_1:def 1;
hence thesis by
A7,
A6,
RFUNCT_1:def 1;
end;
hence thesis by
Th1;
end;
hence thesis;
end;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
FUNCT_9:26
cot is (
PI
* i)
-periodic
proof
i
in
INT by
INT_1:def 2;
then
consider k be
Nat such that
A1: i
= k or i
= (
- k) by
INT_1:def 1;
per cases by
A1;
suppose i
= k;
then ex m be
Nat st i
= (m
+ 1) by
NAT_1: 6;
hence thesis by
Lm13;
end;
suppose
A2: i
= (
- k);
then
consider m be
Nat such that
A3: (
- i)
= (m
+ 1) by
NAT_1: 6;
cot is (
PI
* (m
+ 1))
-periodic by
Lm13;
then
cot is (
- (
PI
* (m
+ 1)))
-periodic by
Th14;
hence thesis by
A2,
A3;
end;
end;
Lm14:
|.
sin .| is
PI
-periodic
proof
for x st x
in (
dom
|.
sin .|) holds ((x
+
PI )
in (
dom
|.
sin .|) & (x
-
PI )
in (
dom
|.
sin .|)) & (
|.
sin .|
. x)
= (
|.
sin .|
. (x
+
PI ))
proof
let x;
assume
A1: x
in (
dom
|.
sin .|);
A2: (x
+
PI )
in (
dom
sin ) & (x
-
PI )
in (
dom
sin ) by
SIN_COS: 24,
XREAL_0:def 1;
then (x
+
PI )
in (
dom
|.
sin .|) & (x
-
PI )
in (
dom
|.
sin .|) by
VALUED_1:def 11;
then (
|.
sin .|
. (x
+
PI ))
=
|.(
sin (x
+
PI )).| by
VALUED_1:def 11
.=
|.(
- (
sin
. x)).| by
SIN_COS: 78
.=
|.(
sin
. x).| by
COMPLEX1: 52
.= (
|.
sin .|
. x) by
A1,
VALUED_1:def 11;
hence thesis by
A2,
VALUED_1:def 11;
end;
hence thesis by
Th1;
end;
Lm15:
|.
cos .| is
PI
-periodic
proof
for x st x
in (
dom
|.
cos .|) holds ((x
+
PI )
in (
dom
|.
cos .|) & (x
-
PI )
in (
dom
|.
cos .|)) & (
|.
cos .|
. x)
= (
|.
cos .|
. (x
+
PI ))
proof
let x;
assume
A1: x
in (
dom
|.
cos .|);
A2: (x
+
PI )
in (
dom
cos ) & (x
-
PI )
in (
dom
cos ) by
SIN_COS: 24,
XREAL_0:def 1;
then (x
+
PI )
in (
dom
|.
cos .|) & (x
-
PI )
in (
dom
|.
cos .|) by
VALUED_1:def 11;
then (
|.
cos .|
. (x
+
PI ))
=
|.(
cos (x
+
PI )).| by
VALUED_1:def 11
.=
|.(
- (
cos
. x)).| by
SIN_COS: 78
.=
|.(
cos
. x).| by
COMPLEX1: 52
.= (
|.
cos .|
. x) by
A1,
VALUED_1:def 11;
hence thesis by
A2,
VALUED_1:def 11;
end;
hence thesis by
Th1;
end;
Lm16:
|.
sin .| is (
PI
* (k
+ 1))
-periodic
proof
defpred
X[
Nat] means
|.
sin .| is (
PI
* ($1
+ 1))
-periodic;
A1:
X[
0 ] by
Lm14;
A2: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat such that
A3:
|.
sin .| is (
PI
* (k
+ 1))
-periodic;
|.
sin .| is (
PI
* ((k
+ 1)
+ 1))
-periodic
proof
for x st x
in (
dom
|.
sin .|) holds ((x
+ (
PI
* ((k
+ 1)
+ 1)))
in (
dom
|.
sin .|) & (x
- (
PI
* ((k
+ 1)
+ 1)))
in (
dom
|.
sin .|)) & (
|.
sin .|
. x)
= (
|.
sin .|
. (x
+ (
PI
* ((k
+ 1)
+ 1))))
proof
let x;
assume
A4: x
in (
dom
|.
sin .|);
then
A5: (x
+ (
PI
* (k
+ 1)))
in (
dom
|.
sin .|) & (x
- (
PI
* (k
+ 1)))
in (
dom
|.
sin .|) by
A3,
Th1;
A6: (x
+ (
PI
* ((k
+ 1)
+ 1)))
in (
dom
sin ) & (x
- (
PI
* ((k
+ 1)
+ 1)))
in (
dom
sin ) by
SIN_COS: 24,
XREAL_0:def 1;
then (x
+ (
PI
* ((k
+ 1)
+ 1)))
in (
dom
|.
sin .|) & (x
- (
PI
* ((k
+ 1)
+ 1)))
in (
dom
|.
sin .|) by
VALUED_1:def 11;
then (
|.
sin .|
. (x
+ (
PI
* ((k
+ 1)
+ 1))))
=
|.(
sin
. ((x
+ (
PI
* (k
+ 1)))
+
PI )).| by
VALUED_1:def 11
.=
|.(
- (
sin
. (x
+ (
PI
* (k
+ 1))))).| by
SIN_COS: 78
.=
|.(
sin
. (x
+ (
PI
* (k
+ 1)))).| by
COMPLEX1: 52
.= (
|.
sin .|
. (x
+ (
PI
* (k
+ 1)))) by
A5,
VALUED_1:def 11;
hence thesis by
A3,
A4,
A6,
VALUED_1:def 11;
end;
hence thesis by
Th1;
end;
hence thesis;
end;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
FUNCT_9:27
|.
