quatern3.miz
begin
reserve z1,z2,z3,z4,z for
Quaternion;
theorem ::
QUATERN3:1
Th1: (
Rea (z1
* z2))
= (
Rea (z2
* z1))
proof
(
Rea (z2
* z1))
= (((((
Rea z2)
* (
Rea z1))
- ((
Im1 z2)
* (
Im1 z1)))
- ((
Im2 z2)
* (
Im2 z1)))
- ((
Im3 z2)
* (
Im3 z1))) by
QUATERNI: 97;
hence thesis by
QUATERNI: 97;
end;
Lm1: z is
Real implies z
= (
Rea z) & (
Im1 z)
=
0 & (
Im2 z)
=
0 & (
Im3 z)
=
0
proof
assume z is
Real;
then
reconsider x = z as
Element of
REAL by
XREAL_0:def 1;
x
=
[*x, (
In (
0 ,
REAL ))*] &
[*x, (
In (
0 ,
REAL ))*]
=
[*x,
0 ,
0 ,
0 *] by
ARYTM_0:def 5,
QUATERNI: 91;
hence thesis by
QUATERNI: 23;
end;
theorem ::
QUATERN3:2
z is
Real implies (z
+ z3)
= (((((
Rea z)
+ (
Rea z3))
+ ((
Im1 z3)
*
<i> ))
+ ((
Im2 z3)
*
<j> ))
+ ((
Im3 z3)
*
<k> ))
proof
reconsider z1 = (z
+ z3) as
Quaternion;
assume
A1: z is
Real;
then
A2: (
Im3 z)
=
0 by
Lm1;
set z2 =
[*((
Rea z)
+ (
Rea z3)), ((
Im1 z)
+ (
Im1 z3)), ((
Im2 z)
+ (
Im2 z3)), ((
Im3 z)
+ (
Im3 z3))*];
A3: (
Rea z2)
= ((
Rea z)
+ (
Rea z3)) by
QUATERNI: 23
.= (
Rea z1) by
QUATERNI: 36;
A4: (
Im1 z2)
= ((
Im1 z)
+ (
Im1 z3)) by
QUATERNI: 23
.= (
Im1 z1) by
QUATERNI: 36;
A5: (
Im3 z2)
= ((
Im3 z)
+ (
Im3 z3)) by
QUATERNI: 23
.= (
Im3 z1) by
QUATERNI: 36;
A6: (
Im2 z2)
= ((
Im2 z)
+ (
Im2 z3)) by
QUATERNI: 23
.= (
Im2 z1) by
QUATERNI: 36;
(
Im1 z)
=
0 & (
Im2 z)
=
0 by
A1,
Lm1;
then (z
+ z3)
=
[*((
Rea z)
+ (
Rea z3)), (
Im1 z3), (
Im2 z3), (
Im3 z3)*] by
A2,
A3,
A4,
A6,
A5,
QUATERNI: 25;
hence thesis by
QUATERN2: 1;
end;
theorem ::
QUATERN3:3
z is
Real implies (z
- z3)
=
[*((
Rea z)
- (
Rea z3)), (
- (
Im1 z3)), (
- (
Im2 z3)), (
- (
Im3 z3))*]
proof
reconsider z1 = (z
+ (
- z3)) as
Quaternion;
assume
A1: z is
Real;
then
A2: (
Im3 z)
=
0 by
Lm1;
set z2 =
[*((
Rea z)
- (
Rea z3)), ((
Im1 z)
- (
Im1 z3)), ((
Im2 z)
- (
Im2 z3)), ((
Im3 z)
- (
Im3 z3))*];
A3: (
Rea z2)
= ((
Rea z)
+ (
- (
Rea z3))) by
QUATERNI: 23
.= ((
Rea z)
+ (
Rea (
- z3))) by
QUATERNI: 41
.= (
Rea z1) by
QUATERNI: 36;
A4: (
Im1 z2)
= ((
Im1 z)
+ (
- (
Im1 z3))) by
QUATERNI: 23
.= ((
Im1 z)
+ (
Im1 (
- z3))) by
