numpoly1.miz
begin
scheme ::
NUMPOLY1:sch1
LNatRealSeq { F(
set) ->
Real } :
(ex seq be
Real_Sequence st for n be
Nat holds (seq
. n)
= F(n)) & (for seq1,seq2 be
Real_Sequence st (for n be
Nat holds (seq1
. n)
= F(n)) & (for n be
Nat holds (seq2
. n)
= F(n)) holds seq1
= seq2);
consider seq be
Real_Sequence such that
A1: for n be
Nat holds (seq
. n)
= F(n) from
SEQ_1:sch 1;
thus ex seq be
Real_Sequence st for n be
Nat holds (seq
. n)
= F(n) by
A1;
let seq1,seq2 be
Real_Sequence;
assume that
A2: for n be
Nat holds (seq1
. n)
= F(n) and
A3: for n be
Nat holds (seq2
. n)
= F(n);
let n be
Element of
NAT ;
thus (seq1
. n)
= F(n) by
A2
.= (seq2
. n) by
A3;
end;
theorem ::
NUMPOLY1:1
Th1: for n,a be non
zero
Nat holds 1
<= (a
* n)
proof
let n,a be non
zero
Nat;
(
0
+ 1)
<= (a
* n) by
NAT_1: 13;
hence thesis;
end;
Lm1: for n be
Integer holds (n
* (n
- 1)) is
even
proof
let n be
Integer;
per cases ;
suppose n is
even;
hence thesis;
end;
suppose n is
odd;
hence thesis;
end;
end;
Lm2: for n be
Integer holds (n
* (n
+ 1)) is
even
proof
let n be
Integer;
per cases ;
suppose n is
even;
hence thesis;
end;
suppose n is
odd;
hence thesis;
end;
end;
registration
let n be
Integer;
cluster (n
* (n
- 1)) ->
even;
coherence by
Lm1;
cluster (n
* (n
+ 1)) ->
even;
coherence by
Lm2;
end
theorem ::
NUMPOLY1:2
Th2: for n be
even
Integer holds (n
/ 2) is
Integer
proof
let n be
even
Integer;
consider j be
Integer such that
A1: n
= (2
* j) by
ABIAN: 11;
thus thesis by
A1;
end;
registration
let n be
even
Nat;
cluster (n
/ 2) ->
natural;
coherence
proof
ex k be
Nat st n
= (2
* k) by
ABIAN:def 2;
hence thesis;
end;
end
registration
let n be
odd
Nat;
cluster (n
- 1) ->
natural;
coherence by
CHORD: 2;
end
registration
let n be
odd
Nat;
cluster (n
- 1) ->
even;
coherence ;
end
reserve n,s for
Nat;
theorem ::
NUMPOLY1:3
Th3: (n
mod 5)
=
0 or ... or (n
mod 5)
= 4
proof
(n
mod 5)
< (4
+ 1) by
NAT_D: 1;
then (n
mod 5)
<= 4 by
NAT_1: 13;
hence thesis;
end;
theorem ::
NUMPOLY1:4
Th4: for k be
Nat st k
<>
0 holds (n,(n
mod k))
are_congruent_mod k
proof
let k be
Nat;
assume k
<>
0 ;
then ((n
mod k)
-
0 )
= (n
- ((n
div k)
* k)) by
INT_1:def 10;
then k
divides (n
- (n
mod k)) by
INT_1:def 3;
hence thesis by
INT_1:def 4;
end;
theorem ::
NUMPOLY1:5
Th5: (n,
0 )
are_congruent_mod 5 or ... or (n,4)
are_congruent_mod 5
proof
(n
mod 5)
=
0 or ... or (n
mod 5)
= 4 by
Th3;
hence thesis by
Th4;
end;
theorem ::
NUMPOLY1:6
Th6: not (((n
* n)
+ n),4)
are_congruent_mod 5
proof
assume (((n
* n)
+ n),4)
are_congruent_mod 5;
then
A1: (4,((n
* n)
+ n))
are_congruent_mod 5 by
INT_1: 14;
(n,
0 )
are_congruent_mod 5 or ... or (n,4)
are_congruent_mod 5 by
Th5;
per cases ;
suppose
A2: (n,
0 )
are_congruent_mod 5;
then ((n
* n),(
0
*
0 ))
are_congruent_mod 5 by
INT_1: 18;
then (((n
* n)
+ n),(
0
+
0 ))
are_congruent_mod 5 by
A2,
INT_1: 16;
then 5
divides (4
-
0 ) by
INT_1:def 4,
A1,
INT_1: 15;
hence thesis by
NAT_D: 7;
end;
suppose
A3: (n,1)
are_congruent_mod 5;
then ((n
* n),(1
* 1))
are_congruent_mod 5 by
INT_1: 18;
then (((n
* n)
+ n),(1
+ 1))
are_congruent_mod 5 by
A3,
INT_1: 16;
then 5
divides (4
- 2) by
INT_1:def 4,
A1,
INT_1: 15;
hence thesis by
NAT_D: 7;
end;
suppose
A4: (n,2)
are_congruent_mod 5;
then ((n
* n),(2
* 2))
are_congruent_mod 5 by
INT_1: 18;
then (((n
* n)
+ n),(4
+ 2))
are_congruent_mod 5 by
A4,
INT_1: 16;
then (6,((n
* n)
+ n))
are_congruent_mod 5 by
INT_1: 14;
then ((6
- 5),((n
* n)
+ n))
are_congruent_mod 5 by
INT_1: 22;
then (((n
* n)
+ n),1)
are_congruent_mod 5 by
INT_1: 14;
then 5
divides (4
- 1) by
INT_1:def 4,
A1,
INT_1: 15;
then 5
<= 3 by
NAT_D: 7;
hence thesis;
end;
suppose
A5: (n,3)
are_congruent_mod 5;
then ((n
* n),(3
* 3))
are_congruent_mod 5 by
INT_1: 18;
then (((n
* n)
+ n),(9
+ 3))
are_congruent_mod 5 by
A5,
INT_1: 16;
then (12,((n
* n)
+ n))
are_congruent_mod 5 by
INT_1: 14;
then ((12
- 5),((n
* n)
+ n))
are_congruent_mod 5 by
INT_1: 22;
then ((7
- 5),((n
* n)
+ n))
are_congruent_mod 5 by
INT_1: 22;
then (((n
* n)
+ n),2)
are_congruent_mod 5 by
INT_1: 14;
then 5
divides (4
- 2) by
INT_1:def 4,
A1,
INT_1: 15;
hence thesis by
NAT_D: 7;
end;
suppose
A6: (n,4)
are_congruent_mod 5;
then ((n
* n),(4
* 4))
are_congruent_mod 5 by
INT_1: 18;
then (((n
* n)
+ n),(16
+ 4))
are_congruent_mod 5 by
A6,
INT_1: 16;
then (20,((n
* n)
+ n))
are_congruent_mod 5 by
INT_1: 14;
then ((20
- 5),((n
* n)
+ n))
are_congruent_mod 5 by
INT_1: 22;
then ((15
- 5),((n
* n)
+ n))
are_congruent_mod 5 by
INT_1: 22;
then ((10
- 5),((n
* n)
+ n))
are_congruent_mod 5 by
INT_1: 22;
then ((5
- 5),((n
* n)
+ n))
are_congruent_mod 5 by
INT_1: 22;
then (((n
* n)
+ n),
0 )
are_congruent_mod 5 by
INT_1: 14;
then 5
divides (4
-
0 ) by
INT_1:def 4,
A1,
INT_1: 15;
hence thesis by
NAT_D: 7;
end;
end;
theorem ::
NUMPOLY1:7
Th7: not (((n
* n)
+ n),3)
are_congruent_mod 5
proof
assume (((n
* n)
+ n),3)
are_congruent_mod 5;
then
A1: (3,((n
* n)
+ n))
are_congruent_mod 5 by
INT_1: 14;
(n,
0 )
are_congruent_mod 5 or ... or (n,4)
are_congruent_mod 5 by
Th5;
per cases ;
suppose
A2: (n,
0 )
are_congruent_mod 5;
then ((n
* n),(
0
*
0 ))
are_congruent_mod 5 by
INT_1: 18;
then (((n
* n)
+ n),(
0
+
0 ))
are_congruent_mod 5 by
A2,
INT_1: 16;
then 5
divides (3
-
0 ) by
INT_1:def 4,
A1,
INT_1: 15;
hence thesis by
NAT_D: 7;
end;
suppose
A3: (n,1)
are_congruent_mod 5;
then ((n
* n),(1
* 1))
are_congruent_mod 5 by
INT_1: 18;
then (((n
* n)
+ n),(1
+ 1))
are_congruent_mod 5 by
A3,
INT_1: 16;
then 5
divides (3
- 2) by
INT_1:def 4,
A1,
INT_1: 15;
then 5
<= 1 by
NAT_D: 7;
hence thesis;
end;
suppose
A4: (n,2)
are_congruent_mod 5;
then ((n
* n),(2
* 2))
are_congruent_mod 5 by
INT_1: 18;
then (((n
* n)
+ n),(4
+ 2))
are_congruent_mod 5 by
A4,
INT_1: 16;
then (6,((n
* n)
+ n))
are_congruent_mod 5 by
INT_1: 14;
then ((6
- 5),((n
* n)
+ n))
are_congruent_mod 5 by
INT_1: 22;
then (((n
* n)
+ n),1)
are_congruent_mod 5 by
INT_1: 14;
then 5
divides (3
- 1) by
INT_1:def 4,
A1,
INT_1: 15;
then 5
<= 2 by
NAT_D: 7;
hence thesis;
end;
suppose
A5: (n,3)
are_congruent_mod 5;
then ((n
* n),(3
* 3))
are_congruent_mod 5 by
INT_1: 18;
then (((n
* n)
+ n),(9
+ 3))
are_congruent_mod 5 by
A5,
INT_1: 16;
then (12,((n
* n)
+ n))
are_congruent_mod 5 by
INT_1: 14;
then ((12
- 5),((n
* n)
+ n))
are_congruent_mod 5 by
INT_1: 22;
then ((7
- 5),((n
* n)
+ n))
are_congruent_mod 5 by
INT_1: 22;
then (((n
* n)
+ n),2)
are_congruent_mod 5 by
INT_1: 14;
then 5
divides (3
- 2) by
INT_1:def 4,
A1,
INT_1: 15;
then 5
<= 1 by
NAT_D: 7;
hence thesis;
end;
suppose
A6: (n,4)
are_congruent_mod 5;
then ((n
* n),(4
* 4))
are_congruent_mod 5 by
INT_1: 18;
then (((n
* n)
+ n),(16
+ 4))
are_congruent_mod 5 by
A6,
INT_1: 16;
then (20,((n
* n)
+ n))
are_congruent_mod 5 by
INT_1: 14;
then ((20
- 5),((n
* n)
+ n))
are_congruent_mod 5 by
INT_1: 22;
then ((15
- 5),((n
* n)
+ n))
are_congruent_mod 5 by
INT_1: 22;
then ((10
