integra3.miz
begin
reserve a,b,e,r,x,y for
Real,
i,j,k,n,m for
Element of
NAT ,
x1 for
set,
p,q for
FinSequence of
REAL ,
A for non
empty
closed_interval
Subset of
REAL ,
D,D1,D2 for
Division of A,
f,g for
Function of A,
REAL ,
T for
DivSequence of A;
Lm1: ((j
-' j)
+ 1)
= 1
proof
(j
-' j)
= (j
- j) by
XREAL_1: 233
.=
0 ;
hence thesis;
end;
Lm2: for n st 1
<= n & n
<= 2 holds n
= 1 or n
= 2
proof
let n;
assume that
A1: 1
<= n and
A2: n
<= 2;
per cases by
A1,
XXREAL_0: 1;
suppose n
= 1;
hence thesis;
end;
suppose n
> 1;
then n
>= (1
+ 1) by
NAT_1: 13;
hence thesis by
A2,
XXREAL_0: 1;
end;
end;
definition
let A be non
empty
closed_interval
Subset of
REAL , D be
Division of A;
::
INTEGRA3:def1
func
delta (D) ->
Real equals (
max (
rng (
upper_volume ((
chi (A,A)),D))));
correctness ;
end
definition
let A be non
empty
closed_interval
Subset of
REAL , T be
DivSequence of A;
::
INTEGRA3:def2
func
delta (T) ->
Real_Sequence means
:
Def2: for i holds (it
. i)
= (
delta (T
. i));
existence
proof
deffunc
F(
Nat) = (
delta (T
. (
In ($1,
NAT ))));
consider IT be
Real_Sequence such that
A1: for i be
Nat holds (IT
. i)
=
F(i) from
SEQ_1:sch 1;
take IT;
let i;
(IT
. i)
=
F(i) by
A1;
hence thesis;
end;
uniqueness
proof
let F1,F2 be
Real_Sequence such that
A2: for i holds (F1
. i)
= (
delta (T
. i)) and
A3: for i holds (F2
. i)
= (
delta (T
. i));
for i holds (F1
. i)
= (F2
. i)
proof
let i;
(F1
. i)
= (
delta (T
. i)) by
A2
.= (F2
. i) by
A3;
hence thesis;
end;
hence thesis by
FUNCT_2: 63;
end;
end
theorem ::
INTEGRA3:1
D1
<= D2 implies (
delta D1)
>= (
delta D2)
proof
(
delta D2)
in (
rng (
upper_volume ((
chi (A,A)),D2))) by
XXREAL_2:def 8;
then
consider j such that
A1: j
in (
dom (
upper_volume ((
chi (A,A)),D2))) and
A2: (
delta D2)
= ((
upper_volume ((
chi (A,A)),D2))
. j) by
PARTFUN1: 3;
(
len (
upper_volume ((
chi (A,A)),D2)))
= (
len D2) by
INTEGRA1:def 6;
then
A3: j
in (
dom D2) by
A1,
FINSEQ_3: 29;
then
A4: (
delta D2)
= (
vol (
divset (D2,j))) by
A2,
INTEGRA1: 20;
assume D1
<= D2;
then
consider i be
Nat such that
A5: i
in (
dom D1) and
A6: (
divset (D2,j))
c= (
divset (D1,i)) by
A3,
INTEGRA2: 37;
A7: (
vol (
divset (D1,i)))
= ((
upper_volume ((
chi (A,A)),D1))
. i) by
A5,
INTEGRA1: 20;
(
len (
upper_volume ((
chi (A,A)),D1)))
= (
len D1) by
INTEGRA1:def 6;
then i
in (
dom (
upper_volume ((
chi (A,A)),D1))) by
A5,
FINSEQ_3: 29;
then (
vol (
divset (D1,i)))
in (
rng (
upper_volume ((
chi (A,A)),D1))) by
A7,
FUNCT_1:def 3;
then (
delta D2)
<= (
max (
rng (
upper_volume ((
chi (A,A)),D1)))) by
A4,
A6,
INTEGRA2: 38,
XXREAL_2: 61;
hence thesis;
end;
theorem ::
INTEGRA3:2
Th2: (
vol A)
<>
0 implies ex i st i
in (
dom D) & (
vol (
divset (D,i)))
>
0
proof
assume
A1: (
vol A)
<>
0 ;
A2: (
len D)
in (
dom D) by
FINSEQ_5: 6;
assume
A3: for i st i
in (
dom D) holds (
vol (
divset (D,i)))
<=
0 ;
A4: i
in (
dom D) implies (
vol (
divset (D,i)))
=
0
proof
assume i
in (
dom D);
then (
vol (
divset (D,i)))
<=
0 by
A3;
hence thesis by
INTEGRA1: 9;
end;
A5: i
in (
dom D) implies (
upper_bound (
divset (D,i)))
= (
lower_bound (
divset (D,i)))
proof
assume i
in (
dom D);
then (
vol (
divset (D,i)))
=
0 by
A4;
then ((
upper_bound (
divset (D,i)))
- (
lower_bound (
divset (D,i))))
=
0 by
INTEGRA1:def 5;
hence thesis;
end;
A6: (
len D)
= 1
proof
(
len D)
< ((
len D)
+ 1) by
NAT_1: 13;
then
A7: ((
len D)
- 1)
< (
len D) by
XREAL_1: 19;
assume
A8: (
len D)
<> 1;
then
A9: (
upper_bound (
divset (D,(
len D))))
= (D
. (
len D)) by
A2,
INTEGRA1:def 4;
A10: ((
len D)
- 1)
in (
dom D) by
A2,
A8,
INTEGRA1: 7;
(
lower_bound (
divset (D,(
len D))))
= (D
. ((
len D)
- 1)) by
A2,
A8,
INTEGRA1:def 4;
then (
lower_bound (
divset (D,(
len D))))
< (
upper_bound (
divset (D,(
len D)))) by
A2,
A9,
A10,
A7,
SEQM_3:def 1;
hence contradiction by
A5,
A2;
end;
then (
upper_bound (
divset (D,(
len D))))
= (D
. (
len D)) by
A2,
INTEGRA1:def 4;
then
A11: (
upper_bound (
divset (D,(
len D))))
= (
upper_bound A) by
INTEGRA1:def 2;
(
lower_bound (
divset (D,(
len D))))
= (
lower_bound A) by
A2,
A6,
INTEGRA1:def 4;
then (
upper_bound A)
= ((
lower_bound A)
+
0 ) by
A5,
A2,
A11;
then ((
upper_bound A)
- (
lower_bound A))
=
0 ;
hence contradiction by
A1,
INTEGRA1:def 5;
end;
theorem ::
INTEGRA3:3
Th3: x
in A implies ex j st j
in (
dom D) & x
in (
divset (D,j))
proof
assume
A1: x
in A;
then
A2: (
lower_bound A)
<= x by
INTEGRA2: 1;
A3: x
<= (
upper_bound A) by
A1,
INTEGRA2: 1;
A4: (
rng D)
<>
{} ;
then
A5: 1
in (
dom D) by
FINSEQ_3: 32;
per cases ;
suppose x
in (
rng D);
then
consider j such that
A6: j
in (
dom D) and
A7: (D
. j)
= x by
PARTFUN1: 3;
x
in (
divset (D,j))
proof
per cases ;
suppose
A8: j
= 1;
A9: ex a, b st a
<= b & a
= (
lower_bound (
divset (D,j))) & b
= (
upper_bound (
divset (D,j))) by
SEQ_4: 11;
(
upper_bound (
divset (D,j)))
= (D
. j) by
A6,
A8,
INTEGRA1:def 4;
hence thesis by
A7,
A9,
INTEGRA2: 1;
end;
suppose
A10: j
<> 1;
A11: ex a, b st a
<= b & a
= (
lower_bound (
divset (D,j))) & b
= (
upper_bound (
divset (D,j))) by
SEQ_4: 11;
(
upper_bound (
divset (D,j)))
= (D
. j) by
A6,
A10,
INTEGRA1:def 4;
hence thesis by
A7,
A11,
INTEGRA2: 1;
end;
end;
hence thesis by
A6;
end;
suppose
A12: not x
in (
rng D);
defpred
MIN[
Nat] means x
< (
upper_bound (
divset (D,$1))) & $1
in (
dom D);
A13: (
len D)
in (
dom D) by
FINSEQ_5: 6;
(
upper_bound (
divset (D,(
len D))))
= (D
. (
len D))
proof
per cases ;
suppose (
len D)
= 1;
hence thesis by
A13,
INTEGRA1:def 4;
end;
suppose (
len D)
<> 1;
hence thesis by
A13,
INTEGRA1:def 4;
end;
end;
then
A14: (
upper_bound (
divset (D,(
len D))))
= (
upper_bound A) by
INTEGRA1:def 2;
x
<> (
upper_bound A)
proof
assume x
= (
upper_bound A);
then x
= (D
. (
len D)) by
INTEGRA1:def 2;
hence contradiction by
A12,
A13,
FUNCT_1:def 3;
end;
then x
< (
upper_bound (
divset (D,(
len D)))) by
A3,
A14,
XXREAL_0: 1;
then
A15: ex k be
Nat st
MIN[k] by
A13;
consider k be
Nat such that
A16:
MIN[k] & for n be
Nat st
MIN[n] holds k
<= n from
NAT_1:sch 5(
A15);
defpred
MAX[
Nat] means x
>= (
lower_bound (
divset (D,$1))) & $1
in (
dom D);
(
lower_bound (
divset (D,1)))
= (
lower_bound A) by
A5,
INTEGRA1:def 4;
then
A17: ex k be
Nat st
MAX[k] by
A2,
A4,
FINSEQ_3: 32;
A18: for k be
Nat holds
MAX[k] implies k
<= (
len D) by
FINSEQ_3: 25;
consider j be
Nat such that
A19:
MAX[j] & for n be
Nat st
MAX[n] holds n
<= j from
NAT_1:sch 6(
A18,
A17);
k
= j
proof
assume
A20: k
<> j;
per cases by
A20,
XXREAL_0: 1;
suppose
A21: k
< j;
A22: (
upper_bound (
divset (D,k)))
= (D
. k)
proof
per cases ;
suppose k
= 1;
hence thesis by
A16,
INTEGRA1:def 4;
end;
suppose k
<> 1;
hence thesis by
A16,
INTEGRA1:def 4;
end;
end;
A23: 1
<= k by
A16,
FINSEQ_3: 25;
then (D
. (j
- 1))
<= x by
A19,
A21,
INTEGRA1:def 4;
then
A24: (D
. (j
- 1))
< (D
. k) by
A16,
A22,
XXREAL_0: 2;
(j
- 1)
in (
dom D) by
A19,
A21,
A23,
INTEGRA1: 7;
then (j
- 1)
< k by
A16,
A24,
SEQ_4: 137;
then j
< (k
+ 1) by
XREAL_1: 19;
hence contradiction by
A21,
NAT_1: 13;
end;
suppose
A25: k
> j;
x
< (
upper_bound (
divset (D,j)))
proof
A26: (
upper_bound (
divset (D,j)))
= (D
. j)
proof
per cases ;
suppose j
= 1;
hence thesis by
A19,
INTEGRA1:def 4;
end;
suppose j
<> 1;
hence thesis by
A19,
INTEGRA1:def 4;
end;
end;
assume
A27: x
>= (
upper_bound (
divset (D,j)));
A28: (j
+ 1)
<= k by
A25,
NAT_1: 13;
A29: 1
<= j by
A19,
FINSEQ_3: 25;
then
A30: 1
<= (j
+ 1) by
NAT_1: 13;
k
<= (
len D) by
A16,
FINSEQ_3: 25;
then (j
+ 1)
<= (
len D) by
A28,
XXREAL_0: 2;
then
A31: (j
+ 1)
in (
dom D) by
A30,
FINSEQ_3: 25;
(j
+ 1)
> 1 by
A29,
NAT_1: 13;
then (
lower_bound (
divset (D,(j
+ 1))))
= (D
. ((j
+ 1)
- 1)) by
A31,
INTEGRA1:def 4
.= (D
. j);
then (j
+ 1)
<= j by
A19,
A27,
A26,
A31;
hence contradiction by
NAT_1: 13;
end;
hence contradiction by
A16,
A19,
A25;
end;
end;
then x
in (
divset (D,k)) by
A16,
A19,
INTEGRA2: 1;
hence thesis by
A16;
end;
end;
theorem ::
INTEGRA3:4
Th4: ex D st D1
<= D & D2
<= D & (
rng D)
= ((
rng D1)
\/ (
rng D2))
proof
consider D be
FinSequence of
REAL such that
A1: (
rng D)
= (
rng (D1
^ D2)) and
A2: (
len D)
= (
card (
rng (D1
^ D2))) and
A3: D is
increasing by
SEQ_4: 140;
reconsider D as
increasing
FinSequence of
REAL by
A3;
reconsider D as non
empty
increasing
FinSequence of
REAL by
A1;
A4: (
rng D2)
c= A by
INTEGRA1:def 2;
A5: (
rng (D1
^ D2))
= ((
rng D1)
\/ (
rng D2)) by
FINSEQ_1: 31;
then
A6: (
rng D1)
c= (
rng (D1
^ D2)) by
XBOOLE_1: 7;
(
rng D1)
c= A by
INTEGRA1:def 2;
then
A7: (
rng D)
c= A by
A1,
A5,
A4,
XBOOLE_1: 8;
(D
. (
len D))
= (
upper_bound A)
proof
(
len D1)
in (
dom D1) by
FINSEQ_5: 6;
then (D1
. (
len D1))
in (
rng D1) by
FUNCT_1:def 3;
then
consider k such that
A8: k
in (
dom D) and
A9: (D1
. (
len D1))
= (D
. k) by
A1,
A6,
PARTFUN1: 3;
assume
A10: (D
. (
len D))
<> (
upper_bound A);
A11: (
len D)
in (
dom D) by
FINSEQ_5: 6;
then (D
. (
len D))
in (
rng D) by
FUNCT_1:def 3;
then (D
. (
len D))
<= (
upper_bound A) by
A7,
INTEGRA2: 1;
then
A12: (D
. (
len D))
< (
upper_bound A) by
A10,
XXREAL_0: 1;
(D1
. (
len D1))
= (
upper_bound A) by
INTEGRA1:def 2;
then k
> (
len D) by
A11,
A12,
A8,
A9,
SEQ_4: 137;
hence contradiction by
A8,
FINSEQ_3: 25;
end;
then
reconsider D as
Division of A by
A7,
INTEGRA1:def 2;
take D;
(
card (
rng D1))
<= (
len D) by
A2,
A5,
NAT_1: 43,
XBOOLE_1: 7;
then (
len D1)
<= (
len D) by
FINSEQ_4: 62;
hence D1
<= D by
A1,
A6,
INTEGRA1:def 18;
A13: (
rng D2)
c= (
rng (D1
^ D2)) by
A5,
XBOOLE_1: 7;
(
card (
rng D2))
<= (
len D) by
A2,
A5,
NAT_1: 43,
XBOOLE_1: 7;
then (
len D2)
<= (
len D) by
FINSEQ_4: 62;
hence D2
<= D by
A1,
A13,
INTEGRA1:def 18;
thus thesis by
A1,
FINSEQ_1: 31;
end;
theorem ::
INTEGRA3:5
Th5: (
delta D1)
< (
min (
rng (
upper_volume ((
chi (A,A)),D)))) implies for x, y, i st i
in (
dom D1) & x
in ((
rng D)
/\ (
divset (D1,i))) & y
in ((
rng D)
/\ (
divset (D1,i))) holds x
= y
proof
assume
A1: (
delta D1)
< (
min (
rng (
upper_volume ((
chi (A,A)),D))));
let x, y, i;
assume
A2: i
in (
dom D1);
assume
A3: x
in ((
rng D)
/\ (
divset (D1,i)));
then x
in (
rng D) by
XBOOLE_0:def 4;
then
consider n such that
A4: n
in (
dom D) and
A5: x
= (D
. n) by
PARTFUN1: 3;
assume
A6: y
in ((
rng D)
/\ (
divset (D1,i)));
then y
in (
rng D) by
XBOOLE_0:def 4;
then
consider m such that
A7: m
in (
dom D) and
A8: y
= (D
. m) by
PARTFUN1: 3;
assume
A9: x
<> y;
A10:
|.((D
. n)
- (D
. m)).|
>= (
min (
rng (
upper_volume ((
chi (A,A)),D))))
proof
per cases by
A9,
A5,
A8,
XXREAL_0: 1;
suppose n
< m;
then
A11: (n
+ 1)
<= m by
NAT_1: 13;
A12: 1
<= (n
+ 1) by
NAT_1: 12;
m
in (
Seg (
len D)) by
A7,
FINSEQ_1:def 3;
then m
<= (
len D) by
FINSEQ_1: 1;
then (n
+ 1)
<= (
len D) by
A11,
XXREAL_0: 2;
then
A13: (n
+ 1)
in (
Seg (
len D)) by
A12,
FINSEQ_1: 1;
then
A14: (n
+ 1)
in (
dom D) by
FINSEQ_1:def 3;
then (D
. m)
>= (D
. (n
+ 1)) by
A7,
A11,
SEQ_4: 137;
then ((D
. n)
- (D
. m))
<= ((D
. n)
- (D
. (n
+ 1))) by
XREAL_1: 10;
then
A15: (
- ((D
. n)
- (D
. m)))
>= (
- ((D
. n)
- (D
. (n
+ 1)))) by
XREAL_1: 24;
(n
+ 1)
in (
Seg (
len (
upper_volume ((
chi (A,A)),D)))) by
A13,
INTEGRA1:def 6;
then (n
+ 1)
in (
dom (
upper_volume ((
chi (A,A)),D))) by
FINSEQ_1:def 3;
then
A16: ((
upper_volume ((
chi (A,A)),D))
. (n
+ 1))
in (
rng (
upper_volume ((
chi (A,A)),D))) by
FUNCT_1:def 3;
n
in (
Seg (
len D)) by
A4,
FINSEQ_1:def 3;
then 1
<= n by
FINSEQ_1: 1;
then
A17: (n
+ 1)
<> 1 by
NAT_1: 13;
then
A18: (
upper_bound (
divset (D,(n
+ 1))))
= (D
. (n
+ 1)) by
A14,
INTEGRA1:def 4;
(
-
|.((D
. n)
- (D
. m)).|)
<= ((D
. n)
- (D
. m)) by
ABSVALUE: 4;
then
A19:
|.((D
. n)
- (D
. m)).|
>= (
- ((D
. n)
- (D
. m))) by
XREAL_1: 26;
(
lower_bound (
divset (D,(n
+ 1))))
= (D
. ((n
+ 1)
- 1)) by
A14,
A17,
INTEGRA1:def 4;
then (
vol (
divset (D,(n
+ 1))))
= ((D
. (n
+ 1))
- (D
. n)) by
A18,
INTEGRA1:def 5;
then ((D
. (n
+ 1))
- (D
. n))
= ((
upper_volume ((
chi (A,A)),D))
. (n
+ 1)) by
A14,
INTEGRA1: 20;
then ((D
. (n
+ 1))
- (D
. n))
>= (
min (
rng (
upper_volume ((
chi (A,A)),D)))) by
A16,
XXREAL_2:def 7;
then (
- ((D
. n)
- (D
. m)))
>= (
min (
rng (
upper_volume ((
chi (A,A)),D)))) by
A15,
XXREAL_0: 2;
hence thesis by
A19,
XXREAL_0: 2;
end;
suppose n
> m;
then
A20: (m
+ 1)
<= n by
NAT_1: 13;
n
in (
Seg (
len D)) by
A4,
FINSEQ_1:def 3;
then n
<= (
len D) by
FINSEQ_1: 1;
then
A21: (m
+ 1)
<= (
len D) by
A20,
XXREAL_0: 2;
A22: 1
<= (m
+ 1) by
NAT_1: 12;
then
A23: (m
+ 1)
in (
dom D) by
A21,
FINSEQ_3: 25;
then (D
. (m
+ 1))
<= (D
. n) by
A4,
A20,
SEQ_4: 137;
then
A24: ((D
. n)
- (D
. m))
>= ((D
. (m
+ 1))
- (D
. m)) by
XREAL_1: 9;
(m
+ 1)
in (
Seg (
len D)) by
A22,
A21,
FINSEQ_1: 1;
then (m
+ 1)
in (
Seg (
len (
upper_volume ((
chi (A,A)),D)))) by
INTEGRA1:def 6;
then (m
+ 1)
in (
dom (
upper_volume ((
chi (A,A)),D))) by
FINSEQ_1:def 3;
then
A25: ((
upper_volume ((
chi (A,A)),D))
. (m
+ 1))
in (
rng (
upper_volume ((
chi (A,A)),D))) by
FUNCT_1:def 3;
m
in (
Seg (
len D)) by
A7,
FINSEQ_1:def 3;
then 1
<= m by
FINSEQ_1: 1;
then
A26: 1
< (m
+ 1) by
NAT_1: 13;
then
A27: (
upper_bound (
divset (D,(m
+ 1))))
= (D
. (m
+ 1)) by
A23,
INTEGRA1:def 4;
(
lower_bound (
divset (D,(m
+ 1))))
= (D
. ((m
+ 1)
- 1)) by
A23,
A26,
INTEGRA1:def 4;
then (
vol (
divset (D,(m
+ 1))))
= ((D
. (m
+ 1))
- (D
. m)) by
A27,
INTEGRA1:def 5;
then ((D
. (m
+ 1))
- (D
. m))
= ((
upper_volume ((
chi (A,A)),D))
. (m
+ 1)) by
A23,
INTEGRA1: 20;
then ((D
. (m
+ 1))
- (D
. m))
>= (
min (
rng (
upper_volume ((
chi (A,A)),D)))) by
A25,
XXREAL_2:def 7;
then
A28: ((D
. n)
- (D
. m))
>= (
min (
rng (
upper_volume ((
chi (A,A)),D)))) by
A24,
XXREAL_0: 2;
|.((D
. n)
- (D
. m)).|
>= ((D
. n)
- (D
. m)) by
ABSVALUE: 4;
hence thesis by
A28,
XXREAL_0: 2;
end;
end;
|.((D
. n)
- (D
. m)).|
<= (
delta D1)
proof
per cases by
A9,
A5,
A8,
XXREAL_0: 1;
suppose
A29: n
< m;
i
in (
Seg (
len D1)) by
A2,
FINSEQ_1:def 3;
then i
in (
Seg (
len (
upper_volume ((
chi (A,A)),D1)))) by
INTEGRA1:def 6;
then i
in (
dom (
upper_volume ((
chi (A,A)),D1))) by
FINSEQ_1:def 3;
then ((
upper_volume ((
chi (A,A)),D1))
. i)
in (
rng (
upper_volume ((
chi (A,A)),D1))) by
FUNCT_1:def 3;
then ((
upper_volume ((
chi (A,A)),D1))
. i)
<= (
max (
rng (
upper_volume ((
chi (A,A)),D1)))) by
XXREAL_2:def 8;
then
A30: ((
upper_volume ((
chi (A,A)),D1))
. i)
<= (
delta D1);
(D
. m)
in (
divset (D1,i)) by
A6,
A8,
XBOOLE_0:def 4;
then (D
. m)
<= (
upper_bound (
divset (D1,i))) by
INTEGRA2: 1;
then
A31: ((D
. m)
- (
lower_bound (
divset (D1,i))))
<= ((
upper_bound (
divset (D1,i)))
- (
lower_bound (
divset (D1,i)))) by
XREAL_1: 9;
(D
. n)
in (
divset (D1,i)) by
A3,
A5,
XBOOLE_0:def 4;
then (D
. n)
>= (
lower_bound (
divset (D1,i))) by
INTEGRA2: 1;
then ((D
. m)
- (D
. n))
<= ((D
. m)
- (
lower_bound (
divset (D1,i)))) by
XREAL_1: 10;
then ((D
. m)
- (D
. n))
<= ((
upper_bound (
divset (D1,i)))
- (
lower_bound (
divset (D1,i)))) by
A31,
XXREAL_0: 2;
then ((D
. m)
- (D
. n))
<= (
vol (
divset (D1,i))) by
INTEGRA1:def 5;
then
A32: ((D
. m)
- (D
. n))
<= ((
upper_volume ((
chi (A,A)),D1))
. i) by
A2,
INTEGRA1: 20;
(D
. n)
< (D
. m) by
A4,
A7,
A29,
SEQM_3:def 1;
then ((D
. n)
- (D
. m))
<
0 by
XREAL_1: 49;
then
|.((D
. n)
- (D
. m)).|
= (
- ((D
. n)
- (D
. m))) by
ABSVALUE:def 1
.= ((D
. m)
- (D
. n));
hence thesis by
A32,
A30,
XXREAL_0: 2;
end;
suppose
A33: n
> m;
i
in (
Seg (
len D1)) by
A2,
FINSEQ_1:def 3;
then i
in (
Seg (
len (
upper_volume ((
chi (A,A)),D1)))) by
INTEGRA1:def 6;
then i
in (
dom (
upper_volume ((
chi (A,A)),D1))) by
FINSEQ_1:def 3;
then ((
upper_volume ((
chi (A,A)),D1))
. i)
in (
rng (
upper_volume ((
chi (A,A)),D1))) by
FUNCT_1:def 3;
then ((
upper_volume ((
chi (A,A)),D1))
. i)
<= (
max (
rng (
upper_volume ((
chi (A,A)),D1)))) by
XXREAL_2:def 8;
then
A34: ((
upper_volume ((
chi (A,A)),D1))
. i)
<= (
delta D1);
(D
. n)
in (
divset (D1,i)) by
A3,
A5,
XBOOLE_0:def 4;
then (D
. n)
<= (
upper_bound (
divset (D1,i))) by
INTEGRA2: 1;
then
A35: ((D
. n)
- (
lower_bound (
divset (D1,i))))
<= ((
upper_bound (
divset (D1,i)))
- (
lower_bound (
divset (D1,i)))) by
XREAL_1: 9;
(D
. m)
in (
divset (D1,i)) by
A6,
A8,
XBOOLE_0:def 4;
then (D
. m)
>= (
lower_bound (
divset (D1,i))) by
INTEGRA2: 1;
then ((D
. n)
- (D
. m))
<= ((D
. n)
- (
lower_bound (
divset (D1,i)))) by
XREAL_1: 10;
then ((D
. n)
- (D
. m))
<= ((
upper_bound (
divset (D1,i)))
- (
lower_bound (
divset (D1,i)))) by
A35,
XXREAL_0: 2;
then ((D
. n)
- (D
. m))
<= (
vol (
divset (D1,i))) by
INTEGRA1:def 5;
then
A36: ((D
. n)
- (D
. m))
<= ((
upper_volume ((
chi (A,A)),D1))
. i) by
A2,
INTEGRA1: 20;
(D
. n)
> (D
. m) by
A4,
A7,
A33,
SEQM_3:def 1;
then ((D
. n)
- (D
. m))
>
0 by
XREAL_1: 50;
then
|.((D
. n)
- (D
. m)).|
= ((D
. n)
- (D
. m)) by
ABSVALUE:def 1;
hence thesis by
A36,
A34,
XXREAL_0: 2;
end;
end;
hence contradiction by
A1,
A10,
XXREAL_0: 2;
end;
theorem ::
INTEGRA3:6
Th6: for p, q st (
rng p)
= (
rng q) & p is
increasing & q is
increasing holds p
= q
proof
let p, q;
assume
A1: (
rng p)
= (
rng q);
assume that
A2: p is
increasing and
A3: q is
increasing;
A4: q is
one-to-one by
A3;
p is
one-to-one by
A2;
then (
len p)
= (
len q) by
A1,
A4,
FINSEQ_1: 48;
hence thesis by
A1,
A2,
A3,
SEQ_4: 141;
end;
theorem ::
INTEGRA3:7
Th7: D
<= D1 & i
in (
dom D) & j
in (
dom D) & i
<= j implies (
indx (D1,D,i))
<= (
indx (D1,D,j)) & (
indx (D1,D,i))
in (
dom D1)
proof
assume that
A1: D
<= D1 and
A2: i
in (
dom D) and
A3: j
in (
dom D) and
A4: i
<= j;
A5: (D
. i)
= (D1
. (
indx (D1,D,i))) by
A1,
A2,
INTEGRA1:def 19;
A6: (
indx (D1,D,j))
in (
dom D1) by
A1,
A3,
INTEGRA1:def 19;
A7: (D
. j)
= (D1
. (
indx (D1,D,j))) by
A1,
A3,
INTEGRA1:def 19;
A8: (
indx (D1,D,i))
in (
dom D1) by
A1,
A2,
INTEGRA1:def 19;
(D
. i)
<= (D
. j) by
A2,
A3,
A4,
SEQ_4: 137;
hence thesis by
A5,
A8,
A7,
A6,
SEQM_3:def 1;
end;
theorem ::
INTEGRA3:8
Th8: D
<= D1 & i
in (
dom D) & j
in (
dom D) & i
< j implies (
indx (D1,D,i))
< (
indx (D1,D,j))
proof
assume that
A1: D
<= D1 and
A2: i
in (
dom D) and
A3: j
in (
dom D) and
A4: i
< j;
A5: (D
. i)
= (D1
. (
indx (D1,D,i))) by
A1,
A2,
INTEGRA1:def 19;
A6: (
indx (D1,D,j))
in (
dom D1) by
A1,
A3,
INTEGRA1:def 19;
A7: (D
. j)
= (D1
. (
indx (D1,D,j))) by
A1,
A3,
INTEGRA1:def 19;
A8: (
indx (D1,D,i))
in (
dom D1) by
A1,
A2,
INTEGRA1:def 19;
(D
. i)
< (D
. j) by
A2,
A3,
A4,
SEQM_3:def 1;
hence thesis by
A5,
A8,
A7,
A6,
SEQ_4: 137;
end;
theorem ::
INTEGRA3:9
Th9: (
delta D)
>=
0
proof
consider y be
Element of
REAL such that
A1: y
in (
rng D) by
SUBSET_1: 4;
consider n such that
A2: n
in (
dom D) and y
= (D
. n) by
A1,
PARTFUN1: 3;
n
in (
Seg (
len D)) by
A2,
FINSEQ_1:def 3;
then n
in (
Seg (
len (
upper_volume ((
chi (A,A)),D)))) by
INTEGRA1:def 6;
then n
in (
dom (
upper_volume ((
chi (A,A)),D))) by
FINSEQ_1:def 3;
then ((
upper_volume ((
chi (A,A)),D))
. n)
in (
rng (
upper_volume ((
chi (A,A)),D))) by
FUNCT_1:def 3;
then
A3: ((
upper_volume ((
chi (A,A)),D))
. n)
<= (
max (
rng (
upper_volume ((
chi (A,A)),D)))) by
XXREAL_2:def 8;
(
vol (
divset (D,n)))
= ((
upper_volume ((
chi (A,A)),D))
. n) by
A2,
INTEGRA1: 20;
then ((
upper_volume ((
chi (A,A)),D))
. n)
>=
0 by
INTEGRA1: 9;
hence thesis by
A3;
end;
Lm3: for A be non
empty
closed_interval
Subset of
REAL , g be
Function of A,
REAL st (g
| A) is
bounded holds (
upper_bound (
rng g))
>= (
lower_bound (
rng g))
proof
let A be non
empty
closed_interval
Subset of
REAL ;
let g be
Function of A,
REAL ;
assume
A1: (g
| A) is
bounded;
then
A2: (
rng g) is
bounded_below by
INTEGRA1: 11;
(
rng g) is
bounded_above by
A1,
INTEGRA1: 13;
hence thesis by
A2,
SEQ_4: 11;
end;
Lm4: for A,B be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL st (f
| A) is
bounded & B
c= A holds (
lower_bound (
rng (f
| B)))
>= (
lower_bound (
rng f)) & (
lower_bound (
rng f))
<= (
upper_bound (
rng (f
| B))) & (
upper_bound (
rng (f
| B)))
<= (
upper_bound (
rng f)) & (
lower_bound (
rng (f
| B)))
<= (
upper_bound (
rng f))
proof
let A,B be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL ;
assume that
A1: (f
| A) is
bounded and
A2: B
c= A;
B
c= (
dom f) by
A2,
FUNCT_2:def 1;
then
A3: (
dom (f
| B))
= B by
RELAT_1: 62;
then
A4: (
rng (f
| B))
<>
{} by
RELAT_1: 42;
consider x be
Element of
REAL such that
A5: x
in B by
SUBSET_1: 4;
A6: ((f
| B)
. x)
in (
rng (f
| B)) by
A5,
A3,
FUNCT_1:def 3;
A7: (
rng f) is
bounded_below by
A1,
INTEGRA1: 11;
hence
A8: (
lower_bound (
rng (f
| B)))
>= (
lower_bound (
rng f)) by
A4,
RELAT_1: 70,
SEQ_4: 47;
(
rng (f
| B)) is
bounded_below by
A7,
RELAT_1: 70,
XXREAL_2: 44;
then
A9: (
lower_bound (
rng (f
| B)))
<= ((f
| B)
. x) by
A6,
SEQ_4:def 2;
A10: (
rng f) is
bounded_above by
A1,
INTEGRA1: 13;
then (
rng (f
| B)) is
bounded_above by
RELAT_1: 70,
XXREAL_2: 43;
then (
upper_bound (
rng (f
| B)))
>= ((f
| B)
. x) by
A6,
SEQ_4:def 1;
then
A11: (
lower_bound (
rng (f
| B)))
<= (
upper_bound (
rng (f
| B))) by
A9,
XXREAL_0: 2;
hence (
upper_bound (
rng (f
| B)))
>= (
lower_bound (
rng f)) by
A8,
XXREAL_0: 2;
thus (
upper_bound (
rng (f
| B)))
<= (
upper_bound (
rng f)) by
A10,
A4,
RELAT_1: 70,
SEQ_4: 48;
hence thesis by
A11,
XXREAL_0: 2;
end;
Lm5: j
in (
dom D1) implies (
vol (
divset (D1,j)))
<= (
delta D1)
proof
assume
A1: j
in (
dom D1);
then j
in (
Seg (
len D1)) by
FINSEQ_1:def 3;
then j
in (
Seg (
len (
upper_volume ((
chi (A,A)),D1)))) by
INTEGRA1:def 6;
then j
in (
dom (
upper_volume ((
chi (A,A)),D1))) by
FINSEQ_1:def 3;
then ((
upper_volume ((
chi (A,A)),D1))
. j)
in (
rng (
upper_volume ((
chi (A,A)),D1))) by
FUNCT_1:def 3;
then ((
upper_volume ((
chi (A,A)),D1))
. j)
<= (
max (
rng (
upper_volume ((
chi (A,A)),D1)))) by
XXREAL_2:def 8;
then (
vol (
divset (D1,j)))
<= (
max (
rng (
upper_volume ((
chi (A,A)),D1)))) by
A1,
INTEGRA1: 20;
hence thesis;
end;
Lm6: for j1 be
Element of
NAT st j1
= ((
len D1)
- 1) & x
in (
divset (D1,(
len D1))) & (
len D1)
>= 2 & D1
<= D2 & (
rng D2)
= ((
rng D1)
\/
{x}) holds (
rng (D2
| (
indx (D2,D1,j1))))
= (
rng (D1
| j1))
proof
let j1 be
Element of
NAT ;
assume that
A1: j1
= ((
len D1)
- 1) and
A2: x
in (
divset (D1,(
len D1))) and
A3: (
len D1)
>= 2;
A4: (
len D1)
in (
dom D1) by
FINSEQ_5: 6;
assume that
A5: D1
<= D2 and
A6: (
rng D2)
= ((
rng D1)
\/
{x});
A7: (
len D1)
<> 1 by
A3;
then
A8: ((
len D1)
- 1)
in (
dom D1) by
A4,
INTEGRA1: 7;
then
A9: (
indx (D2,D1,j1))
in (
dom D2) by
A1,
A5,
INTEGRA1:def 19;
then
A10: (
indx (D2,D1,j1))
<= (
len D2) by
FINSEQ_3: 25;
A11: j1
in (
dom D1) by
A1,
A4,
A7,
INTEGRA1: 7;
then
A12: 1
<= j1 by
FINSEQ_3: 25;
A13: j1
<= (
len D1) by
A11,
FINSEQ_3: 25;
(
lower_bound (
divset (D1,(
len D1))))
<= x by
A2,
INTEGRA2: 1;
then
A14: (D1
. j1)
<= x by
A1,
A4,
A7,
INTEGRA1:def 4;
for x1 be
object st x1
in (
rng (D2
| (
indx (D2,D1,j1)))) holds x1
in (
rng (D1
| j1))
proof
let x1 be
object;
assume x1
in (
rng (D2
| (
indx (D2,D1,j1))));
then
consider k such that
A15: k
in (
dom (D2
| (
indx (D2,D1,j1)))) and
A16: x1
= ((D2
| (
indx (D2,D1,j1)))
. k) by
PARTFUN1: 3;
k
in (
Seg (
len (D2
| (
indx (D2,D1,j1))))) by
A15,
FINSEQ_1:def 3;
then
A17: k
in (
Seg (
indx (D2,D1,j1))) by
A10,
FINSEQ_1: 59;
then
A18: k
in (
dom D2) by
A9,
RFINSEQ: 6;
A19: (
len (D1
| j1))
= j1 by
A13,
FINSEQ_1: 59;
k
<= (
indx (D2,D1,j1)) by
A17,
FINSEQ_1: 1;
then (D2
. k)
<= (D2
. (
indx (D2,D1,j1))) by
A9,
A18,
SEQ_4: 137;
then
A20: (D2
. k)
<= (D1
. j1) by
A1,
A5,
A8,
INTEGRA1:def 19;
A21: (D2
. k)
in (
rng D1) implies (D2
. k)
in (
rng (D1
| j1))
proof
assume (D2
. k)
in (
rng D1);
then
consider m such that
A22: m
in (
dom D1) and
A23: (D2
. k)
= (D1
. m) by
PARTFUN1: 3;
m
in (
Seg (
len D1)) by
A22,
FINSEQ_1:def 3;
then
A24: 1
<= m by
FINSEQ_1: 1;
A25: m
<= j1 by
A11,
A20,
A22,
A23,
SEQM_3:def 1;
then m
in (
Seg j1) by
A24,
FINSEQ_1: 1;
then
A26: (D2
. k)
= ((D1
| j1)
. m) by
A11,
A23,
RFINSEQ: 6;
m
in (
dom (D1
| j1)) by
A19,
A24,
A25,
FINSEQ_3: 25;
hence thesis by
A26,
FUNCT_1:def 3;
end;
A27: (D2
. k)
in
{x} implies (D2
. k)
= (D1
. j1)
proof
assume (D2
. k)
in
{x};
then (D1
. j1)
<= (D2
. k) by
A14,
TARSKI:def 1;
hence thesis by
A20,
XXREAL_0: 1;
end;
A28: (D2
. k)
in
{x} implies (D2
. k)
in (
rng (D1
| j1))
proof
j1
in (
dom (D1
| j1)) by
A12,
A19,
FINSEQ_3: 25;
then
A29: ((D1
| j1)
. j1)
in (
rng (D1
| j1)) by
FUNCT_1:def 3;
assume
A30: (D2
. k)
in
{x};
j1
in (
Seg j1) by
A12,
FINSEQ_1: 1;
hence thesis by
A11,
A27,
A30,
A29,
RFINSEQ: 6;
end;
(D2
. k)
in (
rng D2) by
A18,
FUNCT_1:def 3;
hence thesis by
A6,
A9,
A16,
A17,
A28,
A21,
RFINSEQ: 6,
XBOOLE_0:def 3;
end;
then
A31: (
rng (D2
| (
indx (D2,D1,j1))))
c= (
rng (D1
| j1));
for x1 be
object st x1
in (
rng (D1
| j1)) holds x1
in (
rng (D2
| (
indx (D2,D1,j1))))
proof
let x1 be
object;
assume x1
in (
rng (D1
| j1));
then
consider k such that
A32: k
in (
dom (D1
| j1)) and
A33: x1
= ((D1
| j1)
. k) by
PARTFUN1: 3;
k
in (
Seg (
len (D1
| j1))) by
A32,
FINSEQ_1:def 3;
then
A34: k
in (
Seg j1) by
A13,
FINSEQ_1: 59;
then
A35: k
in (
dom D1) by
A11,
RFINSEQ: 6;
k
<= j1 by
A34,
FINSEQ_1: 1;
then (D1
. k)
<= (D1
. j1) by
A1,
A8,
A35,
SEQ_4: 137;
then (D2
. (
indx (D2,D1,k)))
<= (D1
. j1) by
A5,
A35,
INTEGRA1:def 19;
then
A36: (D2
. (
indx (D2,D1,k)))
<= (D2
. (
indx (D2,D1,j1))) by
A1,
A5,
A8,
INTEGRA1:def 19;
A37: ((D1
| j1)
. k)
= (D1
. k) by
A11,
A34,
RFINSEQ: 6;
(D1
. k)
in (
rng D1) by
A35,
FUNCT_1:def 3;
then x1
in (
rng D2) by
A6,
A33,
A37,
XBOOLE_0:def 3;
then
consider n such that
A38: n
in (
dom D2) and
A39: x1
= (D2
. n) by
PARTFUN1: 3;
(D2
. (
indx (D2,D1,k)))
= (D2
. n) by
A5,
A33,
A37,
A35,
A39,
INTEGRA1:def 19;
then
A40: n
<= (
indx (D2,D1,j1)) by
A9,
A38,
A36,
SEQM_3:def 1;
1
<= n by
A38,
FINSEQ_3: 25;
then
A41: n
in (
Seg (
indx (D2,D1,j1))) by
A40,
FINSEQ_1: 1;
then n
in (
Seg (
len (D2
| (
indx (D2,D1,j1))))) by
A10,
FINSEQ_1: 59;
then
A42: n
in (
dom (D2
| (
indx (D2,D1,j1)))) by
FINSEQ_1:def 3;
(D2
. n)
= ((D2
| (
indx (D2,D1,j1)))
. n) by
A9,
A41,
RFINSEQ: 6;
hence thesis by
A39,
A42,
FUNCT_1:def 3;
end;
then (
rng (D1
| j1))
c= (
rng (D2
| (
indx (D2,D1,j1))));
hence thesis by
A31,
XBOOLE_0:def 10;
end;
theorem ::
INTEGRA3:10
Th10: x
in (
divset (D1,(
len D1))) & (
len D1)
>= 2 & D1
<= D2 & (
rng D2)
= ((
rng D1)
\/
{x}) & (g
| A) is
bounded implies ((
Sum (
lower_volume (g,D2)))
- (
Sum (
lower_volume (g,D1))))
<= (((
upper_bound (
rng g))
- (
lower_bound (
rng g)))
* (
delta D1))
proof
assume that
A1: x
in (
divset (D1,(
len D1))) and
A2: (
len D1)
>= 2;
set j = (
len D1);
assume that
A3: D1
<= D2 and
A4: (
rng D2)
= ((
rng D1)
\/
{x});
A5: (
len D1)
in (
dom D1) by
FINSEQ_5: 6;
then
A6: (
indx (D2,D1,j))
in (
dom D2) by
A3,
INTEGRA1:def 19;
A7: (
len D1)
<> 1 by
A2;
then
reconsider j1 = ((
len D1)
- 1) as
Element of
NAT by
A5,
INTEGRA1: 7;
A8: j1
in (
dom D1) by
A5,
A7,
INTEGRA1: 7;
then
A9: j1
<= (
len D1) by
FINSEQ_3: 25;
A10: 1
<= j1 by
A8,
FINSEQ_3: 25;
then (
mid (D1,1,j1)) is
increasing by
A5,
A7,
INTEGRA1: 7,
INTEGRA1: 35;
then
A11: (D1
| j1) is
increasing by
A10,
FINSEQ_6: 116;
A12: ((
len D1)
- 1)
in (
dom D1) by
A5,
A7,
INTEGRA1: 7;
then
A13: (
indx (D2,D1,j1))
in (
dom D2) by
A3,
INTEGRA1:def 19;
then
A14: 1
<= (
indx (D2,D1,j1)) by
FINSEQ_3: 25;
then (
mid (D2,1,(
indx (D2,D1,j1)))) is
increasing by
A13,
INTEGRA1: 35;
then
A15: (D2
| (
indx (D2,D1,j1))) is
increasing by
A14,
FINSEQ_6: 116;
A16: (
indx (D2,D1,j1))
<= (
len D2) by
A13,
FINSEQ_3: 25;
then
A17: (
len (D2
| (
indx (D2,D1,j1))))
= (
indx (D2,D1,j1)) by
FINSEQ_1: 59;
A18: (
rng (D2
| (
indx (D2,D1,j1))))
= (
rng (D1
| j1)) by
A1,
A2,
A3,
A4,
Lm6;
then
A19: (D2
| (
indx (D2,D1,j1)))
= (D1
| j1) by
A15,
A11,
Th6;
A20: for k st 1
<= k & k
<= j1 holds k
= (
indx (D2,D1,k))
proof
let k;
assume that
A21: 1
<= k and
A22: k
<= j1;
assume
A23: k
<> (
indx (D2,D1,k));
per cases by
A23,
XXREAL_0: 1;
suppose
A24: k
> (
indx (D2,D1,k));
k
<= (
len D1) by
A9,
A22,
XXREAL_0: 2;
then
A25: k
in (
dom D1) by
A21,
FINSEQ_3: 25;
then (
indx (D2,D1,k))
in (
dom D2) by
A3,
INTEGRA1:def 19;
then (
indx (D2,D1,k))
in (
Seg (
len D2)) by
FINSEQ_1:def 3;
then
A26: 1
<= (
indx (D2,D1,k)) by
FINSEQ_1: 1;
A27: (
indx (D2,D1,k))
< j1 by
A22,
A24,
XXREAL_0: 2;
then
A28: (
indx (D2,D1,k))
in (
Seg j1) by
A26,
FINSEQ_1: 1;
(
indx (D2,D1,k))
<= (
indx (D2,D1,j1)) by
A3,
A8,
A22,
A25,
Th7;
then (
indx (D2,D1,k))
in (
Seg (
indx (D2,D1,j1))) by
A26,
FINSEQ_1: 1;
then
A29: ((D2
| (
indx (D2,D1,j1)))
. (
indx (D2,D1,k)))
= (D2
. (
indx (D2,D1,k))) by
A13,
RFINSEQ: 6;
(
indx (D2,D1,k))
<= (
len D1) by
A9,
A27,
XXREAL_0: 2;
then (
indx (D2,D1,k))
in (
dom D1) by
A26,
FINSEQ_3: 25;
then
A30: (D1
. k)
> (D1
. (
indx (D2,D1,k))) by
A24,
A25,
SEQM_3:def 1;
(D1
. k)
= (D2
. (
indx (D2,D1,k))) by
A3,
A25,
INTEGRA1:def 19;
hence contradiction by
A8,
A19,
A29,
A30,
A28,
RFINSEQ: 6;
end;
suppose
A31: k
< (
indx (D2,D1,k));
k
<= (
len D1) by
A9,
A22,
XXREAL_0: 2;
then
A32: k
in (
dom D1) by
A21,
FINSEQ_3: 25;
then (
indx (D2,D1,k))
<= (
indx (D2,D1,j1)) by
A3,
A8,
A22,
Th7;
then
A33: k
<= (
indx (D2,D1,j1)) by
A31,
XXREAL_0: 2;
then k
<= (
len D2) by
A16,
XXREAL_0: 2;
then
A34: k
in (
dom D2) by
A21,
FINSEQ_3: 25;
k
in (
Seg j1) by
A21,
A22,
FINSEQ_1: 1;
then
A35: (D1
. k)
= ((D1
| j1)
. k) by
A12,
RFINSEQ: 6;
(
indx (D2,D1,k))
in (
dom D2) by
A3,
A32,
INTEGRA1:def 19;
then
A36: (D2
. k)
< (D2
. (
indx (D2,D1,k))) by
A31,
A34,
SEQM_3:def 1;
A37: k
in (
Seg (
indx (D2,D1,j1))) by
A21,
A33,
FINSEQ_1: 1;
(D1
. k)
= (D2
. (
indx (D2,D1,k))) by
A3,
A32,
INTEGRA1:def 19;
hence contradiction by
A13,
A19,
A35,
A36,
A37,
RFINSEQ: 6;
end;
end;
A38: for k be
Nat st 1
<= k & k
<= (
len ((
lower_volume (g,D1))
| j1)) holds (((
lower_volume (g,D1))
| j1)
. k)
= (((
lower_volume (g,D2))
| (
indx (D2,D1,j1)))
. k)
proof
(
indx (D2,D1,j1))
in (
Seg (
len D2)) by
A13,
FINSEQ_1:def 3;
then (
indx (D2,D1,j1))
in (
Seg (
len (
lower_volume (g,D2)))) by
INTEGRA1:def 7;
then
A39: (
indx (D2,D1,j1))
in (
dom (
lower_volume (g,D2))) by
FINSEQ_1:def 3;
let k be
Nat;
assume that
A40: 1
<= k and
A41: k
<= (
len ((
lower_volume (g,D1))
| j1));
reconsider k as
Element of
NAT by
ORDINAL1:def 12;
A42: (
len (
lower_volume (g,D1)))
= (
len D1) by
INTEGRA1:def 7;
then
A43: k
<= j1 by
A9,
A41,
FINSEQ_1: 59;
then k
<= (
len D1) by
A9,
XXREAL_0: 2;
then k
in (
Seg (
len D1)) by
A40,
FINSEQ_1: 1;
then
A44: k
in (
dom D1) by
FINSEQ_1:def 3;
then
A45: (
indx (D2,D1,k))
in (
dom D2) by
A3,
INTEGRA1:def 19;
A46: k
in (
Seg j1) by
A40,
A43,
FINSEQ_1: 1;
then (
indx (D2,D1,k))
in (
Seg j1) by
A20,
A40,
A43;
then
A47: (
indx (D2,D1,k))
in (
Seg (
indx (D2,D1,j1))) by
A10,
A20;
then (
indx (D2,D1,k))
<= (
indx (D2,D1,j1)) by
FINSEQ_1: 1;
then
A48: (
indx (D2,D1,k))
<= (
len D2) by
A16,
XXREAL_0: 2;
A49: (D1
. k)
= (D2
. (
indx (D2,D1,k))) by
A3,
A44,
INTEGRA1:def 19;
A50: (
lower_bound (
divset (D1,k)))
= (
lower_bound (
divset (D2,(
indx (D2,D1,k))))) & (
upper_bound (
divset (D1,k)))
= (
upper_bound (
divset (D2,(
indx (D2,D1,k)))))
proof
per cases ;
suppose
A51: k
= 1;
then
A52: (
upper_bound (
divset (D1,k)))
= (D1
. k) by
A44,
INTEGRA1:def 4;
A53: (
lower_bound (
divset (D1,k)))
= (
lower_bound A) by
A44,
A51,
INTEGRA1:def 4;
(
indx (D2,D1,k))
= 1 by
A10,
A20,
A51;
hence thesis by
A45,
A49,
A53,
A52,
INTEGRA1:def 4;
end;
suppose
A54: k
<> 1;
then
reconsider k1 = (k
- 1) as
Element of
NAT by
A44,
INTEGRA1: 7;
A55: (k
- 1)
in (
dom D1) by
A44,
A54,
INTEGRA1: 7;
then
A56: 1
<= k1 by
FINSEQ_3: 25;
k
<= (k
+ 1) by
NAT_1: 11;
then k1
<= k by
XREAL_1: 20;
then
A57: k1
<= j1 by
A43,
XXREAL_0: 2;
A58: (
indx (D2,D1,k))
<> 1 by
A20,
A40,
A43,
A54;
then
A59: (
lower_bound (
divset (D2,(
indx (D2,D1,k)))))
= (D2
. ((
indx (D2,D1,k))
- 1)) by
A45,
INTEGRA1:def 4;
A60: (
upper_bound (
divset (D1,k)))
= (D1
. k) by
A44,
A54,
INTEGRA1:def 4;
A61: (
lower_bound (
divset (D1,k)))
= (D1
. (k
- 1)) by
A44,
A54,
INTEGRA1:def 4;
A62: (
upper_bound (
divset (D2,(
indx (D2,D1,k)))))
= (D2
. (
indx (D2,D1,k))) by
A45,
A58,
INTEGRA1:def 4;
(D2
. ((
indx (D2,D1,k))
- 1))
= (D2
. (k
- 1)) by
A20,
A40,
A43
.= (D2
. (
indx (D2,D1,k1))) by
A20,
A57,
A56;
hence thesis by
A3,
A44,
A61,
A60,
A55,
A59,
A62,
INTEGRA1:def 19;
end;
end;
(
divset (D1,k))
=
[.(
lower_bound (
divset (D1,k))), (
upper_bound (
divset (D1,k))).] by
INTEGRA1: 4;
then
A63: (
divset (D1,k))
= (
divset (D2,(
indx (D2,D1,k)))) by
A50,
INTEGRA1: 4;
j1
in (
Seg (
len (
lower_volume (g,D1)))) by
A8,
A42,
FINSEQ_1:def 3;
then j1
in (
dom (
lower_volume (g,D1))) by
FINSEQ_1:def 3;
then
A64: (((
lower_volume (g,D1))
| j1)
. k)
= ((
lower_volume (g,D1))
. k) by
A46,
RFINSEQ: 6
.= ((
lower_bound (
rng (g
| (
divset (D2,(
indx (D2,D1,k)))))))
* (
vol (
divset (D2,(
indx (D2,D1,k)))))) by
A44,
A63,
INTEGRA1:def 7;
1
<= (
indx (D2,D1,k)) by
A20,
A40,
A43;
then
A65: (
indx (D2,D1,k))
in (
dom D2) by
A48,
FINSEQ_3: 25;
(((
lower_volume (g,D2))
| (
indx (D2,D1,j1)))
. k)
= (((
lower_volume (g,D2))
| (
indx (D2,D1,j1)))
. (
indx (D2,D1,k))) by
A20,
A40,
A43
.= ((
lower_volume (g,D2))
. (
indx (D2,D1,k))) by
A47,
A39,
RFINSEQ: 6
.= ((
lower_bound (
rng (g
| (
divset (D2,(
indx (D2,D1,k)))))))
* (
vol (
divset (D2,(
indx (D2,D1,k)))))) by
A65,
INTEGRA1:def 7;
hence thesis by
A64;
end;
A66: (
len D2)
in (
dom D2) by
FINSEQ_5: 6;
deffunc
LVg(
Division of A) = (
lower_volume (g,$1));
deffunc
PLg(
Division of A,
Nat) = ((
PartSums (
lower_volume (g,$1)))
. $2);
A67: j
>= (
len (
lower_volume (g,D1))) by
INTEGRA1:def 7;
A68: j
<= (
len
LVg(D1)) by
INTEGRA1:def 7;
A69: (
len D1)
in (
Seg (
len D1)) by
FINSEQ_1: 3;
then
A70: 1
<= j by
FINSEQ_1: 1;
then
A71: j
in (
dom
LVg(D1)) by
A68,
FINSEQ_3: 25;
assume
A72: (g
| A) is
bounded;
j
< (j
+ 1) by
NAT_1: 13;
then
A73: j1
< j by
XREAL_1: 19;
then j1
< (
len
LVg(D1)) by
INTEGRA1:def 7;
then j1
in (
dom
LVg(D1)) by
A10,
FINSEQ_3: 25;
then
PLg(D1,j1)
= (
Sum (
LVg(D1)
| j1)) by
INTEGRA1:def 20;
then (
PLg(D1,j1)
+ (
Sum (
mid (
LVg(D1),j,j))))
= (
Sum ((
LVg(D1)
| j1)
^ (
mid (
LVg(D1),j,j)))) by
RVSUM_1: 75
.= (
Sum ((
mid (
LVg(D1),1,j1))
^ (
mid (
LVg(D1),(j1
+ 1),j)))) by
A10,
FINSEQ_6: 116
.= (
Sum (
mid (
LVg(D1),1,j))) by
A10,
A68,
A73,
INTEGRA2: 4
.= (
Sum (
LVg(D1)
| j)) by
A70,
FINSEQ_6: 116;
then
A74: (
PLg(D1,j1)
+ (
Sum (
mid ((
lower_volume (g,D1)),j,j))))
=
PLg(D1,j) by
A71,
INTEGRA1:def 20;
A75: (
indx (D2,D1,j))
in (
dom D2) by
A3,
A5,
INTEGRA1:def 19;
then
A76: (
indx (D2,D1,j))
in (
Seg (
len D2)) by
FINSEQ_1:def 3;
then
A77: 1
<= (
indx (D2,D1,j)) by
FINSEQ_1: 1;
(
len D1)
< ((
len D1)
+ 1) by
NAT_1: 13;
then j1
< (
len D1) by
XREAL_1: 19;
then
A78: (
indx (D2,D1,j1))
< (
indx (D2,D1,(
len D1))) by
A3,
A5,
A8,
Th8;
then
A79: ((
indx (D2,D1,j1))
+ 1)
<= (
indx (D2,D1,(
len D1))) by
NAT_1: 13;
A80: j1
in (
dom D1) by
A5,
A7,
INTEGRA1: 7;
A81: ((
Sum (
mid ((
lower_volume (g,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,(
len D1))))))
- (
Sum (
mid ((
lower_volume (g,D1)),(
len D1),(
len D1)))))
<= (((
upper_bound (
rng g))
- (
lower_bound (
rng g)))
* (
delta D1))
proof
A82: ((
indx (D2,D1,j))
- (
indx (D2,D1,j1)))
<= 2
proof
set ID1 = ((
indx (D2,D1,j1))
+ 1);
set ID2 = (ID1
+ 1);
assume ((
indx (D2,D1,j))
- (
indx (D2,D1,j1)))
> 2;
then
A83: ((
indx (D2,D1,j1))
+ (1
+ 1))
< (
indx (D2,D1,j)) by
XREAL_1: 20;
A84: ID1
< ID2 by
NAT_1: 13;
then (
indx (D2,D1,j1))
<= ID2 by
NAT_1: 13;
then
A85: 1
<= ID2 by
A14,
XXREAL_0: 2;
A86: (
indx (D2,D1,j))
in (
dom D2) by
A3,
A5,
INTEGRA1:def 19;
then
A87: (
indx (D2,D1,j))
<= (
len D2) by
FINSEQ_3: 25;
then ID2
<= (
len D2) by
A83,
XXREAL_0: 2;
then
A88: ID2
in (
dom D2) by
A85,
FINSEQ_3: 25;
then
A89: (D2
. ID2)
< (D2
. (
indx (D2,D1,j))) by
A83,
A86,
SEQM_3:def 1;
A90: 1
<= ID1 by
A14,
NAT_1: 13;
A91: (D1
. j1)
= (D2
. (
indx (D2,D1,j1))) by
A3,
A8,
INTEGRA1:def 19;
ID1
<= (
indx (D2,D1,j)) by
A83,
A84,
XXREAL_0: 2;
then ID1
<= (
len D2) by
A87,
XXREAL_0: 2;
then
A92: ID1
in (
dom D2) by
A90,
FINSEQ_3: 25;
A93: (D1
. j)
= (D2
. (
indx (D2,D1,j))) by
A3,
A5,
INTEGRA1:def 19;
(
indx (D2,D1,j1))
< ID1 by
NAT_1: 13;
then
A94: (D2
. (
indx (D2,D1,j1)))
< (D2
. ID1) by
A13,
A92,
SEQM_3:def 1;
A95: (D2
. ID1)
< (D2
. ID2) by
A84,
A92,
A88,
SEQM_3:def 1;
A96: not (D2
. ID1)
in (
rng D1) & not (D2
. ID2)
in (
rng D1)
proof
assume
A97: (D2
. ID1)
in (
rng D1) or (D2
. ID2)
in (
rng D1);
per cases by
A97;
suppose (D2
. ID1)
in (
rng D1);
then
consider n such that
A98: n
in (
dom D1) and
A99: (D1
. n)
= (D2
. ID1) by
PARTFUN1: 3;
j1
< n by
A80,
A94,
A91,
A98,
A99,
SEQ_4: 137;
then
A100: j
< (n
+ 1) by
XREAL_1: 19;
(D2
. ID1)
< (D2
. (
indx (D2,D1,j))) by
A95,
A89,
XXREAL_0: 2;
then n
< j by
A5,
A93,
A98,
A99,
SEQ_4: 137;
hence contradiction by
A100,
NAT_1: 13;
end;
suppose (D2
. ID2)
in (
rng D1);
then
consider n such that
A101: n
in (
dom D1) and
A102: (D1
. n)
= (D2
. ID2) by
PARTFUN1: 3;
(D2
. (
indx (D2,D1,j1)))
< (D2
. ID2) by
A94,
A95,
XXREAL_0: 2;
then j1
< n by
A8,
A91,
A101,
A102,
SEQ_4: 137;
then
A103: j
< (n
+ 1) by
XREAL_1: 19;
n
< j by
A5,
A89,
A93,
A101,
A102,
SEQ_4: 137;
hence contradiction by
A103,
NAT_1: 13;
end;
end;
(D2
. ID1)
in (
rng D2) by
A92,
FUNCT_1:def 3;
then (D2
. ID1)
in
{x} by
A4,
A96,
XBOOLE_0:def 3;
then
A104: (D2
. ID1)
= x by
TARSKI:def 1;
(D2
. ID2)
in (
rng D2) by
A88,
FUNCT_1:def 3;
then (D2
. ID2)
in
{x} by
A4,
A96,
XBOOLE_0:def 3;
then (D2
. ID1)
= (D2
. ID2) by
A104,
TARSKI:def 1;
hence contradiction by
A84,
A92,
A88,
SEQ_4: 138;
end;
A105: j
<= (
len (
lower_volume (g,D1))) by
INTEGRA1:def 7;
A106: 1
<= j by
A69,
FINSEQ_1: 1;
then
A107: ((
mid ((
lower_volume (g,D1)),j,j))
. 1)
= ((
lower_volume (g,D1))
. j) by
A105,
FINSEQ_6: 118;
reconsider lv = ((
lower_volume (g,D1))
. j) as
Element of
REAL by
XREAL_0:def 1;
((j
-' j)
+ 1)
= 1 by
Lm1;
then (
len (
mid ((
lower_volume (g,D1)),j,j)))
= 1 by
A106,
A105,
FINSEQ_6: 118;
then
A108: (
mid ((
lower_volume (g,D1)),j,j))
=
<*lv*> by
A107,
FINSEQ_1: 40;
A109: 1
<= ((
indx (D2,D1,j1))
+ 1) by
A14,
NAT_1: 13;
(
indx (D2,D1,j))
in (
dom D2) by
A3,
A5,
INTEGRA1:def 19;
then
A110: (
indx (D2,D1,j))
in (
Seg (
len D2)) by
FINSEQ_1:def 3;
then
A111: 1
<= (
indx (D2,D1,j)) by
FINSEQ_1: 1;
(
indx (D2,D1,j))
in (
Seg (
len (
lower_volume (g,D2)))) by
A110,
INTEGRA1:def 7;
then
A112: (
indx (D2,D1,j))
<= (
len (
lower_volume (g,D2))) by
FINSEQ_1: 1;
then
A113: ((
indx (D2,D1,j1))
+ 1)
<= (
len (
lower_volume (g,D2))) by
A79,
XXREAL_0: 2;
then ((
indx (D2,D1,j1))
+ 1)
in (
Seg (
len (
lower_volume (g,D2)))) by
A109,
FINSEQ_1: 1;
then
A114: ((
indx (D2,D1,j1))
+ 1)
in (
Seg (
len D2)) by
INTEGRA1:def 7;
((
indx (D2,D1,j))
-' ((
indx (D2,D1,j1))
+ 1))
= ((
indx (D2,D1,j))
- ((
indx (D2,D1,j1))
+ 1)) by
A79,
XREAL_1: 233;
then (((
indx (D2,D1,j))
-' ((
indx (D2,D1,j1))
+ 1))
+ 1)
<= 2 by
A82;
then
A115: (
len (
mid ((
lower_volume (g,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))
<= 2 by
A79,
A111,
A112,
A109,
A113,
FINSEQ_6: 118;
(
len (
lower_volume (g,D2)))
= (
len D2) by
INTEGRA1:def 7;
then
A116: ((
indx (D2,D1,j1))
+ 1)
in (
dom D2) by
A109,
A113,
FINSEQ_3: 25;
(((
indx (D2,D1,j))
-' ((
indx (D2,D1,j1))
+ 1))
+ 1)
>= (
0
+ 1) by
XREAL_1: 6;
then
A117: 1
<= (
len (
mid ((
lower_volume (g,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))) by
A79,
A111,
A112,
A109,
A113,
FINSEQ_6: 118;
now
per cases by
A117,
A115,
Lm2;
suppose
A118: (
len (
mid ((
lower_volume (g,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))
= 1;
(
upper_bound (
divset (D1,j)))
= (D1
. j) by
A5,
A7,
INTEGRA1:def 4;
then
A119: (
upper_bound (
divset (D1,j)))
= (D2
. (
indx (D2,D1,j))) by
A3,
A5,
INTEGRA1:def 19;
(
lower_bound (
divset (D1,j)))
= (D1
. j1) by
A5,
A7,
INTEGRA1:def 4;
then (
lower_bound (
divset (D1,j)))
= (D2
. (
indx (D2,D1,j1))) by
A3,
A8,
INTEGRA1:def 19;
then
A120: (
divset (D1,j))
=
[.(D2
. (
indx (D2,D1,j1))), (D2
. (
indx (D2,D1,j))).] by
A119,
INTEGRA1: 4;
A121: (
delta D1)
>=
0 by
Th9;
A122: ((
upper_bound (
rng g))
- (
lower_bound (
rng g)))
>=
0 by
A72,
Lm3,
XREAL_1: 48;
A123: (
indx (D2,D1,j))
in (
dom D2) by
A3,
A5,
INTEGRA1:def 19;
(
len (
mid ((
lower_volume (g,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))
= (((
indx (D2,D1,j))
-' ((
indx (D2,D1,j1))
+ 1))
+ 1) by
A79,
A111,
A112,
A109,
A113,
FINSEQ_6: 118;
then
A124: ((
indx (D2,D1,j))
- ((
indx (D2,D1,j1))
+ 1))
=
0 by
A79,
A118,
XREAL_1: 233;
then (
indx (D2,D1,j))
<> 1 by
A13,
FINSEQ_3: 25;
then
A125: (
upper_bound (
divset (D2,(
indx (D2,D1,j)))))
= (D2
. (
indx (D2,D1,j))) by
A123,
INTEGRA1:def 4;
(
lower_bound (
divset (D2,(
indx (D2,D1,j)))))
= (D2
. ((
indx (D2,D1,j))
- 1)) by
A14,
A124,
A123,
INTEGRA1:def 4;
then
A126: (
divset (D2,(
indx (D2,D1,j))))
= (
divset (D1,j)) by
A124,
A120,
A125,
INTEGRA1: 4;
reconsider li = ((
lower_volume (g,D2))
. ((
indx (D2,D1,j1))
+ 1)) as
Element of
REAL by
XREAL_0:def 1;
((
mid ((
lower_volume (g,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))
. 1)
= ((
lower_volume (g,D2))
. ((
indx (D2,D1,j1))
+ 1)) by
A111,
A112,
A109,
A113,
FINSEQ_6: 118;
then (
mid ((
lower_volume (g,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))
=
<*li*> by
A118,
FINSEQ_1: 40;
then (
Sum (
mid ((
lower_volume (g,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))
= ((
lower_volume (g,D2))
. ((
indx (D2,D1,j1))
+ 1)) by
FINSOP_1: 11
.= ((
lower_bound (
rng (g
| (
divset (D2,((
indx (D2,D1,j1))
+ 1))))))
* (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 1))))) by
A116,
INTEGRA1:def 7
.= ((
lower_volume (g,D1))
. j) by
A5,
A124,
A126,
INTEGRA1:def 7
.= (
Sum (
mid ((
lower_volume (g,D1)),j,j))) by
A108,
FINSOP_1: 11;
hence thesis by
A121,
A122;
end;
suppose
A127: (
len (
mid ((
lower_volume (g,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))
= 2;
A128: ((
mid ((
lower_volume (g,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))
. 1)
= ((
lower_volume (g,D2))
. ((
indx (D2,D1,j1))
+ 1)) by
A111,
A112,
A109,
A113,
FINSEQ_6: 118;
A129: (2
+ ((
indx (D2,D1,j1))
+ 1))
>= (
0
+ 1) by
XREAL_1: 7;
((
mid ((
lower_volume (g,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))