QUATERNI: 41
.= (
Im1 z1) by
QUATERNI: 36;
A5: (
Im3 z2)
= ((
Im3 z)
+ (
- (
Im3 z3))) by
QUATERNI: 23
.= ((
Im3 z)
+ (
Im3 (
- z3))) by
QUATERNI: 41
.= (
Im3 z1) by
QUATERNI: 36;
A6: (
Im2 z2)
= ((
Im2 z)
+ (
- (
Im2 z3))) by
QUATERNI: 23
.= ((
Im2 z)
+ (
Im2 (
- z3))) by
QUATERNI: 41
.= (
Im2 z1) by
QUATERNI: 36;
(
Im1 z)
=
0 & (
Im2 z)
=
0 by
A1,
Lm1;
hence thesis by
A2,
A3,
A4,
A6,
A5,
QUATERNI: 25;
end;
theorem ::
QUATERN3:4
z is
Real implies (z
* z3)
=
[*((
Rea z)
* (
Rea z3)), ((
Rea z)
* (
Im1 z3)), ((
Rea z)
* (
Im2 z3)), ((
Rea z)
* (
Im3 z3))*]
proof
assume
A1: z is
Real;
then
A2: (
Im3 z)
=
0 by
Lm1;
A3: (z
* z3)
=
[*(((((
Rea z)
* (
Rea z3))
- ((
Im1 z)
* (
Im1 z3)))
- ((
Im2 z)
* (
Im2 z3)))
- ((
Im3 z)
* (
Im3 z3))), (((((
Rea z)
* (
Im1 z3))
+ ((
Im1 z)
* (
Rea z3)))
+ ((
Im2 z)
* (
Im3 z3)))
- ((
Im3 z)
* (
Im2 z3))), (((((
Rea z)
* (
Im2 z3))
+ ((
Im2 z)
* (
Rea z3)))
+ ((
Im3 z)
* (
Im1 z3)))
- ((
Im1 z)
* (
Im3 z3))), (((((
Rea z)
* (
Im3 z3))
+ ((
Im3 z)
* (
Rea z3)))
+ ((
Im1 z)
* (
Im2 z3)))
- ((
Im2 z)
* (
Im1 z3)))*]
proof
reconsider z9 = (z
* z3) as
Quaternion;
set z1 =
[*(((((
Rea z)
* (
Rea z3))
- ((
Im1 z)
* (
Im1 z3)))
- ((
Im2 z)
* (
Im2 z3)))
- ((
Im3 z)
* (
Im3 z3))), (((((
Rea z)
* (
Im1 z3))
+ ((
Im1 z)
* (
Rea z3)))
+ ((
Im2 z)
* (
Im3 z3)))
- ((
Im3 z)
* (
Im2 z3))), (((((
Rea z)
* (
Im2 z3))
+ ((
Im2 z)
* (
Rea z3)))
+ ((
Im3 z)
* (
Im1 z3)))
- ((
Im1 z)
* (
Im3 z3))), (((((
Rea z)
* (
Im3 z3))
+ ((
Im3 z)
* (
Rea z3)))
+ ((
Im1 z)
* (
Im2 z3)))
- ((
Im2 z)
* (
Im1 z3)))*];
A4: (
Im1 z1)
= (((((
Rea z)
* (
Im1 z3))
+ ((
Im1 z)
* (
Rea z3)))
+ ((
Im2 z)
* (
Im3 z3)))
- ((
Im3 z)
* (
Im2 z3))) by
QUATERNI: 23
.= (
Im1 z9) by
QUATERNI: 97;
A5: (
Im2 z1)
= (((((
Rea z)
* (
Im2 z3))
+ ((
Im2 z)
* (
Rea z3)))
+ ((
Im3 z)
* (
Im1 z3)))
- ((
Im1 z)
* (
Im3 z3))) by
QUATERNI: 23
.= (
Im2 z9) by
QUATERNI: 97;
A6: (
Im3 z1)
= (((((
Rea z)
* (
Im3 z3))
+ ((
Im3 z)
* (
Rea z3)))
+ ((
Im1 z)
* (
Im2 z3)))
- ((
Im2 z)
* (
Im1 z3))) by
QUATERNI: 23
.= (
Im3 z9) by
QUATERNI: 97;
(
Rea z1)
= (((((
Rea z)
* (
