polyeq_4.miz
begin
reserve x,y,a,b,c,p,q for
Real;
reserve m,n for
Element of
NAT ;
theorem ::
POLYEQ_4:1
Th1: (b
/ a)
<
0 & (c
/ a)
>
0 & (
delta (a,b,c))
>=
0 implies (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))
>
0 & (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a))
>
0
proof
assume that
A1: (b
/ a)
<
0 and
A2: (c
/ a)
>
0 and
A3: (
delta (a,b,c))
>=
0 ;
A4: ((b
^2 )
- ((4
* a)
* c))
>=
0 by
A3,
QUIN_1:def 1;
now
per cases by
A1,
XREAL_1: 143;
case
A5: b
<
0 & a
>
0 ;
A6:
0
<= (
sqrt ((b
^2 )
- ((4
* a)
* c))) by
A4,
SQUARE_1: 17,
SQUARE_1: 26;
A7: (2
* a)
>
0 by
A5,
XREAL_1: 129;
(
- b)
>
0 by
A5,
XREAL_1: 58;
then ((
- b)
+ (
sqrt ((b
^2 )
- ((4
* a)
* c))))
> (
0
+
0 ) by
A6;
then
A8: (((
- b)
+ (
sqrt ((b
^2 )
- ((4
* a)
* c))))
/ (2
* a))
>
0 by
A7,
XREAL_1: 139;
c
>
0 & (4
* a)
>
0 by
A2,
A5,
XREAL_1: 129;
then (
- (
- ((4
* a)
* c)))
>
0 by
XREAL_1: 129;
then (
- ((4
* a)
* c))
<
0 ;
then ((b
^2 )
+ (
- ((4
* a)
* c)))
< ((b
^2 )
+
0 ) by
XREAL_1: 8;
then (
sqrt ((b
^2 )
- ((4
* a)
* c)))
< (
sqrt (b
^2 )) by
A4,
SQUARE_1: 27;
then (
sqrt ((b
^2 )
- ((4
* a)
* c)))
< (
- b) by
A5,
SQUARE_1: 23;
then (
- (
sqrt ((b
^2 )
- ((4
* a)
* c))))
> (
- (
- b)) by
XREAL_1: 24;
then ((
- (
sqrt ((b
^2 )
- ((4
* a)
* c))))
+ (
- b))
> ((
- (
- b))
+ (
- b)) by
XREAL_1: 8;
then (((
- b)
- (
sqrt ((b
^2 )
- ((4
* a)
* c))))
/ (2
* a))
>
0 by
A7,
XREAL_1: 139;
hence thesis by
A8,
QUIN_1:def 1;
end;
case
A9: b
>
0 & a
<
0 ;
then
A10: (a
* 2)
< (
0
* 2) by
XREAL_1: 68;
c
<
0 by
A2,
A9;
then (a
* c)
>
0 by
A9,
XREAL_1: 130;
then (4
* (a
* c))
>
0 by
XREAL_1: 129;
then (
- (
- ((4
* a)
* c)))
>
0 ;
then (
- ((4
* a)
* c))
<
0 ;
then ((b
^2 )
+ (
- ((4
* a)
* c)))
< ((b
^2 )
+
0 ) by
XREAL_1: 8;
then (
sqrt ((b
^2 )
- ((4
* a)
* c)))
< (
sqrt (b
^2 )) by
A4,
SQUARE_1: 27;
then (
sqrt ((b
^2 )
- ((4
* a)
* c)))
< b by
A9,
SQUARE_1: 22;
then ((
- b)
+ (
sqrt ((b
^2 )
- ((4
* a)
* c))))
< ((
0
+ b)
+ (
- b)) by
XREAL_1: 8;
then
A11: (((
- b)
+ (
sqrt ((b
^2 )
- ((4
* a)
* c))))
/ (2
* a))
>
0 by
A10,
XREAL_1: 140;
A12:
0
<= (
sqrt ((b
^2 )
- ((4
* a)
* c))) by
A4,
SQUARE_1: 17,
SQUARE_1: 26;
(
- (
- b))
>
0 by
A9;
then ((
- b)
+
0 )
< (
0
+ (
sqrt ((b
^2 )
- ((4
* a)
* c)))) by
A12;
then (
- (
- ((
sqrt ((b
^2 )
- ((4
* a)
* c)))
+ b)))
>
0 by
XREAL_1: 62;
then ((
- b)
- (
sqrt ((b
^2 )
- ((4
* a)
* c))))
<
0 ;
then (((
- b)
- (
sqrt ((b
^2 )
- ((4
* a)
* c))))
/ (2
* a))
>
0 by
A10,
XREAL_1: 140;
hence thesis by
A11,
QUIN_1:def 1;
end;
end;
hence thesis;
end;
theorem ::
POLYEQ_4:2
(b
/ a)
>
0 & (c
/ a)
>
0 & (
delta (a,b,c))
>=
0 implies (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))
<
0 & (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a))
<
0
proof
assume that
A1: (b
/ a)
>
0 and
A2: (c
/ a)
>
0 and
A3: (
delta (a,b,c))
>=
0 ;
A4: ((b
^2 )
- ((4
* a)
* c))
>=
0 by
A3,
QUIN_1:def 1;
now
per cases by
A1,
XREAL_1: 144;
case
A5: b
>
0 & a
>
0 ;
then c
>
0 & (4
* a)
>
0 by
A2,
XREAL_1: 129;
then (
- (
- ((4
* a)
* c)))
>
0 by
XREAL_1: 129;
then (
- ((4
* a)
* c))
<
0 ;
then ((b
^2 )
+ (
- ((4
* a)
* c)))
< ((b
^2 )
+
0 ) by
XREAL_1: 8;
then (
sqrt ((b
^2 )
- ((4
* a)
* c)))
< (
sqrt (b
^2 )) by
A4,
SQUARE_1: 27;
then (
sqrt ((b
^2 )
- ((4
* a)
* c)))
< b by
A5,
SQUARE_1: 22;
then ((
- b)
+ (
sqrt ((b
^2 )
- ((4
* a)
* c))))
< (
0
+ (b
+ (
- b))) by
XREAL_1: 8;
then
A6: (((
- b)
+ (
sqrt ((b
^2 )
- ((4
* a)
* c))))
/ (2
* a))
<
0 by
A5,
XREAL_1: 129,
XREAL_1: 141;
0
<= (
sqrt ((b
^2 )
- ((4
* a)
* c))) by
A4,
SQUARE_1: 17,
SQUARE_1: 26;
then (
0
+
0 )
< (b
+ (
sqrt ((b
^2 )
- ((4
* a)
* c)))) by
A5;
then (
- (
- (b
+ (
sqrt ((b
^2 )
- ((4
* a)
* c))))))
>
0 ;
then ((
- b)
- (
sqrt ((b
^2 )
- ((4
* a)
* c))))
<
0 ;
then (((
- b)
- (
sqrt ((b
^2 )
- ((4
* a)
* c))))
/ (2
* a))
<
0 by
A5,
XREAL_1: 129,
XREAL_1: 141;
hence thesis by
A6,
QUIN_1:def 1;
end;
case
A7: b
<
0 & a
<
0 ;
A8:
0
<= (
sqrt ((b
^2 )
- ((4
* a)
* c))) by
A4,
SQUARE_1: 17,
SQUARE_1: 26;
A9: (a
* 2)
< (
0
* 2) by
A7,
XREAL_1: 68;
(
- b)
>
0 by
A7,
XREAL_1: 58;
then (
0
+
0 )
< ((
- b)
+ (
sqrt ((b
^2 )
- ((4
* a)
* c)))) by
A8;
then
A10: (((
- b)
+ (
sqrt ((b
^2 )
- ((4
* a)
* c))))
/ (2
* a))
<
0 by
A9,
XREAL_1: 142;
c
<
0 by
A2,
A7;
then (a
* c)
>
0 by
A7,