. 2)
= (
LVg(D2)
. ((2
+ ((
indx (D2,D1,j1))
+ 1))
-' 1)) by
A79,
A111,
A112,
A109,
A113,
A127,
FINSEQ_6: 118
.= (
LVg(D2)
. ((2
+ ((
indx (D2,D1,j1))
+ 1))
- 1)) by
A129,
XREAL_1: 233
.= (
LVg(D2)
. ((
indx (D2,D1,j1))
+ (1
+ 1)));
then (
mid ((
lower_volume (g,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))
=
<*((
lower_volume (g,D2))
. ((
indx (D2,D1,j1))
+ 1)), ((
lower_volume (g,D2))
. ((
indx (D2,D1,j1))
+ 2))*> by
A127,
A128,
FINSEQ_1: 44;
then
A130: (
Sum (
mid ((
lower_volume (g,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))
= (((
lower_volume (g,D2))
. ((
indx (D2,D1,j1))
+ 1))
+ ((
lower_volume (g,D2))
. ((
indx (D2,D1,j1))
+ 2))) by
RVSUM_1: 77;
A131: (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 1))))
>=
0 by
INTEGRA1: 9;
(
upper_bound (
divset (D1,j)))
= (D1
. j) by
A5,
A7,
INTEGRA1:def 4;
then
A132: (
upper_bound (
divset (D1,j)))
= (D2
. (
indx (D2,D1,j))) by
A3,
A5,
INTEGRA1:def 19;
A133: (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2))))
>=
0 by
INTEGRA1: 9;
(((
indx (D2,D1,j))
-' ((
indx (D2,D1,j1))
+ 1))
+ 1)
= 2 by
A79,
A111,
A112,
A109,
A113,
A127,
FINSEQ_6: 118;
then
A134: (((
indx (D2,D1,j))
- ((
indx (D2,D1,j1))
+ 1))
+ 1)
= 2 by
A79,
XREAL_1: 233;
then
A135: ((
indx (D2,D1,j1))
+ 2)
in (
dom D2) by
A3,
A5,
INTEGRA1:def 19;
(
lower_bound (
divset (D1,j)))
= (D1
. j1) by
A5,
A7,
INTEGRA1:def 4;
then (
lower_bound (
divset (D1,j)))
= (D2
. (
indx (D2,D1,j1))) by
A3,
A8,
INTEGRA1:def 19;
then
A136: (
vol (
divset (D1,j)))
= ((((D2
. ((
indx (D2,D1,j1))
+ 2))
- (D2
. ((
indx (D2,D1,j1))
+ 1)))
+ (D2
. ((
indx (D2,D1,j1))
+ 1)))
- (D2
. (
indx (D2,D1,j1)))) by
A132,
A134,
INTEGRA1:def 5;
((
indx (D2,D1,j1))
+ 1)
in (
Seg (
len (
lower_volume (g,D2)))) by
A109,
A113,
FINSEQ_1: 1;
then ((
indx (D2,D1,j1))
+ 1)
in (
Seg (
len D2)) by
INTEGRA1:def 7;
then
A137: ((
indx (D2,D1,j1))
+ 1)
in (
dom D2) by
FINSEQ_1:def 3;
A138: ((
indx (D2,D1,j1))
+ 1)
<> 1 by
A14,
NAT_1: 13;
then
A139: (
upper_bound (
divset (D2,((
indx (D2,D1,j1))
+ 1))))
= (D2
. ((
indx (D2,D1,j1))
+ 1)) by
A137,
INTEGRA1:def 4;
(((
indx (D2,D1,j1))
+ 1)
- 1)
= ((
indx (D2,D1,j1))
+
0 );
then
A140: (
lower_bound (
divset (D2,((
indx (D2,D1,j1))
+ 1))))
= (D2
. (
indx (D2,D1,j1))) by
A137,
A138,
INTEGRA1:def 4;
A141: (((
indx (D2,D1,j1))
+ 1)
+ 1)
> 1 by
A109,
NAT_1: 13;
(((
indx (D2,D1,j1))
+ 2)
- 1)
= ((
indx (D2,D1,j1))
+ 1);
then
A142: (
lower_bound (
divset (D2,((
indx (D2,D1,j1))
+ 2))))
= (D2
. ((
indx (D2,D1,j1))
+ 1)) by
A135,
A141,
INTEGRA1:def 4;
(
upper_bound (
divset (D2,((
indx (D2,D1,j1))
+ 2))))
= (D2
. ((
indx (D2,D1,j1))
+ 2)) by
A135,
A141,
INTEGRA1:def 4;
then (
vol (
divset (D1,j)))
= (((
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2))))
+ (D2
. ((
indx (D2,D1,j1))
+ 1)))
- (D2
. (
indx (D2,D1,j1)))) by
A142,
A136,
INTEGRA1:def 5
.= ((
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2))))
+ ((
upper_bound (
divset (D2,((
indx (D2,D1,j1))
+ 1))))
- (
lower_bound (
divset (D2,((
indx (D2,D1,j1))
+ 1)))))) by
A140,
A139;
then
A143: (
vol (
divset (D1,j)))
= ((
vol (
divset (D2,((
indx (D2,D1,j1))
+ 1))))
+ (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2))))) by
INTEGRA1:def 5;
then
A144: ((
lower_volume (g,D1))
. j)
= ((
lower_bound (
rng (g
| (
divset (D1,j)))))
* ((
vol (
divset (D2,((
indx (D2,D1,j1))
+ 1))))
+ (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2)))))) by
A5,
INTEGRA1:def 7;
A145: ((
Sum (
mid (
LVg(D2),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))
- (
Sum (
mid (
LVg(D1),j,j))))
<= (((
upper_bound (
rng g))
- (
lower_bound (
rng g)))
* ((
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2))))
+ (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 1))))))
proof
set ID1 = ((
indx (D2,D1,j1))
+ 1), ID2 = ((
indx (D2,D1,j1))
+ 2);
set IR = ((
lower_bound (
rng g))
* (
vol (
divset (D2,ID2))));
(
divset (D1,j))
c= A by
A5,
INTEGRA1: 8;
then
A146: (
lower_bound (
rng (g
| (
divset (D1,j)))))
>= (
lower_bound (
rng g)) by
A72,
Lm4;
(
Sum (
mid (
LVg(D1),j,j)))
= (((
lower_bound (
rng (g
| (
divset (D1,j)))))
* (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2)))))
+ ((
lower_bound (
rng (g
| (
divset (D1,j)))))
* (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 1)))))) by
A108,
A144,
FINSOP_1: 11;
then ((
Sum (
mid (
LVg(D1),j,j)))
- ((
lower_bound (
rng (g
| (
divset (D1,j)))))
* (
vol (
divset (D2,ID1)))))
>= IR by
A133,
A146,
XREAL_1: 64;
then (
Sum (
mid (
LVg(D1),j,j)))
>= (((
lower_bound (
rng (g
| (
divset (D1,j)))))
* (
vol (
divset (D2,ID1))))
+ IR) by
XREAL_1: 19;
then
A147: ((
Sum (
mid (
LVg(D1),j,j)))
- ((
lower_bound (
rng g))
* (
vol (
divset (D2,ID2)))))
>= ((
lower_bound (
rng (g
| (
divset (D1,j)))))
* (
vol (
divset (D2,ID1)))) by
XREAL_1: 19;
((
lower_bound (
rng (g
| (
divset (D1,j)))))
* (
vol (
divset (D2,ID1))))
>= ((
lower_bound (
rng g))
* (
vol (
divset (D2,ID1)))) by
A131,
A146,
XREAL_1: 64;
then ((
Sum (
mid (
LVg(D1),j,j)))
- ((
lower_bound (
rng g))
* (
vol (
divset (D2,ID2)))))
>= ((
lower_bound (
rng g))
* (
vol (
divset (D2,ID1)))) by
A147,
XXREAL_0: 2;
then
A148: (
Sum (
mid (
LVg(D1),j,j)))
>= (IR
+ ((
lower_bound (
rng g))
* (
vol (
divset (D2,ID1))))) by
XREAL_1: 19;
(((
indx (D2,D1,j))
-' ((
indx (D2,D1,j1))
+ 1))
+ 1)
= 2 by
A79,
A111,
A112,
A109,
A113,
A127,
FINSEQ_6: 118;
then
A149: (((
indx (D2,D1,j))
- ((
indx (D2,D1,j1))
+ 1))
+ 1)
= 2 by
A79,
XREAL_1: 233;
ID1
in (
dom D2) by
A114,
FINSEQ_1:def 3;
then (
divset (D2,ID1))
c= A by
INTEGRA1: 8;
then (
lower_bound (
rng (g
| (
divset (D2,ID1)))))
<= (
upper_bound (
rng g)) by
A72,
Lm4;
then
A150: ((
lower_bound (
rng (g
| (
divset (D2,ID1)))))
* (
vol (
divset (D2,ID1))))
<= ((
upper_bound (
rng g))
* (
vol (
divset (D2,ID1)))) by
A131,
XREAL_1: 64;
A151: (
indx (D2,D1,j))
in (
dom D2) by
A3,
A5,
INTEGRA1:def 19;
then (
divset (D2,ID2))
c= A by
A149,
INTEGRA1: 8;
then
A152: (
lower_bound (
rng (g
| (
divset (D2,ID2)))))
<= (
upper_bound (
rng g)) by
A72,
Lm4;
(
Sum (
mid (
LVg(D2),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))
= (((
lower_bound (
rng (g
| (
divset (D2,((
indx (D2,D1,j1))
+ 2))))))
* (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2)))))
+ (
LVg(D2)
. ((
indx (D2,D1,j1))
+ 1))) by
A130,
A151,
A149,
INTEGRA1:def 7
.= (((
lower_bound (
rng (g
| (
divset (D2,((
indx (D2,D1,j1))
+ 2))))))
* (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2)))))
+ ((
lower_bound (
rng (g
| (
divset (D2,((
indx (D2,D1,j1))
+ 1))))))
* (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 1)))))) by
A116,
INTEGRA1:def 7;
then ((
Sum (
mid (
LVg(D2),ID1,(
indx (D2,D1,j)))))
- ((
lower_bound (
rng (g
| (
divset (D2,ID1)))))
* (
vol (
divset (D2,ID1)))))
<= ((
upper_bound (
rng g))
* (
vol (
divset (D2,ID2)))) by
A133,
A152,
XREAL_1: 64;
then (
Sum (
mid (
LVg(D2),ID1,(
indx (D2,D1,j)))))
<= (((
upper_bound (
rng g))
* (
vol (
divset (D2,ID2))))
+ ((
lower_bound (
rng (g
| (
divset (D2,ID1)))))
* (
vol (
divset (D2,ID1))))) by
XREAL_1: 20;
then ((
Sum (
mid (
LVg(D2),ID1,(
indx (D2,D1,j)))))
- ((
upper_bound (
rng g))
* (
vol (
divset (D2,ID2)))))
<= ((
lower_bound (
rng (g
| (
divset (D2,ID1)))))
* (
vol (
divset (D2,ID1)))) by
XREAL_1: 20;
then ((
Sum (
mid (
LVg(D2),ID1,(
indx (D2,D1,j)))))
- ((
upper_bound (
rng g))
* (
vol (
divset (D2,ID2)))))
<= ((
upper_bound (
rng g))
* (
vol (
divset (D2,ID1)))) by
A150,
XXREAL_0: 2;
then (
Sum (
mid (
LVg(D2),ID1,(
indx (D2,D1,j)))))
<= (((
upper_bound (
rng g))
* (
vol (
divset (D2,ID2))))
+ ((
upper_bound (
rng g))
* (
vol (
divset (D2,ID1))))) by
XREAL_1: 20;
then ((
Sum (
mid (
LVg(D2),ID1,(
indx (D2,D1,j)))))
- (
Sum (
mid (
LVg(D1),j,j))))
<= ((((
upper_bound (
rng g))
* (
vol (
divset (D2,ID2))))
+ ((
upper_bound (
rng g))
* (
vol (
divset (D2,ID1)))))
- (IR
+ ((
lower_bound (
rng g))
* (
vol (
divset (D2,ID1)))))) by
A148,
XREAL_1: 13;
hence thesis;
end;
((
upper_bound (
rng g))
- (
lower_bound (
rng g)))
>=
0 by
A72,
Lm3,
XREAL_1: 48;
then (((
upper_bound (
rng g))
- (
lower_bound (
rng g)))
* (
vol (
divset (D1,j))))
<= (((
upper_bound (
rng g))
- (
lower_bound (
rng g)))
* (
delta D1)) by
A5,
Lm5,
XREAL_1: 64;
hence thesis by
A143,
A145,
XXREAL_0: 2;
end;
end;
hence thesis;
end;
(
indx (D2,D1,j1))
in (
dom D2) by
A3,
A12,
INTEGRA1:def 19;
then (
indx (D2,D1,j1))
<= (
len D2) by
FINSEQ_3: 25;
then
A153: (
indx (D2,D1,j1))
<= (
len (
lower_volume (g,D2))) by
INTEGRA1:def 7;
j1
<= (
len D1) by
A12,
FINSEQ_3: 25;
then
A154: j1
<= (
len (
lower_volume (g,D1))) by
INTEGRA1:def 7;
A155: (D2
. (
indx (D2,D1,j)))
= (D1
. (
len D1)) by
A3,
A5,
INTEGRA1:def 19;
A156: (
indx (D2,D1,j))
>= (
len (
lower_volume (g,D2)))
proof
assume (
indx (D2,D1,j))
< (
len (
lower_volume (g,D2)));
then (
indx (D2,D1,j))
< (
len D2) by
INTEGRA1:def 7;
then
A157: (D1
. (
len D1))
< (D2
. (
len D2)) by
A66,
A6,
A155,
SEQM_3:def 1;
A158: not (D2
. (
len D2))
in (
rng D1)
proof
assume (D2
. (
len D2))
in (
rng D1);
(D2
. (
len D2))
<= (
upper_bound A) by
INTEGRA1:def 2;
hence contradiction by
A157,
INTEGRA1:def 2;
end;
(D2
. (
len D2))
in (
rng D2) by
A66,
FUNCT_1:def 3;
then (D2
. (
len D2))
in (
rng D1) or (D2
. (
len D2))
in
{x} by
A4,
XBOOLE_0:def 3;
then (D2
. (
len D2))
= x by
A158,
TARSKI:def 1;
then (D2
. (
len D2))
<= (
upper_bound (
divset (D1,(
len D1)))) by
A1,
INTEGRA2: 1;
hence contradiction by
A5,
A7,
A157,
INTEGRA1:def 4;
end;
(
indx (D2,D1,j))
in (
Seg (
len D2)) by
A6,
FINSEQ_1:def 3;
then (
indx (D2,D1,j))
in (
Seg (
len (
lower_volume (g,D2)))) by
INTEGRA1:def 7;
then (
indx (D2,D1,j))
in (
dom (
lower_volume (g,D2))) by
FINSEQ_1:def 3;
then
A159:
PLg(D2,indx)
= (
Sum ((
lower_volume (g,D2))
| (
indx (D2,D1,j)))) by
INTEGRA1:def 20
.= (
Sum (
lower_volume (g,D2))) by
A156,
FINSEQ_1: 58;
j
in (
Seg (
len (
lower_volume (g,D1)))) by
A69,
INTEGRA1:def 7;
then j
in (
dom (
lower_volume (g,D1))) by
FINSEQ_1:def 3;
then
A160:
PLg(D1,j)
= (
Sum ((
lower_volume (g,D1))
| j)) by
INTEGRA1:def 20
.= (
Sum (
lower_volume (g,D1))) by
A67,
FINSEQ_1: 58;
(
len D1)
= (
len (
lower_volume (g,D1))) by
INTEGRA1:def 7;
then
A161: j1
in (
dom (
lower_volume (g,D1))) by
A8,
FINSEQ_3: 29;
(
len (D2
| (
indx (D2,D1,j1))))
= (
len (D1
| j1)) by
A15,
A11,
A18,
Th6;
then (
indx (D2,D1,j1))
= j1 by
A9,
A17,
FINSEQ_1: 59;
then (
len ((
lower_volume (g,D1))
| j1))
= (
indx (D2,D1,j1)) by
A154,
FINSEQ_1: 59;
then (
len ((
lower_volume (g,D1))
| j1))
= (
len ((
lower_volume (g,D2))
| (
indx (D2,D1,j1)))) by
A153,
FINSEQ_1: 59;
then
A162: ((
lower_volume (g,D2))
| (
indx (D2,D1,j1)))
= ((
lower_volume (g,D1))
| j1) by
A38,
FINSEQ_1: 14;
(
len D2)
= (
len (
lower_volume (g,D2))) by
INTEGRA1:def 7;
then (
indx (D2,D1,j1))
in (
dom (
lower_volume (g,D2))) by
A13,
FINSEQ_3: 29;
then
A163:
PLg(D2,indx)
= (
Sum ((
lower_volume (g,D2))
| (
indx (D2,D1,j1)))) by
INTEGRA1:def 20
.=
PLg(D1,j1) by
A162,
A161,
INTEGRA1:def 20;
(
indx (D2,D1,j))
<= (
len D2) by
A76,
FINSEQ_1: 1;
then
A164: (
indx (D2,D1,j))
<= (
len
LVg(D2)) by
INTEGRA1:def 7;
A165: (
len D2)
= (
len
LVg(D2)) by
INTEGRA1:def 7;
then
A166: (
indx (D2,D1,j))
in (
dom
LVg(D2)) by
A75,
FINSEQ_3: 29;
(
indx (D2,D1,j1))
in (
dom
LVg(D2)) by
A13,
A165,
FINSEQ_3: 29;
then
PLg(D2,indx)
= (
Sum (
LVg(D2)
| (
indx (D2,D1,j1)))) by
INTEGRA1:def 20;
then (
PLg(D2,indx)
+ (
Sum (
mid ((
lower_volume (g,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))))
= (
Sum ((
LVg(D2)
| (
indx (D2,D1,j1)))
^ (
mid (
LVg(D2),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))) by
RVSUM_1: 75
.= (
Sum ((
mid (
LVg(D2),1,(
indx (D2,D1,j1))))
^ (
mid (
LVg(D2),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))) by
A14,
FINSEQ_6: 116
.= (
Sum (
mid (
LVg(D2),1,(
indx (D2,D1,j))))) by
A14,
A78,
A164,
INTEGRA2: 4
.= (
Sum (
LVg(D2)
| (
indx (D2,D1,j)))) by
A77,
FINSEQ_6: 116;
then (
PLg(D2,indx)
+ (
Sum (
mid ((
lower_volume (g,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))))
=
PLg(D2,indx) by
A166,
INTEGRA1:def 20;
hence thesis by
A163,
A81,
A74,
A159,
A160;
end;
theorem ::
INTEGRA3:11
Th11: x
in (
divset (D1,(
len D1))) & (
len D1)
>= 2 & D1
<= D2 & (
rng D2)
= ((
rng D1)
\/
{x}) & (g
| A) is
bounded implies ((
Sum (
upper_volume (g,D1)))
- (
Sum (
upper_volume (g,D2))))
<= (((
upper_bound (
rng g))
- (
lower_bound (
rng g)))
* (
delta D1))
proof
assume that
A1: x
in (
divset (D1,(
len D1))) and
A2: (
len D1)
>= 2;
set j = (
len D1);
assume that
A3: D1
<= D2 and
A4: (
rng D2)
= ((
rng D1)
\/
{x});
A5: (
len D1)
in (
Seg (
len D1)) by
FINSEQ_1: 3;
then
A6: (
len D1)
in (
dom D1) by
FINSEQ_1:def 3;
then
A7: (
indx (D2,D1,j))
in (
dom D2) by
A3,
INTEGRA1:def 19;
deffunc
UVg(
Division of A) = (
upper_volume (g,$1));
deffunc
PUg(
Division of A,
Nat) = ((
PartSums (
upper_volume (g,$1)))
. $2);
A8: j
>= (
len (
upper_volume (g,D1))) by
INTEGRA1:def 6;
A9: (
len D1)
<> 1 by
A2;
then
A10: ((
len D1)
- 1)
in (
dom D1) by
A6,
INTEGRA1: 7;
reconsider j1 = ((
len D1)
- 1) as
Element of
NAT by
A6,
A9,
INTEGRA1: 7;
A11: (
indx (D2,D1,j1))
in (
dom D2) by
A3,
A10,
INTEGRA1:def 19;
then
A12: 1
<= (
indx (D2,D1,j1)) by
FINSEQ_3: 25;
then (
mid (D2,1,(
indx (D2,D1,j1)))) is
increasing by
A11,
INTEGRA1: 35;
then
A13: (D2
| (
indx (D2,D1,j1))) is
increasing by
A12,
FINSEQ_6: 116;
(
len D1)
< ((
len D1)
+ 1) by
NAT_1: 13;
then j1
< (
len D1) by
XREAL_1: 19;
then
A14: (
indx (D2,D1,j1))
< (
indx (D2,D1,(
len D1))) by
A3,
A6,
A10,
Th8;
then
A15: ((
indx (D2,D1,j1))
+ 1)
<= (
indx (D2,D1,(
len D1))) by
NAT_1: 13;
(
len D2)
in (
Seg (
len D2)) by
FINSEQ_1: 3;
then
A16: (
len D2)
in (
dom D2) by
FINSEQ_1:def 3;
A17: (D2
. (
indx (D2,D1,j)))
= (D1
. (
len D1)) by
A3,
A6,
INTEGRA1:def 19;
A18: (
indx (D2,D1,j))
>= (
len (
upper_volume (g,D2)))
proof
assume (
indx (D2,D1,j))
< (
len (
upper_volume (g,D2)));
then (
indx (D2,D1,j))
< (
len D2) by
INTEGRA1:def 6;
then
A19: (D1
. (
len D1))
< (D2
. (
len D2)) by
A16,
A7,
A17,
SEQM_3:def 1;
A20: not (D2
. (
len D2))
in (
rng D1)
proof
assume (D2
. (
len D2))
in (
rng D1);
(D2
. (
len D2))
<= (
upper_bound A) by
INTEGRA1:def 2;
hence contradiction by
A19,
INTEGRA1:def 2;
end;
(D2
. (
len D2))
in (
rng D2) by
A16,
FUNCT_1:def 3;
then (D2
. (
len D2))
in (
rng D1) or (D2
. (
len D2))
in
{x} by
A4,
XBOOLE_0:def 3;
then (D2
. (
len D2))
= x by
A20,
TARSKI:def 1;
then (D2
. (
len D2))
<= (
upper_bound (
divset (D1,(
len D1)))) by
A1,
INTEGRA2: 1;
hence contradiction by
A6,
A9,
A19,
INTEGRA1:def 4;
end;
(
indx (D2,D1,j))
in (
Seg (
len D2)) by
A7,
FINSEQ_1:def 3;
then (
indx (D2,D1,j))
in (
Seg (
len (
upper_volume (g,D2)))) by
INTEGRA1:def 6;
then (
indx (D2,D1,j))
in (
dom (
upper_volume (g,D2))) by
FINSEQ_1:def 3;
then
A21:
PUg(D2,indx)
= (
Sum ((
upper_volume (g,D2))
| (
indx (D2,D1,j)))) by
INTEGRA1:def 20
.= (
Sum (
upper_volume (g,D2))) by
A18,
FINSEQ_1: 58;
(
indx (D2,D1,j))
in (
dom D2) by
A3,
A6,
INTEGRA1:def 19;
then
A22: (
indx (D2,D1,j))
in (
Seg (
len D2)) by
FINSEQ_1:def 3;
then
A23: 1
<= (
indx (D2,D1,j)) by
FINSEQ_1: 1;
A24: (
indx (D2,D1,j1))
<= (
len D2) by
A11,
FINSEQ_3: 25;
then
A25: (
len (D2
| (
indx (D2,D1,j1))))
= (
indx (D2,D1,j1)) by
FINSEQ_1: 59;
A26: j1
<= (
len D1) by
A10,
FINSEQ_3: 25;
assume
A27: (g
| A) is
bounded;
A28: ((
Sum (
mid ((
upper_volume (g,D1)),(
len D1),(
len D1))))
- (
Sum (
mid ((
upper_volume (g,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,(
len D1)))))))
<= (((
upper_bound (
rng g))
- (
lower_bound (
rng g)))
* (
delta D1))
proof
A29: ((
indx (D2,D1,j))
- (
indx (D2,D1,j1)))
<= 2
proof
reconsider ID1 = ((
indx (D2,D1,j1))
+ 1) as
Element of
NAT ;
reconsider ID2 = (ID1
+ 1) as
Element of
NAT ;
assume ((
indx (D2,D1,j))
- (
indx (D2,D1,j1)))
> 2;
then
A30: ((
indx (D2,D1,j1))
+ (1
+ 1))
< (
indx (D2,D1,j)) by
XREAL_1: 20;
A31: ID1
< ID2 by
NAT_1: 13;
then (
indx (D2,D1,j1))
<= ID2 by
NAT_1: 13;
then
A32: 1
<= ID2 by
A12,
XXREAL_0: 2;
A33: (
indx (D2,D1,j))
in (
dom D2) by
A3,
A6,
INTEGRA1:def 19;
then
A34: (
indx (D2,D1,j))
<= (
len D2) by
FINSEQ_3: 25;
then ID2
<= (
len D2) by
A30,
XXREAL_0: 2;
then
A35: ID2
in (
dom D2) by
A32,
FINSEQ_3: 25;
then
A36: (D2
. ID2)
< (D2
. (
indx (D2,D1,j))) by
A30,
A33,
SEQM_3:def 1;
A37: 1
<= ID1 by
A12,
NAT_1: 13;
A38: (D1
. j1)
= (D2
. (
indx (D2,D1,j1))) by
A3,
A10,
INTEGRA1:def 19;
ID1
<= (
indx (D2,D1,j)) by
A30,
A31,
XXREAL_0: 2;
then ID1
<= (
len D2) by
A34,
XXREAL_0: 2;
then
A39: ID1
in (
dom D2) by
A37,
FINSEQ_3: 25;
A40: (D1
. j)
= (D2
. (
indx (D2,D1,j))) by
A3,
A6,
INTEGRA1:def 19;
(
indx (D2,D1,j1))
< ID1 by
NAT_1: 13;
then
A41: (D2
. (
indx (D2,D1,j1)))
< (D2
. ID1) by
A11,
A39,
SEQM_3:def 1;
A42: (D2
. ID1)
< (D2
. ID2) by
A31,
A39,
A35,
SEQM_3:def 1;
A43: not (D2
. ID1)
in (
rng D1) & not (D2
. ID2)
in (
rng D1)
proof
assume
A44: (D2
. ID1)
in (
rng D1) or (D2
. ID2)
in (
rng D1);
now
per cases by
A44;
suppose (D2
. ID1)
in (
rng D1);
then
consider n such that
A45: n
in (
dom D1) and
A46: (D1
. n)
= (D2
. ID1) by
PARTFUN1: 3;
j1
< n by
A10,
A41,
A38,
A45,
A46,
SEQ_4: 137;
then
A47: j
< (n
+ 1) by
XREAL_1: 19;
(D2
. ID1)
< (D2
. (
indx (D2,D1,j))) by
A42,
A36,
XXREAL_0: 2;
then n
< j by
A6,
A40,
A45,
A46,
SEQ_4: 137;
hence contradiction by
A47,
NAT_1: 13;
end;
suppose (D2
. ID2)
in (
rng D1);
then
consider n such that
A48: n
in (
dom D1) and
A49: (D1
. n)
= (D2
. ID2) by
PARTFUN1: 3;
(D2
. (
indx (D2,D1,j1)))
< (D2
. ID2) by
A41,
A42,
XXREAL_0: 2;
then j1
< n by
A10,
A38,
A48,
A49,
SEQ_4: 137;
then
A50: j
< (n
+ 1) by
XREAL_1: 19;
n
< j by
A6,
A36,
A40,
A48,
A49,
SEQ_4: 137;
hence contradiction by
A50,
NAT_1: 13;
end;
end;
hence thesis;
end;
(D2
. ID1)
in (
rng D2) by
A39,
FUNCT_1:def 3;
then (D2
. ID1)
in
{x} by
A4,
A43,
XBOOLE_0:def 3;
then
A51: (D2
. ID1)
= x by
TARSKI:def 1;
(D2
. ID2)
in (
rng D2) by
A35,
FUNCT_1:def 3;
then (D2
. ID2)
in
{x} by
A4,
A43,
XBOOLE_0:def 3;
then (D2
. ID1)
= (D2
. ID2) by
A51,
TARSKI:def 1;
hence contradiction by
A31,
A39,
A35,
SEQ_4: 138;
end;
A52: j
<= (
len (
upper_volume (g,D1))) by
INTEGRA1:def 6;
A53: 1
<= j by
A5,
FINSEQ_1: 1;
then
A54: ((
mid ((
upper_volume (g,D1)),j,j))
. 1)
= ((
upper_volume (g,D1))
. j) by
A52,
FINSEQ_6: 118;
reconsider uv = ((
upper_volume (g,D1))
. j) as
Element of
REAL by
XREAL_0:def 1;
((j
-' j)
+ 1)
= 1 by
Lm1;
then (
len (
mid ((
upper_volume (g,D1)),j,j)))
= 1 by
A53,
A52,
FINSEQ_6: 118;
then (
mid ((
upper_volume (g,D1)),j,j))
=
<*uv*> by
A54,
FINSEQ_1: 40;
then
A55: (
Sum (
mid ((
upper_volume (g,D1)),j,j)))
= ((
upper_volume (g,D1))
. j) by
FINSOP_1: 11;
A56: 1
<= ((
indx (D2,D1,j1))
+ 1) by
A12,
NAT_1: 13;
(
indx (D2,D1,j))
in (
dom D2) by
A3,
A6,
INTEGRA1:def 19;
then
A57: (
indx (D2,D1,j))
in (
Seg (
len D2)) by
FINSEQ_1:def 3;
then
A58: 1
<= (
indx (D2,D1,j)) by
FINSEQ_1: 1;
(
indx (D2,D1,j))
in (
Seg (
len (
upper_volume (g,D2)))) by
A57,
INTEGRA1:def 6;
then
A59: (
indx (D2,D1,j))
<= (
len (
upper_volume (g,D2))) by
FINSEQ_1: 1;
then
A60: ((
indx (D2,D1,j1))
+ 1)
<= (
len (
upper_volume (g,D2))) by
A15,
XXREAL_0: 2;
then ((
indx (D2,D1,j1))
+ 1)
in (
Seg (
len (
upper_volume (g,D2)))) by
A56,
FINSEQ_1: 1;
then
A61: ((
indx (D2,D1,j1))
+ 1)
in (
Seg (
len D2)) by
INTEGRA1:def 6;
then
A62: ((
indx (D2,D1,j1))
+ 1)
in (
dom D2) by
FINSEQ_1:def 3;
((
indx (D2,D1,j))
-' ((
indx (D2,D1,j1))
+ 1))
= ((
indx (D2,D1,j))
- ((
indx (D2,D1,j1))
+ 1)) by
A15,
XREAL_1: 233;
then (((
indx (D2,D1,j))
-' ((
indx (D2,D1,j1))
+ 1))
+ 1)
<= 2 by
A29;
then
A63: (
len (
mid ((
upper_volume (g,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))
<= 2 by
A15,
A58,
A59,
A56,
A60,
FINSEQ_6: 118;
(((
indx (D2,D1,j))
-' ((
indx (D2,D1,j1))
+ 1))
+ 1)
>= (
0
+ 1) by
XREAL_1: 6;
then
A64: 1
<= (
len (
mid ((
upper_volume (g,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))) by
A15,
A58,
A59,
A56,
A60,
FINSEQ_6: 118;
now
per cases by
A64,
A63,
Lm2;
suppose
A65: (
len (
mid ((
upper_volume (g,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))
= 1;
(
upper_bound (
divset (D1,j)))
= (D1
. j) by
A6,
A9,
INTEGRA1:def 4;
then
A66: (
upper_bound (
divset (D1,j)))
= (D2
. (
indx (D2,D1,j))) by
A3,
A6,
INTEGRA1:def 19;
(
lower_bound (
divset (D1,j)))
= (D1
. j1) by
A6,
A9,
INTEGRA1:def 4;
then (
lower_bound (
divset (D1,j)))
= (D2
. (
indx (D2,D1,j1))) by
A3,
A10,
INTEGRA1:def 19;
then
A67: (
divset (D1,j))
=
[.(D2
. (
indx (D2,D1,j1))), (D2
. (
indx (D2,D1,j))).] by
A66,
INTEGRA1: 4;
A68: (
delta D1)
>=
0 by
Th9;
A69: ((
upper_bound (
rng g))
- (
lower_bound (
rng g)))
>=
0 by
A27,
Lm3,
XREAL_1: 48;
A70: (
indx (D2,D1,j))
in (
dom D2) by
A3,
A6,
INTEGRA1:def 19;
(
len (
mid ((
upper_volume (g,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))
= (((
indx (D2,D1,j))
-' ((
indx (D2,D1,j1))
+ 1))
+ 1) by
A15,
A58,
A59,
A56,
A60,
FINSEQ_6: 118;
then
A71: ((
indx (D2,D1,j))
- ((
indx (D2,D1,j1))
+ 1))
=
0 by
A15,
A65,
XREAL_1: 233;
then (
indx (D2,D1,j))
<> 1 by
A11,
FINSEQ_3: 25;
then
A72: (
upper_bound (
divset (D2,(
indx (D2,D1,j)))))
= (D2
. (
indx (D2,D1,j))) by
A70,
INTEGRA1:def 4;
(
lower_bound (
divset (D2,(
indx (D2,D1,j)))))
= (D2
. ((
indx (D2,D1,j))
- 1)) by
A12,
A71,
A70,
INTEGRA1:def 4;
then
A73: (
divset (D2,(
indx (D2,D1,j))))
= (
divset (D1,j)) by
A71,
A67,
A72,
INTEGRA1: 4;
reconsider uv = ((
upper_volume (g,D2))
. ((
indx (D2,D1,j1))
+ 1)) as
Element of
REAL by
XREAL_0:def 1;
((
mid ((
upper_volume (g,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))
. 1)
= ((
upper_volume (g,D2))
. ((
indx (D2,D1,j1))
+ 1)) by
A58,
A59,
A56,
A60,
FINSEQ_6: 118;
then (
mid ((
upper_volume (g,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))
=
<*uv*> by
A65,
FINSEQ_1: 40;
then (
Sum (
mid ((
upper_volume (g,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))
= ((
upper_volume (g,D2))
. ((
indx (D2,D1,j1))
+ 1)) by
FINSOP_1: 11
.= ((
upper_bound (
rng (g
| (
divset (D2,((
indx (D2,D1,j1))
+ 1))))))
* (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 1))))) by
A62,
INTEGRA1:def 6
.= (
Sum (
mid ((
upper_volume (g,D1)),j,j))) by
A6,
A55,
A71,
A73,
INTEGRA1:def 6;
hence thesis by
A68,
A69;
end;
suppose
A74: (
len (
mid ((
upper_volume (g,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))
= 2;
A75: ((
mid ((
upper_volume (g,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))
. 1)
= ((
upper_volume (g,D2))
. ((
indx (D2,D1,j1))
+ 1)) by
A58,
A59,
A56,
A60,
FINSEQ_6: 118;
A76: (2
+ ((
indx (D2,D1,j1))
+ 1))
>= (
0
+ 1) by
XREAL_1: 7;
((
mid ((
upper_volume (g,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))
. 2)
= (
UVg(D2)
. ((2
+ ((
indx (D2,D1,j1))
+ 1))
-' 1)) by
A15,
A58,
A59,
A56,
A60,
A74,
FINSEQ_6: 118
.= (
UVg(D2)
. ((2
+ ((
indx (D2,D1,j1))
+ 1))
- 1)) by
A76,
XREAL_1: 233
.= (
UVg(D2)
. ((
indx (D2,D1,j1))
+ (1
+ 1)));
then (
mid ((
upper_volume (g,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))
=
<*((
upper_volume (g,D2))
. ((
indx (D2,D1,j1))
+ 1)), ((
upper_volume (g,D2))
. ((
indx (D2,D1,j1))
+ 2))*> by
A74,
A75,
FINSEQ_1: 44;
then
A77: (
Sum (
mid ((
upper_volume (g,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))
= (((
upper_volume (g,D2))
. ((
indx (D2,D1,j1))
+ 1))
+ ((
upper_volume (g,D2))
. ((
indx (D2,D1,j1))
+ 2))) by
RVSUM_1: 77;
A78: (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 1))))
>=
0 by
INTEGRA1: 9;
(
upper_bound (
divset (D1,j)))
= (D1
. j) by
A6,
A9,
INTEGRA1:def 4;
then
A79: (
upper_bound (
divset (D1,j)))
= (D2
. (
indx (D2,D1,j))) by
A3,
A6,
INTEGRA1:def 19;
A80: (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2))))
>=
0 by
INTEGRA1: 9;
(((
indx (D2,D1,j))
-' ((
indx (D2,D1,j1))
+ 1))
+ 1)
= 2 by
A15,
A58,
A59,
A56,
A60,
A74,
FINSEQ_6: 118;
then
A81: (((
indx (D2,D1,j))
- ((
indx (D2,D1,j1))
+ 1))
+ 1)
= 2 by
A15,
XREAL_1: 233;
then
A82: ((
indx (D2,D1,j1))
+ 2)
in (
dom D2) by
A3,
A6,
INTEGRA1:def 19;
(
lower_bound (
divset (D1,j)))
= (D1
. j1) by
A6,
A9,
INTEGRA1:def 4;
then (
lower_bound (
divset (D1,j)))
= (D2
. (
indx (D2,D1,j1))) by
A3,
A10,
INTEGRA1:def 19;
then
A83: (
vol (
divset (D1,j)))
= ((((D2
. ((
indx (D2,D1,j1))
+ 2))
- (D2
. ((
indx (D2,D1,j1))
+ 1)))
+ (D2
. ((
indx (D2,D1,j1))
+ 1)))
- (D2
. (
indx (D2,D1,j1)))) by
A79,
A81,
INTEGRA1:def 5;
((
indx (D2,D1,j1))
+ 1)
in (
Seg (
len (
upper_volume (g,D2)))) by
A56,
A60,
FINSEQ_1: 1;
then ((
indx (D2,D1,j1))
+ 1)
in (
Seg (
len D2)) by
INTEGRA1:def 6;
then
A84: ((
indx (D2,D1,j1))
+ 1)
in (
dom D2) by
FINSEQ_1:def 3;
A85: ((
indx (D2,D1,j1))
+ 1)
<> 1 by
A12,
NAT_1: 13;
then
A86: (
upper_bound (
divset (D2,((
indx (D2,D1,j1))
+ 1))))
= (D2
. ((
indx (D2,D1,j1))
+ 1)) by
A84,
INTEGRA1:def 4;
(((
indx (D2,D1,j1))
+ 1)
- 1)
= ((
indx (D2,D1,j1))
+
0 );
then
A87: (
lower_bound (
divset (D2,((
indx (D2,D1,j1))
+ 1))))
= (D2
. (
indx (D2,D1,j1))) by
A84,
A85,
INTEGRA1:def 4;
A88: (((
indx (D2,D1,j1))
+ 1)
+ 1)
> 1 by
A56,
NAT_1: 13;
(((
indx (D2,D1,j1))
+ 2)
- 1)
= ((
indx (D2,D1,j1))
+ 1);
then
A89: (
lower_bound (
divset (D2,((
indx (D2,D1,j1))
+ 2))))
= (D2
. ((
indx (D2,D1,j1))
+ 1)) by
A82,
A88,
INTEGRA1:def 4;
(
upper_bound (
divset (D2,((
indx (D2,D1,j1))
+ 2))))
= (D2
. ((
indx (D2,D1,j1))
+ 2)) by
A82,
A88,
INTEGRA1:def 4;
then (
vol (
divset (D1,j)))
= (((
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2))))
+ (D2
. ((
indx (D2,D1,j1))
+ 1)))
- (D2
. (
indx (D2,D1,j1)))) by
A89,
A83,
INTEGRA1:def 5
.= ((
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2))))
+ ((
upper_bound (
divset (D2,((
indx (D2,D1,j1))
+ 1))))
- (
lower_bound (
divset (D2,((
indx (D2,D1,j1))
+ 1)))))) by
A87,
A86;
then
A90: (
vol (
divset (D1,j)))
= ((
vol (
divset (D2,((
indx (D2,D1,j1))
+ 1))))
+ (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2))))) by
INTEGRA1:def 5;
then
A91: ((
upper_volume (g,D1))
. j)
= ((
upper_bound (
rng (g
| (
divset (D1,j)))))
* ((
vol (
divset (D2,((
indx (D2,D1,j1))
+ 1))))
+ (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2)))))) by
A6,
INTEGRA1:def 6;
A92: ((
Sum (
mid (
UVg(D1),j,j)))
- (
Sum (
mid (
UVg(D2),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))))
<= (((
upper_bound (
rng g))
- (
lower_bound (
rng g)))
* ((
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2))))
+ (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 1))))))
proof
set ID1 = ((
indx (D2,D1,j1))
+ 1), ID2 = ((
indx (D2,D1,j1))
+ 2);
A93: ((
Sum (
mid (
UVg(D1),j,j)))
- ((
upper_bound (
rng (g
| (
divset (D1,j)))))
* (
vol (
divset (D2,ID1)))))
= ((
upper_bound (
rng (g
| (
divset (D1,j)))))
* (
vol (
divset (D2,ID2)))) by
A55,
A91;
(
divset (D1,j))
c= A by
A6,
INTEGRA1: 8;
then
A94: (
upper_bound (
rng (g
| (
divset (D1,j)))))
<= (
upper_bound (
rng g)) by
A27,
Lm4;
then ((
upper_bound (
rng (g
| (
divset (D1,j)))))
* (
vol (
divset (D2,ID2))))
<= ((
upper_bound (
rng g))
* (
vol (
divset (D2,ID2)))) by
A80,
XREAL_1: 64;
then (
Sum (
mid (
UVg(D1),j,j)))
<= (((
upper_bound (
rng (g
| (
divset (D1,j)))))
* (
vol (
divset (D2,ID1))))
+ ((
upper_bound (
rng g))
* (
vol (
divset (D2,ID2))))) by
A93,
XREAL_1: 20;
then
A95: ((
Sum (
mid (
UVg(D1),j,j)))
- ((
upper_bound (
rng g))
* (
vol (
divset (D2,ID2)))))
<= ((
upper_bound (
rng (g
| (
divset (D1,j)))))
* (
vol (
divset (D2,ID1)))) by
XREAL_1: 20;
((
upper_bound (
rng (g
| (
divset (D1,j)))))
* (
vol (
divset (D2,ID1))))
<= ((
upper_bound (
rng g))
* (
vol (
divset (D2,ID1)))) by
A78,
A94,
XREAL_1: 64;
then ((
Sum (
mid (
UVg(D1),j,j)))
- ((
upper_bound (
rng g))
* (
vol (
divset (D2,ID2)))))
<= ((
upper_bound (
rng g))
* (
vol (
divset (D2,ID1)))) by
A95,
XXREAL_0: 2;
then
A96: (
Sum (
mid (
UVg(D1),j,j)))
<= (((
upper_bound (
rng g))
* (
vol (
divset (D2,ID2))))
+ ((
upper_bound (
rng g))
* (
vol (
divset (D2,ID1))))) by
XREAL_1: 20;
ID1
in (
dom D2) by
A61,
FINSEQ_1:def 3;
then (
divset (D2,ID1))
c= A by
INTEGRA1: 8;
then (
upper_bound (
rng (g
| (
divset (D2,ID1)))))
>= (
lower_bound (
rng g)) by
A27,
Lm4;
then
A97: ((
upper_bound (
rng (g
| (
divset (D2,ID1)))))
* (
vol (
divset (D2,ID1))))
>= ((
lower_bound (
rng g))
* (
vol (
divset (D2,ID1)))) by
A78,
XREAL_1: 64;
(((
indx (D2,D1,j))
-' ((
indx (D2,D1,j1))
+ 1))
+ 1)
= 2 by
A15,
A58,
A59,
A56,
A60,
A74,
FINSEQ_6: 118;
then
A98: (((
indx (D2,D1,j))
- ((
indx (D2,D1,j1))
+ 1))
+ 1)
= 2 by
A15,
XREAL_1: 233;
A99: (
indx (D2,D1,j))
in (
dom D2) by
A3,
A6,
INTEGRA1:def 19;
then (
divset (D2,ID2))
c= A by
A98,
INTEGRA1: 8;
then
A100: (
upper_bound (
rng (g
| (
divset (D2,ID2)))))
>= (
lower_bound (
rng g)) by
A27,
Lm4;
(
Sum (
mid (
UVg(D2),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))
= (((
upper_bound (
rng (g
| (
divset (D2,((
indx (D2,D1,j1))
+ 2))))))
* (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2)))))
+ (
UVg(D2)
. ((
indx (D2,D1,j1))
+ 1))) by
A77,
A99,
A98,
INTEGRA1:def 6
.= (((
upper_bound (
rng (g
| (
divset (D2,((
indx (D2,D1,j1))
+ 2))))))
* (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2)))))
+ ((
upper_bound (
rng (g
| (
divset (D2,((
indx (D2,D1,j1))
+ 1))))))
* (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 1)))))) by
A62,
INTEGRA1:def 6;
then ((
Sum (
mid (
UVg(D2),ID1,(
indx (D2,D1,j)))))
- ((
upper_bound (
rng (g
| (
divset (D2,ID1)))))
* (
vol (
divset (D2,ID1)))))
>= ((
lower_bound (
rng g))
* (
vol (
divset (D2,ID2)))) by
A80,
A100,
XREAL_1: 64;
then (
Sum (
mid (
UVg(D2),ID1,(
indx (D2,D1,j)))))
>= (((
lower_bound (
rng g))
* (
vol (
divset (D2,ID2))))
+ ((
upper_bound (
rng (g
| (
divset (D2,ID1)))))
* (
vol (
divset (D2,ID1))))) by
XREAL_1: 19;
then ((
Sum (
mid (
UVg(D2),ID1,(
indx (D2,D1,j)))))
- ((
lower_bound (
rng g))
* (
vol (
divset (D2,ID2)))))
>= ((
upper_bound (
rng (g
| (
divset (D2,ID1)))))
* (
vol (
divset (D2,ID1)))) by
XREAL_1: 19;
then ((
Sum (
mid (
UVg(D2),ID1,(
indx (D2,D1,j)))))
- ((
lower_bound (
rng g))
* (
vol (
divset (D2,ID2)))))
>= ((
lower_bound (
rng g))
* (
vol (
divset (D2,ID1)))) by
A97,
XXREAL_0: 2;
then (
Sum (
mid (
UVg(D2),ID1,(
indx (D2,D1,j)))))
>= (((
lower_bound (
rng g))
* (
vol (
divset (D2,ID2))))
+ ((
lower_bound (
rng g))
* (
vol (
divset (D2,ID1))))) by
XREAL_1: 19;
then ((
Sum (
mid (
UVg(D1),j,j)))
- (
Sum (
mid (
UVg(D2),ID1,(
indx (D2,D1,j))))))
<= ((((
upper_bound (
rng g))
* (
vol (
divset (D2,ID2))))
+ ((
upper_bound (
rng g))
* (
vol (
divset (D2,ID1)))))
- (((
lower_bound (
rng g))
* (
vol (
divset (D2,ID2))))
+ ((
lower_bound (
rng g))
* (
vol (
divset (D2,ID1)))))) by
A96,
XREAL_1: 13;
hence thesis;
end;
((
upper_bound (
rng g))
- (
lower_bound (
rng g)))
>=
0 by
A27,
Lm3,
XREAL_1: 48;
then (((
upper_bound (
rng g))
- (
lower_bound (
rng g)))
* (
vol (
divset (D1,j))))
<= (((
upper_bound (
rng g))
- (
lower_bound (
rng g)))
* (
delta D1)) by
A6,
Lm5,
XREAL_1: 64;
hence thesis by
A90,
A92,
XXREAL_0: 2;
end;
end;
hence thesis;
end;
j
in (
Seg (
len (
upper_volume (g,D1)))) by
A5,
INTEGRA1:def 6;
then j
in (
dom (
upper_volume (g,D1))) by
FINSEQ_1:def 3;
then
A101:
PUg(D1,j)
= (
Sum ((
upper_volume (g,D1))
| j)) by
INTEGRA1:def 20
.= (
Sum (
upper_volume (g,D1))) by
A8,
FINSEQ_1: 58;
A102: j
<= (
len
UVg(D1)) by
INTEGRA1:def 6;
A103: 1
<= j1 by
A10,
FINSEQ_3: 25;
then (
mid (D1,1,j1)) is
increasing by
A6,
A9,
INTEGRA1: 7,
INTEGRA1: 35;
then
A104: (D1
| j1) is
increasing by
A103,
FINSEQ_6: 116;
A105: (
rng (D2
| (
indx (D2,D1,j1))))
= (
rng (D1
| j1)) by
A1,
A2,
A3,
A4,
Lm6;
then
A106: (D2
| (
indx (D2,D1,j1)))
= (D1
| j1) by
A13,
A104,
Th6;
A107: for k st 1
<= k & k
<= j1 holds k
= (
indx (D2,D1,k))
proof
let k;
assume that
A108: 1
<= k and
A109: k
<= j1;
assume
A110: k
<> (
indx (D2,D1,k));
now
per cases by
A110,
XXREAL_0: 1;
suppose
A111: k
> (
indx (D2,D1,k));
k
<= (
len D1) by
A26,
A109,
XXREAL_0: 2;
then
A112: k
in (
dom D1) by
A108,
FINSEQ_3: 25;
then (
indx (D2,D1,k))
in (
dom D2) by
A3,
INTEGRA1:def 19;
then (
indx (D2,D1,k))
in (
Seg (
len D2)) by
FINSEQ_1:def 3;
then
A113: 1
<= (
indx (D2,D1,k)) by
FINSEQ_1: 1;
A114: (
indx (D2,D1,k))
< j1 by
A109,
A111,
XXREAL_0: 2;
then
A115: (
indx (D2,D1,k))
in (
Seg j1) by
A113,
FINSEQ_1: 1;
(
indx (D2,D1,k))
<= (
indx (D2,D1,j1)) by
A3,
A10,
A109,
A112,
Th7;
then (
indx (D2,D1,k))
in (
Seg (
indx (D2,D1,j1))) by
A113,
FINSEQ_1: 1;
then
A116: ((D2
| (
indx (D2,D1,j1)))
. (
indx (D2,D1,k)))
= (D2
. (
indx (D2,D1,k))) by
A11,
RFINSEQ: 6;
(
indx (D2,D1,k))
<= (
len D1) by
A26,
A114,
XXREAL_0: 2;
then (
indx (D2,D1,k))
in (
Seg (
len D1)) by
A113,
FINSEQ_1: 1;
then (
indx (D2,D1,k))
in (
dom D1) by
FINSEQ_1:def 3;
then
A117: (D1
. k)
> (D1
. (
indx (D2,D1,k))) by
A111,
A112,
SEQM_3:def 1;
(D1
. k)
= (D2
. (
indx (D2,D1,k))) by
A3,
A112,
INTEGRA1:def 19;
hence contradiction by
A10,
A106,
A116,
A117,
A115,
RFINSEQ: 6;
end;
suppose
A118: k
< (
indx (D2,D1,k));
k
<= (
len D1) by
A26,
A109,
XXREAL_0: 2;
then
A119: k
in (
dom D1) by
A108,
FINSEQ_3: 25;
then (
indx (D2,D1,k))
<= (
indx (D2,D1,j1)) by
A3,
A10,
A109,
Th7;
then
A120: k
<= (
indx (D2,D1,j1)) by
A118,
XXREAL_0: 2;
then k
<= (
len D2) by
A24,
XXREAL_0: 2;
then
A121: k
in (
dom D2) by
A108,
FINSEQ_3: 25;
k
in (
Seg j1) by
A108,
A109,
FINSEQ_1: 1;
then
A122: (D1
. k)
= ((D1
| j1)
. k) by
A10,
RFINSEQ: 6;
(
indx (D2,D1,k))
in (
dom D2) by
A3,
A119,
INTEGRA1:def 19;
then
A123: (D2
. k)
< (D2
. (
indx (D2,D1,k))) by
A118,
A121,
SEQM_3:def 1;
A124: k
in (
Seg (
indx (D2,D1,j1))) by
A108,
A120,
FINSEQ_1: 1;
(D1
. k)
= (D2
. (
indx (D2,D1,k))) by
A3,
A119,
INTEGRA1:def 19;
hence contradiction by
A11,
A106,
A122,
A123,
A124,
RFINSEQ: 6;
end;
end;
hence contradiction;
end;
A125: for k be
Nat st 1
<= k & k
<= (
len ((
upper_volume (g,D1))
| j1)) holds (((
upper_volume (g,D1))
| j1)
. k)
= (((
upper_volume (g,D2))
| (
indx (D2,D1,j1)))
. k)
proof
(
indx (D2,D1,j1))
in (
Seg (
len D2)) by
A11,
FINSEQ_1:def 3;
then (
indx (D2,D1,j1))
in (
Seg (
len (
upper_volume (g,D2)))) by
INTEGRA1:def 6;
then
A126: (
indx (D2,D1,j1))
in (
dom (
upper_volume (g,D2))) by
FINSEQ_1:def 3;
let k be
Nat;
assume that
A127: 1
<= k and
A128: k
<= (
len ((
upper_volume (g,D1))
| j1));
reconsider k as
Element of
NAT by
ORDINAL1:def 12;
A129: (
len (
upper_volume (g,D1)))
= (
len D1) by
INTEGRA1:def 6;
then
A130: k
<= j1 by
A26,
A128,
FINSEQ_1: 59;
then
A131: k
<= (
len D1) by
A26,
XXREAL_0: 2;
then k
in (
Seg (
len D1)) by
A127,
FINSEQ_1: 1;
then
A132: k
in (
dom D1) by
FINSEQ_1:def 3;
then
A133: (
indx (D2,D1,k))
in (
dom D2) by
A3,
INTEGRA1:def 19;
A134: k
in (
Seg j1) by
A127,
A130,
FINSEQ_1: 1;
then (
indx (D2,D1,k))
in (
Seg j1) by
A107,
A127,
A130;
then
A135: (
indx (D2,D1,k))
in (
Seg (
indx (D2,D1,j1))) by
A103,
A107;
then (
indx (D2,D1,k))
<= (
indx (D2,D1,j1)) by
FINSEQ_1: 1;
then
A136: (
indx (D2,D1,k))
<= (
len D2) by
A24,
XXREAL_0: 2;
A137: (D1
. k)
= (D2
. (
indx (D2,D1,k))) by
A3,
A132,
INTEGRA1:def 19;
A138: (
lower_bound (
divset (D1,k)))
= (
lower_bound (
divset (D2,(
indx (D2,D1,k))))) & (
upper_bound (
divset (D1,k)))
= (
upper_bound (
divset (D2,(
indx (D2,D1,k)))))
proof
per cases ;
suppose
A139: k
= 1;
then
A140: (
upper_bound (
divset (D1,k)))
= (D1
. k) by
A132,
INTEGRA1:def 4;
A141: (
lower_bound (
divset (D1,k)))
= (
lower_bound A) by
A132,
A139,
INTEGRA1:def 4;
(
indx (D2,D1,k))
= 1 by
A103,
A107,
A139;
hence thesis by
A133,
A137,
A141,
A140,
INTEGRA1:def 4;
end;
suppose
A142: k
<> 1;
then
reconsider k1 = (k
- 1) as
Element of
NAT by
A132,
INTEGRA1: 7;
k
<= (k
+ 1) by
NAT_1: 11;
then k1
<= k by
XREAL_1: 20;
then
A143: k1
<= j1 by
A130,
XXREAL_0: 2;
A144: (k
- 1)
in (
dom D1) by
A132,
A142,
INTEGRA1: 7;
then 1
<= k1 by
FINSEQ_3: 25;
then k1
= (
indx (D2,D1,k1)) by
A107,
A143;
then
A145: (D2
. ((
indx (D2,D1,k))
- 1))
= (D2
. (
indx (D2,D1,k1))) by
A107,
A127,
A130;
A146: (
indx (D2,D1,k))
<> 1 by
A107,
A127,
A130,
A142;
then
A147: (
lower_bound (
divset (D2,(
indx (D2,D1,k)))))
= (D2
. ((
indx (D2,D1,k))
- 1)) by
A133,
INTEGRA1:def 4;
A148: (
upper_bound (
divset (D2,(
indx (D2,D1,k)))))
= (D2
. (
indx (D2,D1,k))) by
A133,
A146,
INTEGRA1:def 4;
A149: (
upper_bound (
divset (D1,k)))
= (D1
. k) by
A132,
A142,
INTEGRA1:def 4;
(
lower_bound (
divset (D1,k)))
= (D1
. (k
- 1)) by
A132,
A142,
INTEGRA1:def 4;
hence thesis by
A3,
A132,
A149,
A144,
A147,
A148,
A145,
INTEGRA1:def 19;
end;
end;
(
divset (D1,k))
=
[.(
lower_bound (
divset (D1,k))), (
upper_bound (
divset (D1,k))).] by
INTEGRA1: 4;
then
A150: (
divset (D1,k))
= (
divset (D2,(
indx (D2,D1,k)))) by
A138,
INTEGRA1: 4;
A151: k
in (
dom D1) by
A127,
A131,
FINSEQ_3: 25;
j1
in (
Seg (
len (
upper_volume (g,D1)))) by
A10,
A129,
FINSEQ_1:def 3;
then j1
in (
dom (
upper_volume (g,D1))) by
FINSEQ_1:def 3;
then
A152: (((
upper_volume (g,D1))
| j1)
. k)
= ((
upper_volume (g,D1))
. k) by
A134,
RFINSEQ: 6
.= ((
upper_bound (
rng (g
| (
divset (D2,(
indx (D2,D1,k)))))))
* (
vol (
divset (D2,(
indx (D2,D1,k)))))) by
A151,
A150,
INTEGRA1:def 6;
1
<= (
indx (D2,D1,k)) by
A107,
A127,
A130;
then
A153: (
indx (D2,D1,k))
in (
dom D2) by
A136,
FINSEQ_3: 25;
(((
upper_volume (g,D2))
| (
indx (D2,D1,j1)))
. k)
= (((
upper_volume (g,D2))
| (
indx (D2,D1,j1)))
. (
indx (D2,D1,k))) by
A107,
A127,
A130
.= ((
upper_volume (g,D2))
. (
indx (D2,D1,k))) by
A135,
A126,
RFINSEQ: 6
.= ((
upper_bound (
rng (g
| (
divset (D2,(
indx (D2,D1,k)))))))
* (
vol (
divset (D2,(
indx (D2,D1,k)))))) by
A153,
INTEGRA1:def 6;
hence thesis by
A152;
end;
(
indx (D2,D1,j1))
in (
dom D2) by
A3,
A10,
INTEGRA1:def 19;
then (
indx (D2,D1,j1))
<= (
len D2) by
FINSEQ_3: 25;
then
A154: (
indx (D2,D1,j1))
<= (
len (
upper_volume (g,D2))) by
INTEGRA1:def 6;
j1
in (
Seg (
len D1)) by
A10,
FINSEQ_1:def 3;
then j1
<= (
len D1) by
FINSEQ_1: 1;
then
A155: j1
<= (
len (
upper_volume (g,D1))) by
INTEGRA1:def 6;
(
len (D2
| (
indx (D2,D1,j1))))
= (
len (D1
| j1)) by
A13,
A104,
A105,
Th6;
then (
indx (D2,D1,j1))
= j1 by
A26,
A25,
FINSEQ_1: 59;
then (
len ((
upper_volume (g,D1))
| j1))
= (
indx (D2,D1,j1)) by
A155,
FINSEQ_1: 59;
then (
len ((
upper_volume (g,D1))
| j1))
= (
len ((
upper_volume (g,D2))
| (
indx (D2,D1,j1)))) by
A154,
FINSEQ_1: 59;
then
A156: ((
upper_volume (g,D2))
| (
indx (D2,D1,j1)))
= ((
upper_volume (g,D1))
| j1) by
A125,
FINSEQ_1: 14;
j1
in (
Seg (
len D1)) by
A10,
FINSEQ_1:def 3;
then j1
in (
Seg (
len (
upper_volume (g,D1)))) by
INTEGRA1:def 6;
then
A157: j1
in (
dom (
upper_volume (g,D1))) by
FINSEQ_1:def 3;
j
< (j
+ 1) by
NAT_1: 13;
then
A158: j1
< j by
XREAL_1: 19;
(
indx (D2,D1,j))
<= (
len D2) by
A22,
FINSEQ_1: 1;
then
A159: (
indx (D2,D1,j))
<= (
len
UVg(D2)) by
INTEGRA1:def 6;
then
A160: (
indx (D2,D1,j))
in (
dom
UVg(D2)) by
A23,
FINSEQ_3: 25;
(
indx (D2,D1,j1))
in (
Seg (
len D2)) by
A11,
FINSEQ_1:def 3;
then (
indx (D2,D1,j1))
in (
Seg (
len
UVg(D2))) by
INTEGRA1:def 6;
then (
indx (D2,D1,j1))
in (
dom
UVg(D2)) by
FINSEQ_1:def 3;
then
PUg(D2,indx)
= (
Sum (
UVg(D2)
| (
indx (D2,D1,j1)))) by
INTEGRA1:def 20;
then (
PUg(D2,indx)
+ (
Sum (
mid ((
upper_volume (g,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))))
= (
Sum ((
UVg(D2)
| (
indx (D2,D1,j1)))
^ (
mid (
UVg(D2),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))) by
RVSUM_1: 75
.= (
Sum ((
mid (
UVg(D2),1,(
indx (D2,D1,j1))))
^ (
mid (
UVg(D2),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))) by
A12,
FINSEQ_6: 116
.= (
Sum (
mid (
UVg(D2),1,(
indx (D2,D1,j))))) by
A12,
A14,
A159,
INTEGRA2: 4
.= (
Sum (
UVg(D2)
| (
indx (D2,D1,j)))) by
A23,
FINSEQ_6: 116;
then
A161: (
PUg(D2,indx)
+ (
Sum (
mid ((
upper_volume (g,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))))
=
PUg(D2,indx) by
A160,
INTEGRA1:def 20;
A162: 1
<= j by
A5,
FINSEQ_1: 1;
then
A163: j
in (
dom
UVg(D1)) by
A102,
FINSEQ_3: 25;
j1
in (
Seg (
len D1)) by
A10,
FINSEQ_1:def 3;
then j1
in (
Seg (
len
UVg(D1))) by
INTEGRA1:def 6;
then j1
in (
dom
UVg(D1)) by
FINSEQ_1:def 3;
then
PUg(D1,j1)
= (
Sum (
UVg(D1)
| j1)) by
INTEGRA1:def 20;
then (
PUg(D1,j1)
+ (
Sum (
mid (
UVg(D1),j,j))))
= (
Sum ((
UVg(D1)
| j1)
^ (
mid (
UVg(D1),j,j)))) by
RVSUM_1: 75
.= (
Sum ((
mid (
UVg(D1),1,j1))
^ (
mid (
UVg(D1),(j1
+ 1),j)))) by
A103,
FINSEQ_6: 116
.= (
Sum (
mid (
UVg(D1),1,j))) by
A103,
A102,
A158,
INTEGRA2: 4
.= (
Sum (
UVg(D1)
| j)) by
A162,
FINSEQ_6: 116;
then
A164: (
PUg(D1,j1)
+ (
Sum (
mid ((
upper_volume (g,D1)),j,j))))
=
PUg(D1,j) by
A163,
INTEGRA1:def 20;
(
indx (D2,D1,j1))
in (
Seg (
len D2)) by
A11,
FINSEQ_1:def 3;
then (
indx (D2,D1,j1))
in (
Seg (
len (
upper_volume (g,D2)))) by
INTEGRA1:def 6;
then (
indx (D2,D1,j1))
in (
dom (
upper_volume (g,D2))) by
FINSEQ_1:def 3;
then
PUg(D2,indx)
= (
Sum ((
upper_volume (g,D2))
| (
indx (D2,D1,j1)))) by
INTEGRA1:def 20
.=
PUg(D1,j1) by
A156,
A157,
INTEGRA1:def 20;
hence thesis by
A28,
A161,
A164,
A21,
A101;
end;
Lm7: (
vol A)
<>
0 & y
in (
rng (
lower_sum_set f)) implies ex D be
Division of A st D
in (
dom (
lower_sum_set f)) & y
= ((
lower_sum_set f)
. D) & (D
. 1)
> (
lower_bound A)
proof
assume
A1: (
vol A)
<>
0 ;
assume y
in (
rng (
lower_sum_set f));
then
consider D3 be
Element of (
divs A) such that
A2: D3
in (
dom (
lower_sum_set f)) and
A3: y
= ((
lower_sum_set f)
. D3) by
PARTFUN1: 3;
reconsider D3 as
Division of A by
INTEGRA1:def 3;
(
rng D3)
<>
{} ;
then
A4: 1
in (
dom D3) by
FINSEQ_3: 32;
A5: (
len D3)
in (
Seg (
len D3)) by
FINSEQ_1: 3;
now
per cases ;
suppose
A6: (D3
. 1)
<> (
lower_bound A);
(D3
. 1)
in A by
A4,
INTEGRA1: 6;
then (
lower_bound A)
<= (D3
. 1) by
INTEGRA2: 1;
then (D3
. 1)
> (
lower_bound A) by
A6,
XXREAL_0: 1;
hence thesis by
A2,
A3;
end;
suppose
A7: (D3
. 1)
= (
lower_bound A);
ex D be
Division of A st D
in (
dom (
lower_sum_set f)) & y
= ((
lower_sum_set f)
. D) & (D
. 1)
> (
lower_bound A)
proof
A8: ((
lower_volume (f,D3))
. 1)
= ((
lower_bound (
rng (f
| (
divset (D3,1)))))
* (
vol (
divset (D3,1)))) by
A4,
INTEGRA1:def 7;
(
vol A)
>=
0 by
INTEGRA1: 9;
then
A9: ((
upper_bound A)
- (
lower_bound A))
>
0 by
A1,
INTEGRA1:def 5;
A10: y
= (
lower_sum (f,D3)) by
A3,
INTEGRA1:def 11
.= (
Sum (