Rea z3))
- ((
Im1 z)
* (
Im1 z3)))
- ((
Im2 z)
* (
Im2 z3)))
- ((
Im3 z)
* (
Im3 z3))) by
QUATERNI: 23
.= (
Rea z9) by
QUATERNI: 97;
hence thesis by
A4,
A5,
A6,
QUATERNI: 25;
end;
(
Im1 z)
=
0 & (
Im2 z)
=
0 by
A1,
Lm1;
hence thesis by
A2,
A3;
end;
theorem ::
QUATERN3:5
z is
Real implies (z
*
<i> )
=
[*
0 , (
Rea z),
0 ,
0 *]
proof
assume
A1: z is
Real;
then
reconsider x = z as
Real;
A2: x
= (
Rea z) by
Lm1;
(z
*
<i> )
=
[*(
Rea (z
*
<i> )), (
Im1 (z
*
<i> )), (
Im2 (z
*
<i> )), (
Im3 (z
*
<i> ))*] by
QUATERNI: 24
.=
[*
0 , (
Im1 (z
*
<i> )), (
Im2 (z
*
<i> )), (
Im3 (z
*
<i> ))*] by
A1,
QUATERNI: 33
.=
[*
0 , x, (
Im2 (z
*
<i> )), (
Im3 (z
*
<i> ))*] by
QUATERNI: 33
.=
[*
0 , x,
0 , (
Im3 (z
*
<i> ))*] by
QUATERNI: 33
.=
[*
0 , (
Rea z),
0 ,
0 *] by
A2,
QUATERNI: 33;
hence thesis;
end;
theorem ::
QUATERN3:6
z is
Real implies (z
*
<j> )
=
[*
0 ,
0 , (
Rea z),
0 *]
proof
assume
A1: z is
Real;
then
reconsider x = z as
Real;
A2: x
= (
Rea z) by
Lm1;
(z
*
<j> )
=
[*(
Rea (z
*
<j> )), (
Im1 (z
*
<j> )), (
Im2 (z
*
<j> )), (
Im3 (z
*
<j> ))*] by
QUATERNI: 24
.=
[*
0 , (
Im1 (z
*
<j> )), (
Im2 (z
*
<j> )), (
Im3 (z
*
<j> ))*] by
A1,
QUATERNI: 34
.=
[*
0 ,
0 , (
Im2 (z
*
<j> )), (
Im3 (z
*
<j> ))*] by
A1,
QUATERNI: 34
.=
[*
0 ,
0 , x, (
Im3 (z
*
<j> ))*] by
QUATERNI: 34
.=
[*
0 ,
0 , (
Rea z),
0 *] by
A2,
QUATERNI: 34;
hence thesis;
end;
theorem ::
QUATERN3:7
z is
Real implies (z
*
<k> )
=
[*
0 ,
0 ,
0 , (
Rea z)*]
proof
assume
A1: z is
Real;
then
reconsider x = z as
Real;
A2: x
= (
Rea z) by
Lm1;
(z
*
<k> )
=
[*(
Rea (z
*
<k> )), (
Im1 (z
*
<k> )), (
Im2 (z
*
<k> )), (
Im3 (z
*
<k> ))*] by
QUATERNI: 24
.=
[*
0 , (
Im1 (z
*
<k> )), (
Im2 (z
*
<k> )), (
Im3 (z
*
<k> ))*] by
A1,
QUATERNI: 35
.=
[*
0 ,
0 , (
Im2 (z
*
<k> )), (
Im3 (z
*
<k> ))*] by
A1,
QUATERNI: 35
.=
[*
0 ,
0 ,
0 , (
Im3 (z
*
<k> ))*] by
A1,
QUATERNI: 35
.=
[*
0 ,
0 ,
0 , (
Rea z)*] by
A2,
QUATERNI: 35;
hence thesis;
end;
theorem ::
QUATERN3:8
(z
-
0q )
= z
proof
consider x,y,w,v be
Real such that
A1: z
=
[*x, y, w, v*] by
QUATERNI: 7;
0q
=
[*(
In (
0 ,
REAL )), (
In (
