fdiff_9.miz
begin
definition
::
FDIFF_9:def1
func
sec ->
PartFunc of
REAL ,
REAL equals (
cos
^ );
coherence ;
::
FDIFF_9:def2
func
cosec ->
PartFunc of
REAL ,
REAL equals (
sin
^ );
coherence ;
end
reserve x,a,b,c for
Real,
n for
Nat,
Z for
open
Subset of
REAL ,
f,f1,f2 for
PartFunc of
REAL ,
REAL ;
theorem ::
FDIFF_9:1
Th1: (
cos
. x)
<>
0 implies
sec
is_differentiable_in x & (
diff (
sec ,x))
= ((
sin
. x)
/ ((
cos
. x)
^2 ))
proof
A1:
cos
is_differentiable_in x by
SIN_COS: 63;
assume
A2: (
cos
. x)
<>
0 ;
then (
diff ((
cos
^ ),x))
= (
- ((
diff (
cos ,x))
/ ((
cos
. x)
^2 ))) by
A1,
FDIFF_2: 15
.= (
- ((
- (
sin
. x))
/ ((
cos
. x)
^2 ))) by
SIN_COS: 63
.= ((
sin
. x)
/ ((
cos
. x)
^2 ));
hence thesis by
A2,
A1,
FDIFF_2: 15;
end;
theorem ::
FDIFF_9:2
Th2: (
sin
. x)
<>
0 implies
cosec
is_differentiable_in x & (
diff (
cosec ,x))
= (
- ((
cos
. x)
/ ((
sin
. x)
^2 )))
proof
A1:
sin
is_differentiable_in x by
SIN_COS: 64;
assume
A2: (
sin
. x)
<>
0 ;
then (
diff ((
sin
^ ),x))
= (
- ((
diff (
sin ,x))
/ ((
sin
. x)
^2 ))) by
A1,
FDIFF_2: 15
.= (
- ((
cos
. x)
/ ((
sin
. x)
^2 ))) by
SIN_COS: 64;
hence thesis by
A2,
A1,
FDIFF_2: 15;
end;
theorem ::
FDIFF_9:3
Th3: ((1
/ x)
#Z n)
= (1
/ (x
#Z n))
proof
((1
/ x)
#Z n)
= ((1
/ x)
|^ n) by
PREPOWER: 36
.= (1
/ (x
|^ n)) by
PREPOWER: 7;
hence thesis by
PREPOWER: 36;
end;
theorem ::
FDIFF_9:4
Z
c= (
dom
sec ) implies
sec
is_differentiable_on Z & for x st x
in Z holds ((
sec
`| Z)
. x)
= ((
sin
. x)
/ ((
cos
. x)
^2 ))
proof
assume Z
c= (
dom
sec );
then for x st x
in Z holds (
cos
. x)
<>
0 by
RFUNCT_1: 3;
hence thesis by
FDIFF_4: 39;
end;
theorem ::
FDIFF_9:5
Z
c= (
dom
cosec ) implies
cosec
is_differentiable_on Z & for x st x
in Z holds ((
cosec
`| Z)
. x)
= (
- ((
cos
. x)
/ ((
sin
. x)
^2 )))
proof
assume Z
c= (
dom
cosec );
then for x st x
in Z holds (
sin
. x)
<>
0 by
RFUNCT_1: 3;
hence thesis by
FDIFF_4: 40;
end;
theorem ::
FDIFF_9:6
Th6: Z
c= (
dom (
sec
* f)) & (for x st x
in Z holds (f
. x)
= ((a
* x)
+ b)) implies (
sec
* f)
is_differentiable_on Z & for x st x
in Z holds (((
sec
* f)
`| Z)
. x)
= ((a
* (
sin
. ((a
* x)
+ b)))
/ ((
cos
. ((a
* x)
+ b))
^2 ))
proof
assume that
A1: Z
c= (
dom (
sec
* f)) and
A2: for x st x
in Z holds (f
. x)
= ((a
* x)
+ b);
(
dom (
sec
* f))
c= (
dom f) by
RELAT_1: 25;
then
A3: Z
c= (
dom f) by
A1,
XBOOLE_1: 1;
then
A4: f
is_differentiable_on Z by
A2,
FDIFF_1: 23;
A5: for x st x
in Z holds (
cos
. (f
. x))
<>
0
proof
let x;
assume x
in Z;
then (f
. x)
in (
dom
sec ) by
A1,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
A6: for x st x
in Z holds (
sec
* f)
is_differentiable_in x
proof
let x;
assume
A7: x
in Z;
then (
cos
. (f
. x))
<>
0 by
A5;
then
A8:
sec
is_differentiable_in (f
. x) by
Th1;
f
is_differentiable_in x by
A4,
A7,
FDIFF_1: 9;
hence thesis by
A8,
FDIFF_2: 13;
end;
then
A9: (
sec
* f)
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sec
* f)
`| Z)
. x)
= ((a
* (
sin
. ((a
* x)
+ b)))
/ ((
cos
. ((a
* x)
+ b))
^2 ))
proof
let x;
assume
A10: x
in Z;
then
A11: f
is_differentiable_in x by
A4,
FDIFF_1: 9;
A12: (
cos
. (f
. x))
<>
0 by
A5,
A10;
then
sec
is_differentiable_in (f
. x) by
Th1;
then (
diff ((
sec
* f),x))
= ((
diff (
sec ,(f
. x)))
* (
diff (f,x))) by
A11,
FDIFF_2: 13
.= (((
sin
. (f
. x))
/ ((
cos
. (f
. x))
^2 ))
* (
diff (f,x))) by
A12,
Th1
.= ((
diff (f,x))
* ((
sin
. (f
. x))
/ ((
cos
. ((a
* x)
+ b))
^2 ))) by
A2,
A10
.= (((f
`| Z)
. x)
* ((
sin
. (f
. x))
/ ((
cos
. ((a
* x)
+ b))
^2 ))) by
A4,
A10,
FDIFF_1:def 7
.= (a
* ((
sin
. (f
. x))
/ ((
cos
. ((a
* x)
+ b))
^2 ))) by
A2,
A3,
A10,
FDIFF_1: 23
.= (a
* ((
sin
. ((a
* x)
+ b))
/ ((
cos
. ((a
* x)
+ b))
^2 ))) by
A2,
A10;
hence thesis by
A9,
A10,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A6,
FDIFF_1: 9;
end;
theorem ::
FDIFF_9:7
Th7: Z
c= (
dom (
cosec
* f)) & (for x st x
in Z holds (f
. x)
= ((a
* x)
+ b)) implies (
cosec
* f)
is_differentiable_on Z & for x st x
in Z holds (((
cosec
* f)
`| Z)
. x)
= (
- ((a
* (
cos
. ((a
* x)
+ b)))
/ ((
sin
. ((a
* x)
+ b))
^2 )))
proof
assume that
A1: Z
c= (
dom (
cosec
* f)) and
A2: for x st x
in Z holds (f
. x)
= ((a
* x)
+ b);
(
dom (
cosec
* f))
c= (
dom f) by
RELAT_1: 25;
then
A3: Z
c= (
dom f) by
A1,
XBOOLE_1: 1;
then
A4: f
is_differentiable_on Z by
A2,
FDIFF_1: 23;
A5: for x st x
in Z holds (
sin
. (f
. x))
<>
0
proof
let x;
assume x
in Z;
then (f
. x)
in (
dom
cosec ) by
A1,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
A6: for x st x
in Z holds (
cosec
* f)
is_differentiable_in x
proof
let x;
assume
A7: x
in Z;
then (
sin
. (f
. x))
<>
0 by
A5;
then
A8:
cosec
is_differentiable_in (f
. x) by
Th2;
f
is_differentiable_in x by
A4,
A7,
FDIFF_1: 9;
hence thesis by
A8,
FDIFF_2: 13;
end;
then
A9: (
cosec
* f)
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cosec
* f)
`| Z)
. x)
= (
- ((a
* (
cos
. ((a
* x)
+ b)))
/ ((
sin
. ((a
* x)
+ b))
^2 )))
proof
let x;
assume
A10: x
in Z;
then
A11: f
is_differentiable_in x by
A4,
FDIFF_1: 9;
A12: (
sin
. (f
. x))
<>
0 by
A5,
A10;
then
cosec
is_differentiable_in (f
. x) by
Th2;
then (
diff ((
cosec
* f),x))
= ((
diff (
cosec ,(f
. x)))
* (
diff (f,x))) by
A11,
FDIFF_2: 13
.= ((
- ((
cos
. (f
. x))
/ ((
sin
. (f
. x))
^2 )))
* (
diff (f,x))) by
A12,
Th2
.= ((
diff (f,x))
* (
- ((
cos
. (f
. x))
/ ((
sin
. ((a
* x)
+ b))
^2 )))) by
A2,
A10
.= (((f
`| Z)
. x)
* (
- ((
cos
. (f
. x))
/ ((
sin
. ((a
* x)
+ b))
^2 )))) by
A4,
A10,
FDIFF_1:def 7
.= (a
* (
- ((
cos
. (f
. x))
/ ((
sin
. ((a
* x)
+ b))
^2 )))) by
A2,
A3,
A10,
FDIFF_1: 23
.= (a
* (
- ((
cos
. ((a
* x)
+ b))
/ ((
sin
. ((a
* x)
+ b))
^2 )))) by
A2,
A10;
hence thesis by
A9,
A10,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A6,
FDIFF_1: 9;
end;
theorem ::
FDIFF_9:8
not
0
in Z & Z
c= (
dom (
sec
* ((
id Z)
^ ))) implies (
sec
* ((
id Z)
^ ))
is_differentiable_on Z & for x st x
in Z holds (((
sec
* ((
id Z)
^ ))
`| Z)
. x)
= (
- ((
sin
. (1
/ x))
/ ((x
^2 )
* ((
cos
. (1
/ x))
^2 ))))
proof
set f = (
id Z);
assume that
A1: not
0
in Z and
A2: Z
c= (
dom (
sec
* (f
^ )));
A3: (f
^ )
is_differentiable_on Z by
A1,
FDIFF_5: 4;
(
dom (
sec
* (f
^ )))
c= (
dom (f
^ )) by
RELAT_1: 25;
then
A4: Z
c= (
dom (f
^ )) by
A2,
XBOOLE_1: 1;
A5: for x st x
in Z holds (
cos
. ((f
^ )
. x))
<>
0
proof
let x;
assume x
in Z;
then ((f
^ )
. x)
in (
dom
sec ) by
A2,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
A6: for x st x
in Z holds (
sec
* (f
^ ))
is_differentiable_in x
proof
let x;
assume
A7: x
in Z;
then (
cos
. ((f
^ )
. x))
<>
0 by
A5;
then
A8:
sec
is_differentiable_in ((f
^ )
. x) by
Th1;
(f
^ )
is_differentiable_in x by
A3,
A7,
FDIFF_1: 9;
hence thesis by
A8,
FDIFF_2: 13;
end;
then
A9: (
sec
* (f
^ ))
is_differentiable_on Z by
A2,
FDIFF_1: 9;
for x st x
in Z holds (((
sec
* (f
^ ))
`| Z)
. x)
= (
- ((
sin
. (1
/ x))
/ ((x
^2 )
* ((
cos
. (1
/ x))
^2 ))))
proof
let x;
assume
A10: x
in Z;
then
A11: (f
^ )
is_differentiable_in x by
A3,
FDIFF_1: 9;
A12: (
cos
. ((f
^ )
. x))
<>
0 by
A5,
A10;
then
sec
is_differentiable_in ((f
^ )
. x) by
Th1;
then (
diff ((
sec
* (f
^ )),x))
= ((
diff (
sec ,((f
^ )
. x)))
* (
diff ((f
^ ),x))) by
A11,
FDIFF_2: 13
.= (((
sin
. ((f
^ )
. x))
/ ((
cos
. ((f
^ )
. x))
^2 ))
* (
diff ((f
^ ),x))) by
A12,
Th1
.= ((
diff ((f
^ ),x))
* ((
sin
. ((f
^ )
. x))
/ ((
cos
. ((f
. x)
" ))
^2 ))) by
A4,
A10,
RFUNCT_1:def 2
.= ((
diff ((f
^ ),x))
* ((
sin
. ((f
. x)
" ))
/ ((
cos
. ((f
. x)
" ))
^2 ))) by
A4,
A10,
RFUNCT_1:def 2
.= ((
diff ((f
^ ),x))
* ((
sin
. ((f
. x)
" ))
/ ((
cos
. (1
* (x
" )))
^2 ))) by
A10,
FUNCT_1: 18
.= ((
diff ((f
^ ),x))
* ((
sin
. (1
* (x
" )))
/ ((
cos
. (1
* (x
" )))
^2 ))) by
A10,
FUNCT_1: 18
.= ((((f
^ )
`| Z)
. x)
* ((
sin
. (1
* (x
" )))
/ ((
cos
. (1
* (x
" )))
^2 ))) by
A3,
A10,
FDIFF_1:def 7
.= ((
- (1
/ (x
^2 )))
* ((
sin
. (1
* (x
" )))
/ ((
cos
. (1
* (x
" )))
^2 ))) by
A1,
A10,
FDIFF_5: 4
.= (((
- 1)
/ (x
^2 ))
* ((
sin
. (1
/ x))
/ ((
cos
. (1
/ x))
^2 )))
.= (((
- 1)
* (
sin
. (1
/ x)))
/ ((x
^2 )
* ((
cos
. (1
/ x))
^2 ))) by
XCMPLX_1: 76
.= (
- ((
sin
. (1
/ x))
/ ((x
^2 )
* ((
cos
. (1
/ x))
^2 ))));
hence thesis by
A9,
A10,
FDIFF_1:def 7;
end;
hence thesis by
A2,
A6,
FDIFF_1: 9;
end;
theorem ::
FDIFF_9:9
not
0
in Z & Z
c= (
dom (
cosec
* ((
id Z)
^ ))) implies (
cosec
* ((
id Z)
^ ))
is_differentiable_on Z & for x st x
in Z holds (((
cosec
* ((
id Z)
^ ))
`| Z)
. x)
= ((
cos
. (1
/ x))
/ ((x
^2 )
* ((
sin
. (1
/ x))
^2 )))
proof
set f = (
id Z);
assume that
A1: not
0
in Z and
A2: Z
c= (
dom (
cosec
* (f
^ )));
A3: (f
^ )
is_differentiable_on Z by
A1,
FDIFF_5: 4;
(
dom (
cosec
* (f
^ )))
c= (
dom (f
^ )) by
RELAT_1: 25;
then
A4: Z
c= (
dom (f
^ )) by
A2,
XBOOLE_1: 1;
A5: for x st x
in Z holds (
sin
. ((f
^ )
. x))
<>
0
proof
let x;
assume x
in Z;
then ((f
^ )
. x)
in (
dom
cosec ) by
A2,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
A6: for x st x
in Z holds (
cosec
* (f
^ ))
is_differentiable_in x
proof
let x;
assume
A7: x
in Z;
then (
sin
. ((f
^ )
. x))
<>
0 by
A5;
then
A8:
cosec
is_differentiable_in ((f
^ )
. x) by
Th2;
(f
^ )
is_differentiable_in x by
A3,
A7,
FDIFF_1: 9;
hence thesis by
A8,
FDIFF_2: 13;
end;
then
A9: (
cosec
* (f
^ ))
is_differentiable_on Z by
A2,
FDIFF_1: 9;
for x st x
in Z holds (((
cosec
* (f
^ ))
`| Z)
. x)
= ((
cos
. (1
/ x))
/ ((x
^2 )
* ((
sin
. (1
/ x))
^2 )))
proof
let x;
assume
A10: x
in Z;
then
A11: (f
^ )
is_differentiable_in x by
A3,
FDIFF_1: 9;