lower_volume (f,D3))) by
INTEGRA1:def 9
.= (
Sum (((
lower_volume (f,D3))
| 1)
^ ((
lower_volume (f,D3))
/^ 1))) by
RFINSEQ: 8;
A11: (D3
. (
len D3))
= (
upper_bound A) by
INTEGRA1:def 2;
(
len D3)
in (
dom D3) by
A5,
FINSEQ_1:def 3;
then
A12: (
len D3)
> 1 by
A4,
A7,
A11,
A9,
SEQ_4: 137,
XREAL_1: 47;
then
reconsider D = (D3
/^ 1) as
increasing
FinSequence of
REAL by
INTEGRA1: 34;
A13: (
len D)
= ((
len D3)
- 1) by
A12,
RFINSEQ:def 1;
(
upper_bound A)
> (
lower_bound A) by
A9,
XREAL_1: 47;
then (
len D)
<>
0 by
A7,
A13,
INTEGRA1:def 2;
then
reconsider D as non
empty
increasing
FinSequence of
REAL ;
A14: (
len D)
in (
dom D) by
FINSEQ_5: 6;
((
len D)
+ 1)
= (
len D3) by
A13;
then
A15: (D
. (
len D))
= (
upper_bound A) by
A11,
A12,
A14,
RFINSEQ:def 1;
A16: (
len D3)
>= (1
+ 1) by
A12,
NAT_1: 13;
then
A17: 2
<= (
len (
lower_volume (f,D3))) by
INTEGRA1:def 7;
(1
+ 1)
<= (
len D3) by
A12,
NAT_1: 13;
then 2
in (
dom D3) by
FINSEQ_3: 25;
then
A18: (D3
. 1)
< (D3
. 2) by
A4,
SEQM_3:def 1;
A19: (
rng D3)
c= A by
INTEGRA1:def 2;
(
rng D)
c= (
rng D3) by
FINSEQ_5: 33;
then (
rng D)
c= A by
A19;
then
reconsider D as
Division of A by
A15,
INTEGRA1:def 2;
A20: 1
in (
Seg 1) by
FINSEQ_1: 1;
A21: 1
<= (
len (
lower_volume (f,D3))) by
A12,
INTEGRA1:def 7;
A22: (
len ((
lower_volume (f,D3))
| 1))
= 1;
1
<= (
len (
lower_volume (f,D3))) by
A12,
INTEGRA1:def 7;
then
A23: (
len (
mid ((
lower_volume (f,D3)),2,(
len (
lower_volume (f,D3))))))
= (((
len (
lower_volume (f,D3)))
-' 2)
+ 1) by
A17,
FINSEQ_6: 118
.= (((
len D3)
-' 2)
+ 1) by
INTEGRA1:def 7
.= (((
len D3)
- 2)
+ 1) by
A16,
XREAL_1: 233
.= ((
len D3)
- 1);
A24: for i be
Nat st 1
<= i & i
<= (
len (
mid ((
lower_volume (f,D3)),2,(
len (
lower_volume (f,D3)))))) holds ((
mid ((
lower_volume (f,D3)),2,(
len (
lower_volume (f,D3)))))
. i)
= ((
lower_volume (f,D))
. i)
proof
let i be
Nat;
assume that
A25: 1
<= i and
A26: i
<= (
len (
mid ((
lower_volume (f,D3)),2,(
len (
lower_volume (f,D3))))));
A27: 1
<= (i
+ 1) by
NAT_1: 12;
(i
+ 1)
<= (
len D3) by
A23,
A26,
XREAL_1: 19;
then
A28: (i
+ 1)
in (
Seg (
len D3)) by
A27,
FINSEQ_1: 1;
then
A29: (i
+ 1)
in (
dom D3) by
FINSEQ_1:def 3;
A30: (
divset (D3,(i
+ 1)))
= (
divset (D,i))
proof
A31: (i
+ 1)
in (
dom D3) by
A28,
FINSEQ_1:def 3;
A32: 1
<> (i
+ 1) by
A25,
NAT_1: 13;
then
A33: (
upper_bound (
divset (D3,(i
+ 1))))
= (D3
. (i
+ 1)) by
A31,
INTEGRA1:def 4;
A34: i
in (
dom D) by
A13,
A23,
A25,
A26,
FINSEQ_3: 25;
then
A35: (D
. i)
= (D3
. (i
+ 1)) by
A12,
RFINSEQ:def 1;
A36: (
lower_bound (
divset (D3,(i
+ 1))))
= (D3
. ((i
+ 1)
- 1)) by
A32,
A31,
INTEGRA1:def 4;
per cases ;
suppose
A37: i
= 1;
then
A38: (
upper_bound (
divset (D,i)))
= (D
. i) by
A34,
INTEGRA1:def 4;
A39: (
lower_bound (
divset (D,i)))
= (
lower_bound A) by
A34,
A37,
INTEGRA1:def 4;
(
divset (D3,(i
+ 1)))
=
[.(
lower_bound A), (D
. i).] by
A7,
A33,
A36,
A35,
A37,
INTEGRA1: 4;
hence thesis by
A39,
A38,
INTEGRA1: 4;
end;
suppose
A40: i
<> 1;
then (i
- 1)
in (
dom D) by
A34,
INTEGRA1: 7;
then
A41: (D
. (i
- 1))
= (D3
. ((i
- 1)
+ 1)) by
A12,
RFINSEQ:def 1
.= (D3
. i);
A42: (
upper_bound (
divset (D,i)))
= (D
. i) by
A34,
A40,
INTEGRA1:def 4;
(
lower_bound (
divset (D,i)))
= (D
. (i
- 1)) by
A34,
A40,
INTEGRA1:def 4;
then (
divset (D3,(i
+ 1)))
=
[.(
lower_bound (
divset (D,i))), (
upper_bound (
divset (D,i))).] by
A33,
A36,
A35,
A42,
A41,
INTEGRA1: 4;
hence thesis by
INTEGRA1: 4;
end;
end;
i
<= ((
len (
lower_volume (f,D3)))
- 1) by
A23,
A26,
INTEGRA1:def 7;
then
A43: i
<= (((
len (
lower_volume (f,D3)))
- 2)
+ 1);
((
mid ((
lower_volume (f,D3)),2,(
len (
lower_volume (f,D3)))))
. i)
= ((
lower_volume (f,D3))
. ((i
+ 2)
- 1)) by
A17,
A25,
A43,
FINSEQ_6: 122
.= ((
lower_volume (f,D3))
. (i
+ 1));
then
A44: ((
mid ((
lower_volume (f,D3)),2,(
len (
lower_volume (f,D3)))))
. i)
= ((
lower_bound (
rng (f
| (
divset (D3,(i
+ 1))))))
* (
vol (
divset (D3,(i
+ 1))))) by
A29,
INTEGRA1:def 7;
i
in (
Seg (
len D)) by
A13,
A23,
A25,
A26,
FINSEQ_1: 1;
then i
in (
dom D) by
FINSEQ_1:def 3;
hence thesis by
A44,
A30,
INTEGRA1:def 7;
end;
1
in (
dom (
lower_volume (f,D3))) by
A21,
FINSEQ_3: 25;
then (((
lower_volume (f,D3))
| 1)
. 1)
= ((
lower_volume (f,D3))
. 1) by
A20,
RFINSEQ: 6;
then
A45: ((
lower_volume (f,D3))
| 1)
=
<*((
lower_volume (f,D3))
. 1)*> by
A22,
FINSEQ_1: 40;
A46: (2
-' 1)
= (2
- 1) by
XREAL_1: 233
.= 1;
(
rng D)
<>
{} ;
then 1
in (
dom D) by
FINSEQ_3: 32;
then
A47: (D
. 1)
= (D3
. (1
+ 1)) by
A12,
RFINSEQ:def 1
.= (D3
. 2);
D
in (
divs A) by
INTEGRA1:def 3;
then
A48: D
in (
dom (
lower_sum_set f)) by
FUNCT_2:def 1;
(
len (
lower_volume (f,D3)))
>= 2 by
A16,
INTEGRA1:def 7;
then
A49: (
mid ((
lower_volume (f,D3)),2,(
len (
lower_volume (f,D3)))))
= ((
lower_volume (f,D3))
/^ 1) by
A46,
FINSEQ_6: 117;
(
len (
mid ((
lower_volume (f,D3)),2,(
len (
lower_volume (f,D3))))))
= (
len (
lower_volume (f,D))) by
A13,
A23,
INTEGRA1:def 7;
then
A50: ((
lower_volume (f,D3))
/^ 1)
= (
lower_volume (f,D)) by
A49,
A24,
FINSEQ_1: 14;
(
vol (
divset (D3,1)))
= ((
upper_bound (
divset (D3,1)))
- (
lower_bound (
divset (D3,1)))) by
INTEGRA1:def 5
.= ((
upper_bound (
divset (D3,1)))
- (
lower_bound A)) by
A4,
INTEGRA1:def 4
.= ((D3
. 1)
- (
lower_bound A)) by
A4,
INTEGRA1:def 4
.=
0 by
A7;
then y
= (
0
+ (
Sum (
lower_volume (f,D)))) by
A10,
A45,
A8,
A50,
RVSUM_1: 76
.= (
lower_sum (f,D)) by
INTEGRA1:def 9;
then y
= ((
lower_sum_set f)
. D) by
INTEGRA1:def 11;
hence thesis by
A7,
A48,
A47,
A18;
end;
hence thesis;
end;
end;
hence thesis;
end;
theorem ::
INTEGRA3:12
Th12: i
in (
dom D) & j
in (
dom D) & i
<= j & r
< ((
mid (D,i,j))
. 1) implies ex B be non
empty
closed_interval
Subset of
REAL st r
= (
lower_bound B) & (
upper_bound B)
= ((
mid (D,i,j))
. (
len (
mid (D,i,j)))) & (
mid (D,i,j)) is
Division of B
proof
assume
A1: i
in (
dom D);
assume
A2: j
in (
dom D);
assume i
<= j;
then
consider C be non
empty
closed_interval
Subset of
REAL such that
A3: (
lower_bound C)
= ((
mid (D,i,j))
. 1) and
A4: (
upper_bound C)
= ((
mid (D,i,j))
. (
len (
mid (D,i,j)))) and
A5: (
mid (D,i,j)) is
Division of C by
A1,
A2,
INTEGRA1: 36;
reconsider MD = (
mid (D,i,j)) as non
empty
increasing
FinSequence of
REAL by
A5;
assume
A6: r
< ((
mid (D,i,j))
. 1);
reconsider rr = r, ub = (
upper_bound C) as
Real;
ex a, b st a
<= b & a
= (
lower_bound C) & b
= (
upper_bound C) by
SEQ_4: 11;
then r
<= (
upper_bound C) by
A6,
A3,
XXREAL_0: 2;
then
reconsider B =
[.rr, ub.] as non
empty
closed_interval
Subset of
REAL by
MEASURE5: 14;
A7: B
=
[.(
lower_bound B), (
upper_bound B).] by
INTEGRA1: 4;
then
A8: (
lower_bound B)
= r by
INTEGRA1: 5;
A9: (
upper_bound B)
= (
upper_bound C) by
A7,
INTEGRA1: 5;
for x be
Element of
REAL holds x
in C implies x
in B
proof
let x be
Element of
REAL ;
assume
A10: x
in C;
then (
lower_bound C)
<= x by
INTEGRA2: 1;
then
A11: r
<= x by
A6,
A3,
XXREAL_0: 2;
x
<= (
upper_bound C) by
A10,
INTEGRA2: 1;
hence thesis by
A8,
A9,
A11,
INTEGRA2: 1;
end;
then
A12: C
c= B;
(
rng (
mid (D,i,j)))
c= C by
A5,
INTEGRA1:def 2;
then (
rng (
mid (D,i,j)))
c= B by
A12;
then MD is
Division of B by
A4,
A9,
INTEGRA1:def 2;
hence thesis by
A4,
A8,
A9;
end;
Lm8: (
vol A)
<>
0 & (
len D1)
= 1 implies (
<*(
lower_bound A)*>
^ D1) is non
empty
increasing
FinSequence of
REAL
proof
assume
A1: (
vol A)
<>
0 ;
reconsider lb = (
lower_bound A) as
Element of
REAL by
XREAL_0:def 1;
set MD1 = (
<*lb*>
^ D1);
A2: (
vol A)
>=
0 by
INTEGRA1: 9;
assume (
len D1)
= 1;
then (D1
. 1)
= (
upper_bound A) by
INTEGRA1:def 2;
then
A3: ((D1
. 1)
- (
lower_bound A))
>
0 by
A1,
A2,
INTEGRA1:def 5;
then
A4: (
lower_bound A)
< (D1
. 1) by
XREAL_1: 47;
for n,m be
Nat holds n
in (
dom MD1) & m
in (
dom MD1) & n
< m implies (MD1
. n)
< (MD1
. m)
proof
let n,m be
Nat;
assume that
A5: n
in (
dom MD1) and
A6: m
in (
dom MD1) and
A7: n
< m;
A8: not m
in (
dom
<*(
lower_bound A)*>)
proof
assume m
in (
dom
<*(
lower_bound A)*>);
then m
in (
Seg (
len
<*(
lower_bound A)*>)) by
FINSEQ_1:def 3;
then m
in
{1} by
FINSEQ_1: 2,
FINSEQ_1: 39;
then
A9: n
< 1 by
A7,
TARSKI:def 1;
n
in (
Seg (
len MD1)) by
A5,
FINSEQ_1:def 3;
hence contradiction by
A9,
FINSEQ_1: 1;
end;
A10: not (MD1
. m)
in (
rng
<*(
lower_bound A)*>)
proof
assume (MD1
. m)
in (
rng
<*(
lower_bound A)*>);
then (MD1
. m)
in
{(
lower_bound A)} by
FINSEQ_1: 38;
then
A11: (MD1
. m)
= (
lower_bound A) by
TARSKI:def 1;
(
rng D1)
<>
{} ;
then
A12: 1
in (
dom D1) by
FINSEQ_3: 32;
consider n be
Nat such that
A13: n
in (
dom D1) and
A14: m
= ((
len
<*(
lower_bound A)*>)
+ n) by
A6,
A8,
FINSEQ_1: 25;
n
in (
Seg (
len D1)) by
A13,
FINSEQ_1:def 3;
then
A15: 1
<= n by
FINSEQ_1: 1;
(D1
. n)
= (MD1
. m) by
A13,
A14,
FINSEQ_1:def 7;
hence contradiction by
A3,
A11,
A13,
A15,
A12,
SEQ_4: 137,
XREAL_1: 47;
end;
(MD1
. m)
in (
rng MD1) by
A6,
FUNCT_1:def 3;
then (MD1
. m)
in ((
rng
<*(
lower_bound A)*>)
\/ (
rng D1)) by
FINSEQ_1: 31;
then
A16: (MD1
. m)
in (
rng D1) by
A10,
XBOOLE_0:def 3;
now
per cases by
A5,
FINSEQ_1: 25;
suppose
A17: n
in (
dom
<*(
lower_bound A)*>);
then n
in (
Seg (
len
<*(
lower_bound A)*>)) by
FINSEQ_1:def 3;
then n
in
{1} by
FINSEQ_1: 2,
FINSEQ_1: 39;
then
A18: n
= 1 by
TARSKI:def 1;
A19: (MD1
. n)
= (
<*(
lower_bound A)*>
. n) by
A17,
FINSEQ_1:def 7
.= (
lower_bound A) by
A18,
FINSEQ_1:def 8;
(
rng D1)
<>
{} ;
then
A20: 1
in (
dom D1) by
FINSEQ_3: 32;
consider k such that
A21: k
in (
dom D1) and
A22: (MD1
. m)
= (D1
. k) by
A16,
PARTFUN1: 3;
1
<= k by
A21,
FINSEQ_3: 25;
then (D1
. 1)
<= (MD1
. m) by
A21,
A22,
A20,
SEQ_4: 137;
hence thesis by
A4,
A19,
XXREAL_0: 2;
end;
suppose ex i be
Nat st i
in (
dom D1) & n
= ((
len
<*(
lower_bound A)*>)
+ i);
then
consider i such that
A23: i
in (
dom D1) and
A24: n
= ((
len
<*(
lower_bound A)*>)
+ i);
A25: (D1
. i)
= (MD1
. n) by
A23,
A24,
FINSEQ_1:def 7;
consider j be
Nat such that
A26: j
in (
dom D1) and
A27: m
= ((
len
<*(
lower_bound A)*>)
+ j) by
A6,
A8,
FINSEQ_1: 25;
A28: (D1
. j)
= (MD1
. m) by
A26,
A27,
FINSEQ_1:def 7;
i
< j by
A7,
A24,
A27,
XREAL_1: 6;
hence thesis by
A23,
A26,
A25,
A28,
SEQM_3:def 1;
end;
end;
hence thesis;
end;
hence thesis by
SEQM_3:def 1;
end;
Lm9: (
lower_bound A)
< (D2
. 1) implies (
<*(
lower_bound A)*>
^ D2) is non
empty
increasing
FinSequence of
REAL
proof
reconsider lb = (
lower_bound A) as
Element of
REAL by
XREAL_0:def 1;
set MD2 = (
<*lb*>
^ D2);
assume
A1: (
lower_bound A)
< (D2
. 1);
for n,m be
Nat holds n
in (
dom MD2) & m
in (
dom MD2) & n
< m implies (MD2
. n)
< (MD2
. m)
proof
let n,m be
Nat;
assume that
A2: n
in (
dom MD2) and
A3: m
in (
dom MD2) and
A4: n
< m;
A5: not m
in (
dom
<*(
lower_bound A)*>)
proof
assume m
in (
dom
<*(
lower_bound A)*>);
then m
in (
Seg (
len
<*(
lower_bound A)*>)) by
FINSEQ_1:def 3;
then m
in
{1} by
FINSEQ_1: 2,
FINSEQ_1: 39;
then
A6: n
< 1 by
A4,
TARSKI:def 1;
n
in (
Seg (
len MD2)) by
A2,
FINSEQ_1:def 3;
hence contradiction by
A6,
FINSEQ_1: 1;
end;
A7: not (MD2
. m)
in (
rng
<*(
lower_bound A)*>)
proof
assume (MD2
. m)
in (
rng
<*(
lower_bound A)*>);
then (MD2
. m)
in
{(
lower_bound A)} by
FINSEQ_1: 38;
then
A8: (MD2
. m)
= (
lower_bound A) by
TARSKI:def 1;
(
rng D2)
<>
{} ;
then
A9: 1
in (
dom D2) by
FINSEQ_3: 32;
consider n be
Nat such that
A10: n
in (
dom D2) and
A11: m
= ((
len
<*(
lower_bound A)*>)
+ n) by
A3,
A5,
FINSEQ_1: 25;
n
in (
Seg (
len D2)) by
A10,
FINSEQ_1:def 3;
then
A12: 1
<= n by
FINSEQ_1: 1;
(D2
. n)
= (MD2
. m) by
A10,
A11,
FINSEQ_1:def 7;
hence contradiction by
A1,
A8,
A10,
A12,
A9,
SEQ_4: 137;
end;
(MD2
. m)
in (
rng MD2) by
A3,
FUNCT_1:def 3;
then (MD2
. m)
in ((
rng
<*(
lower_bound A)*>)
\/ (
rng D2)) by
FINSEQ_1: 31;
then
A13: (MD2
. m)
in (
rng
<*(
lower_bound A)*>) or (MD2
. m)
in (
rng D2) by
XBOOLE_0:def 3;
now
per cases by
A2,
FINSEQ_1: 25;
suppose
A14: n
in (
dom
<*(
lower_bound A)*>);
then n
in (
Seg (
len
<*(
lower_bound A)*>)) by
FINSEQ_1:def 3;
then n
in
{1} by
FINSEQ_1: 2,
FINSEQ_1: 39;
then
A15: n
= 1 by
TARSKI:def 1;
A16: (MD2
. n)
= (
<*(
lower_bound A)*>
. n) by
A14,
FINSEQ_1:def 7
.= (
lower_bound A) by
A15,
FINSEQ_1:def 8;
(
rng D2)
<>
{} ;
then
A17: 1
in (
dom D2) by
FINSEQ_3: 32;
consider k such that
A18: k
in (
dom D2) and
A19: (MD2
. m)
= (D2
. k) by
A13,
A7,
PARTFUN1: 3;
k
in (
Seg (
len D2)) by
A18,
FINSEQ_1:def 3;
then 1
<= k by
FINSEQ_1: 1;
then (D2
. 1)
<= (MD2
. m) by
A18,
A19,
A17,
SEQ_4: 137;
hence thesis by
A1,
A16,
XXREAL_0: 2;
end;
suppose ex i be
Nat st i
in (
dom D2) & n
= ((
len
<*(
lower_bound A)*>)
+ i);
then
consider i such that
A20: i
in (
dom D2) and
A21: n
= ((
len
<*(
lower_bound A)*>)
+ i);
A22: (D2
. i)
= (MD2
. n) by
A20,
A21,
FINSEQ_1:def 7;
consider j be
Nat such that
A23: j
in (
dom D2) and
A24: m
= ((
len
<*(
lower_bound A)*>)
+ j) by
A3,
A5,
FINSEQ_1: 25;
A25: (D2
. j)
= (MD2
. m) by
A23,
A24,
FINSEQ_1:def 7;
i
< j by
A4,
A21,
A24,
XREAL_1: 6;
hence thesis by
A20,
A23,
A22,
A25,
SEQM_3:def 1;
end;
end;
hence thesis;
end;
hence thesis by
SEQM_3:def 1;
end;
theorem ::
INTEGRA3:13
Lm10: for MD1 be
Division of A holds MD1
= (
<*(
lower_bound A)*>
^ D1) implies (for i st i
in (
Seg (
len D1)) holds (
divset (MD1,(i
+ 1)))
= (
divset (D1,i))) & (
upper_volume (f,D1))
= ((
upper_volume (f,MD1))
/^ 1) & (
lower_volume (f,D1))
= ((
lower_volume (f,MD1))
/^ 1)
proof
let MD1 be
Division of A;
assume
A1: MD1
= (
<*(
lower_bound A)*>
^ D1);
thus
A2: for i st i
in (
Seg (
len D1)) holds (
divset (MD1,(i
+ 1)))
= (
divset (D1,i))
proof
let i;
assume
A3: i
in (
Seg (
len D1));
then
A4: i
in (
dom D1) by
FINSEQ_1:def 3;
i
<= (
len D1) by
A3,
FINSEQ_1: 1;
then (i
+ 1)
<= ((
len D1)
+ 1) by
XREAL_1: 6;
then (i
+ 1)
<= ((
len D1)
+ (
len
<*(
lower_bound A)*>)) by
FINSEQ_1: 39;
then
A5: (i
+ 1)
<= (
len MD1) by
A1,
FINSEQ_1: 22;
1
<= (i
+ 1) by
NAT_1: 11;
then
A6: (i
+ 1)
in (
dom MD1) by
A5,
FINSEQ_3: 25;
A7: 1
<= i by
A3,
FINSEQ_1: 1;
A8: (
lower_bound (
divset (D1,i)))
= (
lower_bound (
divset (MD1,(i
+ 1)))) & (
upper_bound (
divset (D1,i)))
= (
upper_bound (
divset (MD1,(i
+ 1))))
proof
per cases ;
suppose
A9: i
= 1;
A10: (i
+ 1)
> 1 by
A7,
NAT_1: 13;
then (
lower_bound (
divset (MD1,(i
+ 1))))
= (MD1
. ((i
+ 1)
- 1)) by
A6,
INTEGRA1:def 4;
then
A11: (
lower_bound (
divset (MD1,(i
+ 1))))
= (
lower_bound A) by
A1,
A9,
FINSEQ_1: 41;
A12: (MD1
. (i
+ 1))
= (MD1
. (i
+ (
len
<*(
lower_bound A)*>))) by
FINSEQ_1: 40
.= (D1
. i) by
A1,
A4,
FINSEQ_1:def 7;
(
upper_bound (
divset (MD1,(i
+ 1))))
= (MD1
. (i
+ 1)) by
A6,
A10,
INTEGRA1:def 4;
hence thesis by
A4,
A9,
A11,
A12,
INTEGRA1:def 4;
end;
suppose
A13: i
<> 1;
A14: (i
+ 1)
> 1 by
A7,
NAT_1: 13;
(MD1
. (i
+ 1))
= (MD1
. (i
+ (
len
<*(
lower_bound A)*>))) by
FINSEQ_1: 40
.= (D1
. i) by
A1,
A4,
FINSEQ_1:def 7;
then
A15: (
upper_bound (
divset (MD1,(i
+ 1))))
= (D1
. i) by
A6,
A14,
INTEGRA1:def 4
.= (
upper_bound (
divset (D1,i))) by
A4,
A13,
INTEGRA1:def 4;
(i
- 1)
in (
dom D1) by
A4,
A13,
INTEGRA1: 7;
then (D1
. (i
- 1))
= (MD1
. ((i
- 1)
+ (
len
<*(
lower_bound A)*>))) by
A1,
FINSEQ_1:def 7
.= (MD1
. ((i
- 1)
+ 1)) by
FINSEQ_1: 39
.= (MD1
. ((i
+ 1)
- 1));
then (
lower_bound (
divset (D1,i)))
= (MD1
. ((i
+ 1)
- 1)) by
A4,
A13,
INTEGRA1:def 4
.= (
lower_bound (
divset (MD1,(i
+ 1)))) by
A6,
A14,
INTEGRA1:def 4;
hence thesis by
A15;
end;
end;
(
divset (D1,i))
=
[.(
lower_bound (
divset (D1,i))), (
upper_bound (
divset (D1,i))).] by
INTEGRA1: 4;
hence thesis by
A8,
INTEGRA1: 4;
end;
A16: (
len MD1)
= ((
len
<*(
lower_bound A)*>)
+ (
len D1)) by
A1,
FINSEQ_1: 22
.= (1
+ (
len D1)) by
FINSEQ_1: 39;
thus (
upper_volume (f,D1))
= ((
upper_volume (f,MD1))
/^ 1)
proof
set D2 = D1, MD2 = MD1;
(
rng (
upper_volume (f,MD2)))
<>
{} ;
then 1
in (
dom (
upper_volume (f,MD2))) by
FINSEQ_3: 32;
then 1
<= (
len (
upper_volume (f,MD2))) by
FINSEQ_3: 25;
then (
len ((
upper_volume (f,MD2))
/^ 1))
= ((
len (
upper_volume (f,MD2)))
- 1) by
RFINSEQ:def 1
.= ((
len MD2)
- 1) by
INTEGRA1:def 6
.= (
len D2) by
A16;
then
A17: (
len (
upper_volume (f,D2)))
= (
len ((
upper_volume (f,MD2))
/^ 1)) by
INTEGRA1:def 6;
for k be
Nat holds 1
<= k & k
<= (
len (
upper_volume (f,D2))) implies ((
upper_volume (f,D2))
. k)
= (((
upper_volume (f,MD2))
/^ 1)
. k)
proof
let k be
Nat;
assume that
A18: 1
<= k and
A19: k
<= (
len (
upper_volume (f,D2)));
(k
+ 1)
<= ((
len (
upper_volume (f,D2)))
+ 1) by
A19,
XREAL_1: 6;
then
A20: (k
+ 1)
<= ((
len D2)
+ 1) by
INTEGRA1:def 6;
k
in (
Seg (
len (
upper_volume (f,D2)))) by
A18,
A19,
FINSEQ_1: 1;
then
A21: k
in (
Seg (
len D2)) by
INTEGRA1:def 6;
then k
in (
dom D2) by
FINSEQ_1:def 3;
then
A22: ((
upper_volume (f,D2))
. k)
= ((
upper_bound (
rng (f
| (
divset (D2,k)))))
* (
vol (
divset (D2,k)))) by
INTEGRA1:def 6
.= ((
upper_bound (
rng (f
| (
divset (MD2,(k
+ 1))))))
* (
vol (
divset (D2,k)))) by
A2,
A21
.= ((
upper_bound (
rng (f
| (
divset (MD2,(k
+ 1))))))
* (
vol (
divset (MD2,(k
+ 1))))) by
A2,
A21;
A23: (
len ((
upper_volume (f,MD2))
/^ 1))
<= (
len (
upper_volume (f,MD2))) by
FINSEQ_5: 25;
1
<= (k
+ 1) by
NAT_1: 11;
then (k
+ 1)
in (
Seg (
len MD2)) by
A16,
A20,
FINSEQ_1: 1;
then
A24: (k
+ 1)
in (
dom MD2) by
FINSEQ_1:def 3;
1
<= (
len (
upper_volume (f,D2))) by
A18,
A19,
XXREAL_0: 2;
then
A25: 1
<= (
len (
upper_volume (f,MD2))) by
A17,
A23,
XXREAL_0: 2;
k
in (
dom ((
upper_volume (f,MD2))
/^ 1)) by
A17,
A18,
A19,
FINSEQ_3: 25;
then (((
upper_volume (f,MD2))
/^ 1)
. k)
= ((
upper_volume (f,MD2))
. (k
+ 1)) by
A25,
RFINSEQ:def 1
.= ((
upper_bound (
rng (f
| (
divset (MD2,(k
+ 1))))))
* (
vol (
divset (MD2,(k
+ 1))))) by
A24,
INTEGRA1:def 6;
hence thesis by
A22;
end;
hence thesis by
A17,
FINSEQ_1: 14;
end;
(
rng (
lower_volume (f,MD1)))
<>
{} ;
then 1
in (
dom (
lower_volume (f,MD1))) by
FINSEQ_3: 32;
then 1
<= (
len (
lower_volume (f,MD1))) by
FINSEQ_3: 25;
then (
len ((
lower_volume (f,MD1))
/^ 1))
= ((
len (
lower_volume (f,MD1)))
- 1) by
RFINSEQ:def 1
.= ((
len MD1)
- 1) by
INTEGRA1:def 7
.= (
len D1) by
A16;
then
A26: (
len (
lower_volume (f,D1)))
= (
len ((
lower_volume (f,MD1))
/^ 1)) by
INTEGRA1:def 7;
for k be
Nat holds 1
<= k & k
<= (
len (
lower_volume (f,D1))) implies ((
lower_volume (f,D1))
. k)
= (((
lower_volume (f,MD1))
/^ 1)
. k)
proof
let k be
Nat;
assume that
A27: 1
<= k and
A28: k
<= (
len (
lower_volume (f,D1)));
A29: 1
<= (k
+ 1) by
NAT_1: 11;
k
in (
Seg (
len (
lower_volume (f,D1)))) by
A27,
A28,
FINSEQ_1: 1;
then
A30: k
in (
Seg (
len D1)) by
INTEGRA1:def 7;
then k
in (
dom D1) by
FINSEQ_1:def 3;
then
A31: ((
lower_volume (f,D1))
. k)
= ((
lower_bound (
rng (f
| (
divset (D1,k)))))
* (
vol (
divset (D1,k)))) by
INTEGRA1:def 7
.= ((
lower_bound (
rng (f
| (
divset (MD1,(k
+ 1))))))
* (
vol (
divset (D1,k)))) by
A2,
A30
.= ((
lower_bound (
rng (f
| (
divset (MD1,(k
+ 1))))))
* (
vol (
divset (MD1,(k
+ 1))))) by
A2,
A30;
A32: (
len ((
lower_volume (f,MD1))
/^ 1))
<= (
len (
lower_volume (f,MD1))) by
FINSEQ_5: 25;
(k
+ 1)
<= ((
len (
lower_volume (f,D1)))
+ 1) by
A28,
XREAL_1: 6;
then
A33: (k
+ 1)
<= ((
len D1)
+ 1) by
INTEGRA1:def 7;
(
len MD1)
= ((
len
<*(
lower_bound A)*>)
+ (
len D1)) by
A1,
FINSEQ_1: 22
.= ((
len D1)
+ 1) by
FINSEQ_1: 39;
then (k
+ 1)
in (
Seg (
len MD1)) by
A29,
A33,
FINSEQ_1: 1;
then
A34: (k
+ 1)
in (
dom MD1) by
FINSEQ_1:def 3;
1
<= (
len ((
lower_volume (f,MD1))
/^ 1)) by
A26,
A27,
A28,
XXREAL_0: 2;
then
A35: 1
<= (
len (
lower_volume (f,MD1))) by
A32,
XXREAL_0: 2;
k
in (
dom ((
lower_volume (f,MD1))
/^ 1)) by
A26,
A27,
A28,
FINSEQ_3: 25;
then (((
lower_volume (f,MD1))
/^ 1)
. k)
= ((
lower_volume (f,MD1))
. (k
+ 1)) by
A35,
RFINSEQ:def 1
.= ((
lower_bound (
rng (f
| (
divset (MD1,(k
+ 1))))))
* (
vol (
divset (MD1,(k
+ 1))))) by
A34,
INTEGRA1:def 7;
hence thesis by
A31;
end;
hence thesis by
A26,
FINSEQ_1: 14;
end;
Lm11: for MD2 be
Division of A st MD2
= (
<*(
lower_bound A)*>
^ D2) holds (
vol (
divset (MD2,1)))
=
0
proof
let MD2 be
Division of A;
assume
A1: MD2
= (
<*(
lower_bound A)*>
^ D2);
(
rng MD2)
<>
{} ;
then
A2: 1
in (
dom MD2) by
FINSEQ_3: 32;
then
A3: (
upper_bound (
divset (MD2,1)))
= (MD2
. 1) by
INTEGRA1:def 4;
(
lower_bound (
divset (MD2,1)))
= (
lower_bound A) by
A2,
INTEGRA1:def 4;
then (
vol (
divset (MD2,1)))
= ((MD2
. 1)
- (
lower_bound A)) by
A3,
INTEGRA1:def 5
.= ((
lower_bound A)
- (
lower_bound A)) by
A1,
FINSEQ_1: 41;
hence thesis;
end;
Lm12: for MD1 be
Division of A holds MD1
= (
<*(
lower_bound A)*>
^ D1) implies (
delta MD1)
= (
delta D1)
proof
let MD1 be
Division of A;
assume
A1: MD1
= (
<*(
lower_bound A)*>
^ D1);
then
A2: (
vol (
divset (MD1,1)))
=
0 by
Lm11;
(
delta D1)
in (
rng (
upper_volume ((
chi (A,A)),D1))) by
XXREAL_2:def 8;
then
consider i such that
A3: i
in (
dom (
upper_volume ((
chi (A,A)),D1))) and
A4: ((
upper_volume ((
chi (A,A)),D1))
. i)
= (
delta D1) by
PARTFUN1: 3;
(
delta MD1)
in (
rng (
upper_volume ((
chi (A,A)),MD1))) by
XXREAL_2:def 8;
then
consider j such that
A5: j
in (
dom (
upper_volume ((
chi (A,A)),MD1))) and
A6: ((
upper_volume ((
chi (A,A)),MD1))
. j)
= (
delta MD1) by
PARTFUN1: 3;
j
in (
Seg (
len (
upper_volume ((
chi (A,A)),MD1)))) by
A5,
FINSEQ_1:def 3;
then
A7: j
in (
Seg (
len MD1)) by
INTEGRA1:def 6;
then
A8: j
in (
dom MD1) by
FINSEQ_1:def 3;
then
A9: (
delta MD1)
= ((
upper_bound (
rng ((
chi (A,A))
| (
divset (MD1,j)))))
* (
vol (
divset (MD1,j)))) by
A6,
INTEGRA1:def 6;
A10: (
delta MD1)
<= (
delta D1)
proof
per cases ;
suppose j
= 1;
hence thesis by
A2,
A9,
Th9;
end;
suppose j
<> 1;
then not j
in (
Seg 1) by
FINSEQ_1: 2,
TARSKI:def 1;
then not j
in (
Seg (
len
<*(
lower_bound A)*>)) by
FINSEQ_1: 39;
then
A11: not j
in (
dom
<*(
lower_bound A)*>) by
FINSEQ_1:def 3;
j
in (
dom MD1) by
A7,
FINSEQ_1:def 3;
then
consider k be
Nat such that
A12: k
in (
dom D1) and
A13: j
= ((
len
<*(
lower_bound A)*>)
+ k) by
A1,
A11,
FINSEQ_1: 25;
A14: k
in (
Seg (
len D1)) by
A12,
FINSEQ_1:def 3;
then (
divset (D1,k))
= (
divset (MD1,(k
+ 1))) by
A1,
Lm10
.= (
divset (MD1,j)) by
A13,
FINSEQ_1: 39;
then (
delta MD1)
= ((
upper_bound (
rng ((
chi (A,A))
| (
divset (D1,k)))))
* (
vol (
divset (D1,k)))) by
A6,
A8,
INTEGRA1:def 6;
then
A15: (
delta MD1)
= ((
upper_volume ((
chi (A,A)),D1))
. k) by
A12,
INTEGRA1:def 6;
k
in (
Seg (
len (
upper_volume ((
chi (A,A)),D1)))) by
A14,
INTEGRA1:def 6;
then k
in (
dom (
upper_volume ((
chi (A,A)),D1))) by
FINSEQ_1:def 3;
then (
delta MD1)
in (
rng (
upper_volume ((
chi (A,A)),D1))) by
A15,
FUNCT_1:def 3;
hence thesis by
XXREAL_2:def 8;
end;
end;
i
in (
Seg (
len (
upper_volume ((
chi (A,A)),D1)))) by
A3,
FINSEQ_1:def 3;
then
A16: i
in (
Seg (
len D1)) by
INTEGRA1:def 6;
then i
in (
dom D1) by
FINSEQ_1:def 3;
then ((
len
<*(
lower_bound A)*>)
+ i)
in (
dom MD1) by
A1,
FINSEQ_1: 28;
then
A17: (i
+ 1)
in (
dom MD1) by
FINSEQ_1: 39;
then (i
+ 1)
in (
Seg (
len MD1)) by
FINSEQ_1:def 3;
then (i
+ 1)
in (
Seg (
len (
upper_volume ((
chi (A,A)),MD1)))) by
INTEGRA1:def 6;
then
A18: (i
+ 1)
in (
dom (
upper_volume ((
chi (A,A)),MD1))) by
FINSEQ_1:def 3;
i
in (
dom D1) by
A16,
FINSEQ_1:def 3;
then (
delta D1)
= ((
upper_bound (
rng ((
chi (A,A))
| (
divset (D1,i)))))
* (
vol (
divset (D1,i)))) by
A4,
INTEGRA1:def 6
.= ((
upper_bound (
rng ((
chi (A,A))
| (
divset (MD1,(i
+ 1))))))
* (
vol (
divset (D1,i)))) by
A1,
A16,
Lm10
.= ((
upper_bound (
rng ((
chi (A,A))
| (
divset (MD1,(i
+ 1))))))
* (
vol (
divset (MD1,(i
+ 1))))) by
A1,
A16,
Lm10;
then (
delta D1)
= ((
upper_volume ((
chi (A,A)),MD1))
. (i
+ 1)) by
A17,
INTEGRA1:def 6;
then (
delta D1)
in (
rng (
upper_volume ((
chi (A,A)),MD1))) by
A18,
FUNCT_1:def 3;
then (
delta D1)
<= (
delta MD1) by
XXREAL_2:def 8;
hence thesis by
A10,
XXREAL_0: 1;
end;
theorem ::
INTEGRA3:14
Th13: x
in (
divset (D1,(
len D1))) & (
vol A)
<>
0 & D1
<= D2 & (
rng D2)
= ((
rng D1)
\/
{x}) & (f
| A) is
bounded & x
> (
lower_bound A) implies ((
Sum (
lower_volume (f,D2)))
- (
Sum (
lower_volume (f,D1))))
<= (((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
* (
delta D1))
proof
assume that
A1: x
in (
divset (D1,(
len D1))) and
A2: (
vol A)
<>
0 and
A3: D1
<= D2 and
A4: (
rng D2)
= ((
rng D1)
\/
{x}) and
A5: (f
| A) is
bounded and
A6: x
> (
lower_bound A);
(
len D1)
in (
Seg (
len D1)) by
FINSEQ_1: 3;
then
A7: 1
<= (
len D1) by
FINSEQ_1: 1;
then (
len D1)
= 1 or (
len D1)
> 1 by
XXREAL_0: 1;
then
A8: (
len D1)
= 1 or (
len D1)
>= (1
+ 1) by
NAT_1: 13;
now
per cases by
A8;
suppose
A9: (
len D1)
= 1;
then
reconsider MD1 = (
<*(
lower_bound A)*>
^ D1) as non
empty
increasing
FinSequence of
REAL by
A2,
Lm8;
A10: (
len MD1)
= ((
len
<*(
lower_bound A)*>)
+ (
len D1)) by
FINSEQ_1: 22;
((
len
<*(
lower_bound A)*>)
+ 1)
<= ((
len
<*(
lower_bound A)*>)
+ (
len D1)) by
A7,
XREAL_1: 6;
then (MD1
. (
len MD1))
= (D1
. (((
len
<*(
lower_bound A)*>)
+ (
len D1))
- (
len
<*(
lower_bound A)*>))) by
A10,
FINSEQ_1: 23
.= (D1
. (
len D1));
then
A11: (MD1
. (
len MD1))
= (
upper_bound A) by
INTEGRA1:def 2;
for y be
Element of
REAL holds y
in (
rng MD1) implies y
in A
proof
let y be
Element of
REAL ;
assume y
in (
rng MD1);
then
A12: y
in ((
rng
<*(
lower_bound A)*>)
\/ (
rng D1)) by
FINSEQ_1: 31;
per cases by
A12,
XBOOLE_0:def 3;
suppose y
in (
rng
<*(
lower_bound A)*>);
then y
in
{(
lower_bound A)} by
FINSEQ_1: 38;
then
A13: y
= (
lower_bound A) by
TARSKI:def 1;
ex a, b st a
<= b & a
= (
lower_bound A) & b
= (
upper_bound A) by
SEQ_4: 11;
hence thesis by
A13,
INTEGRA2: 1;
end;
suppose
A14: y
in (
rng D1);
(
rng D1)
c= A by
INTEGRA1:def 2;
hence thesis by
A14;
end;
end;
then (
rng MD1)
c= A;
then
reconsider MD1 as
Division of A by
A11,
INTEGRA1:def 2;
A15: (
len MD1)
= ((
len
<*(
lower_bound A)*>)
+ (
len D1)) by
FINSEQ_1: 22
.= (1
+ (
len D1)) by
FINSEQ_1: 39;
A16: (
vol A)
>=
0 by
INTEGRA1: 9;
(D1
. 1)
= (
upper_bound A) by
A9,
INTEGRA1:def 2;
then ((D1
. 1)
- (
lower_bound A))
>
0 by
A2,
A16,
INTEGRA1:def 5;
then
A17: (
lower_bound A)
< (D1
. 1) by
XREAL_1: 47;
(
lower_volume (f,D1))
= ((
lower_volume (f,MD1))
/^ 1) by
Lm10;
then (
lower_volume (f,MD1))
= (
<*((
lower_volume (f,MD1))
/. 1)*>
^ (
lower_volume (f,D1))) by
FINSEQ_5: 29;
then
A18: (
Sum (
lower_volume (f,MD1)))
= (((
lower_volume (f,MD1))
/. 1)
+ (
Sum (
lower_volume (f,D1)))) by
RVSUM_1: 76;
A19: (
len D1)
in (
dom D1) by
FINSEQ_5: 6;
A20: (1
+ (
len D1))
>= (1
+ 1) by
A7,
XREAL_1: 6;
then
A21: (
len MD1)
<> 1 by
A15;
A22: (
len MD1)
in (
dom MD1) by
FINSEQ_5: 6;
((
len MD1)
- 1)
= (
len D1) by
A15;
then (
lower_bound (
divset (MD1,(
len MD1))))
= (MD1
. (
len D1)) by
A22,
A21,
INTEGRA1:def 4
.= (
lower_bound A) by
A9,
FINSEQ_1: 41;
then
A23: (
lower_bound (
divset (D1,(
len D1))))
= (
lower_bound (
divset (MD1,(
len MD1)))) by
A9,
A19,
INTEGRA1:def 4;
set MD2 = (
<*(
lower_bound A)*>
^ D2);
(
rng MD1)
<>
{} ;
then
A24: 1
in (
dom MD1) by
FINSEQ_3: 32;
then
A25: ((
lower_volume (f,MD1))
. 1)
= ((
lower_bound (
rng (f
| (
divset (MD1,1)))))
* (
vol (
divset (MD1,1)))) by
INTEGRA1:def 7;
1
in (
Seg (
len MD1)) by
A24,
FINSEQ_1:def 3;
then 1
in (
Seg (
len (
lower_volume (f,MD1)))) by
INTEGRA1:def 7;
then
A26: 1
in (
dom (
lower_volume (f,MD1))) by
FINSEQ_1:def 3;
(
rng D2)
<>
{} ;
then
A27: 1
in (
dom D2) by
FINSEQ_3: 32;
then 1
<= (
len D2) by
FINSEQ_3: 25;
then
A28: ((
len
<*(
lower_bound A)*>)
+ 1)
<= ((
len
<*(
lower_bound A)*>)
+ (
len D2)) by
XREAL_1: 6;
A29: (D2
. 1)
in (
rng D2) by
A27,
FUNCT_1:def 3;
(
lower_bound A)
< (D2
. 1)
proof
per cases by
A4,
A29,
XBOOLE_0:def 3;
suppose
A30: (D2
. 1)
in (
rng D1);
(
rng D1)
<>
{} ;
then
A31: 1
in (
dom D1) by
FINSEQ_3: 32;
consider k such that
A32: k
in (
dom D1) and
A33: (D1
. k)
= (D2
. 1) by
A30,
PARTFUN1: 3;
1
<= k by
A32,
FINSEQ_3: 25;
then (D1
. 1)
<= (D2
. 1) by
A32,
A33,
A31,
SEQ_4: 137;
hence thesis by
A17,
XXREAL_0: 2;
end;
suppose (D2
. 1)
in
{x};
hence thesis by
A6,
TARSKI:def 1;
end;
end;
then
reconsider MD2 as non
empty
increasing
FinSequence of
REAL by
Lm9;
(
len MD2)
= ((
len
<*(
lower_bound A)*>)
+ (
len D2)) by
FINSEQ_1: 22;
then (MD2
. (
len MD2))
= (D2
. (((
len
<*(
lower_bound A)*>)
+ (
len D2))
- (
len
<*(
lower_bound A)*>))) by
A28,
FINSEQ_1: 23
.= (D2
. (
len D2));
then
A34: (MD2
. (
len MD2))
= (
upper_bound A) by
INTEGRA1:def 2;
for y be
Element of
REAL holds y
in (
rng MD2) implies y
in A
proof
let y be
Element of
REAL ;
assume y
in (
rng MD2);
then
A35: y
in ((
rng
<*(
lower_bound A)*>)
\/ (
rng D2)) by
FINSEQ_1: 31;
per cases by
A35,
XBOOLE_0:def 3;
suppose y
in (
rng
<*(
lower_bound A)*>);
then y
in
{(
lower_bound A)} by
FINSEQ_1: 38;
then
A36: y
= (
lower_bound A) by
TARSKI:def 1;
ex a, b st a
<= b & a
= (
lower_bound A) & b
= (
upper_bound A) by
SEQ_4: 11;
hence thesis by
A36,
INTEGRA2: 1;
end;
suppose
A37: y
in (
rng D2);
(
rng D2)
c= A by
INTEGRA1:def 2;
hence thesis by
A37;
end;
end;
then (
rng MD2)
c= A;
then
reconsider MD2 as
Division of A by
A34,
INTEGRA1:def 2;
A38: x
<= (
upper_bound (
divset (D1,(
len D1)))) by
A1,
INTEGRA2: 1;
(
rng MD2)
= ((
rng D2)
\/ (
rng
<*(
lower_bound A)*>)) by
FINSEQ_1: 31
.= (((
rng D1)
\/ (
rng
<*(
lower_bound A)*>))
\/
{x}) by
A4,
XBOOLE_1: 4;
then
A39: (
rng MD2)
= ((
rng MD1)
\/
{x}) by
FINSEQ_1: 31;
(MD1
. (
len MD1))
= (MD1
. ((
len
<*(
lower_bound A)*>)
+ (
len D1))) by
FINSEQ_1: 22
.= (D1
. (
len D1)) by
A19,
FINSEQ_1:def 7;
then
A40: (
upper_bound (
divset (MD1,(
len MD1))))
= (D1
. (
len D1)) by
A22,
A21,
INTEGRA1:def 4
.= (
upper_bound (
divset (D1,(
len D1)))) by
A9,
A19,
INTEGRA1:def 4;
(
rng D1)
c= (
rng D2) by
A3,
INTEGRA1:def 18;
then ((
rng D1)
\/ (
rng
<*(
lower_bound A)*>))
c= ((
rng D2)
\/ (
rng
<*(
lower_bound A)*>)) by
XBOOLE_1: 9;
then (
rng MD1)
c= ((
rng D2)
\/ (
rng
<*(
lower_bound A)*>)) by
FINSEQ_1: 31;
then
A41: (
rng MD1)
c= (
rng MD2) by
FINSEQ_1: 31;
(
len D1)
<= (
len D2) by
A3,
INTEGRA1:def 18;
then ((
len D1)
+ (
len
<*(
lower_bound A)*>))
<= ((
len D2)
+ (
len
<*(
lower_bound A)*>)) by
XREAL_1: 6;
then (
len MD1)
<= ((
len D2)
+ (
len
<*(
lower_bound A)*>)) by
FINSEQ_1: 22;
then (
len MD1)
<= (
len MD2) by
FINSEQ_1: 22;
then
A42: MD1
<= MD2 by
A41,
INTEGRA1:def 18;
(
lower_bound (
divset (D1,(
len D1))))
<= x by
A1,
INTEGRA2: 1;
then x
in (
divset (MD1,(
len MD1))) by
A38,
A23,
A40,
INTEGRA2: 1;
then
A43: ((
Sum (
lower_volume (f,MD2)))
- (
Sum (
lower_volume (f,MD1))))
<= (((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
* (
delta MD1)) by
A5,
A15,
A20,
A42,
A39,
Th10;
(
rng MD2)
<>
{} ;
then
A44: 1
in (
dom MD2) by
FINSEQ_3: 32;
then
A45: ((
lower_volume (f,MD2))
. 1)
= ((
lower_bound (
rng (f
| (
divset (MD2,1)))))
* (
vol (
divset (MD2,1)))) by
INTEGRA1:def 7;
1
in (
Seg (
len MD2)) by
A44,
FINSEQ_1:def 3;
then 1
in (
Seg (
len (
lower_volume (f,MD2)))) by
INTEGRA1:def 7;
then
A46: 1
in (
dom (
lower_volume (f,MD2))) by
FINSEQ_1:def 3;
(
vol (
divset (MD2,1)))
=
0 by
Lm11;
then
A47: ((
lower_volume (f,MD2))
/. 1)
=
0 by
A45,
A46,
PARTFUN1:def 6;
(
lower_volume (f,D2))
= ((
lower_volume (f,MD2))
/^ 1) by
Lm10;
then (
lower_volume (f,MD2))
= (
<*((
lower_volume (f,MD2))
/. 1)*>
^ (
lower_volume (f,D2))) by
FINSEQ_5: 29;
then
A48: (
Sum (
lower_volume (f,MD2)))
= (((
lower_volume (f,MD2))
/. 1)
+ (
Sum (
lower_volume (f,D2)))) by
RVSUM_1: 76;
(
vol (
divset (MD1,1)))
=
0 by
Lm11;
then ((
lower_volume (f,MD1))
/. 1)
=
0 by
A25,
A26,
PARTFUN1:def 6;
hence thesis by
A43,
A18,
A48,
A47,
Lm12;
end;
suppose (
len D1)
>= 2;
hence thesis by
A1,
A3,
A4,
A5,
Th10;
end;
end;
hence thesis;
end;
theorem ::
INTEGRA3:15
Th14: x
in (
divset (D1,(
len D1))) & (
vol A)
<>
0 & D1
<= D2 & (
rng D2)
= ((
rng D1)
\/
{x}) & (f
| A) is
bounded & x
> (
lower_bound A) implies ((
Sum (
upper_volume (f,D1)))
- (
Sum (
upper_volume (f,D2))))
<= (((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
* (
delta D1))
proof
assume that
A1: x
in (
divset (D1,(
len D1))) and
A2: (
vol A)
<>
0 and
A3: D1
<= D2 and
A4: (
rng D2)
= ((
rng D1)
\/
{x}) and
A5: (f
| A) is
bounded and
A6: x
> (
lower_bound A);
(
len D1)
in (
Seg (
len D1)) by
FINSEQ_1: 3;
then
A7: 1
<= (
len D1) by
FINSEQ_1: 1;
then (
len D1)
= 1 or (
len D1)
> 1 by
XXREAL_0: 1;
then
A8: (
len D1)
= 1 or (
len D1)
>= (1
+ 1) by
NAT_1: 13;
now
per cases by
A8;
suppose
A9: (
len D1)
= 1;
then
reconsider MD1 = (
<*(
lower_bound A)*>
^ D1) as non
empty
increasing
FinSequence of
REAL by
A2,
Lm8;
A10: (
len MD1)
= ((
len
<*(
lower_bound A)*>)
+ (
len D1)) by
FINSEQ_1: 22;
((
len
<*(
lower_bound A)*>)
+ 1)
<= ((
len
<*(
lower_bound A)*>)
+ (
len D1)) by
A7,
XREAL_1: 6;
then (MD1
. (
len MD1))
= (D1
. (((
len
<*(
lower_bound A)*>)
+ (
len D1))
- (
len
<*(
lower_bound A)*>))) by
A10,
FINSEQ_1: 23
.= (D1
. (
len D1));
then
A11: (MD1
. (
len MD1))
= (
upper_bound A) by
INTEGRA1:def 2;
for y be
Element of
REAL holds y
in (
rng MD1) implies y
in A
proof
let y be
Element of
REAL ;
assume y
in (
rng MD1);
then
A12: y
in ((
rng
<*(
lower_bound A)*>)
\/ (
rng D1)) by
FINSEQ_1: 31;
per cases by
A12,
XBOOLE_0:def 3;
suppose y
in (
rng
<*(
lower_bound A)*>);
then y
in
{(
lower_bound A)} by
FINSEQ_1: 38;
then
A13: y
= (
lower_bound A) by
TARSKI:def 1;
ex a, b st a
<= b & a
= (
lower_bound A) & b
= (
upper_bound A) by
SEQ_4: 11;
hence thesis by
A13,
INTEGRA2: 1;
end;
suppose
A14: y
in (
rng D1);
(
rng D1)
c= A by
INTEGRA1:def 2;
hence thesis by
A14;
end;
end;
then (
rng MD1)
c= A;
then
reconsider MD1 as
Division of A by
A11,
INTEGRA1:def 2;
A15: (
len MD1)
= ((
len
<*(
lower_bound A)*>)
+ (
len D1)) by
FINSEQ_1: 22
.= (1
+ (
len D1)) by
FINSEQ_1: 39;
A16: (
vol A)
>=
0 by
INTEGRA1: 9;
(D1
. 1)
= (
upper_bound A) by
A9,
INTEGRA1:def 2;
then ((D1
. 1)
- (
lower_bound A))
>
0 by
A2,
A16,
INTEGRA1:def 5;
then
A17: (
lower_bound A)
< (D1
. 1) by
XREAL_1: 47;
(
upper_volume (f,D1))
= ((
upper_volume (f,MD1))
/^ 1) by
Lm10;
then (
upper_volume (f,MD1))
= (
<*((
upper_volume (f,MD1))
/. 1)*>
^ (
upper_volume (f,D1))) by
FINSEQ_5: 29;
then
A18: (
Sum (
upper_volume (f,MD1)))
= (((
upper_volume (f,MD1))
/. 1)
+ (
Sum (
upper_volume (f,D1)))) by
RVSUM_1: 76;
A19: (
len D1)
in (
dom D1) by
FINSEQ_5: 6;
A20: (1
+ (
len D1))
>= (1
+ 1) by
A7,
XREAL_1: 6;
then
A21: (
len MD1)
<> 1 by
A15;
A22: (
len MD1)
in (
dom MD1) by
FINSEQ_5: 6;
((
len MD1)
- 1)
= (
len D1) by
A15;
then (
lower_bound (
divset (MD1,(
len MD1))))
= (MD1
. (
len D1)) by
A22,
A21,
INTEGRA1:def 4
.= (
lower_bound A) by
A9,
FINSEQ_1: 41;
then
A23: (
lower_bound (
divset (D1,(
len D1))))
= (
lower_bound (
divset (MD1,(
len MD1)))) by
A9,
A19,
INTEGRA1:def 4;
set MD2 = (
<*(
lower_bound A)*>
^ D2);
(
rng MD1)
<>
{} ;
then
A24: 1
in (
dom MD1) by
FINSEQ_3: 32;
then
A25: ((
upper_volume (f,MD1))
. 1)
= ((
upper_bound (
rng (f
| (
divset (MD1,1)))))
* (
vol (
divset (MD1,1)))) by
INTEGRA1:def 6;
1
in (
Seg (
len MD1)) by
A24,
FINSEQ_1:def 3;
then 1
in (
Seg (
len (
upper_volume (f,MD1)))) by
INTEGRA1:def 6;
then
A26: 1
in (
dom (
upper_volume (f,MD1))) by
FINSEQ_1:def 3;
(
rng D2)
<>
{} ;
then
A27: 1
in (
dom D2) by
FINSEQ_3: 32;
then 1
<= (
len D2) by
FINSEQ_3: 25;
then
A28: ((
len
<*(
lower_bound A)*>)
+ 1)
<= ((
len
<*(
lower_bound A)*>)
+ (
len D2)) by
XREAL_1: 6;
A29: (D2
. 1)
in (
rng D2) by
A27,
FUNCT_1:def 3;
(
lower_bound A)
< (D2
. 1)
proof
per cases by
A4,
A29,
XBOOLE_0:def 3;
suppose
A30: (D2
. 1)
in (
rng D1);
(
rng D1)
<>
{} ;
then
A31: 1
in (
dom D1) by
FINSEQ_3: 32;
consider k such that
A32: k
in (
dom D1) and
A33: (D1
. k)
= (D2
. 1) by
A30,
PARTFUN1: 3;
1
<= k by
A32,
FINSEQ_3: 25;
then (D1
. 1)
<= (D2
. 1) by
A32,
A33,
A31,
SEQ_4: 137;
hence thesis by
A17,
XXREAL_0: 2;
end;
suppose (D2
. 1)
in
{x};
hence thesis by
A6,
TARSKI:def 1;
end;
end;
then
reconsider MD2 as non
empty
increasing
FinSequence of
REAL by
Lm9;
(
len MD2)
= ((
len
<*(
lower_bound A)*>)
+ (
len D2)) by
FINSEQ_1: 22;
then (MD2
. (
len MD2))
= (D2
. (((
len
<*(
lower_bound A)*>)
+ (
len D2))
- (
len
<*(
lower_bound A)*>))) by
A28,
FINSEQ_1: 23
.= (D2
. (
len D2));
then
A34: (MD2
. (
len MD2))
= (
upper_bound A) by
INTEGRA1:def 2;
for y be
Element of
REAL holds y
in (
rng MD2) implies y
in A
proof
let y be
Element of
REAL ;
assume y
in (
rng MD2);
then
A35: y
in ((
rng
<*(
lower_bound A)*>)
\/ (
rng D2)) by
FINSEQ_1: 31;
per cases by
A35,
XBOOLE_0:def 3;
suppose y
in (
rng
<*(
lower_bound A)*>);
then y
in
{(
lower_bound A)} by
FINSEQ_1: 38;
then
A36: y
= (
lower_bound A) by
TARSKI:def 1;
ex a, b st a
<= b & a
= (
lower_bound A) & b
= (
upper_bound A) by
SEQ_4: 11;
hence thesis by
A36,
INTEGRA2: 1;
end;
suppose
A37: y
in (
rng D2);
(
rng D2)
c= A by
INTEGRA1:def 2;
hence thesis by
A37;
end;
end;
then (
rng MD2)
c= A;
then
reconsider MD2 as
Division of A by
A34,
INTEGRA1:def 2;
A38: x
<= (
upper_bound (
divset (D1,(
len D1)))) by
A1,
INTEGRA2: 1;
(
rng MD2)
= ((
rng D2)
\/ (
rng
<*(
lower_bound A)*>)) by
FINSEQ_1: 31
.= (((
rng D1)
\/ (
rng
<*(
lower_bound A)*>))
\/
{x}) by
A4,
XBOOLE_1: 4;
then
A39: (
rng MD2)
= ((
rng MD1)
\/
{x}) by
FINSEQ_1: 31;
(MD1
. (
len MD1))
= (MD1
. ((
len
<*(
lower_bound A)*>)
+ (
len D1))) by
FINSEQ_1: 22
.= (D1
. (
len D1)) by
A19,
FINSEQ_1:def 7;
then
A40: (
upper_bound (
divset (MD1,(
len MD1))))
= (D1
. (
len D1)) by
A22,
A21,
INTEGRA1:def 4
.= (
upper_bound (
divset (D1,(
len D1)))) by
A9,
A19,
INTEGRA1:def 4;
(
rng D1)
c= (
rng D2) by
A3,
INTEGRA1:def 18;
then ((
rng D1)
\/ (
rng
<*(
lower_bound A)*>))
c= ((
rng D2)
\/ (
rng
<*(
lower_bound A)*>)) by
XBOOLE_1: 9;
then (
rng MD1)
c= ((
rng D2)
\/ (
rng
<*(
lower_bound A)*>)) by
FINSEQ_1: 31;
then
A41: (
rng MD1)
c= (
rng MD2) by
FINSEQ_1: 31;
(
len D1)
<= (
len D2) by
A3,
INTEGRA1:def 18;
then ((
len D1)
+ (
len
<*(
lower_bound A)*>))
<= ((
len D2)
+ (
len
<*(
lower_bound A)*>)) by
XREAL_1: 6;
then (
len MD1)
<= ((
len D2)
+ (
len
<*(
lower_bound A)*>)) by
FINSEQ_1: 22;
then (
len MD1)
<= (
len MD2) by
FINSEQ_1: 22;
then
A42: MD1
<= MD2 by
A41,
INTEGRA1:def 18;
(
lower_bound (
divset (D1,(
len D1))))
<= x by
A1,
INTEGRA2: 1;
then x
in (
divset (MD1,(
len MD1))) by
A38,
A23,
A40,
INTEGRA2: 1;
then
A43: ((
Sum (
upper_volume (f,MD1)))
- (
Sum (
upper_volume (f,MD2))))
<= (((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
* (
delta MD1)) by
A5,
A15,
A20,
A42,
A39,
Th11;
(
rng MD2)
<>
{} ;
then
A44: 1
in (
dom MD2) by
FINSEQ_3: 32;
then
A45: ((
upper_volume (f,MD2))
. 1)
= ((
upper_bound (
rng (f
| (
divset (MD2,1)))))
* (
vol (
divset (MD2,1)))) by
INTEGRA1:def 6;
1
in (
Seg (
len MD2)) by
A44,
FINSEQ_1:def 3;
then 1
in (
Seg (
len (
upper_volume (f,MD2)))) by
INTEGRA1:def 6;
then
A46: 1
in (
dom (
upper_volume (f,MD2))) by
FINSEQ_1:def 3;
(
vol (
divset (MD2,1)))
=
0 by
Lm11;
then
A47: ((
upper_volume (f,MD2))
/. 1)
=
0 by
A45,
A46,
PARTFUN1:def 6;
(
upper_volume (f,D2))
= ((
upper_volume (f,MD2))
/^ 1) by
Lm10;
then (
upper_volume (f,MD2))
= (
<*((
upper_volume (f,MD2))
/. 1)*>
^ (
upper_volume (f,D2))) by
FINSEQ_5: 29;
then
A48: (
Sum (
upper_volume (f,MD2)))
= (((
upper_volume (f,MD2))
/. 1)
+ (
Sum (
upper_volume (f,D2)))) by
RVSUM_1: 76;
(
vol (
divset (MD1,1)))
=
0 by
Lm11;
then ((
upper_volume (f,MD1))
/. 1)
=
0 by
A25,
A26,
PARTFUN1:def 6;
hence thesis by
A43,
A18,
A48,
A47,
Lm12;
end;
suppose (
len D1)
>= 2;
hence thesis by
A1,
A3,
A4,
A5,
Th11;
end;
end;
hence thesis;
end;
theorem ::
INTEGRA3:16
Th15: i
in (
dom D1) & j
in (
dom D1) & i
<= j & D1
<= D2 & r
< ((
mid (D2,(
indx (D2,D1,i)),(
indx (D2,D1,j))))
. 1) implies ex B be non
empty
closed_interval
Subset of
REAL , MD1,MD2 be
Division of B st r
= (
lower_bound B) & (
upper_bound B)
= (MD2
. (
len MD2)) & (
upper_bound B)
= (MD1
. (
len MD1)) & MD1
<= MD2 & MD1
= (
mid (D1,i,j)) & MD2
= (
mid (D2,(
indx (D2,D1,i)),(
indx (D2,D1,j))))
proof
set MD1 = (
mid (D1,i,j));
set MD2 = (
mid (D2,(
indx (D2,D1,i)),(
indx (D2,D1,j))));
assume
A1: i
in (
dom D1);
then
A2: 1
<= i by
FINSEQ_3: 25;
assume
A3: j
in (
dom D1);
assume
A4: i
<= j;
then (j
- i)
>=
0 by
XREAL_1: 48;
then
A5: ((j
- i)
+ 1)
>= (
0
+ 1) by
XREAL_1: 6;
A6: j
<= (
len D1) by
A3,
FINSEQ_3: 25;
then
A7: (MD1
. 1)
= (D1
. ((1
+ i)
- 1)) by
A4,
A5,
A2,
FINSEQ_6: 122
.= (D1
. i);
assume
A8: D1
<= D2;
then
A9: (D2
. (
indx (D2,D1,i)))
= (D1
. i) by
A1,
INTEGRA1:def 19;
A10: (D2
. (
indx (D2,D1,j)))
= (D1
. j) by
A3,
A8,
INTEGRA1:def 19;
A11: (
indx (D2,D1,i))
in (
dom D2) by
A1,
A8,
INTEGRA1:def 19;
then
A12: 1
<= (
indx (D2,D1,i)) by
FINSEQ_3: 25;
A13: (
indx (D2,D1,j))
in (
dom D2) by
A3,
A8,
INTEGRA1:def 19;
then
A14: (
indx (D2,D1,j))
<= (
len D2) by
FINSEQ_3: 25;
(D1
. i)
<= (D1
. j) by
A1,
A3,
A4,
SEQ_4: 137;
then
A15: (
indx (D2,D1,i))
<= (
indx (D2,D1,j)) by
A11,
A9,
A13,
A10,
SEQM_3:def 1;
assume
A16: r
< ((
mid (D2,(
indx (D2,D1,i)),(
indx (D2,D1,j))))
. 1);
then
consider B be non
empty
closed_interval
Subset of
REAL such that
A17: r
= (
lower_bound B) and
A18: (
upper_bound B)
= (MD2
. (
len MD2)) and
A19: MD2 is
Division of B by
A11,
A13,
A15,
Th12;
A20: (
len MD2)
= (((
indx (D2,D1,j))
- (
indx (D2,D1,i)))
+ 1) by
A11,
A13,
A15,
INTEGRA1: 58;
reconsider MD2 as
Division of B by
A19;
((
indx (D2,D1,j))
- (
indx (D2,D1,i)))
>=
0 by
A15,
XREAL_1: 48;
then
A21: (((
indx (D2,D1,j))
- (
indx (D2,D1,i)))
+ 1)
>= (
0
+ 1) by
XREAL_1: 6;
then
A22: (MD2
. (
len MD2))
= (D2
. (((((
indx (D2,D1,j))
- (
indx (D2,D1,i)))
+ 1)
- 1)
+ (
indx (D2,D1,i)))) by
A15,
A20,
A12,
A14,
FINSEQ_6: 122
.= (D1
. j) by
A3,
A8,
INTEGRA1:def 19;
(MD2
. 1)
= (D2
. ((1
+ (
indx (D2,D1,i)))
- 1)) by
A15,
A21,
A12,
A14,
FINSEQ_6: 122
.= (D1
. i) by
A1,
A8,
INTEGRA1:def 19;
then
consider C be non
empty
closed_interval
Subset of
REAL such that
A23: r
= (
lower_bound C) and
A24: (
upper_bound C)
= (MD1
. (
len MD1)) and
A25: MD1 is
Division of C by
A1,
A3,
A4,
A16,
A7,
Th12;
(
len MD1)
= ((j
- i)
+ 1) by
A1,
A3,
A4,
INTEGRA1: 58;
then
A26: (MD1
. (
len MD1))
= (D1
. ((((j
- i)
+ 1)
- 1)
+ i)) by
A4,
A5,
A2,
A6,
FINSEQ_6: 122
.= (D1
. j);
A27: B
=
[.(
lower_bound B), (
upper_bound B).] by
INTEGRA1: 4
.= C by
A17,
A18,
A23,
A24,
A26,
A22,
INTEGRA1: 4;
then
reconsider MD1 as
Division of B by
A25;
A28: (
