quatern2.miz
begin
Lm1: for g be
Quaternion holds ex r,s,t,u be
Element of
REAL st g
=
[*r, s, t, u*]
proof
let g be
Quaternion;
consider r,s,t,u be
Real such that
A1: g
=
[*r, s, t, u*] by
QUATERNI: 7;
reconsider r, s, t, u as
Element of
REAL by
XREAL_0:def 1;
g
=
[*r, s, t, u*] by
A1;
hence thesis;
end;
Lm2: for a,b,c,d be
Real holds ((((a
^2 )
+ (b
^2 ))
+ (c
^2 ))
+ (d
^2 ))
>=
0 by
QUATERNI: 74;
Lm3: for a,b,c,d be
Real st ((((a
^2 )
+ (b
^2 ))
+ (c
^2 ))
+ (d
^2 ))
=
0 holds a
=
0 & b
=
0 & c
=
0 & d
=
0 by
QUATERNI: 96;
reserve q,r,c,c1,c2,c3 for
Quaternion;
reserve x1,x2,x3,x4,y1,y2,y3,y4 for
Real;
definition
:: original:
0q
redefine
func
0q ->
Element of
QUATERNION ;
coherence by
QUATERNI:def 2;
end
definition
:: original:
1q
redefine
func
1q ->
Element of
QUATERNION ;
coherence by
QUATERNI:def 2;
end
reconsider jj = 1 as
Element of
REAL by
XREAL_0:def 1;
theorem ::
QUATERN2:1
Th1: for x,y,z,w be
Real holds
[*x, y, z, w*]
= (((x
+ (y
*
<i> ))
+ (z
*
<j> ))
+ (w
*
<k> ))
proof
let x,y,z,w be
Real;
reconsider x0 = (x
+
0 ), y0 = (y
+
0 ) as
Element of
REAL by
XREAL_0:def 1;
<i>
=
[*(
In (
0 ,
REAL )), jj*] by
ARYTM_0:def 5;
then
<i>
=
[*
0 , jj,
0 ,
0 *] by
QUATERNI: 91;
then
A1: (y
*
<i> )
=
[*(y
*
0 ), (y
* jj), (y
*
0 ), (y
*
0 )*] by
QUATERNI:def 21
.=
[*
0 , y,
0 ,
0 *];
A2: (z
*
<j> )
=
[*(z
*
0 ), (z
*
0 ), (z
* jj), (y
*
0 )*] by
QUATERNI:def 21
.=
[*
0 ,
0 , z,
0 *];
A3: (w
*
<k> )
=
[*(w
*
0 ), (w
*
0 ), (w
*
0 ), (w
* jj)*] by
QUATERNI:def 21
.=
[*
0 ,
0 ,
0 , w*];
(x
+ (y
*
<i> ))
=
[*x0, y0,
0 ,
0 *] by
A1,
QUATERNI:def 19
.=
[*x, y,
0 ,
0 *];
then ((x
+ (y
*
<i> ))
+ (z
*
<j> ))
=
[*x0, y0, (
0
+ z), (
0
+
0 )*] by
A2,
QUATERNI:def 7
.=
[*x, y, z,
0 *];
then (((x
+ (y
*
<i> ))
+ (z
*
<j> ))
+ (w
*
<k> ))
=
[*x0, y0, (
0
+ z), (
0
+ w)*] by
A3,
QUATERNI:def 7;
hence thesis;
end;
theorem ::
QUATERN2:2
Th2: ((c1
+ c2)
+ c3)
= (c1
+ (c2
+ c3))
proof
consider x1,y1,w1,z1 be
Element of
REAL such that
A1: c1
=
[*x1, y1, w1, z1*] by
Lm1;
consider x2,y2,w2,z2 be
Element of
REAL such that
A2: c2
=
[*x2, y2, w2, z2*] by
Lm1;
consider x3,y3,w3,z3 be
Element of
REAL such that
A3: c3
=
[*x3, y3, w3, z3*] by
Lm1;
A4: (c2
+ c3)
=
[*(x2
+ x3), (y2
+ y3), (w2
+ w3), (z2
+ z3)*] by
A2,
A3,
QUATERNI:def 7;
((c1
+ c2)
+ c3)
= (
[*(x1
+ x2), (y1
+ y2), (w1
+ w2), (z1
+ z2)*]
+
[*x3, y3, w3, z3*]) by
A1,
A2,
A3,
QUATERNI:def 7
.=
[*((x1
+ x2)
+ x3), ((y1
+ y2)
+ y3), ((w1
+ w2)
+ w3), ((z1
+ z2)
+ z3)*] by
QUATERNI:def 7
.=
[*(x1
+ (x2
+ x3)), (y1
+ (y2
+ y3)), (w1
+ (w2
+ w3)), (z1
+ (z2
+ z3))*]
.= (c1
+ (c2
+ c3)) by
A1,
A4,
QUATERNI:def 7;
hence thesis;
end;
theorem ::
QUATERN2:3
Th3: (c
+
0q )
= c
proof
A1:
0q
=
[*(
In (
0 ,
REAL )), (
In (
0 ,
REAL ))*] by
ARYTM_0:def 5
.=
[*
0 ,
0 ,
0 ,
0 *] by
QUATERNI: 91;
consider x,y,w,z be
Element of
REAL such that
A2: c
=
[*x, y, w, z*] by
Lm1;
(c
+
0q )
=
[*(x
+
0 ), (y
+
0 ), (w
+
0 ), (z
+
0 )*] by
A1,
A2,
QUATERNI:def 7
.=
[*x, y, w, z*];
hence thesis by
A2;
end;
theorem ::
QUATERN2:4
Th4: (
-
[*x1, x2, x3, x4*])
=
[*(
- x1), (
- x2), (
- x3), (
- x4)*]
proof
(
[*x1, x2, x3, x4*]
+
[*(
- x1), (
- x2), (
- x3), (
- x4)*])
=
[*(x1
- x1), (x2
- x2), (x3
- x3), (x4
- x4)*] by
QUATERNI:def 7
.=
[*(
In (
0 ,
REAL )), (
In (
0 ,
REAL ))*] by
QUATERNI: 91
.=
0 by
ARYTM_0:def 5;
hence thesis by
QUATERNI:def 8;
end;
theorem ::
QUATERN2:5
(
[*x1, x2, x3, x4*]
-
[*y1, y2, y3, y4*])
=
[*(x1
- y1), (x2
- y2), (x3
- y3), (x4
- y4)*]
proof
(
[*x1, x2, x3, x4*]
-
[*y1, y2, y3, y4*])
= (
[*x1, x2, x3, x4*]
+
[*(
- y1), (
- y2), (
- y3), (
- y4)*]) by
Th4
.=
[*(x1
- y1), (x2
- y2), (x3
- y3), (x4
- y4)*] by
QUATERNI:def 7;
hence thesis;
end;
theorem ::
QUATERN2:6
((c1
- c2)
+ c3)
= ((c1
+ c3)
- c2) by
Th2;
theorem ::
QUATERN2:7
Th7: c1
= ((c1
+ c2)
- c2)
proof
thus ((c1
+ c2)
- c2)
= (c1
+ (c2
- c2)) by
Th2
.= (c1
+
0q ) by
QUATERNI:def 8
.= c1 by
Th3;
end;
theorem ::
QUATERN2:8
c1
= ((c1
- c2)
+ c2)
proof
thus ((c1
- c2)
+ c2)
= ((c1
+ c2)
- c2) by
Th2
.= c1 by
Th7;
end;
theorem ::
QUATERN2:9
Th9: ((
- x1)
* c)
= (
- (x1
* c))
proof
consider x,y,w,z be
Element of
REAL such that
A1: c
=
[*x, y, w, z*] by
Lm1;
A2: ((
- x1)
* c)
=
[*((
- x1)
* x), ((
- x1)
* y), ((
- x1)
* w), ((
- x1)
* z)*] by
A1,
QUATERNI:def 21
.=
[*(
- (x1
* x)), (
- (x1
* y)), (
- (x1
* w)), (
- (x1
* z))*];
A3: (
- (x1
* c))
= (
-
[*(x1
* x), (x1
* y), (x1
* w), (x1
* z)*]) by
A1,
QUATERNI:def 21;
(
[*(x1
* x), (x1
* y), (x1
* w), (x1
* z)*]
+
[*(
- (x1
* x)), (
- (x1
* y)), (
- (x1
* w)), (
- (x1
* z))*])
=
[*((x1
* x)
+ (
- (x1
* x))), ((x1
* y)
+ (
- (x1
* y))), ((x1
* w)
+ (
- (x1
* w))), ((x1
* z)
+ (
- (x1
* z)))*] by
QUATERNI:def 7
.=
[*(
In (
0 ,
REAL )), (
In (
0 ,
REAL ))*] by
QUATERNI: 91
.=
0 by
ARYTM_0:def 5;
hence thesis by
A2,
A3,
QUATERNI:def 8;
end;
definition
:: original:
<i>
redefine
func
<i> ->
Element of
QUATERNION ;
coherence by
QUATERNI:def 2;
end
Lm4:
|.r.|
=
0 implies r
=
0 by
QUATERNI: 66;
theorem ::
QUATERN2:10
Th10: r
<>
0 implies
|.r.|
>
0
proof
assume r
<>
0 ;
then
|.r.|
<>
0 by
Lm4;
hence thesis by
QUATERNI: 67;
end;
theorem ::
QUATERN2:11
Th11:
0q
=
[*
0 ,
0 ,
0 ,
0 *]
proof
thus
0q
=
[*(
In (
0 ,
REAL )), (
In (
0 ,
REAL ))*] by
ARYTM_0:def 5
.=
[*
0 ,
0 ,
0 ,
0 *] by
QUATERNI: 91;
end;
theorem ::
QUATERN2:12
for r be
Quaternion holds (
0q
* r)
=
0
proof
let r be
Quaternion;
consider x1,x2,x3,x4,y1,y2,y3,y4 be
Real such that
A1:
0
=
[*x1, x2, x3, x4*] and r
=
[*y1, y2, y3, y4*] and
A2: (
0q
* r)
=
[*((((x1
* y1)
- (x2
* y2))
- (x3
* y3))
- (x4
* y4)), ((((x1
* y2)
+ (x2
* y1))
+ (x3
* y4))
- (x4
* y3)), ((((x1
* y3)
+ (y1
* x3))
+ (y2
* x4))
- (y4
* x2)), ((((x1
* y4)
+ (x4
* y1))
+ (x2
* y3))
- (x3
* y2))*] by
QUATERNI:def 10;
A3: x1
=
0 by
A1,
Th11,
QUATERNI: 12;
A4: x2
=
0 by
A1,
Th11,
QUATERNI: 12;
A5: x3
=
0 by
A1,
Th11,
QUATERNI: 12;
x4
=
0 by
A1,
Th11,
QUATERNI: 12;
hence thesis by
A2,
A3,
A4,
A5,
Th11;
end;
theorem ::
QUATERN2:13
for r be
Quaternion holds (r
*
0q )
=
0
proof
let r be
Quaternion;
consider x1,x2,x3,x4,y1,y2,y3,y4 be
Real such that r
=
[*x1, x2, x3, x4*] and
A1:
0
=
[*y1, y2, y3, y4*] and
A2: (r
*
0q )
=
[*((((x1
* y1)
- (x2
* y2))
- (x3
* y3))
- (x4
* y4)), ((((x1
* y2)
+ (x2
* y1))
+ (x3
* y4))
- (x4
* y3)), ((((x1
* y3)
+ (y1
* x3))
+ (y2
* x4))
- (y4
* x2)), ((((x1
* y4)
+ (x4
* y1))
+ (x2
* y3))
- (x3
* y2))*] by
QUATERNI:def 10;
A3: y1
=
0 by
A1,
Th11,
QUATERNI: 12;
A4: y2
=
0 by
A1,
Th11,
QUATERNI: 12;
A5: y3
=
0 by
A1,
Th11,
QUATERNI: 12;
y4
=
0 by
A1,
Th11,
QUATERNI: 12;
hence thesis by
A2,
A3,
A4,
A5,
Th11;
end;
theorem ::
QUATERN2:14
Th14: (c
*
1q )
= c
proof
A1:
1q
=
[*jj, (
In (
0 ,
REAL ))*] by
ARYTM_0:def 5
.=
[*1,
0 ,
0 ,
0 *] by
QUATERNI: 91;
consider x,y,w,z be
Element of
REAL such that
A2: c
=
[*x, y, w, z*] by
Lm1;
(c
*
1q )
=
[*((((x
* 1)
- (y
*
0 ))
- (w
*
0 ))
- (z
*
0 )), ((((x
*
0 )
+ (y
* 1))
+ (w
*
0 ))
- (z
*
0 )), ((((x