sin .| is (
PI
* i)
-periodic
proof
i
in
INT by
INT_1:def 2;
then
consider k be
Nat such that
A1: i
= k or i
= (
- k) by
INT_1:def 1;
per cases by
A1;
suppose i
= k;
then ex m be
Nat st i
= (m
+ 1) by
NAT_1: 6;
hence thesis by
Lm16;
end;
suppose
A2: i
= (
- k);
then
consider m be
Nat such that
A3: (
- i)
= (m
+ 1) by
NAT_1: 6;
|.
sin .| is (
PI
* (m
+ 1))
-periodic by
Lm16;
then
|.
sin .| is (
- (
PI
* (m
+ 1)))
-periodic by
Th14;
hence thesis by
A2,
A3;
end;
end;
Lm17:
|.
cos .| is (
PI
* (k
+ 1))
-periodic
proof
defpred
X[
Nat] means
|.
cos .| is (
PI
* ($1
+ 1))
-periodic;
A1:
X[
0 ] by
Lm15;
A2: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat such that
A3:
|.
cos .| is (
PI
* (k
+ 1))
-periodic;
|.
cos .| is (
PI
* ((k
+ 1)
+ 1))
-periodic
proof
for x st x
in (
dom
|.
cos .|) holds ((x
+ (
PI
* ((k
+ 1)
+ 1)))
in (
dom
|.
cos .|) & (x
- (
PI
* ((k
+ 1)
+ 1)))
in (
dom
|.
cos .|)) & (
|.
cos .|
. x)
= (
|.
cos .|
. (x
+ (
PI
* ((k
+ 1)
+ 1))))
proof
let x;
assume
A4: x
in (
dom
|.
cos .|);
then
A5: (x
+ (
PI
* (k
+ 1)))
in (
dom
|.
cos .|) & (x
- (
PI
* (k
+ 1)))
in (
dom
|.
cos .|) by
A3,
Th1;
A6: (x
+ (
PI
* ((k
+ 1)
+ 1)))
in (
dom
cos ) & (x
- (
PI
* ((k
+ 1)
+ 1)))
in (
dom
cos ) by
SIN_COS: 24,
XREAL_0:def 1;
then (x
+ (
PI
* ((k
+ 1)
+ 1)))
in (
dom
|.
cos .|) & (x
- (
PI
* ((k
+ 1)
+ 1)))
in (
dom
|.
cos .|) by
VALUED_1:def 11;
then (
|.
cos .|
. (x
+ (
PI
* ((k
+ 1)
+ 1))))
=
|.(
cos
. ((x
+ (
PI
* (k
+ 1)))
+
PI )).| by
VALUED_1:def 11
.=
|.(
- (
cos
. (x
+ (
PI
* (k
+ 1))))).| by
SIN_COS: 78
.=
|.(
cos
. (x
+ (
PI
* (k
+ 1)))).| by
COMPLEX1: 52
.= (
|.
cos .|
. (x
+ (
PI
* (k
+ 1)))) by
A5,
VALUED_1:def 11;
hence thesis by
A3,
A4,
A6,
VALUED_1:def 11;
end;
hence thesis by
Th1;
end;
hence thesis;
end;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
FUNCT_9:28
|.
cos .| is (
PI
* i)
-periodic
proof
i
in
INT by
INT_1:def 2;
then
consider k be
Nat such that
A1: i
= k or i
= (
- k) by
INT_1:def 1;
per cases by
A1;
suppose i
= k;
then ex m be
Nat st i
= (m
+ 1) by
NAT_1: 6;
hence thesis by
Lm17;
end;
suppose
A2: i
= (
- k);
then
consider m be
Nat such that
A3: (
- i)
= (m
+ 1) by
NAT_1: 6;
|.
cos .| is (
PI
* (m
+ 1))
-periodic by
Lm17;
then
|.
cos .| is (
- (
PI
* (m
+ 1)))
-periodic by
Th14;
hence thesis by
A2,
A3;
end;
end;
Lm18: (
|.
sin .|
+
|.
cos .|) is (
PI
/ 2)
-periodic
proof
for x st x
in (
dom (
|.
sin .|
+
|.
cos .|)) holds ((x
+ (
PI
/ 2))
in (
dom (
|.
sin .|
+
|.
cos .|)) & (x
- (
PI
/ 2))
in (
dom (
|.
sin .|
+
|.
cos .|))) & ((
|.
sin .|
+
|.
cos .|)
. x)
= ((
|.
sin .|
+
|.
cos .|)
. (x
+ (
PI
/ 2)))
proof
let x;
assume
A1: x
in (
dom (
|.
sin .|
+
|.
cos .|));
A2: (
dom (
|.
sin .|
+
|.
cos .|))
=
REAL & (
dom
|.
sin .|)
=
REAL & (
dom
|.
cos .|)
=
REAL
proof
A3: (
dom (
|.
sin .|
+
|.
cos .|))
= ((
dom
|.
sin .|)
/\ (
dom
|.
cos .|)) by
VALUED_1:def 1;
(
dom
|.
sin .|)
=
REAL & (
dom
|.
cos .|)
=
REAL by
SIN_COS: 24,
VALUED_1:def 11;
hence thesis by
A3;
end;
then ((
|.
sin .|
+
|.
cos .|)
. (x
+ (
PI
/ 2)))
= ((
|.
sin .|
. (x
+ (
PI
/ 2)))
+ (
|.
cos .|
. (x
+ (
PI
/ 2)))) by
VALUED_1:def 1,
XREAL_0:def 1
.= (
|.(
sin
. (x
+ (
PI
/ 2))).|
+ (
|.
