quaterni.miz
begin
reserve a,b,c,d,x,y,w,z,x1,x2,x3,x4,X for
set;
reserve A for non
empty
set;
definition
::
QUATERNI:def1
func
QUATERNION ->
set equals (((
Funcs (4,
REAL ))
\ { x where x be
Element of (
Funcs (4,
REAL )) : (x
. 2)
=
0 & (x
. 3)
=
0 })
\/
COMPLEX );
coherence ;
end
definition
let x be
Number;
::
QUATERNI:def2
attr x is
quaternion means
:
Def2: x
in
QUATERNION ;
end
registration
cluster
QUATERNION -> non
empty;
coherence ;
end
registration
cluster
quaternion for
Number;
existence
proof
take the
Element of
QUATERNION ;
thus thesis;
end;
end
definition
mode
Quaternion is
quaternion
Number;
end
::$Canceled
::$Canceled
Lm1: (
0 ,1,2,3)
are_mutually_distinct ;
theorem ::
QUATERNI:5
{x1, x2, x3, x4}
c= X iff x1
in X & x2
in X & x3
in X & x4
in X
proof
A1: x1
in
{x1, x2, x3, x4} by
ENUMSET1:def 2;
A2: x2
in
{x1, x2, x3, x4} by
ENUMSET1:def 2;
A3: x3
in
{x1, x2, x3, x4} by
ENUMSET1:def 2;
x4
in
{x1, x2, x3, x4} by
ENUMSET1:def 2;
hence
{x1, x2, x3, x4}
c= X implies x1
in X & x2
in X & x3
in X & x4
in X by
A1,
A2,
A3;
assume that
A4: x1
in X and
A5: x2
in X and
A6: x3
in X and
A7: x4
in X;
let z be
object;
assume z
in
{x1, x2, x3, x4};
hence thesis by
A4,
A5,
A6,
A7,
ENUMSET1:def 2;
end;
definition
let A, x, y, w, z;
let a,b,c,d be
Element of A;
:: original:
-->
redefine
func (x,y,w,z)
--> (a,b,c,d) ->
Function of
{x, y, w, z}, A ;
coherence
proof
set f = ((x,y)
--> (a,b)), g = ((w,z)
--> (c,d)), h = ((x,y,w,z)
--> (a,b,c,d));
A1: (
rng h)
c= ((
rng f)
\/ (
rng g)) by
FUNCT_4: 17;
A2: (
dom h)
=
{x, y, w, z} by
FUNCT_4: 137;
(
rng h)
c= A by
A1,
XBOOLE_1: 1;
hence thesis by
A2,
FUNCT_2:def 1,
RELSET_1: 4;
end;
end
definition
::
QUATERNI:def3
func
<j> ->
Number equals ((
0 ,1,2,3)
--> (
0 ,
0 ,1,
0 ));
coherence ;
::
QUATERNI:def4
func
<k> ->
Number equals ((
0 ,1,2,3)
--> (
0 ,
0 ,
0 ,1));
coherence ;
end
reconsider jj = 1, zz =
0 as
Element of
REAL by
XREAL_0:def 1;
Lm2:
<i>
=
[*zz, jj*] by
ARYTM_0:def 5;
registration
cluster
<i> ->
quaternion;
coherence by
Lm2,
XBOOLE_0:def 3;
cluster
<j> ->
quaternion;
coherence
proof
set X = { x where x be
Element of (
Funcs (4,
REAL )) : (x
. 2)
=
0 & (x
. 3)
=
0 };
A1:
now
assume
<j>
in X;
then ex x be
Element of (
Funcs (4,
REAL )) st
<j>
= x & (x
. 2)
=
0 & (x
. 3)
=
0 ;
hence contradiction by
FUNCT_4: 140;
end;
reconsider z =
0 , j =
0 , w = 1, m =
0 as
Element of
REAL by
XREAL_0:def 1;
<j>
= ((
0 ,1,2,3)
--> (z,j,w,m));
then
<j>
in (
Funcs (4,
REAL )) by
CARD_1: 52,
FUNCT_2: 8;
then
<j>
in ((
Funcs (4,
REAL ))
\ X) by
A1,
XBOOLE_0:def 5;
hence
<j>
in
QUATERNION by
XBOOLE_0:def 3;
end;
cluster
<k> ->
quaternion;
coherence
proof
set X = { x where x be
Element of (
Funcs (4,
REAL )) : (x
. 2)
=
0 & (x
. 3)
=
0 };
A2:
now
assume
<k>
in X;
then ex x be
Element of (
Funcs (4,
REAL )) st
<k>
= x & (x
. 2)
=
0 & (x
. 3)
=
0 ;
hence contradiction by
FUNCT_4: 139;
end;
reconsider z =
0 , j =
0 , w =
0 , m = 1 as
Element of
REAL by
XREAL_0:def 1;
<k>
= ((
0 ,1,2,3)
--> (z,j,w,m));
then
<k>
in (
Funcs (4,
REAL )) by
CARD_1: 52,
FUNCT_2: 8;
then
<k>
in ((
Funcs (4,
REAL ))
\ X) by
A2,
XBOOLE_0:def 5;
hence
<k>
in
QUATERNION by
XBOOLE_0:def 3;
end;
end
registration
cluster ->
quaternion for
Element of
QUATERNION ;
coherence ;
end
definition
let x,y,w,z be
Real;
::
QUATERNI:def5
func
[*x,y,w,z*] ->
Element of
QUATERNION means
:
Def5: ex x9,y9 be
Element of
REAL st x9
= x & y9
= y & it
=
[*x9, y9*] if w
=
0 & z
=
0
otherwise it
= ((
0 ,1,2,3)
--> (x,y,w,z));
consistency ;
existence
proof
reconsider x9 = x, y9 = y, w9 = w, z9 = z as
Element of
REAL by
XREAL_0:def 1;
thus w
=
0 & z
=
0 implies ex t be
Element of
QUATERNION st ex x9,y9 be
Element of
REAL st x9
= x & y9
= y & t
=
[*x9, y9*]
proof
assume that w
=
0 and z
=
0 ;
set t =
[*x9, y9*];
reconsider t as
Element of
QUATERNION by
XBOOLE_0:def 3;
take t;
take x9, y9;
thus thesis;
end;
set e = ((
0 ,1,2,3)
--> (x9,y9,w9,z9));
thus w
<>
0 or z
<>
0 implies ex t be
Element of
QUATERNION st t
= ((
0 ,1,2,3)
--> (x,y,w,z))
proof
assume
A1: w
<>
0 or z
<>
0 ;
A2: e
in (
Funcs (4,
REAL )) by
CARD_1: 52,
FUNCT_2: 8;
now
assume e
in { r where r be
Element of (
Funcs (4,
REAL )) : (r
. 2)
=
0 & (r
. 3)
=
0 };
then ex r be
Element of (
Funcs (4,
REAL )) st e
= r & (r
. 2)
=
0 & (r
. 3)
=
0 ;
hence contradiction by
A1,
FUNCT_4: 139,
FUNCT_4: 140;
end;
then e
in ((
Funcs (4,
REAL ))
\ { r where r be
Element of (
Funcs (4,
REAL )) : (r
. 2)
=
0 & (r
. 3)
=
0 }) by
A2,
XBOOLE_0:def 5;
then
reconsider e as
Element of
QUATERNION by
XBOOLE_0:def 3;
take e;
thus thesis;
end;
end;
uniqueness ;
end
Lm3: for x,y be
Element of
REAL holds
[*x, y,
0 ,
0 *]
=
[*x, y*]
proof
let x,y be
Element of
REAL ;
ex x9,y9 be
Element of
REAL st (x9
= x) & (y9
= y) & (
[*x, y,
0 ,
0 *]
=
[*x9, y9*]) by
Def5;
hence thesis;
end;
::$Canceled
theorem ::
QUATERNI:7
Th2: for g be
Quaternion holds ex r,s,t,u be
Real st g
=
[*r, s, t, u*]
proof
let g be
Quaternion;
A1: g
in
QUATERNION by
Def2;
per cases ;
suppose g
in
COMPLEX ;
then
consider r,s be
Element of
REAL such that
A2: g
=
[*r, s*] by
ARYTM_0: 9;
take r, s,
0 ,
0 ;
thus thesis by
A2,
Def5,
A1;
end;
suppose not g
in
COMPLEX ;
then
A3: g
in ((
Funcs (4,
REAL ))
\ { x where x be
Element of (
Funcs (4,
REAL )) : (x
. 2)
=
0 & (x
. 3)
=
0 }) by
A1,
XBOOLE_0:def 3;
then
consider f be
Function such that
A4: g
= f and
A5: (
dom f)
= 4 and
A6: (
rng f)
c=
REAL by
FUNCT_2:def 2;
A7:
0
in 4 by
CARD_1: 52,
ENUMSET1:def 2;
A8: 1
in 4 by
CARD_1: 52,
ENUMSET1:def 2;
A9: 2
in 4 by
CARD_1: 52,
ENUMSET1:def 2;
A10: 3
in 4 by
CARD_1: 52,
ENUMSET1:def 2;
A11: (f
.
0 )
in (
rng f) by
A5,
A7,
FUNCT_1: 3;
A12: (f
. 1)
in (
rng f) by
A5,
A8,
FUNCT_1: 3;
A13: (f
. 2)
in (
rng f) by
A5,
A9,
FUNCT_1: 3;
(f
. 3)
in (
rng f) by
A5,
A10,
FUNCT_1: 3;
then
reconsider r = (f
.
0 ), s = (f
. 1), t = (f
. 2), u = (f
. 3) as
Element of
REAL by
A6,
A11,
A12,
A13;
A14: g
= ((
0 ,1,2,3)
--> (r,s,t,u)) by
A4,
A5,
FUNCT_4: 144,
CARD_1: 52;
take r, s, t, u;
now
assume that
A15: t
=
0 and
A16: u
=
0 ;
A17: (((
0 ,1,2,3)
--> (r,s,t,u))
. 2)
=
0 by
A15,
FUNCT_4: 140;
(((
0 ,1,2,3)
--> (r,s,t,u))
. 3)
=
0 by
A16,
FUNCT_4: 139;
then g
in { x where x be
Element of (
Funcs (4,
REAL )) : (x
. 2)
=
0 & (x
. 3)
=
0 } by
A3,
A14,
A17;
hence contradiction by
A3,
XBOOLE_0:def 5;
end;
hence thesis by
A14,
Def5;
end;
end;
reserve i,j,k for
Element of
NAT ;
reserve a,b,c,d for
Real;
reserve y,r,s,x,t,w for
Element of
RAT+ ;
::$Canceled
Lm4: for x,y,z be
object st
[x, y]
=
{z} holds z
=
{x} & x
= y
proof
let x,y,z be
object;
assume
A1:
[x, y]
=
{z};
then
A2:
{x, y}
in
{z} by
TARSKI:def 2;
{x}
in
{z} by
A1,
TARSKI:def 2;
hence
A3: z
=
{x} by
TARSKI:def 1;
{x, y}
= z by
A2,
TARSKI:def 1;
hence thesis by
A3,
ZFMISC_1: 5;
end;
theorem ::
QUATERNI:9
Th3: for A be
Subset of
RAT+ st (ex t st t
in A & t
<>
{} ) & for r, s st r
in A & s
<=' r holds s
in A holds ex r1,r2,r3,r4,r5 be
Element of
RAT+ st r1
in A & r2
in A & r3
in A & r4
in A & r5
in A & r1
<> r2 & r1
<> r3 & r1
<> r4 & r1
<> r5 & r2
<> r3 & r2
<> r4 & r2
<> r5 & r3
<> r4 & r3
<> r5 & r4
<> r5
proof
let A be
Subset of
RAT+ ;
given t such that
A1: t
in A and
A2: t
<>
{} ;
assume
A3: for r, s st r
in A & s
<=' r holds s
in A;
consider x such that
A4: t
= (x
+ x) by
ARYTM_3: 60;
consider y such that
A5: x
= (y
+ y) by
ARYTM_3: 60;
consider w such that
A6: y
= (w
+ w) by
ARYTM_3: 60;
take
{} , w, y, x, t;
A7:
{}
<=' t by
ARYTM_3: 64;
A8: x
<=' t by
A4;
A9: y
<=' x by
A5;
A10: w
<=' y by
A6;
A11: y
<=' t by
A8,
A9,
ARYTM_3: 67;
w
<=' x by
A9,
A10,
ARYTM_3: 67;
hence
{}
in A & w
in A & y
in A & x
in A & t
in A by
A1,
A3,
A7,
A8,
A9,
ARYTM_3: 67;
A12:
{}
<> x by
A2,
A4,
ARYTM_3: 50;
then
A13:
{}
<> y by
A5,
ARYTM_3: 50;
A14: x
<> t
proof
assume x
= t;
then (t
+
{} )
= (t
+ t) by
A4,
ARYTM_3: 50;
hence contradiction by
A2,
ARYTM_3: 62;
end;
A15: y
<> x
proof
assume y
= x;
then (x
+
{} )
= (x
+ x) by
A5,
ARYTM_3: 50;
hence contradiction by
A12,
ARYTM_3: 62;
end;
w
<> y
proof
assume w
= y;
then (y
+
{} )
= (y
+ y) by
A6,
ARYTM_3: 50;
hence contradiction by
A13,
ARYTM_3: 62;
end;
hence thesis by
A2,
A4,
A5,
A6,
A8,
A9,
A10,
A11,
A14,
A15,
ARYTM_3: 50,
ARYTM_3: 66;
end;
Lm5: not ((
0 ,1,2,3)
--> (a,b,c,d))
in
REAL
proof
set f = ((
0 ,1,2,3)
--> (a,b,c,d));
A1: f
=
{
[
0 , a],
[1, b],
[2, c],
[3, d]} by
Lm1,
FUNCT_4: 145;
now
assume f
in {
[i, j] : (i,j)
are_coprime & j
<>
{} };
then
consider i, j such that
A2: f
=
[i, j] and (i,j)
are_coprime and j
<>
{} ;
A3:
{i}
in f by
A2,
TARSKI:def 2;
A4:
{i, j}
in f by
A2,
TARSKI:def 2;
A5:
now
assume i
= j;
then
{i}
=
{i, j} by
ENUMSET1: 29;
then
A6:
[i, j]
=
{
{i}} by
ENUMSET1: 29;
then
A7:
[
0 , a]
in
{
{i}} by
A1,
A2,
ENUMSET1:def 2;
A8:
[1, b]
in
{
{i}} by
A1,
A2,
A6,
ENUMSET1:def 2;
A9:
[
0 , a]
=
{i} by
A7,
TARSKI:def 1;
[1, b]
=
{i} by
A8,
TARSKI:def 1;
hence contradiction by
A9,
XTUPLE_0: 1;
end;
per cases by
A1,
A3,
A4,
ENUMSET1:def 2;
suppose
{i}
=
[
0 , a] &
{i, j}
=
[
0 , a];
hence contradiction by
A5,
ZFMISC_1: 5;
end;
suppose that
A10:
{i}
=
[
0 , a] and
A11:
{i, j}
=
[1, b];
A12: i
=
{
0 } by
A10,
Lm4;
i
in
{
{1},
{1, b}} by
A11,
TARSKI:def 2;
then i
=
{1, b} or i
=
{1} by
TARSKI:def 2;
then 1
in i by
TARSKI:def 1,
TARSKI:def 2;
hence contradiction by
A12,
TARSKI:def 1;
end;
suppose that
A13:
{i}
=
[
0 , a] and
A14:
{i, j}
=
[2, c];
A15: i
=
{
0 } by
A13,
Lm4;
i
in
{
{2},
{2, c}} by
A14,
TARSKI:def 2;
then i
=
{2, c} or i
=
{2} by
TARSKI:def 2;
then 2
in i by
TARSKI:def 1,
TARSKI:def 2;
hence contradiction by
A15,
TARSKI:def 1;
end;
suppose that
A16:
{i}
=
[
0 , a] and
A17:
{i, j}
=
[3, d];
A18: i
=
{
0 } by
A16,
Lm4;
i
in
{
{3},
{3, d}} by
A17,
TARSKI:def 2;
then i
=
{3, d} or i
=
{3} by
TARSKI:def 2;
then 3
in i by
TARSKI:def 1,
TARSKI:def 2;
hence contradiction by
A18,
TARSKI:def 1;
end;
suppose that
A19:
{i}
=
[1, b] and
A20:
{i, j}
=
[
0 , a];
A21: i
=
{1} by
A19,
Lm4;
i
in
{
{
0 },
{
0 , a}} by
A20,
TARSKI:def 2;
then i
=
{
0 , a} or i
=
{
0 } by
TARSKI:def 2;
then
0
in i by
TARSKI:def 1,
TARSKI:def 2;
hence contradiction by
A21,
TARSKI:def 1;
end;
suppose
{i}
=
[1, b] &
{i, j}
=
[1, b];
hence contradiction by
A5,
ZFMISC_1: 5;
end;
suppose that
A22:
{i}
=
[1, b] and
A23:
{i, j}
=
[2, c];
A24: i
=
{1} by
A22,
Lm4;
i
in
{
{2},
{2, c}} by
A23,
TARSKI:def 2;
then i
=
{2, c} or i
=
{2} by
TARSKI:def 2;
then 2
in i by
TARSKI:def 1,
TARSKI:def 2;
hence contradiction by
A24,
TARSKI:def 1;
end;
suppose that
A25:
{i}
=
[1, b] and
A26:
{i, j}
=
[3, d];
A27: i
=
{1} by
A25,
Lm4;
i
in
{
{3},
{3, d}} by
A26,
TARSKI:def 2;
then i
=
{3, d} or i
=
{3} by
TARSKI:def 2;
then 3
in i by
TARSKI:def 1,
TARSKI:def 2;
hence contradiction by
A27,
TARSKI:def 1;
end;
suppose that
A28:
{i}
=
[2, c] and
A29:
{i, j}
=
[
0 , a];
A30: i
=
{2} by
A28,
Lm4;
i
in
{
{
0 },
{
0 , a}} by
A29,
TARSKI:def 2;
then i
=
{
0 , a} or i
=
{
0 } by
TARSKI:def 2;
then
0
in i by
TARSKI:def 1,
TARSKI:def 2;
hence contradiction by
A30,
TARSKI:def 1;
end;
suppose that
A31:
{i}
=
[2, c] and
A32:
{i, j}
=
[1, b];
A33: i
=
{2} by
A31,
Lm4;
i
in
{
{1},
{1, b}} by
A32,
TARSKI:def 2;
then i
=
{1, b} or i
=
{1} by
TARSKI:def 2;
then 1
in i by
TARSKI:def 1,
TARSKI:def 2;
hence contradiction by
A33,
TARSKI:def 1;
end;
suppose
{i}
=
[2, c] &
{i, j}
=
[2, c];
hence contradiction by
A5,
ZFMISC_1: 5;
end;
suppose that
A34:
{i}
=
[2, c] and
A35:
{i, j}
=
[3, d];
A36: i
=
{2} by
A34,
Lm4;
i
in
{
{3},
{3, d}} by
A35,
TARSKI:def 2;
then i
=
{3, d} or i
=
{3} by
TARSKI:def 2;
then 3
in i by
TARSKI:def 1,
TARSKI:def 2;
hence contradiction by
A36,
TARSKI:def 1;
end;
suppose that
A37:
{i}
=
[3, d] and
A38:
{i, j}
=
[
0 , a];
A39: i
=
{3} by
A37,
Lm4;
i
in
{
{
0 },
{
0 , a}} by
A38,
TARSKI:def 2;
then i
=
{
0 , a} or i
=
{
0 } by
TARSKI:def 2;
then
0
in i by
TARSKI:def 1,
TARSKI:def 2;
hence contradiction by
A39,
TARSKI:def 1;
end;
suppose that
A40:
{i}
=
[3, d] and
A41:
{i, j}
=
[1, b];
A42: i
=
{3} by
A40,
Lm4;
i
in
{
{1},
{1, b}} by
A41,
TARSKI:def 2;
then i
=
{1, b} or i
=
{1} by
TARSKI:def 2;
then 1
in i by
TARSKI:def 1,
TARSKI:def 2;
hence contradiction by
A42,
TARSKI:def 1;
end;
suppose that
A43:
{i}
=
[3, d] and
A44:
{i, j}
=
[2, c];
A45: i
=
{3} by
A43,
Lm4;
i
in
{
{2},
{2, c}} by
A44,
TARSKI:def 2;
then i
=
{2, c} or i
=
{2} by
TARSKI:def 2;
then 2
in i by
TARSKI:def 1,
TARSKI:def 2;
hence contradiction by
A45,
TARSKI:def 1;
end;
suppose
{i}
=
[3, d] &
{i, j}
=
[3, d];
hence contradiction by
A5,
ZFMISC_1: 5;
end;
end;
then
A46: not f
in ({
[i, j] : (i,j)
are_coprime & j
<>
{} }
\ the set of all
[k, 1]);
now
assume f
in
omega ;
then f is non
empty
ordinal;
then
{}
in f by
ORDINAL3: 8;
hence contradiction by
A1,
ENUMSET1:def 2;
end;
then
A47: not f
in
RAT+ by
A46,
XBOOLE_0:def 3;
set IR = { A where A be
Subset of
RAT+ : for r be
Element of
RAT+ st r
in A holds (for s be
Element of
RAT+ st s
<=' r holds s
in A) & ex s be
Element of
RAT+ st s
in A & r
< s };
not ex x,y,z,w be
object st
{
[
0 , x],
[1, y],
[2, z],
[3, w]}
in IR
proof
given x,y,z,w be
object such that
A48:
{
[
0 , x],
[1, y],
[2, z],
[3, w]}
in IR;
consider A be
Subset of
RAT+ such that
A49:
{
[
0 , x],
[1, y],
[2, z],
[3, w]}
= A and
A50: for r be
Element of
RAT+ st r
in A holds (for s be
Element of
RAT+ st s
<=' r holds s
in A) & ex s be
Element of
RAT+ st s
in A & r
< s by
A48;
A51:
[
0 , x]
in A by
A49,
ENUMSET1:def 2;
for r,s be
Element of
RAT+ st r
in A & s
<=' r holds s
in A by
A50;
then
consider r1,r2,r3,r4,r5 be
Element of
RAT+ such that
A52: r1
in A and
A53: r2
in A and
A54: r3
in A and
A55: r4
in A and
A56: r5
in A and
A57: r1
<> r2 and
