numeral1.miz
begin
theorem ::
NUMERAL1:1
Th1: for k,l,m be
Nat holds ((k
(#) (l
GeoSeq ))
| m) is
XFinSequence of
NAT
proof
let k,l,m be
Nat;
set g = ((k
(#) (l
GeoSeq ))
| m);
A1: (
dom (k
(#) (l
GeoSeq )))
=
NAT by
FUNCT_2:def 1;
then m
in (
dom (k
(#) (l
GeoSeq ))) by
ORDINAL1:def 12;
then m
c= (
dom (k
(#) (l
GeoSeq ))) by
A1,
ORDINAL1:def 2;
then (
dom g)
= m by
RELAT_1: 62;
then
reconsider g9 = g as
XFinSequence by
ORDINAL1:def 7;
(
rng g9)
c=
NAT
proof
let a be
object;
assume a
in (
rng g9);
then
consider o be
object such that
A2: o
in (
dom g) and
A3: a
= (g
. o) by
FUNCT_1:def 3;
o
in (
dom (k
(#) (l
GeoSeq ))) by
A2,
RELAT_1: 57;
then
reconsider o as
Element of
NAT ;
A4: (k
* (l
|^ o))
in
NAT by
ORDINAL1:def 12;
(g
. o)
= ((k
(#) (l
GeoSeq ))
. o) by
A2,
FUNCT_1: 47
.= (k
* ((l
GeoSeq )
. o)) by
SEQ_1: 9
.= (k
* (l
|^ o)) by
PREPOWER:def 1;
hence thesis by
A3,
A4;
end;
hence thesis by
RELAT_1:def 19;
end;
theorem ::
NUMERAL1:2
Th2: for d be
XFinSequence of
NAT , n be
Nat st for i be
Nat st i
in (
dom d) holds n
divides (d
. i) holds n
divides (
Sum d)
proof
let d be
XFinSequence of
NAT , n be
Nat such that
A1: for i be
Nat st i
in (
dom d) holds n
divides (d
. i);
per cases ;
suppose (
len d)
=
0 ;
then d
=
{} ;
then (
Sum d)
=
0 ;
hence thesis by
NAT_D: 6;
end;
suppose
A2: (
len d)
>
0 ;
then
consider f be
sequence of
NAT such that
A3: (f
.
0 )
= (d
.
0 ) and
A4: for n be
Nat st (n
+ 1)
< (
len d) holds (f
. (n
+ 1))
= (
addnat
. ((f
. n),(d
. (n
+ 1)))) and
A5: (
addnat
"**" d)
= (f
. ((
len d)
- 1)) by
AFINSQ_2:def 8;
defpred
P[
Nat] means $1
< (
len d) implies n
divides (f
. $1);
A6:
now
let k be
Nat;
assume
A7:
P[k];
thus
P[(k
+ 1)]
proof
assume
A8: (k
+ 1)
< (
len d);
then (k
+ 1)
in (
Segm (
len d)) by
NAT_1: 44;
then
A9: n
divides (d
. (k
+ 1)) by
A1;
(f
. (k
+ 1))
= (
addnat
. ((f
. k),(d
. (k
+ 1)))) by
A4,
A8
.= ((f
. k)
+ (d
. (k
+ 1))) by
BINOP_2:def 23;
hence thesis by
A7,
A8,
A9,
NAT_1: 13,
NAT_D: 8;
end;
end;
reconsider ld = ((
len d)
- 1) as
Element of
NAT by
A2,
NAT_1: 20;
A10: ld
< (
len d) by
XREAL_1: 147;
0
in (
Segm (
len d)) by
A2,
NAT_1: 44;
then
A11:
P[
0 ] by
A1,
A3;
A12: (
addnat
"**" d)
= (
Sum d) by
AFINSQ_2: 51;
for k be
Nat holds
P[k] from
NAT_1:sch 2(
A11,
A6);
hence thesis by
A5,
A10,
A12;
end;
end;
theorem ::
NUMERAL1:3
Th3: for d,e be
XFinSequence of
NAT , n be
Nat st (
dom d)
= (
dom e) & for i be
Nat st i
in (
dom d) holds (e
. i)
= ((d
. i)
mod n) holds ((
Sum d)
mod n)
= ((
Sum e)
mod n)
proof
let d,e be
XFinSequence of
NAT , n be
Nat such that
A1: (
dom d)
= (
dom e) & for i be
Nat st i
in (
dom d) holds (e
. i)
= ((d
. i)
mod n);
defpred
P[
XFinSequence of
NAT ] means for e be
XFinSequence of
NAT st (
dom $1)
= (
dom e) & for i be
Nat st i
in (
dom $1) holds (e
. i)
= (($1
. i)
mod n) holds ((
Sum $1)
mod n)
= ((
Sum e)
mod n);
A2: for p be
XFinSequence of
NAT , l be
Element of
NAT st
P[p] holds
P[(p
^
<%l%>)]
proof
let p be
XFinSequence of
NAT , l be
Element of
NAT ;
assume
A3:
P[p];
thus
P[(p
^
<%l%>)]
proof
reconsider dop = (
dom p) as
Element of
NAT by
ORDINAL1:def 12;
defpred
Q[
set,
set] means $2
= ((p
. $1)
mod n);
let e be
XFinSequence of
NAT ;
assume that
A4: (
dom (p
^
<%l%>))
= (
dom e) and
A5: for i be
Nat st i
in (
dom (p
^
<%l%>)) holds (e
. i)
= (((p
^
<%l%>)
. i)
mod n);
A6: for k be
Nat st k
in (
Segm dop) holds ex x be
Element of
NAT st
Q[k, x];
consider p9 be
XFinSequence of
NAT such that
A7: (
dom p9)
= (
Segm dop) & for k be
Nat st k
in (
Segm dop) holds
Q[k, (p9
. k)] from
STIRL2_1:sch 5(
A6);
A8:
now
let k be
Nat;
assume
A9: k
in (
dom p9);
then k
< (
len p9) by
AFINSQ_1: 86;
then k
< ((
len p)
+ 1) by
A7,
NAT_1: 13;
then k
< ((
len p)
+ (
len
<%l%>)) by
AFINSQ_1: 33;
then k
in (
Segm ((
len p)
+ (
len
<%l%>))) by
NAT_1: 44;
then k
in (
dom (p
^
<%l%>)) by
AFINSQ_1:def 3;
hence (e
. k)
= (((p
^
<%l%>)
. k)
mod n) by
A5
.= ((p
. k)
mod n) by
A7,
A9,
AFINSQ_1:def 3
.= (p9
. k) by
A7,
A9;
end;
A10:
now
let k be
Nat;
assume k
in (
dom
<%(l
mod n)%>);
then
A11: k
in (
Segm 1) by
AFINSQ_1: 33;
then k
< 1 by
NAT_1: 44;
then
A12: k
=
0 by
NAT_1: 14;
k
in (
dom
<%l%>) by
A11,
AFINSQ_1: 33;
hence (e
. ((
len p9)
+ k))
= (((p
^
<%l%>)
. (
len p))
mod n) by
A5,
A7,
A12,
AFINSQ_1: 23
.= (l
mod n) by
AFINSQ_1: 36
.= (
<%(l
mod n)%>
. k) by
A12;
end;
(
dom e)
= ((
len p)
+ (
len
<%l%>)) by
A4,
AFINSQ_1:def 3
.= ((
dom p)
+ 1) by
AFINSQ_1: 33
.= ((
len p9)
+ (
len
<%(l
mod n)%>)) by
A7,
AFINSQ_1: 33;
then
A13: e
= (p9
^
<%(l
mod n)%>) by
A8,
A10,
AFINSQ_1:def 3;
thus ((
Sum (p
^
<%l%>))
mod n)
= (((
Sum p)
+ (
Sum
<%l%>))
mod n) by
AFINSQ_2: 55
.= (((
Sum p)
+ l)
mod n) by
AFINSQ_2: 53
.= ((((
Sum p)
mod n)
+ l)
mod n) by
NAT_D: 22
.= ((((
Sum p)
mod n)
+ (l
mod n))
mod n) by
NAT_D: 23
.= ((((
Sum p9)
mod n)
+ (l
mod n))
mod n) by
A3,
A7
.= (((
Sum p9)
+ (l
mod n))
mod n) by
NAT_D: 22
.= (((
Sum p9)
+ (
Sum
<%(l
mod n)%>))
mod n) by
AFINSQ_2: 53
.= ((
Sum e)
mod n) by
A13,
AFINSQ_2: 55;
end;
end;
A14:
P[(
<%>
NAT )] by
AFINSQ_1: 15;
for p be
XFinSequence of
NAT holds
P[p] from
AFINSQ_2:sch 2(
A14,
A2);
hence thesis by
A1;
end;
begin
definition
let d be
XFinSequence of
NAT ;
let b be
Nat;
::
NUMERAL1:def1
func
value (d,b) ->
Nat means
:
Def1: ex d9 be
XFinSequence of
NAT st ((
dom d9)
= (
dom d) & for i be
Nat st i
in (
dom d9) holds (d9
. i)
= ((d
. i)
* (b
|^ i))) & it
= (
Sum d9);
existence
proof
deffunc
F(
Nat) = ((d
. $1)
* (b
|^ $1));
consider d9 be
XFinSequence such that
A1: (
len d9)
= (
len d) & for i be
Nat st i
in (
len d) holds (d9
. i)
=
F(i) from
AFINSQ_1:sch 2;
(
rng d9)
c=
NAT
proof
let a be
object;
assume a
in (
rng d9);
then
consider i be
object such that
A2: i
in (
dom d9) and
A3: (d9
. i)
= a by
FUNCT_1:def 3;
reconsider i as
Element of
NAT by
A2;
a
=
F(i) by
A1,
A2,
A3;
hence thesis by
ORDINAL1:def 12;
end;
then
reconsider d9 as
XFinSequence of
NAT by
RELAT_1:def 19;
take (
Sum d9);
thus thesis by
A1;
end;
uniqueness
proof
let k,l be
Nat;
given k9 be
XFinSequence of
NAT such that
A4: (
dom k9)
= (
dom d) and
A5: for i be
Nat st i
in (
dom k9) holds (k9
. i)
= ((d
. i)
* (b
|^ i)) and
A6: k
= (
Sum k9);
given l9 be
XFinSequence of
NAT such that
A7: (
dom l9)
= (
dom d) and
A8: for i be
Nat st i
in (
dom l9) holds (l9
. i)
= ((d
. i)
* (b
|^ i)) and
A9: l
= (
Sum l9);
now
let i be
Nat;
assume
A10: i
in (
dom d);
hence (k9
. i)
= ((d
. i)
* (b
|^ i)) by
A4,
A5
.= (l9
. i) by
A7,
A8,
A10;
end;
hence thesis by
A4,
A6,
A7,
A9,
AFINSQ_1: 8;
end;
end
definition
let n,b be
Nat;
assume
A1: b
> 1;
::$Notion-Name
::
NUMERAL1:def2
func
digits (n,b) ->
XFinSequence of
NAT means
:
Def2: (
value (it ,b))
= n & (it
. ((
len it )
- 1))
<>
0 & for i be
Nat st i
in (
dom it ) holds
0
<= (it
. i) & (it
. i)
< b if n
<>
0
otherwise it
=
<%
0 %>;
consistency ;
existence
proof
reconsider d =
<%
0 %> as
XFinSequence of
NAT ;
reconsider N = n, B = b as
Element of
NAT by
ORDINAL1:def 12;
thus n
<>
0 implies ex d be
XFinSequence of
NAT st (
value (d,b))
= n & (d
. ((
len d)
- 1))
<>
0 & for i be
Nat st i
in (
dom d) holds
0
<= (d
. i) & (d
. i)
< b
proof
deffunc
G(
Nat,
Element of
NAT ) = ($2
div B);
consider f be
sequence of
NAT such that
A2: (f
.
0 )
= N & for i be
Nat holds (f
. (i
+ 1))
=
G(i,) from
NAT_1:sch 12;
defpred
R[
Nat] means (f
. $1)
=
0 ;
defpred
Q[
Nat] means ex i be
Nat st (f
. i)
= $1;
A3: for k be
Nat st k
<>
0 &
Q[k] holds ex l be
Nat st l
< k &
Q[l]
proof
let k be
Nat;
assume that
A4: k
<>
0 and
A5:
Q[k];
take l = (k
div b);
thus l
< k by
A1,
A4,
INT_1: 56;
consider i be
Nat such that
A6: (f
. i)
= k by
A5;
take (i
+ 1);
thus thesis by
A2,
A6;
end;
A7: ex k be
Nat st
Q[k] by
A2;
Q[
0 ] from
NAT_1:sch 7(
A7,
A3);
then
A8: ex l be
Nat st
R[l];
consider l be
Nat such that
A9:
R[l] & for i be
Nat st
R[i] holds l
<= i from
NAT_1:sch 5(
A8);
assume n
<>
0 ;
then
consider m be
Nat such that
A10: (m
+ 1)
= l by
A2,
A9,
NAT_1: 6;
reconsider m as
Element of
NAT by
ORDINAL1:def 12;
(
dom f)
=
NAT by
FUNCT_2:def 1;
then (m
+ 1)
c= (
dom f) by
ORDINAL1:def 2;
then (
dom (f
| (m
+ 1)))
= (m
+ 1) by
RELAT_1: 62;
then
reconsider g = (f
| (m
+ 1)) as
XFinSequence of
NAT by
ORDINAL1:def 7;
defpred
P[
Nat,
Nat] means $2
= ((g
. $1)
mod b);
A11: for i be
Nat st i
in (
Segm (m
+ 1)) holds ex x be
Element of
NAT st
P[i, x];
consider d be
XFinSequence of
NAT such that
A12: (
dom d)
= (
Segm (m
+ 1)) & for i be
Nat st i
in (
Segm (m
+ 1)) holds
P[i, (d
. i)] from
STIRL2_1:sch 5(
A11);
A13:
now
let i be
Nat such that l
<= i;
assume
R[i];
then (f
. (i
+ 1))
= (
0
div b) by
A2;
hence
R[(i
+ 1)] by
NAT_2: 2;
end;
A14:
R[l] by
A9;
A15: for i be
Nat st l
<= i holds
R[i] from
NAT_1:sch 8(
A14,
A13);
A16:
now
let i be
Element of
NAT ;
assume m
< i;
then l
<= i by
A10,
NAT_1: 13;
hence (f
. i)
=
0 by
A15;
end;
deffunc
F(
Nat) = ((d
. $1)
* (b
|^ $1));
consider d9 be
XFinSequence such that
A17: (
len d9)
= (
len d) & for i be
Nat st i
in (
len d) holds (d9
. i)
=
F(i) from
AFINSQ_1:sch 2;
(
rng d9)
c=
NAT
proof
let a be
object;
assume a
in (
rng d9);
then
consider i be
object such that
A18: i
in (
dom d9) and
A19: (d9
. i)
= a by
FUNCT_1:def 3;
reconsider i as
Element of
NAT by
A18;
a
=
F(i) by
A17,
A18,
A19;
hence thesis by
ORDINAL1:def 12;
end;
then
reconsider d9 as
XFinSequence of
NAT by
RELAT_1:def 19;
consider s be
sequence of
NAT such that
A20: (s
.