0 ,
REAL ))*] by
ARYTM_0:def 5
.=
[*
0 ,
0 ,
0 ,
0 *] by
QUATERNI: 91;
then (
-
0q )
=
[*(
-
0 ), (
-
0 ), (
-
0 ), (
-
0 )*] by
QUATERN2: 4;
then (z
-
0q )
=
[*(x
+ (
-
0 )), (y
+ (
-
0 )), (w
+ (
-
0 )), (v
+ (
-
0 ))*] by
A1,
QUATERNI:def 7
.=
[*x, y, w, v*];
hence thesis by
A1;
end;
theorem ::
QUATERN3:9
z is
Real implies (z
* z1)
= (z1
* z)
proof
assume
A1: z is
Real;
then
A2: (
Im3 z)
=
0 by
Lm1;
A3: (
Im1 z)
=
0 & (
Im2 z)
=
0 by
A1,
Lm1;
(z1
* z)
= ((((((((
Rea z1)
* (
Rea z))
- ((
Im1 z1)
* (
Im1 z)))
- ((
Im2 z1)
* (
Im2 z)))
- ((
Im3 z1)
* (
Im3 z)))
+ ((((((
Rea z1)
* (
Im1 z))
+ ((
Im1 z1)
* (
Rea z)))
+ ((
Im2 z1)
* (
Im3 z)))
- ((
Im3 z1)
* (
Im2 z)))
*
<i> ))
+ ((((((
Rea z1)
* (
Im2 z))
+ ((
Im2 z1)
* (
Rea z)))
+ ((
Im3 z1)
* (
Im1 z)))
- ((
Im1 z1)
* (
Im3 z)))
*
<j> ))
+ ((((((
Rea z1)
* (
Im3 z))
+ ((
Im3 z1)
* (
Rea z)))
+ ((
Im1 z1)
* (
Im2 z)))
- ((
Im2 z1)
* (
Im1 z)))
*
<k> )) by
QUATERNI: 93;
hence thesis by
A2,
A3,
QUATERNI: 93;
end;
theorem ::
QUATERN3:10
(
Im1 z)
=
0 & (
Im2 z)
=
0 & (
Im3 z)
=
0 implies z
= (
Rea z)
proof
set x = (
Rea z);
assume (
Im1 z)
=
0 & (
Im2 z)
=
0 & (
Im3 z)
=
0 ;
then
A1: z
=
[*x,
0 ,
0 ,
0 *] by
QUATERNI: 24;
reconsider xx = x, zz =
0 as
Element of
REAL by
XREAL_0:def 1;
[*x,
0 ,
0 ,
0 *]
=
[*xx, zz*] by
QUATERNI: 91;
hence thesis by
A1,
ARYTM_0:def 5;
end;
theorem ::
QUATERN3:11
Th11: (
|.z.|
^2 )
= (((((
Rea z)
^2 )
+ ((
Im1 z)
^2 ))
+ ((
Im2 z)
^2 ))
+ ((
Im3 z)
^2 ))
proof
(((((
Rea z)
^2 )
+ ((
Im1 z)
^2 ))
+ ((
Im2 z)
^2 ))
+ ((
Im3 z)
^2 ))
>=
0 by
QUATERNI: 74;
then (
|.z.|
^2 )
= (
sqrt ((((((
Rea z)
^2 )
+ ((
Im1 z)
^2 ))
+ ((
Im2 z)
^2 ))
+ ((
Im3 z)
^2 ))
^2 )) by
SQUARE_1: 29
.= (((((
Rea z)
^2 )
+ ((
Im1 z)
^2 ))
+ ((
Im2 z)
^2 ))
+ ((
Im3 z)
^2 )) by
QUATERNI: 74,
SQUARE_1: 22;
hence thesis;
end;
theorem ::
QUATERN3:12
(
|.z.|
^2 )
=
|.(z
* (z
*' )).|
proof
|.(z
* z).|
=
|.(z
* (z
*' )).| & (
|.z.|
^2 )
= (((((
Rea z)
^2 )
+ ((
Im1 z)
^2 ))
+ ((
Im2 z)
^2 ))
+ ((
Im3 z)
^2 )) by
Th11,
QUATERNI: 89;
hence thesis by
QUATERNI: 88;
end;
theorem ::
QUATERN3:13