- 5),((n
* n)
+ n))
are_congruent_mod 5 by
INT_1: 22;
then ((5
- 5),((n
* n)
+ n))
are_congruent_mod 5 by
INT_1: 22;
then (((n
* n)
+ n),
0 )
are_congruent_mod 5 by
INT_1: 14;
then 5
divides (3
-
0 ) by
INT_1:def 4,
A1,
INT_1: 15;
hence thesis by
NAT_D: 7;
end;
end;
theorem ::
NUMPOLY1:8
Th8: (n
mod 10)
=
0 or ... or (n
mod 10)
= 9
proof
(n
mod 10)
< (9
+ 1) by
NAT_D: 1;
then (n
mod 10)
<= 9 by
NAT_1: 13;
hence thesis;
end;
theorem ::
NUMPOLY1:9
Th9: (n,
0 )
are_congruent_mod 10 or ... or (n,9)
are_congruent_mod 10
proof
(n
mod 10)
=
0 or ... or (n
mod 10)
= 9 by
Th8;
hence thesis by
Th4;
end;
registration
cluster non
trivial -> 2
_or_greater for
Nat;
coherence by
EC_PF_2:def 1,
NAT_2: 29;
cluster 2
_or_greater -> non
trivial for
Nat;
coherence
proof
let n be
Nat;
assume n is 2
_or_greater;
then n
<>
0 & n
<> 1 by
EC_PF_2:def 1;
hence thesis by
NAT_2:def 1;
end;
end
registration
cluster 4
_or_greater -> 3
_or_greater non
zero for
Nat;
coherence
proof
let n be
Nat;
assume n is 4
_or_greater;
then n
>= 4 by
EC_PF_2:def 1;
hence thesis by
EC_PF_2:def 1,
XXREAL_0: 2;
end;
end
registration
cluster 4
_or_greater -> non
trivial for
Nat;
coherence
proof
let n be
Nat;
assume n is 4
_or_greater;
then n
<> 1 & n
<>
0 by
EC_PF_2:def 1;
hence thesis by
NAT_2:def 1;
end;
end
registration
cluster 4
_or_greater for
Nat;
existence by
EC_PF_2:def 1;
cluster 3
_or_greater for
Nat;
existence by
EC_PF_2:def 1;
end
begin
definition
let n be
Nat;
::
NUMPOLY1:def1
func
Triangle n ->
Real equals (
Sum (
idseq n));
coherence ;
end
definition
let n be
object;
::
NUMPOLY1:def2
attr n is
triangular means
:
Def2: ex k be
Nat st n
= (
Triangle k);
end
registration
let n be
zero
number;
cluster (
Triangle n) ->
zero;
coherence by
RVSUM_1: 72;
end
theorem ::
NUMPOLY1:10
Th10: (
Triangle (n
+ 1))
= ((
Triangle n)
+ (n
+ 1))
proof
defpred
P[
Nat] means ((
Triangle $1)
+ ($1
+ 1))
= (
Triangle ($1
+ 1));
A1:
P[
0 ] by
FINSEQ_2: 50,
RVSUM_1: 73;
A2: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
P[k];
reconsider k1 = k as
Element of
NAT by
ORDINAL1:def 12;
((((
Triangle (k
+ 1))
+ k)
+ 1)
+ 1)
= ((((
Sum ((
idseq k1)
^
<*(k1
+ 1)*>))
+ k)
+ 1)
+ 1) by
FINSEQ_2: 51
.= ((
Sum ((
idseq k1)
^
<*(k1
+ 1)*>))
+ ((k
+ 1)
+ 1))
.= ((
Sum (
idseq (k1
+ 1)))
+ ((k1
+ 1)
+ 1)) by
FINSEQ_2: 51
.= (
Sum ((
idseq (k1
+ 1))
^
<*((k1
+ 1)
+ 1)*>)) by
RVSUM_1: 74
.= (
Triangle ((k
+ 1)
+ 1)) by
FINSEQ_2: 51;
hence thesis;
end;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
NUMPOLY1:11
Th11: (
Triangle 1)
= 1 by
FINSEQ_2: 50,
RVSUM_1: 73;
theorem ::
NUMPOLY1:12
Th12: (
Triangle 2)
= 3
proof
thus (
Triangle 2)
= (1
+ 2) by
RVSUM_1: 77,
FINSEQ_2: 52
.= 3;
end;
theorem ::
NUMPOLY1:13
Th13: (
Triangle 3)
= 6
proof
thus (
Triangle 3)
= ((1
+ 2)
+ 3) by
RVSUM_1: 78,
FINSEQ_2: 53
.= 6;
end;
theorem ::
NUMPOLY1:14
Th14: (
Triangle 4)
= 10
proof
thus (
Triangle 4)
= ((
Triangle 3)
+ (3
+ 1)) by
Th10
.= 10 by
Th13;
end;
theorem ::
NUMPOLY1:15
Th15: (
Triangle 5)
= 15
proof
thus (
Triangle 5)
= ((
Triangle 4)
+ (4
+ 1)) by
Th10
.= 15 by
Th14;
end;
theorem ::
NUMPOLY1:16
Th16: (
Triangle 6)
= 21
proof
thus (
Triangle 6)
= ((
Triangle 5)
+ (5
+ 1)) by
Th10
.= 21 by
Th15;
end;
theorem ::
NUMPOLY1:17
Th17: (
Triangle 7)
= 28
proof
thus (
Triangle 7)
= ((
Triangle 6)
+ (6
+ 1)) by
Th10
.= 28 by
Th16;
end;
theorem ::
NUMPOLY1:18
Th18: (
Triangle 8)
= 36
proof
thus (
Triangle 8)
= ((
Triangle 7)
+ (7
+ 1)) by
Th10
.= 36 by
Th17;
end;
theorem ::
NUMPOLY1:19
Th19: (
Triangle n)
= ((n
* (n
+ 1))
/ 2)
proof
defpred
P[
Nat] means (
Triangle $1)
= (($1
* ($1
+ 1))
/ 2);
A1:
P[
0 ];
A2: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A3:
P[k];
(
Triangle (k
+ 1))
= ((
Triangle k)
+ (k
+ 1)) by
Th10
.= (((k
+ 1)
* (k
+ 2))
/ 2) by
A3;
hence thesis;
end;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
NUMPOLY1:20
Th20: (
Triangle n)
>=
0
proof
A1: (
Triangle n)
= ((n
* (n
+ 1))
/ 2) by
Th19;
thus thesis by
A1;
end;
registration
let n be
Nat;
cluster (
Triangle n) -> non
negative;
coherence by
Th20;
end
registration
let n be non
zero
Nat;
cluster (
Triangle n) ->
positive;
coherence
proof
((n
* (n
+ 1))
/ 2)
>
0 ;
hence thesis by
Th19;
end;
end
registration
let n be
Nat;
cluster (
Triangle n) ->
natural;
coherence
proof
(
Triangle n)
= ((n
* (n
+ 1))
/ 2) by
Th19;
hence thesis;
end;
end
Lm3: (
0
- 1)
<
0 ;
theorem ::
NUMPOLY1:21
Th21: (
Triangle (n
-' 1))
= ((n
* (n
- 1))
/ 2)
proof
per cases ;
suppose n
<>
0 ;
then
A1: 1
<= (1
* n) by
Th1;
(
Triangle (n
-' 1))
= (((n
-' 1)
* ((n
-' 1)
+ 1))
/ 2) by
Th19
.= (((n
-' 1)
* n)
/ 2) by
XREAL_1: 235,
A1;
hence thesis by
XREAL_1: 233,
A1;
end;
suppose
A2: n
=
0 ;
then (
Triangle (n
-' 1))
= (
Triangle
0 ) by
XREAL_0:def 2,
Lm3
.= ((n
* (n
- 1))
/ 2) by
A2;
hence thesis;
end;
end;
registration
cluster
triangular ->
natural for
number;
coherence ;
end
registration
cluster
triangular non
zero for
number;
existence
proof
reconsider a = (
Triangle 1) as
number by
TARSKI: 1;
take a;
thus thesis;
end;
end
theorem ::
NUMPOLY1:22
Th22: for n be
triangular
number holds not (n,7)
are_congruent_mod 10
proof
let n be
triangular
number;
consider k be
Nat such that
A1: n
= (
Triangle k) by
Def2;
A2: (4
* 5)
= 20;
A3: n
= ((k
* (k
+ 1))
/ 2) by
A1,
Th19;
assume (n,7)
are_congruent_mod 10;
then ((((k
* (k
+ 1))
/ 2)
* 2),(7
* 2))
are_congruent_mod (10
* 2) by
A3,
INT_4: 10;
then ((k
* (k
+ 1)),14)
are_congruent_mod 5 by
A2,
INT_1: 20;
then (14,(k
* (k
+ 1)))
are_congruent_mod 5 by
INT_1: 14;
then ((14
- 5),(k
* (k
+ 1)))
are_congruent_mod 5 by
INT_1: 22;
then ((9
- 5),(k
* (k
+ 1)))
are_congruent_mod 5 by
INT_1: 22;
then (4,((k
* k)
+ k))
are_congruent_mod 5;
hence thesis by
Th6,
INT_1: 14;
end;
theorem ::
NUMPOLY1:23
Th23: for n be
triangular
number holds not (n,9)
are_congruent_mod 10
proof
let n be
triangular
number;
consider k be
Nat such that
A1: n
= (
Triangle k) by
Def2;
A2: (4
* 5)
= 20;
A3: n
= ((k
* (k
+ 1))
/ 2) by
A1,
Th19;
assume (n,9)
are_congruent_mod 10;
then ((((k
* (k
+ 1))
/ 2)
* 2),(9
* 2))
are_congruent_mod (10
* 2) by
A3,
INT_4: 10;
then ((k
* (k
+ 1)),18)
are_congruent_mod 5 by
A2,
INT_1: 20;
then (18,(k
* (k
+ 1)))
are_congruent_mod 5 by
INT_1: 14;
then ((18
- 5),(k
* (k
+ 1)))
are_congruent_mod 5 by
INT_1: 22;
then ((13
- 5),(k
* (k
+ 1)))
are_congruent_mod 5 by
INT_1: 22;
then ((8
- 5),(k
* (k
+ 1)))
are_congruent_mod 5 by
INT_1: 22;
then (3,((k
* k)
+ k))
are_congruent_mod 5;
hence thesis by
Th7,
INT_1: 14;
end;
theorem ::
NUMPOLY1:24
Th24: for n be
triangular
number holds not (n,2)
are_congruent_mod 10
proof
let n be
triangular
number;
consider k be
Nat such that
A1: n
= (
Triangle k) by
Def2;
A2: (4
* 5)
= 20;
A3: n
= ((k
* (k
+ 1))
/ 2) by
A1,
Th19;
assume (n,2)
are_congruent_mod 10;
then ((((k
* (k
+ 1))
/ 2)
* 2),(2
* 2))
are_congruent_mod (10
* 2) by
A3,
INT_4: 10;