*
0 )
+ (1
* w))
+ (
0
* z))
- (
0
* y)), ((((x
*
0 )
+ (z
* jj))
+ (y
*
0 ))
- (w
*
0 ))*] by
A1,
A2,
QUATERNI:def 10
.=
[*x, y, w, z*];
hence thesis by
A2;
end;
theorem ::
QUATERN2:15
Th15: (
1q
* c)
= c
proof
A1:
1q
=
[*jj, (
In (
0 ,
REAL ))*] by
ARYTM_0:def 5
.=
[*1,
0 ,
0 ,
0 *] by
QUATERNI: 91;
consider x,y,w,z be
Element of
REAL such that
A2: c
=
[*x, y, w, z*] by
Lm1;
(
1q
* c)
=
[*((((x
* 1)
- (y
*
0 ))
- (w
*
0 ))
- (z
*
0 )), ((((x
*
0 )
+ (y
* 1))
+ (w
*
0 ))
- (z
*
0 )), ((((x
*
0 )
+ (1
* w))
+ (
0
* z))
- (
0
* y)), ((((x
*
0 )
+ (z
* jj))
+ (y
*
0 ))
- (w
*
0 ))*] by
A1,
A2,
QUATERNI:def 10
.=
[*x, y, w, z*];
hence thesis by
A2;
end;
theorem ::
QUATERN2:16
Th16: ((c1
* c2)
* c3)
= (c1
* (c2
* c3))
proof
consider x1,y1,w1,z1 be
Element of
REAL such that
A1: c1
=
[*x1, y1, w1, z1*] by
Lm1;
consider x2,y2,w2,z2 be
Element of
REAL such that
A2: c2
=
[*x2, y2, w2, z2*] by
Lm1;
consider x3,y3,w3,z3 be
Element of
REAL such that
A3: c3
=
[*x3, y3, w3, z3*] by
Lm1;
A4: ((c1
* c2)
* c3)
= (
[*((((x1
* x2)
- (y1
* y2))
- (w1
* w2))
- (z1
* z2)), ((((x1
* y2)
+ (y1
* x2))
+ (w1
* z2))
- (z1
* w2)), ((((x1
* w2)
+ (x2
* w1))
+ (y2
* z1))
- (z2
* y1)), ((((x1
* z2)
+ (z1
* x2))
+ (y1
* w2))
- (w1
* y2))*]
* c3) by
A1,
A2,
QUATERNI:def 10
.=
[*((((((((x1
* x2)
- (y1
* y2))
- (w1
* w2))
- (z1
* z2))
* x3)
- (((((x1
* y2)
+ (y1
* x2))
+ (w1
* z2))
- (z1
* w2))
* y3))
- (((((x1
* w2)
+ (x2
* w1))
+ (y2
* z1))
- (z2
* y1))
* w3))
- (((((x1
* z2)
+ (z1
* x2))
+ (y1
* w2))
- (w1
* y2))
* z3)), ((((((((x1
* x2)
- (y1
* y2))
- (w1
* w2))
- (z1
* z2))
* y3)
+ (((((x1
* y2)
+ (y1
* x2))
+ (w1
* z2))
- (z1
* w2))
* x3))
+ (((((x1
* w2)
+ (x2
* w1))
+ (y2
* z1))
- (z2
* y1))
* z3))
- (((((x1
* z2)
+ (z1
* x2))
+ (y1
* w2))
- (w1
* y2))
* w3)), ((((((((x1
* x2)
- (y1
* y2))
- (w1
* w2))
- (z1
* z2))
* w3)
+ (x3
* ((((x1
* w2)
+ (x2
* w1))
+ (y2
* z1))
- (z2
* y1))))
+ (y3
* ((((x1
* z2)
+ (z1
* x2))
+ (y1
* w2))
- (w1
* y2))))
- (z3
* ((((x1
* y2)
+ (y1
* x2))
+ (w1
* z2))
- (z1
* w2)))), ((((((((x1
* x2)
- (y1
* y2))
- (w1
* w2))
- (z1
* z2))
* z3)
+ (((((x1
* z2)
+ (z1
* x2))
+ (y1
* w2))
- (w1
* y2))
* x3))
+ (((((x1
* y2)
+ (y1
* x2))
+ (w1
* z2))
- (z1
* w2))
* w3))
- (((((x1
* w2)
+ (x2
* w1))
+ (y2
* z1))
- (z2
* y1))
* y3))*] by
A3,
QUATERNI:def 10
.=
[*((((((((x1
* x2)
* x3)
- ((y1
* y2)
* x3))
- ((w1
* w2)
* x3))
- ((z1
* z2)
* x3))
- (((((x1
* y2)
* y3)
+ ((y1
* x2)
* y3))
+ ((w1
* z2)
* y3))
- ((z1
* w2)
* y3)))
- (((((x1
* w2)
* w3)
+ ((x2
* w1)
* w3))
+ ((y2
* z1)
* w3))
- ((z2
* y1)
* w3)))
- (((((x1
* z2)
* z3)
+ ((z1
* x2)
* z3))
+ ((y1
* w2)
* z3))
- ((w1
* y2)
* z3))), ((((((((x1
* x2)
* y3)
- ((y1
* y2)
* y3))
- ((w1
* w2)
* y3))
- ((z1
* z2)
* y3))
+ (((((x1
* y2)
* x3)
+ ((y1
* x2)
* x3))
+ ((w1
* z2)
* x3))
- ((z1
* w2)
* x3)))
+ (((((x1
* w2)
* z3)
+ ((x2
* w1)
* z3))
+ ((y2
* z1)
* z3))
- ((z2
* y1)
* z3)))
- (((((x1
* z2)
* w3)
+ ((z1
* x2)
* w3))
+ ((y1
* w2)
* w3))
- ((w1
* y2)
* w3))), ((((((((x1
* x2)
* w3)
- ((y1
* y2)
* w3))
- ((w1
* w2)
* w3))
- ((z1
* z2)
* w3))
+ (((((x3
* x1)
* w2)
+ ((x3
* x2)
* w1))
+ ((x3
* y2)
* z1))
- ((x3
* z2)
* y1)))
+ (((((y3
* x1)
* z2)
+ ((y3
* z1)
* x2))
+ ((y3
* y1)
* w2))
- ((y3
* w1)
* y2)))
- (((((z3
* x1)
* y2)
+ ((z3
* y1)
* x2))
+ ((z3
* w1)
* z2))
- ((z3
* z1)
* w2))), ((((((((x1
* x2)
* z3)
- ((y1
* y2)
* z3))
- ((w1
* w2)
* z3))
- ((z1
* z2)
* z3))
+ (((((x1
* z2)
* x3)
+ ((z1
* x2)
* x3))
+ ((y1
* w2)
* x3))
- ((w1
* y2)
* x3)))
+ (((((x1
* y2)
* w3)
+ ((y1
* x2)
* w3))
+ ((w1
* z2)
* w3))
- ((z1
* w2)
* w3)))
- (((((x1
* w2)
* y3)
+ ((x2
* w1)
* y3))
+ ((y2
* z1)
* y3))
- ((z2
* y1)
* y3)))*];
(c1
* (c2
* c3))
= (c1
*
[*((((x2
* x3)
- (y2
* y3))
- (w2
* w3))
- (z2
* z3)), ((((x2
* y3)
+ (y2
* x3))
+ (w2
* z3))
- (z2
* w3)), ((((x2
* w3)
+ (x3
* w2))
+ (y3
* z2))
- (z3
* y2)), ((((x2
* z3)
+ (z2
* x3))
+ (y2
* w3))
- (w2
* y3))*]) by
A2,
A3,
QUATERNI:def 10
.=
[*((((x1
* ((((x2
* x3)
- (y2
* y3))
- (w2
* w3))
- (z2
* z3)))
- (y1
* ((((x2
* y3)
+ (y2
* x3))
+ (w2
* z3))
- (z2
* w3))))
- (w1
* ((((x2
* w3)
+ (x3
* w2))
+ (y3
* z2))
- (z3
* y2))))
- (z1
* ((((x2
* z3)
+ (z2
* x3))
+ (y2
* w3))
- (w2
* y3)))), ((((x1
* ((((x2
* y3)
+ (y2
* x3))
+ (w2
* z3))
- (z2
* w3)))
+ (y1
* ((((x2
* x3)
- (y2
* y3))
- (w2
* w3))
- (z2
* z3))))
+ (w1
* ((((x2
* z3)
+ (z2
* x3))
+ (y2
* w3))
- (w2
* y3))))
- (z1
* ((((x2
* w3)
+ (x3
* w2))
+ (y3
* z2))
- (z3
* y2)))), ((((x1
* ((((x2
* w3)
+ (x3
* w2))
+ (y3
* z2))
- (z3
* y2)))
+ (((((x2
* x3)
- (y2
* y3))
- (w2
* w3))
- (z2
* z3))
* w1))
+ (((((x2
* y3)
+ (y2
* x3))
+ (w2
* z3))
- (z2
* w3))
* z1))
- (((((x2
* z3)
+ (z2
* x3))
+ (y2
* w3))
- (w2
* y3))
* y1)), ((((x1
* ((((x2
* z3)
+ (z2
* x3))
+ (y2
* w3))
- (w2
* y3)))
+ (z1
* ((((x2
* x3)
- (y2
* y3))
- (w2
* w3))
- (z2
* z3))))
+ (y1
* ((((x2
* w3)
+ (x3
* w2))
+ (y3
* z2))
- (z3
* y2))))
- (w1
* ((((x2
* y3)
+ (y2
* x3))
+ (w2
* z3))
- (z2
* w3))))*] by
A1,
QUATERNI:def 10
.= ((c1
* c2)
* c3) by
A4;
hence thesis;
end;
theorem ::
QUATERN2:17
Th17: (c1
* (c2
+ c3))
= ((c1
* c2)
+ (c1
* c3))
proof
consider x1,y1,w1,z1 be
Element of
REAL such that
A1: c1
=
[*x1, y1, w1, z1*] by
Lm1;
consider x2,y2,w2,z2 be
Element of
REAL such that
A2: c2
=
[*x2, y2, w2, z2*] by
Lm1;
consider x3,y3,w3,z3 be
Element of
REAL such that
A3: c3
=
[*x3, y3, w3, z3*] by
Lm1;
A4: (c1
* (c2
+ c3))
= (c1
*
[*(x2
+ x3), (y2
+ y3), (w2
+ w3), (z2
+ z3)*]) by
A2,
A3,
QUATERNI:def 7
.=
[*((((x1
* (x2
+ x3))
- (y1
* (y2
+ y3)))
- (w1
* (w2
+ w3)))
- (z1
* (z2
+ z3))), ((((x1
* (y2
+ y3))
+ (y1
* (x2
+ x3)))
+ (w1
* (z2
+ z3)))
- (z1
* (w2
+ w3))), ((((x1
* (w2
+ w3))
+ ((x2
+ x3)
* w1))
+ ((y2
+ y3)
* z1))
- ((z2
+ z3)
* y1)), ((((x1
* (z2
+ z3))
+ (z1
* (x2
+ x3)))
+ (y1
* (w2
+ w3)))
- (w1
* (y2
+ y3)))*] by
A1,
QUATERNI:def 10
.=
[*(((((x1
* x2)
+ (x1
* x3))
- ((y1
* y2)
+ (y1
* y3)))
- ((w1
* w2)
+ (w1
* w3)))
- ((z1
* z2)
+ (z1
* z3))), (((((x1
* y2)
+ (x1
* y3))
+ ((y1
* x2)
+ (y1
* x3)))
+ ((w1
* z2)
+ (w1
* z3)))
- ((z1
* w2)
+ (z1
* w3))), (((((x1
* w2)
+ (x1
* w3))
+ ((x2
* w1)
+ (x3
* w1)))
+ ((y2
* z1)
+ (y3
* z1)))
- ((z2
* y1)
+ (z3
* y1))), (((((x1
* z2)
+ (x1
* z3))
+ ((z1
* x2)
+ (z1
* x3)))
+ ((y1
* w2)
+ (y1
* w3)))
- ((w1
* y2)
+ (w1
* y3)))*];
((c1
* c2)
+ (c1
* c3))
= (
[*((((x1
* x2)
- (y1
* y2))
- (w1
* w2))
- (z1
* z2)), ((((x1
* y2)
+ (y1
* x2))
+ (w1
* z2))
- (z1
* w2)), ((((x1
* w2)
+ (x2
* w1))
+ (y2
* z1))
- (z2
* y1)), ((((x1
* z2)
+ (z1
* x2))
+ (y1
* w2))
- (w1
* y2))*]
+ (c1
* c3)) by
A1,
A2,
QUATERNI:def 10
.= (
[*((((x1
* x2)
- (y1
* y2))
- (w1
* w2))
- (z1
* z2)), ((((x1
* y2)
+ (y1
* x2))
+ (w1
* z2))
- (z1
* w2)), ((((x1
* w2)
+ (x2
* w1))
+ (y2
* z1))
- (z2
* y1)), ((((x1
* z2)
+ (z1
* x2))
+ (y1
* w2))
- (w1
* y2))*]
+
[*((((x1
* x3)
- (y1
* y3))
- (w1
* w3))
- (z1
* z3)), ((((x1
* y3)
+ (y1
* x3))
+ (w1
* z3))
- (z1
* w3)), ((((x1
* w3)