(
|.z.|
^2 )
= (
Rea (z
* (z
*' )))
proof
(
Rea (z
* (z
*' )))
= (((((
Rea z)
^2 )
+ ((
Im1 z)
^2 ))
+ ((
Im2 z)
^2 ))
+ ((
Im3 z)
^2 )) by
QUATERNI: 60;
hence thesis by
Th11;
end;
theorem ::
QUATERN3:14
(2
* (
Rea z))
= (
Rea (z
+ (z
*' )))
proof
z
=
[*(
Rea z), (
Im1 z), (
Im2 z), (
Im3 z)*] & (z
*' )
=
[*(
Rea z), (
- (
Im1 z)), (
- (
Im2 z)), (
- (
Im3 z))*] by
QUATERNI: 24,
QUATERNI: 43;
then (z
+ (z
*' ))
=
[*((
Rea z)
+ (
Rea z)), ((
Im1 z)
+ (
- (
Im1 z))), ((
Im2 z)
+ (
- (
Im2 z))), ((
Im3 z)
+ (
- (
Im3 z)))*] by
QUATERNI:def 7
.=
[*(2
* (
Rea z)),
0 ,
0 ,
0 *];
hence thesis by
QUATERNI: 23;
end;
theorem ::
QUATERN3:15
z is
Real implies ((z
* z1)
*' )
= ((z
*' )
* (z1
*' ))
proof
A1: (
Im1 (z1
*' ))
= (
- (
Im1 z1)) & (
Im2 (z1
*' ))
= (
- (
Im2 z1)) by
QUATERNI: 44;
A2: (
Im3 (z1
*' ))
= (
- (
Im3 z1)) & (
Rea (z
*' ))
= (
Rea z) by
QUATERNI: 44;
A3: (
Rea (z
* z1))
= (((((
Rea z)
* (
Rea z1))
- ((
Im1 z)
* (
Im1 z1)))
- ((
Im2 z)
* (
Im2 z1)))
- ((
Im3 z)
* (
Im3 z1))) by
QUATERNI: 97;
assume
A4: z is
Real;
then
reconsider x = z as
Real;
A5: (
Im1 z)
=
0 & (
Im2 z)
=
0 by
A4,
Lm1;
A6: (
Im3 z)
=
0 by
A4,
Lm1;
A7: (
Im3 (z
*' ))
= (
- (
Im3 z)) by
QUATERNI: 44;
A8: (
Im1 (z
*' ))
= (
- (
Im1 z)) & (
Im2 (z
*' ))
= (
- (
Im2 z)) by
QUATERNI: 44;
A9: (
Im3 (z
* z1))
= (((((
Rea z)
* (
Im3 z1))
+ ((
Im3 z)
* (
Rea z1)))
+ ((
Im1 z)
* (
Im2 z1)))
- ((
Im2 z)
* (
Im1 z1))) by
QUATERNI: 97;
A10: (
Im2 (z
* z1))
= (((((
Rea z)
* (
Im2 z1))
+ ((
Im2 z)
* (
Rea z1)))
+ ((
Im3 z)
* (
Im1 z1)))
- ((
Im1 z)
* (
Im3 z1))) by
QUATERNI: 97;
A11: (
Im1 (z
* z1))
= (((((
Rea z)
* (
Im1 z1))
+ ((
Im1 z)
* (
Rea z1)))
+ ((
Im2 z)
* (
Im3 z1)))
- ((
Im3 z)
* (
Im2 z1))) by
QUATERNI: 97;
set z3 = (z
*' ), z2 = (z1
*' );
A12: (z3
* z2)
= ((((((((
Rea z3)
* (
Rea z2))
- ((
Im1 z3)
* (
Im1 z2)))
- ((
Im2 z3)
* (
Im2 z2)))
- ((
Im3 z3)
* (
Im3 z2)))
+ ((((((
Rea z3)
* (
Im1 z2))
+ ((
Im1 z3)
* (
Rea z2)))
+ ((
Im2 z3)
* (
Im3 z2)))
- ((
Im3 z3)
* (
Im2 z2)))
*
<i> ))
+ ((((((
Rea z3)
* (
Im2 z2))
+ ((
Im2 z3)
* (
Rea z2)))
+ ((
Im3 z3)