then ((k
* (k
+ 1)),4)
are_congruent_mod 5 by
A2,
INT_1: 20;
then (4,((k
* k)
+ k))
are_congruent_mod 5 by
INT_1: 14;
hence thesis by
Th6,
INT_1: 14;
end;
theorem ::
NUMPOLY1:25
Th25: for n be
triangular
number holds not (n,4)
are_congruent_mod 10
proof
let n be
triangular
number;
consider k be
Nat such that
A1: n
= (
Triangle k) by
Def2;
A2: (4
* 5)
= 20;
A3: n
= ((k
* (k
+ 1))
/ 2) by
A1,
Th19;
assume (n,4)
are_congruent_mod 10;
then ((((k
* (k
+ 1))
/ 2)
* 2),(4
* 2))
are_congruent_mod (10
* 2) by
A3,
INT_4: 10;
then ((k
* (k
+ 1)),8)
are_congruent_mod 5 by
A2,
INT_1: 20;
then (8,(k
* (k
+ 1)))
are_congruent_mod 5 by
INT_1: 14;
then ((8
- 5),(k
* (k
+ 1)))
are_congruent_mod 5 by
INT_1: 22;
then (3,((k
* k)
+ k))
are_congruent_mod 5;
hence thesis by
Th7,
INT_1: 14;
end;
theorem ::
NUMPOLY1:26
for n be
triangular
number holds (n,
0 )
are_congruent_mod 10 or (n,1)
are_congruent_mod 10 or (n,3)
are_congruent_mod 10 or (n,5)
are_congruent_mod 10 or (n,6)
are_congruent_mod 10 or (n,8)
are_congruent_mod 10
proof
let n be
triangular
number;
(n,
0 )
are_congruent_mod 10 or ... or (n,9)
are_congruent_mod 10 by
Th9;
per cases ;
suppose (n,
0 )
are_congruent_mod 10;
hence thesis;
end;
suppose (n,1)
are_congruent_mod 10;
hence thesis;
end;
suppose (n,2)
are_congruent_mod 10;
hence thesis by
Th24;
end;
suppose (n,3)
are_congruent_mod 10;
hence thesis;
end;
suppose (n,4)
are_congruent_mod 10;
hence thesis by
Th25;
end;
suppose (n,5)
are_congruent_mod 10;
hence thesis;
end;
suppose (n,6)
are_congruent_mod 10;
hence thesis;
end;
suppose (n,7)
are_congruent_mod 10;
hence thesis by
Th22;
end;
suppose (n,8)
are_congruent_mod 10;
hence thesis;
end;
suppose (n,9)
are_congruent_mod 10;
hence thesis by
Th23;
end;
end;
begin
definition
let s,n be
natural
Number;
::
NUMPOLY1:def3
func
Polygon (s,n) ->
Integer equals ((((n
^2 )
* (s
- 2))
- (n
* (s
- 4)))
/ 2);
coherence
proof
((n
* (n
- 1))
* (s
- 2)) is
even;
then (((n
* (s
- 2))
* (n
- 1))
/ 2) is
Integer by
Th2;
then ((((n
* (s
- 2))
* (n
- 1))
/ 2)
+ n) is
Integer;
hence thesis;
end;
end
theorem ::
NUMPOLY1:27
Th27: s
>= 2 implies (
Polygon (s,n)) is
natural
proof
assume s
>= 2;
then
A1: (s
- 2)
>= (2
- 2) by
XREAL_1: 9;
per cases ;
suppose n
=
0 ;
hence thesis;
end;
suppose n
>
0 ;
then n
>= (
0
+ 1) by
NAT_1: 13;
then (n
- 1)
>= (1
- 1) by
XREAL_1: 9;
then ((((n
* (s
- 2))
* (n
- 1))
/ 2)
+ n)
>=
0 by
A1;
hence (
Polygon (s,n))
in
NAT by
INT_1: 3;
end;
end;
theorem ::
NUMPOLY1:28
(
Polygon (s,n))
= ((((n
* (s
- 2))
* (n
- 1))
/ 2)
+ n);
definition
let s be
Nat;
let x be
object;
::
NUMPOLY1:def4
attr x is s
-gonal means
:
Def4: ex n be
Nat st x
= (
Polygon (s,n));
end
definition
let x be
object;
::
NUMPOLY1:def5
attr x is
polygonal means ex s be
Nat st x is s
-gonal;
end
theorem ::
NUMPOLY1:29
(
Polygon (s,1))
= 1;
theorem ::
NUMPOLY1:30
(
Polygon (s,2))
= s;
registration
let s be
Nat;
cluster s
-gonal for
number;
existence
proof
reconsider a = (
Polygon (s,2)) as
number;
take a;
thus thesis;
end;
end
registration
let s be non
zero
Nat;
cluster non
zeros
-gonal for
number;
existence
proof
reconsider a = (
Polygon (s,2)) as
number;
take a;
thus thesis;
end;
end
registration
let s be
Nat;
cluster s
-gonal ->
real for
number;
coherence ;
end
registration
let s be non
trivial
Nat;
cluster s
-gonal ->
natural for
number;
coherence by
EC_PF_2:def 1,
Th27;
end
theorem ::
NUMPOLY1:31
((
Polygon (s,(n
+ 1)))
- (
Polygon (s,n)))
= (((s
- 2)
* n)
+ 1);
definition
let s be
Nat, x be s
-gonal
number;
::
NUMPOLY1:def6
func
IndexPoly (s,x) ->
Real equals ((((
sqrt ((((8
* s)
- 16)
* x)
+ ((s
- 4)
^2 )))
+ s)
- 4)
/ ((2
* s)
- 4));
coherence ;
end
theorem ::
NUMPOLY1:32
for s be non
zero
Nat, x be non
zeros
-gonal
number st x
= (
Polygon (s,n)) holds ((((8
* s)
- 16)
* x)
+ ((s
- 4)
^2 ))
= ((((2
* n)
* (s
- 2))
- (s
- 4))
^2 );
theorem ::
NUMPOLY1:33
for s be non
zero
Nat, x be non
zeros
-gonal
number st s
>= 4 holds ((((8
* s)
- 16)
* x)
+ ((s
- 4)
^2 )) is
square
proof
let s be non
zero
Nat, x be non
zeros
-gonal
number;
assume
A1: s
>= 4;
consider n be
Nat such that
A2: x
= (
Polygon (s,n)) by
Def4;
A3: ((((8
* s)
- 16)
* x)
+ ((s
- 4)
^2 ))
= ((((2
* n)
* (s
- 2))
- (s
- 4))
^2 ) by
A2;
n
<>
0 by
A2;
then
A4: (2
* n)
>= 1 by
Th1;
s
>= (
0
+ 4) by
A1;
then
A5: (s
- 4)
>=
0 by
XREAL_1: 19;
(s
- 2)
>= (s
- 4) by
XREAL_1: 13;
then ((2
* n)
* (s
- 2))
>= (
0
+ (1
* (s
- 4))) by
A4,
A5,
XREAL_1: 66;
then (((2
* n)
* (s
- 2))
- (s
- 4))
in
NAT by
INT_1: 3,
XREAL_1: 19;
hence thesis by
A3;
end;
theorem ::
NUMPOLY1:34
Th34: for s be non
zero
Nat, x be non
zeros
-gonal
number st s
>= 4 holds (
IndexPoly (s,x))
in
NAT
proof
let s be non
zero
Nat, x be non
zeros
-gonal
number;
assume
A1: s
>= 4;
consider n be
Nat such that
A2: x
= (
Polygon (s,n)) by
Def4;
A3: ((((8
* s)
- 16)
* x)
+ ((s
- 4)
^2 ))
= ((((2
* n)
* (s
- 2))
- (s
- 4))
^2 ) by
A2;
A4: (s
- 2)
<>
0 by
A1;
n
<>
0 by
A2;
then
A5: (2
* n)
>= 1 by
Th1;
s
>= (
0
+ 4) by
A1;
then
A6: (s
- 4)
>=
0 by
XREAL_1: 19;
(s
- 2)
>= (s
- 4) by
XREAL_1: 13;
then
A7: ((2
* n)
* (s
- 2))
>= (
0
+ (1
* (s
- 4))) by
A5,
A6,
XREAL_1: 66;
(
IndexPoly (s,x))
= ((((((2
* n)
* (s
- 2))
- (s
- 4))
+ s)
- 4)
/ ((2
* s)
- 4)) by
SQUARE_1: 22,
A7,
A3,
XREAL_1: 19
.= (((2
* n)
* (s
- 2))
/ (2
* (s
- 2)))
.= ((2
* n)
/ 2) by
A4,
XCMPLX_1: 91
.= n;
hence thesis by
ORDINAL1:def 12;
end;
theorem ::
NUMPOLY1:35
Th35: for s be non
trivial
Nat, x be s
-gonal
number holds
0
<= ((((8
* s)
- 16)
* x)
+ ((s
- 4)
^2 ))
proof
let s be non
trivial
Nat;
let x be s
-gonal
number;
(s
- 2)
>= (2
- 2) by
XREAL_1: 9,
NAT_2: 29;
then (8
* (s
- 2))
>=
0 ;
hence thesis;
end;
theorem ::
NUMPOLY1:36
Th36: for n be
odd
Nat st s
>= 2 holds n
divides (
Polygon (s,n))
proof
let n be
odd
Nat;
assume
A1: s
>= 2;
A2: (
Polygon (s,n))
= ((((n
* (s
- 2))
* (n
- 1))
/ 2)
+ n);
A3: (s
-
0 )
>= 2 by
A1;
then (s
- 2)
>=
0 by
XREAL_1: 11;
then
A4: ((n
* (s
- 2))
* (n
- 1))
in
NAT by
INT_1: 3;
reconsider k = (((n
* (s
- 2))
* (n
- 1))
/ 2) as
Nat by
A4;
A5: (s
- 2)
in
NAT by
INT_1: 3,
A3,
XREAL_1: 11;
k
= (n
* ((s
- 2)
* ((n
- 1)
/ 2)));
then n
divides k by
NAT_D:def 3,
A5;
hence thesis by
A2,
NAT_D: 8;
end;
begin
::$Notion-Name
definition
let s,n be
Nat;
::
NUMPOLY1:def7
func
CenterPolygon (s,n) ->
Integer equals ((((s
* n)
/ 2)
* (n
- 1))
+ 1);
coherence
proof
((n
* (n
- 1))
/ 2) is
Integer by
Th2;
then ((s
* ((n
/ 2)
* (n
- 1)))
+ 1) is
Integer;
hence thesis;
end;
end
registration
let s be
Nat;
let n be non
zero
Nat;
cluster (
CenterPolygon (s,n)) ->
natural;
coherence
proof
(n
-
0 )
>= 1 by
NAT_1: 14;
then (n
- 1)
>=
0 by
XREAL_1: 11;
hence thesis by
INT_1: 3;
end;
end
theorem ::
NUMPOLY1:37
(
CenterPolygon (
0 ,n))
= 1;
theorem ::
NUMPOLY1:38
(
CenterPolygon (s,
0 ))
= 1;
theorem ::
NUMPOLY1:39
(
CenterPolygon (s,n))
= ((s
* (
Triangle (n
-' 1)))
+ 1)