A12: (
sin
. ((f
^ )
. x))
<>
0 by
A5,
A10;
then
cosec
is_differentiable_in ((f
^ )
. x) by
Th2;
then (
diff ((
cosec
* (f
^ )),x))
= ((
diff (
cosec ,((f
^ )
. x)))
* (
diff ((f
^ ),x))) by
A11,
FDIFF_2: 13
.= ((
- ((
cos
. ((f
^ )
. x))
/ ((
sin
. ((f
^ )
. x))
^2 )))
* (
diff ((f
^ ),x))) by
A12,
Th2
.= ((
diff ((f
^ ),x))
* (
- ((
cos
. ((f
^ )
. x))
/ ((
sin
. ((f
. x)
" ))
^2 )))) by
A4,
A10,
RFUNCT_1:def 2
.= ((
diff ((f
^ ),x))
* (
- ((
cos
. ((f
. x)
" ))
/ ((
sin
. ((f
. x)
" ))
^2 )))) by
A4,
A10,
RFUNCT_1:def 2
.= ((
diff ((f
^ ),x))
* (
- ((
cos
. ((f
. x)
" ))
/ ((
sin
. (1
* (x
" )))
^2 )))) by
A10,
FUNCT_1: 18
.= ((
diff ((f
^ ),x))
* (
- ((
cos
. (1
* (x
" )))
/ ((
sin
. (1
* (x
" )))
^2 )))) by
A10,
FUNCT_1: 18
.= ((((f
^ )
`| Z)
. x)
* (
- ((
cos
. (1
* (x
" )))
/ ((
sin
. (1
* (x
" )))
^2 )))) by
A3,
A10,
FDIFF_1:def 7
.= ((
- (1
/ (x
^2 )))
* (
- ((
cos
. (1
* (x
" )))
/ ((
sin
. (1
* (x
" )))
^2 )))) by
A1,
A10,
FDIFF_5: 4
.= (((
- 1)
/ (x
^2 ))
* ((
- (
cos
. (1
/ x)))
/ ((
sin
. (1
/ x))
^2 )))
.= (((
- 1)
* (
- (
cos
. (1
/ x))))
/ ((x
^2 )
* ((
sin
. (1
/ x))
^2 ))) by
XCMPLX_1: 76
.= ((
cos
. (1
/ x))
/ ((x
^2 )
* ((
sin
. (1
/ x))
^2 )));
hence thesis by
A9,
A10,
FDIFF_1:def 7;
end;
hence thesis by
A2,
A6,
FDIFF_1: 9;
end;
theorem ::
FDIFF_9:10
Z
c= (
dom (
sec
* (f1
+ (c
(#) f2)))) & f2
= (
#Z 2) & (for x st x
in Z holds (f1
. x)
= (a
+ (b
* x))) implies (
sec
* (f1
+ (c
(#) f2)))
is_differentiable_on Z & for x st x
in Z holds (((
sec
* (f1
+ (c
(#) f2)))
`| Z)
. x)
= (((b
+ ((2
* c)
* x))
* (
sin
. ((a
+ (b
* x))
+ (c
* (x
^2 )))))
/ ((
cos
. ((a
+ (b
* x))
+ (c
* (x
^2 ))))
^2 ))
proof
assume that
A1: Z
c= (
dom (
sec
* (f1
+ (c
(#) f2)))) and
A2: f2
= (
#Z 2) and
A3: for x st x
in Z holds (f1
. x)
= (a
+ (b
* x));
(
dom (
sec
* (f1
+ (c
(#) f2))))
c= (
dom (f1
+ (c
(#) f2))) by
RELAT_1: 25;
then
A4: Z
c= (
dom (f1
+ (c
(#) f2))) by
A1,
XBOOLE_1: 1;
then
A5: (f1
+ (c
(#) f2))
is_differentiable_on Z by
A2,
A3,
FDIFF_4: 12;
Z
c= ((
dom f1)
/\ (
dom (c
(#) f2))) by
A4,
VALUED_1:def 1;
then
A6: Z
c= (
dom (c
(#) f2)) by
XBOOLE_1: 18;
A7: for x st x
in Z holds (
cos
. ((f1
+ (c
(#) f2))
. x))
<>
0
proof
let x;
assume x
in Z;
then ((f1
+ (c
(#) f2))
. x)
in (
dom
sec ) by
A1,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
A8: for x st x
in Z holds (
sec
* (f1
+ (c
(#) f2)))
is_differentiable_in x
proof
let x;
assume
A9: x
in Z;
then (
cos
. ((f1
+ (c
(#) f2))
. x))
<>
0 by
A7;
then
A10:
sec
is_differentiable_in ((f1
+ (c
(#) f2))
. x) by
Th1;
(f1
+ (c
(#) f2))
is_differentiable_in x by
A5,
A9,
FDIFF_1: 9;
hence thesis by
A10,
FDIFF_2: 13;
end;
then
A11: (
sec
* (f1
+ (c
(#) f2)))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sec
* (f1
+ (c
(#) f2)))
`| Z)
. x)
= (((b
+ ((2
* c)
* x))
* (
sin
. ((a
+ (b
* x))
+ (c
* (x
^2 )))))
/ ((
cos
. ((a
+ (b
* x))
+ (c
* (x
^2 ))))
^2 ))
proof
let x;
assume
A12: x
in Z;
then
A13: ((f1
+ (c
(#) f2))
. x)
= ((f1
. x)
+ ((c
(#) f2)
. x)) by
A4,
VALUED_1:def 1
.= ((f1
. x)
+ (c
* (f2
. x))) by
A6,
A12,
VALUED_1:def 5
.= ((a
+ (b
* x))
+ (c
* (f2
. x))) by
A3,
A12
.= ((a
+ (b
* x))
+ (c
* (x
#Z 2))) by
A2,
TAYLOR_1:def 1
.= ((a
+ (b
* x))
+ (c
* (x
|^ 2))) by
PREPOWER: 36
.= ((a
+ (b
* x))
+ (c
* (x
^2 ))) by
NEWTON: 81;
A14: (f1
+ (c
(#) f2))
is_differentiable_in x by
A5,
A12,
FDIFF_1: 9;
A15: (
cos
. ((f1
+ (c
(#) f2))
. x))
<>
0 by
A7,
A12;
then
sec
is_differentiable_in ((f1
+ (c
(#) f2))
. x) by
Th1;
then (
diff ((
sec
* (f1
+ (c
(#) f2))),x))
= ((
diff (
sec ,((f1
+ (c
(#) f2))
. x)))
* (
diff ((f1
+ (c
(#) f2)),x))) by
A14,
FDIFF_2: 13
.= (((
sin
. ((f1
+ (c
(#) f2))
. x))
/ ((
cos
. ((f1
+ (c
(#) f2))
. x))
^2 ))
* (
diff ((f1
+ (c
(#) f2)),x))) by
A15,
Th1
.= ((((f1
+ (c
(#) f2))
`| Z)
. x)
* ((
sin
. ((a
+ (b
* x))
+ (c
* (x
^2 ))))
/ ((
cos
. ((a
+ (b
* x))
+ (c
* (x
^2 ))))
^2 ))) by
A5,
A12,
A13,
FDIFF_1:def 7
.= ((b
+ ((2
* c)
* x))
* ((
sin
. ((a
+ (b
* x))
+ (c
* (x
^2 ))))
/ ((
cos
. ((a
+ (b
* x))
+ (c
* (x
^2 ))))
^2 ))) by
A2,
A3,
A4,
A12,
FDIFF_4: 12;
hence thesis by
A11,
A12,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A8,
FDIFF_1: 9;
end;
theorem ::
FDIFF_9:11
Z
c= (
dom (
cosec
* (f1
+ (c
(#) f2)))) & f2
= (
#Z 2) & (for x st x
in Z holds (f1
. x)
= (a
+ (b
* x))) implies (
cosec
* (f1
+ (c
(#) f2)))
is_differentiable_on Z & for x st x
in Z holds (((
cosec
* (f1
+ (c
(#) f2)))
`| Z)
. x)
= (
- (((b
+ ((2
* c)
* x))
* (
cos
. ((a
+ (b
* x))
+ (c
* (x
^2 )))))
/ ((
sin
. ((a
+ (b
* x))
+ (c
* (x
^2 ))))
^2 )))
proof
assume that
A1: Z
c= (
dom (
cosec
* (f1
+ (c
(#) f2)))) and
A2: f2
= (
#Z 2) and
A3: for x st x
in Z holds (f1
. x)
= (a
+ (b
* x));
(
dom (
cosec
* (f1
+ (c
(#) f2))))
c= (
dom (f1
+ (c
(#) f2))) by
RELAT_1: 25;
then
A4: Z
c= (
dom (f1
+ (c
(#) f2))) by
A1,
XBOOLE_1: 1;
then
A5: (f1
+ (c
(#) f2))
is_differentiable_on Z by
A2,
A3,
FDIFF_4: 12;
Z
c= ((
dom f1)
/\ (
dom (c
(#) f2))) by
A4,
VALUED_1:def 1;
then
A6: Z
c= (
dom (c
(#) f2)) by
XBOOLE_1: 18;
A7: for x st x
in Z holds (
sin
. ((f1
+ (c
(#) f2))
. x))
<>
0
proof
let x;
assume x
in Z;
then ((f1
+ (c
(#) f2))
. x)
in (
dom
cosec ) by
A1,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
A8: for x st x
in Z holds (
cosec
* (f1
+ (c
(#) f2)))
is_differentiable_in x
proof
let x;
assume
A9: x
in Z;
then (
sin
. ((f1
+ (c
(#) f2))
. x))
<>
0 by
A7;
then
A10:
cosec
is_differentiable_in ((f1
+ (c
(#) f2))
. x) by
Th2;
(f1
+ (c
(#) f2))
is_differentiable_in x by
A5,
A9,
FDIFF_1: 9;
hence thesis by
A10,
FDIFF_2: 13;
end;
then
A11: (
cosec
* (f1
+ (c
(#) f2)))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cosec
* (f1
+ (c
(#) f2)))
`| Z)
. x)
= (
- (((b
+ ((2
* c)
* x))
* (
cos
. ((a
+ (b
* x))
+ (c
* (x
^2 )))))
/ ((
sin
. ((a
+ (b
* x))
+ (c
* (x
^2 ))))
^2 )))
proof
let x;
assume
A12: x
in Z;
then
A13: ((f1
+ (c
(#) f2))
. x)
= ((f1
. x)
+ ((c
(#) f2)
. x)) by
A4,
VALUED_1:def 1
.= ((f1
. x)
+ (c
* (f2
. x))) by
A6,
A12,
VALUED_1:def 5
.= ((a
+ (b
* x))
+ (c
* (f2
. x))) by
A3,
A12
.= ((a
+ (b
* x))
+ (c
* (x
#Z 2))) by
A2,
TAYLOR_1:def 1
.= ((a
+ (b
* x))
+ (c
* (x
|^ 2))) by
PREPOWER: 36
.= ((a
+ (b
* x))
+ (c
* (x
^2 ))) by
NEWTON: 81;
A14: (f1
+ (c
(#) f2))
is_differentiable_in x by
A5,
A12,
FDIFF_1: 9;
A15: (
sin
. ((f1
+ (c
(#) f2))
. x))
<>
0 by
A7,
A12;
then
cosec
is_differentiable_in ((f1
+ (c
(#) f2))
. x) by
Th2;
then (
diff ((
cosec
* (f1
+ (c
(#) f2))),x))
= ((
diff (
cosec ,((f1
+ (c
(#) f2))
. x)))
* (
diff ((f1
+ (c
(#) f2)),x))) by
A14,
FDIFF_2: 13
.= ((
- ((
cos
. ((f1
+ (c
(#) f2))
. x))
/ ((
sin
. ((f1
+ (c
(#) f2))
. x))
^2 )))
* (
diff ((f1
+ (c
(#) f2)),x))) by
A15,
Th2
.= ((((f1
+ (c
(#) f2))
`| Z)
. x)
* (
- ((
cos
. ((a
+ (b
* x))
+ (c
* (x
^2 ))))
/ ((
sin
. ((a
+ (b
* x))
+ (c
* (x
^2 ))))
^2 )))) by
A5,
A12,
A13,
FDIFF_1:def 7
.= ((b
+ ((2
* c)
* x))
* (
- ((
cos
. ((a
+ (b
* x))
+ (c
* (x
^2 ))))
/ ((
sin
. ((a
+ (b
* x))
+ (c
* (x
^2 ))))
^2 )))) by
A2,
A3,
A4,
A12,
FDIFF_4: 12;
hence thesis by
A11,
A12,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A8,
FDIFF_1: 9;
end;
theorem ::
FDIFF_9:12
Z
c= (
dom (
sec
*
exp_R )) implies (
sec
*
exp_R )
is_differentiable_on Z & for x st x
in Z holds (((
sec
*
exp_R )
`| Z)
. x)
= (((
exp_R
. x)
* (
sin
. (
exp_R
. x)))
/ ((
cos
. (
exp_R
. x))
^2 ))
proof
assume
A1: Z
c= (
dom (
sec
*
exp_R ));
A2: for x st x
in Z holds (
cos
. (
exp_R
. x))
<>
0
proof
let x;
assume x
in Z;
then (
exp_R
. x)
in (
dom
sec ) by
A1,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
A3: for x st x
in Z holds (
sec
*
exp_R )
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. (
exp_R
. x))
<>
0 by
A2;
then
exp_R
is_differentiable_in x &
sec
is_differentiable_in (
exp_R
. x) by
Th1,
SIN_COS: 65;
hence thesis by
FDIFF_2: 13;
end;
then
A4: (
sec
*
exp_R )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sec
*
exp_R )
`| Z)
. x)
= (((
exp_R
. x)
* (
sin
. (
exp_R
. x)))
/ ((
cos
. (
exp_R
. x))
^2 ))
proof
let x;
assume
A5: x
in Z;
then
A6: (
cos
. (
exp_R
. x))
<>
0 by
A2;
then
exp_R
is_differentiable_in x &
sec
is_differentiable_in (
exp_R
. x) by
Th1,
SIN_COS: 65;
then (
diff ((
sec
*
exp_R ),x))
= ((
diff (
sec ,(
exp_R
. x)))
* (
diff (
exp_R ,x))) by
FDIFF_2: 13
.= (((
sin
. (
exp_R
. x))
/ ((
cos
. (
exp_R
. x))
^2 ))
* (
diff (
exp_R ,x))) by
A6,
Th1
.= ((
exp_R
. x)
* ((
sin
. (
exp_R
. x))
/ ((
cos
. (
exp_R
. x))
^2 ))) by
SIN_COS: 65;
hence thesis by
A4,
A5,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_9:13
Z
c= (
dom (
cosec
*
exp_R )) implies (
cosec
*
exp_R )
is_differentiable_on Z & for x st x
in Z holds (((
cosec
*
exp_R )
`| Z)
. x)
= (
- (((
exp_R
. x)
* (
cos
. (
exp_R
. x)))
/ ((
sin
. (
exp_R
. x))
^2 )))
proof
assume
A1: Z
c= (
dom (
cosec
*
exp_R ));
A2: for x st x
in Z holds (
sin
. (
exp_R
. x))
<>
0
proof
let x;
assume x
in Z;
then (
exp_R
. x)
in (
dom
cosec ) by
A1,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
A3: for x st x
in Z holds (
cosec
*
exp_R )
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. (
exp_R
. x))
<>
0 by
A2;
then
exp_R
is_differentiable_in x &
cosec
is_differentiable_in (
exp_R
. x) by
Th2,
SIN_COS: 65;
hence thesis by
FDIFF_2: 13;
end;
then
A4: (
cosec
*
exp_R )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cosec
*
exp_R )
`| Z)
. x)
= (
- (((
exp_R
. x)
* (
cos
. (
exp_R
. x)))
/ ((
sin
. (
exp_R
. x))
^2 )))
proof
let x;
assume
A5: x
in Z;
then
A6: (
sin
. (
exp_R