+ (x3
* w1))
+ (y3
* z1))
- (z3
* y1)), ((((x1
* z3)
+ (z1
* x3))
+ (y1
* w3))
- (w1
* y3))*]) by
A1,
A3,
QUATERNI:def 10
.=
[*(((((x1
* x2)
- (y1
* y2))
- (w1
* w2))
- (z1
* z2))
+ ((((x1
* x3)
- (y1
* y3))
- (w1
* w3))
- (z1
* z3))), (((((x1
* y2)
+ (y1
* x2))
+ (w1
* z2))
- (z1
* w2))
+ ((((x1
* y3)
+ (y1
* x3))
+ (w1
* z3))
- (z1
* w3))), (((((x1
* w2)
+ (x2
* w1))
+ (y2
* z1))
- (z2
* y1))
+ ((((x1
* w3)
+ (x3
* w1))
+ (y3
* z1))
- (z3
* y1))), (((((x1
* z2)
+ (z1
* x2))
+ (y1
* w2))
- (w1
* y2))
+ ((((x1
* z3)
+ (z1
* x3))
+ (y1
* w3))
- (w1
* y3)))*] by
QUATERNI:def 7;
hence thesis by
A4;
end;
theorem ::
QUATERN2:18
Th18: ((c1
+ c2)
* c3)
= ((c1
* c3)
+ (c2
* c3))
proof
consider x1,y1,w1,z1 be
Element of
REAL such that
A1: c1
=
[*x1, y1, w1, z1*] by
Lm1;
consider x2,y2,w2,z2 be
Element of
REAL such that
A2: c2
=
[*x2, y2, w2, z2*] by
Lm1;
consider x3,y3,w3,z3 be
Element of
REAL such that
A3: c3
=
[*x3, y3, w3, z3*] by
Lm1;
A4: ((c1
+ c2)
* c3)
= (
[*(x1
+ x2), (y1
+ y2), (w1
+ w2), (z1
+ z2)*]
* c3) by
A1,
A2,
QUATERNI:def 7
.=
[*(((((x1
+ x2)
* x3)
- ((y1
+ y2)
* y3))
- ((w1
+ w2)
* w3))
- ((z1
+ z2)
* z3)), (((((x1
+ x2)
* y3)
+ ((y1
+ y2)
* x3))
+ ((w1
+ w2)
* z3))
- ((z1
+ z2)
* w3)), (((((x1
+ x2)
* w3)
+ (x3
* (w1
+ w2)))
+ (y3
* (z1
+ z2)))
- (z3
* (y1
+ y2))), (((((x1
+ x2)
* z3)
+ ((z1
+ z2)
* x3))
+ ((y1
+ y2)
* w3))
- ((w1
+ w2)
* y3))*] by
A3,
QUATERNI:def 10
.=
[*(((((x1
* x3)
+ (x2
* x3))
- ((y1
* y3)
+ (y2
* y3)))
- ((w1
* w3)
+ (w2
* w3)))
- ((z1
* z3)
+ (z2
* z3))), (((((x1
* y3)
+ (x2
* y3))
+ ((y1
* x3)
+ (y2
* x3)))
+ ((w1
* z3)
+ (w2
* z3)))
- ((z1
* w3)
+ (z2
* w3))), (((((x1
* w3)
+ (x2
* w3))
+ ((x3
* w1)
+ (x3
* w2)))
+ ((y3
* z1)
+ (y3
* z2)))
- ((z3
* y1)
+ (z3
* y2))), (((((x1
* z3)
+ (x2
* z3))
+ ((z1
* x3)
+ (z2
* x3)))
+ ((y1
* w3)
+ (y2
* w3)))
- ((w1
* y3)
+ (w2
* y3)))*];
((c1
* c3)
+ (c2
* c3))
= (
[*((((x1
* x3)
- (y1
* y3))
- (w1
* w3))
- (z1
* z3)), ((((x1
* y3)
+ (y1
* x3))
+ (w1
* z3))
- (z1
* w3)), ((((x1
* w3)
+ (x3
* w1))
+ (y3
* z1))
- (z3
* y1)), ((((x1
* z3)
+ (z1
* x3))
+ (y1
* w3))
- (w1
* y3))*]
+ (c2
* c3)) by
A1,
A3,
QUATERNI:def 10
.= (
[*((((x1
* x3)
- (y1
* y3))
- (w1
* w3))
- (z1
* z3)), ((((x1
* y3)
+ (y1
* x3))
+ (w1
* z3))
- (z1
* w3)), ((((x1
* w3)
+ (x3
* w1))
+ (y3
* z1))
- (z3
* y1)), ((((x1
* z3)
+ (z1
* x3))
+ (y1
* w3))
- (w1
* y3))*]
+
[*((((x2
* x3)
- (y2
* y3))
- (w2
* w3))
- (z2
* z3)), ((((x2
* y3)
+ (y2
* x3))
+ (w2
* z3))
- (z2
* w3)), ((((x2
* w3)
+ (x3
* w2))
+ (y3
* z2))
- (z3
* y2)), ((((x2
* z3)
+ (z2
* x3))
+ (y2
* w3))
- (w2
* y3))*]) by
A2,
A3,
QUATERNI:def 10
.=
[*(((((x1
* x3)
- (y1
* y3))
- (w1
* w3))
- (z1
* z3))
+ ((((x2
* x3)
- (y2
* y3))
- (w2
* w3))
- (z2
* z3))), (((((x1
* y3)
+ (y1
* x3))
+ (w1
* z3))
- (z1
* w3))
+ ((((x2
* y3)
+ (y2
* x3))
+ (w2
* z3))
- (z2
* w3))), (((((x1
* w3)
+ (x3
* w1))
+ (y3
* z1))
- (z3
* y1))
+ ((((x2
* w3)
+ (x3
* w2))
+ (y3
* z2))
- (z3
* y2))), (((((x1
* z3)
+ (z1
* x3))
+ (y1
* w3))
- (w1
* y3))
+ ((((x2
* z3)
+ (z2
* x3))
+ (y2
* w3))
- (w2
* y3)))*] by
QUATERNI:def 7;
hence thesis by
A4;
end;
theorem ::
QUATERN2:19
Th19: (
- c)
= ((
-
1q )
* c)
proof
consider x,y,w,z be
Element of
REAL such that
A1: c
=
[*x, y, w, z*] by
Lm1;
A2: (c
+
[*(
- x), (
- y), (
- w), (
- z)*])
=
[*(x
+ (
- x)), (y
+ (
- y)), (w
+ (
- w)), (z
+ (
- z))*] by
A1,
QUATERNI:def 7
.=
[*(
In (
0 ,
REAL )), (
In (
0 ,
REAL ))*] by
QUATERNI: 91
.=
0 by
ARYTM_0:def 5;
1q
=
[*jj, (
In (
0 ,
REAL ))*] by
ARYTM_0:def 5
.=
[*1,
0 ,
0 ,
0 *] by
QUATERNI: 91;
then (
1q
+
[*(
- 1),
0 ,
0 ,
0 *])
=
[*(jj
+ (
- jj)), (
0
+
0 ), (
0
+
0 ), (
0
+
0 )*] by
QUATERNI:def 7
.=
[*(
In (
0 ,
REAL )), (
In (
0 ,
REAL ))*] by
QUATERNI: 91
.=
0 by
ARYTM_0:def 5;
then ((
-
1q )
* c)
= (
[*(
- 1),
0 ,
0 ,
0 *]
*
[*x, y, w, z*]) by
A1,
QUATERNI:def 8
.=
[*(((((
- 1)
* x)
- (
0
* y))
- (
0
* w))
- (
0
* z)), (((((
- 1)
* y)
+ (
0
* x))
+ (
0
* z))
- (
0
* w)), (((((
- 1)
* w)
+ (x
*
0 ))
+ (y
*
0 ))
- (z
*
0 )), (((((
- jj)
* z)
+ (
0
* x))
+ (
0
* w))
- (
0
* y))*] by
QUATERNI:def 10;
hence thesis by
A2,
QUATERNI:def 8;
end;
theorem ::
QUATERN2:20
Th20: ((
- c1)
* c2)
= (
- (c1
* c2))
proof
consider x1,y1,w1,z1 be
Element of
REAL such that
A1: c1
=
[*x1, y1, w1, z1*] by
Lm1;
consider x2,y2,w2,z2 be
Element of
REAL such that
A2: c2
=
[*x2, y2, w2, z2*] by
Lm1;
A3: ((
- c1)
* c2)
= (
[*(
- x1), (
- y1), (
- w1), (
- z1)*]
*
[*x2, y2, w2, z2*]) by
A1,
A2,
Th4
.=
[*(((((
- x1)
* x2)
- ((
- y1)
* y2))
- ((
- w1)
* w2))
- ((
- z1)
* z2)), (((((
- x1)
* y2)
+ ((
- y1)
* x2))
+ ((
- w1)
* z2))
- ((
- z1)
* w2)), (((((
- x1)
* w2)
+ (x2
* (
- w1)))
+ (y2
* (
- z1)))
- (z2
* (
- y1))), (((((
- x1)
* z2)
+ ((
- z1)
* x2))
+ ((
- y1)
* w2))
- ((
- w1)
* y2))*] by
QUATERNI:def 10
.=
[*((((
- (x1
* x2))
+ (y1
* y2))
+ (w1
* w2))
+ (z1
* z2)), ((((
- (x1
* y2))
- (y1
* x2))
- (w1
* z2))
+ (z1
* w2)), ((((
- (x1
* w2))
- (x2
* w1))
- (y2
* z1))
+ (z2
* y1)), ((((
- (x1
* z2))
- (z1
* x2))
- (y1
* w2))
+ (w1
* y2))*];
(c1
* c2)
=
[*((((x1
* x2)
- (y1
* y2))
- (w1
* w2))
- (z1
* z2)), ((((x1
* y2)
+ (y1
* x2))
+ (w1
* z2))
- (z1
* w2)), ((((x1
* w2)
+ (x2
* w1))
+ (y2
* z1))
- (z2
* y1)), ((((x1
* z2)
+ (z1
* x2))
+ (y1
* w2))
- (w1
* y2))*] by
A1,
A2,
QUATERNI:def 10;
then (((
- c1)
* c2)
+ (c1
* c2))
=
[*(((((
- (x1
* x2))
+ (y1
* y2))
+ (w1
* w2))
+ (z1
* z2))
+ ((((x1
* x2)
- (y1
* y2))
- (w1
* w2))
- (z1
* z2))), (((((
- (x1
* y2))
- (y1
* x2))
- (w1
* z2))
+ (z1
* w2))
+ ((((x1
* y2)
+ (y1
* x2))
+ (w1
* z2))
- (z1
* w2))), (((((
- (x1
* w2))
- (x2
* w1))
- (y2
* z1))
+ (z2
* y1))
+ ((((x1
* w2)
+ (x2
* w1))
+ (y2
* z1))
- (z2
* y1))), (((((
- (x1
* z2))
- (z1
* x2))
- (y1
* w2))
+ (w1
* y2))
+ ((((x1
* z2)
+ (z1
* x2))
+ (y1
* w2))
- (w1
* y2)))*] by
A3,
QUATERNI:def 7
.=
[*(
In (
0 ,
REAL )), (
In (
0 ,
REAL ))*] by
QUATERNI: 91
.=
0 by
ARYTM_0:def 5;
hence thesis by
QUATERNI:def 8;
end;
theorem ::
QUATERN2:21
Th21: (c1
* (
- c2))
= (
- (c1
* c2))
proof
consider x1,y1,w1,z1 be
Element of
REAL such that
A1: c1
=
[*x1, y1, w1, z1*] by
Lm1;
consider x2,y2,w2,z2 be
Element of
REAL such that
A2: c2
=
[*x2, y2, w2, z2*] by
Lm1;
A3: (c1
* (
- c2))
= (
[*x1, y1, w1, z1*]
*
[*(
- x2), (
- y2), (
- w2), (
- z2)*]) by
A1,
A2,
Th4
.=
[*((((x1
* (
- x2))
- (y1
* (
- y2)))
- (w1
* (
- w2)))
- (z1
* (
- z2))), ((((x1
* (
- y2))
+ (y1
* (
- x2)))
+ (w1
* (
- z2)))
- (z1
* (
- w2))), ((((x1
* (
- w2))
+ ((
- x2)
* w1))
+ ((
- y2)
* z1))
- ((
- z2)
* y1)), ((((x1
* (
- z2))
+ (z1
* (
- x2)))
+ (y1
* (
- w2)))
- (w1
* (
- y2)))*] by
QUATERNI:def 10
.=
[*((((
- (x1
* x2))
+ (y1
* y2))
+ (w1
* w2))
+ (z1
* z2)), ((((
- (x1
* y2))
- (y1
* x2))
- (w1
* z2))
+ (z1
* w2)), ((((
- (x1
* w2))
- (x2
* w1))
- (y2
* z1))
+ (z2
* y1)), ((((
- (x1
* z2))
- (z1
* x2))
- (y1
* w2))
+ (w1
* y2))*];
(c1
* c2)
=
[*((((x1
* x2)
- (y1
* y2))
- (w1
* w2))
- (z1
* z2)), ((((x1
* y2)