proof
(
CenterPolygon (s,n))
= ((s
* ((n
* (n
- 1))
/ 2))
+ 1)
.= ((s
* (
Triangle (n
-' 1)))
+ 1) by
Th21;
hence thesis;
end;
begin
theorem ::
NUMPOLY1:40
Th40: (
Triangle n)
= (
Polygon (3,n))
proof
(
Polygon (3,n))
= ((n
* (n
+ 1))
/ 2);
hence thesis by
Th19;
end;
theorem ::
NUMPOLY1:41
Th41: for n be
odd
Nat holds n
divides (
Triangle n)
proof
let n be
odd
Nat;
n
divides (
Polygon (3,n)) by
Th36;
hence thesis by
Th40;
end;
theorem ::
NUMPOLY1:42
Th42: (
Triangle n)
<= (
Triangle (n
+ 1))
proof
(
Triangle (n
+ 1))
= ((
Triangle n)
+ (n
+ 1)) by
Th10;
hence thesis by
NAT_1: 16;
end;
theorem ::
NUMPOLY1:43
for k be
Nat st k
<= n holds (
Triangle k)
<= (
Triangle n)
proof
let k be
Nat;
assume k
<= n;
then
consider i be
Nat such that
A1: n
= (k
+ i) by
NAT_1: 10;
defpred
P[
Nat] means for n be
Nat holds (
Triangle n)
<= (
Triangle (n
+ $1));
A2:
P[
0 ];
A3: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
A4:
P[k];
let n be
Nat;
A5: (
Triangle n)
<= (
Triangle (n
+ k)) by
A4;
(
Triangle (n
+ k))
<= (
Triangle ((n
+ k)
+ 1)) by
Th42;
hence thesis by
A5,
XXREAL_0: 2;
end;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A2,
A3);
hence thesis by
A1;
end;
theorem ::
NUMPOLY1:44
Th44: n
<= (
Triangle n)
proof
defpred
P[
Nat] means $1
<= (
Triangle $1);
A1:
P[
0 ];
A2: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
P[k];
(
Triangle (k
+ 1))
= ((
Triangle k)
+ (k
+ 1)) by
Th10;
hence thesis by
NAT_1: 11;
end;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
NUMPOLY1:45
Th45: for n be non
trivial
Nat holds n
< (
Triangle n)
proof
let n be non
trivial
Nat;
defpred
P[
Nat] means $1
< (
Triangle $1);
A1:
P[2] by
Th12;
A2: for k be non
trivial
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be non
trivial
Nat;
assume
P[k];
(
Triangle (k
+ 1))
= ((
Triangle k)
+ (k
+ 1)) by
Th10;
hence thesis by
NAT_1: 16;
end;
for n be non
trivial
Nat holds
P[n] from
NAT_2:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
NUMPOLY1:46
Th46: n
<> 2 implies (
Triangle n) is non
prime
proof
assume
A1: n
<> 2;
assume
A2: (
Triangle n) is
prime;
then
A3: n
<> 1 by
Th11,
INT_2:def 4;
n
<>
0 by
A2,
INT_2:def 4;
then
A4: n is non
trivial by
NAT_2:def 1,
A3;
per cases ;
suppose n is
odd;
then n
= 1 or n
= (
Triangle n) by
INT_2:def 4,
A2,
Th41;
hence thesis by
Th45,
A4,
Th11;
end;
suppose n is
even;
then
consider k be
Nat such that
A5: n
= (2
* k) by
ABIAN:def 2;
A6: k
<>
0 by
A2,
INT_2:def 4,
A5;
A7: (
Triangle n)
= ((n
* (n
+ 1))
/ 2) by
Th19
.= (k
* (n
+ 1)) by
A5;
then k
divides (
Triangle n) by
NAT_D:def 3;
per cases by
INT_2:def 4,
A2;
suppose k
= 1;
hence thesis by
A1,
A5;
end;
suppose
A8: k
= (
Triangle n);
1
= (k
/ k) by
A6,
XCMPLX_1: 60
.= (n
+ 1) by
A6,
XCMPLX_1: 89,
A7,
A8;
then n
=
0 ;
hence thesis by
INT_2:def 4,
A2;
end;
end;
end;
registration
let n be 3
_or_greater
Nat;
cluster (
Triangle n) -> non
prime;
coherence
proof
n
<> 2 by
EC_PF_2:def 1;
hence thesis by
Th46;
end;
end
registration
cluster
triangular -> non
prime for 4
_or_greater
Nat;
coherence
proof
let n be 4
_or_greater
Nat;
assume n is
triangular;
then
consider k be
Nat such that
A1: n
= (
Triangle k);
k
<> 2 by
A1,
EC_PF_2:def 1,
Th12;
hence thesis by
A1,
Th46;
end;
end
registration
let s be 4
_or_greater non
zero
Nat, x be non
zeros
-gonal
number;
cluster (
IndexPoly (s,x)) ->
natural;
coherence by
Th34,
EC_PF_2:def 1;
end
theorem ::
NUMPOLY1:47
for s be 4
_or_greater
Nat, x be non
zeros
-gonal
number st s
<> 2 holds (
Polygon (s,(
IndexPoly (s,x))))
= x
proof
let s be 4
_or_greater
Nat, x be non
zeros
-gonal
number;
assume s
<> 2;
then
A1: (s
- 2)
<>
0 ;
A2:
0
<= ((((8
* s)
- 16)
* x)
+ ((s
- 4)
^2 )) by
Th35;
set qq = (
sqrt ((((8
* s)
- 16)
* x)
+ ((s
- 4)
^2 )));
set w = (
IndexPoly (s,x));
A3: ((w
^2 )
* (s
- 2))
= (((((qq
+ s)
- 4)
^2 )
/ (((2
* s)
- 4)
^2 ))
* (s
- 2)) by
XCMPLX_1: 76
.= (((((qq
+ s)
- 4)
^2 )
/ ((4
* (s
- 2))
* (s
- 2)))
* (s
- 2))
.= ((((qq
^2 )
+ ((s
- 4)
^2 ))
+ ((2
* qq)
* (s
- 4)))
/ (4
* (s
- 2))) by
XCMPLX_1: 92,
A1;
A4: (w
* (s
- 4))
= ((((qq
+ s)
- 4)
* (s
- 4))
/ ((2
* s)
- 4)) by
XCMPLX_1: 74
.= ((2
* ((qq
* (s
- 4))
+ ((s
- 4)
^2 )))
/ (2
* (2
* (s
- 2)))) by
XCMPLX_1: 91
.= ((2
* ((qq
* (s
- 4))
+ ((s
- 4)
^2 )))
/ (4
* (s
- 2)));
A5: (qq
^2 )
= ((((8
* s)
- 16)
* x)
+ ((s
- 4)
^2 )) by
SQUARE_1:def 2,
A2;
(
Polygon (s,w))
= ((((((qq
^2 )
+ ((s
- 4)
^2 ))
+ ((2
* qq)
* (s
- 4)))
- (2
* ((qq
* (s
- 4))
+ ((s
- 4)
^2 ))))
/ (4
* (s
- 2)))
/ 2) by
XCMPLX_1: 120,
A3,
A4
.= (((((qq
^2 )
+ ((s
- 4)
^2 ))
+ ((2
* qq)
* (s
- 4)))
- (2
* ((qq
* (s
- 4))
+ ((s
- 4)
^2 ))))
/ ((4
* (s
- 2))
* 2)) by
XCMPLX_1: 78
.= x by
A1,
XCMPLX_1: 89,
A5;
hence thesis;
end;
theorem ::
NUMPOLY1:48
36 is
square
triangular
proof
A1: (6
^2 )
= 36;
(
Triangle 8)
= (((8
+ 1)
* 8)
/ 2) by
Th19
.= 36;
hence thesis by
A1;
end;
registration
let n be
Nat;
cluster (
Polygon (3,n)) ->
natural;
coherence
proof
(
Triangle n)
= (
Polygon (3,n)) by
Th40;
hence thesis;
end;
end
registration
let n be
Nat;
cluster (
Polygon (3,n)) ->
triangular;
coherence
proof
(
Triangle n)
= (
Polygon (3,n)) by
Th40;
hence thesis;
end;
end
theorem ::
NUMPOLY1:49
Th49: (
Polygon (s,n))
= (((s
- 2)
* (
Triangle (n
-' 1)))
+ n)
proof
(
Polygon (s,n))
= (((s
- 2)
* ((n
* (n
- 1))
/ 2))
+ n)
.= (((s
- 2)
* (
Triangle (n
-' 1)))
+ n) by
Th21;
hence thesis;
end;
theorem ::
NUMPOLY1:50
(
Polygon (s,n))
= (((s
- 3)
* (
Triangle (n
-' 1)))
+ (
Triangle n))
proof
(((s
- 3)
* (
Triangle (n
-' 1)))
+ (
Triangle n))
= (((s
- 3)
* ((n
* (n
- 1))
/ 2))
+ (
Triangle n)) by
Th21
.= (((s
- 3)
* ((n
* (n
- 1))
/ 2))
+ ((n
* (n
+ 1))
/ 2)) by
Th19;
hence thesis;
end;
theorem ::
NUMPOLY1:51
(
Polygon (
0 ,n))
= (n
* (2
- n));
theorem ::
NUMPOLY1:52
(
Polygon (1,n))
= ((n
* (3
- n))
/ 2);
theorem ::
NUMPOLY1:53
(
Polygon (2,n))
= n;
registration
let s be non
trivial
Nat, n be
Nat;
cluster (
Polygon (s,n)) ->
natural;
coherence
proof
s
>= (
0
+ 2) by
NAT_2: 29;
then
A1: (s
- 2)
>=
0 by
XREAL_1: 19;
(
Polygon (s,n))
= (((s
- 2)
* (
Triangle (n
-' 1)))
+ n) by
Th49;
hence thesis by
INT_1: 3,
A1;
end;
end
registration
let n be
Nat;
cluster (
Polygon (4,n)) ->
square;
coherence ;
end
registration
cluster 3
-gonal ->
triangular for
Nat;
coherence ;
cluster
triangular -> 3
-gonal for
Nat;
coherence
proof
let x be
Nat;
assume x is
triangular;
then
consider n be
Nat such that
A1: x
= (
Triangle n);
x
= (
Polygon (3,n)) by
A1,
Th40;
hence thesis;
end;
cluster 4
-gonal ->
square for
Nat;
coherence ;
cluster
square -> 4
-gonal for
Nat;
coherence
proof
let x be
Nat;
assume x is
square;
then
consider n be
Nat such that
A2: x
= (n
^2 ) by
PYTHTRIP:def 3;
x
= (
Polygon (4,n)) by
A2;
hence thesis;
end;
end
theorem ::
NUMPOLY1:54
((
Triangle (n
-' 1))
+ (
Triangle n))
= (n
^2 )
proof
per cases ;
suppose n
<>
0 ;
then
A1: (n
-' 1)
= (n
- 1) by
XREAL_1: 233,
