prvect_2.miz
    
    begin
    
    theorem :: 
    
    PRVECT_2:1
    
    for s,t be
    Real_Sequence, g be 
    Real st for n be 
    Element of 
    NAT holds (t 
    . n) 
    =  
    |.((s
    . n) 
    - g).| holds s is 
    convergent & ( 
    lim s) 
    = g iff t is 
    convergent & ( 
    lim t) 
    =  
    0  
    
    proof
    
      let s,t be
    Real_Sequence, g be 
    Real;
    
      assume
    
      
    
    A1: for n be 
    Element of 
    NAT holds (t 
    . n) 
    =  
    |.((s
    . n) 
    - g).|; 
    
      hereby
    
        assume
    
        
    
    A2: s is 
    convergent & ( 
    lim s) 
    = g; 
    
        
    
    A3: 
    
        now
    
          let r be
    Real;
    
          assume
    0  
    < r; 
    
          then
    
          consider n be
    Nat such that 
    
          
    
    A4: for m be 
    Nat st n 
    <= m holds 
    |.((s
    . m) 
    - g).| 
    < r by 
    A2,
    SEQ_2:def 7;
    
          take n;
    
          now
    
            let m be
    Nat;
    
            
    
            
    
    A5: m 
    in  
    NAT by 
    ORDINAL1:def 12;
    
            assume n
    <= m; 
    
            then
    |.
    |.((s
    . m) 
    - g).|.| 
    < r by 
    A4;
    
            hence
    |.((t
    . m) 
    -  
    0 ).| 
    < r by 
    A1,
    A5;
    
          end;
    
          hence for m be
    Nat st n 
    <= m holds 
    |.((t
    . m) 
    -  
    0 ).| 
    < r; 
    
        end;
    
        hence t is
    convergent by 
    SEQ_2:def 6;
    
        hence (
    lim t) 
    =  
    0 by 
    A3,
    SEQ_2:def 7;
    
      end;
    
      assume
    
      
    
    A6: t is 
    convergent & ( 
    lim t) 
    =  
    0 ; 
    
      
    
    A7: 
    
      now
    
        let r be
    Real;
    
        assume
    0  
    < r; 
    
        then
    
        consider n be
    Nat such that 
    
        
    
    A8: for m be 
    Nat st n 
    <= m holds 
    |.((t
    . m) 
    -  
    0 ).| 
    < r by 
    A6,
    SEQ_2:def 7;
    
        take n;
    
        now
    
          let m be
    Nat;
    
          
    
          
    
    A9: m 
    in  
    NAT by 
    ORDINAL1:def 12;
    
          assume n
    <= m; 
    
          then
    |.((t
    . m) 
    -  
    0 ).| 
    < r by 
    A8;
    
          then
    |.
    |.((s
    . m) 
    - g).|.| 
    < r by 
    A1,
    A9;
    
          hence
    |.((s
    . m) 
    - g).| 
    < r; 
    
        end;
    
        hence for m be
    Nat st n 
    <= m holds 
    |.((s
    . m) 
    - g).| 
    < r; 
    
      end;
    
      hence s is
    convergent by 
    SEQ_2:def 6;
    
      hence thesis by
    A7,
    SEQ_2:def 7;
    
    end;
    
    theorem :: 
    
    PRVECT_2:2
    
    
    
    
    
    Th2: for x,y be 
    FinSequence of 
    REAL st ( 
    len x) 
    = ( 
    len y) & for i be 
    Element of 
    NAT st i 
    in ( 
    Seg ( 
    len x)) holds 
    0  
    <= (x 
    . i) & (x 
    . i) 
    <= (y 
    . i) holds 
    |.x.|
    <=  
    |.y.|
    
    proof
    
      let x,y be
    FinSequence of 
    REAL such that 
    
      
    
    A1: ( 
    len x) 
    = ( 
    len y) and 
    
      
    
    A2: for i be 
    Element of 
    NAT st i 
    in ( 
    Seg ( 
    len x)) holds 
    0  
    <= (x 
    . i) & (x 
    . i) 
    <= (y 
    . i); 
    
      
    
      
    
    A3: for i be 
    Nat st i 
    in ( 
    Seg ( 
    len x)) holds (( 
    sqr x) 
    . i) 
    <= (( 
    sqr y) 
    . i) 
    
      proof
    
        let i be
    Nat;
    
        assume i
    in ( 
    Seg ( 
    len x)); 
    
        then
    
        
    
    A4: 
    0  
    <= (x 
    . i) & (x 
    . i) 
    <= (y 
    . i) by 
    A2;
    
        ((x
    . i) 
    ^2 ) 
    = (( 
    sqr x) 
    . i) & ((y 
    . i) 
    ^2 ) 
    = (( 
    sqr y) 
    . i) by 
    VALUED_1: 11;
    
        hence thesis by
    A4,
    SQUARE_1: 15;
    
      end;
    
      (
    Seg ( 
    len ( 
    sqr y))) 
    = ( 
    dom ( 
    sqr y)) & ( 
    dom ( 
    sqr y)) 
    = ( 
    dom y) by 
    FINSEQ_1:def 3,
    VALUED_1: 11;
    
      then
    
      
    
    A5: ( 
    len ( 
    sqr y)) 
    = ( 
    len y) by 
    FINSEQ_1:def 3;
    
      (
    Seg ( 
    len ( 
    sqr x))) 
    = ( 
    dom ( 
    sqr x)) & ( 
    dom ( 
    sqr x)) 
    = ( 
    dom x) by 
    FINSEQ_1:def 3,
    VALUED_1: 11;
    
      then
    
      
    
    A6: ( 
    len ( 
    sqr x)) 
    = ( 
    len x) by 
    FINSEQ_1:def 3;
    
      
    
      
    
    A7: 
    0  
    <= ( 
    Sum ( 
    sqr x)) by 
    RVSUM_1: 86;
    
      (
    sqr x) is 
    Element of (( 
    len ( 
    sqr x)) 
    -tuples_on  
    REAL ) & ( 
    sqr y) is 
    Element of (( 
    len ( 
    sqr y)) 
    -tuples_on  
    REAL ) by 
    FINSEQ_2: 92;
    
      hence thesis by
    A1,
    A3,
    A6,
    A5,
    A7,
    RVSUM_1: 82,
    SQUARE_1: 26;
    
    end;
    
    theorem :: 
    
    PRVECT_2:3
    
    
    
    
    
    Th3: for F be 
    FinSequence of 
    REAL st for i be 
    Element of 
    NAT st i 
    in ( 
    dom F) holds (F 
    . i) 
    =  
    0 holds ( 
    Sum F) 
    =  
    0  
    
    proof
    
      let F be
    FinSequence of 
    REAL ; 
    
      set i = (
    len F); 
    
      set R1 = (i
    |->  
    0 ); 
    
      reconsider R2 = F as
    Element of (i 
    -tuples_on  
    REAL ) by 
    FINSEQ_2: 92;
    
      
    
      
    
    A1: ( 
    Seg ( 
    len F)) 
    = ( 
    dom F) by 
    FINSEQ_1:def 3;
    
      assume
    
      
    
    A2: for i be 
    Element of 
    NAT st i 
    in ( 
    dom F) holds 
    0  
    = (F 
    . i); 
    
      
    
      
    
    A3: for j be 
    Nat st j 
    in ( 
    Seg i) holds (R1 
    . j) 
    = (R2 
    . j) by 
    A2,
    A1;
    
      (
    len R1) 
    = i by 
    CARD_1:def 7;
    
      then (
    dom R1) 
    = ( 
    dom R2) by 
    FINSEQ_3: 29;
    
      then R1
    = R2 by 
    A1,
    A3,
    FINSEQ_1: 13;
    
      hence thesis by
    RVSUM_1: 81;
    
    end;
    
    definition
    
      let f be
    Function;
    
      let X be
    set;
    
      :: 
    
    PRVECT_2:def1
    
      mode
    
    MultOps of X,f -> 
    Function means 
    
      :
    
    Def1: ( 
    dom it ) 
    = ( 
    dom f) & for i be 
    set st i 
    in ( 
    dom f) holds (it 
    . i) is 
    Function of 
    [:X, (f
    . i):], (f 
    . i); 
    
      existence
    
      proof
    
        deffunc
    
    F(
    object) = (
    pr2 (X,(f 
    . $1))); 
    
        consider g be
    Function such that 
    
        
    
    A1: ( 
    dom g) 
    = ( 
    dom f) & for x be 
    object st x 
    in ( 
    dom f) holds (g 
    . x) 
    =  
    F(x) from
    FUNCT_1:sch 3;
    
        take g;
    
        thus (
    dom g) 
    = ( 
    dom f) by 
    A1;
    
        let i be
    set;
    
        assume i
    in ( 
    dom f); 
    
        then (g
    . i) 
    = ( 
    pr2 (X,(f 
    . i))) by 
    A1;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let F be
    Domain-Sequence;
    
      let X be
    set;
    
      cluster -> 
    FinSequence-like for 
    MultOps of X, F; 
    
      coherence
    
      proof
    
        let f be
    MultOps of X, F; 
    
        (
    dom F) 
    = ( 
    dom f) & ( 
    dom F) 
    = ( 
    Seg ( 
    len F)) by 
    Def1,
    FINSEQ_1:def 3;
    
        hence thesis by
    FINSEQ_1:def 2;
    
      end;
    
    end
    
    theorem :: 
    
    PRVECT_2:4
    
    
    
    
    
    Th4: for X be 
    set, F be 
    Domain-Sequence, p be 
    FinSequence holds (p is 
    MultOps of X, F iff ( 
    len p) 
    = ( 
    len F) & for i be 
    set st i 
    in ( 
    dom F) holds (p 
    . i) is 
    Function of 
    [:X, (F
    . i):], (F 
    . i)) 
    
    proof
    
      let X be
    set;
    
      let F be
    Domain-Sequence;
    
      let p be
    FinSequence;
    
      (
    dom p) 
    = ( 
    dom F) iff ( 
    len p) 
    = ( 
    len F) by 
    FINSEQ_3: 29;
    
      hence thesis by
    Def1;
    
    end;
    
    definition
    
      let F be
    Domain-Sequence;
    
      let X be
    set;
    
      let p be
    MultOps of X, F; 
    
      let i be
    Element of ( 
    dom F); 
    
      :: original:
    .
    
      redefine
    
      func p
    
    . i -> 
    Function of 
    [:X, (F
    . i):], (F 
    . i) ; 
    
      coherence by
    Th4;
    
    end
    
    theorem :: 
    
    PRVECT_2:5
    
    
    
    
    
    Th5: for X be non 
    empty  
    set, F be 
    Domain-Sequence, f,g be 
    Function of 
    [:X, (
    product F):], ( 
    product F) st for x be 
    Element of X, d be 
    Element of ( 
    product F), i be 
    Element of ( 
    dom F) holds ((f 
    . (x,d)) 
    . i) 
    = ((g 
    . (x,d)) 
    . i) holds f 
    = g 
    
    proof
    
      let X be non
    empty  
    set;
    
      let F be
    Domain-Sequence;
    
      let f,g be
    Function of 
    [:X, (
    product F):], ( 
    product F) such that 
    
      
    
    A1: for x be 
    Element of X, d be 
    Element of ( 
    product F), i be 
    Element of ( 
    dom F) holds ((f 
    . (x,d)) 
    . i) 
    = ((g 
    . (x,d)) 
    . i); 
    
      now
    
        let x be
    Element of X, d be 
    Element of ( 
    product F); 
    
        
    
        
    
    A2: ( 
    dom (f 
    . (x,d))) 
    = ( 
    dom F) & ( 
    dom (g 
    . (x,d))) 
    = ( 
    dom F) by 
    CARD_3: 9;
    
        for v be
    object st v 
    in ( 
    dom F) holds ((f 
    . (x,d)) 
    . v) 
    = ((g 
    . (x,d)) 
    . v) by 
    A1;
    
        hence (f
    . (x,d)) 
    = (g 
    . (x,d)) by 
    A2,
    FUNCT_1: 2;
    
      end;
    
      hence thesis by
    BINOP_1: 2;
    
    end;
    
    definition
    
      let F be
    Domain-Sequence;
    
      let X be non
    empty  
    set;
    
      let p be
    MultOps of X, F; 
    
      :: 
    
    PRVECT_2:def2
    
      func
    
    [:p:] ->
    Function of 
    [:X, (
    product F):], ( 
    product F) means 
    
      :
    
    Def2: for x be 
    Element of X, d be 
    Element of ( 
    product F), i be 
    Element of ( 
    dom F) holds ((it 
    . (x,d)) 
    . i) 
    = ((p 
    . i) 
    . (x,(d 
    . i))); 
    
      existence
    
      proof
    
        defpred
    
    Q[
    Element of X, 
    Element of ( 
    product F), 
    Element of ( 
    product F)] means for i be 
    Element of ( 
    dom F) holds ($3 
    . i) 
    = ((p 
    . i) 
    . ($1,($2 
    . i))); 
    
        
    
        
    
    A1: for x be 
    Element of X, d be 
    Element of ( 
    product F) holds ex z be 
    Element of ( 
    product F) st 
    Q[x, d, z]
    
        proof
    
          let x be
    Element of X, d be 
    Element of ( 
    product F); 
    
          defpred
    
    P[
    object, 
    object] means ex i be
    Element of ( 
    dom F) st $1 
    = i & $2 
    = ((p 
    . i) 
    . (x,(d 
    . i))); 
    
          
    
          
    
    A2: for w be 
    object st w 
    in ( 
    dom F) holds ex z be 
    object st 
    P[w, z]
    
          proof
    
            let w be
    object;
    
            assume w
    in ( 
    dom F); 
    
            then
    
            reconsider i = w as
    Element of ( 
    dom F); 
    
            take ((p
    . i) 
    . (x,(d 
    . i))); 
    
            thus thesis;
    
          end;
    
          consider z be
    Function such that 
    
          
    
