integra1.miz
begin
reserve a,a1,b,b1,x,y for
Real,
F,G,H for
FinSequence of
REAL ,
i,j,k,n,m for
Element of
NAT ,
I for
Subset of
REAL ,
X for non
empty
set,
x1,R,s for
set;
reserve A for non
empty
closed_interval
Subset of
REAL ;
registration
cluster
closed_interval ->
compact for
Subset of
REAL ;
coherence
proof
let IT be
Subset of
REAL ;
assume IT is
closed_interval;
then ex a,b be
Real st IT
=
[.a, b.] by
MEASURE5:def 3;
hence thesis by
RCOMP_1: 6;
end;
end
::$Canceled
theorem ::
INTEGRA1:3
Th1: A is
bounded_below
bounded_above
proof
A is
real-bounded by
RCOMP_1: 10;
hence thesis;
end;
registration
cluster non
empty
closed_interval ->
real-bounded for
Subset of
REAL ;
coherence by
Th1;
end
reserve A,B for non
empty
closed_interval
Subset of
REAL ;
theorem ::
INTEGRA1:4
Th2: A
=
[.(
lower_bound A), (
upper_bound A).]
proof
consider a,b be
Real such that
A1: a
<= b and
A2: A
=
[.a, b.] by
MEASURE5: 14;
A3: for y be
Real st
0
< y holds ex x be
Real st x
in A & (b
- y)
< x
proof
let y be
Real;
assume
A4:
0
< y;
take b;
b
< (b
+ y) by
A4,
XREAL_1: 29;
then (b
- y)
< ((b
+ y)
- y) by
XREAL_1: 9;
hence thesis by
A1,
A2,
XXREAL_1: 1;
end;
A5: for x be
Real st x
in A holds x
<= b
proof
let x be
Real;
assume
A6: x
in A;
A
= { y : a
<= y & y
<= b } by
A2,
RCOMP_1:def 1;
then ex y st x
= y & a
<= y & y
<= b by
A6;
hence thesis;
end;
A7: for x be
Real st x
in A holds a
<= x
proof
let x be
Real;
assume
A8: x
in A;
A
= { y : a
<= y & y
<= b } by
A2,
RCOMP_1:def 1;
then ex y st x
= y & a
<= y & y
<= b by
A8;
hence thesis;
end;
for y be
Real st
0
< y holds ex x be
Real st x
in A & x
< (a
+ y)
proof
let y be
Real;
assume
A9:
0
< y;
take a;
thus thesis by
A1,
A2,
A9,
XREAL_1: 29,
XXREAL_1: 1;
end;
then a
= (
lower_bound A) by
A7,
SEQ_4:def 2;
hence thesis by
A2,
A5,
A3,
SEQ_4:def 1;
end;
theorem ::
INTEGRA1:5
Th3: for a1,a2,b1,b2 be
Real holds A
=
[.a1, b1.] & A
=
[.a2, b2.] implies a1
= a2 & b1
= b2
proof
let a1,a2,b1,b2 be
Real;
assume that
A1: A
=
[.a1, b1.] and
A2: A
=
[.a2, b2.];
a1
<= b1 by
A1,
XXREAL_1: 29;
hence thesis by
A1,
A2,
XXREAL_1: 66;
end;
begin
definition
::$Canceled
let A be non
empty
compact
Subset of
REAL ;
::
INTEGRA1:def2
mode
Division of A -> non
empty
increasing
FinSequence of
REAL means
:
Def1: (
rng it )
c= A & (it
. (
len it ))
= (
upper_bound A);
existence
proof
reconsider a = (
upper_bound A) as
Element of
REAL by
XREAL_0:def 1;
reconsider p = ((
Seg 1)
--> a) as
Function of (
Seg 1),
REAL by
FUNCOP_1: 45;
A1: (
dom p)
= (
Seg 1) by
FUNCOP_1: 13;
(
rng p)
c=
REAL ;
then
reconsider p as
FinSequence of
REAL by
FINSEQ_1:def 4;
A2: 1
in (
Seg 1) by
FINSEQ_1: 2,
TARSKI:def 1;
for n,m be
Nat st n
in (
dom p) & m
in (
dom p) & n
< m holds (p
. n)
< (p
. m)
proof
let n,m be
Nat;
assume that
A3: n
in (
dom p) and
A4: m
in (
dom p);
n
= 1 by
A1,
A3,
FINSEQ_1: 2,
TARSKI:def 1;
hence thesis by
A1,
A4,
FINSEQ_1: 2,
TARSKI:def 1;
end;
then
A5: p is non
empty
increasing
FinSequence of
REAL by
SEQM_3:def 1;
(
upper_bound A)
in A by
RCOMP_1: 14;
then for n be
Nat st n
in (
Seg 1) holds (p
. n)
in A by
FUNCOP_1: 7;
then p is
FinSequence of A by
A1,
FINSEQ_2: 12;
then
A6: (
rng p)
c= A by
FINSEQ_1:def 4;
(
len p)
= 1 by
A1,
FINSEQ_1:def 3;
then (p
. (
len p))
= (
upper_bound A) by
A2,
FUNCOP_1: 7;
hence thesis by
A6,
A5;
end;
end
definition
let A be non
empty
compact
Subset of
REAL ;
::
INTEGRA1:def3
func
divs A ->
set means
:
Def2: x1
in it iff x1 is
Division of A;
existence
proof
defpred
P[
set] means $1 is
Division of A;
consider R such that
A1: x1
in R iff x1
in (
bool
[:
NAT ,
REAL :]) &
P[x1] from
XFAMILY:sch 1;
take R;
let x1;
thus x1
in R implies x1 is
Division of A by
A1;
assume x1 is
Division of A;
then
reconsider p = x1 as
Division of A;
p
c=
[:
NAT ,
REAL :];
hence thesis by
A1;
end;
uniqueness
proof
let D1,D2 be
set such that
A2: x1
in D1 iff x1 is
Division of A and
A3: x1
in D2 iff x1 is
Division of A;
now
let x1 be
object;
thus x1
in D1 implies x1
in D2
proof
assume x1
in D1;
then x1 is
Division of A by
A2;
hence thesis by
A3;
end;
assume x1
in D2;
then x1 is
Division of A by
A3;
hence x1
in D1 by
A2;
end;
hence thesis by
TARSKI: 2;
end;
end
registration
let A be non
empty
compact
Subset of
REAL ;
cluster (
divs A) -> non
empty;
coherence
proof
the
Division of A
in (
divs A) by
Def2;
hence thesis;
end;
end
registration
let A be non
empty
compact
Subset of
REAL ;
cluster ->
Function-like
Relation-like for
Element of (
divs A);
coherence by
Def2;
end
registration
let A be non
empty
compact
Subset of
REAL ;
cluster ->
real-valued
FinSequence-like for
Element of (
divs A);
coherence by
Def2;
end
reserve r for
Real;
reserve D,D1,D2 for
Division of A;
reserve f,g for
Function of A,
REAL ;
theorem ::
INTEGRA1:6
Th4: i
in (
dom D) implies (D
. i)
in A
proof
assume i
in (
dom D);
then
A1: (D
. i)
in (
rng D) by
FUNCT_1:def 3;
(
rng D)
c= A by
Def1;
hence thesis by
A1;
end;
theorem ::
INTEGRA1:7
Th5: i
in (
dom D) & i
<> 1 implies (i
- 1)
in (
dom D) & (D
. (i
- 1))
in A & (i
- 1)
in
NAT
proof
assume that
A1: i
in (
dom D) and
A2: i
<> 1;
consider j be
Nat such that
A3: (
dom D)
= (
Seg j) by
FINSEQ_1:def 2;
i
<>
0 by
A1,
A3,
FINSEQ_1: 1;
then
A4: i is non
trivial by
A2,
NAT_2:def 1;
then
consider l be
Nat such that
A5: i
= (2
+ l) by
NAT_1: 10,
NAT_2: 29;
reconsider l as
Element of
NAT by
ORDINAL1:def 12;
i
>= 2 by
A4,
NAT_2: 29;
then
A6: ((1
+ 1)
- 1)
<= (i
- 1) by
XREAL_1: 9;
i
<= j by
A1,
A3,
FINSEQ_1: 1;
then
A7: (i
- 1)
<= (j
-
0 ) by
XREAL_1: 13;
A8: (
rng D)
c= A by
Def1;
A9: (l
+ 1)
= (i
- (2
- 1)) by
A5;
then (i
- 1)
in (
dom D) by
A3,
A6,
A7,
FINSEQ_1: 1;
then (D
. (i
- 1))
in (
rng D) by
FUNCT_1:def 3;
hence thesis by
A3,
A6,
A7,
A9,
A8,
FINSEQ_1: 1;
end;
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let D be
Division of A;
let i be
Nat;
assume
A1: i
in (
dom D);
::
INTEGRA1:def4
func
divset (D,i) -> non
empty
closed_interval
Subset of
REAL means
:
Def3: (
lower_bound it )
= (
lower_bound A) & (
upper_bound it )
= (D
. i) if i
= 1
otherwise (
lower_bound it )
= (D
. (i
- 1)) & (
upper_bound it )
= (D
. i);
existence
proof
hereby
assume i
= 1;
thus ex IT be non
empty
closed_interval
Subset of
REAL st (
lower_bound IT)
= (
lower_bound A) & (
upper_bound IT)
= (D
. i)
proof
consider I such that
A2: I
=
[.(
lower_bound A), (D
. i).];
(D
. i)
in A by
A1,
Th4;
then (
lower_bound A)
<= (D
. i) by
SEQ_4:def 2;
then
A3: I is non
empty
closed_interval
Subset of
REAL by
A2,
MEASURE5: 14;
then
A4: I
=
[.(
lower_bound I), (
upper_bound I).] by
Th2;
then
A5: (
upper_bound I)
= (D
. i) by
A2,
A3,
Th3;
(
lower_bound I)
= (
lower_bound A) by
A2,
A3,
A4,
Th3;
hence thesis by
A3,
A5;
end;
end;
assume that
A6: i
<> 1;
thus ex IT be non
empty
closed_interval
Subset of
REAL st (
lower_bound IT)
= (D
. (i
- 1)) & (
upper_bound IT)
= (D
. i)
proof
reconsider j = (i
- 1) as
Element of
NAT by
A1,
A6,
Th5;
A7: (i
+ (
- 1))
< (i
+ (1
+ (
- 1))) by
XREAL_1: 6;
consider a1, b1 such that
A8: a1
= (D
. (i
- 1)) and
A9: b1
= (D
. i);
consider I such that
A10: I
=
[.a1, b1.];
(i
- 1)
in (
dom D) by
A1,
A6,
Th5;
then (D
. j)
< (D
. i) by
A1,
A7,
SEQM_3:def 1;
then
A11: I is non
empty
closed_interval
Subset of
REAL by
A8,
A9,
A10,
MEASURE5: 14;
then
A12: I
=
[.(
lower_bound I), (
upper_bound I).] by
Th2;
then
A13: (
upper_bound I)
= (D
. i) by
A9,
A10,
A11,
Th3;
(
lower_bound I)
= (D
. (i
- 1)) by
A8,
A10,
A11,
A12,
Th3;
hence thesis by
A11,
A13;
end;
end;
uniqueness
proof
let A1,A2 be non
empty
closed_interval
Subset of
REAL ;
hereby
consider b such that
A14: b
= (D
. i);
assume that i
= 1 and
A15: (
lower_bound A1)
= (
lower_bound A) and
A16: (
upper_bound A1)
= (D
. i) and
A17: (
lower_bound A2)
= (
lower_bound A) and
A18: (
upper_bound A2)
= (D
. i);
A1
=
[.(
lower_bound A), b.] by
A15,
A16,
A14,
Th2;
hence A1
= A2 by
A17,
A18,
A14,
Th2;
end;
assume that i
<> 1 and
A19: (
lower_bound A1)
= (D
. (i
- 1)) and
A20: (
upper_bound A1)
= (D
. i) and
A21: (
lower_bound A2)
= (D
. (i
- 1)) and
A22: (
upper_bound A2)
= (D
. i);
consider a, b such that
A23: a
= (D
. (i
- 1)) and
A24: b
= (D
. i);
A1
=
[.a, b.] by
A19,
A20,
A23,
A24,
Th2;
hence thesis by
A21,
A22,
A23,
A24,
Th2;
end;
correctness ;
end
theorem ::
INTEGRA1:8
Th6: i
in (
dom D) implies (
divset (D,i))
c= A
proof
assume
A1: i
in (
dom D);
now
per cases ;
suppose
A2: i
= 1;
(
lower_bound A)
in A by
RCOMP_1: 14;
then
A3: (
lower_bound A)
in
[.(
lower_bound A), (
upper_bound A).] by
Th2;
A4: (
lower_bound (
divset (D,i)))
= (
lower_bound A) by
A1,
A2,
Def3;
consider b such that
A5: b
= (D
. i);
(
upper_bound (
divset (D,i)))
= b by
A1,
A2,
A5,
Def3;
then
A6: (
divset (D,i))
=
[.(
lower_bound A), b.] by
A4,
Th2;
b
in A by
A1,
A5,
Th4;
then b
in
[.(
lower_bound A), (
upper_bound A).] by
Th2;
then
[.(
lower_bound A), b.]
c=
[.(
lower_bound A), (
upper_bound A).] by
A3,
XXREAL_2:def 12;
hence thesis by
A6,
Th2;
end;
suppose
A7: i
<> 1;
set b = (D
. i);
b
in A by
A1,
Th4;
then
A8: b
in
[.(
lower_bound A), (
upper_bound A).] by
Th2;
set a = (D
. (i
- 1));
(D
. (i
- 1))
in A by
A1,
A7,
Th5;
then a
in
[.(
lower_bound A), (
upper_bound A).] by
Th2;
then
A9:
[.a, b.]
c=
[.(
lower_bound A), (
upper_bound A).] by
A8,
XXREAL_2:def 12;
A10: (
upper_bound (
divset (D,i)))
= b by
A1,
A7,
Def3;
(
lower_bound (
divset (D,i)))
= a by
A1,
A7,
Def3;
then (
divset (D,i))
=
[.a, b.] by
A10,
Th2;
hence thesis by
A9,
Th2;
end;
end;
hence thesis;
end;
definition
let A be
Subset of
REAL ;
::
INTEGRA1:def5
func
vol (A) ->
Real equals ((
upper_bound A)
- (
lower_bound A));
correctness ;
end
theorem ::
INTEGRA1:9
for A be
real-bounded non
empty
Subset of
REAL holds
0
<= (
vol A) by
SEQ_4: 11,
XREAL_1: 48;
begin
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
PartFunc of A,
REAL ;
let D be
Division of A;
::
INTEGRA1:def6
func
upper_volume (f,D) ->
FinSequence of
REAL means
:
Def5: (
len it )
= (
len D) & for i be
Nat st i
in (
dom D) holds (it
. i)
= ((
upper_bound (
rng (f
| (
divset (D,i)))))
* (
vol (
divset (D,i))));
existence
proof
deffunc
F(
Nat) = (
In (((
upper_bound (
rng (f
| (
divset (D,$1)))))
* (
vol (
divset (D,$1)))),
REAL ));
consider IT be
FinSequence of
REAL such that
A1: (
len IT)
= (
len D) & for i be
Nat st i
in (
dom IT) holds (IT
. i)
=
F(i) from
FINSEQ_2:sch 1;
take IT;
thus (
len IT)
= (
len D) by
A1;
let i be
Nat;
A2:
F(i)
= ((
upper_bound (
rng (f
| (
divset (D,i)))))
* (
vol (
divset (D,i))));
assume i
in (
dom D);
then i
in (
dom IT) by
A1,
FINSEQ_3: 29;
hence thesis by
A1,
A2;
end;
uniqueness
proof
let s1,s2 be
FinSequence of
REAL such that
A3: (
len s1)
= (
len D) and
A4: for i be
Nat st i
in (
dom D) holds (s1
. i)
= ((
upper_bound (
rng (f
| (
divset (D,i)))))
* (
vol (
divset (D,i)))) and
A5: (
len s2)
= (
len D) and
A6: for i be
Nat st i
in (
dom D) holds (s2
. i)
= ((
upper_bound (
rng (f
| (
divset (D,i)))))
* (
vol (
divset (D,i))));
A7: (
dom s1)
= (
dom D) by
A3,
FINSEQ_3: 29;
for i be
Nat st i
in (
dom s1) holds (s1
. i)
= (s2
. i)
proof
let i be
Nat;
assume
A8: i
in (
dom s1);
then (s1
. i)
= ((
upper_bound (
rng (f
| (
divset (D,i)))))
* (
vol (
divset (D,i)))) by
A4,
A7;
hence thesis by
A6,
A7,
A8;
end;
hence thesis by
A3,
A5,
FINSEQ_2: 9;
end;
::
INTEGRA1:def7
func
lower_volume (f,D) ->
FinSequence of
REAL means
:
Def6: (
len it )
= (
len D) & for i be
Nat st i
in (
dom D) holds (it
. i)
= ((
lower_bound (
rng (f
| (
divset (D,i)))))
* (
vol (
divset (D,i))));
existence
proof
deffunc
F(
Nat) = (
In (((
lower_bound (
rng (f
| (
divset (D,$1)))))
* (
vol (
divset (D,$1)))),
REAL ));
consider IT be
FinSequence of
REAL such that
A9: (
len IT)
= (
len D) & for i be
Nat st i
in (
dom IT) holds (IT
. i)
=
F(i) from
FINSEQ_2:sch 1;
take IT;
thus (
len IT)
= (
len D) by
A9;
let i be
Nat;
A10: (
In (((
lower_bound (
rng (f
| (
divset (D,i)))))
* (
vol (
divset (D,i)))),
REAL ))
= ((
lower_bound (
rng (f
| (
divset (D,i)))))
* (
vol (
divset (D,i))));
assume i
in (
dom D);
then i
in (
dom IT) by
A9,
FINSEQ_3: 29;
hence thesis by
A9,
A10;
end;
uniqueness
proof
let s1,s2 be
FinSequence of
REAL such that
A11: (
len s1)
= (
len D) and
A12: for i be
Nat st i
in (
dom D) holds (s1
. i)
= ((
lower_bound (
rng (f
| (
divset (D,i)))))
* (
vol (
divset (D,i)))) and
A13: (
len s2)
= (
len D) and
A14: for i be
Nat st i
in (
dom D) holds (s2
. i)
= ((
lower_bound (
rng (f
| (
divset (D,i)))))
* (
vol (
divset (D,i))));
A15: (
dom s1)
= (
dom D) by
A11,
FINSEQ_3: 29;
for i be
Nat st i
in (
dom s1) holds (s1
. i)
= (s2
. i)
proof
let i be
Nat;
assume
A16: i
in (
dom s1);
then (s1
. i)
= ((
lower_bound (
rng (f
| (
divset (D,i)))))
* (
vol (
divset (D,i)))) by
A12,
A15;
hence thesis by
A14,
A15,
A16;
end;
hence thesis by
A11,
A13,
FINSEQ_2: 9;
end;
end
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
PartFunc of A,
REAL ;
let D be
Division of A;
::
INTEGRA1:def8
func
upper_sum (f,D) ->
Real equals (
Sum (
upper_volume (f,D)));
correctness ;
::
INTEGRA1:def9
func
lower_sum (f,D) ->
Real equals (
Sum (
lower_volume (f,D)));
correctness ;
end
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
PartFunc of A,
REAL ;
set S = (
divs A);
::
INTEGRA1:def10
func
upper_sum_set (f) ->
Function of (
divs A),
REAL means
:
Def9: for D be
Division of A holds (it
. D)
= (
upper_sum (f,D));
existence
proof
defpred
P[
Element of S,
set] means ex D be
Division of A st D
= $1 & $2
= (
upper_sum (f,D));
A1: for x be
Element of S holds ex y be
Element of
REAL st
P[x, y]
proof
let x be
Element of S;
reconsider x as
Division of A by
Def2;
take (
upper_sum (f,x));
thus thesis;
end;
consider g be
Function of S,
REAL such that
A2: for x be
Element of S holds
P[x, (g
. x)] from
FUNCT_2:sch 3(
A1);
take g;
let D be
Division of A;
reconsider D1 = D as
Element of S by
Def2;
P[D1, (g
. D1)] by
A2;
hence thesis;
end;
uniqueness
proof
let g1,g2 be
Function of S,
REAL such that
A3: for D be
Division of A holds (g1
. D)
= (
upper_sum (f,D)) and
A4: for D be
Division of A holds (g2
. D)
= (
upper_sum (f,D));
let a be
Element of S;
reconsider d = a as
Division of A by
Def2;
thus (g1
. a)
= (
upper_sum (f,d)) by
A3
.= (g2
. a) by
A4;
end;
::
INTEGRA1:def11
func
lower_sum_set (f) ->
Function of (
divs A),
REAL means
:
Def10: for D be
Division of A holds (it
. D)
= (
lower_sum (f,D));
existence
proof
defpred
P[
Element of S,
set] means ex D be
Division of A st D
= $1 & $2
= (
lower_sum (f,D));
A5: for x be
Element of S holds ex y be
Element of
REAL st
P[x, y]
proof
let x be
Element of S;
reconsider x as
Division of A by
Def2;
take (
lower_sum (f,x));
thus thesis;
end;
consider g be
Function of S,
REAL such that
A6: for x be
Element of S holds
P[x, (g
. x)] from
FUNCT_2:sch 3(
A5);
take g;
let D be
Division of A;
reconsider D1 = D as
Element of S by
Def2;
P[D1, (g
. D1)] by
A6;
hence thesis;
end;
uniqueness
proof
let g1,g2 be
Function of S,
REAL such that
A7: for D be
Division of A holds (g1
. D)
= (
lower_sum (f,D)) and
A8: for D be
Division of A holds (g2
. D)
= (
lower_sum (f,D));
let a be
Element of S;
reconsider d = a as
Division of A by
Def2;
thus (g1
. a)
= (
lower_sum (f,d)) by
A7
.= (g2
. a) by
A8;
end;
end
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
PartFunc of A,
REAL ;
::
INTEGRA1:def12
attr f is
upper_integrable means (
rng (
upper_sum_set f)) is
bounded_below;
::
INTEGRA1:def13
attr f is
lower_integrable means (
rng (
lower_sum_set f)) is
bounded_above;
end
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
PartFunc of A,
REAL ;
::
INTEGRA1:def14
func
upper_integral (f) ->
Real equals (
lower_bound (
rng (
upper_sum_set f)));
correctness ;
end
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
PartFunc of A,
REAL ;
::
INTEGRA1:def15
func
lower_integral (f) ->
Real equals (
upper_bound (
rng (
lower_sum_set f)));
coherence ;
end
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
PartFunc of A,
REAL ;
::
INTEGRA1:def16
attr f is
integrable means f is
upper_integrable
lower_integrable & (
upper_integral f)
= (
lower_integral f);
end
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
PartFunc of A,
REAL ;
::
INTEGRA1:def17
func
integral (f) ->
Real equals (
upper_integral f);
coherence ;
end
begin
theorem ::
INTEGRA1:10
Th8: for f,g be
PartFunc of X,
REAL holds (
rng (f
+ g))
c= ((
rng f)
++ (
rng g))
proof
let f,g be
PartFunc of X,
REAL ;
let y be
object;
assume y
in (
rng (f
+ g));
then
consider x1 be
object such that
A1: x1
in (
dom (f
+ g)) and
A2: y
= ((f
+ g)
. x1) by
FUNCT_1:def 3;
A3: (
dom (f
+ g))
= ((
dom f)
/\ (
dom g)) by
VALUED_1:def 1;
then x1
in (
dom f) by
A1,
XBOOLE_0:def 4;
then
A4: (f
. x1)
in (
rng f) by
FUNCT_1:def 3;
x1
in (
dom g) by
A1,
A3,
XBOOLE_0:def 4;
then
A5: (g
. x1)
in (
rng g) by
FUNCT_1:def 3;
((f
+ g)
. x1)
= ((f
. x1)
+ (g
. x1)) by
A1,
VALUED_1:def 1;
hence thesis by
A2,
A4,
A5,
MEMBER_1: 46;
end;
theorem ::
INTEGRA1:11
Th9: for f be
real-valued
Function holds f is
bounded_below implies (
rng f) is
bounded_below
proof
let f be
real-valued
Function;
set X = (
dom f);
AA: (f
| X)
= f;
assume f is
bounded_below;
then
consider a be
Real such that
A1: for x1 be
object st x1
in (X
/\ (
dom f)) holds a
<= (f
. x1) by
AA,
RFUNCT_1: 71;
a is
LowerBound of (
rng f)
proof
let y be
ExtReal;
assume y
in (
rng f);
then ex s be
object st s
in (
dom f) & y
= (f
. s) by
FUNCT_1:def 3;
hence thesis by
A1;
end;
hence thesis;
end;
theorem ::
INTEGRA1:12
for f be
real-valued
Function st (
rng f) is
bounded_below holds f is
bounded_below
proof
let f be
real-valued
Function;
set X = (
dom f);
assume (
rng f) is
bounded_below;
then
consider a be
Real such that
A1: a is
LowerBound of (
rng f);
AA: (f
| X)
= f;
for x1 be
object st x1
in (X
/\ (
dom f)) holds a
<= (f
. x1)
proof
let x1 be
object;
assume x1
in (X
/\ (
dom f));
then (f
. x1)
in (
rng f) by
FUNCT_1:def 3;
hence thesis by
A1,
XXREAL_2:def 2;
end;
hence thesis by
AA,
RFUNCT_1: 71;
end;
theorem ::
INTEGRA1:13
Th11: for f be
real-valued
Function st f is
bounded_above holds (
rng f) is
bounded_above
proof
let f be
real-valued
Function;
set X = (
dom f);
AA: (f
| X)
= f;
assume f is
bounded_above;
then
consider a be
Real such that
A1: for x1 be
object st x1
in (X
/\ (
dom f)) holds (f
. x1)
<= a by
AA,
RFUNCT_1: 70;
a is
UpperBound of (
rng f)
proof
let y be
ExtReal;
assume y
in (
rng f);
then ex s be
object st s
in (
dom f) & y
= (f
. s) by
FUNCT_1:def 3;
hence thesis by
A1;
end;
hence thesis;
end;
theorem ::
INTEGRA1:14
for f be
real-valued
Function st (
rng f) is
bounded_above holds f is
bounded_above
proof
let f be
real-valued
Function;
set X = (
dom f);
assume (
rng f) is
bounded_above;
then
consider a be
Real such that
A1: a is
UpperBound of (
rng f);
AA: (f
| X)
= f;
for x1 be
object st x1
in (X
/\ (
dom f)) holds (f
. x1)
<= a
proof
let x1 be
object;
assume x1
in (X
/\ (
dom f));
then (f
. x1)
in (
rng f) by
FUNCT_1:def 3;
hence thesis by
A1,
XXREAL_2:def 1;
end;
hence thesis by
AA,
RFUNCT_1: 70;
end;
theorem ::
INTEGRA1:15
for f be
real-valued
Function holds f is
bounded implies (
rng f) is
real-bounded by
Th11,
Th9;
begin
theorem ::
INTEGRA1:16
Th14: for A be non
empty
set holds ((
chi (A,A))
| A) is
constant
proof
let A be non
empty
set;
reconsider jj = 1 as
Element of
REAL by
XREAL_0:def 1;
for x be