XREAL_1: 130;
then (4
* (a
* c))
>
0 by
XREAL_1: 129;
then (
- (
- ((4
* a)
* c)))
>
0 ;
then (
- ((4
* a)
* c))
<
0 ;
then ((b
^2 )
+ (
- ((4
* a)
* c)))
< ((b
^2 )
+
0 ) by
XREAL_1: 8;
then (
sqrt ((b
^2 )
- ((4
* a)
* c)))
< (
sqrt (b
^2 )) by
A4,
SQUARE_1: 27;
then (
sqrt ((b
^2 )
- ((4
* a)
* c)))
< (
- b) by
A7,
SQUARE_1: 23;
then (b
+ (
sqrt ((b
^2 )
- ((4
* a)
* c))))
< ((
0
+ b)
+ (
- b)) by
XREAL_1: 8;
then (
- (b
+ (
sqrt ((b
^2 )
- ((4
* a)
* c)))))
>
0 by
XREAL_1: 58;
then (((
- b)
- (
sqrt ((b
^2 )
- ((4
* a)
* c))))
/ (2
* a))
<
0 by
A9,
XREAL_1: 142;
hence thesis by
A10,
QUIN_1:def 1;
end;
end;
hence thesis;
end;
theorem ::
POLYEQ_4:3
(c
/ a)
<
0 implies (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))
>
0 & (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a))
<
0 or (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))
<
0 & (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a))
>
0
proof
assume
A1: (c
/ a)
<
0 ;
now
per cases by
A1,
XREAL_1: 143;
case
A2: c
>
0 & a
<
0 ;
then (4
* a)
< (4
*
0 ) by
XREAL_1: 68;
then ((4
* a)
* c)
< (
0
* c) by
A2,
XREAL_1: 68;
then
A3: (
- ((4
* a)
* c))
>
0 by
XREAL_1: 58;
then ((b
^2 )
+ (
- ((4
* a)
* c)))
> ((b
^2 )
+
0 ) by
XREAL_1: 8;
then
A4: (
sqrt ((b
^2 )
- ((4
* a)
* c)))
> (
sqrt (b
^2 )) by
SQUARE_1: 27,
XREAL_1: 63;
A5: (2
* a)
< (2
*
0 ) by
A2,
XREAL_1: 68;
((
- ((4
* a)
* c))
+ (b
^2 ))
> (
0
+
0 ) by
A3,
XREAL_1: 8,
XREAL_1: 63;
then
A6: (
- (
- (
sqrt ((b
^2 )
- ((4
* a)
* c)))))
>
0 by
SQUARE_1: 17,
SQUARE_1: 27;
then
A7: (
- (
sqrt ((b
^2 )
- ((4
* a)
* c))))
<
0 ;
now
per cases ;
suppose
A8: b
>=
0 ;
then (
- b)
<= (
-
0 );
then ((
- (
sqrt ((b
^2 )
- ((4
* a)
* c))))
+ (
- b))
< (
0
+
0 ) by
A7;
then ((
- b)
- (
sqrt ((b
^2 )
- ((4
* a)
* c))))
<
0 ;
then
A9: ((
- b)
- (
sqrt (
delta (a,b,c))))
<
0 by
QUIN_1:def 1;
(
sqrt ((b
^2 )
- ((4
* a)
* c)))
> b by
A4,
A8,
SQUARE_1: 22;
then ((
- b)
+ (
sqrt ((b
^2 )
- ((4
* a)
* c))))
> ((
0
+ b)
+ (
- b)) by
XREAL_1: 8;
then (((
- b)
+ (
sqrt ((b
^2 )
- ((4
* a)
* c))))
/ (2
* a))
<
0 by
A5,
XREAL_1: 142;
hence thesis by
A5,
A9,
QUIN_1:def 1,
XREAL_1: 140;
end;
suppose
A10: b
<
0 ;
then (
sqrt ((b
^2 )
- ((4
* a)
* c)))
> (
- b) by
A4,
SQUARE_1: 23;
then (
- (
- (b
+ (
sqrt ((b
^2 )
- ((4
* a)
* c))))))
>
0 by
XREAL_1: 62;
then ((
- b)
- (
sqrt ((b
^2 )
- ((4
* a)
* c))))
<
0 ;
then
A11: (((
- b)
- (
sqrt ((b
^2 )
- ((4
* a)
* c))))
/ (2
* a))
>
0 by
A5,
XREAL_1: 140;
(
- b)
>
0 by
A10,
XREAL_1: 58;
then ((
sqrt ((b
^2 )
- ((4
* a)
* c)))
+ (
- b))
> (
0
+
0 ) by
A6;
then ((
sqrt (
delta (a,b,c)))
+ (
- b))
> (
0
+
0 ) by
QUIN_1:def 1;
hence thesis by
A5,
A11,
QUIN_1:def 1,
XREAL_1: 142;
end;
end;
hence thesis;
end;
case
A12: c
<
0 & a
>
0 ;
then (4
* a)
>
0 by
XREAL_1: 129;
then ((4
* a)
* c)
< ((4
* a)
*
0 ) by
A12,
XREAL_1: 68;
then
A13: (
- ((4
* a)
* c))
>
0 by
XREAL_1: 58;
then ((b
^2 )
+ (
- ((4
* a)
* c)))
> ((b
^2 )
+
0 ) by
XREAL_1: 8;
then
A14: (
sqrt ((b
^2 )
- ((4
* a)
* c)))
> (
sqrt (b
^2 )) by
SQUARE_1: 27,
XREAL_1: 63;
A15: (2
* a)
>
0 by
A12,
XREAL_1: 129;
((
- ((4
* a)
* c))
+ (b
^2 ))
> (
0
+
0 ) by
A13,
XREAL_1: 8,
XREAL_1: 63;
then
A16: (
- (
- (
sqrt ((b
^2 )
- ((4
* a)
* c)))))
>
0 by
SQUARE_1: 17,
SQUARE_1: 27;
then
A17: (
- (
sqrt ((b
^2 )
- ((4
* a)
* c))))
<
0 ;
now
per cases ;
suppose
A18: b
>=
0 ;
then (
- b)
<= (
-
0 );
then ((
- (
sqrt ((b
^2 )
- ((4
* a)
* c))))
+ (
- b))
< (
0
+
0 ) by
A17;
then ((
- b)
- (
sqrt ((b
^2 )
- ((4
* a)
* c))))
<
0 ;
then
A19: ((
- b)
- (
sqrt (
delta (a,b,c))))
<
0 by
QUIN_1:def 1;
(
sqrt ((b
^2 )
- ((4
* a)
* c)))
> b by
A14,
A18,
SQUARE_1: 22;
then ((
- b)
+ (
sqrt ((b
^2 )
- ((4
* a)
* c))))
> ((
0
+ b)
+ (
- b)) by
XREAL_1: 8;
then (((
- b)
+ (
sqrt ((b
^2 )
- ((4
* a)
* c))))
/ (2
* a))
>
0 by
A15,
XREAL_1: 139;
hence thesis by
A12,
A19,
QUIN_1:def 1,
XREAL_1: 129,
XREAL_1: 141;
end;
suppose
A20: b
<
0 ;
then (
sqrt ((b
^2 )
- ((4
* a)
* c)))
> (
- b) by
A14,
SQUARE_1: 23;
then (
- (
- (b
+ (
sqrt ((b
^2 )
- ((4
* a)
* c))))))
>
0 by
XREAL_1: 62;
then ((
- b)
- (
sqrt ((b
^2 )
- ((4
* a)
* c))))
<
0 ;
then
A21: (((
- b)
- (
sqrt ((b
^2 )
- ((4
* a)
* c))))
/ (2
* a))
<
0 by
A12,
XREAL_1: 129,
XREAL_1: 141;
(
- b)
>
0 by
A20,
XREAL_1: 58;
then ((