0 )
= (d9
.
0 ) and
A21: for i be
Nat st (i
+ 1)
< (
len d9) holds (s
. (i
+ 1))
= (
addnat
. ((s
. i),(d9
. (i
+ 1)))) and
A22: (
addnat
"**" d9)
= (s
. ((
len d9)
- 1)) by
A12,
A17,
AFINSQ_2:def 8;
defpred
I[
Nat] means $1
< (
len d9) implies (s
. $1)
= (n
- ((f
. ($1
+ 1))
* (b
|^ ($1
+ 1))));
A23:
now
let i be
Nat;
assume
A24:
I[i];
now
assume
A25: (i
+ 1)
< (
len d9);
then
A26: (i
+ 1)
in (
dom d9) by
AFINSQ_1: 86;
thus (s
. (i
+ 1))
= (
addnat
. ((s
. i),(d9
. (i
+ 1)))) by
A21,
A25
.= ((n
- ((f
. (i
+ 1))
* (b
|^ (i
+ 1))))
+ (d9
. (i
+ 1))) by
A24,
A25,
BINOP_2:def 23,
NAT_1: 13
.= ((n
- ((f
. (i
+ 1))
* (b
|^ (i
+ 1))))
+ ((d
. (i
+ 1))
* (b
|^ (i
+ 1)))) by
A17,
A26
.= ((n
- ((f
. (i
+ 1))
* (b
|^ (i
+ 1))))
+ (((g
. (i
+ 1))
mod b)
* (b
|^ (i
+ 1)))) by
A12,
A17,
A26
.= ((n
- ((f
. (i
+ 1))
* (b
|^ (i
+ 1))))
+ (((f
. (i
+ 1))
mod b)
* (b
|^ (i
+ 1)))) by
A12,
A17,
A26,
FUNCT_1: 49
.= ((n
- ((f
. (i
+ 1))
* (b
|^ (i
+ 1))))
+ (((f
. (i
+ 1))
- (b
* ((f
. (i
+ 1))
div B)))
* (b
|^ (i
+ 1)))) by
A1,
NEWTON: 63
.= ((n
- ((f
. (i
+ 1))
* (b
|^ (i
+ 1))))
+ (((f
. (i
+ 1))
- (b
* (f
. ((i
+ 1)
+ 1))))
* (b
|^ (i
+ 1)))) by
A2
.= ((n
- ((f
. (i
+ 1))
* (b
|^ (i
+ 1))))
+ (((f
. (i
+ 1))
* (b
|^ (i
+ 1)))
- ((f
. ((i
+ 1)
+ 1))
* (b
* (b
|^ (i
+ 1))))))
.= ((n
- ((f
. (i
+ 1))
* (b
|^ (i
+ 1))))
+ (((f
. (i
+ 1))
* (b
|^ (i
+ 1)))
- ((f
. ((i
+ 1)
+ 1))
* (b
|^ ((i
+ 1)
+ 1))))) by
NEWTON: 6
.= (n
- ((f
. ((i
+ 1)
+ 1))
* (b
|^ ((i
+ 1)
+ 1))));
end;
hence
I[(i
+ 1)];
end;
reconsider ld = ((
len d9)
- 1) as
Element of
NAT by
A12,
A17;
A27:
0
in (
Segm (m
+ 1)) by
NAT_1: 44;
then (d9
.
0 )
= ((d
.
0 )
* (b
|^
0 )) by
A12,
A17
.= (((g
.
0 )
mod b)
* (b
|^
0 )) by
A12,
A27
.= (((f
.
0 )
mod b)
* (b
|^
0 )) by
A27,
FUNCT_1: 49
.= ((n
mod b)
* 1) by
A2,
NEWTON: 4
.= (N
- (B
* (N
div B))) by
A1,
NEWTON: 63
.= (n
- ((n
div b)
* (b
|^ 1)))
.= (n
- ((f
. (
0 qua
Nat
+ 1))
* (b
|^ (
0 qua
Nat
+ 1)))) by
A2;
then
A28:
I[
0 ] by
A20;
for i be
Nat holds
I[i] from
NAT_1:sch 2(
A28,
A23);
then (s
. ld)
= (n
- ((f
. (m
+ 1))
* (b
|^ (m
+ 1)))) by
A12,
A17,
XREAL_1: 44
.= n by
A9,
A10;
then
A29: n
= (
Sum d9) by
A22,
AFINSQ_2: 51;
m
< l by
A10,
NAT_1: 13;
then
A30: (f
. m)
<>
0 by
A9;
take d;
thus (
value (d,b))
= n by
A17,
A29,
Def1;
m
in (
Segm (m
+ 1)) by
NAT_1: 45;
then
A31: (g
. m)
= (f
. m) by
FUNCT_1: 49;
then m
< (m
+ 1) & (f
. (m
+ 1))
= ((g
. m)
div b) by
A2,
NAT_1: 13;
then
A32: ((g
. m)
div b)
=
0 by
A16;
(d
. ((
len d)
- 1))
= ((g
. m)
mod b) by
A12,
NAT_1: 45
.= (g
. m) by
A1,
A32,
NAT_2: 12,
NAT_D: 24;
hence (d
. ((
len d)
- 1))
<>
0 by
A30,
A31;
let i be
Nat;
assume i
in (
dom d);
then (d
. i)
= ((g
. i)
mod b) by
A12;
hence thesis by
A1,
NAT_D: 1;
end;
assume n
=
0 ;
take d;
thus thesis;
end;
uniqueness
proof
reconsider b1 = (b
- 1) as
Element of
NAT by
A1,
NAT_1: 20;
let d,e be
XFinSequence of
NAT ;
thus n
<>
0 & ((
value (d,b))
= n & (d
. ((
len d)
- 1))
<>
0 & for i be
Nat st i
in (
dom d) holds
0
<= (d
. i) & (d
. i)
< b) & ((
value (e,b))
= n & (e
. ((
len e)
- 1))
<>
0 & for i be
Nat st i
in (
dom e) holds
0
<= (e
. i) & (e
. i)
< b) implies d
= e
proof
(
log (2,b))
> (
log (2,1)) by
A1,
POWER: 57;
then
A33: (
log (2,b))
>
0 by
POWER: 51;
(
log (2,b))
> (
log (2,1)) by
A1,
POWER: 57;
then
A34: (
log (2,b))
>
0 by
POWER: 51;
A35: (1
- b)
<>
0 by
A1;
A36: (1
- b)
<>
0 by
A1;
reconsider g = ((b1
(#) (b
GeoSeq ))
| (
len d)) as
XFinSequence of
NAT by
Th1;
assume
A37: n
<>
0 ;
assume that
A38: (
value (d,b))
= n and
A39: (d
. ((
len d)
- 1))
<>
0 and
A40: for i be
Nat st i
in (
dom d) holds
0
<= (d
. i) & (d
. i)
< b;
consider D be
XFinSequence of
NAT such that
A41: (
dom D)
= (
dom d) and
A42: for i be
Nat st i
in (
dom D) holds (D
. i)
= ((d
. i)
* (b
|^ i)) and
A43: n
= (
Sum D) by
A38,
Def1;
(
dom d)
<>
{} by
A39,
FUNCT_1:def 2;
then
A44: (
len D)
>
0 by
A41;
A45: ((
len d)
- 1)
in (
dom d) by
A39,
FUNCT_1:def 2;
then
reconsider k = ((
len d)
- 1) as
Element of
NAT ;
A46: (1
* (b
|^ k))
<= ((d
. k)
* (b
|^ k)) by
A39,
NAT_1: 4,
NAT_1: 14;
A47: (b
|^ k)
>
0 by
A1,
PREPOWER: 6;
(D
. k)
= ((d
. k)
* (b
|^ k)) by
A41,
A42,
A45;
then ((d
. k)
* (b
|^ k))
<= n by
A41,
A43,
A45,
A44,
AFINSQ_2: 61;
then (b
|^ k)
<= n by
A46,
XXREAL_0: 2;
then (
log (2,(b
to_power k)))
<= (
log (2,n)) by
A47,
PRE_FF: 10;
then (k
* (
log (2,b)))
<= (
log (2,n)) by
A1,
POWER: 55;
then ((k
* (
log (2,b)))
/ (
log (2,b)))
<= ((
log (2,n))
/ (
log (2,b))) by
A34,
XREAL_1: 72;
then
A48: k
<= ((
log (2,n))
/ (
log (2,b))) by
A34,
XCMPLX_1: 89;
g
= (((b
- 1)
(#) (b
GeoSeq ))
| (k
+ 1));
then
A49: (
Sum g)
= ((
Partial_Sums ((b
- 1)
(#) (b
GeoSeq )))
. k) by
AFINSQ_2: 56
.= (((b
- 1)
(#) (
Partial_Sums (b
GeoSeq )))
. k) by
SERIES_1: 9
.= ((b
- 1)
* ((
Partial_Sums (b
GeoSeq ))
. k)) by
SEQ_1: 9
.= ((b
- 1)
* ((1
- (b
to_power (k
+ 1)))
/ (1
- b))) by
A1,
SERIES_1: 22
.= (
- ((1
- b)
* ((1
- (b
|^ (k
+ 1)))
/ (1
- b))))
.= (
- (1
- (b
|^ (k
+ 1)))) by
A36,
XCMPLX_1: 87
.= ((b
|^ (k
+ 1))
- 1);
A50: (
dom ((b
- 1)
(#) (b
GeoSeq )))
=
NAT by
FUNCT_2:def 1;
then
A51: (
len D)
= (
len g) by
A41,
RELAT_1: 62;
(
len d)
c= (
dom ((b
- 1)
(#) (b
GeoSeq ))) by
A50,
ORDINAL1:def 2;
then
A52: (
dom g)
= (
len d) by
RELAT_1: 62;
A53: for i be
Nat st i
in (
dom D) holds (D
. i)
<= (g
. i)
proof
let i be
Nat;
reconsider I = i as
Element of
NAT by
ORDINAL1:def 12;
assume
A54: i
in (
dom D);
then
A55: (D
. i)
= ((d
. i)
* (b
|^ i)) by
A42;
(d
. i)
< (b1
+ 1) by
A40,
A41,
A54;
then
A56: (d
. i)
<= b1 by
NAT_1: 13;
(g
. I)
= (((b
- 1)
(#) (b
GeoSeq ))
. I) by
A41,
A52,
A54,
FUNCT_1: 47
.= ((b
- 1)
* ((b
GeoSeq )
. I)) by
SEQ_1: 9
.= (b1
* (b
|^ I)) by
PREPOWER:def 1;
hence thesis by
A56,
A55,
XREAL_1: 64;
end;
assume that
A57: (
value (e,b))
= n and
A58: (e
. ((
len e)
- 1))
<>
0 and
A59: for i be
Nat st i
in (
dom e) holds
0
<= (e
. i) & (e
. i)
< b;
consider E be
XFinSequence of
NAT such that
A60: (
dom E)
= (
dom e) and
A61: for i be
Nat st i
in (
dom E) holds (E
. i)
= ((e
. i)
* (b
|^ i)) and
A62: n
= (
Sum E) by
A57,
Def1;
A63: ((
len e)
- 1)
in (
dom e) by
A58,
FUNCT_1:def 2;
then
reconsider l = ((
len e)
- 1) as
Element of
NAT ;
A64: (1
* (b
|^ l))
<= ((e
. l)
* (b
|^ l)) by
A58,
NAT_1: 4,
NAT_1: 14;
reconsider g = ((b1
(#) (b
GeoSeq ))
| (
len e)) as
XFinSequence of
NAT by
Th1;
g
= (((b
- 1)
(#) (b
GeoSeq ))
| (l
+ 1));
then
A65: (
Sum g)
= ((
Partial_Sums ((b
- 1)
(#) (b
GeoSeq )))
. l) by
AFINSQ_2: 56
.= (((b
- 1)
(#) (
Partial_Sums (b
GeoSeq )))
. l) by
SERIES_1: 9
.= ((b
- 1)
* ((
Partial_Sums (b
GeoSeq ))
. l)) by
SEQ_1: 9
.= ((b
- 1)
* ((1
- (b
to_power (l
+ 1)))
/ (1
- b))) by
A1,
SERIES_1: 22
.= (
- ((1
- b)
* ((1
- (b
|^ (l
+ 1)))
/ (1
- b))))
.= (
- (1
- (b
|^ (l
+ 1)))) by
A35,
XCMPLX_1: 87
.= ((b
|^ (l
+ 1))
- 1);
(
dom E)
<>
{} by
A58,
A60,
FUNCT_1:def 2;
then
A66: (
len E)
>
0 ;
A67: (
dom ((b
- 1)
(#) (b
GeoSeq )))
=
NAT by
FUNCT_2:def 1;
then (
len e)
c= (
dom ((b
- 1)
(#) (b
GeoSeq ))) by
ORDINAL1:def 2;
then
A68: (
dom g)
= (
len e) by
RELAT_1: 62;
A69: for i be
Nat st i
in (
dom E) holds (E
. i)
<= (g
. i)
proof
let i be
Nat;
reconsider I = i as
Element of
NAT by
ORDINAL1:def 12;
assume
A70: i
in (
dom E);
then
A71: (E
. i)
= ((e
. i)
* (b
|^ i)) by
A61;
(e
. i)
< (b1
+ 1) by
A59,
A60,
A70;
then
A72: (e
. i)
<= b1 by
NAT_1: 13;
(g
. I)
= (((b
- 1)
(#) (b
GeoSeq ))
. I) by
A60,
A68,
A70,
FUNCT_1: 47
.= ((b
- 1)
* ((b
GeoSeq )
. I)) by
SEQ_1: 9
.= (b1
* (b
|^ I)) by
PREPOWER:def 1;
hence thesis by
A72,
A71,
XREAL_1: 64;
end;
A73: (b
|^ l)
>
0 by
A1,
PREPOWER: 6;
(E
. l)
= ((e
. l)
* (b
|^ l)) by
A60,
A61,
A63;
then ((e
. l)
* (b
|^ l))
<= n by
A60,
A62,
A63,
A66,
AFINSQ_2: 61;
then (b
|^ l)
<= n by
A64,
XXREAL_0: 2;
then (
log (2,(b
to_power l)))
<= (
log (2,n)) by
A73,
PRE_FF: 10;
then (l
* (
log (2,b)))
<= (
log (2,n)) by
A1,
POWER: 55;
then ((l
* (
log (2,b)))
/ (
log (2,b)))
<= ((
log (2,n))
/ (
log (2,b))) by
A33,
XREAL_1: 72;
then
A74: l
<= ((
log (2,n))
/ (
log (2,b))) by
A33,
XCMPLX_1: 89;
(
len E)
= (
len g) by
A60,
A67,
RELAT_1: 62;
then n
< (((b
|^ (l
+ 1))
- 1)
+ 1) by
A62,
A65,
A69,
AFINSQ_2: 57,
XREAL_1: 39;
then (
log (2,n))
< (
log (2,(b
to_power (l
+ 1)))) by
A37,
POWER: 57;
then (
log (2,n))
< ((l
+ 1)
* (
log (2,b))) by
A1,
POWER: 55;
then ((
log (2,n))
/ (
log (2,b)))
< (((l
+ 1)
* (
log (2,b)))
/ (
log (2,b))) by
A33,
XREAL_1: 74;
then ((
log (2,n))
/ (
log (2,b)))
< (l
+ 1) by
A33,
XCMPLX_1: 89;
then k
< (l
+ 1) by
A48,
XXREAL_0: 2;
then
A75: k
<= l by
NAT_1: 13;
n
< (((b
|^ (k
+ 1))
- 1)
+ 1) by
A43,
A49,
A51,
A53,
AFINSQ_2: 57,
XREAL_1: 39;
then (
log (2,n))
< (
log (2,(b
to_power (k
+ 1)))) by
A37,
POWER: 57;
then (
log (2,n))
< ((k
+ 1)
* (
log (2,b))) by
A1,
POWER: 55;
then ((
log (2,n))
/ (
log (2,b)))
< (((k
+ 1)
* (
log (2,b)))
/ (
log (2,b))) by
A34,
XREAL_1: 74;
then ((
log (2,n))
/ (
log (2,b)))
< (k
+ 1) by
A34,
XCMPLX_1: 89;
then l
< (k
+ 1) by
A74,
XXREAL_0: 2;
then l
<= k by
NAT_1: 13;
then
A76: k
= l by
A75,
XXREAL_0: 1;
now
let a be
object;
assume
A77: a
in (
dom d);
then
reconsider o = a as
Element of
NAT ;
o
< (k
+ 1) by
A77,
AFINSQ_1: 86;
then
A78: o
<= k by
NAT_1: 13;
A79: o
< (
len d) by
A77,
AFINSQ_1: 86;
then
reconsider oo = ((
len d)
- o) as
Element of
NAT by
NAT_1: 21;
per cases by
A78,
XXREAL_0: 1;
suppose
A80: o
=
0 & o
= k;
then (
len E)
= 1 by
A60,
A76;
then
A81: E
=
<%(E
.