    A3: ( 
    dom z) 
    = ( 
    dom F) & for w be 
    object st w 
    in ( 
    dom F) holds 
    P[w, (z
    . w)] from 
    CLASSES1:sch 1(
    A2);
    
          now
    
            let w be
    object;
    
            assume w
    in ( 
    dom F); 
    
            then ex i be
    Element of ( 
    dom F) st w 
    = i & (z 
    . w) 
    = ((p 
    . i) 
    . (x,(d 
    . i))) by 
    A3;
    
            hence (z
    . w) 
    in (F 
    . w); 
    
          end;
    
          then
    
          reconsider z9 = z as
    Element of ( 
    product F) by 
    A3,
    CARD_3: 9;
    
          take z9;
    
          let i be
    Element of ( 
    dom F); 
    
          ex j be
    Element of ( 
    dom F) st j 
    = i & (z 
    . i) 
    = ((p 
    . j) 
    . (x,(d 
    . j))) by 
    A3;
    
          hence thesis;
    
        end;
    
        thus ex P be
    Function of 
    [:X, (
    product F):], ( 
    product F) st for x be 
    Element of X, d be 
    Element of ( 
    product F) holds 
    Q[x, d, (P
    . (x,d))] from 
    BINOP_1:sch 3(
    A1);
    
      end;
    
      uniqueness
    
      proof
    
        let P,Q be
    Function of 
    [:X, (
    product F):], ( 
    product F) such that 
    
        
    
    A4: for x be 
    Element of X, f be 
    Element of ( 
    product F), i be 
    Element of ( 
    dom F) holds ((P 
    . (x,f)) 
    . i) 
    = ((p 
    . i) 
    . (x,(f 
    . i))) and 
    
        
    
    A5: for x be 
    Element of X, f be 
    Element of ( 
    product F), i be 
    Element of ( 
    dom F) holds ((Q 
    . (x,f)) 
    . i) 
    = ((p 
    . i) 
    . (x,(f 
    . i))); 
    
        now
    
          let x be
    Element of X, f be 
    Element of ( 
    product F); 
    
          let i be
    Element of ( 
    dom F); 
    
          ((P
    . (x,f)) 
    . i) 
    = ((p 
    . i) 
    . (x,(f 
    . i))) by 
    A4;
    
          hence ((P
    . (x,f)) 
    . i) 
    = ((Q 
    . (x,f)) 
    . i) by 
    A5;
    
        end;
    
        hence thesis by
    Th5;
    
      end;
    
    end
    
    definition
    
      let R be
    Relation;
    
      :: 
    
    PRVECT_2:def3
    
      attr R is
    
    RealLinearSpace-yielding means 
    
      :
    
    Def3: for S be 
    set st S 
    in ( 
    rng R) holds S is 
    RealLinearSpace;
    
    end
    
    registration
    
      cluster non 
    empty
    RealLinearSpace-yielding for 
    FinSequence;
    
      existence
    
      proof
    
        set S = the
    RealLinearSpace;
    
        take
    <*S*>;
    
        thus
    <*S*> is non
    empty;
    
        let x be
    set;
    
        assume that
    
        
    
    A1: x 
    in ( 
    rng  
    <*S*>) and
    
        
    
    A2: not x is 
    RealLinearSpace;
    
        x
    in  
    {S} by
    A1,
    FINSEQ_1: 38;
    
        hence contradiction by
    A2,
    TARSKI:def 1;
    
      end;
    
    end
    
    definition
    
      mode
    
    RealLinearSpace-Sequence is non 
    empty
    RealLinearSpace-yielding  
    FinSequence;
    
    end
    
    definition
    
      let G be
    RealLinearSpace-Sequence;
    
      let j be
    Element of ( 
    dom G); 
    
      :: original:
    .
    
      redefine
    
      func G
    
    . j -> 
    RealLinearSpace ; 
    
      coherence
    
      proof
    
        (G
    . j) 
    in ( 
    rng G) by 
    FUNCT_1:def 3;
    
        hence thesis by
    Def3;
    
      end;
    
    end
    
    registration
    
      cluster 
    RealLinearSpace-yielding -> 
    non-empty-addLoopStr-yielding for 
    Relation;
    
      coherence
    
      proof
    
        let R be
    Relation;
    
        assume R is
    RealLinearSpace-yielding;
    
        then for x be
    set st x 
    in ( 
    rng R) holds x is non 
    empty  
    addLoopStr;
    
        hence thesis by
    PRVECT_1:def 9;
    
      end;
    
    end
    
    definition
    
      let G be
    RealLinearSpace-Sequence, j be 
    Element of ( 
    dom ( 
    carr G)); 
    
      :: original:
    .
    
      redefine
    
      func G
    
    . j -> 
    RealLinearSpace ; 
    
      coherence
    
      proof
    
        (
    dom G) 
    = ( 
    Seg ( 
    len G)) & ( 
    Seg ( 
    len ( 
    carr G))) 
    = ( 
    dom ( 
    carr G)) by 
    FINSEQ_1:def 3;
    
        then
    
        reconsider j9 = j as
    Element of ( 
    dom G) by 
    PRVECT_1:def 11;
    
        (G
    . j9) is 
    RealLinearSpace;
    
        hence thesis;
    
      end;
    
    end
    
    definition
    
      ::$Canceled
    
      let G be
    RealLinearSpace-Sequence;
    
      :: 
    
    PRVECT_2:def8
    
      func
    
    multop G -> 
    MultOps of 
    REAL , ( 
    carr G) means 
    
      :
    
    Def8: ( 
    len it ) 
    = ( 
    len ( 
    carr G)) & for j be 
    Element of ( 
    dom ( 
    carr G)) holds (it 
    . j) 
    = the 
    Mult of (G 
    . j); 
    
      existence
    
      proof
    
        deffunc
    
    F(
    Element of ( 
    dom ( 
    carr G))) = the 
    Mult of (G 
    . $1); 
    
        consider p be non
    empty  
    FinSequence such that 
    
        
    
    A20: ( 
    len p) 
    = ( 
    len ( 
    carr G)) & for j be 
    Element of ( 
    dom ( 
    carr G)) holds (p 
    . j) 
    =  
    F(j) from
    PRVECT_1:sch 1;
    
        now
    
          let ai be
    set;
    
          assume ai
    in ( 
    dom ( 
    carr G)); 
    
          then
    
          reconsider i = ai as
    Element of ( 
    dom ( 
    carr G)); 
    
          (
    len G) 
    = ( 
    len ( 
    carr G)) by 
    PRVECT_1:def 11;
    
          then
    
          reconsider j = i as
    Element of ( 
    dom G) by 
    FINSEQ_3: 29;
    
          (p
    . i) 
    = the 
    Mult of (G 
    . i) & the 
    carrier of (G 
    . j) 
    = (( 
    carr G) 
    . j) by 
    A20,
    PRVECT_1:def 11;
    
          hence (p
    . ai) is 
    Function of 
    [:
    REAL , (( 
    carr G) 
    . ai):], (( 
    carr G) 
    . ai); 
    
        end;
    
        then
    
        reconsider p9 = p as
    MultOps of 
    REAL , ( 
    carr G) by 
    A20,
    Th4;
    
        take p9;
    
        thus thesis by
    A20;
    
      end;
    
      uniqueness
    
      proof
    
        let f,h be
    MultOps of 
    REAL , ( 
    carr G); 
    
        assume that
    
        
    
    A21: ( 
    len f) 
    = ( 
    len ( 
    carr G)) and 
    
        
    
    A22: for j be 
    Element of ( 
    dom ( 
    carr G)) holds (f 
    . j) 
    = the 
    Mult of (G 
    . j) and 
    
        
    
    A23: ( 
    len h) 
    = ( 
    len ( 
    carr G)) and 
    
        
    
    A24: for j be 
    Element of ( 
    dom ( 
    carr G)) holds (h 
    . j) 
    = the 
    Mult of (G 
    . j); 
    
        reconsider f9 = f, h9 = h as
    FinSequence;
    
        
    
    A25: 
    
        now
    
          let i be
    Nat;
    
          assume i
    in ( 
    dom f9); 
    
          then
    
          reconsider i9 = i as
    Element of ( 
    dom ( 
    carr G)) by 
    A21,
    FINSEQ_3: 29;
    
          (f9
    . i) 
    = the 
    Mult of (G 
    . i9) by 
    A22;
    
          hence (f9
    . i) 
    = (h9 
    . i) by 
    A24;
    
        end;
    
        (
    dom f9) 
    = ( 
    Seg ( 
    len f9)) & ( 
    dom h9) 
    = ( 
    Seg ( 
    len h9)) by 
    FINSEQ_1:def 3;
    
        hence thesis by
    A21,
    A23,
    A25,
    FINSEQ_1: 13;
    
      end;
    
    end
    
    definition
    
      let G be
    RealLinearSpace-Sequence;
    
      :: 
    
    PRVECT_2:def9
    
      func
    
    product G -> 
    strict non 
    empty  
    RLSStruct equals 
    RLSStruct (# ( 
    product ( 
    carr G)), ( 
    zeros G), 
    [:(
    addop G):], 
    [:(
    multop G):] #); 
    
      coherence ;
    
    end
    
    
    
    
    
    Lm1: for LS be non 
    empty  
    addLoopStr st the 
    addF of LS is 
    commutative
    associative holds LS is 
    Abelian
    add-associative by 
    BINOP_1:def 2,
    BINOP_1:def 3;
    
    
    
    
    
    Lm2: for LS be non 
    empty  
    addLoopStr st the 
    ZeroF of LS 
    is_a_unity_wrt the 
    addF of LS holds LS is 
    right_zeroed by 
    BINOP_1: 3;
    
    
    
    
    
    Lm3: for G be 
    RealLinearSpace-Sequence holds for v1,w1 be 
    Element of ( 
    product ( 
    carr G)), i be 
    Element of ( 
    dom ( 
    carr G)) holds (( 
    [:(
    addop G):] 
    . (v1,w1)) 
    . i) 
    = (the 
    addF of (G 
    . i) 
    . ((v1 
    . i),(w1 
    . i))) & for vi,wi be 
    VECTOR of (G 
    . i) st vi 
    = (v1 
    . i) & wi 
    = (w1 
    . i) holds (( 
    [:(
    addop G):] 
    . (v1,w1)) 
    . i) 
    = (vi 
    + wi) 
    
    proof
    
      let G be
    RealLinearSpace-Sequence;
    
      let v1,w1 be
    Element of ( 
    product ( 
    carr G)); 
    
      let i be
    Element of ( 
    dom ( 
    carr G)); 
    
      ((
    [:(
    addop G):] 
    . (v1,w1)) 
    . i) 
    = ((( 
    addop G) 
    . i) 
    . ((v1 
    . i),(w1 
    . i))) by 
    PRVECT_1:def 8;
    
      hence thesis by
    PRVECT_1:def 12;
    
    end;
    
    
    
    
    
    Lm4: for G be 
    RealLinearSpace-Sequence, r be 
    Element of 
    REAL , v be 
    Element of ( 
    product ( 
    carr G)), i be 
    Element of ( 
    dom ( 
    carr G)) holds (( 
    [:(
    multop G):] 
    . (r,v)) 
    . i) 
    = (the 
    Mult of (G 
    . i) 
    . (r,(v 
    . i))) & for vi be 
    VECTOR of (G 
    . i) st vi 
    = (v 
    . i) holds (( 
    [:(
    multop G):] 
    . (r,v)) 
    . i) 
    = (r 
    * vi) 
    
    proof
    
      let G be
    RealLinearSpace-Sequence;
    
      let r be
    Element of 
    REAL , v be 
    Element of ( 
    product ( 
    carr G)); 
    
      let i be
    Element of ( 
    dom ( 
    carr G)); 
    
      ((
    [:(
    multop G):] 
    . (r,v)) 
    . i) 
    = ((( 
    multop G) 
    . i) 
    . (r,(v 
    . i))) by 
    Def2;
    
      hence thesis by
    Def8;
    
    end;
    
    reconsider jj = 1 as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
    
    
    
    
    Lm5: for G be 
    RealLinearSpace-Sequence holds ( 
    product G) is 
    vector-distributive
    scalar-distributive
    scalar-associative
    scalar-unital
    
    proof
    
      deffunc
    
    ad(
    addLoopStr) = the
    addF of $1; 
    
      let G be
    RealLinearSpace-Sequence;
    
      reconsider GS =
    RLSStruct (# ( 
    product ( 
    carr G)), ( 
    zeros G), 
    [:(
    addop G):], 
    [:(
    multop G):] #) as non 
    empty  
    RLSStruct;
    
      (
    dom G) 
    = ( 
    Seg ( 
    len G)) by 
    FINSEQ_1:def 3;
    
      then (
    dom G) 
    = ( 
    Seg ( 
    len ( 
    carr G))) by 
    PRVECT_1:def 11;
    
      then
    
      
    
    A1: ( 
    dom G) 
    = ( 
    dom ( 
    carr G)) by 
    FINSEQ_1:def 3;
    
      now
    
        let a1,b1 be
    Real;
    
        reconsider a = a1, b = b1 as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
        let v,w be
    VECTOR of GS; 
    
        reconsider v1 = v, w1 = w as
    Element of ( 
    product ( 
    carr G)); 
    
        
    
    A2: 
    
        now
    
          let x be
    object;
    
          assume x
    in ( 
    dom ( 
    carr G)); 
    
          then
    
          reconsider i = x as
    Element of ( 
    dom ( 
    carr G)); 
    
          reconsider vi = (v1
    . i) as 
    VECTOR of (G 
    . i) by 
    A1,
    PRVECT_1:def 11;
    