cos .|
. (x
+ (
PI
/ 2)))) by
A2,
VALUED_1:def 11,
XREAL_0:def 1
.= (
|.(
sin
. (x
+ (
PI
/ 2))).|
+
|.(
cos
. (x
+ (
PI
/ 2))).|) by
A2,
VALUED_1:def 11,
XREAL_0:def 1
.= (
|.(
cos
. x).|
+
|.(
cos
. (x
+ (
PI
/ 2))).|) by
SIN_COS: 78
.= (
|.(
cos
. x).|
+
|.(
- (
sin
. x)).|) by
SIN_COS: 78
.= (
|.(
cos
. x).|
+
|.(
sin
. x).|) by
COMPLEX1: 52
.= ((
|.
cos .|
. x)
+
|.(
sin
. x).|) by
A1,
A2,
VALUED_1:def 11
.= ((
|.
cos .|
. x)
+ (
|.
sin .|
. x)) by
A1,
A2,
VALUED_1:def 11
.= ((
|.
sin .|
+
|.
cos .|)
. x) by
A1,
VALUED_1:def 1;
hence thesis by
A2,
XREAL_0:def 1;
end;
hence thesis by
Th1;
end;
Lm19: (
|.
sin .|
+
|.
cos .|) is ((
PI
/ 2)
* (k
+ 1))
-periodic
proof
defpred
X[
Nat] means (
|.
sin .|
+
|.
cos .|) is ((
PI
/ 2)
* ($1
+ 1))
-periodic;
A1:
X[
0 ] by
Lm18;
A2: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat such that
A3: (
|.
sin .|
+
|.
cos .|) is ((
PI
/ 2)
* (k
+ 1))
-periodic;
A4: (
dom (
|.
sin .|
+
|.
cos .|))
=
REAL & (
dom
|.
sin .|)
=
REAL & (
dom
|.
cos .|)
=
REAL
proof
A5: (
dom (
|.
sin .|
+
|.
cos .|))
= ((
dom
|.
sin .|)
/\ (
dom
|.
cos .|)) by
VALUED_1:def 1;
(
dom
|.
sin .|)
=
REAL & (
dom
|.
cos .|)
=
REAL by
SIN_COS: 24,
VALUED_1:def 11;
hence thesis by
A5;
end;
(
|.
sin .|
+
|.
cos .|) is ((
PI
/ 2)
* ((k
+ 1)
+ 1))
-periodic
proof
for x st x
in (
dom (
|.
sin .|
+
|.
cos .|)) holds ((x
+ ((
PI
/ 2)
* ((k
+ 1)
+ 1)))
in (
dom (
|.
sin .|
+
|.
cos .|)) & (x
- ((
PI
/ 2)
* ((k
+ 1)
+ 1)))
in (
dom (
|.
sin .|
+
|.
cos .|))) & ((
|.
sin .|
+
|.
cos .|)
. x)
= ((
|.
sin .|
+
|.
cos .|)
. (x
+ ((
PI
/ 2)
* ((k
+ 1)
+ 1))))
proof
let x;
assume x
in (
dom (
|.
sin .|
+
|.
cos .|));
((
|.
sin .|
+
|.
cos .|)
. (x
+ ((
PI
/ 2)
* ((k
+ 1)
+ 1))))
= ((
|.
sin .|
. (x
+ ((
PI
/ 2)
* ((k
+ 1)
+ 1))))
+ (
|.
cos .|
. (x
+ ((
PI
/ 2)
* ((k
+ 1)
+ 1))))) by
A4,
VALUED_1:def 1,
XREAL_0:def 1
.= (
|.(
sin
. (x
+ ((
PI
/ 2)
* ((k
+ 1)
+ 1)))).|
+ (
|.
cos .|
. (x
+ ((
PI
/ 2)
* ((k
+ 1)
+ 1))))) by
A4,
VALUED_1:def 11,
XREAL_0:def 1
.= (
|.(
sin
. ((x
+ ((
PI
/ 2)
* (k
+ 1)))
+ (
PI
/ 2))).|
+
|.(
cos
. ((x
+ ((
PI
/ 2)
* (k
+ 1)))
+ (
PI
/ 2))).|) by
A4,
VALUED_1:def 11,
XREAL_0:def 1
.= (
|.(
cos
. (x
+ ((
PI
/ 2)
* (k
+ 1)))).|
+
|.(
cos
. ((x
+ ((
PI
/ 2)
* (k
+ 1)))
+ (
PI
/ 2))).|) by
SIN_COS: 78
.= (
|.(
cos
. (x
+ ((
PI
/ 2)
* (k
+ 1)))).|
+
|.(
- (
sin
. (x
+ ((
PI
/ 2)
* (k
+ 1))))).|) by
SIN_COS: 78
.= (
|.(
cos
. (x
+ ((
PI
/ 2)
* (k
+ 1)))).|
+
|.(
sin
. (x
+ ((
PI
/ 2)
* (k
+ 1)))).|) by
COMPLEX1: 52
.= ((
|.
cos .|
. (x
+ ((
PI
/ 2)
* (k
+ 1))))
+
|.(
sin
. (x
+ ((
PI
/ 2)
* (k
+ 1)))).|) by
A4,
VALUED_1:def 11,
XREAL_0:def 1
.= ((
|.
cos .|
. (x
+ ((
PI
/ 2)
* (k
+ 1))))
+ (
|.
sin .|
. (x
+ ((
PI
/ 2)
* (k
+ 1))))) by
A4,
VALUED_1:def 11,
XREAL_0:def 1
.= ((
|.
sin .|
+
|.