A58: r1
<> r3 and
A59: r1
<> r4 and
A60: r1
<> r5 and
A61: r2
<> r3 and
A62: r2
<> r4 and
A63: r2
<> r5 and
A64: r3
<> r4 and
A65: r3
<> r5 and
A66: r4
<> r5 by
A51,
Th3;
A67: r1
=
[
0 , x] or r1
=
[1, y] or r1
=
[2, z] or r1
=
[3, w] by
A49,
A52,
ENUMSET1:def 2;
A68: r2
=
[
0 , x] or r2
=
[1, y] or r2
=
[2, z] or r2
=
[3, w] by
A49,
A53,
ENUMSET1:def 2;
A69: r3
=
[
0 , x] or r3
=
[1, y] or r3
=
[2, z] or r3
=
[3, w] by
A49,
A54,
ENUMSET1:def 2;
r4
=
[
0 , x] or r4
=
[1, y] or r4
=
[2, z] or r4
=
[3, w] by
A49,
A55,
ENUMSET1:def 2;
hence contradiction by
A49,
A56,
A57,
A58,
A59,
A60,
A61,
A62,
A63,
A64,
A65,
A66,
A67,
A68,
A69,
ENUMSET1:def 2;
end;
then not f
in
DEDEKIND_CUTS by
A1,
ARYTM_2:def 1;
then
A70: not f
in
REAL+ by
A47,
ARYTM_2:def 2,
XBOOLE_0:def 3;
now
assume f
in
[:
{
{} },
REAL+ :];
then
consider x,y be
object such that
A71: x
in
{
{} } and y
in
REAL+ and
A72: f
=
[x, y] by
ZFMISC_1: 84;
A73: x
=
0 by
A71,
TARSKI:def 1;
f
=
{
[
0 , a],
[1, b],
[2, c],
[3, d]} by
Lm1,
FUNCT_4: 145;
then
A74:
[1, b]
in f by
ENUMSET1:def 2;
per cases by
A72,
A73,
A74,
TARSKI:def 2;
suppose
{
{1, b},
{1}}
=
{
0 };
then
0
in
{
{1, b},
{1}} by
TARSKI:def 1;
hence contradiction by
TARSKI:def 2;
end;
suppose
{
{1, b},
{1}}
=
{
0 , y};
then
0
in
{
{1, b},
{1}} by
TARSKI:def 2;
hence contradiction by
TARSKI:def 2;
end;
end;
hence thesis by
A70,
NUMBERS:def 1,
XBOOLE_0:def 3;
end;
theorem ::
QUATERNI:10
Th4: not ((
0 ,1,2,3)
--> (a,b,c,d))
in
COMPLEX
proof
set f = ((
0 ,1,2,3)
--> (a,b,c,d));
A1: not f
in
REAL by
Lm5;
not f
in (
Funcs (
{
0 , 1},
REAL ))
proof
assume f
in (
Funcs (
{
0 , 1},
REAL ));
then (
dom f)
=
{
0 , 1} by
FUNCT_2: 92;
then
{
0 , 1, 2, 3}
c=
{
0 , 1} by
FUNCT_4: 137;
then (
{
0 , 1}
\/
{2, 3})
c=
{
0 , 1} by
ENUMSET1: 5;
hence contradiction by
XBOOLE_1: 11,
ZFMISC_1: 22;
end;
then not f
in ((
Funcs (
{
0 , 1},
REAL ))
\ { x where x be
Element of (
Funcs (
{
0 , 1},
REAL )) : (x
. 1)
=
0 });
hence thesis by
A1,
NUMBERS:def 2,
XBOOLE_0:def 3;
end;
::$Canceled
theorem ::
QUATERNI:12
Th5: for x1,x2,x3,x4,y1,y2,y3,y4 be
Real st
[*x1, x2, x3, x4*]
=
[*y1, y2, y3, y4*] holds x1
= y1 & x2
= y2 & x3
= y3 & x4
= y4
proof
let x1,x2,x3,x4,y1,y2,y3,y4 be
Real such that
A1:
[*x1, x2, x3, x4*]
=
[*y1, y2, y3, y4*];
reconsider xx1 = x1, xx2 = x2, yy1 = y1, yy2 = y2 as
Element of
REAL by
XREAL_0:def 1;
per cases ;
suppose
A2: x3
=
0 & x4
=
0 ;
then
A3:
[*x1, x2, x3, x4*]
=
[*xx1, xx2*] by
Lm3;
A4:
now
assume y3
<>
0 or y4
<>
0 ;
then
[*xx1, xx2*]
= ((
0 ,1,2,3)
--> (y1,y2,y3,y4)) by
A1,
A3,
Def5;
hence contradiction by
Th4;
end;
then
[*y1, y2, y3, y4*]
=
[*yy1, yy2*] by
Lm3;
hence thesis by
A1,
A2,
A3,
A4,
ARYTM_0: 10;
end;
suppose x3
<>
0 or x4
<>
0 ;
then
A5:
[*y1, y2, y3, y4*]
= ((
0 ,1,2,3)
--> (x1,x2,x3,x4)) by
A1,
Def5;
now
assume that
A6: y3
=
0 and
A7: y4
=
0 ;
[*y1, y2, y3, y4*]
=
[*yy1, yy2*] by
A6,
A7,
Lm3;
hence contradiction by
A5,
Th4;
end;
then
[*y1, y2, y3, y4*]
= ((
0 ,1,2,3)
--> (y1,y2,y3,y4)) by
Def5;
hence thesis by
A5,
Lm1,
FUNCT_4: 146;
end;
end;
definition
let x,y be
Quaternion;
consider x1,x2,x3,x4 be
Real such that
A1: x
=
[*x1, x2, x3, x4*] by
Th2;
consider y1,y2,y3,y4 be
Real such that
A2: y
=
[*y1, y2, y3, y4*] by
Th2;
::
QUATERNI:def6
func x
+ y ->
Number means
:
Def6: ex x1,x2,x3,x4,y1,y2,y3,y4 be
Real st x
=
[*x1, x2, x3, x4*] & y
=
[*y1, y2, y3, y4*] & it
=
[*(x1
+ y1), (x2
+ y2), (x3
+ y3), (x4
+ y4)*];
existence
proof
take
[*(x1
+ y1), (x2
+ y2), (x3
+ y3), (x4
+ y4)*];
thus thesis by
A1,
A2;
end;
uniqueness
proof
let c1,c2 be
Number;
given x1,x2,x3,x4,y1,y2,y3,y4 be
Real such that
A3: x
=
[*x1, x2, x3, x4*] and
A4: y
=
[*y1, y2, y3, y4*] and
A5: c1
=
[*(x1
+ y1), (x2
+ y2), (x3
+ y3), (x4
+ y4)*];
given x19,x29,x39,x49,y19,y29,y39,y49 be
Real such that
A6: x
=
[*x19, x29, x39, x49*] and
A7: y
=
[*y19, y29, y39, y49*] and
A8: c2
=
[*(x19
+ y19), (x29
+ y29), (x39
+ y39), (x49
+ y49)*];
A9: x1
= x19 by
A3,
A6,
Th5;
A10: x2
= x29 by
A3,
A6,
Th5;
A11: x3
= x39 by
A3,
A6,
Th5;
A12: x4
= x49 by
A3,
A6,
Th5;
A13: y1
= y19 by
A4,
A7,
Th5;
A14: y2
= y29 by
A4,
A7,
Th5;
y3
= y39 by
A4,
A7,
Th5;
hence thesis by
A4,
A5,
A7,
A8,
A9,
A10,
A11,
A12,
A13,
A14,
Th5;
end;
commutativity ;
end
Lm6:
0
=
[*
0 ,
0 ,
0 ,
0 *]
proof
ex x9,y9 be
Element of
REAL st (x9
=
0 ) & (y9
=
0 ) & (
[*
0 ,
0 ,
0 ,
0 *]
=
[*x9, y9*]) by
Def5;
hence thesis by
ARYTM_0:def 5;
end;
definition
let z be
Quaternion;
consider v,w,x,y be
Real such that
A1: z
=
[*v, w, x, y*] by
Th2;
::
QUATERNI:def7
func
- z ->
Quaternion means
:
Def7: (z
+ it )
=
0 ;
existence
proof
reconsider z9 =
[*(
- v), (
- w), (
- x), (
- y)*] as
Quaternion;
take z9;
A2:
0
= (v
+ (
- v));
A3:
0
= (w
+ (
- w));
A4:
0
= (x
+ (
- x));
0
= (y
+ (
- y));
hence thesis by
A1,
A2,
A3,
A4,
Def6,
Lm6;
end;
uniqueness
proof
let c1,c2 be
Quaternion such that
A5: (z
+ c1)
=
0 and
A6: (z
+ c2)
=
0 ;
consider x1,x2,x3,x4,y1,y2,y3,y4 be
Real such that
A7: z
=
[*x1, x2, x3, x4*] and
A8: c1
=
[*y1, y2, y3, y4*] and
A9:
0
=
[*(x1
+ y1), (x2
+ y2), (x3
+ y3), (x4
+ y4)*] by
A5,
Def6;
consider x19,x29,x39,x49,y19,y29,y39,y49 be
Real such that
A10: z
=
[*x19, x29, x39, x49*] and
A11: c2
=
[*y19, y29, y39, y49*] and
A12:
0
=
[*(x19
+ y19), (x29
+ y29), (x39
+ y39), (x49
+ y49)*] by
A6,
Def6;
A13: x1
= x19 by
A7,
A10,
Th5;
A14: x2
= x29 by
A7,
A10,
Th5;
A15: x3
= x39 by
A7,
A10,
Th5;
A16: x4
= x49 by
A7,
A10,
Th5;
A17: (x1
+ y1)
=
0 by
A9,
Lm6,
Th5;
A18: (x1
+ y19)
=
0 by
A12,
A13,
Lm6,
Th5;
A19: (x2
+ y2)
=
0 by
A9,
Lm6,
Th5;
A20: (x2
+ y29)
=
0 by
A12,
A14,
Lm6,
Th5;
A21: (x3
+ y3)
=
0 by
A9,
Lm6,
Th5;
A22: (x3
+ y39)
=
0 by
A12,
A15,
Lm6,
Th5;
A23: (x4
+ y4)
=
0 by
A9,
Lm6,
Th5;
(x4
+ y49)
=
0 by
A12,
A16,
Lm6,
Th5;
hence thesis by
A8,
A11,
A17,
A18,
A19,
A20,
A21,
A22,
A23;
end;
involutiveness ;
end
definition
let x,y be
Quaternion;
::
QUATERNI:def8
func x
- y ->
Number equals (x
+ (
- y));
coherence ;
end
definition
let x,y be
Quaternion;
consider x1,x2,x3,x4 be
Real such that
A1: x
=
[*x1, x2, x3, x4*] by
Th2;
consider y1,y2,y3,y4 be
Real such that
A2: y
=
[*y1, y2, y3, y4*] by
Th2;
::
QUATERNI:def9
func x
* y ->
Number means
:
Def9: ex x1,x2,x3,x4,y1,y2,y3,y4 be
Real st x
=
[*x1, x2, x3, x4*] & y
=
[*y1, y2, y3, y4*] & it
=
[*((((x1
* y1)
- (x2
* y2))
- (x3
* y3))
- (x4
* y4)), ((((x1
* y2)
+ (x2
* y1))
+ (x3
* y4))
- (x4
* y3)), ((((x1
* y3)
+ (y1
* x3))
+ (y2
* x4))
- (y4
* x2)), ((((x1
* y4)
+ (x4
* y1))
+ (x2
* y3))
- (x3
* y2))*];
existence
proof
take
[*((((x1
* y1)
- (x2
* y2))
- (x3
* y3))
- (x4
* y4)), ((((x1
* y2)
+ (x2
* y1))
+ (x3
* y4))
- (x4
* y3)), ((((x1
* y3)
+ (y1
* x3))
+ (y2
* x4))
- (y4
* x2)), ((((x1
* y4)
+ (x4
* y1))
+ (x2
* y3))
- (x3
* y2))*];
thus thesis by
A1,
A2;
end;
uniqueness
proof
let c1,c2 be
Number;
given x1,x2,x3,x4,y1,y2,y3,y4 be
Real such that
A3: x
=
[*x1, x2, x3, x4*] and
A4: y
=
[*y1, y2, y3, y4*] and
A5: c1
=
[*((((x1
* y1)
- (x2
* y2))
- (x3
* y3))
- (x4
* y4)), ((((x1
* y2)
+ (x2
* y1))
+ (x3
* y4))
- (x4
* y3)), ((((x1
* y3)
+ (y1
* x3))
+ (y2
* x4))
- (y4
* x2)), ((((x1
* y4)
+ (x4
* y1))
+ (x2
* y3))
- (x3
* y2))*];
given x19,x29,x39,x49,y19,y29,y39,y49 be
Real such that
A6: x
=
[*x19, x29, x39, x49*] and
A7: y
=
[*y19, y29, y39, y49*] and
A8: c2
=
[*((((x19
* y19)
- (x29
* y29))
- (x39
* y39))
- (x49
* y49)), ((((x19
* y29)
+ (x29
* y19))
+ (x39
* y49))
- (x49
* y39)), ((((x19
* y39)
+ (y19
* x39))
+ (y29
* x49))
- (y49
* x29)), ((((x19
* y49)
+ (x49
* y19))
+ (x29
* y39))
- (x39
* y29))*];
A9: x1
= x19 by
A3,
A6,
Th5;
A10: x2
= x29 by
A3,
A6,
Th5;
A11: x3
= x39 by
A3,
A6,
Th5;
A12: x4
= x49 by
A3,
A6,
Th5;
A13: y1
= y19 by
A4,
A7,
Th5;
A14: y2
= y29 by
A4,
A7,
Th5;
A15: y3
= y39 by
A4,
A7,
Th5;
y4
= y49 by
A4,
A7,
Th5;
hence thesis by
A5,
A8,
A9,
A10,
A11,
A12,
A13,
A14,
A15;
end;
end
registration
let z,z9 be
Quaternion;
cluster (z
+ z9) ->
quaternion;
coherence
proof
ex x1,x2,x3,x4,y1,y2,y3,y4 be
Real st z
=
[*x1, x2, x3, x4*] & z9
=
[*y1, y2, y3, y4*] & (z
+ z9)
=
[*(x1
+ y1), (x2
+ y2), (x3
+ y3), (x4
+ y4)*] by
Def6;
hence thesis;
end;
cluster (z
* z9) ->
quaternion;
coherence
proof
ex x1,x2,x3,x4,y1,y2,y3,y4 be
Real st z
=
[*x1, x2, x3, x4*] & z9
=
[*y1, y2, y3, y4*] & (z
* z9)
=
[*((((x1
* y1)
- (x2
* y2))
- (x3
* y3))
- (x4
* y4)), ((((x1
* y2)
+ (x2
* y1))
+ (x3
* y4))
- (x4
* y3)), ((((x1
* y3)
+ (y1
* x3))
+ (y2
* x4))
- (y4
* x2)), ((((x1
* y4)
+ (x4
* y1))
+ (x2
* y3))
- (x3
* y2))*] by
Def9;
hence (z
* z9)
in
QUATERNION ;
end;
end
definition
:: original:
<j>
redefine
::
QUATERNI:def10
func
<j> ->
Element of
QUATERNION equals
[*
0 ,
0 , 1,
0 *];
coherence by
Def2;
compatibility by
Def5;
:: original:
<k>
redefine
::
QUATERNI:def11
func
<k> ->
Element of
QUATERNION equals
[*
0 ,
0 ,
0 , 1*];
coherence by
Def2;
compatibility by
Def5;
end
theorem ::
QUATERNI:13
(
<i>
*
<i> )
= (
- 1)
proof
<i>
=
[*zz, jj, zz, zz*] by
Lm2,
Lm3;
then
A1: (
<i>
*
<i> )
=
[*((((
0
*
0 )
- (1
* 1))
- (
0
*
0 ))
- (
0
*
0 )), ((((
0
* 1)
+ (1
*
0 ))
+ (
0
*
0 ))
- (
0
*
0 )), ((((
0
*
0 )
+ (
0
*
0 ))
+ (1
*
0 ))
- (
0
* 1)), ((((
0
*
0 )
+ (
0
*
0 ))
+ (1
*
0 ))
- (
0
* 1))*] by
Def9
.=
[*(
- 1),
0 ,
0 ,
0 *];
(
- 1)
=
[*(
- jj), zz*] by
ARYTM_0:def 5;
hence thesis by
A1,
Lm3;
end;
theorem ::
QUATERNI:14
(
<j>
*
<j> )
= (
- 1)
proof
A1: (
<j>
*
<j> )
=
[*((((
0
*
0 )
- (
0
*
0 ))
- (1
* 1))
- (
0
*
0 )), ((((
0
*
0 )
+ (
0
*
0 ))
+ (
0
*
0 ))
- (
0
* 1)), ((((
0
* 1)
+ (
0
* 1))
+ (
0
*
0 ))
- (
0
*
0 )), ((((
0
*
0 )
+ (
0
*
0 ))
+ (
0
* 1))
- (1
*
0 ))*] by
Def9
.=
[*(
- 1),
0 ,
0 ,
0 *];
[*(
- 1),
0 ,
0 ,
0 *]
=
[*(
- jj), zz*] by
Lm3;
hence thesis by
A1,
ARYTM_0:def 5;
end;
theorem ::
QUATERNI:15
(
<k>
*
<k> )
= (
- 1)
proof
A1: (
<k>
*
<k> )
=
[*((((
0
*
0 )
- (
0
*
0 ))
- (
0
*
0 ))
- (1
* 1)), ((((
0
*
0 )
+ (
0
*
0 ))
+ (
0
* 1))
- (1
*
0 )), ((((
0
*
0 )
+ (
0
*
0 ))
+ (
0
* 1))
- (1
*
0 )), ((((
0
* 1)
+ (1
*
0 ))
+ (
0
*
0 ))
- (
0
*
0 ))*] by
Def9
.=
[*(
- 1),
0 ,
0 ,
0 *];
(
- 1)
=
[*(
- jj), zz*] by
ARYTM_0:def 5;
hence thesis by
A1,
Lm3;
end;
theorem ::
QUATERNI:16
(
<i>
*
<j> )
=
<k>
proof
<i>
=
[*
0 , 1,
0 ,
0 *] by
Lm2,
Lm3;
then (
<i>
*
<j> )
=
[*((((
0
*
0 )
- (1
*
0 ))
- (
0
* 1))
- (
0
*
0 )), ((((
0
*
0 )
+ (1
*
0 ))
+ (
0
*
0 ))
- (
0
* 1)), ((((
0
* 1)
+ (
0
*
0 ))
+ (
0
*
0 ))
- (
0
* 1)), ((((
0
*
0 )
+ (
0
*
0 ))
+ (1
* 1))
- (
0
*
0 ))*] by
Def9
.=
[*
0 ,
0 ,
0 , 1*];
hence thesis;
end;
theorem ::
QUATERNI:17
(
<j>
*
<k> )
=
<i>
proof
(
<j>
*
<k> )
=
[*((((
0
*
0 )
- (
0
*
0 ))
- (1
*
0 ))
- (
0
* 1)), ((((
0
*
0 )
+ (
0
*
0 ))
+ (1
* 1))
- (
0
*
0 )), ((((
0
*
0 )
+ (
0
* 1))
+ (
0
*
0 ))
- (1
*
0 )), ((((
0
* 1)
+ (
0
*
0 ))
+ (
0
*
0 ))
- (1
*
0 ))*] by
Def9
.=
[*
0 , 1,
0 ,
0 *];
hence thesis by
Lm2,
Lm3;
end;
theorem ::
QUATERNI:18
(
<k>
*
<i> )
=
<j>
proof
<i>
=
[*
0 , 1,
0 ,
0 *] by
Lm2,
Lm3;
then (
<k>
*
<i> )
=
[*((((
0
*
0 )
- (
0
* 1))
- (
0
*
0 ))
- (1
*
0 )), ((((
0
* 1)
+ (
0
*
0 ))
+ (
0
*
0 ))
- (1
*
0 )), ((((
0
*
0 )
+ (
0
*
0 ))
+ (1
* 1))
- (
0
*
0 )), ((((
0
*
0 )
+ (1
*
0 ))
+ (
0
*
0 ))
- (
0
* 1))*] by
Def9
.=
[*
0 ,
0 , 1,
0 *];
hence thesis;
end;
theorem ::
QUATERNI:19
(
<i>
*
<j> )
= (
- (
<j>
*
<i> ))
proof
A1:
<i>
=
[*zz, jj, zz, zz*] by
Lm2,
Lm3;
then
A2: (
<i>
*
<j> )
=
[*((((
0
*
0 )
- (1
*
0 ))
- (
0
* 1))
- (
0
*
0 )), ((((
0
*
0 )
+ (1
*
0 ))
+ (
0
*
0 ))
- (
0
* 1)), ((((
0
* 1)
+ (
0
*
0 ))
+ (
0
*
0 ))
- (
0
* 1)), ((((
0
*
0 )
+ (
0
*
0 ))
+ (1
* 1))
- (
0
*
0 ))*] by
Def9
.=
[*zz, zz, zz, jj*];
(
<j>
*
<i> )
=
[*((((
0
*
0 )
- (
0
* 1))
- (1
*
0 ))
- (
0
*
0 )), ((((
0
* 1)
+ (
0
*
0 ))
+ (1
*
0 ))
- (
0
*
0 )), ((((
0
*
0 )
+ (
0
* 1))
+ (1
*
0 ))
- (
0
*
0 )), ((((
0
*
0 )
+ (
0
*
0 ))
+ (
0
*
0 ))
- (1
* 1))*] by
A1,
Def9
.=
[*zz, zz, zz, (
- jj)*];
then ((
<i>
*
<j> )
+ (
<j>
*
<i> ))
=
[*(
0
+
0 ), (
0
+
0 ), (
0
+
0 ), (1
+ (
- 1))*] by
A2,
Def6
.=
0 by
Lm6;
hence thesis by
Def7;
end;
theorem ::
QUATERNI:20
(
<j>
*
<k> )
= (
- (
<k>
*
<j> ))
proof
A1: (
<j>
*
<k> )
=
[*((((
0
*
0 )
- (
0
*
0 ))
- (1
*
0 ))
- (
0
* 1)), ((((
0
*
0 )
+ (
0
*
0 ))
+ (1
* 1))
- (
0
*
0 )), ((((
0
*
0 )
+ (
0
* 1))
+ (
0
*
0 ))
- (1
*
0 )), ((((
0
* 1)
+ (
0
*
0 ))
+ (
0
*
0 ))
- (1
*
0 ))*] by
Def9
.=
[*zz, jj, zz, zz*];
(
<k>
*
<j> )
=
[*((((
0
*
0 )
- (
0
*
0 ))
- (
0
* 1))
- (1
*
0 )), ((((
0
*
0 )
+ (
0
*
0 ))
+ (
0
*
0 ))
- (1
* 1)), ((((
0
* 1)
+ (
0
*
0 ))
+ (
0
* 1))
- (
0
*
0 )), ((((
0
*
0 )
+ (1
*
0 ))
+ (
0
* 1))
- (
0
*
0 ))*] by
Def9
.=
[*zz, (
- jj), zz, zz*];
then ((
<j>
*
<k> )
+ (
<k>
*
<j> ))
=
[*(
0
+
0 ), (
0
+
0 ), (
0
+
0 ), (1
+ (
- 1))*] by
A1,
Def6
.=
0 by
Lm6;
hence thesis by
Def7;
end;
theorem ::
QUATERNI:21
(
<k>
*
<i> )
= (
- (
<i>
*
<k> ))
proof
A1:
<i>
=
[*zz, jj, zz, zz*] by
Lm2,
Lm3;
then
A2: (
<k>
*
<i> )
=
[*((((
0
*
0 )
- (
0
* 1))
- (
0
*
0 ))
- (1
*
0 )), ((((
0
* 1)
+ (
0
*
0 ))
+ (
0
*
0 ))
- (1
*
0 )), ((((
0
*
0 )
+ (
0
*
0 ))
+ (1
* 1))
- (
0
*
0 )), ((((
0
*
0 )
+ (1
*
0 ))
+ (
0
*
0 ))
- (
0
* 1))*] by
Def9
.=
[*zz, zz, jj, zz*];
(
<i>
*
<k> )
=
[*((((
0
*
0 )
- (1
*
0 ))
- (
0
*
0 ))
- (
0
* 1)), ((((
0
*
0 )
+ (1
*
0 ))
+ (
0
* 1))
- (
0
*
0 )), ((((
0
*
0 )
+ (
0
*
0 ))
+ (
0
* 1))
- (1
* 1)), ((((
0
* 1)
+ (
0
*
0 ))
+ (1
*
0 ))
- (
0
*
0 ))*] by
A1,
Def9
.=
[*zz, zz, (
- jj), zz*];
then ((
<k>
*
<i> )
+ (
<i>
*
<k> ))
=
[*(
0
+
0 ), (
0
+
0 ), (1
+ (
- 1)), (
0
+
0 )*] by
A2,
Def6
.=
0 by
Lm6;
hence thesis by
Def7;
end;
definition
let z be
Quaternion;
::
QUATERNI:def12
func
Rea z ->
Number means
:
Def12: ex z9 be
Complex st z
= z9 & it
= (
Re z9) if z
in
COMPLEX
otherwise ex f be
Function of 4,
REAL st z
= f & it
= (f
.