0 )%> by
AFINSQ_1: 34
.=
<%((e
.
0 )
* (b
|^
0 ))%> by
A60,
A61,
A76,
A77,
A80
.=
<%((e
.
0 )
* 1)%> by
NEWTON: 4;
(
len D)
= 1 by
A41,
A80;
then D
=
<%(D
.
0 )%> by
AFINSQ_1: 34
.=
<%((d
.
0 )
* (b
|^
0 ))%> by
A41,
A42,
A77,
A80
.=
<%((d
.
0 )
* 1)%> by
NEWTON: 4;
hence (d
. a)
= n by
A43,
A80,
AFINSQ_2: 53
.= (e
. a) by
A62,
A80,
A81,
AFINSQ_2: 53;
end;
suppose
A82: o
=
0 & o
< k;
reconsider co = (
<%>
NAT ) as
XFinSequence of
NAT ;
(
Sum co)
=
0 ;
then
A83: ((
Sum co)
div (b
|^ o))
=
0 by
NAT_2: 2;
set d9 = D;
D
= (co
^ d9);
then
A84: n
= ((
Sum co)
+ (
Sum d9)) by
A43,
AFINSQ_2: 55;
reconsider bo = (b
|^ o) as
Element of
NAT by
ORDINAL1:def 12;
A85: bo
<>
0 by
A1,
PREPOWER: 5;
A86:
now
let k be
Nat;
assume k
in (
dom
<%(D
. o)%>);
then k
in (
Segm 1) by
AFINSQ_1: 33;
then k
< 1 by
NAT_1: 44;
then k
=
0 by
NAT_1: 14;
hence (d9
. k)
= (
<%(D
. o)%>
. k) by
A82;
end;
reconsider o1 = (o
+ 1) as
Element of
NAT ;
o1
<= k by
A82,
NAT_1: 13;
then
A87: o1
< (
len d) by
XREAL_1: 147;
reconsider oo1 = ((
len d)
- o1) as
Element of
NAT by
A82;
defpred
P[
Nat,
set] means $2
= (D
. ($1
+ o1));
reconsider do1 = (D
| o1) as
XFinSequence of
NAT ;
A88: for u be
Nat st u
in (
Segm oo1) holds ex x be
Element of
NAT st
P[u, x];
consider d91 be
XFinSequence of
NAT such that
A89: (
dom d91)
= (
Segm oo1) & for x be
Nat st x
in (
Segm oo1) holds
P[x, (d91
. x)] from
STIRL2_1:sch 5(
A88);
A90: (
len d)
= (
len D) by
A41;
then
A91: (
len do1)
= o1 by
A87,
AFINSQ_1: 11;
then
A92: (
dom D)
= ((
len do1)
+ (
len d91)) by
A41,
A89;
now
let k be
Nat;
reconsider K = k as
Element of
NAT by
ORDINAL1:def 12;
assume
A93: k
in (
dom d91);
then k
< (
len d91) by
AFINSQ_1: 86;
then (o1
+ k)
< (
len D) by
A91,
A92,
XREAL_1: 8;
then (o1
+ k)
in (
dom D) by
AFINSQ_1: 86;
then (D
. (o1
+ k))
= ((d
. (o1
+ k))
* (b
|^ (o1
+ k))) by
A42;
then (d91
. K)
= ((d
. (o1
+ k))
* (b
|^ (o1
+ k))) by
A89,
A93
.= ((d
. (o1
+ k))
* ((b
|^ o1)
* (b
|^ k))) by
NEWTON: 8
.= (((d
. (o1
+ k))
* (b
|^ k))
* (b
|^ o1));
hence (b
|^ o1)
divides (d91
. k) by
NAT_D:def 3;
end;
then
A94: (b
|^ o1)
divides (
Sum d91) by
Th2;
A95:
now
let k be
Nat;
assume
A96: k
in (
dom d91);
thus (d9
. ((
len
<%(D
. o)%>)
+ k))
= (D
. ((
len do1)
+ k)) by
A82,
A91,
AFINSQ_1: 33
.= (d91
. k) by
A89,
A91,
A96;
end;
(
dom d9)
= (1
+ (
dom d91)) by
A41,
A82,
A89
.= ((
len
<%(D
. o)%>)
+ (
len d91)) by
AFINSQ_1: 34;
then d9
= (
<%(D
. o)%>
^ d91) by
A86,
A95,
AFINSQ_1:def 3;
then
A97: (
Sum d9)
= ((
Sum
<%(D
. o)%>)
+ (
Sum d91)) by
AFINSQ_2: 55;
(for x be
Nat st x
in (
dom do1) holds (D
. x)
= (do1
. x)) & for x be
Nat st x
in (
dom d91) holds (D
. ((
len do1)
+ x))
= (d91
. x) by
A89,
A91,
FUNCT_1: 47;
then D
= (do1
^ d91) by
A92,
AFINSQ_1:def 3;
then
A98: n
= ((
Sum do1)
+ (
Sum d91)) by
A43,
AFINSQ_2: 55;
reconsider bo1 = (b
|^ o1) as
Element of
NAT by
ORDINAL1:def 12;
consider ok1 be
Nat such that
A99: (ok1
+ 1)
= o1;
now
let k be
Nat;
reconsider K = k as
Element of
NAT by
ORDINAL1:def 12;
assume k
in (
dom d9);
then (d9
. K)
= ((d
. (o
+ k))
* (b
|^ (o
+ k))) by
A42,
A82
.= ((d
. (o
+ k))
* ((b
|^ o)
* (b
|^ k))) by
NEWTON: 8
.= (((d
. (o
+ k))
* (b
|^ k))
* (b
|^ o));
hence (b
|^ o)
divides (d9
. k) by
NAT_D:def 3;
end;
then
A100: (b
|^ o)
divides (
Sum d9) by
Th2;
then ((
Sum d9)
mod (b
|^ o))
=
0 by
A85,
PEPIN: 6;
then (n
div (b
|^ o))
= (((
Sum d9)
div (b
|^ o))
+ ((
Sum co)
div (b
|^ o))) by
A84,
NAT_D: 19;
then
A101: ((n
div (b
|^ o))
* (b
|^ o))
= (
Sum d9) by
A83,
A100,
NAT_D: 3;
reconsider co = (
<%>
NAT ) as
XFinSequence of
NAT ;
(
Sum co)
=
0 ;
then
A102: ((
Sum co)
div (b
|^ o))
=
0 by
NAT_2: 2;
set d9 = E;
E
= (co
^ d9);
then
A103: n
= ((
Sum co)
+ (
Sum d9)) by
A62,
AFINSQ_2: 55;
reconsider bo = (b
|^ o) as
Element of
NAT by
ORDINAL1:def 12;
A104: bo
<>
0 by
A1,
PREPOWER: 5;
reconsider ok1 as
Element of
NAT by
ORDINAL1:def 12;
reconsider g1 = ((b1
(#) (b
GeoSeq ))
| (ok1
+ 1)) as
XFinSequence of
NAT by
Th1;
A105: (1
- b)
<>
0 by
A1;
(
dom ((b
- 1)
(#) (b
GeoSeq )))
=
NAT by
FUNCT_2:def 1;
then
A106: o1
c= (
dom ((b
- 1)
(#) (b
GeoSeq ))) by
ORDINAL1:def 2;
then
A107: (
len do1)
= (
len g1) by
A91,
A99,
RELAT_1: 62;
A108: (
dom g1)
= o1 by
A99,
A106,
RELAT_1: 62;
A109: for i be
Nat st i
in (
dom do1) holds (do1
. i)
<= (g1
. i)
proof
let i be
Nat;
reconsider I = i as
Element of
NAT by
ORDINAL1:def 12;
assume
A110: i
in (
dom do1);
then i
in o1 by
A87,
A90,
AFINSQ_1: 11;
then
A111: (g1
. I)
= (((b
- 1)
(#) (b
GeoSeq ))
. I) by
A108,
FUNCT_1: 47
.= ((b
- 1)
* ((b
GeoSeq )
. I)) by
SEQ_1: 9
.= (b1
* (b
|^ I)) by
PREPOWER:def 1;
A112: (
dom do1)
c= (
dom D) by
RELAT_1: 60;
then (d
. i)
< (b1
+ 1) by
A40,
A41,
A110;
then
A113: (d
. i)
<= b1 by
NAT_1: 13;
(do1
. i)
= (D
. i) by
A110,
FUNCT_1: 47
.= ((d
. i)
* (b
|^ i)) by
A42,
A110,
A112;
hence thesis by
A111,
A113,
XREAL_1: 64;
end;
(
Sum g1)
= ((
Partial_Sums ((b
- 1)
(#) (b
GeoSeq )))
. ok1) by
AFINSQ_2: 56
.= (((b
- 1)
(#) (
Partial_Sums (b
GeoSeq )))
. ok1) by
SERIES_1: 9
.= ((b
- 1)
* ((
Partial_Sums (b
GeoSeq ))
. ok1)) by
SEQ_1: 9
.= ((b
- 1)
* ((1
- (b
to_power (ok1
+ 1)))
/ (1
- b))) by
A1,
SERIES_1: 22
.= (
- ((1
- b)
* ((1
- (b
|^ o1))
/ (1
- b)))) by
A99
.= (
- (1
- (b
|^ o1))) by
A105,
XCMPLX_1: 87
.= ((b
|^ o1)
- 1);
then (
Sum do1)
< (((b
|^ o1)
- 1)
+ 1) by
A107,
A109,
AFINSQ_2: 57,
XREAL_1: 145;
then
A114: ((
Sum do1)
div (b
|^ o1))
=
0 by
NAT_D: 27;
bo1
<>
0 by
A1,
PREPOWER: 5;
then ((
Sum d91)
mod (b
|^ o1))
=
0 by
A94,
PEPIN: 6;
then (n
div (b
|^ o1))
= (((
Sum d91)
div (b
|^ o1))
+ ((
Sum do1)
div (b
|^ o1))) by
A98,
NAT_D: 19;
then ((n
div (b
|^ o1))
* (b
|^ o1))
= (
Sum d91) by
A114,
A94,
NAT_D: 3;
then (D
. o)
= (((n
div (b
|^ o))
* (b
|^ o))
- ((n
div (b
|^ o1))
* (b
|^ o1))) by
A101,
A97,
AFINSQ_2: 53;
then ((d
. o)
* (b
|^ o))
= (((n
div (b
|^ o))
* (b
|^ o))
- ((n
div (b
|^ o1))
* (b
|^ o1))) by
A41,
A42,
A77;
then ((d
. o)
* (b
|^ o))
= (((n
div (b
|^ o))
* (b
|^ o))
- ((n
div (b
|^ o1))
* ((b
|^ o)
* (b
|^ 1)))) by
NEWTON: 8;
then ((d
. o)
* (b
|^ o))
= ((b
|^ o)
* ((n
div (b
|^ o))
- ((n
div (b
|^ o1))
* (b
|^ 1))));
then (((b
|^ o)
* (d
. o))
/ (b
|^ o))
= (((b
|^ o)
* ((n
div (b
|^ o))
- ((n
div (b
|^ o1))
* b)))
/ (b
|^ o));
then
A115: (d
. o)
= (((b
|^ o)
* ((n
div (b
|^ o))
- ((n
div (b
|^ o1))
* b)))
/ (b
|^ o)) by
A85,
XCMPLX_1: 89;
reconsider o1 = (o
+ 1) as
Element of
NAT ;
reconsider do1 = (E
| o1) as
XFinSequence of
NAT ;
A116: (
len e)
= (
len E) by
A60;
now
let k be
Nat;
reconsider K = k as
Element of
NAT by
ORDINAL1:def 12;
assume k
in (
dom d9);
then (d9
. K)
= ((e
. (o
+ k))
* (b
|^ (o
+ k))) by
A61,
A82
.= ((e
. (o
+ k))
* ((b
|^ o)
* (b
|^ k))) by
NEWTON: 8
.= (((e
. (o
+ k))
* (b
|^ k))
* (b
|^ o));
hence (b
|^ o)
divides (d9
. k) by
NAT_D:def 3;
end;
then
A117: (b
|^ o)
divides (
Sum d9) by
Th2;
then ((
Sum d9)
mod (b
|^ o))
=
0 by
A104,
PEPIN: 6;
then (n
div (b
|^ o))
= (((
Sum d9)
div (b
|^ o))
+ ((
Sum co)
div (b
|^ o))) by
A103,
NAT_D: 19;
then
A118: ((n
div (b
|^ o))
* (b
|^ o))
= (
Sum d9) by
A102,
A117,
NAT_D: 3;
A119:
now
let k be
Nat;
assume k
in (
dom
<%(E
. o)%>);
then k
in (
Segm 1) by
AFINSQ_1: 33;
then k
< 1 by
NAT_1: 44;
then k
=
0 by
NAT_1: 14;
hence (d9
. k)
= (
<%(E
. o)%>
. k) by
A82;
end;
reconsider oo1 = ((
len d)
- o1) as
Element of
NAT by
A82;
defpred
P[
Nat,
set] means $2
= (E
. ($1
+ o1));
A120: for u be
Nat st u
in (
Segm oo1) holds ex x be
Element of
NAT st
P[u, x];
consider d91 be
XFinSequence of
NAT such that
A121: (
dom d91)
= (
Segm oo1) & for x be
Nat st x
in (
Segm oo1) holds
P[x, (d91
. x)] from
STIRL2_1:sch 5(
A120);
o1
<= k by
A82,
NAT_1: 13;
then
A122: o1
< (
len d) by
XREAL_1: 147;
then
A123: (
len do1)
= o1 by
A76,
A116,
AFINSQ_1: 11;
A124:
now
let k be
Nat;
assume
A125: k
in (
dom d91);
thus (d9
. ((
len
<%(E
. o)%>)
+ k))
= (E
. ((
len do1)
+ k)) by
A82,
A123,
AFINSQ_1: 33
.= (d91
. k) by
A121,
A123,
A125;
end;
reconsider bo1 = (b
|^ o1) as
Element of
NAT by
ORDINAL1:def 12;
consider ok1 be
Nat such that
A126: (ok1
+ 1)
= o1;
A127: (
dom E)
= ((
len do1)
+ (
len d91)) by
A60,
A76,
A121,
A123;
now
let k be
Nat;
reconsider K = k as
Element of
NAT by
ORDINAL1:def 12;
assume
A128: k
in (
dom d91);
then k
< (
len d91) by
AFINSQ_1: 86;
then (o1
+ k)
< (
len E) by
A123,
A127,
XREAL_1: 8;
then (o1
+ k)
in (
dom E) by
AFINSQ_1: 86;
then (E
. (o1
+ k))
= ((e
. (o1
+ k))
* (b
|^ (o1