. x))
<>
0 by
A2;
then
exp_R
is_differentiable_in x &
cosec
is_differentiable_in (
exp_R
. x) by
Th2,
SIN_COS: 65;
then (
diff ((
cosec
*
exp_R ),x))
= ((
diff (
cosec ,(
exp_R
. x)))
* (
diff (
exp_R ,x))) by
FDIFF_2: 13
.= ((
- ((
cos
. (
exp_R
. x))
/ ((
sin
. (
exp_R
. x))
^2 )))
* (
diff (
exp_R ,x))) by
A6,
Th2
.= ((
exp_R
. x)
* (
- ((
cos
. (
exp_R
. x))
/ ((
sin
. (
exp_R
. x))
^2 )))) by
SIN_COS: 65;
hence thesis by
A4,
A5,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
Lm1: (
right_open_halfline
0 )
= { g where g be
Real :
0
< g } by
XXREAL_1: 230;
theorem ::
FDIFF_9:14
Z
c= (
dom (
sec
*
ln )) implies (
sec
*
ln )
is_differentiable_on Z & for x st x
in Z holds (((
sec
*
ln )
`| Z)
. x)
= ((
sin
. (
ln
. x))
/ (x
* ((
cos
. (
ln
. x))
^2 )))
proof
assume
A1: Z
c= (
dom (
sec
*
ln ));
(
dom (
sec
*
ln ))
c= (
dom
ln ) by
RELAT_1: 25;
then
A2: Z
c= (
dom
ln ) by
A1,
XBOOLE_1: 1;
A3: for x st x
in Z holds x
>
0
proof
let x;
assume x
in Z;
then x
in (
right_open_halfline
0 ) by
A2,
TAYLOR_1: 18;
then ex g be
Real st x
= g &
0
< g by
Lm1;
hence thesis;
end;
A4: for x st x
in Z holds (
diff (
ln ,x))
= (1
/ x)
proof
let x;
assume x
in Z;
then x
>
0 by
A3;
then x
in (
right_open_halfline
0 ) by
Lm1;
hence thesis by
TAYLOR_1: 18;
end;
A5: for x st x
in Z holds (
cos
. (
ln
. x))
<>
0
proof
let x;
assume x
in Z;
then (
ln
. x)
in (
dom
sec ) by
A1,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
A6: for x st x
in Z holds (
sec
*
ln )
is_differentiable_in x
proof
let x;
assume
A7: x
in Z;
then (
cos
. (
ln
. x))
<>
0 by
A5;
then
A8:
sec
is_differentiable_in (
ln
. x) by
Th1;
ln
is_differentiable_in x by
A3,
A7,
TAYLOR_1: 18;
hence thesis by
A8,
FDIFF_2: 13;
end;
then
A9: (
sec
*
ln )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sec
*
ln )
`| Z)
. x)
= ((
sin
. (
ln
. x))
/ (x
* ((
cos
. (
ln
. x))
^2 )))
proof
let x;
assume
A10: x
in Z;
then
A11:
ln
is_differentiable_in x by
A3,
TAYLOR_1: 18;
A12: (
cos
. (
ln
. x))
<>
0 by
A5,
A10;
then
sec
is_differentiable_in (
ln
. x) by
Th1;
then (
diff ((
sec
*
ln ),x))
= ((
diff (
sec ,(
ln
. x)))
* (
diff (
ln ,x))) by
A11,
FDIFF_2: 13
.= (((
sin
. (
ln
. x))
/ ((
cos
. (
ln
. x))
^2 ))
* (
diff (
ln ,x))) by
A12,
Th1
.= ((1
/ x)
* ((
sin
. (
ln
. x))
/ ((
cos
. (
ln
. x))
^2 ))) by
A4,
A10
.= ((1
* (
sin
. (
ln
. x)))
/ (x
* ((
cos
. (
ln
. x))
^2 ))) by
XCMPLX_1: 76;
hence thesis by
A9,
A10,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A6,
FDIFF_1: 9;
end;
theorem ::
FDIFF_9:15
Z
c= (
dom (
cosec
*
ln )) implies (
cosec
*
ln )
is_differentiable_on Z & for x st x
in Z holds (((
cosec
*
ln )
`| Z)
. x)
= (
- ((
cos
. (
ln
. x))
/ (x
* ((
sin
. (
ln
. x))
^2 ))))
proof
assume
A1: Z
c= (
dom (
cosec
*
ln ));
(
dom (
cosec
*
ln ))
c= (
dom
ln ) by
RELAT_1: 25;
then
A2: Z
c= (
dom
ln ) by
A1,
XBOOLE_1: 1;
A3: for x st x
in Z holds x
>
0
proof
let x;
assume x
in Z;
then x
in (
right_open_halfline
0 ) by
A2,
TAYLOR_1: 18;
then ex g be
Real st x
= g &
0
< g by
Lm1;
hence thesis;
end;
A4: for x st x
in Z holds (
diff (
ln ,x))
= (1
/ x)
proof
let x;
assume x
in Z;
then x
>
0 by
A3;
then x
in (
right_open_halfline
0 ) by
Lm1;
hence thesis by
TAYLOR_1: 18;
end;
A5: for x st x
in Z holds (
sin
. (
ln
. x))
<>
0
proof
let x;
assume x
in Z;
then (
ln
. x)
in (
dom
cosec ) by
A1,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
A6: for x st x
in Z holds (
cosec
*
ln )
is_differentiable_in x
proof
let x;
assume
A7: x
in Z;
then (
sin
. (
ln
. x))
<>
0 by
A5;
then
A8:
cosec
is_differentiable_in (
ln
. x) by
Th2;
ln
is_differentiable_in x by
A3,
A7,
TAYLOR_1: 18;
hence thesis by
A8,
FDIFF_2: 13;
end;
then
A9: (
cosec
*
ln )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cosec
*
ln )
`| Z)
. x)
= (
- ((
cos
. (
ln
. x))
/ (x
* ((
sin
. (
ln
. x))
^2 ))))
proof
let x;
assume
A10: x
in Z;
then
A11:
ln
is_differentiable_in x by
A3,
TAYLOR_1: 18;
A12: (
sin
. (
ln
. x))
<>
0 by
A5,
A10;
then
cosec
is_differentiable_in (
ln
. x) by
Th2;
then (
diff ((
cosec
*
ln ),x))
= ((
diff (
cosec ,(
ln
. x)))
* (
diff (
ln ,x))) by
A11,
FDIFF_2: 13
.= ((
- ((
cos
. (
ln
. x))
/ ((
sin
. (
ln
. x))
^2 )))
* (
diff (
ln ,x))) by
A12,
Th2
.= ((1
/ x)
* ((
- (
cos
. (
ln
. x)))
/ ((
sin
. (
ln
. x))
^2 ))) by
A4,
A10
.= ((1
* (
- (
cos
. (
ln
. x))))
/ (x
* ((
sin
. (
ln
. x))
^2 ))) by
XCMPLX_1: 76;
hence thesis by
A9,
A10,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A6,
FDIFF_1: 9;
end;
theorem ::
FDIFF_9:16
Z
c= (
dom (
exp_R
*
sec )) implies (
exp_R
*
sec )
is_differentiable_on Z & for x st x
in Z holds (((
exp_R
*
sec )
`| Z)
. x)
= (((
exp_R
. (
sec
. x))
* (
sin
. x))
/ ((
cos
. x)
^2 ))
proof
assume
A1: Z
c= (
dom (
exp_R
*
sec ));
A2: for x st x
in Z holds (
cos
. x)
<>
0
proof
let x;
assume x
in Z;
then x
in (
dom
sec ) by
A1,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
A3: for x st x
in Z holds (
exp_R
*
sec )
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A2;
then
A4:
sec
is_differentiable_in x by
Th1;
exp_R
is_differentiable_in (
sec
. x) by
SIN_COS: 65;
hence thesis by
A4,
FDIFF_2: 13;
end;
then
A5: (
exp_R
*
sec )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
exp_R
*
sec )
`| Z)
. x)
= (((
exp_R
. (
sec
. x))
* (
sin
. x))
/ ((
cos
. x)
^2 ))
proof
let x;
A6:
exp_R
is_differentiable_in (
sec
. x) by
SIN_COS: 65;
assume
A7: x
in Z;
then
A8: (
cos
. x)
<>
0 by
A2;
then
sec
is_differentiable_in x by
Th1;
then (
diff ((
exp_R
*
sec ),x))
= ((
diff (
exp_R ,(
sec
. x)))
* (
diff (
sec ,x))) by
A6,
FDIFF_2: 13
.= ((
diff (
exp_R ,(
sec
. x)))
* ((
sin
. x)
/ ((
cos
. x)
^2 ))) by
A8,
Th1
.= ((
exp_R
. (
sec
. x))
* ((
sin
. x)
/ ((
cos
. x)
^2 ))) by
SIN_COS: 65;
hence thesis by
A5,
A7,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_9:17
Z
c= (
dom (
exp_R
*
cosec )) implies (
exp_R
*
cosec )
is_differentiable_on Z & for x st x
in Z holds (((
exp_R
*
cosec )
`| Z)
. x)
= (
- (((
exp_R
. (
cosec
. x))
* (
cos
. x))
/ ((
sin
. x)
^2 )))
proof
assume
A1: Z
c= (
dom (
exp_R
*
cosec ));
A2: for x st x
in Z holds (
sin
. x)
<>
0
proof
let x;
assume x
in Z;
then x
in (
dom
cosec ) by
A1,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
A3: for x st x
in Z holds (
exp_R
*
cosec )
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A2;
then
A4:
cosec
is_differentiable_in x by
Th2;
exp_R
is_differentiable_in (
cosec
. x) by
SIN_COS: 65;
hence thesis by
A4,
FDIFF_2: 13;
end;
then
A5: (
exp_R
*
cosec )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
exp_R
*
cosec )
`| Z)
. x)
= (
- (((
exp_R
. (
cosec
. x))
* (
cos
. x))
/ ((
sin
. x)
^2 )))
proof
let x;
A6:
exp_R
is_differentiable_in (
cosec
. x) by
SIN_COS: 65;
assume
A7: x
in Z;
then
A8: (
sin
. x)
<>
0 by
A2;
then
cosec
is_differentiable_in x by
Th2;
then (
diff ((
exp_R
*
cosec ),x))
= ((
diff (
exp_R ,(
cosec
. x)))
* (
diff (
cosec ,x))) by
A6,
FDIFF_2: 13
.= ((
diff (
exp_R ,(
cosec
. x)))
* (
- ((
cos
. x)
/ ((
sin
. x)
^2 )))) by
A8,
Th2
.= ((
exp_R
. (
cosec
. x))
* (
- ((
cos
. x)
/ ((
sin
. x)
^2 )))) by
SIN_COS: 65;
hence thesis by
A5,
A7,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_9:18
Z
c= (
dom (
ln
*
sec )) implies (
ln
*
sec )
is_differentiable_on Z & for x st x
in Z holds (((
ln
*
sec )
`| Z)
. x)
= ((
sin
. x)
/ (
cos
. x))
proof
assume
A1: Z
c= (
dom (
ln
*
sec ));
A2: for x st x
in Z holds (
sec
. x)
>
0
proof
let x;
assume x
in Z;
then (
sec
. x)
in (
right_open_halfline
0 ) by
A1,
FUNCT_1: 11,
TAYLOR_1: 18;
then ex g be
Real st (
sec
. x)
= g &
0
< g by
Lm1;
hence thesis;
end;
(
dom (
ln
*
sec ))
c= (
dom
sec ) by
RELAT_1: 25;
then
A3: Z
c= (
dom
sec ) by
A1,
XBOOLE_1: 1;
A4: for x st x
in Z holds (
cos
. x)
<>
0
proof
let x;
assume x
in Z;
then x
in (
dom
sec ) by
A1,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
A5: for x st x
in Z holds
sec
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A4;
hence thesis by
Th1;
end;
A6: for x st x
in Z holds (
ln
*
sec )
is_differentiable_in x
proof
let x;
assume x
in Z;
then
sec
is_differentiable_in x & (
sec
. x)
>
0 by
A2,
A5;
hence thesis by
TAYLOR_1: 20;
end;
then
A7: (
ln
*
sec )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
ln
*
sec )
`| Z)
. x)
= ((
sin
. x)
/ (
cos
. x))
proof
let x;
assume
A8: x
in Z;
then
A9: (
cos
. x)
<>
0 by
A4;
sec
is_differentiable_in x & (
sec
. x)
>
0 by
A2,
A5,
A8;
then (
diff ((
ln
*
sec ),x))
= ((
diff (
sec ,x))
/ (
sec
. x)) by
TAYLOR_1: 20
.= (((
sin
. x)
/ ((
cos
. x)
^2 ))
/ (
sec
. x)) by
A9,
Th1
.= (((
sin
. x)
/ ((
cos
. x)
^2 ))
/ ((
cos
. x)
" )) by
A3,
A8,
RFUNCT_1:def 2
.= (((
sin
. x)
* (
cos
. x))
/ ((
cos
. x)
* (
cos
. x)))
.= ((
sin
. x)
/ (
cos
. x)) by
A4,
A8,
XCMPLX_1: 91;
hence thesis by
A7,
A8,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A6,
FDIFF_1: 9;
end;
theorem ::
FDIFF_9:19
Z
c= (
dom (
ln
*
cosec )) implies (
ln
*
cosec )
is_differentiable_on Z & for x st x
in Z holds (((
ln
*
cosec )
`| Z)
. x)
= (
- ((
cos
. x)
/ (
sin
. x)))
proof
assume
A1: Z
c= (
dom (
ln
*
cosec ));
A2: for x st x
in Z holds (
cosec
. x)
>
0
proof
let x;
assume x
in Z;
then (
cosec
. x)
in (
right_open_halfline
0 ) by
A1,
FUNCT_1: 11,
TAYLOR_1: 18;
then ex g be
Real st (
cosec
. x)
= g &
0
< g by
Lm1;
hence thesis;
end;
(
dom (
ln
*
cosec ))
c= (
dom
cosec ) by
RELAT_1: 25;
then
A3: Z
c= (
dom
cosec ) by
A1,
XBOOLE_1: 1;
A4: for x st x
in Z holds (
sin
. x)
<>
0
proof
let x;
assume x
in Z;
then x
in (
dom