0 );
existence
proof
thus z
in
COMPLEX implies ex IT be
Number, z9 be
Complex st z
= z9 & IT
= (
Re z9)
proof
assume z
in
COMPLEX ;
then
consider r,s be
Element of
REAL such that
A1: z
=
[*r, s*] by
ARYTM_0: 9;
set z9 =
[*r, s*];
take (
Re z9), z9;
thus thesis by
A1;
end;
assume
A2: not z
in
COMPLEX ;
z
in
QUATERNION by
Def2;
then z
in ((
Funcs (4,
REAL ))
\ { x where x be
Element of (
Funcs (4,
REAL )) : (x
. 2)
=
0 & (x
. 3)
=
0 }) by
A2,
XBOOLE_0:def 3;
then
reconsider f = z as
Function of 4,
REAL by
FUNCT_2: 66;
take (f
.
0 ), f;
thus thesis;
end;
uniqueness ;
consistency ;
::
QUATERNI:def13
func
Im1 z ->
Number means
:
Def13: ex z9 be
Complex st z
= z9 & it
= (
Im z9) if z
in
COMPLEX
otherwise ex f be
Function of 4,
REAL st z
= f & it
= (f
. 1);
existence
proof
thus z
in
COMPLEX implies ex IT be
Number, z9 be
Complex st z
= z9 & IT
= (
Im z9)
proof
assume z
in
COMPLEX ;
then
consider r,s be
Element of
REAL such that
A3: z
=
[*r, s*] by
ARYTM_0: 9;
set z9 =
[*r, s*];
take (
Im z9), z9;
thus thesis by
A3;
end;
assume
A4: not z
in
COMPLEX ;
z
in
QUATERNION by
Def2;
then z
in ((
Funcs (4,
REAL ))
\ { x where x be
Element of (
Funcs (4,
REAL )) : (x
. 2)
=
0 & (x
. 3)
=
0 }) by
A4,
XBOOLE_0:def 3;
then
reconsider f = z as
Function of 4,
REAL by
FUNCT_2: 66;
take (f
. 1), f;
thus thesis;
end;
uniqueness ;
consistency ;
::
QUATERNI:def14
func
Im2 z ->
Number means
:
Def14: it
=
0 if z
in
COMPLEX
otherwise ex f be
Function of 4,
REAL st z
= f & it
= (f
. 2);
existence
proof
thus z
in
COMPLEX implies ex IT be
Number st IT
=
0 ;
assume
A5: not z
in
COMPLEX ;
z
in
QUATERNION by
Def2;
then z
in ((
Funcs (4,
REAL ))
\ { x where x be
Element of (
Funcs (4,
REAL )) : (x
. 2)
=
0 & (x
. 3)
=
0 }) by
A5,
XBOOLE_0:def 3;
then
reconsider f = z as
Function of 4,
REAL by
FUNCT_2: 66;
take (f
. 2), f;
thus thesis;
end;
uniqueness ;
consistency ;
::
QUATERNI:def15
func
Im3 z ->
Number means
:
Def15: it
=
0 if z
in
COMPLEX
otherwise ex f be
Function of 4,
REAL st z
= f & it
= (f
. 3);
existence
proof
thus z
in
COMPLEX implies ex IT be
Number st IT
=
0 ;
assume
A6: not z
in
COMPLEX ;
z
in
QUATERNION by
Def2;
then z
in ((
Funcs (4,
REAL ))
\ { x where x be
Element of (
Funcs (4,
REAL )) : (x
. 2)
=
0 & (x
. 3)
=
0 }) by
A6,
XBOOLE_0:def 3;
then
reconsider f = z as
Function of 4,
REAL by
FUNCT_2: 66;
take (f
. 3), f;
thus thesis;
end;
uniqueness ;
consistency ;
end
registration
let z be
Quaternion;
cluster (
Rea z) ->
real;
coherence
proof
per cases ;
suppose z
in
COMPLEX ;
then ex z9 be
Complex st (z
= z9) & ((
Rea z)
= (
Re z9)) by
Def12;
hence thesis;
end;
suppose not z
in
COMPLEX ;
then ex f be
Function of 4,
REAL st (z
= f) & ((
Rea z)
= (f
.
0 )) by
Def12;
hence thesis;
end;
end;
cluster (
Im1 z) ->
real;
coherence
proof
per cases ;
suppose z
in
COMPLEX ;
then ex z9 be
Complex st (z
= z9) & ((
Im1 z)
= (
Im z9)) by
Def13;
hence thesis;
end;
suppose not z
in
COMPLEX ;
then ex f be
Function of 4,
REAL st (z
= f) & ((
Im1 z)
= (f
. 1)) by
Def13;
hence thesis;
end;
end;
cluster (
Im2 z) ->
real;
coherence
proof
per cases ;
suppose z
in
COMPLEX ;
hence thesis by
Def14;
end;
suppose not z
in
COMPLEX ;
then ex f be
Function of 4,
REAL st (z
= f) & ((
Im2 z)
= (f
. 2)) by
Def14;
hence thesis;
end;
end;
cluster (
Im3 z) ->
real;
coherence
proof
per cases ;
suppose z
in
COMPLEX ;
hence thesis by
Def15;
end;
suppose not z
in
COMPLEX ;
then ex f be
Function of 4,
REAL st (z
= f) & ((
Im3 z)
= (f
. 3)) by
Def15;
hence thesis;
end;
end;
end
theorem ::
QUATERNI:22
Th15: for f be
Function of 4,
REAL holds ex a, b, c, d st f
= ((
0 ,1,2,3)
--> (a,b,c,d))
proof
let f be
Function of 4,
REAL ;
reconsider a = (f
.
0 ), b = (f
. 1), c = (f
. 2), d = (f
. 3) as
Element of
REAL by
XREAL_0:def 1;
take a, b, c, d;
(
dom f)
=
{
0 , 1, 2, 3} by
CARD_1: 52,
FUNCT_2:def 1;
hence thesis by
FUNCT_4: 144;
end;
Lm7: for a,b be
Element of
REAL holds (
Re
[*a, b*])
= a & (
Im
[*a, b*])
= b
proof
let a,b be
Element of
REAL ;
reconsider a9 = a, b9 = b as
Element of
REAL ;
thus (
Re
[*a, b*])
= a
proof
per cases ;
suppose b
=
0 ;
then
[*a, b*]
= a by
ARYTM_0:def 5;
hence thesis by
COMPLEX1:def 1;
end;
suppose b
<>
0 ;
then
A1:
[*a, b*]
= ((
0 ,1)
--> (a9,b9)) by
ARYTM_0:def 5;
then
reconsider f =
[*a, b*] as
Function of 2,
REAL by
CARD_1: 50;
not
[*a, b*]
in
REAL by
A1,
ARYTM_0: 8;
then
a2: not
[*a, b*] is
real by
XREAL_0:def 1;
(f
.
0 )
= a by
A1,
FUNCT_4: 63;
hence thesis by
a2,
COMPLEX1:def 1;
end;
end;
per cases ;
suppose
A3: b
=
0 ;
then
[*a, b*]
= a by
ARYTM_0:def 5;
hence thesis by
A3,
COMPLEX1:def 2;
end;
suppose b
<>
0 ;
then
A4:
[*a, b*]
= ((
0 ,1)
--> (a9,b9)) by
ARYTM_0:def 5;
then
reconsider f =
[*a, b*] as
Function of 2,
REAL by
CARD_1: 50;
not
[*a, b*]
in
REAL by
A4,
ARYTM_0: 8;
then
a5: not
[*a, b*] is
real by
XREAL_0:def 1;
(f
. 1)
= b by
A4,
FUNCT_4: 63;
hence thesis by
a5,
COMPLEX1:def 2;
end;
end;
Lm8: for z be
Complex holds
[*(
Re z), (
Im z)*]
= z
proof
let z be
Complex;
A1: z
in
COMPLEX by
XCMPLX_0:def 2;
per cases ;
suppose
A2: z
in
REAL ;
then (
Im z)
=
0 by
COMPLEX1:def 2;
hence
[*(
Re z), (
Im z)*]
= (
Re z) by
ARYTM_0:def 5
.= z by
A2,
COMPLEX1:def 1;
end;
suppose
A3: not z
in
REAL ;
then
a3: not z is
real by
XREAL_0:def 1;
then
A4: ex f be
Function of 2,
REAL st (z
= f) & ((
Im z)
= (f
. 1)) by
COMPLEX1:def 2;
A5: ex f be
Function of 2,
REAL st (z
= f) & ((
Re z)
= (f
.
0 )) by
a3,
COMPLEX1:def 1;
consider a,b be
Element of
REAL such that
A6: z
= ((
0 ,1)
--> (a,b)) by
A4,
COMPLEX1: 2;
A7: (
Re z)
= a by
A5,
A6,
FUNCT_4: 63;
A8: (
Im z)
= b by
A4,
A6,
FUNCT_4: 63;
z
in ((
Funcs (2,
REAL ))
\ { x where x be
Element of (
Funcs (2,
REAL )) : (x
. 1)
=
0 }) by
A1,
A3,
CARD_1: 50,
NUMBERS:def 2,
XBOOLE_0:def 3;
then
A9: not z
in { x where x be
Element of (
Funcs (2,
REAL )) : (x
. 1)
=
0 } by
XBOOLE_0:def 5;
reconsider f = z as
Element of (
Funcs (2,
REAL )) by
A6,
CARD_1: 50,
FUNCT_2: 8;
(f
. 1)
<>
0 by
A9;
then b
<>
0 by
A6,
FUNCT_4: 63;
hence thesis by
A6,
A7,
A8,
ARYTM_0:def 5;
end;
end;
theorem ::
QUATERNI:23
Th16: (
Rea
[*a, b, c, d*])
= a & (
Im1
[*a, b, c, d*])
= b & (
Im2
[*a, b, c, d*])
= c & (
Im3
[*a, b, c, d*])
= d
proof
reconsider aa = a, bb = b, c9 = c, d9 = d as
Element of
REAL by
XREAL_0:def 1;
thus (
Rea
[*a, b, c, d*])
= a
proof
per cases ;
suppose c
=
0 & d
=
0 ;
then
A1:
[*a, b, c, d*]
=
[*aa, bb*] by
Lm3;
(
Re
[*aa, bb*])
= a by
Lm7;
hence thesis by
A1,
Def12;
end;
suppose c
<>
0 or d
<>
0 ;
then
A2:
[*a, b, c, d*]
= ((
0 ,1,2,3)
--> (aa,bb,c9,d9)) by
Def5;
then
reconsider f =
[*a, b, c, d*] as
Function of 4,
REAL by
CARD_1: 52;
A3: not
[*a, b, c, d*]
in
COMPLEX by
A2,
Th4;
(f
.
0 )
= a by
A2,
FUNCT_4: 142;
hence thesis by
A3,
Def12;
end;
end;
thus (
Im1
[*a, b, c, d*])
= b
proof
per cases ;
suppose c
=
0 & d
=
0 ;
then
A4:
[*a, b, c, d*]
=
[*aa, bb*] by
Lm3;
(
Im
[*aa, bb*])
= b by
Lm7;
hence thesis by
A4,
Def13;
end;
suppose c
<>
0 or d
<>
0 ;
then
A5:
[*a, b, c, d*]
= ((
0 ,1,2,3)
--> (aa,bb,c9,d9)) by
Def5;
then
reconsider f =
[*a, b, c, d*] as
Function of 4,
REAL by
CARD_1: 52;
A6: not
[*a, b, c, d*]
in
COMPLEX by
A5,
Th4;
(f
. 1)
= b by
A5,
FUNCT_4: 141;
hence thesis by
A6,
Def13;
end;
end;
thus (
Im2
[*a, b, c, d*])
= c
proof
per cases ;
suppose
A7: c
=
0 & d
=
0 ;
then
[*a, b, c, d*]
=
[*aa, bb*] by
Lm3;
hence thesis by
A7,
Def14;
end;
suppose c
<>
0 or d
<>
0 ;
then
A8:
[*a, b, c, d*]
= ((
0 ,1,2,3)
--> (aa,bb,c9,d9)) by
Def5;
then
reconsider f =
[*a, b, c, d*] as
Function of 4,
REAL by
CARD_1: 52;
A9: not
[*a, b, c, d*]
in
COMPLEX by
A8,
Th4;
(f
. 2)
= c by
A8,
FUNCT_4: 140;
hence thesis by
A9,
Def14;
end;
end;
per cases ;
suppose
A10: c
=
0 & d
=
0 ;
then
[*a, b, c, d*]
=
[*aa, bb*] by
Lm3;
hence thesis by
A10,
Def15;
end;
suppose c
<>
0 or d
<>
0 ;
then
A11:
[*a, b, c, d*]
= ((
0 ,1,2,3)
--> (aa,bb,c9,d9)) by
Def5;
then
reconsider f =
[*a, b, c, d*] as
Function of 4,
REAL by
CARD_1: 52;
A12: not
[*a, b, c, d*]
in
COMPLEX by
A11,
Th4;
(f
. 3)
= d by
A11,
FUNCT_4: 139;
hence thesis by
A12,
Def15;
end;
end;
reserve z,z1,z2,z3,z4 for
Quaternion;
theorem ::
QUATERNI:24
Th17: z
=
[*(
Rea z), (
Im1 z), (
Im2 z), (
Im3 z)*]
proof
A1: z
in
QUATERNION by
Def2;
per cases ;
suppose
A2: z
in
COMPLEX ;
then
A3: (
Im2 z)
=
0 by
Def14;
A4: (
Im3 z)
=
0 by
A2,
Def15;
A5: ex z9 be
Complex st (z
= z9) & ((
Rea z)
= (
Re z9)) by
A2,
Def12;
consider z9 be
Complex such that
A6: z
= z9 and
A7: (
Im1 z)
= (
Im z9) by
A2,
Def13;
reconsider Rz = (
Rea z), Imz = (
Im1 z) as
Element of
REAL by
XREAL_0:def 1;
[*Rz, Imz*]
= z9 by
A5,
A6,
A7,
Lm8;
hence thesis by
A3,
A4,
A6,
Lm3;
end;
suppose
A8: not z
in
COMPLEX ;
then
A9: ex f be
Function of 4,
REAL st (z
= f) & ((
Im1 z)
= (f
. 1)) by
Def13;
A10: ex f be
Function of 4,
REAL st (z
= f) & ((
Rea z)
= (f
.
0 )) by
A8,
Def12;
A11: ex f be
Function of 4,
REAL st (z
= f) & ((
Im2 z)
= (f
. 2)) by
A8,
Def14;
A12: ex f be
Function of 4,
REAL st (z
= f) & ((
Im3 z)
= (f
. 3)) by
A8,
Def15;
consider a,b,c,d be
Real such that
A13: z
= ((
0 ,1,2,3)
--> (a,b,c,d)) by
A9,
Th15;
reconsider a, b, c, d as
Element of
REAL by
XREAL_0:def 1;
A14: z
= ((
0 ,1,2,3)
--> (a,b,c,d)) by
A13;
A15: (
Rea z)
= a by
A10,
A14,
FUNCT_4: 142;
A16: (
Im1 z)
= b by
A9,
A14,
FUNCT_4: 141;
A17: (
Im2 z)
= c by
A11,
A14,
FUNCT_4: 140;
A18: (
Im3 z)
= d by
A12,
A14,
FUNCT_4: 139;
z
in ((
Funcs (4,
REAL ))
\ { x where x be
Element of (
Funcs (4,
REAL )) : (x
. 2)
=
0 & (x
. 3)
=
0 }) by
A1,
A8,
XBOOLE_0:def 3;
then
A19: not z
in { x where x be
Element of (
Funcs (4,
REAL )) : (x
. 2)
=
0 & (x
. 3)
=
0 } by
XBOOLE_0:def 5;
reconsider f = z as
Element of (
Funcs (4,
REAL )) by
A14,
CARD_1: 52,
FUNCT_2: 8;
(f
. 2)
<>
0 or (f
. 3)
<>
0 by
A19;
then c
<>
0 or d
<>
0 by
A14,
FUNCT_4: 139,
FUNCT_4: 140;
hence thesis by
A14,
A15,
A16,
A17,
A18,
Def5;
end;
end;
theorem ::
QUATERNI:25
Th18: (
Rea z1)
= (
Rea z2) & (
Im1 z1)
= (
Im1 z2) & (
Im2 z1)
= (
Im2 z2) & (
Im3 z1)
= (
Im3 z2) implies z1
= z2
proof
assume that
A1: (
Rea z1)
= (
Rea z2) and
A2: (
Im1 z1)
= (
Im1 z2) and
A3: (
Im2 z1)
= (
Im2 z2) and
A4: (
Im3 z1)
= (
Im3 z2);
thus z1
=
[*(
Rea z2), (
Im1 z2), (
Im2 z2), (
Im3 z2)*] by
A1,
A2,
A3,
A4,
Th17
.= z2 by
Th17;
end;
definition
::
QUATERNI:def16
func
0q ->
Quaternion equals
0 ;
coherence by
Lm6;
::
QUATERNI:def17
func
1q ->
Quaternion equals 1;
coherence
proof
[*1,
0 ,
0 ,
0 *]
=
[*jj, zz*] by
Lm3;
hence thesis by
ARYTM_0:def 5;
end;
end
Lm9: for a,b,c,d be
Real st ((((a
^2 )
+ (b
^2 ))
+ (c
^2 ))
+ (d
^2 ))
=
0 holds a
=
0 & b
=
0 & c
=
0 & d
=
0
proof
let a,b,c,d be
Real;
assume
A1: ((((a
^2 )
+ (b
^2 ))
+ (c
^2 ))
+ (d
^2 ))
=
0 ;
A2:
0
<= (a
^2 ) by
XREAL_1: 63;
A3:
0
<= (b
^2 ) by
XREAL_1: 63;
A4:
0
<= (c
^2 ) by
XREAL_1: 63;
A5:
0
<= (d
^2 ) by
XREAL_1: 63;
assume
A6: a
<>
0 or b
<>
0 or c
<>
0 or d
<>
0 ;
per cases by
A6;
suppose a
<>
0 ;
then
0
< ((a
^2 )
+ (b
^2 )) by
A3,
SQUARE_1: 12,
XREAL_1: 34;
hence contradiction by
A1,
A4,
A5;
end;
suppose b
<>
0 ;
then
0
< ((a
^2 )
+ (b
^2 )) by
A2,
SQUARE_1: 12,
XREAL_1: 34;
hence contradiction by
A1,
A4,
A5;
end;
suppose c
<>
0 ;
then
0
< ((c
^2 )
+ (d
^2 )) by
A5,
SQUARE_1: 12,
XREAL_1: 34;
then
0
< (((a
^2 )
+ (b
^2 ))
+ ((c
^2 )
+ (d
^2 ))) by
A2,
A3;
hence contradiction by
A1;
end;
suppose d
<>
0 ;
then
0
< ((c
^2 )
+ (d
^2 )) by
A4,
SQUARE_1: 12,
XREAL_1: 34;
then
0
< (((a
^2 )
+ (b
^2 ))
+ ((c
^2 )
+ (d
^2 ))) by
A2,
A3;
hence contradiction by
A1;
end;
end;
theorem ::
QUATERNI:26
Th19: (
Rea z)
=
0 & (
Im1 z)
=
0 & (
Im2 z)
=
0 & (
Im3 z)
=
0 implies z
=
0q
proof
assume that
A1: (
Rea z)
=
0 and
A2: (
Im1 z)
=
0 and
A3: (
Im2 z)
=
0 and
A4: (
Im3 z)
=
0 ;
A5: (
Rea z)
= (
Rea
[*
0 ,
0 ,
0 ,
0 *]) by
A1,
Th16;
A6: (
Im1 z)
= (
Im1
[*
0 ,
0 ,
0 ,
0 *]) by
A2,
Th16;
A7: (
Im2 z)
= (
Im2
[*
0 ,
0 ,
0 ,
0 *]) by
A3,
Th16;
(
Im3 z)
= (
Im3
[*
0 ,
0 ,
0 ,
0 *]) by
A4,
Th16;
hence thesis by
A5,
A6,
A7,
Lm6,
Th18;
end;
theorem ::
QUATERNI:27
z
=
0 implies (((((
Rea z)
^2 )
+ ((
Im1 z)
^2 ))
+ ((
Im2 z)
^2 ))
+ ((
Im3 z)
^2 ))
=
0
proof
assume
A1: z
=
0 ;
then
A2: (
Rea z)
=
0 by
Lm6,
Th16;
A3: (
Im1 z)
=
0 by
A1,
Lm6,
Th16;
(
Im2 z)
=
0 by
A1,
Lm6,
Th16;
hence thesis by
A1,
A2,
A3,
Lm6,
Th16;
end;
theorem ::
QUATERNI:28
(((((
Rea z)
^2 )
+ ((
Im1 z)
^2 ))
+ ((
Im2 z)
^2 ))
+ ((
Im3 z)
^2 ))
=
0 implies z
=
0q
proof
assume
A1: (((((
Rea z)
^2 )
+ ((
Im1 z)
^2 ))
+ ((
Im2 z)
^2 ))
+ ((
Im3 z)
^2 ))
=
0 ;
then
A2: (
Rea z)
=
0 by
Lm9;
A3: (
Im1 z)
=
0 by
A1,
Lm9;
A4: (
Im2 z)
=
0 by
A1,
Lm9;
(
Im3 z)
=
0 by
A1,
Lm9;
hence thesis by
A2,
A3,
A4,
Th19;
end;
Lm10:
[*jj, zz, zz, zz*]
= 1
proof
[*1,
0 ,
0 ,
0 *]
=
[*jj, zz*] by
Lm3;
hence thesis by
ARYTM_0:def 5;
end;
theorem ::
QUATERNI:29
(
Rea
1q )
= 1 & (
Im1
1q )
=
0 & (
Im2
1q )
=
0 & (
Im3
1q )
=
0 by
Lm10,
Th16;
theorem ::
QUATERNI:30
Th23: (
Rea
<i> )
=
0 & (
Im1
<i> )
= 1 & (
Im2
<i> )
=
0 & (
Im3
<i> )
=
0
proof
[*zz, jj*]
=
[*
0 , 1,
0 ,
0 *] by
Lm3;
hence thesis by
Lm2,
Th16;
end;
theorem ::
QUATERNI:31
Th24: (
Rea
<j> )
=
0 & (
Im1
<j> )
=
0 & (