cos .|)
. (x
+ ((
PI
/ 2)
* (k
+ 1)))) by
A4,
VALUED_1:def 1,
XREAL_0:def 1;
hence thesis by
A3,
A4,
XREAL_0:def 1;
end;
hence thesis by
Th1;
end;
hence thesis;
end;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
FUNCT_9:29
(
|.
sin .|
+
|.
cos .|) is ((
PI
/ 2)
* i)
-periodic
proof
i
in
INT by
INT_1:def 2;
then
consider k be
Nat such that
A1: i
= k or i
= (
- k) by
INT_1:def 1;
per cases by
A1;
suppose i
= k;
then ex m be
Nat st i
= (m
+ 1) by
NAT_1: 6;
hence thesis by
Lm19;
end;
suppose
A2: i
= (
- k);
then
consider m be
Nat such that
A3: (
- i)
= (m
+ 1) by
NAT_1: 6;
(
|.
sin .|
+
|.
cos .|) is ((
PI
/ 2)
* (m
+ 1))
-periodic by
Lm19;
then (
|.
sin .|
+
|.
cos .|) is (
- ((
PI
/ 2)
* (m
+ 1)))
-periodic by
Th14;
hence thesis by
A2,
A3;
end;
end;
Lm20: (
sin
^2 ) is
PI
-periodic
proof
for x st x
in (
dom (
sin
^2 )) holds ((x
+
PI )
in (
dom (
sin
^2 )) & (x
-
PI )
in (
dom (
sin
^2 ))) & ((
sin
^2 )
. x)
= ((
sin
^2 )
. (x
+
PI ))
proof
let x;
assume x
in (
dom (
sin
^2 ));
A1: (x
+
PI )
in (
dom
sin ) & (x
-
PI )
in (
dom
sin ) by
SIN_COS: 24,
XREAL_0:def 1;
((
sin
^2 )
. (x
+
PI ))
= ((
sin (x
+
PI ))
^2 ) by
VALUED_1: 11
.= ((
- (
sin
. x))
^2 ) by
SIN_COS: 78
.= ((
sin
. x)
^2 )
.= ((
sin
^2 )
. x) by
VALUED_1: 11;
hence thesis by
A1,
VALUED_1: 11;
end;
hence thesis by
Th1;
end;
Lm21: (
cos
^2 ) is
PI
-periodic
proof
for x st x
in (
dom (
cos
^2 )) holds ((x
+
PI )
in (
dom (
cos
^2 )) & (x
-
PI )
in (
dom (
cos
^2 ))) & ((
cos
^2 )
. x)
= ((
cos
^2 )
. (x
+
PI ))
proof
let x;
assume x
in (
dom (
cos
^2 ));
A1: (x
+
PI )
in (
dom
cos ) & (x
-
PI )
in (
dom
cos ) by
SIN_COS: 24,
XREAL_0:def 1;
((
cos
^2 )
. (x
+
PI ))
= ((
cos (x
+
PI ))
^2 ) by
VALUED_1: 11
.= ((
- (
cos
. x))
^2 ) by
SIN_COS: 78
.= ((
cos
. x)
^2 )
.= ((
cos
^2 )
. x) by
VALUED_1: 11;
hence thesis by
A1,
VALUED_1: 11;
end;
hence thesis by
Th1;
end;
Lm22: (
sin
^2 ) is (
PI
* (k
+ 1))
-periodic
proof
defpred
X[
Nat] means (
sin
^2 ) is (
PI
* ($1
+ 1))
-periodic;
A1:
X[
0 ] by
Lm20;
A2: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat such that
A3: (
sin
^2 ) is (
PI
* (k
+ 1))
-periodic;
(
sin
^2 ) is (
PI
* ((k
+ 1)
+ 1))
-periodic
proof
for x st x
in (
dom (
sin
^2 )) holds ((x
+ (
PI
* ((k
+ 1)
+ 1)))
in (
dom (
sin
^2 )) & (x
- (
PI
* ((k
+ 1)
+ 1)))
in (
dom (
sin
^2 ))) & ((
sin
^2 )
. x)
= ((
sin
^2 )
. (x
+ (
PI
* ((k
+ 1)
+ 1))))
proof
let x;
assume
A4: x
in (
dom (
sin
^2 ));
A5: (x
+ (
PI
* ((k
+ 1)
+ 1)))
in (
dom
sin ) & (x
- (
PI
* ((k
+ 1)
+ 1)))
in (
dom
sin ) by
SIN_COS: 24,
XREAL_0:def 1;
((
sin
^2 )
. (x
+ (
PI
* ((k
+ 1)
+ 1))))
= ((
sin
. ((x
+ (
PI
* (k
+ 1)))
+
PI ))
^2 ) by
VALUED_1: 11
.= ((
- (
sin
. (x
+ (
PI
* (k
+ 1)))))
^2 ) by
SIN_COS: 78
.= ((
sin
. (x
+ (
PI
* (k
+ 1))))
^2 )
.= ((
sin
^2 )
. (x
+ (
PI
* (k
+ 1)))) by
VALUED_1: 11;
hence thesis by
A3,
A4,
A5,
VALUED_1: 11;
end;
hence thesis by
Th1;
end;
hence thesis;
end;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
FUNCT_9:30
(
sin
^2 ) is (
PI
* i)
-periodic
proof
i
in
INT by
INT_1:def 2;
then
consider k be
Nat such that
A1: i
= k or i
= (
- k) by
INT_1:def 1;
per cases by
A1;
suppose i
= k;
then ex m be
Nat st i
= (m
+ 1) by
NAT_1: 6;
hence thesis by
Lm22;
end;
suppose
A2: i
= (
- k);
then
consider m be
Nat such that
A3: (
- i)
= (m
+ 1) by
NAT_1: 6;
(
sin
^2 ) is (
PI