rng MD1)
c= (
rng MD2)
proof
let x1 be
object;
A29: (
rng MD1)
c= (
rng D1) by
FINSEQ_6: 119;
assume
A30: x1
in (
rng MD1);
then
consider k1 be
Element of
NAT such that
A31: k1
in (
dom MD1) and
A32: (MD1
. k1)
= x1 by
PARTFUN1: 3;
(
rng D1)
c= (
rng D2) by
A8,
INTEGRA1:def 18;
then (
rng MD1)
c= (
rng D2) by
A29;
then
consider k2 be
Element of
NAT such that
A33: k2
in (
dom D2) and
A34: (D2
. k2)
= x1 by
A30,
PARTFUN1: 3;
A35: k1
<= (
len MD1) by
A31,
FINSEQ_3: 25;
A36: 1
<= k1 by
A31,
FINSEQ_3: 25;
then 1
<= (
len MD1) by
A35,
XXREAL_0: 2;
then 1
in (
dom MD1) by
FINSEQ_3: 25;
then (MD1
. 1)
<= (MD1
. k1) by
A31,
A36,
SEQ_4: 137;
then
A37: (
indx (D2,D1,i))
<= k2 by
A11,
A9,
A7,
A33,
A34,
A32,
SEQM_3:def 1;
then
consider k3 be
Nat such that
A38: (k2
+ 1)
= ((
indx (D2,D1,i))
+ k3) by
NAT_1: 10,
NAT_1: 12;
(
len MD1)
in (
dom MD1) by
FINSEQ_5: 6;
then (MD1
. k1)
<= (MD1
. (
len MD1)) by
A31,
A35,
SEQ_4: 137;
then k2
<= (
indx (D2,D1,j)) by
A13,
A10,
A26,
A33,
A34,
A32,
SEQM_3:def 1;
then (k2
+ 1)
<= ((
indx (D2,D1,j))
+ 1) by
XREAL_1: 6;
then
A39: ((k2
+ 1)
- (
indx (D2,D1,i)))
<= (((
indx (D2,D1,j))
+ 1)
- (
indx (D2,D1,i))) by
XREAL_1: 9;
((
indx (D2,D1,i))
+ 1)
<= (k2
+ 1) by
A37,
XREAL_1: 6;
then
A40: 1
<= ((k2
+ 1)
- (
indx (D2,D1,i))) by
XREAL_1: 19;
then
A41: k3
in (
dom MD2) by
A20,
A39,
A38,
FINSEQ_3: 25;
(MD2
. k3)
= (D2
. ((k3
+ (
indx (D2,D1,i)))
- 1)) by
A15,
A12,
A14,
A40,
A39,
A38,
FINSEQ_6: 122;
hence thesis by
A34,
A38,
A41,
FUNCT_1:def 3;
end;
A42: (
card (
rng MD2))
= (
len MD2) by
FINSEQ_4: 62;
(
card (
rng MD1))
= (
len MD1) by
FINSEQ_4: 62;
then (
len MD1)
<= (
len MD2) by
A28,
A42,
NAT_1: 43;
then MD1
<= MD2 by
A28,
INTEGRA1:def 18;
hence thesis by
A17,
A18,
A24,
A27;
end;
theorem ::
INTEGRA3:17
Th16: x
in (
rng D) implies (D
. 1)
<= x & x
<= (D
. (
len D))
proof
assume x
in (
rng D);
then
consider i such that
A1: i
in (
dom D) and
A2: x
= (D
. i) by
PARTFUN1: 3;
A3: i
<= (
len D) by
A1,
FINSEQ_3: 25;
A4: 1
<= i by
A1,
FINSEQ_3: 25;
then
A5: 1
<= (
len D) by
A3,
XXREAL_0: 2;
then
A6: (
len D)
in (
dom D) by
FINSEQ_3: 25;
1
in (
dom D) by
A5,
FINSEQ_3: 25;
hence thesis by
A1,
A2,
A4,
A3,
A6,
SEQ_4: 137;
end;
theorem ::
INTEGRA3:18
Th17: for p be
FinSequence of
REAL , i, j, k st p is
increasing & i
in (
dom p) & j
in (
dom p) & k
in (
dom p) & (p
. i)
<= (p
. k) & (p
. k)
<= (p
. j) holds (p
. k)
in (
rng (
mid (p,i,j)))
proof
let p be
FinSequence of
REAL ;
let i, j, k;
assume that
A1: p is
increasing and
A2: i
in (
dom p) and
A3: j
in (
dom p) and
A4: k
in (
dom p) and
A5: (p
. i)
<= (p
. k) and
A6: (p
. k)
<= (p
. j);
A7: 1
<= i by
A2,
FINSEQ_3: 25;
A8: 1
<= j by
A3,
FINSEQ_3: 25;
A9: j
<= (
len p) by
A3,
FINSEQ_3: 25;
A10: i
<= k by
A1,
A2,
A4,
A5,
SEQM_3:def 1;
then
consider n be
Nat such that
A11: (k
+ 1)
= (i
+ n) by
NAT_1: 10,
NAT_1: 12;
A12: k
<= j by
A1,
A3,
A4,
A6,
SEQM_3:def 1;
then (k
- i)
<= (j
- i) by
XREAL_1: 9;
then
A13: ((k
- i)
+ 1)
<= ((j
- i)
+ 1) by
XREAL_1: 6;
(k
- i)
>=
0 by
A10,
XREAL_1: 48;
then
A14: ((k
- i)
+ 1)
>= (
0
+ 1) by
XREAL_1: 6;
A15: i
<= j by
A10,
A12,
XXREAL_0: 2;
i
<= (
len p) by
A2,
FINSEQ_3: 25;
then (
len (
mid (p,i,j)))
= ((j
-' i)
+ 1) by
A7,
A8,
A9,
A15,
FINSEQ_6: 118;
then (
len (
mid (p,i,j)))
= ((j
- i)
+ 1) by
A10,
A12,
XREAL_1: 233,
XXREAL_0: 2;
then
A16: n
in (
dom (
mid (p,i,j))) by
A11,
A14,
A13,
FINSEQ_3: 25;
((
mid (p,i,j))
. n)
= (p
. ((n
+ i)
- 1)) by
A7,
A9,
A15,
A11,
A14,
A13,
FINSEQ_6: 122
.= (p
. k) by
A11;
hence thesis by
A16,
FUNCT_1:def 3;
end;
theorem ::
INTEGRA3:19
Th18: (f
| A) is
bounded & i
in (
dom D) implies (
lower_bound (
rng (f
| (
divset (D,i)))))
<= (
upper_bound (
rng f))
proof
assume
A1: (f
| A) is
bounded;
assume i
in (
dom D);
then (
divset (D,i))
c= A by
INTEGRA1: 8;
hence thesis by
A1,
Lm4;
end;
theorem ::
INTEGRA3:20
Th19: (f
| A) is
bounded & i
in (
dom D) implies (
upper_bound (
rng (f
| (
divset (D,i)))))
>= (
lower_bound (
rng f))
proof
assume
A1: (f
| A) is
bounded;
assume i
in (
dom D);
then (
divset (D,i))
c= A by
INTEGRA1: 8;
hence thesis by
A1,
Lm4;
end;
begin
theorem ::
INTEGRA3:21
Th20: (f
| A) is
bounded implies for D, D1 holds ex D2 st D
<= D2 & D1
<= D2 & (
rng D2)
= ((
rng D1)
\/ (
rng D)) &
0
<= ((
lower_sum (f,D2))
- (
lower_sum (f,D))) &
0
<= ((
lower_sum (f,D2))
- (
lower_sum (f,D1)))
proof
assume
A1: (f
| A) is
bounded;
for D, D1 holds ex D2 st D
<= D2 & D1
<= D2 & (
rng D2)
= ((
rng D1)
\/ (
rng D)) &
0
<= ((
lower_sum (f,D2))
- (
lower_sum (f,D))) &
0
<= ((
lower_sum (f,D2))
- (
lower_sum (f,D1)))
proof
let D, D1;
consider D2 such that
A6: D
<= D2 and
A7: D1
<= D2 and
A8: (
rng D2)
= ((
rng D1)
\/ (
rng D)) by
Th4;
A9: ((
lower_sum (f,D2))
- (
lower_sum (f,D1)))
>=
0 by
A1,
A7,
INTEGRA1: 46,
XREAL_1: 48;
((
lower_sum (f,D2))
- (
lower_sum (f,D)))
>=
0 by
A1,
A6,
INTEGRA1: 46,
XREAL_1: 48;
hence thesis by
A6,
A7,
A8,
A9;
end;
hence thesis;
end;
theorem ::
INTEGRA3:22
Th21: (f
| A) is
bounded implies for D, D1 st (
delta D1)
< (
min (
rng (
upper_volume ((
chi (A,A)),D)))) holds ex D2 st D
<= D2 & D1
<= D2 & (
rng D2)
= ((
rng D1)
\/ (
rng D)) & ((
lower_sum (f,D2))
- (
lower_sum (f,D1)))
<= (((
len D)
* ((
upper_bound (
rng f))
- (
lower_bound (
rng f))))
* (
delta D1))
proof
assume
A1: (f
| A) is
bounded;
then
A5: for D, D1 holds ex D2 st D
<= D2 & D1
<= D2 & (
rng D2)
= ((
rng D1)
\/ (
rng D)) &
0
<= ((
lower_sum (f,D2))
- (
lower_sum (f,D))) &
0
<= ((
lower_sum (f,D2))
- (
lower_sum (f,D1))) by
Th20;
for D, D1 st (
delta D1)
< (
min (
rng (
upper_volume ((
chi (A,A)),D)))) holds ex D2 st D
<= D2 & D1
<= D2 & (
rng D2)
= ((
rng D1)
\/ (
rng D)) & ((
lower_sum (f,D2))
- (
lower_sum (f,D1)))
<= (((
len D)
* ((
upper_bound (
rng f))
- (
lower_bound (
rng f))))
* (
delta D1))
proof
let D, D1;
assume
A11: (
delta D1)
< (
min (
rng (
upper_volume ((
chi (A,A)),D))));
ex D2 st D
<= D2 & D1
<= D2 & (
rng D2)
= ((
rng D1)
\/ (
rng D)) & ((
lower_sum (f,D2))
- (
lower_sum (f,D1)))
<= (((
len D)
* ((
upper_bound (
rng f))
- (
lower_bound (
rng f))))
* (
delta D1))
proof
consider D2 such that
A12: D
<= D2 and
A13: D1
<= D2 and
A14: (
rng D2)
= ((
rng D1)
\/ (
rng D)) and
0
<= ((
lower_sum (f,D2))
- (
lower_sum (f,D))) and
0
<= ((
lower_sum (f,D2))
- (
lower_sum (f,D1))) by
A5;
((
lower_sum (f,D2))
- (
lower_sum (f,D1)))
<= (((
len D)
* ((
upper_bound (
rng f))
- (
lower_bound (
rng f))))
* (
delta D1))
proof
deffunc
LVf(
Division of A) = (
lower_volume (f,$1));
deffunc
PLf(
Division of A,
Nat) = ((
PartSums (
lower_volume (f,$1)))
. $2);
A15: (
len D2)
in (
dom D2) by
FINSEQ_5: 6;
A16: for i st i
in (
dom D) holds ex j st j
in (
dom D1) & (D
. i)
in (
divset (D1,j)) & (
PLf(D2,indx)
-
PLf(D1,j))
<= ((i
* ((
upper_bound (
rng f))
- (
lower_bound (
rng f))))
* (
delta D1))
proof
defpred
P[ non
zero
Nat] means $1
in (
dom D) implies ex j st j
in (
dom D1) & (D
. $1)
in (
divset (D1,j)) & (
PLf(D2,indx)
-
PLf(D1,j))
<= (($1
* ((
upper_bound (
rng f))
- (
lower_bound (
rng f))))
* (
delta D1));
let i;
assume
A17: i
in (
dom D);
then
A18: i
in (
Seg (
len D)) by
FINSEQ_1:def 3;
A19: for i, j st i
in (
dom D) & j
in (
dom D1) & (D
. i)
in (
divset (D1,j)) holds j
>= 2
proof
let i, j;
assume
A20: i
in (
dom D);
assume that
A21: j
in (
dom D1) and
A22: (D
. i)
in (
divset (D1,j));
assume j
< 2;
then j
< (1
+ 1);
then
A23: j
<= 1 by
NAT_1: 13;
j
in (
Seg (
len D1)) by
A21,
FINSEQ_1:def 3;
then j
>= 1 by
FINSEQ_1: 1;
then j
= 1 by
A23,
XXREAL_0: 1;
then
A24: (
lower_bound (
divset (D1,j)))
= (
lower_bound A) by
A21,
INTEGRA1:def 4;
A25: (D
. i)
<= (
upper_bound (
divset (D1,j))) by
A22,
INTEGRA2: 1;
(
delta D1)
>= (
min (
rng (
upper_volume ((
chi (A,A)),D))))
proof
per cases ;
suppose
A26: i
= 1;
(
len D)
in (
Seg (
len D)) by
FINSEQ_1: 3;
then 1
<= (
len D) by
FINSEQ_1: 1;
then
A27: 1
in (
Seg (
len D)) by
FINSEQ_1: 1;
then
A28: 1
in (
dom D) by
FINSEQ_1:def 3;
then
A29: (
lower_bound (
divset (D,1)))
= (
lower_bound A) by
INTEGRA1:def 4;
1
in (
Seg (
len (
upper_volume ((
chi (A,A)),D)))) by
A27,
INTEGRA1:def 6;
then
A30: 1
in (
dom (
upper_volume ((
chi (A,A)),D))) by
FINSEQ_1:def 3;
(
vol (
divset (D,1)))
= ((
upper_volume ((
chi (A,A)),D))
. 1) by
A28,
INTEGRA1: 20;
then (
vol (
divset (D,1)))
in (
rng (
upper_volume ((
chi (A,A)),D))) by
A30,
FUNCT_1:def 3;
then
A31: (
vol (
divset (D,1)))
>= (
min (
rng (
upper_volume ((
chi (A,A)),D)))) by
XXREAL_2:def 7;
A32: (
upper_bound (
divset (D,1)))
= (D
. 1) by
A28,
INTEGRA1:def 4;
((
upper_bound (
divset (D1,j)))
- (
lower_bound A))
>= ((D
. 1)
- (
lower_bound A)) by
A25,
A26,
XREAL_1: 9;
then (
vol (
divset (D1,j)))
>= ((
upper_bound (
divset (D,1)))
- (
lower_bound (
divset (D,1)))) by
A24,
A29,
A32,
INTEGRA1:def 5;
then
A33: (
vol (
divset (D1,j)))
>= (
vol (
divset (D,1))) by
INTEGRA1:def 5;
(
vol (
divset (D1,j)))
<= (
delta D1) by
A21,
Lm5;
then (
delta D1)
>= (
vol (
divset (D,1))) by
A33,
XXREAL_0: 2;
hence thesis by
A31,
XXREAL_0: 2;
end;
suppose
A34: i
<> 1;
then (D
. (i
- 1))
in A by
A20,
INTEGRA1: 7;
then
A35: (
lower_bound A)
<= (D
. (i
- 1)) by
INTEGRA2: 1;
(
lower_bound (
divset (D,i)))
= (D
. (i
- 1)) by
A20,
A34,
INTEGRA1:def 4;
then
A36: ((
upper_bound (
divset (D,i)))
- (
lower_bound A))
>= ((
upper_bound (
divset (D,i)))
- (
lower_bound (
divset (D,i)))) by
A35,
XREAL_1: 10;
(
upper_bound (
divset (D,i)))
= (D
. i) by
A20,
A34,
INTEGRA1:def 4;
then ((
upper_bound (
divset (D1,j)))
- (
lower_bound (
divset (D1,j))))
>= ((
upper_bound (
divset (D,i)))
- (
lower_bound A)) by
A25,
A24,
XREAL_1: 9;
then ((
upper_bound (
divset (D1,j)))
- (
lower_bound (
divset (D1,j))))
>= ((
upper_bound (
divset (D,i)))
- (
lower_bound (
divset (D,i)))) by
A36,
XXREAL_0: 2;
then (
vol (
divset (D1,j)))
>= ((
upper_bound (
divset (D,i)))
- (
lower_bound (
divset (D,i)))) by
INTEGRA1:def 5;
then
A37: (
vol (
divset (D1,j)))
>= (
vol (
divset (D,i))) by
INTEGRA1:def 5;
i
in (
Seg (
len D)) by
A20,
FINSEQ_1:def 3;
then i
in (
Seg (
len (
upper_volume ((
chi (A,A)),D)))) by
INTEGRA1:def 6;
then
A38: i
in (
dom (
upper_volume ((
chi (A,A)),D))) by
FINSEQ_1:def 3;
(
vol (
divset (D,i)))
= ((
upper_volume ((
chi (A,A)),D))
. i) by
A20,
INTEGRA1: 20;
then (
vol (
divset (D,i)))
in (
rng (
upper_volume ((
chi (A,A)),D))) by
A38,
FUNCT_1:def 3;
then
A39: (
vol (
divset (D,i)))
>= (
min (
rng (
upper_volume ((
chi (A,A)),D)))) by
XXREAL_2:def 7;
(
vol (
divset (D1,j)))
<= (
delta D1) by
A21,
Lm5;
then (
delta D1)
>= (
vol (
divset (D,i))) by
A37,
XXREAL_0: 2;
hence thesis by
A39,
XXREAL_0: 2;
end;
end;
hence contradiction by
A11;
end;
A40:
P[1]
proof
(
len D)
in (
Seg (
len D)) by
FINSEQ_1: 3;
then 1
<= (
len D) by
FINSEQ_1: 1;
then
A41: 1
in (
dom D) by
FINSEQ_3: 25;
then
consider j such that
A42: j
in (
dom D1) and
A43: (D
. 1)
in (
divset (D1,j)) by
Th3,
INTEGRA1: 6;
(
PLf(D2,indx)
-
PLf(D1,j))
<= ((1
* ((
upper_bound (
rng f))
- (
lower_bound (
rng f))))
* (
delta D1))
proof
A44: j
<> 1 by
A19,
A41,
A42,
A43;
then
reconsider j1 = (j
- 1) as
Element of
NAT by
A42,
INTEGRA1: 7;
A45: j1
in (
dom D1) by
A42,
A44,
INTEGRA1: 7;
then j1
in (
Seg (
len D1)) by
FINSEQ_1:def 3;
then j1
in (
Seg (
len (
lower_volume (f,D1)))) by
INTEGRA1:def 7;
then
A46: j1
in (
dom (
lower_volume (f,D1))) by
FINSEQ_1:def 3;
A47: (j
- 1)
in (
dom D1) by
A42,
A44,
INTEGRA1: 7;
then
A48: (
indx (D2,D1,j1))
in (
dom D2) by
A13,
INTEGRA1:def 19;
then
A49: (
indx (D2,D1,j1))
in (
Seg (
len D2)) by
FINSEQ_1:def 3;
then
A50: 1
<= (
indx (D2,D1,j1)) by
FINSEQ_1: 1;
then (
mid (D2,1,(
indx (D2,D1,j1)))) is
increasing by
A48,
INTEGRA1: 35;
then
A51: (D2
| (
indx (D2,D1,j1))) is
increasing by
A50,
FINSEQ_6: 116;
j
< (j
+ 1) by
NAT_1: 13;
then j1
< j by
XREAL_1: 19;
then
A52: (
indx (D2,D1,j1))
< (
indx (D2,D1,j)) by
A13,
A42,
A45,
Th8;
then
A53: ((
indx (D2,D1,j1))
+ 1)
<= (
indx (D2,D1,j)) by
NAT_1: 13;
A54: ((
Sum (
mid ((
lower_volume (f,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))
- (
Sum (
mid ((
lower_volume (f,D1)),j,j))))
<= (((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
* (
delta D1))
proof
A55: ((
indx (D2,D1,j))
- (
indx (D2,D1,j1)))
<= 2
proof
reconsider ID1 = ((
indx (D2,D1,j1))
+ 1) as
Element of
NAT ;
reconsider ID2 = (ID1
+ 1) as
Element of
NAT ;
assume ((
indx (D2,D1,j))
- (
indx (D2,D1,j1)))
> 2;
then
A56: ((
indx (D2,D1,j1))
+ (1
+ 1))
< (
indx (D2,D1,j)) by
XREAL_1: 20;
A57: ID1
< ID2 by
NAT_1: 13;
then (
indx (D2,D1,j1))
<= ID2 by
NAT_1: 13;
then
A58: 1
<= ID2 by
A50,
XXREAL_0: 2;
A59: (
indx (D2,D1,j))
in (
dom D2) by
A13,
A42,
INTEGRA1:def 19;
then
A60: (
indx (D2,D1,j))
<= (
len D2) by
FINSEQ_3: 25;
then ID2
<= (
len D2) by
A56,
XXREAL_0: 2;
then ID2
in (
Seg (
len D2)) by
A58,
FINSEQ_1: 1;
then
A61: ID2
in (
dom D2) by
FINSEQ_1:def 3;
then
A62: (D2
. ID2)
< (D2
. (
indx (D2,D1,j))) by
A56,
A59,
SEQM_3:def 1;
A63: 1
<= ID1 by
A50,
NAT_1: 13;
A64: (D1
. j)
= (D2
. (
indx (D2,D1,j))) by
A13,
A42,
INTEGRA1:def 19;
ID1
<= (
indx (D2,D1,j)) by
A56,
A57,
XXREAL_0: 2;
then ID1
<= (
len D2) by
A60,
XXREAL_0: 2;
then ID1
in (
Seg (
len D2)) by
A63,
FINSEQ_1: 1;
then
A65: ID1
in (
dom D2) by
FINSEQ_1:def 3;
then
A66: (D2
. ID1)
< (D2
. ID2) by
A57,
A61,
SEQM_3:def 1;
(
indx (D2,D1,j1))
< ID1 by
NAT_1: 13;
then
A67: (D2
. (
indx (D2,D1,j1)))
< (D2
. ID1) by
A48,
A65,
SEQM_3:def 1;
A68: (D1
. j1)
= (D2
. (
indx (D2,D1,j1))) by
A13,
A45,
INTEGRA1:def 19;
A69: not (D2
. ID1)
in (
rng D1) & not (D2
. ID2)
in (
rng D1)
proof
assume
A70: (D2
. ID1)
in (
rng D1) or (D2
. ID2)
in (
rng D1);
per cases by
A70;
suppose (D2
. ID1)
in (
rng D1);
then
consider n such that
A71: n
in (
dom D1) and
A72: (D1
. n)
= (D2
. ID1) by
PARTFUN1: 3;
j1
< n by
A45,
A67,
A68,
A71,
A72,
SEQ_4: 137;
then
A73: j
< (n
+ 1) by
XREAL_1: 19;
(D2
. ID1)
< (D2
. (
indx (D2,D1,j))) by
A66,
A62,
XXREAL_0: 2;
then n
< j by
A42,
A64,
A71,
A72,
SEQ_4: 137;
hence contradiction by
A73,
NAT_1: 13;
end;
suppose (D2
. ID2)
in (
rng D1);
then
consider n such that
A74: n
in (
dom D1) and
A75: (D1
. n)
= (D2
. ID2) by
PARTFUN1: 3;
(D2
. (
indx (D2,D1,j1)))
< (D2
. ID2) by
A67,
A66,
XXREAL_0: 2;
then j1
< n by
A45,
A68,
A74,
A75,
SEQ_4: 137;
then
A76: j
< (n
+ 1) by
XREAL_1: 19;
n
< j by
A42,
A62,
A64,
A74,
A75,
SEQ_4: 137;
hence contradiction by
A76,
NAT_1: 13;
end;
end;
(
upper_bound (
divset (D1,j)))
= (D1
. j) by
A42,
A44,
INTEGRA1:def 4;
then
A77: (
upper_bound (
divset (D1,j)))
= (D2
. (
indx (D2,D1,j))) by
A13,
A42,
INTEGRA1:def 19;
(
lower_bound (
divset (D1,j)))
= (D1
. j1) by
A42,
A44,
INTEGRA1:def 4;
then
A78: (
lower_bound (
divset (D1,j)))
= (D2
. (
indx (D2,D1,j1))) by
A13,
A45,
INTEGRA1:def 19;
(D2
. ID2)
in ((
rng D)
\/ (
rng D1)) by
A14,
A61,
FUNCT_1:def 3;
then
A79: (D2
. ID2)
in (
rng D) by
A69,
XBOOLE_0:def 3;
(D2
. ID1)
in ((
rng D)
\/ (
rng D1)) by
A14,
A65,
FUNCT_1:def 3;
then
A80: (D2
. ID1)
in (
rng D) by
A69,
XBOOLE_0:def 3;
(D2
. (
indx (D2,D1,j1)))
<= (D2
. ID2) by
A67,
A66,
XXREAL_0: 2;
then (D2
. ID2)
in (
divset (D1,j)) by
A62,
A78,
A77,
INTEGRA2: 1;
then
A81: (D2
. ID2)
in ((
rng D)
/\ (
divset (D1,j))) by
A79,
XBOOLE_0:def 4;
(D2
. ID1)
<= (D2
. (
indx (D2,D1,j))) by
A66,
A62,
XXREAL_0: 2;
then (D2
. ID1)
in (
divset (D1,j)) by
A67,
A78,
A77,
INTEGRA2: 1;
then (D2
. ID1)
in ((
rng D)
/\ (
divset (D1,j))) by
A80,
XBOOLE_0:def 4;
hence contradiction by
A11,
A42,
A57,
A65,
A61,
A81,
Th5,
SEQ_4: 138;
end;
A82: 1
<= ((
indx (D2,D1,j1))
+ 1) by
A50,
NAT_1: 13;
j
<= (
len D1) by
A42,
FINSEQ_3: 25;
then
A83: j
<= (
len (
lower_volume (f,D1))) by
INTEGRA1:def 7;
A84: 1
<= j by
A42,
FINSEQ_3: 25;
then
A85: ((
mid ((
lower_volume (f,D1)),j,j))
. 1)
= ((
lower_volume (f,D1))
. j) by
A83,
FINSEQ_6: 118;
reconsider lv = ((
lower_volume (f,D1))
. j) as
Element of
REAL by
XREAL_0:def 1;
((j
-' j)
+ 1)
= 1 by
Lm1;
then (
len (
mid ((
lower_volume (f,D1)),j,j)))
= 1 by
A84,
A83,
FINSEQ_6: 118;
then (
mid ((
lower_volume (f,D1)),j,j))
=
<*lv*> by
A85,
FINSEQ_1: 40;
then
A86: (
Sum (
mid ((
lower_volume (f,D1)),j,j)))
= ((
lower_volume (f,D1))
. j) by
FINSOP_1: 11;
(
indx (D2,D1,j))
in (
dom D2) by
A13,
A42,
INTEGRA1:def 19;
then
A87: (
indx (D2,D1,j))
in (
Seg (
len D2)) by
FINSEQ_1:def 3;
then
A88: 1
<= (
indx (D2,D1,j)) by
FINSEQ_1: 1;
(
indx (D2,D1,j))
in (
Seg (
len (
lower_volume (f,D2)))) by
A87,
INTEGRA1:def 7;
then
A89: (
indx (D2,D1,j))
<= (
len (
lower_volume (f,D2))) by
FINSEQ_1: 1;
then
A90: ((
indx (D2,D1,j1))
+ 1)
<= (
len (
lower_volume (f,D2))) by
A53,
XXREAL_0: 2;
then ((
indx (D2,D1,j1))
+ 1)
in (
Seg (
len (
lower_volume (f,D2)))) by
A82,
FINSEQ_1: 1;
then
A91: ((
indx (D2,D1,j1))
+ 1)
in (
Seg (
len D2)) by
INTEGRA1:def 7;
then
A92: ((
indx (D2,D1,j1))
+ 1)
in (
dom D2) by
FINSEQ_1:def 3;
((
indx (D2,D1,j))
-' ((
indx (D2,D1,j1))
+ 1))
= ((
indx (D2,D1,j))
- ((
indx (D2,D1,j1))
+ 1)) by
A53,
XREAL_1: 233;
then (((
indx (D2,D1,j))
-' ((
indx (D2,D1,j1))
+ 1))
+ 1)
<= 2 by
A55;
then
A93: (
len (
mid ((
lower_volume (f,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))
<= 2 by
A53,
A88,
A89,
A82,
A90,
FINSEQ_6: 118;
(((
indx (D2,D1,j))
-' ((
indx (D2,D1,j1))
+ 1))
+ 1)
>= (
0
+ 1) by
XREAL_1: 6;
then
A94: 1
<= (
len (
mid ((
lower_volume (f,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))) by
A53,
A88,
A89,
A82,
A90,
FINSEQ_6: 118;
now
per cases by
A94,
A93,
Lm2;
suppose
A95: (
len (
mid ((
lower_volume (f,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))
= 1;
(
upper_bound (
divset (D1,j)))
= (D1
. j) by
A42,
A44,
INTEGRA1:def 4;
then
A96: (
upper_bound (
divset (D1,j)))
= (D2
. (
indx (D2,D1,j))) by
A13,
A42,
INTEGRA1:def 19;
(
lower_bound (
divset (D1,j)))
= (D1
. j1) by
A42,
A44,
INTEGRA1:def 4;
then (
lower_bound (
divset (D1,j)))
= (D2
. (
indx (D2,D1,j1))) by
A13,
A45,
INTEGRA1:def 19;
then
A97: (
divset (D1,j))
=
[.(D2
. (
indx (D2,D1,j1))), (D2
. (
indx (D2,D1,j))).] by
A96,
INTEGRA1: 4;
A98: (
delta D1)
>=
0 by
Th9;
A99: ((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
>=
0 by
A1,
Lm3,
XREAL_1: 48;
A100: (
indx (D2,D1,j))
in (
dom D2) by
A13,
A42,
INTEGRA1:def 19;
(((
indx (D2,D1,j))
-' ((
indx (D2,D1,j1))
+ 1))
+ 1)
= 1 by
A53,
A88,
A89,
A82,
A90,
A95,
FINSEQ_6: 118;
then
A101: ((
indx (D2,D1,j))
- ((
indx (D2,D1,j1))
+ 1))
=
0 by
A53,
XREAL_1: 233;
then (
indx (D2,D1,j))
<> 1 by
A49,
FINSEQ_1: 1;
then
A102: (
upper_bound (
divset (D2,(
indx (D2,D1,j)))))
= (D2
. (
indx (D2,D1,j))) by
A100,
INTEGRA1:def 4;
((
indx (D2,D1,j))
- 1)
= (
indx (D2,D1,j1)) by
A101;
then (
lower_bound (
divset (D2,(
indx (D2,D1,j)))))
= (D2
. (
indx (D2,D1,j1))) by
A50,
A101,
A100,
INTEGRA1:def 4;
then
A103: (
divset (D2,(
indx (D2,D1,j))))
= (
divset (D1,j)) by
A97,
A102,
INTEGRA1: 4;
reconsider lv = ((
lower_volume (f,D2))
. ((
indx (D2,D1,j1))
+ 1)) as
Element of
REAL by
XREAL_0:def 1;
((
mid ((
lower_volume (f,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))
. 1)
= ((
lower_volume (f,D2))
. ((
indx (D2,D1,j1))
+ 1)) by
A88,
A89,
A82,
A90,
FINSEQ_6: 118;
then (
mid ((
lower_volume (f,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))
=
<*lv*> by
A95,
FINSEQ_1: 40;
then (
Sum (
mid ((
lower_volume (f,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))
= ((
lower_volume (f,D2))
. ((
indx (D2,D1,j1))
+ 1)) by
FINSOP_1: 11
.= ((
lower_bound (
rng (f
| (
divset (D2,((
indx (D2,D1,j1))
+ 1))))))
* (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 1))))) by
A92,
INTEGRA1:def 7
.= (
Sum (
mid ((
lower_volume (f,D1)),j,j))) by
A42,
A86,
A101,
A103,
INTEGRA1:def 7;
hence thesis by
A98,
A99;
end;
suppose
A104: (
len (
mid ((
lower_volume (f,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))
= 2;
A105: ((
mid ((
lower_volume (f,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))
. 1)
= ((
lower_volume (f,D2))
. ((
indx (D2,D1,j1))
+ 1)) by
A88,
A89,
A82,
A90,
FINSEQ_6: 118;
A106: (2
+ ((
indx (D2,D1,j1))
+ 1))
>= (
0
+ 1) by
XREAL_1: 7;
((
mid ((
lower_volume (f,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))
. 2)
= (
LVf(D2)
. ((2
+ ((
indx (D2,D1,j1))
+ 1))
-' 1)) by
A53,
A88,
A89,
A82,
A90,
A104,
FINSEQ_6: 118
.= (
LVf(D2)
. ((2
+ ((
indx (D2,D1,j1))
+ 1))
- 1)) by
A106,
XREAL_1: 233
.= (
LVf(D2)
. ((
indx (D2,D1,j1))
+ (1
+ 1)));
then (
mid ((
lower_volume (f,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))
=
<*((
lower_volume (f,D2))
. ((
indx (D2,D1,j1))
+ 1)), ((
lower_volume (f,D2))
. ((
indx (D2,D1,j1))
+ 2))*> by
A104,
A105,
FINSEQ_1: 44;
then
A107: (
Sum (
mid ((
lower_volume (f,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))
= (((
lower_volume (f,D2))
. ((
indx (D2,D1,j1))
+ 1))
+ ((
lower_volume (f,D2))
. ((
indx (D2,D1,j1))
+ 2))) by
RVSUM_1: 77;
A108: (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 1))))
>=
0 by
INTEGRA1: 9;
(
upper_bound (
divset (D1,j)))
= (D1
. j) by
A42,
A44,
INTEGRA1:def 4;
then
A109: (
upper_bound (
divset (D1,j)))
= (D2
. (
indx (D2,D1,j))) by
A13,
A42,
INTEGRA1:def 19;
A110: (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2))))
>=
0 by
INTEGRA1: 9;
(((
indx (D2,D1,j))
-' ((
indx (D2,D1,j1))
+ 1))
+ 1)
= 2 by
A53,
A88,
A89,
A82,
A90,
A104,
FINSEQ_6: 118;
then
A111: (((
indx (D2,D1,j))
- ((
indx (D2,D1,j1))
+ 1))
+ 1)
= 2 by
A53,
XREAL_1: 233;
then
A112: ((
indx (D2,D1,j1))
+ 2)
in (
dom D2) by
A13,
A42,
INTEGRA1:def 19;
(
lower_bound (
divset (D1,j)))
= (D1
. j1) by
A42,
A44,
INTEGRA1:def 4;
then (
lower_bound (
divset (D1,j)))
= (D2
. (
indx (D2,D1,j1))) by
A13,
A45,
INTEGRA1:def 19;
then
A113: (
vol (
divset (D1,j)))
= ((((D2
. ((
indx (D2,D1,j1))
+ 2))
- (D2
. ((
indx (D2,D1,j1))
+ 1)))
+ (D2
. ((
indx (D2,D1,j1))
+ 1)))
- (D2
. (
indx (D2,D1,j1)))) by
A109,
A111,
INTEGRA1:def 5;
((
indx (D2,D1,j1))
+ 1)
in (
Seg (
len (
lower_volume (f,D2)))) by
A82,
A90,
FINSEQ_1: 1;
then ((
indx (D2,D1,j1))
+ 1)
in (
Seg (
len D2)) by
INTEGRA1:def 7;
then
A114: ((
indx (D2,D1,j1))
+ 1)
in (
dom D2) by
FINSEQ_1:def 3;
A115: ((
indx (D2,D1,j1))
+ 1)
<> 1 by
A50,
NAT_1: 13;
then
A116: (
upper_bound (
divset (D2,((
indx (D2,D1,j1))
+ 1))))
= (D2
. ((
indx (D2,D1,j1))
+ 1)) by
A114,
INTEGRA1:def 4;
(((
indx (D2,D1,j1))
+ 1)
- 1)
= ((
indx (D2,D1,j1))
+
0 );
then
A117: (
lower_bound (
divset (D2,((
indx (D2,D1,j1))
+ 1))))
= (D2
. (
indx (D2,D1,j1))) by
A114,
A115,
INTEGRA1:def 4;
A118: (((
indx (D2,D1,j1))
+ 1)
+ 1)
> 1 by
A82,
NAT_1: 13;
(((
indx (D2,D1,j1))
+ 2)
- 1)
= ((
indx (D2,D1,j1))
+ 1);
then
A119: (
lower_bound (
divset (D2,((
indx (D2,D1,j1))
+ 2))))
= (D2
. ((
indx (D2,D1,j1))
+ 1)) by
A112,
A118,
INTEGRA1:def 4;
(
upper_bound (
divset (D2,((
indx (D2,D1,j1))
+ 2))))
= (D2
. ((
indx (D2,D1,j1))
+ 2)) by
A112,
A118,
INTEGRA1:def 4;
then (
vol (
divset (D1,j)))
= (((
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2))))
+ (D2
. ((
indx (D2,D1,j1))
+ 1)))
- (D2
. (
indx (D2,D1,j1)))) by
A119,
A113,
INTEGRA1:def 5
.= ((
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2))))
+ ((
upper_bound (
divset (D2,((
indx (D2,D1,j1))
+ 1))))
- (
lower_bound (
divset (D2,((
indx (D2,D1,j1))
+ 1)))))) by
A117,
A116;
then
A120: (
vol (
divset (D1,j)))
= ((
vol (
divset (D2,((
indx (D2,D1,j1))
+ 1))))
+ (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2))))) by
INTEGRA1:def 5;
then
A121: ((
lower_volume (f,D1))
. j)
= ((
lower_bound (
rng (f
| (
divset (D1,j)))))
* ((
vol (
divset (D2,((
indx (D2,D1,j1))
+ 1))))
+ (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2)))))) by
A42,
INTEGRA1:def 7;
A122: ((
Sum (
mid (
LVf(D2),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))
- (
Sum (
mid (
LVf(D1),j,j))))
<= (((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
* ((
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2))))
+ (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 1))))))
proof
set ID2 = ((
indx (D2,D1,j1))
+ 2);
set ID1 = ((
indx (D2,D1,j1))
+ 1);
set B = (
vol (
divset (D2,ID1)));
set C = (
vol (
divset (D2,ID2)));
(
divset (D1,j))
c= A by
A42,
INTEGRA1: 8;
then
A123: (
lower_bound (
rng (f
| (
divset (D1,j)))))
>= (
lower_bound (
rng f)) by
A1,
Lm4;
ID1
in (
dom D2) by
A91,
FINSEQ_1:def 3;
then (
divset (D2,ID1))
c= A by
INTEGRA1: 8;
then (
lower_bound (
rng (f
| (
divset (D2,ID1)))))
<= (
upper_bound (
rng f)) by
A1,
Lm4;
then
A124: ((
lower_bound (
rng (f
| (
divset (D2,ID1)))))
* (
vol (
divset (D2,ID1))))
<= ((
upper_bound (
rng f))
* (
vol (
divset (D2,ID1)))) by
A108,
XREAL_1: 64;
(((
indx (D2,D1,j))
-' ((
indx (D2,D1,j1))
+ 1))
+ 1)
= 2 by
A53,
A88,
A89,
A82,
A90,
A104,
FINSEQ_6: 118;
then
A125: (((
indx (D2,D1,j))
- ((
indx (D2,D1,j1))
+ 1))
+ 1)
= 2 by
A53,
XREAL_1: 233;
A126: (
indx (D2,D1,j))
in (
dom D2) by
A13,
A42,
INTEGRA1:def 19;
then (
divset (D2,ID2))
c= A by
A125,
INTEGRA1: 8;
then
A127: (
lower_bound (
rng (f
| (
divset (D2,ID2)))))
<= (
upper_bound (
rng f)) by
A1,
Lm4;
reconsider A = (
lower_bound (
rng (f
| (
divset (D1,j))))) as
Real;
A128: (((
lower_volume (f,D1))
. j)
- (A
* B))
= (A
* C) by
A121;
((
lower_bound (
rng (f
| (
divset (D1,j)))))
* (
vol (
divset (D2,ID2))))
>= ((
lower_bound (
rng f))
* (
vol (
divset (D2,ID2)))) by
A110,
A123,
XREAL_1: 64;
then (
Sum (
mid (
LVf(D1),j,j)))
>= (((
lower_bound (
rng (f
| (
divset (D1,j)))))
* (
vol (
divset (D2,ID1))))
+ ((
lower_bound (
rng f))
* (
vol (
divset (D2,ID2))))) by
A86,
A128,
XREAL_1: 19;
then
A129: ((
Sum (
mid (
LVf(D1),j,j)))
- ((
lower_bound (
rng f))
* (
vol (
divset (D2,ID2)))))
>= ((
lower_bound (
rng (f
| (
divset (D1,j)))))
* (
vol (
divset (D2,ID1)))) by
XREAL_1: 19;
((
lower_bound (
rng (f
| (
divset (D1,j)))))
* (
vol (
divset (D2,ID1))))
>= ((
lower_bound (
rng f))
* (
vol (
divset (D2,ID1)))) by
A108,
A123,
XREAL_1: 64;
then ((
Sum (
mid (
LVf(D1),j,j)))
- ((
lower_bound (
rng f))
* (
vol (
divset (D2,ID2)))))
>= ((
lower_bound (
rng f))
* (
vol (
divset (D2,ID1)))) by
A129,
XXREAL_0: 2;
then
A130: (
Sum (
mid (
LVf(D1),j,j)))
>= (((
lower_bound (
rng f))
* (
vol (
divset (D2,ID2))))
+ ((
lower_bound (
rng f))
* (
vol (
divset (D2,ID1))))) by
XREAL_1: 19;
(
Sum (
mid (
LVf(D2),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))
= (((
lower_bound (
rng (f
| (
divset (D2,((
indx (D2,D1,j1))
+ 2))))))
* (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2)))))
+ (
LVf(D2)
. ((
indx (D2,D1,j1))
+ 1))) by
A107,
A126,
A125,
INTEGRA1:def 7
.= (((
lower_bound (
rng (f
| (
divset (D2,((
indx (D2,D1,j1))
+ 2))))))
* (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2)))))
+ ((
lower_bound (
rng (f
| (
divset (D2,((
indx (D2,D1,j1))
+ 1))))))
* (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 1)))))) by
A92,
INTEGRA1:def 7;
then ((
Sum (
mid (
LVf(D2),ID1,(
indx (D2,D1,j)))))
- ((
lower_bound (
rng (f
| (
divset (D2,ID1)))))
* (
vol (
divset (D2,ID1)))))
<= ((
upper_bound (
rng f))
* (
vol (
divset (D2,ID2)))) by
A110,
A127,
XREAL_1: 64;
then (
Sum (
mid (
LVf(D2),ID1,(
indx (D2,D1,j)))))
<= (((
upper_bound (
rng f))
* (
vol (
divset (D2,ID2))))
+ ((
lower_bound (
rng (f
| (
divset (D2,ID1)))))
* (
vol (
divset (D2,ID1))))) by
XREAL_1: 20;
then ((
Sum (
mid (
LVf(D2),ID1,(
indx (D2,D1,j)))))
- ((
upper_bound (
rng f))
* (
vol (
divset (D2,ID2)))))
<= ((
lower_bound (
rng (f
| (
divset (D2,ID1)))))
* (
vol (
divset (D2,ID1)))) by
XREAL_1: 20;
then ((
Sum (
mid (
LVf(D2),ID1,(
indx (D2,D1,j)))))
- ((
upper_bound (
rng f))
* (
vol (
divset (D2,ID2)))))
<= ((
upper_bound (
rng f))
* (
vol (
divset (D2,ID1)))) by
A124,
XXREAL_0: 2;
then (
Sum (
mid (
LVf(D2),ID1,(
indx (D2,D1,j)))))
<= (((
upper_bound (
rng f))
* (
vol (
divset (D2,ID2))))
+ ((
upper_bound (
rng f))
* (
vol (
divset (D2,ID1))))) by
XREAL_1: 20;
then ((
Sum (
mid (
LVf(D2),ID1,(
indx (D2,D1,j)))))
- (
Sum (
mid (
LVf(D1),j,j))))
<= ((((
upper_bound (
rng f))
* (
vol (
divset (D2,ID2))))
+ ((
upper_bound (
rng f))
* (
vol (
divset (D2,ID1)))))
- (((
lower_bound (
rng f))
* (
vol (
divset (D2,ID2))))
+ ((
lower_bound (
rng f))
* (
vol (
divset (D2,ID1)))))) by
A130,
XREAL_1: 13;
hence thesis;
end;
((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
>=
0 by
A1,
Lm3,
XREAL_1: 48;
then (((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
* (
vol (
divset (D1,j))))
<= (((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
* (
delta D1)) by
A42,
Lm5,
XREAL_1: 64;
hence thesis by
A120,
A122,
XXREAL_0: 2;
end;
end;
hence thesis;
end;
j
< (j
+ 1) by
NAT_1: 13;
then
A131: j1
< j by
XREAL_1: 19;
(
indx (D2,D1,j))
in (
dom D2) by
A13,
A42,
INTEGRA1:def 19;
then
A132: (
indx (D2,D1,j))
in (
Seg (
len D2)) by
FINSEQ_1:def 3;
then
A133: 1
<= (
indx (D2,D1,j)) by
FINSEQ_1: 1;
A134: (
indx (D2,D1,j1))
<= (
len D2) by
A49,
FINSEQ_1: 1;
then
A135: (
len (D2
| (
indx (D2,D1,j1))))
= (
indx (D2,D1,j1)) by
FINSEQ_1: 59;
A136: j1
in (
Seg (
len D1)) by
A47,
FINSEQ_1:def 3;
then
A137: j1
<= (
len D1) by
FINSEQ_1: 1;
for x1 be
object st x1
in (
rng (D1
| j1)) holds x1
in (
rng (D2
| (
indx (D2,D1,j1))))
proof
let x1 be
object;
assume x1
in (
rng (D1
| j1));
then
consider k such that
A138: k
in (
dom (D1
| j1)) and
A139: x1
= ((D1
| j1)
. k) by
PARTFUN1: 3;
k
in (
Seg (
len (D1
| j1))) by
A138,
FINSEQ_1:def 3;
then
A140: k
in (
Seg j1) by
A137,
FINSEQ_1: 59;
then
A141: k
in (
dom D1) by
A45,
RFINSEQ: 6;
k
<= j1 by
A140,
FINSEQ_1: 1;
then (D1
. k)
<= (D1
. j1) by
A47,
A141,
SEQ_4: 137;
then (D2
. (
indx (D2,D1,k)))
<= (D1
. j1) by
A13,
A141,
INTEGRA1:def 19;
then
A142: (D2
. (
indx (D2,D1,k)))
<= (D2
. (
indx (D2,D1,j1))) by
A13,
A47,
INTEGRA1:def 19;
A143: ((D1
| j1)
. k)
= (D1
. k) by
A45,
A140,
RFINSEQ: 6;
(D1
. k)
in (
rng D1) by
A141,
FUNCT_1:def 3;
then x1
in (
rng D2) by
A14,
A139,
A143,
XBOOLE_0:def 3;
then
consider n such that
A144: n
in (
dom D2) and
A145: x1
= (D2
. n) by
PARTFUN1: 3;
(D2
. (
indx (D2,D1,k)))
= (D2
. n) by
A13,
A139,
A143,
A141,
A145,
INTEGRA1:def 19;
then
A146: n
<= (
indx (D2,D1,j1)) by
A48,
A144,
A142,
SEQM_3:def 1;
1
<= n by
A144,
FINSEQ_3: 25;
then
A147: n
in (
Seg (
indx (D2,D1,j1))) by
A146,
FINSEQ_1: 1;
then n
in (
Seg (
len (D2
| (
indx (D2,D1,j1))))) by
A134,
FINSEQ_1: 59;
then
A148: n
in (
dom (D2
| (
indx (D2,D1,j1)))) by
FINSEQ_1:def 3;
(D2
. n)
= ((D2
| (
indx (D2,D1,j1)))
. n) by
A48,
A147,
RFINSEQ: 6;
hence thesis by
A145,
A148,
FUNCT_1:def 3;
end;
then
A149: (
rng (D1
| j1))
c= (
rng (D2
| (
indx (D2,D1,j1))));
A150: 1
<= j1 by
A136,
FINSEQ_1: 1;
(
lower_bound (
divset (D1,j)))
<= (D
. 1) by
A43,
INTEGRA2: 1;
then
A151: (D1
. j1)
<= (D
. 1) by
A42,
A44,
INTEGRA1:def 4;
for x1 be
object st x1
in (
rng (D2
| (
indx (D2,D1,j1)))) holds x1
in (
rng (D1
| j1))
proof
let x1 be
object;
assume x1
in (
rng (D2
| (
indx (D2,D1,j1))));
then
consider k such that
A152: k
in (
dom (D2
| (
indx (D2,D1,j1)))) and
A153: x1
= ((D2
| (
indx (D2,D1,j1)))
. k) by
PARTFUN1: 3;
k
in (
Seg (
len (D2
| (
indx (D2,D1,j1))))) by
A152,
FINSEQ_1:def 3;
then
A154: k
in (
Seg (
indx (D2,D1,j1))) by
A134,
FINSEQ_1: 59;
then
A155: k
in (
dom D2) by
A48,
RFINSEQ: 6;
A156: (
len (D1
| j1))
= j1 by
A137,
FINSEQ_1: 59;
k
<= (
indx (D2,D1,j1)) by
A154,
FINSEQ_1: 1;
then (D2
. k)
<= (D2
. (
indx (D2,D1,j1))) by
A48,
A155,
SEQ_4: 137;
then
A157: (D2
. k)
<= (D1
. j1) by
A13,
A47,
INTEGRA1:def 19;
A158: (D2
. k)
in (
rng D1) implies (D2
. k)
in (
rng (D1
| j1))
proof
assume (D2
. k)
in (
rng D1);
then
consider m such that
A159: m
in (
dom D1) and
A160: (D2
. k)
= (D1
. m) by
PARTFUN1: 3;
m
in (
Seg (
len D1)) by
A159,
FINSEQ_1:def 3;
then
A161: 1
<= m by
FINSEQ_1: 1;
A162: m
<= j1 by
A45,
A157,
A159,
A160,
SEQM_3:def 1;
then m
in (
Seg j1) by
A161,
FINSEQ_1: 1;
then
A163: (D2
. k)
= ((D1
| j1)
. m) by
A45,
A160,
RFINSEQ: 6;
m
in (
dom (D1
| j1)) by
A156,
A161,
A162,
FINSEQ_3: 25;
hence thesis by
A163,
FUNCT_1:def 3;
end;
A164: (D2
. k)
in (
rng D) implies (D2
. k)
= (D1
. j1)
proof
assume (D2
. k)
in (
rng D);
then
consider n such that
A165: n
in (
dom D) and
A166: (D2
. k)
= (D
. n) by
PARTFUN1: 3;
1
<= n by
A165,
FINSEQ_3: 25;
then (D
. 1)
<= (D2
. k) by
A41,
A165,
A166,
SEQ_4: 137;
then (D1
. j1)
<= (D2
. k) by
A151,
XXREAL_0: 2;
hence thesis by
A157,
XXREAL_0: 1;
end;
A167: (D2
. k)
in (
rng D) implies (D2
. k)
in (
rng (D1
| j1))
proof
j1
in (
Seg (
len (D1
| j1))) by
A150,
A156,
FINSEQ_1: 1;
then j1
in (
dom (D1
| j1)) by
FINSEQ_1:def 3;
then
A168: ((D1
| j1)
. j1)
in (
rng (D1
| j1)) by
FUNCT_1:def 3;
assume
A169: (D2
. k)
in (
rng D);
j1
in (
Seg j1) by
A150,
FINSEQ_1: 1;
hence thesis by
A45,
A164,
A169,
A168,
RFINSEQ: 6;
end;
(D2
. k)
in (
rng D2) by
A155,
FUNCT_1:def 3;
hence thesis by
A14,
A48,
A153,
A154,
A167,
A158,
RFINSEQ: 6,
XBOOLE_0:def 3;
end;
then (
rng (D2
| (
indx (D2,D1,j1))))
c= (
rng (D1
| j1));
then
A170: (
rng (D2
| (
indx (D2,D1,j1))))
= (
rng (D1
| j1)) by
A149,
XBOOLE_0:def 10;
(
mid (D1,1,j1)) is
increasing by
A42,
A44,
A150,
INTEGRA1: 7,
INTEGRA1: 35;
then
A171: (D1
| j1) is
increasing by
A150,
FINSEQ_6: 116;
then
A172: (D2
| (
indx (D2,D1,j1)))
= (D1
| j1) by
A51,
A170,
Th6;
A173: for k st 1
<= k & k
<= j1 holds k
= (
indx (D2,D1,k))
proof
let k;
assume that
A174: 1
<= k and
A175: k
<= j1;
assume
A176: k
<> (
indx (D2,D1,k));
now
per cases by
A176,
XXREAL_0: 1;
suppose
A177: k
> (
indx (D2,D1,k));
k
<= (
len D1) by
A137,
A175,
XXREAL_0: 2;
then
A178: k
in (
dom D1) by
A174,
FINSEQ_3: 25;
then (
indx (D2,D1,k))
in (
dom D2) by
A13,
INTEGRA1:def 19;
then (
indx (D2,D1,k))
in (
Seg (
len D2)) by
FINSEQ_1:def 3;
then
A179: 1
<= (
indx (D2,D1,k)) by
FINSEQ_1: 1;
A180: (
indx (D2,D1,k))
< j1 by
A175,
A177,
XXREAL_0: 2;
then
A181: (
indx (D2,D1,k))
in (
Seg j1) by
A179,
FINSEQ_1: 1;
(
indx (D2,D1,k))
<= (
indx (D2,D1,j1)) by
A13,
A45,
A175,
A178,
Th7;
then (
indx (D2,D1,k))
in (
Seg (
indx (D2,D1,j1))) by
A179,
FINSEQ_1: 1;
then
A182: ((D2
| (
indx (D2,D1,j1)))
. (
indx (D2,D1,k)))
= (D2
. (
indx (D2,D1,k))) by
A48,
RFINSEQ: 6;
(
indx (D2,D1,k))
<= (
len D1) by
A137,
A180,
XXREAL_0: 2;
then (
indx (D2,D1,k))
in (
dom D1) by
A179,
FINSEQ_3: 25;
then
A183: (D1
. k)
> (D1
. (
indx (D2,D1,k))) by
A177,
A178,
SEQM_3:def 1;
(D1
. k)
= (D2
. (
indx (D2,D1,k))) by
A13,
A178,
INTEGRA1:def 19;
hence contradiction by
A45,
A172,
A182,
A183,
A181,
RFINSEQ: 6;
end;
suppose
A184: k
< (
indx (D2,D1,k));
k
<= (
len D1) by
A137,
A175,
XXREAL_0: 2;
then
A185: k
in (
dom D1) by
A174,
FINSEQ_3: 25;
then (
indx (D2,D1,k))
<= (
indx (D2,D1,j1)) by
A13,
A45,
A175,
Th7;
then
A186: k
<= (
indx (D2,D1,j1)) by
A184,
XXREAL_0: 2;
then k
<= (
len D2) by
A134,
XXREAL_0: 2;
then
A187: k
in (
dom D2) by
A174,
FINSEQ_3: 25;
k
in (
Seg j1) by
A174,
A175,
FINSEQ_1: 1;
then
A188: (D1
. k)
= ((D1
| j1)
. k) by
A47,
RFINSEQ: 6;
(
indx (D2,D1,k))
in (
dom D2) by
A13,
A185,
INTEGRA1:def 19;
then
A189: (D2
. k)
< (D2
. (
indx (D2,D1,k))) by
A184,
A187,
SEQM_3:def 1;
A190: k
in (
Seg (
indx (D2,D1,j1))) by
A174,
A186,
FINSEQ_1: 1;
(D1
. k)
= (D2
. (
indx (D2,D1,k))) by
A13,
A185,
INTEGRA1:def 19;
hence contradiction by
A48,
A172,
A188,
A189,
A190,
RFINSEQ: 6;
end;
end;
hence contradiction;
end;
A191: for k be
Nat st 1
<= k & k
<= (
len ((
lower_volume (f,D1))
| j1)) holds (((
lower_volume (f,D1))
| j1)
. k)
= (((
lower_volume (f,D2))
| (
indx (D2,D1,j1)))
. k)
proof
(
indx (D2,D1,j1))
in (
Seg (
len D2)) by
A48,
FINSEQ_1:def 3;
then (
indx (D2,D1,j1))
in (
Seg (
len (
lower_volume (f,D2)))) by
INTEGRA1:def 7;
then
A192: (
indx (D2,D1,j1))
in (
dom (
lower_volume (f,D2))) by
FINSEQ_1:def 3;
let k be
Nat;
assume that
A193: 1
<= k and
A194: k
<= (
len ((
lower_volume (f,D1))
| j1));
reconsider k as
Element of
NAT by
ORDINAL1:def 12;
A195: (
len (
lower_volume (f,D1)))
= (
len D1) by
INTEGRA1:def 7;
then
A196: k
<= j1 by
A137,
A194,
FINSEQ_1: 59;
then k
<= (
len D1) by
A137,
XXREAL_0: 2;
then
A197: k
in (
Seg (
len D1)) by
A193,
FINSEQ_1: 1;
then
A198: k
in (
dom D1) by
FINSEQ_1:def 3;
then
A199: (
indx (D2,D1,k))
in (
dom D2) by
A13,
INTEGRA1:def 19;
A200: k
in (
Seg j1) by
A193,
A196,
FINSEQ_1: 1;
then (
indx (D2,D1,k))
in (
Seg j1) by
A173,
A193,
A196;
then
A201: (
indx (D2,D1,k))
in (
Seg (
indx (D2,D1,j1))) by
A150,
A173;
then (
indx (D2,D1,k))
<= (
indx (D2,D1,j1)) by
FINSEQ_1: 1;
then
A202: (
indx (D2,D1,k))
<= (
len D2) by
A134,
XXREAL_0: 2;
A203: (D1
. k)
= (D2
. (
indx (D2,D1,k))) by
A13,
A198,
INTEGRA1:def 19;
A204: (
lower_bound (
divset (D1,k)))
= (
lower_bound (
divset (D2,(
indx (D2,D1,k))))) & (
upper_bound (
divset (D1,k)))
= (
upper_bound (
divset (D2,(
indx (D2,D1,k)))))
proof
per cases ;
suppose
A205: k
= 1;
then
A206: (
upper_bound (
divset (D1,k)))
= (D1
. k) by
A198,
INTEGRA1:def 4;
A207: (
lower_bound (
divset (D1,k)))
= (
lower_bound A) by
A198,
A205,
INTEGRA1:def 4;
(
indx (D2,D1,k))
= 1 by
A150,
A173,
A205;
hence thesis by
A199,
A203,
A207,
A206,
INTEGRA1:def 4;
end;
suppose
A208: k
<> 1;
then
reconsider k1 = (k
- 1) as
Element of
NAT by
A198,
INTEGRA1: 7;
k
<= (k
+ 1) by
NAT_1: 11;
then k1
<= k by
XREAL_1: 20;
then
A209: k1
<= j1 by
A196,
XXREAL_0: 2;
A210: (k
- 1)
in (
dom D1) by
A198,
A208,
INTEGRA1: 7;
then k1
in (
Seg (
len D1)) by
FINSEQ_1:def 3;
then 1
<= k1 by
FINSEQ_1: 1;
then k1
= (
indx (D2,D1,k1)) by
A173,
A209;
then
A211: (D2
. ((
indx (D2,D1,k))
- 1))
= (D2
. (
indx (D2,D1,k1))) by
A173,
A193,
A196;
A212: (
indx (D2,D1,k))
<> 1 by
A173,
A193,
A196,
A208;
then
A213: (
lower_bound (
divset (D2,(
indx (D2,D1,k)))))
= (D2
. ((
indx (D2,D1,k))
- 1)) by
A199,
INTEGRA1:def 4;
A214: (
upper_bound (
divset (D2,(
indx (D2,D1,k)))))
= (D2
. (
indx (D2,D1,k))) by
A199,
A212,
INTEGRA1:def 4;
A215: (
upper_bound (
divset (D1,k)))
= (D1
. k) by
A198,
A208,
INTEGRA1:def 4;
(
lower_bound (
divset (D1,k)))
= (D1
. (k
- 1)) by
A198,
A208,
INTEGRA1:def 4;
hence thesis by
A13,
A198,
A215,
A210,
A213,
A214,
A211,
INTEGRA1:def 19;
end;
end;
(
divset (D2,(
indx (D2,D1,k))))
=
[.(
lower_bound (
divset (D2,(
indx (D2,D1,k))))), (
upper_bound (
divset (D2,(
indx (D2,D1,k))))).] by
INTEGRA1: 4;
then
A216: (
divset (D1,k))
= (
divset (D2,(
indx (D2,D1,k)))) by
A204,
INTEGRA1: 4;
A217: k
in (
dom D1) by
A197,
FINSEQ_1:def 3;
j1
in (
Seg (
len (
lower_volume (f,D1)))) by
A45,
A195,
FINSEQ_1:def 3;
then j1
in (
dom (
lower_volume (f,D1))) by
FINSEQ_1:def 3;
then
A218: (((
lower_volume (f,D1))
| j1)
. k)
= ((
lower_volume (f,D1))
. k) by
A200,
RFINSEQ: 6
.= ((
lower_bound (
rng (f
| (
divset (D2,(
indx (D2,D1,k)))))))
* (
vol (
divset (D2,(
indx (D2,D1,k)))))) by
A217,
A216,
INTEGRA1:def 7;
1
<= (
indx (D2,D1,k)) by
A173,
A193,
A196;
then (
indx (D2,D1,k))
in (
Seg (
len D2)) by
A202,
FINSEQ_1: 1;
then
A219: (
indx (D2,D1,k))
in (
dom D2) by
FINSEQ_1:def 3;
(((
lower_volume (f,D2))
| (
indx (D2,D1,j1)))
. k)
= (((
lower_volume (f,D2))
| (
indx (D2,D1,j1)))
. (
indx (D2,D1,k))) by
A173,
A193,
A196
.= ((
lower_volume (f,D2))
. (
indx (D2,D1,k))) by
A201,
A192,
RFINSEQ: 6
.= ((
lower_bound (
rng (f
| (
divset (D2,(
indx (D2,D1,k)))))))
* (
vol (
divset (D2,(
indx (D2,D1,k)))))) by
A219,
INTEGRA1:def 7;
hence thesis by
A218;
end;
(
indx (D2,D1,j1))
in (
dom D2) by
A13,
A47,
INTEGRA1:def 19;
then (
indx (D2,D1,j1))
<= (
len D2) by
FINSEQ_3: 25;
then
A220: (
indx (D2,D1,j1))
<= (
len (
lower_volume (f,D2))) by
INTEGRA1:def 7;
j1
<= (
len D1) by
A47,
FINSEQ_3: 25;
then
A221: j1
<= (
len (
lower_volume (f,D1))) by
INTEGRA1:def 7;
(
len (D2
| (
indx (D2,D1,j1))))
= (
len (D1
| j1)) by
A51,
A171,
A170,
Th6;
then (
indx (D2,D1,j1))
= j1 by
A137,
A135,
FINSEQ_1: 59;
then (
len ((
lower_volume (f,D1))
| j1))
= (
indx (D2,D1,j1)) by
A221,
FINSEQ_1: 59;
then (
len ((
lower_volume (f,D1))
| j1))
= (
len ((
lower_volume (f,D2))
| (
indx (D2,D1,j1)))) by
A220,
FINSEQ_1: 59;
then
A222: ((
lower_volume (f,D2))
| (
indx (D2,D1,j1)))
= ((
lower_volume (f,D1))
| j1) by
A191,
FINSEQ_1: 14;
A223: j
in (
Seg (
len D1)) by
A42,
FINSEQ_1:def 3;
then
A224: 1
<= j by
FINSEQ_1: 1;
(
indx (D2,D1,j))
in (
Seg (
len
LVf(D2))) by
A132,
INTEGRA1:def 7;
then
A225: (
indx (D2,D1,j))
in (
dom
LVf(D2)) by
FINSEQ_1:def 3;
(
indx (D2,D1,j))
<= (
len D2) by
A132,
FINSEQ_1: 1;
then
A226: (
indx (D2,D1,j))
<= (
len
LVf(D2)) by
INTEGRA1:def 7;
j
in (
Seg (
len
LVf(D1))) by
A223,
INTEGRA1:def 7;
then
A227: j
in (
dom
LVf(D1)) by
FINSEQ_1:def 3;
j
<= (
len D1) by
A223,
FINSEQ_1: 1;
then
A228: j
<= (
len
LVf(D1)) by
INTEGRA1:def 7;
j1
in (
Seg (
len D1)) by
A45,
FINSEQ_1:def 3;
then j1
in (
Seg (
len
LVf(D1))) by
INTEGRA1:def 7;
then j1
in (
dom
LVf(D1)) by
FINSEQ_1:def 3;
then
PLf(D1,j1)
= (
Sum (
LVf(D1)
| j1)) by
INTEGRA1:def 20;
then (
PLf(D1,j1)
+ (
Sum (
mid (
LVf(D1),j,j))))
= (
Sum ((
LVf(D1)
| j1)
^ (
mid (
LVf(D1),j,j)))) by
RVSUM_1: 75
.= (
Sum ((
mid (
LVf(D1),1,j1))
^ (
mid (
LVf(D1),(j1
+ 1),j)))) by
A150,
FINSEQ_6: 116
.= (
Sum (
mid (
LVf(D1),1,j))) by
A150,
A228,
A131,
INTEGRA2: 4
.= (
Sum (
LVf(D1)
| j)) by
A224,
FINSEQ_6: 116;
then
A229: (
PLf(D1,j1)
+ (
Sum (
mid ((
lower_volume (f,D1)),j,j))))
=
PLf(D1,j) by
A227,
INTEGRA1:def 20;
(
indx (D2,D1,j1))
in (
Seg (
len D2)) by
A48,
FINSEQ_1:def 3;
then (
indx (D2,D1,j1))
in (
Seg (
len
LVf(D2))) by
INTEGRA1:def 7;
then (
indx (D2,D1,j1))
in (
dom
LVf(D2)) by
FINSEQ_1:def 3;
then
PLf(D2,indx)
= (
Sum (
LVf(D2)
| (
indx (D2,D1,j1)))) by
INTEGRA1:def 20;
then (
PLf(D2,indx)
+ (
Sum (
mid ((
lower_volume (f,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))))
= (
Sum ((
LVf(D2)
| (
indx (D2,D1,j1)))
^ (
mid (
LVf(D2),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))) by
RVSUM_1: 75
.= (
Sum ((
mid (
LVf(D2),1,(
indx (D2,D1,j1))))
^ (
mid (
LVf(D2),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))) by
A50,
FINSEQ_6: 116
.= (
Sum (
mid (
LVf(D2),1,(
indx (D2,D1,j))))) by
A50,
A52,
A226,
INTEGRA2: 4
.= (
Sum (
LVf(D2)
| (
indx (D2,D1,j)))) by
A133,
FINSEQ_6: 116;
then
A230: (
PLf(D2,indx)
+ (
Sum (
mid ((
lower_volume (f,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))))
=
PLf(D2,indx) by
A225,
INTEGRA1:def 20;
(
indx (D2,D1,j1))
in (
Seg (
len D2)) by
A48,
FINSEQ_1:def 3;
then (
indx (D2,D1,j1))
in (