* (
Im1 z2)))
- ((
Im1 z3)
* (
Im3 z2)))
*
<j> ))
+ ((((((
Rea z3)
* (
Im3 z2))
+ ((
Im3 z3)
* (
Rea z2)))
+ ((
Im1 z3)
* (
Im2 z2)))
- ((
Im2 z3)
* (
Im1 z2)))
*
<k> )) by
QUATERNI: 93;
((z
* z1)
*' )
= ((((
Rea ((z
* z1)
*' ))
+ ((
Im1 ((z
* z1)
*' ))
*
<i> ))
+ ((
Im2 ((z
* z1)
*' ))
*
<j> ))
+ ((
Im3 ((z
* z1)
*' ))
*
<k> )) by
QUATERNI: 37
.= ((((((((
Rea z)
* (
Rea z1))
- ((
Im1 z)
* (
Im1 z1)))
- ((
Im2 z)
* (
Im2 z1)))
- ((
Im3 z)
* (
Im3 z1)))
+ ((
Im1 ((z
* z1)
*' ))
*
<i> ))
+ ((
Im2 ((z
* z1)
*' ))
*
<j> ))
+ ((
Im3 ((z
* z1)
*' ))
*
<k> )) by
A3,
QUATERNI: 44
.= ((((((((
Rea z)
* (
Rea z1))
- ((
Im1 z)
* (
Im1 z1)))
- ((
Im2 z)
* (
Im2 z1)))
- ((
Im3 z)
* (
Im3 z1)))
+ ((
- (((((
Rea z)
* (
Im1 z1))
+ ((
Im1 z)
* (
Rea z1)))
+ ((
Im2 z)
* (
Im3 z1)))
- ((
Im3 z)
* (
Im2 z1))))
*
<i> ))
+ ((
Im2 ((z
* z1)
*' ))
*
<j> ))
+ ((
Im3 ((z
* z1)
*' ))
*
<k> )) by
A11,
QUATERNI: 44
.= ((((((((
Rea z)
* (
Rea z1))
- ((
Im1 z)
* (
Im1 z1)))
- ((
Im2 z)
* (
Im2 z1)))
- ((
Im3 z)
* (
Im3 z1)))
+ ((
- (((((
Rea z)
* (
Im1 z1))
+ ((
Im1 z)
* (
Rea z1)))
+ ((
Im2 z)
* (
Im3 z1)))
- ((
Im3 z)
* (
Im2 z1))))
*
<i> ))
+ ((
- (((((
Rea z)
* (
Im2 z1))
+ ((
Im2 z)
* (
Rea z1)))
+ ((
Im3 z)
* (
Im1 z1)))
- ((
Im1 z)
* (
Im3 z1))))
*
<j> ))
+ ((
Im3 ((z
* z1)
*' ))
*
<k> )) by
A10,
QUATERNI: 44
.= ((((((((
Rea z)
* (
Rea z1))
- ((
Im1 z)
* (
Im1 z1)))
- ((
Im2 z)
* (
Im2 z1)))
- ((
Im3 z)
* (
Im3 z1)))
+ ((
- (((((
Rea z)
* (
Im1 z1))
+ ((
Im1 z)
* (
Rea z1)))
+ ((
Im2 z)
* (
Im3 z1)))
- ((
Im3 z)
* (
Im2 z1))))
*
<i> ))
+ ((
- (((((
Rea z)
* (
Im2 z1))
+ ((
Im2 z)
* (
Rea z1)))
+ ((
Im3 z)
* (
Im1 z1)))
- ((
Im1 z)
* (
Im3 z1))))
*
<j> ))
+ ((
- (((((
Rea z)
* (
Im3 z1))
+ ((
Im3 z)
* (
Rea z1)))
+ ((
Im1 z)
* (
Im2 z1)))
- ((
Im2 z)
* (
Im1 z1))))
*
<k> )) by
A9,
QUATERNI: 44;
hence thesis by
A5,
A6,
A1,
A2,
A8,
A7,
A12,
QUATERNI: 44;
end;
theorem ::
QUATERN3:16
((z1
* z2)
*' )
= ((z2
*' )
* (z1
*' ))
proof
A1: (
Rea (z2
*' ))
= (
Rea z2) & (
Im1 (z2
*' ))
= (
- (
Im1 z2)) by
QUATERNI: 44;
A2: (
Im2 (z2
*' ))
= (
- (
Im2 z2)) & (