* (m
+ 1))
-periodic by
Lm22;
then (
sin
^2 ) is (
- (
PI
* (m
+ 1)))
-periodic by
Th14;
hence thesis by
A2,
A3;
end;
end;
Lm23: (
cos
^2 ) is (
PI
* (k
+ 1))
-periodic
proof
defpred
X[
Nat] means (
cos
^2 ) is (
PI
* ($1
+ 1))
-periodic;
A1:
X[
0 ] by
Lm21;
A2: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat such that
A3: (
cos
^2 ) is (
PI
* (k
+ 1))
-periodic;
(
cos
^2 ) is (
PI
* ((k
+ 1)
+ 1))
-periodic
proof
for x st x
in (
dom (
cos
^2 )) holds ((x
+ (
PI
* ((k
+ 1)
+ 1)))
in (
dom (
cos
^2 )) & (x
- (
PI
* ((k
+ 1)
+ 1)))
in (
dom (
cos
^2 ))) & ((
cos
^2 )
. x)
= ((
cos
^2 )
. (x
+ (
PI
* ((k
+ 1)
+ 1))))
proof
let x;
assume
A4: x
in (
dom (
cos
^2 ));
A5: (x
+ (
PI
* ((k
+ 1)
+ 1)))
in (
dom
cos ) & (x
- (
PI
* ((k
+ 1)
+ 1)))
in (
dom
cos ) by
SIN_COS: 24,
XREAL_0:def 1;
((
cos
^2 )
. (x
+ (
PI
* ((k
+ 1)
+ 1))))
= ((
cos
. ((x
+ (
PI
* (k
+ 1)))
+
PI ))
^2 ) by
VALUED_1: 11
.= ((
- (
cos
. (x
+ (
PI
* (k
+ 1)))))
^2 ) by
SIN_COS: 78
.= ((
cos
. (x
+ (
PI
* (k
+ 1))))
^2 )
.= ((
cos
^2 )
. (x
+ (
PI
* (k
+ 1)))) by
VALUED_1: 11;
hence thesis by
A3,
A4,
A5,
VALUED_1: 11;
end;
hence thesis by
Th1;
end;
hence thesis;
end;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
FUNCT_9:31
(
cos
^2 ) is (
PI
* i)
-periodic
proof
i
in
INT by
INT_1:def 2;
then
consider k be
Nat such that
A1: i
= k or i
= (
- k) by
INT_1:def 1;
per cases by
A1;
suppose i
= k;
then ex m be
Nat st i
= (m
+ 1) by
NAT_1: 6;
hence thesis by
Lm23;
end;
suppose
A2: i
= (
- k);
then
consider m be
Nat such that
A3: (
- i)
= (m
+ 1) by
NAT_1: 6;
(
cos
^2 ) is (
PI
* (m
+ 1))
-periodic by
Lm23;
then (
cos
^2 ) is (
- (
PI
* (m
+ 1)))
-periodic by
Th14;
hence thesis by
A2,
A3;
end;
end;
Lm24: (
sin
(#)
cos ) is
PI
-periodic
proof
for x st x
in (
dom (
sin
(#)
cos )) holds ((x
+
PI )
in (
dom (
sin
(#)
cos )) & (x
-
PI )
in (
dom (
sin
(#)
cos ))) & ((
sin
(#)
cos )
. x)
= ((
sin
(#)
cos )
. (x
+
PI ))
proof
let x;
assume
A1: x
in (
dom (
sin
(#)
cos ));
A2: (x
+
PI )
in ((
dom
sin )
/\ (
dom
cos )) & (x
-
PI )
in ((
dom
sin )
/\ (
dom
cos )) by
SIN_COS: 24,
XREAL_0:def 1;
then (x
+
PI )
in (
dom (
sin
(#)
cos )) & (x
-
PI )
in (
dom (
sin
(#)
cos )) by
VALUED_1:def 4;
then ((
sin
(#)
cos )
. (x
+
PI ))
= ((
sin
. (x
+
PI ))
* (
cos
. (x
+
PI ))) by
VALUED_1:def 4
.= ((
- (
sin
. x))
* (
cos
. (x
+
PI ))) by
SIN_COS: 78
.= ((
- (
sin
. x))
* (
- (
cos
. x))) by
SIN_COS: 78
.= ((
sin
. x)
* (
cos
. x))
.= ((
sin
(#)
cos )
. x) by
A1,
VALUED_1:def 4;
hence thesis by
A2,
VALUED_1:def 4;
end;
hence thesis by
Th1;
end;
Lm25: (
sin
(#)
cos ) is (
PI
* (k
+ 1))
-periodic
proof
defpred
X[
Nat] means (
sin
(#)
cos ) is (
PI
* ($1
+ 1))
-periodic;
A1:
X[
0 ] by
Lm24;
A2: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat such that
A3: (
sin
(#)
cos ) is (
PI
* (k
+ 1))
-periodic;
(
sin
(#)
cos ) is (
PI
* ((k
+ 1)
+ 1))
-periodic
proof
for x st x
in (
dom (
sin
(#)
cos )) holds ((x
+ (
PI
* ((k
+ 1)
+ 1)))
in (
dom (
sin
(#)
cos )) & (x
- (
PI
* ((k
+ 1)
+ 1)))
in (
dom (
sin
(#)
cos ))) & ((
sin
(#)
cos )
. x)
= ((
sin
(#)
cos )
. (x
+ (
PI
* ((k
+ 1)
+ 1))))
proof
let x;
assume
A4: x
in (
dom (
sin
(#)
cos ));
then
A5: (x
+ (
PI
* (k
+ 1)))
in (
dom (
sin
(#)
cos )) & (x
- (
PI
* (k
+ 1)))
in (
dom (
sin
(#)
cos )) by
A3,
Th1;
A6: (x
+ (
PI
* ((k
+ 1)
+ 1)))
in ((
dom
cos )