          ((
    [:(
    multop G):] 
    . (jj,v1)) 
    . x) 
    = (1 
    * vi) by 
    Lm4;
    
          hence ((
    [:(
    multop G):] 
    . (jj,v1)) 
    . x) 
    = (v1 
    . x) by 
    RLVECT_1:def 8;
    
        end;
    
        
    
    A3: 
    
        now
    
          let x be
    object;
    
          assume x
    in ( 
    dom ( 
    carr G)); 
    
          then
    
          reconsider i = x as
    Element of ( 
    dom ( 
    carr G)); 
    
          reconsider vi = (v1
    . i) as 
    VECTOR of (G 
    . i) by 
    A1,
    PRVECT_1:def 11;
    
          ((
    [:(
    multop G):] 
    . ((a 
    + b),v1)) 
    . i) 
    = ((a 
    + b) 
    * vi) by 
    Lm4
    
          .= ((a
    * vi) 
    + (b 
    * vi)) by 
    RLVECT_1:def 6
    
          .= (
    ad(.)
    . ((( 
    [:(
    multop G):] 
    . (a,v1)) 
    . i),(b 
    * vi))) by 
    Lm4
    
          .= (
    ad(.)
    . ((( 
    [:(
    multop G):] 
    . (a,v1)) 
    . i),(( 
    [:(
    multop G):] 
    . (b,v1)) 
    . i))) by 
    Lm4;
    
          hence ((
    [:(
    multop G):] 
    . ((a 
    + b),v1)) 
    . x) 
    = (( 
    [:(
    addop G):] 
    . (( 
    [:(
    multop G):] 
    . (a,v1)),( 
    [:(
    multop G):] 
    . (b,v1)))) 
    . x) by 
    Lm3;
    
        end;
    
        
    
    A4: 
    
        now
    
          let x be
    object;
    
          assume x
    in ( 
    dom ( 
    carr G)); 
    
          then
    
          reconsider i = x as
    Element of ( 
    dom ( 
    carr G)); 
    
          reconsider vi = (v1
    . i), wi = (w1 
    . i) as 
    VECTOR of (G 
    . i) by 
    A1,
    PRVECT_1:def 11;
    
          ((
    [:(
    multop G):] 
    . (a,( 
    [:(
    addop G):] 
    . (v1,w1)))) 
    . i) 
    = (the 
    Mult of (G 
    . i) 
    . (a,(( 
    [:(
    addop G):] 
    . (v1,w1)) 
    . i))) by 
    Lm4
    
          .= (a
    * (vi 
    + wi)) by 
    Lm3
    
          .= ((a
    * vi) 
    + (a 
    * wi)) by 
    RLVECT_1:def 5
    
          .= (
    ad(.)
    . ((( 
    [:(
    multop G):] 
    . (a,v1)) 
    . i),(a 
    * wi))) by 
    Lm4
    
          .= (
    ad(.)
    . ((( 
    [:(
    multop G):] 
    . (a,v1)) 
    . i),(( 
    [:(
    multop G):] 
    . (a,w1)) 
    . i))) by 
    Lm4;
    
          hence ((
    [:(
    multop G):] 
    . (a,( 
    [:(
    addop G):] 
    . (v1,w1)))) 
    . x) 
    = (( 
    [:(
    addop G):] 
    . (( 
    [:(
    multop G):] 
    . (a,v1)),( 
    [:(
    multop G):] 
    . (a,w1)))) 
    . x) by 
    Lm3;
    
        end;
    
        (
    dom ( 
    [:(
    multop G):] 
    . (a,( 
    [:(
    addop G):] 
    . (v1,w1))))) 
    = ( 
    dom ( 
    carr G)) & ( 
    dom ( 
    [:(
    addop G):] 
    . (( 
    [:(
    multop G):] 
    . (a,v1)),( 
    [:(
    multop G):] 
    . (a,w1))))) 
    = ( 
    dom ( 
    carr G)) by 
    CARD_3: 9;
    
        hence (a1
    * (v 
    + w)) 
    = ((a1 
    * v) 
    + (a1 
    * w)) by 
    A4,
    FUNCT_1: 2;
    
        
    
    A5: 
    
        now
    
          let x be
    object;
    
          assume x
    in ( 
    dom ( 
    carr G)); 
    
          then
    
          reconsider i = x as
    Element of ( 
    dom ( 
    carr G)); 
    
          reconsider vi = (v1
    . i) as 
    VECTOR of (G 
    . i) by 
    A1,
    PRVECT_1:def 11;
    
          ((
    [:(
    multop G):] 
    . ((a 
    * b),v1)) 
    . i) 
    = ((a 
    * b) 
    * vi) by 
    Lm4
    
          .= (a
    * (b 
    * vi)) by 
    RLVECT_1:def 7
    
          .= (the
    Mult of (G 
    . i) 
    . (a,(( 
    [:(
    multop G):] 
    . (b,v1)) 
    . i))) by 
    Lm4;
    
          hence ((
    [:(
    multop G):] 
    . ((a 
    * b),v1)) 
    . x) 
    = (( 
    [:(
    multop G):] 
    . (a,( 
    [:(
    multop G):] 
    . (b,v1)))) 
    . x) by 
    Lm4;
    
        end;
    
        (
    dom ( 
    [:(
    multop G):] 
    . ((a 
    + b),v1))) 
    = ( 
    dom ( 
    carr G)) & ( 
    dom ( 
    [:(
    addop G):] 
    . (( 
    [:(
    multop G):] 
    . (a,v1)),( 
    [:(
    multop G):] 
    . (b,v1))))) 
    = ( 
    dom ( 
    carr G)) by 
    CARD_3: 9;
    
        hence ((a1
    + b1) 
    * v) 
    = ((a1 
    * v) 
    + (b1 
    * v)) by 
    A3,
    FUNCT_1: 2;
    
        (
    dom ( 
    [:(
    multop G):] 
    . ((a 
    * b),v1))) 
    = ( 
    dom ( 
    carr G)) & ( 
    dom ( 
    [:(
    multop G):] 
    . (a,( 
    [:(
    multop G):] 
    . (b,v1))))) 
    = ( 
    dom ( 
    carr G)) by 
    CARD_3: 9;
    
        hence ((a1
    * b1) 
    * v) 
    = (a1 
    * (b1 
    * v)) by 
    A5,
    FUNCT_1: 2;
    
        (
    dom ( 
    [:(
    multop G):] 
    . (jj,v1))) 
    = ( 
    dom ( 
    carr G)) & ( 
    dom v1) 
    = ( 
    dom ( 
    carr G)) by 
    CARD_3: 9;
    
        hence (1
    * v) 
    = v by 
    A2,
    FUNCT_1: 2;
    
      end;
    
      hence thesis;
    
    end;
    
    registration
    
      let G be
    RealLinearSpace-Sequence;
    
      cluster ( 
    product G) -> 
    Abelian
    add-associative
    right_zeroed
    right_complementable
    vector-distributive
    scalar-distributive
    scalar-associative
    scalar-unital;
    
      coherence
    
      proof
    
        deffunc
    
    zr(
    addLoopStr) = the
    ZeroF of $1; 
    
        reconsider GS =
    RLSStruct (# ( 
    product ( 
    carr G)), ( 
    zeros G), 
    [:(
    addop G):], 
    [:(
    multop G):] #) as non 
    empty  
    RLSStruct;
    
        deffunc
    
    car(
    1-sorted) = the
    carrier of $1; 
    
        deffunc
    
    ad(
    addLoopStr) = the
    addF of $1; 
    
        
    
    A1: 
    
        now
    
          let i be
    Element of ( 
    dom ( 
    carr G)); 
    
          (
    dom G) 
    = ( 
    Seg ( 
    len G)) by 
    FINSEQ_1:def 3
    
          .= (
    Seg ( 
    len ( 
    carr G))) by 
    PRVECT_1:def 11
    
          .= (
    dom ( 
    carr G)) by 
    FINSEQ_1:def 3;
    
          hence ((
    carr G) 
    . i) 
    =  
    car(.) by
    PRVECT_1:def 11;
    
        end;
    
        now
    
          let i be
    Element of ( 
    dom ( 
    carr G)); 
    
          ((
    addop G) 
    . i) 
    =  
    ad(.) & ((
    carr G) 
    . i) 
    =  
    car(.) by
    A1,
    PRVECT_1:def 12;
    
          hence ((
    addop G) 
    . i) is 
    associative by 
    FVSUM_1: 2;
    
        end;
    
        then
    
        
    
    A2: 
    [:(
    addop G):] is 
    associative by 
    PRVECT_1: 18;
    
        now
    
          let i be
    Element of ( 
    dom ( 
    carr G)); 
    
          
    
          
    
    A3: (( 
    zeros G) 
    . i) 
    = ( 
    0. (G 
    . i)) by 
    PRVECT_1:def 14;
    
          ((
    addop G) 
    . i) 
    =  
    ad(.) & ((
    carr G) 
    . i) 
    =  
    car(.) by
    A1,
    PRVECT_1:def 12;
    
          hence ((
    zeros G) 
    . i) 
    is_a_unity_wrt (( 
    addop G) 
    . i) by 
    A3,
    PRVECT_1: 1;
    
        end;
    
        then
    
        
    
    A4: ( 
    zeros G) 
    is_a_unity_wrt  
    [:(
    addop G):] by 
    PRVECT_1: 19;
    
        
    
        
    
    A5: GS is 
    right_complementable
    
        proof
    
          let x be
    Element of GS; 
    
          reconsider y = ((
    Frege ( 
    complop G)) 
    . x) as 
    Element of GS by 
    FUNCT_2: 5;
    
          take y;
    
          now
    
            let i be
    Element of ( 
    dom ( 
    carr G)); 
    
            (
    0. (G 
    . i)) 
    =  
    zr(.);
    
            then
    
            
    
    A6: 
    zr(.)
    is_a_unity_wrt  
    ad(.) by
    PRVECT_1: 1;
    
            
    
            
    
    A7: (( 
    complop G) 
    . i) 
    = ( 
    comp (G 
    . i)) by 
    PRVECT_1:def 13;
    
            ((
    carr G) 
    . i) 
    =  
    car(.) & ((
    addop G) 
    . i) 
    =  
    ad(.) by
    A1,
    PRVECT_1:def 12;
    
            hence ((
    complop G) 
    . i) 
    is_an_inverseOp_wrt (( 
    addop G) 
    . i) & (( 
    addop G) 
    . i) is 
    having_a_unity by 
    A6,
    A7,
    PRVECT_1: 2,
    SETWISEO:def 2;
    
          end;
    
          then (
    Frege ( 
    complop G)) 
    is_an_inverseOp_wrt  
    [:(
    addop G):] by 
    PRVECT_1: 20;
    
          then (
    [:(
    addop G):] 
    . (x,y)) 
    = ( 
    the_unity_wrt  
    [:(
    addop G):]) by 
    FINSEQOP:def 1;
    
          hence thesis by
    A4,
    BINOP_1:def 8;
    
        end;
    
        now
    
          let i be
    Element of ( 
    dom ( 
    carr G)); 
    
          ((
    addop G) 
    . i) 
    =  
    ad(.) & ((
    carr G) 
    . i) 
    =  
    car(.) by
    A1,
    PRVECT_1:def 12;
    
          hence ((
    addop G) 
    . i) is 
    commutative by 
    FVSUM_1: 1;
    
        end;
    
        then
    [:(
    addop G):] is 
    commutative by 
    PRVECT_1: 17;
    
        hence thesis by
    A2,
    A4,
    A5,
    Lm1,
    Lm2,
    Lm5;
    
      end;
    
    end
    
    begin
    
    definition
    
      let R be
    Relation;
    
      :: 
    
    PRVECT_2:def10
    
      attr R is
    
    RealNormSpace-yielding means 
    
      :
    
    Def10: for x be 
    set st x 
    in ( 
    rng R) holds x is 
    RealNormSpace;
    
    end
    
    registration
    
      cluster non 
    empty
    RealNormSpace-yielding for 
    FinSequence;
    
      existence
    
      proof
    
        set A = the
    RealNormSpace;
    
        take
    <*A*>;
    
        thus
    <*A*> is non
    empty;
    
        let x be
    set;
    
        assume that
    
        
    
    A1: x 
    in ( 
    rng  
    <*A*>) and
    
        
    
    A2: not x is 
    RealNormSpace;
    
        x
    in  
    {A} by
    A1,
    FINSEQ_1: 38;
    
        hence contradiction by
    A2,
    TARSKI:def 1;
    
      end;
    
    end
    
    definition
    
      mode
    
    RealNormSpace-Sequence is non 
    empty
    RealNormSpace-yielding  
    FinSequence;
    
    end
    
    definition
    
      let G be
    RealNormSpace-Sequence;
    
      let j be
    Element of ( 
    dom G); 
    
      :: original:
    .
    
      redefine
    
      func G
    
    . j -> 
    RealNormSpace ; 
    
      coherence
    
      proof
    
        (G
    . j) 
    in ( 
    rng G) by 
    FUNCT_1:def 3;
    
        hence thesis by
    Def10;
    
      end;
    
    end
    
    registration
    
      cluster 
    RealNormSpace-yielding -> 
    RealLinearSpace-yielding for 
    FinSequence;
    
      coherence ;
    
    end
    
    definition
    
      let G be
    RealNormSpace-Sequence;
    
      let x be
    Element of ( 
    product ( 
    carr G)); 
    
      :: 
    
    PRVECT_2:def11
    
      func
    
    normsequence (G,x) -> 
    Element of ( 
    REAL ( 
    len G)) means 
    
      :
    