Im2
<j> )
= 1 & (
Im3
<j> )
=
0 & (
Rea
<k> )
=
0 & (
Im1
<k> )
=
0 & (
Im2
<k> )
=
0 & (
Im3
<k> )
= 1 by
Th16;
Lm11: for m,n,x,y,z be
Quaternion st z
= (((m
+ n)
+ x)
+ y) holds (
Rea z)
= ((((
Rea m)
+ (
Rea n))
+ (
Rea x))
+ (
Rea y)) & (
Im1 z)
= ((((
Im1 m)
+ (
Im1 n))
+ (
Im1 x))
+ (
Im1 y)) & (
Im2 z)
= ((((
Im2 m)
+ (
Im2 n))
+ (
Im2 x))
+ (
Im2 y)) & (
Im3 z)
= ((((
Im3 m)
+ (
Im3 n))
+ (
Im3 x))
+ (
Im3 y))
proof
let m,n,x,y,z be
Quaternion such that
A1: z
= (((m
+ n)
+ x)
+ y);
consider m1,m2,m3,m4,n1,n2,n3,n4 be
Real such that
A2: m
=
[*m1, m2, m3, m4*] and
A3: n
=
[*n1, n2, n3, n4*] and
A4: (m
+ n)
=
[*(m1
+ n1), (m2
+ n2), (m3
+ n3), (m4
+ n4)*] by
Def6;
consider x1,x2,x3,x4,y1,y2,y3,y4 be
Real such that
A5: x
=
[*x1, x2, x3, x4*] and
A6: y
=
[*y1, y2, y3, y4*] and (x
+ y)
=
[*(x1
+ y1), (x2
+ y2), (x3
+ y3), (x4
+ y4)*] by
Def6;
A7: (
Rea m)
= m1 by
A2,
Th16;
A8: (
Rea n)
= n1 by
A3,
Th16;
A9: (
Rea x)
= x1 by
A5,
Th16;
A10: (
Rea y)
= y1 by
A6,
Th16;
A11: (
Im1 m)
= m2 by
A2,
Th16;
A12: (
Im1 n)
= n2 by
A3,
Th16;
A13: (
Im1 x)
= x2 by
A5,
Th16;
A14: (
Im1 y)
= y2 by
A6,
Th16;
A15: (
Im2 m)
= m3 by
A2,
Th16;
A16: (
Im2 n)
= n3 by
A3,
Th16;
A17: (
Im2 x)
= x3 by
A5,
Th16;
A18: (
Im2 y)
= y3 by
A6,
Th16;
A19: (
Im3 m)
= m4 by
A2,
Th16;
A20: (
Im3 n)
= n4 by
A3,
Th16;
A21: (
Im3 x)
= x4 by
A5,
Th16;
A22: (
Im3 y)
= y4 by
A6,
Th16;
((m
+ n)
+ x)
=
[*((m1
+ n1)
+ x1), ((m2
+ n2)
+ x2), ((m3
+ n3)
+ x3), ((m4
+ n4)
+ x4)*] by
A4,
A5,
Def6;
then z
=
[*(((m1
+ n1)
+ x1)
+ y1), (((m2
+ n2)
+ x2)
+ y2), (((m3
+ n3)
+ x3)
+ y3), (((m4
+ n4)
+ x4)
+ y4)*] by
A1,
A6,
Def6;
hence thesis by
A7,
A8,
A9,
A10,
A11,
A12,
A13,
A14,
A15,
A16,
A17,
A18,
A19,
A20,
A21,
A22,
Th16;
end;
Lm12: for x,y,z be
Quaternion st z
= (x
+ y) holds (
Rea z)
= ((
Rea x)
+ (
Rea y)) & (
Im1 z)
= ((
Im1 x)
+ (
Im1 y)) & (
Im2 z)
= ((
Im2 x)
+ (
Im2 y)) & (
Im3 z)
= ((
Im3 x)
+ (
Im3 y))
proof
let x,y,z be
Quaternion such that
A1: z
= (x
+ y);
consider x1,x2,x3,x4,y1,y2,y3,y4 be
Real such that
A2: x
=
[*x1, x2, x3, x4*] and
A3: y
=
[*y1, y2, y3, y4*] and
A4: (x
+ y)
=
[*(x1
+ y1), (x2
+ y2), (x3
+ y3), (x4
+ y4)*] by
Def6;
A5: (
Rea x)
= x1 by
A2,
Th16;
A6: (
Rea y)
= y1 by
A3,
Th16;
A7: (
Im1 x)
= x2 by
A2,
Th16;
A8: (
Im1 y)
= y2 by
A3,
Th16;
A9: (
Im2 x)
= x3 by
A2,
Th16;
A10: (
Im2 y)
= y3 by
A3,
Th16;
A11: (
Im3 x)
= x4 by
A2,
Th16;
(
Im3 y)
= y4 by
A3,
Th16;
hence thesis by
A1,
A4,
A5,
A6,
A7,
A8,
A9,
A10,
A11,
Th16;
end;
Lm13: (z1
+ z2)
=
[*((
Rea z1)
+ (
Rea z2)), ((
Im1 z1)
+ (
Im1 z2)), ((
Im2 z1)
+ (
Im2 z2)), ((
Im3 z1)
+ (
Im3 z2))*]
proof
set z =
[*((
Rea z1)
+ (
Rea z2)), ((
Im1 z1)
+ (
Im1 z2)), ((
Im2 z1)
+ (
Im2 z2)), ((
Im3 z1)
+ (
Im3 z2))*];
reconsider z9 = (z1
+ z2) as
Quaternion;
A1: (
Rea z)
= ((
Rea z1)
+ (
Rea z2)) by
Th16
.= (
Rea z9) by
Lm12;
A2: (
Im1 z)
= ((
Im1 z1)
+ (
Im1 z2)) by
Th16
.= (
Im1 z9) by
Lm12;
A3: (
Im2 z)
= ((
Im2 z1)
+ (
Im2 z2)) by
Th16
.= (
Im2 z9) by
Lm12;
(
Im3 z)
= ((
Im3 z1)
+ (
Im3 z2)) by
Th16
.= (
Im3 z9) by
Lm12;
hence thesis by
A1,
A2,
A3,
Th18;
end;
Lm14: for x,y,z be
Quaternion st z
= (x
* y) holds (
Rea z)
= (((((
Rea x)
* (
Rea y))
- ((
Im1 x)
* (
Im1 y)))
- ((
Im2 x)
* (
Im2 y)))
- ((
Im3 x)
* (
Im3 y))) & (
Im1 z)
= (((((
Rea x)
* (
Im1 y))
+ ((
Im1 x)
* (
Rea y)))
+ ((
Im2 x)
* (
Im3 y)))
- ((
Im3 x)
* (
Im2 y))) & (
Im2 z)
= (((((
Rea x)
* (
Im2 y))
+ ((
Im2 x)
* (
Rea y)))
+ ((
Im3 x)
* (
Im1 y)))
- ((
Im1 x)
* (
Im3 y))) & (
Im3 z)
= (((((
Rea x)
* (
Im3 y))
+ ((
Im3 x)
* (
Rea y)))
+ ((
Im1 x)
* (
Im2 y)))
- ((
Im2 x)
* (
Im1 y)))
proof
let x,y,z be
Quaternion such that
A1: z
= (x
* y);
consider x1,x2,x3,x4,y1,y2,y3,y4 be
Real such that
A2: x
=
[*x1, x2, x3, x4*] and
A3: y
=
[*y1, y2, y3, y4*] and
A4: (x
* y)
=
[*((((x1
* y1)
- (x2
* y2))
- (x3
* y3))
- (x4
* y4)), ((((x1
* y2)
+ (x2
* y1))
+ (x3
* y4))
- (x4
* y3)), ((((x1
* y3)
+ (y1
* x3))
+ (y2
* x4))
- (y4
* x2)), ((((x1
* y4)
+ (x4
* y1))
+ (x2
* y3))
- (x3
* y2))*] by
Def9;
A5: (
Rea x)
= x1 by
A2,
Th16;
A6: (
Rea y)
= y1 by
A3,
Th16;
A7: (
Im1 x)
= x2 by
A2,
Th16;
A8: (
Im1 y)
= y2 by
A3,
Th16;
A9: (
Im2 x)
= x3 by
A2,
Th16;
A10: (
Im2 y)
= y3 by
A3,
Th16;
A11: (
Im3 x)
= x4 by
A2,
Th16;
(
Im3 y)
= y4 by
A3,
Th16;
hence thesis by
A1,
A4,
A5,
A6,
A7,
A8,
A9,
A10,
A11,
Th16;
end;
Lm15: (((z1
+ z2)
+ z3)
+ z4)
=
[*((((
Rea z1)
+ (
Rea z2))
+ (
Rea z3))
+ (
Rea z4)), ((((
Im1 z1)
+ (
Im1 z2))
+ (
Im1 z3))
+ (
Im1 z4)), ((((
Im2 z1)
+ (
Im2 z2))
+ (
Im2 z3))
+ (
Im2 z4)), ((((
Im3 z1)
+ (
Im3 z2))
+ (
Im3 z3))
+ (
Im3 z4))*]
proof
set z =
[*((((
Rea z1)
+ (
Rea z2))
+ (
Rea z3))
+ (
Rea z4)), ((((
Im1 z1)
+ (
Im1 z2))
+ (
Im1 z3))
+ (
Im1 z4)), ((((
Im2 z1)
+ (
Im2 z2))
+ (
Im2 z3))
+ (
Im2 z4)), ((((
Im3 z1)
+ (
Im3 z2))
+ (
Im3 z3))
+ (
Im3 z4))*];
reconsider z9 = (((z1
+ z2)
+ z3)
+ z4) as
Quaternion;
A1: (
Rea z)
= ((((
Rea z1)
+ (
Rea z2))
+ (
Rea z3))
+ (
Rea z4)) by
Th16
.= (
Rea z9) by
Lm11;
A2: (
Im1 z)
= ((((
Im1 z1)
+ (
Im1 z2))
+ (
Im1 z3))
+ (
Im1 z4)) by
Th16
.= (
Im1 z9) by
Lm11;
A3: (
Im2 z)
= ((((
Im2 z1)
+ (
Im2 z2))
+ (
Im2 z3))
+ (
Im2 z4)) by
Th16
.= (
Im2 z9) by
Lm11;
(
Im3 z)
= ((((
Im3 z1)
+ (
Im3 z2))
+ (
Im3 z3))
+ (
Im3 z4)) by
Th16
.= (
Im3 z9) by
Lm11;
hence thesis by
A1,
A2,
A3,
Th18;
end;
Lm16: (z1
* z2)
=
[*(((((
Rea z1)
* (
Rea z2))
- ((
Im1 z1)
* (
Im1 z2)))
- ((
Im2 z1)
* (
Im2 z2)))
- ((
Im3 z1)
* (
Im3 z2))), (((((
Rea z1)
* (
Im1 z2))
+ ((
Im1 z1)
* (
Rea z2)))
+ ((
Im2 z1)
* (
Im3 z2)))
- ((
Im3 z1)
* (
Im2 z2))), (((((
Rea z1)
* (
Im2 z2))
+ ((
Im2 z1)
* (
Rea z2)))
+ ((
Im3 z1)
* (
Im1 z2)))
- ((
Im1 z1)
* (
Im3 z2))), (((((
Rea z1)
* (
Im3 z2))
+ ((
Im3 z1)
* (
Rea z2)))
+ ((
Im1 z1)
* (
Im2 z2)))
- ((
Im2 z1)
* (
Im1 z2)))*]
proof
set z =
[*(((((
Rea z1)
* (
Rea z2))
- ((
Im1 z1)
* (
Im1 z2)))
- ((
Im2 z1)
* (
Im2 z2)))
- ((
Im3 z1)
* (
Im3 z2))), (((((
Rea z1)
* (
Im1 z2))
+ ((
Im1 z1)
* (
Rea z2)))
+ ((
Im2 z1)
* (
Im3 z2)))
- ((
Im3 z1)
* (
Im2 z2))), (((((
Rea z1)
* (
Im2 z2))
+ ((
Im2 z1)
* (
Rea z2)))
+ ((
Im3 z1)
* (
Im1 z2)))
- ((
Im1 z1)
* (
Im3 z2))), (((((
Rea z1)
* (
Im3 z2))
+ ((
Im3 z1)
* (
Rea z2)))
+ ((
Im1 z1)
* (
Im2 z2)))
- ((
Im2 z1)
* (
Im1 z2)))*];
reconsider z9 = (z1
* z2) as
Quaternion;
A1: (
Rea z)
= (((((
Rea z1)
* (
Rea z2))
- ((
Im1 z1)
* (
Im1 z2)))
- ((
Im2 z1)
* (
Im2 z2)))
- ((
Im3 z1)
* (
Im3 z2))) by
Th16
.= (
Rea z9) by
Lm14;
A2: (
Im1 z)
= (((((
Rea z1)
* (
Im1 z2))
+ ((
Im1 z1)
* (
Rea z2)))
+ ((
Im2 z1)
* (
Im3 z2)))
- ((
Im3 z1)
* (
Im2 z2))) by
Th16
.= (
Im1 z9) by
Lm14;
A3: (
Im2 z)
= (((((
Rea z1)
* (
Im2 z2))
+ ((
Im2 z1)
* (
Rea z2)))
+ ((
Im3 z1)
* (
Im1 z2)))
- ((
Im1 z1)
* (
Im3 z2))) by
Th16
.= (
Im2 z9) by
Lm14;
(
Im3 z)
= (((((
Rea z1)
* (
Im3 z2))
+ ((
Im3 z1)
* (
Rea z2)))
+ ((
Im1 z1)
* (
Im2 z2)))
- ((
Im2 z1)
* (
Im1 z2))) by
Th16
.= (
Im3 z9) by
Lm14;
hence thesis by
A1,
A2,
A3,
Th18;
end;
Lm17: (
Rea (z1
* z2))
= (((((
Rea z1)
* (
Rea z2))
- ((
Im1 z1)
* (
Im1 z2)))
- ((
Im2 z1)
* (
Im2 z2)))
- ((
Im3 z1)
* (
Im3 z2))) & (
Im1 (z1
* z2))
= (((((
Rea z1)
* (
Im1 z2))
+ ((
Im1 z1)
* (
Rea z2)))
+ ((
Im2 z1)
* (
Im3 z2)))
- ((
Im3 z1)
* (
Im2 z2))) & (
Im2 (z1
* z2))
= (((((
Rea z1)
* (
Im2 z2))
+ ((
Im2 z1)
* (
Rea z2)))
+ ((
Im3 z1)
* (
Im1 z2)))
- ((
Im1 z1)
* (
Im3 z2))) & (
Im3 (z1
* z2))
= (((((
Rea z1)
* (
Im3 z2))
+ ((
Im3 z1)
* (
Rea z2)))
+ ((
Im1 z1)
* (
Im2 z2)))
- ((
Im2 z1)
* (
Im1 z2)))
proof
(z1
* z2)
=
[*(((((
Rea z1)
* (
Rea z2))
- ((
Im1 z1)
* (
Im1 z2)))
- ((
Im2 z1)
* (
Im2 z2)))
- ((
Im3 z1)
* (
Im3 z2))), (((((
Rea z1)
* (
Im1 z2))
+ ((
Im1 z1)
* (
Rea z2)))
+ ((
Im2 z1)
* (
Im3 z2)))
- ((
Im3 z1)
* (
Im2 z2))), (((((
Rea z1)
* (
Im2 z2))
+ ((
Im2 z1)
* (
Rea z2)))
+ ((
Im3 z1)
* (
Im1 z2)))
- ((
Im1 z1)
* (
Im3 z2))), (((((
Rea z1)
* (
Im3 z2))
+ ((
Im3 z1)
* (
Rea z2)))
+ ((
Im1 z1)
* (
Im2 z2)))
- ((
Im2 z1)
* (
Im1 z2)))*] by
Lm16;
hence thesis by
Th16;
end;
theorem ::
QUATERNI:32
(
Rea (((z1
+ z2)
+ z3)
+ z4))
= ((((
Rea z1)
+ (
Rea z2))
+ (
Rea z3))
+ (
Rea z4)) & (
Im1 (((z1
+ z2)
+ z3)
+ z4))
= ((((
Im1 z1)
+ (
Im1 z2))
+ (
Im1 z3))
+ (
Im1 z4)) & (
Im2 (((z1
+ z2)
+ z3)
+ z4))
= ((((
Im2 z1)
+ (
Im2 z2))
+ (
Im2 z3))
+ (
Im2 z4)) & (
Im3 (((z1
+ z2)
+ z3)
+ z4))
= ((((
Im3 z1)
+ (
Im3 z2))
+ (
Im3 z3))
+ (
Im3 z4))
proof
(((z1
+ z2)
+ z3)
+ z4)
=
[*((((
Rea z1)
+ (
Rea z2))
+ (
Rea z3))
+ (
Rea z4)), ((((
Im1 z1)
+ (
Im1 z2))
+ (
Im1 z3))
+ (
Im1 z4)), ((((
Im2 z1)
+ (
Im2 z2))
+ (
Im2 z3))
+ (
Im2 z4)), ((((
Im3 z1)
+ (
Im3 z2))
+ (
Im3 z3))
+ (
Im3 z4))*] by
Lm15;
hence thesis by
Th16;
end;
reserve x for
Real;
Lm18: z
= x implies (
Rea z)
= x & (
Im1 z)
=
0 & (
Im2 z)
=
0 & (
Im3 z)
=
0
proof
assume
A1: z
= x;
reconsider xx = x, zz =
0 as
Element of
REAL by
XREAL_0:def 1;
A2: x
=
[*xx, zz*] by
ARYTM_0:def 5;
[*xx, zz*]
=
[*x,
0 ,
0 ,
0 *] by
Lm3;
hence thesis by
A1,
A2,
Th16;
end;
theorem ::
QUATERNI:33
z1
= x implies (
Rea (z1
*
<i> ))
=
0 & (
Im1 (z1
*
<i> ))
= x & (
Im2 (z1
*
<i> ))
=
0 & (
Im3 (z1
*
<i> ))
=
0
proof
assume
A1: z1
= x;
A2: (
Rea (z1
*
<i> ))
= (((((
Rea z1)
* (
Rea
<i> ))
- ((
Im1 z1)
* (
Im1
<i> )))
- ((
Im2 z1)
* (
Im2
<i> )))
- ((
Im3 z1)
* (
Im3
<i> ))) by
Lm17;
A3: (
Im1 (z1
*
<i> ))
= (((((
Rea z1)
* (
Im1
<i> ))
+ ((
Im1 z1)
* (
Rea
<i> )))
+ ((
Im2 z1)
* (
Im3
<i> )))
- ((
Im3 z1)
* (
Im2
<i> ))) by
Lm17;
A4: (
Im2 (z1
*
<i> ))
= (((((
Rea z1)
* (
Im2
<i> ))
+ ((
Im2 z1)
* (
Rea
<i> )))
+ ((
Im3 z1)
* (
Im1
<i> )))
- ((
Im1 z1)
* (
Im3
<i> ))) by
Lm17;
(
Im3 (z1
*
<i> ))
= (((((
Rea z1)
* (
Im3
<i> ))
+ ((
Im3 z1)
* (
Rea
<i> )))
+ ((
Im1 z1)
* (
Im2
<i> )))
- ((
Im2 z1)
* (
Im1
<i> ))) by
Lm17;
hence thesis by
A1,
A2,
A3,
A4,
Lm18,
Th23;
end;
theorem ::
QUATERNI:34
z1
= x implies (
Rea (z1
*
<j> ))
=
0 & (
Im1 (z1
*
<j> ))
=
0 & (
Im2 (z1
*
<j> ))
= x & (
Im3 (z1
*
<j> ))
=
0
proof
assume
A1: z1
= x;
A2: (
Rea (z1
*
<j> ))
= (((((
Rea z1)
* (
Rea
<j> ))
- ((
Im1 z1)
* (
Im1
<j> )))
- ((
Im2 z1)
* (
Im2
<j> )))
- ((
Im3 z1)
* (
Im3
<j> ))) by
Lm17;
A3: (
Im1 (z1
*
<j> ))
= (((((
Rea z1)
* (
Im1
<j> ))
+ ((
Im1 z1)
* (
Rea
<j> )))
+ ((
Im2 z1)
* (
Im3
<j> )))
- ((
Im3 z1)
* (
Im2
<j> ))) by
Lm17;
A4: (
Im2 (z1
*
<j> ))
= (((((
Rea z1)
* (
Im2
<j> ))
+ ((
Im2 z1)
* (
Rea
<j> )))
+ ((
Im3 z1)
* (
Im1
<j> )))
- ((
Im1 z1)
* (
Im3
<j> ))) by
Lm17;
(
Im3 (z1
*
<j> ))
= (((((
Rea z1)
* (
Im3
<j> ))
+ ((
Im3 z1)
* (
Rea
<j> )))
+ ((
Im1 z1)
* (
Im2
<j> )))
- ((
Im2 z1)
* (
Im1
<j> ))) by
Lm17;
hence thesis by
A1,
A2,
A3,
A4,
Lm18,
Th24;
end;
theorem ::
QUATERNI:35
z1
= x implies (
Rea (z1
*
<k> ))
=
0 & (
Im1 (z1
*
<k> ))
=
0 & (
Im2 (z1
*
<k> ))
=
0 & (
Im3 (z1
*
<k> ))
= x
proof
assume
A1: z1
= x;
A2: (
Rea (z1
*
<k> ))
= (((((
Rea z1)
* (
Rea
<k> ))
- ((
Im1 z1)
* (
Im1
<k> )))
- ((
Im2 z1)
* (
Im2
<k> )))
- ((
Im3 z1)
* (
Im3
<k> ))) by
Lm17;
A3: (
Im1 (z1
*
<k> ))
= (((((
Rea z1)
* (
Im1
<k> ))
+ ((
Im1 z1)
* (
Rea
<k> )))
+ ((
Im2 z1)
* (
Im3
<k> )))
- ((
Im3 z1)
* (
Im2
<k> ))) by
Lm17;
A4: (
Im2 (z1
*
<k> ))
= (((((
Rea z1)
* (
Im2
<k> ))
+ ((
Im2 z1)
* (
Rea
<k> )))
+ ((
Im3 z1)
* (
Im1
<k> )))
- ((
Im1 z1)
* (
Im3
<k> ))) by
Lm17;
(
Im3 (z1
*
<k> ))
= (((((
Rea z1)
* (
Im3
<k> ))
+ ((
Im3 z1)
* (
Rea
<k> )))
+ ((
Im1 z1)
* (
Im2
<k> )))
- ((
Im2 z1)
* (
Im1
<k> ))) by
Lm17;
hence thesis by
A1,
A2,
A3,
A4,
Lm18,
Th24;
end;
definition
let x be
Real, y be
Quaternion;
consider y1,y2,y3,y4 be
Real such that
A1: y
=
[*y1, y2, y3, y4*] by
Th2;
::
QUATERNI:def18
func x
+ y ->
Number means
:
Def18: ex y1,y2,y3,y4 be
Real st y
=
[*y1, y2, y3, y4*] & it
=
[*(x
+ y1), y2, y3, y4*];
existence
proof
take
[*(x
+ y1), y2, y3, y4*];
thus thesis by
A1;
end;
uniqueness
proof
let c1,c2 be
Number;
given y1,y2,y3,y4 be
Real such that
A2: y
=
[*y1, y2, y3, y4*] and
A3: c1
=
[*(x
+ y1), y2, y3, y4*];
given y19,y29,y39,y49 be
Real such that
A4: y
=
[*y19, y29, y39, y49*] and
A5: c2
=
[*(x
+ y19), y29, y39, y49*];
A6: y1
= y19 by
A2,
A4,
Th5;
A7: y2
= y29 by
A2,
A4,
Th5;
y3
= y39 by
A2,
A4,
Th5;
hence thesis by
A2,
A3,
A4,
A5,
A6,
A7,
Th5;
end;
end
definition
let x be
Real, y be
Quaternion;
::
QUATERNI:def19
func x
- y ->
Number equals (x
+ (
- y));
coherence ;
end
definition
let x be
Real, y be
Quaternion;
consider y1,y2,y3,y4 be
Real such that
A1: y
=
[*y1, y2, y3, y4*] by
Th2;
::
QUATERNI:def20
func x
* y ->
Number means
:
Def20: ex y1,y2,y3,y4 be
Real st y
=
[*y1, y2, y3, y4*] & it
=
[*(x
* y1), (x
* y2), (x
* y3), (x
* y4)*];
existence
proof
take
[*(x
* y1), (x
* y2), (x
* y3), (x
* y4)*];
thus thesis by
A1;
end;
uniqueness
proof
let c1,c2 be
Number;
given y1,y2,y3,y4 be
Real such that
A2: y
=
[*y1, y2, y3, y4*] and
A3: c1
=
[*(x
* y1), (x
* y2), (x
* y3), (x
* y4)*];
given y19,y29,y39,y49 be
Real such that
A4: y
=
[*y19, y29, y39, y49*] and
A5: c2
=
[*(x
* y19), (x
* y29), (x
* y39), (x
* y49)*];
A6: y1
= y19 by
A2,
A4,
Th5;
A7: y2
= y29 by
A2,
A4,
Th5;
y3
= y39 by
A2,
A4,
Th5;
hence thesis by
A2,
A3,
A4,
A5,
A6,
A7,
Th5;
end;
end
registration
let x be
Real, z9 be
Quaternion;
cluster (x
+ z9) ->
quaternion;