+ k))) by
A61;
then (d91
. K)
= ((e
. (o1
+ k))
* (b
|^ (o1
+ k))) by
A121,
A128
.= ((e
. (o1
+ k))
* ((b
|^ o1)
* (b
|^ k))) by
NEWTON: 8
.= (((e
. (o1
+ k))
* (b
|^ k))
* (b
|^ o1));
hence (b
|^ o1)
divides (d91
. k) by
NAT_D:def 3;
end;
then
A129: (b
|^ o1)
divides (
Sum d91) by
Th2;
reconsider ok1 as
Element of
NAT by
ORDINAL1:def 12;
reconsider g1 = ((b1
(#) (b
GeoSeq ))
| (ok1
+ 1)) as
XFinSequence of
NAT by
Th1;
A130: (1
- b)
<>
0 by
A1;
(
dom ((b
- 1)
(#) (b
GeoSeq )))
=
NAT by
FUNCT_2:def 1;
then
A131: o1
c= (
dom ((b
- 1)
(#) (b
GeoSeq ))) by
ORDINAL1:def 2;
then
A132: (
len do1)
= (
len g1) by
A123,
A126,
RELAT_1: 62;
A133: (
dom g1)
= o1 by
A126,
A131,
RELAT_1: 62;
A134: for i be
Nat st i
in (
dom do1) holds (do1
. i)
<= (g1
. i)
proof
let i be
Nat;
reconsider I = i as
Element of
NAT by
ORDINAL1:def 12;
assume
A135: i
in (
dom do1);
then i
in o1 by
A76,
A122,
A116,
AFINSQ_1: 11;
then
A136: (g1
. I)
= (((b
- 1)
(#) (b
GeoSeq ))
. I) by
A133,
FUNCT_1: 47
.= ((b
- 1)
* ((b
GeoSeq )
. I)) by
SEQ_1: 9
.= (b1
* (b
|^ I)) by
PREPOWER:def 1;
A137: (
dom do1)
c= (
dom E) by
RELAT_1: 60;
then (e
. i)
< (b1
+ 1) by
A59,
A60,
A135;
then
A138: (e
. i)
<= b1 by
NAT_1: 13;
(do1
. i)
= (E
. i) by
A135,
FUNCT_1: 47
.= ((e
. i)
* (b
|^ i)) by
A61,
A135,
A137;
hence thesis by
A136,
A138,
XREAL_1: 64;
end;
(
Sum g1)
= ((
Partial_Sums ((b
- 1)
(#) (b
GeoSeq )))
. ok1) by
AFINSQ_2: 56
.= (((b
- 1)
(#) (
Partial_Sums (b
GeoSeq )))
. ok1) by
SERIES_1: 9
.= ((b
- 1)
* ((
Partial_Sums (b
GeoSeq ))
. ok1)) by
SEQ_1: 9
.= ((b
- 1)
* ((1
- (b
to_power (ok1
+ 1)))
/ (1
- b))) by
A1,
SERIES_1: 22
.= (
- ((1
- b)
* ((1
- (b
|^ o1))
/ (1
- b)))) by
A126
.= (
- (1
- (b
|^ o1))) by
A130,
XCMPLX_1: 87
.= ((b
|^ o1)
- 1);
then (
Sum do1)
< (((b
|^ o1)
- 1)
+ 1) by
A132,
A134,
AFINSQ_2: 57,
XREAL_1: 145;
then
A139: ((
Sum do1)
div (b
|^ o1))
=
0 by
NAT_D: 27;
(for x be
Nat st x
in (
dom do1) holds (E
. x)
= (do1
. x)) & for x be
Nat st x
in (
dom d91) holds (E
. ((
len do1)
+ x))
= (d91
. x) by
A121,
A123,
FUNCT_1: 47;
then E
= (do1
^ d91) by
A127,
AFINSQ_1:def 3;
then
A140: n
= ((
Sum do1)
+ (
Sum d91)) by
A62,
AFINSQ_2: 55;
bo1
<>
0 by
A1,
PREPOWER: 5;
then ((
Sum d91)
mod (b
|^ o1))
=
0 by
A129,
PEPIN: 6;
then (n
div (b
|^ o1))
= (((
Sum d91)
div (b
|^ o1))
+ ((
Sum do1)
div (b
|^ o1))) by
A140,
NAT_D: 19;
then
A141: ((n
div (b
|^ o1))
* (b
|^ o1))
= (
Sum d91) by
A139,
A129,
NAT_D: 3;
(
dom d9)
= (1
+ (
dom d91)) by
A60,
A76,
A82,
A121
.= ((
len
<%(E
. o)%>)
+ (
len d91)) by
AFINSQ_1: 34;
then d9
= (
<%(E
. o)%>
^ d91) by
A119,
A124,
AFINSQ_1:def 3;
then (
Sum d9)
= ((
Sum
<%(E
. o)%>)
+ (
Sum d91)) by
AFINSQ_2: 55;
then (E
. o)
= (((n
div (b
|^ o))
* (b
|^ o))
- ((n
div (b
|^ o1))
* (b
|^ o1))) by
A118,
A141,
AFINSQ_2: 53;
then ((e
. o)
* (b
|^ o))
= (((n
div (b
|^ o))
* (b
|^ o))
- ((n
div (b
|^ o1))
* (b
|^ o1))) by
A60,
A61,
A76,
A77;
then ((e
. o)
* (b
|^ o))
= (((n
div (b
|^ o))
* (b
|^ o))
- ((n
div (b
|^ o1))
* ((b
|^ o)
* (b
|^ 1)))) by
NEWTON: 8;
then ((e
. o)
* (b
|^ o))
= ((b
|^ o)
* ((n
div (b
|^ o))
- ((n
div (b
|^ o1))
* (b
|^ 1))));
then (((b
|^ o)
* (e
. o))
/ (b
|^ o))
= (((b
|^ o)
* ((n
div (b
|^ o))
- ((n
div (b
|^ o1))
* b)))
/ (b
|^ o));
hence (d
. a)
= (e
. a) by
A115,
A104,
XCMPLX_1: 89;
end;
suppose
A142: o
>
0 & o
= k;
set d9 =
<%(D
. o)%>;
reconsider co = (D
| o) as
XFinSequence of
NAT ;
A143: (
len d)
= (
len D) by
A41;
then
A144: (
len co)
= o by
A79,
AFINSQ_1: 11;
A145: (
len d9)
= oo by
A142,
AFINSQ_1: 34;
then
A146: (
dom D)
= ((
len co)
+ (
len d9)) by
A41,
A144;
A147: for x be
Nat st x
in (
dom d9) holds (D
. ((
len co)
+ x))
= (d9
. x)
proof
let x be
Nat;
assume x
in (
dom d9);
then x
< 1 by
A142,
A145,
AFINSQ_1: 86;
then x
=
0 by
NAT_1: 14;
hence thesis by
A144;
end;
now
let k be
Nat;
reconsider K = k as
Element of
NAT by
ORDINAL1:def 12;
assume
A148: k
in (
dom d9);
then k
< (
len d9) by
AFINSQ_1: 86;
then (o
+ k)
< (
len D) by
A144,
A146,
XREAL_1: 8;
then (o
+ k)
in (
dom D) by
AFINSQ_1: 86;
then (D
. (o
+ k))
= ((d
. (o
+ k))
* (b
|^ (o
+ k))) by
A42;
then (d9
. K)
= ((d
. (o
+ k))
* (b
|^ (o
+ k))) by
A144,
A147,
A148
.= ((d
. (o
+ k))
* ((b
|^ o)
* (b
|^ k))) by
NEWTON: 8
.= (((d
. (o
+ k))
* (b
|^ k))
* (b
|^ o));
hence (b
|^ o)
divides (d9
. k) by
NAT_D:def 3;
end;
then
A149: (b
|^ o)
divides (
Sum d9) by
Th2;
reconsider bo = (b
|^ o) as
Element of
NAT by
ORDINAL1:def 12;
A150: (1
- b)
<>
0 by
A1;
consider ok be
Nat such that
A151: (ok
+ 1)
= o by
A142,
NAT_1: 6;
reconsider ok as
Element of
NAT by
ORDINAL1:def 12;
reconsider g = ((b1
(#) (b
GeoSeq ))
| (ok
+ 1)) as
XFinSequence of
NAT by
Th1;
A152: (
Sum g)
= ((
Partial_Sums ((b
- 1)
(#) (b
GeoSeq )))
. ok) by
AFINSQ_2: 56
.= (((b
- 1)
(#) (
Partial_Sums (b
GeoSeq )))
. ok) by
SERIES_1: 9
.= ((b
- 1)
* ((
Partial_Sums (b
GeoSeq ))
. ok)) by
SEQ_1: 9
.= ((b
- 1)
* ((1
- (b
to_power (ok
+ 1)))
/ (1
- b))) by
A1,
SERIES_1: 22
.= (
- ((1
- b)
* ((1
- (b
|^ o))
/ (1
- b)))) by
A151
.= (
- (1
- (b
|^ o))) by
A150,
XCMPLX_1: 87
.= ((b
|^ o)
- 1);
consider ok be
Nat such that
A153: (ok
+ 1)
= o by
A142,
NAT_1: 6;
(
dom ((b
- 1)
(#) (b
GeoSeq )))
=
NAT by
FUNCT_2:def 1;
then
A154: o
c= (
dom ((b
- 1)
(#) (b
GeoSeq ))) by
ORDINAL1:def 2;
then
A155: (
dom g)
= o by
A151,
RELAT_1: 62;
A156: for i be
Nat st i
in (
dom co) holds (co
. i)
<= (g
. i)
proof
let i be
Nat;
reconsider I = i as
Element of
NAT by
ORDINAL1:def 12;
assume
A157: i
in (
dom co);
then i
in o by
A79,
A143,
AFINSQ_1: 11;
then
A158: (g
. I)
= (((b
- 1)
(#) (b
GeoSeq ))
. I) by
A155,
FUNCT_1: 47
.= ((b
- 1)
* ((b
GeoSeq )
. I)) by
SEQ_1: 9
.= (b1
* (b
|^ I)) by
PREPOWER:def 1;
A159: (
dom co)
c= (
dom D) by
RELAT_1: 60;
then (d
. i)
< (b1
+ 1) by
A40,
A41,
A157;
then
A160: (d
. i)
<= b1 by
NAT_1: 13;
(co
. i)
= (D
. i) by
A157,
FUNCT_1: 47
.= ((d
. i)
* (b
|^ i)) by
A42,
A157,
A159;
hence thesis by
A158,
A160,
XREAL_1: 64;
end;
(
len co)
= (
len g) by
A144,
A151,
A154,
RELAT_1: 62;
then (
Sum co)
< (((b
|^ o)
- 1)
+ 1) by
A152,
A156,
AFINSQ_2: 57,
XREAL_1: 145;
then
A161: ((
Sum co)
div (b
|^ o))
=
0 by
NAT_D: 27;
for x be
Nat st x
in (
dom co) holds (D
. x)
= (co
. x) by
FUNCT_1: 47;
then D
= (co
^ d9) by
A146,
A147,
AFINSQ_1:def 3;
then
A162: n
= ((
Sum co)
+ (
Sum d9)) by
A43,
AFINSQ_2: 55;
A163: bo
<>
0 by
A1,
PREPOWER: 5;
then ((
Sum d9)
mod (b
|^ o))
=
0 by
A149,
PEPIN: 6;
then (n
div (b
|^ o))
= (((
Sum d9)
div (b
|^ o))
+ ((
Sum co)
div (b
|^ o))) by
A162,
NAT_D: 19;
then ((n
div (b
|^ o))
* (b
|^ o))
= (
Sum d9) by
A161,
A149,
NAT_D: 3;
then (D
. o)
= ((n
div (b
|^ o))
* (b
|^ o)) by
AFINSQ_2: 53;
then (((d
. o)
* (b
|^ o))
/ (b
|^ o))
= (((n
div (b
|^ o))
* (b
|^ o))
/ (b
|^ o)) by
A41,
A42,
A77;
then
A164: (d
. o)
= (((n
div (b
|^ o))
* (b
|^ o))
/ (b
|^ o)) by
A163,
XCMPLX_1: 89;
set d9 =
<%(E
. o)%>;
reconsider co = (E
| o) as
XFinSequence of
NAT ;
A165: (
len e)
= (
len E) by
A60;
then
A166: (
len co)
= o by
A76,
A79,
AFINSQ_1: 11;
A167: (
len d9)
= oo by
A142,
AFINSQ_1: 34;
then
A168: (
dom E)
= ((
len co)
+ (
len d9)) by
A60,
A76,
A166;
A169: for x be
Nat st x
in (
dom d9) holds (E
. ((
len co)
+ x))
= (d9
. x)
proof
let x be
Nat;
assume x
in (
dom d9);
then x
< 1 by
A142,
A167,
AFINSQ_1: 86;
then x
=
0 by
NAT_1: 14;
hence thesis by
A166;
end;
now
let k be
Nat;
reconsider K = k as
Element of
NAT by
ORDINAL1:def 12;
assume
A170: k
in (
dom d9);
then k
< (
len d9) by
AFINSQ_1: 86;
then (o
+ k)
< (
len E) by
A166,
A168,
XREAL_1: 8;
then (o
+ k)
in (
dom E) by
AFINSQ_1: 86;
then (E
. (o
+ k))
= ((e
. (o
+ k))
* (b
|^ (o
+ k))) by
A61;
then (d9
. K)
= ((e
. (o
+ k))
* (b
|^ (o
+ k))) by
A166,
A169,
A170
.= ((e
. (o
+ k))
* ((b
|^ o)
* (b
|^ k))) by
NEWTON: 8
.= (((e
. (o
+ k))
* (b
|^ k))
* (b
|^ o));
hence (b
|^ o)
divides (d9
. k) by
NAT_D:def 3;
end;
then
A171: (b
|^ o)
divides (
Sum d9) by
Th2;
reconsider ok as
Element of
NAT by
ORDINAL1:def 12;
reconsider g = ((b1
(#) (b
GeoSeq ))
| (ok
+ 1)) as
XFinSequence of
NAT by
Th1;
reconsider bo = (b
|^ o) as
Element of
NAT by
ORDINAL1:def 12;
A172: (1
- b)
<>
0 by
A1;
(
dom ((b
- 1)
(#) (b
GeoSeq )))
=
NAT by
FUNCT_2:def 1;
then
A173: o
c= (
dom ((b
- 1)
(#) (b
GeoSeq ))) by
ORDINAL1:def 2;
then
A174: (
len co)
= (
len g) by
A166,
A153,
RELAT_1: 62;
A175: (
dom g)
= o by
A153,
A173,
RELAT_1: 62;
A176: for i be
Nat st i
in (
dom co) holds (co
. i)
<= (g
. i)
proof
let i be