Element of A st x
in (A
/\ (
dom (
chi (A,A)))) holds ((
chi (A,A))
/. x)
= jj
proof
let x be
Element of A;
assume x
in (A
/\ (
dom (
chi (A,A))));
then
A1: x
in (
dom (
chi (A,A))) by
XBOOLE_0:def 4;
((
chi (A,A))
. x)
= 1 by
FUNCT_3:def 3;
hence thesis by
A1,
PARTFUN1:def 6;
end;
hence thesis by
PARTFUN2: 35;
end;
theorem ::
INTEGRA1:17
Th15: for A be non
empty
Subset of X holds (
rng (
chi (A,A)))
=
{1}
proof
let A be non
empty
Subset of X;
A1: ((
chi (A,A))
| A) is
constant by
Th14;
(
dom (
chi (A,A)))
= A by
FUNCT_3:def 3;
then
A2: A
= (A
/\ (
dom (
chi (A,A))));
A3: (
dom (
chi (A,A)))
= A by
FUNCT_3:def 3;
ex x be
Element of X st x
in (
dom (
chi (A,A))) & ((
chi (A,A))
. x)
= 1
proof
consider x be
Element of X such that
A4: x
in (
dom (
chi (A,A))) by
A3,
SUBSET_1: 4;
take x;
thus thesis by
A4,
FUNCT_3:def 3;
end;
then
A5: 1
in (
rng (
chi (A,A))) by
FUNCT_1:def 3;
A
meets (
dom (
chi (A,A))) by
A2;
then ex y be
Element of
REAL st (
rng ((
chi (A,A))
| A))
=
{y} by
A1,
PARTFUN2: 37;
hence thesis by
A5,
TARSKI:def 1;
end;
theorem ::
INTEGRA1:18
Th16: for A be non
empty
Subset of X, B be
set holds B
meets (
dom (
chi (A,A))) implies (
rng ((
chi (A,A))
| B))
=
{1}
proof
let A be non
empty
Subset of X;
let B be
set;
A1: (
dom ((
chi (A,A))
| B))
= (B
/\ (
dom (
chi (A,A)))) by
RELAT_1: 61;
(
rng ((
chi (A,A))
| B))
c= (
rng (
chi (A,A))) by
RELAT_1: 70;
then
A2: (
rng ((
chi (A,A))
| B))
c=
{1} by
Th15;
assume (B
/\ (
dom (
chi (A,A))))
<>
{} ;
then (
rng ((
chi (A,A))
| B))
<>
{} by
A1,
RELAT_1: 42;
hence thesis by
A2,
ZFMISC_1: 33;
end;
theorem ::
INTEGRA1:19
Th17: i
in (
dom D) implies (
vol (
divset (D,i)))
= ((
lower_volume ((
chi (A,A)),D))
. i)
proof
A1: (
dom (
chi (A,A)))
= A by
FUNCT_3:def 3;
assume
A2: i
in (
dom D);
then
A3: ((
lower_volume ((
chi (A,A)),D))
. i)
= ((
lower_bound (
rng ((
chi (A,A))
| (
divset (D,i)))))
* (
vol (
divset (D,i)))) by
Def6;
(
divset (D,i))
c= A by
A2,
Th6;
then (
divset (D,i))
c= ((
divset (D,i))
/\ (
dom (
chi (A,A)))) by
A1,
XBOOLE_1: 19;
then ((
divset (D,i))
/\ (
dom (
chi (A,A))))
<>
{} ;
then (
divset (D,i))
meets (
dom (
chi (A,A)));
then
A4: (
rng ((
chi (A,A))
| (
divset (D,i))))
=
{1} by
Th16;
A5: (
rng (
chi (A,A)))
=
{1} by
Th15;
then (
lower_bound (
rng (
chi (A,A))))
= 1 by
SEQ_4: 9;
hence thesis by
A3,
A5,
A4;
end;
theorem ::
INTEGRA1:20
Th18: i
in (
dom D) implies (
vol (
divset (D,i)))
= ((
upper_volume ((
chi (A,A)),D))
. i)
proof
A1: (
dom (
chi (A,A)))
= A by
FUNCT_3:def 3;
assume
A2: i
in (
dom D);
then
A3: ((
upper_volume ((
chi (A,A)),D))
. i)
= ((
upper_bound (
rng ((
chi (A,A))
| (
divset (D,i)))))
* (
vol (
divset (D,i)))) by
Def5;
(
divset (D,i))
c= A by
A2,
Th6;
then (
divset (D,i))
c= ((
divset (D,i))
/\ (
dom (
chi (A,A)))) by
A1,
XBOOLE_1: 19;
then ((
divset (D,i))
/\ (
dom (
chi (A,A))))
<>
{} ;
then (
divset (D,i))
meets (
dom (
chi (A,A)));
then
A4: (
rng ((
chi (A,A))
| (
divset (D,i))))
=
{1} by
Th16;
A5: (
rng (
chi (A,A)))
=
{1} by
Th15;
then (
upper_bound (
rng (
chi (A,A))))
= 1 by
SEQ_4: 9;
hence thesis by
A3,
A5,
A4;
end;
theorem ::
INTEGRA1:21
(
len F)
= (
len G) & (
len F)
= (
len H) & (for k st k
in (
dom F) holds (H
. k)
= ((F
/. k)
+ (G
/. k))) implies (
Sum H)
= ((
Sum F)
+ (
Sum G))
proof
assume that
A1: (
len F)
= (
len G) and
A2: (
len F)
= (
len H) and
A3: for k st k
in (
dom F) holds (H
. k)
= ((F
/. k)
+ (G
/. k));
A4: F is
Element of ((
len F)
-tuples_on
REAL ) by
FINSEQ_2: 92;
A5: G is
Element of ((
len F)
-tuples_on
REAL ) by
A1,
FINSEQ_2: 92;
then (F
+ G) is
Element of ((
len F)
-tuples_on
REAL ) by
A4,
FINSEQ_2: 120;
then
A6: (
len H)
= (
len (F
+ G)) by
A2,
CARD_1:def 7;
then
A7: (
dom H)
= (
Seg (
len (F
+ G))) by
FINSEQ_1:def 3;
A8: for k st k
in (
dom F) holds (H
. k)
= ((F
. k)
+ (G
. k))
proof
let k;
assume
A9: k
in (
dom F);
then k
in (
Seg (
len G)) by
A1,
FINSEQ_1:def 3;
then k
in (
dom G) by
FINSEQ_1:def 3;
then
A10: (G
/. k)
= (G
. k) by
PARTFUN1:def 6;
(F
/. k)
= (F
. k) by
A9,
PARTFUN1:def 6;
hence thesis by
A3,
A9,
A10;
end;
for k be
Nat st k
in (
dom H) holds (H
. k)
= ((F
+ G)
. k)
proof
let k be
Nat;
assume
A11: k
in (
dom H);
then k
in (
dom F) by
A2,
A6,
A7,
FINSEQ_1:def 3;
then
A12: (H
. k)
= ((F
. k)
+ (G
. k)) by
A8;
k
in (
dom (F
+ G)) by
A7,
A11,
FINSEQ_1:def 3;
hence thesis by
A12,
VALUED_1:def 1;
end;
then (
Sum H)
= (
Sum (F
+ G)) by
A6,
FINSEQ_2: 9
.= ((
Sum F)
+ (
Sum G)) by
A4,
A5,
RVSUM_1: 89;
hence thesis;
end;
theorem ::
INTEGRA1:22
Th20: (
len F)
= (
len G) & (
len F)
= (
len H) & (for k st k
in (
dom F) holds (H
. k)
= ((F
/. k)
- (G
/. k))) implies (
Sum H)
= ((
Sum F)
- (
Sum G))
proof
assume that
A1: (
len F)
= (
len G) and
A2: (
len F)
= (
len H) and
A3: for k st k
in (
dom F) holds (H
. k)
= ((F
/. k)
- (G
/. k));
A4: F is
Element of ((
len F)
-tuples_on
REAL ) by
FINSEQ_2: 92;
A5: G is
Element of ((
len F)
-tuples_on
REAL ) by
A1,
FINSEQ_2: 92;
then
A6: (F
- G) is
Element of ((
len F)
-tuples_on
REAL ) by
A4,
FINSEQ_2: 120;
then
A7: (
len H)
= (
len (F
- G)) by
A2,
CARD_1:def 7;
then
A8: (
dom H)
= (
Seg (
len (F
- G))) by
FINSEQ_1:def 3;
A9: for k st k
in (
dom F) holds (H
. k)
= ((F
. k)
- (G
. k))
proof
let k;
assume
A10: k
in (
dom F);
then k
in (
Seg (
len G)) by
A1,
FINSEQ_1:def 3;
then k
in (
dom G) by
FINSEQ_1:def 3;
then
A11: (G
/. k)
= (G
. k) by
PARTFUN1:def 6;
(F
/. k)
= (F
. k) by
A10,
PARTFUN1:def 6;
hence thesis by
A3,
A10,
A11;
end;
for k be
Nat st k
in (
dom H) holds (H
. k)
= ((F
- G)
. k)
proof
let k be
Nat;
assume
A12: k
in (
dom H);
then k
in (
Seg (
len F)) by
A6,
A8,
CARD_1:def 7;
then k
in (
dom F) by
FINSEQ_1:def 3;
then
A13: (H
. k)
= ((F
. k)
- (G
. k)) by
A9;
k
in (
dom (F
- G)) by
A8,
A12,
FINSEQ_1:def 3;
hence thesis by
A13,
VALUED_1: 13;
end;
then (
Sum H)
= (
Sum (F
- G)) by
A7,
FINSEQ_2: 9
.= ((
Sum F)
- (
Sum G)) by
A4,
A5,
RVSUM_1: 90;
hence thesis;
end;
theorem ::
INTEGRA1:23
Th21: (
Sum (
lower_volume ((
chi (A,A)),D)))
= (
vol A)
proof
deffunc
F(
Nat) = (
In ((
vol (
divset (D,$1))),
REAL ));
consider p be
FinSequence of
REAL such that
A1: (
len p)
= (
len D) & for i be
Nat st i
in (
dom p) holds (p
. i)
=
F(i) from
FINSEQ_2:sch 1;
A2: (
dom p)
= (
Seg (
len D)) by
A1,
FINSEQ_1:def 3;
A3: for i st i
in (
Seg (
len D)) holds (p
. i)
= ((
upper_bound (
divset (D,i)))
- (
lower_bound (
divset (D,i))))
proof
let i;
A4: (
In ((
vol (
divset (D,i))),
REAL ))
= (
vol (
divset (D,i)));
assume i
in (
Seg (
len D));
hence thesis by
A1,
A2,
A4;
end;
((
len D)
- 1)
in
NAT
proof
ex j be
Nat st (
len D)
= (1
+ j) by
NAT_1: 10,
NAT_1: 14;
hence thesis by
ORDINAL1:def 12;
end;
then
reconsider k = ((
len D)
- 1) as
Element of
NAT ;
deffunc
G(
Nat) = (
In ((
lower_bound (
divset (D,($1
+ 1)))),
REAL ));
deffunc
F(
Nat) = (
In ((
upper_bound (
divset (D,$1))),
REAL ));
consider s1 be
FinSequence of
REAL such that
A5: (
len s1)
= k & for i be
Nat st i
in (
dom s1) holds (s1
. i)
=
F(i) from
FINSEQ_2:sch 1;
consider s2 be
FinSequence of
REAL such that
A6: (
len s2)
= k & for i be
Nat st i
in (
dom s2) holds (s2
. i)
=
G(i) from
FINSEQ_2:sch 1;
A7: (
dom s2)
= (
Seg k) by
A6,
FINSEQ_1:def 3;
reconsider ub = (
upper_bound A), lb = (
lower_bound A) as
Element of
REAL by
XREAL_0:def 1;
(
len (s1
^
<*(
upper_bound A)*>))
= (
len (
<*(
lower_bound A)*>
^ s2)) & (
len (s1
^
<*(
upper_bound A)*>))
= (
len p) & for i st i
in (
dom (s1
^
<*(
upper_bound A)*>)) holds (p
. i)
= (((s1
^
<*ub*>)
/. i)
- ((
<*lb*>
^ s2)
/. i))
proof
(
dom
<*(
upper_bound A)*>)
= (
Seg 1) by
FINSEQ_1:def 8;
then (
len
<*(
upper_bound A)*>)
= 1 by
FINSEQ_1:def 3;
then
A8: (
len (s1
^
<*(
upper_bound A)*>))
= (k
+ 1) by
A5,
FINSEQ_1: 22;
(
dom
<*(
lower_bound A)*>)
= (
Seg 1) by
FINSEQ_1:def 8;
then (
len
<*(
lower_bound A)*>)
= 1 by
FINSEQ_1:def 3;
hence
A9: (
len (s1
^
<*(
upper_bound A)*>))
= (
len (
<*(
lower_bound A)*>
^ s2)) by
A6,
A8,
FINSEQ_1: 22;
thus (
len (s1
^
<*(
upper_bound A)*>))
= (
len p) by
A1,
A8;
let i;
A10: (
In ((
upper_bound (
divset (D,i))),
REAL ))
= (
upper_bound (
divset (D,i)));
A11: (
In ((
lower_bound (
divset (D,i))),
REAL ))
= (
lower_bound (
divset (D,i)));
assume
A12: i
in (
dom (s1
^
<*(
upper_bound A)*>));
then
A13: ((s1
^
<*ub*>)
/. i)
= ((s1
^
<*ub*>)
. i) by
PARTFUN1:def 6;
i
in (
Seg (
len (s1
^
<*(
upper_bound A)*>))) by
A12,
FINSEQ_1:def 3;
then i
in (
dom (
<*(
lower_bound A)*>
^ s2)) by
A9,
FINSEQ_1:def 3;
then
A14: ((
<*lb*>
^ s2)
/. i)
= ((
<*(
lower_bound A)*>
^ s2)
. i) by
PARTFUN1:def 6;
A15: (
len D)
= 1 or (
len D) is non
trivial by
NAT_2:def 1;
now
per cases by
A15,
NAT_2: 29;
suppose
A16: (
len D)
= 1;
then
A17: i
in (
Seg 1) by
A8,
A12,
FINSEQ_1:def 3;
then
A18: i
= 1 by
FINSEQ_1: 2,
TARSKI:def 1;
s1
=
{} by
A5,
A16;
then (s1
^
<*(
upper_bound A)*>)
=
<*(
upper_bound A)*> by
FINSEQ_1: 34;
then
A19: ((s1
^
<*ub*>)
/. i)
= (
upper_bound A) by
A13,
A18,
FINSEQ_1:def 8;
A20: i
in (
dom D) by
A16,
A17,
FINSEQ_1:def 3;
s2
=
{} by
A6,
A16;
then (
<*(
lower_bound A)*>
^ s2)
=
<*(
lower_bound A)*> by
FINSEQ_1: 34;
then
A21: ((
<*lb*>
^ s2)
/. i)
= (
lower_bound A) by
A14,
A18,
FINSEQ_1:def 8;
(D
. i)
= (
upper_bound A) by
A16,
A18,
Def1;
then
A22: (
upper_bound (
divset (D,i)))
= (
upper_bound A) by
A18,
A20,
Def3;
(p
. i)
= ((
upper_bound (
divset (D,i)))
- (
lower_bound (
divset (D,i)))) by
A3,
A16,
A17;
hence thesis by
A18,
A20,
A19,
A21,
A22,
Def3;
end;
suppose
A23: (
len D)
>= 2;
1
= (2
- 1);
then
A24: k
>= 1 by
A23,
XREAL_1: 9;
now
per cases ;
suppose
A25: i
= 1;
then
A26: i
in (
Seg 1) by
FINSEQ_1: 2,
TARSKI:def 1;
then i
in (
dom
<*(
lower_bound A)*>) by
FINSEQ_1:def 8;
then ((
<*(
lower_bound A)*>
^ s2)
. i)
= (
<*(
lower_bound A)*>
. i) by
FINSEQ_1:def 7;
then
A27: ((
<*(
lower_bound A)*>
^ s2)
. i)
= (
lower_bound A) by
A25,
FINSEQ_1:def 8;
(
Seg 1)
c= (
Seg k) by
A24,
FINSEQ_1: 5;
then i
in (
Seg k) by
A26;
then
A28: i
in (
dom s1) by
A5,
FINSEQ_1:def 3;
then ((s1
^
<*(
upper_bound A)*>)
. i)
= (s1
. i) by
FINSEQ_1:def 7;
then
A29: ((s1
^
<*ub*>)
. i)
= (
upper_bound (
divset (D,i))) by
A5,
A28,
A10;
A30: i
in (
Seg 2) by
A25,
FINSEQ_1: 2,
TARSKI:def 2;
A31: (
Seg 2)
c= (
Seg (
len D)) by
A23,
FINSEQ_1: 5;
then i
in (
Seg (
len D)) by
A30;
then
A32: i
in (
dom D) by
FINSEQ_1:def 3;
(p
. i)
= ((
upper_bound (
divset (D,i)))
- (
lower_bound (
divset (D,i)))) by
A3,
A31,
A30;
hence thesis by
A13,
A14,
A25,
A32,
A29,
A27,
Def3;
end;
suppose
A33: i
= (
len D);
then (i
- (
len s1))
in (
Seg 1) by
A5,
FINSEQ_1: 2,
TARSKI:def 1;
then
A34: (i
- (
len s1))
in (
dom
<*(
upper_bound A)*>) by
FINSEQ_1:def 8;
i
= ((i
- (
len s1))
+ (
len s1));
then ((s1
^
<*(
upper_bound A)*>)
. i)
= (
<*(
upper_bound A)*>
. (i
- (
len s1))) by
A34,
FINSEQ_1:def 7;
then
A35: ((s1
^
<*ub*>)
/. i)
= (
upper_bound A) by
A5,
A13,
A33,
FINSEQ_1:def 8;
A36: i
<> 1 by
A23,
A33;
i
in (
Seg (
len D)) by
A33,
FINSEQ_1: 3;
then
A37: i
in (
dom D) by
FINSEQ_1:def 3;
(p
. i)
= ((
upper_bound (
divset (D,i)))
- (
lower_bound (
divset (D,i)))) by
A3,
A33,
FINSEQ_1: 3;
then (p
. i)
= ((
upper_bound (
divset (D,i)))
- (D
. (i
- 1))) by
A37,
A36,
Def3;
then
A38: (p
. i)
= ((D
. i)
- (D
. (i
- 1))) by
A37,
A36,
Def3;
A39: (i
- (
len
<*(
lower_bound A)*>))
= (i
- 1) by
FINSEQ_1: 40;
(i
- 1)
<>
0 by
A23,
A33;
then
A40: (i
- 1)
in (
Seg k) by
A33,
FINSEQ_1: 3;
then
A41: (i
- (
len
<*(
lower_bound A)*>))
in (
dom s2) by
A6,
A39,
FINSEQ_1:def 3;
((
len
<*(
lower_bound A)*>)
+ (i
- (
len
<*(
lower_bound A)*>)))
= i;
then
A42: ((
<*lb*>
^ s2)
. i)
= (s2
. (i
- 1)) by
A41,
A39,
FINSEQ_1:def 7;
reconsider i1 = (i
- 1) as
Nat by
A40;
((
<*lb*>
^ s2)
. i)
=
G(i1) by
A6,
A39,
A41,
A42
.= (
lower_bound (
divset (D,i)));
then ((
<*(
lower_bound A)*>
^ s2)
. i)
= (D
. (i
- 1)) by
A37,
A36,
Def3;
hence thesis by
A14,
A33,
A35,
A38,
Def1;
end;
suppose
A43: i
<> 1 & i
<> (
len D);
((
len s1)
+ (
len
<*(
upper_bound A)*>))
= (k
+ 1) by
A5,
FINSEQ_1: 39;
then
A44: i
in (
Seg (
len D)) by
A12,
FINSEQ_1:def 7;
A45: i
in (
dom s1) & i
in (
Seg k) & (i
- 1)
in (
Seg k) & ((i
- 1)
+ 1)
= i & (i
- (
len
<*(
lower_bound A)*>))
in (
dom s2)
proof
i
<>
0 by
A44,
FINSEQ_1: 1;
then i is non
trivial by
A43,
NAT_2:def 1;
then i
>= (1
+ 1) by
NAT_2: 29;
then
A46: (i
- 1)
>= 1 by
XREAL_1: 19;
A47: 1
<= i by
A44,
FINSEQ_1: 1;
i
<= (
len D) by
A44,
FINSEQ_1: 1;
then
A48: i
< (k
+ 1) by
A43,
XXREAL_0: 1;
then
A49: i
<= k by
NAT_1: 13;
then i
in (
Seg (
len s1)) by
A5,
A47,
FINSEQ_1: 1;
hence i
in (
dom s1) by
FINSEQ_1:def 3;
thus i
in (
Seg k) by
A47,
A49,
FINSEQ_1: 1;
i
<= k by
A48,
NAT_1: 13;
then (i
- 1)
<= (k
- 1) by
XREAL_1: 9;
then
A50: ((i
- 1)
+
0 )
<= ((k
- 1)
+ 1) by
XREAL_1: 7;
ex j be
Nat st i
= (1
+ j) by
A47,
NAT_1: 10;
hence (i
- 1)
in (
Seg k) by
A46,
A50,
FINSEQ_1: 1;
then
A51: (i
- (
len
<*(
lower_bound A)*>))
in (
Seg (
len s2)) by
A6,
FINSEQ_1: 39;
thus ((i
- 1)
+ 1)
= i;
thus thesis by
A51,
FINSEQ_1:def 3;
end;
then
A52: (i
- (
len
<*(
lower_bound A)*>))
in (
Seg (
len s2)) by
FINSEQ_1:def 3;
then (i
- (
len
<*(
lower_bound A)*>))
<= (
len s2) by
FINSEQ_1: 1;
then
A53: i
<= ((
len
<*(
lower_bound A)*>)
+ (
len s2)) by
XREAL_1: 20;
1
<= (i
- (
len
<*(
lower_bound A)*>)) by
A52,
FINSEQ_1: 1;
then ((
len
<*(
lower_bound A)*>)
+ 1)
<= i by
XREAL_1: 19;
then ((
<*(
lower_bound A)*>
^ s2)
. i)
= (s2
. (i
- (
len
<*(
lower_bound A)*>))) by
A53,
FINSEQ_1: 23;
then ((
<*(
lower_bound A)*>
^ s2)
. i)
= (s2
. (i
- 1)) by
FINSEQ_1: 39;
then
A54: ((
<*(
lower_bound A)*>
^ s2)
. i)
= (
lower_bound (
divset (D,i))) by
A6,
A7,
A45,
A11;
((s1
^
<*(
upper_bound A)*>)
. i)
= (s1
. i) by
A45,
FINSEQ_1:def 7;
then ((s1
^
<*(
upper_bound A)*>)
. i)
= (
upper_bound (
divset (D,i))) by
A5,
A45,
A10;
hence thesis by
A3,
A13,
A14,
A44,
A54;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
then (
Sum p)
= ((
Sum (s1
^
<*ub*>))
- (
Sum (
<*lb*>
^ s2))) by
Th20;
then (
Sum p)
= (((
Sum s1)
+ (
upper_bound A))
- (
Sum (
<*lb*>
^ s2))) by
RVSUM_1: 74;
then
A55: (
Sum p)
= (((
Sum s1)
+ (
upper_bound A))
- ((
lower_bound A)
+ (
Sum s2))) by
RVSUM_1: 76;
A56: (
dom s1)
= (
Seg k) by
A5,
FINSEQ_1:def 3;
A57: for i st i
in (
Seg k) holds (
upper_bound (
divset (D,i)))
= (
lower_bound (
divset (D,(i
+ 1))))
proof
let i;
A58: (1
+
0 )
<= (i
+ 1) by
XREAL_1: 7;
assume
A59: i
in (
Seg k);
then i
<= k by
FINSEQ_1: 1;
then (i
+ 1)
<= (k
+ 1) by
XREAL_1: 7;
then (i
+ 1)
in (
Seg (
len D)) by
A58,
FINSEQ_1: 1;
then
A60: (i
+ 1)
in (
dom D) by
FINSEQ_1:def 3;
(k
+ 1)
= (
len D);
then k
<= (
len D) by
NAT_1: 11;
then (
Seg k)
c= (
Seg (
len D)) by
FINSEQ_1: 5;
then i
in (
Seg (
len D)) by
A59;
then
A61: i
in (
dom D) by
FINSEQ_1:def 3;
A62: ((i
+ 1)
- 1)
= i;
now
per cases ;
suppose
A63: i
= 1;
then (
upper_bound (
divset (D,i)))
= (D
. i) by
A61,
Def3;
hence thesis by
A60,
A62,
A63,
Def3;
end;
suppose
A64: i
<> 1;
i
>= 1 by
A59,
FINSEQ_1: 1;
then (i
+ 1)
>= (1
+ 1) by
XREAL_1: 6;
then
A65: (i
+ 1)
<> 1;
(
upper_bound (
divset (D,i)))
= (D
. i) by
A61,
A64,
Def3;
hence thesis by
A60,
A62,
A65,
Def3;
end;
end;
hence thesis;
end;
for i be
Nat st i
in (
dom s1) holds (s1
. i)
= (s2
. i)
proof
let i be
Nat;
A66: (
In ((
upper_bound (
divset (D,i))),
REAL ))
= (
upper_bound (
divset (D,i)));
A67: (
In ((
lower_bound (
divset (D,(i
+ 1)))),
REAL ))
= (
lower_bound (
divset (D,(i
+ 1))));
assume
A68: i
in (
dom s1);
then (s1
. i)
= (
upper_bound (
divset (D,i))) by
A5,
A66;
then (s1
. i)
= (
lower_bound (
divset (D,(i
+ 1)))) by
A57,
A56,
A68;
hence thesis by
A6,
A7,
A56,
A68,
A67;
end;
then
A69: s1
= s2 by
A5,
A6,
FINSEQ_2: 9;
A70: (
len (
lower_volume ((
chi (A,A)),D)))
= (
len D) by
Def6;
then
A71: (
dom (
lower_volume ((
chi (A,A)),D)))
= (
Seg (
len D)) by
FINSEQ_1:def 3;
for i be
Nat st i
in (
dom (
lower_volume ((
chi (A,A)),D))) holds ((
lower_volume ((
chi (A,A)),D))
. i)
= (p
. i)
proof
let i be
Nat;
A72: (
In ((
vol (
divset (D,i))),
REAL ))
= (
vol (
divset (D,i)));
assume
A73: i
in (
dom (
lower_volume ((
chi (A,A)),D)));
then i
in (
dom D) by
A70,
FINSEQ_3: 29;
then ((
lower_volume ((
chi (A,A)),D))
. i)
= (
vol (
divset (D,i))) by
Th17;
hence thesis by
A1,
A2,
A71,
A73,
A72;
end;
hence thesis by
A1,
A69,
A55,
A70,
FINSEQ_2: 9;
end;
theorem ::
INTEGRA1:24
Th22: (
Sum (
upper_volume ((
chi (A,A)),D)))
= (
vol A)
proof
A1: for i be
Nat st 1
<= i & i
<= (
len (
lower_volume ((
chi (A,A)),D))) holds ((
lower_volume ((
chi (A,A)),D))
. i)
= ((
upper_volume ((
chi (A,A)),D))
. i)
proof
let i be
Nat;
assume that
A2: 1
<= i and
A3: i
<= (
len (
lower_volume ((
chi (A,A)),D)));
i
<= (
len D) by
A3,
Def6;
then
A4: i
in (
dom D) by
A2,
FINSEQ_3: 25;
then ((
lower_volume ((
chi (A,A)),D))
. i)
= (
vol (
divset (D,i))) by
Th17
.= ((
upper_volume ((
chi (A,A)),D))
. i) by
A4,
Th18;
hence thesis;
end;
(
len (
lower_volume ((
chi (A,A)),D)))
= (
len D) by
Def6
.= (
len (
upper_volume ((
chi (A,A)),D))) by
Def5;
then (
lower_volume ((
chi (A,A)),D))
= (
upper_volume ((
chi (A,A)),D)) by
A1,
FINSEQ_1: 14;
hence thesis by
Th21;
end;
begin
registration
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
PartFunc of A,
REAL ;
let D be
Division of A;
cluster (
upper_volume (f,D)) -> non
empty;
coherence
proof
(
len (
upper_volume (f,D)))
= (
len D) by
Def5;
hence thesis;
end;
cluster (
lower_volume (f,D)) -> non
empty;
coherence
proof
(
len (
lower_volume (f,D)))
= (
len D) by
Def6;
hence thesis;
end;
end
theorem ::
INTEGRA1:25
Th23: (f
| A) is
bounded_below implies ((
lower_bound (
rng f))
* (
vol A))
<= (
lower_sum (f,D))
proof
assume
A1: (f
| A) is
bounded_below;
A2: for i st i
in (
dom D) holds ((
lower_bound (
rng f))
* (
vol (
divset (D,i))))
<= ((
lower_bound (
rng (f
| (
divset (D,i)))))
* (
vol (
divset (D,i))))
proof
let i;
A3: (
rng (f
| (
divset (D,i))))
c= (
rng f) by
RELAT_1: 70;
A4:
0
<= (
vol (
divset (D,i))) by
SEQ_4: 11,
XREAL_1: 48;
A5: (
dom f)
= A by
FUNCT_2:def 1;
assume i
in (
dom D);
then (
dom (f
| (
divset (D,i))))
= (
divset (D,i)) by
A5,
Th6,
RELAT_1: 62;
then
A6: (
rng (f
| (
divset (D,i)))) is non
empty
Subset of
REAL by
RELAT_1: 42;
(
rng f) is
bounded_below by
A1,
Th9;
hence thesis by
A3,
A6,
A4,
SEQ_4: 47,
XREAL_1: 64;
end;
A7: for i st i
in (
dom D) holds ((
lower_bound (
rng f))
* ((
lower_volume ((
chi (A,A)),D))
. i))
<= ((
lower_bound (
rng (f
| (
divset (D,i)))))
* (
vol (
divset (D,i))))
proof
let i;
assume
A8: i
in (
dom D);
then ((
lower_bound (
rng f))
* (
vol (
divset (D,i))))
<= ((
lower_bound (
rng (f
| (
divset (D,i)))))
* (
vol (
divset (D,i)))) by
A2;
hence thesis by
A8,
Th17;
end;
(
Sum ((
lower_bound (
rng f))
* (
lower_volume ((
chi (A,A)),D))))
<= (
Sum (
lower_volume (f,D)))
proof
(
len (
lower_volume ((
chi (A,A)),D)))
= (
len ((
lower_bound (
rng f))
* (
lower_volume ((
chi (A,A)),D)))) by
FINSEQ_2: 33;
then
A9: (
len ((
lower_bound (
rng f))
* (
lower_volume ((
chi (A,A)),D))))
= (
len D) by
Def6;
deffunc
G(
Nat) = (
In (((
lower_bound (
rng (f
| (
divset (D,$1)))))
* (
vol (
divset (D,$1)))),
REAL ));
deffunc
F(
set) = (
In (((
lower_bound (
rng f))
* ((
lower_volume ((
chi (A,A)),D))
. $1)),
REAL ));
consider p be
FinSequence of
REAL such that
A10: (
len p)
= (
len D) & for i be
Nat st i
in (
dom p) holds (p
. i)
=
F(i) from
FINSEQ_2:sch 1;
A11: (
dom p)
= (
Seg (
len D)) by
A10,
FINSEQ_1:def 3;