coherence
proof
ex y1,y2,y3,y4 be
Real st z9
=
[*y1, y2, y3, y4*] & (x
+ z9)
=
[*(x
+ y1), y2, y3, y4*] by
Def18;
hence thesis;
end;
cluster (x
* z9) ->
quaternion;
coherence
proof
ex y1,y2,y3,y4 be
Real st z9
=
[*y1, y2, y3, y4*] & (x
* z9)
=
[*(x
* y1), (x
* y2), (x
* y3), (x
* y4)*] by
Def20;
hence (x
* z9)
in
QUATERNION ;
end;
cluster (x
- z9) ->
quaternion;
coherence ;
end
Lm19: for x,y,z,w be
Real holds
[*x, y, z, w*]
= (((x
+ (y
*
<i> ))
+ (z
*
<j> ))
+ (w
*
<k> ))
proof
let x,y,z,w be
Real;
<i>
=
[*zz, jj, zz, zz*] by
Lm2,
Lm3;
then
A1: (y
*
<i> )
=
[*(y
*
0 ), (y
* 1), (y
*
0 ), (y
*
0 )*] by
Def20
.=
[*
0 , y,
0 ,
0 *];
A2: (z
*
<j> )
=
[*(z
*
0 ), (z
*
0 ), (z
* 1), (y
*
0 )*] by
Def20
.=
[*
0 ,
0 , z,
0 *];
A3: (w
*
<k> )
=
[*(w
*
0 ), (w
*
0 ), (w
*
0 ), (w
* 1)*] by
Def20
.=
[*
0 ,
0 ,
0 , w*];
(x
+ (y
*
<i> ))
=
[*(x
+
0 ), y,
0 ,
0 *] by
A1,
Def18
.=
[*x, y,
0 ,
0 *];
then ((x
+ (y
*
<i> ))
+ (z
*
<j> ))
=
[*(x
+
0 ), (y
+
0 ), (
0
+ z), (
0
+
0 )*] by
A2,
Def6
.=
[*x, y, z,
0 *];
then (((x
+ (y
*
<i> ))
+ (z
*
<j> ))
+ (w
*
<k> ))
=
[*(x
+
0 ), (y
+
0 ), (
0
+ z), (
0
+ w)*] by
A3,
Def6;
hence thesis;
end;
definition
let z1,z2 be
Quaternion;
:: original:
+
redefine
func z1
+ z2 ->
Element of
QUATERNION ;
coherence by
Def2;
end
Lm20: (z1
+ z2)
= (((((
Rea z1)
+ (
Rea z2))
+ (((
Im1 z1)
+ (
Im1 z2))
*
<i> ))
+ (((
Im2 z1)
+ (
Im2 z2))
*
<j> ))
+ (((
Im3 z1)
+ (
Im3 z2))
*
<k> ))
proof
(z1
+ z2)
=
[*((
Rea z1)
+ (
Rea z2)), ((
Im1 z1)
+ (
Im1 z2)), ((
Im2 z1)
+ (
Im2 z2)), ((
Im3 z1)
+ (
Im3 z2))*] by
Lm13;
hence thesis by
Lm19;
end;
theorem ::
QUATERNI:36
Th29: (
Rea (z1
+ z2))
= ((
Rea z1)
+ (
Rea z2)) & (
Im1 (z1
+ z2))
= ((
Im1 z1)
+ (
Im1 z2)) & (
Im2 (z1
+ z2))
= ((
Im2 z1)
+ (
Im2 z2)) & (
Im3 (z1
+ z2))
= ((
Im3 z1)
+ (
Im3 z2))
proof
(z1
+ z2)
=
[*((
Rea z1)
+ (
Rea z2)), ((
Im1 z1)
+ (
Im1 z2)), ((
Im2 z1)
+ (
Im2 z2)), ((
Im3 z1)
+ (
Im3 z2))*] by
Lm13;
hence thesis by
Th16;
end;
definition
let z1,z2 be
Quaternion;
:: original:
*
redefine
func z1
* z2 ->
Element of
QUATERNION ;
coherence by
Def2;
end
Lm21: (z1
* z2)
= ((((((((
Rea z1)
* (
Rea z2))
- ((
Im1 z1)
* (
Im1 z2)))
- ((
Im2 z1)
* (
Im2 z2)))
- ((
Im3 z1)
* (
Im3 z2)))
+ ((((((
Rea z1)
* (
Im1 z2))
+ ((
Im1 z1)
* (
Rea z2)))
+ ((
Im2 z1)
* (
Im3 z2)))
- ((
Im3 z1)
* (
Im2 z2)))
*
<i> ))
+ ((((((
Rea z1)
* (
Im2 z2))
+ ((
Im2 z1)
* (
Rea z2)))
+ ((
Im3 z1)
* (
Im1 z2)))
- ((
Im1 z1)
* (
Im3 z2)))
*
<j> ))
+ ((((((
Rea z1)
* (
Im3 z2))
+ ((
Im3 z1)
* (
Rea z2)))
+ ((
Im1 z1)
* (
Im2 z2)))
- ((
Im2 z1)
* (
Im1 z2)))
*
<k> ))
proof
(z1
* z2)
=
[*(((((
Rea z1)
* (
Rea z2))
- ((
Im1 z1)
* (
Im1 z2)))
- ((
Im2 z1)
* (
Im2 z2)))
- ((
Im3 z1)
* (
Im3 z2))), (((((
Rea z1)
* (
Im1 z2))
+ ((
Im1 z1)
* (
Rea z2)))
+ ((
Im2 z1)
* (
Im3 z2)))
- ((
Im3 z1)
* (
Im2 z2))), (((((
Rea z1)
* (
Im2 z2))
+ ((
Im2 z1)
* (
Rea z2)))
+ ((
Im3 z1)
* (
Im1 z2)))
- ((
Im1 z1)
* (
Im3 z2))), (((((
Rea z1)
* (
Im3 z2))
+ ((
Im3 z1)
* (
Rea z2)))
+ ((
Im1 z1)
* (
Im2 z2)))
- ((
Im2 z1)
* (
Im1 z2)))*] by
Lm16;
hence thesis by
Lm19;
end;
theorem ::
QUATERNI:37
z
= ((((
Rea z)
+ ((
Im1 z)
*
<i> ))
+ ((
Im2 z)
*
<j> ))
+ ((
Im3 z)
*
<k> ))
proof
[*(
Rea z), (
Im1 z), (
Im2 z), (
Im3 z)*]
= z by
Th17;
hence thesis by
Lm19;
end;
Lm22: for c be
Quaternion holds (c
+
0q )
= c
proof
let c be
Quaternion;
A1:
0q
=
[*(
In (
0 ,
REAL )), (
In (
0 ,
REAL ))*] by
ARYTM_0:def 5
.=
[*
0 ,
0 ,
0 ,
0 *] by
Lm3;
consider x,y,w,z be
Real such that
A2: c
=
[*x, y, w, z*] by
Th2;
(c
+
0q )
=
[*(x
+
0 ), (y
+
0 ), (w
+
0 ), (z
+
0 )*] by
A1,
A2,
Def6
.=
[*x, y, w, z*];
hence thesis by
A2;
end;
Lm23: (
0
*
<i> )
=
0 & (
0
*
<j> )
=
0 & (
0
*
<k> )
=
0
proof
set z1 =
0 , z2 =
<i> ;
consider y1,y2,y3,y4 be
Real such that
A1:
<i>
=
[*y1, y2, y3, y4*] & (z1
* z2)
=
[*(z1
* y1), (z1
* y2), (z1
* y3), (z1
* y4)*] by
Def20;
A2: (z1
* z2)
=
[*(
In (
0 ,
REAL )), (
In (
0 ,
REAL ))*] by
A1,
Lm3
.=
0 by
ARYTM_0:def 5;
consider y1,y2,y3,y4 be
Real such that
A3:
<j>
=
[*y1, y2, y3, y4*] & (z1
*
<j> )
=
[*(z1
* y1), (z1
* y2), (z1
* y3), (z1
* y4)*] by
Def20;
A4: (z1
*
<j> )
=
[*(
In (
0 ,
REAL )), (
In (
0 ,
REAL ))*] by
A3,
Lm3
.=
0 by
ARYTM_0:def 5;
consider y1,y2,y3,y4 be
Real such that
A5:
<k>
=
[*y1, y2, y3, y4*] & (z1
*
<k> )
=
[*(z1
* y1), (z1
* y2), (z1
* y3), (z1
* y4)*] by
Def20;
(z1
*
<k> )
=
[*(
In (
0 ,
REAL )), (
In (
0 ,
REAL ))*] by
A5,
Lm3
.=
0 by
ARYTM_0:def 5;
hence thesis by
A2,
A4;
end;
theorem ::
QUATERNI:38
(
Im1 z1)
=
0 & (
Im1 z2)
=
0 & (
Im2 z1)
=
0 & (
Im2 z2)
=
0 & (
Im3 z1)
=
0 & (
Im3 z2)
=
0 implies (
Rea (z1
* z2))
= ((
Rea z1)
* (
Rea z2)) & (
Im1 (z1
* z2))
= (((
Im2 z1)
* (
Im3 z2))
- ((
Im3 z1)
* (
Im2 z2))) & (
Im2 (z1
* z2))
= (((
Im3 z1)
* (
Im1 z2))
- ((
Im1 z1)
* (
Im3 z2))) & (
Im3 (z1
* z2))
= (((
Im1 z1)
* (
Im2 z2))
- ((
Im2 z1)
* (
Im1 z2)))
proof
assume
A1: (
Im1 z1)
=
0 & (
Im1 z2)
=
0 & (
Im2 z1)
=
0 & (
Im2 z2)
=
0 & (
Im3 z1)
=
0 & (
Im3 z2)
=
0 ;
A2: (z1
* z2)
= ((((((((
Rea z1)
* (
Rea z2))
- ((
Im1 z1)
* (
Im1 z2)))
- ((
Im2 z1)
* (
Im2 z2)))
- ((
Im3 z1)
* (
Im3 z2)))
+ ((((((
Rea z1)
* (
Im1 z2))
+ ((
Im1 z1)
* (
Rea z2)))
+ ((
Im2 z1)
* (
Im3 z2)))
- ((
Im3 z1)
* (
Im2 z2)))
*
<i> ))
+ ((((((
Rea z1)
* (
Im2 z2))
+ ((
Im2 z1)
* (
Rea z2)))
+ ((
Im3 z1)
* (
Im1 z2)))
- ((
Im1 z1)
* (
Im3 z2)))
*
<j> ))
+ ((((((
Rea z1)
* (
Im3 z2))
+ ((
Im3 z1)
* (
Rea z2)))
+ ((
Im1 z1)
* (
Im2 z2)))
- ((
Im2 z1)
* (
Im1 z2)))
*
<k> )) by
Lm21
.= ((((
Rea z1)
* (
Rea z2))
+
0q )
+
0q ) by
Lm22,
Lm23,
A1
.= (((
Rea z1)
* (
Rea z2))
+
0q ) by
Lm22;
consider y1,y2,y3,y4 be
Real such that
A3:
0q
=
[*y1, y2, y3, y4*] & (((
Rea z1)
* (
Rea z2))
+
0q )
=
[*(((
Rea z1)
* (
Rea z2))
+ y1), y2, y3, y4*] by
Def18;
reconsider RR = ((
Rea z1)
* (
Rea z2)), zz =
0 as
Element of
REAL by
XREAL_0:def 1;
y1
=
0 & y2
=
0 & y3
=
0 & y4
=
0 by
Th5,
A3,
Lm6;
then (((
Rea z1)
* (
Rea z2))
+
0q )
=
[*RR, zz*] by
A3,
Lm3;
then (((
Rea z1)
* (
Rea z2))
+
0q )
= ((
Rea z1)
* (
Rea z2)) by
ARYTM_0:def 5;
hence thesis by
Lm18,
A2,
A1;
end;
theorem ::
QUATERNI:39
(
Rea z1)
=
0 & (
Rea z2)
=
0 implies (
Rea (z1
* z2))
= (((
- ((
Im1 z1)
* (
Im1 z2)))
- ((
Im2 z1)
* (
Im2 z2)))
- ((
Im3 z1)
* (
Im3 z2))) & (
Im1 (z1
* z2))
= (((
Im2 z1)
* (
Im3 z2))
- ((
Im3 z1)
* (
Im2 z2))) & (
Im2 (z1
* z2))
= (((
Im3 z1)
* (
Im1 z2))
- ((
Im1 z1)
* (
Im3 z2))) & (
Im3 (z1
* z2))
= (((
Im1 z1)
* (
Im2 z2))
- ((
Im2 z1)
* (
Im1 z2)))
proof
assume
A1: (
Rea z1)
=
0 & (
Rea z2)
=
0 ;
(
Rea (z1
* z2))
= (((((
Rea z1)
* (
Rea z2))
- ((
Im1 z1)
* (
Im1 z2)))
- ((
Im2 z1)
* (
Im2 z2)))
- ((
Im3 z1)
* (
Im3 z2))) & (
Im1 (z1
* z2))
= (((((
Rea z1)
* (
Im1 z2))
+ ((
Im1 z1)
* (
Rea z2)))
+ ((
Im2 z1)
* (
Im3 z2)))
- ((
Im3 z1)
* (
Im2 z2))) & (
Im2 (z1
* z2))
= (((((
Rea z1)
* (
Im2 z2))
+ ((
Im2 z1)
* (
Rea z2)))
+ ((
Im3 z1)
* (
Im1 z2)))
- ((
Im1 z1)
* (
Im3 z2))) & (
Im3 (z1
* z2))
= (((((
Rea z1)
* (
Im3 z2))
+ ((
Im3 z1)
* (
Rea z2)))
+ ((
Im1 z1)
* (
Im2 z2)))
- ((
Im2 z1)
* (
Im1 z2))) by
Lm17;
hence thesis by
A1;
end;
theorem ::
QUATERNI:40
(
Rea (z
* z))
= (((((
Rea z)
^2 )
- ((
Im1 z)
^2 ))
- ((
Im2 z)
^2 ))
- ((
Im3 z)
^2 )) & (
Im1 (z
* z))
= (2
* ((
Rea z)
* (
Im1 z))) & (
Im2 (z
* z))
= (2
* ((
Rea z)
* (
Im2 z))) & (
Im3 (z
* z))
= (2
* ((
Rea z)
* (
Im3 z)))
proof
(
Rea (z
* z))
= (((((
Rea z)
* (
Rea z))
- ((
Im1 z)
* (
Im1 z)))
- ((
Im2 z)
* (
Im2 z)))
- ((
Im3 z)
* (
Im3 z))) & (
Im1 (z
* z))
= (((((
Rea z)
* (
Im1 z))
+ ((
Im1 z)
* (
Rea z)))
+ ((
Im2 z)
* (
Im3 z)))
- ((
Im3 z)
* (
Im2 z))) & (
Im2 (z
* z))
= (((((
Rea z)
* (
Im2 z))
+ ((
Im2 z)
* (
Rea z)))
+ ((
Im3 z)
* (
Im1 z)))
- ((
Im1 z)
* (
Im3 z))) & (
Im3 (z
* z))
= (((((
Rea z)
* (
Im3 z))
+ ((
Im3 z)
* (
Rea z)))
+ ((
Im1 z)
* (
Im2 z)))
- ((
Im2 z)
* (
Im1 z))) by
Lm17;
hence thesis;
end;
definition
let z be
Quaternion;
:: original:
-
redefine
func
- z ->
Element of
QUATERNION ;
coherence by
Def2;
end
Lm24: (
- z)
= ((((
- (
Rea z))
+ ((
- (
Im1 z))
*
<i> ))
+ ((
- (
Im2 z))
*
<j> ))
+ ((
- (
Im3 z))
*
<k> ))
proof
set z9 =
[*(
- (
Rea z)), (
- (
Im1 z)), (
- (
Im2 z)), (
- (
Im3 z))*];
A1: z9
= ((((
- (
Rea z))
+ ((
- (
Im1 z))
*
<i> ))
+ ((
- (
Im2 z))
*
<j> ))
+ ((
- (
Im3 z))
*
<k> )) by
Lm19;
(z9
+ z)
=
[*((
Rea z9)
+ (
Rea z)), ((
Im1 z9)
+ (
Im1 z)), ((
Im2 z9)
+ (
Im2 z)), ((
Im3 z9)
+ (
Im3 z))*] by
Lm13
.=
[*((
- (
Rea z))
+ (
Rea z)), ((
Im1 z9)
+ (
Im1 z)), ((
Im2 z9)
+ (
Im2 z)), ((
Im3 z9)
+ (
Im3 z))*] by
Th16
.=
[*
0 , ((
- (
Im1 z))
+ (
Im1 z)), ((
Im2 z9)
+ (
Im2 z)), ((
Im3 z9)
+ (
Im3 z))*] by
Th16
.=
[*
0 ,
0 , ((
- (
Im2 z))
+ (
Im2 z)), ((
Im3 z9)
+ (
Im3 z))*] by
Th16
.=
[*
0 ,
0 ,
0 , ((
- (
Im3 z))
+ (
Im3 z))*] by
Th16
.=
0 by
Lm6;
hence thesis by
A1,
Def7;
end;
theorem ::
QUATERNI:41
Th34: (
Rea (
- z))
= (
- (
Rea z)) & (
Im1 (
- z))
= (
- (
Im1 z)) & (
Im2 (
- z))
= (
- (
Im2 z)) & (
Im3 (
- z))
= (
- (
Im3 z))
proof
(
- z)
= ((((
- (
Rea z))
+ ((
- (
Im1 z))
*
<i> ))
+ ((
- (
Im2 z))
*
<j> ))
+ ((
- (
Im3 z))
*
<k> )) by
Lm24;
then (
- z)
=
[*(
- (
Rea z)), (
- (
Im1 z)), (
- (
Im2 z)), (
- (
Im3 z))*] by
Lm19;
hence thesis by
Th16;
end;
definition
let z1,z2 be
Quaternion;
:: original:
-
redefine
func z1
- z2 ->
Element of
QUATERNION ;
coherence by
Def2;
end
Lm25: (z1
- z2)
= (((((
Rea z1)
- (
Rea z2))
+ (((
Im1 z1)
- (
Im1 z2))
*
<i> ))
+ (((
Im2 z1)
- (
Im2 z2))
*
<j> ))
+ (((
Im3 z1)
- (
Im3 z2))
*
<k> ))
proof
(z1
- z2)
= (((((
Rea z1)
+ (
Rea (
- z2)))
+ (((
Im1 z1)
+ (
Im1 (
- z2)))
*
<i> ))
+ (((
Im2 z1)
+ (
Im2 (
- z2)))
*
<j> ))
+ (((
Im3 z1)
+ (
Im3 (
- z2)))
*
<k> )) by
Lm20
.= (((((
Rea z1)
+ (
- (
Rea z2)))
+ (((
Im1 z1)
+ (
Im1 (
- z2)))
*
<i> ))
+ (((
Im2 z1)
+ (
Im2 (
- z2)))
*
<j> ))
+ (((
Im3 z1)
+ (
Im3 (
- z2)))
*
<k> )) by
Th34
.= (((((
Rea z1)
+ (
- (
Rea z2)))
+ (((
Im1 z1)
- (
Im1 z2))
*
<i> ))
+ (((
Im2 z1)
+ (
Im2 (
- z2)))
*
<j> ))
+ (((
Im3 z1)
+ (
Im3 (
- z2)))
*
<k> )) by
Th34
.= (((((
Rea z1)
+ (
- (
Rea z2)))
+ (((
Im1 z1)
- (
Im1 z2))
*
<i> ))
+ (((
Im2 z1)
+ (
- (
Im2 z2)))
*
<j> ))
+ (((
Im3 z1)
+ (
Im3 (
- z2)))
*
<k> )) by
Th34
.= (((((
Rea z1)
- (
Rea z2))
+ (((
Im1 z1)
- (
Im1 z2))
*
<i> ))
+ (((
Im2 z1)
- (
Im2 z2))
*
<j> ))
+ (((
Im3 z1)
- (
Im3 z2))
*
<k> )) by
Th34;
hence thesis;
end;
theorem ::
QUATERNI:42
Th35: (
Rea (z1
- z2))
= ((
Rea z1)
- (
Rea z2)) & (
Im1 (z1
- z2))
= ((
Im1 z1)
- (
Im1 z2)) & (
Im2 (z1
- z2))
= ((
Im2 z1)
- (
Im2 z2)) & (
Im3 (z1
- z2))
= ((
Im3 z1)
- (
Im3 z2))
proof
(z1
- z2)
= (((((
Rea z1)
- (
Rea z2))
+ (((
Im1 z1)
- (
Im1 z2))
*
<i> ))
+ (((
Im2 z1)
- (
Im2 z2))
*
<j> ))
+ (((
Im3 z1)
- (
Im3 z2))
*
<k> )) by
Lm25;
then (z1
- z2)
=
[*((
Rea z1)
- (
Rea z2)), ((
Im1 z1)
- (
Im1 z2)), ((
Im2 z1)
- (
Im2 z2)), ((
Im3 z1)
- (
Im3 z2))*] by
Lm19;
hence thesis by
Th16;
end;
definition
let z be
Quaternion;
::
QUATERNI:def21
func z
*' ->
Quaternion equals ((((
Rea z)
+ ((
- (
Im1 z))
*
<i> ))
+ ((
- (
Im2 z))
*
<j> ))
+ ((
- (
Im3 z))
*
<k> ));
coherence ;
end
definition
let z be
Quaternion;
:: original:
*'
redefine
func z
*' ->
Element of
QUATERNION ;
coherence ;
end
theorem ::
QUATERNI:43
Th36: (z
*' )
=
[*(
Rea z), (
- (
Im1 z)), (
- (
Im2 z)), (
- (
Im3 z))*]
proof
<i>
=
[*zz, jj, zz, zz*] by
Lm2,
Lm3;
then (z
*' )
= ((((
Rea z)
+
[*((
- (
Im1 z))
*
0 ), ((
- (
Im1 z))
* 1), ((
- (
Im1 z))
*
0 ), ((
- (
Im1 z))
*
0 )*])
+ ((
- (
Im2 z))
*
<j> ))
+ ((
- (
Im3 z))
*
<k> )) by
Def20
.= ((((
Rea z)
+
[*
0 , (
- (
Im1 z)),
0 ,
0 *])
+
[*((
- (
Im2 z))
*
0 ), ((
- (
Im2 z))
*
0 ), ((
- (
Im2 z))
* 1), ((
- (
Im2 z))
*
0 )*])
+ ((
- (
Im3 z))
*
<k> )) by
Def20
.= ((((
Rea z)
+
[*
0 , (
- (
Im1 z)),
0 ,
0 *])
+
[*
0 ,
0 , (
- (
Im2 z)),
0 *])
+
[*((
- (
Im3 z))
*
0 ), ((
- (
Im3 z))
*
0 ), ((
- (
Im3 z))
*
0 ), ((
- (
Im3 z))
* 1)*]) by
Def20
.= ((
[*((
Rea z)
+
0 ), (
- (
Im1 z)),
0 ,
0 *]
+
[*
0 ,
0 , (
- (
Im2 z)),
0 *])
+
[*
0 ,
0 ,
0 , (
- (
Im3 z))*]) by
Def18
.= (
[*((
Rea z)
+
0 ), ((
- (
Im1 z))
+
0 ), (
0
+ (
- (
Im2 z))), (
0
+
0 )*]
+
[*
0 ,
0 ,
0 , (
- (
Im3 z))*]) by
Def6
.=
[*((
Rea z)
+
0 ), ((
- (
Im1 z))
+
0 ), ((
- (
Im2 z))
+
0 ), (
0
+ (
- (
Im3 z)))*] by
Def6;
hence thesis;
end;
theorem ::
QUATERNI:44
(
Rea (z
*' ))
= (
Rea z) & (
Im1 (z
*' ))
= (
- (
Im1 z)) & (
Im2 (z
*' ))
= (
- (
Im2 z)) & (
Im3 (z
*' ))
= (
- (
Im3 z))
proof
(z
*' )
=
[*(
Rea z), (
- (
Im1 z)), (
- (
Im2 z)), (
- (
Im3 z))*] by
Lm19;
hence thesis by
Th16;
end;
theorem ::
QUATERNI:45
z
=
0 implies (z
*' )
=
0
proof
assume
A1: z
=
0 ;
then
A2: (
Rea z)
=
0 by
Lm6,
Th16;
A3: (
Im1 z)
=
0 by
A1,
Lm6,
Th16;
A4: (
Im2 z)
=
0 by
A1,
Lm6,
Th16;
(
Im3 z)
=
0 by
A1,
Lm6,
Th16;
hence thesis by
A2,
A3,
A4,
Lm6,
Th36;
end;
theorem ::
QUATERNI:46
(z
*' )
=
0 implies z
=
0
proof
assume
A1: (z
*' )
=
0 ;
A2: (z
*' )
=
[*(
Rea z), (
- (
Im1 z)), (
- (
Im2 z)), (
- (
Im3 z))*] by
Th36;
A3: (
Rea (z
*' ))
=
0 by
A1,
Lm6,
Th16;
A4: (
Im1 (z
*' ))
=
0 by
A1,
Lm6,
Th16;
A5: (
Im2 (z
*' ))
=
0 by
A1,
Lm6,
Th16;
A6: (
Im3 (z
*' ))
=
0 by
A1,
Lm6,
Th16;
A7: (
Rea (z
*' ))
= (
Rea z) by
A2,