Seg (
len (
lower_volume (f,D2)))) by
INTEGRA1:def 7;
then (
indx (D2,D1,j1))
in (
dom (
lower_volume (f,D2))) by
FINSEQ_1:def 3;
then
PLf(D2,indx)
= (
Sum ((
lower_volume (f,D2))
| (
indx (D2,D1,j1)))) by
INTEGRA1:def 20
.=
PLf(D1,j1) by
A222,
A46,
INTEGRA1:def 20;
hence thesis by
A54,
A230,
A229;
end;
hence thesis by
A42,
A43;
end;
reconsider i as non
zero
Element of
NAT by
A18,
FINSEQ_1: 1;
A231: for i be non
zero
Nat st
P[i] holds
P[(i
+ 1)]
proof
let i be non
zero
Nat;
A232: i
>= 1 by
NAT_1: 14;
assume
A233:
P[i];
P[(i
+ 1)]
proof
A234: i
<= (i
+ 1) by
NAT_1: 11;
assume
A235: (i
+ 1)
in (
dom D);
then
consider j such that
A236: j
in (
dom D1) and
A237: (D
. (i
+ 1))
in (
divset (D1,j)) by
Th3,
INTEGRA1: 6;
A238: (D2
. (
indx (D2,D1,j)))
= (D1
. j) by
A13,
A236,
INTEGRA1:def 19;
(i
+ 1)
<= (
len D) by
A235,
FINSEQ_3: 25;
then i
<= (
len D) by
A234,
XXREAL_0: 2;
then
A239: i
in (
Seg (
len D)) by
A232,
FINSEQ_1: 1;
then
A240: i
in (
dom D) by
FINSEQ_1:def 3;
consider n1 be
Element of
NAT such that
A241: n1
in (
dom D1) and
A242: (D
. i)
in (
divset (D1,n1)) and
A243: (
PLf(D2,indx)
-
PLf(D1,n1))
<= ((i
* ((
upper_bound (
rng f))
- (
lower_bound (
rng f))))
* (
delta D1)) by
A233,
A239,
FINSEQ_1:def 3;
A244: 1
<= (n1
+ 1) by
NAT_1: 12;
A245: n1
< j
proof
assume
A246: n1
>= j;
now
per cases by
A246,
XXREAL_0: 1;
suppose
A247: n1
= j;
(D
. i)
in (
rng D) by
A240,
FUNCT_1:def 3;
then
A248: (D
. i)
in ((
rng D)
/\ (
divset (D1,j))) by
A242,
A247,
XBOOLE_0:def 4;
(D
. (i
+ 1))
in (
rng D) by
A235,
FUNCT_1:def 3;
then
A249: (D
. (i
+ 1))
in ((
rng D)
/\ (
divset (D1,j))) by
A237,
XBOOLE_0:def 4;
(i
+ 1)
> i by
XREAL_1: 29;
hence contradiction by
A11,
A235,
A236,
A240,
A248,
A249,
Th5,
SEQ_4: 138;
end;
suppose n1
> j;
then
A250: n1
>= (j
+ 1) by
NAT_1: 13;
then
A251: (n1
- 1)
>= j by
XREAL_1: 19;
1
<= j by
A236,
FINSEQ_3: 25;
then (1
+ 1)
<= (j
+ 1) by
XREAL_1: 6;
then
A252: n1
<> 1 by
A250,
XXREAL_0: 2;
(
lower_bound (
divset (D1,n1)))
<= (D
. i) by
A242,
INTEGRA2: 1;
then
A253: (D
. i)
>= (D1
. (n1
- 1)) by
A241,
A252,
INTEGRA1:def 4;
(n1
- 1)
in (
dom D1) by
A241,
A252,
INTEGRA1: 7;
then (D1
. j)
<= (D1
. (n1
- 1)) by
A236,
A251,
SEQ_4: 137;
then
A254: (D
. i)
>= (D1
. j) by
A253,
XXREAL_0: 2;
A255: i
< (i
+ 1) by
XREAL_1: 29;
A256: (
upper_bound (
divset (D1,j)))
= (D1
. j)
proof
per cases ;
suppose j
= 1;
hence thesis by
A236,
INTEGRA1:def 4;
end;
suppose j
<> 1;
hence thesis by
A236,
INTEGRA1:def 4;
end;
end;
(D
. (i
+ 1))
<= (
upper_bound (
divset (D1,j))) by
A237,
INTEGRA2: 1;
then (D
. i)
>= (D
. (i
+ 1)) by
A256,
A254,
XXREAL_0: 2;
hence contradiction by
A235,
A240,
A255,
SEQM_3:def 1;
end;
end;
hence thesis;
end;
then
A257: (n1
+ 1)
<= j by
NAT_1: 13;
A258: 1
<= n1 by
A241,
FINSEQ_3: 25;
A259: (
indx (D2,D1,n1))
in (
dom D2) by
A13,
A241,
INTEGRA1:def 19;
then
A260: 1
<= (
indx (D2,D1,n1)) by
FINSEQ_3: 25;
A261: (
indx (D2,D1,j))
in (
dom D2) by
A13,
A236,
INTEGRA1:def 19;
then
A262: 1
<= (
indx (D2,D1,j)) by
FINSEQ_3: 25;
A263: (
indx (D2,D1,j))
<= (
len D2) by
A261,
FINSEQ_3: 25;
then
A264: (
indx (D2,D1,j))
<= (
len
LVf(D2)) by
INTEGRA1:def 7;
A265: 1
<= j by
A236,
FINSEQ_3: 25;
A266: j
<= (
len D1) by
A236,
FINSEQ_3: 25;
then
A267: (n1
+ 1)
<= (
len D1) by
A257,
XXREAL_0: 2;
then
A268: (n1
+ 1)
in (
dom D1) by
A244,
FINSEQ_3: 25;
then
A269: (
indx (D2,D1,(n1
+ 1)))
in (
dom D2) by
A13,
INTEGRA1:def 19;
then
A270: 1
<= (
indx (D2,D1,(n1
+ 1))) by
FINSEQ_3: 25;
A271: (D2
. (
indx (D2,D1,(n1
+ 1))))
= (D1
. (n1
+ 1)) by
A13,
A268,
INTEGRA1:def 19;
then (D2
. (
indx (D2,D1,(n1
+ 1))))
<= (D2
. (
indx (D2,D1,j))) by
A236,
A257,
A268,
A238,
SEQ_4: 137;
then
A272: (
indx (D2,D1,(n1
+ 1)))
<= (
indx (D2,D1,j)) by
A269,
A261,
SEQM_3:def 1;
then (1
+ (
indx (D2,D1,(n1
+ 1))))
<= ((
indx (D2,D1,j))
+ 1) by
XREAL_1: 6;
then 1
<= (((
indx (D2,D1,j))
+ 1)
- (
indx (D2,D1,(n1
+ 1)))) by
XREAL_1: 19;
then
A273: ((
mid (D2,(
indx (D2,D1,(n1
+ 1))),(
indx (D2,D1,j))))
. 1)
= (D2
. ((1
- 1)
+ (
indx (D2,D1,(n1
+ 1))))) by
A272,
A270,
A263,
FINSEQ_6: 122
.= (D1
. (n1
+ 1)) by
A13,
A268,
INTEGRA1:def 19;
A274: (D2
. (
indx (D2,D1,n1)))
= (D1
. n1) by
A13,
A241,
INTEGRA1:def 19;
A275: j
<= (
len
LVf(D1)) by
A266,
INTEGRA1:def 7;
then j
in (
Seg (
len
LVf(D1))) by
A265,
FINSEQ_1: 1;
then
A276: j
in (
dom
LVf(D1)) by
FINSEQ_1:def 3;
A277: (
indx (D2,D1,(n1
+ 1)))
<= (
len D2) by
A269,
FINSEQ_3: 25;
n1
in (
Seg (
len D1)) by
A241,
FINSEQ_1:def 3;
then n1
in (
Seg (
len
LVf(D1))) by
INTEGRA1:def 7;
then n1
in (
dom
LVf(D1)) by
FINSEQ_1:def 3;
then
PLf(D1,n1)
= (
Sum (
LVf(D1)
| n1)) by
INTEGRA1:def 20
.= (
Sum (
mid (
LVf(D1),1,n1))) by
A258,
FINSEQ_6: 116;
then (
PLf(D1,n1)
+ (
Sum (
mid (
LVf(D1),(n1
+ 1),j))))
= (
Sum ((
mid (
LVf(D1),1,n1))
^ (
mid (
LVf(D1),(n1
+ 1),j)))) by
RVSUM_1: 75
.= (
Sum (
mid (
LVf(D1),1,j))) by
A245,
A258,
A275,
INTEGRA2: 4
.= (
Sum (
LVf(D1)
| j)) by
A265,
FINSEQ_6: 116;
then
A278:
PLf(D1,j)
= (
PLf(D1,n1)
+ (
Sum (
mid (
LVf(D1),(n1
+ 1),j)))) by
A276,
INTEGRA1:def 20;
(
indx (D2,D1,j))
in (
Seg (
len D2)) by
A261,
FINSEQ_1:def 3;
then (
indx (D2,D1,j))
in (
Seg (
len
LVf(D2))) by
INTEGRA1:def 7;
then
A279: (
indx (D2,D1,j))
in (
dom
LVf(D2)) by
FINSEQ_1:def 3;
A280: n1
>= 1 by
A241,
FINSEQ_3: 25;
A281: (j
- n1)
>= 1 by
A257,
XREAL_1: 19;
((
Sum (
mid (
LVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j)))))
- (
Sum (
mid (
LVf(D1),(n1
+ 1),j))))
<= (((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
* (
delta D1))
proof
now
per cases by
A257,
XXREAL_0: 1;
suppose
A282: (n1
+ 1)
= j;
A283: ((
indx (D2,D1,j))
- (
indx (D2,D1,n1)))
<= 2
proof
A284: (
upper_bound (
divset (D1,j)))
= (D1
. j) by
A236,
A245,
A280,
INTEGRA1:def 4;
A285: (
lower_bound (
divset (D1,j)))
= (D1
. (j
- 1)) by
A236,
A245,
A280,
INTEGRA1:def 4;
A286: 1
<= ((
indx (D2,D1,n1))
+ 1) by
A260,
NAT_1: 13;
assume ((
indx (D2,D1,j))
- (
indx (D2,D1,n1)))
> 2;
then
A287: ((
indx (D2,D1,n1))
+ 2)
< (
indx (D2,D1,j)) by
XREAL_1: 20;
then
A288: ((
indx (D2,D1,n1))
+ 2)
<= (
len D2) by
A263,
XXREAL_0: 2;
A289: ((
indx (D2,D1,n1))
+ 1)
< ((
indx (D2,D1,n1))
+ 2) by
XREAL_1: 6;
then
A290: (
indx (D2,D1,n1))
< ((
indx (D2,D1,n1))
+ 2) by
NAT_1: 13;
then 1
<= ((
indx (D2,D1,n1))
+ 2) by
A260,
XXREAL_0: 2;
then
A291: ((
indx (D2,D1,n1))
+ 2)
in (
dom D2) by
A288,
FINSEQ_3: 25;
then
A292: (D2
. (
indx (D2,D1,j)))
>= (D2
. ((
indx (D2,D1,n1))
+ 2)) by
A261,
A287,
SEQ_4: 137;
A293: not (D2
. ((
indx (D2,D1,n1))
+ 2))
in (
rng D1)
proof
assume (D2
. ((
indx (D2,D1,n1))
+ 2))
in (
rng D1);
then
consider k1 be
Element of
NAT such that
A294: k1
in (
dom D1) and
A295: (D2
. ((
indx (D2,D1,n1))
+ 2))
= (D1
. k1) by
PARTFUN1: 3;
(D2
. ((
indx (D2,D1,n1))
+ 2))
< (D2
. (
indx (D2,D1,j))) by
A261,
A287,
A291,
SEQM_3:def 1;
then
A296: k1
< j by
A236,
A238,
A294,
A295,
SEQ_4: 137;
(D2
. (
indx (D2,D1,n1)))
< (D2
. ((
indx (D2,D1,n1))
+ 2)) by
A259,
A290,
A291,
SEQM_3:def 1;
then n1
< k1 by
A241,
A274,
A294,
A295,
SEQ_4: 137;
hence contradiction by
A282,
A296,
NAT_1: 13;
end;
(D2
. ((
indx (D2,D1,n1))
+ 2))
in (
rng D2) by
A291,
FUNCT_1:def 3;
then
A297: (D2
. ((
indx (D2,D1,n1))
+ 2))
in (
rng D) by
A14,
A293,
XBOOLE_0:def 3;
A298: (
lower_bound (
divset (D1,j)))
= (D1
. (j
- 1)) by
A236,
A245,
A280,
INTEGRA1:def 4;
A299: (
upper_bound (
divset (D1,j)))
= (D1
. j) by
A236,
A245,
A280,
INTEGRA1:def 4;
(D2
. ((
indx (D2,D1,n1))
+ 2))
>= (D2
. (
indx (D2,D1,n1))) by
A259,
A290,
A291,
SEQ_4: 137;
then (D2
. ((
indx (D2,D1,n1))
+ 2))
in (
divset (D1,j)) by
A274,
A238,
A282,
A298,
A284,
A292,
INTEGRA2: 1;
then
A300: (D2
. ((
indx (D2,D1,n1))
+ 2))
in ((
rng D)
/\ (
divset (D1,j))) by
A297,
XBOOLE_0:def 4;
A301: ((
indx (D2,D1,n1))
+ 1)
< (
indx (D2,D1,j)) by
A287,
A289,
XXREAL_0: 2;
then ((
indx (D2,D1,n1))
+ 1)
<= (
len D2) by
A263,
XXREAL_0: 2;
then
A302: ((
indx (D2,D1,n1))
+ 1)
in (
dom D2) by
A286,
FINSEQ_3: 25;
then
A303: (D2
. (
indx (D2,D1,j)))
>= (D2
. ((
indx (D2,D1,n1))
+ 1)) by
A261,
A301,
SEQ_4: 137;
A304: (
indx (D2,D1,n1))
< ((
indx (D2,D1,n1))
+ 1) by
NAT_1: 13;
A305: not (D2
. ((
indx (D2,D1,n1))
+ 1))
in (
rng D1)
proof
assume (D2
. ((
indx (D2,D1,n1))
+ 1))
in (
rng D1);
then
consider k1 be
Element of
NAT such that
A306: k1
in (
dom D1) and
A307: (D2
. ((
indx (D2,D1,n1))
+ 1))
= (D1
. k1) by
PARTFUN1: 3;
(D2
. ((
indx (D2,D1,n1))
+ 1))
< (D2
. (
indx (D2,D1,j))) by
A261,
A301,
A302,
SEQM_3:def 1;
then
A308: k1
< j by
A236,
A238,
A306,
A307,
SEQ_4: 137;
(D2
. (
indx (D2,D1,n1)))
< (D2
. ((
indx (D2,D1,n1))
+ 1)) by
A259,
A304,
A302,
SEQM_3:def 1;
then n1
< k1 by
A241,
A274,
A306,
A307,
SEQ_4: 137;
hence contradiction by
A282,
A308,
NAT_1: 13;
end;
(D2
. ((
indx (D2,D1,n1))
+ 1))
in (
rng D2) by
A302,
FUNCT_1:def 3;
then
A309: (D2
. ((
indx (D2,D1,n1))
+ 1))
in (
rng D) by
A14,
A305,
XBOOLE_0:def 3;
(D2
. ((
indx (D2,D1,n1))
+ 1))
>= (D2
. (
indx (D2,D1,n1))) by
A259,
A304,
A302,
SEQ_4: 137;
then (D2
. ((
indx (D2,D1,n1))
+ 1))
in (
divset (D1,j)) by
A274,
A238,
A282,
A285,
A299,
A303,
INTEGRA2: 1;
then (D2
. ((
indx (D2,D1,n1))
+ 1))
in ((
rng D)
/\ (
divset (D1,j))) by
A309,
XBOOLE_0:def 4;
then (D2
. ((
indx (D2,D1,n1))
+ 1))
= (D2
. ((
indx (D2,D1,n1))
+ 2)) by
A11,
A236,
A300,
Th5;
hence contradiction by
A289,
A302,
A291,
SEQM_3:def 1;
end;
A310: ((
indx (D2,D1,n1))
+ 1)
< (
indx (D2,D1,j)) implies ((
indx (D2,D1,n1))
+ 2)
= (
indx (D2,D1,j))
proof
assume ((
indx (D2,D1,n1))
+ 1)
< (
indx (D2,D1,j));
then
A311: (((
indx (D2,D1,n1))
+ 1)
+ 1)
<= (
indx (D2,D1,j)) by
NAT_1: 13;
((
indx (D2,D1,n1))
+ 2)
>= (
indx (D2,D1,j)) by
A283,
XREAL_1: 20;
hence thesis by
A311,
XXREAL_0: 1;
end;
A312: 1
<= ((
indx (D2,D1,n1))
+ 1) by
NAT_1: 12;
A313: (
indx (D2,D1,j))
<= (
len
LVf(D2)) by
A263,
INTEGRA1:def 7;
(D1
. n1)
< (D1
. j) by
A236,
A241,
A245,
SEQM_3:def 1;
then
A314: (
indx (D2,D1,n1))
< (
indx (D2,D1,j)) by
A259,
A274,
A261,
A238,
SEQ_4: 137;
then
A315: ((
indx (D2,D1,n1))
+ 1)
<= (
indx (D2,D1,j)) by
NAT_1: 13;
then ((
indx (D2,D1,n1))
+ 1)
<= (
len D2) by
A263,
XXREAL_0: 2;
then ((
indx (D2,D1,n1))
+ 1)
<= (
len
LVf(D2)) by
INTEGRA1:def 7;
then
A316: (
len (
mid (
LVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j)))))
= (((
indx (D2,D1,j))
-' ((
indx (D2,D1,n1))
+ 1))
+ 1) by
A262,
A315,
A312,
A313,
FINSEQ_6: 118
.= (((
indx (D2,D1,j))
- ((
indx (D2,D1,n1))
+ 1))
+ 1) by
A315,
XREAL_1: 233
.= ((
indx (D2,D1,j))
- (
indx (D2,D1,n1)));
((
indx (D2,D1,n1))
+ 1)
<= (
indx (D2,D1,j)) by
A314,
NAT_1: 13;
then
A317: ((
indx (D2,D1,n1))
+ 1)
= (
indx (D2,D1,j)) or ((
indx (D2,D1,n1))
+ 1)
< (
indx (D2,D1,j)) by
XXREAL_0: 1;
A318: (
Sum (
mid (
LVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j)))))
<= ((
upper_bound (
rng f))
* (
vol (
divset (D1,(n1
+ 1)))))
proof
per cases by
A317,
A310;
suppose
A319: ((
indx (D2,D1,j))
- (
indx (D2,D1,n1)))
= 1;
A320: ((
indx (D2,D1,n1))
+ 1)
> 1 by
A260,
NAT_1: 13;
then (
upper_bound (
divset (D2,((
indx (D2,D1,n1))
+ 1))))
= (D2
. ((
indx (D2,D1,n1))
+ 1)) by
A261,
A319,
INTEGRA1:def 4;
then
A321: (
upper_bound (
divset (D2,((
indx (D2,D1,n1))
+ 1))))
= (D1
. j) by
A13,
A236,
A319,
INTEGRA1:def 19;
(
lower_bound (
divset (D2,((
indx (D2,D1,n1))
+ 1))))
= (D2
. (((
indx (D2,D1,n1))
+ 1)
- 1)) by
A261,
A319,
A320,
INTEGRA1:def 4;
then
A322: (
lower_bound (
divset (D2,((
indx (D2,D1,n1))
+ 1))))
= (D1
. n1) by
A13,
A241,
INTEGRA1:def 19;
(
lower_bound (
divset (D1,(n1
+ 1))))
= (D1
. ((n1
+ 1)
- 1)) by
A245,
A280,
A268,
A282,
INTEGRA1:def 4;
then
A323: (
divset (D2,((
indx (D2,D1,n1))
+ 1)))
= (
divset (D1,(n1
+ 1))) by
A245,
A280,
A268,
A282,
A322,
A321,
INTEGRA1:def 4;
A324: (
vol (
divset (D2,((
indx (D2,D1,n1))
+ 1))))
>=
0 by
INTEGRA1: 9;
reconsider LV = (
LVf(D2)
. ((
indx (D2,D1,n1))
+ 1)) as
Element of
REAL by
XREAL_0:def 1;
1
= (((
indx (D2,D1,j))
- ((
indx (D2,D1,n1))
+ 1))
+ 1) by
A319;
then ((
mid (
LVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j))))
. 1)
= (
LVf(D2)
. ((1
+ ((
indx (D2,D1,n1))
+ 1))
- 1)) by
A312,
A313,
FINSEQ_6: 122
.= (
LVf(D2)
. ((
indx (D2,D1,n1))
+ 1));
then
A325: (
mid (
LVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j))))
=
<*LV*> by
A316,
A319,
FINSEQ_1: 40;
(
LVf(D2)
. ((
indx (D2,D1,n1))
+ 1))
= ((
lower_bound (
rng (f
| (
divset (D2,((
indx (D2,D1,n1))
+ 1))))))
* (
vol (
divset (D2,((
indx (D2,D1,n1))
+ 1))))) by
A261,
A319,
INTEGRA1:def 7;
then (
LVf(D2)
. ((
indx (D2,D1,n1))
+ 1))
<= ((
upper_bound (
rng f))
* (
vol (
divset (D1,(n1
+ 1))))) by
A1,
A261,
A319,
A323,
A324,
Th18,
XREAL_1: 64;
hence thesis by
A325,
FINSOP_1: 11;
end;
suppose
A326: ((
indx (D2,D1,j))
- (
indx (D2,D1,n1)))
= 2;
((
indx (D2,D1,n1))
+ 2)
>= (2
+ 1) by
A260,
XREAL_1: 6;
then
A327: ((
indx (D2,D1,n1))
+ 2)
<> 1;
then
A328: (
upper_bound (
divset (D2,((
indx (D2,D1,n1))
+ 2))))
= (D2
. (
indx (D2,D1,j))) by
A261,
A326,
INTEGRA1:def 4;
(((
indx (D2,D1,n1))
+ 2)
- 1)
= ((
indx (D2,D1,n1))
+ 1);
then (
lower_bound (
divset (D2,((
indx (D2,D1,n1))
+ 2))))
= (D2
. ((
indx (D2,D1,n1))
+ 1)) by
A261,
A326,
A327,
INTEGRA1:def 4;
then
A329: (
vol (
divset (D2,((
indx (D2,D1,n1))
+ 2))))
= ((D1
. j)
- (D2
. ((
indx (D2,D1,n1))
+ 1))) by
A238,
A328,
INTEGRA1:def 5;
A330: (
upper_bound (
divset (D1,(n1
+ 1))))
= (D1
. (n1
+ 1)) by
A245,
A280,
A268,
A282,
INTEGRA1:def 4;
(
lower_bound (
divset (D1,(n1
+ 1))))
= (D1
. ((n1
+ 1)
- 1)) by
A245,
A280,
A268,
A282,
INTEGRA1:def 4;
then
A331: (
vol (
divset (D1,(n1
+ 1))))
= ((D1
. (n1
+ 1))
- (D1
. n1)) by
A330,
INTEGRA1:def 5;
A332: (
vol (
divset (D2,((
indx (D2,D1,n1))
+ 2))))
>=
0 by
INTEGRA1: 9;
A333: (
indx (D2,D1,j))
<= (
len
LVf(D2)) by
A263,
INTEGRA1:def 7;
A334: (
vol (
divset (D2,((
indx (D2,D1,n1))
+ 1))))
>=
0 by
INTEGRA1: 9;
A335: 1
<= ((
indx (D2,D1,n1))
+ 1) by
NAT_1: 12;
A336: ((
indx (D2,D1,n1))
+ 1)
<= ((
indx (D2,D1,n1))
+ 2) by
XREAL_1: 6;
then ((
indx (D2,D1,n1))
+ 1)
<= (
len D2) by
A263,
A326,
XXREAL_0: 2;
then
A337: ((
indx (D2,D1,n1))
+ 1)
in (
dom D2) by
A335,
FINSEQ_3: 25;
then (
LVf(D2)
. ((
indx (D2,D1,n1))
+ 1))
= ((
lower_bound (
rng (f
| (
divset (D2,((
indx (D2,D1,n1))
+ 1))))))
* (
vol (
divset (D2,((
indx (D2,D1,n1))
+ 1))))) by
INTEGRA1:def 7;
then
A338: (
LVf(D2)
. ((
indx (D2,D1,n1))
+ 1))
<= ((
upper_bound (
rng f))
* (
vol (
divset (D2,((
indx (D2,D1,n1))
+ 1))))) by
A1,
A337,
A334,
Th18,
XREAL_1: 64;
(((
indx (D2,D1,j))
- ((
indx (D2,D1,n1))
+ 1))
+ 1)
= (1
+ 1) by
A326;
then
A339: ((
mid (
LVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j))))
. 2)
= (
LVf(D2)
. ((2
+ ((
indx (D2,D1,n1))
+ 1))
- 1)) by
A335,
A336,
A333,
FINSEQ_6: 122
.= (
LVf(D2)
. (((
indx (D2,D1,n1))
+
0 )
+ 2));
(((
indx (D2,D1,j))
- ((
indx (D2,D1,n1))
+ 1))
+ 1)
>= 1 by
A326;
then ((
mid (
LVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j))))
. 1)
= (
LVf(D2)
. ((1
+ ((
indx (D2,D1,n1))
+ 1))
- 1)) by
A326,
A335,
A336,
A333,
FINSEQ_6: 122
.= (
LVf(D2)
. ((
indx (D2,D1,n1))
+ 1));
then (
mid (
LVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j))))
=
<*(
LVf(D2)
. ((
indx (D2,D1,n1))
+ 1)), (
LVf(D2)
. ((
indx (D2,D1,n1))
+ 2))*> by
A316,
A326,
A339,
FINSEQ_1: 44;
then
A340: (
Sum (
mid (
LVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j)))))
= ((
LVf(D2)
. ((
indx (D2,D1,n1))
+ 1))
+ (
LVf(D2)
. ((
indx (D2,D1,n1))
+ 2))) by
RVSUM_1: 77;
A341: ((
indx (D2,D1,n1))
+ 1)
> 1 by
A260,
NAT_1: 13;
then
A342: (
upper_bound (
divset (D2,((
indx (D2,D1,n1))
+ 1))))
= (D2
. ((
indx (D2,D1,n1))
+ 1)) by
A337,
INTEGRA1:def 4;
(
lower_bound (
divset (D2,((
indx (D2,D1,n1))
+ 1))))
= (D2
. (((
indx (D2,D1,n1))
+ 1)
- 1)) by
A337,
A341,
INTEGRA1:def 4;
then
A343: (
vol (
divset (D2,((
indx (D2,D1,n1))
+ 1))))
= ((D2
. ((
indx (D2,D1,n1))
+ 1))
- (D1
. n1)) by
A274,
A342,
INTEGRA1:def 5;
(
LVf(D2)
. ((
indx (D2,D1,n1))
+ 2))
= ((
lower_bound (
rng (f
| (
divset (D2,((
indx (D2,D1,n1))
+ 2))))))
* (
vol (
divset (D2,((
indx (D2,D1,n1))
+ 2))))) by
A261,
A326,
INTEGRA1:def 7;
then (
LVf(D2)
. ((
indx (D2,D1,n1))
+ 2))
<= ((
upper_bound (
rng f))
* (
vol (
divset (D2,((
indx (D2,D1,n1))
+ 2))))) by
A1,
A261,
A326,
A332,
Th18,
XREAL_1: 64;
then (
Sum (
mid (
LVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j)))))
<= (((
upper_bound (
rng f))
* (
vol (
divset (D2,((
indx (D2,D1,n1))
+ 1)))))
+ ((
upper_bound (
rng f))
* (
vol (
divset (D2,((
indx (D2,D1,n1))
+ 2)))))) by
A340,
A338,
XREAL_1: 7;
hence thesis by
A282,
A343,
A329,
A331;
end;
end;
A344: (n1
+ 1)
<= (
len
LVf(D1)) by
A267,
INTEGRA1:def 7;
then
A345: (
len (
mid (
LVf(D1),(n1
+ 1),j)))
= ((j
-' (n1
+ 1))
+ 1) by
A244,
A282,
FINSEQ_6: 118
.= ((j
- j)
+ 1) by
A282,
XREAL_1: 233
.= 1;
reconsider lv = ((
lower_bound (
rng (f
| (
divset (D1,(n1
+ 1))))))
* (
vol (
divset (D1,(n1
+ 1))))) as
Element of
REAL by
XREAL_0:def 1;
((n1
+ 1)
+ 1)
<= (j
+ 1) by
A257,
XREAL_1: 6;
then 1
<= ((j
+ 1)
- (n1
+ 1)) by
XREAL_1: 19;
then ((
mid (
LVf(D1),(n1
+ 1),j))
. 1)
= (
LVf(D1)
. ((1
- 1)
+ (n1
+ 1))) by
A244,
A282,
A344,
FINSEQ_6: 122
.= ((
lower_bound (
rng (f
| (
divset (D1,(n1
+ 1))))))
* (
vol (
divset (D1,(n1
+ 1))))) by
A268,
INTEGRA1:def 7;
then (
mid (
LVf(D1),(n1
+ 1),j))
=
<*lv*> by
A345,
FINSEQ_1: 40;
then
A346: (
Sum (
mid (
LVf(D1),(n1
+ 1),j)))
= ((
lower_bound (
rng (f
| (
divset (D1,(n1
+ 1))))))
* (
vol (
divset (D1,(n1
+ 1))))) by
FINSOP_1: 11;
(
divset (D1,(n1
+ 1)))
c= A by
A268,
INTEGRA1: 8;
then
A347: (
lower_bound (
rng (f
| (
divset (D1,(n1
+ 1))))))
>= (
lower_bound (
rng f)) by
A1,
Lm4;
(n1
+ 1)
in (
Seg (
len D1)) by
A268,
FINSEQ_1:def 3;
then (n1
+ 1)
in (
Seg (
len (
upper_volume ((
chi (A,A)),D1)))) by
INTEGRA1:def 6;
then
A348: (n1
+ 1)
in (
dom (
upper_volume ((
chi (A,A)),D1))) by
FINSEQ_1:def 3;
(
vol (
divset (D1,(n1
+ 1))))
= ((
upper_volume ((
chi (A,A)),D1))
. (n1
+ 1)) by
A268,
INTEGRA1: 20;
then (
vol (
divset (D1,(n1
+ 1))))
in (
rng (
upper_volume ((
chi (A,A)),D1))) by
A348,
FUNCT_1:def 3;
then
A349: (
vol (
divset (D1,(n1
+ 1))))
<= (
delta D1) by
XXREAL_2:def 8;
((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
>=
0 by
A1,
Lm3,
XREAL_1: 48;
then
A350: (((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
* (
vol (
divset (D1,(n1
+ 1)))))
<= (((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
* (
delta D1)) by
A349,
XREAL_1: 64;
(
vol (
divset (D1,(n1
+ 1))))
>=
0 by
INTEGRA1: 9;
then (
Sum (
mid (
LVf(D1),(n1
+ 1),j)))
>= ((
lower_bound (
rng f))
* (
vol (
divset (D1,(n1
+ 1))))) by
A346,
A347,
XREAL_1: 64;
then ((
Sum (
mid (
LVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j)))))
- (
Sum (
mid (
LVf(D1),(n1
+ 1),j))))
<= (((
upper_bound (
rng f))
* (
vol (
divset (D1,(n1
+ 1)))))
- ((
lower_bound (
rng f))
* (
vol (
divset (D1,(n1
+ 1)))))) by
A318,
XREAL_1: 13;
hence thesis by
A350,
XXREAL_0: 2;
end;
suppose
A351: (n1
+ 1)
< j;
A352: n1
< (n1
+ 1) by
NAT_1: 13;
then
A353: (D1
. n1)
< (D1
. (n1
+ 1)) by
A241,
A268,
SEQM_3:def 1;
then
consider B be non
empty
closed_interval
Subset of
REAL , MD1,MD2 be
Division of B such that
A354: (D1
. n1)
= (
lower_bound B) and (
upper_bound B)
= (MD2
. (
len MD2)) and
A355: (
upper_bound B)
= (MD1
. (
len MD1)) and
A356: MD1
<= MD2 and
A357: MD1
= (
mid (D1,(n1
+ 1),j)) and
A358: MD2
= (
mid (D2,(
indx (D2,D1,(n1
+ 1))),(
indx (D2,D1,j)))) by
A13,
A236,
A257,
A268,
A273,
Th15;
A359: (
delta MD1)
>=
0 by
Th9;
A360: (
len MD1)
= ((j
-' (n1
+ 1))
+ 1) by
A257,
A265,
A266,
A244,
A267,
A357,
FINSEQ_6: 118;
then
A361: (((
len MD1)
+ (n1
+ 1))
- 1)
= ((((j
- (n1
+ 1))
+ 1)
+ (n1
+ 1))
- 1) by
A257,
XREAL_1: 233
.= j;
(j
-' (n1
+ 1))
= (j
- (n1
+ 1)) by
A257,
XREAL_1: 233;
then
A362: ((j
-' (n1
+ 1))
+ 1)
= (j
- n1);
then
A363: (
len MD1)
= (j
- n1) by
A257,
A265,
A266,
A244,
A267,
A357,
FINSEQ_6: 118;
A364: B
c= A
proof
let x1 be
object;
A365: (
rng D1)
c= A by
INTEGRA1:def 2;
(D1
. n1)
in (
rng D1) by
A241,
FUNCT_1:def 3;
then
A366: (
lower_bound A)
<= (D1
. n1) by
A365,
INTEGRA2: 1;
assume
A367: x1
in B;
then
reconsider x1 as
Real;
A368: x1
<= (MD1
. (
len MD1)) by
A355,
A367,
INTEGRA2: 1;
(D1
. j)
in (
rng D1) by
A236,
FUNCT_1:def 3;
then
A369: (D1
. j)
<= (
upper_bound A) by
A365,
INTEGRA2: 1;
(D1
. n1)
<= x1 by
A354,
A367,
INTEGRA2: 1;
then
A370: (
lower_bound A)
<= x1 by
A366,
XXREAL_0: 2;
(MD1
. (
len MD1))
= (D1
. (((j
- n1)
- 1)
+ (n1
+ 1))) by
A257,
A281,
A266,
A244,
A357,
A362,
A363,
FINSEQ_6: 122
.= (D1
. j);
then x1
<= (
upper_bound A) by
A368,
A369,
XXREAL_0: 2;
hence thesis by
A370,
INTEGRA2: 1;
end;
then
reconsider g = (f
| B) as
Function of B,
REAL by
FUNCT_2: 32;
A371: (
len (
lower_volume (g,MD1)))
= (
len MD1) by
INTEGRA1:def 7
.= ((j
-' (n1
+ 1))
+ 1) by
A257,
A265,
A266,
A244,
A267,
A357,
FINSEQ_6: 118
.= ((j
- (n1
+ 1))
+ 1) by
A257,
XREAL_1: 233;
A372: (
len MD1)
in (
dom MD1) by
FINSEQ_5: 6;
then
A373: 1
<= (
len MD1) by
FINSEQ_3: 25;
A374: (
lower_bound (
divset (MD1,(
len MD1))))
= (
lower_bound (
divset (D1,j))) & (
upper_bound (
divset (MD1,(
len MD1))))
= (
upper_bound (
divset (D1,j)))
proof
per cases ;
suppose
A375: (
len MD1)
= 1;
then
A376: (
upper_bound (
divset (MD1,(
len MD1))))
= (MD1
. (
len MD1)) by
A372,
INTEGRA1:def 4;
A377: (
upper_bound (
divset (D1,j)))
= (D1
. j) by
A236,
A245,
A280,
INTEGRA1:def 4;
(
lower_bound (
divset (D1,j)))
= (D1
. (j
- 1)) by
A236,
A245,
A280,
INTEGRA1:def 4;
hence thesis by
A265,
A266,
A354,
A357,
A361,
A372,
A375,
A376,
A377,
FINSEQ_6: 118,
INTEGRA1:def 4;
end;
suppose
A378: (
len MD1)
<> 1;
then ((
len MD1)
- 1)
in (
dom MD1) by
A372,
INTEGRA1: 7;
then
A379: ((
len MD1)
- 1)
>= 1 by
FINSEQ_3: 25;
(
len MD1)
<= ((
len MD1)
+ 1) by
NAT_1: 11;
then
A380: ((
len MD1)
- 1)
<= (
len MD1) by
XREAL_1: 20;
(
upper_bound (
divset (MD1,(
len MD1))))
= (MD1
. (
len MD1)) by
A372,
A378,
INTEGRA1:def 4;
then
A381: (
upper_bound (
divset (MD1,(
len MD1))))
= (D1
. j) by
A257,
A266,
A244,
A357,
A360,
A361,
A373,
FINSEQ_6: 122;
A382: ((((
len MD1)
- 1)
+ (n1
+ 1))
- 1)
= (j
- 1) by
A363;
(
lower_bound (
divset (MD1,(
len MD1))))
= (MD1
. ((
len MD1)
- 1)) by
A372,
A378,
INTEGRA1:def 4;
then (
lower_bound (
divset (MD1,(
len MD1))))
= (D1
. (j
- 1)) by
A257,
A266,
A244,
A357,
A360,
A382,
A379,
A380,
FINSEQ_6: 122;
hence thesis by
A236,
A245,
A280,
A381,
INTEGRA1:def 4;
end;
end;
A383: (
len MD1)
in (
dom MD1) by
FINSEQ_5: 6;
A384: (
upper_bound (
divset (MD1,(
len MD1))))
= (MD1
. (
len MD1))
proof
per cases ;
suppose (
len MD1)
= 1;
hence thesis by
A383,
INTEGRA1:def 4;
end;
suppose (
len MD1)
<> 1;
hence thesis by
A383,
INTEGRA1:def 4;
end;
end;
(D1
. n1)
< (D1
. (n1
+ 1)) by
A241,
A268,
A352,
SEQM_3:def 1;
then (
indx (D2,D1,n1))
< (
indx (D2,D1,(n1
+ 1))) by
A259,
A274,
A269,
A271,
SEQ_4: 137;
then
A385: ((
indx (D2,D1,n1))
+ 1)
<= (
indx (D2,D1,(n1
+ 1))) by
NAT_1: 13;
then
A386: ((
indx (D2,D1,n1))
+ 1)
<= (
len D2) by
A277,
XXREAL_0: 2;
(
vol B)
= ((
upper_bound B)
- (D1
. n1)) by
A354,
INTEGRA1:def 5;
then (
vol B)
= ((D1
. j)
- (D1
. n1)) by
A236,
A245,
A280,
A355,
A374,
A384,
INTEGRA1:def 4;
then
A387: (
vol B)
<>
0 by
A236,
A241,
A245,
SEQM_3:def 1;
A388: 1
<= ((
indx (D2,D1,n1))
+ 1) by
A260,
NAT_1: 13;
A389: (
indx (D2,D1,n1))
< ((
indx (D2,D1,n1))
+ 1) by
NAT_1: 13;
A390: (
indx (D2,D1,(n1
+ 1)))
= ((
indx (D2,D1,n1))
+ 1)
proof
assume (
indx (D2,D1,(n1
+ 1)))
<> ((
indx (D2,D1,n1))
+ 1);
then
A391: (
indx (D2,D1,(n1
+ 1)))
> ((
indx (D2,D1,n1))
+ 1) by
A385,
XXREAL_0: 1;
A392: ((
indx (D2,D1,n1))
+ 1)
in (
dom D2) by
A388,
A386,
FINSEQ_3: 25;
then
A393: (D2
. ((
indx (D2,D1,n1))
+ 1))
in (
rng D2) by
FUNCT_1:def 3;
now
per cases by
A14,
A393,
XBOOLE_0:def 3;
suppose (D2
. ((
indx (D2,D1,n1))
+ 1))
in (
rng D1);
then
consider n2 be
Element of
NAT such that
A394: n2
in (
dom D1) and
A395: (D2
. ((
indx (D2,D1,n1))
+ 1))
= (D1
. n2) by
PARTFUN1: 3;
(D2
. (
indx (D2,D1,n1)))
< (D2
. ((
indx (D2,D1,n1))
+ 1)) by
A259,
A389,
A392,
SEQM_3:def 1;
then n1
< n2 by
A241,
A274,
A394,
A395,
SEQ_4: 137;
then
A396: (n1
+ 1)
<= n2 by
NAT_1: 13;
(D1
. n2)
< (D1
. (n1
+ 1)) by
A269,
A271,
A391,
A392,
A395,
SEQM_3:def 1;
hence contradiction by
A268,
A394,
A396,
SEQ_4: 137;
end;
suppose
A397: (D2
. ((
indx (D2,D1,n1))
+ 1))
in (
rng D);
A398: (D
. i)
<= (
upper_bound (
divset (D1,n1))) by
A242,
INTEGRA2: 1;
A399: (
upper_bound (
divset (D1,n1)))
= (D1
. n1)
proof
per cases ;
suppose n1
= 1;
hence thesis by
A241,
INTEGRA1:def 4;
end;
suppose n1
<> 1;
hence thesis by
A241,
INTEGRA1:def 4;
end;
end;
consider n2 be
Element of
NAT such that
A400: n2
in (
dom D) and
A401: (D2
. ((
indx (D2,D1,n1))
+ 1))
= (D
. n2) by
A397,
PARTFUN1: 3;
(D1
. n1)
< (D
. n2) by
A259,
A274,
A389,
A392,
A401,
SEQM_3:def 1;
then (D
. i)
< (D
. n2) by
A398,
A399,
XXREAL_0: 2;
then i
< n2 by
A240,
A400,
SEQ_4: 137;
then
A402: (i
+ 1)
<= n2 by
NAT_1: 13;
((n1
+ 1)
+ 1)
<= j by
A351,
NAT_1: 13;
then
A403: (n1
+ 1)
<= (j
- 1) by
XREAL_1: 19;
(j
- 1)
in (
dom D1) by
A236,
A245,
A280,
INTEGRA1: 7;
then
A404: (D1
. (n1
+ 1))
<= (D1
. (j
- 1)) by
A268,
A403,
SEQ_4: 137;
A405: (
lower_bound (
divset (D1,j)))
<= (D
. (i
+ 1)) by
A237,
INTEGRA2: 1;
(
lower_bound (
divset (D1,j)))
= (D1
. (j
- 1)) by
A236,
A245,
A280,
INTEGRA1:def 4;
then
A406: (D1
. (n1
+ 1))
<= (D
. (i
+ 1)) by
A404,
A405,
XXREAL_0: 2;
(D
. n2)
< (D1
. (n1
+ 1)) by
A269,
A271,
A391,
A392,
A401,
SEQM_3:def 1;
then (D
. n2)
< (D
. (i
+ 1)) by
A406,
XXREAL_0: 2;
hence contradiction by
A235,
A400,
A402,
SEQ_4: 137;
end;
end;
hence contradiction;
end;
A407: j
<= (
len
LVf(D1)) by
A266,
INTEGRA1:def 7;
A408: for k be
Nat st 1
<= k & k
<= (
len (
lower_volume (g,MD1))) holds ((
lower_volume (g,MD1))
. k)
= ((
mid (
LVf(D1),(n1
+ 1),j))
. k)
proof
let k be
Nat;
assume that
A409: 1
<= k and
A410: k
<= (
len (
lower_volume (g,MD1)));
k
in (
Seg (
len (
lower_volume (g,MD1)))) by
A409,
A410,
FINSEQ_1: 1;
then
A411: k
in (
Seg (
len MD1)) by
INTEGRA1:def 7;
then
A412: k
in (
dom MD1) by
FINSEQ_1:def 3;
k
in (
dom MD1) by
A411,
FINSEQ_1:def 3;
then
A413: ((
lower_volume (g,MD1))
. k)
= ((
lower_bound (
rng (g
| (
divset (MD1,k)))))
* (
vol (
divset (MD1,k)))) by
INTEGRA1:def 7;
consider k2 be
Element of
NAT such that
A414: (n1
+ 1)
= (1
+ k2);
A415: 1
<= (k
+ k2) by
A409,
NAT_1: 12;
k
<= (j
- ((n1
+ 1)
- 1)) by
A371,
A410;
then (k
+ ((n1
+ 1)
- 1))
<= j by
XREAL_1: 19;
then (k
+ k2)
<= (
len D1) by
A266,
A414,
XXREAL_0: 2;
then
A416: (k
+ k2)
in (
Seg (
len D1)) by
A415,
FINSEQ_1: 1;
then
A417: (k
+ k2)
in (
dom D1) by
FINSEQ_1:def 3;
(1
+ 1)
<= (k
+ k2) by
A258,
A409,
A414,
XREAL_1: 7;
then
A418: 1
< (k
+ k2) by
NAT_1: 13;
A419: k2
= ((n1
+ 1)
- 1) by
A414;
A420: (
lower_bound (
divset (D1,(k
+ k2))))
= (
lower_bound (
divset (MD1,k))) & (
upper_bound (
divset (D1,(k
+ k2))))
= (
upper_bound (
divset (MD1,k)))
proof
per cases ;
suppose
A421: k
= 1;
then (
upper_bound (
divset (MD1,k)))
= (MD1
. k) by
A412,
INTEGRA1:def 4;
then
A422: (
upper_bound (
divset (MD1,k)))
= (D1
. ((k
+ (n1
+ 1))
- 1)) by
A257,
A266,
A244,
A357,
A371,
A409,
A410,
FINSEQ_6: 122;
(
lower_bound (
divset (MD1,k)))
= (D1
. n1) by
A354,
A412,
A421,
INTEGRA1:def 4;
hence thesis by
A419,
A418,
A417,
A421,
A422,
INTEGRA1:def 4;
end;
suppose
A423: k
<> 1;
then (
upper_bound (
divset (MD1,k)))
= (MD1
. k) by
A412,
INTEGRA1:def 4;
then
A424: (
upper_bound (
divset (MD1,k)))
= (D1
. ((k
+ (n1
+ 1))
- 1)) by
A257,
A266,
A244,
A357,
A371,
A409,
A410,
FINSEQ_6: 122;
A425: (k
- 1)
<= ((j
- (n1
+ 1))
+ 1) by
A371,
A410,
XREAL_1: 146,
XXREAL_0: 2;
A426: (
lower_bound (
divset (MD1,k)))
= (MD1
. (k
- 1)) by
A412,
A423,
INTEGRA1:def 4;
A427: (k
- 1)
in (
dom MD1) by
A412,
A423,
INTEGRA1: 7;
then 1
<= (k
- 1) by
FINSEQ_3: 25;
then (
lower_bound (
divset (MD1,k)))
= (D1
. (((k
- 1)
+ (n1
+ 1))
- 1)) by
A257,
A266,
A244,
A357,
A427,
A425,
A426,
FINSEQ_6: 122;
hence thesis by
A414,
A418,
A417,
A424,
INTEGRA1:def 4;
end;
end;
(
divset (MD1,k))
=
[.(
lower_bound (
divset (MD1,k))), (
upper_bound (
divset (MD1,k))).] by
INTEGRA1: 4;
then
A428: (
divset (D1,(k
+ k2)))
= (
divset (MD1,k)) by
A420,
INTEGRA1: 4;
A429: (k
+ k2)
in (
dom D1) by
A416,
FINSEQ_1:def 3;
A430: ((
mid (
LVf(D1),(n1
+ 1),j))
. k)
= (
LVf(D1)
. ((k
+ (n1
+ 1))
- 1)) by
A257,
A244,
A371,
A407,
A409,
A410,
FINSEQ_6: 122
.= ((
lower_bound (
rng (f
| (
divset (D1,(k
+ k2))))))
* (
vol (
divset (D1,(k
+ k2))))) by
A414,
A429,
INTEGRA1:def 7;
k
in (
dom MD1) by
A411,
FINSEQ_1:def 3;
then (
divset (D1,(k
+ k2)))
c= B by
A428,
INTEGRA1: 8;
hence thesis by
A413,
A430,
A428,
FUNCT_1: 51;
end;
A431: (g
| B) is
bounded
proof
consider a be
Real such that
A432: for x be
object st x
in (A
/\ (
dom f)) holds a
<= (f
. x) by
A1,
RFUNCT_1: 71;
for x be
object st x
in (B
/\ (
dom g)) holds a
<= (g
. x)
proof
let x be
object;
A433: ((
dom f)
/\ B)
c= ((
dom f)
/\ A) by
A364,
XBOOLE_1: 26;
assume x
in (B
/\ (
dom g));
then
A434: x
in (
dom g) by
XBOOLE_0:def 4;
then x
in ((
dom f)
/\ B) by
RELAT_1: 61;
then a
<= (f
. x) by
A432,
A433;
hence thesis by
A434,
FUNCT_1: 47;
end;
then
A435: (g
| B) is
bounded_below by
RFUNCT_1: 71;
consider a be
Real such that
A436: for x be
object st x
in (A
/\ (
dom f)) holds (f
. x)
<= a by
A1,
RFUNCT_1: 70;
for x be
object st x
in (B
/\ (
dom g)) holds (g
. x)
<= a
proof
let x be
object;
A437: ((
dom f)
/\ B)
c= ((
dom f)
/\ A) by
A364,
XBOOLE_1: 26;
assume x
in (B
/\ (
dom g));
then
A438: x
in (
dom g) by
XBOOLE_0:def 4;
then x
in ((
dom f)
/\ B) by
RELAT_1: 61;
then a
>= (f
. x) by
A436,
A437;
hence thesis by
A438,
FUNCT_1: 47;
end;
then (g
| B) is
bounded_above by
RFUNCT_1: 70;
hence thesis by
A435;
end;
(
rng f) is
bounded_below by
A1,
INTEGRA1: 11;
then
A439: (
lower_bound (
rng f))
<= (
lower_bound (
rng g)) by
RELAT_1: 70,
SEQ_4: 47;
(
rng f) is
bounded_above by
A1,
INTEGRA1: 13;
then (
upper_bound (
rng f))
>= (
upper_bound (
rng g)) by
RELAT_1: 70,
SEQ_4: 48;
then ((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
>= ((
upper_bound (
rng g))
- (
lower_bound (
rng g))) by
A439,
XREAL_1: 13;
then
A440: (((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
* (
delta MD1))
>= (((
upper_bound (
rng g))
- (
lower_bound (
rng g)))
* (
delta MD1)) by
A359,
XREAL_1: 64;
A441: n1
< (j
- 1) by
A351,
XREAL_1: 20;
A442: (
indx (D2,D1,j))
<= (
len
LVf(D2)) by
A263,
INTEGRA1:def 7;
A443: (
len MD2)
= (((
indx (D2,D1,j))
-' (
indx (D2,D1,(n1
+ 1))))
+ 1) by
A272,
A270,
A277,
A262,
A263,
A358,
FINSEQ_6: 118;
then
A444: (
len MD2)
= (((
indx (D2,D1,j))
- (
indx (D2,D1,(n1
+ 1))))
+ 1) by
A272,
XREAL_1: 233;
then
A445: (
len (
lower_volume (g,MD2)))
= (((
indx (D2,D1,j))
- ((
indx (D2,D1,n1))
+ 1))
+ 1) by
A390,
INTEGRA1:def 7;
for x1 be
object holds x1
in ((
rng MD1)
\/
{(D
. (i
+ 1))}) implies x1
in (
rng MD2)
proof
let x1 be
object;
assume
A446: x1
in ((
rng MD1)
\/
{(D
. (i
+ 1))});
then
reconsider x1 as
Real;
now
per cases by
A446,
XBOOLE_0:def 3;
suppose
A447: x1
in (
rng MD1);
(
rng MD1)
<>
{} ;
then 1
in (
dom MD1) by
FINSEQ_3: 32;
then
A448: 1
<= (
len MD1) by
FINSEQ_3: 25;
(
rng MD1)
c= (
rng D1) by
A357,
FINSEQ_6: 119;
then
A449: x1
in (
rng D1) by
A447;
(
rng D1)
c= (
rng D2) by
A13,
INTEGRA1:def 18;
then
consider k such that
A450: k
in (
dom D2) and
A451: (D2
. k)
= x1 by
A449,
PARTFUN1: 3;
(MD1
. 1)
= (D1
. (n1
+ 1)) by
A265,
A266,
A244,
A267,
A357,
FINSEQ_6: 118;
then (D2
. (
indx (D2,D1,(n1
+ 1))))
<= x1 by
A271,
A447,
Th16;
then
A452: (
indx (D2,D1,(n1
+ 1)))
<= k by
A269,
A450,
A451,
SEQM_3:def 1;
then
consider n be
Nat such that
A453: (k
+ 1)
= ((
indx (D2,D1,(n1
+ 1)))
+ n) by
NAT_1: 10,
NAT_1: 12;
A454: (
len MD1)
= ((j
-' (n1
+ 1))
+ 1) by
A257,
A265,
A266,
A244,
A267,
A357,
FINSEQ_6: 118;
then (((
len MD1)
+ (n1
+ 1))
- 1)
= ((((j
- (n1
+ 1))
+ 1)
+ (n1
+ 1))
- 1) by
A257,
XREAL_1: 233
.= j;
then (MD1
. (
len MD1))
= (D1
. j) by
A257,
A266,
A244,
A357,
A448,
A454,
FINSEQ_6: 122;
then x1
<= (D2
. (
indx (D2,D1,j))) by
A238,
A447,
Th16;
then k
<= (
indx (D2,D1,j)) by
A261,
A450,
A451,
SEQM_3:def 1;
then (k
- (
indx (D2,D1,(n1
+ 1))))
<= ((
indx (D2,D1,j))
- (
indx (D2,D1,(n1
+ 1)))) by
XREAL_1: 9;
then
A455: ((k
- (
indx (D2,D1,(n1
+ 1))))
+ 1)
<= (((
indx (D2,D1,j))
- (
indx (D2,D1,(n1
+ 1))))
+ 1) by
XREAL_1: 6;
((
indx (D2,D1,(n1
+ 1)))
+ 1)
<= (k
+ 1) by
A452,
XREAL_1: 6;
then
A456: 1
<= ((k
+ 1)
- (
indx (D2,D1,(n1
+ 1)))) by
XREAL_1: 19;
then
A457: n
in (
dom MD2) by
A444,
A455,
A453,
FINSEQ_3: 25;
(MD2
. n)
= (D2
. ((n
+ (
indx (D2,D1,(n1
+ 1))))
- 1)) by
A272,
A270,
A263,
A358,
A456,
A455,
A453,
FINSEQ_6: 122
.= (D2
. k) by
A453;
hence x1
in (
rng MD2) by
A451,
A457,
FUNCT_1:def 3;
end;
suppose x1
in
{(D
. (i
+ 1))};
then
A458: x1
= (D
. (i
+ 1)) by
TARSKI:def 1;
reconsider j1 = (j
- 1) as
Element of
NAT by
A236,
A245,
A280,
INTEGRA1: 7;
A459: (
rng D)
c= (
rng D2) by
A12,
INTEGRA1:def 18;
(D
. (i
+ 1))
in (
rng D) by
A235,
FUNCT_1:def 3;
then
consider k such that
A460: k
in (
dom D2) and
A461: x1
= (D2
. k) by
A458,
A459,
PARTFUN1: 3;
(D
. (i
+ 1))
<= (
upper_bound (
divset (D1,j))) by
A237,
INTEGRA2: 1;
then x1
<= (D1
. j) by
A236,
A245,
A280,
A458,
INTEGRA1:def 4;
then
A462: (D2
. k)
<= (D2
. (
indx (D2,D1,j))) by
A13,
A236,
A461,
INTEGRA1:def 19;
n1
< j1 by
A351,
XREAL_1: 20;
then
A463: (n1
+ 1)
<= j1 by
NAT_1: 13;
(j
- 1)
in (
dom D1) by
A236,
A245,
A280,
INTEGRA1: 7;
then
A464: (D1
. (n1
+ 1))
<= (D1
. (j
- 1)) by
A268,
A463,
SEQ_4: 137;
(
lower_bound (
divset (D1,j)))
<= (D
. (i
+ 1)) by
A237,
INTEGRA2: 1;
then (D1
. (j
- 1))
<= x1 by
A236,
A245,
A280,
A458,
INTEGRA1:def 4;
then (D2
. (
indx (D2,D1,(n1
+ 1))))
<= (D2
. k) by
A271,
A461,
A464,
XXREAL_0: 2;
hence x1
in (
rng MD2) by
A269,
A261,
A358,
A460,
A461,
A462,
Th17;
end;
end;
hence thesis;
end;
then
A465: ((
rng MD1)
\/
{(D
. (i
+ 1))})
c= (
rng MD2);
(
rng MD2)
<>
{} ;
then 1
in (
dom MD2) by
FINSEQ_3: 32;
then
A466: 1
<= (
len MD2) by
FINSEQ_3: 25;
A467: (((
len MD2)
- 1)
+ (
indx (D2,D1,(n1
+ 1))))
= (
indx (D2,D1,j)) by
A444;
for x1 be
object holds x1
in (
rng MD2) implies x1
in ((
rng MD1)
\/
{(D
. (i
+ 1))})
proof
let x1 be
object;
assume
A468: x1
in (
rng MD2);
then
reconsider x1 as
Real;
(MD2
. 1)
= (D2
. (
indx (D2,D1,(n1
+ 1)))) by
A270,
A277,
A262,
A263,
A358,
FINSEQ_6: 118;
then
A469: (D1
. (n1
+ 1))
<= x1 by
A271,
A468,
Th16;
(MD2
. (
len MD2))
= (D2
. (
indx (D2,D1,j))) by
A272,
A270,
A263,
A358,
A466,
A443,
A467,
FINSEQ_6: 122;
then
A470: x1
<= (D1
. j) by
A238,
A468,
Th16;
A471: (
rng MD2)
c= (
rng D2) by
A358,
FINSEQ_6: 119;
now
per cases by
A14,
A468,
A471,
XBOOLE_0:def 3;
suppose x1
in (
rng D1);
then
consider k such that
A472: k
in (
dom D1) and
A473: (D1
. k)
= x1 by
PARTFUN1: 3;
A474: (n1
+ 1)
<= k by
A268,
A469,
A472,
A473,
SEQM_3:def 1;
then
A475: 1
<= (k
- n1) by
XREAL_1: 19;
n1
<= (n1
+ 1) by
NAT_1: 11;
then
consider n be
Nat such that
A476: k
= (n1
+ n) by
A474,
NAT_1: 10,
XXREAL_0: 2;
A477: k
<= j by
A236,
A470,
A472,
A473,
SEQM_3:def 1;
then (k
- n1)
<= (
len MD1) by
A363,
XREAL_1: 9;
then n
in (
dom MD1) by
A475,
A476,
FINSEQ_3: 25;
then
A478: (MD1
. n)
in (
rng MD1) by
FUNCT_1:def 3;
((j
- (n1
+ 1))
+ 1)
= (j
- n1);
then
A479: (k
- n1)
<= ((j
- (n1
+ 1))
+ 1) by
A477,
XREAL_1: 9;
(MD1
. n)
= (D1
. (((k
- n1)
- 1)
+ (n1
+ 1))) by
A257,
A266,
A244,
A357,
A475,
A479,
A476,
FINSEQ_6: 122
.= (D1
. k);
hence x1
in ((
rng MD1)
\/
{(D
. (i
+ 1))}) by
A473,
A478,
XBOOLE_0:def 3;
end;
suppose x1
in (
rng D);
then
consider n such that
A480: n
in (
dom D) and
A481: (D
. n)
= x1 by
PARTFUN1: 3;
A482: not (i
+ 1)
< n
proof
A483: (
upper_bound (
divset (D1,j)))
= (D1
. j)
proof
per cases ;
suppose j
= 1;
hence thesis by
A236,
INTEGRA1:def 4;
end;
suppose j
<> 1;
hence thesis by
A236,
INTEGRA1:def 4;
end;
end;
reconsider y1 = (D
. (i
+ 1)) as
Real;
A484: (D
. n)
in (
rng D) by
A480,
FUNCT_1:def 3;
assume (i
+ 1)
< n;
then
A485: (D
. (i
+ 1))
< (D
. n) by
A235,
A480,
SEQM_3:def 1;
(
lower_bound (
divset (D1,j)))
<= (D
. (i
+ 1)) by
A237,
INTEGRA2: 1;
then (
lower_bound (
divset (D1,j)))
<= (D
. n) by
A485,
XXREAL_0: 2;
then (D
. n)
in (
divset (D1,j)) by
A470,
A481,
A483,
INTEGRA2: 1;
then
A486: x1
in ((
rng D)
/\ (
divset (D1,j))) by
A481,
A484,
XBOOLE_0:def 4;
(D
. (i
+ 1))
in (
rng D) by
A235,
FUNCT_1:def 3;
then y1
in ((
rng D)
/\ (
divset (D1,j))) by
A237,
XBOOLE_0:def 4;
hence contradiction by
A11,
A236,
A481,
A485,
A486,
Th5;
end;
A487: (
upper_bound (
divset (D1,n1)))
= (D1
. n1)
proof
per cases ;
suppose n1
= 1;
hence thesis by
A241,
INTEGRA1:def 4;
end;
suppose n1
<> 1;
hence thesis by
A241,
INTEGRA1:def 4;
end;
end;
(D
. i)
<= (
upper_bound (
divset (D1,n1))) by
A242,
INTEGRA2: 1;
then (D
. i)
< (D1
. (n1
+ 1)) by
A353,
A487,
XXREAL_0: 2;
then (D
. i)
< (D
. n) by
A469,
A481,
XXREAL_0: 2;
then i
< n by
A240,
A480,
SEQ_4: 137;
then (i
+ 1)
<= n by
NAT_1: 13;
then (i
+ 1)
= n or (i
+ 1)
< n by
XXREAL_0: 1;
then x1
in
{(D
. (i
+ 1))} by
A481,
A482,
TARSKI:def 1;
hence x1
in ((
rng MD1)
\/
{(D
. (i
+ 1))}) by
XBOOLE_0:def 3;
end;
end;
hence thesis;
end;
then (
rng MD2)
c= ((
rng MD1)
\/
{(D
. (i
+ 1))});
then
A488: (
rng MD2)
= ((
rng MD1)
\/
{(D
. (i
+ 1))}) by
A465,
XBOOLE_0:def 10;
(
delta MD1)
in (
rng (
upper_volume ((
chi (B,B)),MD1))) by
XXREAL_2:def 8;
then
consider k such that
A489: k
in (
dom (
upper_volume ((
chi (B,B)),MD1))) and
A490: ((
upper_volume ((
chi (B,B)),MD1))
. k)
= (
delta MD1) by
PARTFUN1: 3;
A491: k
in (
Seg (
len (
upper_volume ((
chi (B,B)),MD1)))) by
A489,
FINSEQ_1:def 3;
then
A492: k
in (
Seg (
len MD1)) by
INTEGRA1:def 6;
then
A493: k
in (
dom MD1) by
FINSEQ_1:def 3;
A494: k
<= (
len MD1) by
A492,
FINSEQ_1: 1;
then (k
+ n1)
<= j by
A363,
XREAL_1: 19;
then
A495: (k
+ n1)
<= (
len D1) by
A266,
XXREAL_0: 2;
A496: 1
<= k by
A491,
FINSEQ_1: 1;
A497: (n1
+ 1)
> 1 by
A280,
NAT_1: 13;
then n1
> (1
- 1) by
XREAL_1: 19;
then
A498: k
< (k
+ n1) by
XREAL_1: 29;
then 1
< (k
+ n1) by
A496,
XXREAL_0: 2;
then
A499: (k
+ n1)
in (
dom D1) by
A495,
FINSEQ_3: 25;
(
lower_bound (
divset (MD1,k)))
= (
lower_bound (
divset (D1,(k
+ n1)))) & (
upper_bound (
divset (MD1,k)))
= (
upper_bound (
divset (D1,(k
+ n1))))
proof
per cases ;
suppose
A500: k
= 1;
then (
upper_bound (
divset (MD1,k)))
= (MD1
. k) by
A493,
INTEGRA1:def 4;
then
A501: (
upper_bound (
divset (MD1,k)))
= (D1
. ((k
+ (n1
+ 1))
- 1)) by
A257,
A266,
A244,
A357,
A360,
A496,
A494,
FINSEQ_6: 122;
(
lower_bound (
divset (D1,(k
+ n1))))
= (D1
. ((k
+ n1)
- 1)) by
A496,
A498,
A499,
INTEGRA1:def 4;
hence thesis by
A354,
A497,
A493,
A499,
A500,
A501,
INTEGRA1:def 4;
end;
suppose
A502: k
<> 1;
then (
upper_bound (
divset (MD1,k)))
= (MD1
. k) by
A493,
INTEGRA1:def 4;
then
A503: (
upper_bound (
divset (MD1,k)))
= (D1
. ((k
+ (n1
+ 1))
- 1)) by
A257,
A266,
A244,
A357,
A360,
A496,
A494,
FINSEQ_6: 122;
A504: (
lower_bound (
divset (MD1,k)))
= (MD1
. (k
- 1)) by
A493,
A502,
INTEGRA1:def 4;
A505: (k
- 1)
in (
dom MD1) by
A493,
A502,
INTEGRA1: 7;
then
A506: (k
- 1)
<= (
len MD1) by
FINSEQ_3: 25;
1
<= (k
- 1) by
A505,
FINSEQ_3: 25;
then (
lower_bound (
divset (MD1,k)))
= (D1
. (((k
- 1)
+ (n1
+ 1))
- 1)) by
A257,
A266,
A244,
A357,
A360,
A505,
A506,
A504,
FINSEQ_6: 122;
hence thesis by
A496,
A498,
A499,
A503,
INTEGRA1:def 4;
end;
end;
then (
divset (MD1,k))
=
[.(
lower_bound (
divset (D1,(k
+ n1)))), (
upper_bound (
divset (D1,(k
+ n1)))).] by
INTEGRA1: 4;
then
A507: (
divset (MD1,k))
= (
divset (D1,(k
+ n1))) by
INTEGRA1: 4;
(k
+ n1)
in (
Seg (
len D1)) by
A499,
FINSEQ_1:def 3;
then (k
+ n1)
in (
Seg (
len (
upper_volume ((
chi (A,A)),D1)))) by
INTEGRA1:def 6;
then
A508: (k
+ n1)
in (
dom (
upper_volume ((
chi (A,A)),D1))) by
FINSEQ_1:def 3;
k
in (
dom MD1) by
A492,
FINSEQ_1:def 3;
then (
delta MD1)
= (
vol (
divset (MD1,k))) by
A490,
INTEGRA1: 20;
then (
delta MD1)
= ((
upper_volume ((
chi (A,A)),D1))
. (k
+ n1)) by
A499,
A507,
INTEGRA1: 20;
then (
delta MD1)
in (
rng (
upper_volume ((
chi (A,A)),D1))) by
A508,
FUNCT_1:def 3;
then (
delta MD1)
<= (
max (
rng (
upper_volume ((
chi (A,A)),D1)))) by
XXREAL_2:def 8;
then
A509: (
delta MD1)
<= (
delta D1);
((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
>=
0 by
A1,
Lm3,
XREAL_1: 48;
then
A510: (((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
* (
delta MD1))
<= (((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
* (
delta D1)) by
A509,
XREAL_1: 64;
(
lower_bound (
divset (D1,j)))
<= (D
. (i
+ 1)) by
A237,
INTEGRA2: 1;
then
A511: (D1
. (j
- 1))
<= (D
. (i
+ 1)) by
A236,
A245,
A280,
INTEGRA1:def 4;
A512: (D
. (i
+ 1))
<= (
upper_bound (
divset (D1,j))) by
A237,
INTEGRA2: 1;
A513: ((
indx (D2,D1,n1))
+ 1)
<= (
indx (D2,D1,j)) by
A272,
A385,
XXREAL_0: 2;
A514: for k be
Nat st 1
<= k & k
<= (
len (
lower_volume (g,MD2))) holds ((
lower_volume (g,MD2))
. k)
= ((
mid (
LVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j))))
. k)
proof
let k be
Nat;
assume that
A515: 1
<= k and
A516: k
<= (
len (
lower_volume (g,MD2)));
A517: k
in (
Seg (
len (
lower_volume (g,MD2)))) by
A515,
A516,
FINSEQ_1: 1;
A518: ((
mid (
LVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j))))
. k)
= (
LVf(D2)
. ((k
+ ((
indx (D2,D1,n1))
+ 1))
- 1)) by
A388,
A445,
A442,
A513,
A515,
A516,
FINSEQ_6: 122;
1
<= ((
indx (D2,D1,n1))
+ 1) by
NAT_1: 12;
then (1
+ 1)
<= (k
+ ((
indx (D2,D1,n1))
+ 1)) by
A515,
XREAL_1: 7;
then
A519: 1
<= ((k
+ ((
indx (D2,D1,n1))
+ 1))
- 1) by
XREAL_1: 19;
consider k2 be
Element of
NAT such that
A520: ((
indx (D2,D1,n1))
+ 1)
= (1
+ k2);
k
<= ((
indx (D2,D1,j))
- (((
indx (D2,D1,n1))
+ 1)
- 1)) by
A444,
A390,
A516,
INTEGRA1:def 7;
then (k
+ (((
indx (D2,D1,n1))
+ 1)
- 1))
<= (
indx (D2,D1,j)) by
XREAL_1: 19;
then ((k
+ ((
indx (D2,D1,n1))
+ 1))
- 1)
<= (
len
LVf(D2)) by
A442,
XXREAL_0: 2;
then (k
+ k2)
in (
Seg (
len
LVf(D2))) by
A519,
A520,
FINSEQ_1: 1;
then
A521: (k
+ k2)
in (
Seg (
len D2)) by
INTEGRA1:def 7;
then (k
+ k2)
in (
dom D2) by
FINSEQ_1:def 3;
then
A522: ((
mid (
LVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j))))
. k)
= ((