for i be
Nat st 1
<= i & i
<= (
len p) holds (p
. i)
= (((
lower_bound (
rng f))
* (
lower_volume ((
chi (A,A)),D)))
. i)
proof
let i be
Nat;
assume that
A12: 1
<= i and
A13: i
<= (
len p);
i
in (
Seg (
len D)) by
A10,
A12,
A13,
FINSEQ_1: 1;
then (p
. i)
=
F(i) by
A10,
A11;
hence thesis by
RVSUM_1: 44;
end;
then
A14: p
= ((
lower_bound (
rng f))
* (
lower_volume ((
chi (A,A)),D))) by
A10,
A9,
FINSEQ_1: 14;
reconsider p as
Element of ((
len D)
-tuples_on
REAL ) by
A10,
FINSEQ_2: 92;
consider q be
FinSequence of
REAL such that
A15: (
len q)
= (
len D) & for i be
Nat st i
in (
dom q) holds (q
. i)
=
G(i) from
FINSEQ_2:sch 1;
A16: for i be
Nat st i
in (
dom q) holds (q
. i)
= ((
lower_bound (
rng (f
| (
divset (D,i)))))
* (
vol (
divset (D,i))))
proof
let i be
Nat;
assume i
in (
dom q);
then (q
. i)
=
G(i) by
A15;
hence thesis;
end;
A17: (
dom q)
= (
dom D) by
A15,
FINSEQ_3: 29;
then
A18: q
= (
lower_volume (f,D)) by
A15,
Def6,
A16;
reconsider q as
Element of ((
len D)
-tuples_on
REAL ) by
A15,
FINSEQ_2: 92;
now
let i be
Nat;
assume
A19: i
in (
Seg (
len D));
then
A20: (p
. i)
=
F(i) by
A10,
A11;
A21: i
in (
dom D) by
A19,
FINSEQ_1:def 3;
then (q
. i)
=
G(i) by
A15,
A17;
hence (p
. i)
<= (q
. i) by
A7,
A20,
A21;
end;
hence thesis by
A18,
A14,
RVSUM_1: 82;
end;
then ((
lower_bound (
rng f))
* (
Sum (
lower_volume ((
chi (A,A)),D))))
<= (
Sum (
lower_volume (f,D))) by
RVSUM_1: 87;
hence thesis by
Th21;
end;
theorem ::
INTEGRA1:26
(f
| A) is
bounded_above & i
in (
dom D) implies ((
upper_bound (
rng f))
* (
vol (
divset (D,i))))
>= ((
upper_bound (
rng (f
| (
divset (D,i)))))
* (
vol (
divset (D,i))))
proof
A1: (
dom f)
= A by
FUNCT_2:def 1;
assume (f
| A) is
bounded_above;
then
A2: (
rng f) is
bounded_above by
Th11;
assume i
in (
dom D);
then (
dom (f
| (
divset (D,i))))
= (
divset (D,i)) by
A1,
Th6,
RELAT_1: 62;
then
A3: (
rng (f
| (
divset (D,i)))) is non
empty
Subset of
REAL by
RELAT_1: 42;
A4:
0
<= (
vol (
divset (D,i))) by
SEQ_4: 11,
XREAL_1: 48;
(
rng (f
| (
divset (D,i))))
c= (
rng f) by
RELAT_1: 70;
hence thesis by
A3,
A2,
A4,
SEQ_4: 48,
XREAL_1: 64;
end;
theorem ::
INTEGRA1:27
Th25: (f
| A) is
bounded_above implies (
upper_sum (f,D))
<= ((
upper_bound (
rng f))
* (
vol A))
proof
assume
A1: (f
| A) is
bounded_above;
A2: for i st i
in (
Seg (
len D)) holds ((
upper_bound (
rng f))
* (
vol (
divset (D,i))))
>= ((
upper_bound (
rng (f
| (
divset (D,i)))))
* (
vol (
divset (D,i))))
proof
let i;
A3: (
rng (f
| (
divset (D,i))))
c= (
rng f) by
RELAT_1: 70;
A4:
0
<= (
vol (
divset (D,i))) by
SEQ_4: 11,
XREAL_1: 48;
assume i
in (
Seg (
len D));
then
A5: i
in (
dom D) by
FINSEQ_1:def 3;
(
dom f)
= A by
FUNCT_2:def 1;
then (
dom (f
| (
divset (D,i))))
= (
divset (D,i)) by
A5,
Th6,
RELAT_1: 62;
then
A6: (
rng (f
| (
divset (D,i)))) is non
empty
Subset of
REAL by
RELAT_1: 42;
(
rng f) is
bounded_above by
A1,
Th11;
hence thesis by
A3,
A6,
A4,
SEQ_4: 48,
XREAL_1: 64;
end;
A7: for i st i
in (
Seg (
len D)) holds ((
upper_bound (
rng f))
* ((
upper_volume ((
chi (A,A)),D))
. i))
>= ((
upper_bound (
rng (f
| (
divset (D,i)))))
* (
vol (
divset (D,i))))
proof
let i;
assume
A8: i
in (
Seg (
len D));
then
A9: i
in (
dom D) by
FINSEQ_1:def 3;
((
upper_bound (
rng f))
* (
vol (
divset (D,i))))
>= ((
upper_bound (
rng (f
| (
divset (D,i)))))
* (
vol (
divset (D,i)))) by
A2,
A8;
hence thesis by
A9,
Th18;
end;
(
Sum ((
upper_bound (
rng f))
* (
upper_volume ((
chi (A,A)),D))))
>= (
Sum (
upper_volume (f,D)))
proof
(
len (
upper_volume ((
chi (A,A)),D)))
= (
len ((
upper_bound (
rng f))
* (
upper_volume ((
chi (A,A)),D)))) by
FINSEQ_2: 33;
then
A10: (
len ((
upper_bound (
rng f))
* (
upper_volume ((
chi (A,A)),D))))
= (
len D) by
Def5;
deffunc
G(
Nat) = (
In (((
upper_bound (
rng (f
| (
divset (D,$1)))))
* (
vol (
divset (D,$1)))),
REAL ));
deffunc
F(
set) = (
In (((
upper_bound (
rng f))
* ((
upper_volume ((
chi (A,A)),D))
. $1)),
REAL ));
consider p be
FinSequence of
REAL such that
A11: (
len p)
= (
len D) & for i be
Nat st i
in (
dom p) holds (p
. i)
=
F(i) from
FINSEQ_2:sch 1;
A12: (
dom p)
= (
Seg (
len D)) by
A11,
FINSEQ_1:def 3;
for i be
Nat st 1
<= i & i
<= (
len p) holds (p
. i)
= (((
upper_bound (
rng f))
* (
upper_volume ((
chi (A,A)),D)))
. i)
proof
let i be
Nat;
assume that
A13: 1
<= i and
A14: i
<= (
len p);
i
in (
Seg (
len D)) by
A11,
A13,
A14,
FINSEQ_1: 1;
then (p
. i)
=
F(i) by
A11,
A12;
hence thesis by
RVSUM_1: 44;
end;
then
A15: p
= ((
upper_bound (
rng f))
* (
upper_volume ((
chi (A,A)),D))) by
A11,
A10,
FINSEQ_1: 14;
reconsider p as
Element of ((
len D)
-tuples_on
REAL ) by
A11,
FINSEQ_2: 92;
consider q be
FinSequence of
REAL such that
A16: (
len q)
= (
len D) & for i be
Nat st i
in (
dom q) holds (q
. i)
=
G(i) from
FINSEQ_2:sch 1;
A17: for i be
Nat st i
in (
dom q) holds (q
. i)
= ((
upper_bound (
rng (f
| (
divset (D,i)))))
* (
vol (
divset (D,i))))
proof
let i be
Nat;
assume i
in (
dom q);
then (q
. i)
=
G(i) by
A16;
hence thesis;
end;
A18: (
dom q)
= (
dom D) by
A16,
FINSEQ_3: 29;
then
A19: q
= (
upper_volume (f,D)) by
A16,
Def5,
A17;
reconsider q as
Element of ((
len D)
-tuples_on
REAL ) by
A16,
FINSEQ_2: 92;
now
let i be
Nat;
assume
A20: i
in (
Seg (
len D));
then i
in (
dom D) by
FINSEQ_1:def 3;
then
A21: (q
. i)
=
G(i) by
A16,
A18;
(p
. i)
=
F(i) by
A11,
A12,
A20;
hence (q
. i)
<= (p
. i) by
A7,
A20,
A21;
end;
hence thesis by
A19,
A15,
RVSUM_1: 82;
end;
then ((
upper_bound (
rng f))
* (
Sum (
upper_volume ((
chi (A,A)),D))))
>= (
Sum (
upper_volume (f,D))) by
RVSUM_1: 87;
hence thesis by
Th22;
end;
theorem ::
INTEGRA1:28
Th26: (f
| A) is
bounded implies (
lower_sum (f,D))
<= (
upper_sum (f,D))
proof
deffunc
F(
Nat) = (
In (((
lower_bound (
rng (f
| (
divset (D,$1)))))
* (
vol (
divset (D,$1)))),
REAL ));
consider p be
FinSequence of
REAL such that
A1: (
len p)
= (
len D) & for i be
Nat st i
in (
dom p) holds (p
. i)
=
F(i) from
FINSEQ_2:sch 1;
A2: for i be
Nat st i
in (
dom p) holds (p
. i)
= ((
lower_bound (
rng (f
| (
divset (D,i)))))
* (
vol (
divset (D,i))))
proof
let i be
Nat;
assume i
in (
dom p);
then (p
. i)
=
F(i) by
A1;
hence thesis;
end;
assume
A3: (f
| A) is
bounded;
then
A4: (
rng f) is
bounded_above by
Th11;
A5: (
dom p)
= (
dom D) by
A1,
FINSEQ_3: 29;
reconsider p as
Element of ((
len D)
-tuples_on
REAL ) by
A1,
FINSEQ_2: 92;
deffunc
G(
Nat) = (
In (((
upper_bound (
rng (f
| (
divset (D,$1)))))
* (
vol (
divset (D,$1)))),
REAL ));
consider q be
FinSequence of
REAL such that
A6: (
len q)
= (
len D) & for i be
Nat st i
in (
dom q) holds (q
. i)
=
G(i) from
FINSEQ_2:sch 1;
A7: for i be
Nat st i
in (
dom q) holds (q
. i)
= ((
upper_bound (
rng (f
| (
divset (D,i)))))
* (
vol (
divset (D,i))))
proof
let i be
Nat;
assume i
in (
dom q);
then (q
. i)
=
G(i) by
A6;
hence thesis;
end;
A8: (
dom q)
= (
dom D) by
A6,
FINSEQ_3: 29;
then (
len q)
= (
len D) by
FINSEQ_3: 29;
then
A9: q
= (
upper_volume (f,D)) by
A7,
Def5,
A8;
reconsider q as
Element of ((
len D)
-tuples_on
REAL ) by
A6,
FINSEQ_2: 92;
A10: (
rng f) is
bounded_below by
A3,
Th9;
for i be
Nat st i
in (
Seg (
len D)) holds (p
. i)
<= (q
. i)
proof
let i be
Nat;
A11: (
dom f)
= A by
FUNCT_2:def 1;
assume
A12: i
in (
Seg (
len D));
then
A13: i
in (
dom D) by
FINSEQ_1:def 3;
i
in (
dom D) by
A12,
FINSEQ_1:def 3;
then (
dom (f
| (
divset (D,i))))
= (
divset (D,i)) by
A11,
Th6,
RELAT_1: 62;
then
A14: (
rng (f
| (
divset (D,i)))) is non
empty
Subset of
REAL by
RELAT_1: 42;
A15:
0
<= (
vol (
divset (D,i))) by
SEQ_4: 11,
XREAL_1: 48;
A16: (
rng (f
| (
divset (D,i)))) is
bounded_above by
A4,
RELAT_1: 70,
XXREAL_2: 43;
(
rng (f
| (
divset (D,i)))) is
bounded_below by
A10,
RELAT_1: 70,
XXREAL_2: 44;
then ((
lower_bound (
rng (f
| (
divset (D,i)))))
* (
vol (
divset (D,i))))
<= ((
upper_bound (
rng (f
| (
divset (D,i)))))
* (
vol (
divset (D,i)))) by
A16,
A14,
A15,
SEQ_4: 11,
XREAL_1: 64;
then (p
. i)
<= ((
upper_bound (
rng (f
| (
divset (D,i)))))
* (
vol (
divset (D,i)))) by
A5,
A13,
A2;
hence thesis by
A8,
A13,
A7;
end;
then (
Sum p)
<= (
Sum q) by
RVSUM_1: 82;
hence thesis by
A1,
A5,
A9,
Def6,
A2;
end;
definition
let D1,D2 be
FinSequence;
::
INTEGRA1:def18
pred D1
<= D2 means (
len D1)
<= (
len D2) & (
rng D1)
c= (
rng D2);
reflexivity ;
end
notation
let D1,D2 be
FinSequence;
synonym D2
>= D1 for D1
<= D2;
end
theorem ::
INTEGRA1:29
(
len D1)
= 1 implies D1
<= D2
proof
A1: (D2
. (
len D2))
= (
upper_bound A) by
Def1;
assume
A2: (
len D1)
= 1;
then (D1
. 1)
= (
upper_bound A) by
Def1;
then D1
=
<*(
upper_bound A)*> by
A2,
FINSEQ_1: 40;
then
A3: (
rng D1)
=
{(
upper_bound A)} by
FINSEQ_1: 38;
A4: (
len D2)
in (
Seg (
len D2)) by
FINSEQ_1: 3;
hence (
len D1)
<= (
len D2) by
A2,
FINSEQ_1: 1;
(
len D2)
in (
dom D2) by
A4,
FINSEQ_1:def 3;
then (
upper_bound A)
in (
rng D2) by
A1,
FUNCT_1:def 3;
then (
rng D1) is
Subset of (
rng D2) by
A3,
SUBSET_1: 41;
hence thesis;
end;
theorem ::
INTEGRA1:30
Th28: (f
| A) is
bounded_above & (
len D1)
= 1 implies (
upper_sum (f,D1))
>= (
upper_sum (f,D2))
proof
assume that
A1: (f
| A) is
bounded_above and
A2: (
len D1)
= 1;
1
in (
Seg (
len D1)) by
A2,
FINSEQ_1: 3;
then
A3: 1
in (
dom D1) by
FINSEQ_1:def 3;
then
A4: (
lower_bound (
divset (D1,1)))
= (
lower_bound A) by
Def3;
A5: (
divset (D1,1))
=
[.(
lower_bound (
divset (D1,1))), (
upper_bound (
divset (D1,1))).] by
Th2;
(
upper_bound (
divset (D1,1)))
= (D1
. 1) by
A3,
Def3
.= (
upper_bound A) by
A2,
Def1;
then
A6: (
divset (D1,1))
= A by
A4,
A5,
Th2;
A7: ((
upper_volume (f,D1))
. 1)
= ((
upper_bound (
rng (f
| (
divset (D1,1)))))
* (
vol (
divset (D1,1)))) by
A3,
Def5;
reconsider ubv = ((
upper_bound (
rng (f
| (
divset (D1,1)))))
* (
vol (
divset (D1,1)))) as
Element of
REAL by
XREAL_0:def 1;
(
len (
upper_volume (f,D1)))
= 1 by
A2,
Def5;
then (
upper_sum (f,D1))
= (
Sum
<*ubv*>) by
A7,
FINSEQ_1: 40
.= ((
upper_bound (
rng (f
| A)))
* (
vol A)) by
A6,
FINSOP_1: 11
.= ((
upper_bound (
rng f))
* (
vol A));
hence thesis by
A1,
Th25;
end;
theorem ::
INTEGRA1:31
Th29: (f
| A) is
bounded_below & (
len D1)
= 1 implies (
lower_sum (f,D1))
<= (
lower_sum (f,D2))
proof
assume that
A1: (f
| A) is
bounded_below and
A2: (
len D1)
= 1;
1
in (
Seg (
len D1)) by
A2,
FINSEQ_1: 3;
then
A3: 1
in (
dom D1) by
FINSEQ_1:def 3;
then
A4: (
lower_bound (
divset (D1,1)))
= (
lower_bound A) by
Def3;
(
upper_bound (
divset (D1,1)))
= (D1
. 1) by
A3,
Def3
.= (
upper_bound A) by
A2,
Def1;
then (
divset (D1,1))
=
[.(
lower_bound A), (
upper_bound A).] by
A4,
Th2;
then
A5: (
divset (D1,1))
= A by
Th2;
A6: ((
lower_volume (f,D1))
. 1)
= ((
lower_bound (
rng (f
| (
divset (D1,1)))))
* (
vol (
divset (D1,1)))) by
A3,
Def6;
reconsider lbv = ((
lower_bound (
rng (f
| (
divset (D1,1)))))
* (
vol (
divset (D1,1)))) as
Element of
REAL by
XREAL_0:def 1;
(
len (
lower_volume (f,D1)))
= 1 by
A2,
Def6;
then (
lower_sum (f,D1))
= (
Sum
<*lbv*>) by
A6,
FINSEQ_1: 40
.= ((
lower_bound (
rng (f
| A)))
* (
vol A)) by
A5,
FINSOP_1: 11
.= ((
lower_bound (
rng f))
* (
vol A));
hence thesis by
A1,
Th23;
end;
theorem ::
INTEGRA1:32
i
in (
dom D) implies ex A1,A2 be non
empty
closed_interval
Subset of
REAL st A1
=
[.(
lower_bound A), (D
. i).] & A2
=
[.(D
. i), (
upper_bound A).] & A
= (A1
\/ A2)
proof
assume i
in (
dom D);
then
A1: (D
. i)
in (
rng D) by
FUNCT_1:def 3;
(
rng D)
c= A by
Def1;
then (D
. i)
in A by
A1;
then (D
. i)
in
[.(
lower_bound A), (
upper_bound A).] by
Th2;
then (D
. i)
in { a : (
lower_bound A)
<= a & a
<= (
upper_bound A) } by
RCOMP_1:def 1;
then
A2: ex a st a
= (D
. i) & (
lower_bound A)
<= a & a
<= (
upper_bound A);
then
reconsider A1 =
[.(
lower_bound A), (D
. i).] as non
empty
closed_interval
Subset of
REAL by
MEASURE5: 14;
reconsider A2 =
[.(D
. i), (
upper_bound A).] as non
empty
closed_interval
Subset of
REAL by
A2,
MEASURE5: 14;
take A1, A2;
(A1
\/ A2)
=
[.(
lower_bound A), (
upper_bound A).] by
A2,
XXREAL_1: 174
.= A by
Th2;
hence thesis;
end;
theorem ::
INTEGRA1:33
Th31: i
in (
dom D1) & D1
<= D2 implies ex j st j
in (
dom D2) & (D1
. i)
= (D2
. j)
proof
assume i
in (
dom D1);
then
A1: (D1
. i)
in (
rng D1) by
FUNCT_1:def 3;
assume D1
<= D2;
then (
rng D1)
c= (
rng D2);
then
consider x1 be
object such that
A2: x1
in (
dom D2) and
A3: (D1
. i)
= (D2
. x1) by
A1,
FUNCT_1:def 3;
reconsider x1 as
Element of
NAT by
A2;
take x1;
thus thesis by
A2,
A3;
end;
definition
let A, D1, D2;
let i be
Nat;
assume
A1: D1
<= D2;
::
INTEGRA1:def19
func
indx (D2,D1,i) ->
Element of
NAT means
:
Def18: it
in (
dom D2) & (D1
. i)
= (D2
. it ) if i
in (
dom D1)
otherwise it
=
0 ;
existence by
A1,
Th31;
uniqueness
proof
let m,n be
Element of
NAT ;
hereby
assume that i
in (
dom D1) and
A2: m
in (
dom D2) and
A3: (D1
. i)
= (D2
. m) and
A4: n
in (
dom D2) and
A5: (D1
. i)
= (D2
. n);
assume
A6: m
<> n;
now
per cases by
A6,
XXREAL_0: 1;
suppose m
< n;
hence contradiction by
A2,
A3,
A4,
A5,
SEQM_3:def 1;
end;
suppose n
< m;
hence contradiction by
A2,
A3,
A4,
A5,
SEQM_3:def 1;
end;
end;
hence contradiction;
end;
assume that not i
in (
dom D1) and
A7: m
=
0 and
A8: n
=
0 ;
thus thesis by
A7,
A8;
end;
correctness ;
end
theorem ::
INTEGRA1:34
Th32: for p be
increasing
FinSequence of
REAL , n be
Element of
NAT holds n
<= (
len p) implies (p
/^ n) is
increasing
FinSequence of
REAL
proof
let p be
increasing
FinSequence of
REAL ;
let n be
Element of
NAT ;
assume
A1: n
<= (
len p);
for i,j be
Nat st i
in (
dom (p
/^ n)) & j
in (
dom (p
/^ n)) & i
< j holds ((p
/^ n)
. i)
< ((p
/^ n)
. j)
proof
let i,j be
Nat;
assume that
A2: i
in (
dom (p
/^ n)) and
A3: j
in (
dom (p
/^ n)) and
A4: i
< j;
A5: (i
+ n)
< (j
+ n) by
A4,
XREAL_1: 6;
A6: j
in (
Seg (
len (p
/^ n))) by
A3,
FINSEQ_1:def 3;
then 1
<= j by
FINSEQ_1: 1;
then
A7: (1
+ n)
<= (j
+ n) by
XREAL_1: 6;
j
<= (
len (p
/^ n)) by
A6,
FINSEQ_1: 1;
then j
<= ((
len p)
- n) by
A1,
RFINSEQ:def 1;
then
A8: (j
+ n)
<= (
len p) by
XREAL_1: 19;
1
<= (1
+ n) by
NAT_1: 11;
then 1
<= (j
+ n) by
A7,
XXREAL_0: 2;
then (j
+ n)
in (
Seg (
len p)) by
A8,
FINSEQ_1: 1;
then
A9: (j
+ n)
in (
dom p) by
FINSEQ_1:def 3;
A10: i
in (
Seg (
len (p
/^ n))) by
A2,
FINSEQ_1:def 3;
then 1
<= i by
FINSEQ_1: 1;
then
A11: (1
+ n)
<= (i
+ n) by
XREAL_1: 6;
i
<= (
len (p
/^ n)) by
A10,
FINSEQ_1: 1;
then i
<= ((
len p)
- n) by
A1,
RFINSEQ:def 1;
then
A12: (i
+ n)
<= (
len p) by
XREAL_1: 19;
1
<= (1
+ n) by
NAT_1: 11;
then 1
<= (i
+ n) by
A11,
XXREAL_0: 2;
then (i
+ n)
in (
Seg (
len p)) by
A12,
FINSEQ_1: 1;
then
A13: (i
+ n)
in (
dom p) by
FINSEQ_1:def 3;
A14: ((p
/^ n)
. j)
= (p
. (j
+ n)) by
A1,
A3,
RFINSEQ:def 1;
((p
/^ n)
. i)
= (p
. (i
+ n)) by
A1,
A2,
RFINSEQ:def 1;
hence thesis by
A14,
A13,
A9,
A5,
SEQM_3:def 1;
end;
hence thesis by
SEQM_3:def 1;
end;
theorem ::
INTEGRA1:35
Th33: for p be
increasing
FinSequence of
REAL , i,j be
Element of
NAT holds j
in (
dom p) & i
<= j implies (
mid (p,i,j)) is
increasing
FinSequence of
REAL
proof
let p be
increasing
FinSequence of
REAL ;
let i,j be
Element of
NAT ;
assume that
A1: j
in (
dom p) and
A2: i
<= j;
j
in (
Seg (
len p)) by
A1,
FINSEQ_1:def 3;
then j
<= (
len p) by
FINSEQ_1: 1;
then i
<= (
len p) by
A2,
XXREAL_0: 2;
then (p
/^ (i
-' 1)) is
increasing
FinSequence of
REAL by
Th32,
NAT_D: 44;
then
A3: ((p
/^ (i
-' 1))
| (
Seg ((j
-' i)
+ 1))) is
increasing
FinSequence of
REAL by
FINSEQ_1: 18,
SEQ_4: 139;
(
mid (p,i,j))
= ((p
/^ (i
-' 1))
| ((j
-' i)
+ 1)) by
A2,
FINSEQ_6:def 3;
hence thesis by
A3,
FINSEQ_1:def 15;
end;
Lm1: for f be
FinSequence holds i
in (
dom f) & j
in (
dom f) & i
<= j implies (
len (
mid (f,i,j)))
= ((j
- i)
+ 1)
proof
let D be
FinSequence;
assume that
A1: i
in (
dom D) and
A2: j
in (
dom D) and
A3: i
<= j;
j
in (
Seg (
len D)) by
A2,
FINSEQ_1:def 3;
then j
<= (
len D) by
FINSEQ_1: 1;
then i
<= (
len D) by
A3,
XXREAL_0: 2;
then (i
-' 1)
<= (
len D) by
NAT_D: 44;
then
A4: (
len (D
/^ (i
-' 1)))
= ((
len D)
- (i
-' 1)) by
RFINSEQ:def 1;
reconsider D1 = (D
/^ (i
-' 1)) as
FinSequence;
reconsider k = ((j
-' i)
+ 1) as
Element of
NAT ;
i
in (
Seg (
len D)) by
A1,
FINSEQ_1:def 3;
then 1
<= i by
FINSEQ_1: 1;
then (j
- (i
-' 1))
= (j
- (i
- 1)) by
XREAL_1: 233;
then
A5: (j
- (i
-' 1))
= ((j
- i)
+ 1);
j
in (
Seg (
len D)) by
A2,
FINSEQ_1:def 3;
then j
<= (
len D) by
FINSEQ_1: 1;
then (j
- (i
-' 1))
<= ((
len D)
- (i
-' 1)) by
XREAL_1: 9;
then
A6: ((j
-' i)
+ 1)
<= (
len (D
/^ (i
-' 1))) by
A3,
A4,
A5,
XREAL_1: 233;
(
mid (D,i,j))
= ((D
/^ (i
-' 1))
| ((j
-' i)
+ 1)) by
A3,
FINSEQ_6:def 3
.= (D1
| (
Seg k)) by
FINSEQ_1:def 15;
then (
len (
mid (D,i,j)))
= ((j
-' i)
+ 1) by
A6,
FINSEQ_1: 17;
hence thesis by
A3,
XREAL_1: 233;
end;
theorem ::
INTEGRA1:36
Th34: i
in (
dom D) & j
in (
dom D) & i
<= j implies ex B be non
empty
closed_interval
Subset of
REAL st (
lower_bound B)
= ((
mid (D,i,j))
. 1) & (
upper_bound B)
= ((
mid (D,i,j))
. (
len (
mid (D,i,j)))) & (
mid (D,i,j)) is
Division of B
proof
assume that
A1: i
in (
dom D) and
A2: j
in (
dom D) and
A3: i
<= j;
j
in (
Seg (
len D)) by
A2,
FINSEQ_1:def 3;
then j
<= (
len D) by
FINSEQ_1: 1;
then i
<= (
len D) by
A3,
XXREAL_0: 2;
then (i
-' 1)
<= (
len D) by
NAT_D: 44;
then
A4: (
len (D
/^ (i
-' 1)))
= ((
len D)
- (i
-' 1)) by
RFINSEQ:def 1;
reconsider D1 = (D
/^ (i
-' 1)) as
FinSequence of
REAL ;
reconsider k = ((j
-' i)
+ 1) as
Element of
NAT ;
i
in (
Seg (
len D)) by
A1,
FINSEQ_1:def 3;
then 1
<= i by
FINSEQ_1: 1;
then (j
- (i
-' 1))
= (j
- (i
- 1)) by
XREAL_1: 233;
then
A5: (j
- (i
-' 1))
= ((j
- i)
+ 1);
j
in (
Seg (
len D)) by
A2,
FINSEQ_1:def 3;
then j
<= (
len D) by
FINSEQ_1: 1;
then (j
- (i
-' 1))
<= ((
len D)
- (i
-' 1)) by
XREAL_1: 9;
then
A6: ((j
-' i)
+ 1)
<= (
len (D
/^ (i
-' 1))) by
A3,
A4,
A5,
XREAL_1: 233;
A7: (
mid (D,i,j))
= ((D
/^ (i
-' 1))
| ((j
-' i)
+ 1)) by
A3,
FINSEQ_6:def 3
.= (D1
| (
Seg k)) by
FINSEQ_1:def 15;
then
0
< (
len (
mid (D,i,j))) by
A6,
FINSEQ_1: 17;
then
reconsider M = (
mid (D,i,j)) as non
empty
increasing
FinSequence of
REAL by
A2,
A3,
Th33;
((j
-' i)
+ 1)
>= (
0
+ 1) by
XREAL_1: 6;
then
A8: 1
<= (
len M) by
A6,
A7,
FINSEQ_1: 17;
then (
len M)
in (
Seg (
len M)) by
FINSEQ_1: 1;
then
A9: (
len M)
in (
dom M) by
FINSEQ_1:def 3;
1
in (
Seg (
len M)) by
A8,
FINSEQ_1: 1;
then
A10: 1
in (
dom M) by
FINSEQ_1:def 3;
then (M
. 1)
<= (M
. (
len M)) by
A8,
A9,
SEQ_4: 137;
then
reconsider B =
[.(M
. 1), (M
. (
len M)).] as non
empty
closed_interval
Subset of
REAL by
MEASURE5: 14;
A11: B
=
[.(
lower_bound B), (
upper_bound B).] by
Th2;
then
A12: (
lower_bound B)
= (M
. 1) by
Th3;
A13: (M
. (
len M))
= (
upper_bound B) by
A11,
Th3;
for x be
Element of
REAL st x
in (
rng M) holds x
in B
proof
let x be
Element of
REAL ;
assume x
in (
rng M);
then
consider i such that
A14: i
in (
dom M) and
A15: x
= (M
. i) by
PARTFUN1: 3;
A16: i
in (
Seg (
len M)) by
A14,
FINSEQ_1:def 3;
then i
<= (
len M) by
FINSEQ_1: 1;
then
A17: (M
. i)
<= (M
. (
len M)) by
A9,
A14,
SEQ_4: 137;
1
<= i by
A16,
FINSEQ_1: 1;
then (M
. 1)
<= (M
. i) by
A10,
A14,
SEQ_4: 137;
then (M
. i)
in { a : (M
. 1)
<= a & a
<= (M
. (
len M)) } by
A17;
hence thesis by
A15,
RCOMP_1:def 1;
end;
then (
rng M)
c= B;
then M is
Division of B by
A13,
Def1;
hence thesis by
A12,
A13;
end;
theorem ::
INTEGRA1:37
Th35: i
in (
dom D) & j
in (
dom D) & i
<= j & (D
. i)
>= (
lower_bound B) & (D
. j)
= (
upper_bound B) implies (
mid (D,i,j)) is