Nat;
reconsider I = i as
Element of
NAT by
ORDINAL1:def 12;
assume
A177: i
in (
dom co);
then i
in o by
A76,
A79,
A165,
AFINSQ_1: 11;
then
A178: (g
. I)
= (((b
- 1)
(#) (b
GeoSeq ))
. I) by
A175,
FUNCT_1: 47
.= ((b
- 1)
* ((b
GeoSeq )
. I)) by
SEQ_1: 9
.= (b1
* (b
|^ I)) by
PREPOWER:def 1;
A179: (
dom co)
c= (
dom E) by
RELAT_1: 60;
then (e
. i)
< (b1
+ 1) by
A59,
A60,
A177;
then
A180: (e
. i)
<= b1 by
NAT_1: 13;
(co
. i)
= (E
. i) by
A177,
FUNCT_1: 47
.= ((e
. i)
* (b
|^ i)) by
A61,
A177,
A179;
hence thesis by
A178,
A180,
XREAL_1: 64;
end;
(
Sum g)
= ((
Partial_Sums ((b
- 1)
(#) (b
GeoSeq )))
. ok) by
AFINSQ_2: 56
.= (((b
- 1)
(#) (
Partial_Sums (b
GeoSeq )))
. ok) by
SERIES_1: 9
.= ((b
- 1)
* ((
Partial_Sums (b
GeoSeq ))
. ok)) by
SEQ_1: 9
.= ((b
- 1)
* ((1
- (b
to_power (ok
+ 1)))
/ (1
- b))) by
A1,
SERIES_1: 22
.= (
- ((1
- b)
* ((1
- (b
|^ o))
/ (1
- b)))) by
A153
.= (
- (1
- (b
|^ o))) by
A172,
XCMPLX_1: 87
.= ((b
|^ o)
- 1);
then (
Sum co)
< (((b
|^ o)
- 1)
+ 1) by
A174,
A176,
AFINSQ_2: 57,
XREAL_1: 145;
then
A181: ((
Sum co)
div (b
|^ o))
=
0 by
NAT_D: 27;
for x be
Nat st x
in (
dom co) holds (E
. x)
= (co
. x) by
FUNCT_1: 47;
then E
= (co
^ d9) by
A168,
A169,
AFINSQ_1:def 3;
then
A182: n
= ((
Sum co)
+ (
Sum d9)) by
A62,
AFINSQ_2: 55;
A183: bo
<>
0 by
A1,
PREPOWER: 5;
then ((
Sum d9)
mod (b
|^ o))
=
0 by
A171,
PEPIN: 6;
then (n
div (b
|^ o))
= (((
Sum d9)
div (b
|^ o))
+ ((
Sum co)
div (b
|^ o))) by
A182,
NAT_D: 19;
then ((n
div (b
|^ o))
* (b
|^ o))
= (
Sum d9) by
A181,
A171,
NAT_D: 3;
then (E
. o)
= ((n
div (b
|^ o))
* (b
|^ o)) by
AFINSQ_2: 53;
then (((e
. o)
* (b
|^ o))
/ (b
|^ o))
= (((n
div (b
|^ o))
* (b
|^ o))
/ (b
|^ o)) by
A60,
A61,
A76,
A77;
hence (d
. a)
= (e
. a) by
A164,
A183,
XCMPLX_1: 89;
end;
suppose
A184: o
>
0 & o
< k;
reconsider o1 = (o
+ 1) as
Element of
NAT ;
A185: o1
<= k by
A184,
NAT_1: 13;
then
A186: o1
< (
len d) by
XREAL_1: 147;
reconsider bo1 = (b
|^ o1) as
Element of
NAT by
ORDINAL1:def 12;
reconsider do1 = (D
| o1) as
XFinSequence of
NAT ;
reconsider bo = (b
|^ o) as
Element of
NAT by
ORDINAL1:def 12;
defpred
P[
Nat,
set] means $2
= (D
. ($1
+ o));
consider ok1 be
Nat such that
A187: (ok1
+ 1)
= o1;
reconsider ok1 as
Element of
NAT by
ORDINAL1:def 12;
reconsider g1 = ((b1
(#) (b
GeoSeq ))
| (ok1
+ 1)) as
XFinSequence of
NAT by
Th1;
A188: (
len d)
= (
len D) by
A41;
then
A189: (
len do1)
= o1 by
A186,
AFINSQ_1: 11;
(
dom ((b
- 1)
(#) (b
GeoSeq )))
=
NAT by
FUNCT_2:def 1;
then
A190: o1
c= (
dom ((b
- 1)
(#) (b
GeoSeq ))) by
ORDINAL1:def 2;
then
A191: (
len do1)
= (
len g1) by
A189,
A187,
RELAT_1: 62;
A192: (
dom g1)
= o1 by
A187,
A190,
RELAT_1: 62;
A193: for i be
Nat st i
in (
dom do1) holds (do1
. i)
<= (g1
. i)
proof
let i be
Nat;
reconsider I = i as
Element of
NAT by
ORDINAL1:def 12;
assume
A194: i
in (
dom do1);
then i
in o1 by
A186,
A188,
AFINSQ_1: 11;
then
A195: (g1
. I)
= (((b
- 1)
(#) (b
GeoSeq ))
. I) by
A192,
FUNCT_1: 47
.= ((b
- 1)
* ((b
GeoSeq )
. I)) by
SEQ_1: 9
.= (b1
* (b
|^ I)) by
PREPOWER:def 1;
A196: (
dom do1)
c= (
dom D) by
RELAT_1: 60;
then (d
. i)
< (b1
+ 1) by
A40,
A41,
A194;
then
A197: (d
. i)
<= b1 by
NAT_1: 13;
(do1
. i)
= (D
. i) by
A194,
FUNCT_1: 47
.= ((d
. i)
* (b
|^ i)) by
A42,
A194,
A196;
hence thesis by
A195,
A197,
XREAL_1: 64;
end;
k
< (
len d) by
XREAL_1: 147;
then
reconsider oo1 = ((
len d)
- o1) as
Element of
NAT by
A185,
NAT_1: 21,
XXREAL_0: 2;
A198: for u be
Nat st u
in (
Segm oo) holds ex x be
Element of
NAT st
P[u, x];
consider d9 be
XFinSequence of
NAT such that
A199: (
dom d9)
= (
Segm oo) & for x be
Nat st x
in (
Segm oo) holds
P[x, (d9
. x)] from
STIRL2_1:sch 5(
A198);
A200:
now
let k be
Nat;
assume k
in (
dom
<%(D
. o)%>);
then k
in (
Segm 1) by
AFINSQ_1: 33;
then k
< 1 by
NAT_1: 44;
then
A201: k
=
0 by
NAT_1: 14;
then (
len d9)
> k by
A79,
XREAL_1: 50,
A199;
then k
in (
dom d9) by
A199,
NAT_1: 44;
hence (d9
. k)
= (D
. (k
+ o)) by
A199
.= (
<%(D
. o)%>
. k) by
A201;
end;
defpred
P[
Nat,
set] means $2
= (D
. ($1
+ o1));
A202: for u be
Nat st u
in (
Segm oo1) holds ex x be
Element of
NAT st
P[u, x];
consider d91 be
XFinSequence of
NAT such that
A203: (
dom d91)
= (
Segm oo1) & for x be
Nat st x
in (
Segm oo1) holds
P[x, (d91
. x)] from
STIRL2_1:sch 5(
A202);
reconsider co = (D
| o) as
XFinSequence of
NAT ;
A204: (
len d)
= (
len D) by
A41;
then
A205: (
len co)
= o by
A79,
AFINSQ_1: 11;
then
A206: (
dom D)
= ((
len co)
+ (
len d9)) by
A41,
A199;
now
let k be
Nat;
reconsider K = k as
Element of
NAT by
ORDINAL1:def 12;
assume
A207: k
in (
dom d9);
then k
< (
len d9) by
AFINSQ_1: 86;
then (o
+ k)
< (
len D) by
A205,
A206,
XREAL_1: 8;
then (o
+ k)
in (
dom D) by
AFINSQ_1: 86;
then (D
. (o
+ k))
= ((d
. (o
+ k))
* (b
|^ (o
+ k))) by
A42;
then (d9
. K)
= ((d
. (o
+ k))
* (b
|^ (o
+ k))) by
A199,
A207
.= ((d
. (o
+ k))
* ((b
|^ o)
* (b
|^ k))) by
NEWTON: 8
.= (((d
. (o
+ k))
* (b
|^ k))
* (b
|^ o));
hence (b
|^ o)
divides (d9
. k) by
NAT_D:def 3;
end;
then
A208: (b
|^ o)
divides (
Sum d9) by
Th2;
(for x be
Nat st x
in (
dom co) holds (D
. x)
= (co
. x)) & for x be
Nat st x
in (
dom d9) holds (D
. ((
len co)
+ x))
= (d9
. x) by
A199,
A205,
FUNCT_1: 47;
then D
= (co
^ d9) by
A206,
AFINSQ_1:def 3;
then
A209: n
= ((
Sum co)
+ (
Sum d9)) by
A43,
AFINSQ_2: 55;
consider ok be
Nat such that
A210: (ok
+ 1)
= o by
A184,
NAT_1: 6;
reconsider ok as
Element of
NAT by
ORDINAL1:def 12;
reconsider g = ((b1
(#) (b
GeoSeq ))
| (ok
+ 1)) as
XFinSequence of
NAT by
Th1;
A211: (1
- b)
<>
0 by
A1;
A212: (
Sum g)
= ((
Partial_Sums ((b
- 1)
(#) (b
GeoSeq )))
. ok) by
AFINSQ_2: 56
.= (((b
- 1)
(#) (
Partial_Sums (b
GeoSeq )))
. ok) by
SERIES_1: 9
.= ((b
- 1)
* ((
Partial_Sums (b
GeoSeq ))
. ok)) by
SEQ_1: 9
.= ((b
- 1)
* ((1
- (b
to_power (ok
+ 1)))
/ (1
- b))) by
A1,
SERIES_1: 22
.= (
- ((1
- b)
* ((1
- (b
|^ o))
/ (1
- b)))) by
A210
.= (
- (1
- (b
|^ o))) by
A211,
XCMPLX_1: 87
.= ((b
|^ o)
- 1);
(
dom ((b
- 1)
(#) (b
GeoSeq )))
=
NAT by
FUNCT_2:def 1;
then
A213: o
c= (
dom ((b
- 1)
(#) (b
GeoSeq ))) by
ORDINAL1:def 2;
then
A214: (
dom g)
= o by
A210,
RELAT_1: 62;
A215: for i be
Nat st i
in (
dom co) holds (co
. i)
<= (g
. i)
proof
let i be
Nat;
reconsider I = i as
Element of
NAT by
ORDINAL1:def 12;
assume
A216: i
in (
dom co);
then i
in o by
A79,
A204,
AFINSQ_1: 11;
then
A217: (g
. I)
= (((b
- 1)
(#) (b
GeoSeq ))
. I) by
A214,
FUNCT_1: 47
.= ((b
- 1)
* ((b
GeoSeq )
. I)) by
SEQ_1: 9
.= (b1
* (b
|^ I)) by
PREPOWER:def 1;
A218: (
dom co)
c= (
dom D) by
RELAT_1: 60;
then (d
. i)
< (b1
+ 1) by
A40,
A41,
A216;
then
A219: (d
. i)
<= b1 by
NAT_1: 13;
(co
. i)
= (D
. i) by
A216,
FUNCT_1: 47
.= ((d
. i)
* (b
|^ i)) by
A42,
A216,
A218;
hence thesis by
A217,
A219,
XREAL_1: 64;
end;
A220:
now
let k be
Nat;
assume
A221: k
in (
dom d91);
then k
< (
len d91) by
A203,
NAT_1: 44;
then (k
+ 1)
< (oo1
+ 1) by
XREAL_1: 8,
A203;
then (k
+ 1)
< (
len d9) by
A199;
then
A222: (k
+ 1)
in (
dom d9) by
A199,
NAT_1: 44;
thus (d9
. ((
len
<%(D
. o)%>)
+ k))
= (d9
. (1
+ k)) by
AFINSQ_1: 33
.= (D
. ((
len co)
+ (k
+ 1))) by
A199,
A205,
A222
.= (D
. ((
len do1)
+ k)) by
A205,
A189
.= (d91
. k) by
A203,
A189,
A221;
end;
(
dom d9)
= (1
+ (
dom d91)) by
A199,
A203
.= ((
len
<%(D
. o)%>)
+ (
len d91)) by
AFINSQ_1: 34;
then d9
= (
<%(D
. o)%>
^ d91) by
A200,
A220,
AFINSQ_1:def 3;
then
A223: (
Sum d9)
= ((
Sum
<%(D
. o)%>)
+ (
Sum d91)) by
AFINSQ_2: 55;
defpred
P[
Nat,
set] means $2
= (E
. ($1
+ o));
A224: (1
- b)
<>
0 by
A1;
consider ok be
Nat such that
A225: (ok
+ 1)
= o by
A184,
NAT_1: 6;
A226: (
dom D)
= ((
len do1)
+ (
len d91)) by
A41,
A203,
A189;
now
let k be
Nat;
reconsider K = k as
Element of
NAT by
ORDINAL1:def 12;
assume
A227: k
in (
dom d91);
then k
< (
len d91) by
AFINSQ_1: 86;
then (o1
+ k)
< (
len D) by
A189,
A226,
XREAL_1: 8;
then (o1
+ k)
in (
dom D) by
AFINSQ_1: 86;
then (D
. (o1
+ k))
= ((d
. (o1
+ k))
* (b
|^ (o1
+ k))) by
A42;
then (d91
. K)
= ((d
. (o1
+ k))
* (b
|^ (o1
+ k))) by
A203,
A227
.= ((d
. (o1
+ k))
* ((b
|^ o1)
* (b
|^ k))) by
NEWTON: 8
.= (((d
. (o1
+ k))
* (b
|^ k))
* (b
|^ o1));
hence (b
|^ o1)
divides (d91
. k) by
NAT_D:def 3;
end;
then
A228: (b
|^ o1)
divides (
Sum d91) by
Th2;
(
len co)
= (
len g) by
A205,
A210,
A213,
RELAT_1: 62;
then (
Sum co)
< (((b
|^ o)
- 1)
+ 1) by
A212,
A215,
AFINSQ_2: 57,
XREAL_1: 145;
then
A229: ((
Sum co)
div (b
|^ o))
=
0 by
NAT_D: 27;
A230: (1
- b)
<>
0 by
A1;
(
Sum g1)