NAT_1: 14;
(
Triangle (n
-' 1))
= (((n
- 1)
* ((n
- 1)
+ 1))
/ 2) by
Th19,
A1;
then ((
Triangle (n
-' 1))
+ (
Triangle n))
= ((((n
- 1)
* ((n
+ 1)
- 1))
/ 2)
+ ((n
* (n
+ 1))
/ 2)) by
Th19
.= (n
^2 );
hence thesis;
end;
suppose
A2: n
=
0 ;
then ((
Triangle (n
-' 1))
+ (
Triangle n))
= ((
Triangle (
0
-' 1))
+ (
Triangle
0 ))
.= (n
^2 ) by
A2,
XREAL_0:def 2,
Lm3;
hence thesis;
end;
end;
theorem ::
NUMPOLY1:55
Th55: ((
Triangle n)
+ (
Triangle (n
+ 1)))
= ((n
+ 1)
^2 )
proof
(
Triangle n)
= ((n
* (n
+ 1))
/ 2) by
Th19;
then ((
Triangle n)
+ (
Triangle (n
+ 1)))
= (((n
* (n
+ 1))
/ 2)
+ (((n
+ 1)
* ((n
+ 1)
+ 1))
/ 2)) by
Th19
.= ((n
+ 1)
^2 );
hence thesis;
end;
registration
let n be
Nat;
cluster ((
Triangle n)
+ (
Triangle (n
+ 1))) ->
square;
coherence
proof
((
Triangle n)
+ (
Triangle (n
+ 1)))
= ((n
+ 1)
^2 ) by
Th55;
hence thesis;
end;
end
theorem ::
NUMPOLY1:56
for n be non
trivial
Nat holds ((1
/ 3)
* (
Triangle ((3
* n)
-' 1)))
= ((n
* ((3
* n)
- 1))
/ 2)
proof
let n be non
trivial
Nat;
A1: ((3
* n)
-' 1)
= ((3
* n)
- 1) by
XREAL_1: 233,
Th1;
(
Triangle ((3
* n)
-' 1))
= ((((3
* n)
- 1)
* (((3
* n)
- 1)
+ 1))
/ 2) by
A1,
Th19;
hence thesis;
end;
theorem ::
NUMPOLY1:57
for n be non
zero
Nat holds (
Triangle ((2
* n)
-' 1))
= ((n
* ((4
* n)
- 2))
/ 2)
proof
let n be non
zero
Nat;
A1: ((2
* n)
-' 1)
= ((2
* n)
- 1) by
XREAL_1: 233,
Th1;
(
Triangle ((2
* n)
-' 1))
= ((((2
* n)
- 1)
* (((2
* n)
- 1)
+ 1))
/ 2) by
A1,
Th19;
hence thesis;
end;
definition
let n,k be
Nat;
::
NUMPOLY1:def8
func
NPower (n,k) ->
FinSequence of
REAL means
:
Def8: (
dom it )
= (
Seg k) & for i be
Nat st i
in (
dom it ) holds (it
. i)
= (i
|^ n);
existence
proof
reconsider k1 = k as
Element of
NAT by
ORDINAL1:def 12;
deffunc
f(
Nat) = (
In (($1
|^ n),
REAL ));
consider e be
FinSequence of
REAL such that
A1: (
len e)
= k1 & for i be
Nat st i
in (
dom e) holds (e
. i)
=
f(i) from
FINSEQ_2:sch 1;
take e;
thus (
dom e)
= (
Seg k) by
FINSEQ_1:def 3,
A1;
let i be
Nat;
assume
A2: i
in (
dom e);
f(i)
= (i
|^ n);
hence thesis by
A2,
A1;
end;
uniqueness
proof
deffunc
f(
Nat) = ($1
|^ n);
let e1,e2 be
FinSequence of
REAL such that
A3: (
dom e1)
= (
Seg k) & for i be
Nat st i
in (
dom e1) holds (e1
. i)
=
f(i) and
A4: (
dom e2)
= (
Seg k) & for i be
Nat st i
in (
dom e2) holds (e2
. i)
=
f(i);
for i be
Nat st i
in (
dom e1) holds (e1
. i)
= (e2
. i)
proof
let i be
Nat;
assume
A5: i
in (
dom e1);
hence (e1
. i)
=
f(i) by
A3
.= (e2
. i) by
A5,
A3,
A4;
end;
hence thesis by
A3,
A4,
FINSEQ_1: 13;
end;
end
theorem ::
NUMPOLY1:58
Th58: for k be
Nat holds (
NPower (n,(k
+ 1)))
= ((
NPower (n,k))
^
<*((k
+ 1)
|^ n)*>)
proof
let k be
Nat;
A1: (
dom (
NPower (n,(k
+ 1))))
= (
dom ((
NPower (n,k))
^
<*((k
+ 1)
|^ n)*>))
proof
(
Seg (
len (
NPower (n,k))))
= (
dom (
NPower (n,k))) by
FINSEQ_1:def 3
.= (
Seg k) by
Def8;
then
A2: (
len (
NPower (n,k)))
= k by
FINSEQ_1: 6;
A3: (
len
<*((k
+ 1)
|^ n)*>)
= 1 by
FINSEQ_1: 40;
(
dom ((
NPower (n,k))
^
<*((k
+ 1)
|^ n)*>))
= (
Seg ((
len (
NPower (n,k)))
+ (
len
<*((k
+ 1)
|^ n)*>))) by
FINSEQ_1:def 7
.= (
dom (
NPower (n,(k
+ 1)))) by
Def8,
A3,
A2;
hence thesis;
end;
for l be
Nat st l
in (
dom (
NPower (n,(k
+ 1)))) holds ((
NPower (n,(k
+ 1)))
. l)
= (((
NPower (n,k))
^
<*((k
+ 1)
|^ n)*>)
. l)
proof
let l be
Nat;
assume
A4: l
in (
dom (
NPower (n,(k
+ 1))));
then l
in (
Seg (k
+ 1)) by
Def8;
then
A5: 1
<= l & l
<= (k
+ 1) by
FINSEQ_1: 1;
set NP = (((
NPower (n,k))
^
<*((k
+ 1)
|^ n)*>)
. l);
(((
NPower (n,k))
^
<*((k
+ 1)
|^ n)*>)
. l)
= (l
|^ n)
proof
per cases by
A5,
NAT_1: 8;
suppose l
<= k;
then l
in (
Seg k) by
A5,
FINSEQ_1: 1;
then
A6: l
in (
dom (
NPower (n,k))) by
Def8;
then NP
= ((
NPower (n,k))
. l) by
FINSEQ_1:def 7
.= (l
|^ n) by
Def8,
A6;
hence thesis;
end;
suppose
A7: l
= (k
+ 1);
(
Seg k)
= (
dom (
NPower (n,k))) by
Def8
.= (
Seg (
len (
NPower (n,k)))) by
FINSEQ_1:def 3;
then k
= (
len (
NPower (n,k))) by
FINSEQ_1: 6;
hence thesis by
A7,
FINSEQ_1: 42;
end;
end;
hence thesis by
Def8,
A4;
end;
hence thesis by
A1,
FINSEQ_1: 13;
end;
registration
let n be
Nat;
reduce (
Sum (
NPower (n,
0 ))) to
0 ;
reducibility
proof
(
dom (
NPower (n,
0 )))
= (
Seg
0 ) by
Def8
.=
{} ;
hence thesis by
RVSUM_1: 72,
RELAT_1: 41;
end;
end
theorem ::
NUMPOLY1:59
((
Triangle n)
|^ 2)
= (
Sum (
NPower (3,n)))
proof
defpred
P[
Nat] means ((
Triangle $1)
|^ 2)
= (
Sum (
NPower (3,$1)));
A1:
P[
0 ]
proof
thus ((
Triangle
0 )
|^ 2)
= (
0
*
0 ) by
NEWTON: 81
.= (
Sum (
NPower (3,
0 )));
end;
A2: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A3:
P[k];
reconsider k1 = (k
+ 1) as
Element of
REAL by
XREAL_0:def 1;
((
Triangle (k
+ 1))
|^ 2)
= ((((k
+ 1)
* ((k
+ 1)
+ 1))
/ 2)
|^ 2) by
Th19
.= ((((k
+ 1)
* (k
+ 2))
/ 2)
* (((k
+ 1)
* (k
+ 2))
/ 2)) by
NEWTON: 81
.= (((((k
+ 1)
* (k
+ 1))
* (k
+ 2))
* (k
+ 2))
/ (2
* 2))
.= (((((k
+ 1)
|^ 2)
* (k
+ 2))
* (k
+ 2))
/ (2
* 2)) by
NEWTON: 81
.= ((((k
+ 1)
|^ 2)
* (((k
* k)
+ (4
* k))
+ 4))
/ (2
* 2))
.= ((((k
+ 1)
|^ 2)
* (((k
|^ 2)
+ (4
* k))
+ 4))
/ (2
* 2)) by
NEWTON: 81
.= ((((((k
+ 1)
|^ 2)
* (k
|^ 2))
/ 4)
+ (((((k
+ 1)
|^ 2)
* 4)
* k)
/ 4))
+ ((((k
+ 1)
|^ 2)
* 4)
/ 4))
.= ((((((k
+ 1)
* k)
|^ 2)
/ (2
* 2))
+ (((((k
+ 1)
|^ 2)
* 4)
* k)
/ 4))
+ ((((k
+ 1)
|^ 2)
* 4)
/ 4)) by
NEWTON: 7
.= ((((((k
+ 1)
* k)
|^ 2)
/ (2
|^ 2))
+ (((((k
+ 1)
|^ 2)
* 4)
* k)
/ 4))
+ ((((k
+ 1)
|^ 2)
* 4)
/ 4)) by
NEWTON: 81
.= ((((((k
+ 1)
|^ 2)
* (k
|^ 2))
/ (2
|^ 2))
+ (((((k
+ 1)
|^ 2)
* 4)
* k)
/ 4))
+ ((((k
+ 1)
|^ 2)
* 4)
/ 4)) by
NEWTON: 7
.= ((((((k
+ 1)
* (k
+ 1))
* (k
|^ 2))
/ (2
|^ 2))
+ (((((k
+ 1)
|^ 2)
* 4)
* k)
/ 4))
+ ((((k
+ 1)
|^ 2)
* 4)
/ 4)) by
NEWTON: 81
.= ((((((k
+ 1)
* (k
+ 1))
* (k
* k))
/ (2
|^ 2))
+ (((((k
+ 1)
|^ 2)
* 4)
* k)
/ 4))
+ ((((k
+ 1)
|^ 2)
* 4)
/ 4)) by
NEWTON: 81
.= (((((((k
+ 1)
* (k
+ 1))
* k)
* k)
/ (2
* 2))
+ (((((k
+ 1)
|^ 2)
* 4)
* k)
/ 4))
+ ((((k
+ 1)
|^ 2)
* 4)
/ 4)) by
NEWTON: 81
.= ((((((k
+ 1)
* k)
/ 2)
* (((k
+ 1)
* k)
/ 2))
+ (((((k
+ 1)
|^ 2)
* 4)
* k)
/ 4))
+ ((((k
+ 1)
|^ 2)
* 4)
/ 4))
.= ((((
Triangle k)
* (((k
+ 1)
* k)
/ 2))
+ (((((k
+ 1)
|^ 2)
* 4)
* k)
/ 4))
+ ((((k
+ 1)
|^ 2)
* 4)
/ 4)) by
Th19
.= ((((
Triangle k)
* (
Triangle k))
+ (((((k
+ 1)
|^ 2)
* 4)
* k)
/ 4))
+ ((((k
+ 1)
|^ 2)
* 4)
/ 4)) by
Th19
.= ((((
Triangle k)
|^ 2)
+ (((((k
+ 1)
|^ 2)
* 4)
* k)
/ 4))
+ ((((k
+ 1)
|^ 2)
* 4)
/ 4)) by
NEWTON: 81
.= ((
Sum (
NPower (3,k)))
+ (((k
+ 1)
|^ 2)
* (k
+ 1))) by
A3
.= ((
Sum (
NPower (3,k)))
+ (((k
+ 1)
* (k
+ 1))
* (k
+ 1))) by
NEWTON: 81
.= ((
Sum (
NPower (3,k)))
+ ((k
+ 1)
|^ 3)) by
POLYEQ_3: 27
.= (
Sum ((
NPower (3,k))
^
<*(k1
|^ 3)*>)) by
RVSUM_1: 74
.= (
Sum (
NPower (3,(k
+ 1)))) by
Th58;
hence thesis;
end;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
NUMPOLY1:60
for n be non
trivial
Nat holds ((
Triangle n)
+ ((
Triangle (n
-' 1))
* (
Triangle (n
+ 1))))
= ((
Triangle n)