Division of B
proof
assume that
A1: i
in (
dom D) and
A2: j
in (
dom D) and
A3: i
<= j and
A4: (D
. i)
>= (
lower_bound B) and
A5: (D
. j)
= (
upper_bound B);
A6: ((((j
- i)
+ 1)
+ i)
- 1)
= j;
i
in (
Seg (
len D)) by
A1,
FINSEQ_1:def 3;
then
A7: 1
<= i by
FINSEQ_1: 1;
0
<= (j
- i) by
A3,
XREAL_1: 48;
then
A8: (
0
+ 1)
<= ((j
- i)
+ 1) by
XREAL_1: 6;
j
in (
Seg (
len D)) by
A2,
FINSEQ_1:def 3;
then
A9: j
<= (
len D) by
FINSEQ_1: 1;
consider A1 be non
empty
closed_interval
Subset of
REAL such that
A10: (
lower_bound A1)
= ((
mid (D,i,j))
. 1) and
A11: (
upper_bound A1)
= ((
mid (D,i,j))
. (
len (
mid (D,i,j)))) and
A12: (
mid (D,i,j)) is
Division of A1 by
A1,
A2,
A3,
Th34;
A13: (
len (
mid (D,i,j)))
= ((j
- i)
+ 1) by
A1,
A2,
A3,
Lm1;
A14: ((1
+ i)
- 1)
= i;
for x be
Element of
REAL st x
in A1 holds x
in B
proof
let x be
Element of
REAL ;
assume x
in A1;
then x
in
[.(
lower_bound A1), (
upper_bound A1).] by
Th2;
then x
in { a : (
lower_bound A1)
<= a & a
<= (
upper_bound A1) } by
RCOMP_1:def 1;
then
A15: ex a st x
= a & (
lower_bound A1)
<= a & a
<= (
upper_bound A1);
then (D
. i)
<= x by
A3,
A10,
A7,
A9,
A8,
A14,
FINSEQ_6: 122;
then
A16: (
lower_bound B)
<= x by
A4,
XXREAL_0: 2;
x
<= (
upper_bound B) by
A3,
A5,
A11,
A13,
A7,
A9,
A8,
A6,
A15,
FINSEQ_6: 122;
then x
in { a : (
lower_bound B)
<= a & a
<= (
upper_bound B) } by
A16;
then x
in
[.(
lower_bound B), (
upper_bound B).] by
RCOMP_1:def 1;
hence thesis by
Th2;
end;
then
A17: A1
c= B;
(
rng (
mid (D,i,j)))
c= A1 by
A12,
Def1;
then
A18: (
rng (
mid (D,i,j)))
c= B by
A17;
((
mid (D,i,j))
. (
len (
mid (D,i,j))))
= (D
. j) by
A3,
A13,
A7,
A9,
A8,
A6,
FINSEQ_6: 122;
hence thesis by
A5,
A12,
A18,
Def1;
end;
definition
let p be
FinSequence of
REAL ;
::
INTEGRA1:def20
func
PartSums (p) ->
FinSequence of
REAL means
:
Def19: (
len it )
= (
len p) & for i be
Nat st i
in (
dom p) holds (it
. i)
= (
Sum (p
| i));
existence
proof
deffunc
F(
Nat) = (
In ((
Sum (p
| $1)),
REAL ));
consider IT be
FinSequence of
REAL such that
A1: (
len IT)
= (
len p) & for i be
Nat st i
in (
dom IT) holds (IT
. i)
=
F(i) from
FINSEQ_2:sch 1;
take IT;
thus (
len IT)
= (
len p) by
A1;
let i be
Nat;
assume i
in (
dom p);
then i
in (
dom IT) by
A1,
FINSEQ_3: 29;
then (IT
. i)
=
F(i) by
A1;
hence thesis;
end;
uniqueness
proof
let p1,p2 be
FinSequence of
REAL such that
A2: (
len p1)
= (
len p) and
A3: for i be
Nat st i
in (
dom p) holds (p1
. i)
= (
Sum (p
| i)) and
A4: (
len p2)
= (
len p) and
A5: for i be
Nat st i
in (
dom p) holds (p2
. i)
= (
Sum (p
| i));
for i be
Nat st 1
<= i & i
<= (
len p1) holds (p1
. i)
= (p2
. i)
proof
let i be
Nat;
assume that
A6: 1
<= i and
A7: i
<= (
len p1);
A8: i
in (
dom p) by
A2,
A6,
A7,
FINSEQ_3: 25;
then (p1
. i)
= (
Sum (p
| i)) by
A3;
hence thesis by
A5,
A8;
end;
hence thesis by
A2,
A4,
FINSEQ_1: 14;
end;
end
theorem ::
INTEGRA1:38
Th36: D1
<= D2 & (f
| A) is
bounded_above implies for i be non
zero
Element of
NAT holds (i
in (
dom D1) implies (
Sum ((
upper_volume (f,D1))
| i))
>= (
Sum ((
upper_volume (f,D2))
| (
indx (D2,D1,i)))))
proof
assume that
A1: D1
<= D2 and
A2: (f
| A) is
bounded_above;
for i be non
zero
Nat holds i
in (
dom D1) implies (
Sum ((
upper_volume (f,D1))
| i))
>= (
Sum ((
upper_volume (f,D2))
| (
indx (D2,D1,i))))
proof
defpred
P[
Nat] means $1
in (
dom D1) implies (
Sum ((
upper_volume (f,D1))
| $1))
>= (
Sum ((
upper_volume (f,D2))
| (
indx (D2,D1,$1))));
A3:
P[1]
proof
reconsider g = (f
| (
divset (D1,1))) as
PartFunc of (
divset (D1,1)),
REAL by
PARTFUN1: 10;
set B = (
divset (D1,1));
set DD1 = (
mid (D1,1,1));
A4: (
dom g)
= ((
dom f)
/\ (
divset (D1,1))) by
RELAT_1: 61;
assume
A5: 1
in (
dom D1);
then
A6: (D1
. 1)
= (
upper_bound B) by
Def3;
then
A7: (D2
. (
indx (D2,D1,1)))
= (
upper_bound B) by
A1,
A5,
Def18;
(D1
. 1)
>= (
lower_bound B) by
A6,
SEQ_4: 11;
then
reconsider DD1 as
Division of B by
A5,
A6,
Th35;
1
in (
Seg (
len D1)) by
A5,
FINSEQ_1:def 3;
then
A8: 1
<= (
len D1) by
FINSEQ_1: 1;
then
A9: (
len (
mid (D1,1,1)))
= ((1
-' 1)
+ 1) by
FINSEQ_6: 118;
A10: (
len (
upper_volume (g,DD1)))
= (
len DD1) by
Def5
.= 1 by
A9,
XREAL_1: 235;
A11: (
len (
mid (D1,1,1)))
= 1 by
A9,
XREAL_1: 235;
then
A12: (
len (
mid (D1,1,1)))
= (
len (D1
| 1));
for k be
Nat st 1
<= k & k
<= (
len (
mid (D1,1,1))) holds ((
mid (D1,1,1))
. k)
= ((D1
| 1)
. k)
proof
let k be
Nat;
assume that
A13: 1
<= k and
A14: k
<= (
len (
mid (D1,1,1)));
k
in (
Seg (
len (D1
| 1))) by
A12,
A13,
A14,
FINSEQ_1: 1;
then k
in (
dom (D1
| 1)) by
FINSEQ_1:def 3;
then k
in (
dom (D1
| (
Seg 1))) by
FINSEQ_1:def 15;
then
A15: ((D1
| (
Seg 1))
. k)
= (D1
. k) by
FUNCT_1: 47;
A16: k
= 1 by
A11,
A13,
A14,
XXREAL_0: 1;
then ((
mid (D1,1,1))
. k)
= (D1
. ((1
+ 1)
- 1)) by
A8,
FINSEQ_6: 118;
hence thesis by
A16,
A15,
FINSEQ_1:def 15;
end;
then
A17: (
mid (D1,1,1))
= (D1
| 1) by
A12,
FINSEQ_1: 14;
A18: for i be
Nat st 1
<= i & i
<= (
len (
upper_volume (g,DD1))) holds ((
upper_volume (g,DD1))
. i)
= (((
upper_volume (f,D1))
| 1)
. i)
proof
let i be
Nat;
assume that
A19: 1
<= i and
A20: i
<= (
len (
upper_volume (g,DD1)));
A21: 1
in (
Seg 1) by
FINSEQ_1: 3;
(
dom (D1
| (
Seg 1)))
= ((
dom D1)
/\ (
Seg 1)) by
RELAT_1: 61;
then
A22: 1
in (
dom (D1
| (
Seg 1))) by
A5,
A21,
XBOOLE_0:def 4;
(
dom (
upper_volume (f,D1)))
= (
Seg (
len (
upper_volume (f,D1)))) by
FINSEQ_1:def 3
.= (
Seg (
len D1)) by
Def5;
then
A23: (
dom ((
upper_volume (f,D1))
| (
Seg 1)))
= ((
Seg (
len D1))
/\ (
Seg 1)) by
RELAT_1: 61
.= (
Seg 1) by
A8,
FINSEQ_1: 7;
(
len DD1)
= 1 by
A9,
XREAL_1: 235;
then
A24: 1
in (
dom DD1) by
A21,
FINSEQ_1:def 3;
A25: (((
upper_volume (f,D1))
| 1)
. i)
= (((
upper_volume (f,D1))
| (
Seg 1))
. i) by
FINSEQ_1:def 15
.= (((
upper_volume (f,D1))
| (
Seg 1))
. 1) by
A10,
A19,
A20,
XXREAL_0: 1
.= ((
upper_volume (f,D1))
. 1) by
A23,
FINSEQ_1: 3,
FUNCT_1: 47
.= ((
upper_bound (
rng (f
| (
divset (D1,1)))))
* (
vol (
divset (D1,1)))) by
A5,
Def5;
A26: (
divset (D1,1))
=
[.(
lower_bound (
divset (D1,1))), (
upper_bound (
divset (D1,1))).] by
Th2
.=
[.(
lower_bound A), (
upper_bound (
divset (D1,1))).] by
A5,
Def3
.=
[.(
lower_bound A), (D1
. 1).] by
A5,
Def3;
A27: ((
upper_volume (g,DD1))
. i)
= ((
upper_volume (g,DD1))
. 1) by
A10,
A19,
A20,
XXREAL_0: 1
.= ((
upper_bound (
rng (g
| (
divset (DD1,1)))))
* (
vol (
divset (DD1,1)))) by
A24,
Def5;
(
divset (DD1,1))
=
[.(
lower_bound (
divset (DD1,1))), (
upper_bound (
divset (DD1,1))).] by
Th2
.=
[.(
lower_bound B), (
upper_bound (
divset (DD1,1))).] by
A24,
Def3
.=
[.(
lower_bound B), (DD1
. 1).] by
A24,
Def3
.=
[.(
lower_bound A), ((D1
| 1)
. 1).] by
A5,
A17,
Def3
.=
[.(
lower_bound A), ((D1
| (
Seg 1))
. 1).] by
FINSEQ_1:def 15
.=
[.(
lower_bound A), (D1
. 1).] by
A22,
FUNCT_1: 47;
hence thesis by
A27,
A26,
A25;
end;
A28: (g
| (
divset (D1,1))) is
bounded_above
proof
consider a be
Real such that
A29: for x be
object st x
in (A
/\ (
dom f)) holds (f
. x)
<= a by
A2,
RFUNCT_1: 70;
for x be
object st x
in ((
divset (D1,1))
/\ (
dom g)) holds (g
. x)
<= a
proof
let x be
object;
A30: (
dom g)
c= (
dom f) by
RELAT_1: 60;
assume x
in ((
divset (D1,1))
/\ (
dom g));
then
A31: x
in (
dom g) by
XBOOLE_0:def 4;
A32: (A
/\ (
dom f))
= (
dom f) by
XBOOLE_1: 28;
then x
in (A
/\ (
dom f)) by
A31,
A30;
then
reconsider x as
Element of A;
(f
. x)
<= a by
A29,
A31,
A32,
A30;
hence thesis by
A31,
FUNCT_1: 47;
end;
hence thesis by
RFUNCT_1: 70;
end;
A33: (
rng D2)
c= A by
Def1;
A34: (
indx (D2,D1,1))
in (
dom D2) by
A1,
A5,
Def18;
then
A35: (
indx (D2,D1,1))
in (
Seg (
len D2)) by
FINSEQ_1:def 3;
then
A36: 1
<= (
indx (D2,D1,1)) by
FINSEQ_1: 1;
A37: (
indx (D2,D1,1))
<= (
len D2) by
A35,
FINSEQ_1: 1;
then 1
<= (
len D2) by
A36,
XXREAL_0: 2;
then 1
in (
Seg (
len D2)) by
FINSEQ_1: 1;
then
A38: 1
in (
dom D2) by
FINSEQ_1:def 3;
then (D2
. 1)
in (
rng D2) by
FUNCT_1:def 3;
then (D2
. 1)
in A by
A33;
then (D2
. 1)
in
[.(
lower_bound A), (
upper_bound A).] by
Th2;
then (D2
. 1)
in { a : (
lower_bound A)
<= a & a
<= (
upper_bound A) } by
RCOMP_1:def 1;
then ex a st (D2
. 1)
= a & (
lower_bound A)
<= a & a
<= (
upper_bound A);
then (D2
. 1)
>= (
lower_bound B) by
A5,
Def3;
then
reconsider DD2 = (
mid (D2,1,(
indx (D2,D1,1)))) as
Division of B by
A34,
A36,
A38,
A7,
Th35;
(
indx (D2,D1,1))
in (
dom D2) by
A1,
A5,
Def18;
then
A39: (
indx (D2,D1,1))
in (
Seg (
len D2)) by
FINSEQ_1:def 3;
then
A40: 1
<= (
indx (D2,D1,1)) by
FINSEQ_1: 1;
A41: (
indx (D2,D1,1))
<= (
len D2) by
A39,
FINSEQ_1: 1;
then
A42: 1
<= (
len D2) by
A40,
XXREAL_0: 2;
then (
len (
mid (D2,1,(
indx (D2,D1,1)))))
= (((
indx (D2,D1,1))
-' 1)
+ 1) by
A40,
A41,
FINSEQ_6: 118;
then
A43: (
len (
mid (D2,1,(
indx (D2,D1,1)))))
= (((
indx (D2,D1,1))
- 1)
+ 1) by
A40,
XREAL_1: 233;
then
A44: (
len (
mid (D2,1,(
indx (D2,D1,1)))))
= (
len (D2
| (
indx (D2,D1,1)))) by
A41,
FINSEQ_1: 59;
A45: for k be
Nat st 1
<= k & k
<= (
len (
mid (D2,1,(
indx (D2,D1,1))))) holds ((
mid (D2,1,(
indx (D2,D1,1))))
. k)
= ((D2
| (
indx (D2,D1,1)))
. k)
proof
let k be
Nat;
assume that
A46: 1
<= k and
A47: k
<= (
len (
mid (D2,1,(
indx (D2,D1,1)))));
k
in (
Seg (
len (D2
| (
indx (D2,D1,1))))) by
A44,
A46,
A47,
FINSEQ_1: 1;
then k
in (
dom (D2
| (
indx (D2,D1,1)))) by
FINSEQ_1:def 3;
then k
in (
dom (D2
| (
Seg (
indx (D2,D1,1))))) by
FINSEQ_1:def 15;
then
A48: ((D2
| (
Seg (
indx (D2,D1,1))))
. k)
= (D2
. k) by
FUNCT_1: 47;
((
mid (D2,1,(
indx (D2,D1,1))))
. k)
= (D2
. ((k
+ 1)
-' 1)) by
A40,
A41,
A42,
A46,
A47,
FINSEQ_6: 118;
then ((
mid (D2,1,(
indx (D2,D1,1))))
. k)
= (D2
. ((k
+ 1)
- 1)) by
NAT_1: 11,
XREAL_1: 233;
hence thesis by
A48,
FINSEQ_1:def 15;
end;
then
A49: (
mid (D2,1,(
indx (D2,D1,1))))
= (D2
| (
indx (D2,D1,1))) by
A44,
FINSEQ_1: 14;
A50: for i be
Nat st 1
<= i & i
<= (
len (
upper_volume (g,DD2))) holds ((
upper_volume (g,DD2))
. i)
= (((
upper_volume (f,D2))
| (
indx (D2,D1,1)))
. i)
proof
let i be
Nat;
assume that
A51: 1
<= i and
A52: i
<= (
len (
upper_volume (g,DD2)));
A53: i
<= (
len DD2) by
A52,
Def5;
then
A54: i
in (
Seg (
len DD2)) by
A51,
FINSEQ_1: 1;
then
A55: i
in (
dom DD2) by
FINSEQ_1:def 3;
(
divset (DD2,i))
= (
divset (D2,i))
proof
(
Seg (
indx (D2,D1,1)))
c= (
Seg (
len D2)) by
A41,
FINSEQ_1: 5;
then i
in (
Seg (
len D2)) by
A43,
A54;
then
A56: i
in (
dom D2) by
FINSEQ_1:def 3;
now
per cases ;
suppose
A57: i
= 1;
then
A58: 1
in (
dom (D2
| (
Seg (
indx (D2,D1,1))))) by
A49,
A55,
FINSEQ_1:def 15;
then 1
in ((
dom D2)
/\ (
Seg (
indx (D2,D1,1)))) by
RELAT_1: 61;
then
A59: 1
in (
dom D2) by
XBOOLE_0:def 4;
A60: (
divset (D2,i))
=
[.(
lower_bound (
divset (D2,1))), (
upper_bound (
divset (D2,1))).] by
A57,
Th2
.=
[.(
lower_bound A), (
upper_bound (
divset (D2,1))).] by
A59,
Def3
.=
[.(
lower_bound A), (D2
. 1).] by
A59,
Def3;
(
divset (DD2,i))
=
[.(
lower_bound (
divset (DD2,1))), (
upper_bound (
divset (DD2,1))).] by
A57,
Th2
.=
[.(
lower_bound B), (
upper_bound (
divset (DD2,1))).] by
A55,
A57,
Def3
.=
[.(
lower_bound B), (DD2
. 1).] by
A55,
A57,
Def3
.=
[.(
lower_bound B), ((D2
| (
indx (D2,D1,1)))
. 1).] by
A45,
A53,
A57
.=
[.(
lower_bound B), ((D2
| (
Seg (
indx (D2,D1,1))))
. 1).] by
FINSEQ_1:def 15
.=
[.(
lower_bound B), (D2
. 1).] by
A58,
FUNCT_1: 47
.=
[.(
lower_bound A), (D2
. 1).] by
A5,
Def3;
hence thesis by
A60;
end;
suppose
A61: i
<> 1;
A62: (i
- 1)
in (
dom (D2
| (
Seg (
indx (D2,D1,1)))))
proof
i is non
trivial by
A51,
A61,
NAT_2:def 1;
then
A63: i
>= (1
+ 1) by
NAT_2: 29;
then
A64: 1
<= (i
- 1) by
XREAL_1: 19;
A65: ex j be
Nat st i
= (1
+ j) by
A51,
NAT_1: 10;
A66: (i
- 1)
<= ((
indx (D2,D1,1))
-
0 ) by
A43,
A53,
XREAL_1: 13;
then (i
- 1)
<= (
len D2) by
A37,
XXREAL_0: 2;
then (i
- 1)
in (
Seg (
len D2)) by
A65,
A64,
FINSEQ_1: 1;
then
A67: (i
- 1)
in (
dom D2) by
FINSEQ_1:def 3;
(i
- 1)
>= 1 by
A63,
XREAL_1: 19;
then (i
- 1)
in (
Seg (
indx (D2,D1,1))) by
A65,
A66,
FINSEQ_1: 1;
then (i
- 1)
in ((
dom D2)
/\ (
Seg (
indx (D2,D1,1)))) by
A67,
XBOOLE_0:def 4;
hence thesis by
RELAT_1: 61;
end;
(DD2
. (i
- 1))
= ((D2
| (
indx (D2,D1,1)))
. (i
- 1)) by
A44,
A45,
FINSEQ_1: 14
.= ((D2
| (
Seg (
indx (D2,D1,1))))
. (i
- 1)) by
FINSEQ_1:def 15;
then
A68: (DD2
. (i
- 1))
= (D2
. (i
- 1)) by
A62,
FUNCT_1: 47;
i
<= (
len D2) by
A43,
A37,
A53,
XXREAL_0: 2;
then i
in (
Seg (
len D2)) by
A51,
FINSEQ_1: 1;
then i
in (
dom D2) by
FINSEQ_1:def 3;
then i
in ((
dom D2)
/\ (
Seg (
indx (D2,D1,1)))) by
A43,
A54,
XBOOLE_0:def 4;
then
A69: i
in (
dom (D2
| (
Seg (
indx (D2,D1,1))))) by
RELAT_1: 61;
(DD2
. i)
= ((D2
| (
indx (D2,D1,1)))
. i) by
A44,
A45,
FINSEQ_1: 14
.= ((D2
| (
Seg (
indx (D2,D1,1))))
. i) by
FINSEQ_1:def 15;
then
A70: (DD2
. i)
= (D2
. i) by
A69,
FUNCT_1: 47;
A71: (
divset (D2,i))
=
[.(
lower_bound (
divset (D2,i))), (
upper_bound (
divset (D2,i))).] by
Th2
.=
[.(D2
. (i
- 1)), (
upper_bound (
divset (D2,i))).] by
A56,
A61,
Def3
.=
[.(D2
. (i
- 1)), (D2
. i).] by
A56,
A61,
Def3;
(
divset (DD2,i))
=
[.(
lower_bound (
divset (DD2,i))), (
upper_bound (
divset (DD2,i))).] by
Th2
.=
[.(DD2
. (i
- 1)), (
upper_bound (
divset (DD2,i))).] by
A55,
A61,
Def3
.=
[.(D2
. (i
- 1)), (D2
. i).] by
A55,
A61,
A68,
A70,
Def3;
hence thesis by
A71;
end;
end;
hence thesis;
end;
then
A72: ((
upper_volume (g,DD2))
. i)
= ((
upper_bound (
rng (g
| (
divset (D2,i)))))
* (
vol (
divset (D2,i)))) by
A55,
Def5;
(
Seg (
indx (D2,D1,1)))
c= (
Seg (
len D2)) by
A41,
FINSEQ_1: 5;
then i
in (
Seg (
len D2)) by
A43,
A54;
then
A73: i
in (
dom D2) by
FINSEQ_1:def 3;
A74: i
in (
dom DD2) by
A54,
FINSEQ_1:def 3;
A75:
now
per cases ;
suppose
A76: i
= 1;
then 1
in (
dom (D2
| (
Seg (
indx (D2,D1,1))))) by
A49,
A74,
FINSEQ_1:def 15;
then 1
in ((
dom D2)
/\ (
Seg (
indx (D2,D1,1)))) by
RELAT_1: 61;
then
A77: 1
in (
dom D2) by
XBOOLE_0:def 4;
then
A78: (D2
. 1)
<= (D2
. (
indx (D2,D1,1))) by
A34,
A36,
SEQ_4: 137;
(
lower_bound (
divset (D2,i)))
= (
lower_bound A) by
A76,
A77,
Def3;
then
A79: (
lower_bound (
divset (D2,i)))
= (
lower_bound (
divset (D1,1))) by
A5,
Def3;
(
upper_bound (
divset (D2,i)))
= (D2
. 1) by
A76,
A77,
Def3;
then (
upper_bound (
divset (D2,i)))
<= (D1
. 1) by
A1,
A5,
A78,
Def18;
then
A80: (
upper_bound (
divset (D2,i)))
<= (
upper_bound (
divset (D1,1))) by
A5,
Def3;
(
lower_bound (
divset (D1,1)))
<= (
upper_bound (
divset (D1,1))) by
SEQ_4: 11;
hence (
lower_bound (
divset (D2,i)))
in
[.(
lower_bound (
divset (D1,1))), (
upper_bound (
divset (D1,1))).] by
A79,
XXREAL_1: 1;
(
lower_bound (
divset (D2,i)))
<= (
upper_bound (
divset (D2,i))) by
SEQ_4: 11;
then (
upper_bound (
divset (D2,i)))
in { r : (
lower_bound (
divset (D1,1)))
<= r & r
<= (
upper_bound (
divset (D1,1))) } by
A79,
A80;
hence (
upper_bound (
divset (D2,i)))
in
[.(
lower_bound (
divset (D1,1))), (
upper_bound (
divset (D1,1))).] by
RCOMP_1:def 1;
end;
suppose
A81: i
<> 1;
then i is non
trivial by
A51,
NAT_2:def 1;
then i
>= (1
+ 1) by
NAT_2: 29;
then
A82: 1
<= (i
- 1) by
XREAL_1: 19;
A83: ex j be
Nat st i
= (1
+ j) by
A51,
NAT_1: 10;
A84: (
rng D2)
c= A by
Def1;
A85: (
lower_bound (
divset (D2,i)))
= (D2
. (i
- 1)) by
A73,
A81,
Def3;
A86: (
lower_bound (
divset (D1,1)))
= (
lower_bound A) by
A5,
Def3;
A87: (i
- 1)
<= ((
indx (D2,D1,1))
-
0 ) by
A43,
A53,
XREAL_1: 13;
then (i
- 1)
<= (
len D2) by
A37,
XXREAL_0: 2;
then (i
- 1)
in (
Seg (
len D2)) by
A83,
A82,
FINSEQ_1: 1;
then
A88: (i
- 1)
in (
dom D2) by
FINSEQ_1:def 3;
then (D2
. (i
- 1))
in (
rng D2) by
FUNCT_1:def 3;
then
A89: (
lower_bound (
divset (D2,i)))
>= (
lower_bound (
divset (D1,1))) by
A85,
A86,
A84,
SEQ_4:def 2;
A90: (
upper_bound (
divset (D1,1)))
= (D1
. 1) by
A5,
Def3;
(D2
. (i
- 1))
<= (D2
. (
indx (D2,D1,1))) by
A34,
A87,
A88,
SEQ_4: 137;
then (
lower_bound (
divset (D2,i)))
<= (
upper_bound (
divset (D1,1))) by
A1,
A5,
A85,
A90,
Def18;
then (
lower_bound (
divset (D2,i)))
in { r : (
lower_bound (
divset (D1,1)))
<= r & r
<= (
upper_bound (
divset (D1,1))) } by
A89;
hence (
lower_bound (
divset (D2,i)))
in
[.(
lower_bound (
divset (D1,1))), (
upper_bound (
divset (D1,1))).] by
RCOMP_1:def 1;
A91: (
upper_bound (
divset (D2,i)))
= (D2
. i) by
A73,
A81,
Def3;
(D2
. i)
in (
rng D2) by
A73,
FUNCT_1:def 3;
then
A92: (
upper_bound (
divset (D2,i)))
>= (
lower_bound (
divset (D1,1))) by
A91,
A86,
A84,
SEQ_4:def 2;
(D2
. i)
<= (D2
. (
indx (D2,D1,1))) by
A43,
A34,
A53,
A73,
SEQ_4: 137;
then (
upper_bound (
divset (D2,i)))
<= (
upper_bound (
divset (D1,1))) by
A1,
A5,
A91,
A90,
Def18;
then (
upper_bound (
divset (D2,i)))
in { r : (
lower_bound (
divset (D1,1)))
<= r & r
<= (
upper_bound (
divset (D1,1))) } by
A92;
hence (
upper_bound (
divset (D2,i)))
in
[.(
lower_bound (
divset (D1,1))), (
upper_bound (
divset (D1,1))).] by
RCOMP_1:def 1;
end;
end;
A93: (
divset (D1,1))
=
[.(
lower_bound (
divset (D1,1))), (
upper_bound (
divset (D1,1))).] by
Th2;
A94: (
Seg (
indx (D2,D1,1)))
c= (
Seg (
len D2)) by
A41,
FINSEQ_1: 5;
then i
in (
Seg (
len D2)) by
A43,
A54;
then
A95: i
in (
dom D2) by
FINSEQ_1:def 3;
(
divset (D2,i))
=
[.(
lower_bound (
divset (D2,i))), (
upper_bound (
divset (D2,i))).] by
Th2;
then
A96: (
divset (D2,i))
c= (
divset (D1,1)) by
A93,
A75,
XXREAL_2:def 12;
A97: (
dom ((
upper_volume (f,D2))
| (
Seg (
indx (D2,D1,1)))))
= ((
dom (
upper_volume (f,D2)))
/\ (
Seg (
indx (D2,D1,1)))) by
RELAT_1: 61
.= ((
Seg (
len (
upper_volume (f,D2))))
/\ (
Seg (
indx (D2,D1,1)))) by
FINSEQ_1:def 3
.= ((
Seg (
len D2))
/\ (
Seg (
indx (D2,D1,1)))) by
Def5
.= (
Seg (
indx (D2,D1,1))) by
A94,
XBOOLE_1: 28;
(((
upper_volume (f,D2))
| (
indx (D2,D1,1)))
. i)
= (((
upper_volume (f,D2))
| (
Seg (
indx (D2,D1,1))))
. i) by
FINSEQ_1:def 15
.= ((
upper_volume (f,D2))
. i) by
A43,
A54,
A97,
FUNCT_1: 47
.= ((
upper_bound (
rng (f
| (
divset (D2,i)))))
* (
vol (
divset (D2,i)))) by
A95,
Def5;
hence thesis by
A72,
A96,
FUNCT_1: 51;
end;
(
len (
upper_volume (g,DD1)))
= (
len ((
upper_volume (f,D1))
| 1)) by
A10;
then
A98: (
upper_volume (g,DD1))
= ((
upper_volume (f,D1))
| 1) by
A18,
FINSEQ_1: 14;
A99: (
indx (D2,D1,1))
<= (
len (
upper_volume (f,D2))) by
A41,
Def5;
(
len (
upper_volume (g,DD2)))
= (
indx (D2,D1,1)) by
A43,
Def5;
then
A100: (
len (
upper_volume (g,DD2)))
= (
len ((
upper_volume (f,D2))
| (
indx (D2,D1,1)))) by
A99,
FINSEQ_1: 59;
(
dom g)
= (A
/\ (
divset (D1,1))) by
A4,
FUNCT_2:def 1;
then (
dom g)
= (
divset (D1,1)) by
A5,
Th6,
XBOOLE_1: 28;
then g is
total by
PARTFUN1:def 2;
then (
upper_sum (g,DD1))
>= (
upper_sum (g,DD2)) by
A11,
A28,
Th28;
hence thesis by
A98,
A100,
A50,
FINSEQ_1: 14;
end;
A101: for k be non
zero
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be non
zero
Nat;
assume
A102: k
in (
dom D1) implies (
Sum ((
upper_volume (f,D1))
| k))
>= (
Sum ((
upper_volume (f,D2))
| (
indx (D2,D1,k))));
assume
A103: (k
+ 1)
in (
dom D1);
then
A104: (k
+ 1)
in (
Seg (
len D1)) by
FINSEQ_1:def 3;
then
A105: 1
<= (k
+ 1) by
FINSEQ_1: 1;
A106: (k
+ 1)
<= (
len D1) by
A104,
FINSEQ_1: 1;
now
per cases ;
suppose 1
= (k
+ 1);
hence thesis by
A3,
A103;
end;
suppose
A107: 1
<> (k
+ 1);
set IDK = (
indx (D2,D1,k));
set IDK1 = (
indx (D2,D1,(k
+ 1)));
set K1D2 = ((
upper_volume (f,D2))
| (
indx (D2,D1,(k
+ 1))));
set KD1 = ((
upper_volume (f,D1))
| k);
set K1D1 = ((
upper_volume (f,D1))
| (k
+ 1));
set n = (k
+ 1);
A108: (k
+ 1)
<= (
len (
upper_volume (f,D1))) by
A106,
Def5;
then