sqrt ((b
^2 )
- ((4
* a)
* c)))
+ (
- b))
> (
0
+
0 ) by
A16;
then ((
sqrt (
delta (a,b,c)))
+ (
- b))
>
0 by
QUIN_1:def 1;
hence thesis by
A15,
A21,
QUIN_1:def 1,
XREAL_1: 139;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
theorem ::
POLYEQ_4:4
Th4: a
>
0 & n is
even & n
>= 1 & (x
|^ n)
= a implies x
= (n
-root a) or x
= (
- (n
-root a))
proof
assume that
A1: a
>
0 and
A2: n is
even and
A3: n
>= 1;
assume
A4: (x
|^ n)
= a;
then
A5: x
<>
0 by
A1,
A3,
NEWTON: 11;
now
per cases by
A5;
case x
>
0 ;
hence thesis by
A4,
A3,
POWER: 4;
end;
case x
<
0 ;
then
A6: (
- x)
>
0 by
XREAL_1: 58;
(n
-root a)
= (n
-root ((
- x)
|^ n)) by
A2,
A4,
POWER: 1;
then ((
- 1)
* (n
-root a))
= ((
- 1)
* (
- x)) by
A3,
A6,
POWER: 4;
hence thesis;
end;
end;
hence thesis;
end;
theorem ::
POLYEQ_4:5
Th5: a
<>
0 & (
Polynom (a,b,
0 ,x))
=
0 implies x
=
0 or x
= (
- (b
/ a))
proof
assume that
A1: a
<>
0 and
A2: (
Polynom (a,b,
0 ,x))
=
0 ;
(((a
* (x
^2 ))
+ (b
* x))
+
0 )
=
0 by
A2,
POLYEQ_1:def 2;
then ((((a
* x)
+ b)
+
0 )
* x)
=
0 ;
then (((a
* x)
+ b)
+ (
- b))
= (
0
+ (
- b)) or x
=
0 by
XCMPLX_1: 6;
then x
= ((
- b)
/ a) or x
=
0 by
A1,
XCMPLX_1: 89;
hence thesis by
XCMPLX_1: 187;
end;
theorem ::
POLYEQ_4:6
a
<>
0 & (
Polynom (a,
0 ,
0 ,x))
=
0 implies x
=
0
proof
assume that
A1: a
<>
0 and
A2: (
Polynom (a,
0 ,
0 ,x))
=
0 ;
(((a
* (x
^2 ))
+ (
0
* x))
+
0 )
=
0 by
A2,
POLYEQ_1:def 2;
then (x
^2 )
=
0 by
A1;
hence thesis;
end;
theorem ::
POLYEQ_4:7
a
<>
0 & n is
odd & (
delta (a,b,c))
>=
0 & (
Polynom (a,b,c,(x
|^ n)))
=
0 implies x
= (n
-root (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))) or x
= (n
-root (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))
proof
assume that
A1: a
<>
0 and
A2: n is
odd and
A3: (
delta (a,b,c))
>=
0 & (
Polynom (a,b,c,(x
|^ n)))
=
0 ;
(x
|^ n)
= (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)) or (x
|^ n)
= (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)) by
A1,
A3,
POLYEQ_1: 5;
hence thesis by
A2,
POWER: 4;
end;
theorem ::
POLYEQ_4:8
a
<>
0 & (b
/ a)
<
0 & (c
/ a)
>
0 & n is
even & n
>= 1 & (
delta (a,b,c))
>=
0 & (
Polynom (a,b,c,(x
|^ n)))
=
0 implies x
= (n
-root (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))) or x
= (
- (n
-root (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))) or x
= (n
-root (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a))) or x
= (
- (n
-root (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a))))
proof
assume that
A1: a
<>
0 and
A2: (b
/ a)
<
0 & (c
/ a)
>
0 & n is
even & n
>= 1 and
A3: (
delta (a,b,c))
>=
0 and
A4: (
Polynom (a,b,c,(x
|^ n)))
=
0 ;
now
per cases by
A1,
A3,
A4,
POLYEQ_1: 5;
suppose (x
|^ n)
= (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a));
then x
= (n
-root (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))) or x
= (
- (n
-root (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)))) by
A2,
A3,
Th1,
Th4;
hence thesis;
end;
suppose (x
|^ n)
= (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a));
then x
= (n
-root (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a))) or x
= (
- (n
-root (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)))) by
A2,
A3,
Th1,
Th4;
hence thesis;
end;
end;
hence thesis;
end;
theorem ::
POLYEQ_4:9
a
<>
0 & n is
odd & (
Polynom (a,b,
0 ,(x
|^ n)))
=
0 implies x
=
0 or x
= (n
-root (
- (b
/ a)))
proof
assume that
A1: a
<>
0 and
A2: n is
odd and
A3: (
Polynom (a,b,
0 ,(x
|^ n)))
=
0 ;
now
per cases by
A1,
A3,
Th5;
suppose (x
|^ n)
=
0 ;
hence thesis by
PREPOWER: 5;
end;
suppose (x
|^ n)
= (
- (b
/ a));
hence thesis by
A2,
POWER: 4;
end;
end;
hence thesis;
end;
theorem ::
POLYEQ_4:10
a
<>
0 & (b
/ a)
<
0 & n is
even & n
>= 1 & (
Polynom (a,b,
0 ,(x
|^ n)))
=
0 implies x
=
0 or x
= (n
-root (
- (b
/ a))) or x
= (
- (n
-root (
- (b
/ a))))
proof
assume that
A1: a
<>
0 and
A2: (b
/ a)
<
0 and
A3: n is
even & n
>= 1 and
A4: (
Polynom (a,b,
0 ,(x
|^ n)))
=
0 ;
A5: (
- (b
/ a))
>
0 by
A2,
XREAL_1: 58;
now
per cases by
A1,
A4,
Th5;
suppose (x
|^ n)
=
0 ;
hence thesis by
PREPOWER: 5;
end;
suppose (x
|^ n)
= (
- (b
/ a));
hence thesis by
A3,
A5,
Th4;
end;
end;
hence thesis;
end;
theorem ::
POLYEQ_4:11
Th11: ((a
|^ 3)
+ (b
|^ 3))
= ((a
+ b)
* (((a
^2 )
- (a
* b))
+ (b
^2 ))) & ((a
|^ 5)