+ (y1
* x2))
+ (w1
* z2))
- (z1
* w2)), ((((x1
* w2)
+ (x2
* w1))
+ (y2
* z1))
- (z2
* y1)), ((((x1
* z2)
+ (z1
* x2))
+ (y1
* w2))
- (w1
* y2))*] by
A1,
A2,
QUATERNI:def 10;
then ((c1
* (
- c2))
+ (c1
* c2))
=
[*(((((
- (x1
* x2))
+ (y1
* y2))
+ (w1
* w2))
+ (z1
* z2))
+ ((((x1
* x2)
- (y1
* y2))
- (w1
* w2))
- (z1
* z2))), (((((
- (x1
* y2))
- (y1
* x2))
- (w1
* z2))
+ (z1
* w2))
+ ((((x1
* y2)
+ (y1
* x2))
+ (w1
* z2))
- (z1
* w2))), (((((
- (x1
* w2))
- (x2
* w1))
- (y2
* z1))
+ (z2
* y1))
+ ((((x1
* w2)
+ (x2
* w1))
+ (y2
* z1))
- (z2
* y1))), (((((
- (x1
* z2))
- (z1
* x2))
- (y1
* w2))
+ (w1
* y2))
+ ((((x1
* z2)
+ (z1
* x2))
+ (y1
* w2))
- (w1
* y2)))*] by
A3,
QUATERNI:def 7
.=
[*(
In (
0 ,
REAL )), (
In (
0 ,
REAL ))*] by
QUATERNI: 91
.=
0 by
ARYTM_0:def 5;
hence thesis by
QUATERNI:def 8;
end;
theorem ::
QUATERN2:22
Th22: ((
- c1)
* (
- c2))
= (c1
* c2)
proof
consider x1,y1,w1,z1 be
Element of
REAL such that
A1: c1
=
[*x1, y1, w1, z1*] by
Lm1;
consider x2,y2,w2,z2 be
Element of
REAL such that
A2: c2
=
[*x2, y2, w2, z2*] by
Lm1;
(
- c1)
=
[*(
- x1), (
- y1), (
- w1), (
- z1)*] by
A1,
Th4;
then ((
- c1)
* (
- c2))
= (
[*(
- x1), (
- y1), (
- w1), (
- z1)*]
*
[*(
- x2), (
- y2), (
- w2), (
- z2)*]) by
A2,
Th4
.=
[*(((((
- x1)
* (
- x2))
- ((
- y1)
* (
- y2)))
- ((
- w1)
* (
- w2)))
- ((
- z1)
* (
- z2))), (((((
- x1)
* (
- y2))
+ ((
- y1)
* (
- x2)))
+ ((
- w1)
* (
- z2)))
- ((
- z1)
* (
- w2))), (((((
- x1)
* (
- w2))
+ ((
- x2)
* (
- w1)))
+ ((
- y2)
* (
- z1)))
- ((
- z2)
* (
- y1))), (((((
- x1)
* (
- z2))
+ ((
- z1)
* (
- x2)))
+ ((
- y1)
* (
- w2)))
- ((
- w1)
* (
- y2)))*] by
QUATERNI:def 10
.=
[*((((x1
* x2)
- (y1
* y2))
- (w1
* w2))
- (z1
* z2)), ((((x1
* y2)
+ (y1
* x2))
+ (w1
* z2))
- (z1
* w2)), ((((x1
* w2)
+ (x2
* w1))
+ (y2
* z1))
- (z2
* y1)), ((((x1
* z2)
+ (z1
* x2))
+ (y1
* w2))
- (w1
* y2))*]
.= (c1
* c2) by
A1,
A2,
QUATERNI:def 10;
hence thesis;
end;
theorem ::
QUATERN2:23
Th23: ((c1
- c2)
* c3)
= ((c1
* c3)
- (c2
* c3))
proof
((c1
- c2)
* c3)
= ((c1
* c3)
+ ((
- c2)
* c3)) by
Th18;
hence thesis by
Th20;
end;
theorem ::
QUATERN2:24
Th24: (c1
* (c2
- c3))
= ((c1
* c2)
- (c1
* c3))
proof
(c1
* (c2
- c3))
= ((c1
* c2)
+ (c1
* (
- c3))) by
Th17;
hence thesis by
Th21;
end;
theorem ::
QUATERN2:25
Th25: (
[*x1, x2, x3, x4*]
*' )
=
[*x1, (
- x2), (
- x3), (
- x4)*]
proof
set c =
[*x1, x2, x3, x4*];
A1: (
Rea c)
= x1 by
QUATERNI: 23;
A2: (
Im1 c)
= x2 by
QUATERNI: 23;
A3: (
Im2 c)
= x3 by
QUATERNI: 23;
(
Im3 c)
= x4 by
QUATERNI: 23;
hence thesis by
A1,
A2,
A3,
QUATERNI: 43;
end;
theorem ::
QUATERN2:26
((c
*' )
*' )
= c
proof
A1: (
Rea (c
*' ))
= (
Rea c) by
QUATERNI: 44;
A2: (
Im1 (c
*' ))
= (
- (
Im1 c)) by
QUATERNI: 44;
A3: (
Im2 (c
*' ))
= (
- (
Im2 c)) by
QUATERNI: 44;
(
Im3 (c
*' ))
= (
- (
Im3 c)) by
QUATERNI: 44;
then ((c
*' )
*' )
=
[*(
Rea c), (
- (
- (
Im1 c))), (
- (
- (
Im2 c))), (
- (
- (
Im3 c)))*] by
A1,
A2,
A3,
QUATERNI: 43
.= c by
QUATERNI: 24;
hence thesis;
end;
definition
let q, r;
consider q0,q1,q2,q3 be
Element of
REAL such that
A1: q
=
[*q0, q1, q2, q3*] by
Lm1;
consider r0,r1,r2,r3 be
Element of
REAL such that
A2: r
=
[*r0, r1, r2, r3*] by
Lm1;
::
QUATERN2:def1
func q
/ r ->
Number means
:
Def1: ex q0,q1,q2,q3,r0,r1,r2,r3 be
Element of
REAL st q
=
[*q0, q1, q2, q3*] & r
=
[*r0, r1, r2, r3*] & it
=
[*(((((r0
* q0)
+ (r1
* q1))
+ (r2
* q2))
+ (r3
* q3))
/ (
|.r.|
^2 )), (((((r0
* q1)
- (r1
* q0))
- (r2
* q3))
+ (r3
* q2))
/ (
|.r.|
^2 )), (((((r0
* q2)
+ (r1
* q3))
- (r2
* q0))
- (r3
* q1))
/ (
|.r.|
^2 )), (((((r0
* q3)
- (r1
* q2))
+ (r2
* q1))
- (r3
* q0))
/ (
|.r.|
^2 ))*];
existence
proof
take
[*(((((r0
* q0)
+ (r1
* q1))
+ (r2
* q2))
+ (r3
* q3))
/ (
|.r.|
^2 )), (((((r0
* q1)
- (r1
* q0))
- (r2
* q3))
+ (r3
* q2))
/ (
|.r.|
^2 )), (((((r0
* q2)
+ (r1
* q3))
- (r2
* q0))
- (r3
* q1))
/ (
|.r.|
^2 )), (((((r0
* q3)
- (r1
* q2))
+ (r2
* q1))
- (r3
* q0))
/ (
|.r.|
^2 ))*];
thus thesis by
A1,
A2;
end;
uniqueness
proof
let c1,c2 be
Number;
given q0,q1,q2,q3,r0,r1,r2,r3 be
Element of
REAL such that
A3: q
=
[*q0, q1, q2, q3*] and
A4: r
=
[*r0, r1, r2, r3*] and
A5: c1
=
[*(((((r0
* q0)
+ (r1
* q1))
+ (r2
* q2))
+ (r3
* q3))
/ (
|.r.|
^2 )), (((((r0
* q1)
- (r1
* q0))
- (r2
* q3))
+ (r3
* q2))
/ (
|.r.|
^2 )), (((((r0
* q2)
+ (r1
* q3))
- (r2
* q0))
- (r3
* q1))
/ (
|.r.|
^2 )), (((((r0
* q3)
- (r1
* q2))
+ (r2
* q1))
- (r3
* q0))
/ (
|.r.|
^2 ))*];
given q09,q19,q29,q39,r09,r19,r29,r39 be
Element of
REAL such that
A6: q
=
[*q09, q19, q29, q39*] and
A7: r
=
[*r09, r19, r29, r39*] and
A8: c2
=
[*(((((r09
* q09)
+ (r19
* q19))
+ (r29
* q29))
+ (r39
* q39))
/ (
|.r.|
^2 )), (((((r09
* q19)
- (r19
* q09))
- (r29
* q39))
+ (r39
* q29))
/ (
|.r.|
^2 )), (((((r09
* q29)
+ (r19
* q39))
- (r29
* q09))
- (r39
* q19))
/ (
|.r.|
^2 )), (((((r09
* q39)
- (r19
* q29))
+ (r29
* q19))
- (r39
* q09))
/ (
|.r.|
^2 ))*];
A9: q0
= q09 by
A3,
A6,
QUATERNI: 12;
A10: q1
= q19 by
A3,
A6,
QUATERNI: 12;
A11: q2
= q29 by
A3,
A6,
QUATERNI: 12;
A12: q3
= q39 by
A3,
A6,
QUATERNI: 12;
A13: r0
= r09 by
A4,
A7,
QUATERNI: 12;
A14: r1
= r19 by
A4,
A7,
QUATERNI: 12;
A15: r2
= r29 by
A4,
A7,
QUATERNI: 12;
r3
= r39 by
A4,
A7,
QUATERNI: 12;
hence thesis by
A5,
A8,
A9,
A10,
A11,
A12,
A13,
A14,
A15;
end;
end
registration
let q, r;
cluster (q
/ r) ->
quaternion;
coherence
proof
ex q0,q1,q2,q3,r0,r1,r2,r3 be
Element of
REAL st q
=
[*q0, q1, q2, q3*] & r
=
[*r0, r1, r2, r3*] & (q
/ r)
=
[*(((((r0
* q0)
+ (r1
* q1))
+ (r2
* q2))
+ (r3
* q3))
/ (
|.r.|
^2 )), (((((r0
* q1)
- (r1
* q0))
- (r2
* q3))
+ (r3
* q2))
/ (
|.r.|
^2 )), (((((r0
* q2)
+ (r1
* q3))
- (r2
* q0))
- (r3
* q1))
/ (
|.r.|
^2 )), (((((r0
* q3)
- (r1
* q2))
+ (r2
* q1))
- (r3
* q0))
/ (
|.r.|
^2 ))*] by
Def1;
hence thesis;
end;
end
definition
let q, r;
:: original:
/
redefine
func q
/ r ->
Element of
QUATERNION ;
coherence by
QUATERNI:def 2;
end
theorem ::
QUATERN2:27
(q
/ r)
= (((((((((
Rea r)
* (
Rea q))
+ ((
Im1 q)
* (
Im1 r)))
+ ((
Im2 r)
* (
Im2 q)))
+ ((
Im3 r)
* (
Im3 q)))
/ (
|.r.|
^2 ))
+ (((((((
Rea r)
* (
Im1 q))
- ((
Im1 r)
* (
Rea q)))
- ((
Im2 r)
* (
Im3 q)))
+ ((
Im3 r)
* (
Im2 q)))
/ (
|.r.|
^2 ))
*
<i> ))
+ (((((((
Rea r)
* (
Im2 q))
+ ((
Im1 r)
* (
Im3 q)))
- ((
Im2 r)
* (
Rea q)))
- ((
Im3 r)
* (
Im1 q)))
/ (
|.r.|
^2 ))
*
<j> ))
+ (((((((
Rea r)
* (
Im3 q))
- ((
Im1 r)
* (
Im2 q)))
+ ((
Im2 r)
* (
Im1 q)))
- ((
Im3 r)
* (
Rea q)))
/ (
|.r.|
^2 ))
*
<k> ))
proof
consider q0,q1,q2,q3 be
Element of
REAL such that
A1: q
=
[*q0, q1, q2, q3*] by
Lm1;
consider r0,r1,r2,r3 be
Element of
REAL such that
A2: r
=
[*r0, r1, r2, r3*] by
Lm1;
A3: (
Rea q)
= q0 by
A1,
QUATERNI: 23;
A4: (
Im1 q)
= q1 by
A1,
QUATERNI: 23;
A5: (
Im2 q)
= q2 by
A1,
QUATERNI: 23;
A6: (
Im3 q)
= q3 by
A1,
QUATERNI: 23;
A7: (
Rea r)
= r0 by
A2,
QUATERNI: 23;
A8: (
Im1 r)
= r1 by
A2,
QUATERNI: 23;
A9: (
Im2 r)
= r2 by
A2,
QUATERNI: 23;
A10: (
Im3 r)
= r3 by
A2,