Th16;
A8: (
Im1 (z
*' ))
= (
- (
Im1 z)) by
A2,
Th16;
A9: (
Im2 (z
*' ))
= (
- (
Im2 z)) by
A2,
Th16;
(
Im3 (z
*' ))
= (
- (
Im3 z)) by
A2,
Th16;
hence thesis by
A3,
A4,
A5,
A6,
A7,
A8,
A9,
Th19;
end;
theorem ::
QUATERNI:47
(
1q
*' )
=
1q
proof
[*jj, zz*]
=
[*1,
0 ,
0 ,
0 *] by
Lm3;
then
A1:
1q
=
[*1,
0 ,
0 ,
0 *] by
ARYTM_0:def 5;
A2: (
Rea
[*jj, zz, zz, zz*])
= 1 by
Th16;
A3: (
Im1
[*jj, zz, zz, zz*])
=
0 by
Th16;
A4: (
Im2
[*jj, zz, zz, zz*])
=
0 by
Th16;
(
Im3
[*jj, zz, zz, zz*])
=
0 by
Th16;
hence thesis by
A1,
A2,
A3,
A4,
Th36;
end;
theorem ::
QUATERNI:48
(
Rea (
<i>
*' ))
=
0 & (
Im1 (
<i>
*' ))
= (
- 1) & (
Im2 (
<i>
*' ))
=
0 & (
Im3 (
<i>
*' ))
=
0
proof
(
<i>
*' )
=
[*zz, (
- jj), zz, zz*] by
Th23,
Th36;
hence thesis by
Th16;
end;
theorem ::
QUATERNI:49
(
Rea (
<j>
*' ))
=
0 & (
Im1 (
<j>
*' ))
=
0 & (
Im2 (
<j>
*' ))
= (
- 1) & (
Im3 (
<j>
*' ))
=
0
proof
(
<j>
*' )
=
[*zz, zz, (
- jj), zz*] by
Th24,
Th36;
hence thesis by
Th16;
end;
theorem ::
QUATERNI:50
(
Rea (
<k>
*' ))
=
0 & (
Im1 (
<k>
*' ))
=
0 & (
Im2 (
<k>
*' ))
=
0 & (
Im3 (
<k>
*' ))
= (
- 1)
proof
(
<k>
*' )
=
[*zz, zz, zz, (
- jj)*] by
Th24,
Th36;
hence thesis by
Th16;
end;
theorem ::
QUATERNI:51
(
<i>
*' )
= (
-
<i> ) by
Th23,
Lm24;
theorem ::
QUATERNI:52
(
<j>
*' )
= (
-
<j> ) by
Th24,
Lm24;
theorem ::
QUATERNI:53
(
<k>
*' )
= (
-
<k> ) by
Th24,
Lm24;
theorem ::
QUATERNI:54
((z1
+ z2)
*' )
= ((z1
*' )
+ (z2
*' ))
proof
A1: (z1
*' )
=
[*(
Rea z1), (
- (
Im1 z1)), (
- (
Im2 z1)), (
- (
Im3 z1))*] by
Th36;
A2: (z2
*' )
=
[*(
Rea z2), (
- (
Im1 z2)), (
- (
Im2 z2)), (
- (
Im3 z2))*] by
Th36;
A3: ((z1
+ z2)
*' )
=
[*(
Rea (z1
+ z2)), (
- (
Im1 (z1
+ z2))), (
- (
Im2 (z1
+ z2))), (
- (
Im3 (z1
+ z2)))*] by
Th36;
((z1
*' )
+ (z2
*' ))
=
[*((
Rea z1)
+ (
Rea z2)), ((
- (
Im1 z1))
+ (
- (
Im1 z2))), ((
- (
Im2 z1))
+ (
- (
Im2 z2))), ((
- (
Im3 z1))
+ (
- (
Im3 z2)))*] by
A1,
A2,
Def6
.=
[*(
Rea (z1
+ z2)), (
- ((
Im1 z1)
+ (
Im1 z2))), (
- ((
Im2 z1)
+ (
Im2 z2))), (
- ((
Im3 z1)
+ (
Im3 z2)))*] by
Th29
.=
[*(
Rea (z1
+ z2)), (
- (
Im1 (z1
+ z2))), (
- ((
Im2 z1)
+ (
Im2 z2))), (
- ((
Im3 z1)
+ (
Im3 z2)))*] by
Th29
.=
[*(
Rea (z1
+ z2)), (
- (
Im1 (z1
+ z2))), (
- (
Im2 (z1
+ z2))), (
- ((
Im3 z1)
+ (
Im3 z2)))*] by
Th29;
hence thesis by
A3,
Th29;
end;
theorem ::
QUATERNI:55
Th48: ((
- z)
*' )
= (
- (z
*' ))
proof
A1: (z
*' )
=
[*(
Rea z), (
- (
Im1 z)), (
- (
Im2 z)), (
- (
Im3 z))*] by
Th36;
((
- z)
*' )
=
[*(
Rea (
- z)), (
- (
Im1 (
- z))), (
- (
Im2 (
- z))), (
- (
Im3 (
- z)))*] by
Th36;
then ((
- z)
*' )
=
[*(
- (
Rea z)), (
- (
Im1 (
- z))), (
- (
Im2 (
- z))), (
- (
Im3 (
- z)))*] by
Th34
.=
[*(
- (
Rea z)), (
- (
- (
Im1 z))), (
- (
Im2 (
- z))), (
- (
Im3 (
- z)))*] by
Th34
.=
[*(
- (
Rea z)), (
Im1 z), (
- (
- (
Im2 z))), (
- (
Im3 (
- z)))*] by
Th34
.=
[*(
- (
Rea z)), (
Im1 z), (
Im2 z), (
- (
- (
Im3 z)))*] by
Th34
.=
[*(
- (
Rea z)), (
Im1 z), (
Im2 z), (
Im3 z)*];
then ((z
*' )
+ ((
- z)
*' ))
=
[*((
Rea z)
+ (
- (
Rea z))), ((
- (
Im1 z))
+ (
Im1 z)), ((
- (
Im2 z))
+ (
Im2 z)), ((
- (
Im3 z))
+ (
Im3 z))*] by
A1,
Def6
.=
0 by
Lm6;
hence thesis by
Def7;
end;
theorem ::
QUATERNI:56
((z1
- z2)
*' )
= ((z1
*' )
- (z2
*' ))
proof
A1: (z1
*' )
=
[*(
Rea z1), (
- (
Im1 z1)), (
- (
Im2 z1)), (
- (
Im3 z1))*] by
Th36;
A2: ((
- z2)
*' )
=
[*(
Rea (
- z2)), (
- (
Im1 (
- z2))), (
- (
Im2 (
- z2))), (
- (
Im3 (
- z2)))*] by
Th36;
A3: ((z1
- z2)
*' )
=
[*(
Rea (z1
- z2)), (
- (
Im1 (z1
- z2))), (
- (
Im2 (z1
- z2))), (
- (
Im3 (z1
- z2)))*] by
Th36;
A4: ((z1
*' )
- (z2
*' ))
= ((z1
*' )
+ ((
- z2)
*' )) by
Th48
.=
[*((
Rea z1)
+ (
Rea (
- z2))), ((
- (
Im1 z1))
+ (
- (
Im1 (
- z2)))), ((
- (
Im2 z1))
+ (
- (
Im2 (
- z2)))), ((
- (
Im3 z1))
+ (
- (
Im3 (
- z2))))*] by
A1,
A2,
Def6
.=
[*((
Rea z1)
+ (
- (
Rea z2))), ((
- (
Im1 z1))
+ (
- (
Im1 (
- z2)))), ((
- (
Im2 z1))
+ (
- (
Im2 (
- z2)))), ((
- (
Im3 z1))
+ (
- (
Im3 (
- z2))))*] by
Th34
.=
[*((
Rea z1)
- (
Rea z2)), ((
- (
Im1 z1))
- (
- (
Im1 z2))), ((
- (
Im2 z1))
+ (
- (
Im2 (
- z2)))), ((
- (
Im3 z1))
+ (
- (
Im3 (
- z2))))*] by
Th34
.=
[*((
Rea z1)
- (
Rea z2)), ((
- (
Im1 z1))
+ (
Im1 z2)), ((
- (
Im2 z1))
- (
- (
Im2 z2))), ((
- (
Im3 z1))
+ (
- (
Im3 (
- z2))))*] by
Th34
.=
[*((
Rea z1)
- (
Rea z2)), ((
- (
Im1 z1))
+ (
Im1 z2)), ((
- (
Im2 z1))
+ (
Im2 z2)), ((
- (
Im3 z1))
- (
- (
Im3 z2)))*] by
Th34
.=
[*((
Rea z1)
- (
Rea z2)), ((
- (
Im1 z1))
+ (
Im1 z2)), ((
- (
Im2 z1))
+ (
Im2 z2)), ((
- (
Im3 z1))
+ (
Im3 z2))*];
((z1
- z2)
*' )
=
[*((
Rea z1)
- (
Rea z2)), (
- (
Im1 (z1
- z2))), (
- (
Im2 (z1
- z2))), (
- (
Im3 (z1
- z2)))*] by
A3,
Th35
.=
[*((
Rea z1)
- (
Rea z2)), (
- ((
Im1 z1)
- (
Im1 z2))), (
- (
Im2 (z1
- z2))), (
- (
Im3 (z1
- z2)))*] by
Th35
.=
[*((
Rea z1)
- (
Rea z2)), ((
- (
Im1 z1))
+ (
Im1 z2)), (
- ((
Im2 z1)
- (
Im2 z2))), (
- (
Im3 (z1
- z2)))*] by
Th35
.=
[*((
Rea z1)
- (
Rea z2)), ((
- (
Im1 z1))
+ (
Im1 z2)), ((
- (
Im2 z1))
+ (
Im2 z2)), (
- ((
Im3 z1)
- (
Im3 z2)))*] by
Th35;
hence thesis by
A4;
end;
theorem ::
QUATERNI:57
((z1
* z2)
*' )
= ((z1
*' )
* (z2
*' )) implies ((
Im2 z1)
* (
Im3 z2))
= ((
Im3 z1)
* (
Im2 z2))
proof
assume
A1: ((z1
* z2)
*' )
= ((z1
*' )
* (z2
*' ));
A2: (z1
*' )
=
[*(
Rea z1), (
- (
Im1 z1)), (
- (
Im2 z1)), (
- (
Im3 z1))*] by
Th36;
A3: (z2
*' )
=
[*(
Rea z2), (
- (
Im1 z2)), (
- (
Im2 z2)), (
- (
Im3 z2))*] by
Th36;
A4: ((z1
* z2)
*' )
=
[*(
Rea (z1
* z2)), (
- (
Im1 (z1
* z2))), (
- (
Im2 (z1
* z2))), (
- (
Im3 (z1
* z2)))*] by
Th36;
A5: ((z1
*' )
* (z2
*' ))
=
[*(((((
Rea z1)
* (
Rea z2))
- ((
- (
Im1 z1))
* (
- (
Im1 z2))))
- ((
- (
Im2 z1))
* (
- (
Im2 z2))))
- ((
- (
Im3 z1))
* (
- (
Im3 z2)))), (((((
Rea z1)
* (
- (
Im1 z2)))
+ ((
- (
Im1 z1))
* (
Rea z2)))
+ ((
- (
Im2 z1))
* (
- (
Im3 z2))))
- ((
- (
Im3 z1))
* (
- (
Im2 z2)))), (((((
Rea z1)
* (
- (
Im2 z2)))
+ ((
Rea z2)
* (
- (
Im2 z1))))
+ ((
- (
Im1 z2))
* (
- (
Im3 z1))))
- ((
- (
Im3 z2))
* (
- (
Im1 z1)))), (((((
Rea z1)
* (
- (
Im3 z2)))
+ ((
- (
Im3 z1))
* (
Rea z2)))
+ ((
- (
Im1 z1))
* (
- (
Im2 z2))))
- ((
- (
Im2 z1))
* (
- (
Im1 z2))))*] by
A2,
A3,
Def9
.=
[*(((((
Rea z1)
* (
Rea z2))
- ((
Im1 z1)
* (
Im1 z2)))
- ((
Im2 z1)
* (
Im2 z2)))
- ((
Im3 z1)
* (
Im3 z2))), ((((
- ((
Rea z1)
* (
Im1 z2)))
- ((
Im1 z1)
* (
Rea z2)))
+ ((
Im2 z1)
* (
Im3 z2)))
- ((
Im3 z1)
* (
Im2 z2))), ((((
- ((
Rea z1)
* (
Im2 z2)))
- ((
Rea z2)
* (
Im2 z1)))
+ ((
Im1 z2)
* (
Im3 z1)))
- ((
Im3 z2)
* (
Im1 z1))), ((((
- ((
Rea z1)
* (
Im3 z2)))
- ((
Im3 z1)
* (
Rea z2)))
+ ((
Im1 z1)
* (
Im2 z2)))
- ((
Im2 z1)
* (
Im1 z2)))*];
A6: ((z1
* z2)
*' )
=
[*(((((
Rea z1)
* (
Rea z2))
- ((
Im1 z1)
* (
Im1 z2)))
- ((
Im2 z1)
* (
Im2 z2)))
- ((
Im3 z1)
* (
Im3 z2))), (
- (
Im1 (z1
* z2))), (
- (
Im2 (z1
* z2))), (
- (
Im3 (z1
* z2)))*] by
A4,
Lm17
.=
[*(((((
Rea z1)
* (
Rea z2))
- ((
Im1 z1)
* (
Im1 z2)))
- ((
Im2 z1)
* (
Im2 z2)))
- ((
Im3 z1)
* (
Im3 z2))), (
- (((((
Rea z1)
* (
Im1 z2))
+ ((
Im1 z1)
* (
Rea z2)))
+ ((
Im2 z1)
* (
Im3 z2)))
- ((
Im3 z1)
* (
Im2 z2)))), (
- (
Im2 (z1
* z2))), (
- (
Im3 (z1
* z2)))*] by
Lm17
.=
[*(((((
Rea z1)
* (
Rea z2))
- ((
Im1 z1)
* (
Im1 z2)))
- ((
Im2 z1)
* (
Im2 z2)))
- ((
Im3 z1)
* (
Im3 z2))), (
- (((((
Rea z1)
* (
Im1 z2))
+ ((
Im1 z1)
* (
Rea z2)))
+ ((
Im2 z1)
* (
Im3 z2)))
- ((
Im3 z1)
* (
Im2 z2)))), (
- (((((
Rea z1)
* (
Im2 z2))
+ ((
Im2 z1)
* (
Rea z2)))
+ ((
Im3 z1)
* (
Im1 z2)))
- ((
Im1 z1)
* (
Im3 z2)))), (
- (
Im3 (z1
* z2)))*] by
Lm17
.=
[*(((((
Rea z1)
* (
Rea z2))
- ((
Im1 z1)
* (
Im1 z2)))
- ((
Im2 z1)
* (
Im2 z2)))
- ((
Im3 z1)
* (
Im3 z2))), (
- (((((
Rea z1)
* (
Im1 z2))
+ ((
Im1 z1)
* (
Rea z2)))
+ ((
Im2 z1)
* (
Im3 z2)))
- ((
Im3 z1)
* (
Im2 z2)))), (
- (((((
Rea z1)
* (
Im2 z2))
+ ((
Im2 z1)
* (
Rea z2)))
+ ((
Im3 z1)
* (
Im1 z2)))
- ((
Im1 z1)
* (
Im3 z2)))), (
- (((((
Rea z1)
* (
Im3 z2))
+ ((
Im3 z1)
* (
Rea z2)))
+ ((
Im1 z1)
* (
Im2 z2)))
- ((
Im2 z1)
* (
Im1 z2))))*] by
Lm17
.=
[*(((((
Rea z1)
* (
Rea z2))
- ((
Im1 z1)
* (
Im1 z2)))
- ((
Im2 z1)
* (
Im2 z2)))
- ((
Im3 z1)
* (
Im3 z2))), ((((
- ((
Rea z1)
* (
Im1 z2)))
- ((
Im1 z1)
* (
Rea z2)))
- ((
Im2 z1)
* (
Im3 z2)))
+ ((
Im3 z1)
* (
Im2 z2))), ((((
- ((
Rea z1)
* (
Im2 z2)))
- ((
Im2 z1)
* (
Rea z2)))
- ((
Im3 z1)
* (
Im1 z2)))
+ ((
Im1 z1)
* (
Im3 z2))), ((((
- ((
Rea z1)
* (
Im3 z2)))
- ((
Im3 z1)
* (
Rea z2)))
- ((
Im1 z1)
* (
Im2 z2)))
+ ((
Im2 z1)
* (
Im1 z2)))*];
A7: (
Im1 ((z1
*' )
* (z2
*' )))
= ((((
- ((
Rea z1)
* (
Im1 z2)))
- ((
Im1 z1)
* (
Rea z2)))
+ ((
Im2 z1)
* (
Im3 z2)))
- ((
Im3 z1)
* (
Im2 z2))) by
A5,
Th16;
(
Im1 ((z1
* z2)
*' ))
= ((((
- ((
Rea z1)
* (
Im1 z2)))
- ((
Im1 z1)
* (
Rea z2)))
- ((
Im2 z1)
* (
Im3 z2)))
+ ((
Im3 z1)
* (
Im2 z2))) by
A6,
Th16;
hence thesis by
A1,
A7;
end;
theorem ::
QUATERNI:58
(
Im1 z)
=
0 & (
Im2 z)
=
0 & (
Im3 z)
=
0 implies (z
*' )
= z
proof
assume that
A1: (
Im1 z)
=
0 and
A2: (
Im2 z)
=
0 and
A3: (
Im3 z)
=
0 ;
reconsider Rz = (
Rea z), zz =
0 as
Element of
REAL by
XREAL_0:def 1;
A4: z
=
[*(
Rea z),
0 ,
0 ,
0 *] by
A1,
A2,
A3,
Th17
.=
[*Rz, zz*] by
Lm3
.= (
Rea z) by
ARYTM_0:def 5;
(z
*' )
=
[*(
Rea z),
0 ,
0 ,
0 *] by
A1,
A2,
A3,
Th36
.=
[*Rz, zz*] by
Lm3
.= (
Rea z) by
ARYTM_0:def 5;
hence thesis by
A4;
end;
theorem ::
QUATERNI:59
(
Rea z)
=
0 implies (z
*' )
= (
- z)
proof
assume
A1: (
Rea z)
=
0 ;
(
- z)
= ((((
- (
Rea z))
+ ((
- (
Im1 z))
*
<i> ))
+ ((
- (
Im2 z))
*
<j> ))
+ ((
- (
Im3 z))
*
<k> )) by
Lm24;
hence thesis by
A1;
end;
theorem ::
QUATERNI:60
(
Rea (z
* (z
*' )))
= (((((
Rea z)
^2 )
+ ((
Im1 z)
^2 ))
+ ((
Im2 z)
^2 ))
+ ((
Im3 z)
^2 )) & (
Im1 (z
* (z
*' )))
=
0 & (
Im2 (z
* (z
*' )))
=
0 & (
Im3 (z
* (z
*' )))
=
0
proof
A1: z
=
[*(
Rea z), (
Im1 z), (
Im2 z), (
Im3 z)*] by
Th17;
(z
*' )
=
[*(
Rea z), (
- (
Im1 z)), (
- (
Im2 z)), (
- (
Im3 z))*] by
Th36;
then (z
* (z
*' ))
=
[*(((((
Rea z)
* (
Rea z))
- ((
Im1 z)
* (
- (
Im1 z))))
- ((
Im2 z)
* (
- (
Im2 z))))
- ((
Im3 z)
* (
- (
Im3 z)))), (((((
Rea z)
* (
- (
Im1 z)))
+ ((
Im1 z)
* (
Rea z)))
+ ((
Im2 z)
* (
- (
Im3 z))))
- ((
Im3 z)
* (
- (
Im2 z)))), (((((
Rea z)
* (
- (
Im2 z)))
+ ((
Rea z)
* (
Im2 z)))
+ ((
- (
Im1 z))
* (
Im3 z)))
- ((
- (
Im3 z))
* (
Im1 z))), (((((
Rea z)
* (
- (
Im3 z)))
+ ((
Im3 z)
* (
Rea z)))
+ ((
Im1 z)
* (
- (
Im2 z))))
- ((
Im2 z)
* (
- (
Im1 z))))*] by
A1,
Def9
.=
[*(((((
Rea z)
^2 )
+ ((
Im1 z)
^2 ))
+ ((
Im2 z)
^2 ))
+ ((
Im3 z)
^2 )),
0 ,
0 ,
0 *];
hence thesis by
Th16;
end;
theorem ::
QUATERNI:61
(
Rea (z
+ (z
*' )))
= (2
* (
Rea z)) & (
Im1 (z
+ (z
*' )))
=
0 & (
Im2 (z
+ (z
*' )))
=
0 & (
Im3 (z
+ (z
*' )))
=
0
proof
A1: z
=
[*(
Rea z), (
Im1 z), (
Im2 z), (
Im3 z)*] by
Th17;
(z
*' )
=
[*(
Rea z), (
- (
Im1 z)), (
- (
Im2 z)), (
- (
Im3 z))*] by
Th36;
then (z
+ (z
*' ))
=
[*((
Rea z)
+ (
Rea z)), ((
Im1 z)
+ (
- (
Im1 z))), ((
Im2 z)
+ (
- (
Im2 z))), ((
Im3 z)
+ (
- (
Im3 z)))*] by
A1,
Def6
.=
[*(2
* (
Rea z)),
0 ,
0 ,
0 *];
hence thesis by
Th16;
end;
theorem ::
QUATERNI:62
Th55: (
- z)
=
[*(
- (
Rea z)), (
- (
Im1 z)), (
- (
Im2 z)), (
- (
Im3 z))*]
proof
A1: z
=
[*(
Rea z), (
Im1 z), (
Im2 z), (
Im3 z)*] by
Th17;
set z9 =
[*(
- (
Rea z)), (
- (
Im1 z)), (
- (
Im2 z)), (
- (
Im3 z))*];
(z
+ z9)
=
[*((
Rea z)
+ (
- (
Rea z))), ((
Im1 z)
+ (
- (
Im1 z))), ((
Im2 z)
+ (
- (
Im2 z))), ((
Im3 z)
+ (
- (
Im3 z)))*] by
A1,
Def6
.=
0 by
Lm6;
hence thesis by
Def7;
end;
theorem ::
QUATERNI:63
(z1
- z2)
=
[*((
Rea z1)
- (
Rea z2)), ((
Im1 z1)
- (
Im1 z2)), ((
Im2 z1)
- (
Im2 z2)), ((
Im3 z1)
- (
Im3 z2))*]
proof
A1: z1
=
[*(
Rea z1), (
Im1 z1), (
Im2 z1), (
Im3 z1)*] by
Th17;
A2: z2
=
[*(
Rea z2), (
Im1 z2), (
Im2 z2), (
Im3 z2)*] by
Th17;
set z9 =
[*(
- (
Rea z2)), (
- (
Im1 z2)), (
- (
Im2 z2)), (
- (
Im3 z2))*];
(z2
+ z9)
=
[*((
Rea z2)
+ (
- (
Rea z2))), ((
Im1 z2)
+ (
- (
Im1 z2))), ((
Im2 z2)
+ (
- (
Im2 z2))), ((
Im3 z2)
+ (
- (
Im3 z2)))*] by
A2,
Def6
.=
0 by
Lm6;
then (
- z2)
=
[*(
- (
Rea z2)), (
- (
Im1 z2)), (
- (
Im2 z2)), (
- (
Im3 z2))*] by
Def7;
hence thesis by
A1,
Def6;
end;
theorem ::
QUATERNI:64
(
Rea (z
- (z
*' )))
=
0 & (
Im1 (z
- (z
*' )))
= (2
* (
Im1 z)) & (
Im2 (z
- (z
*' )))
= (2
* (
Im2 z)) & (
Im3 (z
- (z
*' )))
= (2
* (
Im3 z))
proof
A1: z
=
[*(
Rea z), (
Im1 z), (
Im2 z), (
Im3 z)*] by
Th17;
A2: (z
*' )
=
[*(
Rea z), (
- (
Im1 z)), (
- (
Im2 z)), (
- (
Im3 z))*] by
Th36;
A3: (
Im1 (z
*' ))
= (
- (
Im1 z)) by
A2,
Th16;
A4: (
Im2 (z
*' ))
= (
- (
Im2 z)) by
A2,
Th16;
A5: (
Im3 (z
*' ))
= (
- (
Im3 z)) by
A2,
Th16;
set zz = (z
*' );
(
- zz)
=
[*(
- (
Rea zz)), (
- (
Im1 zz)), (
- (
Im2 zz)), (
- (
Im3 zz))*] by
Th55;
then (
- zz)
=
[*(
- (
Rea z)), (
Im1 z), (
Im2 z), (
Im3 z)*] by
A2,
Th16,
A3,
A4,
A5;
then (z
- zz)
=
[*((
Rea z)
+ (
- (
Rea z))), ((
Im1 z)
+ (
Im1 z)), ((
Im2 z)
+ (
Im2 z)), ((
Im3 z)
+ (
Im3 z))*] by
A1,
Def6
.=
[*
0 , (2
* (
Im1 z)), (2
* (
Im2 z)), (2
* (
Im3 z))*];
hence thesis by
Th16;
end;
definition
let z;
::
QUATERNI:def22
func
|.z.| ->
Real equals (
sqrt (((((
Rea z)
^2 )
+ ((
Im1 z)
^2 ))
+ ((
Im2 z)
^2 ))
+ ((
Im3 z)
^2 )));
coherence ;
end
theorem ::
QUATERNI:65
Th58:
|.