A109: (
len K1D1)
= (k
+ 1) by
FINSEQ_1: 59;
then
consider p1,q1 be
FinSequence of
REAL such that
A110: (
len p1)
= k and
A111: (
len q1)
= 1 and
A112: K1D1
= (p1
^ q1) by
FINSEQ_2: 23;
A113: k
<= (k
+ 1) by
NAT_1: 11;
then
A114: k
<= (
len D1) by
A106,
XXREAL_0: 2;
then
A115: k
<= (
len (
upper_volume (f,D1))) by
Def5;
then
A116: (
len p1)
= (
len KD1) by
A110,
FINSEQ_1: 59;
for i be
Nat st 1
<= i & i
<= (
len p1) holds (p1
. i)
= (KD1
. i)
proof
let i be
Nat;
assume that
A117: 1
<= i and
A118: i
<= (
len p1);
A119: i
in (
Seg (
len p1)) by
A117,
A118,
FINSEQ_1: 1;
then
A120: i
in (
dom KD1) by
A116,
FINSEQ_1:def 3;
then
A121: i
in (
dom ((
upper_volume (f,D1))
| (
Seg k))) by
FINSEQ_1:def 15;
k
<= (k
+ 1) by
NAT_1: 11;
then
A122: (
Seg k)
c= (
Seg (k
+ 1)) by
FINSEQ_1: 5;
A123: (
dom K1D1)
= (
Seg (
len K1D1)) by
FINSEQ_1:def 3
.= (
Seg (k
+ 1)) by
A108,
FINSEQ_1: 59;
(
dom KD1)
= (
Seg (
len KD1)) by
FINSEQ_1:def 3
.= (
Seg k) by
A115,
FINSEQ_1: 59;
then i
in (
dom K1D1) by
A120,
A122,
A123;
then
A124: i
in (
dom ((
upper_volume (f,D1))
| (
Seg (k
+ 1)))) by
FINSEQ_1:def 15;
A125: (K1D1
. i)
= (((
upper_volume (f,D1))
| (
Seg (k
+ 1)))
. i) by
FINSEQ_1:def 15
.= ((
upper_volume (f,D1))
. i) by
A124,
FUNCT_1: 47;
A126: (KD1
. i)
= (((
upper_volume (f,D1))
| (
Seg k))
. i) by
FINSEQ_1:def 15
.= ((
upper_volume (f,D1))
. i) by
A121,
FUNCT_1: 47;
i
in (
dom p1) by
A119,
FINSEQ_1:def 3;
hence thesis by
A112,
A126,
A125,
FINSEQ_1:def 7;
end;
then
A127: p1
= KD1 by
A116,
FINSEQ_1: 14;
A128: (
indx (D2,D1,(k
+ 1)))
in (
dom D2) by
A1,
A103,
Def18;
then
A129: (
indx (D2,D1,(k
+ 1)))
in (
Seg (
len D2)) by
FINSEQ_1:def 3;
then
A130: 1
<= (
indx (D2,D1,(k
+ 1))) by
FINSEQ_1: 1;
n is non
trivial by
A107,
NAT_2:def 1;
then n
>= 2 by
NAT_2: 29;
then k
>= ((1
+ 1)
- 1) by
XREAL_1: 20;
then
A131: k
in (
Seg (
len D1)) by
A114,
FINSEQ_1: 1;
then
A132: k
in (
dom D1) by
FINSEQ_1:def 3;
then
A133: (
indx (D2,D1,k))
in (
dom D2) by
A1,
Def18;
A134: (
indx (D2,D1,k))
< (
indx (D2,D1,(k
+ 1)))
proof
k
< (k
+ 1) by
NAT_1: 13;
then
A135: (D1
. k)
< (D1
. (k
+ 1)) by
A103,
A132,
SEQM_3:def 1;
assume (
indx (D2,D1,k))
>= (
indx (D2,D1,(k
+ 1)));
then
A136: (D2
. (
indx (D2,D1,k)))
>= (D2
. (
indx (D2,D1,(k
+ 1)))) by
A133,
A128,
SEQ_4: 137;
(D1
. k)
= (D2
. (
indx (D2,D1,k))) by
A1,
A132,
Def18;
hence contradiction by
A1,
A103,
A136,
A135,
Def18;
end;
A137: (
indx (D2,D1,(k
+ 1)))
>= (
indx (D2,D1,k))
proof
assume (
indx (D2,D1,(k
+ 1)))
< (
indx (D2,D1,k));
then
A138: (D2
. (
indx (D2,D1,(k
+ 1))))
< (D2
. (
indx (D2,D1,k))) by
A133,
A128,
SEQM_3:def 1;
(D1
. (k
+ 1))
= (D2
. (
indx (D2,D1,(k
+ 1)))) by
A1,
A103,
Def18;
then (D1
. (k
+ 1))
< (D1
. k) by
A1,
A132,
A138,
Def18;
hence contradiction by
A103,
A132,
NAT_1: 11,
SEQ_4: 137;
end;
then
consider ID be
Nat such that
A139: (
indx (D2,D1,(k
+ 1)))
= ((
indx (D2,D1,k))
+ ID) by
NAT_1: 10;
reconsider ID as
Element of
NAT by
ORDINAL1:def 12;
A140: (
len (
upper_volume (f,D2)))
= (
len D2) by
Def5;
then
A141: (
indx (D2,D1,(k
+ 1)))
<= (
len (
upper_volume (f,D2))) by
A129,
FINSEQ_1: 1;
then (
len K1D2)
= (IDK
+ (IDK1
- IDK)) by
FINSEQ_1: 59;
then
consider p2,q2 be
FinSequence of
REAL such that
A142: (
len p2)
= IDK and
A143: (
len q2)
= (IDK1
- IDK) and
A144: K1D2
= (p2
^ q2) by
A139,
FINSEQ_2: 23;
(
indx (D2,D1,k))
in (
dom D2) by
A1,
A132,
Def18;
then
A145: (
indx (D2,D1,k))
in (
Seg (
len (
upper_volume (f,D2)))) by
A140,
FINSEQ_1:def 3;
then
A146: 1
<= (
indx (D2,D1,k)) by
FINSEQ_1: 1;
set KD2 = ((
upper_volume (f,D2))
| (
indx (D2,D1,k)));
A147: (
Sum K1D2)
= ((
Sum p2)
+ (
Sum q2)) by
A144,
RVSUM_1: 75;
A148: (
indx (D2,D1,k))
<= (
len (
upper_volume (f,D2))) by
A145,
FINSEQ_1: 1;
then
A149: (
len p2)
= (
len KD2) by
A142,
FINSEQ_1: 59;
for i be
Nat st 1
<= i & i
<= (
len p2) holds (p2
. i)
= (KD2
. i)
proof
let i be
Nat;
assume that
A150: 1
<= i and
A151: i
<= (
len p2);
A152: i
in (
Seg (
len p2)) by
A150,
A151,
FINSEQ_1: 1;
then
A153: i
in (
dom KD2) by
A149,
FINSEQ_1:def 3;
then
A154: i
in (
dom ((
upper_volume (f,D2))
| (
Seg (
indx (D2,D1,k))))) by
FINSEQ_1:def 15;
A155: (
dom K1D2)
= (
Seg (
len K1D2)) by
FINSEQ_1:def 3
.= (
Seg (
indx (D2,D1,(k
+ 1)))) by
A141,
FINSEQ_1: 59;
A156: (
Seg (
indx (D2,D1,k)))
c= (
Seg (
indx (D2,D1,(k
+ 1)))) by
A137,
FINSEQ_1: 5;
(
dom KD2)
= (
Seg (
len KD2)) by
FINSEQ_1:def 3
.= (
Seg (
indx (D2,D1,k))) by
A148,
FINSEQ_1: 59;
then i
in (
dom K1D2) by
A153,
A156,
A155;
then
A157: i
in (
dom ((
upper_volume (f,D2))
| (
Seg (
indx (D2,D1,(k
+ 1)))))) by
FINSEQ_1:def 15;
A158: (K1D2
. i)
= (((
upper_volume (f,D2))
| (
Seg (
indx (D2,D1,(k
+ 1)))))
. i) by
FINSEQ_1:def 15
.= ((
upper_volume (f,D2))
. i) by
A157,
FUNCT_1: 47;
A159: (KD2
. i)
= (((
upper_volume (f,D2))
| (
Seg (
indx (D2,D1,k))))
. i) by
FINSEQ_1:def 15
.= ((
upper_volume (f,D2))
. i) by
A154,
FUNCT_1: 47;
i
in (
dom p2) by
A152,
FINSEQ_1:def 3;
hence thesis by
A144,
A159,
A158,
FINSEQ_1:def 7;
end;
then
A160: p2
= KD2 by
A149,
FINSEQ_1: 14;
A161: (
indx (D2,D1,(k
+ 1)))
<= (
len D2) by
A129,
FINSEQ_1: 1;
A162: ID
= ((
indx (D2,D1,(k
+ 1)))
- (
indx (D2,D1,k))) by
A139;
A163: (
Sum q1)
>= (
Sum q2)
proof
set MD2 = (
mid (D2,((
indx (D2,D1,k))
+ 1),(
indx (D2,D1,(k
+ 1)))));
set MD1 = (
mid (D1,(k
+ 1),(k
+ 1)));
set DD1 = (
divset (D1,(k
+ 1)));
set g = (f
| DD1);
A164: 1
<= ((
indx (D2,D1,k))
+ 1) by
NAT_1: 11;
reconsider g as
PartFunc of DD1,
REAL by
PARTFUN1: 10;
((k
+ 1)
- 1)
= k;
then
A165: (
lower_bound DD1)
= (D1
. k) by
A103,
A107,
Def3;
(D2
. (
indx (D2,D1,(k
+ 1))))
= (D1
. (k
+ 1)) by
A1,
A103,
Def18;
then
A166: (D2
. (
indx (D2,D1,(k
+ 1))))
= (
upper_bound DD1) by
A103,
A107,
Def3;
A167: ((
indx (D2,D1,k))
+ 1)
<= (
indx (D2,D1,(k
+ 1))) by
A134,
NAT_1: 13;
then
A168: ((
indx (D2,D1,k))
+ 1)
<= (
len D2) by
A161,
XXREAL_0: 2;
then ((
indx (D2,D1,k))
+ 1)
in (
Seg (
len D2)) by
A164,
FINSEQ_1: 1;
then
A169: ((
indx (D2,D1,k))
+ 1)
in (
dom D2) by
FINSEQ_1:def 3;
then (D2
. ((
indx (D2,D1,k))
+ 1))
>= (D2
. (
indx (D2,D1,k))) by
A133,
NAT_1: 11,
SEQ_4: 137;
then (D2
. ((
indx (D2,D1,k))
+ 1))
>= (
lower_bound DD1) by
A1,
A132,
A165,
Def18;
then
reconsider MD2 as
Division of DD1 by
A128,
A167,
A169,
A166,
Th35;
A170: (((
indx (D2,D1,(k
+ 1)))
-' ((
indx (D2,D1,k))
+ 1))
+ 1)
= (((
indx (D2,D1,(k
+ 1)))
- ((
indx (D2,D1,k))
+ 1))
+ 1) by
A167,
XREAL_1: 233
.= ((
indx (D2,D1,(k
+ 1)))
- (
indx (D2,D1,k)));
A171: for n be
Nat st 1
<= n & n
<= (
len q2) holds (q2
. n)
= ((
upper_volume (g,MD2))
. n)
proof
A172: (
dom K1D2)
= (
Seg (
len K1D2)) by
FINSEQ_1:def 3
.= (
Seg (
indx (D2,D1,(k
+ 1)))) by
A141,
FINSEQ_1: 59;
then
A173: (
dom K1D2)
c= (
Seg (
len D2)) by
A161,
FINSEQ_1: 5;
then
A174: (
dom K1D2)
c= (
dom D2) by
FINSEQ_1:def 3;
A175: (
len (
mid (D2,((
indx (D2,D1,k))
+ 1),(
indx (D2,D1,(k
+ 1))))))
= ID by
A130,
A161,
A139,
A167,
A168,
A164,
A170,
FINSEQ_6: 118;
let n be
Nat;
assume that
A176: 1
<= n and
A177: n
<= (
len q2);
n
in (
Seg (
len q2)) by
A176,
A177,
FINSEQ_1: 1;
then
A178: n
in (
dom q2) by
FINSEQ_1:def 3;
then
A179: ((
indx (D2,D1,k))
+ n)
in (
dom K1D2) by
A142,
A144,
FINSEQ_1: 28;
then
A180: ((
indx (D2,D1,k))
+ n)
in (
dom ((
upper_volume (f,D2))
| (
Seg (
indx (D2,D1,(k
+ 1)))))) by
FINSEQ_1:def 15;
A181: (q2
. n)
= (K1D2
. ((
indx (D2,D1,k))
+ n)) by
A142,
A144,
A178,
FINSEQ_1:def 7
.= (((
upper_volume (f,D2))
| (
Seg (
indx (D2,D1,(k
+ 1)))))
. ((
indx (D2,D1,k))
+ n)) by
FINSEQ_1:def 15
.= ((
upper_volume (f,D2))
. ((
indx (D2,D1,k))
+ n)) by
A180,
FUNCT_1: 47
.= ((
upper_bound (
rng (f
| (
divset (D2,((
indx (D2,D1,k))
+ n))))))
* (
vol (
divset (D2,((
indx (D2,D1,k))
+ n))))) by
A179,
A174,
Def5;
((
indx (D2,D1,k))
+ n)
in (
Seg (
len D2)) by
A179,
A173;
then
A182: ((
indx (D2,D1,k))
+ n)
in (
dom D2) by
FINSEQ_1:def 3;
((
indx (D2,D1,k))
+ n)
<= (
indx (D2,D1,(k
+ 1))) by
A172,
A179,
FINSEQ_1: 1;
then
A183: n
<= ID by
A162,
XREAL_1: 19;
then n
in (
Seg ID) by
A176,
FINSEQ_1: 1;
then
A184: n
in (
dom MD2) by
A175,
FINSEQ_1:def 3;
n
in (
Seg (
len (
mid (D2,((
indx (D2,D1,k))
+ 1),(
indx (D2,D1,(k
+ 1))))))) by
A176,
A183,
A175,
FINSEQ_1: 1;
then
A185: n
in (
dom (
mid (D2,((
indx (D2,D1,k))
+ 1),(
indx (D2,D1,(k
+ 1)))))) by
FINSEQ_1:def 3;
A186: 1
<= ((
indx (D2,D1,k))
+ n) by
A172,
A179,
FINSEQ_1: 1;
A187: (
divset (MD2,n))
= (
divset (D2,((
indx (D2,D1,k))
+ n))) & (
divset (D2,((
indx (D2,D1,k))
+ n)))
c= (
divset (D1,(k
+ 1)))
proof
now
per cases ;
suppose
A188: n
= 1;
then
A189: ((
indx (D2,D1,k))
+ 1)
<= (
len D2) by
A179,
A173,
FINSEQ_1: 1;
A190: 1
<= ((
indx (D2,D1,k))
+ 1) by
A172,
A179,
A188,
FINSEQ_1: 1;
A191: (
upper_bound (
divset (MD2,1)))
= ((
mid (D2,((
indx (D2,D1,k))
+ 1),(
indx (D2,D1,(k
+ 1)))))
. 1) by
A184,
A188,
Def3
.= (D2
. (1
+ (
indx (D2,D1,k)))) by
A130,
A161,
A190,
A189,
FINSEQ_6: 118;
A192: ((
indx (D2,D1,k))
+ 1)
<> 1 by
A146,
NAT_1: 13;
A193: ((k
+ 1)
- 1)
= k;
A194: (
lower_bound (
divset (MD2,1)))
= (
lower_bound (
divset (D1,(k
+ 1)))) by
A184,
A188,
Def3
.= (D1
. k) by
A103,
A107,
A193,
Def3;
A195: (
divset (D2,((
indx (D2,D1,k))
+ n)))
=
[.(
lower_bound (
divset (D2,((
indx (D2,D1,k))
+ 1)))), (
upper_bound (
divset (D2,((
indx (D2,D1,k))
+ 1)))).] by
A188,
Th2
.=
[.(D2
. (((
indx (D2,D1,k))
+ 1)
- 1)), (
upper_bound (
divset (D2,((
indx (D2,D1,k))
+ 1)))).] by
A169,
A192,
Def3
.=
[.(D2
. (
indx (D2,D1,k))), (D2
. ((
indx (D2,D1,k))
+ 1)).] by
A169,
A192,
Def3
.=
[.(D1
. k), (D2
. ((
indx (D2,D1,k))
+ 1)).] by
A1,
A132,
Def18;
hence (
divset (MD2,n))
= (
divset (D2,((
indx (D2,D1,k))
+ n))) by
A188,
A194,
A191,
Th2;
(
divset (MD2,n))
=
[.(D1
. k), (D2
. ((
indx (D2,D1,k))
+ 1)).] by
A188,
A194,
A191,
Th2;
hence thesis by
A184,
A195,
Th6;
end;
suppose
A196: n
<> 1;
A197: ((
indx (D2,D1,k))
+ n)
<> 1
proof
assume ((
indx (D2,D1,k))
+ n)
= 1;
then (
indx (D2,D1,k))
= (1
- n);
then (n
+ 1)
<= 1 by
A146,
XREAL_1: 19;
then n
<= (1
- 1) by
XREAL_1: 19;
hence contradiction by
A176,
NAT_1: 3;
end;
A198: (
divset (D2,((
indx (D2,D1,k))
+ n)))
=
[.(
lower_bound (
divset (D2,((
indx (D2,D1,k))
+ n)))), (
upper_bound (
divset (D2,((
indx (D2,D1,k))
+ n)))).] by
Th2
.=
[.(D2
. (((
indx (D2,D1,k))
+ n)
- 1)), (
upper_bound (
divset (D2,((
indx (D2,D1,k))
+ n)))).] by
A182,
A197,
Def3
.=
[.(D2
. (((
indx (D2,D1,k))
+ n)
- 1)), (D2
. ((
indx (D2,D1,k))
+ n)).] by
A182,
A197,
Def3;
n
<= (n
+ 1) by
NAT_1: 12;
then (n
- 1)
<= n by
XREAL_1: 20;
then
A199: (n
- 1)
<= (
len MD2) by
A183,
A175,
XXREAL_0: 2;
consider n1 be
Nat such that
A200: n
= (1
+ n1) by
A176,
NAT_1: 10;
n is non
trivial by
A176,
A196,
NAT_2:def 1;
then n
>= (1
+ 1) by
NAT_2: 29;
then
A201: 1
<= (n
- 1) by
XREAL_1: 19;
A202: ((
indx (D2,D1,k))
+ 1)
<= (
indx (D2,D1,(k
+ 1))) by
A134,
NAT_1: 13;
reconsider n1 as
Element of
NAT by
ORDINAL1:def 12;
A203: ((n1
+ ((
indx (D2,D1,k))
+ 1))
-' 1)
= (((
indx (D2,D1,k))
+ n)
- 1) by
A186,
A200,
XREAL_1: 233;
A204: ((n
+ ((
indx (D2,D1,k))
+ 1))
-' 1)
= (((n
+ (
indx (D2,D1,k)))
+ 1)
- 1) by
NAT_1: 11,
XREAL_1: 233
.= ((
indx (D2,D1,k))
+ n);
A205: (
lower_bound (
divset (MD2,n)))
= (MD2
. (n
- 1)) by
A184,
A196,
Def3
.= (D2
. (((
indx (D2,D1,k))
+ n)
- 1)) by
A130,
A161,
A168,
A164,
A202,
A200,
A203,
A201,
A199,
FINSEQ_6: 118;
A206: (
upper_bound (
divset (MD2,n)))
= (MD2
. n) by
A184,
A196,
Def3
.= (D2
. ((
indx (D2,D1,k))
+ n)) by
A130,
A161,
A168,
A164,
A176,
A183,
A175,
A202,
A204,
FINSEQ_6: 118;
hence (
divset (MD2,n))
= (
divset (D2,((
indx (D2,D1,k))
+ n))) by
A205,
A198,
Th2;
(
divset (MD2,n))
=
[.(D2
. (((
indx (D2,D1,k))
+ n)
- 1)), (D2
. ((
indx (D2,D1,k))
+ n)).] by
A205,
A206,
Th2;
hence thesis by
A184,
A198,
Th6;
end;
end;
hence thesis;
end;
then (g
| (
divset (MD2,n)))
= (f
| (
divset (D2,((
indx (D2,D1,k))
+ n)))) by
FUNCT_1: 51;
hence thesis by
A185,
A181,
A187,
Def5;
end;
((k
+ 1)
- 1)
= k;
then
A207: (
lower_bound DD1)
= (D1
. k) by
A103,
A107,
Def3;
(D1
. (k
+ 1))
= (
upper_bound DD1) by
A103,
A107,
Def3;
then
reconsider MD1 as
Division of DD1 by
A103,
A113,
A132,
A207,
Th35,
SEQ_4: 137;
A208: (g
| (
divset (D1,(k
+ 1)))) is
bounded_above
proof
consider a be
Real such that
A209: for x be
object st x
in (A
/\ (
dom f)) holds (f
. x)
<= a by
A2,
RFUNCT_1: 70;
for x be
object st x
in ((
divset (D1,(k
+ 1)))
/\ (
dom g)) holds (g
. x)
<= a
proof
let x be
object;
A210: (
dom g)
c= (
dom f) by
RELAT_1: 60;
assume x
in ((
divset (D1,(k
+ 1)))
/\ (
dom g));
then
A211: x
in (
dom g) by
XBOOLE_0:def 4;
A212: (A
/\ (
dom f))
= (
dom f) by
XBOOLE_1: 28;
then x
in (A
/\ (
dom f)) by
A211,
A210;
then
reconsider x as
Element of A;
(f
. x)
<= a by
A209,
A211,
A212,
A210;
hence thesis by
A211,
FUNCT_1: 47;
end;
hence thesis by
RFUNCT_1: 70;
end;
(
len MD1)
= (((k
+ 1)
-' (k
+ 1))
+ 1) by
A105,
A106,
FINSEQ_6: 118;
then
A213: (
len MD1)
= (((k
+ 1)
- (k
+ 1))
+ 1) by
XREAL_1: 233;
then
A214: (
dom q1)
= (
dom MD1) by
A111,
FINSEQ_3: 29;
A215: for n be
Nat st 1
<= n & n
<= (
len q1) holds (q1
. n)
= ((
upper_volume (g,MD1))
. n)
proof
(k
+ 1)
in (
Seg (
len K1D1)) by
A109,
FINSEQ_1: 4;
then (k
+ 1)
in (
dom K1D1) by
FINSEQ_1:def 3;
then
A216: (k
+ 1)
in (
dom ((
upper_volume (f,D1))
| (
Seg (k
+ 1)))) by
FINSEQ_1:def 15;
A217: (MD1
. 1)
= (D1
. (k
+ 1)) by
A105,
A106,
FINSEQ_6: 118;
1
in (
Seg (
len MD1)) by
A213,
FINSEQ_1: 3;
then
A218: 1
in (
dom MD1) by
FINSEQ_1:def 3;
(
divset (MD1,1))
=
[.(
lower_bound (
divset (MD1,1))), (
upper_bound (
divset (MD1,1))).] by
Th2;
then
A219: (
divset (MD1,1))
=
[.(
lower_bound DD1), (
upper_bound (
divset (MD1,1))).] by
A218,
Def3
.=
[.(
lower_bound DD1), (D1
. (k
+ 1)).] by
A218,
A217,
Def3;
((k
+ 1)
- 1)
= k;
then
A220: (
lower_bound DD1)
= (D1
. k) by
A103,
A107,
Def3;
let n be
Nat;
assume that
A221: 1
<= n and
A222: n
<= (
len q1);
A223: n
= 1 by
A111,
A221,
A222,
XXREAL_0: 1;
n
in (
Seg (
len q1)) by
A221,
A222,
FINSEQ_1: 1;
then
A224: n
in (
dom q1) by
FINSEQ_1:def 3;
(
upper_bound DD1)
= (D1
. (k
+ 1)) by
A103,
A107,
Def3;
then (
divset (D1,(k
+ 1)))
=
[.(D1
. k), (D1
. (k
+ 1)).] by
A220,
Th2;
then
A225: ((
upper_volume (g,MD1))
. n)
= ((
upper_bound (
rng (g
| (
divset (D1,(k
+ 1))))))
* (
vol (
divset (D1,(k
+ 1))))) by
A214,
A223,
A224,
A219,
A220,
Def5;
(K1D1
. (k
+ 1))
= (((
upper_volume (f,D1))
| (
Seg (k
+ 1)))
. (k
+ 1)) by
FINSEQ_1:def 15
.= ((
upper_volume (f,D1))
. (k
+ 1)) by
A216,
FUNCT_1: 47;
then (q1
. n)
= ((
upper_volume (f,D1))
. (k
+ 1)) by
A110,
A112,
A223,
A224,
FINSEQ_1:def 7
.= ((
upper_bound (
rng (f
| (
divset (D1,(k
+ 1))))))
* (
vol (
divset (D1,(k
+ 1))))) by
A103,
Def5;
hence thesis by
A225;
end;
(
len q1)
= (
len (
upper_volume (g,MD1))) by
A111,
A213,
Def5;
then
A226: q1
= (
upper_volume (g,MD1)) by
A215,
FINSEQ_1: 14;
(
dom g)
= ((
dom f)
/\ (
divset (D1,(k
+ 1)))) by
RELAT_1: 61;
then (
dom g)
= (A
/\ (
divset (D1,(k
+ 1)))) by
FUNCT_2:def 1;
then (
dom g)
= (
divset (D1,(k
+ 1))) by
A103,
Th6,
XBOOLE_1: 28;
then
A227: g is
total by
PARTFUN1:def 2;
(
len MD1)
= (((k
+ 1)
-' (k
+ 1))
+ 1) by
A105,
A106,
FINSEQ_6: 118;
then (
len MD1)
= (((k
+ 1)
- (k
+ 1))
+ 1) by
XREAL_1: 233;
then
A228: (
upper_sum (g,MD1))
>= (
upper_sum (g,MD2)) by
A208,
A227,
Th28;
(
len (
upper_volume (g,MD2)))
= (
len (
mid (D2,((
indx (D2,D1,k))
+ 1),(
indx (D2,D1,(k
+ 1)))))) by
Def5
.= ((
indx (D2,D1,(k
+ 1)))
- (
indx (D2,D1,k))) by
A130,
A161,
A167,
A168,
A164,
A170,
FINSEQ_6: 118;
hence thesis by
A143,
A226,
A171,
A228,
FINSEQ_1: 14;
end;
(
Sum K1D1)
= ((
Sum p1)
+ (
Sum q1)) by
A112,
RVSUM_1: 75;
then (
Sum q1)
= ((
Sum K1D1)
- (
Sum p1));
then (
Sum K1D1)
>= ((
Sum q2)
+ (
Sum p1)) by
A163,
XREAL_1: 19;
then ((
Sum K1D1)
- (
Sum q2))
>= (
Sum p1) by
XREAL_1: 19;
then ((
Sum K1D1)
- (
Sum q2))
>= (
Sum p2) by
A102,
A131,
A127,
A160,
FINSEQ_1:def 3,
XXREAL_0: 2;
hence thesis by
A147,
XREAL_1: 19;
end;
end;
hence thesis;
end;
thus for k be non
zero
Nat holds
P[k] from
NAT_1:sch 10(
A3,
A101);
end;
hence thesis;
end;
theorem ::
INTEGRA1:39
Th37: D1
<= D2 & (f
| A) is
bounded_below implies for i be non
zero
Element of
NAT holds (i
in (
dom D1) implies (
Sum ((
lower_volume (f,D1))
| i))
<= (
Sum ((
lower_volume (f,D2))
| (
indx (D2,D1,i)))))
proof
assume that
A1: D1
<= D2 and
A2: (f
| A) is
bounded_below;
for i be non
zero
Nat holds i
in (
dom D1) implies (
Sum ((
lower_volume (f,D1))
| i))
<= (
Sum ((
lower_volume (f,D2))
| (
indx (D2,D1,i))))
proof
defpred
P[
Nat] means $1
in (
dom D1) implies (
Sum ((
lower_volume (f,D1))
| $1))
<= (
Sum ((
lower_volume (f,D2))
| (
indx (D2,D1,$1))));
A3:
P[1]
proof
set g = (f
| (
divset (D1,1)));
set B = (
divset (D1,1));
set DD2 = (
mid (D2,1,(
indx (D2,D1,1))));
set DD1 = (
mid (D1,1,1));
reconsider g as
PartFunc of (
divset (D1,1)),
REAL by
PARTFUN1: 10;
A4: (
dom g)
= ((
dom f)
/\ (
divset (D1,1))) by
RELAT_1: 61;
assume
A5: 1
in (
dom D1);
then
A6: (D1
. 1)
= (
upper_bound B) by
Def3;
then
A7: (D2
. (
indx (D2,D1,1)))
= (
upper_bound B) by
A1,
A5,
Def18;
(
lower_bound B)
<= (
upper_bound B) by
SEQ_4: 11;
then
reconsider DD1 as
Division of B by
A5,
A6,
Th35;
1
in (
Seg (
len D1)) by
A5,
FINSEQ_1:def 3;
then
A8: 1
<= (
len D1) by
FINSEQ_1: 1;
then
A9: (
len (
mid (D1,1,1)))
= ((1
-' 1)
+ 1) by
FINSEQ_6: 118;
A10: (
len (
lower_volume (g,DD1)))
= (
len DD1) by
Def6
.= 1 by
A9,
XREAL_1: 235;
A11: (
len (
mid (D1,1,1)))
= 1 by
A9,
XREAL_1: 235;
then
A12: (
len (
mid (D1,1,1)))
= (
len (D1
| 1));
for k be
Nat st 1
<= k & k
<= (
len (
mid (D1,1,1))) holds ((
mid (D1,1,1))
. k)
= ((D1
| 1)
. k)
proof
let k be
Nat;
assume that
A13: 1
<= k and
A14: k
<= (
len (
mid (D1,1,1)));
k
in (
Seg (
len (D1
| 1))) by
A12,
A13,
A14,
FINSEQ_1: 1;
then k
in (
dom (D1
| 1)) by
FINSEQ_1:def 3;
then k
in (
dom (D1
| (
Seg 1))) by
FINSEQ_1:def 15;
then
A15: ((D1
| (
Seg 1))
. k)
= (D1
. k) by
FUNCT_1: 47;
A16: k
= 1 by
A11,
A13,
A14,
XXREAL_0: 1;
then ((
mid (D1,1,1))
. k)
= (D1
. ((1
+ 1)
- 1)) by
A8,
FINSEQ_6: 118;
hence thesis by
A16,
A15,
FINSEQ_1:def 15;
end;
then
A17: (
mid (D1,1,1))
= (D1
| 1) by
A12,
FINSEQ_1: 14;
A18: for i be
Nat st 1
<= i & i
<= (
len (
lower_volume (g,DD1))) holds ((
lower_volume (g,DD1))
. i)
= (((
lower_volume (f,D1))
| 1)
. i)
proof
let i be
Nat;
assume that
A19: 1
<= i and
A20: i
<= (
len (
lower_volume (g,DD1)));
A21: 1
in (
Seg 1) by
FINSEQ_1: 3;
(
dom (D1
| (
Seg 1)))
= ((
dom D1)
/\ (
Seg 1)) by
RELAT_1: 61;
then
A22: 1
in (
dom (D1
| (
Seg 1))) by
A5,
A21,
XBOOLE_0:def 4;
(
dom (
lower_volume (f,D1)))
= (
Seg (
len (
lower_volume (f,D1)))) by
FINSEQ_1:def 3
.= (
Seg (
len D1)) by
Def6;
then
A23: (
dom ((
lower_volume (f,D1))
| (
Seg 1)))
= ((
Seg (
len D1))
/\ (
Seg 1)) by
RELAT_1: 61
.= (
Seg 1) by
A8,
FINSEQ_1: 7;
(
len DD1)
= 1 by
A9,
XREAL_1: 235;
then
A24: 1
in (
dom DD1) by
A21,
FINSEQ_1:def 3;
A25: (((
lower_volume (f,D1))
| 1)
. i)
= (((
lower_volume (f,D1))
| (
Seg 1))
. i) by
FINSEQ_1:def 15
.= (((
lower_volume (f,D1))
| (
Seg 1))
. 1) by
A10,
A19,
A20,
XXREAL_0: 1
.= ((
lower_volume (f,D1))
. 1) by
A23,
FINSEQ_1: 3,
FUNCT_1: 47
.= ((
lower_bound (
rng (f
| (
divset (D1,1)))))
* (
vol (
divset (D1,1)))) by
A5,
Def6;
A26: (
divset (D1,1))
=
[.(
lower_bound (
divset (D1,1))), (
upper_bound (
divset (D1,1))).] by
Th2
.=
[.(
lower_bound A), (
upper_bound (
divset (D1,1))).] by
A5,
Def3
.=
[.(
lower_bound A), (D1