cosec ) by
A1,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
A5: for x st x
in Z holds
cosec
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A4;
hence thesis by
Th2;
end;
A6: for x st x
in Z holds (
ln
*
cosec )
is_differentiable_in x
proof
let x;
assume x
in Z;
then
cosec
is_differentiable_in x & (
cosec
. x)
>
0 by
A2,
A5;
hence thesis by
TAYLOR_1: 20;
end;
then
A7: (
ln
*
cosec )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
ln
*
cosec )
`| Z)
. x)
= (
- ((
cos
. x)
/ (
sin
. x)))
proof
let x;
assume
A8: x
in Z;
then
A9: (
sin
. x)
<>
0 by
A4;
cosec
is_differentiable_in x & (
cosec
. x)
>
0 by
A2,
A5,
A8;
then (
diff ((
ln
*
cosec ),x))
= ((
diff (
cosec ,x))
/ (
cosec
. x)) by
TAYLOR_1: 20
.= ((
- ((
cos
. x)
/ ((
sin
. x)
^2 )))
/ (
cosec
. x)) by
A9,
Th2
.= ((
- ((
cos
. x)
/ ((
sin
. x)
^2 )))
/ ((
sin
. x)
" )) by
A3,
A8,
RFUNCT_1:def 2
.= (((
- (
cos
. x))
* (
sin
. x))
/ ((
sin
. x)
* (
sin
. x)))
.= ((
- (
cos
. x))
/ (
sin
. x)) by
A4,
A8,
XCMPLX_1: 91;
hence thesis by
A7,
A8,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A6,
FDIFF_1: 9;
end;
theorem ::
FDIFF_9:20
Z
c= (
dom ((
#Z n)
*
sec )) & 1
<= n implies ((
#Z n)
*
sec )
is_differentiable_on Z & for x st x
in Z holds ((((
#Z n)
*
sec )
`| Z)
. x)
= ((n
* (
sin
. x))
/ ((
cos
. x)
#Z (n
+ 1)))
proof
assume that
A1: Z
c= (
dom ((
#Z n)
*
sec )) and
A2: 1
<= n;
(
dom ((
#Z n)
*
sec ))
c= (
dom
sec ) by
RELAT_1: 25;
then
A3: Z
c= (
dom
sec ) by
A1,
XBOOLE_1: 1;
A4: for x st x
in Z holds (
cos
. x)
<>
0
proof
let x;
assume x
in Z;
then x
in (
dom
sec ) by
A1,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
A5: for x st x
in Z holds ((
#Z n)
*
sec )
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A4;
then
sec
is_differentiable_in x by
Th1;
hence thesis by
TAYLOR_1: 3;
end;
then
A6: ((
#Z n)
*
sec )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds ((((
#Z n)
*
sec )
`| Z)
. x)
= ((n
* (
sin
. x))
/ ((
cos
. x)
#Z (n
+ 1)))
proof
set m = (n
- 1);
let x;
A7: ex m be
Nat st n
= (m
+ 1) by
A2,
NAT_1: 6;
assume
A8: x
in Z;
then
A9: (
cos
. x)
<>
0 by
A4;
then
A10:
sec
is_differentiable_in x by
Th1;
((((
#Z n)
*
sec )
`| Z)
. x)
= (
diff (((
#Z n)
*
sec ),x)) by
A6,
A8,
FDIFF_1:def 7
.= ((n
* ((
sec
. x)
#Z (n
- 1)))
* (
diff (
sec ,x))) by
A10,
TAYLOR_1: 3
.= ((n
* ((
sec
. x)
#Z (n
- 1)))
* ((
sin
. x)
/ ((
cos
. x)
^2 ))) by
A9,
Th1
.= ((n
* ((1
/ (
cos
. x))
#Z (n
- 1)))
* ((
sin
. x)
/ ((
cos
. x)
^2 ))) by
A3,
A8,
RFUNCT_1:def 2
.= ((n
* (1
/ ((
cos
. x)
#Z m)))
* ((
sin
. x)
/ ((
cos
. x)
^2 ))) by
A7,
Th3
.= ((n
/ ((
cos
. x)
#Z (n
- 1)))
* ((
sin
. x)
/ ((
cos
. x)
^2 )))
.= ((n
* (
sin
. x))
/ (((
cos
. x)
#Z (n
- 1))
* ((
cos
. x)
^2 ))) by
XCMPLX_1: 76
.= ((n
* (
sin
. x))
/ (((
cos
. x)
#Z (n
- 1))
* ((
cos
. x)
#Z 2))) by
FDIFF_7: 1
.= ((n
* (
sin
. x))
/ ((
cos
. x)
#Z ((n
- 1)
+ 2))) by
A4,
A8,
PREPOWER: 44
.= ((n
* (
sin
. x))
/ ((
cos
. x)
#Z (n
+ 1)));
hence thesis;
end;
hence thesis by
A1,
A5,
FDIFF_1: 9;
end;
theorem ::
FDIFF_9:21
Z
c= (
dom ((
#Z n)
*
cosec )) & 1
<= n implies ((
#Z n)
*
cosec )
is_differentiable_on Z & for x st x
in Z holds ((((
#Z n)
*
cosec )
`| Z)
. x)
= (
- ((n
* (
cos
. x))
/ ((
sin
. x)
#Z (n
+ 1))))
proof
assume that
A1: Z
c= (
dom ((
#Z n)
*
cosec )) and
A2: 1
<= n;
(
dom ((
#Z n)
*
cosec ))
c= (
dom
cosec ) by
RELAT_1: 25;
then
A3: Z
c= (
dom
cosec ) by
A1,
XBOOLE_1: 1;
A4: for x st x
in Z holds (
sin
. x)
<>
0
proof
let x;
assume x
in Z;
then x
in (
dom
cosec ) by
A1,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
A5: for x st x
in Z holds ((
#Z n)
*
cosec )
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A4;
then
cosec
is_differentiable_in x by
Th2;
hence thesis by
TAYLOR_1: 3;
end;
then
A6: ((
#Z n)
*
cosec )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds ((((
#Z n)
*
cosec )
`| Z)
. x)
= (
- ((n
* (
cos
. x))
/ ((
sin
. x)
#Z (n
+ 1))))
proof
set m = (n
- 1);
let x;
A7: ex m be
Nat st n
= (m
+ 1) by
A2,
NAT_1: 6;
assume
A8: x
in Z;
then
A9: (
sin
. x)
<>
0 by
A4;
then
A10:
cosec
is_differentiable_in x by
Th2;
((((
#Z n)
*
cosec )
`| Z)
. x)
= (
diff (((
#Z n)
*
cosec ),x)) by
A6,
A8,
FDIFF_1:def 7
.= ((n
* ((
cosec
. x)
#Z (n
- 1)))
* (
diff (
cosec ,x))) by
A10,
TAYLOR_1: 3
.= ((n
* ((
cosec
. x)
#Z (n
- 1)))
* (
- ((
cos
. x)
/ ((
sin
. x)
^2 )))) by
A9,
Th2
.= ((n
* ((1
/ (
sin
. x))
#Z (n
- 1)))
* (
- ((
cos
. x)
/ ((
sin
. x)
^2 )))) by
A3,
A8,
RFUNCT_1:def 2
.= ((n
* (1
/ ((
sin
. x)
#Z m)))
* (
- ((
cos
. x)
/ ((
sin
. x)
^2 )))) by
A7,
Th3
.= ((n
/ ((
sin
. x)
#Z (n
- 1)))
* ((
- (
cos
. x))
/ ((
sin
. x)
^2 )))
.= ((n
* (
- (
cos
. x)))
/ (((
sin
. x)
#Z (n
- 1))
* ((
sin
. x)
^2 ))) by
XCMPLX_1: 76
.= ((n
* (
- (
cos
. x)))
/ (((
sin
. x)
#Z (n
- 1))
* ((
sin
. x)
#Z 2))) by
FDIFF_7: 1
.= ((n
* (
- (
cos
. x)))
/ ((
sin
. x)
#Z ((n
- 1)
+ 2))) by
A4,
A8,
PREPOWER: 44
.= ((n
* (
- (
cos
. x)))
/ ((
sin
. x)
#Z (n
+ 1)));
hence thesis;
end;
hence thesis by
A1,
A5,
FDIFF_1: 9;
end;
theorem ::
FDIFF_9:22
Z
c= (
dom (
sec
- (
id Z))) implies (
sec
- (
id Z))
is_differentiable_on Z & for x st x
in Z holds (((
sec
- (
id Z))
`| Z)
. x)
= (((
sin
. x)
- ((
cos
. x)
^2 ))
/ ((
cos
. x)
^2 ))
proof
A1: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
assume
A2: Z
c= (
dom (
sec
- (
id Z)));
then
A3: Z
c= ((
dom
sec )
/\ (
dom (
id Z))) by
VALUED_1: 12;
then
A4: Z
c= (
dom
sec ) by
XBOOLE_1: 18;
A5: Z
c= (
dom (
id Z)) by
A3,
XBOOLE_1: 18;
then
A6: (
id Z)
is_differentiable_on Z by
A1,
FDIFF_1: 23;
for x st x
in Z holds
sec
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A4,
RFUNCT_1: 3;
hence thesis by
Th1;
end;
then
A7:
sec
is_differentiable_on Z by
A4,
FDIFF_1: 9;
for x st x
in Z holds (((
sec
- (
id Z))
`| Z)
. x)
= (((
sin
. x)
- ((
cos
. x)
^2 ))
/ ((
cos
. x)
^2 ))
proof
let x;
assume
A8: x
in Z;
then
A9: (
cos
. x)
<>
0 by
A4,
RFUNCT_1: 3;
then
A10: ((
cos
. x)
^2 )
>
0 by
SQUARE_1: 12;
(((
sec
- (
id Z))
`| Z)
. x)
= ((
diff (
sec ,x))
- (
diff ((
id Z),x))) by
A2,
A6,
A7,
A8,
FDIFF_1: 19
.= (((
sin
. x)
/ ((
cos
. x)
^2 ))
- (
diff ((
id Z),x))) by
A9,
Th1
.= (((
sin
. x)
/ ((
cos
. x)
^2 ))
- (((
id Z)
`| Z)
. x)) by
A6,
A8,
FDIFF_1:def 7
.= (((
sin
. x)
/ ((
cos
. x)
^2 ))
- 1) by
A5,
A1,
A8,
FDIFF_1: 23
.= (((
sin
. x)
/ ((
cos
. x)
^2 ))
- (((
cos
. x)
^2 )
/ ((
cos
. x)
^2 ))) by
A10,
XCMPLX_1: 60
.= (((
sin
. x)
- ((
cos
. x)
^2 ))
/ ((
cos
. x)
^2 ));
hence thesis;
end;
hence thesis by
A2,
A6,
A7,
FDIFF_1: 19;
end;
theorem ::
FDIFF_9:23
Z
c= (
dom ((
-
cosec )
- (
id Z))) implies ((
-
cosec )
- (
id Z))
is_differentiable_on Z & for x st x
in Z holds ((((
-
cosec )
- (
id Z))
`| Z)
. x)
= (((
cos
. x)
- ((
sin
. x)
^2 ))
/ ((
sin
. x)
^2 ))
proof
set f = (
-
cosec );
A1: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
assume
A2: Z
c= (
dom ((
-
cosec )
- (
id Z)));
then
A3: Z
c= ((
dom (
-
cosec ))
/\ (
dom (
id Z))) by
VALUED_1: 12;
then
A4: Z
c= (
dom (
-
cosec )) by
XBOOLE_1: 18;
then
A5: Z
c= (
dom
cosec ) by
VALUED_1: 8;
for x st x
in Z holds
cosec
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A5,
RFUNCT_1: 3;
hence thesis by
Th2;
end;
then
A6:
cosec
is_differentiable_on Z by
A5,
FDIFF_1: 9;
then
A7: ((
- 1)
(#)
cosec )
is_differentiable_on Z by
A4,
FDIFF_1: 20;
A8: Z
c= (
dom (
id Z)) by
A3,
XBOOLE_1: 18;
then
A9: (
id Z)
is_differentiable_on Z by
A1,
FDIFF_1: 23;
for x st x
in Z holds ((((
-
cosec )
- (
id Z))
`| Z)
. x)
= (((
cos
. x)
- ((
sin
. x)
^2 ))
/ ((
sin
. x)
^2 ))
proof
let x;
assume
A10: x
in Z;
then
A11: (
sin
. x)
<>
0 by
A5,
RFUNCT_1: 3;
then
A12: ((
sin
. x)
^2 )
>
0 by
SQUARE_1: 12;
(((f
- (
id Z))
`| Z)
. x)
= ((
diff (f,x))
- (
diff ((
id Z),x))) by
A2,
A9,
A7,
A10,
FDIFF_1: 19
.= (((((
- 1)
(#)
cosec )
`| Z)
. x)
- (
diff ((
id Z),x))) by
A7,
A10,
FDIFF_1:def 7
.= (((
- 1)
* (
diff (
cosec ,x)))
- (
diff ((
id Z),x))) by
A4,
A6,
A10,
FDIFF_1: 20
.= (((
- 1)
* (
- ((
cos
. x)
/ ((
sin
. x)
^2 ))))
- (
diff ((
id Z),x))) by
A11,
Th2
.= (((
cos
. x)
/ ((
sin
. x)
^2 ))
- (((
id Z)
`| Z)
. x)) by
A9,
A10,
FDIFF_1:def 7
.= (((
cos
. x)
/ ((
sin
. x)
^2 ))
- 1) by
A8,
A1,
A10,
FDIFF_1: 23
.= (((
cos
. x)
/ ((
sin
. x)
^2 ))
- (((
sin
. x)
^2 )
/ ((
sin
. x)
^2 ))) by
A12,
XCMPLX_1: 60
.= (((
cos
. x)
- ((
sin
. x)
^2 ))
/ ((
sin
. x)
^2 ));
hence thesis;
end;
hence thesis by
A2,
A9,
A7,
FDIFF_1: 19;
end;
theorem ::
FDIFF_9:24
Z
c= (
dom (
exp_R
(#)
sec )) implies (
exp_R
(#)
sec )
is_differentiable_on Z & for x st x
in Z holds (((
exp_R
(#)
sec )
`| Z)
. x)
= (((
exp_R
. x)
/ (
cos
. x))
+ (((
exp_R
. x)
* (
sin
. x))
/ ((
cos
. x)
^2 )))
proof
A1: for x st x
in Z holds
exp_R
is_differentiable_in x by
SIN_COS: 65;
assume
A2: Z
c= (
dom (
exp_R
(#)
sec ));
then
A3: Z
c= ((
dom
exp_R )
/\ (
dom
sec )) by
VALUED_1:def 4;
then
A4: Z
c= (
dom
sec ) by
XBOOLE_1: 18;
Z
c= (
dom
exp_R ) by
A3,
XBOOLE_1: 18;
then
A5:
exp_R
is_differentiable_on Z by
A1,
FDIFF_1: 9;
A6: for x st x
in Z holds
sec
is_differentiable_in x & (
diff (
sec ,x))
= ((
sin
. x)
/ ((
cos
. x)
^2 ))
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A4,
RFUNCT_1: 3;
hence thesis by
Th1;
end;
then for x st x
in Z holds
sec
is_differentiable_in x;
then
A7:
sec
is_differentiable_on Z by
A4,
FDIFF_1: 9;
for x st x
in Z holds (((
exp_R
(#)
sec )
`| Z)
. x)
= (((
exp_R
. x)
/ (
cos
. x))
+ (((
exp_R
. x)
* (
sin
. x))
/ ((
cos
. x)
^2 )))
proof
let x;
assume
A8: x
in Z;
then (((
exp_R
(#)
sec )