    Def11: ( 
    len it ) 
    = ( 
    len G) & for j be 
    Element of ( 
    dom G) holds (it 
    . j) 
    = (the 
    normF of (G 
    . j) 
    . (x 
    . j)); 
    
      existence
    
      proof
    
        deffunc
    
    F(
    Element of ( 
    dom G)) = ( 
    In ((the 
    normF of (G 
    . $1) 
    . (x 
    . $1)), 
    REAL )); 
    
        consider f be
    Function of ( 
    dom G), 
    REAL such that 
    
        
    
    A1: for j be 
    Element of ( 
    dom G) holds (f 
    . j) 
    =  
    F(j) from
    FUNCT_2:sch 4;
    
        
    
        
    
    A2: ( 
    rng f) 
    c=  
    REAL ; 
    
        (
    dom f) 
    = ( 
    dom G) by 
    FUNCT_2:def 1;
    
        then
    
        
    
    A3: ( 
    dom f) 
    = ( 
    Seg ( 
    len G)) by 
    FINSEQ_1:def 3;
    
        then f is
    FinSequence by 
    FINSEQ_1:def 2;
    
        then
    
        reconsider f as
    FinSequence of 
    REAL by 
    A2,
    FINSEQ_1:def 4;
    
        
    
        
    
    A4: f 
    in ( 
    REAL  
    * ) by 
    FINSEQ_1:def 11;
    
        (
    len f) 
    = ( 
    len G) by 
    A3,
    FINSEQ_1:def 3;
    
        then f
    in (( 
    len G) 
    -tuples_on  
    REAL ) by 
    A4;
    
        then
    
        reconsider f as
    Element of ( 
    REAL ( 
    len G)); 
    
        take f;
    
        thus (
    len f) 
    = ( 
    len G) by 
    CARD_1:def 7;
    
        let j be
    Element of ( 
    dom G); 
    
        (f
    . j) 
    =  
    F(j) by
    A1;
    
        hence thesis;
    
      end;
    
      uniqueness
    
      proof
    
        let f,g be
    Element of ( 
    REAL ( 
    len G)); 
    
        assume that (
    len f) 
    = ( 
    len G) and 
    
        
    
    A5: for j be 
    Element of ( 
    dom G) holds (f 
    . j) 
    = (the 
    normF of (G 
    . j) 
    . (x 
    . j)) and ( 
    len g) 
    = ( 
    len G) and 
    
        
    
    A6: for j be 
    Element of ( 
    dom G) holds (g 
    . j) 
    = (the 
    normF of (G 
    . j) 
    . (x 
    . j)); 
    
        now
    
          let j be
    Nat;
    
          assume j
    in ( 
    Seg ( 
    len G)); 
    
          then
    
          reconsider j1 = j as
    Element of ( 
    dom G) by 
    FINSEQ_1:def 3;
    
          (f
    . j) 
    = (the 
    normF of (G 
    . j1) 
    . (x 
    . j1)) by 
    A5;
    
          hence (f
    . j) 
    = (g 
    . j) by 
    A6;
    
        end;
    
        hence thesis by
    FINSEQ_2: 119;
    
      end;
    
    end
    
    definition
    
      let G be
    RealNormSpace-Sequence;
    
      :: 
    
    PRVECT_2:def12
    
      func
    
    productnorm G -> 
    Function of ( 
    product ( 
    carr G qua 
    RealLinearSpace-Sequence)),
    REAL means 
    
      :
    
    Def12: for x be 
    Element of ( 
    product ( 
    carr G)) holds (it 
    . x) 
    =  
    |.(
    normsequence (G,x)).|; 
    
      existence
    
      proof
    
        deffunc
    
    F(
    Element of ( 
    product ( 
    carr G))) = ( 
    In ( 
    |.(
    normsequence (G,$1)).|, 
    REAL )); 
    
        consider f be
    Function of ( 
    product ( 
    carr G)), 
    REAL such that 
    
        
    
    A1: for x be 
    Element of ( 
    product ( 
    carr G)) holds (f 
    . x) 
    =  
    F(x) from
    FUNCT_2:sch 4;
    
        take f;
    
        let x be
    Element of ( 
    product ( 
    carr G)); 
    
        (f
    . x) 
    =  
    F(x) by
    A1;
    
        hence thesis;
    
      end;
    
      uniqueness
    
      proof
    
        let f,g be
    Function of ( 
    product ( 
    carr G)), 
    REAL ; 
    
        assume that
    
        
    
    A2: for x be 
    Element of ( 
    product ( 
    carr G)) holds (f 
    . x) 
    =  
    |.(
    normsequence (G,x)).| and 
    
        
    
    A3: for x be 
    Element of ( 
    product ( 
    carr G)) holds (g 
    . x) 
    =  
    |.(
    normsequence (G,x)).|; 
    
        now
    
          let x be
    Element of ( 
    product ( 
    carr G)); 
    
          (f
    . x) 
    =  
    |.(
    normsequence (G,x)).| by 
    A2;
    
          hence (f
    . x) 
    = (g 
    . x) by 
    A3;
    
        end;
    
        hence thesis by
    FUNCT_2: 63;
    
      end;
    
    end
    
    definition
    
      let G be
    RealNormSpace-Sequence;
    
      :: 
    
    PRVECT_2:def13
    
      func
    
    product G -> 
    strict non 
    empty  
    NORMSTR means 
    
      :
    
    Def13: the RLSStruct of it 
    = ( 
    product G qua 
    RealLinearSpace-Sequence) & the
    normF of it 
    = ( 
    productnorm G); 
    
      existence
    
      proof
    
        reconsider G0 =
    NORMSTR (# ( 
    product ( 
    carr G)), ( 
    zeros G), 
    [:(
    addop G):], 
    [:(
    multop G):], ( 
    productnorm G) #) as 
    strict non 
    empty  
    NORMSTR;
    
        take G0;
    
        thus thesis;
    
      end;
    
      uniqueness ;
    
    end
    
    reserve G for
    RealNormSpace-Sequence;
    
    theorem :: 
    
    PRVECT_2:6
    
    
    
    
    
    Th6: ( 
    product G) 
    =  
    NORMSTR (# ( 
    product ( 
    carr G)), ( 
    zeros G), 
    [:(
    addop G):], 
    [:(
    multop G):], ( 
    productnorm G) #) 
    
    proof
    
       the RLSStruct of (
    product G) 
    = ( 
    product G qua 
    RealLinearSpace-Sequence) by
    Def13;
    
      hence thesis by
    Def13;
    
    end;
    
    theorem :: 
    
    PRVECT_2:7
    
    
    
    
    
    Th7: for x be 
    VECTOR of ( 
    product G), y be 
    Element of ( 
    product ( 
    carr G)) st x 
    = y holds 
    ||.x.||
    =  
    |.(
    normsequence (G,y)).| 
    
    proof
    
      let x be
    VECTOR of ( 
    product G); 
    
      let y be
    Element of ( 
    product ( 
    carr G)); 
    
      assume
    
      
    
    A1: x 
    = y; 
    
      (
    product G) 
    =  
    NORMSTR (# ( 
    product ( 
    carr G)), ( 
    zeros G), 
    [:(
    addop G):], 
    [:(
    multop G):], ( 
    productnorm G) #) by 
    Th6;
    
      hence thesis by
    A1,
    Def12;
    
    end;
    
    theorem :: 
    
    PRVECT_2:8
    
    
    
    
    
    Th8: for x,y,z be 
    Element of ( 
    product ( 
    carr G)), i be 
    Nat st i 
    in ( 
    dom x) & z 
    = ( 
    [:(
    addop G):] 
    . (x,y)) holds (( 
    normsequence (G,z)) 
    . i) 
    <= ((( 
    normsequence (G,x)) 
    + ( 
    normsequence (G,y))) 
    . i) 
    
    proof
    
      let x,y,z be
    Element of ( 
    product ( 
    carr G)), i be 
    Nat such that 
    
      
    
    A1: i 
    in ( 
    dom x) and 
    
      
    
    A2: z 
    = ( 
    [:(
    addop G):] 
    . (x,y)); 
    
      reconsider i0 = i as
    Element of ( 
    dom ( 
    carr G)) by 
    A1,
    CARD_3: 9;
    
      
    
      
    
    A3: (z 
    . i0) 
    = ((( 
    addop G) 
    . i0) 
    . ((x 
    . i0),(y 
    . i0))) by 
    A2,
    PRVECT_1:def 8;
    
      (
    dom G) 
    = ( 
    Seg ( 
    len G)) by 
    FINSEQ_1:def 3
    
      .= (
    Seg ( 
    len ( 
    carr G))) by 
    PRVECT_1:def 11
    
      .= (
    dom ( 
    carr G)) by 
    FINSEQ_1:def 3;
    
      then
    
      reconsider i0 = i as
    Element of ( 
    dom G) by 
    A1,
    CARD_3: 9;
    
      (
    dom x) 
    = ( 
    dom ( 
    carr G)) & (( 
    carr G) 
    . i0) 
    = the 
    carrier of (G 
    . i0) by 
    PRVECT_1:def 11,
    CARD_3: 9;
    
      then
    
      reconsider xi0 = (x
    . i0), yi0 = (y 
    . i0), zi0 = (z 
    . i0) as 
    Element of (G 
    . i0) by 
    A1,
    CARD_3: 9;
    
      
    ||.zi0.||
    =  
    ||.(xi0
    + yi0).|| by 
    A3,
    PRVECT_1:def 12;
    
      then
    
      
    
    A4: 
    ||.zi0.||
    <= ( 
    ||.xi0.||
    +  
    ||.yi0.||) by
    NORMSP_1:def 1;
    
      
    
      
    
    A5: ((( 
    normsequence (G,x)) 
    . i0) 
    + (( 
    normsequence (G,y)) 
    . i0)) 
    = ((( 
    normsequence (G,x)) 
    + ( 
    normsequence (G,y))) 
    . i0) by 
    RVSUM_1: 11;
    
      (the
    normF of (G 
    . i0) 
    . yi0) 
    = (( 
    normsequence (G,y)) 
    . i0) & (the 
    normF of (G 
    . i0) 
    . zi0) 
    = (( 
    normsequence (G,z)) 
    . i0) by 
    Def11;
    
      hence thesis by
    A4,
    A5,
    Def11;
    
    end;
    
    theorem :: 
    
    PRVECT_2:9
    
    
    
    
    
    Th9: for x be 
    Element of ( 
    product ( 
    carr G)), i be 
    Nat st i 
    in ( 
    dom x) holds 
    0  
    <= (( 
    normsequence (G,x)) 
    . i) 
    
    proof
    
      let x be
    Element of ( 
    product ( 
    carr G)), i be 
    Nat such that 
    
      
    
    A1: i 
    in ( 
    dom x); 
    
      (
    dom G) 
    = ( 
    Seg ( 
    len G)) by 
    FINSEQ_1:def 3
    
      .= (
    Seg ( 
    len ( 
    carr G))) by 
    PRVECT_1:def 11
    
      .= (
    dom ( 
    carr G)) by 
    FINSEQ_1:def 3;
    
      then
    
      reconsider i0 = i as
    Element of ( 
    dom G) by 
    A1,
    CARD_3: 9;
    
      (
    dom x) 
    = ( 
    dom ( 
    carr G)) & (( 
    carr G) 
    . i0) 
    = the 
    carrier of (G 
    . i0) by 
    PRVECT_1:def 11,
    CARD_3: 9;
    
      then
    
      reconsider xi0 = (x
    . i0) as 
    Element of (G 
    . i0) by 
    A1,
    CARD_3: 9;
    
      
    0  
    <=  
    ||.xi0.|| by
    NORMSP_1: 4;
    
      hence thesis by
    Def11;
    
    end;
    
    
    
    
    
    Lm6: ( 
    product G) is 
    reflexive
    discerning
    RealNormSpace-like
    
    proof
    
      
    
      
    
    A1: ( 
    product G) 
    =  
    NORMSTR (# ( 
    product ( 
    carr G)), ( 
    zeros G), 
    [:(
    addop G):], 
    [:(
    multop G):], ( 
    productnorm G) #) by 
    Th6;
    
      
    
      
    
    A2: ( 
    len G) 
    = ( 
    len ( 
    carr G)) by 
    PRVECT_1:def 11;
    
      reconsider n = (
    len G) as 
    Element of 
    NAT ; 
    
      thus (
    product G) is 
    reflexive
    
      proof
    
        reconsider z = (
    0. ( 
    product G)) as 
    Element of ( 
    product ( 
    carr G)) by 
    A1;
    
        
    
        
    
    A3: for i be 
    Element of ( 
    dom ( 
    carr G)) holds (( 
    normsequence (G,z)) 
    . i) 
    =  
    0  
    
        proof
    
          let i be
    Element of ( 
    dom ( 
    carr G)); 
    
          reconsider i0 = i as
    Element of ( 
    dom G) by 
    A2,
    FINSEQ_3: 29;
    
          ((
    carr G) 
    . i0) 
    = the 
    carrier of (G 
    . i0) by 
    PRVECT_1:def 11;
    
          then
    
          reconsider zi0 = (z
    . i0) as 
    Element of (G 
    . i0) by 
    CARD_3: 9;
    
          (z
    . i) 
    = ( 
    0. (G 
    . i)) by 
    A1,
    PRVECT_1:def 14;
    
          then
    ||.zi0.||
    =  
    0 ; 
    
          hence thesis by
    Def11;
    
        end;
    
        for i be
    Element of 
    NAT st i 
    in ( 
    dom ( 
    sqr ( 
    normsequence (G,z)))) holds (( 
    sqr ( 
    normsequence (G,z))) 
    . i) 
    =  
    0  
    
        proof
    
          let i be
    Element of 
    NAT ; 
    
          assume
    
          
    