/\ (
dom
sin )) & (x
- (
PI
* ((k
+ 1)
+ 1)))
in ((
dom
cos )
/\ (
dom
sin )) by
SIN_COS: 24,
XREAL_0:def 1;
then (x
+ (
PI
* ((k
+ 1)
+ 1)))
in (
dom (
sin
(#)
cos )) & (x
- (
PI
* ((k
+ 1)
+ 1)))
in (
dom (
sin
(#)
cos )) by
VALUED_1:def 4;
then ((
sin
(#)
cos )
. (x
+ (
PI
* ((k
+ 1)
+ 1))))
= ((
sin
. ((x
+ (
PI
* (k
+ 1)))
+
PI ))
* (
cos
. ((x
+ (
PI
* (k
+ 1)))
+
PI ))) by
VALUED_1:def 4
.= ((
- (
sin
. (x
+ (
PI
* (k
+ 1)))))
* (
cos
. ((x
+ (
PI
* (k
+ 1)))
+
PI ))) by
SIN_COS: 78
.= ((
- (
sin
. (x
+ (
PI
* (k
+ 1)))))
* (
- (
cos
. (x
+ (
PI
* (k
+ 1)))))) by
SIN_COS: 78
.= ((
sin
. (x
+ (
PI
* (k
+ 1))))
* (
cos
. (x
+ (
PI
* (k
+ 1)))))
.= ((
sin
(#)
cos )
. (x
+ (
PI
* (k
+ 1)))) by
A5,
VALUED_1:def 4;
hence thesis by
A3,
A4,
A6,
VALUED_1:def 4;
end;
hence thesis by
Th1;
end;
hence thesis;
end;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
FUNCT_9:32
(
sin
(#)
cos ) is (
PI
* i)
-periodic
proof
i
in
INT by
INT_1:def 2;
then
consider k be
Nat such that
A1: i
= k or i
= (
- k) by
INT_1:def 1;
per cases by
A1;
suppose i
= k;
then ex m be
Nat st i
= (m
+ 1) by
NAT_1: 6;
hence thesis by
Lm25;
end;
suppose
A2: i
= (
- k);
then
consider m be
Nat such that
A3: (
- i)
= (m
+ 1) by
NAT_1: 6;
(
sin
(#)
cos ) is (
PI
* (m
+ 1))
-periodic by
Lm25;
then (
sin
(#)
cos ) is (
- (
PI
* (m
+ 1)))
-periodic by
Th14;
hence thesis by
A2,
A3;
end;
end;
Lm26: (b
+ (a
(#)
sin )) is (2
*
PI )
-periodic
proof
for x st x
in (
dom (b
+ (a
(#)
sin ))) holds ((x
+ (2
*
PI ))
in (
dom (b
+ (a
(#)
sin ))) & (x
- (2
*
PI ))
in (
dom (b
+ (a
(#)
sin )))) & ((b
+ (a
(#)
sin ))
. x)
= ((b
+ (a
(#)
sin ))
. (x
+ (2
*
PI )))
proof
let x;
assume x
in (
dom (b
+ (a
(#)
sin )));
x
in
REAL by
XREAL_0:def 1;
then
A1: x
in (
dom (a
(#)
sin )) by
SIN_COS: 24,
VALUED_1:def 5;
then
A2: x
in (
dom (b
+ (a
(#)
sin ))) & x
in (
dom (b
+ (a
(#)
sin ))) by
VALUED_1:def 2;
(x
+ (2
*
PI ))
in (
dom
sin ) & (x
- (2
*
PI ))
in (
dom
sin ) by
SIN_COS: 24,
XREAL_0:def 1;
then
A3: (x
+ (2
*
PI ))
in (
dom (a
(#)
sin )) & (x
- (2
*
PI ))
in (
dom (a
(#)
sin )) by
VALUED_1:def 5;
then (x
+ (2
*
PI ))
in (
dom (b
+ (a
(#)
sin ))) & (x
- (2
*
PI ))
in (
dom (b
+ (a
(#)
sin ))) by
VALUED_1:def 2;
then ((b
+ (a
(#)
sin ))
. (x
+ (2
*
PI )))
= (b
+ ((a
(#)
sin )
. (x
+ (2
*
PI )))) by
VALUED_1:def 2
.= (b
+ (a
* (
sin
. (x
+ (2
*
PI ))))) by
A3,
VALUED_1:def 5
.= (b
+ (a
* (
sin
. x))) by
SIN_COS: 78
.= (b
+ ((a
(#)
sin )
. x)) by
A1,
VALUED_1:def 5
.= ((b
+ (a
(#)
sin ))
. x) by
A2,
VALUED_1:def 2;
hence thesis by
A3,
VALUED_1:def 2;
end;
hence thesis by
Th1;
end;
Lm27: (b
+ (a
(#)
cos )) is (2
*
PI )
-periodic
proof
for x st x
in (
dom (b
+ (a
(#)
cos ))) holds ((x
+ (2
*
PI ))
in (
dom (b
+ (a
(#)
cos ))) & (x
- (2
*
PI ))
in (
dom (b
+ (a
(#)
cos )))) & ((b
+ (a
(#)
cos ))
. x)
= ((b
+ (a
(#)
cos ))
. (x
+ (2
*
PI )))
proof
let x;
assume x
in (
dom (b
+ (a
(#)
cos )));
x
in
REAL by
XREAL_0:def 1;
then
A1: x
in (
dom (a
(#)
cos )) by
SIN_COS: 24,
VALUED_1:def 5;
then
A2: x
in (
dom (b
+ (a
(#)
cos ))) & x
in (
dom (b
+ (a
(#)
cos ))) by
VALUED_1:def 2;
(x
+ (2
*
PI ))
in (
dom
cos ) & (x
- (2
*
PI ))
in (
dom
cos ) by
SIN_COS: 24,
XREAL_0:def 1;
then
A3: (x
+ (2
*
PI ))
in (
dom (a
(#)
cos )) & (x
- (2
*
PI ))
in (
dom (a
(#)
cos )) by
VALUED_1:def 5;
then (x
+ (2
*
PI ))
in (
dom (b
+ (a