|^ 2)
proof
let n be non
trivial
Nat;
A1: (
Triangle n)
= ((n
* (n
+ 1))
/ 2) by
Th19;
(
0
+ 1)
<= n by
NAT_1: 13;
then
A2: (n
-' 1)
= (n
- 1) by
XREAL_1: 233;
A3: (
Triangle (n
-' 1))
= (((n
-' 1)
* ((n
-' 1)
+ 1))
/ 2) by
Th19
.= (((n
- 1)
* n)
/ 2) by
A2;
(
Triangle (n
+ 1))
= (((n
+ 1)
* ((n
+ 1)
+ 1))
/ 2) by
Th19
.= (((n
+ 1)
* (n
+ 2))
/ 2);
then ((
Triangle n)
+ ((
Triangle (n
-' 1))
* (
Triangle (n
+ 1))))
= ((
Triangle n)
* (
Triangle n)) by
A1,
A3
.= ((
Triangle n)
|^ 2) by
NEWTON: 81;
hence thesis;
end;
theorem ::
NUMPOLY1:61
(((
Triangle n)
|^ 2)
+ ((
Triangle (n
+ 1))
|^ 2))
= (
Triangle ((n
+ 1)
|^ 2))
proof
A1: (
Triangle (n
+ 1))
= (((n
+ 1)
* ((n
+ 1)
+ 1))
/ 2) by
Th19
.= (((n
+ 1)
* (n
+ 2))
/ 2);
A2: ((n
+ 1)
|^ 2)
= ((n
+ 1)
* (n
+ 1)) by
NEWTON: 81;
(((
Triangle n)
|^ 2)
+ ((
Triangle (n
+ 1))
|^ 2))
= ((((n
* (n
+ 1))
/ 2)
|^ 2)
+ ((
Triangle (n
+ 1))
|^ 2)) by
Th19
.= ((((n
* (n
+ 1))
/ 2)
* ((n
* (n
+ 1))
/ 2))
+ ((((n
+ 1)
* (n
+ 2))
/ 2)
|^ 2)) by
NEWTON: 81,
A1
.= ((((n
* (n
+ 1))
/ 2)
* ((n
* (n
+ 1))
/ 2))
+ ((((n
+ 1)
* (n
+ 2))
/ 2)
* (((n
+ 1)
* (n
+ 2))
/ 2))) by
NEWTON: 81
.= ((((n
+ 1)
|^ 2)
* (((n
+ 1)
|^ 2)
+ 1))
/ 2) by
A2
.= (
Triangle ((n
+ 1)
|^ 2)) by
Th19;
hence thesis;
end;
theorem ::
NUMPOLY1:62
(((
Triangle (n
+ 1))
|^ 2)
- ((
Triangle n)
|^ 2))
= ((n
+ 1)
|^ 3)
proof
A1: (
Triangle (n
+ 1))
= (((n
+ 1)
* ((n
+ 1)
+ 1))
/ 2) by
Th19
.= (((n
+ 1)
* (n
+ 2))
/ 2);
A2: ((n
+ 1)
|^ 3)
= (((n
+ 1)
* (n
+ 1))
* (n
+ 1)) by
POLYEQ_3: 27
.= (((((n
* n)
* n)
+ ((3
* n)
* n))
+ (3
* n))
+ 1);
A3: ((n
+ 1)
* (n
+ 1))
= ((n
+ 1)
|^ 2) by
NEWTON: 81;
(((
Triangle (n
+ 1))
|^ 2)
- ((
Triangle n)
|^ 2))
= (((((n
+ 1)
* (n
+ 2))
/ 2)
|^ 2)
- (((n
* (n
+ 1))
/ 2)
|^ 2)) by
Th19,
A1
.= (((((n
+ 1)
* (n
+ 2))
/ 2)
* (((n
+ 1)
* (n
+ 2))
/ 2))
- (((n
* (n
+ 1))
/ 2)
|^ 2)) by
NEWTON: 81
.= ((((((n
+ 1)
* (n
+ 1))
* (n
+ 2))
* (n
+ 2))
/ 4)
- (((n
* (n
+ 1))
/ 2)
|^ 2))
.= ((((((n
+ 1)
|^ 2)
* (n
+ 2))
* (n
+ 2))
/ 4)
- (((n
* (n
+ 1))
/ 2)
|^ 2)) by
NEWTON: 81
.= ((((((n
+ 1)
|^ 2)
* (n
+ 2))
* (n
+ 2))
/ 4)
- (((n
* (n
+ 1))
/ 2)
* ((n
* (n
+ 1))
/ 2))) by
NEWTON: 81
.= ((((((n
+ 1)
|^ 2)
* (n
+ 2))
* (n
+ 2))
/ 4)
- ((((n
* n)
* (n
+ 1))
* (n
+ 1))
/ 4))
.= ((((((n
+ 1)
|^ 2)
* (n
+ 2))
* (n
+ 2))
/ 4)
- ((((n
|^ 2)
* (n
+ 1))
* (n
+ 1))
/ 4)) by
NEWTON: 81
.= ((((n
+ 1)
|^ 2)
* (((((n
* n)
+ (2
* n))
+ (2
* n))
+ 4)
- (n
|^ 2)))
/ 4) by
A3
.= ((((n
+ 1)
|^ 2)
* (((((n
|^ 2)
+ (2
* n))
+ (2
* n))
+ 4)
- (n
|^ 2)))
/ 4) by
NEWTON: 81
.= (((n
+ 1)
|^ 2)
* (n
+ 1))
.= (((n
+ 1)
* (n
+ 1))
* (n
+ 1)) by
NEWTON: 81
.= ((n
+ 1)
|^ 3) by
A2;
hence thesis;
end;
theorem ::
NUMPOLY1:63
for n be non
zero
Nat holds ((3
* (
Triangle n))
+ (
Triangle (n
-' 1)))
= (
Triangle (2
* n))
proof
let n be non
zero
Nat;
A1: (n
-' 1)
= (n
- 1) by
XREAL_1: 233,
NAT_1: 14;
A2: (
Triangle (n
-' 1))
= (((n
- 1)
* ((n
- 1)
+ 1))
/ 2) by
A1,
Th19;
((3
* (
Triangle n))
+ (
Triangle (n
-' 1)))
= ((3
* ((n
* (n
+ 1))
/ 2))
+ (((n
- 1)
* ((n
- 1)
+ 1))
/ 2)) by
A2,
Th19
.= (((2
* n)
* ((2
* n)
+ 1))
/ 2)
.= (
Triangle (2
* n)) by
Th19;
hence thesis;
end;
theorem ::
NUMPOLY1:64
((3
* (
Triangle n))
+ (
Triangle (n
+ 1)))
= (
Triangle ((2
* n)
+ 1))
proof
A1: (
Triangle n)
= ((n
* (n
+ 1))
/ 2) by
Th19;
A2: (
Triangle (n
+ 1))
= (((n
+ 1)
* ((n
+ 1)
+ 1))
/ 2) by
Th19
.= (((n
+ 1)
* (n
+ 2))
/ 2);
(
Triangle ((2
* n)
+ 1))
= ((((2
* n)
+ 1)
* (((2
* n)
+ 1)
+ 1))
/ 2) by
Th19
.= ((((2
* n)
+ 1)
* ((2
* n)
+ 2))
/ 2);
hence thesis by
A1,
A2;
end;
theorem ::
NUMPOLY1:65
for n be non
zero
Nat holds (((
Triangle (n
-' 1))
+ (6
* (
Triangle n)))
+ (
Triangle (n
+ 1)))
= ((8
* (
Triangle n))
+ 1)
proof
let n be non
zero
Nat;
A1: (n
-' 1)
= (n
- 1) by
XREAL_1: 233,
NAT_1: 14;
A2: (
Triangle (n
-' 1))
= (((n
- 1)
* ((n
- 1)
+ 1))
/ 2) by
A1,
Th19;
A3: (
Triangle n)
= ((n
* (n
+ 1))
/ 2) by
Th19;
(
Triangle (n
+ 1))
= (((n
+ 1)
* ((n
+ 1)
+ 1))
/ 2) by
Th19
.= (((n
+ 1)
* (n
+ 2))
/ 2);
hence thesis by
A3,
A2;
end;
theorem ::
NUMPOLY1:66
for n be non
zero
Nat holds ((
Triangle n)
+ (
Triangle (n
-' 1)))
= ((((1
+ (2
* n))
- 1)
* n)
/ 2)
proof
let n be non
zero
Nat;
A1: (n
-' 1)
= (n
- 1) by
XREAL_1: 233,
NAT_1: 14;
A2: (
Triangle (n
-' 1))
= (((n
- 1)
* ((n
- 1)
+ 1))
/ 2) by
A1,
Th19;
((
Triangle n)
+ (
Triangle (n
-' 1)))
= (((n
* (n
+ 1))
/ 2)
+ (
Triangle (n
-' 1))) by
Th19
.= ((((1
+ (2
* n))
- 1)
* n)
/ 2) by
A2;
hence thesis;
end;
theorem ::
NUMPOLY1:67
Th67: (1
+ (9
* (
Triangle n)))
= (
Triangle ((3
* n)
+ 1))
proof
A1: (
Triangle n)
= ((n
* (n
+ 1))
/ 2) by
Th19;
(
Triangle ((3
* n)
+ 1))
= ((((3
* n)
+ 1)
* (((3
* n)
+ 1)
+ 1))
/ 2) by
Th19
.= (1
+ (9
* (
Triangle n))) by
A1;
hence thesis;
end;
theorem ::
NUMPOLY1:68
for m be
Nat holds (
Triangle (n
+ m))
= (((
Triangle n)
+ (
Triangle m))
+ (n
* m))
proof
let m be
Nat;
(
Triangle (n
+ m))
= (((n
+ m)
* ((n
+ m)
+ 1))
/ 2) by
Th19
.= ((((n
* (n
+ 1))
/ 2)
+ ((m
* (m
+ 1))
/ 2))
+ (n
* m))
.= (((
Triangle n)
+ ((m
* (m
+ 1))
/ 2))
+ (n
* m)) by
Th19
.= (((
Triangle n)
+ (
Triangle m))
+ (n
* m)) by
Th19;
hence thesis;
end;
theorem ::
NUMPOLY1:69
for n,m be non
trivial
Nat holds (((
Triangle n)
* (
Triangle m))
+ ((
Triangle (n
-' 1))
* (
Triangle (m
-' 1))))
= (
Triangle (n
* m))
proof
let n,m be non
trivial
Nat;
(
0
+ 1)
<= n by
NAT_1: 13;
then
A1: (n
-' 1)
= (n
- 1) by
XREAL_1: 233;
(
0
+ 1)
<= m by
NAT_1: 13;
then
A2: (m
-' 1)
= (m
- 1) by
XREAL_1: 233;
A3: (
Triangle (n
-' 1))
= (((n
- 1)
* ((n
- 1)
+ 1))
/ 2) by
A1,
Th19;
A4: (
Triangle (m
-' 1))
= (((m
- 1)
* ((m
- 1)
+ 1))
/ 2) by
A2,
Th19;
A5: (
Triangle (n
* m))
= (((n
* m)
* ((n
* m)
+ 1))
/ 2) by
Th19;
(((
Triangle n)
* (
Triangle m))
+ ((
Triangle (n
-' 1))
* (
Triangle (m
-' 1))))
= ((((n
* (n
+ 1))
/ 2)
* (
Triangle m))
+ ((
Triangle (n
-' 1))
* (
Triangle (m
-' 1)))) by
Th19
.= ((((n
* (n
+ 1))
/ 2)
* ((m
* (m
+ 1))
/ 2))
+ ((((n
- 1)
* ((n
- 1)
+ 1))
/ 2)
* (((m
- 1)
* ((m
- 1)
+ 1))
/ 2))) by
A4,
A3,
Th19
.= (((((n
* n)
+ n)
/ 2)
* (((m
* m)
+ m)
/ 2))
+ ((((n
* n)
- n)
/ 2)
* (((m
* m)
- m)
/ 2)))
.= (((((n
|^ 2)
+ n)
/ 2)
* (((m
* m)
+ m)
/ 2))
+ ((((n
* n)
- n)
/ 2)
* (((m
* m)
- m)
/ 2))) by
NEWTON: 81
.= (((((n
|^ 2)
+ n)
/ 2)
* (((m
|^ 2)
+ m)
/ 2))
+ ((((n
* n)
- n)
/ 2)
* (((m
* m)
- m)
/ 2))) by
NEWTON: 81
.= (((((n
|^ 2)
+ n)
/ 2)
* (((m
|^ 2)
+ m)
/ 2))
+ ((((n
|^ 2)
- n)
/ 2)
* (((m
* m)
- m)
/ 2))) by
NEWTON: 81
.= (((((n
|^ 2)
+ n)
/ 2)
* (((m
|^ 2)
+ m)
/ 2))
+ ((((n
|^ 2)
- n)
/ 2)
* (((m
|^ 2)
- m)
/ 2))) by
NEWTON: 81
.= ((((n
|^ 2)
* (m
|^ 2))
+ (n
* m))
/ 2)
.= ((((n
* n)
* (m
|^ 2))
+ (n
* m))
/ 2) by
NEWTON: 81
.= ((((n
* n)
* (m
* m))
+ (n
* m))
/ 2) by
NEWTON: 81
.= (
Triangle (n
* m)) by
A5;
hence thesis;
end;
begin
definition
let s be
Nat;
::
NUMPOLY1:def9
func
PolygonalNumbers s ->
set equals the set of all (
Polygon (s,n)) where n be