QUATERNI: 23;
(q
/ r)
=
[*(((((r0
* q0)
+ (r1
* q1))
+ (r2
* q2))
+ (r3
* q3))
/ (
|.r.|
^2 )), (((((r0
* q1)
- (r1
* q0))
- (r2
* q3))
+ (r3
* q2))
/ (
|.r.|
^2 )), (((((r0
* q2)
+ (r1
* q3))
- (r2
* q0))
- (r3
* q1))
/ (
|.r.|
^2 )), (((((r0
* q3)
- (r1
* q2))
+ (r2
* q1))
- (r3
* q0))
/ (
|.r.|
^2 ))*] by
A1,
A2,
Def1
.= ((((((((r0
* q0)
+ (r1
* q1))
+ (r2
* q2))
+ (r3
* q3))
/ (
|.r.|
^2 ))
+ ((((((r0
* q1)
- (r1
* q0))
- (r2
* q3))
+ (r3
* q2))
/ (
|.r.|
^2 ))
*
<i> ))
+ ((((((r0
* q2)
+ (r1
* q3))
- (r2
* q0))
- (r3
* q1))
/ (
|.r.|
^2 ))
*
<j> ))
+ ((((((r0
* q3)
- (r1
* q2))
+ (r2
* q1))
- (r3
* q0))
/ (
|.r.|
^2 ))
*
<k> )) by
Th1;
hence thesis by
A3,
A4,
A5,
A6,
A7,
A8,
A9,
A10;
end;
definition
let c;
::
QUATERN2:def2
func c
" ->
Quaternion equals (
1q
/ c);
coherence ;
end
definition
let r;
:: original:
"
redefine
func r
" ->
Element of
QUATERNION ;
coherence ;
end
theorem ::
QUATERN2:28
(r
" )
= (((((
Rea r)
/ (
|.r.|
^2 ))
- (((
Im1 r)
/ (
|.r.|
^2 ))
*
<i> ))
- (((
Im2 r)
/ (
|.r.|
^2 ))
*
<j> ))
- (((
Im3 r)
/ (
|.r.|
^2 ))
*
<k> ))
proof
A1:
1q
=
[*jj, (
In (
0 ,
REAL ))*] by
ARYTM_0:def 5
.=
[*jj,
0 ,
0 ,
0 *] by
QUATERNI: 91;
consider q0,q1,q2,q3,r0,r1,r2,r3 be
Element of
REAL such that
A2:
1q
=
[*q0, q1, q2, q3*] and
A3: r
=
[*r0, r1, r2, r3*] and
A4: (r
" )
=
[*(((((r0
* q0)
+ (r1
* q1))
+ (r2
* q2))
+ (r3
* q3))
/ (
|.r.|
^2 )), (((((r0
* q1)
- (r1
* q0))
- (r2
* q3))
+ (r3
* q2))
/ (
|.r.|
^2 )), (((((r0
* q2)
+ (r1
* q3))
- (r2
* q0))
- (r3
* q1))
/ (
|.r.|
^2 )), (((((r0
* q3)
- (r1
* q2))
+ (r2
* q1))
- (r3
* q0))
/ (
|.r.|
^2 ))*] by
Def1;
A5: (
Rea r)
= r0 by
A3,
QUATERNI: 23;
A6: (
Im1 r)
= r1 by
A3,
QUATERNI: 23;
A7: (
Im2 r)
= r2 by
A3,
QUATERNI: 23;
A8: q0
= jj by
A1,
A2,
QUATERNI: 12;
A9: q1
=
0 by
A1,
A2,
QUATERNI: 12;
A10: q2
=
0 by
A1,
A2,
QUATERNI: 12;
q3
=
0 by
A1,
A2,
QUATERNI: 12;
then (r
" )
= ((((r0
/ (
|.r.|
^2 ))
+ ((
- (r1
/ (
|.r.|
^2 )))
*
<i> ))
+ ((
- (r2
/ (
|.r.|
^2 )))
*
<j> ))
+ ((
- (r3
/ (
|.r.|
^2 )))
*
<k> )) by
Th1,
A4,
A8,
A9,
A10
.= ((((r0
/ (
|.r.|
^2 ))
+ (
- ((r1
/ (
|.r.|
^2 ))
*
<i> )))
+ ((
- (r2
/ (
|.r.|
^2 )))
*
<j> ))
+ ((
- (r3
/ (
|.r.|
^2 )))
*
<k> )) by
Th9
.= ((((r0
/ (
|.r.|
^2 ))
- ((r1
/ (
|.r.|
^2 ))
*
<i> ))
+ (
- ((r2
/ (
|.r.|
^2 ))
*
<j> )))
+ ((
- (r3
/ (
|.r.|
^2 )))
*
<k> )) by
Th9
.= ((((r0
/ (
|.r.|
^2 ))
- ((r1
/ (
|.r.|
^2 ))
*
<i> ))
- ((r2
/ (
|.r.|
^2 ))
*
<j> ))
+ (
- ((r3
/ (
|.r.|
^2 ))
*
<k> ))) by
Th9;
hence thesis by
A3,
A5,
A6,
A7,
QUATERNI: 23;
end;
theorem ::
QUATERN2:29
(
Rea (r
" ))
= ((
Rea r)
/ (
|.r.|
^2 )) & (
Im1 (r
" ))
= (
- ((
Im1 r)
/ (
|.r.|
^2 ))) & (
Im2 (r
" ))
= (
- ((
Im2 r)
/ (
|.r.|
^2 ))) & (
Im3 (r
" ))
= (
- ((
Im3 r)
/ (
|.r.|
^2 )))
proof
consider q0,q1,q2,q3,r0,r1,r2,r3 be
Element of
REAL such that
A1:
1q
=
[*q0, q1, q2, q3*] and
A2: r
=
[*r0, r1, r2, r3*] and
A3: (r
" )
=
[*(((((r0
* q0)
+ (r1
* q1))
+ (r2
* q2))
+ (r3
* q3))
/ (
|.r.|
^2 )), (((((r0
* q1)
- (r1
* q0))
- (r2
* q3))
+ (r3
* q2))
/ (
|.r.|
^2 )), (((((r0
* q2)
+ (r1
* q3))
- (r2
* q0))
- (r3
* q1))
/ (
|.r.|
^2 )), (((((r0
* q3)
- (r1
* q2))
+ (r2
* q1))
- (r3
* q0))
/ (
|.r.|
^2 ))*] by
Def1;
A4:
1q
=
[*jj, (
In (
0 ,
REAL ))*] by
ARYTM_0:def 5
.=
[*jj,
0 ,
0 ,
0 *] by
QUATERNI: 91;
then
A5: q0
= jj by
A1,
QUATERNI: 12;
A6: q1
=
0 by
A1,
A4,
QUATERNI: 12;
A7: q2
=
0 by
A1,
A4,
QUATERNI: 12;
A8: q3
=
0 by
A1,
A4,
QUATERNI: 12;
A9: (
Rea r)
= r0 by
A2,
QUATERNI: 23;
A10: (
Im1 r)
= r1 by
A2,
QUATERNI: 23;
A11: (
Im2 r)
= r2 by
A2,
QUATERNI: 23;
A12: (
Im3 r)
= r3 by
A2,
QUATERNI: 23;
(r
" )
=
[*(r0
/ (
|.r.|
^2 )), (
- (r1
/ (
|.r.|
^2 ))), (
- (r2
/ (
|.r.|
^2 ))), (
- (r3
/ (
|.r.|
^2 )))*] by
A3,
A5,
A6,
A7,
A8;
hence thesis by
A9,
A10,
A11,
A12,
QUATERNI: 23;
end;
theorem ::
QUATERN2:30
(
Rea (q
/ r))
= ((((((
Rea r)
* (
Rea q))
+ ((
Im1 q)
* (
Im1 r)))
+ ((
Im2 r)
* (
Im2 q)))
+ ((
Im3 r)
* (
Im3 q)))
/ (
|.r.|
^2 )) & (
Im1 (q
/ r))
= ((((((
Rea r)
* (
Im1 q))
- ((
Im1 r)
* (
Rea q)))
- ((
Im2 r)
* (
Im3 q)))
+ ((
Im3 r)
* (
Im2 q)))
/ (
|.r.|
^2 )) & (
Im2 (q
/ r))
= ((((((
Rea r)
* (
Im2 q))
+ ((
Im1 r)
* (
Im3 q)))
- ((
Im2 r)
* (
Rea q)))
- ((
Im3 r)
* (
Im1 q)))
/ (
|.r.|
^2 )) & (
Im3 (q
/ r))
= ((((((
Rea r)
* (
Im3 q))
- ((
Im1 r)
* (
Im2 q)))
+ ((
Im2 r)
* (
Im1 q)))
- ((
Im3 r)
* (
Rea q)))
/ (
|.r.|
^2 ))
proof
consider q0,q1,q2,q3 be
Element of
REAL such that
A1: q
=
[*q0, q1, q2, q3*] by
Lm1;
consider r0,r1,r2,r3 be
Element of
REAL such that
A2: r
=
[*r0, r1, r2, r3*] by
Lm1;
A3: (
Rea q)
= q0 by
A1,
QUATERNI: 23;
A4: (
Im1 q)
= q1 by
A1,
QUATERNI: 23;
A5: (
Im2 q)
= q2 by
A1,
QUATERNI: 23;
A6: (
Im3 q)
= q3 by
A1,
QUATERNI: 23;
A7: (
Rea r)
= r0 by
A2,
QUATERNI: 23;
A8: (
Im1 r)
= r1 by
A2,
QUATERNI: 23;
A9: (
Im2 r)
= r2 by
A2,
QUATERNI: 23;
A10: (
Im3 r)
= r3 by
A2,
QUATERNI: 23;
(q
/ r)
=
[*(((((r0
* q0)
+ (r1
* q1))
+ (r2
* q2))
+ (r3
* q3))
/ (
|.r.|
^2 )), (((((r0
* q1)
- (r1
* q0))
- (r2
* q3))
+ (r3
* q2))
/ (
|.r.|
^2 )), (((((r0
* q2)
+ (r1
* q3))
- (r2
* q0))
- (r3
* q1))
/ (
|.r.|
^2 )), (((((r0
* q3)
- (r1
* q2))
+ (r2
* q1))
- (r3
* q0))
/ (
|.r.|
^2 ))*] by
A1,
A2,
Def1;
hence thesis by
A3,
A4,
A5,
A6,
A7,
A8,
A9,
A10,
QUATERNI: 23;
end;
Lm5:
0
in
REAL by
XREAL_0:def 1;
theorem ::
QUATERN2:31
Th31: r
<>
0 implies (r
* (r
" ))
= 1
proof
assume
A1: r
<>
0 ;
consider r0,r1,r2,r3 be
Element of
REAL such that
A2: r
=
[*r0, r1, r2, r3*] by
Lm1;
A3:
1q
=
[*jj, (
In (
0 ,
REAL ))*] by
ARYTM_0:def 5
.=
[*1,
0 ,
0 ,
0 *] by
QUATERNI: 91;
A4: (
Rea r)
= r0 by
A2,
QUATERNI: 23;
A5: (
Im1 r)
= r1 by
A2,
QUATERNI: 23;
A6: (
Im2 r)
= r2 by
A2,
QUATERNI: 23;
A7: (
Im3 r)
= r3 by
A2,
QUATERNI: 23;
0
<= (((((
Rea r)
^2 )
+ ((
Im1 r)
^2 ))
+ ((
Im2 r)
^2 ))
+ ((
Im3 r)
^2 )) by
QUATERNI: 74;
then
A8: (
|.r.|
^2 )
= ((((r0
^2 )
+ (r1
^2 ))
+ (r2
^2 ))
+ (r3
^2 )) by
A4,
A5,
A6,
A7,
SQUARE_1:def 2;
A9: (r
" )
=
[*(((((r0
* 1)
+ (r1
*
0 ))
+ (r2
*
0 ))
+ (r3
*
0 ))
/ (
|.r.|
^2 )), (((((r0
*
0 )
- (r1
* 1))
- (r2
*
0 ))
+ (r3
*
0 ))
/ (
|.r.|
^2 )), (((((r0
*
0 )
+ (r1
*
0 ))
- (r2
* 1))
- (r3
*
0 ))
/ (
|.r.|
^2 )), (((((r0
*
0 )
- (r1
*
0 ))
+ (r2
*
0 ))
- (r3
* jj))
/ (
|.r.|
^2 ))*] by
A2,
A3,
Def1,
Lm5
.=
[*(r0
/ (
|.r.|
^2 )), ((
- r1)
/ (
|.r.|
^2 )), ((
- r2)
/ (
|.r.|
^2 )), ((
- r3)
/ (
|.r.|
^2 ))*];
|.r.|
<>
0 by
A1,
Th10;
then
A10: (
|.r.|
^2 )
>
0 by
SQUARE_1: 12;
(r
* (r
" ))
=
[*((((r0
* (r0
/ (
|.r.|
^2 )))
- (r1
* ((
- r1)
/ (
|.r.|
^2 ))))
- (r2
* ((
- r2)
/ (
|.r.|
^2 ))))
- (r3
* ((
- r3)
/ (
|.r.|
^2 )))), ((((r0
* ((
- r1)
/ (
|.r.|
^2 )))
+ (r1
* (r0
/ (
|.r.|
^2 ))))
+ (r2
* ((
- r3)
/ (
|.r.|
^2 ))))
- (r3
* ((
- r2)
/ (
|.r.|
^2 )))), ((((r0
* ((
- r2)
/ (
|.r.|
^2 )))
+ ((r0
/ (
|.r.|
^2 ))
* r2))
+ (((
- r1)
/ (
|.r.|
^2 ))
* r3))
- (((
- r3)
/ (
|.r.|
^2 ))
* r1)), ((((r0
* ((
- r3)
/ (
|.r.|
^2 )))
+ (r3
* (r0
/ (
|.r.|
^2 ))))
+ (r1
* ((
- r2)
/ (
|.r.|
^2 ))))
- (r2