`| Z)
. x)
= (((
sec
. x)
* (
diff (
exp_R ,x)))
+ ((
exp_R
. x)
* (
diff (
sec ,x)))) by
A2,
A5,
A7,
FDIFF_1: 21
.= (((
sec
. x)
* (
exp_R
. x))
+ ((
exp_R
. x)
* (
diff (
sec ,x)))) by
SIN_COS: 65
.= (((
sec
. x)
* (
exp_R
. x))
+ ((
exp_R
. x)
* ((
sin
. x)
/ ((
cos
. x)
^2 )))) by
A6,
A8
.= (((
exp_R
. x)
/ (
cos
. x))
+ (((
exp_R
. x)
* (
sin
. x))
/ ((
cos
. x)
^2 ))) by
A4,
A8,
RFUNCT_1:def 2;
hence thesis;
end;
hence thesis by
A2,
A5,
A7,
FDIFF_1: 21;
end;
theorem ::
FDIFF_9:25
Z
c= (
dom (
exp_R
(#)
cosec )) implies (
exp_R
(#)
cosec )
is_differentiable_on Z & for x st x
in Z holds (((
exp_R
(#)
cosec )
`| Z)
. x)
= (((
exp_R
. x)
/ (
sin
. x))
- (((
exp_R
. x)
* (
cos
. x))
/ ((
sin
. x)
^2 )))
proof
A1: for x st x
in Z holds
exp_R
is_differentiable_in x by
SIN_COS: 65;
assume
A2: Z
c= (
dom (
exp_R
(#)
cosec ));
then
A3: Z
c= ((
dom
exp_R )
/\ (
dom
cosec )) by
VALUED_1:def 4;
then
A4: Z
c= (
dom
cosec ) by
XBOOLE_1: 18;
Z
c= (
dom
exp_R ) by
A3,
XBOOLE_1: 18;
then
A5:
exp_R
is_differentiable_on Z by
A1,
FDIFF_1: 9;
A6: for x st x
in Z holds
cosec
is_differentiable_in x & (
diff (
cosec ,x))
= (
- ((
cos
. x)
/ ((
sin
. x)
^2 )))
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A4,
RFUNCT_1: 3;
hence thesis by
Th2;
end;
then for x st x
in Z holds
cosec
is_differentiable_in x;
then
A7:
cosec
is_differentiable_on Z by
A4,
FDIFF_1: 9;
for x st x
in Z holds (((
exp_R
(#)
cosec )
`| Z)
. x)
= (((
exp_R
. x)
/ (
sin
. x))
- (((
exp_R
. x)
* (
cos
. x))
/ ((
sin
. x)
^2 )))
proof
let x;
assume
A8: x
in Z;
then (((
exp_R
(#)
cosec )
`| Z)
. x)
= (((
cosec
. x)
* (
diff (
exp_R ,x)))
+ ((
exp_R
. x)
* (
diff (
cosec ,x)))) by
A2,
A5,
A7,
FDIFF_1: 21
.= (((
cosec
. x)
* (
exp_R
. x))
+ ((
exp_R
. x)
* (
diff (
cosec ,x)))) by
SIN_COS: 65
.= (((
cosec
. x)
* (
exp_R
. x))
+ ((
exp_R
. x)
* (
- ((
cos
. x)
/ ((
sin
. x)
^2 ))))) by
A6,
A8
.= (((
exp_R
. x)
/ (
sin
. x))
+ (((
exp_R
. x)
* (
- (
cos
. x)))
/ ((
sin
. x)
^2 ))) by
A4,
A8,
RFUNCT_1:def 2;
hence thesis;
end;
hence thesis by
A2,
A5,
A7,
FDIFF_1: 21;
end;
theorem ::
FDIFF_9:26
(Z
c= (
dom (((1
/ a)
(#) (
sec
* f))
- (
id Z))) & for x st x
in Z holds (f
. x)
= (a
* x) & a
<>
0 ) implies (((1
/ a)
(#) (
sec
* f))
- (
id Z))
is_differentiable_on Z & for x st x
in Z holds (((((1
/ a)
(#) (
sec
* f))
- (
id Z))
`| Z)
. x)
= (((
sin
. (a
* x))
- ((
cos
. (a
* x))
^2 ))
/ ((
cos
. (a
* x))
^2 ))
proof
assume that
A1: Z
c= (
dom (((1
/ a)
(#) (
sec
* f))
- (
id Z))) and
A2: for x st x
in Z holds (f
. x)
= (a
* x) & a
<>
0 ;
A3: Z
c= ((
dom ((1
/ a)
(#) (
sec
* f)))
/\ (
dom (
id Z))) by
A1,
VALUED_1: 12;
then
A4: Z
c= (
dom ((1
/ a)
(#) (
sec
* f))) by
XBOOLE_1: 18;
then
A5: Z
c= (
dom (
sec
* f)) by
VALUED_1:def 5;
A6: for x st x
in Z holds (f
. x)
= ((a
* x)
+
0 ) by
A2;
then
A7: (
sec
* f)
is_differentiable_on Z by
A5,
Th6;
then
A8: ((1
/ a)
(#) (
sec
* f))
is_differentiable_on Z by
A4,
FDIFF_1: 20;
set g = ((1
/ a)
(#) (
sec
* f));
A9: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
A10: Z
c= (
dom (
id Z)) by
A3,
XBOOLE_1: 18;
then
A11: (
id Z)
is_differentiable_on Z by
A9,
FDIFF_1: 23;
A12: for x st x
in Z holds (
cos
. (f
. x))
<>
0
proof
let x;
assume x
in Z;
then (f
. x)
in (
dom
sec ) by
A5,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
for x st x
in Z holds (((((1
/ a)
(#) (
sec
* f))
- (
id Z))
`| Z)
. x)
= (((
sin
. (a
* x))
- ((
cos
. (a
* x))
^2 ))
/ ((
cos
. (a
* x))
^2 ))
proof
let x;
assume
A13: x
in Z;
then
A14: (f
. x)
= ((a
* x)
+
0 ) by
A2;
(
cos
. (f
. x))
<>
0 by
A12,
A13;
then
A15: ((
cos
. (a
* x))
^2 )
>
0 by
A14,
SQUARE_1: 12;
(((g
- (
id Z))
`| Z)
. x)
= ((
diff (g,x))
- (
diff ((
id Z),x))) by
A1,
A8,
A11,
A13,
FDIFF_1: 19
.= (((g
`| Z)
. x)
- (
diff ((
id Z),x))) by
A8,
A13,
FDIFF_1:def 7
.= (((1
/ a)
* (
diff ((
sec
* f),x)))
- (
diff ((
id Z),x))) by
A4,
A7,
A13,
FDIFF_1: 20
.= (((1
/ a)
* (((
sec
* f)
`| Z)
. x))
- (
diff ((
id Z),x))) by
A7,
A13,
FDIFF_1:def 7
.= (((1
/ a)
* (((
sec
* f)
`| Z)
. x))
- (((
id Z)
`| Z)
. x)) by
A11,
A13,
FDIFF_1:def 7
.= (((1
/ a)
* ((a
* (
sin
. (a
* x)))
/ ((
cos
. (a
* x))
^2 )))
- (((
id Z)
`| Z)
. x)) by
A5,
A6,
A13,
A14,
Th6
.= (((1
/ a)
* ((a
* (
sin
. (a
* x)))
/ ((
cos
. (a
* x))
^2 )))
- 1) by
A10,
A9,
A13,
FDIFF_1: 23
.= (((1
* (a
* (
sin
. (a
* x))))
/ (a
* ((
cos
. (a
* x))
^2 )))
- 1) by
XCMPLX_1: 76
.= (((
sin
. (a
* x))
/ ((
cos
. (a
* x))
^2 ))
- 1) by
A2,
A13,
XCMPLX_1: 91
.= (((
sin
. (a
* x))
/ ((
cos
. (a
* x))
^2 ))
- (((
cos
. (a
* x))
^2 )
/ ((
cos
. (a
* x))
^2 ))) by
A15,
XCMPLX_1: 60
.= (((
sin
. (a
* x))
- ((
cos
. (a
* x))
^2 ))
/ ((
cos
. (a
* x))
^2 ));
hence thesis;
end;
hence thesis by
A1,
A8,
A11,
FDIFF_1: 19;
end;
theorem ::
FDIFF_9:27
(Z
c= (
dom (((
- (1
/ a))
(#) (
cosec
* f))
- (
id Z))) & for x st x
in Z holds (f
. x)
= (a
* x) & a
<>
0 ) implies (((
- (1
/ a))
(#) (
cosec
* f))
- (
id Z))
is_differentiable_on Z & for x st x
in Z holds (((((
- (1
/ a))
(#) (
cosec
* f))
- (
id Z))
`| Z)
. x)
= (((
cos
. (a
* x))
- ((
sin
. (a
* x))
^2 ))
/ ((
sin
. (a
* x))
^2 ))
proof
assume that
A1: Z
c= (
dom (((
- (1
/ a))
(#) (
cosec
* f))
- (
id Z))) and
A2: for x st x
in Z holds (f
. x)
= (a
* x) & a
<>
0 ;
A3: Z
c= ((
dom ((
- (1
/ a))
(#) (
cosec
* f)))
/\ (
dom (
id Z))) by
A1,
VALUED_1: 12;
then
A4: Z
c= (
dom ((
- (1
/ a))
(#) (
cosec
* f))) by
XBOOLE_1: 18;
then
A5: Z
c= (
dom (
cosec
* f)) by
VALUED_1:def 5;
A6: for x st x
in Z holds (f
. x)
= ((a
* x)
+
0 ) by
A2;
then
A7: (
cosec
* f)
is_differentiable_on Z by
A5,
Th7;
then
A8: ((
- (1
/ a))
(#) (
cosec
* f))
is_differentiable_on Z by
A4,
FDIFF_1: 20;
set g = ((
- (1
/ a))
(#) (
cosec
* f));
A9: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
A10: Z
c= (
dom (
id Z)) by
A3,
XBOOLE_1: 18;
then
A11: (
id Z)
is_differentiable_on Z by
A9,
FDIFF_1: 23;
A12: for x st x
in Z holds (
sin
. (f
. x))
<>
0
proof
let x;
assume x
in Z;
then (f
. x)
in (
dom
cosec ) by
A5,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
for x st x
in Z holds (((((
- (1
/ a))
(#) (
cosec
* f))
- (
id Z))
`| Z)
. x)
= (((
cos
. (a
* x))
- ((
sin
. (a
* x))
^2 ))
/ ((
sin
. (a
* x))
^2 ))
proof
let x;
assume
A13: x
in Z;
then
A14: (f
. x)
= ((a
* x)
+
0 ) by
A2;
(
sin
. (f
. x))
<>
0 by
A12,
A13;
then
A15: ((
sin
. (a
* x))
^2 )
>
0 by
A14,
SQUARE_1: 12;
(((g
- (
id Z))
`| Z)
. x)
= ((
diff (g,x))
- (
diff ((
id Z),x))) by
A1,
A8,
A11,
A13,
FDIFF_1: 19
.= (((g
`| Z)
. x)
- (
diff ((
id Z),x))) by
A8,
A13,
FDIFF_1:def 7
.= (((
- (1
/ a))
* (
diff ((
cosec
* f),x)))
- (
diff ((
id Z),x))) by
A4,
A7,
A13,
FDIFF_1: 20
.= (((
- (1
/ a))
* (((
cosec
* f)
`| Z)
. x))
- (
diff ((
id Z),x))) by
A7,
A13,
FDIFF_1:def 7
.= (((
- (1
/ a))
* (((
cosec
* f)
`| Z)
. x))
- (((
id Z)
`| Z)
. x)) by
A11,
A13,
FDIFF_1:def 7
.= (((
- (1
/ a))
* (
- ((a
* (
cos
. (a
* x)))
/ ((
sin
. (a
* x))
^2 ))))
- (((
id Z)
`| Z)
. x)) by
A5,
A6,
A13,
A14,
Th7
.= ((((
- 1)
/ a)
* ((a
* (
- (
cos
. (a
* x))))
/ ((
sin
. (a
* x))
^2 )))
- 1) by
A10,
A9,
A13,
FDIFF_1: 23
.= ((((
- 1)
* (a
* (
- (
cos
. (a
* x)))))
/ (a
* ((
sin
. (a
* x))
^2 )))
- 1) by
XCMPLX_1: 76
.= ((((
cos
. (a
* x))
* a)
/ (((
sin
. (a
* x))
^2 )
* a))
- 1)
.= (((
cos
. (a
* x))
/ ((
sin
. (a
* x))
^2 ))
- 1) by
A2,
A13,
XCMPLX_1: 91
.= (((
cos
. (a
* x))
/ ((
sin
. (a
* x))
^2 ))
- (((
sin
. (a
* x))
^2 )
/ ((
sin
. (a
* x))
^2 ))) by
A15,
XCMPLX_1: 60
.= (((
cos
. (a
* x))
- ((
sin
. (a
* x))
^2 ))
/ ((
sin
. (a
* x))
^2 ));
hence thesis;
end;
hence thesis by
A1,
A8,
A11,
FDIFF_1: 19;
end;
theorem ::
FDIFF_9:28
(Z
c= (
dom (f
(#)
sec )) & for x st x
in Z holds (f
. x)
= ((a
* x)
+ b)) implies (f
(#)
sec )
is_differentiable_on Z & for x st x
in Z holds (((f
(#)
sec )
`| Z)
. x)
= ((a
/ (
cos
. x))
+ ((((a
* x)
+ b)
* (
sin
. x))
/ ((
cos
. x)
^2 )))
proof
assume that
A1: Z
c= (
dom (f
(#)
sec )) and
A2: for x st x
in Z holds (f
. x)
= ((a
* x)
+ b);
A3: Z
c= ((
dom f)
/\ (
dom
sec )) by
A1,
VALUED_1:def 4;
then
A4: Z
c= (
dom
sec ) by
XBOOLE_1: 18;
A5: Z
c= (
dom f) by
A3,
XBOOLE_1: 18;
then
A6: f
is_differentiable_on Z by
A2,
FDIFF_1: 23;
A7: for x st x
in Z holds
sec
is_differentiable_in x & (
diff (
sec ,x))
= ((
sin
. x)
/ ((
cos
. x)
^2 ))
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A4,
RFUNCT_1: 3;
hence thesis by
Th1;
end;
then for x st x
in Z holds
sec
is_differentiable_in x;
then
A8:
sec
is_differentiable_on Z by
A4,
FDIFF_1: 9;
for x st x
in Z holds (((f
(#)
sec )
`| Z)
. x)
= ((a
/ (
cos
. x))
+ ((((a
* x)
+ b)
* (
sin
. x))
/ ((
cos
. x)
^2 )))
proof
let x;
assume
A9: x
in Z;
then (((f
(#)
sec )
`| Z)
. x)
= (((
sec
. x)
* (
diff (f,x)))
+ ((f
. x)
* (
diff (
sec ,x)))) by
A1,
A6,
A8,
FDIFF_1: 21
.= (((
sec
. x)
* ((f
`| Z)
. x))
+ ((f
. x)
* (
diff (
sec ,x)))) by
A6,
A9,
FDIFF_1:def 7
.= (((
sec
. x)
* a)
+ ((f
. x)
* (
diff (
sec ,x)))) by
A2,
A5,
A9,
FDIFF_1: 23
.= (((
sec
. x)
* a)
+ (((a
* x)
+ b)
* (
diff (
sec ,x)))) by
A2,
A9
.= (((
sec
. x)
* a)
+ (((a
* x)
+ b)
* ((
sin
. x)
/ ((
cos
. x)
^2 )))) by
A7,
A9
.= ((a
/ (
cos
. x))
+ ((((a
* x)
+ b)
* (
sin
. x))
/ ((
cos
. x)
^2 ))) by
A4,
A9,
RFUNCT_1:def 2;
hence thesis;
end;
hence thesis by
A1,
A6,
A8,
FDIFF_1: 21;
end;
theorem ::
FDIFF_9:29
(Z
c= (
dom (f
(#)
cosec )) & for x st x
in Z holds (f
. x)
= ((a
* x)
+ b)) implies (f
(#)
cosec )
is_differentiable_on Z & for x st x
in Z holds (((f
(#)
cosec )
`| Z)
. x)
= ((a
/ (
sin
. x))
- ((((a
* x)
+ b)
* (