    A4: i 
    in ( 
    dom ( 
    sqr ( 
    normsequence (G,z)))); 
    
          (
    len ( 
    normsequence (G,z))) 
    = ( 
    len G) by 
    Def11;
    
          then
    
          
    
    A5: ( 
    dom ( 
    normsequence (G,z))) 
    = ( 
    dom G) by 
    FINSEQ_3: 29;
    
          (
    dom ( 
    carr G)) 
    = ( 
    dom G) by 
    A2,
    FINSEQ_3: 29;
    
          then (
    dom ( 
    sqr ( 
    normsequence (G,z)))) 
    = ( 
    dom ( 
    carr G)) by 
    A5,
    VALUED_1: 11;
    
          then (((
    normsequence (G,z)) 
    . i) 
    ^2 ) 
    = ( 
    0  
    ^2 ) by 
    A3,
    A4;
    
          hence thesis by
    VALUED_1: 11;
    
        end;
    
        then
    |.(
    normsequence (G,z)).| 
    =  
    0 by 
    Th3,
    SQUARE_1: 17;
    
        hence
    ||.(
    0. ( 
    product G)).|| 
    =  
    0 by 
    Th7;
    
      end;
    
      thus (
    product G) is 
    discerning
    
      proof
    
        let x be
    Point of ( 
    product G); 
    
        reconsider z = x as
    Element of ( 
    product ( 
    carr G)) by 
    A1;
    
        assume
    
        
    
    A6: 
    ||.x.||
    =  
    0 ; 
    
        now
    
          let i be
    Element of ( 
    dom ( 
    carr G)); 
    
          reconsider i0 = i as
    Element of ( 
    dom G) by 
    A2,
    FINSEQ_3: 29;
    
          ((
    carr G) 
    . i0) 
    = the 
    carrier of (G 
    . i0) by 
    PRVECT_1:def 11;
    
          then
    
          reconsider zzi0 = (z
    . i0) as 
    Element of (G 
    . i0) by 
    CARD_3: 9;
    
          
    ||.x.||
    =  
    |.(
    normsequence (G,z)).| by 
    Th7;
    
          then (
    normsequence (G,z)) 
    = ( 
    0* n) by 
    A6,
    EUCLID: 8;
    
          then ((
    normsequence (G,z)) 
    . i) 
    =  
    0 ; 
    
          then
    ||.zzi0.||
    =  
    0 by 
    Def11;
    
          hence (z
    . i) 
    = ( 
    0. (G 
    . i)) by 
    NORMSP_0:def 5;
    
        end;
    
        hence thesis by
    A1,
    PRVECT_1:def 14;
    
      end;
    
      let x,y be
    Point of ( 
    product G), a be 
    Real;
    
      reconsider z = x as
    Element of ( 
    product ( 
    carr G)) by 
    A1;
    
      reconsider xx = x, yy = y as
    Element of ( 
    product ( 
    carr G)) by 
    A1;
    
      reconsider ax = (a
    * x) as 
    Element of ( 
    product ( 
    carr G)) by 
    A1;
    
      
    
      
    
    A7: 
    ||.y.||
    =  
    |.(
    normsequence (G,yy)).| & 
    |.((
    normsequence (G,xx)) 
    + ( 
    normsequence (G,yy))).| 
    <= ( 
    |.(
    normsequence (G,xx)).| 
    +  
    |.(
    normsequence (G,yy)).|) by 
    Th7,
    EUCLID: 12;
    
      
    
      
    
    A8: ( 
    len ( 
    normsequence (G,ax))) 
    = n by 
    CARD_1:def 7;
    
      then
    
      
    
    A9: ( 
    dom ( 
    normsequence (G,ax))) 
    = ( 
    Seg n) by 
    FINSEQ_1:def 3;
    
      
    
      
    
    A10: for i be 
    Nat st i 
    in ( 
    dom ( 
    normsequence (G,ax))) holds (( 
    normsequence (G,ax)) 
    . i) 
    = (( 
    |.a.|
    * ( 
    normsequence (G,z))) 
    . i) 
    
      proof
    
        let i be
    Nat;
    
        assume i
    in ( 
    dom ( 
    normsequence (G,ax))); 
    
        then
    
        reconsider i0 = i as
    Element of ( 
    dom G) by 
    A9,
    FINSEQ_1:def 3;
    
        reconsider i1 = i0 as
    Element of ( 
    dom ( 
    carr G)) by 
    A2,
    FINSEQ_3: 29;
    
        ((
    carr G) 
    . i0) 
    = the 
    carrier of (G 
    . i0) & ( 
    dom ( 
    carr G)) 
    = ( 
    dom G) by 
    A2,
    PRVECT_1:def 11,
    FINSEQ_3: 29;
    
        then
    
        reconsider axi0 = (ax
    . i0), zi0 = (z 
    . i0) as 
    Element of (G 
    . i0) by 
    CARD_3: 9;
    
        reconsider aa = a as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
        ((
    [:(
    multop G):] 
    . (aa,z)) 
    . i1) 
    = ((( 
    multop G) 
    . i1) 
    . (a,zi0)) by 
    Def2;
    
        then axi0
    = (a 
    * zi0) by 
    A1,
    Def8;
    
        then
    ||.axi0.||
    = ( 
    |.a.|
    *  
    ||.zi0.||) by
    NORMSP_1:def 1;
    
        then
    ||.axi0.||
    = ( 
    |.a.|
    * (( 
    normsequence (G,z)) 
    . i0)) by 
    Def11;
    
        then
    ||.axi0.||
    = (( 
    |.a.|
    * ( 
    normsequence (G,z))) 
    . i0) by 
    RVSUM_1: 44;
    
        hence thesis by
    Def11;
    
      end;
    
      (
    len ( 
    |.a.|
    * ( 
    normsequence (G,z)))) 
    = n by 
    CARD_1:def 7;
    
      then
    |.(
    normsequence (G,ax)).| 
    =  
    |.(
    |.a.|
    * ( 
    normsequence (G,z))).| by 
    A8,
    A10,
    FINSEQ_2: 9;
    
      then
    
      
    
    A11: 
    |.(
    normsequence (G,ax)).| 
    = ( 
    |.
    |.a.|.|
    *  
    |.(
    normsequence (G,z)).|) by 
    EUCLID: 11;
    
      reconsider z = (x
    + y) as 
    Element of ( 
    product ( 
    carr G)) by 
    A1;
    
      
    
      
    
    A12: for i be 
    Element of 
    NAT st i 
    in ( 
    Seg n) holds 
    0  
    <= (( 
    normsequence (G,z)) 
    . i) & (( 
    normsequence (G,z)) 
    . i) 
    <= ((( 
    normsequence (G,xx)) 
    + ( 
    normsequence (G,yy))) 
    . i) 
    
      proof
    
        
    
        
    
    A13: ( 
    dom xx) 
    = ( 
    dom ( 
    carr G)) by 
    CARD_3: 9;
    
        
    
        
    
    A14: ( 
    Seg n) 
    = ( 
    dom G) & ( 
    dom ( 
    carr G)) 
    = ( 
    dom G) by 
    A2,
    FINSEQ_1:def 3,
    FINSEQ_3: 29;
    
        let i be
    Element of 
    NAT such that 
    
        
    
    A15: i 
    in ( 
    Seg n); 
    
        i
    in ( 
    dom z) by 
    A15,
    A14,
    CARD_3: 9;
    
        hence thesis by
    A1,
    A15,
    A14,
    A13,
    Th8,
    Th9;
    
      end;
    
      
    
      
    
    A16: ( 
    len ( 
    normsequence (G,z))) 
    = n by 
    Def11;
    
      then (
    len ( 
    normsequence (G,z))) 
    = ( 
    len (( 
    normsequence (G,xx)) 
    + ( 
    normsequence (G,yy)))) by 
    CARD_1:def 7;
    
      then
    
      
    
    A17: 
    |.(
    normsequence (G,z)).| 
    <=  
    |.((
    normsequence (G,xx)) 
    + ( 
    normsequence (G,yy))).| by 
    A16,
    A12,
    Th2;
    
      
    ||.(x
    + y).|| 
    =  
    |.(
    normsequence (G,z)).| & 
    ||.x.||
    =  
    |.(
    normsequence (G,xx)).| by 
    Th7;
    
      hence thesis by
    A11,
    A17,
    A7,
    Th7,
    XXREAL_0: 2;
    
    end;
    
    registration
    
      let G be
    RealNormSpace-Sequence;
    
      cluster ( 
    product G) -> 
    reflexive
    discerning
    RealNormSpace-like
    vector-distributive
    scalar-distributive
    scalar-associative
    scalar-unital
    Abelian
    add-associative
    right_zeroed
    right_complementable;
    
      coherence
    
      proof
    
        reconsider G1 = G as
    RealLinearSpace-Sequence;
    
        
    
        
    
    A1: the RLSStruct of ( 
    product G) 
    = ( 
    product G qua 
    RealLinearSpace-Sequence) by
    Def13;
    
        
    
    A2: 
    
        now
    
          let v be
    VECTOR of ( 
    product G); 
    
          reconsider v1 = v as
    VECTOR of ( 
    product G1) by 
    A1;
    
          (1
    * v) 
    = (1 
    * v1) by 
    A1;
    
          hence (1
    * v) 
    = v by 
    RLVECT_1:def 8;
    
        end;
    
        
    
        
    
    A3: ( 
    product G) is 
    right_complementable
    
        proof
    
          let v be
    VECTOR of ( 
    product G); 
    
          reconsider v1 = v as
    VECTOR of ( 
    product G1) by 
    A1;
    
          reconsider w = (
    - v1) as 
    VECTOR of ( 
    product G) by 
    A1;
    
          take w;
    
          (v
    + w) 
    = (v1 
    - v1) by 
    A1;
    
          then (v
    + w) 
    = ( 
    0. ( 
    product G1)) by 
    RLVECT_1: 15;
    
          hence thesis by
    A1;
    
        end;
    
        
    
    A4: 
    
        now
    
          let a be
    Real;
    
          let v,w be
    VECTOR of ( 
    product G); 
    
          reconsider v1 = v, w1 = w as
    VECTOR of ( 
    product G1) by 
    A1;
    
          (a
    * (v 
    + w)) 
    = (a 
    * (v1 
    + w1)) by 
    A1;
    
          then (a
    * (v 
    + w)) 
    = ((a 
    * v1) 
    + (a 
    * w1)) by 
    RLVECT_1:def 5;
    
          hence (a
    * (v 
    + w)) 
    = ((a 
    * v) 
    + (a 
    * w)) by 
    A1;
    
        end;
    
        
    
    A5: 
    
        now
    
          let a,b be
    Real, v be 
    VECTOR of ( 
    product G); 
    
          reconsider v1 = v as
    VECTOR of ( 
    product G1) by 
    A1;
    
          ((a
    * b) 
    * v) 
    = ((a 
    * b) 
    * v1) by 
    A1;
    
          then ((a
    * b) 
    * v) 
    = (a 
    * (b 
    * v1)) by 
    RLVECT_1:def 7;
    
          hence ((a
    * b) 
    * v) 
    = (a 
    * (b 
    * v)) by 
    A1;
    
        end;
    
        
    
    A6: 
    
        now
    
          let a,b be
    Real, v be 
    VECTOR of ( 
    product G); 
    
          reconsider v1 = v as
    VECTOR of ( 
    product G1) by 
    A1;
    
          ((a
    + b) 
    * v) 
    = ((a 
    + b) 
    * v1) by 
    A1;
    
          then ((a
    + b) 
    * v) 
    = ((a 
    * v1) 
    + (b 
    * v1)) by 
    RLVECT_1:def 6;
    
          hence ((a
    + b) 
    * v) 
    = ((a 
    * v) 
    + (b 
    * v)) by 
    A1;
    
        end;
    
        
    
        
    
    A7: ( 
    product G) is 
    add-associative
    
        proof
    
          let v,w,x be
    VECTOR of ( 
    product G); 
    
          reconsider v1 = v, w1 = w, x1 = x as
    VECTOR of ( 
    product G1) by 
    A1;
    
          ((v
    + w) 
    + x) 
    = ((v1 
    + w1) 
    + x1) by 
    A1;
    
          then ((v
    + w) 
    + x) 
    = (v1 
    + (w1 
    + x1)) by 
    RLVECT_1:def 3;
    
          hence thesis by
    A1;
    
        end;
    
        
    
        
    
    A8: ( 
    product G) is 
    Abelian
    
        proof
    
          let v,w be
    VECTOR of ( 
    product G); 
    
          reconsider v1 = v, w1 = w as
    VECTOR of ( 
    product G1) by 
    A1;
    
          (v
    + w) 
    = (v1 
    + w1) by 
    A1;
    
          then (v
    + w) 
    = (w1 
    + v1); 
    
          hence thesis by
    A1;
    
        end;
    
        (
    product G) is 
    right_zeroed
    
        proof
    
          let v be
    VECTOR of ( 
    product G); 
    
          reconsider v1 = v as
    VECTOR of ( 
    product G1) by 
    A1;
    
          (v
    + ( 
    0. ( 
    product G))) 
    = (v1 
    + ( 
    0. ( 
    product G1))) by 
    A1;
    
          hence thesis;
    
        end;
    
        hence thesis by
    A8,
    A7,
    A3,
    A4,
    A6,
    A5,
    A2,
    Lm6;
    
      end;
    
    end
    
    theorem :: 
    
    PRVECT_2:10
    
    
    
    
    