Nat;
coherence ;
end
definition
let s be non
trivial
Nat;
:: original:
PolygonalNumbers
redefine
func
PolygonalNumbers s ->
Subset of
NAT ;
coherence
proof
the set of all (
Polygon (s,n)) where n be
Nat
c=
NAT
proof
let x be
object;
assume x
in the set of all (
Polygon (s,n)) where n be
Nat;
then ex n be
Nat st x
= (
Polygon (s,n));
hence thesis by
ORDINAL1:def 12;
end;
hence thesis;
end;
end
Lm4: for s be non
trivial
Nat holds (
PolygonalNumbers s) is
Subset of
NAT ;
definition
::
NUMPOLY1:def10
func
TriangularNumbers ->
Subset of
NAT equals (
PolygonalNumbers 3);
coherence
proof
3 is non
trivial by
NAT_2:def 1;
hence thesis by
Lm4;
end;
::
NUMPOLY1:def11
func
SquareNumbers ->
Subset of
NAT equals (
PolygonalNumbers 4);
coherence
proof
4 is non
trivial by
NAT_2:def 1;
hence thesis by
Lm4;
end;
end
registration
let s be non
trivial
Nat;
cluster (
PolygonalNumbers s) -> non
empty;
coherence
proof
A1: (
Polygon (s,
0 )) is
set;
(
Polygon (s,n))
in (
PolygonalNumbers s);
hence thesis by
A1,
XBOOLE_0:def 1;
end;
end
registration
cluster
TriangularNumbers -> non
empty;
coherence
proof
3 is non
trivial by
NAT_2:def 1;
hence thesis;
end;
cluster
SquareNumbers -> non
empty;
coherence
proof
4 is non
trivial by
NAT_2:def 1;
hence thesis;
end;
end
registration
cluster ->
triangular for
Element of
TriangularNumbers ;
coherence
proof
let x be
Element of
TriangularNumbers ;
x
in
TriangularNumbers by
SUBSET_1:def 1;
then ex n be
Nat st x
= (
Polygon (3,n));
hence thesis;
end;
cluster ->
square for
Element of
SquareNumbers ;
coherence
proof
let x be
Element of
SquareNumbers ;
x
in
SquareNumbers by
SUBSET_1:def 1;
then ex n be
Nat st x
= (
Polygon (4,n));
hence thesis;
end;
end
theorem ::
NUMPOLY1:70
Th70: for x be
number holds x
in
TriangularNumbers iff x is
triangular
proof
let x be
number;
thus x
in
TriangularNumbers implies x is
triangular;
assume x is
triangular;
then
consider n be
Nat such that
A1: x
= (
Triangle n);
x
= (
Polygon (3,n)) by
A1,
Th40;
hence thesis;
end;
theorem ::
NUMPOLY1:71
Th71: for x be
number holds x
in
SquareNumbers iff x is
square
proof
let x be
number;
thus x
in
SquareNumbers implies x is
square;
assume x is
square;
then
consider n be
Nat such that
A1: x
= (n
^2 ) by
PYTHTRIP:def 3;
x
= (
Polygon (4,n)) by
A1;
hence thesis;
end;
begin
theorem ::
NUMPOLY1:72
Th72: ((n
+ 1)
choose 2)
= ((n
* (n
+ 1))
/ 2)
proof
per cases ;
suppose
A1: n
<>
0 ;
then
A2: n
= ((n
-' 1)
+ 1) by
XREAL_1: 235,
NAT_1: 14;
A3: (n
+ 1)
>= (1
+ 1) by
NAT_1: 14,
A1,
XREAL_1: 6;
(n
-' 1)
= (n
- 1) by
XREAL_1: 233,
NAT_1: 14,
A1
.= ((n
+ 1)
- 2);
then ((n
+ 1)
choose 2)
= (((n
+ 1)
! )
/ ((2
! )
* ((n
-' 1)
! ))) by
NEWTON:def 3,
A3
.= (((n
! )
* (n
+ 1))
/ (2
* ((n
-' 1)
! ))) by
NEWTON: 15,
NEWTON: 14
.= (((((n
-' 1)
! )
* n)
* (n
+ 1))
/ (2
* ((n
-' 1)
! ))) by
NEWTON: 15,
A2
.= ((((n
-' 1)
! )
* (n
* (n
+ 1)))
/ (2
* ((n
-' 1)
! )))
.= ((n
* (n
+ 1))
/ 2) by
XCMPLX_1: 91;
hence thesis;
end;
suppose n
=
0 ;
hence thesis by
NEWTON:def 3;
end;
end;
theorem ::
NUMPOLY1:73
(
Triangle n)
= ((n
+ 1)
choose 2)
proof
((n
+ 1)
choose 2)
= ((n
* (n
+ 1))
/ 2) by
Th72;
hence thesis by
Th19;
end;
theorem ::
NUMPOLY1:74
Th74: for n be non
zero
Nat st n is
even
perfect holds n is
triangular
proof
let n be non
zero
Nat;
assume n is
even
perfect;
then
consider p be
Nat such that
A1: ((2
|^ p)
-' 1) is
prime & n
= ((2
|^ (p
-' 1))
* ((2
|^ p)
-' 1)) by
NAT_5: 39;
set p1 = (
Mersenne p);
A2: p
<>
0
proof
assume p
=
0 ;
then ((2
|^ p)
-' 1)
= (1
-' 1) by
NEWTON: 4
.=
0 by
XREAL_1: 232;
hence thesis by
A1;
end;
A3: n
= ((2
|^ (p
-' 1))
* p1) by
A1,
XREAL_0:def 2;
A4: (p
-' 1)
= (p
- 1) by
XREAL_1: 233,
A2,
NAT_1: 14;
((2
to_power p)
/ (2
to_power 1))
= ((p1
+ 1)
/ 2);
then
A5: (2
to_power (p
-' 1))
= ((p1
+ 1)
/ 2) by
A4,
POWER: 29;
((p1
* (p1
+ 1))
/ 2)
= (
Triangle p1) by
Th19;
hence thesis by
A3,
A5;
end;
registration
let n be non
zero
Nat;
cluster (
Mersenne n) -> non
zero;
coherence
proof
assume (
Mersenne n)
=
0 ;
then (
log (2,(2
to_power n)))
=
0 by
POWER: 51;
then (n
* (
log (2,2)))
=
0 by
POWER: 55;
then (n
* 1)
=
0 by
POWER: 52;
hence thesis;
end;
end
definition
let n be
number;
::
NUMPOLY1:def12
attr n is
mersenne means
:
Def12: ex p be
Nat st n
= (
Mersenne p);
end
registration
cluster
mersenne for
Prime;
existence
proof
reconsider p = (
Mersenne 2) as
Prime by
PEPIN: 41,
GR_CY_3: 18;
p is
mersenne;
hence thesis;
end;
cluster non
prime for
Nat;
existence by
INT_2: 29;
end
registration
cluster
mersenne non
prime for
Nat;
existence
proof
set p = (
Mersenne 11);
reconsider p as non
prime
Nat by
INT_2:def 4,
GR_CY_3: 22,
NAT_D: 9;
p is
mersenne;
hence thesis;
end;
end
registration
cluster -> non
zero for
Prime;
coherence by
INT_2:def 4;
end
registration
let n be
mersenne
Prime;
cluster (
Triangle n) ->
perfect;
coherence
proof
reconsider n0 = (
Triangle n) as non
zero
Nat by
TARSKI: 1;
consider p be
Nat such that
A1: n
= (
Mersenne p) by
Def12;
(2
to_power p)
>
0 by
POWER: 34;
then (2
|^ p)
>= (
0
+ 1) by
NAT_1: 13;
then
A2: ((2
|^ p)
-' 1)
= ((2
|^ p)
- 1) by
XREAL_0:def 2,
XREAL_1: 19;
A3: (p
-' 1)
= (p
- 1) by
XREAL_1: 233,
A1,
GR_CY_3: 16,
NAT_1: 14;
reconsider p1 = (
Mersenne p) as
Nat;
((2
to_power p)
/ (2
to_power 1))
= ((p1
+ 1)
/ 2);
then (2
to_power (p
-' 1))
= ((p1
+ 1)
/ 2) by
A3,
POWER: 29;
then (p1
* (2
|^ (p
-' 1)))
= ((p1
* (p1
+ 1))
/ 2);
then n0 is
perfect by
NAT_5: 38,
A2,
A1,
Th19;
hence thesis;
end;
end
registration
cluster
even
perfect ->
triangular for non
zero
Nat;
coherence by
Th74;
end
theorem ::
NUMPOLY1:75
Th75: ((8
* (
Triangle n))
+ 1)
= (((2
* n)
+ 1)
^2 )
proof
(8
* (
Triangle n))
= (8
* ((n
* (n
+ 1))
/ 2)) by
Th19
.= (4
* ((n
^2 )
+ n));
hence thesis;
end;
theorem ::
NUMPOLY1:76
Th76: n is
triangular implies ((8
* n)
+ 1) is
square
proof
assume n is
triangular;
then
consider k be
Nat such that
A1: n
= (
Triangle k);
((8
* (
Triangle k))
+ 1)
= (((2
* k)
+ 1)
^2 ) by
Th75;
hence ((8
* n)
+ 1) is
square by
A1;
end;
theorem ::
NUMPOLY1:77
Th77: n is
triangular implies ((9
* n)
+ 1) is
triangular
proof
assume n is
triangular;
then
consider k be
Nat such that
A1: n
= (
Triangle k);
(1
+ (9
* (
Triangle k)))
= (
Triangle ((3
* k)
+ 1)) by
Th67;
hence thesis by
A1;
end;
theorem ::
NUMPOLY1:78
Th78: (
Triangle n) is
triangular
square implies (
Triangle ((4
* n)
* (n
+ 1))) is
triangular
square
proof
assume (
Triangle n) is
triangular
square;
then ((n
* (n
+ 1))
/ 2) is
triangular
square by
Th19;
then
consider k be
Nat such that
A1: ((n
* (n
+ 1))
/ 2)
= (k
^2 ) by
PYTHTRIP:def 3;
(
Triangle ((4
* n)
* (n
+ 1)))
= (((8
* (k
^2 ))
* ((8
* (k
^2 ))
+ 1))
/ 2) by
Th19,
A1
.= ((4
* (k
^2 ))
* (((4
* n)
* (n
+ 1))
+ 1)) by
A1
.= (((2
* k)
* ((2
* n)
+ 1))
^2 );
hence thesis;
end;
registration
cluster
TriangularNumbers ->
infinite;
coherence
proof
set T =