cos
. x))
/ ((
sin
. x)
^2 )))
proof
assume that
A1: Z
c= (
dom (f
(#)
cosec )) and
A2: for x st x
in Z holds (f
. x)
= ((a
* x)
+ b);
A3: Z
c= ((
dom f)
/\ (
dom
cosec )) by
A1,
VALUED_1:def 4;
then
A4: Z
c= (
dom
cosec ) by
XBOOLE_1: 18;
A5: Z
c= (
dom f) by
A3,
XBOOLE_1: 18;
then
A6: f
is_differentiable_on Z by
A2,
FDIFF_1: 23;
A7: for x st x
in Z holds
cosec
is_differentiable_in x & (
diff (
cosec ,x))
= (
- ((
cos
. x)
/ ((
sin
. x)
^2 )))
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A4,
RFUNCT_1: 3;
hence thesis by
Th2;
end;
then for x st x
in Z holds
cosec
is_differentiable_in x;
then
A8:
cosec
is_differentiable_on Z by
A4,
FDIFF_1: 9;
for x st x
in Z holds (((f
(#)
cosec )
`| Z)
. x)
= ((a
/ (
sin
. x))
- ((((a
* x)
+ b)
* (
cos
. x))
/ ((
sin
. x)
^2 )))
proof
let x;
assume
A9: x
in Z;
then (((f
(#)
cosec )
`| Z)
. x)
= (((
cosec
. x)
* (
diff (f,x)))
+ ((f
. x)
* (
diff (
cosec ,x)))) by
A1,
A6,
A8,
FDIFF_1: 21
.= (((
cosec
. x)
* ((f
`| Z)
. x))
+ ((f
. x)
* (
diff (
cosec ,x)))) by
A6,
A9,
FDIFF_1:def 7
.= (((
cosec
. x)
* a)
+ ((f
. x)
* (
diff (
cosec ,x)))) by
A2,
A5,
A9,
FDIFF_1: 23
.= (((
cosec
. x)
* a)
+ (((a
* x)
+ b)
* (
diff (
cosec ,x)))) by
A2,
A9
.= (((
cosec
. x)
* a)
+ (((a
* x)
+ b)
* (
- ((
cos
. x)
/ ((
sin
. x)
^2 ))))) by
A7,
A9
.= ((a
/ (
sin
. x))
- ((((a
* x)
+ b)
* (
cos
. x))
/ ((
sin
. x)
^2 ))) by
A4,
A9,
RFUNCT_1:def 2;
hence thesis;
end;
hence thesis by
A1,
A6,
A8,
FDIFF_1: 21;
end;
theorem ::
FDIFF_9:30
Z
c= (
dom (
ln
(#)
sec )) implies (
ln
(#)
sec )
is_differentiable_on Z & for x st x
in Z holds (((
ln
(#)
sec )
`| Z)
. x)
= (((1
/ (
cos
. x))
/ x)
+ (((
ln
. x)
* (
sin
. x))
/ ((
cos
. x)
^2 )))
proof
assume
A1: Z
c= (
dom (
ln
(#)
sec ));
then
A2: Z
c= ((
dom
ln )
/\ (
dom
sec )) by
VALUED_1:def 4;
then
A3: Z
c= (
dom
sec ) by
XBOOLE_1: 18;
A4: for x st x
in Z holds
sec
is_differentiable_in x & (
diff (
sec ,x))
= ((
sin
. x)
/ ((
cos
. x)
^2 ))
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A3,
RFUNCT_1: 3;
hence thesis by
Th1;
end;
then for x st x
in Z holds
sec
is_differentiable_in x;
then
A5:
sec
is_differentiable_on Z by
A3,
FDIFF_1: 9;
A6: Z
c= (
dom
ln ) by
A2,
XBOOLE_1: 18;
A7: for x st x
in Z holds x
>
0
proof
let x;
assume x
in Z;
then x
in (
right_open_halfline
0 ) by
A6,
TAYLOR_1: 18;
then ex g be
Real st x
= g &
0
< g by
Lm1;
hence thesis;
end;
then for x st x
in Z holds
ln
is_differentiable_in x by
TAYLOR_1: 18;
then
A8:
ln
is_differentiable_on Z by
A6,
FDIFF_1: 9;
A9: for x st x
in Z holds (
diff (
ln ,x))
= (1
/ x)
proof
let x;
assume x
in Z;
then x
>
0 by
A7;
then x
in (
right_open_halfline
0 ) by
Lm1;
hence thesis by
TAYLOR_1: 18;
end;
for x st x
in Z holds (((
ln
(#)
sec )
`| Z)
. x)
= (((1
/ (
cos
. x))
/ x)
+ (((
ln
. x)
* (
sin
. x))
/ ((
cos
. x)
^2 )))
proof
let x;
assume
A10: x
in Z;
then (((
ln
(#)
sec )
`| Z)
. x)
= (((
sec
. x)
* (
diff (
ln ,x)))
+ ((
ln
. x)
* (
diff (
sec ,x)))) by
A1,
A8,
A5,
FDIFF_1: 21
.= (((
sec
. x)
* (1
/ x))
+ ((
ln
. x)
* (
diff (
sec ,x)))) by
A9,
A10
.= (((
sec
. x)
* (1
/ x))
+ ((
ln
. x)
* ((
sin
. x)
/ ((
cos
. x)
^2 )))) by
A4,
A10
.= (((1
/ (
cos
. x))
/ x)
+ (((
ln
. x)
* (
sin
. x))
/ ((
cos
. x)
^2 ))) by
A3,
A10,
RFUNCT_1:def 2;
hence thesis;
end;
hence thesis by
A1,
A8,
A5,
FDIFF_1: 21;
end;
theorem ::
FDIFF_9:31
Z
c= (
dom (
ln
(#)
cosec )) implies (
ln
(#)
cosec )
is_differentiable_on Z & for x st x
in Z holds (((
ln
(#)
cosec )
`| Z)
. x)
= (((1
/ (
sin
. x))
/ x)
- (((
ln
. x)
* (
cos
. x))
/ ((
sin
. x)
^2 )))
proof
assume
A1: Z
c= (
dom (
ln
(#)
cosec ));
then
A2: Z
c= ((
dom
ln )
/\ (
dom
cosec )) by
VALUED_1:def 4;
then
A3: Z
c= (
dom
cosec ) by
XBOOLE_1: 18;
A4: for x st x
in Z holds
cosec
is_differentiable_in x & (
diff (
cosec ,x))
= (
- ((
cos
. x)
/ ((
sin
. x)
^2 )))
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A3,
RFUNCT_1: 3;
hence thesis by
Th2;
end;
then for x st x
in Z holds
cosec
is_differentiable_in x;
then
A5:
cosec
is_differentiable_on Z by
A3,
FDIFF_1: 9;
A6: Z
c= (
dom
ln ) by
A2,
XBOOLE_1: 18;
A7: for x st x
in Z holds x
>
0
proof
let x;
assume x
in Z;
then x
in (
right_open_halfline
0 ) by
A6,
TAYLOR_1: 18;
then ex g be
Real st x
= g &
0
< g by
Lm1;
hence thesis;
end;
then for x st x
in Z holds
ln
is_differentiable_in x by
TAYLOR_1: 18;
then
A8:
ln
is_differentiable_on Z by
A6,
FDIFF_1: 9;
A9: for x st x
in Z holds (
diff (
ln ,x))
= (1
/ x)
proof
let x;
assume x
in Z;
then x
>
0 by
A7;
then x
in (
right_open_halfline
0 ) by
Lm1;
hence thesis by
TAYLOR_1: 18;
end;
for x st x
in Z holds (((
ln
(#)
cosec )
`| Z)
. x)
= (((1
/ (
sin
. x))
/ x)
- (((
ln
. x)
* (
cos
. x))
/ ((
sin
. x)
^2 )))
proof
let x;
assume
A10: x
in Z;
then (((
ln
(#)
cosec )
`| Z)
. x)
= (((
cosec
. x)
* (
diff (
ln ,x)))
+ ((
ln
. x)
* (
diff (
cosec ,x)))) by
A1,
A8,
A5,
FDIFF_1: 21
.= (((
cosec
. x)
* (1
/ x))
+ ((
ln
. x)
* (
diff (
cosec ,x)))) by
A9,
A10
.= (((
cosec
. x)
* (1
/ x))
+ ((
ln
. x)
* (
- ((
cos
. x)
/ ((
sin
. x)
^2 ))))) by
A4,
A10
.= (((1
/ (
sin
. x))
/ x)
- (((
ln
. x)
* (
cos
. x))
/ ((
sin
. x)
^2 ))) by
A3,
A10,
RFUNCT_1:def 2;
hence thesis;
end;
hence thesis by
A1,
A8,
A5,
FDIFF_1: 21;
end;
theorem ::
FDIFF_9:32
not
0
in Z & Z
c= (
dom (((
id Z)
^ )
(#)
sec )) implies (((
id Z)
^ )
(#)
sec )
is_differentiable_on Z & for x st x
in Z holds (((((
id Z)
^ )
(#)
sec )
`| Z)
. x)
= ((
- ((1
/ (
cos
. x))
/ (x
^2 )))
+ (((
sin
. x)
/ x)
/ ((
cos
. x)
^2 )))
proof
set f = (
id Z);
assume that
A1: not
0
in Z and
A2: Z
c= (
dom ((f
^ )
(#)
sec ));
A3: (f
^ )
is_differentiable_on Z by
A1,
FDIFF_5: 4;
A4: Z
c= ((
dom (f
^ ))
/\ (
dom
sec )) by
A2,
VALUED_1:def 4;
then
A5: Z
c= (
dom
sec ) by
XBOOLE_1: 18;
A6: for x st x
in Z holds
sec
is_differentiable_in x & (
diff (
sec ,x))
= ((
sin
. x)
/ ((
cos
. x)
^2 ))
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A5,
RFUNCT_1: 3;
hence thesis by
Th1;
end;
then for x st x
in Z holds
sec
is_differentiable_in x;
then
A7:
sec
is_differentiable_on Z by
A5,
FDIFF_1: 9;
A8: Z
c= (
dom (f
^ )) by
A4,
XBOOLE_1: 18;
for x st x
in Z holds ((((f
^ )
(#)
sec )
`| Z)
. x)
= ((
- ((1
/ (
cos
. x))
/ (x
^2 )))
+ (((
sin
. x)
/ x)
/ ((
cos
. x)
^2 )))
proof
let x;
assume
A9: x
in Z;
then ((((f
^ )
(#)
sec )
`| Z)
. x)
= (((
sec
. x)
* (
diff ((f
^ ),x)))
+ (((f
^ )
. x)
* (
diff (
sec ,x)))) by
A2,
A3,
A7,
FDIFF_1: 21
.= (((
sec
. x)
* (((f
^ )
`| Z)
. x))
+ (((f
^ )
. x)
* (
diff (
sec ,x)))) by
A3,
A9,
FDIFF_1:def 7
.= (((
sec
. x)
* (
- (1
/ (x
^2 ))))
+ (((f
^ )
. x)
* (
diff (
sec ,x)))) by
A1,
A9,
FDIFF_5: 4
.= ((
- ((
sec
. x)
* (1
/ (x
^2 ))))
+ (((f
^ )
. x)
* ((
sin
. x)
/ ((
cos
. x)
^2 )))) by
A6,
A9
.= ((
- (((
cos
. x)
" )
* (1
/ (x
^2 ))))
+ (((f
^ )
. x)
* ((
sin
. x)
/ ((
cos
. x)
^2 )))) by
A5,
A9,
RFUNCT_1:def 2
.= ((
- ((1
/ (
cos
. x))
/ (x
^2 )))
+ (((f
. x)
" )
* ((
sin
. x)
/ ((
cos
. x)
^2 )))) by
A8,
A9,
RFUNCT_1:def 2
.= ((
- ((1
/ (
cos
. x))
/ (x
^2 )))
+ ((1
/ x)
* ((
sin
. x)
/ ((
cos
. x)
^2 )))) by
A9,
FUNCT_1: 18
.= ((
- ((1
/ (
cos
. x))
/ (x
^2 )))
+ (((
sin
. x)
/ x)
/ ((
cos
. x)
^2 )));
hence thesis;
end;
hence thesis by
A2,
A3,
A7,
FDIFF_1: 21;
end;
theorem ::
FDIFF_9:33
not
0
in Z & Z
c= (
dom (((
id Z)
^ )
(#)
cosec )) implies (((
id Z)
^ )
(#)
cosec )
is_differentiable_on Z & for x st x
in Z holds (((((
id Z)
^ )
(#)
cosec )
`| Z)
. x)
= ((
- ((1
/ (
sin
. x))
/ (x
^2 )))
- (((
cos
. x)
/ x)
/ ((
sin
. x)
^2 )))
proof
set f = (
id Z);
assume that
A1: not
0
in Z and
A2: Z
c= (
dom ((f
^ )
(#)
cosec ));
A3: (f
^ )
is_differentiable_on Z by
A1,
FDIFF_5: 4;
A4: Z
c= ((
dom (f
^ ))
/\ (
dom
cosec )) by
A2,
VALUED_1:def 4;
then
A5: Z
c= (
dom
cosec ) by
XBOOLE_1: 18;
A6: for x st x
in Z holds
cosec
is_differentiable_in x & (
diff (
cosec ,x))
= (
- ((
cos
. x)
/ ((
sin
. x)
^2 )))
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A5,
RFUNCT_1: 3;
hence thesis by
Th2;
end;
then for x st x
in Z holds
cosec
is_differentiable_in x;
then
A7:
cosec
is_differentiable_on Z by
A5,
FDIFF_1: 9;
A8: Z
c= (
dom (f
^ )) by
A4,
XBOOLE_1: 18;
for x st x
in Z holds ((((f
^ )
(#)
cosec )
`| Z)
. x)
= ((
- ((1
/ (
sin
. x))
/ (x
^2 )))
- (((
cos
. x)
/ x)
/ ((
sin
. x)
^2 )))
proof
let x;
assume
A9: x
in Z;
then ((((f
^ )
(#)
cosec )
`| Z)
. x)
= (((
cosec
. x)
* (
diff ((f
^ ),x)))
+ (((f
^ )
. x)
* (
diff (
cosec ,x)))) by
A2,
A3,
A7,
FDIFF_1: 21
.= (((
cosec
. x)
* (((f
^ )
`| Z)
. x))
+ (((f
^ )
. x)
* (
diff (
cosec ,x)))) by
A3,
A9,
FDIFF_1:def 7
.= (((
cosec
. x)
* (
- (1
/ (x
^2 ))))
+ (((f
^ )
. x)
* (
diff (
cosec ,x)))) by
A1,
A9,
FDIFF_5: 4
.= ((
- ((
cosec
. x)
* (1
/ (x
^2 ))))
+ (((f
^ )
. x)
* (
- ((
cos
. x)
/ ((
sin
. x)
^2 ))))) by
A6,
A9
.= ((
- (((
sin
. x)
" )
* (1
/ (x
^2 ))))
+ (((f
^ )
. x)
* ((
- (
cos
. x))
/ ((
sin
. x)
^2 )))) by
A5,
A9,
RFUNCT_1:def 2
.= ((
- ((1
/ (
sin
. x))
/ (x
^2 )))
+ (((f
. x)
" )
* ((
- (
cos
. x))
/ ((
sin
. x)
^2 )))) by
A8,
A9,
RFUNCT_1:def 2
.= ((
- ((1
/ (
sin
. x))
/ (x
^2 )))
+ ((1
/ x)
* ((
- (
cos
. x))
/ ((
sin
. x)
^2 )))) by
A9,
FUNCT_1: 18
.= ((
- ((1
/ (
sin
. x))
/ (x
^2 )))
+ (((
- (
cos
. x))
/ x)
/ ((
sin
. x)
^2 )));
hence thesis;
end;
hence thesis by
A2,
A3,
A7,
FDIFF_1: 21;
end;
theorem ::
FDIFF_9:34
Z
c= (
dom (
sec
*
sin )) implies (
sec
*
sin )
is_differentiable_on Z & for x st x
in Z holds (((
sec
*
sin )
`| Z)
. x)
= (((
cos
. x)
* (
sin
. (
sin
. x)))
/ ((
cos
. (
sin
. x))
^2 ))
proof
assume