+ (b
|^ 5))
= ((a
+ b)
* (((((a
|^ 4)
- ((a
|^ 3)
* b))
+ ((a
|^ 2)
* (b
|^ 2)))
- (a
* (b
|^ 3)))
+ (b
|^ 4)))
proof
A1: ((a
+ b)
* (((((a
|^ 4)
- ((a
|^ 3)
* b))
+ ((a
|^ 2)
* (b
|^ 2)))
- (a
* (b
|^ 3)))
+ (b
|^ 4)))
= ((((((((a
|^ 4)
* a)
+ (b
* (a
|^ 4)))
+ (
0
* (a
|^ 4)))
- (((a
|^ 3)
* b)
* (a
+ b)))
+ (((a
|^ 2)
* (b
|^ 2))
* (a
+ b)))
- ((a
* (b
|^ 3))
* (a
+ b)))
+ ((b
|^ 4)
* (a
+ b)))
.= ((((((((a
|^ 4)
* (a
|^ 1))
+ (b
* (a
|^ 4)))
+ (
0
* (a
|^ 4)))
- (((a
|^ 3)
* b)
* (a
+ b)))
+ (((a
|^ 2)
* (b
|^ 2))
* (a
+ b)))
- ((a
* (b
|^ 3))
* (a
+ b)))
+ ((b
|^ 4)
* (a
+ b)))
.= ((((((a
|^ (4
+ 1))
+ (b
* (a
|^ 4)))
- (((a
|^ 3)
* b)
* ((a
+ b)
+
0 )))
+ (((a
|^ 2)
* (b
|^ 2))
* (a
+ b)))
- ((a
* (b
|^ 3))
* (a
+ b)))
+ ((b
|^ 4)
* (a
+ b))) by
NEWTON: 8
.= ((((((a
|^ 5)
+ (b
* (a
|^ 4)))
- (((a
* (a
|^ 3))
* b)
+ (b
* ((a
|^ 3)
* b))))
+ ((a
* ((a
|^ 2)
* (b
|^ 2)))
+ (b
* ((a
|^ 2)
* (b
|^ 2)))))
- ((a
* (a
* (b
|^ 3)))
+ (b
* (a
* (b
|^ 3)))))
+ ((a
* (b
|^ 4))
+ (b
* (b
|^ 4))))
.= ((((((a
|^ 5)
+ (b
* (a
|^ 4)))
- (((a
|^ 4)
* b)
+ ((b
* b)
* (a
|^ 3))))
+ ((((a
|^ 2)
* a)
* (b
|^ 2))
+ ((b
* (b
|^ 2))
* (a
|^ 2))))
- (((a
* a)
* (b
|^ 3))
+ ((b
* (b
|^ 3))
* a)))
+ ((a
* (b
|^ 4))
+ (b
* (b
|^ 4)))) by
POLYEQ_2: 4
.= ((((((a
|^ 5)
+ (b
* (a
|^ 4)))
- (((a
|^ 4)
* b)
+ ((b
* b)
* (a
|^ 3))))
+ ((((a
|^ 2)
* a)
* (b
|^ 2))
+ ((b
* (b
|^ 2))
* (a
|^ 2))))
- (((a
* a)
* (b
|^ 3))
+ ((b
|^ 4)
* a)))
+ ((a
* (b
|^ 4))
+ (b
* (b
|^ 4)))) by
POLYEQ_2: 4
.= ((((((a
|^ 5)
+ (b
* (a
|^ 4)))
- (((a
|^ 4)
* b)
+ ((b
* b)
* (a
|^ 3))))
+ (((a
|^ (2
+ 1))
* (b
|^ 2))
+ (((b
|^ 2)
* b)
* (a
|^ 2))))
- (((a
* a)
* (b
|^ 3))
+ ((b
|^ 4)
* a)))
+ ((a
* (b
|^ 4))
+ (b
* (b
|^ 4)))) by
NEWTON: 6
.= ((((((a
|^ 5)
+ (b
* (a
|^ 4)))
- (((a
|^ 4)
* b)
+ ((b
* b)
* (a
|^ 3))))
+ (((a
|^ 3)
* (b
|^ 2))
+ ((b
|^ (2
+ 1))
* (a
|^ 2))))
- (((a
* a)
* (b
|^ 3))
+ ((b
|^ 4)
* a)))
+ ((a
* (b
|^ 4))
+ ((b
|^ 4)
* b))) by
NEWTON: 6
.= ((((((a
|^ 5)
+ (b
* (a
|^ 4)))
- (((a
|^ 4)
* b)
+ ((b
* b)
* (a
|^ 3))))
+ (((a
|^ 3)
* (b
|^ 2))
+ ((b
|^ 3)
* (a
|^ 2))))
- (((a
* a)
* (b
|^ 3))
+ ((b
|^ 4)
* a)))
+ ((a
* (b
|^ 4))
+ (b
|^ (4
+ 1)))) by
NEWTON: 6
.= ((((((a
|^ 5)
+ (b
* (a
|^ 4)))
- (((a
|^ 4)
* b)
+ (((b
|^ 1)
* b)
* (a
|^ 3))))
+ (((a
|^ 3)
* (b
|^ 2))
+ ((b
|^ 3)
* (a
|^ 2))))
- (((a
* a)
* (b
|^ 3))
+ ((b
|^ 4)
* a)))
+ ((a
* (b
|^ 4))
+ (b
|^ (4
+ 1))))
.= ((((((a
|^ 5)
+ (b
* (a
|^ 4)))
- (((a
|^ 4)
* b)
+ (((b
|^ 1)
* b)
* (a
|^ 3))))
+ (((a
|^ 3)
* (b
|^ 2))
+ ((b
|^ 3)
* (a
|^ 2))))
- ((((a
|^ 1)
* a)
* (b
|^ 3))
+ ((b
|^ 4)
* a)))
+ ((a
* (b
|^ 4))
+ (b
|^ (4
+ 1))))
.= ((((((a
|^ 5)
+ (b
* (a
|^ 4)))
- (((a
|^ 4)
* b)
+ ((b
|^ (1
+ 1))
* (a
|^ 3))))
+ (((a
|^ 3)
* (b
|^ 2))
+ ((b
|^ 3)
* (a
|^ 2))))
- ((((a
|^ 1)
* a)
* (b
|^ 3))
+ ((b
|^ 4)
* a)))
+ ((a
* (b
|^ 4))
+ (b
|^ 5))) by
NEWTON: 6
.= ((((a
|^ 5)
+ ((a
|^ 2)
* (b
|^ 3)))
- (((a
|^ 2)
* (b
|^ 3))
+ (a
* (b
|^ 4))))
+ ((a
* (b
|^ 4))
+ (b
|^ 5))) by
NEWTON: 6
.= ((a
|^ 5)
+ (b
|^ 5));
((((a
^2 )
- (a
* b))
+ (b
^2 ))
* (a
+ b))
= (((((a
^2 )
* a)
+ (b
* (a
^2 )))
- ((a
* (a
* b))
+ (b
* (a
* b))))
+ (((a
* (b
^2 ))
+ (b
* (b
^2 )))
+ (
0
* (b
^2 ))))
.= ((((a
|^ 3)
+ (b
* (a
^2 )))
- ((a
* (a
* b))
+ (b
* (a
* b))))
+ ((a
* (b
^2 ))
+ (b
* (b
^2 )))) by
POLYEQ_2: 4
.= ((((a
|^ 3)
+ (b
* (a
^2 )))
- (((a
^2 )
* b)
+ ((b
* b)
* a)))
+ ((a
* (b
^2 ))
+ (b
|^ 3))) by
POLYEQ_2: 4
.= ((a
|^ 3)
+ (b
|^ 3));
hence thesis by
A1;
end;
theorem ::
POLYEQ_4:12
a
<>
0 & (((b
^2 )
- ((2
* a)
* b))
- (3
* (a
^2 )))
>=
0 & (
Polynom (a,b,b,a,x))
=
0 implies x
= (
- 1) or x
= (((a
- b)
+ (
sqrt (((b
^2 )
- ((2
* a)
* b))
- (3
* (a
^2 )))))
/ (2
* a)) or x
= (((a
- b)
- (
sqrt (((b
^2 )
- ((2
* a)
* b))
- (3
* (a
^2 )))))
/ (2
* a))
proof
assume that
A1: a
<>
0 & (((b
^2 )
- ((2
* a)
* b))
- (3
* (a
^2 )))
>=
0 and
A2: (
Polynom (a,b,b,a,x))
=
0 ;
((((a
* (x
|^ 3))
+ (b
* (x
^2 )))
+ (b
* x))
+ a)
=
0 by
A2,
POLYEQ_1:def 4;
then ((((x
|^ 3)
+ 1)
* a)
+ ((((x
^2 )
+ x)
+
0 )
* b))
=
0 ;
then ((((x
|^ 3)
+ (1
to_power 3))
* a)
+ (((x
+ 1)
* x)
* b))
=
0 ;
then ((((x
+ 1)
* (((x
^2 )
- (x
* 1))
+ (1
^2 )))
* a)
+ (((x
+ 1)
* x)
* b))
=
0 by
Th11;
then
A3: ((((((x
^2 )
* a)
- (x
* a))
+ (x
* b))
+ a)
* (x
+ 1))
=