* ((
- r1)
/ (
|.r.|
^2 ))))*] by
A2,
A9,
QUATERNI:def 10
.=
[*((
|.r.|
^2 )
/ (
|.r.|
^2 )),
0 ,
0 ,
0 *] by
A8
.=
[*1,
0 ,
0 ,
0 *] by
A10,
XCMPLX_1: 60
.=
[*jj, (
In (
0 ,
REAL ))*] by
QUATERNI: 91
.= 1 by
ARYTM_0:def 5;
hence thesis;
end;
theorem ::
QUATERN2:32
r
<>
0 implies ((r
" )
* r)
= 1
proof
assume
A1: r
<>
0 ;
consider r0,r1,r2,r3 be
Element of
REAL such that
A2: r
=
[*r0, r1, r2, r3*] by
Lm1;
A3:
1q
=
[*jj, (
In (
0 ,
REAL ))*] by
ARYTM_0:def 5
.=
[*1,
0 ,
0 ,
0 *] by
QUATERNI: 91;
A4: (
Rea r)
= r0 by
A2,
QUATERNI: 23;
A5: (
Im1 r)
= r1 by
A2,
QUATERNI: 23;
A6: (
Im2 r)
= r2 by
A2,
QUATERNI: 23;
A7: (
Im3 r)
= r3 by
A2,
QUATERNI: 23;
0
<= (((((
Rea r)
^2 )
+ ((
Im1 r)
^2 ))
+ ((
Im2 r)
^2 ))
+ ((
Im3 r)
^2 )) by
QUATERNI: 74;
then
A8: (
|.r.|
^2 )
= ((((r0
^2 )
+ (r1
^2 ))
+ (r2
^2 ))
+ (r3
^2 )) by
A4,
A5,
A6,
A7,
SQUARE_1:def 2;
A9: (r
" )
=
[*(((((r0
* 1)
+ (r1
*
0 ))
+ (r2
*
0 ))
+ (r3
*
0 ))
/ (
|.r.|
^2 )), (((((r0
*
0 )
- (r1
* 1))
- (r2
*
0 ))
+ (r3
*
0 ))
/ (
|.r.|
^2 )), (((((r0
*
0 )
+ (r1
*
0 ))
- (r2
* 1))
- (r3
*
0 ))
/ (
|.r.|
^2 )), (((((r0
*
0 )
- (r1
*
0 ))
+ (r2
*
0 ))
- (r3
* jj))
/ (
|.r.|
^2 ))*] by
A2,
A3,
Def1,
Lm5
.=
[*(r0
/ (
|.r.|
^2 )), ((
- r1)
/ (
|.r.|
^2 )), ((
- r2)
/ (
|.r.|
^2 )), ((
- r3)
/ (
|.r.|
^2 ))*];
|.r.|
<>
0 by
A1,
Th10;
then
A10: (
|.r.|
^2 )
>
0 by
SQUARE_1: 12;
((r
" )
* r)
=
[*((((r0
* (r0
/ (
|.r.|
^2 )))
- (r1
* ((
- r1)
/ (
|.r.|
^2 ))))
- (r2
* ((
- r2)
/ (
|.r.|
^2 ))))
- (r3
* ((
- r3)
/ (
|.r.|
^2 )))), ((((r0
* ((
- r1)
/ (
|.r.|
^2 )))
+ (r1
* (r0
/ (
|.r.|
^2 ))))
+ (r2
* ((
- r3)
/ (
|.r.|
^2 ))))
- (r3
* ((
- r2)
/ (
|.r.|
^2 )))), ((((r0
* ((
- r2)
/ (
|.r.|
^2 )))
+ ((r0
/ (
|.r.|
^2 ))
* r2))
+ (((
- r1)
/ (
|.r.|
^2 ))
* r3))
- (((
- r3)
/ (
|.r.|
^2 ))
* r1)), ((((r0
* ((
- r3)
/ (
|.r.|
^2 )))
+ (r3
* (r0
/ (
|.r.|
^2 ))))
+ (r1
* ((
- r2)
/ (
|.r.|
^2 ))))
- (r2
* ((
- r1)
/ (
|.r.|
^2 ))))*] by
A2,
A9,
QUATERNI:def 10
.=
[*((
|.r.|
^2 )
/ (
|.r.|
^2 )),
0 ,
0 ,
0 *] by
A8
.=
[*1,
0 ,
0 ,
0 *] by
A10,
XCMPLX_1: 60
.=
[*jj, (
In (
0 ,
REAL ))*] by
QUATERNI: 91
.= 1 by
ARYTM_0:def 5;
hence thesis;
end;
theorem ::
QUATERN2:33
Th33: c
<>
0q implies (c
/ c)
=
1q
proof
assume
A1: c
<>
0q ;
consider x1,x2,x3,x4 be
Element of
REAL such that
A2: c
=
[*x1, x2, x3, x4*] by
Lm1;
|.c.|
>
0 by
A1,
Th10;
then
A3: (
|.c.|
^2 )
>
0 by
SQUARE_1: 12;
A4: (
Rea c)
= x1 by
A2,
QUATERNI: 23;
A5: (
Im1 c)
= x2 by
A2,
QUATERNI: 23;
A6: (
Im2 c)
= x3 by
A2,
QUATERNI: 23;
A7: (
Im3 c)
= x4 by
A2,
QUATERNI: 23;
A8: ((((x1
^2 )
+ (x2
^2 ))
+ (x3
^2 ))
+ (x4
^2 ))
>=
0 by
Lm2;
(c
/ c)
=
[*(((((x1
* x1)
+ (x2
* x2))
+ (x3
* x3))
+ (x4
* x4))
/ (
|.c.|
^2 )), (((((x1
* x2)
- (x2
* x1))
- (x3
* x4))
+ (x4
* x3))
/ (
|.c.|
^2 )), (((((x1
* x3)
+ (x2
* x4))
- (x3
* x1))
- (x4
* x2))
/ (
|.c.|
^2 )), (((((x1
* x4)
- (x2
* x3))
+ (x3
* x2))
- (x4
* x1))
/ (
|.c.|
^2 ))*] by
A2,
Def1
.=
[*((
|.c.|
^2 )
/ (
|.c.|
^2 )),
0 ,
0 ,
0 *] by
A4,
A5,
A6,
A7,
A8,
SQUARE_1:def 2
.=
[*1,
0 ,
0 ,
0 *] by
A3,
XCMPLX_1: 60
.=
[*jj, (
In (
0 ,
REAL ))*] by
QUATERNI: 91
.= 1 by
ARYTM_0:def 5;
hence thesis;
end;
theorem ::
QUATERN2:34
((
- c)
" )
= (
- (c
" ))
proof
A1:
1q
=
[*jj, (
In (
0 ,
REAL ))*] by
ARYTM_0:def 5
.=
[*1,
0 ,
0 ,
0 *] by
QUATERNI: 91;
consider x1,x2,x3,x4 be
Element of
REAL such that
A2: c
=
[*x1, x2, x3, x4*] by
Lm1;
A3: (
- c)
=
[*(
- x1), (
- x2), (
- x3), (
- x4)*] by
A2,
Th4;
A4:
|.(
- c).|
=
|.c.| by
QUATERNI: 72;
A5: (c
" )
=
[*(((((x1
* 1)
+ (x2
*
0 ))
+ (x3
*
0 ))
+ (x4
*
0 ))
/ (
|.c.|
^2 )), (((((x1
*
0 )
- (x2
* 1))
- (x3
*
0 ))
+ (x4
*
0 ))
/ (
|.c.|
^2 )), (((((x1
*
0 )
+ (x2
*
0 ))
- (x3
* 1))
- (x4
*
0 ))
/ (
|.c.|
^2 )), (((((x1
*
0 )
- (x2
*
0 ))
+ (x3
*
0 ))
- (x4
* jj))
/ (
|.c.|
^2 ))*] by
A1,
A2,
Def1,
Lm5
.=
[*(x1
/ (
|.c.|
^2 )), (
- (x2
/ (
|.c.|
^2 ))), (
- (x3
/ (
|.c.|
^2 ))), (
- (x4
/ (
|.c.|
^2 )))*];
((
- c)
" )
=
[*((((((
- x1)
* 1)
+ ((
- x2)
*
0 ))
+ ((
- x3)
*
0 ))
+ ((
- x4)
*
0 ))
/ (
|.(
- c).|
^2 )), ((((((
- x1)
*
0 )
- ((
- x2)
* 1))
- ((
- x3)
*
0 ))
+ ((
- x4)
*
0 ))
/ (
|.(
- c).|
^2 )), ((((((
- x1)
*
0 )
+ ((
- x2)
*
0 ))
- ((
- x3)
* 1))
- ((
- x4)
*
0 ))
/ (
|.(
- c).|
^2 )), ((((((
- x1)
*
0 )
- ((
- x2)
*
0 ))
+ ((
- x3)
*
0 ))
- ((
- x4)
* jj))
/ (
|.(
- c).|
^2 ))*] by
A1,
A3,
Def1,
Lm5
.=
[*(
- (x1
/ (
|.c.|
^2 ))), (x2
/ (
|.c.|
^2 )), (x3
/ (
|.c.|
^2 )), (x4
/ (
|.c.|
^2 ))*] by
A4;
then ((c
" )
+ ((
- c)
" ))
=
[*((x1
/ (
|.c.|
^2 ))
+ (
- (x1
/ (
|.c.|
^2 )))), ((
- (x2
/ (
|.c.|
^2 )))
+ (x2
/ (
|.c.|
^2 ))), ((
- (x3
/ (
|.c.|
^2 )))
+ (x3
/ (
|.c.|
^2 ))), ((
- (x4
/ (
|.c.|
^2 )))
+ (x4
/ (
|.c.|
^2 )))*] by
A5,
QUATERNI:def 7
.=
[*(
In (
0 ,
REAL )), (
In (
0 ,
REAL ))*] by
QUATERNI: 91
.=
0 by
ARYTM_0:def 5;
hence thesis by
QUATERNI:def 8;
end;
definition
::
QUATERN2:def3
func
compquaternion ->
UnOp of
QUATERNION means for c be
Element of
QUATERNION holds (it
. c)
= (
- c);
existence from
FUNCT_2:sch 4;
uniqueness from
BINOP_2:sch 1;
::
QUATERN2:def4
func
addquaternion ->
BinOp of
QUATERNION means
:
Def4: for c1,c2 be
Element of
QUATERNION holds (it
. (c1,c2))
= (c1
+ c2);
existence from
BINOP_1:sch 4;
uniqueness from
BINOP_2:sch 2;
::
QUATERN2:def5
func
diffquaternion ->
BinOp of
QUATERNION means for c1,c2 be
Element of
QUATERNION holds (it
. (c1,c2))
= (c1
- c2);
existence from
BINOP_1:sch 4;
uniqueness from
BINOP_2:sch 2;
::
QUATERN2:def6
func
multquaternion ->
BinOp of
QUATERNION means
:
Def6: for c1,c2 be
Element of
QUATERNION holds (it
. (c1,c2))
= (c1
* c2);
existence from
BINOP_1:sch 4;
uniqueness from
BINOP_2:sch 2;
::
QUATERN2:def7
func
divquaternion ->
BinOp of
QUATERNION means for c1,c2 be
Element of
QUATERNION holds (it
. (c1,c2))
= (c1
/ c2);
existence from
BINOP_1:sch 4;
uniqueness from
BINOP_2:sch 2;
::
QUATERN2:def8
func
invquaternion ->
UnOp of
QUATERNION means for c be
Element of
QUATERNION holds (it
. c)
= (c
" );
existence from
FUNCT_2:sch 4;
uniqueness from
BINOP_2:sch 1;
end
definition
::
QUATERN2:def9
func
G_Quaternion ->
strict
addLoopStr means
:
Def9: the
carrier of it
=
QUATERNION & the
addF of it
=
addquaternion & (
0. it )
=
0q ;
existence
proof
take
addLoopStr (#
QUATERNION ,
addquaternion ,
0q #);
thus thesis;
end;
uniqueness ;
end
registration
cluster
G_Quaternion -> non
empty;
coherence by
Def9;
end
registration
cluster ->
quaternion for
Element of
G_Quaternion ;
coherence
proof
let c be
Element of
G_Quaternion ;
c
in the
carrier of
G_Quaternion ;
then c
in
QUATERNION by
Def9;
hence thesis;
end;
end
registration
let x,y be
Element of
G_Quaternion ;
let a,b be
Quaternion;
identify a
+ b with x
+ y when x = a, y = b;
compatibility
proof
assume that
A1: x
= a and
A2: y
= b;
reconsider a9 = a, b9 = b as
Element of
QUATERNION by
QUATERNI:def 2;
thus (x
+ y)
= (
addquaternion
. (a9,b9)) by
A1,
A2,
Def9
.= (a
+ b) by
Def4;
end;
end
theorem ::
QUATERN2:35
Th35: (
0.