A1: Z
c= (
dom (
sec
*
sin ));
A2: for x st x
in Z holds (
cos
. (
sin
. x))
<>
0
proof
let x;
assume x
in Z;
then (
sin
. x)
in (
dom
sec ) by
A1,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
A3: for x st x
in Z holds (
sec
*
sin )
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. (
sin
. x))
<>
0 by
A2;
then
sin
is_differentiable_in x &
sec
is_differentiable_in (
sin
. x) by
Th1,
SIN_COS: 64;
hence thesis by
FDIFF_2: 13;
end;
then
A4: (
sec
*
sin )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sec
*
sin )
`| Z)
. x)
= (((
cos
. x)
* (
sin
. (
sin
. x)))
/ ((
cos
. (
sin
. x))
^2 ))
proof
let x;
assume
A5: x
in Z;
then
A6: (
cos
. (
sin
. x))
<>
0 by
A2;
then
sin
is_differentiable_in x &
sec
is_differentiable_in (
sin
. x) by
Th1,
SIN_COS: 64;
then (
diff ((
sec
*
sin ),x))
= ((
diff (
sec ,(
sin
. x)))
* (
diff (
sin ,x))) by
FDIFF_2: 13
.= (((
sin
. (
sin
. x))
/ ((
cos
. (
sin
. x))
^2 ))
* (
diff (
sin ,x))) by
A6,
Th1
.= ((
cos
. x)
* ((
sin
. (
sin
. x))
/ ((
cos
. (
sin
. x))
^2 ))) by
SIN_COS: 64;
hence thesis by
A4,
A5,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_9:35
Z
c= (
dom (
sec
*
cos )) implies (
sec
*
cos )
is_differentiable_on Z & for x st x
in Z holds (((
sec
*
cos )
`| Z)
. x)
= (
- (((
sin
. x)
* (
sin
. (
cos
. x)))
/ ((
cos
. (
cos
. x))
^2 )))
proof
assume
A1: Z
c= (
dom (
sec
*
cos ));
A2: for x st x
in Z holds (
cos
. (
cos
. x))
<>
0
proof
let x;
assume x
in Z;
then (
cos
. x)
in (
dom
sec ) by
A1,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
A3: for x st x
in Z holds (
sec
*
cos )
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. (
cos
. x))
<>
0 by
A2;
then
cos
is_differentiable_in x &
sec
is_differentiable_in (
cos
. x) by
Th1,
SIN_COS: 63;
hence thesis by
FDIFF_2: 13;
end;
then
A4: (
sec
*
cos )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sec
*
cos )
`| Z)
. x)
= (
- (((
sin
. x)
* (
sin
. (
cos
. x)))
/ ((
cos
. (
cos
. x))
^2 )))
proof
let x;
assume
A5: x
in Z;
then
A6: (
cos
. (
cos
. x))
<>
0 by
A2;
then
cos
is_differentiable_in x &
sec
is_differentiable_in (
cos
. x) by
Th1,
SIN_COS: 63;
then (
diff ((
sec
*
cos ),x))
= ((
diff (
sec ,(
cos
. x)))
* (
diff (
cos ,x))) by
FDIFF_2: 13
.= (((
sin
. (
cos
. x))
/ ((
cos
. (
cos
. x))
^2 ))
* (
diff (
cos ,x))) by
A6,
Th1
.= ((
- (
sin
. x))
* ((
sin
. (
cos
. x))
/ ((
cos
. (
cos
. x))
^2 ))) by
SIN_COS: 63;
hence thesis by
A4,
A5,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_9:36
Z
c= (
dom (
cosec
*
sin )) implies (
cosec
*
sin )
is_differentiable_on Z & for x st x
in Z holds (((
cosec
*
sin )
`| Z)
. x)
= (
- (((
cos
. x)
* (
cos
. (
sin
. x)))
/ ((
sin
. (
sin
. x))
^2 )))
proof
assume
A1: Z
c= (
dom (
cosec
*
sin ));
A2: for x st x
in Z holds (
sin
. (
sin
. x))
<>
0
proof
let x;
assume x
in Z;
then (
sin
. x)
in (
dom
cosec ) by
A1,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
A3: for x st x
in Z holds (
cosec
*
sin )
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. (
sin
. x))
<>
0 by
A2;
then
sin
is_differentiable_in x &
cosec
is_differentiable_in (
sin
. x) by
Th2,
SIN_COS: 64;
hence thesis by
FDIFF_2: 13;
end;
then
A4: (
cosec
*
sin )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cosec
*
sin )
`| Z)
. x)
= (
- (((
cos
. x)
* (
cos
. (
sin
. x)))
/ ((
sin
. (
sin
. x))
^2 )))
proof
let x;
assume
A5: x
in Z;
then
A6: (
sin
. (
sin
. x))
<>
0 by
A2;
then
sin
is_differentiable_in x &
cosec
is_differentiable_in (
sin
. x) by
Th2,
SIN_COS: 64;
then (
diff ((
cosec
*
sin ),x))
= ((
diff (
cosec ,(
sin
. x)))
* (
diff (
sin ,x))) by
FDIFF_2: 13
.= ((
- ((
cos
. (
sin
. x))
/ ((
sin
. (
sin
. x))
^2 )))
* (
diff (
sin ,x))) by
A6,
Th2
.= ((
cos
. x)
* (
- ((
cos
. (
sin
. x))
/ ((
sin
. (
sin
. x))
^2 )))) by
SIN_COS: 64;
hence thesis by
A4,
A5,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_9:37
Z
c= (
dom (
cosec
*
cos )) implies (
cosec
*
cos )
is_differentiable_on Z & for x st x
in Z holds (((
cosec
*
cos )
`| Z)
. x)
= (((
sin
. x)
* (
cos
. (
cos
. x)))
/ ((
sin
. (
cos
. x))
^2 ))
proof
assume
A1: Z
c= (
dom (
cosec
*
cos ));
A2: for x st x
in Z holds (
sin
. (
cos
. x))
<>
0
proof
let x;
assume x
in Z;
then (
cos
. x)
in (
dom
cosec ) by
A1,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
A3: for x st x
in Z holds (
cosec
*
cos )
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. (
cos
. x))
<>
0 by
A2;
then
cos
is_differentiable_in x &
cosec
is_differentiable_in (
cos
. x) by
Th2,
SIN_COS: 63;
hence thesis by
FDIFF_2: 13;
end;
then
A4: (
cosec
*
cos )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cosec
*
cos )
`| Z)
. x)
= (((
sin
. x)
* (
cos
. (
cos
. x)))
/ ((
sin
. (
cos
. x))
^2 ))
proof
let x;
assume
A5: x
in Z;
then
A6: (
sin
. (
cos
. x))
<>
0 by
A2;
then
cos
is_differentiable_in x &
cosec
is_differentiable_in (
cos
. x) by
Th2,
SIN_COS: 63;
then (
diff ((
cosec
*
cos ),x))
= ((
diff (
cosec ,(
cos
. x)))
* (
diff (
cos ,x))) by
FDIFF_2: 13
.= ((
- ((
cos
. (
cos
. x))
/ ((
sin
. (
cos
. x))
^2 )))
* (
diff (
cos ,x))) by
A6,
Th2
.= ((
- (
sin
. x))
* (
- ((
cos
. (
cos
. x))
/ ((
sin
. (
cos
. x))
^2 )))) by
SIN_COS: 63;
hence thesis by
A4,
A5,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_9:38
Z
c= (
dom (
sec
*
tan )) implies (
sec
*
tan )
is_differentiable_on Z & for x st x
in Z holds (((
sec
*
tan )
`| Z)
. x)
= (((
sin
. (
tan
. x))
/ ((
cos
. x)
^2 ))
/ ((
cos
. (
tan
. x))
^2 ))
proof
assume
A1: Z
c= (
dom (
sec
*
tan ));
A2: for x st x
in Z holds (
cos
. (
tan
. x))
<>
0
proof
let x;
assume x
in Z;
then (
tan
. x)
in (
dom
sec ) by
A1,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
(
dom (
sec
*
tan ))
c= (
dom
tan ) by
RELAT_1: 25;
then
A3: Z
c= (
dom
tan ) by
A1,
XBOOLE_1: 1;
A4: for x st x
in Z holds (
sec
*
tan )
is_differentiable_in x
proof
let x;
assume
A5: x
in Z;
then (
cos
. x)
<>
0 by
A3,
FDIFF_8: 1;
then
A6:
tan
is_differentiable_in x by
FDIFF_7: 46;
(
cos
. (
tan
. x))
<>
0 by
A2,
A5;
then
sec
is_differentiable_in (
tan
. x) by
Th1;
hence thesis by
A6,
FDIFF_2: 13;
end;
then
A7: (
sec
*
tan )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sec
*
tan )
`| Z)
. x)
= (((
sin
. (
tan
. x))
/ ((
cos
. x)
^2 ))
/ ((
cos
. (
tan
. x))
^2 ))
proof
let x;
assume
A8: x
in Z;
then
A9: (
cos
. x)
<>
0 by
A3,
FDIFF_8: 1;
then
A10:
tan
is_differentiable_in x by
FDIFF_7: 46;
A11: (
cos
. (
tan
. x))
<>
0 by
A2,
A8;
then
sec
is_differentiable_in (
tan
. x) by
Th1;
then (
diff ((
sec
*
tan ),x))
= ((
diff (
sec ,(
tan
. x)))
* (
diff (
tan ,x))) by
A10,
FDIFF_2: 13
.= (((
sin
. (
tan
. x))
/ ((
cos
. (
tan
. x))
^2 ))
* (
diff (
tan ,x))) by
A11,
Th1
.= ((1
/ ((
cos
. x)
^2 ))
* ((
sin
. (
tan
. x))
/ ((
cos
. (
tan
. x))
^2 ))) by
A9,
FDIFF_7: 46
.= (((
sin
. (
tan
. x))
/ ((
cos
. x)
^2 ))
/ ((
cos
. (
tan
. x))
^2 ));
hence thesis by
A7,
A8,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_9:39
Z
c= (
dom (
sec
*
cot )) implies (
sec
*
cot )
is_differentiable_on Z & for x st x
in Z holds (((
sec
*
cot )
`| Z)
. x)
= (
- (((
sin
. (
cot
. x))
/ ((
sin
. x)
^2 ))
/ ((
cos
. (
cot
. x))
^2 )))
proof
assume
A1: Z
c= (
dom (
sec
*
cot ));
A2: for x st x
in Z holds (
cos
. (
cot
. x))
<>
0
proof
let x;
assume x
in Z;
then (
cot
. x)
in (
dom
sec ) by
A1,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
(
dom (
sec
*
cot ))
c= (
dom
cot ) by
RELAT_1: 25;
then
A3: Z
c= (
dom
cot ) by
A1,
XBOOLE_1: 1;
A4: for x st x
in Z holds (
sec
*
cot )
is_differentiable_in x
proof
let x;
assume
A5: x
in Z;
then (
sin
. x)
<>
0 by
A3,
FDIFF_8: 2;
then
A6:
cot
is_differentiable_in x by
FDIFF_7: 47;
(
cos
. (
cot
. x))
<>
0 by
A2,
A5;
then
sec
is_differentiable_in (
cot
. x) by
Th1;
hence thesis by
A6,
FDIFF_2: 13;
end;
then
A7: (
sec
*
cot )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sec
*
cot )
`| Z)
. x)
= (
- (((
sin
. (
cot
. x))
/ ((
sin
. x)
^2 ))
/ ((
cos
. (
cot
. x))
^2 )))
proof
let x;
assume
A8: x
in Z;
then
A9: (
sin
. x)
<>
0 by
A3,
FDIFF_8: 2;
then
A10:
cot
is_differentiable_in x by
FDIFF_7: 47;
A11: (
cos
. (
cot
. x))
<>
0 by
A2,
A8;
then
sec
is_differentiable_in (
cot
. x) by
Th1;
then (
diff ((
sec
*
cot ),x))
= ((
diff (
sec ,(
cot
. x)))
* (
diff (
cot ,x))) by
A10,
FDIFF_2: 13
.= (((
sin
. (
cot
. x))
/ ((
cos
. (
cot
. x))
^2 ))
* (
diff (
cot ,x))) by
A11,
Th1
.= ((
- (1
/ ((
sin
. x)
^2 )))
* ((
sin
. (
cot
. x))
/ ((
cos
. (
cot
. x))
^2 ))) by
A9,
FDIFF_7: 47
.= (
- (((
sin
. (
cot
. x))
/ ((
sin
. x)
^2 ))
/ ((
cos
. (
cot
. x))
^2 )));
hence thesis by
A7,
A8,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_9:40
Z
c= (
dom (
cosec
*
tan )) implies (
cosec
*
tan )
is_differentiable_on Z & for x st x
in Z holds (((
cosec
*
tan )
`| Z)
. x)
= (
- (((
cos
. (
tan
. x))
/ ((
cos
. x)
^2 ))
/ ((
sin
. (
tan
. x))
^2 )))
proof
assume
A1: Z
c= (
dom (
cosec
*
tan ));
A2: for x st x
in Z holds (
sin
. (
tan
. x))
<>
0
proof
let x;
assume x
in Z;
then (
tan
. x)
in (
dom
cosec ) by
A1,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
(
dom (
cosec
*
tan ))
c= (
dom
tan ) by
RELAT_1: 25;
then
A3: Z
c= (
dom
tan ) by
A1,
XBOOLE_1: 1;
A4: for x st x
in Z holds (
cosec
*
tan )
is_differentiable_in x
proof
let x;
assume
A5: x
in Z;
then (
cos
. x)
<>
0 by
A3,
FDIFF_8: 1;
then
A6:
tan
is_differentiable_in x by
FDIFF_7: 46;
(
sin
. (
tan
. x))
<>
0 by
A2,
A5;
then
cosec
is_differentiable_in (
tan
. x) by
Th2;
hence thesis by
A6,
FDIFF_2: 13;