lower_bound (
rng (f
| (
divset (D2,(k
+ k2))))))
* (
vol (
divset (D2,(k
+ k2))))) by
A518,
A520,
INTEGRA1:def 7;
A523: k
in (
Seg (
len MD2)) by
A517,
INTEGRA1:def 7;
A524: (
lower_bound (
divset (MD2,k)))
= (
lower_bound (
divset (D2,(k
+ k2)))) & (
upper_bound (
divset (MD2,k)))
= (
upper_bound (
divset (D2,(k
+ k2))))
proof
(k
+ k2)
>= (1
+ 1) by
A260,
A515,
A520,
XREAL_1: 7;
then
A525: (k
+ k2)
> 1 by
NAT_1: 13;
A526: k
in (
dom MD2) by
A523,
FINSEQ_1:def 3;
A527: (k
+ k2)
in (
dom D2) by
A521,
FINSEQ_1:def 3;
per cases ;
suppose
A528: k
= 1;
then (
upper_bound (
divset (MD2,k)))
= (MD2
. k) by
A526,
INTEGRA1:def 4;
then
A529: (
upper_bound (
divset (MD2,k)))
= (D2
. ((k
+ ((
indx (D2,D1,n1))
+ 1))
- 1)) by
A272,
A263,
A358,
A388,
A390,
A445,
A515,
A516,
FINSEQ_6: 122;
A530: (
lower_bound (
divset (D2,(k
+ k2))))
= (D2
. ((k
+ k2)
- 1)) by
A525,
A527,
INTEGRA1:def 4;
(
lower_bound (
divset (MD2,k)))
= (D1
. n1) by
A354,
A526,
A528,
INTEGRA1:def 4;
hence thesis by
A13,
A241,
A520,
A525,
A527,
A528,
A529,
A530,
INTEGRA1:def 4,
INTEGRA1:def 19;
end;
suppose
A531: k
<> 1;
then (
upper_bound (
divset (MD2,k)))
= (MD2
. k) by
A526,
INTEGRA1:def 4;
then
A532: (
upper_bound (
divset (MD2,k)))
= (D2
. ((k
+ ((
indx (D2,D1,n1))
+ 1))
- 1)) by
A272,
A263,
A358,
A388,
A390,
A445,
A515,
A516,
FINSEQ_6: 122;
A533: (k
- 1)
<= (((
indx (D2,D1,j))
- ((
indx (D2,D1,n1))
+ 1))
+ 1) by
A445,
A516,
XREAL_1: 146,
XXREAL_0: 2;
A534: (
lower_bound (
divset (MD2,k)))
= (MD2
. (k
- 1)) by
A526,
A531,
INTEGRA1:def 4;
A535: (k
- 1)
in (
dom MD2) by
A526,
A531,
INTEGRA1: 7;
then 1
<= (k
- 1) by
FINSEQ_3: 25;
then (
lower_bound (
divset (MD2,k)))
= (D2
. (((k
- 1)
+ ((
indx (D2,D1,n1))
+ 1))
- 1)) by
A272,
A263,
A358,
A388,
A390,
A535,
A533,
A534,
FINSEQ_6: 122;
hence thesis by
A520,
A525,
A527,
A532,
INTEGRA1:def 4;
end;
end;
(
divset (MD2,k))
=
[.(
lower_bound (
divset (MD2,k))), (
upper_bound (
divset (MD2,k))).] by
INTEGRA1: 4;
then
A536: (
divset (MD2,k))
= (
divset (D2,(k
+ k2))) by
A524,
INTEGRA1: 4;
k
in (
dom MD2) by
A523,
FINSEQ_1:def 3;
then (
divset (D2,(k
+ k2)))
c= B by
A536,
INTEGRA1: 8;
then
A537: (
rng (f
| (
divset (D2,(k
+ k2)))))
= (
rng (g
| (
divset (D2,(k
+ k2))))) by
FUNCT_1: 51;
k
in (
dom MD2) by
A523,
FINSEQ_1:def 3;
hence thesis by
A522,
A536,
A537,
INTEGRA1:def 7;
end;
(
lower_bound (
divset (D1,j)))
<= (D
. (i
+ 1)) by
A237,
INTEGRA2: 1;
then
A538: (D
. (i
+ 1))
in (
divset (MD1,(
len MD1))) by
A374,
A512,
INTEGRA2: 1;
(j
- 1)
in (
dom D1) by
A236,
A245,
A280,
INTEGRA1: 7;
then (D1
. n1)
< (D1
. (j
- 1)) by
A241,
A441,
SEQM_3:def 1;
then (D
. (i
+ 1))
> (
lower_bound B) by
A354,
A511,
XXREAL_0: 2;
then ((
Sum (
lower_volume (g,MD2)))
- (
Sum (
lower_volume (g,MD1))))
<= (((
upper_bound (
rng g))
- (
lower_bound (
rng g)))
* (
delta MD1)) by
A356,
A431,
A488,
A538,
A387,
Th13;
then
A539: ((
Sum (
lower_volume (g,MD2)))
- (
Sum (
lower_volume (g,MD1))))
<= (((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
* (
delta MD1)) by
A440,
XXREAL_0: 2;
((
indx (D2,D1,n1))
+ 1)
<= (
len
LVf(D2)) by
A386,
INTEGRA1:def 7;
then (
len (
mid (
LVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j)))))
= (((
indx (D2,D1,j))
-' ((
indx (D2,D1,n1))
+ 1))
+ 1) by
A262,
A388,
A442,
A513,
FINSEQ_6: 118;
then (
len (
lower_volume (g,MD2)))
= (
len (
mid (
LVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j))))) by
A272,
A385,
A445,
XREAL_1: 233,
XXREAL_0: 2;
then
A540: (
Sum (
lower_volume (g,MD2)))
= (
Sum (
mid (
LVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j))))) by
A514,
FINSEQ_1: 14;
(n1
+ 1)
<= (
len
LVf(D1)) by
A267,
INTEGRA1:def 7;
then (
len (
mid (
LVf(D1),(n1
+ 1),j)))
= ((j
-' (n1
+ 1))
+ 1) by
A257,
A265,
A244,
A407,
FINSEQ_6: 118
.= ((j
- (n1
+ 1))
+ 1) by
A257,
XREAL_1: 233;
then (
Sum (
lower_volume (g,MD1)))
= (
Sum (
mid (
LVf(D1),(n1
+ 1),j))) by
A371,
A408,
FINSEQ_1: 14;
hence thesis by
A539,
A510,
A540,
XXREAL_0: 2;
end;
end;
hence thesis;
end;
then
A541: ((
PLf(D2,indx)
-
PLf(D1,n1))
+ ((
Sum (
mid (
LVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j)))))
- (
Sum (
mid (
LVf(D1),(n1
+ 1),j)))))
<= (((i
* ((
upper_bound (
rng f))
- (
lower_bound (
rng f))))
* (
delta D1))
+ (((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
* (
delta D1))) by
A243,
XREAL_1: 7;
n1
< (n1
+ 1) by
NAT_1: 13;
then (D1
. n1)
< (D1
. (n1
+ 1)) by
A241,
A268,
SEQM_3:def 1;
then (
indx (D2,D1,n1))
< (
indx (D2,D1,(n1
+ 1))) by
A259,
A274,
A269,
A271,
SEQ_4: 137;
then
A542: (
indx (D2,D1,n1))
< (
indx (D2,D1,j)) by
A272,
XXREAL_0: 2;
(
indx (D2,D1,n1))
in (
Seg (
len D2)) by
A259,
FINSEQ_1:def 3;
then (
indx (D2,D1,n1))
in (
Seg (
len
LVf(D2))) by
INTEGRA1:def 7;
then (
indx (D2,D1,n1))
in (
dom
LVf(D2)) by
FINSEQ_1:def 3;
then
PLf(D2,indx)
= (
Sum (
LVf(D2)
| (
indx (D2,D1,n1)))) by
INTEGRA1:def 20
.= (
Sum (
mid (
LVf(D2),1,(
indx (D2,D1,n1))))) by
A260,
FINSEQ_6: 116;
then (
PLf(D2,indx)
+ (
Sum (
mid (
LVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j))))))
= (
Sum ((
mid (
LVf(D2),1,(
indx (D2,D1,n1))))
^ (
mid (
LVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j)))))) by
RVSUM_1: 75
.= (
Sum (
mid (
LVf(D2),1,(
indx (D2,D1,j))))) by
A260,
A542,
A264,
INTEGRA2: 4
.= (
Sum (
LVf(D2)
| (
indx (D2,D1,j)))) by
A262,
FINSEQ_6: 116;
then
PLf(D2,indx)
= (
PLf(D2,indx)
+ (
Sum (
mid (
LVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j)))))) by
A279,
INTEGRA1:def 20;
then ((
PLf(D2,indx)
-
PLf(D1,n1))
+ ((
Sum (
mid (
LVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j)))))
- (
Sum (
mid (
LVf(D1),(n1
+ 1),j)))))
= (
PLf(D2,indx)
-
PLf(D1,j)) by
A278;
hence thesis by
A236,
A237,
A541;
end;
hence thesis;
end;
for k be non
zero
Nat holds
P[k] from
NAT_1:sch 10(
A40,
A231);
then
P[i];
hence thesis by
A17;
end;
A543: (
len D1)
in (
dom D1) by
FINSEQ_5: 6;
then (D1
. (
len D1))
= (D2
. (
indx (D2,D1,(
len D1)))) by
A13,
INTEGRA1:def 19;
then (
upper_bound A)
= (D2
. (
indx (D2,D1,(
len D1)))) by
INTEGRA1:def 2;
then
A544: (D2
. (
len D2))
= (D2
. (
indx (D2,D1,(
len D1)))) by
INTEGRA1:def 2;
(
len D)
in (
dom D) by
FINSEQ_5: 6;
then
consider j such that
A545: j
in (
dom D1) and
A546: (D
. (
len D))
in (
divset (D1,j)) and
A547: (
PLf(D2,indx)
-
PLf(D1,j))
<= (((
len D)
* ((
upper_bound (
rng f))
- (
lower_bound (
rng f))))
* (
delta D1)) by
A16;
A548: j
= (
len D1)
proof
assume
A549: j
<> (
len D1);
j
<= (
len D1) by
A545,
FINSEQ_3: 25;
then j
< (
len D1) by
A549,
XXREAL_0: 1;
then (D1
. j)
< (D1
. (
len D1)) by
A545,
A543,
SEQM_3:def 1;
then
A550: (D1
. j)
< (
upper_bound A) by
INTEGRA1:def 2;
A551: (
upper_bound (
divset (D1,j)))
< (
upper_bound A)
proof
per cases ;
suppose j
= 1;
hence thesis by
A545,
A550,
INTEGRA1:def 4;
end;
suppose j
<> 1;
hence thesis by
A545,
A550,
INTEGRA1:def 4;
end;
end;
(D
. (
len D))
<= (
upper_bound (
divset (D1,j))) by
A546,
INTEGRA2: 1;
hence contradiction by
A551,
INTEGRA1:def 2;
end;
(
indx (D2,D1,(
len D1)))
in (
dom D2) by
A13,
A543,
INTEGRA1:def 19;
then (
indx (D2,D1,(
len D1)))
= (
len D2) by
A15,
A544,
SEQ_4: 138;
then (
PLf(D2,len)
- (
lower_sum (f,D1)))
<= (((
len D)
* ((
upper_bound (
rng f))
- (
lower_bound (
rng f))))
* (
delta D1)) by
A547,
A548,
INTEGRA1: 43;
hence thesis by
INTEGRA1: 43;
end;
hence thesis by
A12,
A13,
A14;
end;
hence thesis;
end;
hence thesis;
end;
theorem ::
INTEGRA3:23
Th22: (f
| A) is
bounded implies for D, D1 holds ex D2 st D
<= D2 & D1
<= D2 & (
rng D2)
= ((
rng D1)
\/ (
rng D)) &
0
<= ((
upper_sum (f,D))
- (
upper_sum (f,D2))) &
0
<= ((
upper_sum (f,D1))
- (
upper_sum (f,D2)))
proof
assume
A1: (f
| A) is
bounded;
let D, D1;
consider D2 such that
A3: D
<= D2 and
A4: D1
<= D2 and
A5: (
rng D2)
= ((
rng D1)
\/ (
rng D)) by
Th4;
A6: ((
upper_sum (f,D1))
- (
upper_sum (f,D2)))
>=
0 by
A1,
A4,
INTEGRA1: 45,
XREAL_1: 48;
((
upper_sum (f,D))
- (
upper_sum (f,D2)))
>=
0 by
A1,
A3,
INTEGRA1: 45,
XREAL_1: 48;
hence thesis by
A3,
A4,
A5,
A6;
end;
theorem ::
INTEGRA3:24
Th23: (f
| A) is
bounded implies for D, D1 st (
delta D1)
< (
min (
rng (
upper_volume ((
chi (A,A)),D)))) holds ex D2 st D
<= D2 & D1
<= D2 & (
rng D2)
= ((
rng D1)
\/ (
rng D)) & ((
upper_sum (f,D1))
- (
upper_sum (f,D2)))
<= (((
len D)
* ((
upper_bound (
rng f))
- (
lower_bound (
rng f))))
* (
delta D1))
proof
assume
A1: (f
| A) is
bounded;
then
A2: for D, D1 holds ex D2 st D
<= D2 & D1
<= D2 & (
rng D2)
= ((
rng D1)
\/ (
rng D)) &
0
<= ((
upper_sum (f,D))
- (
upper_sum (f,D2))) &
0
<= ((
upper_sum (f,D1))
- (
upper_sum (f,D2))) by
Th22;
let D, D1;
assume
A8: (
delta D1)
< (
min (
rng (
upper_volume ((
chi (A,A)),D))));
ex D2 st D
<= D2 & D1
<= D2 & (
rng D2)
= ((
rng D1)
\/ (
rng D)) & ((
upper_sum (f,D1))
- (
upper_sum (f,D2)))
<= (((
len D)
* ((
upper_bound (
rng f))
- (
lower_bound (
rng f))))
* (
delta D1))
proof
consider D2 be
Division of A such that
A9: D
<= D2 and
A10: D1
<= D2 and
A11: (
rng D2)
= ((
rng D1)
\/ (
rng D)) and
0
<= ((
upper_sum (f,D))
- (
upper_sum (f,D2))) and
0
<= ((
upper_sum (f,D1))
- (
upper_sum (f,D2))) by
A2;
((
upper_sum (f,D1))
- (
upper_sum (f,D2)))
<= (((
len D)
* ((
upper_bound (
rng f))
- (
lower_bound (
rng f))))
* (
delta D1))
proof
deffunc
UVf(
Division of A) = (
upper_volume (f,$1));
deffunc
PUf(
Division of A,
Nat) = ((
PartSums (
upper_volume (f,$1)))
. $2);
A12: (
len D2)
in (
dom D2) by
FINSEQ_5: 6;
A13: for i st i
in (
dom D) holds ex j st j
in (
dom D1) & (D
. i)
in (
divset (D1,j)) & (
PUf(D1,j)
-
PUf(D2,indx))
<= ((i
* ((
upper_bound (
rng f))
- (
lower_bound (
rng f))))
* (
delta D1))
proof
defpred
P[ non
zero
Nat] means $1
in (
dom D) implies ex j st j
in (
dom D1) & (D
. $1)
in (
divset (D1,j)) & (
PUf(D1,j)
-
PUf(D2,indx))
<= (($1
* ((
upper_bound (
rng f))
- (
lower_bound (
rng f))))
* (
delta D1));
let i;
assume
A14: i
in (
dom D);
then
A15: i
in (
Seg (
len D)) by
FINSEQ_1:def 3;
A16: for i, j st i
in (
dom D) & j
in (
dom D1) & (D
. i)
in (
divset (D1,j)) holds j
>= 2
proof
let i, j;
assume
A17: i
in (
dom D);
assume that
A18: j
in (
dom D1) and
A19: (D
. i)
in (
divset (D1,j));
assume j
< 2;
then j
< (1
+ 1);
then
A20: j
<= 1 by
NAT_1: 13;
j
in (
Seg (
len D1)) by
A18,
FINSEQ_1:def 3;
then j
>= 1 by
FINSEQ_1: 1;
then j
= 1 by
A20,
XXREAL_0: 1;
then
A21: (
lower_bound (
divset (D1,j)))
= (
lower_bound A) by
A18,
INTEGRA1:def 4;
A22: (D
. i)
<= (
upper_bound (
divset (D1,j))) by
A19,
INTEGRA2: 1;
(
delta D1)
>= (
min (
rng (
upper_volume ((
chi (A,A)),D))))
proof
per cases ;
suppose
A23: i
= 1;
(
len D)
in (
Seg (
len D)) by
FINSEQ_1: 3;
then 1
<= (
len D) by
FINSEQ_1: 1;
then
A24: 1
in (
dom D) by
FINSEQ_3: 25;
then
A25: (
lower_bound (
divset (D,1)))
= (
lower_bound A) by
INTEGRA1:def 4;
1
in (
Seg (
len D)) by
A24,
FINSEQ_1:def 3;
then 1
in (
Seg (
len (
upper_volume ((
chi (A,A)),D)))) by
INTEGRA1:def 6;
then
A26: 1
in (
dom (
upper_volume ((
chi (A,A)),D))) by
FINSEQ_1:def 3;
(
vol (
divset (D,1)))
= ((
upper_volume ((
chi (A,A)),D))
. 1) by
A24,
INTEGRA1: 20;
then (
vol (
divset (D,1)))
in (
rng (
upper_volume ((
chi (A,A)),D))) by
A26,
FUNCT_1:def 3;
then
A27: (
vol (
divset (D,1)))
>= (
min (
rng (
upper_volume ((
chi (A,A)),D)))) by
XXREAL_2:def 7;
A28: (
upper_bound (
divset (D,1)))
= (D
. 1) by
A24,
INTEGRA1:def 4;
((
upper_bound (
divset (D1,j)))
- (
lower_bound A))
>= ((D
. 1)
- (
lower_bound A)) by
A22,
A23,
XREAL_1: 9;
then (
vol (
divset (D1,j)))
>= ((
upper_bound (
divset (D,1)))
- (
lower_bound (
divset (D,1)))) by
A21,
A25,
A28,
INTEGRA1:def 5;
then
A29: (
vol (
divset (D1,j)))
>= (
vol (
divset (D,1))) by
INTEGRA1:def 5;
(
vol (
divset (D1,j)))
<= (
delta D1) by
A18,
Lm5;
then (
delta D1)
>= (
vol (
divset (D,1))) by
A29,
XXREAL_0: 2;
hence thesis by
A27,
XXREAL_0: 2;
end;
suppose
A30: i
<> 1;
then (D
. (i
- 1))
in A by
A17,
INTEGRA1: 7;
then
A31: (
lower_bound A)
<= (D
. (i
- 1)) by
INTEGRA2: 1;
(
lower_bound (
divset (D,i)))
= (D
. (i
- 1)) by
A17,
A30,
INTEGRA1:def 4;
then
A32: ((
upper_bound (
divset (D,i)))
- (
lower_bound A))
>= ((
upper_bound (
divset (D,i)))
- (
lower_bound (
divset (D,i)))) by
A31,
XREAL_1: 10;
(
upper_bound (
divset (D,i)))
= (D
. i) by
A17,
A30,
INTEGRA1:def 4;
then ((
upper_bound (
divset (D1,j)))
- (
lower_bound (
divset (D1,j))))
>= ((
upper_bound (
divset (D,i)))
- (
lower_bound A)) by
A22,
A21,
XREAL_1: 9;
then ((
upper_bound (
divset (D1,j)))
- (
lower_bound (
divset (D1,j))))
>= ((
upper_bound (
divset (D,i)))
- (
lower_bound (
divset (D,i)))) by
A32,
XXREAL_0: 2;
then (
vol (
divset (D1,j)))
>= ((
upper_bound (
divset (D,i)))
- (
lower_bound (
divset (D,i)))) by
INTEGRA1:def 5;
then
A33: (
vol (
divset (D1,j)))
>= (
vol (
divset (D,i))) by
INTEGRA1:def 5;
i
in (
Seg (
len D)) by
A17,
FINSEQ_1:def 3;
then i
in (
Seg (
len (
upper_volume ((
chi (A,A)),D)))) by
INTEGRA1:def 6;
then
A34: i
in (
dom (
upper_volume ((
chi (A,A)),D))) by
FINSEQ_1:def 3;
(
vol (
divset (D,i)))
= ((
upper_volume ((
chi (A,A)),D))
. i) by
A17,
INTEGRA1: 20;
then (
vol (
divset (D,i)))
in (
rng (
upper_volume ((
chi (A,A)),D))) by
A34,
FUNCT_1:def 3;
then
A35: (
vol (
divset (D,i)))
>= (
min (
rng (
upper_volume ((
chi (A,A)),D)))) by
XXREAL_2:def 7;
(
vol (
divset (D1,j)))
<= (
delta D1) by
A18,
Lm5;
then (
delta D1)
>= (
vol (
divset (D,i))) by
A33,
XXREAL_0: 2;
hence thesis by
A35,
XXREAL_0: 2;
end;
end;
hence contradiction by
A8;
end;
A36:
P[1]
proof
(
len D)
in (
Seg (
len D)) by
FINSEQ_1: 3;
then 1
<= (
len D) by
FINSEQ_1: 1;
then
A37: 1
in (
dom D) by
FINSEQ_3: 25;
then
consider j such that
A38: j
in (
dom D1) and
A39: (D
. 1)
in (
divset (D1,j)) by
Th3,
INTEGRA1: 6;
(
PUf(D1,j)
-
PUf(D2,indx))
<= ((1
* ((
upper_bound (
rng f))
- (
lower_bound (
rng f))))
* (
delta D1))
proof
A40: j
<> 1 by
A16,
A37,
A38,
A39;
then
reconsider j1 = (j
- 1) as
Element of
NAT by
A38,
INTEGRA1: 7;
A41: j1
in (
dom D1) by
A38,
A40,
INTEGRA1: 7;
then j1
in (
Seg (
len D1)) by
FINSEQ_1:def 3;
then j1
in (
Seg (
len (
upper_volume (f,D1)))) by
INTEGRA1:def 6;
then
A42: j1
in (
dom (
upper_volume (f,D1))) by
FINSEQ_1:def 3;
A43: (j
- 1)
in (
dom D1) by
A38,
A40,
INTEGRA1: 7;
then
A44: (
indx (D2,D1,j1))
in (
dom D2) by
A10,
INTEGRA1:def 19;
then
A45: (
indx (D2,D1,j1))
in (
Seg (
len D2)) by
FINSEQ_1:def 3;
then
A46: 1
<= (
indx (D2,D1,j1)) by
FINSEQ_1: 1;
then (
mid (D2,1,(
indx (D2,D1,j1)))) is
increasing by
A44,
INTEGRA1: 35;
then
A47: (D2
| (
indx (D2,D1,j1))) is
increasing by
A46,
FINSEQ_6: 116;
j
< (j
+ 1) by
NAT_1: 13;
then j1
< j by
XREAL_1: 19;
then
A48: (
indx (D2,D1,j1))
< (
indx (D2,D1,j)) by
A10,
A38,
A41,
Th8;
then
A49: ((
indx (D2,D1,j1))
+ 1)
<= (
indx (D2,D1,j)) by
NAT_1: 13;
A50: ((
Sum (
mid ((
upper_volume (f,D1)),j,j)))
- (
Sum (
mid ((
upper_volume (f,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))))
<= (((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
* (
delta D1))
proof
A51: ((
indx (D2,D1,j))
- (
indx (D2,D1,j1)))
<= 2
proof
reconsider ID1 = ((
indx (D2,D1,j1))
+ 1) as
Element of
NAT ;
reconsider ID2 = (ID1
+ 1) as
Element of
NAT ;
assume ((
indx (D2,D1,j))
- (
indx (D2,D1,j1)))
> 2;
then
A52: ((
indx (D2,D1,j1))
+ (1
+ 1))
< (
indx (D2,D1,j)) by
XREAL_1: 20;
A53: ID1
< ID2 by
NAT_1: 13;
then (
indx (D2,D1,j1))
<= ID2 by
NAT_1: 13;
then
A54: 1
<= ID2 by
A46,
XXREAL_0: 2;
A55: (
indx (D2,D1,j))
in (
dom D2) by
A10,
A38,
INTEGRA1:def 19;
then
A56: (
indx (D2,D1,j))
<= (
len D2) by
FINSEQ_3: 25;
then ID2
<= (
len D2) by
A52,
XXREAL_0: 2;
then
A57: ID2
in (
dom D2) by
A54,
FINSEQ_3: 25;
then
A58: (D2
. ID2)
< (D2
. (
indx (D2,D1,j))) by
A52,
A55,
SEQM_3:def 1;
A59: 1
<= ID1 by
A46,
NAT_1: 13;
A60: (D1
. j)
= (D2
. (
indx (D2,D1,j))) by
A10,
A38,
INTEGRA1:def 19;
ID1
<= (
indx (D2,D1,j)) by
A52,
A53,
XXREAL_0: 2;
then ID1
<= (
len D2) by
A56,
XXREAL_0: 2;
then
A61: ID1
in (
dom D2) by
A59,
FINSEQ_3: 25;
then
A62: (D2
. ID1)
< (D2
. ID2) by
A53,
A57,
SEQM_3:def 1;
(
indx (D2,D1,j1))
< ID1 by
NAT_1: 13;
then
A63: (D2
. (
indx (D2,D1,j1)))
< (D2
. ID1) by
A44,
A61,
SEQM_3:def 1;
A64: (D1
. j1)
= (D2
. (
indx (D2,D1,j1))) by
A10,
A41,
INTEGRA1:def 19;
A65: not (D2
. ID1)
in (
rng D1) & not (D2
. ID2)
in (
rng D1)
proof
assume
A66: (D2
. ID1)
in (
rng D1) or (D2
. ID2)
in (
rng D1);
per cases by
A66;
suppose (D2
. ID1)
in (
rng D1);
then
consider n such that
A67: n
in (
dom D1) and
A68: (D1
. n)
= (D2
. ID1) by
PARTFUN1: 3;
j1
< n by
A41,
A63,
A64,
A67,
A68,
SEQ_4: 137;
then
A69: j
< (n
+ 1) by
XREAL_1: 19;
(D2
. ID1)
< (D2
. (
indx (D2,D1,j))) by
A62,
A58,
XXREAL_0: 2;
then n
< j by
A38,
A60,
A67,
A68,
SEQ_4: 137;
hence contradiction by
A69,
NAT_1: 13;
end;
suppose (D2
. ID2)
in (
rng D1);
then
consider n such that
A70: n
in (
dom D1) and
A71: (D1
. n)
= (D2
. ID2) by
PARTFUN1: 3;
(D2
. (
indx (D2,D1,j1)))
< (D2
. ID2) by
A63,
A62,
XXREAL_0: 2;
then j1
< n by
A41,
A64,
A70,
A71,
SEQ_4: 137;
then
A72: j
< (n
+ 1) by
XREAL_1: 19;
n
< j by
A38,
A58,
A60,
A70,
A71,
SEQ_4: 137;
hence contradiction by
A72,
NAT_1: 13;
end;
end;
(
upper_bound (
divset (D1,j)))
= (D1
. j) by
A38,
A40,
INTEGRA1:def 4;
then
A73: (
upper_bound (
divset (D1,j)))
= (D2
. (
indx (D2,D1,j))) by
A10,
A38,
INTEGRA1:def 19;
(
lower_bound (
divset (D1,j)))
= (D1
. j1) by
A38,
A40,
INTEGRA1:def 4;
then
A74: (
lower_bound (
divset (D1,j)))
= (D2
. (
indx (D2,D1,j1))) by
A10,
A41,
INTEGRA1:def 19;
(D2
. ID2)
in (
rng D2) by
A57,
FUNCT_1:def 3;
then
A75: (D2
. ID2)
in (
rng D) by
A11,
A65,
XBOOLE_0:def 3;
(D2
. ID1)
in (
rng D2) by
A61,
FUNCT_1:def 3;
then
A76: (D2
. ID1)
in (
rng D) by
A11,
A65,
XBOOLE_0:def 3;
(D2
. (
indx (D2,D1,j1)))
<= (D2
. ID2) by
A63,
A62,
XXREAL_0: 2;
then (D2
. ID2)
in (
divset (D1,j)) by
A58,
A74,
A73,
INTEGRA2: 1;
then
A77: (D2
. ID2)
in ((
rng D)
/\ (
divset (D1,j))) by
A75,
XBOOLE_0:def 4;
(D2
. ID1)
<= (D2
. (
indx (D2,D1,j))) by
A62,
A58,
XXREAL_0: 2;
then (D2
. ID1)
in (
divset (D1,j)) by
A63,
A74,
A73,
INTEGRA2: 1;
then (D2
. ID1)
in ((
rng D)
/\ (
divset (D1,j))) by
A76,
XBOOLE_0:def 4;
hence contradiction by
A8,
A38,
A53,
A61,
A57,
A77,
Th5,
SEQ_4: 138;
end;
A78: 1
<= ((
indx (D2,D1,j1))
+ 1) by
A46,
NAT_1: 13;
j
<= (
len D1) by
A38,
FINSEQ_3: 25;
then
A79: j
<= (
len (
upper_volume (f,D1))) by
INTEGRA1:def 6;
A80: 1
<= j by
A38,
FINSEQ_3: 25;
then
A81: ((
mid ((
upper_volume (f,D1)),j,j))
. 1)
= ((
upper_volume (f,D1))
. j) by
A79,
FINSEQ_6: 118;
reconsider uv = ((
upper_volume (f,D1))
. j) as
Element of
REAL by
XREAL_0:def 1;
((j
-' j)
+ 1)
= 1 by
Lm1;
then (
len (
mid ((
upper_volume (f,D1)),j,j)))
= 1 by
A80,
A79,
FINSEQ_6: 118;
then (
mid ((
upper_volume (f,D1)),j,j))
=
<*uv*> by
A81,
FINSEQ_1: 40;
then
A82: (
Sum (
mid ((
upper_volume (f,D1)),j,j)))
= ((
upper_volume (f,D1))
. j) by
FINSOP_1: 11;
(
indx (D2,D1,j))
in (
dom D2) by
A10,
A38,
INTEGRA1:def 19;
then
A83: (
indx (D2,D1,j))
in (
Seg (
len D2)) by
FINSEQ_1:def 3;
then
A84: 1
<= (
indx (D2,D1,j)) by
FINSEQ_1: 1;
(
indx (D2,D1,j))
in (
Seg (
len (
upper_volume (f,D2)))) by
A83,
INTEGRA1:def 6;
then
A85: (
indx (D2,D1,j))
<= (
len (
upper_volume (f,D2))) by
FINSEQ_1: 1;
then
A86: ((
indx (D2,D1,j1))
+ 1)
<= (
len (
upper_volume (f,D2))) by
A49,
XXREAL_0: 2;
then ((
indx (D2,D1,j1))
+ 1)
in (
Seg (
len (
upper_volume (f,D2)))) by
A78,
FINSEQ_1: 1;
then
A87: ((
indx (D2,D1,j1))
+ 1)
in (
Seg (
len D2)) by
INTEGRA1:def 6;
then
A88: ((
indx (D2,D1,j1))
+ 1)
in (
dom D2) by
FINSEQ_1:def 3;
((
indx (D2,D1,j))
-' ((
indx (D2,D1,j1))
+ 1))
= ((
indx (D2,D1,j))
- ((
indx (D2,D1,j1))
+ 1)) by
A49,
XREAL_1: 233;
then (((
indx (D2,D1,j))
-' ((
indx (D2,D1,j1))
+ 1))
+ 1)
<= 2 by
A51;
then
A89: (
len (
mid ((
upper_volume (f,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))
<= 2 by
A49,
A84,
A85,
A78,
A86,
FINSEQ_6: 118;
(((
indx (D2,D1,j))
-' ((
indx (D2,D1,j1))
+ 1))
+ 1)
>= (
0
+ 1) by
XREAL_1: 6;
then
A90: 1
<= (
len (
mid ((
upper_volume (f,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))) by
A49,
A84,
A85,
A78,
A86,
FINSEQ_6: 118;
now
per cases by
A90,
A89,
Lm2;
suppose
A91: (
len (
mid ((
upper_volume (f,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))
= 1;
(
upper_bound (
divset (D1,j)))
= (D1
. j) by
A38,
A40,
INTEGRA1:def 4;
then
A92: (
upper_bound (
divset (D1,j)))
= (D2
. (
indx (D2,D1,j))) by
A10,
A38,
INTEGRA1:def 19;
(
lower_bound (
divset (D1,j)))
= (D1
. j1) by
A38,
A40,
INTEGRA1:def 4;
then (
lower_bound (
divset (D1,j)))
= (D2
. (
indx (D2,D1,j1))) by
A10,
A41,
INTEGRA1:def 19;
then
A93: (
divset (D1,j))
=
[.(D2
. (
indx (D2,D1,j1))), (D2
. (
indx (D2,D1,j))).] by
A92,
INTEGRA1: 4;
A94: (
delta D1)
>=
0 by
Th9;
A95: ((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
>=
0 by
A1,
Lm3,
XREAL_1: 48;
A96: (
indx (D2,D1,j))
in (
dom D2) by
A10,
A38,
INTEGRA1:def 19;
(
len (
mid ((
upper_volume (f,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))
= (((
indx (D2,D1,j))
-' ((
indx (D2,D1,j1))
+ 1))
+ 1) by
A49,
A84,
A85,
A78,
A86,
FINSEQ_6: 118;
then
A97: ((
indx (D2,D1,j))
- ((
indx (D2,D1,j1))
+ 1))
=
0 by
A49,
A91,
XREAL_1: 233;
then (
indx (D2,D1,j))
<> 1 by
A45,
FINSEQ_1: 1;
then
A98: (
upper_bound (
divset (D2,(
indx (D2,D1,j)))))
= (D2
. (
indx (D2,D1,j))) by
A96,
INTEGRA1:def 4;
((
indx (D2,D1,j))
- 1)
= (
indx (D2,D1,j1)) by
A97;
then (
lower_bound (
divset (D2,(
indx (D2,D1,j)))))
= (D2
. (
indx (D2,D1,j1))) by
A46,
A97,
A96,
INTEGRA1:def 4;
then
A99: (
divset (D2,(
indx (D2,D1,j))))
= (
divset (D1,j)) by
A93,
A98,
INTEGRA1: 4;
reconsider uv = ((
upper_volume (f,D2))
. ((
indx (D2,D1,j1))
+ 1)) as
Element of
REAL by
XREAL_0:def 1;
((
mid ((
upper_volume (f,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))
. 1)
= ((
upper_volume (f,D2))
. ((
indx (D2,D1,j1))
+ 1)) by
A84,
A85,
A78,
A86,
FINSEQ_6: 118;
then (
mid ((
upper_volume (f,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))
=
<*uv*> by
A91,
FINSEQ_1: 40;
then (
Sum (
mid ((
upper_volume (f,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))
= ((
upper_volume (f,D2))
. ((
indx (D2,D1,j1))
+ 1)) by
FINSOP_1: 11
.= ((
upper_bound (
rng (f
| (
divset (D2,((
indx (D2,D1,j1))
+ 1))))))
* (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 1))))) by
A88,
INTEGRA1:def 6
.= (
Sum (
mid ((
upper_volume (f,D1)),j,j))) by
A38,
A82,
A97,
A99,
INTEGRA1:def 6;
hence thesis by
A94,
A95;
end;
suppose
A100: (
len (
mid ((
upper_volume (f,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))
= 2;
A101: ((
mid ((
upper_volume (f,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))
. 1)
= ((
upper_volume (f,D2))
. ((
indx (D2,D1,j1))
+ 1)) by
A84,
A85,
A78,
A86,
FINSEQ_6: 118;
A102: (2
+ ((
indx (D2,D1,j1))
+ 1))
>= (
0
+ 1) by
XREAL_1: 7;
((
mid ((
upper_volume (f,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))
. 2)
= (
UVf(D2)
. ((2
+ ((
indx (D2,D1,j1))
+ 1))
-' 1)) by
A49,
A84,
A85,
A78,
A86,
A100,
FINSEQ_6: 118
.= (
UVf(D2)
. ((2
+ ((
indx (D2,D1,j1))
+ 1))
- 1)) by
A102,
XREAL_1: 233
.= (
UVf(D2)
. ((
indx (D2,D1,j1))
+ (1
+ 1)));
then (
mid ((
upper_volume (f,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))
=
<*((
upper_volume (f,D2))
. ((
indx (D2,D1,j1))
+ 1)), ((
upper_volume (f,D2))
. ((
indx (D2,D1,j1))
+ 2))*> by
A100,
A101,
FINSEQ_1: 44;
then
A103: (
Sum (
mid ((
upper_volume (f,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))
= (((
upper_volume (f,D2))
. ((
indx (D2,D1,j1))
+ 1))
+ ((
upper_volume (f,D2))
. ((
indx (D2,D1,j1))
+ 2))) by
RVSUM_1: 77;
A104: (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 1))))
>=
0 by
INTEGRA1: 9;
(
upper_bound (
divset (D1,j)))
= (D1
. j) by
A38,
A40,
INTEGRA1:def 4;
then
A105: (
upper_bound (
divset (D1,j)))
= (D2
. (
indx (D2,D1,j))) by
A10,
A38,
INTEGRA1:def 19;
A106: (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2))))
>=
0 by
INTEGRA1: 9;
(((
indx (D2,D1,j))
-' ((
indx (D2,D1,j1))
+ 1))
+ 1)
= 2 by
A49,
A84,
A85,
A78,
A86,
A100,
FINSEQ_6: 118;
then
A107: 2
= (((
indx (D2,D1,j))
- ((
indx (D2,D1,j1))
+ 1))
+ 1) by
A49,
XREAL_1: 233
.= ((
indx (D2,D1,j))
- (
indx (D2,D1,j1)));
then
A108: ((
indx (D2,D1,j1))
+ 2)
in (
dom D2) by
A10,
A38,
INTEGRA1:def 19;
(
lower_bound (
divset (D1,j)))
= (D1
. j1) by
A38,
A40,
INTEGRA1:def 4;
then (
lower_bound (
divset (D1,j)))
= (D2
. (
indx (D2,D1,j1))) by
A10,
A41,
INTEGRA1:def 19;
then
A109: (
vol (
divset (D1,j)))
= ((((D2
. ((
indx (D2,D1,j1))
+ 2))
- (D2
. ((
indx (D2,D1,j1))
+ 1)))
+ (D2
. ((
indx (D2,D1,j1))
+ 1)))
- (D2
. (
indx (D2,D1,j1)))) by
A105,
A107,
INTEGRA1:def 5;
((
indx (D2,D1,j1))
+ 1)
in (
Seg (
len (
upper_volume (f,D2)))) by
A78,
A86,
FINSEQ_1: 1;
then ((
indx (D2,D1,j1))
+ 1)
in (
Seg (
len D2)) by
INTEGRA1:def 6;
then
A110: ((
indx (D2,D1,j1))
+ 1)
in (
dom D2) by
FINSEQ_1:def 3;
A111: ((
indx (D2,D1,j1))
+ 1)
<> 1 by
A46,
NAT_1: 13;
then
A112: (
upper_bound (
divset (D2,((
indx (D2,D1,j1))
+ 1))))
= (D2
. ((
indx (D2,D1,j1))
+ 1)) by
A110,
INTEGRA1:def 4;
(((
indx (D2,D1,j1))
+ 1)
- 1)
= ((
indx (D2,D1,j1))
+
0 );
then
A113: (
lower_bound (
divset (D2,((
indx (D2,D1,j1))
+ 1))))
= (D2
. (
indx (D2,D1,j1))) by
A110,
A111,
INTEGRA1:def 4;
A114: (((
indx (D2,D1,j1))
+ 1)
+ 1)
> 1 by
A78,
NAT_1: 13;
(((
indx (D2,D1,j1))
+ 2)
- 1)
= ((
indx (D2,D1,j1))
+ 1);
then
A115: (
lower_bound (
divset (D2,((
indx (D2,D1,j1))
+ 2))))
= (D2
. ((
indx (D2,D1,j1))
+ 1)) by
A108,
A114,
INTEGRA1:def 4;
(
upper_bound (
divset (D2,((
indx (D2,D1,j1))
+ 2))))
= (D2
. ((
indx (D2,D1,j1))
+ 2)) by
A108,
A114,
INTEGRA1:def 4;
then (
vol (
divset (D1,j)))
= (((
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2))))
+ (D2
. ((
indx (D2,D1,j1))
+ 1)))
- (D2
. (
indx (D2,D1,j1)))) by
A115,
A109,
INTEGRA1:def 5
.= ((
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2))))
+ ((
upper_bound (
divset (D2,((
indx (D2,D1,j1))
+ 1))))
- (
lower_bound (
divset (D2,((
indx (D2,D1,j1))
+ 1)))))) by
A113,
A112;
then
A116: (
vol (
divset (D1,j)))
= ((
vol (
divset (D2,((
indx (D2,D1,j1))
+ 1))))
+ (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2))))) by
INTEGRA1:def 5;
then
A117: ((
upper_volume (f,D1))
. j)
= ((
upper_bound (
rng (f
| (
divset (D1,j)))))
* ((
vol (
divset (D2,((
indx (D2,D1,j1))
+ 1))))
+ (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2)))))) by
A38,
INTEGRA1:def 6;
A118: ((
Sum (
mid (
UVf(D1),j,j)))
- (
Sum (
mid (
UVf(D2),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))))
<= (((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
* ((
vol (
divset (D2,((
indx (D2,D1,j1))
+ 2))))
+ (
vol (
divset (D2,((
indx (D2,D1,j1))
+ 1))))))
proof
set ID2 = ((
indx (D2,D1,j1))
+ 2);
set ID1 = ((
indx (D2,D1,j1))
+ 1);
set SR = (
upper_bound (
rng (f
| (
divset (D2,ID1))))), VR = (
vol (
divset (D2,ID1)));
set B = (
vol (
divset (D2,ID1)));
set C = (
vol (
divset (D2,ID2)));
(
divset (D1,j))
c= A by
A38,
INTEGRA1: 8;
then
A119: (
upper_bound (
rng (f
| (
divset (D1,j)))))
<= (
upper_bound (
rng f)) by
A1,
Lm4;
ID1
in (
dom D2) by
A87,
FINSEQ_1:def 3;
then (
divset (D2,ID1))
c= A by
INTEGRA1: 8;
then (
upper_bound (
rng (f
| (
divset (D2,ID1)))))
>= (
lower_bound (
rng f)) by
A1,
Lm4;
then
A120: ((
upper_bound (
rng (f
| (
divset (D2,ID1)))))
* (
vol (
divset (D2,ID1))))
>= ((
lower_bound (
rng f))
* (
vol (
divset (D2,ID1)))) by
A104,
XREAL_1: 64;
(((
indx (D2,D1,j))
-' ((
indx (D2,D1,j1))
+ 1))
+ 1)
= 2 by
A49,
A84,
A85,
A78,
A86,
A100,
FINSEQ_6: 118;
then
A121: 2
= (((
indx (D2,D1,j))
- ((
indx (D2,D1,j1))
+ 1))
+ 1) by
A49,
XREAL_1: 233
.= ((
indx (D2,D1,j))
- (
indx (D2,D1,j1)));
A122: (
indx (D2,D1,j))
in (
dom D2) by
A10,
A38,
INTEGRA1:def 19;
then (
divset (D2,ID2))
c= A by
A121,
INTEGRA1: 8;
then
A123: (
upper_bound (
rng (f
| (
divset (D2,ID2)))))
>= (
lower_bound (
rng f)) by
A1,
Lm4;
reconsider A = (
upper_bound (
rng (f
| (
divset (D1,j))))) as
Real;
A124: (((
upper_volume (f,D1))
. j)
- (A
* B))
= (A
* C) by
A117;
((
upper_bound (
rng (f
| (
divset (D1,j)))))
* (
vol (
divset (D2,ID2))))
<= ((
upper_bound (
rng f))
* (
vol (
divset (D2,ID2)))) by
A106,
A119,
XREAL_1: 64;
then (
Sum (
mid (
UVf(D1),j,j)))
<= (((
upper_bound (
rng (f
| (
divset (D1,j)))))
* (
vol (
divset (D2,ID1))))
+ ((
upper_bound (
rng f))
* (
vol (
divset (D2,ID2))))) by
A82,
A124,
XREAL_1: 20;
then
A125: ((
Sum (
mid (
UVf(D1),j,j)))
- ((
upper_bound (
rng f))
* (
vol (
divset (D2,ID2)))))
<= ((
upper_bound (
rng (f
| (
divset (D1,j)))))
* (
vol (
divset (D2,ID1)))) by
XREAL_1: 20;
((
upper_bound (
rng (f
| (
divset (D1,j)))))
* (
vol (
divset (D2,ID1))))
<= ((
upper_bound (
rng f))
* (
vol (
divset (D2,ID1)))) by
A104,
A119,
XREAL_1: 64;
then ((
Sum (
mid (
UVf(D1),j,j)))
- ((
upper_bound (
rng f))
* (
vol (
divset (D2,ID2)))))
<= ((
upper_bound (
rng f))
* (
vol (
divset (D2,ID1)))) by
A125,
XXREAL_0: 2;
then
A126: (
Sum (
mid (
UVf(D1),j,j)))
<= (((
upper_bound (
rng f))
* (
vol (
divset (D2,ID2))))
+ ((
upper_bound (
rng f))
* (
vol (
divset (D2,ID1))))) by
XREAL_1: 20;
(
Sum (
mid (
UVf(D2),ID1,(
indx (D2,D1,j)))))
= (((
upper_bound (
rng (f
| (
divset (D2,ID2)))))
* (
vol (
divset (D2,ID2))))
+ (
UVf(D2)
. ID1)) by
A103,
A122,
A121,
INTEGRA1:def 6
.= (((
upper_bound (
rng (f
| (
divset (D2,ID2)))))
* (
vol (
divset (D2,ID2))))
+ ((
upper_bound (
rng (f
| (
divset (D2,ID1)))))
* (
vol (
divset (D2,ID1))))) by
A88,
INTEGRA1:def 6;
then ((
Sum (
mid (
UVf(D2),ID1,(
indx (D2,D1,j)))))
- (SR
* VR))
>= ((
lower_bound (
rng f))
* (
vol (
divset (D2,ID2)))) by
A106,
A123,
XREAL_1: 64;
then (
Sum (
mid (
UVf(D2),ID1,(
indx (D2,D1,j)))))
>= (((
lower_bound (
rng f))
* (
vol (
divset (D2,ID2))))
+ (SR
* VR)) by
XREAL_1: 19;
then ((
Sum (
mid (
UVf(D2),ID1,(
indx (D2,D1,j)))))
- ((
lower_bound (
rng f))
* (
vol (
divset (D2,ID2)))))
>= (SR
* VR) by
XREAL_1: 19;
then ((
Sum (
mid (
UVf(D2),ID1,(
indx (D2,D1,j)))))
- ((
lower_bound (
rng f))
* (
vol (
divset (D2,ID2)))))
>= ((
lower_bound (
rng f))
* VR) by
A120,
XXREAL_0: 2;
then (
Sum (
mid (
UVf(D2),ID1,(
indx (D2,D1,j)))))
>= (((
lower_bound (
rng f))
* (
vol (
divset (D2,ID2))))
+ ((
lower_bound (
rng f))
* VR)) by
XREAL_1: 19;
then ((
Sum (
mid (
UVf(D1),j,j)))
- (
Sum (
mid (
UVf(D2),ID1,(
indx (D2,D1,j))))))
<= ((((
upper_bound (
rng f))
* (
vol (
divset (D2,ID2))))
+ ((
upper_bound (
rng f))
* (
vol (
divset (D2,ID1)))))
- (((
lower_bound (
rng f))
* (
vol (
divset (D2,ID2))))
+ ((
lower_bound (
rng f))
* (
vol (
divset (D2,ID1)))))) by
A126,
XREAL_1: 13;
hence thesis;
end;
((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
>=
0 by
A1,
Lm3,
XREAL_1: 48;
then (((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
* (
vol (
divset (D1,j))))
<= (((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
* (
delta D1)) by
A38,
Lm5,
XREAL_1: 64;
hence thesis by
A116,
A118,
XXREAL_0: 2;
end;
end;
hence thesis;
end;
j
< (j
+ 1) by
NAT_1: 13;
then
A127: j1
< j by
XREAL_1: 19;
(
indx (D2,D1,j))
in (
dom D2) by
A10,
A38,
INTEGRA1:def 19;
then
A128: (
indx (D2,D1,j))
in (
Seg (
len D2)) by
FINSEQ_1:def 3;
then
A129: 1
<= (
indx (D2,D1,j)) by
FINSEQ_1: 1;
A130: (
indx (D2,D1,j1))
<= (
len D2) by
A45,
FINSEQ_1: 1;
then
A131: (
len (D2
| (
indx (D2,D1,j1))))
= (
indx (D2,D1,j1)) by
FINSEQ_1: 59;
A132: j1
in (
Seg (
len D1)) by
A43,
FINSEQ_1:def 3;
then
A133: j1
<= (
len D1) by
FINSEQ_1: 1;
for x1 be
object st x1
in (
rng (D1
| j1)) holds x1
in (
rng (D2
| (
indx (D2,D1,j1))))
proof
let x1 be
object;
assume x1
in (
rng (D1
| j1));
then
consider k such that
A134: k
in (
dom (D1
| j1)) and
A135: x1
= ((D1
| j1)
. k) by
PARTFUN1: 3;
k
in (
Seg (
len (D1
| j1))) by
A134,
FINSEQ_1:def 3;
then
A136: k
in (
Seg j1) by
A133,
FINSEQ_1: 59;
then
A137: k
in (
dom D1) by
A41,
RFINSEQ: 6;
k
<= j1 by
A136,
FINSEQ_1: 1;
then (D1
. k)
<= (D1
. j1) by
A43,
A137,
SEQ_4: 137;
then (D2
. (
indx (D2,D1,k)))
<= (D1
. j1) by
A10,
A137,
INTEGRA1:def 19;
then
A138: (D2
. (
indx (D2,D1,k)))
<= (D2
. (
indx (D2,D1,j1))) by
A10,
A43,
INTEGRA1:def 19;
A139: ((D1
| j1)
. k)
= (D1
. k) by
A41,
A136,
RFINSEQ: 6;
(D1
. k)
in (
rng D1) by
A137,
FUNCT_1:def 3;
then x1
in (
rng D2) by
A11,
A135,
A139,
XBOOLE_0:def 3;
then
consider n such that
A140: n
in (
dom D2) and
A141: x1
= (D2
. n) by
PARTFUN1: 3;
(D2
. (
indx (D2,D1,k)))
= (D2
. n) by
A10,
A135,
A139,
A137,
A141,
INTEGRA1:def 19;
then
A142: n
<= (
indx (D2,D1,j1)) by
A44,
A140,
A138,
SEQM_3:def 1;
1
<= n by
A140,
FINSEQ_3: 25;
then
A143: n
in (
Seg (
indx (D2,D1,j1))) by
A142,
FINSEQ_1: 1;
then n
in (
Seg (
len (D2
| (
indx (D2,D1,j1))))) by
A130,
FINSEQ_1: 59;
then
A144: n
in (
dom (D2
| (
indx (D2,D1,j1)))) by
FINSEQ_1:def 3;
(D2
. n)
= ((D2
| (
indx (D2,D1,j1)))
. n) by
A44,
A143,
RFINSEQ: 6;
hence thesis by
A141,
A144,
FUNCT_1:def 3;
end;
then
A145: (
rng (D1
| j1))
c= (
rng (D2
| (
indx (D2,D1,j1))));
A146: 1
<= j1 by
A132,
FINSEQ_1: 1;
(
lower_bound (
divset (D1,j)))
<= (D
. 1) by
A39,
INTEGRA2: 1;
then
A147: (D1
. j1)
<= (D
. 1) by
A38,
A40,
INTEGRA1:def 4;
for x1 be
object st x1
in (
rng (D2
| (
indx (D2,D1,j1)))) holds x1
in (
rng (D1
| j1))
proof
let x1 be
object;
assume x1
in (
rng (D2
| (
indx (D2,D1,j1))));
then
consider k such that
A148: k
in (
dom (D2
| (
indx (D2,D1,j1)))) and
A149: x1
= ((D2
| (
indx (D2,D1,j1)))
. k) by
PARTFUN1: 3;
k
in (
Seg (
len (D2
| (
indx (D2,D1,j1))))) by
A148,
FINSEQ_1:def 3;
then
A150: k
in (
Seg (
indx (D2,D1,j1))) by
A130,
FINSEQ_1: 59;
then
A151: k
in (
dom D2) by
A44,
RFINSEQ: 6;
A152: (
len (D1
| j1))
= j1 by
A133,
FINSEQ_1: 59;
k
<= (
indx (D2,D1,j1)) by
A150,
FINSEQ_1: 1;
then (D2
. k)
<= (D2
. (
indx (D2,D1,j1))) by
A44,
A151,
SEQ_4: 137;
then
A153: (D2
. k)
<= (D1
. j1) by
A10,
A43,
INTEGRA1:def 19;
A154: (D2
. k)
in (
rng D1) implies (D2
. k)
in (
rng (D1
| j1))
proof
assume (D2
. k)
in (
rng D1);
then
consider m such that
A155: m
in (
dom D1) and
A156: (D2
. k)
= (D1
. m) by
PARTFUN1: 3;
m
in (
Seg (
len D1)) by
A155,
FINSEQ_1:def 3;
then
A157: 1
<= m by
FINSEQ_1: 1;
A158: m
<= j1 by
A41,
A153,
A155,
A156,
SEQM_3:def 1;
then m
in (
Seg (
len (D1
| j1))) by
A152,
A157,
FINSEQ_1: 1;
then
A159: m
in (
dom (D1
| j1)) by
FINSEQ_1:def 3;
m
in (
Seg j1) by
A157,
A158,
FINSEQ_1: 1;
then (D2
. k)
= ((D1
| j1)
. m) by
A41,
A156,
RFINSEQ: 6;
hence thesis by
A159,
FUNCT_1:def 3;
end;
A160: (D2
. k)
in (
rng D) implies (D2
. k)
= (D1
. j1)
proof
assume (D2
. k)
in (
rng D);
then
consider n such that
A161: n
in (
dom D) and
A162: (D2
. k)
= (D
. n) by
PARTFUN1: 3;
1
<= n by
A161,
FINSEQ_3: 25;
then (D
. 1)
<= (D2
. k) by
A37,
A161,
A162,
SEQ_4: 137;
then (D1
. j1)
<= (D2
. k) by
A147,
XXREAL_0: 2;
hence thesis by
A153,
XXREAL_0: 1;
end;
A163: (D2
. k)
in (
rng D) implies (D2
. k)
in (
rng (D1
| j1))
proof
j1
in (
Seg (
len (D1
| j1))) by
A146,
A152,
FINSEQ_1: 1;
then j1
in (
dom (D1
| j1)) by
FINSEQ_1:def 3;
then
A164: ((D1
| j1)
. j1)
in (
rng (D1
| j1)) by
FUNCT_1:def 3;
assume
A165: (D2
. k)
in (
rng D);
j1
in (
Seg j1) by
A146,
FINSEQ_1: 1;
hence thesis by
A41,
A160,
A165,
A164,
RFINSEQ: 6;
end;
(D2
. k)
in (
rng D2) by
A151,
FUNCT_1:def 3;
hence thesis by
A11,
A44,
A149,
A150,
A163,
A154,
RFINSEQ: 6,
XBOOLE_0:def 3;
end;
then (
rng (D2
| (
indx (D2,D1,j1))))
c= (
rng (D1
| j1));
then
A166: (
rng (D2
| (
indx (D2,D1,j1))))
= (
rng (D1
| j1)) by
A145,
XBOOLE_0:def 10;
(
mid (D1,1,j1)) is
increasing by
A38,
A40,
A146,
INTEGRA1: 7,
INTEGRA1: 35;
then
A167: (D1
| j1) is
increasing by
A146,
FINSEQ_6: 116;
then
A168: (D2
| (
indx (D2,D1,j1)))
= (D1
| j1) by
A47,
A166,
Th6;
A169: for k st 1
<= k & k
<= j1 holds k
= (
indx (D2,D1,k))
proof
let k;
assume that
A170: 1
<= k and
A171: k
<= j1;
assume
A172: k
<> (
indx (D2,D1,k));
now
per cases by
A172,
XXREAL_0: 1;
suppose
A173: k
> (
indx (D2,D1,k));
k
<= (
len D1) by
A133,
A171,
XXREAL_0: 2;
then
A174: k
in (
dom D1) by
A170,
FINSEQ_3: 25;
then (
indx (D2,D1,k))
in (
dom D2) by
A10,
INTEGRA1:def 19;
then (
indx (D2,D1,k))
in (
Seg (
len D2)) by
FINSEQ_1:def 3;
then
A175: 1
<= (
indx (D2,D1,k)) by
FINSEQ_1: 1;
A176: (
indx (D2,D1,k))
< j1 by
A171,
A173,
XXREAL_0: 2;
then
A177: (
indx (D2,D1,k))
in (
Seg j1) by
A175,
FINSEQ_1: 1;
(
indx (D2,D1,k))
<= (
indx (D2,D1,j1)) by
A10,
A41,
A171,
A174,
Th7;
then (
indx (D2,D1,k))
in (
Seg (
indx (D2,D1,j1))) by
A175,
FINSEQ_1: 1;
then
A178: ((D2
| (
indx (D2,D1,j1)))
. (
indx (D2,D1,k)))
= (D2
. (
indx (D2,D1,k))) by
A44,
RFINSEQ: 6;
(
indx (D2,D1,k))
<= (
len D1) by
A133,
A176,
XXREAL_0: 2;
then (
indx (D2,D1,k))
in (
dom D1) by
A175,
FINSEQ_3: 25;
then
A179: (D1
. k)
> (D1
. (
indx (D2,D1,k))) by
A173,
A174,
SEQM_3:def 1;
(D1
. k)
= (D2
. (
indx (D2,D1,k))) by
A10,
A174,
INTEGRA1:def 19;
hence contradiction by
A41,
A168,
A178,
A179,
A177,
RFINSEQ: 6;
end;
suppose
A180: k
< (
indx (D2,D1,k));
k
<= (
len D1) by
A133,
A171,
XXREAL_0: 2;
then
A181: k
in (
dom D1) by
A170,
FINSEQ_3: 25;
then (
indx (D2,D1,k))
<= (
indx (D2,D1,j1)) by
A10,
A41,
A171,
Th7;
then
A182: k
<= (
indx (D2,D1,j1)) by
A180,
XXREAL_0: 2;
then k
<= (
len D2) by
A130,
XXREAL_0: 2;
then
A183: k
in (
dom D2) by
A170,
FINSEQ_3: 25;
k
in (
Seg j1) by
A170,
A171,
FINSEQ_1: 1;
then
A184: (D1
. k)
= ((D1
| j1)
. k) by
A43,
RFINSEQ: 6;
(
indx (D2,D1,k))
in (
dom D2) by
A10,
A181,
INTEGRA1:def 19;
then
A185: (D2
. k)
< (D2
. (
indx (D2,D1,k))) by
A180,
A183,
SEQM_3:def 1;
A186: k
in (
Seg (
indx (D2,D1,j1))) by
A170,
A182,
FINSEQ_1: 1;
(D1
. k)
= (D2
. (
indx (D2,D1,k))) by
A10,
A181,
INTEGRA1:def 19;
hence contradiction by
A44,
A168,
A184,
A185,
A186,
RFINSEQ: 6;
end;
end;
hence contradiction;
end;
A187: for k be
Nat st 1
<= k & k
<= (
len ((
upper_volume (f,D1))
| j1)) holds (((
upper_volume (f,D1))
| j1)
. k)
= (((
upper_volume (f,D2))
| (
indx (D2,D1,j1)))
. k)
proof
(
indx (D2,D1,j1))
in (
Seg (
len D2)) by
A44,
FINSEQ_1:def 3;
then (
indx (D2,D1,j1))
in (
Seg (
len (
upper_volume (f,D2)))) by
INTEGRA1:def 6;
then
A188: (
indx (D2,D1,j1))
in (
dom (
upper_volume (f,D2))) by
FINSEQ_1:def 3;
let k be
Nat;
assume that
A189: 1
<= k and
A190: k
<= (
len ((
upper_volume (f,D1))
| j1));
A191: (
len (
upper_volume (f,D1)))
= (
len D1) by
INTEGRA1:def 6;
then
A192: k
<= j1 by
A133,
A190,
FINSEQ_1: 59;
then
A193: k
in (
Seg j1) by
A189,
FINSEQ_1: 1;
then (
indx (D2,D1,k))
in (
Seg j1) by
A169,
A189,
A192;
then
A194: (
indx (D2,D1,k))
in (
Seg (
indx (D2,D1,j1))) by
A146,
A169;
then (
indx (D2,D1,k))
<= (
indx (D2,D1,j1)) by
FINSEQ_1: 1;
then
A195: (
indx (D2,D1,k))
<= (
len D2) by
A130,
XXREAL_0: 2;
k
<= (
len D1) by
A133,
A192,
XXREAL_0: 2;
then
A196: k
in (
Seg (
len D1)) by
A189,
FINSEQ_1: 1;
then
A197: k
in (
dom D1) by
FINSEQ_1:def 3;
then
A198: (
indx (D2,D1,k))
in (
dom D2) by
A10,
INTEGRA1:def 19;
A199: (D1
. k)
= (D2
. (
indx (D2,D1,k))) by
A10,
A197,
INTEGRA1:def 19;
A200: (
lower_bound (
divset (D1,k)))
= (
lower_bound (
divset (D2,(
indx (D2,D1,k))))) & (
upper_bound (
divset (D1,k)))
= (
upper_bound (
divset (D2,(
indx (D2,D1,k)))))
proof
per cases ;
suppose
A201: k
= 1;
then
A202: (
upper_bound (
divset (D1,k)))
= (D1
. k) by
A197,
INTEGRA1:def 4;
A203: (
lower_bound (
divset (D1,k)))
= (
lower_bound A) by
A197,
A201,
INTEGRA1:def 4;
(
indx (D2,D1,k))
= 1 by
A146,
A169,
A201;
hence thesis by
A198,
A199,
A203,
A202,
INTEGRA1:def 4;
end;
suppose
A204: k
<> 1;
then
reconsider k1 = (k
- 1) as
Element of
NAT by
A197,
INTEGRA1: 7;
k
<= (k
+ 1) by
NAT_1: 11;
then k1
<= k by
XREAL_1: 20;
then
A205: k1
<= j1 by
A192,
XXREAL_0: 2;
A206: (k
- 1)
in (
dom D1) by
A197,
A204,
INTEGRA1: 7;
then 1
<= k1 by
FINSEQ_3: 25;
then k1
= (
indx (D2,D1,k1)) by
A169,
A205;
then
A207: (D2
. ((
indx (D2,D1,k))
- 1))
= (D2
. (
indx (D2,D1,k1))) by
A169,
A189,
A192,
A193;
A208: (
indx (D2,D1,k))
<> 1 by
A169,
A189,
A192,
A193,
A204;
then
A209: (
lower_bound (
divset (D2,(
indx (D2,D1,k)))))
= (D2
. ((
indx (D2,D1,k))
- 1)) by
A198,
INTEGRA1:def 4;
A210: (
upper_bound (
divset (D2,(
indx (D2,D1,k)))))
= (D2
. (
indx (D2,D1,k))) by
A198,
A208,
INTEGRA1:def 4;
A211: (
upper_bound (
divset (D1,k)))
= (D1
. k) by
A197,
A204,
INTEGRA1:def 4;
(
lower_bound (
divset (D1,k)))
= (D1
. (k
- 1)) by
A197,
A204,
INTEGRA1:def 4;
hence thesis by
A10,
A197,
A211,
A206,
A209,
A210,
A207,
INTEGRA1:def 19;
end;
end;
(
divset (D2,(
indx (D2,D1,k))))
=
[.(
lower_bound (
divset (D2,(
indx (D2,D1,k))))), (
upper_bound (
divset (D2,(
indx (D2,D1,k))))).] by
INTEGRA1: 4;
then
A212: (
divset (D1,k))
= (
divset (D2,(
indx (D2,D1,k)))) by
A200,
INTEGRA1: 4;
A213: k
in (
dom D1) by
A196,
FINSEQ_1:def 3;
j1
in (
Seg (
len (
upper_volume (f,D1)))) by
A41,
A191,
FINSEQ_1:def 3;
then j1
in (
dom (
upper_volume (f,D1))) by
FINSEQ_1:def 3;
then
A214: (((
upper_volume (f,D1))
| j1)
. k)
= ((
upper_volume (f,D1))
. k) by
A193,
RFINSEQ: 6
.= ((
upper_bound (
rng (f
| (
divset (D2,(
indx (D2,D1,k)))))))
* (
vol (
divset (D2,(
indx (D2,D1,k)))))) by
A213,
A212,
INTEGRA1:def 6;
1
<= (
indx (D2,D1,k)) by
A169,
A189,
A192,
A193;
then (
indx (D2,D1,k))
in (
Seg (
len D2)) by
A195,
FINSEQ_1: 1;
then
A215: (
indx (D2,D1,k))
in (
dom D2) by
FINSEQ_1:def 3;
(((
upper_volume (f,D2))
| (
indx (D2,D1,j1)))
. k)
= (((
upper_volume (f,D2))
| (
indx (D2,D1,j1)))
. (
indx (D2,D1,k))) by
A169,
A189,
A192,
A193
.= ((
upper_volume (f,D2))
. (
indx (D2,D1,k))) by
A194,
A188,
RFINSEQ: 6
.= ((
upper_bound (
rng (f
| (
divset (D2,(
indx (D2,D1,k)))))))
* (
vol (
divset (D2,(
indx (D2,D1,k)))))) by
A215,
INTEGRA1:def 6;
hence thesis by
A214;
end;
(
indx (D2,D1,j1))
in (
dom D2) by
A10,
A43,
INTEGRA1:def 19;
then (
indx (D2,D1,j1))
<= (
len D2) by
FINSEQ_3: 25;
then
A216: (
indx (D2,D1,j1))
<= (
len (
upper_volume (f,D2))) by
INTEGRA1:def 6;
j1
<= (
len D1) by
A43,
FINSEQ_3: 25;
then
A217: j1
<= (
len (
upper_volume (f,D1))) by
INTEGRA1:def 6;
(
len (D2
| (
indx (D2,D1,j1))))
= (
len (D1
| j1)) by
A47,
A167,
A166,
Th6;
then (
indx (D2,D1,j1))
= j1 by
A133,
A131,
FINSEQ_1: 59;
then (
len ((
upper_volume (f,D1))
| j1))
= (
indx (D2,D1,j1)) by
A217,
FINSEQ_1: 59;
then (
len ((
upper_volume (f,D1))
| j1))
= (
len ((
upper_volume (f,D2))