    Th10: for G be 
    RealNormSpace-Sequence, i be 
    Element of ( 
    dom G), x be 
    Point of ( 
    product G), y be 
    Element of ( 
    product ( 
    carr G)), xi be 
    Point of (G 
    . i) st y 
    = x & xi 
    = (y 
    . i) holds 
    ||.xi.||
    <=  
    ||.x.||
    
    proof
    
      let G be
    RealNormSpace-Sequence, i be 
    Element of ( 
    dom G), x be 
    Point of ( 
    product G), y be 
    Element of ( 
    product ( 
    carr G)), xi be 
    Point of (G 
    . i); 
    
      reconsider n = (
    len G) as 
    Element of 
    NAT ; 
    
      assume that
    
      
    
    A1: y 
    = x and 
    
      
    
    A2: xi 
    = (y 
    . i); 
    
      
    
      
    
    A3: ((( 
    normsequence (G,y)) 
    . i) 
    ^2 ) 
    = (( 
    sqr ( 
    normsequence (G,y))) 
    . i) by 
    VALUED_1: 11;
    
      
    
      
    
    A4: for i be 
    Nat st i 
    in ( 
    Seg n) holds 
    0  
    <= (( 
    sqr ( 
    normsequence (G,y))) 
    . i) 
    
      proof
    
        let i be
    Nat such that i 
    in ( 
    Seg n); 
    
        (((
    normsequence (G,y)) 
    . i) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
        hence thesis by
    VALUED_1: 11;
    
      end;
    
      (
    dom G) 
    = ( 
    Seg n) by 
    FINSEQ_1:def 3;
    
      then
    
      
    
    A5: 
    0  
    <= ((( 
    normsequence (G,y)) 
    . i) 
    ^2 ) & (( 
    sqr ( 
    normsequence (G,y))) 
    . i) 
    <= ( 
    Sum ( 
    sqr ( 
    normsequence (G,y)))) by 
    A4,
    REAL_NS1: 7,
    XREAL_1: 63;
    
      
    ||.xi.||
    = (( 
    normsequence (G,y)) 
    . i) by 
    A2,
    Def11;
    
      then (
    sqrt (( 
    sqr ( 
    normsequence (G,y))) 
    . i)) 
    = (( 
    normsequence (G,y)) 
    . i) by 
    A3,
    NORMSP_1: 4,
    SQUARE_1: 22;
    
      then
    
      
    
    A6: 
    ||.xi.||
    = ( 
    sqrt (( 
    sqr ( 
    normsequence (G,y))) 
    . i)) by 
    A2,
    Def11;
    
      
    ||.x.||
    =  
    |.(
    normsequence (G,y)).| by 
    A1,
    Th7;
    
      hence thesis by
    A3,
    A5,
    A6,
    SQUARE_1: 26;
    
    end;
    
    
    
    
    
    Lm7: for RNS be 
    RealNormSpace, S be 
    sequence of RNS, g be 
    Point of RNS holds S is 
    convergent & ( 
    lim S) 
    = g iff 
    ||.(S
    - g).|| is 
    convergent & ( 
    lim  
    ||.(S
    - g).||) 
    =  
    0  
    
    proof
    
      let RNS be
    RealNormSpace, S be 
    sequence of RNS, g be 
    Point of RNS; 
    
      now
    
        assume
    
        
    
    A1: 
    ||.(S
    - g).|| is 
    convergent & ( 
    lim  
    ||.(S
    - g).||) 
    =  
    0 ; 
    
        
    
    A2: 
    
        now
    
          let r be
    Real;
    
          reconsider p = r as
    Real;
    
          assume
    0  
    < r; 
    
          then
    
          consider n be
    Nat such that 
    
          
    
    A3: for m be 
    Nat st n 
    <= m holds 
    |.((
    ||.(S
    - g).|| 
    . m) 
    -  
    0 ).| 
    < p by 
    A1,
    SEQ_2:def 7;
    
          reconsider n as
    Nat;
    
          take n;
    
          let m be
    Nat;
    
          assume n
    <= m; 
    
          then
    |.((
    ||.(S
    - g).|| 
    . m) 
    -  
    0 ).| 
    < p by 
    A3;
    
          then
    |.
    ||.((S
    - g) 
    . m).||.| 
    < p by 
    NORMSP_0:def 4;
    
          then
    |.
    ||.((S
    . m) 
    - g).||.| 
    < p by 
    NORMSP_1:def 4;
    
          hence
    ||.((S
    . m) 
    - g).|| 
    < r by 
    ABSVALUE:def 1,
    NORMSP_1: 4;
    
        end;
    
        hence S is
    convergent;
    
        hence (
    lim S) 
    = g by 
    A2,
    NORMSP_1:def 7;
    
      end;
    
      hence thesis by
    NORMSP_1: 24;
    
    end;
    
    theorem :: 
    
    PRVECT_2:11
    
    
    
    
    
    Th11: for G be 
    RealNormSpace-Sequence, i be 
    Element of ( 
    dom G), x,y be 
    Point of ( 
    product G), xi,yi be 
    Point of (G 
    . i), zx,zy be 
    Element of ( 
    product ( 
    carr G)) st xi 
    = (zx 
    . i) & zx 
    = x & yi 
    = (zy 
    . i) & zy 
    = y holds 
    ||.(yi
    - xi).|| 
    <=  
    ||.(y
    - x).|| 
    
    proof
    
      let G be
    RealNormSpace-Sequence, i be 
    Element of ( 
    dom G), x,y be 
    Point of ( 
    product G), xi,yi be 
    Point of (G 
    . i), zx,zy be 
    Element of ( 
    product ( 
    carr G)); 
    
      assume that
    
      
    
    A1: xi 
    = (zx 
    . i) and 
    
      
    
    A2: zx 
    = x and 
    
      
    
    A3: yi 
    = (zy 
    . i) and 
    
      
    
    A4: zy 
    = y; 
    
      reconsider zyi = (zy
    . i), zxi = (zx 
    . i) as 
    Element of (G 
    . i) by 
    A1,
    A3;
    
      
    
      
    
    A5: ( 
    product G) 
    =  
    NORMSTR (# ( 
    product ( 
    carr G)), ( 
    zeros G), 
    [:(
    addop G):], 
    [:(
    multop G):], ( 
    productnorm G) #) by 
    Th6;
    
      then
    
      reconsider mzx = (
    - x) as 
    Element of ( 
    product ( 
    carr G)); 
    
      (
    len G) 
    = ( 
    len ( 
    carr G)) by 
    PRVECT_1:def 11;
    
      then
    
      
    
    A6: ( 
    dom G) 
    = ( 
    dom ( 
    carr G)) by 
    FINSEQ_3: 29;
    
      (
    - x) 
    = (( 
    - 1) 
    * x) by 
    RLVECT_1: 16;
    
      then
    
      
    
    A7: (mzx 
    . i) 
    = (( 
    - jj) 
    * zxi) by 
    A2,
    A5,
    A6,
    Lm4;
    
      then
    
      reconsider mzxi = (mzx
    . i) as 
    Element of (G 
    . i); 
    
      reconsider zyMm = (y
    - x) as 
    Element of ( 
    product ( 
    carr G)) by 
    A5;
    
      (zyMm
    . i) 
    = (zyi 
    + mzxi) by 
    A4,
    A5,
    A6,
    Lm3;
    
      then (zyMm
    . i) 
    = (zyi 
    + ( 
    - zxi)) by 
    A7,
    RLVECT_1: 16;
    
      hence thesis by
    A1,
    A3,
    Th10;
    
    end;
    
    theorem :: 
    
    PRVECT_2:12
    
    for G be
    RealNormSpace-Sequence, seq be 
    sequence of ( 
    product G), x0 be 
    Point of ( 
    product G), y0 be 
    Element of ( 
    product ( 
    carr G)) st x0 
    = y0 & seq is 
    convergent & ( 
    lim seq) 
    = x0 holds for i be 
    Element of ( 
    dom G) holds ex seqi be 
    sequence of (G 
    . i) st seqi is 
    convergent & (y0 
    . i) 
    = ( 
    lim seqi) & for m be 
    Element of 
    NAT holds ex seqm be 
    Element of ( 
    product ( 
    carr G)) st seqm 
    = (seq 
    . m) & (seqi 
    . m) 
    = (seqm 
    . i) 
    
    proof
    
      let G be
    RealNormSpace-Sequence, seq be 
    sequence of ( 
    product G), x0 be 
    Point of ( 
    product G), y0 be 
    Element of ( 
    product ( 
    carr G)); 
    
      assume that
    
      
    
    A1: x0 
    = y0 and 
    
      
    
    A2: seq is 
    convergent & ( 
    lim seq) 
    = x0; 
    
      let i be
    Element of ( 
    dom G); 
    
      defpred
    
    P1[
    Nat, 
    Element of (G 
    . i)] means ex seqm be 
    Element of ( 
    product ( 
    carr G)) st seqm 
    = (seq 
    . $1) & $2 
    = (seqm 
    . i); 
    
      (
    len G) 
    = ( 
    len ( 
    carr G)) by 
    PRVECT_1:def 11;
    
      then
    
      
    
    A3: ( 
    dom G) 
    = ( 
    dom ( 
    carr G)) by 
    FINSEQ_3: 29;
    
      then (y0
    . i) 
    in (( 
    carr G) 
    . i) by 
    CARD_3: 9;
    
      then
    
      reconsider x0i = (y0
    . i) as 
    Point of (G 
    . i) by 
    PRVECT_1:def 11;
    
      
    
      
    
    A4: for x be 
    Element of 
    NAT holds ex y be 
    Element of (G 
    . i) st 
    P1[x, y]
    
      proof
    
        let x be
    Element of 
    NAT ; 
    
        (
    product G) 
    =  
    NORMSTR (# ( 
    product ( 
    carr G)), ( 
    zeros G), 
    [:(
    addop G):], 
    [:(
    multop G):], ( 
    productnorm G) #) by 
    Th6;
    
        then
    
        consider seqm be
    Element of ( 
    product ( 
    carr G)) such that 
    
        
    
    A5: seqm 
    = (seq 
    . x); 
    
        take (seqm
    . i); 
    
        ((
    carr G) 
    . i) 
    = the 
    carrier of (G 
    . i) by 
    PRVECT_1:def 11;
    
        hence thesis by
    A3,
    A5,
    CARD_3: 9;
    
      end;
    
      consider f be
    sequence of the 
    carrier of (G 
    . i) such that 
    
      
    
    A6: for x be 
    Element of 
    NAT holds 
    P1[x, (f
    . x)] from 
    FUNCT_2:sch 3(
    A4);
    
      for x be
    Nat holds 
    P1[x, (f
    . x)] 
    
      proof
    
        let x be
    Nat;
    
        x
    in  
    NAT by 
    ORDINAL1:def 12;
    
        hence thesis by
    A6;
    
      end;
    
      then
    
      consider seqi be
    sequence of (G 
    . i) such that 
    
      
    
    A7: for m be 
    Nat holds ex seqm be 
    Element of ( 
    product ( 
    carr G)) st seqm 
    = (seq 
    . m) & (seqi 
    . m) 
    = (seqm 
    . i); 
    
      take seqi;
    
      
    
      
    
    A8: for r be 
    Real st 
    0  
    < r holds ex m be 
    Nat st for n be 
    Nat st m 
    <= n holds 
    ||.((seqi
    . n) 
    - x0i).|| 
    < r 
    
      proof
    
        let r be
    Real;
    
        assume r
    >  
    0 ; 
    
        then
    
        consider k be
    Nat such that 
    
        
    
    A9: for n be 
    Nat st k 
    <= n holds 
    ||.((seq
    . n) 
    - x0).|| 
    < r by 
    A2,
    NORMSP_1:def 7;
    
        take k;
    
        let n be
    Nat;
    
        assume n
    >= k; 
    
        then
    
        
    
    A10: 
    ||.((seq
    . n) 
    - x0).|| 
    < r by 
    A9;
    
        ex seqn be
    Element of ( 
    product ( 
    carr G)) st seqn 
    = (seq 
    . n) & (seqi 
    . n) 
    = (seqn 
    . i) by 
    A7;
    
        then
    ||.((seqi
    . n) 
    - x0i).|| 
    <=  
    ||.((seq
    . n) 
    - x0).|| by 
    A1,
    Th11;
    
        hence
    ||.((seqi
    . n) 
    - x0i).|| 
    < r by 
    A10,
    XXREAL_0: 2;
    
      end;
    
      then seqi is
    convergent;
    
      hence thesis by
    A7,
    A8,
    NORMSP_1:def 7;
    
    end;
    
    theorem :: 
    
    PRVECT_2:13
    
    
    
    
    
    Th13: for G be 
    RealNormSpace-Sequence, seq be 
    sequence of ( 
    product G), x0 be 
    Point of ( 
    product G), y0 be 
    Element of ( 
    product ( 
    carr G)) st x0 
    = y0 & for i be 
    Element of ( 
    dom G) holds ex seqi be 
    sequence of (G 
    . i) st seqi is 
    convergent & (y0 
    . i) 
    = ( 
    lim seqi) & for m be 
    Element of 
    NAT holds ex seqm be 
    Element of ( 
    product ( 
    carr G)) st seqm 
    = (seq 
    . m) & (seqi 
    . m) 
    = (seqm 
    . i) holds seq is 
    convergent & ( 
    lim seq) 
    = x0 
    
    proof
    
      let G be
    RealNormSpace-Sequence, seq be 
    sequence of ( 
    product G), x0 be 
    Point of ( 
    product G), y0 be 
    Element of ( 
    product ( 
    carr G)); 
    
      assume that
    
      
    
    A1: x0 
    = y0 and 
    
      
    