. 1).] by
A5,
Def3;
A27: ((
lower_volume (g,DD1))
. i)
= ((
lower_volume (g,DD1))
. 1) by
A10,
A19,
A20,
XXREAL_0: 1
.= ((
lower_bound (
rng (g
| (
divset (DD1,1)))))
* (
vol (
divset (DD1,1)))) by
A24,
Def6;
(
divset (DD1,1))
=
[.(
lower_bound (
divset (DD1,1))), (
upper_bound (
divset (DD1,1))).] by
Th2
.=
[.(
lower_bound B), (
upper_bound (
divset (DD1,1))).] by
A24,
Def3
.=
[.(
lower_bound B), (DD1
. 1).] by
A24,
Def3
.=
[.(
lower_bound A), ((D1
| 1)
. 1).] by
A5,
A17,
Def3
.=
[.(
lower_bound A), ((D1
| (
Seg 1))
. 1).] by
FINSEQ_1:def 15
.=
[.(
lower_bound A), (D1
. 1).] by
A22,
FUNCT_1: 47;
hence thesis by
A27,
A26,
A25;
end;
A28: (g
| (
divset (D1,1))) is
bounded_below
proof
consider a be
Real such that
A29: for x be
object st x
in (A
/\ (
dom f)) holds a
<= (f
. x) by
A2,
RFUNCT_1: 71;
for x be
object st x
in ((
divset (D1,1))
/\ (
dom g)) holds a
<= (g
. x)
proof
let x be
object;
A30: (
dom g)
c= (
dom f) by
RELAT_1: 60;
assume x
in ((
divset (D1,1))
/\ (
dom g));
then
A31: x
in (
dom g) by
XBOOLE_0:def 4;
A32: (A
/\ (
dom f))
= (
dom f) by
XBOOLE_1: 28;
then
reconsider x as
Element of A by
A31,
A30,
XBOOLE_0:def 4;
a
<= (f
. x) by
A29,
A31,
A32,
A30;
hence thesis by
A31,
FUNCT_1: 47;
end;
hence thesis by
RFUNCT_1: 71;
end;
A33: (
rng D2)
c= A by
Def1;
A34: (
indx (D2,D1,1))
in (
dom D2) by
A1,
A5,
Def18;
then
A35: (
indx (D2,D1,1))
in (
Seg (
len D2)) by
FINSEQ_1:def 3;
then
A36: 1
<= (
indx (D2,D1,1)) by
FINSEQ_1: 1;
A37: (
indx (D2,D1,1))
<= (
len D2) by
A35,
FINSEQ_1: 1;
then 1
<= (
len D2) by
A36,
XXREAL_0: 2;
then 1
in (
Seg (
len D2)) by
FINSEQ_1: 1;
then
A38: 1
in (
dom D2) by
FINSEQ_1:def 3;
then (D2
. 1)
in (
rng D2) by
FUNCT_1:def 3;
then (D2
. 1)
in A by
A33;
then (D2
. 1)
in
[.(
lower_bound A), (
upper_bound A).] by
Th2;
then (D2
. 1)
in { a : (
lower_bound A)
<= a & a
<= (
upper_bound A) } by
RCOMP_1:def 1;
then ex a st (D2
. 1)
= a & (
lower_bound A)
<= a & a
<= (
upper_bound A);
then (D2
. 1)
>= (
lower_bound B) by
A5,
Def3;
then
reconsider DD2 as
Division of B by
A34,
A36,
A38,
A7,
Th35;
(
indx (D2,D1,1))
in (
dom D2) by
A1,
A5,
Def18;
then
A39: (
indx (D2,D1,1))
in (
Seg (
len D2)) by
FINSEQ_1:def 3;
then
A40: 1
<= (
indx (D2,D1,1)) by
FINSEQ_1: 1;
A41: (
indx (D2,D1,1))
<= (
len D2) by
A39,
FINSEQ_1: 1;
then
A42: 1
<= (
len D2) by
A40,
XXREAL_0: 2;
then (
len (
mid (D2,1,(
indx (D2,D1,1)))))
= (((
indx (D2,D1,1))
-' 1)
+ 1) by
A40,
A41,
FINSEQ_6: 118;
then
A43: (
len (
mid (D2,1,(
indx (D2,D1,1)))))
= (((
indx (D2,D1,1))
- 1)
+ 1) by
A40,
XREAL_1: 233;
then
A44: (
len (
mid (D2,1,(
indx (D2,D1,1)))))
= (
len (D2
| (
indx (D2,D1,1)))) by
A41,
FINSEQ_1: 59;
A45: for k be
Nat st 1
<= k & k
<= (
len (
mid (D2,1,(
indx (D2,D1,1))))) holds ((
mid (D2,1,(
indx (D2,D1,1))))
. k)
= ((D2
| (
indx (D2,D1,1)))
. k)
proof
let k be
Nat;
assume that
A46: 1
<= k and
A47: k
<= (
len (
mid (D2,1,(
indx (D2,D1,1)))));
k
in (
Seg (
len (D2
| (
indx (D2,D1,1))))) by
A44,
A46,
A47,
FINSEQ_1: 1;
then k
in (
dom (D2
| (
indx (D2,D1,1)))) by
FINSEQ_1:def 3;
then k
in (
dom (D2
| (
Seg (
indx (D2,D1,1))))) by
FINSEQ_1:def 15;
then
A48: ((D2
| (
Seg (
indx (D2,D1,1))))
. k)
= (D2
. k) by
FUNCT_1: 47;
((
mid (D2,1,(
indx (D2,D1,1))))
. k)
= (D2
. ((k
+ 1)
-' 1)) by
A40,
A41,
A42,
A46,
A47,
FINSEQ_6: 118;
then ((
mid (D2,1,(
indx (D2,D1,1))))
. k)
= (D2
. ((k
+ 1)
- 1)) by
NAT_1: 11,
XREAL_1: 233;
hence thesis by
A48,
FINSEQ_1:def 15;
end;
then
A49: (
mid (D2,1,(
indx (D2,D1,1))))
= (D2
| (
indx (D2,D1,1))) by
A44,
FINSEQ_1: 14;
A50: for i be
Nat st 1
<= i & i
<= (
len (
lower_volume (g,DD2))) holds ((
lower_volume (g,DD2))
. i)
= (((
lower_volume (f,D2))
| (
indx (D2,D1,1)))
. i)
proof
let i be
Nat;
assume that
A51: 1
<= i and
A52: i
<= (
len (
lower_volume (g,DD2)));
A53: i
<= (
len DD2) by
A52,
Def6;
then
A54: i
in (
Seg (
len DD2)) by
A51,
FINSEQ_1: 1;
then
A55: i
in (
dom DD2) by
FINSEQ_1:def 3;
(
divset (DD2,i))
= (
divset (D2,i))
proof
(
Seg (
indx (D2,D1,1)))
c= (
Seg (
len D2)) by
A41,
FINSEQ_1: 5;
then i
in (
Seg (
len D2)) by
A43,
A54;
then
A56: i
in (
dom D2) by
FINSEQ_1:def 3;
now
per cases ;
suppose
A57: i
= 1;
then
A58: 1
in (
dom (D2
| (
Seg (
indx (D2,D1,1))))) by
A49,
A55,
FINSEQ_1:def 15;
then 1
in ((
dom D2)
/\ (
Seg (
indx (D2,D1,1)))) by
RELAT_1: 61;
then
A59: 1
in (
dom D2) by
XBOOLE_0:def 4;
A60: (
divset (D2,i))
=
[.(
lower_bound (
divset (D2,1))), (
upper_bound (
divset (D2,1))).] by
A57,
Th2
.=
[.(
lower_bound A), (
upper_bound (
divset (D2,1))).] by
A59,
Def3
.=
[.(
lower_bound A), (D2
. 1).] by
A59,
Def3;
(
divset (DD2,i))
=
[.(
lower_bound (
divset (DD2,1))), (
upper_bound (
divset (DD2,1))).] by
A57,
Th2
.=
[.(
lower_bound B), (
upper_bound (
divset (DD2,1))).] by
A55,
A57,
Def3
.=
[.(
lower_bound B), (DD2
. 1).] by
A55,
A57,
Def3
.=
[.(
lower_bound B), ((D2
| (
indx (D2,D1,1)))
. 1).] by
A45,
A53,
A57
.=
[.(
lower_bound B), ((D2
| (
Seg (
indx (D2,D1,1))))
. 1).] by
FINSEQ_1:def 15
.=
[.(
lower_bound B), (D2
. 1).] by
A58,
FUNCT_1: 47
.=
[.(
lower_bound A), (D2
. 1).] by
A5,
Def3;
hence thesis by
A60;
end;
suppose
A61: i
<> 1;
A62: (i
- 1)
in (
dom (D2
| (
Seg (
indx (D2,D1,1)))))
proof
i is non
trivial by
A51,
A61,
NAT_2:def 1;
then
A63: i
>= (1
+ 1) by
NAT_2: 29;
then
A64: 1
<= (i
- 1) by
XREAL_1: 19;
A65: ex j be
Nat st i
= (1
+ j) by
A51,
NAT_1: 10;
A66: (i
- 1)
<= ((
indx (D2,D1,1))
-
0 ) by
A43,
A53,
XREAL_1: 13;
then (i
- 1)
<= (
len D2) by
A37,
XXREAL_0: 2;
then (i
- 1)
in (
Seg (
len D2)) by
A65,
A64,
FINSEQ_1: 1;
then
A67: (i
- 1)
in (
dom D2) by
FINSEQ_1:def 3;
(i
- 1)
>= 1 by
A63,
XREAL_1: 19;
then (i
- 1)
in (
Seg (
indx (D2,D1,1))) by
A65,
A66,
FINSEQ_1: 1;
then (i
- 1)
in ((
dom D2)
/\ (
Seg (
indx (D2,D1,1)))) by
A67,
XBOOLE_0:def 4;
hence thesis by
RELAT_1: 61;
end;
(DD2
. (i
- 1))
= ((D2
| (
indx (D2,D1,1)))
. (i
- 1)) by
A44,
A45,
FINSEQ_1: 14
.= ((D2
| (
Seg (
indx (D2,D1,1))))
. (i
- 1)) by
FINSEQ_1:def 15;
then
A68: (DD2
. (i
- 1))
= (D2
. (i
- 1)) by
A62,
FUNCT_1: 47;
i
<= (
len D2) by
A43,
A37,
A53,
XXREAL_0: 2;
then i
in (
Seg (
len D2)) by
A51,
FINSEQ_1: 1;
then i
in (
dom D2) by
FINSEQ_1:def 3;
then i
in ((
dom D2)
/\ (
Seg (
indx (D2,D1,1)))) by
A43,
A54,
XBOOLE_0:def 4;
then
A69: i
in (
dom (D2
| (
Seg (
indx (D2,D1,1))))) by
RELAT_1: 61;
(DD2
. i)
= ((D2
| (
indx (D2,D1,1)))
. i) by
A44,
A45,
FINSEQ_1: 14
.= ((D2
| (
Seg (
indx (D2,D1,1))))
. i) by
FINSEQ_1:def 15;
then
A70: (DD2
. i)
= (D2
. i) by
A69,
FUNCT_1: 47;
A71: (
divset (D2,i))
=
[.(
lower_bound (
divset (D2,i))), (
upper_bound (
divset (D2,i))).] by
Th2
.=
[.(D2
. (i
- 1)), (
upper_bound (
divset (D2,i))).] by
A56,
A61,
Def3
.=
[.(D2
. (i
- 1)), (D2
. i).] by
A56,
A61,
Def3;
(
divset (DD2,i))
=
[.(
lower_bound (
divset (DD2,i))), (
upper_bound (
divset (DD2,i))).] by
Th2
.=
[.(DD2
. (i
- 1)), (
upper_bound (
divset (DD2,i))).] by
A55,
A61,
Def3
.=
[.(D2
. (i
- 1)), (D2
. i).] by
A55,
A61,
A68,
A70,
Def3;
hence thesis by
A71;
end;
end;
hence thesis;
end;
then
A72: ((
lower_volume (g,DD2))
. i)
= ((
lower_bound (
rng (g
| (
divset (D2,i)))))
* (
vol (
divset (D2,i)))) by
A55,
Def6;
(
Seg (
indx (D2,D1,1)))
c= (
Seg (
len D2)) by
A41,
FINSEQ_1: 5;
then i
in (
Seg (
len D2)) by
A43,
A54;
then
A73: i
in (
dom D2) by
FINSEQ_1:def 3;
A74: i
in (
dom DD2) by
A54,
FINSEQ_1:def 3;
A75:
now
per cases ;
suppose
A76: i
= 1;
then 1
in (
dom (D2
| (
Seg (
indx (D2,D1,1))))) by
A49,
A74,
FINSEQ_1:def 15;
then 1
in ((
dom D2)
/\ (
Seg (
indx (D2,D1,1)))) by
RELAT_1: 61;
then
A77: 1
in (
dom D2) by
XBOOLE_0:def 4;
then (D2
. 1)
<= (D2
. (
indx (D2,D1,1))) by
A34,
A36,
SEQ_4: 137;
then
A78: (D2
. 1)
<= (D1
. 1) by
A1,
A5,
Def18;
(
lower_bound (
divset (D2,i)))
= (
lower_bound A) by
A76,
A77,
Def3;
then
A79: (
lower_bound (
divset (D2,i)))
= (
lower_bound (
divset (D1,1))) by
A5,
Def3;
(
upper_bound (
divset (D2,i)))
= (D2
. 1) by
A76,
A77,
Def3;
then
A80: (
upper_bound (
divset (D2,i)))
<= (
upper_bound (
divset (D1,1))) by
A5,
A78,
Def3;
(
lower_bound (
divset (D1,1)))
<= (
upper_bound (
divset (D1,1))) by
SEQ_4: 11;
hence (
lower_bound (
divset (D2,i)))
in
[.(
lower_bound (
divset (D1,1))), (
upper_bound (
divset (D1,1))).] by
A79,
XXREAL_1: 1;
(
lower_bound (
divset (D2,i)))
<= (
upper_bound (
divset (D2,i))) by
SEQ_4: 11;
then (
upper_bound (
divset (D2,i)))
in { r : (
lower_bound (
divset (D1,1)))
<= r & r
<= (
upper_bound (
divset (D1,1))) } by
A79,
A80;
hence (
upper_bound (
divset (D2,i)))
in
[.(
lower_bound (
divset (D1,1))), (
upper_bound (
divset (D1,1))).] by
RCOMP_1:def 1;
end;
suppose
A81: i
<> 1;
then i is non
trivial by
A51,
NAT_2:def 1;
then i
>= (1
+ 1) by
NAT_2: 29;
then
A82: 1
<= (i
- 1) by
XREAL_1: 19;
A83: ex j be
Nat st i
= (1
+ j) by
A51,
NAT_1: 10;
A84: (
rng D2)
c= A by
Def1;
A85: (
lower_bound (
divset (D2,i)))
= (D2
. (i
- 1)) by
A73,
A81,
Def3;
A86: (
lower_bound (
divset (D1,1)))
= (
lower_bound A) by
A5,
Def3;
A87: (i
- 1)
<= ((
indx (D2,D1,1))
-
0 ) by
A43,
A53,
XREAL_1: 13;
then (i
- 1)
<= (
len D2) by
A37,
XXREAL_0: 2;
then (i
- 1)
in (
Seg (
len D2)) by
A83,
A82,
FINSEQ_1: 1;
then
A88: (i
- 1)
in (
dom D2) by
FINSEQ_1:def 3;
then (D2
. (i
- 1))
in (
rng D2) by
FUNCT_1:def 3;
then
A89: (
lower_bound (
divset (D2,i)))
>= (
lower_bound (
divset (D1,1))) by
A85,
A86,
A84,
SEQ_4:def 2;
A90: (
upper_bound (
divset (D1,1)))
= (D1
. 1) by
A5,
Def3;
(D2
. (i
- 1))
<= (D2
. (
indx (D2,D1,1))) by
A34,
A87,
A88,
SEQ_4: 137;
then (
lower_bound (
divset (D2,i)))
<= (
upper_bound (
divset (D1,1))) by
A1,
A5,
A85,
A90,
Def18;
then (
lower_bound (
divset (D2,i)))
in { r : (
lower_bound (
divset (D1,1)))
<= r & r
<= (
upper_bound (
divset (D1,1))) } by
A89;
hence (
lower_bound (
divset (D2,i)))
in
[.(
lower_bound (
divset (D1,1))), (
upper_bound (
divset (D1,1))).] by
RCOMP_1:def 1;
A91: (
upper_bound (
divset (D2,i)))
= (D2
. i) by
A73,
A81,
Def3;
(D2
. i)
in (
rng D2) by
A73,
FUNCT_1:def 3;
then
A92: (
upper_bound (
divset (D2,i)))
>= (
lower_bound (
divset (D1,1))) by
A91,
A86,
A84,
SEQ_4:def 2;
(D2
. i)
<= (D2
. (
indx (D2,D1,1))) by
A43,
A34,
A53,
A73,
SEQ_4: 137;
then (
upper_bound (
divset (D2,i)))
<= (
upper_bound (
divset (D1,1))) by
A1,
A5,
A91,
A90,
Def18;
then (
upper_bound (
divset (D2,i)))
in { r : (
lower_bound (
divset (D1,1)))
<= r & r
<= (
upper_bound (
divset (D1,1))) } by
A92;
hence (
upper_bound (
divset (D2,i)))
in
[.(
lower_bound (
divset (D1,1))), (
upper_bound (
divset (D1,1))).] by
RCOMP_1:def 1;
end;
end;
A93: (
divset (D1,1))
=
[.(
lower_bound (
divset (D1,1))), (
upper_bound (
divset (D1,1))).] by
Th2;
A94: (
Seg (
indx (D2,D1,1)))
c= (
Seg (
len D2)) by
A41,
FINSEQ_1: 5;
then i
in (
Seg (
len D2)) by
A43,
A54;
then
A95: i
in (
dom D2) by
FINSEQ_1:def 3;
(
divset (D2,i))
=
[.(
lower_bound (
divset (D2,i))), (
upper_bound (
divset (D2,i))).] by
Th2;
then
A96: (
divset (D2,i))
c= (
divset (D1,1)) by
A93,
A75,
XXREAL_2:def 12;
A97: (
dom ((
lower_volume (f,D2))
| (
Seg (
indx (D2,D1,1)))))
= ((
dom (
lower_volume (f,D2)))
/\ (
Seg (
indx (D2,D1,1)))) by
RELAT_1: 61
.= ((
Seg (
len (
lower_volume (f,D2))))
/\ (
Seg (
indx (D2,D1,1)))) by
FINSEQ_1:def 3
.= ((
Seg (
len D2))
/\ (
Seg (
indx (D2,D1,1)))) by
Def6
.= (
Seg (
indx (D2,D1,1))) by
A94,
XBOOLE_1: 28;
(((
lower_volume (f,D2))
| (
indx (D2,D1,1)))
. i)
= (((
lower_volume (f,D2))
| (
Seg (
indx (D2,D1,1))))
. i) by
FINSEQ_1:def 15
.= ((
lower_volume (f,D2))
. i) by
A43,
A54,
A97,
FUNCT_1: 47
.= ((
lower_bound (
rng (f
| (
divset (D2,i)))))
* (
vol (
divset (D2,i)))) by
A95,
Def6;
hence thesis by
A72,
A96,
FUNCT_1: 51;
end;
(
len (
lower_volume (g,DD1)))
= (
len ((
lower_volume (f,D1))
| 1)) by
A10;
then
A98: (
lower_volume (g,DD1))
= ((
lower_volume (f,D1))
| 1) by
A18,
FINSEQ_1: 14;
A99: (
indx (D2,D1,1))
<= (
len (
lower_volume (f,D2))) by
A41,
Def6;
(
len (
lower_volume (g,DD2)))
= (
indx (D2,D1,1)) by
A43,
Def6;
then
A100: (
len (
lower_volume (g,DD2)))
= (
len ((
lower_volume (f,D2))
| (
indx (D2,D1,1)))) by
A99,
FINSEQ_1: 59;
(
dom g)
= (A
/\ (
divset (D1,1))) by
A4,
FUNCT_2:def 1;
then (
dom g)
= (
divset (D1,1)) by
A5,
Th6,
XBOOLE_1: 28;
then g is
total by
PARTFUN1:def 2;
then (
lower_sum (g,DD1))
<= (
lower_sum (g,DD2)) by
A11,
A28,
Th29;
hence thesis by
A98,
A100,
A50,
FINSEQ_1: 14;
end;
A101: for k be non
zero
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be non
zero
Nat;
assume
A102: k
in (
dom D1) implies (
Sum ((
lower_volume (f,D1))
| k))
<= (
Sum ((
lower_volume (f,D2))
| (
indx (D2,D1,k))));
assume
A103: (k
+ 1)
in (
dom D1);
then
A104: (k
+ 1)
in (
Seg (
len D1)) by
FINSEQ_1:def 3;
then
A105: 1
<= (k
+ 1) by
FINSEQ_1: 1;
A106: (k
+ 1)
<= (
len D1) by
A104,
FINSEQ_1: 1;
now
per cases ;
suppose 1
= (k
+ 1);
hence thesis by
A3,
A103;
end;
suppose
A107: 1
<> (k
+ 1);
set IDK = (
indx (D2,D1,k));
set IDK1 = (
indx (D2,D1,(k
+ 1)));
set K1D2 = ((
lower_volume (f,D2))
| (
indx (D2,D1,(k
+ 1))));
set KD1 = ((
lower_volume (f,D1))
| k);
set K1D1 = ((
lower_volume (f,D1))
| (k
+ 1));
set n = (k
+ 1);
A108: (k
+ 1)
<= (
len (
lower_volume (f,D1))) by
A106,
Def6;
then
A109: (
len K1D1)
= (k
+ 1) by
FINSEQ_1: 59;
then
consider p1,q1 be
FinSequence of
REAL such that
A110: (
len p1)
= k and
A111: (
len q1)
= 1 and
A112: K1D1
= (p1
^ q1) by
FINSEQ_2: 23;
A113: k
<= (k
+ 1) by
NAT_1: 11;
then
A114: k
<= (
len D1) by
A106,
XXREAL_0: 2;
then
A115: k
<= (
len (
lower_volume (f,D1))) by
Def6;
then
A116: (
len p1)
= (
len KD1) by
A110,
FINSEQ_1: 59;
for i be
Nat st 1
<= i & i
<= (
len p1) holds (p1
. i)
= (KD1
. i)
proof
let i be
Nat;
assume that
A117: 1
<= i and
A118: i
<= (
len p1);
A119: i
in (
Seg (
len p1)) by
A117,
A118,
FINSEQ_1: 1;
then
A120: i
in (
dom KD1) by
A116,
FINSEQ_1:def 3;
then
A121: i
in (
dom ((
lower_volume (f,D1))
| (
Seg k))) by
FINSEQ_1:def 15;
k
<= (k
+ 1) by
NAT_1: 11;
then
A122: (
Seg k)
c= (
Seg (k
+ 1)) by
FINSEQ_1: 5;
A123: (
dom K1D1)
= (
Seg (
len K1D1)) by
FINSEQ_1:def 3
.= (
Seg (k
+ 1)) by
A108,
FINSEQ_1: 59;
(
dom KD1)
= (
Seg (
len KD1)) by
FINSEQ_1:def 3
.= (
Seg k) by
A115,
FINSEQ_1: 59;
then i
in (
dom K1D1) by
A120,
A122,
A123;
then
A124: i
in (
dom ((
lower_volume (f,D1))
| (
Seg (k
+ 1)))) by
FINSEQ_1:def 15;
A125: (K1D1
. i)
= (((
lower_volume (f,D1))
| (
Seg (k
+ 1)))
. i) by
FINSEQ_1:def 15
.= ((
lower_volume (f,D1))
. i) by
A124,
FUNCT_1: 47;
A126: (KD1
. i)
= (((
lower_volume (f,D1))
| (
Seg k))
. i) by
FINSEQ_1:def 15
.= ((
lower_volume (f,D1))
. i) by
A121,
FUNCT_1: 47;
i
in (
dom p1) by
A119,
FINSEQ_1:def 3;
hence thesis by
A112,
A126,
A125,
FINSEQ_1:def 7;
end;
then
A127: p1
= KD1 by
A116,
FINSEQ_1: 14;
A128: (
indx (D2,D1,(k
+ 1)))
in (
dom D2) by
A1,
A103,
Def18;
then
A129: (
indx (D2,D1,(k
+ 1)))
in (
Seg (
len D2)) by
FINSEQ_1:def 3;
then
A130: 1
<= (
indx (D2,D1,(k
+ 1))) by
FINSEQ_1: 1;
n is non
trivial by
A107,
NAT_2:def 1;
then n
>= 2 by
NAT_2: 29;
then k
>= ((1
+ 1)
- 1) by
XREAL_1: 20;
then
A131: k
in (
Seg (
len D1)) by
A114,
FINSEQ_1: 1;
then
A132: k
in (
dom D1) by
FINSEQ_1:def 3;
then
A133: (
indx (D2,D1,k))
in (
dom D2) by
A1,
Def18;
A134: (
indx (D2,D1,k))
< (
indx (D2,D1,(k
+ 1)))
proof
k
< (k
+ 1) by
NAT_1: 13;
then
A135: (D1
. k)
< (D1
. (k
+ 1)) by
A103,
A132,
SEQM_3:def 1;
assume (
indx (D2,D1,k))
>= (
indx (D2,D1,(k
+ 1)));
then
A136: (D2
. (
indx (D2,D1,k)))
>= (D2
. (
indx (D2,D1,(k
+ 1)))) by
A133,
A128,
SEQ_4: 137;
(D1
. k)
= (D2
. (
indx (D2,D1,k))) by
A1,
A132,
Def18;
hence contradiction by
A1,
A103,
A136,
A135,
Def18;
end;
A137: (
indx (D2,D1,(k
+ 1)))
>= (
indx (D2,D1,k))
proof
assume (
indx (D2,D1,(k
+ 1)))
< (
indx (D2,D1,k));
then
A138: (D2
. (
indx (D2,D1,(k
+ 1))))
< (D2
. (
indx (D2,D1,k))) by
A133,
A128,
SEQM_3:def 1;
(D1
. (k
+ 1))
= (D2
. (
indx (D2,D1,(k
+ 1)))) by
A1,
A103,
Def18;
then (D1
. (k
+ 1))
< (D1
. k) by
A1,
A132,
A138,
Def18;
hence contradiction by
A103,
A132,
NAT_1: 11,
SEQ_4: 137;
end;
then
consider ID be
Nat such that
A139: (
indx (D2,D1,(k
+ 1)))
= ((
indx (D2,D1,k))
+ ID) by
NAT_1: 10;
reconsider ID as
Element of
NAT by
ORDINAL1:def 12;
A140: (
len (
lower_volume (f,D2)))
= (
len D2) by
Def6;
then
A141: (
indx (D2,D1,(k
+ 1)))
<= (
len (
lower_volume (f,D2))) by
A129,
FINSEQ_1: 1;
then (
len K1D2)
= (IDK
+ (IDK1
- IDK)) by
FINSEQ_1: 59;
then
consider p2,q2 be
FinSequence of
REAL such that
A142: (
len p2)
= IDK and
A143: (
len q2)
= (IDK1
- IDK) and
A144: K1D2
= (p2
^ q2) by
A139,
FINSEQ_2: 23;
A145: (
indx (D2,D1,(k
+ 1)))
<= (
len D2) by
A129,
FINSEQ_1: 1;
(
indx (D2,D1,k))
in (
dom D2) by
A1,
A132,
Def18;
then
A146: (
indx (D2,D1,k))
in (
Seg (
len D2)) by
FINSEQ_1:def 3;
then
A147: 1
<= (
indx (D2,D1,k)) by
FINSEQ_1: 1;
A148: (
Sum q1)
<= (
Sum q2)
proof
set MD2 = (
mid (D2,((
indx (D2,D1,k))
+ 1),(
indx (D2,D1,(k
+ 1)))));
set MD1 = (
mid (D1,(k
+ 1),(k
+ 1)));
set DD1 = (
divset (D1,(k
+ 1)));
set g = (f
| DD1);
A149: 1
<= ((
indx (D2,D1,k))
+ 1) by
NAT_1: 11;
reconsider g as
PartFunc of DD1,
REAL by
PARTFUN1: 10;
((k
+ 1)
- 1)
= k;
then
A150: (
lower_bound DD1)
= (D1
. k) by
A103,
A107,
Def3;
(
dom g)
= ((
dom f)
/\ (
divset (D1,(k
+ 1)))) by
RELAT_1: 61;
then (
dom g)
= (A
/\ (
divset (D1,(k
+ 1)))) by
FUNCT_2:def 1;
then (
dom g)
= (
divset (D1,(k
+ 1))) by
A103,
Th6,
XBOOLE_1: 28;
then
A151: g is
total by
PARTFUN1:def 2;
A152: (
upper_bound (
divset (D1,(k
+ 1))))
= (D1
. (k
+ 1)) by
A103,
A107,
Def3;
A153: (D2
. (
indx (D2,D1,(k
+ 1))))
= (D1
. (k
+ 1)) by
A1,
A103,
Def18;
A154: ((
indx (D2,D1,k))
+ 1)
<= (
indx (D2,D1,(k
+ 1))) by
A134,
NAT_1: 13;
then
A155: ((
indx (D2,D1,k))
+ 1)
<= (
len D2) by
A145,
XXREAL_0: 2;
then ((
indx (D2,D1,k))
+ 1)
in (
Seg (
len D2)) by
A149,
FINSEQ_1: 1;
then
A156: ((
indx (D2,D1,k))
+ 1)
in (
dom D2) by
FINSEQ_1:def 3;
then (D2
. ((
indx (D2,D1,k))
+ 1))
>= (D2
. (
indx (D2,D1,k))) by
A133,
NAT_1: 11,
SEQ_4: 137;
then (D2
. ((
indx (D2,D1,k))
+ 1))
>= (
lower_bound DD1) by
A1,
A132,
A150,
Def18;
then
reconsider MD2 as
Division of DD1 by
A128,
A154,
A156,
A153,
A152,
Th35;
A157: (((
indx (D2,D1,(k
+ 1)))
-' ((
indx (D2,D1,k))
+ 1))
+ 1)
= (((
indx (D2,D1,(k
+ 1)))
- ((
indx (D2,D1,k))
+ 1))
+ 1) by
A154,
XREAL_1: 233
.= ((
indx (D2,D1,(k
+ 1)))
- (
indx (D2,D1,k)));
A158: for n be
Nat st 1
<= n & n
<= (
len q2) holds (q2
. n)
= ((
lower_volume (g,MD2))
. n)
proof
let n be
Nat;
assume that
A159: 1
<= n and
A160: n
<= (
len q2);
n
in (
Seg (
len q2)) by
A159,
A160,
FINSEQ_1: 1;
then
A161: n
in (
dom q2) by
FINSEQ_1:def 3;
then
A162: ((
indx (D2,D1,k))
+ n)
in (
dom K1D2) by
A142,
A144,
FINSEQ_1: 28;
then
A163: ((
indx (D2,D1,k))
+ n)
in (
dom ((
lower_volume (f,D2))
| (
Seg (
indx (D2,D1,(k
+ 1)))))) by
FINSEQ_1:def 15;
A164: (
len (
mid (D2,((
indx (D2,D1,k))
+ 1),(
indx (D2,D1,(k
+ 1))))))
= ID by
A130,
A145,
A139,
A154,
A155,
A149,
A157,
FINSEQ_6: 118;
A165: (
dom K1D2)
= (
Seg (
len K1D2)) by
FINSEQ_1:def 3
.= (
Seg (
indx (D2,D1,(k
+ 1)))) by
A141,
FINSEQ_1: 59;
then ((
indx (D2,D1,k))
+ n)
<= (
indx (D2,D1,(k
+ 1))) by
A162,
FINSEQ_1: 1;
then
A166: n
<= ((
indx (D2,D1,(k
+ 1)))
- (
indx (D2,D1,k))) by
XREAL_1: 19;
then n
in (
Seg (
len (
mid (D2,((
indx (D2,D1,k))
+ 1),(
indx (D2,D1,(k
+ 1))))))) by
A139,
A159,
A164,
FINSEQ_1: 1;
then
A167: n
in (
dom MD2) by
FINSEQ_1:def 3;
A168: (
Seg (
indx (D2,D1,(k
+ 1))))
c= (
Seg (
len D2)) by
A145,
FINSEQ_1: 5;