0 ;
now
per cases by
A3;
case (x
+ 1)
=
0 ;
hence thesis;
end;
case
A4: (((a
* (x
^2 ))
- ((a
- b)
* x))
+ a)
=
0 ;
A5: (
delta (a,((
- a)
+ b),a))
= ((((
- a)
+ b)
^2 )
- ((4
* a)
* a)) by
QUIN_1:def 1
.= (((b
^2 )
- ((2
* a)
* b))
+ ((
- (4
- 1))
* (a
^2 )));
(((a
* (x
^2 ))
+ (((
- a)
+ b)
* x))
+ a)
=
0 by
A4;
then (
Polynom (a,((
- a)
+ b),a,x))
=
0 by
POLYEQ_1:def 2;
then x
= (((
- ((
- a)
+ b))
+ (
sqrt (
delta (a,((
- a)
+ b),a))))
/ (2
* a)) or x
= (((
- ((
- a)
+ b))
- (
sqrt (
delta (a,((
- a)
+ b),a))))
/ (2
* a)) by
A1,
A5,
POLYEQ_1: 5;
hence thesis by
A5;
end;
end;
hence thesis;
end;
definition
let a,b,c,d,e,f,x be
Complex;
::
POLYEQ_4:def1
func
Polynom (a,b,c,d,e,f,x) ->
set equals ((((((a
* (x
|^ 5))
+ (b
* (x
|^ 4)))
+ (c
* (x
|^ 3)))
+ (d
* (x
^2 )))
+ (e
* x))
+ f);
coherence ;
end
registration
let a,b,c,d,e,f,x be
Complex;
cluster (
Polynom (a,b,c,d,e,f,x)) ->
complex;
coherence ;
end
registration
let a,b,c,d,e,f,x be
Real;
cluster (
Polynom (a,b,c,d,e,f,x)) ->
real;
coherence ;
end
theorem ::
POLYEQ_4:13
a
<>
0 & ((((b
^2 )
+ ((2
* a)
* b))
+ (5
* (a
^2 )))
- ((4
* a)
* c))
>
0 & (
Polynom (a,b,c,c,b,a,x))
=
0 implies for y1,y2 be
Real st y1
= (((a
- b)
+ (
sqrt ((((b
^2 )
+ ((2
* a)
* b))
+ (5
* (a
^2 )))
- ((4
* a)
* c))))
/ (2
* a)) & y2
= (((a
- b)
- (
sqrt ((((b
^2 )
+ ((2
* a)
* b))
+ (5
* (a
^2 )))
- ((4
* a)
* c))))
/ (2
* a)) holds x
= (
- 1) or x
= ((y1
+ (
sqrt (
delta (1,(
- y1),1))))
/ 2) or x
= ((y2
+ (
sqrt (
delta (1,(
- y2),1))))
/ 2) or x
= ((y1
- (
sqrt (
delta (1,(
- y1),1))))
/ 2) or x
= ((y2
- (
sqrt (
delta (1,(
- y2),1))))
/ 2)
proof
assume that
A1: a
<>
0 & ((((b
^2 )
+ ((2
* a)
* b))
+ (5
* (a
^2 )))
- ((4
* a)
* c))
>
0 and
A2: (
Polynom (a,b,c,c,b,a,x))
=
0 ;
let y1,y2 be
Real;
assume that
A3: y1
= (((a
- b)
+ (
sqrt ((((b
^2 )
+ ((2
* a)
* b))
+ (5
* (a
^2 )))
- ((4
* a)
* c))))
/ (2
* a)) and
A4: y2
= (((a
- b)
- (
sqrt ((((b
^2 )
+ ((2
* a)
* b))
+ (5
* (a
^2 )))
- ((4
* a)
* c))))
/ (2
* a));
A5:
0
= (((((x
|^ 5)
+ 1)
* a)
+ ((((x
|^ 4)
+ x)
+
0 )
* b))
+ (((c
* (x
|^ 3))
+ (c
* (x
^2 )))
+ (
0
* c))) by
A2
.= (((((x
|^ 5)
+ (1
|^ 5))
* a)
+ (((x
|^ (3
+ 1))
+ x)
* b))
+ (((x
|^ 3)
+ (x
^2 ))
* c))
.= (((((x
|^ 5)
+ (1
|^ 5))
* a)
+ ((((x
|^ 3)
* x)
+ x)
* b))
+ (((x
|^ (2
+ 1))
+ (x
^2 ))
* c)) by
NEWTON: 6
.= (((((x
|^ 5)
+ (1
|^ 5))
* a)
+ (((((x
|^ 3)
+ 1)
+
0 )
* x)
* b))
+ ((((x
* (x
|^ (1
+ 1)))
+ (1
* (x
^2 )))
+ (
0
* (x
^2 )))
* c)) by
NEWTON: 6
.= (((((x
|^ 5)
+ (1
|^ 5))
* a)
+ (((((x
|^ 3)
+ 1)
+
0 )
* x)
* b))
+ ((((x
* ((x
|^ 1)
* x))
+ (1
* (x
^2 )))
+ (
0
* (x
^2 )))
* c)) by
NEWTON: 6
.= (((((x
|^ 5)
+ (1
|^ 5))
* a)
+ (((((x
|^ 3)
+ 1)
+
0 )
* x)
* b))
+ ((((x
* (x
^2 ))
+ (1
* (x
^2 )))
+ (
0
* (x
^2 )))
* c))
.= (((((x
+ 1)
* (((((x
|^ 4)
- ((x
|^ 3)
* 1))
+ ((x
|^ 2)
* (1
|^ 2)))
- (x
* (1
|^ 3)))
+ (1
|^ 4)))
* a)
+ ((((x
|^ 3)
+ 1)
* x)
* b))
+ ((((x
+ 1)
+
0 )
* (x
^2 ))
* c)) by
Th11
.= (((((x
+ 1)
* (((((x
|^ 4)
- (x
|^ 3))
+ ((x
|^ 2)
* 1))
- (x
* (1
|^ 3)))
+ (1
|^ 4)))
* a)
+ ((((x
|^ 3)
+ 1)
* x)
* b))
+ ((((x
+ 1)
+
0 )
* (x
^2 ))
* c))
.= (((((x
+ 1)
* (((((x
|^ 4)
- (x
|^ 3))
+ (x
|^ 2))
- (x
* 1))
+ (1
|^ 4)))
* a)
+ ((((x
|^ 3)
+ 1)
* x)
* b))
+ ((((x
+ 1)
+
0 )
* (x
^2 ))
* c))
.= (((((x
+ 1)
* (((((x
|^ 4)
- (x
|^ 3))
+ (x
|^ 2))
- x)
+ 1))
* a)
+ ((((x
|^ 3)
+ 1)
* x)
* b))
+ ((((x
+ 1)
+
0 )
* (x
^2 ))
* c))
.= (((((x
+ 1)
* (((((x
|^ 4)
- (x
|^ 3))
+ (x
|^ 2))
- x)
+ 1))
* a)
+ ((((x
|^ 3)
+ (1
|^ 3))
* x)
* b))
+ (((x
+ 1)
* (x
^2 ))
* c))
.= (((((x
+ 1)
* (((((x
|^ 4)
- (x
|^ 3))
+ (x
|^ 2))
- x)
+ 1))
* a)
+ ((((x
+ 1)
* (((x
^2 )
- (x
* 1))
+ (1
^2 )))
* x)
* b))
+ (((x
+ 1)
* (x
^2 ))
* c)) by
Th11
.= ((((((((a
* (x
|^ 4))
- (a
* (x
|^ 3)))
+ (a
* (x
|^ 2)))
- (a
* x))
+ a)
+ (((((x
* x)
* x)
* b)
- ((x
* x)
* b))
+ (b
* x)))
+ ((x
* x)
* c))
* (x
+ 1))
.= ((((((((a
* (x
|^ 4))
- (a
* (x
|^ 3)))
+ (a
* (x
|^ 2)))
- (a
* x))
+ a)
+ ((((((x
|^ 1)
* x)
* x)
* b)
- ((x
* x)
* b))
+ (b
* x)))
+ ((x
* x)
* c))
* (x
+ 1))
.= ((((((((a
* (x
|^ 4))
- (a
* (x
|^ 3)))
+ (a
* (x
|^ 2)))
- (a
* x))
+ a)
+ ((((((x
|^ 1)
* x)
* x)
* b)
- ((x
* x)
* b))
+ (b
* x)))
+ (((x
|^ 1)
* x)
* c))
* (x
+ 1))
.= ((((((((a
* (x
|^ 4))
- (a
* (x
|^ 3)))
+ (a
* (x
|^ 2)))
- (a