    A2: for i be 
    Element of ( 
    dom G) holds ex seqi be 
    sequence of (G 
    . i) st seqi is 
    convergent & (y0 
    . i) 
    = ( 
    lim seqi) & for m be 
    Element of 
    NAT holds ex seqm be 
    Element of ( 
    product ( 
    carr G)) st seqm 
    = (seq 
    . m) & (seqi 
    . m) 
    = (seqm 
    . i); 
    
      defpred
    
    PP[
    Element of ( 
    dom G), 
    set] means ex rseqi be
    Real_Sequence, seqi be 
    sequence of (G 
    . $1) st rseqi 
    = $2 & seqi is 
    convergent & rseqi is 
    convergent & ( 
    lim rseqi) 
    =  
    0 & rseqi 
    =  
    ||.(seqi
    - ( 
    lim seqi)).|| & for m be 
    Element of 
    NAT holds ex seqm be 
    Element of ( 
    product ( 
    carr G)) st seqm 
    = (seq 
    . m) & (seqi 
    . m) 
    = (seqm 
    . $1); 
    
      
    
      
    
    A3: for i be 
    Element of ( 
    dom G) holds ex yyseqi be 
    Element of ( 
    Funcs ( 
    NAT , 
    REAL )) st 
    PP[i, yyseqi]
    
      proof
    
        let i be
    Element of ( 
    dom G); 
    
        consider seqi be
    sequence of (G 
    . i) such that 
    
        
    
    A4: seqi is 
    convergent and (y0 
    . i) 
    = ( 
    lim seqi) and 
    
        
    
    A5: for m be 
    Element of 
    NAT holds ex Sm be 
    Element of ( 
    product ( 
    carr G)) st Sm 
    = (seq 
    . m) & (seqi 
    . m) 
    = (Sm 
    . i) by 
    A2;
    
        set rseqi =
    ||.(seqi
    - ( 
    lim seqi)).||; 
    
        
    
        
    
    A6: rseqi is 
    Element of ( 
    Funcs ( 
    NAT , 
    REAL )) by 
    FUNCT_2: 8;
    
        rseqi is
    convergent & ( 
    lim rseqi) 
    =  
    0 by 
    A4,
    Lm7;
    
        hence thesis by
    A4,
    A5,
    A6;
    
      end;
    
      consider yyseq be
    Function of ( 
    dom G), ( 
    Funcs ( 
    NAT , 
    REAL )) such that 
    
      
    
    A7: for i be 
    Element of ( 
    dom G) holds 
    PP[i, (yyseq
    . i)] from 
    FUNCT_2:sch 3(
    A3);
    
      reconsider I = (
    len G) as 
    Element of 
    NAT ; 
    
      defpred
    
    PQ[
    Element of 
    NAT , 
    Element of ( 
    REAL I)] means for i be 
    Element of ( 
    dom G) holds ((yyseq 
    . i) 
    . $1) 
    = ($2 
    . i); 
    
      
    
      
    
    A8: for k be 
    Element of 
    NAT holds ex yseqk be 
    Element of ( 
    REAL I) st 
    PQ[k, yseqk]
    
      proof
    
        let k be
    Element of 
    NAT ; 
    
        defpred
    
    PPF[
    set, 
    object] means ex i be
    Element of ( 
    dom G) st i 
    = $1 & $2 
    = ((yyseq 
    . i) 
    . k); 
    
        
    
        
    
    A9: for k be 
    Nat st k 
    in ( 
    Seg I) holds ex x be 
    object st 
    PPF[k, x]
    
        proof
    
          let j be
    Nat;
    
          assume j
    in ( 
    Seg I); 
    
          then
    
          reconsider i = j as
    Element of ( 
    dom G) by 
    FINSEQ_1:def 3;
    
          take ((yyseq
    . i) 
    . k); 
    
          thus thesis;
    
        end;
    
        consider yseqk be
    FinSequence such that 
    
        
    
    A10: ( 
    dom yseqk) 
    = ( 
    Seg I) & for j be 
    Nat st j 
    in ( 
    Seg I) holds 
    PPF[j, (yseqk
    . j)] from 
    FINSEQ_1:sch 1(
    A9);
    
        now
    
          let j be
    Nat;
    
          assume j
    in ( 
    dom yseqk); 
    
          then
    
          consider i be
    Element of ( 
    dom G) such that i 
    = j and 
    
          
    
    A11: (yseqk 
    . j) 
    = ((yyseq 
    . i) 
    . k) by 
    A10;
    
          (yyseq
    . i) is 
    sequence of 
    REAL by 
    FUNCT_2: 66;
    
          hence (yseqk
    . j) 
    in  
    REAL by 
    A11,
    FUNCT_2: 5;
    
        end;
    
        then
    
        reconsider yyy = yseqk as
    FinSequence of 
    REAL by 
    FINSEQ_2: 12;
    
        yyy is
    Element of (( 
    len yyy) 
    -tuples_on  
    REAL ) by 
    FINSEQ_2: 92;
    
        then
    
        reconsider yseqk as
    Element of ( 
    REAL I) by 
    A10,
    FINSEQ_1:def 3;
    
        now
    
          let j be
    Element of ( 
    dom G); 
    
          j
    in ( 
    dom G); 
    
          then j
    in ( 
    Seg I) by 
    FINSEQ_1:def 3;
    
          then ex i be
    Element of ( 
    dom G) st i 
    = j & (yseqk 
    . j) 
    = ((yyseq 
    . i) 
    . k) by 
    A10;
    
          hence (yseqk
    . j) 
    = ((yyseq 
    . j) 
    . k); 
    
        end;
    
        hence thesis;
    
      end;
    
      consider yseq be
    sequence of ( 
    REAL I) such that 
    
      
    
    A12: for k be 
    Element of 
    NAT holds 
    PQ[k, (yseq
    . k)] from 
    FUNCT_2:sch 3(
    A8);
    
      
    
    A13: 
    
      now
    
        let i0 be
    Element of 
    NAT ; 
    
        assume i0
    in ( 
    Seg I); 
    
        then
    
        reconsider i = i0 as
    Element of ( 
    dom G) by 
    FINSEQ_1:def 3;
    
        take i;
    
        consider rseqi be
    Real_Sequence, seqi be 
    sequence of (G 
    . i) such that 
    
        
    
    A14: rseqi 
    = (yyseq 
    . i) & seqi is 
    convergent & rseqi is 
    convergent & ( 
    lim rseqi) 
    =  
    0 & (rseqi 
    =  
    ||.(seqi
    - ( 
    lim seqi)).|| & for m be 
    Element of 
    NAT holds ex seqm be 
    Element of ( 
    product ( 
    carr G)) st seqm 
    = (seq 
    . m) & (seqi 
    . m) 
    = (seqm 
    . i)) by 
    A7;
    
        take rseqi, seqi;
    
        thus (for k be
    Element of 
    NAT holds (rseqi 
    . k) 
    = ((yseq 
    . k) 
    . i0)) & i 
    = i0 & seqi is 
    convergent & rseqi is 
    convergent & ( 
    lim rseqi) 
    = (( 
    0* I) 
    . i) & rseqi 
    =  
    ||.(seqi
    - ( 
    lim seqi)).|| & for m be 
    Element of 
    NAT holds ex seqm be 
    Element of ( 
    product ( 
    carr G)) st seqm 
    = (seq 
    . m) & (seqi 
    . m) 
    = (seqm 
    . i) by 
    A12,
    A14;
    
      end;
    
      reconsider xseq = yseq as
    sequence of ( 
    REAL-NS I) by 
    REAL_NS1:def 4;
    
      xseq
    = yseq; 
    
      then
    
      consider xseq be
    sequence of ( 
    REAL-NS I), yseq be 
    sequence of ( 
    REAL I) such that 
    
      
    
    A15: xseq 
    = yseq and 
    
      
    
    A16: for i0 be 
    Element of 
    NAT st i0 
    in ( 
    Seg I) holds ex i be 
    Element of ( 
    dom G), rseqi be 
    Real_Sequence, seqi be 
    sequence of (G 
    . i) st (for k be 
    Element of 
    NAT holds (rseqi 
    . k) 
    = ((yseq 
    . k) 
    . i0)) & i 
    = i0 & seqi is 
    convergent & rseqi is 
    convergent & ( 
    lim rseqi) 
    = (( 
    0* I) 
    . i) & rseqi 
    =  
    ||.(seqi
    - ( 
    lim seqi)).|| & for m be 
    Element of 
    NAT holds ex seqm be 
    Element of ( 
    product ( 
    carr G)) st seqm 
    = (seq 
    . m) & (seqi 
    . m) 
    = (seqm 
    . i) by 
    A13;
    
      
    
      
    
    A17: for i be 
    Nat st i 
    in ( 
    Seg I) holds ex rseqi be 
    Real_Sequence st (for k be 
    Nat holds (rseqi 
    . k) 
    = ((yseq 
    . k) 
    . i)) & rseqi is 
    convergent & (( 
    0* I) 
    . i) 
    = ( 
    lim rseqi) 
    
      proof
    
        let i0 be
    Nat;
    
        assume i0
    in ( 
    Seg I); 
    
        then
    
        consider i be
    Element of ( 
    dom G), rseqi be 
    Real_Sequence, seqi be 
    sequence of (G 
    . i) such that 
    
        
    
    A18: for k be 
    Element of 
    NAT holds (rseqi 
    . k) 
    = ((yseq 
    . k) 
    . i0) and 
    
        
    
    A19: i 
    = i0 & seqi is 
    convergent & rseqi is 
    convergent & ( 
    lim rseqi) 
    = (( 
    0* I) 
    . i) & rseqi 
    =  
    ||.(seqi
    - ( 
    lim seqi)).|| & for m be 
    Element of 
    NAT holds ex seqm be 
    Element of ( 
    product ( 
    carr G)) st seqm 
    = (seq 
    . m) & (seqi 
    . m) 
    = (seqm 
    . i) by 
    A16;
    
        take rseqi;
    
        thus for k be
    Nat holds (rseqi 
    . k) 
    = ((yseq 
    . k) 
    . i0) 
    
        proof
    
          let k be
    Nat;
    
          k
    in  
    NAT by 
    ORDINAL1:def 12;
    
          hence thesis by
    A18;
    
        end;
    
        thus thesis by
    A19;
    
      end;
    
      
    
      
    
    A20: ( 
    product G) 
    =  
    NORMSTR (# ( 
    product ( 
    carr G)), ( 
    zeros G), 
    [:(
    addop G):], 
    [:(
    multop G):], ( 
    productnorm G) #) by 
    Th6;
    
      now
    
        let x be
    object;
    
        assume x
    in  
    NAT ; 
    
        then
    
        reconsider i = x as
    Element of 
    NAT ; 
    
        reconsider seqimx0 = ((seq
    . i) 
    - x0) as 
    Element of ( 
    product ( 
    carr G)) by 
    A20;
    
        
    
    A21: 
    
        now
    
          reconsider mx0 = (
    - x0) as 
    Element of ( 
    product ( 
    carr G)) by 
    A20;
    
          let k be
    Nat;
    
          assume
    
          
    
    A22: k 
    in ( 
    dom ( 
    normsequence (G,seqimx0))); 
    
          
    
          
    
    A23: ( 
    len G) 
    = ( 
    len ( 
    normsequence (G,seqimx0))) by 
    Def11;
    
          then
    
          reconsider k0 = k as
    Element of ( 
    dom G) by 
    A22,
    FINSEQ_3: 29;
    
          k
    in ( 
    Seg I) by 
    A22,
    A23,
    FINSEQ_1:def 3;
    
          then
    
          consider k1 be
    Element of ( 
    dom G), rseqk1i be 
    Real_Sequence, seqk1i be 
    sequence of (G 
    . k1) such that 
    
          
    
    A24: for j be 
    Element of 
    NAT holds (rseqk1i 
    . j) 
    = ((yseq 
    . j) 
    . k) and 
    
          
    
    A25: k1 
    = k and seqk1i is 
    convergent and rseqk1i is 
    convergent and ( 
    lim rseqk1i) 
    = (( 
    0* I) 
    . k1) and 
    
          
    
    A26: rseqk1i 
    =  
    ||.(seqk1i
    - ( 
    lim seqk1i)).|| and 
    
          
    
    A27: for m be 
    Element of 
    NAT holds ex seqk1m be 
    Element of ( 
    product ( 
    carr G)) st seqk1m 
    = (seq 
    . m) & (seqk1i 
    . m) 
    = (seqk1m 
    . k1) by 
    A16;
    
          consider seqk0 be
    sequence of (G 
    . k0) such that seqk0 is 
    convergent and 
    
          
    
    A28: (y0 
    . k0) 
    = ( 
    lim seqk0) and 
    
          
    
    A29: for m be 
    Element of 
    NAT holds ex seqm0 be 
    Element of ( 
    product ( 
    carr G)) st seqm0 
    = (seq 
    . m) & (seqk0 
    . m) 
    = (seqm0 
    . k0) by 
    A2;
    
          
    
          
    
    A30: ex seqm0 be 
    Element of ( 
    product ( 
    carr G)) st seqm0 
    = (seq 
    . i) & (seqk0 
    . i) 
    = (seqm0 
    . k0) by 
    A29;
    
          now
    
            let x be
    object;
    
            assume x
    in  
    NAT ; 
    
            then
    
            reconsider m = x as
    Element of 
    NAT ; 
    
            (ex seqk1m be
    Element of ( 
    product ( 
    carr G)) st seqk1m 
    = (seq 
    . m) & (seqk1i 
    . m) 
    = (seqk1m 
    . k1)) & ex seqm0 be 
    Element of ( 
    product ( 
    carr G)) st seqm0 
    = (seq 
    . m) & (seqk0 
    . m) 
    = (seqm0 
    . k0) by 
    A29,
    A27;
    
            hence (seqk1i
    . x) 
    = (seqk0 
    . x) by 
    A25;
    
          end;
    
          then
    
          
    
    A31: seqk1i 
    = seqk0 by 
    A25,
    FUNCT_2: 12;
    