then ((
indx (D2,D1,k))
+ n)
in (
Seg (
len D2)) by
A165,
A162;
then
A169: ((
indx (D2,D1,k))
+ n)
in (
dom D2) by
FINSEQ_1:def 3;
A170: (q2
. n)
= (K1D2
. ((
indx (D2,D1,k))
+ n)) by
A142,
A144,
A161,
FINSEQ_1:def 7
.= (((
lower_volume (f,D2))
| (
Seg (
indx (D2,D1,(k
+ 1)))))
. ((
indx (D2,D1,k))
+ n)) by
FINSEQ_1:def 15
.= ((
lower_volume (f,D2))
. ((
indx (D2,D1,k))
+ n)) by
A163,
FUNCT_1: 47
.= ((
lower_bound (
rng (f
| (
divset (D2,((
indx (D2,D1,k))
+ n))))))
* (
vol (
divset (D2,((
indx (D2,D1,k))
+ n))))) by
A169,
Def6;
A171: 1
<= ((
indx (D2,D1,k))
+ n) by
A165,
A162,
FINSEQ_1: 1;
A172: (
divset (MD2,n))
= (
divset (D2,((
indx (D2,D1,k))
+ n))) & (
divset (D2,((
indx (D2,D1,k))
+ n)))
c= (
divset (D1,(k
+ 1)))
proof
now
per cases ;
suppose
A173: n
= 1;
then
A174: 1
<= ((
indx (D2,D1,k))
+ 1) by
A165,
A162,
FINSEQ_1: 1;
A175: ((
indx (D2,D1,k))
+ 1)
<= (
len D2) by
A165,
A162,
A168,
A173,
FINSEQ_1: 1;
A176: (
upper_bound (
divset (MD2,1)))
= ((
mid (D2,((
indx (D2,D1,k))
+ 1),(
indx (D2,D1,(k
+ 1)))))
. 1) by
A167,
A173,
Def3
.= (D2
. (1
+ (
indx (D2,D1,k)))) by
A130,
A145,
A174,
A175,
FINSEQ_6: 118;
A177: ((
indx (D2,D1,k))
+ 1)
<> 1 by
A147,
NAT_1: 13;
A178: ((k
+ 1)
- 1)
= k;
A179: (
lower_bound (
divset (MD2,1)))
= (
lower_bound (
divset (D1,(k
+ 1)))) by
A167,
A173,
Def3
.= (D1
. k) by
A103,
A107,
A178,
Def3;
A180: (
divset (D2,((
indx (D2,D1,k))
+ n)))
=
[.(
lower_bound (
divset (D2,((
indx (D2,D1,k))
+ 1)))), (
upper_bound (
divset (D2,((
indx (D2,D1,k))
+ 1)))).] by
A173,
Th2
.=
[.(D2
. (((
indx (D2,D1,k))
+ 1)
- 1)), (
upper_bound (
divset (D2,((
indx (D2,D1,k))
+ 1)))).] by
A156,
A177,
Def3
.=
[.(D2
. (
indx (D2,D1,k))), (D2
. ((
indx (D2,D1,k))
+ 1)).] by
A156,
A177,
Def3
.=
[.(D1
. k), (D2
. ((
indx (D2,D1,k))
+ 1)).] by
A1,
A132,
Def18;
hence (
divset (MD2,n))
= (
divset (D2,((
indx (D2,D1,k))
+ n))) by
A173,
A179,
A176,
Th2;
(
divset (MD2,n))
=
[.(D1
. k), (D2
. ((
indx (D2,D1,k))
+ 1)).] by
A173,
A179,
A176,
Th2;
hence thesis by
A167,
A180,
Th6;
end;
suppose
A181: n
<> 1;
A182: ((
indx (D2,D1,k))
+ n)
<> 1
proof
assume ((
indx (D2,D1,k))
+ n)
= 1;
then (
indx (D2,D1,k))
= (1
- n);
then (n
+ 1)
<= 1 by
A147,
XREAL_1: 19;
then n
<= (1
- 1) by
XREAL_1: 19;
hence contradiction by
A159,
NAT_1: 3;
end;
A183: (
divset (D2,((
indx (D2,D1,k))
+ n)))
=
[.(
lower_bound (
divset (D2,((
indx (D2,D1,k))
+ n)))), (
upper_bound (
divset (D2,((
indx (D2,D1,k))
+ n)))).] by
Th2
.=
[.(D2
. (((
indx (D2,D1,k))
+ n)
- 1)), (
upper_bound (
divset (D2,((
indx (D2,D1,k))
+ n)))).] by
A169,
A182,
Def3
.=
[.(D2
. (((
indx (D2,D1,k))
+ n)
- 1)), (D2
. ((
indx (D2,D1,k))
+ n)).] by
A169,
A182,
Def3;
n
<= (n
+ 1) by
NAT_1: 12;
then (n
- 1)
<= n by
XREAL_1: 20;
then
A184: (n
- 1)
<= (
len MD2) by
A139,
A166,
A164,
XXREAL_0: 2;
A185: ((
indx (D2,D1,k))
+ 1)
<= (
indx (D2,D1,(k
+ 1))) by
A134,
NAT_1: 13;
n is non
trivial by
A159,
A181,
NAT_2:def 1;
then n
>= (1
+ 1) by
NAT_2: 29;
then
A186: 1
<= (n
- 1) by
XREAL_1: 19;
consider n1 be
Nat such that
A187: n
= (1
+ n1) by
A159,
NAT_1: 10;
reconsider n1 as
Element of
NAT by
ORDINAL1:def 12;
A188: ((n1
+ ((
indx (D2,D1,k))
+ 1))
-' 1)
= (((
indx (D2,D1,k))
+ n)
- 1) by
A171,
A187,
XREAL_1: 233;
A189: ((n
+ ((
indx (D2,D1,k))
+ 1))
-' 1)
= (((n
+ (
indx (D2,D1,k)))
+ 1)
- 1) by
NAT_1: 11,
XREAL_1: 233
.= ((
indx (D2,D1,k))
+ n);
A190: (
lower_bound (
divset (MD2,n)))
= (MD2
. (n
- 1)) by
A167,
A181,
Def3
.= (D2
. (((
indx (D2,D1,k))
+ n)
- 1)) by
A130,
A145,
A155,
A149,
A185,
A187,
A188,
A186,
A184,
FINSEQ_6: 118;
A191: (
upper_bound (
divset (MD2,n)))
= (MD2
. n) by
A167,
A181,
Def3
.= (D2
. ((
indx (D2,D1,k))
+ n)) by
A130,
A145,
A139,
A155,
A149,
A159,
A166,
A164,
A185,
A189,
FINSEQ_6: 118;
hence (
divset (MD2,n))
= (
divset (D2,((
indx (D2,D1,k))
+ n))) by
A190,
A183,
Th2;
(
divset (MD2,n))
=
[.(D2
. (((
indx (D2,D1,k))
+ n)
- 1)), (D2
. ((
indx (D2,D1,k))
+ n)).] by
A190,
A191,
Th2;
hence thesis by
A167,
A183,
Th6;
end;
end;
hence thesis;
end;
then (g
| (
divset (MD2,n)))
= (f
| (
divset (D2,((
indx (D2,D1,k))
+ n)))) by
FUNCT_1: 51;
hence thesis by
A167,
A170,
A172,
Def6;
end;
((k
+ 1)
- 1)
= k;
then
A192: (
lower_bound DD1)
= (D1
. k) by
A103,
A107,
Def3;
(D1
. (k
+ 1))
= (
upper_bound DD1) by
A103,
A107,
Def3;
then
reconsider MD1 as
Division of DD1 by
A103,
A113,
A132,
A192,
Th35,
SEQ_4: 137;
A193: (g
| (
divset (D1,(k
+ 1)))) is
bounded_below
proof
consider a be
Real such that
A194: for x be
object st x
in (A
/\ (
dom f)) holds a
<= (f
. x) by
A2,
RFUNCT_1: 71;
for x be
object st x
in ((
divset (D1,(k
+ 1)))
/\ (
dom g)) holds a
<= (g
. x)
proof
let x be
object;
A195: (
dom g)
c= (
dom f) by
RELAT_1: 60;
assume x
in ((
divset (D1,(k
+ 1)))
/\ (
dom g));
then
A196: x
in (
dom g) by
XBOOLE_0:def 4;
A197: (A
/\ (
dom f))
= (
dom f) by
XBOOLE_1: 28;
then
reconsider x as
Element of A by
A196,
A195,
XBOOLE_0:def 4;
a
<= (f
. x) by
A194,
A196,
A197,
A195;
hence thesis by
A196,
FUNCT_1: 47;
end;
hence thesis by
RFUNCT_1: 71;
end;
(
len MD1)
= (((k
+ 1)
-' (k
+ 1))
+ 1) by
A105,
A106,
FINSEQ_6: 118;
then
A198: (
len MD1)
= (((k
+ 1)
- (k
+ 1))
+ 1) by
XREAL_1: 233;
A199: for n be
Nat st 1
<= n & n
<= (
len q1) holds (q1
. n)
= ((
lower_volume (g,MD1))
. n)
proof
(k
+ 1)
in (
Seg (
len K1D1)) by
A109,
FINSEQ_1: 4;
then (k
+ 1)
in (
dom K1D1) by
FINSEQ_1:def 3;
then
A200: (k
+ 1)
in (
dom ((
lower_volume (f,D1))
| (
Seg (k
+ 1)))) by
FINSEQ_1:def 15;
A201: (K1D1
. (k
+ 1))
= (((
lower_volume (f,D1))
| (
Seg (k
+ 1)))
. (k
+ 1)) by
FINSEQ_1:def 15
.= ((
lower_volume (f,D1))
. (k
+ 1)) by
A200,
FUNCT_1: 47;
A202: (MD1
. 1)
= (D1
. (k
+ 1)) by
A105,
A106,
FINSEQ_6: 118;
1
in (
Seg 1) by
FINSEQ_1: 3;
then
A203: 1
in (
dom MD1) by
A198,
FINSEQ_1:def 3;
then
A204: (
upper_bound (
divset (MD1,1)))
= (MD1
. 1) by
Def3;
let n be
Nat;
assume that
A205: 1
<= n and
A206: n
<= (
len q1);
A207: n
= 1 by
A111,
A205,
A206,
XXREAL_0: 1;
(
lower_bound (
divset (MD1,1)))
= (
lower_bound DD1) by
A203,
Def3;
then
A208: (
divset (MD1,1))
=
[.(
lower_bound DD1), (D1
. (k
+ 1)).] by
A204,
A202,
Th2;
((k
+ 1)
- 1)
= k;
then
A209: (
lower_bound DD1)
= (D1
. k) by
A103,
A107,
Def3;
(
upper_bound DD1)
= (D1
. (k
+ 1)) by
A103,
A107,
Def3;
then
A210: (
divset (D1,(k
+ 1)))
=
[.(D1
. k), (D1
. (k
+ 1)).] by
A209,
Th2;
A211: n
in (
Seg (
len q1)) by
A205,
A206,
FINSEQ_1: 1;
then n
in (
dom MD1) by
A111,
A198,
FINSEQ_1:def 3;
then
A212: ((
lower_volume (g,MD1))
. n)
= ((
lower_bound (
rng (g
| (
divset (D1,(k
+ 1))))))
* (
vol (
divset (D1,(k
+ 1))))) by
A207,
A208,
A209,
A210,
Def6;
n
in (
dom q1) by
A211,
FINSEQ_1:def 3;
then (q1
. n)
= ((
lower_volume (f,D1))
. (k
+ 1)) by
A110,
A112,
A207,
A201,
FINSEQ_1:def 7
.= ((
lower_bound (
rng (f
| (
divset (D1,(k
+ 1))))))
* (
vol (
divset (D1,(k
+ 1))))) by
A103,
Def6;
hence thesis by
A212;
end;
(
len q1)
= (
len (
lower_volume (g,MD1))) by
A111,
A198,
Def6;
then
A213: q1
= (
lower_volume (g,MD1)) by
A199,
FINSEQ_1: 14;
(
len MD1)
= (((k
+ 1)
-' (k
+ 1))
+ 1) by
A105,
A106,
FINSEQ_6: 118;
then (
len MD1)
= (((k
+ 1)
- (k
+ 1))
+ 1) by
XREAL_1: 233;
then
A214: (
lower_sum (g,MD1))
<= (
lower_sum (g,MD2)) by
A193,
A151,
Th29;
(
len (
lower_volume (g,MD2)))
= (
len (
mid (D2,((
indx (D2,D1,k))
+ 1),(
indx (D2,D1,(k
+ 1)))))) by
Def6
.= ((
indx (D2,D1,(k
+ 1)))
- (
indx (D2,D1,k))) by
A130,
A145,
A154,
A155,
A149,
A157,
FINSEQ_6: 118;
hence thesis by
A143,
A213,
A158,
A214,
FINSEQ_1: 14;
end;
set KD2 = ((
lower_volume (f,D2))
| (
indx (D2,D1,k)));
A215: (
Sum K1D2)
= ((
Sum p2)
+ (
Sum q2)) by
A144,
RVSUM_1: 75;
A216: (
indx (D2,D1,k))
<= (
len (
lower_volume (f,D2))) by
A140,
A146,
FINSEQ_1: 1;
then
A217: (
len p2)
= (
len KD2) by
A142,
FINSEQ_1: 59;
for i be
Nat st 1
<= i & i
<= (
len p2) holds (p2
. i)
= (KD2
. i)
proof
let i be
Nat;
assume that
A218: 1
<= i and
A219: i
<= (
len p2);
A220: i
in (
Seg (
len p2)) by
A218,
A219,
FINSEQ_1: 1;
then
A221: i
in (
dom KD2) by
A217,
FINSEQ_1:def 3;
then
A222: i
in (
dom ((
lower_volume (f,D2))
| (
Seg (
indx (D2,D1,k))))) by
FINSEQ_1:def 15;
A223: (
dom K1D2)
= (
Seg (
len K1D2)) by
FINSEQ_1:def 3
.= (
Seg (
indx (D2,D1,(k
+ 1)))) by
A141,
FINSEQ_1: 59;
A224: (
Seg (
indx (D2,D1,k)))
c= (
Seg (
indx (D2,D1,(k
+ 1)))) by
A137,
FINSEQ_1: 5;
(
dom KD2)
= (
Seg (
len KD2)) by
FINSEQ_1:def 3
.= (
Seg (
indx (D2,D1,k))) by
A216,
FINSEQ_1: 59;
then i
in (
dom K1D2) by
A221,
A224,
A223;
then
A225: i
in (
dom ((
lower_volume (f,D2))
| (
Seg (
indx (D2,D1,(k
+ 1)))))) by
FINSEQ_1:def 15;
A226: (K1D2
. i)
= (((
lower_volume (f,D2))
| (
Seg (
indx (D2,D1,(k
+ 1)))))
. i) by
FINSEQ_1:def 15
.= ((
lower_volume (f,D2))
. i) by
A225,
FUNCT_1: 47;
A227: (KD2
. i)
= (((
lower_volume (f,D2))
| (
Seg (
indx (D2,D1,k))))
. i) by
FINSEQ_1:def 15
.= ((
lower_volume (f,D2))
. i) by
A222,
FUNCT_1: 47;
i
in (
dom p2) by
A220,
FINSEQ_1:def 3;
hence thesis by
A144,
A227,
A226,
FINSEQ_1:def 7;
end;
then
A228: p2
= KD2 by
A217,
FINSEQ_1: 14;
(
Sum K1D1)
= ((
Sum p1)
+ (
Sum q1)) by
A112,
RVSUM_1: 75;
then (
Sum q1)
= ((
Sum K1D1)
- (
Sum p1));
then (
Sum K1D1)
<= ((
Sum q2)
+ (
Sum p1)) by
A148,
XREAL_1: 20;
then ((
Sum K1D1)
- (
Sum q2))
<= (
Sum p1) by
XREAL_1: 20;
then ((
Sum K1D1)
- (
Sum q2))
<= (
Sum p2) by
A102,
A131,
A127,
A228,
FINSEQ_1:def 3,
XXREAL_0: 2;
hence thesis by
A215,
XREAL_1: 20;
end;
end;
hence thesis;
end;
thus for n be non
zero
Nat holds
P[n] from
NAT_1:sch 10(
A3,
A101);
end;
hence thesis;
end;
theorem ::
INTEGRA1:40
Th38: D1
<= D2 & i
in (
dom D1) & (f
| A) is
bounded_above implies ((
PartSums (
upper_volume (f,D1)))
. i)
>= ((
PartSums (
upper_volume (f,D2)))
. (
indx (D2,D1,i)))
proof
assume that
A1: D1
<= D2 and
A2: i
in (
dom D1) and
A3: (f
| A) is
bounded_above;
A4: (
len (
upper_volume (f,D2)))
= (
len D2) by
Def5;
i
in (
Seg (
len D1)) by
A2,
FINSEQ_1:def 3;
then i
in (
Seg (
len (
upper_volume (f,D1)))) by
Def5;
then i
in (
dom (
upper_volume (f,D1))) by
FINSEQ_1:def 3;
then
A5: ((
PartSums (
upper_volume (f,D1)))
. i)
= (
Sum ((
upper_volume (f,D1))
| i)) by
Def19;
(
indx (D2,D1,i))
in (
dom D2) by
A1,
A2,
Def18;
then (
indx (D2,D1,i))
in (
Seg (
len (
upper_volume (f,D2)))) by
A4,
FINSEQ_1:def 3;
then
A6: (
indx (D2,D1,i))
in (
dom (
upper_volume (f,D2))) by
FINSEQ_1:def 3;
i
in (
Seg (
len D1)) by
A2,
FINSEQ_1:def 3;
then i is non
zero
Element of
NAT by
FINSEQ_1: 1;
then ((
PartSums (
upper_volume (f,D1)))
. i)
>= (
Sum ((
upper_volume (f,D2))
| (
indx (D2,D1,i)))) by
A1,
A2,
A3,
A5,
Th36;
hence thesis by
A6,
Def19;
end;
theorem ::
INTEGRA1:41
Th39: D1
<= D2 & i
in (
dom D1) & (f
| A) is
bounded_below implies ((
PartSums (
lower_volume (f,D1)))
. i)
<= ((
PartSums (
lower_volume (f,D2)))
. (
indx (D2,D1,i)))
proof
assume that
A1: D1
<= D2 and
A2: i
in (
dom D1) and
A3: (f
| A) is
bounded_below;
A4: (
len (
lower_volume (f,D2)))
= (
len D2) by
Def6;
i
in (
Seg (
len D1)) by
A2,
FINSEQ_1:def 3;
then i
in (
Seg (
len (
lower_volume (f,D1)))) by
Def6;
then i
in (
dom (
lower_volume (f,D1))) by
FINSEQ_1:def 3;
then
A5: ((
PartSums (
lower_volume (f,D1)))
. i)
= (
Sum ((
lower_volume (f,D1))
| i)) by
Def19;
(
indx (D2,D1,i))
in (
dom D2) by
A1,
A2,
Def18;
then (
indx (D2,D1,i))
in (
Seg (
len (
lower_volume (f,D2)))) by
A4,
FINSEQ_1:def 3;
then
A6: (
indx (D2,D1,i))
in (
dom (
lower_volume (f,D2))) by
FINSEQ_1:def 3;
i
in (
Seg (
len D1)) by
A2,
FINSEQ_1:def 3;
then i is non
zero
Element of
NAT by
FINSEQ_1: 1;
then ((
PartSums (
lower_volume (f,D1)))
. i)
<= (
Sum ((
lower_volume (f,D2))
| (
indx (D2,D1,i)))) by
A1,
A2,
A3,
A5,
Th37;
hence thesis by
A6,
Def19;
end;
theorem ::
INTEGRA1:42
Th40: ((
PartSums (
upper_volume (f,D)))
. (
len D))
= (
upper_sum (f,D))
proof
(
len (
upper_volume (f,D)))
= (
len D) by
Def5;
then (
len D)
in (
Seg (
len (
upper_volume (f,D)))) by
FINSEQ_1: 3;
then (
len D)
in (
dom (
upper_volume (f,D))) by
FINSEQ_1:def 3;
then
A1: ((
PartSums (
upper_volume (f,D)))
. (
len D))
= (
Sum ((
upper_volume (f,D))
| (
len D))) by
Def19;
(
dom (
upper_volume (f,D)))
= (
Seg (
len (
upper_volume (f,D)))) by
FINSEQ_1:def 3;
then (
dom (
upper_volume (f,D)))
= (
Seg (
len D)) by
Def5;
then ((
upper_volume (f,D))
| (
Seg (
len D)))
= (
upper_volume (f,D));
hence thesis by
A1,
FINSEQ_1:def 15;
end;
theorem ::
INTEGRA1:43
Th41: ((
PartSums (
lower_volume (f,D)))
. (
len D))
= (
lower_sum (f,D))
proof
(
len (
lower_volume (f,D)))
= (
len D) by
Def6;
then (
len D)
in (
Seg (
len (
lower_volume (f,D)))) by
FINSEQ_1: 3;
then (
len D)
in (
dom (
lower_volume (f,D))) by
FINSEQ_1:def 3;
then
A1: ((
PartSums (
lower_volume (f,D)))
. (
len D))
= (
Sum ((
lower_volume (f,D))
| (
len D))) by
Def19;
(
dom (
lower_volume (f,D)))
= (
Seg (
len (
lower_volume (f,D)))) by
FINSEQ_1:def 3;
then (
dom (
lower_volume (f,D)))
= (
Seg (
len D)) by
Def6;
then ((
lower_volume (f,D))
| (
Seg (
len D)))
= (
lower_volume (f,D));
hence thesis by
A1,
FINSEQ_1:def 15;
end;
theorem ::
INTEGRA1:44
Th42: D1
<= D2 implies (
indx (D2,D1,(
len D1)))
= (
len D2)
proof
(
len D1)
in (
Seg (
len D1)) by
FINSEQ_1: 3;
then
A1: (
len D1)
in (
dom D1) by
FINSEQ_1:def 3;
assume
A2: D1
<= D2;
then (D1
. (
len D1))
= (D2
. (
indx (D2,D1,(
len D1)))) by
A1,
Def18;
then
A3: (D2
. (
indx (D2,D1,(
len D1))))
= (
upper_bound A) by
Def1;
(
len D2)
in (
Seg (
len D2)) by
FINSEQ_1: 3;
then
A4: (
len D2)
in (
dom D2) by
FINSEQ_1:def 3;
assume
A5: (
indx (D2,D1,(
len D1)))
<> (
len D2);
A6: (
indx (D2,D1,(
len D1)))
in (
dom D2) by
A2,
A1,
Def18;
then (
indx (D2,D1,(
len D1)))
in (
Seg (
len D2)) by
FINSEQ_1:def 3;
then (
indx (D2,D1,(
len D1)))
<= (
len D2) by
FINSEQ_1: 1;
then (
indx (D2,D1,(
len D1)))
< (
len D2) by
A5,
XXREAL_0: 1;
then (D2
. (
indx (D2,D1,(
len D1))))
< (D2
. (
len D2)) by
A4,
A6,
SEQM_3:def 1;
hence contradiction by
A3,
Def1;
end;
theorem ::
INTEGRA1:45
Th43: D1
<= D2 & (f
| A) is
bounded_above implies (
upper_sum (f,D2))
<= (
upper_sum (f,D1))
proof
assume that
A1: D1
<= D2 and
A2: (f
| A) is
bounded_above;
(
len D1)
in (
Seg (
len D1)) by
FINSEQ_1: 3;
then (
len D1)
in (
dom D1) by
FINSEQ_1:def 3;
then ((
PartSums (
upper_volume (f,D1)))
. (
len D1))
>= ((
PartSums (
upper_volume (f,D2)))
. (
indx (D2,D1,(
len D1)))) by
A1,
A2,
Th38;
then (
upper_sum (f,D1))
>= ((
PartSums (
upper_volume (f,D2)))
. (
indx (D2,D1,(
len D1)))) by
Th40;
then (
upper_sum (f,D1))
>= ((
PartSums (
upper_volume (f,D2)))
. (
len D2)) by
A1,
Th42;
hence thesis by
Th40;
end;
theorem ::
INTEGRA1:46
Th44: D1
<= D2 & (f
| A) is
bounded_below implies (
lower_sum (f,D2))
>= (
lower_sum (f,D1))
proof
assume that
A1: D1
<= D2 and
A2: (f
| A) is
bounded_below;
(
len D1)
in (
Seg (
len D1)) by
FINSEQ_1: 3;
then (
len D1)
in (
dom D1) by
FINSEQ_1:def 3;
then ((
PartSums (
lower_volume (f,D1)))
. (
len D1))
<= ((
PartSums (
lower_volume (f,D2)))
. (
indx (D2,D1,(
len D1)))) by
A1,
A2,
Th39;
then (
lower_sum (f,D1))
<= ((
PartSums (
lower_volume (f,D2)))
. (
indx (D2,D1,(
len D1)))) by
Th41;
then (
lower_sum (f,D1))
<= ((
PartSums (
lower_volume (f,D2)))
. (
len D2)) by
A1,
Th42;
hence thesis by
Th41;
end;
theorem ::
INTEGRA1:47
Th45: ex D be
Division of A st D1
<= D & D2
<= D
proof
consider D3 be
FinSequence of
REAL such that
A1: (
rng D3)
= (
rng (D1
^ D2)) and
A2: (
len D3)
= (
card (
rng (D1
^ D2))) and
A3: D3 is
increasing by
SEQ_4: 140;
reconsider D3 as non
empty
increasing
FinSequence of
REAL by
A1,
A3;
A4: (
rng D2)
c= A by
Def1;
(
rng D1)
c= A by
Def1;
then ((
rng D1)
\/ (
rng D2))
c= A by
A4,
XBOOLE_1: 8;
then
A5: (
rng D3)
c= A by
A1,
FINSEQ_1: 31;
(D3
. (
len D3))
= (
upper_bound A)
proof
assume
A6: (D3
. (
len D3))
<> (
upper_bound A);
now
per cases by
A6,
XXREAL_0: 1;
suppose
A7: (D3
. (
len D3))
> (
upper_bound A);
(
len D3)
in (
Seg (
len D3)) by
FINSEQ_1: 3;
then (
len D3)
in (
dom D3) by
FINSEQ_1:def 3;
then (D3
. (
len D3))
in (
rng D3) by
FUNCT_1:def 3;
then (D3
. (
len D3))
in A by
A5;
then (D3
. (
len D3))
in
[.(
lower_bound A), (
upper_bound A).] by
Th2;
then (D3
. (
len D3))
in { r : (
lower_bound A)
<= r & r
<= (
upper_bound A) } by
RCOMP_1:def 1;
then ex a st a
= (D3
. (
len D3)) & (
lower_bound A)
<= a & a
<= (
upper_bound A);
hence contradiction by
A7;
end;
suppose
A8: (D3
. (
len D3))
< (
upper_bound A);
A9: (
rng D1)
c= (
rng (D1
^ D2)) by
FINSEQ_1: 29;
(
len D1)
in (
Seg (
len D1)) by
FINSEQ_1: 3;
then
A10: (
len D1)
in (
dom D1) by
FINSEQ_1:def 3;
(
len D3)
in (
Seg (
len D3)) by
FINSEQ_1: 3;
then
A11: (
len D3)
in (
dom D3) by
FINSEQ_1:def 3;
(D1
. (
len D1))
= (
upper_bound A) by
Def1;
then (
upper_bound A)
in (
rng D1) by
A10,
FUNCT_1:def 3;
then
consider k be
Nat such that
A12: k
in (
dom D3) and
A13: (D3
. k)
= (
upper_bound A) by
A1,
A9,
FINSEQ_2: 10;
k
in (
Seg (
len D3)) by
A12,
FINSEQ_1:def 3;
then k
<= (
len D3) by
FINSEQ_1: 1;
hence contradiction by
A8,
A11,
A12,
A13,
SEQ_4: 137;
end;
end;
hence thesis;
end;
then
reconsider D3 as
Division of A by
A5,
Def1;
(
len D2)
= (
card (
rng D2)) by
FINSEQ_4: 62;
then
A14: (
len D2)
<= (
len D3) by
A2,
FINSEQ_1: 30,
NAT_1: 43;
take D3;
A15: (
rng D1)
c= (
rng (D1
^ D2)) by
FINSEQ_1: 29;
A16: (
rng D2)
c= (
rng (D1
^ D2)) by
FINSEQ_1: 30;
(
len D1)
= (
card (
rng D1)) by
FINSEQ_4: 62;
then (
len D1)
<= (
len D3) by
A2,
FINSEQ_1: 29,
NAT_1: 43;
hence thesis by
A1,
A15,
A16,
A14;
end;
theorem ::
INTEGRA1:48
Th46: (f
| A) is
bounded implies (
lower_sum (f,D1))
<= (
upper_sum (f,D2))
proof
consider D such that
A1: D1
<= D and
A2: D2
<= D by
Th45;
assume
A3: (f
| A) is
bounded;
then
A4: (
lower_sum (f,D))
<= (
upper_sum (f,D)) by
Th26;
(
upper_sum (f,D))
<= (
upper_sum (f,D2)) by
A3,
A2,
Th43;
then
A5: (
lower_sum (f,D))
<= (
upper_sum (f,D2)) by
A4,
XXREAL_0: 2;
(
lower_sum (f,D1))
<= (
lower_sum (f,D)) by
A3,
A1,
Th44;
hence thesis by
A5,
XXREAL_0: 2;
end;
begin
theorem ::
INTEGRA1:49
Th47: (f
| A) is
bounded implies (
upper_integral f)
>= (
lower_integral f)
proof
assume
A1: (f
| A) is
bounded;
A2: for b be
Real st b
in (
rng (
upper_sum_set f)) holds (
lower_integral f)
<= b
proof
let b be
Real;
assume b
in (
rng (
upper_sum_set f));
then
consider D1 be
Element of (
divs A) such that D1
in (
dom (
upper_sum_set f)) and
A3: b
= ((
upper_sum_set f)
. D1) by
PARTFUN1: 3;
reconsider D1 as
Division of A by
Def2;
A4: for a be
Real st a
in (
rng (
lower_sum_set f)) holds a
<= (
upper_sum (f,D1))
proof
let a be
Real;
assume a
in (
rng (
lower_sum_set f));
then
consider D2 be
Element of (
divs A) such that D2
in (
dom (
lower_sum_set f)) and
A5: a
= ((
lower_sum_set f)
. D2) by
PARTFUN1: 3;
reconsider D2 as
Division of A by
Def2;
a
= (
lower_sum (f,D2)) by
A5,
Def10;
hence thesis by
A1,
Th46;
end;
b
= (
upper_sum (f,D1)) by
A3,
Def9;
hence thesis by
A4,
SEQ_4: 45;
end;
thus thesis by
A2,
SEQ_4: 43;
end;
theorem ::
INTEGRA1:50
Th48: for X,Y be
Subset of
REAL holds ((
-- X)
++ (
-- Y))
= (
-- (X
++ Y))
proof
let X,Y be
Subset of
REAL ;
for z be
object st z
in (
-- (X
++ Y)) holds z
in ((
-- X)
++ (
-- Y))
proof
let z be
object;
assume
A1: z
in (
-- (X
++ Y));
reconsider XY = (X
++ Y) as
Subset of
REAL by
MEMBERED: 3;
z
in (
-- XY) by
A1;
then
consider x be
Real such that
A2: x
in XY and
A3: z
= (
- x) by
MEASURE6: 72;
consider a,b be
Real such that
A4: a
in X and
A5: b
in Y and
A6: x
= (a
+ b) by
A2,
MEASURE6: 21;