= ((
Partial_Sums ((b
- 1)
(#) (b
GeoSeq )))
. ok1) by
AFINSQ_2: 56
.= (((b
- 1)
(#) (
Partial_Sums (b
GeoSeq )))
. ok1) by
SERIES_1: 9
.= ((b
- 1)
* ((
Partial_Sums (b
GeoSeq ))
. ok1)) by
SEQ_1: 9
.= ((b
- 1)
* ((1
- (b
to_power (ok1
+ 1)))
/ (1
- b))) by
A1,
SERIES_1: 22
.= (
- ((1
- b)
* ((1
- (b
|^ o1))
/ (1
- b)))) by
A187
.= (
- (1
- (b
|^ o1))) by
A230,
XCMPLX_1: 87
.= ((b
|^ o1)
- 1);
then (
Sum do1)
< (((b
|^ o1)
- 1)
+ 1) by
A191,
A193,
AFINSQ_2: 57,
XREAL_1: 145;
then
A231: ((
Sum do1)
div (b
|^ o1))
=
0 by
NAT_D: 27;
(for x be
Nat st x
in (
dom do1) holds (D
. x)
= (do1
. x)) & for x be
Nat st x
in (
dom d91) holds (D
. ((
len do1)
+ x))
= (d91
. x) by
A203,
A189,
FUNCT_1: 47;
then D
= (do1
^ d91) by
A226,
AFINSQ_1:def 3;
then
A232: n
= ((
Sum do1)
+ (
Sum d91)) by
A43,
AFINSQ_2: 55;
bo1
<>
0 by
A1,
PREPOWER: 5;
then ((
Sum d91)
mod (b
|^ o1))
=
0 by
A228,
PEPIN: 6;
then (n
div (b
|^ o1))
= (((
Sum d91)
div (b
|^ o1))
+ ((
Sum do1)
div (b
|^ o1))) by
A232,
NAT_D: 19;
then
A233: ((n
div (b
|^ o1))
* (b
|^ o1))
= (
Sum d91) by
A231,
A228,
NAT_D: 3;
A234: bo
<>
0 by
A1,
PREPOWER: 5;
then ((
Sum d9)
mod (b
|^ o))
=
0 by
A208,
PEPIN: 6;
then (n
div (b
|^ o))
= (((
Sum d9)
div (b
|^ o))
+ ((
Sum co)
div (b
|^ o))) by
A209,
NAT_D: 19;
then ((n
div (b
|^ o))
* (b
|^ o))
= (
Sum d9) & (
Sum
<%(D
. o)%>)
= (D
. o) by
A229,
A208,
AFINSQ_2: 53,
NAT_D: 3;
then ((d
. o)
* (b
|^ o))
= (((n
div (b
|^ o))
* (b
|^ o))
- ((n
div (b
|^ o1))
* (b
|^ o1))) by
A41,
A42,
A77,
A233,
A223;
then ((d
. o)
* (b
|^ o))
= (((n
div (b
|^ o))
* (b
|^ o))
- ((n
div (b
|^ o1))
* ((b
|^ o)
* (b
|^ 1)))) by
NEWTON: 8;
then ((d
. o)
* (b
|^ o))
= ((b
|^ o)
* ((n
div (b
|^ o))
- ((n
div (b
|^ o1))
* (b
|^ 1))));
then (((b
|^ o)
* (d
. o))
/ (b
|^ o))
= (((b
|^ o)
* ((n
div (b
|^ o))
- ((n
div (b
|^ o1))
* b)))
/ (b
|^ o));
then
A235: (d
. o)
= (((b
|^ o)
* ((n
div (b
|^ o))
- ((n
div (b
|^ o1))
* b)))
/ (b
|^ o)) by
A234,
XCMPLX_1: 89;
reconsider o1 = (o
+ 1) as
Element of
NAT ;
A236: o1
<= k by
A184,
NAT_1: 13;
then
A237: o1
< (
len d) by
XREAL_1: 147;
reconsider ok as
Element of
NAT by
ORDINAL1:def 12;
reconsider g = ((b1
(#) (b
GeoSeq ))
| (ok
+ 1)) as
XFinSequence of
NAT by
Th1;
A238: (1
- b)
<>
0 by
A1;
reconsider bo1 = (b
|^ o1) as
Element of
NAT by
ORDINAL1:def 12;
reconsider do1 = (E
| o1) as
XFinSequence of
NAT ;
reconsider bo = (b
|^ o) as
Element of
NAT by
ORDINAL1:def 12;
consider ok1 be
Nat such that
A239: (ok1
+ 1)
= o1;
reconsider ok1 as
Element of
NAT by
ORDINAL1:def 12;
reconsider g1 = ((b1
(#) (b
GeoSeq ))
| (ok1
+ 1)) as
XFinSequence of
NAT by
Th1;
A240: (
len e)
= (
len E) by
A60;
then
A241: (
len do1)
= o1 by
A76,
A237,
AFINSQ_1: 11;
(
dom ((b
- 1)
(#) (b
GeoSeq )))
=
NAT by
FUNCT_2:def 1;
then
A242: o1
c= (
dom ((b
- 1)
(#) (b
GeoSeq ))) by
ORDINAL1:def 2;
then
A243: (
len do1)
= (
len g1) by
A241,
A239,
RELAT_1: 62;
A244: (
dom g1)
= o1 by
A239,
A242,
RELAT_1: 62;
A245: for i be
Nat st i
in (
dom do1) holds (do1
. i)
<= (g1
. i)
proof
let i be
Nat;
reconsider I = i as
Element of
NAT by
ORDINAL1:def 12;
assume
A246: i
in (
dom do1);
then i
in o1 by
A76,
A237,
A240,
AFINSQ_1: 11;
then
A247: (g1
. I)
= (((b
- 1)
(#) (b
GeoSeq ))
. I) by
A244,
FUNCT_1: 47
.= ((b
- 1)
* ((b
GeoSeq )
. I)) by
SEQ_1: 9
.= (b1
* (b
|^ I)) by
PREPOWER:def 1;
A248: (
dom do1)
c= (
dom E) by
RELAT_1: 60;
then (e
. i)
< (b1
+ 1) by
A59,
A60,
A246;
then
A249: (e
. i)
<= b1 by
NAT_1: 13;
(do1
. i)
= (E
. i) by
A246,
FUNCT_1: 47
.= ((e
. i)
* (b
|^ i)) by
A61,
A246,
A248;
hence thesis by
A247,
A249,
XREAL_1: 64;
end;
(
Sum g1)
= ((
Partial_Sums ((b
- 1)
(#) (b
GeoSeq )))
. ok1) by
AFINSQ_2: 56
.= (((b
- 1)
(#) (
Partial_Sums (b
GeoSeq )))
. ok1) by
SERIES_1: 9
.= ((b
- 1)
* ((
Partial_Sums (b
GeoSeq ))
. ok1)) by
SEQ_1: 9
.= ((b
- 1)
* ((1
- (b
to_power (ok1
+ 1)))
/ (1
- b))) by
A1,
SERIES_1: 22
.= (
- ((1
- b)
* ((1
- (b
|^ o1))
/ (1
- b)))) by
A239
.= (
- (1
- (b
|^ o1))) by
A238,
XCMPLX_1: 87
.= ((b
|^ o1)
- 1);
then (
Sum do1)
< (((b
|^ o1)
- 1)
+ 1) by
A243,
A245,
AFINSQ_2: 57,
XREAL_1: 145;
then
A250: ((
Sum do1)
div (b
|^ o1))
=
0 by
NAT_D: 27;
k
< (
len d) by
XREAL_1: 147;
then
reconsider oo1 = ((
len d)
- o1) as
Element of
NAT by
A236,
NAT_1: 21,
XXREAL_0: 2;
A251: for u be
Nat st u
in (
Segm oo) holds ex x be
Element of
NAT st
P[u, x];
consider d9 be
XFinSequence of
NAT such that
A252: (
dom d9)
= (
Segm oo) & for x be
Nat st x
in (
Segm oo) holds
P[x, (d9
. x)] from
STIRL2_1:sch 5(
A251);
A253:
now
let k be
Nat;
assume k
in (
dom
<%(E
. o)%>);
then k
in (
Segm 1) by
AFINSQ_1: 33;
then k
< 1 by
NAT_1: 44;
then
A254: k
=
0 by
NAT_1: 14;
oo
>
0 by
A79,
XREAL_1: 50;
then k
< (
len d9) by
A252,
A254;
then k
in (
dom d9) by
A252,
NAT_1: 44;
hence (d9
. k)
= (E
. (k
+ o)) by
A252
.= (
<%(E
. o)%>
. k) by
A254;
end;
defpred
P[
Nat,
set] means $2
= (E
. ($1
+ o1));
A255: for u be
Nat st u
in (
Segm oo1) holds ex x be
Element of
NAT st
P[u, x];
consider d91 be
XFinSequence of
NAT such that
A256: (
dom d91)
= (
Segm oo1) & for x be
Nat st x
in (
Segm oo1) holds
P[x, (d91
. x)] from
STIRL2_1:sch 5(
A255);
A257: (
dom E)
= ((
len do1)
+ (
len d91)) by
A60,
A76,
A256,
A241;
now
let k be
Nat;
reconsider K = k as
Element of
NAT by
ORDINAL1:def 12;
assume
A258: k
in (
dom d91);
then k
< (
len d91) by
AFINSQ_1: 86;
then (o1
+ k)
< (
len E) by
A241,
A257,
XREAL_1: 8;
then (o1
+ k)
in (
dom E) by
AFINSQ_1: 86;
then (E
. (o1
+ k))
= ((e
. (o1
+ k))
* (b
|^ (o1
+ k))) by
A61;
then (d91
. K)
= ((e
. (o1
+ k))
* (b
|^ (o1
+ k))) by
A256,
A258
.= ((e
. (o1
+ k))
* ((b
|^ o1)
* (b
|^ k))) by
NEWTON: 8
.= (((e
. (o1
+ k))
* (b
|^ k))
* (b
|^ o1));
hence (b
|^ o1)
divides (d91
. k) by
NAT_D:def 3;
end;
then
A259: (b
|^ o1)
divides (
Sum d91) by
Th2;
(for x be
Nat st x
in (
dom do1) holds (E
. x)
= (do1
. x)) & for x be
Nat st x
in (
dom d91) holds (E
. ((
len do1)
+ x))
= (d91
. x) by
A256,
A241,
FUNCT_1: 47;
then E
= (do1
^ d91) by
A257,
AFINSQ_1:def 3;
then
A260: n
= ((
Sum do1)
+ (
Sum d91)) by
A62,
AFINSQ_2: 55;
bo1
<>
0 by
A1,
PREPOWER: 5;
then ((
Sum d91)
mod (b
|^ o1))
=
0 by
A259,
PEPIN: 6;
then (n
div (b
|^ o1))
= (((
Sum d91)
div (b
|^ o1))
+ ((
Sum do1)
div (b
|^ o1))) by
A260,
NAT_D: 19;
then
A261: ((n
div (b
|^ o1))
* (b
|^ o1))
= (
Sum d91) by
A250,
A259,
NAT_D: 3;
reconsider co = (E
| o) as
XFinSequence of
NAT ;
A262: (
len e)
= (
len E) by
A60;
then
A263: (
len co)
= o by
A76,
A79,
AFINSQ_1: 11;
then
A264: (
dom E)
= ((
len co)
+ (
len d9)) by
A60,
A76,
A252;
now
let k be
Nat;
reconsider K = k as
Element of
NAT by
ORDINAL1:def 12;
assume
A265: k
in (
dom d9);
then k
< (
len d9) by
AFINSQ_1: 86;
then (o
+ k)
< (
len E) by
A263,
A264,
XREAL_1: 8;
then (o
+ k)
in (
dom E) by
AFINSQ_1: 86;
then (E
. (o
+ k))
= ((e
. (o
+ k))
* (b
|^ (o
+ k))) by
A61;
then (d9
. K)
= ((e
. (o
+ k))
* (b
|^ (o
+ k))) by
A252,
A265
.= ((e
. (o
+ k))
* ((b
|^ o)
* (b
|^ k))) by
NEWTON: 8
.= (((e
. (o
+ k))
* (b
|^ k))
* (b
|^ o));
hence (b
|^ o)
divides (d9
. k) by
NAT_D:def 3;
end;
then
A266: (b
|^ o)
divides (
Sum d9) by
Th2;
(
dom ((b
- 1)
(#) (b
GeoSeq )))
=
NAT by
FUNCT_2:def 1;
then
A267: o
c= (
dom ((b
- 1)
(#) (b
GeoSeq ))) by
ORDINAL1:def 2;
then
A268: (
len co)
= (
len g) by
A263,
A225,
RELAT_1: 62;
A269: (
dom g)
= o by
A225,
A267,
RELAT_1: 62;
A270: for i be
Nat st i
in (
dom co) holds (co
. i)
<= (g
. i)
proof
let i be
Nat;
reconsider I = i as
Element of
NAT by
ORDINAL1:def 12;
assume
A271: i
in (
dom co);
then i
in o by
A76,
A79,
A262,
AFINSQ_1: 11;
then
A272: (g
. I)
= (((b
- 1)
(#) (b
GeoSeq ))
. I) by
A269,
FUNCT_1: 47
.= ((b
- 1)
* ((b
GeoSeq )
. I)) by
SEQ_1: 9
.= (b1
* (b
|^ I)) by
PREPOWER:def 1;
A273: (
dom co)
c= (
dom E) by
RELAT_1: 60;
then (e
. i)
< (b1
+ 1) by
A59,
A60,
A271;
then
A274: (e
. i)
<= b1 by
NAT_1: 13;
(co
. i)
= (E
. i) by
A271,
FUNCT_1: 47
.= ((e
. i)
* (b
|^ i)) by
A61,
A271,
A273;
hence thesis by
A272,
A274,
XREAL_1: 64;
end;
(
Sum g)
= ((
Partial_Sums ((b
- 1)
(#) (b
GeoSeq )))
. ok) by
AFINSQ_2: 56
.= (((b
- 1)
(#) (
Partial_Sums (b
GeoSeq )))
. ok) by
SERIES_1: 9
.= ((b
- 1)
* ((
Partial_Sums (b
GeoSeq ))
. ok)) by
SEQ_1: 9
.= ((b
- 1)
* ((1
- (b
to_power (ok
+ 1)))
/ (1
- b))) by
A1,
SERIES_1: 22
.= (
- ((1
- b)
* ((1
- (b
|^ o))
/ (1
- b)))) by
A225
.= (
- (1
- (b
|^ o))) by
A224,
XCMPLX_1: 87
.= ((b
|^ o)
- 1);
then (
Sum co)
< (((b
|^ o)
- 1)
+ 1) by
A268,