G_Quaternion )
=
0q by
Def9;
registration
cluster
G_Quaternion ->
Abelian
add-associative
right_zeroed
right_complementable;
coherence
proof
thus for x,y be
Element of
G_Quaternion holds (x
+ y)
= (y
+ x);
thus for x,y,z be
Element of
G_Quaternion holds ((x
+ y)
+ z)
= (x
+ (y
+ z)) by
Th2;
thus for x be
Element of
G_Quaternion holds (x
+ (
0.
G_Quaternion ))
= x
proof
let x be
Element of
G_Quaternion ;
reconsider x1 = x as
Element of
QUATERNION by
Def9;
thus (x
+ (
0.
G_Quaternion ))
= (the
addF of
G_Quaternion
. (x1,
0q )) by
Def9
.= (
addquaternion
. (x1,
0q )) by
Def9
.= (x1
+
0q ) by
Def4
.= x by
Th3;
end;
thus
G_Quaternion is
right_complementable
proof
let x be
Element of
G_Quaternion ;
reconsider x1 = x as
Element of
QUATERNION by
Def9;
reconsider y = (
- x1) as
Element of
G_Quaternion by
Def9;
take y;
thus thesis by
Th35,
QUATERNI:def 8;
end;
end;
end
registration
let x be
Element of
G_Quaternion , a be
Quaternion;
identify
- a with
- x when x = a;
compatibility
proof
assume
A1: x
= a;
reconsider x1 = x as
Element of
QUATERNION by
Def9;
reconsider b = (
- x1) as
Element of
G_Quaternion by
Def9;
(b
+ x)
= (
0.
G_Quaternion ) by
Th35,
QUATERNI:def 8;
hence thesis by
A1,
RLVECT_1: 6;
end;
end
registration
let x,y be
Element of
G_Quaternion ;
let a,b be
Quaternion;
identify a
- b with x
- y when x = a, y = b;
compatibility ;
end
theorem ::
QUATERN2:36
for x,y,z be
Element of
G_Quaternion holds (x
+ y)
= (y
+ x) & ((x
+ y)
+ z)
= (x
+ (y
+ z)) & (x
+ (
0.
G_Quaternion ))
= x by
RLVECT_1:def 3,
RLVECT_1:def 4;
definition
::
QUATERN2:def10
func
R_Quaternion ->
strict
doubleLoopStr means
:
Def10: the
carrier of it
=
QUATERNION & the
addF of it
=
addquaternion & the
multF of it
=
multquaternion & (
1. it )
=
1q & (
0. it )
=
0q ;
existence
proof
take
doubleLoopStr (#
QUATERNION ,
addquaternion ,
multquaternion ,
1q ,
0q #);
thus thesis;
end;
uniqueness ;
end
registration
cluster
R_Quaternion -> non
empty;
coherence by
Def10;
end
registration
cluster ->
quaternion for
Element of
R_Quaternion ;
coherence
proof
let c be
Element of
R_Quaternion ;
c
in the
carrier of
R_Quaternion ;
then c
in
QUATERNION by
Def10;
hence thesis;
end;
end
registration
let a,b be
Quaternion;
let x,y be
Element of
R_Quaternion ;
identify a
+ b with x
+ y when x = a, y = b;
compatibility
proof
assume that
A1: x
= a and
A2: y
= b;
reconsider a9 = a, b9 = b as
Element of
QUATERNION by
QUATERNI:def 2;
thus (x
+ y)
= (
addquaternion
. (a9,b9)) by
A1,
A2,
Def10
.= (a
+ b) by
Def4;
end;
identify a
* b with x
* y when x = a, y = b;
compatibility
proof
assume that
A3: x
= a and
A4: y
= b;
reconsider a9 = a, b9 = b as
Element of
QUATERNION by
QUATERNI:def 2;
thus (x
* y)
= (
multquaternion
. (a9,b9)) by
A3,
A4,
Def10
.= (a
* b) by
Def6;
end;
end
registration
cluster
R_Quaternion ->
well-unital;
coherence
proof
let x be
Element of
R_Quaternion ;
(
1.
R_Quaternion )
=
1q by
Def10;
hence thesis by
Th14,
Th15;
end;
end
theorem ::
QUATERN2:37
(
1.
R_Quaternion )
=
1q by
Def10;
theorem ::
QUATERN2:38
(
1_
R_Quaternion )
=
1q by
Def10;
theorem ::
QUATERN2:39
Th39: (
0.
R_Quaternion )
=
0q by
Def10;
registration
cluster
R_Quaternion ->
add-associative
right_zeroed
right_complementable
Abelian
associative
left_unital
right_unital
distributive
almost_right_invertible non
degenerated;
coherence
proof
thus
R_Quaternion is
add-associative by
Th2;
thus
R_Quaternion is
right_zeroed
proof
let x be
Element of
R_Quaternion ;
reconsider x1 = x as
Element of
QUATERNION by
Def10;
thus (x
+ (
0.
R_Quaternion ))
= (the
addF of
R_Quaternion
. (x1,
0q )) by
Def10
.= (
addquaternion
. (x1,
0q )) by
Def10
.= (x1
+
0q ) by
Def4
.= x by
Th3;
end;
thus
R_Quaternion is
right_complementable
proof
let x be
Element of
R_Quaternion ;
reconsider x1 = x as
Element of
QUATERNION by
Def10;
reconsider y = (
- x1) as
Element of
R_Quaternion by
Def10;
take y;
thus thesis by
Th39,
QUATERNI:def 8;
end;
thus
R_Quaternion is
Abelian;
thus
R_Quaternion is
associative by
Th16;
thus
R_Quaternion is
left_unital
right_unital;
thus
R_Quaternion is
distributive by
Th17,
Th18;
thus
R_Quaternion is
almost_right_invertible
proof
let x be
Element of
R_Quaternion ;
assume
A1: x
<> (
0.
R_Quaternion );
reconsider x1 = x as
Element of
QUATERNION by
Def10;
reconsider y = (x1
" ) as
Element of
R_Quaternion by
Def10;
take y;
x1
<>
0q by
A1,
Def10;
then (x
* y)
= 1 by
Th31
.= (
1.
R_Quaternion ) by
Def10;
hence thesis;
end;
(
1.
R_Quaternion )
=
1q by
Def10;
then (
0.
R_Quaternion )
<> (
1.
R_Quaternion ) by
Def10;
hence
R_Quaternion is non
degenerated;
end;
end
registration
let x be
Element of
R_Quaternion , a be
Quaternion;
identify
- a with
- x when x = a;
compatibility
proof
assume
A1: x
= a;
reconsider x1 = x as
Element of
QUATERNION by
Def10;
reconsider b = (
- x1) as
Element of
R_Quaternion by
Def10;
(b
+ x)
= (
0.
R_Quaternion ) by
Th39,
QUATERNI:def 8;
hence thesis by
A1,
RLVECT_1: 6;
end;
end
registration
let x,y be
Element of
R_Quaternion ;
let a,b be
Quaternion;
identify a
- b with x
- y when x = a, y = b;
compatibility ;
end
definition
let z be
Element of
R_Quaternion ;
:: original:
*'
redefine
func z
*' ->
Element of
R_Quaternion ;
coherence by
Def10;
end
reserve z for
Element of
R_Quaternion ;
theorem ::
QUATERN2:40
(
- z)
= ((
- (
1_
R_Quaternion ))
* z)
proof
reconsider z9 = z as
Element of
QUATERNION by
Def10;
thus (
- z)
= ((
-
1q )
* z9) by
Th19
.= ((
- (
1_
R_Quaternion ))
* z) by
Def10;
end;
theorem ::
QUATERN2:41
((
0.
R_Quaternion )
*' )
= (
0.
R_Quaternion )
proof
(
0.
R_Quaternion )
=
0q by
Def10;
hence thesis by
QUATERNI: 45;
end;
theorem ::
QUATERN2:42
(z
*' )
= (
0.
R_Quaternion ) implies z
= (
0.
R_Quaternion )
proof
assume (z
*' )
= (
0.
R_Quaternion );
then (z
*' )
=
0q by
Def10;
then z
=
0q by
QUATERNI: 46;
hence thesis by
Def10;
end;
theorem ::
QUATERN2:43
((
1.
R_Quaternion )
*' )
= (
1.
R_Quaternion )
proof
(
1.
R_Quaternion )
=
1r by
Def10;
hence thesis by
QUATERNI: 47;
end;
theorem ::
QUATERN2:44
|.(
0.
R_Quaternion ).|
=
0 by
Def10,
QUATERNI: 65;
theorem ::
QUATERN2:45
|.z.|
=
0 implies z
= (
0.
R_Quaternion ) by
Th39,
QUATERNI: 66;
theorem ::
QUATERN2:46
|.(
1.
R_Quaternion ).|
= 1 by
Def10,
QUATERNI: 68;
theorem ::
QUATERN2:47
((
1.
R_Quaternion )
" )
= (
1.
R_Quaternion )
proof
(
1q
" )
=
1q by
Th33
.= (
1.