          (
    len G) 
    = ( 
    len ( 
    carr G)) by 
    PRVECT_1:def 11;
    
          then
    
          
    
    A32: ( 
    dom G) 
    = ( 
    dom ( 
    carr G)) by 
    FINSEQ_3: 29;
    
          (
    - x0) 
    = (( 
    - 1) 
    * x0) by 
    RLVECT_1: 16;
    
          then (mx0
    . k0) 
    = (( 
    - jj) 
    * ( 
    lim seqk0)) by 
    A1,
    A20,
    A28,
    A32,
    Lm4;
    
          then (
    - ( 
    lim seqk0)) 
    = (mx0 
    . k0) by 
    RLVECT_1: 16;
    
          then
    
          
    
    A33: (seqimx0 
    . k0) 
    = ((seqk0 
    . i) 
    - ( 
    lim seqk0)) by 
    A20,
    A30,
    A32,
    Lm3;
    
          
    
          thus ((
    normsequence (G,seqimx0)) 
    . k) 
    = (the 
    normF of (G 
    . k0) 
    . (seqimx0 
    . k0)) by 
    Def11
    
          .=
    ||.((seqk0
    - ( 
    lim seqk0)) 
    . i).|| by 
    A33,
    NORMSP_1:def 4
    
          .= (
    ||.(seqk1i
    - ( 
    lim seqk1i)).|| 
    . i) by 
    A25,
    A31,
    NORMSP_0:def 4
    
          .= ((yseq
    . i) 
    . k) by 
    A24,
    A26;
    
        end;
    
        (
    len (yseq 
    . i)) 
    = I by 
    CARD_1:def 7;
    
        then (
    len (yseq 
    . i)) 
    = ( 
    len ( 
    normsequence (G,seqimx0))) by 
    Def11;
    
        then (
    dom (yseq 
    . i)) 
    = ( 
    dom ( 
    normsequence (G,seqimx0))) by 
    FINSEQ_3: 29;
    
        then
    
        
    
    A34: (yseq 
    . i) 
    = ( 
    normsequence (G,seqimx0)) by 
    A21,
    FINSEQ_1: 13;
    
        
    
        thus (
    ||.(xseq
    - ( 
    0. ( 
    REAL-NS I))).|| 
    . x) 
    =  
    ||.((xseq
    - ( 
    0. ( 
    REAL-NS I))) 
    . i).|| by 
    NORMSP_0:def 4
    
        .=
    ||.((xseq
    . i) 
    - ( 
    0. ( 
    REAL-NS I))).|| by 
    NORMSP_1:def 4
    
        .=
    ||.(xseq
    . i).|| 
    
        .=
    |.(yseq
    . i).| by 
    A15,
    REAL_NS1: 1
    
        .=
    ||.((seq
    . i) 
    - x0).|| by 
    A34,
    Th7
    
        .=
    ||.((seq
    - x0) 
    . i).|| by 
    NORMSP_1:def 4
    
        .= (
    ||.(seq
    - x0).|| 
    . x) by 
    NORMSP_0:def 4;
    
      end;
    
      then
    
      
    
    A35: 
    ||.(xseq
    - ( 
    0. ( 
    REAL-NS I))).|| 
    =  
    ||.(seq
    - x0).|| by 
    FUNCT_2: 12;
    
      (
    0* I) 
    = ( 
    0. ( 
    REAL-NS I)) by 
    REAL_NS1:def 4;
    
      then xseq is
    convergent & ( 
    lim xseq) 
    = ( 
    0. ( 
    REAL-NS I)) by 
    A15,
    A17,
    REAL_NS1: 11;
    
      then
    ||.(seq
    - x0).|| is 
    convergent & ( 
    lim  
    ||.(seq
    - x0).||) 
    =  
    0 by 
    A35,
    Lm7;
    
      hence thesis by
    Lm7;
    
    end;
    
    theorem :: 
    
    PRVECT_2:14
    
    for G be
    RealNormSpace-Sequence st for i be 
    Element of ( 
    dom G) holds (G 
    . i) is 
    complete holds ( 
    product G) is 
    complete
    
    proof
    
      let G be
    RealNormSpace-Sequence such that 
    
      
    
    A1: for i be 
    Element of ( 
    dom G) holds (G 
    . i) is 
    complete;
    
      reconsider I = (
    len G) as 
    Element of 
    NAT ; 
    
      
    
      
    
    A2: ( 
    product G) 
    =  
    NORMSTR (# ( 
    product ( 
    carr G)), ( 
    zeros G), 
    [:(
    addop G):], 
    [:(
    multop G):], ( 
    productnorm G) #) by 
    Th6;
    
      for seq be
    sequence of ( 
    product G) holds seq is 
    Cauchy_sequence_by_Norm implies seq is 
    convergent
    
      proof
    
        let seq be
    sequence of ( 
    product G); 
    
        defpred
    
    PPG[
    Nat, 
    object] means ex i be
    Element of ( 
    dom G) st i 
    = $1 & ex seqi be 
    sequence of (G 
    . i) st seqi is 
    convergent & $2 
    = ( 
    lim seqi) & for m be 
    Element of 
    NAT holds ex seqm be 
    Element of ( 
    product ( 
    carr G)) st seqm 
    = (seq 
    . m) & (seqi 
    . m) 
    = (seqm 
    . i); 
    
        assume
    
        
    
    A3: seq is 
    Cauchy_sequence_by_Norm;
    
        
    
        
    
    A4: for k be 
    Nat st k 
    in ( 
    Seg I) holds ex x be 
    object st 
    PPG[k, x]
    
        proof
    
          let k be
    Nat;
    
          assume k
    in ( 
    Seg I); 
    
          then
    
          reconsider i = k as
    Element of ( 
    dom G) by 
    FINSEQ_1:def 3;
    
          defpred
    
    P1[
    Element of 
    NAT , 
    Element of (G 
    . i)] means ex seqm be 
    Element of ( 
    product ( 
    carr G)) st seqm 
    = (seq 
    . $1) & $2 
    = (seqm 
    . i); 
    
          
    
          
    
    A5: for x be 
    Element of 
    NAT holds ex y be 
    Element of (G 
    . i) st 
    P1[x, y]
    
          proof
    
            let x be
    Element of 
    NAT ; 
    
            consider seqm be
    Element of ( 
    product ( 
    carr G)) such that 
    
            
    
    A6: seqm 
    = (seq 
    . x) by 
    A2;
    
            (
    len G) 
    = ( 
    len ( 
    carr G)) by 
    PRVECT_1:def 11;
    
            then
    
            
    
    A7: ( 
    dom G) 
    = ( 
    dom ( 
    carr G)) by 
    FINSEQ_3: 29;
    
            take (seqm
    . i); 
    
            ((
    carr G) 
    . i) 
    = the 
    carrier of (G 
    . i) by 
    PRVECT_1:def 11;
    
            hence thesis by
    A6,
    A7,
    CARD_3: 9;
    
          end;
    
          ex f be
    sequence of the 
    carrier of (G 
    . i) st for x be 
    Element of 
    NAT holds 
    P1[x, (f
    . x)] from 
    FUNCT_2:sch 3(
    A5);
    
          then
    
          consider seqi be
    sequence of (G 
    . i) such that 
    
          
    
    A8: for m be 
    Element of 
    NAT holds ex seqm be 
    Element of ( 
    product ( 
    carr G)) st seqm 
    = (seq 
    . m) & (seqi 
    . m) 
    = (seqm 
    . i); 
    
          
    
          
    
    A9: for m be 
    Nat holds ex seqm be 
    Element of ( 
    product ( 
    carr G)) st seqm 
    = (seq 
    . m) & (seqi 
    . m) 
    = (seqm 
    . i) 
    
          proof
    
            let n be
    Nat;
    
            n
    in  
    NAT by 
    ORDINAL1:def 12;
    
            hence thesis by
    A8;
    
          end;
    
          take (
    lim seqi); 
    
          now
    
            let r1 be
    Real such that 
    
            
    
    A10: r1 
    >  
    0 ; 
    
            reconsider r = r1 as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
            consider k be
    Nat such that 
    
            
    
    A11: for n,m be 
    Nat st n 
    >= k & m 
    >= k holds 
    ||.((seq
    . n) 
    - (seq 
    . m)).|| 
    < r by 
    A3,
    A10,
    RSSPACE3: 8;
    
            take k;
    
            let n,m be
    Nat;
    
            assume n
    >= k & m 
    >= k; 
    
            then
    
            
    
    A12: 
    ||.((seq
    . n) 
    - (seq 
    . m)).|| 
    < r by 
    A11;
    
            (ex seqm be
    Element of ( 
    product ( 
    carr G)) st seqm 
    = (seq 
    . m) & (seqi 
    . m) 
    = (seqm 
    . i)) & ex seqn be 
    Element of ( 
    product ( 
    carr G)) st seqn 
    = (seq 
    . n) & (seqi 
    . n) 
    = (seqn 
    . i) by 
    A9;
    
            then
    ||.((seqi
    . n) 
    - (seqi 
    . m)).|| 
    <=  
    ||.((seq
    . n) 
    - (seq 
    . m)).|| by 
    Th11;
    
            hence
    ||.((seqi
    . n) 
    - (seqi 
    . m)).|| 
    < r1 by 
    A12,
    XXREAL_0: 2;
    
          end;
    
          then
    
          
    
    A13: seqi is 
    Cauchy_sequence_by_Norm by 
    RSSPACE3: 8;
    
          (G
    . i) is 
    complete by 
    A1;
    
          hence thesis by
    A8,
    A13,
    LOPBAN_1:def 15;
    
        end;
    
        consider yy0 be
    FinSequence such that 
    
        
    
    A14: ( 
    dom yy0) 
    = ( 
    Seg I) & for j be 
    Nat st j 
    in ( 
    Seg I) holds 
    PPG[j, (yy0
    . j)] from 
    FINSEQ_1:sch 1(
    A4);
    
        
    
        
    
    A15: ( 
    len yy0) 
    = I by 
    A14,
    FINSEQ_1:def 3;
    
        then
    
        
    
    A16: ( 
    len yy0) 
    = ( 
    len ( 
    carr G)) by 
    PRVECT_1:def 11;
    
        
    
    A17: 
    
        now
    
          let i be
    object;
    
          assume i
    in ( 
    dom ( 
    carr G)); 
    
          then
    
          reconsider x = i as
    Element of ( 
    dom ( 
    carr G)); 
    
          reconsider x as
    Element of ( 
    dom G) by 
    A15,
    A16,
    FINSEQ_3: 29;
    
          reconsider j = x as
    Element of 
    NAT ; 
    
          j
    in ( 
    dom G); 
    
          then j
    in ( 
    Seg I) by 
    FINSEQ_1:def 3;
    
          then ex i0 be
    Element of ( 
    dom G) st i0 
    = j & ex seqi be 
    sequence of (G 
    . i0) st seqi is 
    convergent & (yy0 
    . j) 
    = ( 
    lim seqi) & for m be 
    Element of 
    NAT holds ex seqm be 
    Element of ( 
    product ( 
    carr G)) st seqm 
    = (seq 
    . m) & (seqi 
    . m) 
    = (seqm 
    . i0) by 
    A14;
    
          then (yy0
    . x) 
    in the 
    carrier of (G 
    . x); 
    
          hence (yy0
    . i) 
    in (( 
    carr G) 
    . i) by 
    PRVECT_1:def 11;
    
        end;
    
        (
    dom ( 
    carr G)) 
    = ( 
    Seg ( 
    len ( 
    carr G))) & ( 
    len G) 
    = ( 
    len ( 
    carr G)) by 
    PRVECT_1:def 11,
    FINSEQ_1:def 3;
    
        then
    
        reconsider y0 = yy0 as
    Element of ( 
    product ( 
    carr G)) by 
    A14,
    A17,
    CARD_3: 9;
    
        
    
    A18: 
    
        now
    
          let i be
    Element of ( 
    dom G); 
    
          reconsider j = i as
    Element of 
    NAT ; 
    
          i
    in ( 
    dom G); 
    
          then i
    in ( 
    Seg I) by 
    FINSEQ_1:def 3;
    
          then
    
          consider i0 be
    Element of ( 
    dom G) such that 
    
          
    
    A19: i0 
    = j and 
    
          
    
    A20: ex seqi be 
    sequence of (G 
    . i0) st seqi is 
    convergent & (yy0 
    . j) 
    = ( 
    lim seqi) & for m be 
    Element of 
    NAT holds ex seqm be 
    Element of ( 
    product ( 
    carr G)) st seqm 
    = (seq 
    . m) & (seqi 
    . m) 
    = (seqm 
    . i0) by 
    A14;
    
          consider seqi be
    sequence of (G 
    . i0) such that 
    
          
    
    A21: seqi is 
    convergent & (yy0 
    . j) 
    = ( 
    lim seqi) & for m be 
    Element of 
    NAT holds ex seqm be 
    Element of ( 
    product ( 
    carr G)) st seqm 
    = (seq 
    . m) & (seqi 
    . m) 
    = (seqm 
    . i0) by 
    A20;
    
          reconsider seqi as
    sequence of (G 
    . i) by 
    A19;
    
          take seqi;
    
          thus seqi is
    convergent & (y0 
    . i) 
    = ( 
    lim seqi) & for m be 
    Element of 
    NAT holds ex seqm be 
    Element of ( 
    product ( 
    carr G)) st seqm 
    = (seq 
    . m) & (seqi 
    . m) 
    = (seqm 
    . i) by 
    A19,
    A21;
    
        end;
    
        reconsider x0 = y0 as
    Point of ( 
    product G) by 
    A2;
    
        x0
    = y0; 
    
        hence thesis by
    A18,
    Th13;
    
      end;
    
      hence thesis by
    LOPBAN_1:def 15;
    
    end;