| (
indx (D2,D1,j1)))) by
A216,
FINSEQ_1: 59;
then
A218: ((
upper_volume (f,D2))
| (
indx (D2,D1,j1)))
= ((
upper_volume (f,D1))
| j1) by
A187,
FINSEQ_1: 14;
A219: j
in (
Seg (
len D1)) by
A38,
FINSEQ_1:def 3;
then
A220: 1
<= j by
FINSEQ_1: 1;
(
indx (D2,D1,j))
in (
Seg (
len
UVf(D2))) by
A128,
INTEGRA1:def 6;
then
A221: (
indx (D2,D1,j))
in (
dom
UVf(D2)) by
FINSEQ_1:def 3;
(
indx (D2,D1,j))
<= (
len D2) by
A128,
FINSEQ_1: 1;
then
A222: (
indx (D2,D1,j))
<= (
len
UVf(D2)) by
INTEGRA1:def 6;
j
in (
Seg (
len
UVf(D1))) by
A219,
INTEGRA1:def 6;
then
A223: j
in (
dom
UVf(D1)) by
FINSEQ_1:def 3;
j
<= (
len D1) by
A219,
FINSEQ_1: 1;
then
A224: j
<= (
len
UVf(D1)) by
INTEGRA1:def 6;
j1
in (
Seg (
len D1)) by
A41,
FINSEQ_1:def 3;
then j1
in (
Seg (
len
UVf(D1))) by
INTEGRA1:def 6;
then j1
in (
dom
UVf(D1)) by
FINSEQ_1:def 3;
then
PUf(D1,j1)
= (
Sum (
UVf(D1)
| j1)) by
INTEGRA1:def 20;
then (
PUf(D1,j1)
+ (
Sum (
mid (
UVf(D1),j,j))))
= (
Sum ((
UVf(D1)
| j1)
^ (
mid (
UVf(D1),j,j)))) by
RVSUM_1: 75
.= (
Sum ((
mid (
UVf(D1),1,j1))
^ (
mid (
UVf(D1),(j1
+ 1),j)))) by
A146,
FINSEQ_6: 116
.= (
Sum (
mid (
UVf(D1),1,j))) by
A146,
A224,
A127,
INTEGRA2: 4
.= (
Sum (
UVf(D1)
| j)) by
A220,
FINSEQ_6: 116;
then
A225: (
PUf(D1,j1)
+ (
Sum (
mid ((
upper_volume (f,D1)),j,j))))
=
PUf(D1,j) by
A223,
INTEGRA1:def 20;
(
indx (D2,D1,j1))
in (
Seg (
len D2)) by
A44,
FINSEQ_1:def 3;
then (
indx (D2,D1,j1))
in (
Seg (
len
UVf(D2))) by
INTEGRA1:def 6;
then (
indx (D2,D1,j1))
in (
dom
UVf(D2)) by
FINSEQ_1:def 3;
then
PUf(D2,indx)
= (
Sum (
UVf(D2)
| (
indx (D2,D1,j1)))) by
INTEGRA1:def 20;
then (
PUf(D2,indx)
+ (
Sum (
mid ((
upper_volume (f,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))))
= (
Sum ((
UVf(D2)
| (
indx (D2,D1,j1)))
^ (
mid (
UVf(D2),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))) by
RVSUM_1: 75
.= (
Sum ((
mid (
UVf(D2),1,(
indx (D2,D1,j1))))
^ (
mid (
UVf(D2),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j)))))) by
A46,
FINSEQ_6: 116
.= (
Sum (
mid (
UVf(D2),1,(
indx (D2,D1,j))))) by
A46,
A48,
A222,
INTEGRA2: 4
.= (
Sum (
UVf(D2)
| (
indx (D2,D1,j)))) by
A129,
FINSEQ_6: 116;
then
A226: (
PUf(D2,indx)
+ (
Sum (
mid ((
upper_volume (f,D2)),((
indx (D2,D1,j1))
+ 1),(
indx (D2,D1,j))))))
=
PUf(D2,indx) by
A221,
INTEGRA1:def 20;
(
indx (D2,D1,j1))
in (
Seg (
len D2)) by
A44,
FINSEQ_1:def 3;
then (
indx (D2,D1,j1))
in (
Seg (
len (
upper_volume (f,D2)))) by
INTEGRA1:def 6;
then (
indx (D2,D1,j1))
in (
dom (
upper_volume (f,D2))) by
FINSEQ_1:def 3;
then
PUf(D2,indx)
= (
Sum ((
upper_volume (f,D2))
| (
indx (D2,D1,j1)))) by
INTEGRA1:def 20
.=
PUf(D1,j1) by
A218,
A42,
INTEGRA1:def 20;
hence thesis by
A50,
A226,
A225;
end;
hence thesis by
A38,
A39;
end;
reconsider i as non
zero
Element of
NAT by
A15,
FINSEQ_1: 1;
A227: for i be non
zero
Nat st
P[i] holds
P[(i
+ 1)]
proof
let i be non
zero
Nat;
A228: i
>= 1 by
NAT_1: 14;
assume
A229:
P[i];
P[(i
+ 1)]
proof
A230: i
<= (i
+ 1) by
NAT_1: 11;
assume
A231: (i
+ 1)
in (
dom D);
then
consider j such that
A232: j
in (
dom D1) and
A233: (D
. (i
+ 1))
in (
divset (D1,j)) by
Th3,
INTEGRA1: 6;
A234: (D2
. (
indx (D2,D1,j)))
= (D1
. j) by
A10,
A232,
INTEGRA1:def 19;
(i
+ 1)
in (
Seg (
len D)) by
A231,
FINSEQ_1:def 3;
then (i
+ 1)
<= (
len D) by
FINSEQ_1: 1;
then i
<= (
len D) by
A230,
XXREAL_0: 2;
then
A235: i
in (
Seg (
len D)) by
A228,
FINSEQ_1: 1;
then
A236: i
in (
dom D) by
FINSEQ_1:def 3;
A237: (
indx (D2,D1,j))
in (
dom D2) by
A10,
A232,
INTEGRA1:def 19;
then
A238: 1
<= (
indx (D2,D1,j)) by
FINSEQ_3: 25;
A239: (
indx (D2,D1,j))
<= (
len D2) by
A237,
FINSEQ_3: 25;
then
A240: (
indx (D2,D1,j))
<= (
len
UVf(D2)) by
INTEGRA1:def 6;
consider n1 be
Element of
NAT such that
A241: n1
in (
dom D1) and
A242: (D
. i)
in (
divset (D1,n1)) and
A243: (
PUf(D1,n1)
-
PUf(D2,indx))
<= ((i
* ((
upper_bound (
rng f))
- (
lower_bound (
rng f))))
* (
delta D1)) by
A229,
A235,
FINSEQ_1:def 3;
A244: 1
<= (n1
+ 1) by
NAT_1: 12;
A245: n1
< j
proof
assume
A246: n1
>= j;
now
per cases by
A246,
XXREAL_0: 1;
suppose
A247: n1
= j;
(D
. i)
in (
rng D) by
A236,
FUNCT_1:def 3;
then
A248: (D
. i)
in ((
rng D)
/\ (
divset (D1,j))) by
A242,
A247,
XBOOLE_0:def 4;
(D
. (i
+ 1))
in (
rng D) by
A231,
FUNCT_1:def 3;
then
A249: (D
. (i
+ 1))
in ((
rng D)
/\ (
divset (D1,j))) by
A233,
XBOOLE_0:def 4;
(i
+ 1)
> i by
XREAL_1: 29;
hence contradiction by
A8,
A231,
A232,
A236,
A248,
A249,
Th5,
SEQ_4: 138;
end;
suppose n1
> j;
then
A250: n1
>= (j
+ 1) by
NAT_1: 13;
then
A251: (n1
- 1)
>= j by
XREAL_1: 19;
1
<= j by
A232,
FINSEQ_3: 25;
then (1
+ 1)
<= (j
+ 1) by
XREAL_1: 6;
then
A252: n1
<> 1 by
A250,
XXREAL_0: 2;
then (n1
- 1)
in (
dom D1) by
A241,
INTEGRA1: 7;
then
A253: (D1
. j)
<= (D1
. (n1
- 1)) by
A232,
A251,
SEQ_4: 137;
A254: (
upper_bound (
divset (D1,j)))
= (D1
. j)
proof
per cases ;
suppose j
= 1;
hence thesis by
A232,
INTEGRA1:def 4;
end;
suppose j
<> 1;
hence thesis by
A232,
INTEGRA1:def 4;
end;
end;
A255: (
lower_bound (
divset (D1,n1)))
<= (D
. i) by
A242,
INTEGRA2: 1;
(
lower_bound (
divset (D1,n1)))
= (D1
. (n1
- 1)) by
A241,
A252,
INTEGRA1:def 4;
then
A256: (D
. i)
>= (D1
. j) by
A255,
A253,
XXREAL_0: 2;
A257: i
< (i
+ 1) by
XREAL_1: 29;
(D
. (i
+ 1))
<= (
upper_bound (
divset (D1,j))) by
A233,
INTEGRA2: 1;
then (D
. i)
>= (D
. (i
+ 1)) by
A254,
A256,
XXREAL_0: 2;
hence contradiction by
A231,
A236,
A257,
SEQM_3:def 1;
end;
end;
hence thesis;
end;
then
A258: (n1
+ 1)
<= j by
NAT_1: 13;
A259: 1
<= n1 by
A241,
FINSEQ_3: 25;
A260: (D2
. (
indx (D2,D1,n1)))
= (D1
. n1) by
A10,
A241,
INTEGRA1:def 19;
A261: 1
<= j by
A232,
FINSEQ_3: 25;
A262: (
indx (D2,D1,n1))
in (
dom D2) by
A10,
A241,
INTEGRA1:def 19;
then
A263: 1
<= (
indx (D2,D1,n1)) by
FINSEQ_3: 25;
A264: j
<= (
len D1) by
A232,
FINSEQ_3: 25;
then
A265: (n1
+ 1)
<= (
len D1) by
A258,
XXREAL_0: 2;
then
A266: (n1
+ 1)
in (
dom D1) by
A244,
FINSEQ_3: 25;
then
A267: (D2
. (
indx (D2,D1,(n1
+ 1))))
= (D1
. (n1
+ 1)) by
A10,
INTEGRA1:def 19;
A268: j
<= (
len
UVf(D1)) by
A264,
INTEGRA1:def 6;
then j
in (
Seg (
len
UVf(D1))) by
A261,
FINSEQ_1: 1;
then
A269: j
in (
dom
UVf(D1)) by
FINSEQ_1:def 3;
A270: (
indx (D2,D1,(n1
+ 1)))
in (
dom D2) by
A10,
A266,
INTEGRA1:def 19;
then
A271: 1
<= (
indx (D2,D1,(n1
+ 1))) by
FINSEQ_3: 25;
n1
in (
Seg (
len D1)) by
A241,
FINSEQ_1:def 3;
then n1
in (
Seg (
len
UVf(D1))) by
INTEGRA1:def 6;
then n1
in (
dom
UVf(D1)) by
FINSEQ_1:def 3;
then
PUf(D1,n1)
= (
Sum (
UVf(D1)
| n1)) by
INTEGRA1:def 20
.= (
Sum (
mid (
UVf(D1),1,n1))) by
A259,
FINSEQ_6: 116;
then (
PUf(D1,n1)
+ (
Sum (
mid (
UVf(D1),(n1
+ 1),j))))
= (
Sum ((
mid (
UVf(D1),1,n1))
^ (
mid (
UVf(D1),(n1
+ 1),j)))) by
RVSUM_1: 75
.= (
Sum (
mid (
UVf(D1),1,j))) by
A245,
A259,
A268,
INTEGRA2: 4
.= (
Sum (
UVf(D1)
| j)) by
A261,
FINSEQ_6: 116;
then
A272:
PUf(D1,j)
= (
PUf(D1,n1)
+ (
Sum (
mid (
UVf(D1),(n1
+ 1),j)))) by
A269,
INTEGRA1:def 20;
(
indx (D2,D1,j))
in (
Seg (
len D2)) by
A237,
FINSEQ_1:def 3;
then (
indx (D2,D1,j))
in (
Seg (
len
UVf(D2))) by
INTEGRA1:def 6;
then
A273: (
indx (D2,D1,j))
in (
dom
UVf(D2)) by
FINSEQ_1:def 3;
A274: (
indx (D2,D1,(n1
+ 1)))
<= (
len D2) by
A270,
FINSEQ_3: 25;
(D1
. (n1
+ 1))
<= (D1
. j) by
A232,
A258,
A266,
SEQ_4: 137;
then
A275: (
indx (D2,D1,(n1
+ 1)))
<= (
indx (D2,D1,j)) by
A270,
A267,
A237,
A234,
SEQM_3:def 1;
then (1
+ (
indx (D2,D1,(n1
+ 1))))
<= ((
indx (D2,D1,j))
+ 1) by
XREAL_1: 6;
then 1
<= (((
indx (D2,D1,j))
+ 1)
- (
indx (D2,D1,(n1
+ 1)))) by
XREAL_1: 19;
then
A276: ((
mid (D2,(
indx (D2,D1,(n1
+ 1))),(
indx (D2,D1,j))))
. 1)
= (D2
. ((1
- 1)
+ (
indx (D2,D1,(n1
+ 1))))) by
A275,
A271,
A239,
FINSEQ_6: 122
.= (D1
. (n1
+ 1)) by
A10,
A266,
INTEGRA1:def 19;
A277: n1
>= 1 by
A241,
FINSEQ_3: 25;
A278: (j
- n1)
>= 1 by
A258,
XREAL_1: 19;
((
Sum (
mid (
UVf(D1),(n1
+ 1),j)))
- (
Sum (
mid (
UVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j))))))
<= (((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
* (
delta D1))
proof
per cases by
A258,
XXREAL_0: 1;
suppose
A279: (n1
+ 1)
= j;
A280: ((
indx (D2,D1,j))
- (
indx (D2,D1,n1)))
<= 2
proof
A281: (
upper_bound (
divset (D1,j)))
= (D1
. j) by
A232,
A245,
A277,
INTEGRA1:def 4;
A282: (
lower_bound (
divset (D1,j)))
= (D1
. (j
- 1)) by
A232,
A245,
A277,
INTEGRA1:def 4;
A283: 1
<= ((
indx (D2,D1,n1))
+ 1) by
A263,
NAT_1: 13;
assume ((
indx (D2,D1,j))
- (
indx (D2,D1,n1)))
> 2;
then
A284: ((
indx (D2,D1,n1))
+ 2)
< (
indx (D2,D1,j)) by
XREAL_1: 20;
then
A285: ((
indx (D2,D1,n1))
+ 2)
<= (
len D2) by
A239,
XXREAL_0: 2;
A286: ((
indx (D2,D1,n1))
+ 1)
< ((
indx (D2,D1,n1))
+ 2) by
XREAL_1: 6;
then
A287: (
indx (D2,D1,n1))
< ((
indx (D2,D1,n1))
+ 2) by
NAT_1: 13;
then 1
<= ((
indx (D2,D1,n1))
+ 2) by
A263,
XXREAL_0: 2;
then
A288: ((
indx (D2,D1,n1))
+ 2)
in (
dom D2) by
A285,
FINSEQ_3: 25;
then
A289: (D2
. (
indx (D2,D1,j)))
>= (D2
. ((
indx (D2,D1,n1))
+ 2)) by
A237,
A284,
SEQ_4: 137;
A290: not (D2
. ((
indx (D2,D1,n1))
+ 2))
in (
rng D1)
proof
assume (D2
. ((
indx (D2,D1,n1))
+ 2))
in (
rng D1);
then
consider k1 be
Element of
NAT such that
A291: k1
in (
dom D1) and
A292: (D2
. ((
indx (D2,D1,n1))
+ 2))
= (D1
. k1) by
PARTFUN1: 3;
(D2
. ((
indx (D2,D1,n1))
+ 2))
< (D2
. (
indx (D2,D1,j))) by
A237,
A284,
A288,
SEQM_3:def 1;
then
A293: k1
< j by
A232,
A234,
A291,
A292,
SEQ_4: 137;
(D2
. (
indx (D2,D1,n1)))
< (D2
. ((
indx (D2,D1,n1))
+ 2)) by
A262,
A287,
A288,
SEQM_3:def 1;
then n1
< k1 by
A241,
A260,
A291,
A292,
SEQ_4: 137;
hence contradiction by
A279,
A293,
NAT_1: 13;
end;
(D2
. ((
indx (D2,D1,n1))
+ 2))
in (
rng D2) by
A288,
FUNCT_1:def 3;
then
A294: (D2
. ((
indx (D2,D1,n1))
+ 2))
in (
rng D) by
A11,
A290,
XBOOLE_0:def 3;
A295: (
lower_bound (
divset (D1,j)))
= (D1
. (j
- 1)) by
A232,
A245,
A277,
INTEGRA1:def 4;
A296: (
upper_bound (
divset (D1,j)))
= (D1
. j) by
A232,
A245,
A277,
INTEGRA1:def 4;
(D2
. ((
indx (D2,D1,n1))
+ 2))
>= (D2
. (
indx (D2,D1,n1))) by
A262,
A287,
A288,
SEQ_4: 137;
then (D2
. ((
indx (D2,D1,n1))
+ 2))
in (
divset (D1,j)) by
A260,
A234,
A279,
A295,
A281,
A289,
INTEGRA2: 1;
then
A297: (D2
. ((
indx (D2,D1,n1))
+ 2))
in ((
rng D)
/\ (
divset (D1,j))) by
A294,
XBOOLE_0:def 4;
A298: ((
indx (D2,D1,n1))
+ 1)
< (
indx (D2,D1,j)) by
A284,
A286,
XXREAL_0: 2;
then ((
indx (D2,D1,n1))
+ 1)
<= (
len D2) by
A239,
XXREAL_0: 2;
then
A299: ((
indx (D2,D1,n1))
+ 1)
in (
dom D2) by
A283,
FINSEQ_3: 25;
then
A300: (D2
. (
indx (D2,D1,j)))
>= (D2
. ((
indx (D2,D1,n1))
+ 1)) by
A237,
A298,
SEQ_4: 137;
A301: (
indx (D2,D1,n1))
< ((
indx (D2,D1,n1))
+ 1) by
NAT_1: 13;
A302: not (D2
. ((
indx (D2,D1,n1))
+ 1))
in (
rng D1)
proof
assume (D2
. ((
indx (D2,D1,n1))
+ 1))
in (
rng D1);
then
consider k1 be
Element of
NAT such that
A303: k1
in (
dom D1) and
A304: (D2
. ((
indx (D2,D1,n1))
+ 1))
= (D1
. k1) by
PARTFUN1: 3;
(D2
. ((
indx (D2,D1,n1))
+ 1))
< (D2
. (
indx (D2,D1,j))) by
A237,
A298,
A299,
SEQM_3:def 1;
then
A305: k1
< j by
A232,
A234,
A303,
A304,
SEQ_4: 137;
(D2
. (
indx (D2,D1,n1)))
< (D2
. ((
indx (D2,D1,n1))
+ 1)) by
A262,
A301,
A299,
SEQM_3:def 1;
then n1
< k1 by
A241,
A260,
A303,
A304,
SEQ_4: 137;
hence contradiction by
A279,
A305,
NAT_1: 13;
end;
(D2
. ((
indx (D2,D1,n1))
+ 1))
in (
rng D2) by
A299,
FUNCT_1:def 3;
then
A306: (D2
. ((
indx (D2,D1,n1))
+ 1))
in (
rng D) by
A11,
A302,
XBOOLE_0:def 3;
(D2
. ((
indx (D2,D1,n1))
+ 1))
>= (D2
. (
indx (D2,D1,n1))) by
A262,
A301,
A299,
SEQ_4: 137;
then (D2
. ((
indx (D2,D1,n1))
+ 1))
in (
divset (D1,j)) by
A260,
A234,
A279,
A282,
A296,
A300,
INTEGRA2: 1;
then (D2
. ((
indx (D2,D1,n1))
+ 1))
in ((
rng D)
/\ (
divset (D1,j))) by
A306,
XBOOLE_0:def 4;
then (D2
. ((
indx (D2,D1,n1))
+ 1))
= (D2
. ((
indx (D2,D1,n1))
+ 2)) by
A8,
A232,
A297,
Th5;
hence contradiction by
A286,
A299,
A288,
SEQM_3:def 1;
end;
A307: ((
indx (D2,D1,n1))
+ 1)
< (
indx (D2,D1,j)) implies ((
indx (D2,D1,n1))
+ 2)
= (
indx (D2,D1,j))
proof
assume ((
indx (D2,D1,n1))
+ 1)
< (
indx (D2,D1,j));
then
A308: (((
indx (D2,D1,n1))
+ 1)
+ 1)
<= (
indx (D2,D1,j)) by
NAT_1: 13;
((
indx (D2,D1,n1))
+ 2)
>= (
indx (D2,D1,j)) by
A280,
XREAL_1: 20;
hence thesis by
A308,
XXREAL_0: 1;
end;
A309: 1
<= ((
indx (D2,D1,n1))
+ 1) by
NAT_1: 12;
A310: (
indx (D2,D1,j))
<= (
len
UVf(D2)) by
A239,
INTEGRA1:def 6;
(D1
. n1)
< (D1
. j) by
A232,
A241,
A245,
SEQM_3:def 1;
then
A311: (
indx (D2,D1,n1))
< (
indx (D2,D1,j)) by
A262,
A260,
A237,
A234,
SEQ_4: 137;
then
A312: ((
indx (D2,D1,n1))
+ 1)
<= (
indx (D2,D1,j)) by
NAT_1: 13;
then ((
indx (D2,D1,n1))
+ 1)
<= (
len D2) by
A239,
XXREAL_0: 2;
then ((
indx (D2,D1,n1))
+ 1)
<= (
len
UVf(D2)) by
INTEGRA1:def 6;
then
A313: (
len (
mid (
UVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j)))))
= (((
indx (D2,D1,j))
-' ((
indx (D2,D1,n1))
+ 1))
+ 1) by
A238,
A312,
A309,
A310,
FINSEQ_6: 118
.= (((
indx (D2,D1,j))
- ((
indx (D2,D1,n1))
+ 1))
+ 1) by
A312,
XREAL_1: 233
.= ((
indx (D2,D1,j))
- (
indx (D2,D1,n1)));
((
indx (D2,D1,n1))
+ 1)
<= (
indx (D2,D1,j)) by
A311,
NAT_1: 13;
then
A314: ((
indx (D2,D1,n1))
+ 1)
= (
indx (D2,D1,j)) or ((
indx (D2,D1,n1))
+ 1)
< (
indx (D2,D1,j)) by
XXREAL_0: 1;
A315: (
Sum (
mid (
UVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j)))))
>= ((
lower_bound (
rng f))
* (
vol (
divset (D1,(n1
+ 1)))))
proof
now
per cases by
A314,
A307;
suppose
A316: ((
indx (D2,D1,j))
- (
indx (D2,D1,n1)))
= 1;
((
indx (D2,D1,n1))
+ 1)
>= (1
+ 1) by
A263,
XREAL_1: 6;
then
A317: ((
indx (D2,D1,n1))
+ 1)
<> 1;
then (
upper_bound (
divset (D2,((
indx (D2,D1,n1))
+ 1))))
= (D2
. ((
indx (D2,D1,n1))
+ 1)) by
A237,
A316,
INTEGRA1:def 4;
then
A318: (
upper_bound (
divset (D2,((
indx (D2,D1,n1))
+ 1))))
= (D1
. j) by
A10,
A232,
A316,
INTEGRA1:def 19;
(
lower_bound (
divset (D2,((
indx (D2,D1,n1))
+ 1))))
= (D2
. (((
indx (D2,D1,n1))
+ 1)
- 1)) by
A237,
A316,
A317,
INTEGRA1:def 4;
then
A319: (
lower_bound (
divset (D2,((
indx (D2,D1,n1))
+ 1))))
= (D1
. n1) by
A10,
A241,
INTEGRA1:def 19;
(
lower_bound (
divset (D1,(n1
+ 1))))
= (D1
. ((n1
+ 1)
- 1)) by
A245,
A277,
A266,
A279,
INTEGRA1:def 4;
then
A320: (
divset (D2,((
indx (D2,D1,n1))
+ 1)))
= (
divset (D1,(n1
+ 1))) by
A245,
A277,
A266,
A279,
A319,
A318,
INTEGRA1:def 4;
A321: (
vol (
divset (D2,((
indx (D2,D1,n1))
+ 1))))
>=
0 by
INTEGRA1: 9;
reconsider UV = (
UVf(D2)
. ((
indx (D2,D1,n1))
+ 1)) as
Element of
REAL by
XREAL_0:def 1;
1
= (((
indx (D2,D1,j))
- ((
indx (D2,D1,n1))
+ 1))
+ 1) by
A316;
then ((
mid (
UVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j))))
. 1)
= (
UVf(D2)
. ((1
+ ((
indx (D2,D1,n1))
+ 1))
- 1)) by
A309,
A310,
FINSEQ_6: 122
.= (
UVf(D2)
. ((
indx (D2,D1,n1))
+ 1));
then
A322: (
mid (
UVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j))))
=
<*UV*> by
A313,
A316,
FINSEQ_1: 40;
(
UVf(D2)
. ((
indx (D2,D1,n1))
+ 1))
= ((
upper_bound (
rng (f
| (
divset (D2,((
indx (D2,D1,n1))
+ 1))))))
* (
vol (
divset (D2,((
indx (D2,D1,n1))
+ 1))))) by
A237,
A316,
INTEGRA1:def 6;
then (
UVf(D2)
. ((
indx (D2,D1,n1))
+ 1))
>= ((
lower_bound (
rng f))
* (
vol (
divset (D1,(n1
+ 1))))) by
A1,
A237,
A316,
A320,
A321,
Th19,
XREAL_1: 64;
hence thesis by
A322,
FINSOP_1: 11;
end;
suppose
A323: ((
indx (D2,D1,j))
- (
indx (D2,D1,n1)))
= 2;
((
indx (D2,D1,n1))
+ 2)
>= (2
+ 1) by
A263,
XREAL_1: 6;
then
A324: ((
indx (D2,D1,n1))
+ 2)
<> 1;
then
A325: (
upper_bound (
divset (D2,((
indx (D2,D1,n1))
+ 2))))
= (D2
. (
indx (D2,D1,j))) by
A237,
A323,
INTEGRA1:def 4;
(((
indx (D2,D1,n1))
+ 2)
- 1)
= ((
indx (D2,D1,n1))
+ 1);
then (
lower_bound (
divset (D2,((
indx (D2,D1,n1))
+ 2))))
= (D2
. ((
indx (D2,D1,n1))
+ 1)) by
A237,
A323,
A324,
INTEGRA1:def 4;
then
A326: (
vol (
divset (D2,((
indx (D2,D1,n1))
+ 2))))
= ((D1
. j)
- (D2
. ((
indx (D2,D1,n1))
+ 1))) by
A234,
A325,
INTEGRA1:def 5;
A327: (
upper_bound (
divset (D1,(n1
+ 1))))
= (D1
. (n1
+ 1)) by
A245,
A277,
A266,
A279,
INTEGRA1:def 4;
(
lower_bound (
divset (D1,(n1
+ 1))))
= (D1
. ((n1
+ 1)
- 1)) by
A245,
A277,
A266,
A279,
INTEGRA1:def 4;
then
A328: (
vol (
divset (D1,(n1
+ 1))))
= ((D1
. (n1
+ 1))
- (D1
. n1)) by
A327,
INTEGRA1:def 5;
A329: (
vol (
divset (D2,((
indx (D2,D1,n1))
+ 2))))
>=
0 by
INTEGRA1: 9;
A330: (
indx (D2,D1,j))
<= (
len
UVf(D2)) by
A239,
INTEGRA1:def 6;
A331: (
vol (
divset (D2,((
indx (D2,D1,n1))
+ 1))))
>=
0 by
INTEGRA1: 9;
A332: 1
<= ((
indx (D2,D1,n1))
+ 1) by
NAT_1: 12;
A333: ((
indx (D2,D1,n1))
+ 1)
<= ((
indx (D2,D1,n1))
+ 2) by
XREAL_1: 6;
then ((
indx (D2,D1,n1))
+ 1)
<= (
len D2) by
A239,
A323,
XXREAL_0: 2;
then
A334: ((
indx (D2,D1,n1))
+ 1)
in (
dom D2) by
A332,
FINSEQ_3: 25;
then (
UVf(D2)
. ((
indx (D2,D1,n1))
+ 1))
= ((
upper_bound (
rng (f
| (
divset (D2,((
indx (D2,D1,n1))
+ 1))))))
* (
vol (
divset (D2,((
indx (D2,D1,n1))
+ 1))))) by
INTEGRA1:def 6;
then
A335: (
UVf(D2)
. ((
indx (D2,D1,n1))
+ 1))
>= ((
lower_bound (
rng f))
* (
vol (
divset (D2,((
indx (D2,D1,n1))
+ 1))))) by
A1,
A334,
A331,
Th19,
XREAL_1: 64;
(((
indx (D2,D1,j))
- ((
indx (D2,D1,n1))
+ 1))
+ 1)
= (1
+ 1) by
A323;
then
A336: ((
mid (
UVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j))))
. 2)
= (
UVf(D2)
. ((2
+ ((
indx (D2,D1,n1))
+ 1))
- 1)) by
A332,
A333,
A330,
FINSEQ_6: 122
.= (
UVf(D2)
. (((
indx (D2,D1,n1))
+
0 )
+ 2));
(((
indx (D2,D1,j))
- ((
indx (D2,D1,n1))
+ 1))
+ 1)
>= 1 by
A323;
then ((
mid (
UVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j))))
. 1)
= (
UVf(D2)
. ((1
+ ((
indx (D2,D1,n1))
+ 1))
- 1)) by
A323,
A332,
A333,
A330,
FINSEQ_6: 122
.= (
UVf(D2)
. ((
indx (D2,D1,n1))
+ 1));
then (
mid (
UVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j))))
=
<*(
UVf(D2)
. ((
indx (D2,D1,n1))
+ 1)), (
UVf(D2)
. ((
indx (D2,D1,n1))
+ 2))*> by
A313,
A323,
A336,
FINSEQ_1: 44;
then
A337: (
Sum (
mid (
UVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j)))))
= ((
UVf(D2)
. ((
indx (D2,D1,n1))
+ 1))
+ (
UVf(D2)
. ((
indx (D2,D1,n1))
+ 2))) by
RVSUM_1: 77;
A338: ((
indx (D2,D1,n1))
+ 1)
> 1 by
A263,
NAT_1: 13;
then
A339: (
upper_bound (
divset (D2,((
indx (D2,D1,n1))
+ 1))))
= (D2
. ((
indx (D2,D1,n1))
+ 1)) by
A334,
INTEGRA1:def 4;
(
lower_bound (
divset (D2,((
indx (D2,D1,n1))
+ 1))))
= (D2
. (((
indx (D2,D1,n1))
+ 1)
- 1)) by
A334,
A338,
INTEGRA1:def 4;
then
A340: (
vol (
divset (D2,((
indx (D2,D1,n1))
+ 1))))
= ((D2
. ((
indx (D2,D1,n1))
+ 1))
- (D1
. n1)) by
A260,
A339,
INTEGRA1:def 5;
(
UVf(D2)
. ((
indx (D2,D1,n1))
+ 2))
= ((
upper_bound (
rng (f
| (
divset (D2,((
indx (D2,D1,n1))
+ 2))))))
* (
vol (
divset (D2,((
indx (D2,D1,n1))
+ 2))))) by
A237,
A323,
INTEGRA1:def 6;
then (
UVf(D2)
. ((
indx (D2,D1,n1))
+ 2))
>= ((
lower_bound (
rng f))
* (
vol (
divset (D2,((
indx (D2,D1,n1))
+ 2))))) by
A1,
A237,
A323,
A329,
Th19,
XREAL_1: 64;
then (
Sum (
mid (
UVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j)))))
>= (((
lower_bound (
rng f))
* (
vol (
divset (D2,((
indx (D2,D1,n1))
+ 1)))))
+ ((
lower_bound (
rng f))
* (
vol (
divset (D2,((
indx (D2,D1,n1))
+ 2)))))) by
A337,
A335,
XREAL_1: 7;
hence thesis by
A279,
A340,
A326,
A328;
end;
end;
hence thesis;
end;
A341: (n1
+ 1)
<= (
len
UVf(D1)) by
A265,
INTEGRA1:def 6;
((j
-' (n1
+ 1))
+ 1)
= ((j
- (n1
+ 1))
+ 1) by
A279,
XREAL_1: 233;
then
A342: (
len (
mid (
UVf(D1),(n1
+ 1),j)))
= 1 by
A244,
A279,
A341,
FINSEQ_6: 118;
reconsider uv = ((
upper_bound (
rng (f
| (
divset (D1,(n1
+ 1))))))
* (
vol (
divset (D1,(n1
+ 1))))) as
Element of
REAL by
XREAL_0:def 1;
((n1
+ 1)
+ 1)
<= (j
+ 1) by
A258,
XREAL_1: 6;
then 1
<= ((j
+ 1)
- (n1
+ 1)) by
XREAL_1: 19;
then ((
mid (
UVf(D1),(n1
+ 1),j))
. 1)
= (
UVf(D1)
. ((1
+ (n1
+ 1))
- 1)) by
A244,
A279,
A341,
FINSEQ_6: 122
.= ((
upper_bound (
rng (f
| (
divset (D1,(n1
+ 1))))))
* (
vol (
divset (D1,(n1
+ 1))))) by
A266,
INTEGRA1:def 6;
then (
mid (
UVf(D1),(n1
+ 1),j))
=
<*uv*> by
A342,
FINSEQ_1: 40;
then
A343: (
Sum (
mid (
UVf(D1),(n1
+ 1),j)))
= ((
upper_bound (
rng (f
| (
divset (D1,(n1
+ 1))))))
* (
vol (
divset (D1,(n1
+ 1))))) by
FINSOP_1: 11;
(
divset (D1,(n1
+ 1)))
c= A by
A266,
INTEGRA1: 8;
then
A344: (
upper_bound (
rng (f
| (
divset (D1,(n1
+ 1))))))
<= (
upper_bound (
rng f)) by
A1,
Lm4;
(n1
+ 1)
in (
Seg (
len D1)) by
A266,
FINSEQ_1:def 3;
then (n1
+ 1)
in (
Seg (
len (
upper_volume ((
chi (A,A)),D1)))) by
INTEGRA1:def 6;
then
A345: (n1
+ 1)
in (
dom (
upper_volume ((
chi (A,A)),D1))) by
FINSEQ_1:def 3;
(
vol (
divset (D1,(n1
+ 1))))
= ((
upper_volume ((
chi (A,A)),D1))
. (n1
+ 1)) by
A266,
INTEGRA1: 20;
then (
vol (
divset (D1,(n1
+ 1))))
in (
rng (
upper_volume ((
chi (A,A)),D1))) by
A345,
FUNCT_1:def 3;
then
A346: (
vol (
divset (D1,(n1
+ 1))))
<= (
delta D1) by
XXREAL_2:def 8;
((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
>=
0 by
A1,
Lm3,
XREAL_1: 48;
then
A347: (((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
* (
vol (
divset (D1,(n1
+ 1)))))
<= (((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
* (
delta D1)) by
A346,
XREAL_1: 64;
(
vol (
divset (D1,(n1
+ 1))))
>=
0 by
INTEGRA1: 9;
then (
Sum (
mid (
UVf(D1),(n1
+ 1),j)))
<= ((
upper_bound (
rng f))
* (
vol (
divset (D1,(n1
+ 1))))) by
A343,
A344,
XREAL_1: 64;
then ((
Sum (
mid (
UVf(D1),(n1
+ 1),j)))
- (
Sum (
mid (
UVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j))))))
<= (((
upper_bound (
rng f))
* (
vol (
divset (D1,(n1
+ 1)))))
- ((
lower_bound (
rng f))
* (
vol (
divset (D1,(n1
+ 1)))))) by
A315,
XREAL_1: 13;
hence thesis by
A347,
XXREAL_0: 2;
end;
suppose
A348: (n1
+ 1)
< j;
A349: (j
-' (n1
+ 1))
= (j
- (n1
+ 1)) by
A258,
XREAL_1: 233;
then
A350: ((j
-' (n1
+ 1))
+ 1)
= (j
- n1);
A351: n1
< (n1
+ 1) by
NAT_1: 13;
then
A352: (D1
. n1)
< (D1
. (n1
+ 1)) by
A241,
A266,
SEQM_3:def 1;
then
consider B be non
empty
closed_interval
Subset of
REAL , MD1,MD2 be
Division of B such that
A353: (D1
. n1)
= (
lower_bound B) and (
upper_bound B)
= (MD2
. (
len MD2)) and
A354: (
upper_bound B)
= (MD1
. (
len MD1)) and
A355: MD1
<= MD2 and
A356: MD1
= (
mid (D1,(n1
+ 1),j)) and
A357: MD2
= (
mid (D2,(
indx (D2,D1,(n1
+ 1))),(
indx (D2,D1,j)))) by
A10,
A232,
A258,
A266,
A276,
Th15;
A358: (
len MD1)
= ((j
-' (n1
+ 1))
+ 1) by
A258,
A261,
A264,
A244,
A265,
A356,
FINSEQ_6: 118;
then
A359: (
len MD1)
= ((j
- (n1
+ 1))
+ 1) by
A258,
XREAL_1: 233;
then
A360: (((
len MD1)
+ (n1
+ 1))
- 1)
= j;
A361: (
len MD1)
in (
dom MD1) by
FINSEQ_5: 6;
then
A362: 1
<= (
len MD1) by
FINSEQ_3: 25;
A363: (
lower_bound (
divset (MD1,(
len MD1))))
= (
lower_bound (
divset (D1,j))) & (
upper_bound (
divset (MD1,(
len MD1))))
= (
upper_bound (
divset (D1,j)))
proof
per cases ;
suppose
A364: (
len MD1)
= 1;
then
A365: (
upper_bound (
divset (MD1,(
len MD1))))
= (MD1
. (
len MD1)) by
A361,
INTEGRA1:def 4;
A366: (
upper_bound (
divset (D1,j)))
= (D1
. j) by
A232,
A245,
A277,
INTEGRA1:def 4;
(
lower_bound (
divset (D1,j)))
= (D1
. (j
- 1)) by
A232,
A245,
A277,
INTEGRA1:def 4;
hence thesis by
A261,
A264,
A353,
A356,
A359,
A361,
A364,
A365,
A366,
FINSEQ_6: 118,
INTEGRA1:def 4;
end;
suppose
A367: (
len MD1)
<> 1;
then ((
len MD1)
- 1)
in (
dom MD1) by
A361,
INTEGRA1: 7;
then
A368: ((
len MD1)
- 1)
>= 1 by
FINSEQ_3: 25;
(
len MD1)
<= ((
len MD1)
+ 1) by
NAT_1: 11;
then
A369: ((
len MD1)
- 1)
<= (
len MD1) by
XREAL_1: 20;
(
upper_bound (
divset (MD1,(
len MD1))))
= (MD1
. (
len MD1)) by
A361,
A367,
INTEGRA1:def 4;
then
A370: (
upper_bound (
divset (MD1,(
len MD1))))
= (D1
. j) by
A258,
A264,
A244,
A356,
A358,
A360,
A362,
FINSEQ_6: 122;
A371: ((((
len MD1)
- 1)
+ (n1
+ 1))
- 1)
= (j
- 1) by
A358,
A349;
(
lower_bound (
divset (MD1,(
len MD1))))
= (MD1
. ((
len MD1)
- 1)) by
A361,
A367,
INTEGRA1:def 4;
then (
lower_bound (
divset (MD1,(
len MD1))))
= (D1
. (j
- 1)) by
A258,
A264,
A244,
A356,
A358,
A371,
A368,
A369,
FINSEQ_6: 122;
hence thesis by
A232,
A245,
A277,
A370,
INTEGRA1:def 4;
end;
end;
A372: B
c= A
proof
let x1 be
object;
A373: (
rng D1)
c= A by
INTEGRA1:def 2;
(D1
. n1)
in (
rng D1) by
A241,
FUNCT_1:def 3;
then
A374: (
lower_bound A)
<= (D1
. n1) by
A373,
INTEGRA2: 1;
assume
A375: x1
in B;
then
reconsider x1 as
Real;
A376: x1
<= (MD1
. (
len MD1)) by
A354,
A375,
INTEGRA2: 1;
(D1
. j)
in (
rng D1) by
A232,
FUNCT_1:def 3;
then
A377: (D1
. j)
<= (
upper_bound A) by
A373,
INTEGRA2: 1;
(D1
. n1)
<= x1 by
A353,
A375,
INTEGRA2: 1;
then
A378: (
lower_bound A)
<= x1 by
A374,
XXREAL_0: 2;
(MD1
. (
len MD1))
= (D1
. (((j
- n1)
- 1)
+ (n1
+ 1))) by
A258,
A278,
A264,
A244,
A356,
A358,
A349,
FINSEQ_6: 122
.= (D1
. j);
then x1
<= (
upper_bound A) by
A376,
A377,
XXREAL_0: 2;
hence thesis by
A378,
INTEGRA2: 1;
end;
then
reconsider g = (f
| B) as
Function of B,
REAL by
FUNCT_2: 32;
A379: (
delta MD1)
>=
0 by
Th9;
A380: (g
| B) is
bounded
proof
consider a be
Real such that
A381: for x be
object st x
in (A
/\ (
dom f)) holds a
<= (f
. x) by
A1,
RFUNCT_1: 71;
for x be
object st x
in (B
/\ (
dom g)) holds a
<= (g
. x)
proof
let x be
object;
A382: ((
dom f)
/\ B)
c= ((
dom f)
/\ A) by
A372,
XBOOLE_1: 26;
assume x
in (B
/\ (
dom g));
then
A383: x
in (
dom g) by
XBOOLE_0:def 4;
then x
in ((
dom f)
/\ B) by
RELAT_1: 61;
then a
<= (f
. x) by
A381,
A382;
hence thesis by
A383,
FUNCT_1: 47;
end;
then
A384: (g
| B) is
bounded_below by
RFUNCT_1: 71;
consider a be
Real such that
A385: for x be
object st x
in (A
/\ (
dom f)) holds (f
. x)
<= a by
A1,
RFUNCT_1: 70;
for x be
object st x
in (B
/\ (
dom g)) holds (g
. x)
<= a
proof
let x be
object;
A386: ((
dom f)
/\ B)
c= ((
dom f)
/\ A) by
A372,
XBOOLE_1: 26;
assume x
in (B
/\ (
dom g));
then
A387: x
in (
dom g) by
XBOOLE_0:def 4;
then x
in ((
dom f)
/\ B) by
RELAT_1: 61;
then a
>= (f
. x) by
A385,
A386;
hence thesis by
A387,
FUNCT_1: 47;
end;
then (g
| B) is
bounded_above by
RFUNCT_1: 70;
hence thesis by
A384;
end;
(
lower_bound (
divset (D1,j)))
<= (D
. (i
+ 1)) by
A233,
INTEGRA2: 1;
then
A388: (D1
. (j
- 1))
<= (D
. (i
+ 1)) by
A232,
A245,
A277,
INTEGRA1:def 4;
A389: ((j
-' (n1
+ 1))
+ 1)
= ((j
- (n1
+ 1))
+ 1) by
A258,
XREAL_1: 233;
A390: (
len (
upper_volume (g,MD1)))
= (
len MD1) by
INTEGRA1:def 6
.= ((j
- (n1
+ 1))
+ 1) by
A258,
A261,
A264,
A244,
A265,
A356,
A389,
FINSEQ_6: 118;
A391: j
<= (
len
UVf(D1)) by
A264,
INTEGRA1:def 6;
A392: for k be
Nat st 1
<= k & k
<= (
len (
upper_volume (g,MD1))) holds ((
upper_volume (g,MD1))
. k)
= ((
mid (
UVf(D1),(n1
+ 1),j))
. k)
proof
let k be
Nat;
assume that
A393: 1
<= k and
A394: k
<= (
len (
upper_volume (g,MD1)));
k
in (
Seg (
len (
upper_volume (g,MD1)))) by
A393,
A394,
FINSEQ_1: 1;
then
A395: k
in (
Seg (
len MD1)) by
INTEGRA1:def 6;
then
A396: k
in (
dom MD1) by
FINSEQ_1:def 3;
k
in (
dom MD1) by
A395,
FINSEQ_1:def 3;
then
A397: ((
upper_volume (g,MD1))
. k)
= ((
upper_bound (
rng (g
| (
divset (MD1,k)))))
* (
vol (
divset (MD1,k)))) by
INTEGRA1:def 6;
consider k2 be
Element of
NAT such that
A398: (n1
+ 1)
= (1
+ k2);
A399: 1
<= (k
+ k2) by
A393,
NAT_1: 12;
k
<= (j
- ((n1
+ 1)
- 1)) by
A390,
A394;
then (k
+ ((n1
+ 1)
- 1))
<= j by
XREAL_1: 19;
then (k
+ k2)
<= (
len D1) by
A264,
A398,
XXREAL_0: 2;
then
A400: (k
+ k2)
in (
Seg (
len D1)) by
A399,
FINSEQ_1: 1;
then
A401: (k
+ k2)
in (
dom D1) by
FINSEQ_1:def 3;
(1
+ 1)
<= (k
+ k2) by
A259,
A393,
A398,
XREAL_1: 7;
then
A402: 1
< (k
+ k2) by
NAT_1: 13;
A403: k2
= ((n1
+ 1)
- 1) by
A398;
A404: (
lower_bound (
divset (D1,(k
+ k2))))
= (
lower_bound (
divset (MD1,k))) & (
upper_bound (
divset (D1,(k
+ k2))))
= (
upper_bound (
divset (MD1,k)))
proof
per cases ;
suppose
A405: k
= 1;
then (
upper_bound (
divset (MD1,k)))
= (MD1
. k) by
A396,
INTEGRA1:def 4;
then
A406: (
upper_bound (
divset (MD1,k)))
= (D1
. ((k
+ (n1
+ 1))
- 1)) by
A258,
A264,
A244,
A356,
A390,
A393,
A394,
FINSEQ_6: 122;
(
lower_bound (
divset (MD1,k)))
= (D1
. n1) by
A353,
A396,
A405,
INTEGRA1:def 4;
hence thesis by
A403,
A402,
A401,
A405,
A406,
INTEGRA1:def 4;
end;
suppose
A407: k
<> 1;
then (
upper_bound (
divset (MD1,k)))
= (MD1
. k) by
A396,
INTEGRA1:def 4;
then
A408: (
upper_bound (
divset (MD1,k)))
= (D1
. ((k
+ (n1
+ 1))
- 1)) by
A258,
A264,
A244,
A356,
A390,
A393,
A394,
FINSEQ_6: 122;
A409: (k
- 1)
<= ((j
- (n1
+ 1))
+ 1) by
A390,
A394,
XREAL_1: 146,
XXREAL_0: 2;
A410: (
lower_bound (
divset (MD1,k)))
= (MD1
. (k
- 1)) by
A396,
A407,
INTEGRA1:def 4;
A411: (k
- 1)
in (
dom MD1) by
A396,
A407,
INTEGRA1: 7;
then 1
<= (k
- 1) by
FINSEQ_3: 25;
then (
lower_bound (
divset (MD1,k)))
= (D1
. (((k
- 1)
+ (n1
+ 1))
- 1)) by
A258,
A264,
A244,
A356,
A411,
A409,
A410,
FINSEQ_6: 122;
hence thesis by
A398,
A402,
A401,
A408,
INTEGRA1:def 4;
end;
end;
(
divset (MD1,k))
=
[.(
lower_bound (
divset (MD1,k))), (
upper_bound (
divset (MD1,k))).] by
INTEGRA1: 4;
then
A412: (
divset (D1,(k
+ k2)))
= (
divset (MD1,k)) by
A404,
INTEGRA1: 4;
A413: (k
+ k2)
in (
dom D1) by
A400,
FINSEQ_1:def 3;
A414: ((
mid (
UVf(D1),(n1
+ 1),j))
. k)
= (
UVf(D1)
. ((k
+ (n1
+ 1))
- 1)) by
A258,
A244,
A390,
A391,
A393,
A394,
FINSEQ_6: 122
.= ((
upper_bound (
rng (f
| (
divset (D1,(k
+ k2))))))
* (
vol (
divset (D1,(k
+ k2))))) by
A398,
A413,
INTEGRA1:def 6;
k
in (
dom MD1) by
A395,
FINSEQ_1:def 3;
then (
divset (D1,(k
+ k2)))
c= B by
A412,
INTEGRA1: 8;
hence thesis by
A397,
A414,
A412,
FUNCT_1: 51;
end;
(n1
+ 1)
<= (
len
UVf(D1)) by
A265,
INTEGRA1:def 6;
then (
len (
upper_volume (g,MD1)))
= (
len (
mid (
UVf(D1),(n1
+ 1),j))) by
A258,
A261,
A244,
A389,
A390,
A391,
FINSEQ_6: 118;
then
A415: (
Sum (
upper_volume (g,MD1)))
= (
Sum (
mid (
UVf(D1),(n1
+ 1),j))) by
A392,
FINSEQ_1: 14;
A416: n1
< (j
- 1) by
A348,
XREAL_1: 20;
A417: 1
<= ((
indx (D2,D1,n1))
+ 1) by
A263,
NAT_1: 13;
A418: (
len MD1)
in (
dom MD1) by
FINSEQ_5: 6;
A419: (
upper_bound (
divset (MD1,(
len MD1))))
= (MD1
. (
len MD1))
proof
per cases ;
suppose (
len MD1)
= 1;
hence thesis by
A418,
INTEGRA1:def 4;
end;
suppose (
len MD1)
<> 1;
hence thesis by
A418,
INTEGRA1:def 4;
end;
end;
(
vol B)
= ((
upper_bound B)
- (D1
. n1)) by
A353,
INTEGRA1:def 5;
then (
vol B)
= ((D1
. j)
- (D1
. n1)) by
A232,
A245,
A277,
A354,
A363,
A419,
INTEGRA1:def 4;
then
A420: (
vol B)
<>
0 by
A232,
A241,
A245,
SEQM_3:def 1;
(
rng f) is
bounded_below by
A1,
INTEGRA1: 11;
then
A421: (
lower_bound (
rng f))
<= (
lower_bound (
rng g)) by
RELAT_1: 70,
SEQ_4: 47;
(
rng f) is
bounded_above by
A1,
INTEGRA1: 13;
then (
upper_bound (
rng f))
>= (
upper_bound (
rng g)) by
RELAT_1: 70,
SEQ_4: 48;
then ((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
>= ((
upper_bound (
rng g))
- (
lower_bound (
rng g))) by
A421,
XREAL_1: 13;
then
A422: (((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
* (
delta MD1))
>= (((
upper_bound (
rng g))
- (
lower_bound (
rng g)))
* (
delta MD1)) by
A379,
XREAL_1: 64;
(D1
. n1)
< (D1
. (n1
+ 1)) by
A241,
A266,
A351,
SEQM_3:def 1;
then (
indx (D2,D1,n1))
< (
indx (D2,D1,(n1
+ 1))) by
A262,
A260,
A270,
A267,
SEQ_4: 137;
then
A423: ((
indx (D2,D1,n1))
+ 1)
<= (
indx (D2,D1,(n1
+ 1))) by
NAT_1: 13;
then
A424: ((
indx (D2,D1,n1))
+ 1)
<= (
len D2) by
A274,
XXREAL_0: 2;
A425: (
indx (D2,D1,n1))
< ((
indx (D2,D1,n1))
+ 1) by
NAT_1: 13;
A426: (
indx (D2,D1,(n1
+ 1)))
= ((
indx (D2,D1,n1))
+ 1)
proof
assume (
indx (D2,D1,(n1
+ 1)))
<> ((
indx (D2,D1,n1))
+ 1);
then
A427: (
indx (D2,D1,(n1
+ 1)))
> ((
indx (D2,D1,n1))
+ 1) by
A423,
XXREAL_0: 1;
A428: ((
indx (D2,D1,n1))
+ 1)
in (
dom D2) by
A417,
A424,
FINSEQ_3: 25;
then
A429: (D2
. ((
indx (D2,D1,n1))
+ 1))
in (
rng D2) by
FUNCT_1:def 3;
now
per cases by
A11,
A429,
XBOOLE_0:def 3;
suppose (D2
. ((
indx (D2,D1,n1))
+ 1))
in (
rng D1);
then
consider n2 be
Element of
NAT such that
A430: n2
in (
dom D1) and
A431: (D2
. ((
indx (D2,D1,n1))
+ 1))
= (D1
. n2) by
PARTFUN1: 3;
(D2
. (
indx (D2,D1,n1)))
< (D2
. ((
indx (D2,D1,n1))
+ 1)) by
A262,
A425,
A428,
SEQM_3:def 1;
then n1
< n2 by
A241,
A260,
A430,
A431,
SEQ_4: 137;
then
A432: (n1
+ 1)
<= n2 by
NAT_1: 13;
(D1
. n2)
< (D1
. (n1
+ 1)) by
A270,
A267,
A427,
A428,
A431,
SEQM_3:def 1;
hence contradiction by
A266,
A430,
A432,
SEQ_4: 137;
end;
suppose
A433: (D2
. ((
indx (D2,D1,n1))
+ 1))
in (
rng D);
A434: (D
. i)
<= (
upper_bound (
divset (D1,n1))) by
A242,
INTEGRA2: 1;
A435: (
upper_bound (
divset (D1,n1)))
= (D1
. n1)
proof
per cases ;
suppose n1
= 1;
hence thesis by
A241,
INTEGRA1:def 4;
end;
suppose n1
<> 1;
hence thesis by
A241,
INTEGRA1:def 4;
end;
end;
consider n2 be
Element of
NAT such that
A436: n2
in (
dom D) and
A437: (D2
. ((
indx (D2,D1,n1))
+ 1))
= (D
. n2) by
A433,
PARTFUN1: 3;
(D1
. n1)
< (D
. n2) by
A262,
A260,
A425,
A428,
A437,
SEQM_3:def 1;
then (D
. i)
< (D
. n2) by
A434,
A435,
XXREAL_0: 2;
then i
< n2 by
A236,
A436,
SEQ_4: 137;
then
A438: (i
+ 1)
<= n2 by
NAT_1: 13;
((n1
+ 1)
+ 1)
<= j by
A348,
NAT_1: 13;
then
A439: (n1
+ 1)
<= (j
- 1) by
XREAL_1: 19;
(j
- 1)
in (
dom D1) by
A232,
A245,
A277,
INTEGRA1: 7;
then
A440: (D1
. (n1
+ 1))
<= (D1
. (j
- 1)) by
A266,
A439,
SEQ_4: 137;
A441: (
lower_bound (
divset (D1,j)))
<= (D
. (i
+ 1)) by
A233,
INTEGRA2: 1;
(
lower_bound (
divset (D1,j)))
= (D1
. (j
- 1)) by
A232,
A245,
A277,
INTEGRA1:def 4;
then
A442: (D1
. (n1
+ 1))
<= (D
. (i
+ 1)) by
A440,
A441,
XXREAL_0: 2;
(D
. n2)
< (D1
. (n1
+ 1)) by
A270,
A267,
A427,
A428,
A437,
SEQM_3:def 1;
then (D
. n2)
< (D
. (i
+ 1)) by
A442,
XXREAL_0: 2;
hence contradiction by
A231,
A436,
A438,
SEQ_4: 137;
end;
end;
hence contradiction;
end;
A443: (
len MD2)
= (((
indx (D2,D1,j))
-' (
indx (D2,D1,(n1
+ 1))))
+ 1) by
A275,
A271,
A274,
A238,
A239,
A357,
FINSEQ_6: 118;
then
A444: (
len MD2)
= (((
indx (D2,D1,j))
- (
indx (D2,D1,(n1
+ 1))))
+ 1) by
A275,
XREAL_1: 233;
then
A445: (
len (
upper_volume (g,MD2)))
= (((
indx (D2,D1,j))
- ((
indx (D2,D1,n1))
+ 1))
+ 1) by
A426,
INTEGRA1:def 6;
for x1 be
object holds x1
in ((
rng MD1)
\/
{(D
. (i
+ 1))}) implies x1
in (
rng MD2)
proof
let x1 be
object;
assume
A446: x1
in ((
rng MD1)
\/
{(D
. (i
+ 1))});
then
reconsider x1 as
Real;
now
per cases by
A446,
XBOOLE_0:def 3;
suppose
A447: x1
in (
rng MD1);
(
rng MD1)
<>
{} ;
then 1
in (
dom MD1) by
FINSEQ_3: 32;
then
A448: 1
<= (
len MD1) by
FINSEQ_3: 25;
A449: (
len MD1)
= ((j
-' (n1
+ 1))
+ 1) by
A258,
A261,
A264,
A244,
A265,
A356,
FINSEQ_6: 118;
then (((
len MD1)
+ (n1
+ 1))
- 1)
= ((((j
- (n1
+ 1))
+ 1)
+ (n1
+ 1))
- 1) by
A258,
XREAL_1: 233
.= j;
then
A450: (MD1
. (
len MD1))
= (D1
. j) by
A258,
A264,
A244,
A356,
A448,
A449,
FINSEQ_6: 122;
(
rng MD1)
c= (
rng D1) by
A356,
FINSEQ_6: 119;
then
A451: x1
in (
rng D1) by
A447;
(
rng D1)
c= (
rng D2) by
A10,
INTEGRA1:def 18;
then
consider k such that
A452: k
in (
dom D2) and
A453: (D2
. k)
= x1 by
A451,
PARTFUN1: 3;
x1
<= (MD1
. (
len MD1)) by
A447,
Th16;
then k
<= (
indx (D2,D1,j)) by
A237,
A234,
A450,
A452,
A453,
SEQM_3:def 1;
then (k
- (
indx (D2,D1,(n1
+ 1))))
<= ((
indx (D2,D1,j))
- (
indx (D2,D1,(n1
+ 1)))) by
XREAL_1: 9;
then
A454: ((k
- (
indx (D2,D1,(n1
+ 1))))
+ 1)
<= (((
indx (D2,D1,j))
- (
indx (D2,D1,(n1
+ 1))))
+ 1) by
XREAL_1: 6;
A455: (MD1
. 1)
<= x1 by
A447,
Th16;
(MD1
. 1)
= (D1
. (n1
+ 1)) by
A261,
A264,
A244,
A265,
A356,
FINSEQ_6: 118;
then
A456: (
indx (D2,D1,(n1
+ 1)))
<= k by
A270,
A267,
A455,
A452,
A453,
SEQM_3:def 1;
then
consider n be
Nat such that
A457: (k
+ 1)
= ((
indx (D2,D1,(n1
+ 1)))
+ n) by
NAT_1: 10,
NAT_1: 12;
A458: ((n
+ (
indx (D2,D1,(n1
+ 1))))
- 1)
= k by
A457;
((
indx (D2,D1,(n1
+ 1)))
+ 1)
<= (k
+ 1) by
A456,
XREAL_1: 6;
then
A459: 1
<= ((k
+ 1)
- (
indx (D2,D1,(n1
+ 1)))) by
XREAL_1: 19;
then n
in (
dom MD2) by
A444,
A454,
A457,
FINSEQ_3: 25;
then (MD2
. n)
in (
rng MD2) by
FUNCT_1:def 3;
hence x1
in (
rng MD2) by
A275,
A271,
A239,
A357,
A453,
A459,
A454,
A458,
FINSEQ_6: 122;
end;
suppose x1
in
{(D
. (i
+ 1))};
then
A460: x1
= (D
. (i
+ 1)) by
TARSKI:def 1;
reconsider j1 = (j
- 1) as
Element of
NAT by
A232,
A245,
A277,
INTEGRA1: 7;
A461: (
rng D)
c= (
rng D2) by
A9,
INTEGRA1:def 18;
(D
. (i
+ 1))
in (
rng D) by
A231,
FUNCT_1:def 3;
then
consider k such that
A462: k
in (
dom D2) and
A463: x1
= (D2
. k) by
A460,
A461,
PARTFUN1: 3;
(D
. (i
+ 1))
<= (
upper_bound (
divset (D1,j))) by
A233,
INTEGRA2: 1;
then x1
<= (D1
. j) by
A232,
A245,
A277,
A460,
INTEGRA1:def 4;
then
A464: (D2
. k)
<= (D2
. (
indx (D2,D1,j))) by
A10,
A232,
A463,
INTEGRA1:def 19;
n1
< j1 by
A348,
XREAL_1: 20;
then
A465: (n1
+ 1)
<= j1 by
NAT_1: 13;
(j
- 1)
in (
dom D1) by
A232,
A245,
A277,
INTEGRA1: 7;
then
A466: (D1
. (n1
+ 1))
<= (D1
. (j
- 1)) by
A266,
A465,
SEQ_4: 137;
(
lower_bound (
divset (D1,j)))
<= (D
. (i
+ 1)) by
A233,
INTEGRA2: 1;
then (D1
. (j
- 1))
<= x1 by
A232,
A245,
A277,
A460,
INTEGRA1:def 4;
then (D2
. (
indx (D2,D1,(n1
+ 1))))
<= (D2
. k) by
A267,
A463,
A466,
XXREAL_0: 2;
hence x1
in (
rng MD2) by
A270,
A237,
A357,
A462,
A463,
A464,
Th17;
end;
end;
hence thesis;
end;
then
A467: ((
rng MD1)
\/
{(D
. (i
+ 1))})
c= (
rng MD2);
(
rng MD2)
<>
{} ;
then 1
in (
dom MD2) by
FINSEQ_3: 32;
then
A468: 1
<= (
len MD2) by
FINSEQ_3: 25;
A469: (((
len MD2)
- 1)
+ (
indx (D2,D1,(n1
+ 1))))
= (
indx (D2,D1,j)) by
A444;
for x1 be
object holds x1
in (
rng MD2) implies x1
in ((
rng MD1)
\/
{(D
. (i
+ 1))})
proof
let x1 be
object;
assume
A470: x1
in (
rng MD2);
then
reconsider x1 as
Real;
A471: (MD2
. 1)
<= x1 by
A470,
Th16;
A472: (MD2
. (
len MD2))
= (D2
. (
indx (D2,D1,j))) by
A275,
A271,
A239,
A357,
A468,
A443,
A469,
FINSEQ_6: 122;
A473: (
rng MD2)
c= (
rng D2) by
A357,
FINSEQ_6: 119;
A474: (MD2
. 1)
= (D2
. (
indx (D2,D1,(n1
+ 1)))) by
A271,
A274,
A238,
A239,
A357,
FINSEQ_6: 118;
A475: x1
<= (MD2
. (
len MD2)) by
A470,
Th16;
then
A476: x1
<= (D1
. j) by
A234,
A275,
A271,
A239,
A357,
A468,
A443,
A469,
FINSEQ_6: 122;
now
per cases by
A11,
A470,
A473,
XBOOLE_0:def 3;
suppose x1
in (
rng D1);
then
consider k such that
A477: k
in (
dom D1) and
A478: (D1
. k)
= x1 by
PARTFUN1: 3;
A479: (n1
+ 1)
<= k by
A266,
A267,
A471,
A474,
A477,
A478,
SEQM_3:def 1;
then
A480: 1
<= (k
- n1) by
XREAL_1: 19;
n1
<= (n1
+ 1) by
NAT_1: 11;
then
consider n be
Nat such that
A481: k
= (n1
+ n) by
A479,
NAT_1: 10,
XXREAL_0: 2;
A482: k
<= j by
A232,
A234,
A475,
A472,
A477,
A478,
SEQM_3:def 1;
then
A483: (k
- n1)
<= (j
- n1) by
XREAL_1: 9;
A484: 1
<= (k
- n1) by
A479,
XREAL_1: 19;
A485: ((j
- (n1
+ 1))
+ 1)
= (j
- n1);
(k
- n1)
<= (
len MD1) by
A358,
A350,
A482,
XREAL_1: 9;
then n
in (
dom MD1) by
A484,
A481,
FINSEQ_3: 25;
then
A486: (MD1
. n)
in (
rng MD1) by
FUNCT_1:def 3;
(MD1
. n)
= (D1
. (((k
- n1)
- 1)
+ (n1
+ 1))) by
A258,
A264,
A244,
A356,
A480,
A483,
A485,
A481,
FINSEQ_6: 122
.= (D1
. k);
hence x1
in ((
rng MD1)
\/
{(D
. (i
+ 1))}) by
A478,
A486,
XBOOLE_0:def 3;
end;
suppose x1
in (
rng D);
then
consider n such that
A487: n
in (
dom D) and
A488: (D
. n)
= x1 by
PARTFUN1: 3;
A489: not (i
+ 1)
< n
proof
j
= 1 or j
<> 1;
then
A490: (
upper_bound (
divset (D1,j)))
= (D1
. j) by
A232,
INTEGRA1:def 4;
reconsider y1 = (D
. (i
+ 1)) as
Real;
A491: (D
. n)
in (
rng D) by
A487,
FUNCT_1:def 3;
assume (i
+ 1)
< n;
then
A492: (D
. (i
+ 1))
< (D
. n) by
A231,
A487,
SEQM_3:def 1;
(
lower_bound (
divset (D1,j)))
<= (D
. (i
+ 1)) by
A233,
INTEGRA2: 1;
then (
lower_bound (
divset (D1,j)))
<= (D
. n) by
A492,
XXREAL_0: 2;
then (D
. n)
in (
divset (D1,j)) by
A476,
A488,
A490,
INTEGRA2: 1;
then
A493: x1
in ((
rng D)
/\ (
divset (D1,j))) by
A488,
A491,
XBOOLE_0:def 4;
(D
. (i
+ 1))
in (
rng D) by
A231,
FUNCT_1:def 3;
then y1
in ((
rng D)
/\ (
divset (D1,j))) by
A233,
XBOOLE_0:def 4;
hence contradiction by
A8,
A232,
A488,
A492,
A493,
Th5;
end;
A494: (
upper_bound (
divset (D1,n1)))
= (D1
. n1)
proof
per cases ;
suppose n1
= 1;
hence thesis by
A241,
INTEGRA1:def 4;
end;
suppose n1
<> 1;
hence thesis by
A241,
INTEGRA1:def 4;
end;
end;
(D
. i)
<= (
upper_bound (
divset (D1,n1))) by
A242,
INTEGRA2: 1;
then (D
. i)
< (D1
. (n1
+ 1)) by
A352,
A494,
XXREAL_0: 2;
then (D
. i)
< (D
. n) by
A267,
A471,
A474,
A488,
XXREAL_0: 2;
then i
< n by
A236,
A487,
SEQ_4: 137;
then (i
+ 1)
<= n by
NAT_1: 13;
then (i
+ 1)
= n or (i
+ 1)
< n by
XXREAL_0: 1;
then x1
in
{(D
. (i
+ 1))} by
A488,
A489,
TARSKI:def 1;
hence x1
in ((
rng MD1)
\/
{(D
. (i
+ 1))}) by
XBOOLE_0:def 3;
end;
end;
hence thesis;
end;
then (
rng MD2)
c= ((
rng MD1)
\/
{(D
. (i
+ 1))});
then
A495: (
rng MD2)
= ((
rng MD1)
\/
{(D
. (i
+ 1))}) by
A467,
XBOOLE_0:def 10;
(
delta MD1)
in (
rng (
upper_volume ((
chi (B,B)),MD1))) by
XXREAL_2:def 8;
then
consider k such that
A496: k
in (
dom (
upper_volume ((
chi (B,B)),MD1))) and
A497: ((
upper_volume ((
chi (B,B)),MD1))
. k)
= (
delta MD1) by
PARTFUN1: 3;
A498: k
in (
Seg (
len (
upper_volume ((
chi (B,B)),MD1)))) by
A496,
FINSEQ_1:def 3;
then
A499: k
in (
Seg (
len MD1)) by
INTEGRA1:def 6;
then
A500: k
in (
dom MD1) by
FINSEQ_1:def 3;
A501: k
<= (
len MD1) by
A499,
FINSEQ_1: 1;
then (k
+ n1)
<= j by
A358,
A350,
XREAL_1: 19;
then
A502: (k
+ n1)
<= (
len D1) by
A264,
XXREAL_0: 2;
A503: 1
<= k by
A498,
FINSEQ_1: 1;
A504: (n1
+ 1)
> 1 by
A277,
NAT_1: 13;
then n1
> (1
- 1) by
XREAL_1: 19;
then
A505: k
< (k
+ n1) by
XREAL_1: 29;
then 1
< (k
+ n1) by
A503,
XXREAL_0: 2;
then
A506: (k
+ n1)
in (
dom D1) by
A502,
FINSEQ_3: 25;
(
lower_bound (
divset (MD1,k)))
= (
lower_bound (
divset (D1,(k
+ n1)))) & (
upper_bound (
divset (MD1,k)))
= (
upper_bound (
divset (D1,(k
+ n1))))
proof
per cases ;
suppose
A507: k
= 1;
then (
upper_bound (
divset (MD1,k)))
= (MD1
. k) by
A500,
INTEGRA1:def 4;
then
A508: (
upper_bound (
divset (MD1,k)))
= (D1
. ((k
+ (n1
+ 1))
- 1)) by
A258,
A264,
A244,
A356,
A358,
A503,
A501,
FINSEQ_6: 122;
(
lower_bound (
divset (D1,(k
+ n1))))
= (D1
. ((k
+ n1)
- 1)) by
A503,
A505,
A506,
INTEGRA1:def 4;
hence thesis by
A353,
A504,
A500,
A506,
A507,
A508,
INTEGRA1:def 4;
end;
suppose
A509: k
<> 1;
then (
upper_bound (
divset (MD1,k)))
= (MD1
. k) by
A500,
INTEGRA1:def 4;
then
A510: (
upper_bound (
divset (MD1,k)))
= (D1
. ((k
+ (n1
+ 1))
- 1)) by
A258,
A264,
A244,
A356,
A358,
A503,
A501,
FINSEQ_6: 122;
A511: (
lower_bound (
divset (MD1,k)))
= (MD1
. (k
- 1)) by
A500,
A509,
INTEGRA1:def 4;
A512: (k
- 1)
in (
dom MD1) by
A500,
A509,
INTEGRA1: 7;
then
A513: (k
- 1)
<= (
len MD1) by
FINSEQ_3: 25;
1
<= (k
- 1) by
A512,
FINSEQ_3: 25;
then (
lower_bound (
divset (MD1,k)))
= (D1
. (((k
- 1)
+ (n1