end;
then
A7: (
cosec
*
tan )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cosec
*
tan )
`| Z)
. x)
= (
- (((
cos
. (
tan
. x))
/ ((
cos
. x)
^2 ))
/ ((
sin
. (
tan
. x))
^2 )))
proof
let x;
assume
A8: x
in Z;
then
A9: (
cos
. x)
<>
0 by
A3,
FDIFF_8: 1;
then
A10:
tan
is_differentiable_in x by
FDIFF_7: 46;
A11: (
sin
. (
tan
. x))
<>
0 by
A2,
A8;
then
cosec
is_differentiable_in (
tan
. x) by
Th2;
then (
diff ((
cosec
*
tan ),x))
= ((
diff (
cosec ,(
tan
. x)))
* (
diff (
tan ,x))) by
A10,
FDIFF_2: 13
.= ((
- ((
cos
. (
tan
. x))
/ ((
sin
. (
tan
. x))
^2 )))
* (
diff (
tan ,x))) by
A11,
Th2
.= ((1
/ ((
cos
. x)
^2 ))
* (
- ((
cos
. (
tan
. x))
/ ((
sin
. (
tan
. x))
^2 )))) by
A9,
FDIFF_7: 46
.= (
- (((
cos
. (
tan
. x))
/ ((
cos
. x)
^2 ))
/ ((
sin
. (
tan
. x))
^2 )));
hence thesis by
A7,
A8,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_9:41
Z
c= (
dom (
cosec
*
cot )) implies (
cosec
*
cot )
is_differentiable_on Z & for x st x
in Z holds (((
cosec
*
cot )
`| Z)
. x)
= (((
cos
. (
cot
. x))
/ ((
sin
. x)
^2 ))
/ ((
sin
. (
cot
. x))
^2 ))
proof
assume
A1: Z
c= (
dom (
cosec
*
cot ));
A2: for x st x
in Z holds (
sin
. (
cot
. x))
<>
0
proof
let x;
assume x
in Z;
then (
cot
. x)
in (
dom
cosec ) by
A1,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
(
dom (
cosec
*
cot ))
c= (
dom
cot ) by
RELAT_1: 25;
then
A3: Z
c= (
dom
cot ) by
A1,
XBOOLE_1: 1;
A4: for x st x
in Z holds (
cosec
*
cot )
is_differentiable_in x
proof
let x;
assume
A5: x
in Z;
then (
sin
. x)
<>
0 by
A3,
FDIFF_8: 2;
then
A6:
cot
is_differentiable_in x by
FDIFF_7: 47;
(
sin
. (
cot
. x))
<>
0 by
A2,
A5;
then
cosec
is_differentiable_in (
cot
. x) by
Th2;
hence thesis by
A6,
FDIFF_2: 13;
end;
then
A7: (
cosec
*
cot )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cosec
*
cot )
`| Z)
. x)
= (((
cos
. (
cot
. x))
/ ((
sin
. x)
^2 ))
/ ((
sin
. (
cot
. x))
^2 ))
proof
let x;
assume
A8: x
in Z;
then
A9: (
sin
. x)
<>
0 by
A3,
FDIFF_8: 2;
then
A10:
cot
is_differentiable_in x by
FDIFF_7: 47;
A11: (
sin
. (
cot
. x))
<>
0 by
A2,
A8;
then
cosec
is_differentiable_in (
cot
. x) by
Th2;
then (
diff ((
cosec
*
cot ),x))
= ((
diff (
cosec ,(
cot
. x)))
* (
diff (
cot ,x))) by
A10,
FDIFF_2: 13
.= ((
- ((
cos
. (
cot
. x))
/ ((
sin
. (
cot
. x))
^2 )))
* (
diff (
cot ,x))) by
A11,
Th2
.= ((
- (1
/ ((
sin
. x)
^2 )))
* (
- ((
cos
. (
cot
. x))
/ ((
sin
. (
cot
. x))
^2 )))) by
A9,
FDIFF_7: 47
.= (((
cos
. (
cot
. x))
/ ((
sin
. x)
^2 ))
/ ((
sin
. (
cot
. x))
^2 ));
hence thesis by
A7,
A8,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_9:42
Z
c= (
dom (
tan
(#)
sec )) implies (
tan
(#)
sec )
is_differentiable_on Z & for x st x
in Z holds (((
tan
(#)
sec )
`| Z)
. x)
= (((1
/ ((
cos
. x)
^2 ))
/ (
cos
. x))
+ (((
tan
. x)
* (
sin
. x))
/ ((
cos
. x)
^2 )))
proof
assume
A1: Z
c= (
dom (
tan
(#)
sec ));
then
A2: Z
c= ((
dom
tan )
/\ (
dom
sec )) by
VALUED_1:def 4;
then
A3: Z
c= (
dom
tan ) by
XBOOLE_1: 18;
for x st x
in Z holds
tan
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A3,
FDIFF_8: 1;
hence thesis by
FDIFF_7: 46;
end;
then
A4:
tan
is_differentiable_on Z by
A3,
FDIFF_1: 9;
A5: Z
c= (
dom
sec ) by
A2,
XBOOLE_1: 18;
A6: for x st x
in Z holds
sec
is_differentiable_in x & (
diff (
sec ,x))
= ((
sin
. x)
/ ((
cos
. x)
^2 ))
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A5,
RFUNCT_1: 3;
hence thesis by
Th1;
end;
then for x st x
in Z holds
sec
is_differentiable_in x;
then
A7:
sec
is_differentiable_on Z by
A5,
FDIFF_1: 9;
for x st x
in Z holds (((
tan
(#)
sec )
`| Z)
. x)
= (((1
/ ((
cos
. x)
^2 ))
/ (
cos
. x))
+ (((
tan
. x)
* (
sin
. x))
/ ((
cos
. x)
^2 )))
proof
let x;
assume
A8: x
in Z;
then
A9: (
cos
. x)
<>
0 by
A3,
FDIFF_8: 1;
(((
tan
(#)
sec )
`| Z)
. x)
= (((
sec
. x)
* (
diff (
tan ,x)))
+ ((
tan
. x)
* (
diff (
sec ,x)))) by
A1,
A4,
A7,
A8,
FDIFF_1: 21
.= (((
sec
. x)
* (1
/ ((
cos
. x)
^2 )))
+ ((
tan
. x)
* (
diff (
sec ,x)))) by
A9,
FDIFF_7: 46
.= (((
sec
. x)
* (1
/ ((
cos
. x)
^2 )))
+ ((
tan
. x)
* ((
sin
. x)
/ ((
cos
. x)
^2 )))) by
A6,
A8
.= (((1
/ ((
cos
. x)
^2 ))
/ (
cos
. x))
+ (((
tan
. x)
* (
sin
. x))
/ ((
cos
. x)
^2 ))) by
A5,
A8,
RFUNCT_1:def 2;
hence thesis;
end;
hence thesis by
A1,
A4,
A7,
FDIFF_1: 21;
end;
theorem ::
FDIFF_9:43
Z
c= (
dom (
cot
(#)
sec )) implies (
cot
(#)
sec )
is_differentiable_on Z & for x st x
in Z holds (((
cot
(#)
sec )
`| Z)
. x)
= ((
- ((1
/ ((
sin
. x)
^2 ))
/ (
cos
. x)))
+ (((
cot
. x)
* (
sin
. x))
/ ((
cos
. x)
^2 )))
proof
assume
A1: Z
c= (
dom (
cot
(#)
sec ));
then
A2: Z
c= ((
dom
cot )
/\ (
dom
sec )) by
VALUED_1:def 4;
then
A3: Z
c= (
dom
cot ) by
XBOOLE_1: 18;
for x st x
in Z holds
cot
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A3,
FDIFF_8: 2;
hence thesis by
FDIFF_7: 47;
end;
then
A4:
cot
is_differentiable_on Z by
A3,
FDIFF_1: 9;
A5: Z
c= (
dom
sec ) by
A2,
XBOOLE_1: 18;
A6: for x st x
in Z holds
sec
is_differentiable_in x & (
diff (
sec ,x))
= ((
sin
. x)
/ ((
cos
. x)
^2 ))
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A5,
RFUNCT_1: 3;
hence thesis by
Th1;
end;
then for x st x
in Z holds
sec
is_differentiable_in x;
then
A7:
sec
is_differentiable_on Z by
A5,
FDIFF_1: 9;
for x st x
in Z holds (((
cot
(#)
sec )
`| Z)
. x)
= ((
- ((1
/ ((
sin
. x)
^2 ))
/ (
cos
. x)))
+ (((
cot
. x)
* (
sin
. x))
/ ((
cos
. x)
^2 )))
proof
let x;
assume
A8: x
in Z;
then
A9: (
sin
. x)
<>
0 by
A3,
FDIFF_8: 2;
(((
cot
(#)
sec )
`| Z)
. x)
= (((
sec
. x)
* (
diff (
cot ,x)))
+ ((
cot
. x)
* (
diff (
sec ,x)))) by
A1,
A4,
A7,
A8,
FDIFF_1: 21
.= (((
sec
. x)
* (
- (1
/ ((
sin
. x)
^2 ))))
+ ((
cot
. x)
* (
diff (
sec ,x)))) by
A9,
FDIFF_7: 47
.= (((
sec
. x)
* (
- (1
/ ((
sin
. x)
^2 ))))
+ ((
cot
. x)
* ((
sin
. x)
/ ((
cos
. x)
^2 )))) by
A6,
A8
.= (((
- (1
/ ((
sin
. x)
^2 )))
/ (
cos
. x))
+ (((
cot
. x)
* (
sin
. x))
/ ((
cos
. x)
^2 ))) by
A5,
A8,
RFUNCT_1:def 2;
hence thesis;
end;
hence thesis by
A1,
A4,
A7,
FDIFF_1: 21;
end;
theorem ::
FDIFF_9:44
Z
c= (
dom (
tan
(#)
cosec )) implies (
tan
(#)
cosec )
is_differentiable_on Z & for x st x
in Z holds (((
tan
(#)
cosec )
`| Z)
. x)
= (((1
/ ((
cos
. x)
^2 ))
/ (
sin
. x))
- (((
tan
. x)
* (
cos
. x))
/ ((
sin
. x)
^2 )))
proof
assume
A1: Z
c= (
dom (
tan
(#)
cosec ));
then
A2: Z
c= ((
dom
tan )
/\ (
dom
cosec )) by
VALUED_1:def 4;
then
A3: Z
c= (
dom
tan ) by
XBOOLE_1: 18;
for x st x
in Z holds
tan
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A3,
FDIFF_8: 1;
hence thesis by
FDIFF_7: 46;
end;
then
A4:
tan
is_differentiable_on Z by
A3,
FDIFF_1: 9;
A5: Z
c= (
dom
cosec ) by
A2,
XBOOLE_1: 18;
A6: for x st x
in Z holds
cosec
is_differentiable_in x & (
diff (
cosec ,x))
= (
- ((
cos
. x)
/ ((
sin
. x)
^2 )))
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A5,
RFUNCT_1: 3;
hence thesis by
Th2;
end;
then for x st x
in Z holds
cosec
is_differentiable_in x;
then
A7:
cosec
is_differentiable_on Z by
A5,
FDIFF_1: 9;
for x st x
in Z holds (((
tan
(#)
cosec )
`| Z)
. x)
= (((1
/ ((
cos
. x)
^2 ))
/ (
sin
. x))
- (((
tan
. x)
* (
cos
. x))
/ ((
sin
. x)
^2 )))
proof
let x;
assume
A8: x
in Z;
then
A9: (
cos
. x)
<>
0 by
A3,
FDIFF_8: 1;
(((
tan
(#)
cosec )
`| Z)
. x)
= (((
cosec
. x)
* (
diff (
tan ,x)))
+ ((
tan
. x)
* (
diff (
cosec ,x)))) by
A1,
A4,
A7,
A8,
FDIFF_1: 21
.= (((
cosec
. x)
* (1
/ ((
cos
. x)
^2 )))
+ ((
tan
. x)
* (
diff (
cosec ,x)))) by
A9,
FDIFF_7: 46
.= (((
cosec
. x)
* (1
/ ((
cos
. x)
^2 )))
+ ((
tan
. x)
* (
- ((
cos
. x)
/ ((
sin
. x)
^2 ))))) by
A6,
A8
.= (((1
/ ((
cos
. x)
^2 ))
/ (
sin
. x))
+ ((
tan
. x)
* (
- ((
cos
. x)
/ ((
sin
. x)
^2 ))))) by
A5,
A8,
RFUNCT_1:def 2;
hence thesis;
end;
hence thesis by
A1,
A4,
A7,
FDIFF_1: 21;
end;
theorem ::
FDIFF_9:45
Z
c= (
dom (
cot
(#)
cosec )) implies (
cot
(#)
cosec )
is_differentiable_on Z & for x st x
in Z holds (((
cot
(#)
cosec )
`| Z)
. x)
= ((
- ((1
/ ((
sin
. x)
^2 ))
/ (
sin
. x)))
- (((
cot
. x)
* (
cos
. x))
/ ((
sin
. x)
^2 )))
proof
assume
A1: Z
c= (
dom (
cot
(#)
cosec ));
then
A2: Z
c= ((
dom
cot )
/\ (
dom
cosec )) by
VALUED_1:def 4;
then
A3: Z
c= (
dom
cot ) by
XBOOLE_1: 18;
for x st x
in Z holds
cot
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A3,
FDIFF_8: 2;
hence thesis by
FDIFF_7: 47;
end;
then
A4:
cot
is_differentiable_on Z by
A3,
FDIFF_1: 9;
A5: Z
c= (
dom
cosec ) by
A2,
XBOOLE_1: 18;
A6: for x st x
in Z holds
cosec
is_differentiable_in x & (
diff (
cosec ,x))
= (
- ((
cos
. x)
/ ((
sin
. x)
^2 )))
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A5,
RFUNCT_1: 3;
hence thesis by
Th2;
end;
then for x st x
in Z holds
cosec
is_differentiable_in x;
then
A7:
cosec
is_differentiable_on Z by
A5,
FDIFF_1: 9;
for x st x
in Z holds (((
cot
(#)
cosec )
`| Z)
. x)
= ((
- ((1
/ ((
sin
. x)
^2 ))
/ (
sin
. x)))
- (((
cot
. x)
* (
cos
. x))
/ ((
sin
. x)
^2 )))
proof
let x;
assume
A8: x
in Z;
then
A9: (
sin
. x)
<>
0 by
A3,
FDIFF_8: 2;
(((
cot
(#)
cosec )
`| Z)
. x)
= (((
cosec
. x)
* (
diff (
cot ,x)))
+ ((
cot
. x)
* (
diff (
cosec ,x)))) by
A1,
A4,
A7,
A8,
FDIFF_1: 21
.= (((
cosec
. x)
* (
- (1
/ ((
sin
. x)
^2 ))))
+ ((
cot
. x)
* (
diff (
cosec ,x)))) by
A9,
FDIFF_7: 47
.= (((
cosec
. x)
* (
- (1
/ ((
sin
. x)
^2 ))))
+ ((
cot
. x)
* (
- ((
cos
. x)
/ ((
sin
. x)
^2 ))))) by
A6,
A8
.= (((
- (1
/ ((
sin
. x)
^2 )))
/ (
sin
. x))
+ ((
cot
. x)
* (
- ((
cos
. x)
/ ((
sin
. x)
^2 ))))) by
A5,
A8,
RFUNCT_1:def 2;
hence thesis;
end;
hence thesis by
A1,
A4,
A7,
FDIFF_1: 21;
end;