* x))
+ a)
+ ((((((x
|^ 1)
* x)
* x)
* b)
- ((x
* x)
* b))
+ (b
* x)))
+ ((x
|^ (1
+ 1))
* c))
* (x
+ 1)) by
NEWTON: 6
.= ((((((((a
* (x
|^ 4))
- (a
* (x
|^ 3)))
+ (a
* (x
|^ 2)))
- (a
* x))
+ a)
+ (((((x
|^ (1
+ 1))
* x)
* b)
- ((x
* x)
* b))
+ (b
* x)))
+ ((x
|^ 2)
* c))
* (x
+ 1)) by
NEWTON: 6
.= ((((((((a
* (x
|^ 4))
- (a
* (x
|^ 3)))
+ (a
* (x
|^ 2)))
- (a
* x))
+ a)
+ ((((x
|^ (2
+ 1))
* b)
- ((x
* x)
* b))
+ (b
* x)))
+ ((x
|^ 2)
* c))
* (x
+ 1)) by
NEWTON: 6
.= ((((((((a
* (x
|^ 4))
- (a
* (x
|^ 3)))
+ (a
* (x
|^ 2)))
- (a
* x))
+ a)
+ ((((x
|^ 3)
* b)
- (((x
|^ 1)
* x)
* b))
+ (b
* x)))
+ ((x
|^ 2)
* c))
* (x
+ 1))
.= ((((((((a
* (x
|^ 4))
- (a
* (x
|^ 3)))
+ (a
* (x
|^ 2)))
- (a
* x))
+ a)
+ ((((x
|^ 3)
* b)
- ((x
|^ (1
+ 1))
* b))
+ (b
* x)))
+ ((x
|^ 2)
* c))
* (x
+ 1)) by
NEWTON: 6
.= ((((((a
* (x
|^ 4))
- ((a
- b)
* (x
|^ 3)))
+ (((a
+ c)
- b)
* (x
|^ 2)))
- ((a
- b)
* x))
+ a)
* (x
+ 1));
now
per cases by
A5;
case (x
+ 1)
=
0 ;
hence thesis;
end;
case
A6: (((((a
* (x
|^ 4))
- ((a
- b)
* (x
|^ 3)))
+ (((a
+ c)
- b)
* (x
|^ 2)))
- ((a
- b)
* x))
+ a)
=
0 ;
set y = (x
+ (1
/ x));
0
= (((((a
* (x
|^ 4))
+ (((
- a)
+ b)
* (x
|^ 3)))
+ (((a
+ c)
- b)
* (x
|^ (1
+ 1))))
+ (((
- a)
+ b)
* x))
+ a) by
A6
.= (((((a
* (x
|^ 4))
+ (((
- a)
+ b)
* (x
|^ 3)))
+ (((a
+ c)
- b)
* ((x
|^ 1)
* x)))
+ (((
- a)
+ b)
* x))
+ a) by
NEWTON: 6
.= (((((a
* (x
|^ 4))
+ (((
- a)
+ b)
* (x
|^ 3)))
+ (((a
+ c)
- b)
* (x
^2 )))
+ (((
- a)
+ b)
* x))
+ a);
then
A7: (
Polynom (a,((
- a)
+ b),((a
+ c)
- b),((
- a)
+ b),a,x))
=
0 by
POLYEQ_2:def 1;
y
= (x
+ (1
/ x)) & y1
= (((
- ((
- a)
+ b))
+ (
sqrt (((((
- a)
+ b)
^2 )
- ((4
* a)
* ((a
+ c)
- b)))
+ (8
* (a
^2 )))))
/ (2
* a)) by
A3;
hence thesis by
A1,
A4,
A7,
POLYEQ_2: 3;
end;
end;
hence thesis;
end;
theorem ::
POLYEQ_4:14
Th14: (x
+ y)
= p & (x
* y)
= q & ((p
^2 )
- (4
* q))
>=
0 implies x
= ((p
+ (
sqrt ((p
^2 )
- (4
* q))))
/ 2) & y
= ((p
- (
sqrt ((p
^2 )
- (4
* q))))
/ 2) or x
= ((p
- (
sqrt ((p
^2 )
- (4
* q))))
/ 2) & y
= ((p
+ (
sqrt ((p
^2 )
- (4
* q))))
/ 2)
proof
assume that
A1: (x
+ y)
= p and
A2: (x
* y)
= q and
A3: ((p
^2 )
- (4
* q))
>=
0 ;
A4: (
delta (1,(
- p),q))
= (((
- p)
^2 )
- ((4
* 1)
* q)) by
QUIN_1:def 1
.= ((p
^2 )
- (4
* q));
(((1
* (y
^2 ))
+ ((
- p)
* y))
+ q)
=
0 by
A1,
A2;
then (
Polynom (1,(
- p),q,y))
=
0 by
POLYEQ_1:def 2;
then
A5: y
= (((
- (
- p))
+ (
sqrt (
delta (1,(
- p),q))))
/ (2
* 1)) or y
= (((
- (
- p))
- (
sqrt (
delta (1,(
- p),q))))
/ (2
* 1)) by
A3,
A4,
POLYEQ_1: 5;
now
per cases by
A5;
suppose
A6: y
= ((p
+ (
sqrt (
delta (1,(
- p),q))))
/ 2);
then x
= (((p
* 2)
/ 2)
- ((p
/ 2)
+ ((
sqrt (
delta (1,(
- p),q)))
/ 2))) by
A1
.= (((p
* 2)
/ 2)
- ((p
/ 2)
+ ((
sqrt ((p
^2 )
- (4
* q)))
/ 2))) by
A4;
hence thesis by
A4,
A6;
end;
suppose
A7: y
= ((p
- (
sqrt (
delta (1,(
- p),q))))
/ 2);
then x
= (p
- (((p
- (
sqrt (
delta (1,(
- p),q))))
+
0 )
/ 2)) by
A1
.= (p
- (((p
- (
sqrt ((p
^2 )
- (4
* q))))
+
0 )
/ 2)) by
A4;
hence thesis by
A4,
A7;
end;
end;
hence thesis;
end;
theorem ::
POLYEQ_4:15
((x
|^ n)
+ (y
|^ n))
= p & ((x
|^ n)
* (y
|^ n))
= q & ((p
^2 )
- (4
* q))
>=
0 & n is
odd implies x
= (n
-root ((p
+ (
sqrt ((p
^2 )
- (4
* q))))
/ 2)) & y
= (n
-root ((p
- (
sqrt ((p
^2 )
- (4
* q))))
/ 2)) or x
= (n
-root ((p
- (
sqrt ((p
^2 )
- (4
* q))))
/ 2)) & y
= (n
-root ((p
+ (
sqrt ((p
^2 )
- (4
* q))))
/ 2))
proof
assume that
A1: ((x
|^ n)
+ (y
|^ n))
= p & ((x
|^ n)
* (y
|^ n))
= q & ((p
^2 )
- (4
* q))
>=
0 and
A2: n is
odd;
(x
|^ n)
= ((p
+ (
sqrt ((p
^2 )
- (4
* q))))
/ 2) & (y
|^ n)
= ((p
- (
sqrt ((p
^2 )
- (4
* q))))
/ 2) or (x
|^ n)
= ((p
- (
sqrt ((p
^2 )
- (4
* q))))
/ 2) & (y
|^ n)
= ((p
+ (
sqrt ((p
^2 )
- (4
* q))))
/ 2) by
A1,
Th14;
hence thesis by
A2,
POWER: 4;
end;
theorem ::
POLYEQ_4:16
((x
|^ n)
+ (y
|^ n))
= p & ((x
|^ n)
* (y
|^ n))
= q & ((p
^2 )
- (4
* q))
>=
0 & p
>
0 & q
>
0 & n is
even & n
>= 1 implies x
= (n
-root ((p
+ (
sqrt ((p
^2 )
- (4
* q))))
/ 2)) & y
= (n
-root ((p
- (
sqrt ((p
^2 )
- (4
* q))))
/ 2)) or x
= (
- (n
-root ((p
+ (
sqrt ((p
^2 )
- (4
* q))))
/ 2))) & y
= (n
-root ((p
- (
sqrt ((p
^2 )
- (4
* q))))
/ 2)) or x
= (n
-root ((p
+ (
sqrt ((p
^2 )
- (4
* q))))
/ 2)) & y
= (
- (n
-root ((p
- (
sqrt ((p
^2 )
- (4
* q))))