+ 1))
- 1)) by
A258,
A264,
A244,
A356,
A358,
A512,
A513,
A511,
FINSEQ_6: 122;
hence thesis by
A503,
A505,
A506,
A510,
INTEGRA1:def 4;
end;
end;
then (
divset (MD1,k))
=
[.(
lower_bound (
divset (D1,(k
+ n1)))), (
upper_bound (
divset (D1,(k
+ n1)))).] by
INTEGRA1: 4;
then
A514: (
divset (MD1,k))
= (
divset (D1,(k
+ n1))) by
INTEGRA1: 4;
(k
+ n1)
in (
Seg (
len D1)) by
A506,
FINSEQ_1:def 3;
then (k
+ n1)
in (
Seg (
len (
upper_volume ((
chi (A,A)),D1)))) by
INTEGRA1:def 6;
then
A515: (k
+ n1)
in (
dom (
upper_volume ((
chi (A,A)),D1))) by
FINSEQ_1:def 3;
k
in (
dom MD1) by
A499,
FINSEQ_1:def 3;
then (
delta MD1)
= (
vol (
divset (MD1,k))) by
A497,
INTEGRA1: 20;
then (
delta MD1)
= ((
upper_volume ((
chi (A,A)),D1))
. (k
+ n1)) by
A506,
A514,
INTEGRA1: 20;
then (
delta MD1)
in (
rng (
upper_volume ((
chi (A,A)),D1))) by
A515,
FUNCT_1:def 3;
then (
delta MD1)
<= (
max (
rng (
upper_volume ((
chi (A,A)),D1)))) by
XXREAL_2:def 8;
then
A516: (
delta MD1)
<= (
delta D1);
A517: (D
. (i
+ 1))
<= (
upper_bound (
divset (D1,j))) by
A233,
INTEGRA2: 1;
(
lower_bound (
divset (D1,j)))
<= (D
. (i
+ 1)) by
A233,
INTEGRA2: 1;
then
A518: (D
. (i
+ 1))
in (
divset (MD1,(
len MD1))) by
A363,
A517,
INTEGRA2: 1;
(j
- 1)
in (
dom D1) by
A232,
A245,
A277,
INTEGRA1: 7;
then (D1
. n1)
< (D1
. (j
- 1)) by
A241,
A416,
SEQM_3:def 1;
then (D
. (i
+ 1))
> (
lower_bound B) by
A353,
A388,
XXREAL_0: 2;
then ((
Sum (
upper_volume (g,MD1)))
- (
Sum (
upper_volume (g,MD2))))
<= (((
upper_bound (
rng g))
- (
lower_bound (
rng g)))
* (
delta MD1)) by
A355,
A380,
A495,
A518,
A420,
Th14;
then
A519: ((
Sum (
upper_volume (g,MD1)))
- (
Sum (
upper_volume (g,MD2))))
<= (((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
* (
delta MD1)) by
A422,
XXREAL_0: 2;
A520: (
indx (D2,D1,j))
<= (
len
UVf(D2)) by
A239,
INTEGRA1:def 6;
A521: ((
indx (D2,D1,n1))
+ 1)
<= (
indx (D2,D1,j)) by
A275,
A423,
XXREAL_0: 2;
A522: for k be
Nat st 1
<= k & k
<= (
len (
upper_volume (g,MD2))) holds ((
upper_volume (g,MD2))
. k)
= ((
mid (
UVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j))))
. k)
proof
let k be
Nat;
assume that
A523: 1
<= k and
A524: k
<= (
len (
upper_volume (g,MD2)));
A525: k
in (
Seg (
len (
upper_volume (g,MD2)))) by
A523,
A524,
FINSEQ_1: 1;
A526: ((
mid (
UVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j))))
. k)
= (
UVf(D2)
. ((k
+ ((
indx (D2,D1,n1))
+ 1))
- 1)) by
A417,
A445,
A520,
A521,
A523,
A524,
FINSEQ_6: 122;
A527: k
in (
Seg (
len MD2)) by
A525,
INTEGRA1:def 6;
then k
in (
dom MD2) by
FINSEQ_1:def 3;
then
A528: ((
upper_volume (g,MD2))
. k)
= ((
upper_bound (
rng (g
| (
divset (MD2,k)))))
* (
vol (
divset (MD2,k)))) by
INTEGRA1:def 6;
1
<= ((
indx (D2,D1,n1))
+ 1) by
NAT_1: 12;
then (1
+ 1)
<= (k
+ ((
indx (D2,D1,n1))
+ 1)) by
A523,
XREAL_1: 7;
then
A529: 1
<= ((k
+ ((
indx (D2,D1,n1))
+ 1))
- 1) by
XREAL_1: 19;
consider k2 be
Element of
NAT such that
A530: ((
indx (D2,D1,n1))
+ 1)
= (1
+ k2);
k
<= ((
indx (D2,D1,j))
- (((
indx (D2,D1,n1))
+ 1)
- 1)) by
A444,
A426,
A524,
INTEGRA1:def 6;
then (k
+ (((
indx (D2,D1,n1))
+ 1)
- 1))
<= (
indx (D2,D1,j)) by
XREAL_1: 19;
then ((k
+ ((
indx (D2,D1,n1))
+ 1))
- 1)
<= (
len
UVf(D2)) by
A520,
XXREAL_0: 2;
then (k
+ k2)
in (
Seg (
len
UVf(D2))) by
A529,
A530,
FINSEQ_1: 1;
then
A531: (k
+ k2)
in (
Seg (
len D2)) by
INTEGRA1:def 6;
then (k
+ k2)
in (
dom D2) by
FINSEQ_1:def 3;
then
A532: ((
mid (
UVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j))))
. k)
= ((
upper_bound (
rng (f
| (
divset (D2,(k
+ k2))))))
* (
vol (
divset (D2,(k
+ k2))))) by
A526,
A530,
INTEGRA1:def 6;
A533: (
lower_bound (
divset (MD2,k)))
= (
lower_bound (
divset (D2,(k
+ k2)))) & (
upper_bound (
divset (MD2,k)))
= (
upper_bound (
divset (D2,(k
+ k2))))
proof
(k
+ k2)
>= (1
+ 1) by
A263,
A523,
A530,
XREAL_1: 7;
then
A534: (k
+ k2)
> 1 by
NAT_1: 13;
A535: k
in (
dom MD2) by
A527,
FINSEQ_1:def 3;
A536: (k
+ k2)
in (
dom D2) by
A531,
FINSEQ_1:def 3;
per cases ;
suppose
A537: k
= 1;
then
A538: (
upper_bound (
divset (D2,(k
+ k2))))
= (D2
. (1
+ k2)) by
A534,
A536,
INTEGRA1:def 4;
A539: (
lower_bound (
divset (MD2,k)))
= (
lower_bound B) by
A535,
A537,
INTEGRA1:def 4;
(
upper_bound (
divset (MD2,k)))
= (MD2
. k) by
A535,
A537,
INTEGRA1:def 4;
then
A540: (
upper_bound (
divset (MD2,k)))
= (D2
. ((1
+ (
indx (D2,D1,(n1
+ 1))))
- 1)) by
A275,
A239,
A357,
A417,
A426,
A445,
A524,
A537,
FINSEQ_6: 122
.= (D1
. (n1
+ 1)) by
A10,
A266,
INTEGRA1:def 19;
(
lower_bound (
divset (D2,(k
+ k2))))
= (D2
. ((1
+ k2)
- 1)) by
A534,
A536,
A537,
INTEGRA1:def 4;
hence thesis by
A10,
A241,
A266,
A353,
A426,
A530,
A539,
A540,
A538,
INTEGRA1:def 19;
end;
suppose
A541: k
<> 1;
then (
upper_bound (
divset (MD2,k)))
= (MD2
. k) by
A535,
INTEGRA1:def 4;
then
A542: (
upper_bound (
divset (MD2,k)))
= (D2
. ((k
+ ((
indx (D2,D1,n1))
+ 1))
- 1)) by
A275,
A239,
A357,
A417,
A426,
A445,
A523,
A524,
FINSEQ_6: 122;
A543: (k
- 1)
<= (((
indx (D2,D1,j))
- ((
indx (D2,D1,n1))
+ 1))
+ 1) by
A445,
A524,
XREAL_1: 146,
XXREAL_0: 2;
A544: (
lower_bound (
divset (MD2,k)))
= (MD2
. (k
- 1)) by
A535,
A541,
INTEGRA1:def 4;
A545: (k
- 1)
in (
dom MD2) by
A535,
A541,
INTEGRA1: 7;
then 1
<= (k
- 1) by
FINSEQ_3: 25;
then (
lower_bound (
divset (MD2,k)))
= (D2
. (((k
- 1)
+ ((
indx (D2,D1,n1))
+ 1))
- 1)) by
A275,
A239,
A357,
A417,
A426,
A545,
A543,
A544,
FINSEQ_6: 122;
hence thesis by
A530,
A534,
A536,
A542,
INTEGRA1:def 4;
end;
end;
(
divset (MD2,k))
=
[.(
lower_bound (
divset (MD2,k))), (
upper_bound (
divset (MD2,k))).] by
INTEGRA1: 4;
then
A546: (
divset (MD2,k))
= (
divset (D2,(k
+ k2))) by
A533,
INTEGRA1: 4;
k
in (
dom MD2) by
A527,
FINSEQ_1:def 3;
then (
divset (D2,(k
+ k2)))
c= B by
A546,
INTEGRA1: 8;
hence thesis by
A528,
A532,
A546,
FUNCT_1: 51;
end;
((
indx (D2,D1,n1))
+ 1)
<= (
len
UVf(D2)) by
A424,
INTEGRA1:def 6;
then (
len (
mid (
UVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j)))))
= (((
indx (D2,D1,j))
-' ((
indx (D2,D1,n1))
+ 1))
+ 1) by
A238,
A417,
A520,
A521,
FINSEQ_6: 118;
then (
len (
upper_volume (g,MD2)))
= (
len (
mid (
UVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j))))) by
A275,
A423,
A445,
XREAL_1: 233,
XXREAL_0: 2;
then
A547: (
Sum (
upper_volume (g,MD2)))
= (
Sum (
mid (
UVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j))))) by
A522,
FINSEQ_1: 14;
((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
>=
0 by
A1,
Lm3,
XREAL_1: 48;
then (((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
* (
delta MD1))
<= (((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
* (
delta D1)) by
A516,
XREAL_1: 64;
hence thesis by
A519,
A547,
A415,
XXREAL_0: 2;
end;
end;
then
A548: ((
PUf(D1,n1)
-
PUf(D2,indx))
+ ((
Sum (
mid (
UVf(D1),(n1
+ 1),j)))
- (
Sum (
mid (
UVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j)))))))
<= (((i
* ((
upper_bound (
rng f))
- (
lower_bound (
rng f))))
* (
delta D1))
+ (((
upper_bound (
rng f))
- (
lower_bound (
rng f)))
* (
delta D1))) by
A243,
XREAL_1: 7;
n1
< (n1
+ 1) by
NAT_1: 13;
then (D1
. n1)
< (D1
. (n1
+ 1)) by
A241,
A266,
SEQM_3:def 1;
then (
indx (D2,D1,n1))
< (
indx (D2,D1,(n1
+ 1))) by
A262,
A260,
A270,
A267,
SEQ_4: 137;
then
A549: (
indx (D2,D1,n1))
< (
indx (D2,D1,j)) by
A275,
XXREAL_0: 2;
(
indx (D2,D1,n1))
in (
Seg (
len D2)) by
A262,
FINSEQ_1:def 3;
then (
indx (D2,D1,n1))
in (
Seg (
len
UVf(D2))) by
INTEGRA1:def 6;
then (
indx (D2,D1,n1))
in (
dom
UVf(D2)) by
FINSEQ_1:def 3;
then
PUf(D2,indx)
= (
Sum (
UVf(D2)
| (
indx (D2,D1,n1)))) by
INTEGRA1:def 20
.= (
Sum (
mid (
UVf(D2),1,(
indx (D2,D1,n1))))) by
A263,
FINSEQ_6: 116;
then (
PUf(D2,indx)
+ (
Sum (
mid (
UVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j))))))
= (
Sum ((
mid (
UVf(D2),1,(
indx (D2,D1,n1))))
^ (
mid (
UVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j)))))) by
RVSUM_1: 75
.= (
Sum (
mid (
UVf(D2),1,(
indx (D2,D1,j))))) by
A263,
A549,
A240,
INTEGRA2: 4
.= (
Sum (
UVf(D2)
| (
indx (D2,D1,j)))) by
A238,
FINSEQ_6: 116;
then
PUf(D2,indx)
= (
PUf(D2,indx)
+ (
Sum (
mid (
UVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j)))))) by
A273,
INTEGRA1:def 20;
then ((
PUf(D1,n1)
-
PUf(D2,indx))
+ ((
Sum (
mid (
UVf(D1),(n1
+ 1),j)))
- (
Sum (
mid (
UVf(D2),((
indx (D2,D1,n1))
+ 1),(
indx (D2,D1,j)))))))
= (
PUf(D1,j)
-
PUf(D2,indx)) by
A272;
hence thesis by
A232,
A233,
A548;
end;
hence thesis;
end;
for k be non
zero
Nat holds
P[k] from
NAT_1:sch 10(
A36,
A227);
then
P[i];
hence thesis by
A14;
end;
A550: (
len D1)
in (
dom D1) by
FINSEQ_5: 6;
then (D1
. (
len D1))
= (D2
. (
indx (D2,D1,(
len D1)))) by
A10,
INTEGRA1:def 19;
then (
upper_bound A)
= (D2
. (
indx (D2,D1,(
len D1)))) by
INTEGRA1:def 2;
then
A551: (D2
. (
len D2))
= (D2
. (
indx (D2,D1,(
len D1)))) by
INTEGRA1:def 2;
(
len D)
in (
dom D) by
FINSEQ_5: 6;
then
consider j such that
A552: j
in (
dom D1) and
A553: (D
. (
len D))
in (
divset (D1,j)) and
A554: (
PUf(D1,j)
-
PUf(D2,indx))
<= (((
len D)
* ((
upper_bound (
rng f))
- (
lower_bound (
rng f))))
* (
delta D1)) by
A13;
A555: j
= (
len D1)
proof
j
in (
Seg (
len D1)) by
A552,
FINSEQ_1:def 3;
then
A556: j
<= (
len D1) by
FINSEQ_1: 1;
assume j
<> (
len D1);
then j
< (
len D1) by
A556,
XXREAL_0: 1;
then (D1
. j)
< (D1
. (
len D1)) by
A552,
A550,
SEQM_3:def 1;
then
A557: (D1
. j)
< (
upper_bound A) by
INTEGRA1:def 2;
A558: (
upper_bound (
divset (D1,j)))
< (
upper_bound A)
proof
per cases ;
suppose j
= 1;
hence thesis by
A552,
A557,
INTEGRA1:def 4;
end;
suppose j
<> 1;
hence thesis by
A552,
A557,
INTEGRA1:def 4;
end;
end;
(D
. (
len D))
<= (
upper_bound (
divset (D1,j))) by
A553,
INTEGRA2: 1;
hence contradiction by
A558,
INTEGRA1:def 2;
end;
(
indx (D2,D1,(
len D1)))
in (
dom D2) by
A10,
A550,
INTEGRA1:def 19;
then (
indx (D2,D1,(
len D1)))
= (
len D2) by
A12,
A551,
SEQ_4: 138;
then ((
upper_sum (f,D1))
-
PUf(D2,len))
<= (((
len D)
* ((
upper_bound (
rng f))
- (
lower_bound (
rng f))))
* (
delta D1)) by
A554,
A555,
INTEGRA1: 42;
hence thesis by
INTEGRA1: 42;
end;
hence thesis by
A9,
A10,
A11;
end;
hence thesis;
end;
::$Notion-Name
theorem ::
INTEGRA3:25
(f
| A) is
bounded & (
delta T) is
0
-convergent
non-zero & (
vol A)
<>
0 implies (
lower_sum (f,T)) is
convergent & (
lim (
lower_sum (f,T)))
= (
lower_integral f)
proof
assume that
A1: (f
| A) is
bounded and
A2: (
delta T) is
0
-convergent
non-zero and
A3: (
vol A)
<>
0 ;
A4: (
delta T) is
convergent by
A2,
FDIFF_1:def 1;
A5: for D, D1 holds ex D2 st D
<= D2 & D1
<= D2 & (
rng D2)
= ((
rng D1)
\/ (
rng D)) &
0
<= ((
lower_sum (f,D2))
- (
lower_sum (f,D))) &
0
<= ((
lower_sum (f,D2))
- (
lower_sum (f,D1))) by
A1,
Th20;
A10: for D, D1 st (
delta D1)
< (
min (
rng (
upper_volume ((
chi (A,A)),D)))) holds ex D2 st D
<= D2 & D1
<= D2 & (
rng D2)
= ((
rng D1)
\/ (
rng D)) & ((
lower_sum (f,D2))
- (
lower_sum (f,D1)))
<= (((
len D)
* ((
upper_bound (
rng f))
- (
lower_bound (
rng f))))
* (
delta D1)) by
A1,
Th21;
A552: (
lim (
delta T))
=
0 by
A2,
FDIFF_1:def 1;
A553: (
delta T) is
non-zero by
A2;
A554: for e st e
>
0 holds ex n be
Nat st for m be
Nat st n
<= m holds
0
< ((
delta T)
. m) & ((
delta T)
. m)
< e
proof
let e;
assume e
>
0 ;
then
consider n be
Nat such that
A555: for m be
Nat st n
<= m holds
|.(((
delta T)
. m)
-
0 ).|
< e by
A4,
A552,
SEQ_2:def 7;
take n;
let m be
Nat;
reconsider mm = m as
Element of
NAT by
ORDINAL1:def 12;
A556: ((
delta T)
. m)
= (
delta (T
. mm)) by
Def2;
(
delta (T
. mm))
in (
rng (
upper_volume ((
chi (A,A)),(T
. mm)))) by
XXREAL_2:def 8;
then
consider i such that
A557: i
in (
dom (
upper_volume ((
chi (A,A)),(T
. mm)))) and
A558: (
delta (T
. mm))
= ((
upper_volume ((
chi (A,A)),(T
. mm)))
. i) by
PARTFUN1: 3;
consider D be
Division of A such that
A559: D
= (T
. mm);
i
in (
Seg (
len (
upper_volume ((
chi (A,A)),(T
. mm))))) by
A557,
FINSEQ_1:def 3;
then i
in (
Seg (
len D)) by
A559,
INTEGRA1:def 6;
then i
in (
dom D) by
FINSEQ_1:def 3;
then
A560: (
delta (T
. mm))
= (
vol (
divset ((T
. mm),i))) by
A558,
A559,
INTEGRA1: 20;
assume n
<= m;
then
|.(((
delta T)
. m)
-
0 ).|
< e by
A555;
then
A561: (((
delta T)
. m)
+
|.(((
delta T)
. m)
-
0 ).|)
< (e
+
|.(((
delta T)
. m)
-
0 ).|) by
ABSVALUE: 4,
XREAL_1: 8;
((
delta T)
. m)
<>
0 by
A553,
SEQ_1: 5;
hence thesis by
A561,
A556,
A560,
INTEGRA1: 9,
XREAL_1: 6;
end;
A562: for e be
Real st e
>
0 holds ex n be
Nat st for m be
Nat st n
<= m holds
|.(((
lower_sum (f,T))
. m)
- (
lower_integral f)).|
< e
proof
set h = (
lower_bound (
rng f));
set H = (
upper_bound (
rng f));
let e be
Real;
assume
A563: e
>
0 ;
then
A564: (e
/ 2)
>
0 by
XREAL_1: 139;
reconsider e as
Real;
A565: (H
- h)
>=
0 by
A1,
Lm3,
XREAL_1: 48;
A566: (
rng (
lower_sum_set f)) is
bounded_above by
A1,
INTEGRA2: 36;
(
lower_integral f)
= (
upper_bound (
rng (
lower_sum_set f))) by
INTEGRA1:def 15;
then
consider y be
Real such that
A567: y
in (
rng (
lower_sum_set f)) and
A568: ((
lower_integral f)
- (e
/ 2))
< y by
A564,
A566,
SEQ_4:def 1;
consider D be
Division of A such that D
in (
dom (
lower_sum_set f)) and
A569: y
= ((
lower_sum_set f)
. D) and
A570: (D
. 1)
> (
lower_bound A) by
A3,
A567,
Lm7;
deffunc
F(
Nat) = (
In ((
vol (
divset (D,$1))),
REAL ));
set p = (
len D);
consider v be
FinSequence of
REAL such that
A571: (
len v)
= (
len D) & for j be
Nat st j
in (
dom v) holds (v
. j)
=
F(j) from
FINSEQ_2:sch 1;
consider v1 be
non-decreasing
FinSequence of
REAL such that
A572: (v,v1)
are_fiberwise_equipotent by
INTEGRA2: 3;
defpred
P[
Nat] means $1
in (
dom v1) & (v1
. $1)
>
0 ;
A573: (
dom v)
= (
Seg (
len D)) by
A571,
FINSEQ_1:def 3;
A574: ex k be
Nat st
P[k]
proof
consider H be
Function such that (
dom H)
= (
dom v) and (
rng H)
= (
dom v1) and H is
one-to-one and
A575: v
= (v1
* H) by
A572,
CLASSES1: 77;
consider k such that
A576: k
in (
dom D) and
A577: (
vol (
divset (D,k)))
>
0 by
A3,
Th2;
A578: (
dom D)
= (
Seg (
len v)) by
A571,
FINSEQ_1:def 3;
then (H
. k)
in (
dom v1) by
A571,
A573,
A575,
A576,
FUNCT_1: 11;
then
reconsider Hk = (H
. k) as
Nat;
(v
. k)
=
F(k) by
A571,
A578,
A573,
A576;
then (v
. k)
>
0 by
A577;
then
P[Hk] by
A571,
A573,
A575,
A576,
A578,
FUNCT_1: 11,
FUNCT_1: 12;
hence thesis;
end;
consider k be
Nat such that
A579:
P[k] & for n be
Nat st
P[n] holds k
<= n from
NAT_1:sch 5(
A574);
A580: (2
* p)
>
0 by
XREAL_1: 129;
then
A581: ((2
* p)
* ((H
- h)
+ 1))
>
0 by
A565,
XREAL_1: 129;
(
min ((v1
. k),(e
/ ((2
* p)
* ((H
- h)
+ 1)))))
>
0
proof
per cases by
XXREAL_0: 15;
suppose (
min ((v1
. k),(e
/ ((2
* p)
* ((H
- h)
+ 1)))))
= (v1
. k);
hence thesis by
A579;
end;
suppose (
min ((v1
. k),(e
/ ((2
* p)
* ((H
- h)
+ 1)))))
= (e
/ ((2
* p)
* ((H
- h)
+ 1)));
hence thesis by
A563,
A581,
XREAL_1: 139;
end;
end;
then
consider n be
Nat such that
A582: for m be
Nat st n
<= m holds
0
< ((
delta T)
. m) & ((
delta T)
. m)
< (
min ((v1
. k),(e
/ ((2
* p)
* ((H
- h)
+ 1))))) by
A554;
take n;
A583: y
= (
lower_sum (f,D)) by
A569,
INTEGRA1:def 11;
A584: (v1
. 1)
>
0
proof
A585: for n1 be
Element of
NAT st n1
in (
dom D) holds (
vol (
divset (D,n1)))
>
0
proof
let n1 be
Element of
NAT ;
assume
A586: n1
in (
dom D);
then
A587: 1
<= n1 by
FINSEQ_3: 25;
per cases by
A587,
XXREAL_0: 1;
suppose
A588: n1
= 1;
then
A589: (
upper_bound (
divset (D,n1)))
= (D
. n1) by
A586,
INTEGRA1:def 4;
(
lower_bound (
divset (D,n1)))
= (
lower_bound A) by
A586,
A588,
INTEGRA1:def 4;
then (
vol (
divset (D,n1)))
= ((D
. n1)
- (
lower_bound A)) by
A589,
INTEGRA1:def 5;
hence thesis by
A570,
A588,
XREAL_1: 50;
end;
suppose
A590: n1
> 1;
then
A591: (
upper_bound (
divset (D,n1)))
= (D
. n1) by
A586,
INTEGRA1:def 4;
(
lower_bound (
divset (D,n1)))
= (D
. (n1
- 1)) by
A586,
A590,
INTEGRA1:def 4;
then
A592: (
vol (
divset (D,n1)))
= ((D
. n1)
- (D
. (n1
- 1))) by
A591,
INTEGRA1:def 5;
n1
< (n1
+ 1) by
XREAL_1: 29;
then
A593: (n1
- 1)
< n1 by
XREAL_1: 19;
(n1
- 1)
in (
dom D) by
A586,
A590,
INTEGRA1: 7;
then (D
. (n1
- 1))
< (D
. n1) by
A586,
A593,
SEQM_3:def 1;
hence thesis by
A592,
XREAL_1: 50;
end;
end;
A594: k
<= (
len v1) by
A579,
FINSEQ_3: 25;
1
<= k by
A579,
FINSEQ_3: 25;
then 1
<= (
len v1) by
A594,
XXREAL_0: 2;
then 1
in (
dom v1) by
FINSEQ_3: 25;
then
A595: (v1
. 1)
in (
rng v1) by
FUNCT_1:def 3;
(
rng v)
= (
rng v1) by
A572,
CLASSES1: 75;
then
consider n1 be
Element of
NAT such that
A596: n1
in (
dom v) and
A597: (v1
. 1)
= (v
. n1) by
A595,
PARTFUN1: 3;
n1
in (
Seg (
len D)) by
A571,
A596,
FINSEQ_1:def 3;
then
A598: n1
in (
dom D) by
FINSEQ_1:def 3;
(v1
. 1)
=
F(n1) by
A571,
A596,
A597
.= (
vol (
divset (D,n1)));
hence thesis by
A585,
A598;
end;
A599: (v1
. k)
= (
min (
rng (
upper_volume ((
chi (A,A)),D))))
proof
A600: k
= 1
proof
(
len v1)
= (
len v) by
A572,
RFINSEQ: 3;
then k
in (
Seg (
len v)) by
A579,
FINSEQ_1:def 3;
then
A601: 1
<= k by
FINSEQ_1: 1;
k
in (
Seg (
len v1)) by
A579,
FINSEQ_1:def 3;
then k
<= (
len v1) by
FINSEQ_1: 1;
then 1
<= (
len v1) by
A601,
XXREAL_0: 2;
then
A602: 1
in (
dom v1) by
FINSEQ_3: 25;
assume k
<> 1;
then k
> 1 by
A601,
XXREAL_0: 1;
hence contradiction by
A579,
A584,
A602;
end;
(
min (
rng (
upper_volume ((
chi (A,A)),D))))
in (
rng (
upper_volume ((
chi (A,A)),D))) by
XXREAL_2:def 7;
then
consider m such that
A603: m
in (
dom (
upper_volume ((
chi (A,A)),D))) and
A604: (
min (
rng (
upper_volume ((
chi (A,A)),D))))
= ((
upper_volume ((
chi (A,A)),D))
. m) by
PARTFUN1: 3;
m
in (
Seg (
len (
upper_volume ((
chi (A,A)),D)))) by
A603,
FINSEQ_1:def 3;
then
A605: m
in (
Seg (
len D)) by
INTEGRA1:def 6;
then m
in (
dom D) by
FINSEQ_1:def 3;
then
A606: (
min (
rng (
upper_volume ((
chi (A,A)),D))))
= (
vol (
divset (D,m))) by
A604,
INTEGRA1: 20;
A607: (v
. m)
=
F(m) by
A571,
A573,
A605
.= (
min (
rng (
upper_volume ((
chi (A,A)),D)))) by
A606;
A608: (
rng v)
= (
rng v1) by
A572,
CLASSES1: 75;
m
in (
dom v) by
A571,
A605,
FINSEQ_1:def 3;
then (
min (
rng (
upper_volume ((
chi (A,A)),D))))
in (
rng v) by
A607,
FUNCT_1:def 3;
then
consider m1 be
Element of
NAT such that
A609: m1
in (
dom v1) and
A610: (
min (
rng (
upper_volume ((
chi (A,A)),D))))
= (v1
. m1) by
A608,
PARTFUN1: 3;
(v1
. k)
in (
rng v1) by
A579,
FUNCT_1:def 3;
then
consider k2 be
Element of
NAT such that
A611: k2
in (
dom v) and
A612: (v1
. k)
= (v
. k2) by
A608,
PARTFUN1: 3;
A613: k2
in (
Seg (
len D)) by
A571,
A611,
FINSEQ_1:def 3;
then
A614: k2
in (
dom D) by
FINSEQ_1:def 3;
k2
in (
Seg (
len (
upper_volume ((
chi (A,A)),D)))) by
A613,
INTEGRA1:def 6;
then
A615: k2
in (
dom (
upper_volume ((
chi (A,A)),D))) by
FINSEQ_1:def 3;
(v1
. k)
=
F(k2) by
A571,
A611,
A612
.= (
vol (
divset (D,k2)));
then (v1
. k)
= ((
upper_volume ((
chi (A,A)),D))
. k2) by
A614,
INTEGRA1: 20;
then (v1
. k)
in (
rng (
upper_volume ((
chi (A,A)),D))) by
A615,
FUNCT_1:def 3;
then
A616: (v1
. k)
>= (
min (
rng (
upper_volume ((
chi (A,A)),D)))) by
XXREAL_2:def 7;
m1
>= 1 by
A609,
FINSEQ_3: 25;
then (v1
. 1)
<= (
min (
rng (
upper_volume ((
chi (A,A)),D)))) by
A579,
A600,
A609,
A610,
INTEGRA2: 2;
hence thesis by
A600,
A616,
XXREAL_0: 1;
end;
(H
- h)
<= ((H
- h)
+ 1) by
XREAL_1: 29;
then
A617: (p
* (H
- h))
<= (p
* ((H
- h)
+ 1)) by
XREAL_1: 64;
set sD = (
lower_sum (f,D));
set s = (
lower_integral f);
let m be
Nat;
reconsider mm = m as
Element of
NAT by
ORDINAL1:def 12;
reconsider D1 = (T
. mm) as
Division of A;
A618: (
min ((v1
. k),(e
/ ((2
* p)
* ((H
- h)
+ 1)))))
<= (e
/ ((2
* p)
* ((H
- h)
+ 1))) by
XXREAL_0: 17;
assume
A619: n
<= m;
then ((
delta T)
. m)
< (
min ((v1
. k),(e
/ ((2
* p)
* ((H
- h)
+ 1))))) by
A582;
then
A620: (
delta D1)
< (
min ((v1
. k),(e
/ ((2
* p)
* ((H
- h)
+ 1))))) by
Def2;
((
delta T)
. m)
< (
min ((v1
. k),(e
/ ((2
* p)
* ((H
- h)
+ 1))))) by
A582,
A619;
then ((
delta T)
. m)
< (e
/ ((2
* p)
* ((H
- h)
+ 1))) by
A618,
XXREAL_0: 2;
then (((
delta T)
. m)
* ((2
* p)
* ((H
- h)
+ 1)))
< e by
A580,
A565,
XREAL_1: 79,
XREAL_1: 129;
then ((((
delta T)
. m)
* (p
* ((H
- h)
+ 1)))
* 2)
< e;
then
A621: ((p
* ((H
- h)
+ 1))
* ((
delta T)
. m))
< (e
/ 2) by
XREAL_1: 81;
(T
. mm)
in (
divs A) by
INTEGRA1:def 3;
then
A622: (T
. mm)
in (
dom (
lower_sum_set f)) by
FUNCT_2:def 1;
((
lower_sum (f,T))
. mm)
= (
lower_sum (f,(T
. mm))) by
INTEGRA2:def 3;
then ((
lower_sum (f,T))
. m)
= ((
lower_sum_set f)
. (T
. m)) by
INTEGRA1:def 11;
then ((
lower_sum (f,T))
. m)
in (
rng (
lower_sum_set f)) by
A622,
FUNCT_1:def 3;
then (
upper_bound (
rng (
lower_sum_set f)))
>= ((
lower_sum (f,T))
. m) by
A566,
SEQ_4:def 1;
then (
lower_integral f)
>= ((
lower_sum (f,T))
. m) by
INTEGRA1:def 15;
then
A623: ((
lower_integral f)
- ((
lower_sum (f,T))
. m))
>=
0 by
XREAL_1: 48;
0
< ((
delta T)
. m) by
A582,
A619;
then
A624: ((p
* (H
- h))
* ((
delta T)
. m))
<= ((p
* ((H
- h)
+ 1))
* ((
delta T)
. m)) by
A617,
XREAL_1: 64;
set sD1 = (
lower_sum (f,(T
. mm)));
consider D2 be
Division of A such that
A625: D
<= D2 and D1
<= D2 and
A626: (
rng D2)
= ((
rng D1)
\/ (
rng D)) and
0
<= ((
lower_sum (f,D2))
- (
lower_sum (f,D))) and
0
<= ((
lower_sum (f,D2))
- (
lower_sum (f,D1))) by
A5;
set sD2 = (
lower_sum (f,D2));
A627: ((sD
- sD1)
- (sD2
- sD1))
= (sD
- sD2);
(
min ((v1
. k),(e
/ ((2
* p)
* ((H
- h)
+ 1)))))
<= (v1
. k) by
XXREAL_0: 17;
then (
delta D1)
< (v1
. k) by
A620,
XXREAL_0: 2;
then ex D3 be
Division of A st D
<= D3 & D1
<= D3 & (
rng D3)
= ((
rng D1)
\/ (
rng D)) & ((
lower_sum (f,D3))
- (
lower_sum (f,D1)))
<= (((
len D)
* ((
upper_bound (
rng f))
- (
lower_bound (
rng f))))
* (
delta D1)) by
A10,
A599;
then
A628: ((
lower_sum (f,D2))
- (
lower_sum (f,D1)))
<= (((
len D)
* ((
upper_bound (
rng f))
- (
lower_bound (
rng f))))
* (
delta D1)) by
A626,
Th6;
((
lower_sum (f,D))
- (
lower_sum (f,D2)))
<=
0 by
A1,
A625,
INTEGRA1: 46,
XREAL_1: 47;
then
A629: (sD
- sD1)
<= (sD2
- sD1) by
A627,
XREAL_1: 50;
(
delta D1)
= ((
delta T)
. m) by
Def2;
then ((
lower_sum (f,D2))
- (
lower_sum (f,(T
. mm))))
<= ((p
* ((H
- h)
+ 1))
* ((
delta T)
. m)) by
A628,
A624,
XXREAL_0: 2;
then (sD
- sD1)
<= ((p
* ((H
- h)
+ 1))
* ((
delta T)
. m)) by
A629,
XXREAL_0: 2;
then (sD
- sD1)
< (e
/ 2) by
A621,
XXREAL_0: 2;
then
A630: ((sD
- sD1)
+ (e
/ 2))
< ((e
/ 2)
+ (e
/ 2)) by
XREAL_1: 6;
((s
- sD1)
+ sD1)
< (sD
+ (e
/ 2)) by
A568,
A583,
XREAL_1: 19;
then (s
- sD1)
< ((sD
+ (e
/ 2))
- sD1) by
XREAL_1: 20;
then (s
- sD1)
< e by
A630,
XXREAL_0: 2;
then ((
lower_integral f)
- ((
lower_sum (f,T))
. m))
< e by
INTEGRA2:def 3;
then
|.((
lower_integral f)
- ((
lower_sum (f,T))
. m)).|
< e by
A623,
ABSVALUE:def 1;
then
|.(
- ((
lower_integral f)
- ((
lower_sum (f,T))
. m))).|
< e by
COMPLEX1: 52;
hence thesis;
end;
hence (
lower_sum (f,T)) is
convergent by
SEQ_2:def 6;
hence thesis by
A562,
SEQ_2:def 7;
end;
theorem ::
INTEGRA3:26
(f
| A) is
bounded & (
delta T) is
0
-convergent
non-zero & (
vol A)
<>
0 implies (
upper_sum (f,T)) is
convergent & (
lim (
upper_sum (f,T)))
= (
upper_integral f)
proof
assume
A1: (f
| A) is
bounded;
then
A2: for D, D1 holds ex D2 st D
<= D2 & D1
<= D2 & (
rng D2)
= ((
rng D1)
\/ (
rng D)) &
0
<= ((
upper_sum (f,D))
- (
upper_sum (f,D2))) &
0
<= ((
upper_sum (f,D1))
- (
upper_sum (f,D2))) by
Th22;
A7: for D, D1 st (
delta D1)
< (
min (
rng (
upper_volume ((
chi (A,A)),D)))) holds ex D2 st D
<= D2 & D1
<= D2 & (
rng D2)
= ((
rng D1)
\/ (
rng D)) & ((
upper_sum (f,D1))
- (
upper_sum (f,D2)))
<= (((
len D)
* ((
upper_bound (
rng f))
- (
lower_bound (
rng f))))
* (
delta D1)) by
A1,
Th23;
assume
A559: (
delta T) is
0
-convergent
non-zero;
then
A560: (
delta T) is
convergent by
FDIFF_1:def 1;
A561: (
lim (
delta T))
=
0 by
A559,
FDIFF_1:def 1;
assume
A562: (
vol A)
<>
0 ;
A563: (
delta T) is
non-zero by
A559;
A564: for e st e
>
0 holds ex n be
Nat st for m be
Nat st n
<= m holds
0
< ((
delta T)
. m) & ((
delta T)
. m)
< e
proof
let e;
assume e
>
0 ;
then
consider n be
Nat such that
A565: for m be
Nat st n
<= m holds
|.(((
delta T)
. m)
-
0 ).|
< e by
A560,
A561,
SEQ_2:def 7;
take n;
let m be
Nat;
reconsider mm = m as
Element of
NAT by
ORDINAL1:def 12;
assume n
<= m;
then
|.(((
delta T)
. m)
-
0 ).|
< e by
A565;
then
A566: (((
delta T)
. m)
+
|.(((
delta T)
. m)
-
0 ).|)
< (e
+
|.(((
delta T)
. m)
-
0 ).|) by
ABSVALUE: 4,
XREAL_1: 8;
reconsider D = (T
. mm) as
Division of A;
A567: ((
delta T)
. m)
= (
delta (T
. mm)) by
Def2;
(
delta (T
. mm))
in (
rng (
upper_volume ((
chi (A,A)),(T
. mm)))) by
XXREAL_2:def 8;
then
consider i such that
A568: i
in (
dom (
upper_volume ((
chi (A,A)),(T
. mm)))) and
A569: (
delta (T
. mm))
= ((
upper_volume ((
chi (A,A)),(T
. mm)))
. i) by
PARTFUN1: 3;
i
in (
Seg (
len (
upper_volume ((
chi (A,A)),(T
. mm))))) by
A568,
FINSEQ_1:def 3;
then i
in (
Seg (
len D)) by
INTEGRA1:def 6;
then i
in (
dom D) by
FINSEQ_1:def 3;
then
A570: (
delta (T
. mm))
= (
vol (
divset ((T
. mm),i))) by
A569,
INTEGRA1: 20;
((
delta T)
. m)
<>
0 by
A563,
SEQ_1: 5;
hence thesis by
A566,
A567,
A570,
INTEGRA1: 9,
XREAL_1: 6;
end;
A571: for e be
Real st e
>
0 holds ex n be
Nat st for m be
Nat st n
<= m holds
|.(((
upper_sum (f,T))
. m)
- (
upper_integral f)).|
< e
proof
let e be
Real;
assume
A572: e
>
0 ;
then
A573: (e
/ 2)
>
0 by
XREAL_1: 139;
reconsider e as
Real;
A574: (
rng (
upper_sum_set f)) is
bounded_below by
A1,
INTEGRA2: 35;
(
upper_integral f)
= (
lower_bound (
rng (
upper_sum_set f))) by
INTEGRA1:def 14;
then
consider y be
Real such that
A575: y
in (
rng (
upper_sum_set f)) and
A576: ((
upper_integral f)
+ (e
/ 2))
> y by
A573,
A574,
SEQ_4:def 2;
ex D be
Division of A st D
in (
dom (
upper_sum_set f)) & y
= ((
upper_sum_set f)
. D) & (D
. 1)
> (
lower_bound A)
proof
consider D3 be
Element of (
divs A) such that
A577: D3
in (
dom (
upper_sum_set f)) and
A578: y
= ((
upper_sum_set f)
. D3) by
A575,
PARTFUN1: 3;
reconsider D3 as
Division of A by
INTEGRA1:def 3;
A579: (
len D3)
in (
Seg (
len D3)) by
FINSEQ_1: 3;
then 1
<= (
len D3) by
FINSEQ_1: 1;
then 1
in (
Seg (
len D3)) by
FINSEQ_1: 1;
then
A580: 1
in (
dom D3) by
FINSEQ_1:def 3;
per cases ;
suppose
A581: (D3
. 1)
<> (
lower_bound A);
(D3
. 1)
in A by
A580,
INTEGRA1: 6;
then (
lower_bound A)
<= (D3
. 1) by
INTEGRA2: 1;
then (D3
. 1)
> (
lower_bound A) by
A581,
XXREAL_0: 1;
hence thesis by
A577,
A578;
end;
suppose
A582: (D3
. 1)
= (
lower_bound A);
ex D be
Division of A st D
in (
dom (
upper_sum_set f)) & y
= ((
upper_sum_set f)
. D) & (D
. 1)
> (
lower_bound A)
proof
A583: ((
upper_volume (f,D3))
. 1)
= ((
upper_bound (
rng (f
| (
divset (D3,1)))))
* (
vol (
divset (D3,1)))) by
A580,
INTEGRA1:def 6;
(
vol A)
>=
0 by
INTEGRA1: 9;
then
A584: ((
upper_bound A)
- (
lower_bound A))
>
0 by
A562,
INTEGRA1:def 5;
A585: y
= (
upper_sum (f,D3)) by
A578,
INTEGRA1:def 10
.= (
Sum (
upper_volume (f,D3))) by
INTEGRA1:def 8
.= (
Sum (((
upper_volume (f,D3))
| 1)
^ ((
upper_volume (f,D3))
/^ 1))) by
RFINSEQ: 8;
A586: (D3
. (
len D3))
= (
upper_bound A) by
INTEGRA1:def 2;
(
len D3)
in (
dom D3) by
A579,
FINSEQ_1:def 3;
then
A587: (
len D3)
> 1 by
A580,
A582,
A586,
A584,
SEQ_4: 137,
XREAL_1: 47;
then
reconsider D = (D3
/^ 1) as
increasing
FinSequence of
REAL by
INTEGRA1: 34;
A588: (
len D)
= ((
len D3)
- 1) by
A587,
RFINSEQ:def 1;
(
upper_bound A)
> (
lower_bound A) by
A584,
XREAL_1: 47;
then (
len D)
<>
0 by
A582,
A588,
INTEGRA1:def 2;
then
reconsider D as non
empty
increasing
FinSequence of
REAL ;
A589: (
len D)
in (
dom D) by
FINSEQ_5: 6;
((
len D)
+ 1)
= (
len D3) by
A588;
then
A590: (D
. (
len D))
= (
upper_bound A) by
A586,
A587,
A589,
RFINSEQ:def 1;
A591: (
len D)
in (
Seg (
len D)) by
FINSEQ_1: 3;
(1
+ 1)
<= (
len D3) by
A587,
NAT_1: 13;
then 2
in (
dom D3) by
FINSEQ_3: 25;
then
A592: (D3
. 1)
< (D3
. 2) by
A580,
SEQM_3:def 1;
A593: (
rng D3)
c= A by
INTEGRA1:def 2;
(
rng D)
c= (
rng D3) by
FINSEQ_5: 33;
then (
rng D)
c= A by
A593;
then
reconsider D as
Division of A by
A590,
INTEGRA1:def 2;
A594: 1
in (
Seg 1) by
FINSEQ_1: 1;
A595: (
len D3)
>= (1
+ 1) by
A587,
NAT_1: 13;
then
A596: 2
<= (
len (
upper_volume (f,D3))) by
INTEGRA1:def 6;
1
<= (
len (
upper_volume (f,D3))) by
A587,
INTEGRA1:def 6;
then
A597: (
len (
mid ((
upper_volume (f,D3)),2,(
len (
upper_volume (f,D3))))))
= (((
len (
upper_volume (f,D3)))
-' 2)
+ 1) by
A596,
FINSEQ_6: 118
.= (((
len D3)
-' 2)
+ 1) by
INTEGRA1:def 6
.= (((
len D3)
- 2)
+ 1) by
A595,
XREAL_1: 233
.= ((
len D3)
- 1);
A598: for i be
Nat st 1
<= i & i
<= (
len (
mid ((
upper_volume (f,D3)),2,(
len (
upper_volume (f,D3)))))) holds ((
mid ((
upper_volume (f,D3)),2,(
len (
upper_volume (f,D3)))))
. i)
= ((
upper_volume (f,D))
. i)
proof
let i be
Nat;
assume that
A599: 1
<= i and
A600: i
<= (
len (
mid ((
upper_volume (f,D3)),2,(
len (
upper_volume (f,D3))))));
A601: 1
<= (i
+ 1) by
NAT_1: 12;
(i
+ 1)
<= (
len D3) by
A597,
A600,
XREAL_1: 19;
then
A602: (i
+ 1)
in (
Seg (
len D3)) by
A601,
FINSEQ_1: 1;
then
A603: (i
+ 1)
in (
dom D3) by
FINSEQ_1:def 3;
A604: (
divset (D3,(i
+ 1)))
= (
divset (D,i))
proof
A605: (i
+ 1)
in (
dom D3) by
A602,
FINSEQ_1:def 3;
A606: 1
<> (i
+ 1) by
A599,
NAT_1: 13;
then
A607: (
upper_bound (
divset (D3,(i
+ 1))))
= (D3
. (i
+ 1)) by
A605,
INTEGRA1:def 4;
A608: i
in (
dom D) by
A588,
A597,
A599,
A600,
FINSEQ_3: 25;
then
A609: (D
. i)
= (D3
. (i
+ 1)) by
A587,
RFINSEQ:def 1;
A610: (
lower_bound (
divset (D3,(i
+ 1))))
= (D3
. ((i
+ 1)
- 1)) by
A606,
A605,
INTEGRA1:def 4;
per cases ;
suppose
A611: i
= 1;
then
A612: (
upper_bound (
divset (D,i)))
= (D
. i) by
A608,
INTEGRA1:def 4;
A613: (
lower_bound (
divset (D,i)))
= (
lower_bound A) by
A608,
A611,
INTEGRA1:def 4;
(
divset (D3,(i
+ 1)))
=
[.(
lower_bound A), (D
. i).] by
A582,
A607,
A610,
A609,
A611,
INTEGRA1: 4;
hence thesis by
A613,
A612,
INTEGRA1: 4;
end;
suppose
A614: i
<> 1;
then (i
- 1)
in (
dom D) by
A608,
INTEGRA1: 7;
then
A615: (D
. (i
- 1))
= (D3
. ((i
- 1)
+ 1)) by
A587,
RFINSEQ:def 1
.= (D3
. i);
A616: (
upper_bound (
divset (D,i)))
= (D
. i) by
A608,
A614,
INTEGRA1:def 4;
(
lower_bound (
divset (D,i)))
= (D
. (i
- 1)) by
A608,
A614,
INTEGRA1:def 4;
then (
divset (D3,(i
+ 1)))
=
[.(
lower_bound (
divset (D,i))), (
upper_bound (
divset (D,i))).] by
A607,
A610,
A609,
A616,
A615,
INTEGRA1: 4;
hence thesis by
INTEGRA1: 4;
end;
end;
i
<= ((
len (
upper_volume (f,D3)))
- 1) by
A597,
A600,
INTEGRA1:def 6;
then
A617: i
<= (((
len (
upper_volume (f,D3)))
- 2)
+ 1);
((
mid ((
upper_volume (f,D3)),2,(
len (
upper_volume (f,D3)))))
. i)
= ((
upper_volume (f,D3))
. ((i
+ 2)
- 1)) by
A596,
A599,
A617,
FINSEQ_6: 122
.= ((
upper_volume (f,D3))
. (i
+ 1));
then
A618: ((
mid ((
upper_volume (f,D3)),2,(
len (
upper_volume (f,D3)))))
. i)
= ((
upper_bound (
rng (f
| (
divset (D3,(i
+ 1))))))
* (
vol (
divset (D3,(i
+ 1))))) by
A603,
INTEGRA1:def 6;
i
in (
Seg (
len D)) by
A588,
A597,
A599,
A600,
FINSEQ_1: 1;
then i
in (
dom D) by
FINSEQ_1:def 3;
hence thesis by
A618,
A604,
INTEGRA1:def 6;
end;
A619: 1
<= (
len (
upper_volume (f,D3))) by
A587,
INTEGRA1:def 6;
A620: (
len ((
upper_volume (f,D3))
| 1))
= 1;
1
in (
dom (
upper_volume (f,D3))) by
A619,
FINSEQ_3: 25;
then (((
upper_volume (f,D3))
| 1)
. 1)
= ((
upper_volume (f,D3))
. 1) by
A594,
RFINSEQ: 6;
then
A621: ((
upper_volume (f,D3))
| 1)
=
<*((
upper_volume (f,D3))
. 1)*> by
A620,
FINSEQ_1: 40;
A622: (2
-' 1)
= (2
- 1) by
XREAL_1: 233
.= 1;
1
<= (
len D) by
A591,
FINSEQ_1: 1;
then 1
in (
dom D) by
FINSEQ_3: 25;
then
A623: (D
. 1)
= (D3
. (1
+ 1)) by
A587,
RFINSEQ:def 1
.= (D3
. 2);
D
in (
divs A) by
INTEGRA1:def 3;
then
A624: D
in (
dom (
upper_sum_set f)) by
FUNCT_2:def 1;
(
len (
upper_volume (f,D3)))
>= 2 by
A595,
INTEGRA1:def 6;
then
A625: (
mid ((
upper_volume (f,D3)),2,(
len (
upper_volume (f,D3)))))
= ((
upper_volume (f,D3))
/^ 1) by
A622,
FINSEQ_6: 117;
(
len (
mid ((
upper_volume (f,D3)),2,(
len (
upper_volume (f,D3))))))
= (
len (
upper_volume (f,D))) by
A588,
A597,
INTEGRA1:def 6;
then
A626: ((
upper_volume (f,D3))
/^ 1)
= (
upper_volume (f,D)) by
A625,
A598,
FINSEQ_1: 14;
(
vol (
divset (D3,1)))
= ((
upper_bound (
divset (D3,1)))
- (
lower_bound (
divset (D3,1)))) by
INTEGRA1:def 5
.= ((
upper_bound (
divset (D3,1)))
- (
lower_bound A)) by
A580,
INTEGRA1:def 4
.= ((D3
. 1)
- (
lower_bound A)) by
A580,
INTEGRA1:def 4
.=
0 by
A582;
then y
= (
0
+ (
Sum (
upper_volume (f,D)))) by
A585,
A621,
A583,
A626,
RVSUM_1: 76
.= (
upper_sum (f,D)) by
INTEGRA1:def 8;
then y
= ((
upper_sum_set f)
. D) by
INTEGRA1:def 10;
hence thesis by
A582,
A624,
A623,
A592;
end;
hence thesis;
end;
end;
then
consider D be
Division of A such that D
in (
dom (
upper_sum_set f)) and
A627: y
= ((
upper_sum_set f)
. D) and
A628: (D
. 1)
> (
lower_bound A);
deffunc
F(
Nat) = (
In ((
vol (
divset (D,$1))),
REAL ));
set p = (
len D), H = (
upper_bound (
rng f)), h = (
lower_bound (
rng f));
consider v be
FinSequence of
REAL such that
A629: (
len v)
= (
len D) & for j be
Nat st j
in (
dom v) holds (v
. j)
=
F(j) from
FINSEQ_2:sch 1;
A630: (2
* p)
>
0 by
XREAL_1: 129;
consider v1 be
non-decreasing
FinSequence of
REAL such that
A631: (v,v1)
are_fiberwise_equipotent by
INTEGRA2: 3;
defpred
P[
Nat] means $1
in (
dom v1) & (v1
. $1)
>
0 ;
A632: (
dom v)
= (
Seg (
len D)) by
A629,
FINSEQ_1:def 3;
A633: ex k be
Nat st
P[k]
proof
consider H be
Function such that (
dom H)
= (
dom v) and (
rng H)
= (
dom v1) and H is
one-to-one and
A634: v
= (v1
* H) by
A631,
CLASSES1: 77;
consider k such that
A635: k
in (
dom D) and
A636: (
vol (
divset (D,k)))
>
0 by
A562,
Th2;
A637: (
dom D)
= (
Seg (
len D)) by
FINSEQ_1:def 3;
then (H
. k)
in (
dom v1) by
A632,
A634,
A635,
FUNCT_1: 11;
then
reconsider Hk = (H
. k) as
Element of
NAT ;
(v
. k)
=
F(k) by
A629,
A632,
A635,
A637;
then (v
. k)
>
0 by
A636;
then
P[Hk] by
A632,
A634,
A635,
A637,
FUNCT_1: 11,
FUNCT_1: 12;
hence thesis;
end;
consider k be
Nat such that
A638:
P[k] & for n be
Nat st
P[n] holds k
<= n from
NAT_1:sch 5(
A633);
A639: (H
- h)
>=
0 by
A1,
Lm3,
XREAL_1: 48;
then
A640: ((2
* p)
* ((H
- h)
+ 1))
>
0 by
A630,
XREAL_1: 129;
(
min ((v1
. k),(e
/ ((2
* p)
* ((H
- h)
+ 1)))))
>
0
proof
per cases by
XXREAL_0: 15;
suppose (
min ((v1
. k),(e
/ ((2
* p)
* ((H
- h)
+ 1)))))
= (v1
. k);
hence thesis by
A638;
end;
suppose (
min ((v1
. k),(e
/ ((2
* p)
* ((H
- h)
+ 1)))))
= (e
/ ((2
* p)
* ((H
- h)
+ 1)));
hence thesis by
A572,
A640,
XREAL_1: 139;
end;
end;
then
consider n be
Nat such that
A641: for m be
Nat st n
<= m holds
0
< ((
delta T)
. m) & ((
delta T)
. m)
< (
min ((v1
. k),(e
/ ((2
* p)
* ((H
- h)
+ 1))))) by
A564;
take n;
A642: y
= (
upper_sum (f,D)) by
A627,
INTEGRA1:def 10;
A643: (v1
. 1)
>
0
proof
A644: for n1 be
Element of
NAT st n1
in (
dom D) holds (
vol (
divset (D,n1)))
>
0
proof
let n1 be
Element of
NAT ;
assume
A645: n1
in (
dom D);
then
A646: 1
<= n1 by
FINSEQ_3: 25;
per cases by
A646,
XXREAL_0: 1;
suppose
A647: n1
= 1;
then
A648: (
upper_bound (
divset (D,n1)))
= (D
. n1) by
A645,
INTEGRA1:def 4;
(
lower_bound (
divset (D,n1)))
= (
lower_bound A) by
A645,
A647,
INTEGRA1:def 4;
then (
vol (
divset (D,n1)))
= ((D
. n1)
- (
lower_bound A)) by
A648,
INTEGRA1:def 5;
hence thesis by
A628,
A647,
XREAL_1: 50;
end;
suppose
A649: n1
> 1;
then
A650: (
upper_bound (
divset (D,n1)))
= (D
. n1) by
A645,
INTEGRA1:def 4;
(
lower_bound (
divset (D,n1)))
= (D
. (n1
- 1)) by
A645,
A649,
INTEGRA1:def 4;
then
A651: (
vol (
divset (D,n1)))
= ((D
. n1)
- (D
. (n1
- 1))) by
A650,
INTEGRA1:def 5;
n1
< (n1
+ 1) by
XREAL_1: 29;
then
A652: (n1
- 1)
< n1 by
XREAL_1: 19;
(n1
- 1)
in (
dom D) by
A645,
A649,
INTEGRA1: 7;
then (D
. (n1
- 1))
< (D
. n1) by
A645,
A652,
SEQM_3:def 1;
hence thesis by
A651,
XREAL_1: 50;
end;
end;
A653: k
<= (
len v1) by
A638,
FINSEQ_3: 25;
1
<= k by
A638,
FINSEQ_3: 25;
then 1
<= (
len v1) by
A653,
XXREAL_0: 2;
then 1
in (
dom v1) by
FINSEQ_3: 25;
then
A654: (v1
. 1)
in (
rng v1) by
FUNCT_1:def 3;
(
rng v)
= (
rng v1) by
A631,
CLASSES1: 75;
then
consider n1 be
Element of
NAT such that
A655: n1
in (
dom v) and
A656: (v1
. 1)
= (v
. n1) by
A654,
PARTFUN1: 3;
n1
in (
Seg (
len D)) by
A629,
A655,
FINSEQ_1:def 3;
then
A657: n1
in (
dom D) by
FINSEQ_1:def 3;
(v1
. 1)
=
F(n1) by
A629,
A655,
A656
.= (
vol (
divset (D,n1)));
hence thesis by
A644,
A657;
end;
A658: (v1
. k)
= (
min (
rng (
upper_volume ((
chi (A,A)),D))))
proof
A659: k
= 1
proof
(
len v1)
= (
len v) by
A631,
RFINSEQ: 3;
then k
in (
Seg (
len v)) by
A638,
FINSEQ_1:def 3;
then
A660: 1
<= k by
FINSEQ_1: 1;
k
in (
Seg (
len v1)) by
A638,
FINSEQ_1:def 3;
then k
<= (
len v1) by
FINSEQ_1: 1;
then 1
<= (
len v1) by
A660,
XXREAL_0: 2;
then
A661: 1
in (
dom v1) by
FINSEQ_3: 25;
assume k
<> 1;
then k
> 1 by
A660,
XXREAL_0: 1;
hence contradiction by
A638,
A643,
A661;
end;
A662: (
rng v)
= (
rng v1) by
A631,
CLASSES1: 75;
(v1
. k)
in (
rng (
upper_volume ((
chi (A,A)),D)))
proof
(v1
. k)
in (
rng v) by
A638,
A662,
FUNCT_1:def 3;
then
consider k2 be
Element of
NAT such that
A663: k2
in (
dom v) and
A664: (v1
. k)
= (v
. k2) by
PARTFUN1: 3;
A665: k2
in (
Seg (
len D)) by
A629,
A663,
FINSEQ_1:def 3;
then
A666: k2
in (
dom D) by
FINSEQ_1:def 3;
k2
in (
Seg (
len (
upper_volume ((
chi (A,A)),D)))) by
A665,
INTEGRA1:def 6;
then
A667: k2
in (
dom (
upper_volume ((
chi (A,A)),D))) by
FINSEQ_1:def 3;
(v1
. k)
=
F(k2) by
A629,
A663,
A664
.= (
vol (
divset (D,k2)));
then (v1
. k)
= ((
upper_volume ((
chi (A,A)),D))
. k2) by
A666,
INTEGRA1: 20;
hence thesis by
A667,
FUNCT_1:def 3;
end;
then
A668: (v1
. k)
>= (
min (
rng (
upper_volume ((
chi (A,A)),D)))) by
XXREAL_2:def 7;
(
min (
rng (
upper_volume ((
chi (A,A)),D))))
in (
rng (
upper_volume ((
chi (A,A)),D))) by
XXREAL_2:def 7;
then
consider m such that
A669: m
in (
dom (
upper_volume ((
chi (A,A)),D))) and
A670: (
min (
rng (
upper_volume ((
chi (A,A)),D))))
= ((
upper_volume ((
chi (A,A)),D))
. m) by
PARTFUN1: 3;
m
in (
Seg (
len (
upper_volume ((
chi (A,A)),D)))) by
A669,
FINSEQ_1:def 3;
then
A671: m
in (
Seg (
len D)) by
INTEGRA1:def 6;
then m
in (
dom D) by
FINSEQ_1:def 3;
then
A672: (
min (
rng (
upper_volume ((
chi (A,A)),D))))
= (
vol (
divset (D,m))) by
A670,
INTEGRA1: 20;
A673: (v
. m)
=
F(m) by
A629,
A632,
A671
.= (
min (
rng (
upper_volume ((
chi (A,A)),D)))) by
A672;
m
in (
dom v) by
A629,
A671,
FINSEQ_1:def 3;
then (
min (
rng (
upper_volume ((
chi (A,A)),D))))
in (
rng v) by
A673,
FUNCT_1:def 3;
then
consider m1 be
Element of
NAT such that
A674: m1
in (
dom v1) and
A675: (
min (
rng (
upper_volume ((
chi (A,A)),D))))
= (v1
. m1) by
A662,
PARTFUN1: 3;
m1
>= 1 by
A674,
FINSEQ_3: 25;
then (v1
. 1)
<= (
min (
rng (
upper_volume ((
chi (A,A)),D)))) by
A638,
A659,
A674,
A675,
INTEGRA2: 2;
hence thesis by
A659,
A668,
XXREAL_0: 1;
end;
A676: (
min ((v1
. k),(e
/ ((2
* p)
* ((H
- h)
+ 1)))))
<= (v1
. k) by
XXREAL_0: 17;
set s = (
upper_integral f), sD = (
upper_sum (f,D));
let m be
Nat;
reconsider mm = m as
Element of
NAT by
ORDINAL1:def 12;
reconsider D1 = (T
. mm) as
Division of A;
A677: (
delta D1)
= ((
delta T)
. m) by
Def2;
consider D2 be
Division of A such that
A678: D
<= D2 and D1
<= D2 and
A679: (
rng D2)
= ((
rng D1)
\/ (
rng D)) and
0
<= ((
upper_sum (f,D))
- (
upper_sum (f,D2))) and
0
<= ((
upper_sum (f,D1))
- (
upper_sum (f,D2))) by
A2;
set sD1 = (
upper_sum (f,(T
. mm))), sD2 = (
upper_sum (f,D2));
(
upper_sum (f,D2))
<= (
upper_sum (f,D)) by
A1,
A678,
INTEGRA1: 45;
then
A680: (sD1
- sD)
<= (sD1
- sD2) by
XREAL_1: 10;
(((sD
+ sD1)
- sD1)
- s)
< (e
/ 2) by
A576,
A642,
XREAL_1: 19;
then (((sD1
- s)
+ sD)
- sD1)
< (e
/ 2);
then ((sD1
- s)
+ sD)
< (sD1
+ (e
/ 2)) by
XREAL_1: 19;
then
A681: (sD1
- s)
< ((sD1
+ (e
/ 2))
- sD) by
XREAL_1: 20;
(T
. mm)
in (
divs A) by
INTEGRA1:def 3;
then
A682: (T
. m)
in (
dom (
upper_sum_set f)) by
FUNCT_2:def 1;
((
upper_sum (f,T))
. m)
= (
upper_sum (f,(T
. mm))) by
INTEGRA2:def 2;
then ((
upper_sum (f,T))
. m)
= ((
upper_sum_set f)
. (T
. m)) by
INTEGRA1:def 10;
then ((
upper_sum (f,T))
. m)
in (
rng (
upper_sum_set f)) by
A682,
FUNCT_1:def 3;
then (
lower_bound (
rng (
upper_sum_set f)))
<= ((
upper_sum (f,T))
. m) by
A574,
SEQ_4:def 2;
then (
upper_integral f)
<= ((
upper_sum (f,T))
. m) by
INTEGRA1:def 14;
then
A683: (((
upper_sum (f,T))
. m)
- (
upper_integral f))
>=
0 by
XREAL_1: 48;
(H
- h)
<= ((H
- h)
+ 1) by
XREAL_1: 29;
then
A684: (p
* (H
- h))
<= (p
* ((H
- h)
+ 1)) by
XREAL_1: 64;
A685: (
min ((v1
. k),(e
/ ((2
* p)
* ((H
- h)
+ 1)))))
<= (e
/ ((2
* p)
* ((H
- h)
+ 1))) by
XXREAL_0: 17;
assume
A686: n
<= m;
then ((
delta T)
. m)
< (
min ((v1
. k),(e
/ ((2
* p)
* ((H
- h)
+ 1))))) by
A641;
then ((
delta T)
. m)
< (e
/ ((2
* p)
* ((H
- h)
+ 1))) by
A685,
XXREAL_0: 2;
then (((
delta T)
. m)
* ((2
* p)
* ((H
- h)
+ 1)))
< e by
A630,
A639,
XREAL_1: 79,
XREAL_1: 129;
then ((((
delta T)
. m)
* (p
* ((H
- h)
+ 1)))
* 2)
< e;
then
A687: ((p
* ((H
- h)
+ 1))
* ((
delta T)
. m))
< (e
/ 2) by
XREAL_1: 81;
((
delta T)
. m)
< (
min ((v1
. k),(e
/ ((2
* p)
* ((H
- h)
+ 1))))) by
A641,
A686;
then (
delta D1)
< (v1
. k) by
A677,
A676,
XXREAL_0: 2;
then ex D3 be
Division of A st D
<= D3 & D1
<= D3 & (
rng D3)
= ((
rng D1)
\/ (
rng D)) & ((
upper_sum (f,D1))
- (
upper_sum (f,D3)))
<= (((
len D)
* ((
upper_bound (
rng f))
- (
lower_bound (
rng f))))
* (
delta D1)) by
A7,
A658;
then
A688: ((
upper_sum (f,D1))
- (
upper_sum (f,D2)))
<= (((
len D)
* ((
upper_bound (
rng f))
- (
lower_bound (
rng f))))
* (
delta D1)) by
A679,
Th6;
0
< ((
delta T)
. m) by
A641,
A686;
then ((p
* (H
- h))
* ((
delta T)
. m))
<= ((p
* ((H
- h)
+ 1))
* ((
delta T)
. m)) by
A684,
XREAL_1: 64;
then ((
upper_sum (f,(T
. mm)))
- (
upper_sum (f,D2)))
<= ((p
* ((H
- h)
+ 1))
* ((
delta T)
. m)) by
A677,
A688,
XXREAL_0: 2;
then (sD1
- sD)
<= ((p
* ((H
- h)
+ 1))
* ((
delta T)
. m)) by
A680,
XXREAL_0: 2;
then (sD1
- sD)
< (e
/ 2) by
A687,
XXREAL_0: 2;
then ((sD1
- sD)
+ (e
/ 2))
< ((e
/ 2)
+ (e
/ 2)) by
XREAL_1: 6;
then (sD1
- s)
< e by
A681,
XXREAL_0: 2;
then (((
upper_sum (f,T))
. m)
- (
upper_integral f))
< e by
INTEGRA2:def 2;
hence thesis by
A683,
ABSVALUE:def 1;
end;
hence (
upper_sum (f,T)) is
convergent by
SEQ_2:def 6;
hence thesis by
A571,
SEQ_2:def 7;
end;