A270,
AFINSQ_2: 57,
XREAL_1: 145;
then
A275: ((
Sum co)
div (b
|^ o))
=
0 by
NAT_D: 27;
A276:
now
let k be
Nat;
assume
A277: k
in (
dom d91);
then k
< (
len d91) by
A256,
NAT_1: 44;
then (k
+ 1)
< (oo1
+ 1) by
XREAL_1: 8,
A256;
then
A278: (k
+ 1)
in (
Segm oo) by
NAT_1: 44;
thus (d9
. ((
len
<%(E
. o)%>)
+ k))
= (d9
. (1
+ k)) by
AFINSQ_1: 33
.= (E
. ((
len co)
+ (k
+ 1))) by
A252,
A263,
A278
.= (E
. ((
len do1)
+ k)) by
A263,
A241
.= (d91
. k) by
A256,
A241,
A277;
end;
(
dom d9)
= (1
+ (
dom d91)) by
A252,
A256
.= ((
len
<%(E
. o)%>)
+ (
len d91)) by
AFINSQ_1: 34;
then d9
= (
<%(E
. o)%>
^ d91) by
A253,
A276,
AFINSQ_1:def 3;
then
A279: (
Sum d9)
= ((
Sum
<%(E
. o)%>)
+ (
Sum d91)) by
AFINSQ_2: 55;
(for x be
Nat st x
in (
dom co) holds (E
. x)
= (co
. x)) & for x be
Nat st x
in (
dom d9) holds (E
. ((
len co)
+ x))
= (d9
. x) by
A252,
A263,
FUNCT_1: 47;
then E
= (co
^ d9) by
A264,
AFINSQ_1:def 3;
then
A280: n
= ((
Sum co)
+ (
Sum d9)) by
A62,
AFINSQ_2: 55;
A281: bo
<>
0 by
A1,
PREPOWER: 5;
then ((
Sum d9)
mod (b
|^ o))
=
0 by
A266,
PEPIN: 6;
then (n
div (b
|^ o))
= (((
Sum d9)
div (b
|^ o))
+ ((
Sum co)
div (b
|^ o))) by
A280,
NAT_D: 19;
then ((n
div (b
|^ o))
* (b
|^ o))
= (
Sum d9) by
A275,
A266,
NAT_D: 3;
then (E
. o)
= (((n
div (b
|^ o))
* (b
|^ o))
- ((n
div (b
|^ o1))
* (b
|^ o1))) by
A261,
A279,
AFINSQ_2: 53;
then ((e
. o)
* (b
|^ o))
= (((n
div (b
|^ o))
* (b
|^ o))
- ((n
div (b
|^ o1))
* (b
|^ o1))) by
A60,
A61,
A76,
A77;
then ((e
. o)
* (b
|^ o))
= (((n
div (b
|^ o))
* (b
|^ o))
- ((n
div (b
|^ o1))
* ((b
|^ o)
* (b
|^ 1)))) by
NEWTON: 8;
then ((e
. o)
* (b
|^ o))
= ((b
|^ o)
* ((n
div (b
|^ o))
- ((n
div (b
|^ o1))
* (b
|^ 1))));
then (((b
|^ o)
* (e
. o))
/ (b
|^ o))
= (((b
|^ o)
* ((n
div (b
|^ o))
- ((n
div (b
|^ o1))
* b)))
/ (b
|^ o));
hence (d
. a)
= (e
. a) by
A235,
A281,
XCMPLX_1: 89;
end;
end;
hence thesis by
A76,
FUNCT_1: 2;
end;
assume that n
=
0 and
A282: d
=
<%
0 %> & e
=
<%
0 %>;
thus thesis by
A282;
end;
end
theorem ::
NUMERAL1:4
Th4: for n,b be
Nat st b
> 1 holds (
len (
digits (n,b)))
>= 1
proof
let n,b be
Nat;
assume
A1: b
> 1;
per cases ;
suppose n
=
0 ;
then (
digits (n,b))
=
<%
0 %> by
A1,
Def2;
hence thesis by
AFINSQ_1: 33;
end;
suppose n
<>
0 ;
then ((
digits (n,b))
. ((
len (
digits (n,b)))
- 1))
<>
0 by
A1,
Def2;
then ((
len (
digits (n,b)))
- 1)
in (
dom (
digits (n,b))) by
FUNCT_1:def 2;
hence thesis by
NAT_1: 14;
end;
end;
theorem ::
NUMERAL1:5
Th5: for n,b be
Nat st b
> 1 holds (
value ((
digits (n,b)),b))
= n
proof
let n,b be
Nat;
assume
A1: b
> 1;
per cases ;
suppose n
<>
0 ;
hence thesis by
A1,
Def2;
end;
suppose
A2: n
=
0 ;
then
A3: (
digits (n,b))
=
<%
0 %> by
A1,
Def2;
now
let i be
Nat;
assume i
in (
dom
<%
0 %>);
then i
in
{
0 } by
AFINSQ_1:def 4,
CARD_1: 49;
then
A4: i
=
0 by
TARSKI:def 1;
hence (
<%
0 %>
. i)
= (
0
* (b
|^ i))
.= (((
digits (n,b))
. i)
* (b
|^ i)) by
A3,
A4;
end;
then (
value ((
digits (n,b)),b))
= (
Sum
<%
0 %>) by
A3,
Def1;
hence thesis by
A2,
AFINSQ_2: 53;
end;
end;
begin
theorem ::
NUMERAL1:6
Th6: for n,k be
Nat st k
= ((10
|^ n)
- 1) holds 9
divides k
proof
defpred
P[
Nat] means ex k be
Nat st k
= ((10
|^ $1)
- 1) & 9
divides k;
let n,k be
Nat;
A1:
now
let k be
Nat;
assume
P[k];
then
consider l be
Nat such that
A2: l
= ((10
|^ k)
- 1) and
A3: 9
divides l;
consider m be
Nat such that
A4: l
= (9
* m) by
A3,
NAT_D:def 3;
A5: 9
divides (9
* ((m
* 10)
+ 1)) by
NAT_D:def 3;
((10
|^ (k
+ 1))
- 1)
= ((((9
* m)
+ 1)
* 10)
- 1) by
A2,
A4,
NEWTON: 6
.= (9
* ((m
* 10)
+ 1));
hence
P[(k
+ 1)] by
A5;
end;
((10
|^
0 )
- 1)
= (1
- 1) by
NEWTON: 4
.=
0 ;
then
A6:
P[
0 ] by
NAT_D: 6;
for k be
Nat holds
P[k] from
NAT_1:sch 2(
A6,
A1);
then
A7: ex l be
Nat st l
= ((10
|^ n)
- 1) & 9
divides l;
assume k
= ((10
|^ n)
- 1);
hence thesis by
A7;
end;
theorem ::
NUMERAL1:7
for n,b be
Nat st b
> 1 holds b
divides n iff ((
digits (n,b))
.
0 )
=
0
proof
let n,b be
Nat;
reconsider B = b as
Element of
NAT by
ORDINAL1:def 12;
consider d be
XFinSequence of
NAT such that (
dom d)
= (
dom (
digits (n,b))) and
A1: for i be
Nat st i
in (
dom d) holds (d
. i)
= (((
digits (n,b))
. i)
* (b
|^ i)) and
A2: (
value ((
digits (n,b)),b))
= (
Sum d) by
Def1;
assume
A3: b
> 1;
thus b
divides n implies ((
digits (n,b))
.
0 )
=
0
proof
A4: (
len (
digits (n,b)))
>= 1 by
A3,
Th4;
assume
A5: b
divides n;
consider d be
XFinSequence of
NAT such that
A6: (
dom d)
= (
dom (
digits (n,b))) and
A7: for i be
Nat st i
in (
dom d) holds (d
. i)
= (((
digits (n,b))
. i)
* (b
|^ i)) and
A8: (
value ((
digits (n,b)),b))
= (
Sum d) by
Def1;
per cases by
A4,
XXREAL_0: 1;
suppose
A9: (
len (
digits (n,b)))
= 1;
A10: b
divides (
Sum d) by
A3,
A5,
A8,
Th5;
A11:
0
in (
dom (
digits (n,b))) by
A9,
AFINSQ_1: 86;
(
len d)
= 1 by
A6,
A9;
then d
=
<%(d
.
0 )%> by
AFINSQ_1: 34;
then (
Sum d)
= (d
.
0 ) by
AFINSQ_2: 53
.= (((
digits (n,b))
.
0 )
* (b
|^
0 )) by
A6,
A7,
A11;
then
A12: b
divides (((
digits (n,b))
.
0 )
* 1) by
A10,
NEWTON: 4;
per cases ;
suppose n
=
0 ;
then (
digits (n,b))
=
<%
0 %> by
A3,
Def2;
hence thesis;
end;
suppose n
<>
0 ;
then ((
digits (n,b))
.
0 )
< b by
A3,
A11,
Def2;
hence thesis by
A12,
NAT_D: 7;
end;
end;
suppose
A13: (
len (
digits (n,b)))
> 1;
then
reconsider k = ((
len (
digits (n,b)))
- 1) as
Element of
NAT by
NAT_1: 21;
defpred
P[
Nat,
set] means $2
= (d
. ($1
+ 1));
A14:
now
let l be
Nat;
assume l
in (
dom
<%(d
.
0 )%>);
then l
in (
Segm 1) by
AFINSQ_1:def 4;
then l
< 1 by
NAT_1: 44;
then l
=
0 by
NAT_1: 14;
hence (d
. l)
= (
<%(d
.
0 )%>
. l);
end;
A15: for u be
Nat st u
in (
Segm k) holds ex x be
Element of
NAT st
P[u, x];
consider d9 be
XFinSequence of
NAT such that
A16: (
dom d9)
= (
Segm k) & for x be
Nat st x
in (
Segm k) holds
P[x, (d9
. x)] from
STIRL2_1:sch 5(
A15);
now
let i be
Nat;
assume
A17: i
in (
dom d9);
then i
< (
len d9) by
A16,
NAT_1: 44;
then (i
+ 1)
< (k
+ 1) by
XREAL_1: 8,
A16;
then
A18: (i
+ 1)
in (
dom d) by
A6,
AFINSQ_1: 86;
(d9
. i)
= (d
. (i
+ 1)) by
A16,
A17
.= (((
digits (n,b))
. (i
+ 1))
* (b
|^ (i
+ 1))) by
A7,
A18
.= (((
digits (n,b))
. (i
+ 1))
* ((b
|^ i)
* b)) by
NEWTON: 6
.= (b
* (((
digits (n,b))
. (i
+ 1))
* (b
|^ i)));
hence b
divides (d9
. i) by
NAT_D:def 3;
end;
then b
divides (
Sum d9) by
Th2;
then
A19: ((
Sum d9)
mod B)
=
0 by
A3,
PEPIN: 6;
A20:
now
let l be
Nat;
A21: ((
len
<%(d
.
0 )%>)
+ l)
= (l
+ 1) by
AFINSQ_1: 34;
assume l
in (
dom d9);
hence (d
. ((
len
<%(d
.
0 )%>)
+ l))
= (d9
. l) by
A16,
A21;
end;
A22:
0
in (
dom (
digits (n,b))) by
A13,
AFINSQ_1: 86;
(
dom d)
= (k
+ 1) by
A6
.= ((
len
<%(d
.
0 )%>)
+ (
len d9)) by
A16,
AFINSQ_1: 33;
then d
= (
<%(d
.
0 )%>
^ d9) by
A14,
A20,
AFINSQ_1:def 3;
then (
Sum d)
= ((
Sum
<%(d
.
0 )%>)
+ (
Sum d9)) by
AFINSQ_2: 55;
then n
= ((
Sum
<%(d
.
0 )%>)
+ (
Sum d9)) by
A3,
A8,
Th5;
then n
= ((d
.
0 )
+ (
Sum d9)) by
AFINSQ_2: 53;
then (((d
.
0 )
+ (
Sum d9))
mod B)
=
0 by
A3,
A5,
PEPIN: 6;
then ((d
.
0 )
mod b)
=
0 by
A19,
NAT_D: 17;
then B
divides (d
.
0 ) by
A3,
PEPIN: 6;
then b
divides (((
digits (n,b))
.
0 )
* (b
|^
0 )) by
A6,
A7,
A22;
then
A23: b
divides (((
digits (n,b))
.
0 )
* 1) by
NEWTON: 4;
per cases ;
suppose n
=
0 ;
then (
digits (n,b))
=
<%
0 %> by
A3,
Def2;
hence thesis;
end;
suppose n
<>
0 ;
then ((
digits (n,b))
.
0 )
< b by
A3,
A22,
Def2;
hence thesis by
A23,
NAT_D: 7;
end;
end;
end;
assume
A24: ((
digits (n,b))
.
0 )
=
0 ;
now
let i be
Nat;
assume
A25: i
in (
dom d);
per cases ;
suppose i
=
0 ;
then (d
. i)
= (((
digits (n,b))
.
0 )
* (b
|^
0 )) by
A1,
A25
.= (((
digits (n,b))
.
0 )
* 1) by
NEWTON: 4;
hence b
divides (d
. i) by
A24,
NAT_D: 6;
end;
suppose i
>
0 ;
then
consider j be
Nat such that
A26: (j
+ 1)
= i by
NAT_1: 6;
(d
. i)
= (((
digits (n,b))
. i)
* (b
|^ (j
+ 1))) by
A1,
A25,
A26
.= (((
digits (n,b))
. i)
* ((b
|^ j)
* b)) by
NEWTON: 6
.= (b
* (((
digits (n,b))
. i)
* (b
|^ j)));
hence b
divides (d
. i) by
NAT_D:def 3;
end;
end;
then b
divides (
value ((
digits (n,b)),b)) by
A2,
Th2;
hence thesis by
A3,
Th5;
end;
theorem ::
NUMERAL1:8
for n be
Nat holds 2
divides n iff 2
divides ((
digits (n,10))
.
0 )
proof
let n be
Nat;
consider d be
XFinSequence of
NAT such that (
dom d)
= (
dom (
digits (n,10))) and
A1: for i be
Nat st i
in (
dom d) holds (d
. i)
= (((
digits (n,10))
. i)
* (10
|^ i)) and
A2: (
value ((
digits (n,10)),10))
= (
Sum d) by
Def1;
thus 2
divides n implies 2
divides ((
digits (n,10))
.