(#)
cos ))) & (x
- (2
*
PI ))
in (
dom (b
+ (a
(#)
cos ))) by
VALUED_1:def 2;
then ((b
+ (a
(#)
cos ))
. (x
+ (2
*
PI )))
= (b
+ ((a
(#)
cos )
. (x
+ (2
*
PI )))) by
VALUED_1:def 2
.= (b
+ (a
* (
cos
. (x
+ (2
*
PI ))))) by
A3,
VALUED_1:def 5
.= (b
+ (a
* (
cos
. x))) by
SIN_COS: 78
.= (b
+ ((a
(#)
cos )
. x)) by
A1,
VALUED_1:def 5
.= ((b
+ (a
(#)
cos ))
. x) by
A2,
VALUED_1:def 2;
hence thesis by
A3,
VALUED_1:def 2;
end;
hence thesis by
Th1;
end;
Lm28: (b
+ (a
(#)
sin )) is ((2
*
PI )
* (k
+ 1))
-periodic
proof
defpred
X[
Nat] means (b
+ (a
(#)
sin )) is ((2
*
PI )
* ($1
+ 1))
-periodic;
A1:
X[
0 ] by
Lm26;
A2: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat such that
A3: (b
+ (a
(#)
sin )) is ((2
*
PI )
* (k
+ 1))
-periodic;
(b
+ (a
(#)
sin )) is ((2
*
PI )
* ((k
+ 1)
+ 1))
-periodic
proof
for x st x
in (
dom (b
+ (a
(#)
sin ))) holds ((x
+ ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom (b
+ (a
(#)
sin ))) & (x
- ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom (b
+ (a
(#)
sin )))) & ((b
+ (a
(#)
sin ))
. x)
= ((b
+ (a
(#)
sin ))
. (x
+ ((2
*
PI )
* ((k
+ 1)
+ 1))))
proof
let x;
assume x
in (
dom (b
+ (a
(#)
sin )));
x
in
REAL by
XREAL_0:def 1;
then x
in (
dom (a
(#)
sin )) by
SIN_COS: 24,
VALUED_1:def 5;
then
A4: x
in (
dom (b
+ (a
(#)
sin ))) by
VALUED_1:def 2;
(x
+ ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom
sin ) & (x
- ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom
sin ) & (x
+ ((2
*
PI )
* (k
+ 1)))
in (
dom
sin ) & (x
- ((2
*
PI )
* (k
+ 1)))
in (
dom
sin ) by
SIN_COS: 24,
XREAL_0:def 1;
then
A5: (x
+ ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom (a
(#)
sin )) & (x
- ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom (a
(#)
sin )) & (x
+ ((2
*
PI )
* (k
+ 1)))
in (
dom (a
(#)
sin )) & (x
- ((2
*
PI )
* (k
+ 1)))
in (
dom (a
(#)
sin )) by
VALUED_1:def 5;
then
A6: (x
+ ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom (b
+ (a
(#)
sin ))) & (x
- ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom (b
+ (a
(#)
sin ))) & (x
+ ((2
*
PI )
* (k
+ 1)))
in (
dom (b
+ (a
(#)
sin ))) & (x
- ((2
*
PI )
* (k
+ 1)))
in (
dom (b
+ (a
(#)
sin ))) by
VALUED_1:def 2;
then ((b
+ (a
(#)
sin ))
. (x
+ ((2
*
PI )
* ((k
+ 1)
+ 1))))
= (b
+ ((a
(#)
sin )
. (x
+ ((2
*
PI )
* ((k
+ 1)
+ 1))))) by
VALUED_1:def 2
.= (b
+ (a
* (
sin
. ((x
+ ((2
*
PI )
* (k
+ 1)))
+ (2
*
PI ))))) by
A5,
VALUED_1:def 5
.= (b
+ (a
* (
sin
. (x
+ ((2
*
PI )
* (k
+ 1)))))) by
SIN_COS: 78
.= (b
+ ((a
(#)
sin )
. (x
+ ((2
*
PI )
* (k
+ 1))))) by
A5,
VALUED_1:def 5
.= ((b
+ (a
(#)
sin ))
. (x
+ ((2
*
PI )
* (k
+ 1)))) by
A6,
VALUED_1:def 2;
hence thesis by
A3,
A5,
A4,
VALUED_1:def 2;
end;
hence thesis by
Th1;
end;
hence thesis;
end;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
FUNCT_9:33
Th33: (b
+ (a
(#)
sin )) is ((2
*
PI )
* i)
-periodic
proof
i
in
INT by
INT_1:def 2;
then
consider k be
Nat such that
A1: i
= k or i
= (
- k) by
INT_1:def 1;
per cases by
A1;
suppose i
= k;
then ex m be
Nat st i
= (m
+ 1) by
NAT_1: 6;
hence thesis by
Lm28;
end;
suppose
A2: i
= (
- k);
then
consider m be
Nat such that
A3: (
- i)
= (m
+ 1) by
NAT_1: 6;
(b
+ (a
(#)
sin )) is ((2
*
PI )
* (m
+ 1))
-periodic by
Lm28;
then (b
+ (a
(#)
sin )) is (
- ((2
*
PI )
* (m
+ 1)))
-periodic by
Th14;
hence thesis by
A2,
A3;
end;
end;
theorem ::
FUNCT_9:34