0q .|
=
0
proof
A1: (
Rea
0q )
=
0 by
Lm6,
Th16;
A2: (
Im1
0q )
=
0 by
Lm6,
Th16;
(
Im2
0q )
=
0 by
Lm6,
Th16;
hence thesis by
A1,
A2,
Lm6,
Th16,
SQUARE_1: 17;
end;
theorem ::
QUATERNI:66
Th59:
|.z.|
=
0 implies z
=
0
proof
assume
A1:
|.z.|
=
0 ;
A2:
0
<= ((
Rea z)
^2 ) by
XREAL_1: 63;
A3:
0
<= ((
Im1 z)
^2 ) by
XREAL_1: 63;
A4:
0
<= ((
Im2 z)
^2 ) by
XREAL_1: 63;
0
<= ((
Im3 z)
^2 ) by
XREAL_1: 63;
then
A5:
0
= (((((
Rea z)
^2 )
+ ((
Im1 z)
^2 ))
+ ((
Im2 z)
^2 ))
+ ((
Im3 z)
^2 )) by
A1,
A2,
A3,
A4,
SQUARE_1: 25;
then
A6: (
Rea z)
=
0 by
Lm9;
A7: (
Im1 z)
=
0 by
A5,
Lm9;
A8: (
Im2 z)
=
0 by
A5,
Lm9;
(
Im3 z)
=
0 by
A5,
Lm9;
hence thesis by
A6,
A7,
A8,
Lm6,
Th17;
end;
theorem ::
QUATERNI:67
Th60:
0
<=
|.z.|
proof
A1:
0
<= ((
Rea z)
^2 ) by
XREAL_1: 63;
A2:
0
<= ((
Im1 z)
^2 ) by
XREAL_1: 63;
A3:
0
<= ((
Im2 z)
^2 ) by
XREAL_1: 63;
0
<= ((
Im3 z)
^2 ) by
XREAL_1: 63;
hence thesis by
A1,
A2,
A3,
SQUARE_1:def 2;
end;
theorem ::
QUATERNI:68
|.
1q .|
= 1
proof
A1: (
Rea
1q )
= jj by
Lm10,
Th16;
A2: (
Im1
1q )
= zz by
Lm10,
Th16;
(
Im2
1q )
= zz by
Lm10,
Th16;
hence thesis by
A1,
A2,
Lm10,
Th16,
SQUARE_1: 18;
end;
theorem ::
QUATERNI:69
|.
<i> .|
= 1 by
Th23,
SQUARE_1: 18;
theorem ::
QUATERNI:70
|.
<j> .|
= 1 by
Th24,
SQUARE_1: 18;
theorem ::
QUATERNI:71
|.
<k> .|
= 1 by
Th24,
SQUARE_1: 18;
theorem ::
QUATERNI:72
Th65:
|.(
- z).|
=
|.z.|
proof
A1: (
- z)
=
[*(
- (
Rea z)), (
- (
Im1 z)), (
- (
Im2 z)), (
- (
Im3 z))*] by
Th55;
then
A2: (
Rea (
- z))
= (
- (
Rea z)) by
Th16;
A3: (
Im1 (
- z))
= (
- (
Im1 z)) by
A1,
Th16;
A4: (
Im2 (
- z))
= (
- (
Im2 z)) by
A1,
Th16;
(
Im3 (
- z))
= (
- (
Im3 z)) by
A1,
Th16;
hence thesis by
A2,
A3,
A4;
end;
theorem ::
QUATERNI:73
Th66:
|.(z
*' ).|
=
|.z.|
proof
A1: (z
*' )
=
[*(
Rea z), (
- (
Im1 z)), (
- (
Im2 z)), (
- (
Im3 z))*] by
Th36;
then
A2: (
Im1 (z
*' ))
= (
- (
Im1 z)) by
Th16;
A3: (
Im2 (z
*' ))
= (
- (
Im2 z)) by
A1,
Th16;
(
Im3 (z
*' ))
= (
- (
Im3 z)) by
A1,
Th16;
hence thesis by
A1,
A2,
A3,
Th16;
end;
theorem ::
QUATERNI:74
Th67: for a,b,c,d be
Real holds ((((a
^2 )
+ (b
^2 ))
+ (c
^2 ))
+ (d
^2 ))
>=
0
proof
let a,b,c,d be
Real;
A1: (a
^2 )
>=
0 by
XREAL_1: 63;
A2: (b
^2 )
>=
0 by
XREAL_1: 63;
A3: (c
^2 )
>=
0 by
XREAL_1: 63;
(d
^2 )
>=
0 by
XREAL_1: 63;
hence thesis by
A1,
A2,
A3;
end;
Lm26: (a
^2 )
<= ((((a
^2 )
+ (b
^2 ))
+ (c
^2 ))
+ (d
^2 ))
proof
A1:
0
<= (c
^2 ) by
XREAL_1: 63;
A2:
0
<= (d
^2 ) by
XREAL_1: 63;
(a
^2 )
<= ((a
^2 )
+ (b
^2 )) by
XREAL_1: 31,
XREAL_1: 63;
then (
0
+ (a
^2 ))
<= (((a
^2 )
+ (b
^2 ))
+ (c
^2 )) by
A1,
XREAL_1: 7;
hence thesis by
A2,
XREAL_1: 7;
end;
Lm27: for a,b,c,d be
Real holds (c
^2 )
<= ((((a
^2 )
+ (b
^2 ))
+ (c
^2 ))
+ (d
^2 ))
proof
let a,b,c,d be
Real;
A1:
0
<= (b
^2 ) by
XREAL_1: 63;
A2:
0
<= (d
^2 ) by
XREAL_1: 63;
(c
^2 )
<= ((a
^2 )
+ (c
^2 )) by
XREAL_1: 31,
XREAL_1: 63;
then (
0
+ (c
^2 ))
<= (((a
^2 )
+ (c
^2 ))
+ (b
^2 )) by
A1,
XREAL_1: 7;
hence thesis by
A2,
XREAL_1: 7;
end;
Lm28: (d
^2 )
<= ((((a
^2 )
+ (b
^2 ))
+ (c
^2 ))
+ (d
^2 ))
proof
A1:
0
<= (b
^2 ) by
XREAL_1: 63;
A2:
0
<= (c
^2 ) by
XREAL_1: 63;
(d
^2 )
<= ((a
^2 )
+ (d
^2 )) by
XREAL_1: 31,
XREAL_1: 63;
then (
0
+ (d
^2 ))
<= (((a
^2 )
+ (d
^2 ))
+ (c
^2 )) by
A2,
XREAL_1: 7;
then (
0
+ (d
^2 ))
<= ((b
^2 )
+ (((a
^2 )
+ (d
^2 ))
+ (c
^2 ))) by
A1,
XREAL_1: 7;
hence thesis;
end;
Lm29: a
>= (b
^2 ) implies (
sqrt a)
>= b
proof
assume
A1: a
>= (b
^2 );
(b
^2 )
>=
0 by
XREAL_1: 63;
then
A2: (
sqrt a)
>= (
sqrt (b
^2 )) by
A1,
SQUARE_1: 26;
per cases ;
suppose b
>=
0 ;
hence thesis by
A2,
SQUARE_1: 22;
end;
suppose
A3: b
<
0 ;
then (
sqrt a)
>= (
- b) by
A2,
SQUARE_1: 23;
hence thesis by
A3;
end;
end;
Lm30: for a1,a2,a3,a4,a5,a6,b1,b2,b3,b4,b5,b6 be
Real st a1
>= b1 & a2
>= b2 & a3
>= b3 & a4
>= b4 & a5
>= b5 & a6
>= b6 holds (((((a1
+ a2)
+ a3)
+ a4)
+ a5)
+ a6)
>= (((((b1
+ b2)
+ b3)
+ b4)
+ b5)
+ b6)
proof
let a1,a2,a3,a4,a5,a6,b1,b2,b3,b4,b5,b6 be
Real;
assume that
A1: a1
>= b1 and
A2: a2
>= b2 and
A3: a3
>= b3 and
A4: a4
>= b4 and
A5: a5
>= b5 and
A6: a6
>= b6;
A7: (a1
+ a2)
>= (b1
+ b2) by
A1,
A2,
XREAL_1: 7;
A8: (a3
+ a4)
>= (b3
+ b4) by
A3,
A4,
XREAL_1: 7;
A9: (a5
+ a6)
>= (b5
+ b6) by
A5,
A6,
XREAL_1: 7;
((a1
+ a2)
+ (a3
+ a4))
>= ((b1
+ b2)
+ (b3
+ b4)) by
A7,
A8,
XREAL_1: 7;
then (((a1
+ a2)
+ (a3
+ a4))
+ (a5
+ a6))
>= (((b1
+ b2)
+ (b3
+ b4))
+ (b5
+ b6)) by
A9,
XREAL_1: 7;
hence thesis;
end;
Lm31: a
>=
0 & b
>=
0 & (a
^2 )
>= (b
^2 ) implies a
>= b
proof
assume that
A1: a
>=
0 and
A2: b
>=
0 and
A3: (a
^2 )
>= (b
^2 );
(
sqrt (a
^2 ))
>= (
sqrt (b
^2 )) by
A2,
A3,
SQUARE_1: 26;
then a
>= (
sqrt (b
^2 )) by
A1,
SQUARE_1: 22;
hence thesis by
A1,
SQUARE_1: 22;
end;
Lm32: for m1,m2,m4,m3,n1,n2,n3,n4 be
Real holds (((
sqrt ((((m1
^2 )
+ (m2
^2 ))
+ (m3
^2 ))
+ (m4
^2 )))
+ (
sqrt ((((n1
^2 )
+ (n2
^2 ))
+ (n3
^2 ))
+ (n4
^2 ))))
^2 )
= (((((((((m1
^2 )
+ (m2
^2 ))
+ (m3
^2 ))
+ (m4
^2 ))
+ (n1
^2 ))
+ (n2
^2 ))
+ (n3
^2 ))
+ (n4
^2 ))
+ (2
* (
sqrt (((((m1
^2 )
+ (m2
^2 ))
+ (m3
^2 ))
+ (m4
^2 ))
* ((((n1
^2 )
+ (n2
^2 ))
+ (n3
^2 ))
+ (n4
^2 ))))))
proof
let m1,m2,m4,m3,n1,n2,n3,n4 be
Real;
set a = ((((m1
^2 )
+ (m2
^2 ))
+ (m3
^2 ))
+ (m4
^2 )), b = ((((n1
^2 )
+ (n2
^2 ))
+ (n3
^2 ))
+ (n4
^2 ));
A1: a
>=
0 by
Th67;
A2: b
>=
0 by
Th67;
(((
sqrt a)
+ (
sqrt b))
^2 )
= ((((
sqrt a)
^2 )
+ ((2
* (
sqrt a))
* (
sqrt b)))
+ ((
sqrt b)
^2 ))
.= ((a
+ ((2
* (
sqrt a))
* (
sqrt b)))
+ ((
sqrt b)
^2 )) by
A1,
SQUARE_1:def 2
.= ((a
+ (2
* ((
sqrt a)
* (
sqrt b))))
+ b) by
A2,
SQUARE_1:def 2
.= ((a
+ (2
* (
sqrt (a
* b))))
+ b) by
A1,
A2,
SQUARE_1: 29;
hence thesis;
end;
Lm33: for m1,m2,m3,m4,n1,n2,n3,n4 be
Real holds ((
sqrt (((((m1
+ n1)
^2 )
+ ((m2
+ n2)
^2 ))
+ ((m3
+ n3)
^2 ))
+ ((m4
+ n4)
^2 )))
^2 )
= (((((m1
+ n1)
^2 )
+ ((m2
+ n2)
^2 ))
+ ((m3
+ n3)
^2 ))
+ ((m4
+ n4)
^2 ))
proof
let m1,m2,m3,m4,n1,n2,n3,n4 be
Real;
(((((m1
+ n1)
^2 )
+ ((m2
+ n2)
^2 ))
+ ((m3
+ n3)
^2 ))
+ ((m4
+ n4)
^2 ))
>=
0 by
Th67;
hence thesis by
SQUARE_1:def 2;
end;
theorem ::
QUATERNI:75
(
Rea z)
<=
|.z.|
proof
0
<= ((
Rea z)
^2 ) by
XREAL_1: 63;
then
A1: (
sqrt ((
Rea z)
^2 ))
<= (
sqrt (((((
Rea z)
^2 )
+ ((
Im1 z)
^2 ))
+ ((
Im2 z)
^2 ))
+ ((
Im3 z)
^2 ))) by
Lm26,
SQUARE_1: 26;
per cases ;
suppose (
Rea z)
>=
0 ;
hence thesis by
A1,
SQUARE_1: 22;
end;
suppose
A2: (
Rea z)
<
0 ;
then (
- (
Rea z))
<=
|.z.| by
A1,
SQUARE_1: 23;
hence thesis by
A2;
end;
end;
theorem ::
QUATERNI:76
(
Im1 z)
<=
|.z.|
proof
0
<= ((
Im1 z)
^2 ) by
XREAL_1: 63;
then
A1: (
sqrt ((
Im1 z)
^2 ))
<= (
sqrt (((((
Rea z)
^2 )
+ ((
Im1 z)
^2 ))
+ ((
Im2 z)
^2 ))
+ ((
Im3 z)
^2 ))) by
Lm26,
SQUARE_1: 26;
per cases ;
suppose (
Im1 z)
>=
0 ;
hence thesis by
A1,
SQUARE_1: 22;
end;
suppose
A2: (
Im1 z)
<
0 ;
then (
- (
Im1 z))
<=
|.z.| by
A1,
SQUARE_1: 23;
hence thesis by
A2;
end;
end;
theorem ::
QUATERNI:77
(
Im2 z)
<=
|.z.|
proof
0
<= ((
Im2 z)
^2 ) by
XREAL_1: 63;
then
A1: (
sqrt ((
Im2 z)
^2 ))
<= (
sqrt (((((
Rea z)
^2 )
+ ((
Im1 z)
^2 ))
+ ((
Im2 z)
^2 ))
+ ((
Im3 z)
^2 ))) by
Lm27,
SQUARE_1: 26;
per cases ;
suppose (
Im2 z)
>=
0 ;
hence thesis by
A1,
SQUARE_1: 22;
end;
suppose
A2: (
Im2 z)
<
0 ;
then (
- (
Im2 z))
<=
|.z.| by
A1,
SQUARE_1: 23;
hence thesis by
A2;
end;
end;
theorem ::
QUATERNI:78
(
Im3 z)
<=
|.z.|
proof
0
<= ((
Im3 z)
^2 ) by
XREAL_1: 63;
then
A1: (
sqrt ((
Im3 z)
^2 ))
<= (
sqrt (((((
Rea z)
^2 )
+ ((
Im1 z)
^2 ))
+ ((
Im2 z)
^2 ))
+ ((
Im3 z)
^2 ))) by
Lm28,
SQUARE_1: 26;
per cases ;
suppose (
Im3 z)
>=
0 ;
hence thesis by
A1,
SQUARE_1: 22;
end;
suppose
A2: (
Im3 z)
<
0 ;
then (
- (
Im3 z))
<=
|.z.| by
A1,
SQUARE_1: 23;
hence thesis by
A2;
end;
end;
theorem ::
QUATERNI:79
Th72:
|.(z1
+ z2).|
<= (
|.z1.|
+
|.z2.|)
proof
set m1 = (
Rea z1), m2 = (
Im1 z1), m3 = (
Im2 z1), m4 = (
Im3 z1), n1 = (
Rea z2), n2 = (
Im1 z2), n3 = (
Im2 z2), n4 = (
Im3 z2), a = ((((m1
^2 )
+ (m2
^2 ))
+ (m3
^2 ))
+ (m4
^2 )), b = ((((n1
^2 )
+ (n2
^2 ))
+ (n3
^2 ))
+ (n4
^2 ));
A1:
|.z1.|
>=
0 by
Th60;
|.z2.|
>=
0 by
Th60;
then
A2: (
|.z1.|
+
|.z2.|)
>=
0 by
A1;
A3: (((
sqrt ((((m1
^2 )
+ (m2
^2 ))
+ (m3
^2 ))
+ (m4
^2 )))
+ (
sqrt ((((n1
^2 )
+ (n2
^2 ))
+ (n3
^2 ))
+ (n4
^2 ))))
^2 )
= (((((((((m1
^2 )
+ (m2
^2 ))
+ (m3
^2 ))
+ (m4
^2 ))
+ (n1
^2 ))
+ (n2
^2 ))
+ (n3
^2 ))
+ (n4
^2 ))
+ (2
* (
sqrt (((((m1
^2 )
+ (m2
^2 ))
+ (m3
^2 ))
+ (m4
^2 ))
* ((((n1
^2 )
+ (n2
^2 ))
+ (n3
^2 ))
+ (n4
^2 )))))) by
Lm32;
A4: ((
sqrt (((((m1
+ n1)
^2 )
+ ((m2
+ n2)
^2 ))
+ ((m3
+ n3)
^2 ))
+ ((m4
+ n4)
^2 )))
^2 )
= (((((m1
+ n1)
^2 )
+ ((m2
+ n2)
^2 ))
+ ((m3
+ n3)
^2 ))
+ ((m4
+ n4)
^2 )) by
Lm33;
A5: (
Rea (z1
+ z2))
= ((
Rea z1)
+ (
Rea z2)) by
Th29;
A6: (
Im1 (z1
+ z2))
= ((
Im1 z1)
+ (
Im1 z2)) by
Th29;
A7: (
Im2 (z1
+ z2))
= ((
Im2 z1)
+ (
Im2 z2)) by
Th29;
A8: (
Im3 (z1
+ z2))
= ((
Im3 z1)
+ (
Im3 z2)) by
Th29;
A9: (((m1
* n2)
^2 )
+ ((m2
* n1)
^2 ))
>= ((2
* (m1
* n2))
* (m2
* n1)) by
SERIES_3: 6;
A10: (((m1
* n3)
^2 )
+ ((m3
* n1)
^2 ))
>= ((2
* (m1
* n3))
* (m3
* n1)) by
SERIES_3: 6;
A11: (((m1
* n4)
^2 )
+ ((m4
* n1)
^2 ))
>= ((2
* (m1
* n4))
* (m4
* n1)) by
SERIES_3: 6;
A12: (((m2
* n3)
^2 )
+ ((m3
* n2)
^2 ))
>= ((2
* (m2
* n3))
* (m3
* n2)) by
SERIES_3: 6;
A13: (((m2
* n4)
^2 )
+ ((m4
* n2)
^2 ))
>= ((2
* (m2
* n4))
* (m4
* n2)) by
SERIES_3: 6;
A14: (((m3
* n4)
^2 )
+ ((m4
* n3)
^2 ))
>= ((2
* (m3
* n4))
* (m4
* n3)) by
SERIES_3: 6;
set a1 = ((m1
* n2)
^2 ), a2 = ((m2
* n1)
^2 ), a3 = ((m1
* n3)
^2 ), a4 = ((m3
* n1)
^2 ), a5 = ((m1
* n4)
^2 ), a6 = ((m4
* n1)
^2 ), a7 = ((m2
* n3)
^2 ), a8 = ((m3
* n2)
^2 ), a9 = ((m2
* n4)
^2 ), a10 = ((m4
* n2)
^2 ), a11 = ((m3
* n4)
^2 ), a12 = ((m4
* n3)
^2 ), b1 = ((2
* (m1
* n2))
* (m2
* n1)), b2 = ((2
* (m1
* n3))
* (m3
* n1)), b3 = ((2
* (m1
* n4))
* (m4
* n1)), b4 = ((2
* (m2
* n3))
* (m3
* n2)), b5 = ((2
* (m2
* n4))
* (m4
* n2)), b6 = ((2
* (m3
* n4))
* (m4
* n3));
((((((a1
+ a2)
+ (a3
+ a4))
+ (a5
+ a6))
+ (a7
+ a8))
+ (a9
+ a10))
+ (a11
+ a12))
>= (((((b1
+ b2)
+ b3)
+ b4)
+ b5)
+ b6) by
A9,
A10,
A11,
A12,
A13,
A14,
Lm30;
then ((((((((((((a1
+ a2)
+ a3)
+ a4)
+ a5)
+ a6)
+ a7)
+ a8)
+ a9)
+ a10)
+ a11)
+ a12)
+ (((((m1
* n1)
^2 )
+ ((m2
* n2)
^2 ))
+ ((m3
* n3)
^2 ))
+ ((m4
* n4)
^2 )))
>= ((((((b1
+ b2)
+ b3)
+ b4)
+ b5)
+ b6)
+ (((((m1
* n1)
^2 )
+ ((m2
* n2)
^2 ))
+ ((m3
* n3)
^2 ))
+ ((m4
* n4)
^2 ))) by