TriangularNumbers ;
for m be
Element of
NAT holds ex n be
Element of
NAT st n
>= m & n
in T
proof
let m be
Element of
NAT ;
reconsider w = (
Triangle m) as
Nat by
TARSKI: 1;
A1: w is
triangular;
reconsider n = ((9
* w)
+ 1) as
Element of
NAT by
ORDINAL1:def 12;
take n;
A2: w
>= m by
Th44;
(9
* w)
>= (1
* w) by
XREAL_1: 64;
then ((9
* w)
+ 1)
> w by
NAT_1: 13;
hence n
>= m by
A2,
XXREAL_0: 2;
thus thesis by
Th70,
A1,
Th77;
end;
hence thesis by
PYTHTRIP: 9;
end;
cluster
SquareNumbers ->
infinite;
coherence
proof
set T =
SquareNumbers ;
for m be
Element of
NAT holds ex n be
Element of
NAT st n
>= m & n
in T
proof
let m be
Element of
NAT ;
reconsider w = (
Triangle m) as
Nat by
TARSKI: 1;
A3: w is
triangular;
reconsider n = ((8
* w)
+ 1) as
Element of
NAT by
ORDINAL1:def 12;
take n;
A4: w
>= m by
Th44;
(8
* w)
>= (1
* w) by
XREAL_1: 64;
then ((8
* w)
+ 1)
> w by
NAT_1: 13;
hence n
>= m by
A4,
XXREAL_0: 2;
thus thesis by
Th71,
A3,
Th76;
end;
hence thesis by
PYTHTRIP: 9;
end;
end
registration
cluster
triangular
square non
zero for
Nat;
existence
proof
reconsider a = (
Triangle 1) as
Nat by
TARSKI: 1;
take a;
1
= (1
^2 );
then (
Triangle 1) is
triangular
square by
FINSEQ_2: 50,
RVSUM_1: 73;
hence thesis;
end;
end
theorem ::
NUMPOLY1:79
Th79:
0 is
triangular
square
proof
0
= (
0
^2 );
then (
Triangle
0 ) is
triangular
square;
hence thesis;
end;
registration
cluster
zero ->
triangular
square for
number;
coherence by
Th79;
end
theorem ::
NUMPOLY1:80
Th80: 1 is
triangular
square
proof
1
= (1
^2 );
hence thesis by
Th11;
end;
::$Notion-Name
theorem ::
NUMPOLY1:81
36 is
triangular
square
proof
(
Triangle ((4
* 1)
* (1
+ 1))) is
triangular
square by
Th11,
Th80,
Th78;
hence thesis by
Th18;
end;
theorem ::
NUMPOLY1:82
1225 is
triangular
square
proof
A1: (35
^2 )
= 1225;
(
Triangle 49)
= ((49
* (49
+ 1))
/ 2) by
Th19
.= 1225;
hence thesis by
A1;
end;
registration
let n be
triangular
Nat;
cluster ((9
* n)
+ 1) ->
triangular;
coherence by
Th77;
end
registration
let n be
triangular
Nat;
cluster ((8
* n)
+ 1) ->
square;
coherence by
Th76;
end
begin
registration
let a be
Real;
reduce (
lim (
seq_const a)) to a;
reducibility
proof
((
seq_const a)
. 1)
= a by
SEQ_1: 57;
hence thesis by
SEQ_4: 25;
end;
end
definition
::
NUMPOLY1:def13
func
ReciTriangRS ->
Real_Sequence means
:
Def13: for i be
Nat holds (it
. i)
= (1
/ (
Triangle i));
correctness
proof
deffunc
F(
Nat) = (1
/ (
Triangle $1));
thus (ex seq be
Real_Sequence st for n be
Nat holds (seq
. n)
=
F(n)) & (for seq1,seq2 be
Real_Sequence st (for n be
Nat holds (seq1
. n)
=
F(n)) & (for n be
Nat holds (seq2
. n)
=
F(n)) holds seq1
= seq2) from
LNatRealSeq;
end;
end
registration
reduce (
ReciTriangRS
.
0 ) to
0 ;
reducibility
proof
thus (
ReciTriangRS
.
0 )
= (1
/ (
Triangle
0 )) by
Def13
.=
0 ;
end;
end
theorem ::
NUMPOLY1:83
Th83: (1
/ (
Triangle n))
= (2
/ (n
* (n
+ 1)))
proof
(1
/ (
Triangle n))
= (1
/ ((n
* (n
+ 1))
/ 2)) by
Th19
.= (2
/ (n
* (n
+ 1))) by
XCMPLX_1: 57;
hence thesis;
end;
theorem ::
NUMPOLY1:84
Th84: ((
Partial_Sums
ReciTriangRS )
. n)
= (2
- (2
/ (n
+ 1)))
proof
defpred
P[
Nat] means ((
Partial_Sums
ReciTriangRS )
. $1)
= (2
- (2
/ ($1
+ 1)));
A1:
P[
0 ]
proof
(
ReciTriangRS
.
0 )
=
0 ;
hence thesis by
SERIES_1:def 1;
end;
A2: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A3:
P[k];
A4: (
ReciTriangRS
. (k
+ 1))
= (1
/ (
Triangle (k
+ 1))) by
Def13
.= (2
/ ((k
+ 1)
* ((k
+ 1)
+ 1))) by
Th83
.= (2
/ (((k
* k)
+ (3
* k))
+ 2));
A5: ((k
+ 2)
/ (k
+ 2))
= 1 by
XCMPLX_1: 60;
A6: ((k
+ 1)
/ (k
+ 1))
= 1 by
XCMPLX_1: 60;
((
Partial_Sums
ReciTriangRS )
. (k
+ 1))
= (((2
* ((k
+ 2)
/ (k
+ 2)))
- ((2
/ (k
+ 1))
* 1))
+ (2
/ ((k
+ 1)
* (k
+ 2)))) by
A5,
A3,
A4,
SERIES_1:def 1
.= ((((2
* (k
+ 2))
/ (k
+ 2))
- ((2
/ (k
+ 1))
* ((k
+ 2)
/ (k
+ 2))))
+ (2
/ ((k
+ 1)
* (k
+ 2)))) by
XCMPLX_1: 74,
A5
.= (((((2
* (k
+ 2))
/ (k
+ 2))
* ((k
+ 1)
/ (k
+ 1)))
- ((2
* (k
+ 2))
/ ((k
+ 1)
* (k
+ 2))))
+ (2
/ ((k
+ 1)
* (k
+ 2)))) by
A6,
XCMPLX_1: 76
.= (((((2
* (k
+ 2))
* (k
+ 1))
/ ((k
+ 2)
* (k
+ 1)))
- ((2
* (k
+ 2))
/ ((k
+ 1)
* (k
+ 2))))
+ (2
/ ((k
+ 1)
* (k
+ 2)))) by
XCMPLX_1: 76
.= (((((((2
* k)
* k)
+ (6
* k))
+ 4)
- ((2
* k)
+ 4))
/ ((k
+ 2)
* (k
+ 1)))
+ (2
/ ((k
+ 1)
* (k
+ 2)))) by
XCMPLX_1: 120
.= (((((((2
* k)
* k)
+ (6
* k))
+ 4)
- ((2
* k)
+ 4))
+ 2)
/ ((k
+ 2)
* (k
+ 1))) by
XCMPLX_1: 62
.= (((2
* (k
+ 1))
* (k
+ 1))
/ ((k
+ 2)
* (k
+ 1)))
.= (((2
* (k
+ 2))
- 2)
/ (k
+ 2)) by
XCMPLX_1: 91
.= (((2
* (k
+ 2))
/ (k
+ 2))
- (2
/ (k
+ 2))) by
XCMPLX_1: 120
.= (2
- (2
/ (k
+ 2))) by
XCMPLX_1: 89;
hence thesis;
end;
for k be
Nat holds
P[k] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
definition
::
NUMPOLY1:def14
func
SumsReciTriang ->
Real_Sequence means
:
Def14: for n be
Nat holds (it
. n)
= (2
- (2
/ (n
+ 1)));
correctness
proof
deffunc
F(
Nat) = (2
- (2
/ ($1
+ 1)));
thus (ex seq be
Real_Sequence st for n be
Nat holds (seq
. n)
=
F(n)) & (for seq1,seq2 be
Real_Sequence st (for n be
Nat holds (seq1
. n)
=
F(n)) & (for n be
Nat holds (seq2
. n)
=
F(n)) holds seq1
= seq2) from
LNatRealSeq;
end;
let a,b be
Real;
::
NUMPOLY1:def15
func
geo-seq (a,b) ->
Real_Sequence means
:
Def15: for n be
Nat holds (it
. n)
= (a
/ (n
+ b));
correctness
proof
deffunc
F(
Nat) = (a
/ ($1
+ b));
thus (ex seq be
Real_Sequence st for n be
Nat holds (seq
. n)
=
F(n)) & (for seq1,seq2 be
Real_Sequence st (for n be
Nat holds (seq1
. n)
=
F(n)) & (for n be
Nat holds (seq2
. n)
=
F(n)) holds seq1
= seq2) from
LNatRealSeq;
end;
end
theorem ::
NUMPOLY1:85
Th85: for a,b be
Real holds (
geo-seq (a,b)) is
convergent & (
lim (
geo-seq (a,b)))
=
0
proof
let a,b be
Real;
for k be
Nat holds ((
geo-seq (a,b))
. k)
= (a
/ (k
+ b)) by
Def15;
hence thesis by
SEQ_4: 31;
end;
theorem ::
NUMPOLY1:86
Th86:
SumsReciTriang
= ((
seq_const 2)
+ (
- (
geo-seq (2,1))))
proof
for k be
Nat holds (
SumsReciTriang
. k)
= (((
seq_const 2)
. k)
+ ((
- (
geo-seq (2,1)))
. k))
proof
let k be
Nat;
A1: (
SumsReciTriang
. k)
= (2
- (2
/ (k
+ 1))) by
Def14;
A2: ((
seq_const 2)
. k)
= 2 by
SEQ_1: 57;
(
- ((
geo-seq (2,1))
. k))
= ((
- (
geo-seq (2,1)))
. k) by
VALUED_1: 8;
then ((
- (
geo-seq (2,1)))
. k)
= (
- (2
/ (k
+ 1))) by
Def15;
hence thesis by
A1,
A2;
end;
hence thesis by
SEQ_1: 7;
end;
theorem ::
NUMPOLY1:87
Th87:
SumsReciTriang is
convergent & (
lim
SumsReciTriang )
= 2
proof
A1: (
seq_const 2) is
convergent & (
lim (
seq_const 2))
= 2;
A2: (
geo-seq (2,1)) is
convergent by
Th85;
A3: (
lim (
geo-seq (2,1)))
=
0 by
Th85;
A4: (
lim (
- (
geo-seq (2,1))))
= (
- (
lim (
geo-seq (2,1)))) by
SEQ_2: 10,
Th85
.=
0 by
A3;
(
lim
SumsReciTriang )
= (2
+
0 ) by
SEQ_2: 6,
A1,
A2,
Th86,
A4;
hence thesis by
Th86,
A2;
end;
theorem ::
NUMPOLY1:88
(
Partial_Sums
ReciTriangRS )
=
SumsReciTriang by
Th84,
Def14;
::$Notion-Name
theorem ::
NUMPOLY1:89
(
Sum
ReciTriangRS )
= 2 by
Th84,
Def14,
Th87;