((a
(#)
sin )
- b) is ((2
*
PI )
* i)
-periodic by
Th33;
Lm29: (b
+ (a
(#)
cos )) is ((2
*
PI )
* (k
+ 1))
-periodic
proof
defpred
X[
Nat] means (b
+ (a
(#)
cos )) is ((2
*
PI )
* ($1
+ 1))
-periodic;
A1:
X[
0 ] by
Lm27;
A2: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat such that
A3: (b
+ (a
(#)
cos )) is ((2
*
PI )
* (k
+ 1))
-periodic;
(b
+ (a
(#)
cos )) is ((2
*
PI )
* ((k
+ 1)
+ 1))
-periodic
proof
for x st x
in (
dom (b
+ (a
(#)
cos ))) holds ((x
+ ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom (b
+ (a
(#)
cos ))) & (x
- ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom (b
+ (a
(#)
cos )))) & ((b
+ (a
(#)
cos ))
. x)
= ((b
+ (a
(#)
cos ))
. (x
+ ((2
*
PI )
* ((k
+ 1)
+ 1))))
proof
let x;
assume x
in (
dom (b
+ (a
(#)
cos )));
x
in
REAL by
XREAL_0:def 1;
then x
in (
dom (a
(#)
cos )) by
SIN_COS: 24,
VALUED_1:def 5;
then
A4: x
in (
dom (b
+ (a
(#)
cos ))) by
VALUED_1:def 2;
(x
+ ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom
cos ) & (x
- ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom
cos ) & (x
+ ((2
*
PI )
* (k
+ 1)))
in (
dom
cos ) & (x
- ((2
*
PI )
* (k
+ 1)))
in (
dom
cos ) by
SIN_COS: 24,
XREAL_0:def 1;
then
A5: (x
+ ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom (a
(#)
cos )) & (x
- ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom (a
(#)
cos )) & (x
+ ((2
*
PI )
* (k
+ 1)))
in (
dom (a
(#)
cos )) & (x
- ((2
*
PI )
* (k
+ 1)))
in (
dom (a
(#)
cos )) by
VALUED_1:def 5;
then
A6: (x
+ ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom (b
+ (a
(#)
cos ))) & (x
- ((2
*
PI )
* ((k
+ 1)
+ 1)))
in (
dom (b
+ (a
(#)
cos ))) & (x
+ ((2
*
PI )
* (k
+ 1)))
in (
dom (b
+ (a
(#)
cos ))) & (x
- ((2
*
PI )
* (k
+ 1)))
in (
dom (b
+ (a
(#)
cos ))) by
VALUED_1:def 2;
then ((b
+ (a
(#)
cos ))
. (x
+ ((2
*
PI )
* ((k
+ 1)
+ 1))))
= (b
+ ((a
(#)
cos )
. (x
+ ((2
*
PI )
* ((k
+ 1)
+ 1))))) by
VALUED_1:def 2
.= (b
+ (a
* (
cos
. ((x
+ ((2
*
PI )
* (k
+ 1)))
+ (2
*
PI ))))) by
A5,
VALUED_1:def 5
.= (b
+ (a
* (
cos
. (x
+ ((2
*
PI )
* (k
+ 1)))))) by
SIN_COS: 78
.= (b
+ ((a
(#)
cos )
. (x
+ ((2
*
PI )
* (k
+ 1))))) by
A5,
VALUED_1:def 5
.= ((b
+ (a
(#)
cos ))
. (x
+ ((2
*
PI )
* (k
+ 1)))) by
A6,
VALUED_1:def 2;
hence thesis by
A3,
A5,
A4,
VALUED_1:def 2;
end;
hence thesis by
Th1;
end;
hence thesis;
end;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
FUNCT_9:35
Th35: (b
+ (a
(#)
cos )) is ((2
*
PI )
* i)
-periodic
proof
i
in
INT by
INT_1:def 2;
then
consider k be
Nat such that
A1: i
= k or i
= (
- k) by
INT_1:def 1;
per cases by
A1;
suppose i
= k;
then ex m be
Nat st i
= (m
+ 1) by
NAT_1: 6;
hence thesis by
Lm29;
end;
suppose
A2: i
= (
- k);
then
consider m be
Nat such that
A3: (
- i)
= (m
+ 1) by
NAT_1: 6;
(b
+ (a
(#)
cos )) is ((2
*
PI )
* (m
+ 1))
-periodic by
Lm29;
then (b
+ (a
(#)
cos )) is (
- ((2
*
PI )
* (m
+ 1)))
-periodic by
Th14;
hence thesis by
A2,
A3;
end;
end;
theorem ::
FUNCT_9:36
((a
(#)
cos )
- b) is ((2
*
PI )
* i)
-periodic by
Th35;
theorem ::
FUNCT_9:37
t
<>
0 implies (
REAL
--> a) is t
-periodic by
Lm1;
registration
let a;
cluster (
REAL
--> a) ->
periodic;
coherence
proof
take 1;
thus thesis by
Lm1;
end;
end
registration
let t be non
zero
Real;
cluster t
-periodic for
Function of
REAL ,
REAL ;
existence
proof
take (
REAL
--> the
Element of
REAL );
thus thesis by
Lm1;
end;
end