XREAL_1: 6;
then ((((((((((((a1
+ a2)
+ a3)
+ a4)
+ a5)
+ a6)
+ a7)
+ a8)
+ a9)
+ a10)
+ a11)
+ a12)
+ (((((m1
* n1)
^2 )
+ ((m2
* n2)
^2 ))
+ ((m3
* n3)
^2 ))
+ ((m4
* n4)
^2 )))
>= (((((m1
* n1)
+ (m2
* n2))
+ (m3
* n3))
+ (m4
* n4))
^2 );
then (
sqrt (((((m1
^2 )
+ (m2
^2 ))
+ (m3
^2 ))
+ (m4
^2 ))
* ((((n1
^2 )
+ (n2
^2 ))
+ (n3
^2 ))
+ (n4
^2 ))))
>= ((((m1
* n1)
+ (m2
* n2))
+ (m3
* n3))
+ (m4
* n4)) by
Lm29;
then (2
* (
sqrt (((((m1
^2 )
+ (m2
^2 ))
+ (m3
^2 ))
+ (m4
^2 ))
* ((((n1
^2 )
+ (n2
^2 ))
+ (n3
^2 ))
+ (n4
^2 )))))
>= (2
* ((((m1
* n1)
+ (m2
* n2))
+ (m3
* n3))
+ (m4
* n4))) by
XREAL_1: 64;
then ((a
+ b)
+ (2
* (
sqrt (((((m1
^2 )
+ (m2
^2 ))
+ (m3
^2 ))
+ (m4
^2 ))
* ((((n1
^2 )
+ (n2
^2 ))
+ (n3
^2 ))
+ (n4
^2 ))))))
>= ((a
+ b)
+ (2
* ((((m1
* n1)
+ (m2
* n2))
+ (m3
* n3))
+ (m4
* n4)))) by
XREAL_1: 6;
hence thesis by
A2,
A3,
A4,
A5,
A6,
A7,
A8,
Lm31;
end;
theorem ::
QUATERNI:80
Th73:
|.(z1
- z2).|
<= (
|.z1.|
+
|.z2.|)
proof
|.(z1
- z2).|
<= (
|.z1.|
+
|.(
- z2).|) by
Th72;
hence thesis by
Th65;
end;
Lm34: z1
= ((z1
+ z2)
- z2)
proof
A1: z1
=
[*(
Rea z1), (
Im1 z1), (
Im2 z1), (
Im3 z1)*] by
Th17;
A2: z2
=
[*(
Rea z2), (
Im1 z2), (
Im2 z2), (
Im3 z2)*] by
Th17;
A3: (
- z2)
=
[*(
- (
Rea z2)), (
- (
Im1 z2)), (
- (
Im2 z2)), (
- (
Im3 z2))*] by
Th55;
(z1
+ z2)
=
[*((
Rea z1)
+ (
Rea z2)), ((
Im1 z1)
+ (
Im1 z2)), ((
Im2 z1)
+ (
Im2 z2)), ((
Im3 z1)
+ (
Im3 z2))*] by
A1,
A2,
Def6;
then ((z1
+ z2)
- z2)
=
[*(((
Rea z1)
+ (
Rea z2))
- (
Rea z2)), (((
Im1 z1)
+ (
Im1 z2))
- (
Im1 z2)), (((
Im2 z1)
+ (
Im2 z2))
- (
Im2 z2)), (((
Im3 z1)
+ (
Im3 z2))
- (
Im3 z2))*] by
A3,
Def6;
hence thesis by
Th17;
end;
Lm35: z1
= ((z1
- z2)
+ z2)
proof
A1: z1
=
[*(
Rea z1), (
Im1 z1), (
Im2 z1), (
Im3 z1)*] by
Th17;
A2: z2
=
[*(
Rea z2), (
Im1 z2), (
Im2 z2), (
Im3 z2)*] by
Th17;
(
- z2)
=
[*(
- (
Rea z2)), (
- (
Im1 z2)), (
- (
Im2 z2)), (
- (
Im3 z2))*] by
Th55;
then (z1
- z2)
=
[*((
Rea z1)
+ (
- (
Rea z2))), ((
Im1 z1)
+ (
- (
Im1 z2))), ((
Im2 z1)
+ (
- (
Im2 z2))), ((
Im3 z1)
+ (
- (
Im3 z2)))*] by
A1,
Def6;
then ((z1
- z2)
+ z2)
=
[*(((
Rea z1)
+ (
- (
Rea z2)))
+ (
Rea z2)), (((
Im1 z1)
+ (
- (
Im1 z2)))
+ (
Im1 z2)), (((
Im2 z1)
+ (
- (
Im2 z2)))
+ (
Im2 z2)), (((
Im3 z1)
+ (
- (
Im3 z2)))
+ (
Im3 z2))*] by
A2,
Def6
.=
[*(((
Rea z1)
+ (
Rea z2))
- (
Rea z2)), (((
Im1 z1)
+ (
Im1 z2))
- (
Im1 z2)), (((
Im2 z1)
+ (
Im2 z2))
- (
Im2 z2)), (((
Im3 z1)
+ (
Im3 z2))
- (
Im3 z2))*];
hence thesis by
Th17;
end;
Lm36: (z1
- z2)
=
[*((
Rea z1)
- (
Rea z2)), ((
Im1 z1)
- (
Im1 z2)), ((
Im2 z1)
- (
Im2 z2)), ((
Im3 z1)
- (
Im3 z2))*]
proof
A1: z1
=
[*(
Rea z1), (
Im1 z1), (
Im2 z1), (
Im3 z1)*] by
Th17;
(
- z2)
=
[*(
- (
Rea z2)), (
- (
Im1 z2)), (
- (
Im2 z2)), (
- (
Im3 z2))*] by
Th55;
hence thesis by
A1,
Def6;
end;
Lm37: (z1
- z2)
= (
- (z2
- z1))
proof
A1: (
Rea (z2
- z1))
= ((
Rea z2)
- (
Rea z1)) by
Th35;
A2: (
Im1 (z2
- z1))
= ((
Im1 z2)
- (
Im1 z1)) by
Th35;
A3: (
Im2 (z2
- z1))
= ((
Im2 z2)
- (
Im2 z1)) by
Th35;
A4: (
Im3 (z2
- z1))
= ((
Im3 z2)
- (
Im3 z1)) by
Th35;
A5: (
Rea (
- (z2
- z1)))
= (
- ((
Rea z2)
- (
Rea z1))) by
A1,
Th34;
A6: (
Im1 (
- (z2
- z1)))
= (
- ((
Im1 z2)
- (
Im1 z1))) by
A2,
Th34;
A7: (
Im2 (
- (z2
- z1)))
= (
- ((
Im2 z2)
- (
Im2 z1))) by
A3,
Th34;
A8: (
Im3 (
- (z2
- z1)))
= (
- ((
Im3 z2)
- (
Im3 z1))) by
A4,
Th34;
A9: (
Rea (z1
- z2))
= ((
Rea z1)
- (
Rea z2)) by
Th35;
A10: (
Im1 (z1
- z2))
= ((
Im1 z1)
- (
Im1 z2)) by
Th35;
A11: (
Im2 (z1
- z2))
= ((
Im2 z1)
- (
Im2 z2)) by
Th35;
(
Im3 (z1
- z2))
= ((
Im3 z1)
- (
Im3 z2)) by
Th35;
hence thesis by
Th18,
A9,
A10,
A11,
A5,
A6,
A7,
A8;
end;
Lm38: (z1
- z2)
=
0 implies z1
= z2
proof
assume
A1: (z1
- z2)
=
0 ;
A2: (
Rea (z1
- z2))
= ((
Rea z1)
- (
Rea z2)) by
Th35;
A3: (
Im1 (z1
- z2))
= ((
Im1 z1)
- (
Im1 z2)) by
Th35;
A4: (
Im2 (z1
- z2))
= ((
Im2 z1)
- (
Im2 z2)) by
Th35;
A5: (
Im3 (z1
- z2))
= ((
Im3 z1)
- (
Im3 z2)) by
Th35;
A6: (
Rea (z1
- z2))
=
0 by
A1,
Lm6,
Th16;
A7: (
Im1 (z1
- z2))
=
0 by
A1,
Lm6,
Th16;
A8: (
Im2 (z1
- z2))
=
0 by
A1,
Lm6,
Th16;
(
Im3 (z1
- z2))
=
0 by
A1,
Lm6,
Th16;
hence thesis by
A2,
A3,
A4,
A5,
A6,
A7,
A8,
Th18;
end;
theorem ::
QUATERNI:81
(
|.z1.|
-
|.z2.|)
<=
|.(z1
+ z2).|
proof
z1
= ((z1
+ z2)
- z2) by
Lm34;
then
|.z1.|
<= (
|.(z1
+ z2).|
+
|.z2.|) by
Th73;
hence thesis by
XREAL_1: 20;
end;
theorem ::
QUATERNI:82
Th75: (
|.z1.|
-
|.z2.|)
<=
|.(z1
- z2).|
proof
z1
= ((z1
- z2)
+ z2) by
Lm35;
then
|.z1.|
<= (
|.(z1
- z2).|
+
|.z2.|) by
Th72;
hence thesis by
XREAL_1: 20;
end;
theorem ::
QUATERNI:83
Th76:
|.(z1
- z2).|
=
|.(z2
- z1).|
proof
thus
|.(z1
- z2).|
=
|.(
- (z2
- z1)).| by
Lm37
.=
|.(z2
- z1).| by
Th65;
end;
theorem ::
QUATERNI:84
|.(z1
- z2).|
=
0 iff z1
= z2
proof
thus
|.(z1
- z2).|
=
0 implies z1
= z2 by
Lm38,
Th59;
assume z1
= z2;
then (z1
- z2)
=
[*((
Rea z1)
- (
Rea z1)), ((
Im1 z1)
- (
Im1 z1)), ((
Im2 z1)
- (
Im2 z1)), ((
Im3 z1)
- (
Im3 z1))*] by
Lm36
.=
0 by
Lm6;
hence thesis by
Th58;
end;
Lm39: for z,z1,z2 be
Quaternion holds (z1
- z2)
= ((z1
- z)
+ (z
- z2))
proof
let z,z1,z2 be
Quaternion;
A1: (
Rea ((z1
- z)
+ (z
- z2)))
= ((
Rea (z1
- z))
+ (
Rea (z
- z2))) by
Lm12
.= ((
Rea (z1
- z))
+ ((
Rea z)
- (
Rea z2))) by
Th35
.= (((
Rea z1)
- (
Rea z))
+ ((
Rea z)
- (
Rea z2))) by
Th35
.= ((
Rea z1)
- (
Rea z2))
.= (
Rea (z1
- z2)) by
Th35;
A2: (
Im1 ((z1
- z)
+ (z
- z2)))
= ((
Im1 (z1
- z))
+ (
Im1 (z
- z2))) by
Lm12
.= ((
Im1 (z1
- z))
+ ((
Im1 z)
- (
Im1 z2))) by
Th35
.= (((
Im1 z1)
- (
Im1 z))
+ ((
Im1 z)
- (
Im1 z2))) by
Th35
.= ((
Im1 z1)
- (
Im1 z2))
.= (
Im1 (z1
- z2)) by
Th35;
A3: (
Im2 ((z1
- z)
+ (z
- z2)))
= ((
Im2 (z1
- z))
+ (
Im2 (z
- z2))) by
Lm12
.= ((
Im2 (z1
- z))
+ ((
Im2 z)
- (
Im2 z2))) by
Th35
.= (((
Im2 z1)
- (
Im2 z))
+ ((
Im2 z)
- (
Im2 z2))) by
Th35
.= ((
Im2 z1)
- (
Im2 z2))
.= (
Im2 (z1
- z2)) by
Th35;
(
Im3 ((z1
- z)
+ (z
- z2)))
= ((
Im3 (z1
- z))
+ (
Im3 (z
- z2))) by
Lm12
.= ((
Im3 (z1
- z))
+ ((
Im3 z)
- (
Im3 z2))) by
Th35
.= (((
Im3 z1)
- (
Im3 z))
+ ((
Im3 z)
- (
Im3 z2))) by
Th35
.= ((
Im3 z1)
- (
Im3 z2))
.= (
Im3 (z1
- z2)) by
Th35;
hence thesis by
A1,
A2,
A3,
Th18;
end;
theorem ::
QUATERNI:85
|.(z1
- z2).|
<= (
|.(z1
- z).|
+
|.(z
- z2).|)
proof
|.(z1
- z2).|
=
|.((z1
- z)
+ (z
- z2)).| by
Lm39;
hence thesis by
Th72;
end;
theorem ::
QUATERNI:86
|.(
|.z1.|
-
|.z2.|).|
<=
|.(z1
- z2).|
proof
(
|.z2.|
-
|.z1.|)
<=
|.(z2
- z1).| by
Th75;
then (
- (
|.z1.|
-
|.z2.|))
<=
|.(z1
- z2).| by
Th76;
then
A1: (
-
|.(z1
- z2).|)
<= (
- (
- (
|.z1.|
-
|.z2.|))) by
XREAL_1: 24;
(
|.z1.|
-
|.z2.|)
<=
|.(z1
- z2).| by
Th75;
hence thesis by
A1,
ABSVALUE: 5;
end;
theorem ::
QUATERNI:87
Th80:
|.(z1
* z2).|
= (
|.z1.|
*
|.z2.|)
proof
set m1 = (
Rea z1), m2 = (
Im1 z1), m3 = (
Im2 z1), m4 = (
Im3 z1), n1 = (
Rea z2), n2 = (
Im1 z2), n3 = (
Im2 z2), n4 = (
Im3 z2);
A1: (
Rea (z1
* z2))
= ((((m1
* n1)
- (m2
* n2))
- (m3
* n3))
- (m4
* n4)) by
Lm17;
A2: (
Im1 (z1
* z2))
= ((((m1
* n2)
+ (m2
* n1))
+ (m3
* n4))
- (m4
* n3)) by
Lm17;
A3: (
Im2 (z1
* z2))
= ((((m1
* n3)
+ (m3
* n1))
+ (m4
* n2))
- (m2
* n4)) by
Lm17;
A4: (
Im3 (z1
* z2))
= ((((m1
* n4)
+ (m4
* n1))
+ (m2
* n3))
- (m3
* n2)) by
Lm17;
set b1 = ((((m1
* n1)
- (m2
* n2))
- (m3
* n3))
- (m4
* n4)), b2 = ((((m1
* n2)
+ (m2
* n1))
+ (m3
* n4))
- (m4
* n3)), b3 = ((((m1
* n3)
+ (m3
* n1))
+ (m4
* n2))
- (m2
* n4)), b4 = ((((m1
* n4)
+ (m4
* n1))
+ (m2
* n3))
- (m3
* n2));
A5: ((((m1
^2 )
+ (m2
^2 ))
+ (m3
^2 ))
+ (m4
^2 ))
>=
0 by
Th67;
A6: ((((n1
^2 )
+ (n2
^2 ))
+ (n3
^2 ))
+ (n4
^2 ))
>=
0 by
Th67;
(
sqrt ((((b1
^2 )
+ (b2
^2 ))
+ (b3
^2 ))
+ (b4
^2 )))
= (
sqrt (((((m1
^2 )
+ (m2
^2 ))
+ (m3
^2 ))
+ (m4
^2 ))
* ((((n1
^2 )
+ (n2
^2 ))
+ (n3
^2 ))
+ (n4
^2 ))));
hence thesis by
A1,
A2,
A3,
A4,
A5,
A6,
SQUARE_1: 29;
end;
theorem ::
QUATERNI:88
|.(z
* z).|
= (((((
Rea z)
^2 )
+ ((
Im1 z)
^2 ))
+ ((
Im2 z)
^2 ))
+ ((
Im3 z)
^2 ))
proof
A1: (((((
Rea z)
^2 )
+ ((
Im1 z)
^2 ))
+ ((
Im2 z)
^2 ))
+ ((
Im3 z)
^2 ))
>=
0 by
Th67;
(
|.z.|
*
|.z.|)
= ((
sqrt (((((
Rea z)
^2 )
+ ((
Im1 z)
^2 ))
+ ((
Im2 z)
^2 ))
+ ((
Im3 z)
^2 )))
^2 )
.= (((((
Rea z)
^2 )
+ ((
Im1 z)
^2 ))
+ ((
Im2 z)
^2 ))
+ ((
Im3 z)
^2 )) by
A1,
SQUARE_1:def 2;
hence thesis by
Th80;
end;
theorem ::
QUATERNI:89
|.(z
* z).|
=
|.(z
* (z
*' )).|
proof
thus
|.(z
* z).|
= (
|.z.|
*
|.z.|) by
Th80
.= (
|.z.|
*
|.(z
*' ).|) by
Th66
.=
|.(z
* (z
*' )).| by
Th80;
end;
theorem ::
QUATERNI:90
z is
real implies (
Rea z)
= z & (
Im1 z)
=
0 & (
Im2 z)
=
0 & (
Im3 z)
=
0 by
Lm18;
theorem ::
QUATERNI:91
for x,y be
Element of
REAL holds
[*x, y,
0 ,
0 *]
=
[*x, y*] by
Lm3;
theorem ::
QUATERNI:92
(z1
+ z2)
= (((((
Rea z1)
+ (
Rea z2))
+ (((
Im1 z1)
+ (
Im1 z2))
*
<i> ))
+ (((
Im2 z1)
+ (
Im2 z2))
*
<j> ))
+ (((
Im3 z1)
+ (
Im3 z2))
*
<k> )) by
Lm20;
theorem ::
QUATERNI:93
(z1
* z2)
= ((((((((
Rea z1)
* (
Rea z2))
- ((
Im1 z1)
* (
Im1 z2)))
- ((
Im2 z1)
* (
Im2 z2)))
- ((
Im3 z1)
* (
Im3 z2)))
+ ((((((
Rea z1)
* (
Im1 z2))
+ ((
Im1 z1)
* (
Rea z2)))
+ ((
Im2 z1)
* (
Im3 z2)))
- ((
Im3 z1)
* (
Im2 z2)))
*
<i> ))
+ ((((((
Rea z1)
* (
Im2 z2))
+ ((
Im2 z1)
* (
Rea z2)))
+ ((
Im3 z1)
* (
Im1 z2)))
- ((
Im1 z1)
* (
Im3 z2)))
*
<j> ))
+ ((((((
Rea z1)
* (
Im3 z2))
+ ((
Im3 z1)
* (
Rea z2)))
+ ((
Im1 z1)
* (
Im2 z2)))
- ((
Im2 z1)
* (
Im1 z2)))
*
<k> )) by
Lm21;
theorem ::
QUATERNI:94
(
- z)
= ((((
- (
Rea z))
+ ((
- (
Im1 z))
*
<i> ))
+ ((
- (
Im2 z))
*
<j> ))
+ ((
- (
Im3 z))
*
<k> )) by
Lm24;
theorem ::
QUATERNI:95
(z1
- z2)
= (((((
Rea z1)
- (
Rea z2))
+ (((
Im1 z1)
- (
Im1 z2))
*
<i> ))
+ (((
Im2 z1)
- (
Im2 z2))
*
<j> ))
+ (((
Im3 z1)
- (
Im3 z2))
*
<k> )) by
Lm25;
theorem ::
QUATERNI:96
for a,b,c,d be
Real st ((((a
^2 )
+ (b
^2 ))
+ (c
^2 ))
+ (d
^2 ))
=
0 holds a
=
0 & b
=
0 & c
=
0 & d
=
0 by
Lm9;
theorem ::
QUATERNI:97
(
Rea (z1
* z2))
= (((((
Rea z1)
* (
Rea z2))
- ((
Im1 z1)
* (
Im1 z2)))
- ((
Im2 z1)
* (
Im2 z2)))
- ((
Im3 z1)
* (
Im3 z2))) & (
Im1 (z1
* z2))
= (((((
Rea z1)
* (
Im1 z2))
+ ((
Im1 z1)
* (
Rea z2)))
+ ((
Im2 z1)
* (
Im3 z2)))
- ((
Im3 z1)
* (
Im2 z2))) & (
Im2 (z1
* z2))
= (((((
Rea z1)
* (
Im2 z2))
+ ((
Im2 z1)
* (
Rea z2)))
+ ((
Im3 z1)
* (
Im1 z2)))
- ((
Im1 z1)
* (
Im3 z2))) & (
Im3 (z1
* z2))
= (((((
Rea z1)
* (
Im3 z2))
+ ((
Im3 z1)
* (
Rea z2)))
+ ((
Im1 z1)
* (
Im2 z2)))
- ((
Im2 z1)
* (
Im1 z2))) by
Lm17;