0 )
proof
A3: (
len (
digits (n,10)))
>= 1 by
Th4;
assume
A4: 2
divides n;
consider d be
XFinSequence of
NAT such that
A5: (
dom d)
= (
dom (
digits (n,10))) and
A6: for i be
Nat st i
in (
dom d) holds (d
. i)
= (((
digits (n,10))
. i)
* (10
|^ i)) and
A7: (
value ((
digits (n,10)),10))
= (
Sum d) by
Def1;
per cases by
A3,
XXREAL_0: 1;
suppose
A8: (
len (
digits (n,10)))
= 1;
then
A9:
0
in (
dom (
digits (n,10))) by
AFINSQ_1: 86;
A10: 2
divides (
Sum d) by
A4,
A7,
Th5;
(
len d)
= 1 by
A5,
A8;
then d
=
<%(d
.
0 )%> by
AFINSQ_1: 34;
then (
Sum d)
= (d
.
0 ) by
AFINSQ_2: 53
.= (((
digits (n,10))
.
0 )
* (10
|^
0 )) by
A5,
A6,
A9;
then 2
divides (((
digits (n,10))
.
0 )
* 1) by
A10,
NEWTON: 4;
hence thesis;
end;
suppose
A11: (
len (
digits (n,10)))
> 1;
then
reconsider k = ((
len (
digits (n,10)))
- 1) as
Element of
NAT by
NAT_1: 21;
defpred
P[
Nat,
set] means $2
= (d
. ($1
+ 1));
A12:
now
let l be
Nat;
assume l
in (
dom
<%(d
.
0 )%>);
then l
in (
Segm 1) by
AFINSQ_1:def 4;
then l
< 1 by
NAT_1: 44;
then l
=
0 by
NAT_1: 14;
hence (d
. l)
= (
<%(d
.
0 )%>
. l);
end;
A13: for u be
Nat st u
in (
Segm k) holds ex x be
Element of
NAT st
P[u, x];
consider d9 be
XFinSequence of
NAT such that
A14: (
dom d9)
= (
Segm k) & for x be
Nat st x
in (
Segm k) holds
P[x, (d9
. x)] from
STIRL2_1:sch 5(
A13);
now
let i be
Nat;
assume
A15: i
in (
dom d9);
then i
< (
len d9) by
A14,
NAT_1: 44;
then (i
+ 1)
< (k
+ 1) by
XREAL_1: 8,
A14;
then
A16: (i
+ 1)
in (
dom d) by
A5,
AFINSQ_1: 86;
(d9
. i)
= (d
. (i
+ 1)) by
A14,
A15
.= (((
digits (n,10))
. (i
+ 1))
* (10
|^ (i
+ 1))) by
A6,
A16
.= (((
digits (n,10))
. (i
+ 1))
* ((10
|^ i)
* 10)) by
NEWTON: 6
.= (2
* ((((
digits (n,10))
. (i
+ 1))
* (10
|^ i))
* 5));
hence 2
divides (d9
. i) by
NAT_D:def 3;
end;
then 2
divides (
Sum d9) by
Th2;
then
A17: ((
Sum d9)
mod 2)
=
0 by
PEPIN: 6;
A18:
now
let l be
Nat;
A19: ((
len
<%(d
.
0 )%>)
+ l)
= (l
+ 1) by
AFINSQ_1: 34;
assume l
in (
dom d9);
hence (d
. ((
len
<%(d
.
0 )%>)
+ l))
= (d9
. l) by
A14,
A19;
end;
(
dom d)
= (k
+ 1) by
A5
.= ((
len
<%(d
.
0 )%>)
+ (
len d9)) by
A14,
AFINSQ_1: 33;
then d
= (
<%(d
.
0 )%>
^ d9) by
A12,
A18,
AFINSQ_1:def 3;
then (
Sum d)
= ((
Sum
<%(d
.
0 )%>)
+ (
Sum d9)) by
AFINSQ_2: 55;
then n
= ((
Sum
<%(d
.
0 )%>)
+ (
Sum d9)) by
A7,
Th5;
then n
= ((d
.
0 )
+ (
Sum d9)) by
AFINSQ_2: 53;
then (((d
.
0 )
+ (
Sum d9))
mod 2)
=
0 by
A4,
PEPIN: 6;
then ((d
.
0 )
mod 2)
=
0 by
A17,
NAT_D: 17;
then
A20: 2
divides (d
.
0 ) by
PEPIN: 6;
0
in (
dom (
digits (n,10))) by
A11,
AFINSQ_1: 86;
then 2
divides (((
digits (n,10))
.
0 )
* (10
|^
0 )) by
A5,
A6,
A20;
then 2
divides (((
digits (n,10))
.
0 )
* 1) by
NEWTON: 4;
hence thesis;
end;
end;
assume
A21: 2
divides ((
digits (n,10))
.
0 );
now
let i be
Nat;
assume
A22: i
in (
dom d);
per cases ;
suppose i
=
0 ;
then (d
. i)
= (((
digits (n,10))
.
0 )
* (10
|^
0 )) by
A1,
A22
.= (((
digits (n,10))
.
0 )
* 1) by
NEWTON: 4;
hence 2
divides (d
. i) by
A21;
end;
suppose i
>
0 ;
then
consider j be
Nat such that
A23: (j
+ 1)
= i by
NAT_1: 6;
(d
. i)
= (((
digits (n,10))
. i)
* (10
|^ (j
+ 1))) by
A1,
A22,
A23
.= (((
digits (n,10))
. i)
* ((10
|^ j)
* 10)) by
NEWTON: 6
.= (2
* ((((
digits (n,10))
. i)
* (10
|^ j))
* 5));
hence 2
divides (d
. i) by
NAT_D:def 3;
end;
end;
then 2
divides (
value ((
digits (n,10)),10)) by
A2,
Th2;
hence thesis by
Th5;
end;
::$Notion-Name
theorem ::
NUMERAL1:9
for n be
Nat holds 3
divides n iff 3
divides (
Sum (
digits (n,10)))
proof
let n be
Nat;
consider p be
XFinSequence of
NAT such that
A1: (
dom p)
= (
dom (
digits (n,10))) and
A2: for i be
Nat st i
in (
dom p) holds (p
. i)
= (((
digits (n,10))
. i)
* (10
|^ i)) and
A3: (
value ((
digits (n,10)),10))
= (
Sum p) by
Def1;
reconsider dop = (
dom p) as
Element of
NAT by
ORDINAL1:def 12;
defpred
Q[
set,
set] means $2
= ((p
. $1)
mod 3);
A4: for k be
Nat st k
in (
Segm dop) holds ex x be
Element of
NAT st
Q[k, x];
consider p9 be
XFinSequence of
NAT such that
A5: (
dom p9)
= (
Segm dop) & for k be
Nat st k
in (
Segm dop) holds
Q[k, (p9
. k)] from
STIRL2_1:sch 5(
A4);
A6:
now
let i be
Nat;
reconsider dz = ((10
|^ i)
- 1) as
Nat by
NAT_1: 20,
NEWTON: 83;
reconsider dz as
Element of
NAT by
ORDINAL1:def 12;
3
divides (3
* 3) & 9
divides dz by
Th6,
NAT_D:def 3;
then 3
divides dz by
NAT_D: 4;
then 3
divides (((
digits (n,10))
. i)
* dz) by
NAT_D: 9;
then
A7: ((((
digits (n,10))
. i)
* dz)
mod 3)
=
0 by
PEPIN: 6;
assume
A8: i
in (
dom p);
hence (p9
. i)
= ((p
. i)
mod 3) by
A5
.= ((((
digits (n,10))
. i)
* (dz
+ 1))
mod 3) by
A2,
A8
.= (((((
digits (n,10))
. i)
* dz)
+ ((
digits (n,10))
. i))
mod 3)
.= ((
0 qua
Nat
+ ((
digits (n,10))
. i))
mod 3) by
A7,
NAT_D: 22
.= (((
digits (n,10))
. i)
mod 3);
end;
thus 3
divides n implies 3
divides (
Sum (
digits (n,10)))
proof
assume 3
divides n;
then 3
divides (
Sum p) by
A3,
Th5;
then ((
Sum p)
mod 3)
=
0 by
PEPIN: 6;
then ((
Sum p9)
mod 3)
=
0 by
A5,
Th3;
then ((
Sum (
digits (n,10)))
mod 3)
=
0 by
A1,
A5,
A6,
Th3;
hence thesis by
PEPIN: 6;
end;
assume 3
divides (
Sum (
digits (n,10)));
then ((
Sum (
digits (n,10)))
mod 3)
=
0 by
PEPIN: 6;
then ((
Sum p9)
mod 3)
=
0 by
A1,
A5,
A6,
Th3;
then ((
Sum p)
mod 3)
=
0 by
A5,
Th3;
then 3
divides (
Sum p) by
PEPIN: 6;
hence thesis by
A3,
Th5;
end;
theorem ::
NUMERAL1:10
for n be
Nat holds 5
divides n iff 5
divides ((
digits (n,10))
.
0 )
proof
let n be
Nat;
consider d be
XFinSequence of
NAT such that (
dom d)
= (
dom (
digits (n,10))) and
A1: for i be
Nat st i
in (
dom d) holds (d
. i)
= (((
digits (n,10))
. i)
* (10
|^ i)) and
A2: (
value ((
digits (n,10)),10))
= (
Sum d) by
Def1;
thus 5
divides n implies 5
divides ((
digits (n,10))
.
0 )
proof
A3: (
len (
digits (n,10)))
>= 1 by
Th4;
assume
A4: 5
divides n;
consider d be
XFinSequence of
NAT such that
A5: (
dom d)
= (
dom (
digits (n,10))) and
A6: for i be
Nat st i
in (
dom d) holds (d
. i)
= (((
digits (n,10))
. i)
* (10
|^ i)) and
A7: (
value ((
digits (n,10)),10))
= (
Sum d) by
Def1;
per cases by
A3,
XXREAL_0: 1;
suppose
A8: (
len (
digits (n,10)))
= 1;
then
A9:
0
in (
dom (
digits (n,10))) by
AFINSQ_1: 86;
A10: 5
divides (
Sum d) by
A4,
A7,
Th5;
(
len d)
= 1 by
A5,
A8;
then d
=
<%(d
.
0 )%> by
AFINSQ_1: 34;
then (
Sum d)
= (d
.
0 ) by
AFINSQ_2: 53
.= (((
digits (n,10))
.
0 )
* (10
|^
0 )) by
A5,
A6,
A9;
then 5
divides (((
digits (n,10))
.
0 )
* 1) by
A10,
NEWTON: 4;
hence thesis;
end;
suppose
A11: (
len (
digits (n,10)))
> 1;
then
reconsider k = ((
len (
digits (n,10)))
- 1) as
Element of
NAT by
NAT_1: 21;
defpred
P[
Nat,
set] means $2
= (d
. ($1
+ 1));
A12:
now
let l be
Nat;
assume l
in (
dom
<%(d
.
0 )%>);
then l
in (
Segm 1) by
AFINSQ_1:def 4;
then l
< 1 by
NAT_1: 44;
then l
=
0 by
NAT_1: 14;
hence (d
. l)
= (
<%(d
.
0 )%>
. l);
end;
A13: for u be
Nat st u
in (
Segm k) holds ex x be
Element of
NAT st
P[u, x];
consider d9 be
XFinSequence of
NAT such that
A14: (
dom d9)
= (
Segm k) & for x be
Nat st x
in (
Segm k) holds
P[x, (d9
. x)] from
STIRL2_1:sch 5(
A13);
now
let i be
Nat;
assume
A15: i
in (
dom d9);
then i
< (
len d9) by
A14,
NAT_1: 44;
then (i
+ 1)
< (k
+ 1) by
XREAL_1: 8,
A14;
then
A16: (i
+ 1)
in (
dom d) by
A5,
AFINSQ_1: 86;
(d9
. i)
= (d
. (i
+ 1)) by
A14,
A15
.= (((
digits (n,10))
. (i
+ 1))
* (10
|^ (i
+ 1))) by
A6,
A16
.= (((
digits (n,10))
. (i
+ 1))
* ((10
|^ i)
* 10)) by
NEWTON: 6
.= (5
* ((((
digits (n,10))
. (i
+ 1))
* (10
|^ i))
* 2));
hence 5
divides (d9
. i) by
NAT_D:def 3;
end;
then 5
divides (
Sum d9) by
Th2;
then
A17: ((
Sum d9)
mod 5)
=
0 by
PEPIN: 6;
A18:
now
let l be
Nat;
A19: ((
len
<%(d
.
0 )%>)
+ l)
= (l
+ 1) by
AFINSQ_1: 34;
assume l
in (
dom d9);
hence (d
. ((
len
<%(d
.
0 )%>)
+ l))
= (d9
. l) by
A14,
A19;
end;
(
dom d)
= (k
+ 1) by
A5
.= ((
len
<%(d
.
0 )%>)
+ (
len d9)) by
A14,
AFINSQ_1: 33;
then d
= (
<%(d
.
0 )%>
^ d9) by
A12,
A18,
AFINSQ_1:def 3;
then (
Sum d)
= ((
Sum
<%(d
.
0 )%>)
+ (
Sum d9)) by
AFINSQ_2: 55;
then n
= ((
Sum
<%(d
.
0 )%>)
+ (
Sum d9)) by
A7,
Th5;
then n
= ((d
.
0 )
+ (
Sum d9)) by
AFINSQ_2: 53;
then (((d
.
0 )
+ (
Sum d9))
mod 5)
=
0 by
A4,
PEPIN: 6;
then ((d
.
0 )
mod 5)
=
0 by
A17,
NAT_D: 17;
then
A20: 5
divides (d
.
0 ) by
PEPIN: 6;
0
in (
dom (
digits (n,10))) by
A11,
AFINSQ_1: 86;
then 5
divides (((
digits (n,10))
.
0 )
* (10
|^
0 )) by
A5,
A6,
A20;
then 5
divides (((
digits (n,10))
.
0 )
* 1) by
NEWTON: 4;
hence thesis;
end;
end;
assume
A21: 5
divides ((
digits (n,10))
.
0 );
now
let i be
Nat;
assume
A22: i
in (
dom d);
per cases ;
suppose i
=
0 ;
then (d
. i)
= (((
digits (n,10))
.
0 )
* (10
|^
0 )) by
A1,
A22
.= (((
digits (n,10))
.
0 )
* 1) by
NEWTON: 4;
hence 5
divides (d
. i) by
A21;
end;
suppose i
>
0 ;
then
consider j be
Nat such that
A23: (j
+ 1)
= i by
NAT_1: 6;
(d
. i)
= (((
digits (n,10))
. i)
* (10
|^ (j
+ 1))) by
A1,
A22,
A23
.= (((
digits (n,10))
. i)
* ((10
|^ j)
* 10)) by
NEWTON: 6
.= (5
* ((((
digits (n,10))
. i)
* (10
|^ j))
* 2));
hence 5
divides (d
. i) by
NAT_D:def 3;
end;
end;
then 5
divides (
value ((
digits (n,10)),10)) by
A2,
Th2;
hence thesis by
Th5;
end;