R_Quaternion ) by
Def10;
hence thesis by
Def10;
end;
definition
let x,y be
Quaternion;
::
QUATERN2:def11
func x
.|. y ->
Element of
QUATERNION equals (x
* (y
*' ));
coherence ;
end
theorem ::
QUATERN2:48
Th48: (c1
.|. c2)
=
[*(((((
Rea c1)
* (
Rea c2))
+ ((
Im1 c1)
* (
Im1 c2)))
+ ((
Im2 c1)
* (
Im2 c2)))
+ ((
Im3 c1)
* (
Im3 c2))), (((((
Rea c1)
* (
- (
Im1 c2)))
+ ((
Im1 c1)
* (
Rea c2)))
- ((
Im2 c1)
* (
Im3 c2)))
+ ((
Im3 c1)
* (
Im2 c2))), (((((
Rea c1)
* (
- (
Im2 c2)))
+ ((
Rea c2)
* (
Im2 c1)))
- ((
Im1 c2)
* (
Im3 c1)))
+ ((
Im3 c2)
* (
Im1 c1))), (((((
Rea c1)
* (
- (
Im3 c2)))
+ ((
Im3 c1)
* (
Rea c2)))
- ((
Im1 c1)
* (
Im2 c2)))
+ ((
Im2 c1)
* (
Im1 c2)))*]
proof
consider x1,y1,w1,z1 be
Element of
REAL such that
A1: c1
=
[*x1, y1, w1, z1*] by
Lm1;
consider x2,y2,w2,z2 be
Element of
REAL such that
A2: c2
=
[*x2, y2, w2, z2*] by
Lm1;
A3: (
Rea c1)
= x1 by
A1,
QUATERNI: 23;
A4: (
Im1 c1)
= y1 by
A1,
QUATERNI: 23;
A5: (
Im2 c1)
= w1 by
A1,
QUATERNI: 23;
A6: (
Im3 c1)
= z1 by
A1,
QUATERNI: 23;
A7: (
Rea c2)
= x2 by
A2,
QUATERNI: 23;
A8: (
Im1 c2)
= y2 by
A2,
QUATERNI: 23;
A9: (
Im2 c2)
= w2 by
A2,
QUATERNI: 23;
A10: (
Im3 c2)
= z2 by
A2,
QUATERNI: 23;
(c1
.|. c2)
= (
[*x1, y1, w1, z1*]
*
[*x2, (
- y2), (
- w2), (
- z2)*]) by
A1,
A2,
Th25
.=
[*((((x1
* x2)
- (y1
* (
- y2)))
- (w1
* (
- w2)))
- (z1
* (
- z2))), ((((x1
* (
- y2))
+ (y1
* x2))
+ (w1
* (
- z2)))
- (z1
* (
- w2))), ((((x1
* (
- w2))
+ (x2
* w1))
+ ((
- y2)
* z1))
- ((
- z2)
* y1)), ((((x1
* (
- z2))
+ (z1
* x2))
+ (y1
* (
- w2)))
- (w1
* (
- y2)))*] by
QUATERNI:def 10
.=
[*(((((
Rea c1)
* (
Rea c2))
+ ((
Im1 c1)
* (
Im1 c2)))
+ ((
Im2 c1)
* (
Im2 c2)))
+ ((
Im3 c1)
* (
Im3 c2))), (((((
Rea c1)
* (
- (
Im1 c2)))
+ ((
Im1 c1)
* (
Rea c2)))
- ((
Im2 c1)
* (
Im3 c2)))
+ ((
Im3 c1)
* (
Im2 c2))), (((((
Rea c1)
* (
- (
Im2 c2)))
+ ((
Rea c2)
* (
Im2 c1)))
- ((
Im1 c2)
* (
Im3 c1)))
+ ((
Im3 c2)
* (
Im1 c1))), (((((
Rea c1)
* (
- (
Im3 c2)))
+ ((
Im3 c1)
* (
Rea c2)))
- ((
Im1 c1)
* (
Im2 c2)))
+ ((
Im2 c1)
* (
Im1 c2)))*] by
A3,
A4,
A5,
A6,
A7,
A8,
A9,
A10;
hence thesis;
end;
theorem ::
QUATERN2:49
Th49: (c
.|. c)
= (
|.c.|
^2 )
proof
reconsider z =
0 , z1 = (((((
Rea c)
^2 )
+ ((
Im1 c)
^2 ))
+ ((
Im2 c)
^2 ))
+ ((
Im3 c)
^2 )) as
Element of
REAL by
XREAL_0:def 1;
A1: (((((
Rea c)
^2 )
+ ((
Im1 c)
^2 ))
+ ((
Im2 c)
^2 ))
+ ((
Im3 c)
^2 ))
>=
0 by
Lm2;
(c
.|. c)
=
[*(((((
Rea c)
* (
Rea c))
+ ((
Im1 c)
* (
Im1 c)))
+ ((
Im2 c)
* (
Im2 c)))
+ ((
Im3 c)
* (
Im3 c))), (((((
Rea c)
* (
- (
Im1 c)))
+ ((
Im1 c)
* (
Rea c)))
- ((
Im2 c)
* (
Im3 c)))
+ ((
Im3 c)
* (
Im2 c))), (((((
Rea c)
* (
- (
Im2 c)))
+ ((
Rea c)
* (
Im2 c)))
- ((
Im1 c)
* (
Im3 c)))
+ ((
Im3 c)
* (
Im1 c))), (((((
Rea c)
* (
- (
Im3 c)))
+ ((
Im3 c)
* (
Rea c)))
- ((
Im1 c)
* (
Im2 c)))
+ ((
Im2 c)
* (
Im1 c)))*] by
Th48
.=
[*z1, z*] by
QUATERNI: 91
.= (((((
Rea c)
^2 )
+ ((
Im1 c)
^2 ))
+ ((
Im2 c)
^2 ))
+ ((
Im3 c)
^2 )) by
ARYTM_0:def 5
.= (
|.c.|
^2 ) by
A1,
SQUARE_1:def 2;
hence thesis;
end;
theorem ::
QUATERN2:50
(
Rea (c
.|. c))
= (
|.c.|
^2 ) & (
Im1 (c
.|. c))
=
0 & (
Im2 (c
.|. c))
=
0 & (
Im2 (c
.|. c))
=
0
proof
A1: (((((
Rea c)
^2 )
+ ((
Im1 c)
^2 ))
+ ((
Im2 c)
^2 ))
+ ((
Im3 c)
^2 ))
>=
0 by
Lm2;
(c
.|. c)
=
[*(((((
Rea c)
* (
Rea c))
+ ((
Im1 c)
* (
Im1 c)))
+ ((
Im2 c)
* (
Im2 c)))
+ ((
Im3 c)
* (
Im3 c))), (((((
Rea c)
* (
- (
Im1 c)))
+ ((
Im1 c)
* (
Rea c)))
- ((
Im2 c)
* (
Im3 c)))
+ ((
Im3 c)
* (
Im2 c))), (((((
Rea c)
* (
- (
Im2 c)))
+ ((
Rea c)
* (
Im2 c)))
- ((
Im1 c)
* (
Im3 c)))
+ ((
Im3 c)
* (
Im1 c))), (((((
Rea c)
* (
- (
Im3 c)))
+ ((
Im3 c)
* (
Rea c)))
- ((
Im1 c)
* (
Im2 c)))
+ ((
Im2 c)
* (
Im1 c)))*] by
Th48
.=
[*(
|.c.|
^2 ),
0 ,
0 ,
0 *] by
A1,
SQUARE_1:def 2;
hence thesis by
QUATERNI: 23;
end;
theorem ::
QUATERN2:51
|.(c1
.|. c2).|
= (
|.c1.|
*
|.c2.|)
proof
thus
|.(c1
.|. c2).|
= (
|.c1.|
*
|.(c2
*' ).|) by
QUATERNI: 87
.= (
|.c1.|
*
|.c2.|) by
QUATERNI: 73;
end;
theorem ::
QUATERN2:52
(c
.|. c)
=
0 implies c
=
0
proof
assume (c
.|. c)
=
0 ;
then
A1: (
|.c.|
^2 )
=
0 by
Th49;
(((((
Rea c)
^2 )
+ ((
Im1 c)
^2 ))
+ ((
Im2 c)
^2 ))
+ ((
Im3 c)
^2 ))
>=
0 by
Lm2;
then
A2: (
|.c.|
^2 )
= (((((
Rea c)
^2 )
+ ((
Im1 c)
^2 ))
+ ((
Im2 c)
^2 ))
+ ((
Im3 c)
^2 )) by
SQUARE_1:def 2;
then
A3: (
Rea c)
=
0 by
A1,
Lm3;
A4: (
Im1 c)
=
0 by
A1,
A2,
Lm3;
A5: (
Im2 c)
=
0 by
A1,
A2,
Lm3;
(
Im3 c)
=
0 by
A1,
A2,
Lm3;
then c
=
[*
0 ,
0 ,
0 ,
0 *] by
A3,
A4,
A5,
QUATERNI: 24
.=
[*(
In (
0 ,
REAL )), (
In (
0 ,
REAL ))*] by
QUATERNI: 91
.=
0 by
ARYTM_0:def 5;
hence thesis;
end;
theorem ::
QUATERN2:53
((c1
+ c2)
.|. c3)
= ((c1
.|. c3)
+ (c2
.|. c3)) by
Th18;
theorem ::
QUATERN2:54
(c1
.|. (c2
+ c3))
= ((c1
.|. c2)
+ (c1
.|. c3))
proof
thus (c1
.|. (c2
+ c3))
= (c1
* ((c2
*' )
+ (c3
*' ))) by
QUATERNI: 54
.= ((c1
.|. c2)
+ (c1
.|. c3)) by
Th17;
end;
theorem ::
QUATERN2:55
((
- c1)
.|. c2)
= (
- (c1
.|. c2)) by
Th20;
theorem ::
QUATERN2:56
(
- (c1
.|. c2))
= (c1
.|. (
- c2))
proof
(c1
.|. (
- c2))
= (c1
* (
- (c2
*' ))) by
QUATERNI: 55
.= (
- (c1
* (c2
*' ))) by
Th21;
hence thesis;
end;
theorem ::
QUATERN2:57
((
- c1)
.|. (
- c2))
= (c1
.|. c2)
proof
((
- c1)
.|. (
- c2))
= ((
- c1)
* (
- (c2
*' ))) by
QUATERNI: 55
.= (c1
* (c2
*' )) by
Th22;
hence thesis;
end;
theorem ::
QUATERN2:58
((c1
- c2)
.|. c3)
= ((c1
.|. c3)
- (c2
.|. c3)) by
Th23;
theorem ::
QUATERN2:59
(c1
.|. (c2
- c3))
= ((c1
.|. c2)
- (c1
.|. c3))
proof
(c1
.|. (c2
- c3))
= (c1
* ((c2
*' )
- (c3
*' ))) by
QUATERNI: 56
.= ((c1
* (c2
*' ))
- (c1
* (c3
*' ))) by
Th24;
hence thesis;
end;
theorem ::
QUATERN2:60
((c1
+ c2)
.|. (c1
+ c2))
= ((((c1
.|. c1)
+ (c1
.|. c2))
+ (c2
.|. c1))
+ (c2
.|. c2))
proof
((c1
+ c2)
.|. (c1
+ c2))
= ((c1
+ c2)
* ((c1
*' )
+ (c2
*' ))) by
QUATERNI: 54
.= (((c1
+ c2)
* (c1
*' ))
+ ((c1
+ c2)
* (c2
*' ))) by
Th17
.= (((c1
* (c1
*' ))
+ (c2
* (c1
*' )))
+ ((c1
+ c2)
* (c2
*' ))) by
Th18
.= (((c1
.|. c1)
+ (c2
.|. c1))
+ ((c1
.|. c2)
+ (c2
.|. c2))) by
Th18
.= ((((c1
.|. c1)
+ (c2
.|. c1))
+ (c1
.|. c2))
+ (c2
.|. c2)) by
Th2;
hence thesis by
Th2;
end;
theorem ::
QUATERN2:61
((c1
- c2)
.|. (c1
- c2))
= ((((c1
.|. c1)
- (c1
.|. c2))
- (c2
.|. c1))
+ (c2
.|. c2))
proof
((c1
- c2)
.|. (c1
- c2))
= ((c1
- c2)
* ((c1
*' )
- (c2
*' ))) by
QUATERNI: 56
.= (((c1
+ (
- c2))
* (c1
*' ))
+ ((c1
+ (
- c2))
* (
- (c2
*' )))) by
Th17
.= (((c1
* (c1
*' ))
+ ((
- c2)
* (c1
*' )))
+ ((c1
+ (
- c2))
* (
- (c2
*' )))) by
Th18
.= (((c1
.|. c1)
+ ((
- c2)
* (c1
*' )))
+ ((c1
* (
- (c2
*' )))
+ ((
- c2)
* (
- (c2
*' ))))) by
Th18
.= (((c1
.|. c1)
+ (
- (c2
* (c1
*' ))))
+ ((c1
* (
- (c2
*' )))
+ ((
- c2)
* (
- (c2
*' ))))) by
Th20
.= (((c1
.|. c1)
+ (
- (c2
* (c1
*' ))))
+ ((
- (c1
* (c2
*' )))
+ ((
- c2)
* (
- (c2
*' ))))) by
Th21
.= (((c1
.|. c1)
+ (
- (c2
.|. c1)))
+ ((
- (c1
.|. c2))
+ (c2
.|. c2))) by
Th22
.= ((((c1
.|. c1)
+ (
- (c2
.|. c1)))
+ (
- (c1
.|. c2)))
+ (c2
.|. c2)) by
Th2
.= ((((c1
.|. c1)
+ (
- (c1
.|. c2)))
+ (
- (c2
.|. c1)))
+ (c2
.|. c2)) by
Th2;
hence thesis;
end;