/ 2))) or x
= (
- (n
-root ((p
+ (
sqrt ((p
^2 )
- (4
* q))))
/ 2))) & y
= (
- (n
-root ((p
- (
sqrt ((p
^2 )
- (4
* q))))
/ 2))) or x
= (n
-root ((p
- (
sqrt ((p
^2 )
- (4
* q))))
/ 2)) & y
= (n
-root ((p
+ (
sqrt ((p
^2 )
- (4
* q))))
/ 2)) or x
= (
- (n
-root ((p
- (
sqrt ((p
^2 )
- (4
* q))))
/ 2))) & y
= (n
-root ((p
+ (
sqrt ((p
^2 )
- (4
* q))))
/ 2)) or x
= (n
-root ((p
- (
sqrt ((p
^2 )
- (4
* q))))
/ 2)) & y
= (
- (n
-root ((p
+ (
sqrt ((p
^2 )
- (4
* q))))
/ 2))) or x
= (
- (n
-root ((p
- (
sqrt ((p
^2 )
- (4
* q))))
/ 2))) & y
= (
- (n
-root ((p
+ (
sqrt ((p
^2 )
- (4
* q))))
/ 2)))
proof
assume
A1: ((x
|^ n)
+ (y
|^ n))
= p & ((x
|^ n)
* (y
|^ n))
= q;
assume that
A2: ((p
^2 )
- (4
* q))
>=
0 and
A3: p
>
0 and
A4: q
>
0 and
A5: n is
even & n
>= 1;
(
- (
- (4
* q)))
>
0 by
A4,
XREAL_1: 129;
then (
- (4
* q))
<
0 ;
then ((p
^2 )
+ (
- (4
* q)))
< ((p
^2 )
+
0 ) by
XREAL_1: 8;
then (
sqrt ((p
^2 )
- (4
* q)))
< (
sqrt (p
^2 )) by
A2,
SQUARE_1: 27;
then (
sqrt ((p
^2 )
- (4
* q)))
< p by
A3,
SQUARE_1: 22;
then (
- (
sqrt ((p
^2 )
- (4
* q))))
> (
- p) by
XREAL_1: 24;
then ((
- (
sqrt ((p
^2 )
- (4
* q))))
+ p)
> (((
- p)
+
0 )
+ p) by
XREAL_1: 8;
then
A6: (((
0
+ p)
- (
sqrt ((p
^2 )
- (4
* q))))
/ 2)
>
0 by
XREAL_1: 139;
A7: (
delta (1,(
- p),q))
= (((
- p)
^2 )
- ((4
* 1)
* q)) by
QUIN_1:def 1
.= ((p
^2 )
- (4
* q));
then
0
<= (
sqrt (
delta (1,(
- p),q))) by
A2,
SQUARE_1: 17,
SQUARE_1: 26;
then ((
- (
- p))
+ (
sqrt (
delta (1,(
- p),q))))
> (
0
+
0 ) by
A3;
then
A8: (((
0
+ p)
+ (
sqrt ((p
^2 )
- (4
* q))))
/ 2)
>
0 by
A7,
XREAL_1: 139;
now
per cases by
A1,
A2,
Th14;
suppose (x
|^ n)
= ((p
+ (
sqrt ((p
^2 )
- (4
* q))))
/ 2) & (y
|^ n)
= ((p
- (
sqrt ((p
^2 )
- (4
* q))))
/ 2);
hence thesis by
A5,
A8,
A6,
Th4;
end;
suppose (x
|^ n)
= ((p
- (
sqrt ((p
^2 )
- (4
* q))))
/ 2) & (y
|^ n)
= ((p
+ (
sqrt ((p
^2 )
- (4
* q))))
/ 2);
hence thesis by
A5,
A8,
A6,
Th4;
end;
end;
hence thesis;
end;
theorem ::
POLYEQ_4:17
((x
|^ n)
+ (y
|^ n))
= a & ((x
|^ n)
- (y
|^ n))
= b & n is
even & n
>= 1 & (a
+ b)
>
0 & (a
- b)
>
0 implies x
= (n
-root ((a
+ b)
/ 2)) & y
= (n
-root ((a
- b)
/ 2)) or x
= (n
-root ((a
+ b)
/ 2)) & y
= (
- (n
-root ((a
- b)
/ 2))) or x
= (
- (n
-root ((a
+ b)
/ 2))) & y
= (n
-root ((a
- b)
/ 2)) or x
= (
- (n
-root ((a
+ b)
/ 2))) & y
= (
- (n
-root ((a
- b)
/ 2)))
proof
assume
A1: ((x
|^ n)
+ (y
|^ n))
= a & ((x
|^ n)
- (y
|^ n))
= b;
assume that
A2: n is
even & n
>= 1 and
A3: (a
+ b)
>
0 & (a
- b)
>
0 ;
((a
+ b)
/ 2)
>
0 & ((a
- b)
/ 2)
>
0 by
A3,
XREAL_1: 139;
hence thesis by
A1,
A2,
Th4;
end;
theorem ::
POLYEQ_4:18
((a
* (x
|^ n))
+ (b
* (y
|^ n)))
= p & (x
* y)
=
0 & n is
odd & (a
* b)
<>
0 implies x
=
0 & y
= (n
-root (p
/ b)) or x
= (n
-root (p
/ a)) & y
=
0
proof
assume that
A1: ((a
* (x
|^ n))
+ (b
* (y
|^ n)))
= p and
A2: (x
* y)
=
0 and
A3: n is
odd and
A4: (a
* b)
<>
0 ;
consider m be
Nat such that
A5: n
= ((2
* m)
+ 1) by
A3,
ABIAN: 9;
A6: n
>
0 by
A5;
now
per cases by
A2;
suppose
A7: x
=
0 ;
then ((a
* (
0
to_power n))
+ (b
* (y
|^ n)))
= p by
A1;
then ((a
*
0 )
+ (b
* (y
|^ n)))
= p by
A6,
POWER:def 2;
then (y
|^ n)
= (p
/ b) by
A4,
XCMPLX_1: 89;
hence thesis by
A3,
A7,
POWER: 4;
end;
suppose
A8: y
=
0 ;
then ((a
* (x
|^ n))
+ (b
* (
0
to_power n)))
= p by
A1;
then ((a
* (x
|^ n))
+ (b
*
0 ))
= p by
A6,
POWER:def 2;
then (x
|^ n)
= (p
/ a) by
A4,
XCMPLX_1: 89;
hence thesis by
A3,
A8,
POWER: 4;
end;
end;
hence thesis;
end;
theorem ::
POLYEQ_4:19
((a
* (x
|^ n))
+ (b
* (y
|^ n)))
= p & (x
* y)
=
0 & n is
even & n
>= 1 & (p
/ b)
>
0 & (p
/ a)
>
0 & (a
* b)
<>
0 implies x
=
0 & y
= (n
-root (p
/ b)) or x
=
0 & y
= (
- (n
-root (p
/ b))) or x
= (n
-root (p
/ a)) & y
=
0 or x
= (
- (n
-root (p
/ a))) & y
=
0
proof
assume that
A1: ((a
* (x
|^ n))
+ (b
* (y
|^ n)))
= p and
A2: (x
* y)
=
0 and
A3: n is
even & n
>= 1 and
A4: (p
/ b)
>
0 and
A5: (p
/ a)
>
0 and
A6: (a
* b)
<>
0 ;
n
>= 1 by
A3;
then
A7: n
>
0 ;
per cases by
A2;
suppose
A8: x
=
0 ;
then ((a
* (
0
to_power n))
+ (b
* (y
|^ n)))
= p by
A1;
then ((a
*
0 )
+ (b
* (y
|^ n)))
= p by
A7,
POWER:def 2;
then (y
|^ n)
= (p
/ b) by
A6,
XCMPLX_1: 89;
hence thesis by
A3,
A4,
A8,
Th4;
end;
suppose
A9: y
=
0 ;
then ((a
* (x
|^ n))
+ (b
* (
0
to_power n)))
= p by
A1;
then ((a