A7: (
- a)
in (
-- X) by
A4,
MEMBER_1: 11;
A8: (
- b)
in (
-- Y) by
A5,
MEMBER_1: 11;
z
= ((
- a)
+ (
- b)) by
A3,
A6;
hence thesis by
A7,
A8,
MEMBER_1: 46;
end;
then
A9: (
-- (X
++ Y))
c= ((
-- X)
++ (
-- Y));
for z be
object st z
in ((
-- X)
++ (
-- Y)) holds z
in (
-- (X
++ Y))
proof
let z be
object;
assume
A10: z
in ((
-- X)
++ (
-- Y));
consider x,y be
Real such that
A11: x
in (
-- X) and
A12: y
in (
-- Y) and
A13: z
= (x
+ y) by
A10,
MEASURE6: 21;
consider b be
Real such that
A14: b
in Y and
A15: y
= (
- b) by
A12,
MEASURE6: 72;
reconsider X as
Subset of
REAL ;
consider a be
Real such that
A16: a
in X and
A17: x
= (
- a) by
A11,
MEASURE6: 72;
A18: (a
+ b)
in (X
++ Y) by
A16,
A14,
MEMBER_1: 46;
z
= (
- (a
+ b)) by
A13,
A17,
A15;
hence thesis by
A18,
MEMBER_1: 11;
end;
then ((
-- X)
++ (
-- Y))
c= (
-- (X
++ Y));
hence thesis by
A9;
end;
theorem ::
INTEGRA1:51
Th49: for X,Y be
Subset of
REAL st X is
bounded_above & Y is
bounded_above holds (X
++ Y) is
bounded_above
proof
let X,Y be
Subset of
REAL ;
assume that
A1: X is
bounded_above and
A2: Y is
bounded_above;
A3: (
-- Y) is
bounded_below by
A2,
MEASURE6: 41;
(
-- X) is
bounded_below by
A1,
MEASURE6: 41;
then
A4: ((
-- X)
++ (
-- Y)) is
bounded_below by
A3,
SEQ_4: 124;
reconsider XY = (X
++ Y) as
Subset of
REAL by
MEMBERED: 3;
(
-- XY) is
bounded_below by
Th48,
A4;
hence thesis by
MEASURE6: 41;
end;
theorem ::
INTEGRA1:52
Th50: for X,Y be non
empty
Subset of
REAL st X is
bounded_above & Y is
bounded_above holds (
upper_bound (X
++ Y))
= ((
upper_bound X)
+ (
upper_bound Y))
proof
let X,Y be non
empty
Subset of
REAL ;
assume that
A1: X is
bounded_above and
A2: Y is
bounded_above;
A3: (
-- Y) is
bounded_below by
A2,
MEASURE6: 41;
A4: (
-- X) is
bounded_below by
A1,
MEASURE6: 41;
then (
lower_bound ((
-- X)
++ (
-- Y)))
= ((
lower_bound (
-- X))
+ (
lower_bound (
-- Y))) by
A3,
SEQ_4: 125;
then
A5: (
lower_bound ((
-- X)
++ (
-- Y)))
= ((
- (
upper_bound (
-- (
-- X))))
+ (
lower_bound (
-- Y))) by
A4,
MEASURE6: 43
.= ((
- (
upper_bound X))
+ (
- (
upper_bound (
-- (
-- Y))))) by
A3,
MEASURE6: 43
.= (
- ((
upper_bound X)
+ (
upper_bound Y)));
A6: ((
-- X)
++ (
-- Y))
= (
-- (X
++ Y)) by
Th48;
then
A7: (
-- (X
++ Y)) is
bounded_below by
A4,
A3,
SEQ_4: 124;
reconsider XY = (X
++ Y) as
Subset of
REAL by
MEMBERED: 3;
(
- (
upper_bound (
-- (
-- XY))))
= (
- ((
upper_bound X)
+ (
upper_bound Y))) by
A6,
A5,
A7,
MEASURE6: 43;
then (
upper_bound XY)
= ((
upper_bound X)
+ (
upper_bound Y));
hence thesis;
end;
theorem ::
INTEGRA1:53
Th51: i
in (
dom D) & (f
| A) is
bounded_above & (g
| A) is
bounded_above implies ((
upper_volume ((f
+ g),D))
. i)
<= (((
upper_volume (f,D))
. i)
+ ((
upper_volume (g,D))
. i))
proof
assume
A1: i
in (
dom D);
(
dom (f
+ g))
= (A
/\ A) by
FUNCT_2:def 1;
then (
dom ((f
+ g)
| (
divset (D,i))))
= (
divset (D,i)) by
A1,
Th6,
RELAT_1: 62;
then
A2: (
rng ((f
+ g)
| (
divset (D,i)))) is non
empty by
RELAT_1: 42;
((f
+ g)
| (
divset (D,i)))
= ((f
| (
divset (D,i)))
+ (g
| (
divset (D,i)))) by
RFUNCT_1: 44;
then
A3: (
rng ((f
+ g)
| (
divset (D,i))))
c= ((
rng (f
| (
divset (D,i))))
++ (
rng (g
| (
divset (D,i))))) by
Th8;
assume (f
| A) is
bounded_above;
then (
rng f) is
bounded_above by
Th11;
then
A4: (
rng (f
| (
divset (D,i)))) is
bounded_above by
RELAT_1: 70,
XXREAL_2: 43;
(
dom g)
= A by
FUNCT_2:def 1;
then (
dom (g
| (
divset (D,i))))
= (
divset (D,i)) by
A1,
Th6,
RELAT_1: 62;
then
A5: (
rng (g
| (
divset (D,i)))) is non
empty by
RELAT_1: 42;
A6:
0
<= (
vol (
divset (D,i))) by
SEQ_4: 11,
XREAL_1: 48;
assume (g
| A) is
bounded_above;
then (
rng g) is
bounded_above by
Th11;
then
A7: (
rng (g
| (
divset (D,i)))) is
bounded_above by
RELAT_1: 70,
XXREAL_2: 43;
then
A8: ((
rng (f
| (
divset (D,i))))
++ (
rng (g
| (
divset (D,i))))) is
bounded_above by
A4,
Th49;
(
dom f)
= A by
FUNCT_2:def 1;
then (
dom (f
| (
divset (D,i))))
= (
divset (D,i)) by
A1,
Th6,
RELAT_1: 62;
then (
rng (f
| (
divset (D,i)))) is non
empty by
RELAT_1: 42;
then (
upper_bound ((
rng (f
| (
divset (D,i))))
++ (
rng (g
| (
divset (D,i))))))
= ((
upper_bound (
rng (f
| (
divset (D,i)))))
+ (
upper_bound (
rng (g
| (
divset (D,i)))))) by
A4,
A7,
A5,
Th50;
then ((
upper_bound (
rng ((f
+ g)
| (
divset (D,i)))))
* (
vol (
divset (D,i))))
<= (((
upper_bound (
rng (f
| (
divset (D,i)))))
+ (
upper_bound (
rng (g
| (
divset (D,i))))))
* (
vol (
divset (D,i)))) by
A8,
A2,
A6,
A3,
SEQ_4: 48,
XREAL_1: 64;
then ((
upper_volume ((f
+ g),D))
. i)
<= (((
upper_bound (
rng (f
| (
divset (D,i)))))
* (
vol (
divset (D,i))))
+ ((
upper_bound (
rng (g
| (
divset (D,i)))))
* (
vol (
divset (D,i))))) by
A1,
Def5;
then ((
upper_volume ((f
+ g),D))
. i)
<= (((
upper_volume (f,D))
. i)
+ ((
upper_bound (
rng (g
| (
divset (D,i)))))
* (
vol (
divset (D,i))))) by
A1,
Def5;
hence thesis by
A1,
Def5;
end;
theorem ::
INTEGRA1:54
Th52: i
in (
dom D) & (f
| A) is
bounded_below & (g
| A) is
bounded_below implies (((
lower_volume (f,D))
. i)
+ ((
lower_volume (g,D))
. i))
<= ((
lower_volume ((f
+ g),D))
. i)
proof
assume that
A1: i
in (
dom D) and
A2: (f
| A) is
bounded_below and
A3: (g
| A) is
bounded_below;
A4:
0
<= (
vol (
divset (D,i))) by
SEQ_4: 11,
XREAL_1: 48;
(
dom (f
+ g))
= (A
/\ A) by
FUNCT_2:def 1;
then (
dom ((f
+ g)
| (
divset (D,i))))
= (
divset (D,i)) by
A1,
Th6,
RELAT_1: 62;
then
A5: (
rng ((f
+ g)
| (
divset (D,i)))) is non
empty by
RELAT_1: 42;
(
rng g) is
bounded_below by
A3,
Th9;
then
A6: (
rng (g
| (
divset (D,i)))) is
bounded_below by
RELAT_1: 70,
XXREAL_2: 44;
(
dom g)
= A by
FUNCT_2:def 1;
then (
dom (g
| (
divset (D,i))))
= (
divset (D,i)) by
A1,
Th6,
RELAT_1: 62;
then
A7: (
rng (g
| (
divset (D,i)))) is non
empty by
RELAT_1: 42;
((f
+ g)
| (
divset (D,i)))
= ((f
| (
divset (D,i)))
+ (g
| (
divset (D,i)))) by
RFUNCT_1: 44;
then
A8: (
rng ((f
+ g)
| (
divset (D,i))))
c= ((
rng (f
| (
divset (D,i))))
++ (
rng (g
| (
divset (D,i))))) by
Th8;
(
rng f) is
bounded_below by
A2,
Th9;
then
A9: (
rng (f
| (
divset (D,i)))) is
bounded_below by
RELAT_1: 70,
XXREAL_2: 44;
then
A10: ((
rng (f
| (
divset (D,i))))
++ (
rng (g
| (
divset (D,i))))) is
bounded_below by
A6,
SEQ_4: 124;
(
dom f)
= A by
FUNCT_2:def 1;
then (
dom (f
| (
divset (D,i))))
= (
divset (D,i)) by
A1,
Th6,
RELAT_1: 62;
then (
rng (f
| (
divset (D,i)))) is non
empty by
RELAT_1: 42;
then (
lower_bound ((
rng (f
| (
divset (D,i))))
++ (
rng (g
| (
divset (D,i))))))
= ((
lower_bound (
rng (f
| (
divset (D,i)))))
+ (
lower_bound (
rng (g
| (
divset (D,i)))))) by
A9,
A6,
A7,
SEQ_4: 125;
then ((
lower_bound (
rng ((f
+ g)
| (
divset (D,i)))))
* (
vol (
divset (D,i))))
>= (((
lower_bound (
rng (f
| (
divset (D,i)))))
+ (
lower_bound (
rng (g
| (
divset (D,i))))))
* (
vol (
divset (D,i)))) by
A10,
A5,
A4,
A8,
SEQ_4: 47,
XREAL_1: 64;
then ((
lower_volume ((f
+ g),D))
. i)
>= (((
lower_bound (
rng (f
| (
divset (D,i)))))
* (
vol (
divset (D,i))))
+ ((
lower_bound (
rng (g
| (
divset (D,i)))))
* (
vol (
divset (D,i))))) by
A1,
Def6;
then ((
lower_volume ((f
+ g),D))
. i)
>= (((
lower_volume (f,D))
. i)
+ ((
lower_bound (
rng (g
| (
divset (D,i)))))
* (
vol (
divset (D,i))))) by
A1,
Def6;
hence thesis by
A1,
Def6;
end;
theorem ::
INTEGRA1:55
Th53: (f
| A) is
bounded_above & (g
| A) is
bounded_above implies (
upper_sum ((f
+ g),D))
<= ((
upper_sum (f,D))
+ (
upper_sum (g,D)))
proof
assume that
A1: (f
| A) is
bounded_above and
A2: (g
| A) is
bounded_above;
set H = (
upper_volume ((f
+ g),D));
set G = (
upper_volume (g,D));
set F = (
upper_volume (f,D));
(
len G)
= (
len D) by
Def5;
then
A3: G is
Element of ((
len D)
-tuples_on
REAL ) by
FINSEQ_2: 92;
(
len F)
= (
len D) by
Def5;
then
A4: F is
Element of ((
len D)
-tuples_on
REAL ) by
FINSEQ_2: 92;
A5: for j be
Nat st j
in (
Seg (
len D)) holds (H
. j)
<= ((F
+ G)
. j)
proof
let j be
Nat;
assume j
in (
Seg (
len D));
then j
in (
dom D) by
FINSEQ_1:def 3;
then ((
upper_volume ((f
+ g),D))
. j)
<= (((
upper_volume (f,D))
. j)
+ ((
upper_volume (g,D))
. j)) by
A1,
A2,
Th51;
hence thesis by
A4,
A3,
RVSUM_1: 11;
end;
(
len H)
= (
len D) by
Def5;
then
A6: H is
Element of ((
len D)
-tuples_on
REAL ) by
FINSEQ_2: 92;
(F
+ G) is
Element of ((
len D)
-tuples_on
REAL ) by
A4,
A3,
FINSEQ_2: 120;
then (
Sum H)
<= (
Sum (F
+ G)) by
A6,
A5,
RVSUM_1: 82;
hence thesis by
A4,
A3,
RVSUM_1: 89;
end;
theorem ::
INTEGRA1:56
Th54: (f
| A) is
bounded_below & (g
| A) is
bounded_below implies ((
lower_sum (f,D))
+ (
lower_sum (g,D)))
<= (
lower_sum ((f
+ g),D))
proof
assume that
A1: (f
| A) is
bounded_below and
A2: (g
| A) is
bounded_below;
set H = (
lower_volume ((f
+ g),D));
set G = (
lower_volume (g,D));
set F = (
lower_volume (f,D));
(
len G)
= (
len D) by
Def6;
then
A3: G is
Element of ((
len D)
-tuples_on
REAL ) by
FINSEQ_2: 92;
(
len F)
= (
len D) by
Def6;
then
A4: F is
Element of ((
len D)
-tuples_on
REAL ) by
FINSEQ_2: 92;
A5: for j be
Nat st j
in (
Seg (
len D)) holds ((F
+ G)
. j)
<= (H
. j)
proof
let j be
Nat;
assume j
in (
Seg (
len D));
then j
in (
dom D) by
FINSEQ_1:def 3;
then (((
lower_volume (f,D))
. j)
+ ((
lower_volume (g,D))
. j))
<= ((
lower_volume ((f
+ g),D))
. j) by
A1,
A2,
Th52;
hence thesis by
A4,
A3,
RVSUM_1: 11;
end;
(
len H)
= (
len D) by
Def6;
then
A6: H is
Element of ((
len D)
-tuples_on
REAL ) by
FINSEQ_2: 92;
(F
+ G) is
Element of ((
len D)
-tuples_on
REAL ) by
A4,
A3,
FINSEQ_2: 120;
then (
Sum (F
+ G))
<= (
Sum H) by
A6,
A5,
RVSUM_1: 82;
hence thesis by
A4,
A3,
RVSUM_1: 89;
end;
theorem ::
INTEGRA1:57
(f
| A) is
bounded & (g
| A) is
bounded & f is
integrable & g is
integrable implies (f
+ g) is
integrable & (
integral (f
+ g))
= ((
integral f)
+ (
integral g))
proof
assume that
A1: (f
| A) is
bounded and
A2: (g
| A) is
bounded and
A3: f is
integrable and
A4: g is
integrable;
A5: ((
lower_integral f)
+ (
lower_integral g))
= ((
upper_integral f)
+ (
lower_integral g)) by
A3
.= ((
integral f)
+ (
integral g)) by
A4;
A6: ((f
+ g)
| (A
/\ A)) is
bounded by
A1,
A2,
RFUNCT_1: 83;
for D be
object st D
in ((
divs A)
/\ (
dom (
lower_sum_set (f
+ g)))) holds ((
lower_sum_set (f
+ g))
. D)
<= (((
upper_bound (
rng f))
* (
vol A))
+ ((
upper_bound (
rng g))
* (
vol A)))
proof
let D be
object;
assume D
in ((
divs A)
/\ (
dom (
lower_sum_set (f
+ g))));
then
reconsider D as
Division of A by
Def2;
((
lower_sum_set (f
+ g))
. D)
= (
lower_sum ((f
+ g),D)) by
Def10;
then
A7: ((
lower_sum_set (f
+ g))
. D)
<= (
upper_sum ((f
+ g),D)) by
A6,
Th26;
(
upper_sum (f,D))
<= ((
upper_bound (
rng f))
* (
vol A)) by
A1,
Th25;
then
A8: ((
upper_sum (f,D))
+ (
upper_sum (g,D)))
<= (((
upper_bound (
rng f))
* (
vol A))
+ (
upper_sum (g,D))) by
XREAL_1: 6;
(
upper_sum (g,D))
<= ((
upper_bound (
rng g))
* (
vol A)) by
A2,
Th25;
then
A9: (((
upper_bound (
rng f))
* (
vol A))
+ (
upper_sum (g,D)))
<= (((
upper_bound (
rng f))
* (
vol A))
+ ((
upper_bound (
rng g))
* (
vol A))) by
XREAL_1: 6;
(
upper_sum ((f
+ g),D))
<= ((
upper_sum (f,D))
+ (
upper_sum (g,D))) by
A1,
A2,
Th53;
then ((
lower_sum_set (f
+ g))
. D)
<= ((
upper_sum (f,D))
+ (
upper_sum (g,D))) by
A7,
XXREAL_0: 2;
then ((
lower_sum_set (f
+ g))
. D)
<= (((
upper_bound (
rng f))
* (
vol A))
+ (
upper_sum (g,D))) by
A8,
XXREAL_0: 2;
hence thesis by
A9,
XXREAL_0: 2;
end;
then ((
lower_sum_set (f
+ g))
| (
divs A)) is
bounded_above by
RFUNCT_1: 70;
then
A10: (
rng (
lower_sum_set (f
+ g))) is
bounded_above by
Th11;
then
A11: (f
+ g) is
lower_integrable;
for D be
object st D
in ((
divs A)
/\ (
dom (
upper_sum_set (f
+ g)))) holds (((
lower_bound (
rng f))
* (
vol A))
+ ((
lower_bound (
rng g))
* (
vol A)))
<= ((
upper_sum_set (f
+ g))
. D)
proof
let D be
object;
assume D
in ((
divs A)
/\ (
dom (
upper_sum_set (f
+ g))));
then
reconsider D as
Division of A by
Def2;
((
upper_sum_set (f
+ g))
. D)
= (
upper_sum ((f
+ g),D)) by
Def9;
then
A12: (
lower_sum ((f
+ g),D))
<= ((
upper_sum_set (f
+ g))
. D) by
A6,
Th26;
((
lower_bound (
rng f))
* (
vol A))
<= (
lower_sum (f,D)) by
A1,
Th23;
then
A13: (((
lower_bound (
rng f))
* (
vol A))
+ (
lower_sum (g,D)))
<= ((
lower_sum (f,D))
+ (
lower_sum (g,D))) by
XREAL_1: 6;
((
lower_bound (
rng g))
* (
vol A))
<= (
lower_sum (g,D)) by
A2,
Th23;
then
A14: (((
lower_bound (
rng f))
* (
vol A))
+ ((
lower_bound (
rng g))
* (
vol A)))
<= (((
lower_bound (
rng f))
* (
vol A))
+ (
lower_sum (g,D))) by
XREAL_1: 6;
((
lower_sum (f,D))
+ (
lower_sum (g,D)))
<= (
lower_sum ((f
+ g),D)) by
A1,
A2,
Th54;
then ((
lower_sum (f,D))
+ (
lower_sum (g,D)))
<= ((
upper_sum_set (f
+ g))
. D) by
A12,
XXREAL_0: 2;
then (((
lower_bound (
rng f))
* (
vol A))
+ (
lower_sum (g,D)))
<= ((
upper_sum_set (f
+ g))
. D) by
A13,
XXREAL_0: 2;
hence thesis by
A14,
XXREAL_0: 2;
end;
then ((
upper_sum_set (f
+ g))
| (
divs A)) is
bounded_below by
RFUNCT_1: 71;
then
A15: (
rng (
upper_sum_set (f
+ g))) is
bounded_below by
Th9;
A16: for D st D
in ((
divs A)
/\ (
dom (
upper_sum_set (f
+ g)))) holds (((
upper_sum_set f)
. D)
+ ((
upper_sum_set g)
. D))
>= (
upper_integral (f
+ g))
proof
let D;
((
upper_sum (f,D))
+ (
upper_sum (g,D)))
>= (
upper_sum ((f
+ g),D)) by
A1,
A2,
Th53;
then
A17: (((
upper_sum_set f)
. D)
+ (
upper_sum (g,D)))
>= (
upper_sum ((f
+ g),D)) by
Def9;
assume D
in ((
divs A)
/\ (
dom (
upper_sum_set (f
+ g))));
then D
in (
dom (
upper_sum_set (f
+ g))) by
XBOOLE_0:def 4;
then ((
upper_sum_set (f
+ g))
. D)
in (
rng (
upper_sum_set (f
+ g))) by
FUNCT_1:def 3;
then
A18: ((
upper_sum_set (f
+ g))
. D)
>= (
upper_integral (f
+ g)) by
A15,
SEQ_4:def 2;
(((
upper_sum_set f)
. D)
+ ((
upper_sum_set g)
. D))
>= (
upper_sum ((f
+ g),D)) by
A17,
Def9;
then (((
upper_sum_set f)
. D)
+ ((
upper_sum_set g)
. D))
>= ((
upper_sum_set (f
+ g))
. D) by
Def9;
hence thesis by
A18,
XXREAL_0: 2;
end;
A19: (
dom (
upper_sum_set (f
+ g)))
= (
divs A) by
FUNCT_2:def 1;
A20: for a1 be
Real st a1
in (
rng (
upper_sum_set f)) holds a1
>= ((
upper_integral (f
+ g))
- (
upper_integral g))
proof
let a1 be
Real;
assume a1
in (
rng (
upper_sum_set f));
then
consider D1 be
Element of (
divs A) such that D1
in (
dom (
upper_sum_set f)) and
A21: a1
= ((
upper_sum_set f)
. D1) by
PARTFUN1: 3;
reconsider D1 as
Division of A by
Def2;
A22: a1
= (
upper_sum (f,D1)) by
A21,
Def9;
for a2 be
Real st a2
in (
rng (
upper_sum_set g)) holds a2
>= ((
upper_integral (f
+ g))
- a1)
proof
let a2 be
Real;
assume a2
in (
rng (
upper_sum_set g));
then
consider D2 be
Element of (
divs A) such that D2
in (
dom (
upper_sum_set g)) and
A23: a2
= ((
upper_sum_set g)
. D2) by
PARTFUN1: 3;
reconsider D2 as
Division of A by
Def2;
consider D such that
A24: D1
<= D and
A25: D2
<= D by
Th45;
A26: D
in (
divs A) by
Def2;
((
upper_sum_set g)
. D)
= (
upper_sum (g,D)) by
Def9;
then
A27: ((
upper_sum_set g)
. D)
<= (
upper_sum (g,D2)) by
A2,
A25,
Th43;
((
upper_sum_set f)
. D)
= (
upper_sum (f,D)) by
Def9;
then ((
upper_sum_set f)
. D)
<= (
upper_sum (f,D1)) by
A1,
A24,
Th43;
then
A28: (((
upper_sum_set f)
. D)
+ ((
upper_sum_set g)
. D))
<= ((
upper_sum (f,D1))
+ (
upper_sum (g,D2))) by
A27,
XREAL_1: 7;
(((
upper_sum_set f)
. D)
+ ((
upper_sum_set g)
. D))
>= (
upper_integral (f
+ g)) by
A19,
A16,
A26;
then
A29: ((
upper_sum (f,D1))
+ (
upper_sum (g,D2)))
>= (
upper_integral (f
+ g)) by
A28,
XXREAL_0: 2;
a2
= (
upper_sum (g,D2)) by
A23,
Def9;
hence thesis by
A22,
A29,
XREAL_1: 20;
end;
then (
lower_bound (
rng (
upper_sum_set g)))
>= ((
upper_integral (f
+ g))
- a1) by
SEQ_4: 43;
then (a1
+ (
lower_bound (
rng (
upper_sum_set g))))
>= (
upper_integral (f
+ g)) by
XREAL_1: 20;
hence thesis by
XREAL_1: 20;
end;
(
upper_integral f)
>= ((
upper_integral (f
+ g))
- (
upper_integral g)) by
A20,
SEQ_4: 43;
then
A30: ((
integral f)
+ (
upper_integral g))
>= (
upper_integral (f
+ g)) by
XREAL_1: 20;
A31: for D st D
in ((
divs A)
/\ (
dom (
lower_sum_set (f
+ g)))) holds (((
lower_sum_set f)
. D)
+ ((
lower_sum_set g)
. D))
<= (
lower_integral (f
+ g))
proof
let D;
((
lower_sum (f,D))
+ (
lower_sum (g,D)))
<= (
lower_sum ((f
+ g),D)) by
A1,
A2,
Th54;
then
A32: (((
lower_sum_set f)
. D)
+ (
lower_sum (g,D)))
<= (
lower_sum ((f
+ g),D)) by
Def10;
assume D
in ((
divs A)
/\ (
dom (
lower_sum_set (f
+ g))));
then D
in (
dom (
lower_sum_set (f
+ g))) by
XBOOLE_0:def 4;
then ((
lower_sum_set (f
+ g))
. D)
in (
rng (
lower_sum_set (f
+ g))) by
FUNCT_1:def 3;
then
A33: ((
lower_sum_set (f
+ g))
. D)
<= (
lower_integral (f
+ g)) by
A10,
SEQ_4:def 1;
(((
lower_sum_set f)
. D)
+ ((
lower_sum_set g)
. D))
<= (
lower_sum ((f
+ g),D)) by
A32,
Def10;
then (((
lower_sum_set f)
. D)
+ ((
lower_sum_set g)
. D))
<= ((
lower_sum_set (f
+ g))
. D) by
Def10;
hence thesis by
A33,
XXREAL_0: 2;
end;
A34: (
dom (
lower_sum_set (f
+ g)))
= (
divs A) by
FUNCT_2:def 1;
A35: for a1 be
Real st a1
in (
rng (
lower_sum_set f)) holds a1
<= ((
lower_integral (f
+ g))
- (
lower_integral g))
proof
let a1 be
Real;
assume a1
in (
rng (
lower_sum_set f));
then
consider D1 be
Element of (
divs A) such that D1
in (
dom (
lower_sum_set f)) and
A36: a1
= ((
lower_sum_set f)
. D1) by
PARTFUN1: 3;
reconsider D1 as
Division of A by
Def2;
A37: a1
= (
lower_sum (f,D1)) by
A36,
Def10;
for a2 be
Real st a2
in (
rng (
lower_sum_set g)) holds a2
<= ((
lower_integral (f
+ g))
- a1)
proof
let a2 be
Real;
assume a2
in (
rng (
lower_sum_set g));
then
consider D2 be
Element of (
divs A) such that D2
in (
dom (
lower_sum_set g)) and
A38: a2
= ((
lower_sum_set g)
. D2) by
PARTFUN1: 3;
reconsider D2 as
Division of A by
Def2;
consider D such that
A39: D1
<= D and
A40: D2
<= D by
Th45;
A41: D
in (
divs A) by
Def2;
((
lower_sum_set g)
. D)
= (
lower_sum (g,D)) by
Def10;
then
A42: ((
lower_sum_set g)
. D)
>= (
lower_sum (g,D2)) by
A2,
A40,
Th44;
((
lower_sum_set f)
. D)
= (
lower_sum (f,D)) by
Def10;
then ((
lower_sum_set f)
. D)
>= (
lower_sum (f,D1)) by
A1,
A39,
Th44;
then
A43: (((
lower_sum_set f)
. D)
+ ((
lower_sum_set g)
. D))
>= ((
lower_sum (f,D1))
+ (
lower_sum (g,D2))) by
A42,
XREAL_1: 7;
(((
lower_sum_set f)
. D)
+ ((
lower_sum_set g)
. D))
<= (
lower_integral (f
+ g)) by
A34,
A31,
A41;
then
A44: ((
lower_sum (f,D1))
+ (
lower_sum (g,D2)))
<= (
lower_integral (f
+ g)) by
A43,
XXREAL_0: 2;
a2
= (
lower_sum (g,D2)) by
A38,
Def10;
hence thesis by
A37,
A44,
XREAL_1: 19;
end;
then (
upper_bound (
rng (
lower_sum_set g)))
<= ((
lower_integral (f
+ g))
- a1) by
SEQ_4: 45;
then (a1
+ (
upper_bound (
rng (
lower_sum_set g))))
<= (
lower_integral (f
+ g)) by
XREAL_1: 19;
hence thesis by
XREAL_1: 19;
end;
(
upper_bound (
rng (
lower_sum_set f)))
<= ((
lower_integral (f
+ g))
- (
lower_integral g)) by
A35,
SEQ_4: 45;
then
A45: ((
lower_integral f)
+ (
lower_integral g))
<= (
lower_integral (f
+ g)) by
XREAL_1: 19;
A46: (
upper_integral (f
+ g))
>= (
lower_integral (f
+ g)) by
A6,
Th47;
then ((
integral f)
+ (
integral g))
<= (
upper_integral (f
+ g)) by
A45,
A5,
XXREAL_0: 2;
then (
upper_integral (f
+ g))
= ((
integral f)
+ (
integral g)) by
A30,
XXREAL_0: 1;
then
A47: (
upper_integral (f
+ g))
= (
lower_integral (f
+ g)) by
A45,
A46,
A5,
XXREAL_0: 1;
(f
+ g) is
upper_integrable by
A15;
hence thesis by
A11,
A45,
A5,
A30,
A47,
XXREAL_0: 1;
end;
theorem ::
INTEGRA1:58
for f be
FinSequence holds i
in (
dom f) & j
in (
dom f) & i
<= j implies (
len (
mid (f,i,j)))
= ((j
- i)
+ 1) by
Lm1;