Im3 (z2
*' ))
= (
- (
Im3 z2)) by
QUATERNI: 44;
A3: (
Rea (z1
* z2))
= (((((
Rea z1)
* (
Rea z2))
- ((
Im1 z1)
* (
Im1 z2)))
- ((
Im2 z1)
* (
Im2 z2)))
- ((
Im3 z1)
* (
Im3 z2))) by
QUATERNI: 97;
A4: (
Im3 (z1
* z2))
= (((((
Rea z1)
* (
Im3 z2))
+ ((
Im3 z1)
* (
Rea z2)))
+ ((
Im1 z1)
* (
Im2 z2)))
- ((
Im2 z1)
* (
Im1 z2))) by
QUATERNI: 97;
A5: (
Im2 (z1
*' ))
= (
- (
Im2 z1)) & (
Im3 (z1
*' ))
= (
- (
Im3 z1)) by
QUATERNI: 44;
A6: (
Rea (z1
*' ))
= (
Rea z1) & (
Im1 (z1
*' ))
= (
- (
Im1 z1)) by
QUATERNI: 44;
A7: (
Im2 (z1
* z2))
= (((((
Rea z1)
* (
Im2 z2))
+ ((
Im2 z1)
* (
Rea z2)))
+ ((
Im3 z1)
* (
Im1 z2)))
- ((
Im1 z1)
* (
Im3 z2))) by
QUATERNI: 97;
A8: (
Im1 (z1
* z2))
= (((((
Rea z1)
* (
Im1 z2))
+ ((
Im1 z1)
* (
Rea z2)))
+ ((
Im2 z1)
* (
Im3 z2)))
- ((
Im3 z1)
* (
Im2 z2))) by
QUATERNI: 97;
set z3 = (z2
*' ), z4 = (z1
*' );
A9: (z3
* z4)
= ((((((((
Rea z3)
* (
Rea z4))
- ((
Im1 z3)
* (
Im1 z4)))
- ((
Im2 z3)
* (
Im2 z4)))
- ((
Im3 z3)
* (
Im3 z4)))
+ ((((((
Rea z3)
* (
Im1 z4))
+ ((
Im1 z3)
* (
Rea z4)))
+ ((
Im2 z3)
* (
Im3 z4)))
- ((
Im3 z3)
* (
Im2 z4)))
*
<i> ))
+ ((((((
Rea z3)
* (
Im2 z4))
+ ((
Im2 z3)
* (
Rea z4)))
+ ((
Im3 z3)
* (
Im1 z4)))
- ((
Im1 z3)
* (
Im3 z4)))
*
<j> ))
+ ((((((
Rea z3)
* (
Im3 z4))
+ ((
Im3 z3)
* (
Rea z4)))
+ ((
Im1 z3)
* (
Im2 z4)))
- ((
Im2 z3)
* (
Im1 z4)))
*
<k> )) by
QUATERNI: 93;
((z1
* z2)
*' )
= ((((
Rea ((z1
* z2)
*' ))
+ ((
Im1 ((z1
* z2)
*' ))
*
<i> ))
+ ((
Im2 ((z1
* z2)
*' ))
*
<j> ))
+ ((
Im3 ((z1
* z2)
*' ))
*
<k> )) by
QUATERNI: 37
.= ((((((((
Rea z1)
* (
Rea z2))
- ((
Im1 z1)
* (
Im1 z2)))
- ((
Im2 z1)
* (
Im2 z2)))
- ((
Im3 z1)
* (
Im3 z2)))
+ ((
Im1 ((z1
* z2)
*' ))
*
<i> ))
+ ((
Im2 ((z1
* z2)
*' ))
*
<j> ))
+ ((
Im3 ((z1
* z2)
*' ))
*
<k> )) by
A3,
QUATERNI: 44
.= ((((((((
Rea z1)
* (
Rea z2))
- ((
Im1 z1)
* (
Im1 z2)))
- ((
Im2 z1)
* (
Im2 z2)))
- ((
Im3 z1)
* (
Im3 z2)))
+ ((
- (((((
Rea z1)
* (
Im1 z2))
+ ((
Im1 z1)
* (
Rea z2)))
+ ((
Im2 z1)
* (
Im3 z2)))
- ((
Im3 z1)
* (
Im2 z2))))
*
<i> ))
+ ((
Im2 ((z1
* z2)
*' ))
*
<j> ))
+ ((
Im3 ((z1
* z2)
*' ))
*
<k> )) by