* (x
|^ n))
+ (b
*
0 ))
= p by
A7,
POWER:def 2;
then (x
|^ n)
= (p
/ a) by
A6,
XCMPLX_1: 89;
hence thesis by
A3,
A5,
A9,
Th4;
end;
end;
theorem ::
POLYEQ_4:20
(a
* (x
|^ n))
= p & (x
* y)
= q & n is
odd & (p
* a)
<>
0 implies x
= (n
-root (p
/ a)) & y
= (q
* (n
-root (a
/ p)))
proof
assume that
A1: (a
* (x
|^ n))
= p and
A2: (x
* y)
= q and
A3: n is
odd and
A4: (p
* a)
<>
0 ;
consider m be
Nat such that
A5: n
= ((2
* m)
+ 1) by
A3,
ABIAN: 9;
A6: a
<>
0 by
A4;
then
A7: (x
|^ n)
= (p
/ a) by
A1,
XCMPLX_1: 89;
then x
= (n
-root (p
/ a)) by
A3,
POWER: 4;
then (y
* ((n
-root (p
/ a))
* (n
-root (a
/ p))))
= (q
* (n
-root (a
/ p))) by
A2;
then (y
* (n
-root ((p
/ a)
* (a
/ p))))
= (q
* (n
-root (a
/ p))) by
A3,
POWER: 11;
then (y
* (n
-root ((p
/ a)
* (a
* (p
" )))))
= (q
* (n
-root (a
/ p))) by
XCMPLX_0:def 9;
then (y
* (n
-root (((p
/ a)
* a)
* (p
" ))))
= (q
* (n
-root (a
/ p)));
then (y
* (n
-root (p
* (p
" ))))
= (q
* (n
-root (a
/ p))) by
A6,
XCMPLX_1: 87;
then
A8: (y
* (n
-root (p
/ p)))
= (q
* (n
-root (a
/ p))) by
XCMPLX_0:def 9;
A9: ((2
* m)
+ 1)
>= (
0
+ 1) by
XREAL_1: 7;
p
<>
0 by
A4;
then (y
* (n
-root 1))
= (q
* (n
-root (a
/ p))) by
A8,
XCMPLX_1: 60;
then (y
* 1)
= (q
* (n
-root (a
/ p))) by
A5,
A9,
POWER: 6;
hence thesis by
A3,
A7,
POWER: 4;
end;
theorem ::
POLYEQ_4:21
(a
* (x
|^ n))
= p & (x
* y)
= q & n is
even & n
>= 1 & (p
/ a)
>
0 & a
<>
0 implies x
= (n
-root (p
/ a)) & y
= (q
* (n
-root (a
/ p))) or x
= (
- (n
-root (p
/ a))) & y
= (
- (q
* (n
-root (a
/ p))))
proof
assume that
A1: (a
* (x
|^ n))
= p and
A2: (x
* y)
= q and
A3: n is
even & n
>= 1 and
A4: (p
/ a)
>
0 and
A5: a
<>
0 ;
A6: (x
|^ n)
= (p
/ a) by
A1,
A5,
XCMPLX_1: 89;
((p
/ a)
" )
>
0 by
A4;
then (1
/ (p
/ a))
>
0 by
XCMPLX_1: 215;
then
A7: ((1
* a)
/ p)
>
0 by
XCMPLX_1: 77;
A8: p
<>
0 by
A4;
per cases by
A3,
A4,
A6,
Th4;
suppose
A9: x
= (n
-root (p
/ a));
then (y
* ((n
-root (p
/ a))
* (n
-root (a
/ p))))
= (q
* (n
-root (a
/ p))) by
A2;
then (y
* (n
-root ((p
/ a)
* (a
/ p))))
= (q
* (n
-root (a
/ p))) by
A4,
A3,
A7,
POWER: 11;
then (y
* (n
-root ((p
/ a)
* (a
* (p
" )))))
= (q
* (n
-root (a
/ p))) by
XCMPLX_0:def 9;
then (y
* (n
-root (((p
/ a)
* a)
* (p
" ))))
= (q
* (n
-root (a
/ p)));
then (y
* (n
-root (p
* (p
" ))))
= (q
* (n
-root (a
/ p))) by
A5,
XCMPLX_1: 87;
then (y
* (n
-root (p
/ p)))
= (q
* (n
-root (a
/ p))) by
XCMPLX_0:def 9;
then (y
* (n
-root 1))
= (q
* (n
-root (a
/ p))) by
A8,
XCMPLX_1: 60;
then (y
* 1)
= (q
* (n
-root (a
/ p))) by
A3,
POWER: 6;
hence thesis by
A9;
end;
suppose
A10: x
= (
- (n
-root (p
/ a)));
then (y
* ((n
-root (p
/ a))
* (n
-root (a
/ p))))
= (
- (q
* (n
-root (a
/ p)))) by
A2;
then (y
* (n
-root ((p
/ a)
* (a
/ p))))
= (
- (q
* (n
-root (a
/ p)))) by
A4,
A3,
A7,
POWER: 11;
then (y
* (n
-root ((p
/ a)
* (a
* (p
" )))))
= (
- (q
* (n
-root (a
/ p)))) by
XCMPLX_0:def 9;
then (y
* (n
-root (((p
/ a)
* a)
* (p
" ))))
= (
- (q
* (n
-root (a
/ p))));
then (y
* (n
-root (p
* (p
" ))))
= (
- (q
* (n
-root (a
/ p)))) by
A5,
XCMPLX_1: 87;
then (y
* (n
-root (p
/ p)))
= (
- (q
* (n
-root (a
/ p)))) by
XCMPLX_0:def 9;
then (y
* (n
-root 1))
= (
- (q
* (n
-root (a
/ p)))) by
A8,
XCMPLX_1: 60;
then (y
* 1)
= (
- (q
* (n
-root (a
/ p)))) by
A3,
POWER: 6;
hence thesis by
A10;
end;
end;
theorem ::
POLYEQ_4:22
for a,x be
Real st a
>
0 & a
<> 1 & (a
to_power x)
= 1 holds x
=
0
proof
let a,x be
Real;
assume that
A1: a
>
0 & a
<> 1 and
A2: (a
to_power x)
= 1;
x
= (
log (a,1)) by
A1,
A2,
POWER:def 3;
hence thesis by
A1,
POWER: 51;
end;
theorem ::
POLYEQ_4:23
for a,x be
Real st a
>
0 & a
<> 1 & (a
to_power x)
= a holds x
= 1
proof
let a,x be
Real;
assume that
A1: a
>
0 & a
<> 1 and
A2: (a
to_power x)
= a;
x
= (
log (a,a)) by
A1,
A2,
POWER:def 3;
hence thesis by
A1,
POWER: 52;
end;
theorem ::
POLYEQ_4:24
for a,b,x be
Real st a
>
0 & a
<> 1 & x
>
0 & (
log (a,x))
=
0 holds x
= 1
proof
let a,b,x be
Real;
assume a
>
0 & a
<> 1 & x
>
0 & (
log (a,x))
=
0 ;
then (a
to_power
0 )
= x by
POWER:def 3;
hence thesis by
POWER: 24;
end;
theorem ::
POLYEQ_4:25
for a,b,x be
Real st a
>
0 & a
<> 1 & x
>
0 & (
log (a,x))
= 1 holds x
= a
proof
let a,b,x be
Real;
assume a
>
0 & a
<> 1 & x
>
0 & (
log (a,x))
= 1;
then (a
to_power 1)
= x by
POWER:def 3;
hence thesis;
end;