A8,
QUATERNI: 44
.= ((((((((
Rea z1)
* (
Rea z2))
- ((
Im1 z1)
* (
Im1 z2)))
- ((
Im2 z1)
* (
Im2 z2)))
- ((
Im3 z1)
* (
Im3 z2)))
+ ((
- (((((
Rea z1)
* (
Im1 z2))
+ ((
Im1 z1)
* (
Rea z2)))
+ ((
Im2 z1)
* (
Im3 z2)))
- ((
Im3 z1)
* (
Im2 z2))))
*
<i> ))
+ ((
- (((((
Rea z1)
* (
Im2 z2))
+ ((
Im2 z1)
* (
Rea z2)))
+ ((
Im3 z1)
* (
Im1 z2)))
- ((
Im1 z1)
* (
Im3 z2))))
*
<j> ))
+ ((
Im3 ((z1
* z2)
*' ))
*
<k> )) by
A7,
QUATERNI: 44
.= ((((((((
Rea z1)
* (
Rea z2))
- ((
Im1 z1)
* (
Im1 z2)))
- ((
Im2 z1)
* (
Im2 z2)))
- ((
Im3 z1)
* (
Im3 z2)))
+ ((
- (((((
Rea z1)
* (
Im1 z2))
+ ((
Im1 z1)
* (
Rea z2)))
+ ((
Im2 z1)
* (
Im3 z2)))
- ((
Im3 z1)
* (
Im2 z2))))
*
<i> ))
+ ((
- (((((
Rea z1)
* (
Im2 z2))
+ ((
Im2 z1)
* (
Rea z2)))
+ ((
Im3 z1)
* (
Im1 z2)))
- ((
Im1 z1)
* (
Im3 z2))))
*
<j> ))
+ ((
- (((((
Rea z1)
* (
Im3 z2))
+ ((
Im3 z1)
* (
Rea z2)))
+ ((
Im1 z1)
* (
Im2 z2)))
- ((
Im2 z1)
* (
Im1 z2))))
*
<k> )) by
A4,
QUATERNI: 44;
hence thesis by
A1,
A2,
A6,
A5,
A9;
end;
theorem ::
QUATERN3:17
Th17: (
|.(z1
* z2).|
^2 )
= ((
|.z1.|
^2 )
* (
|.z2.|
^2 ))
proof
set z3 = (z1
* z2);
A1: (
Rea (z1
* z2))
= (((((
Rea z1)
* (
Rea z2))
- ((
Im1 z1)
* (
Im1 z2)))
- ((
Im2 z1)
* (
Im2 z2)))
- ((
Im3 z1)
* (
Im3 z2))) & (
Im1 (z1
* z2))
= (((((
Rea z1)
* (
Im1 z2))
+ ((
Im1 z1)
* (
Rea z2)))
+ ((
Im2 z1)
* (
Im3 z2)))
- ((
Im3 z1)
* (
Im2 z2))) by
QUATERNI: 97;
A2: (
Im2 (z1
* z2))
= (((((
Rea z1)
* (
Im2 z2))
+ ((
Im2 z1)
* (
Rea z2)))
+ ((
Im3 z1)
* (
Im1 z2)))
- ((
Im1 z1)
* (
Im3 z2))) & (
Im3 (z1
* z2))
= (((((
Rea z1)
* (
Im3 z2))
+ ((
Im3 z1)
* (
Rea z2)))
+ ((
Im1 z1)
* (
Im2 z2)))
- ((
Im2 z1)
* (
Im1 z2))) by
QUATERNI: 97;
(
|.z1.|
^2 )
= (((((
Rea z1)
^2 )
+ ((
Im1 z1)
^2 ))
+ ((
Im2 z1)
^2 ))
+ ((
Im3 z1)
^2 )) & (
|.z2.|
^2 )
= (((((
Rea z2)
^2 )
+ ((
Im1 z2)
^2 ))
+ ((
Im2 z2)
^2 ))
+ ((
Im3 z2)
^2 )) by
Th11;
hence thesis by
A1,
A2,
Th11;
end;
theorem ::
QUATERN3:18
((
<i>
* z1)
- (z1
*
<i> ))
=
[*
0 ,
0 , (
- (2
* (
Im3 z1))), (2
* (
Im2 z1))*]
proof
set z =
<i> ;
set s = ((z
* z1)
- (z1
* z));
A1: (
Rea (z1
* z))
= (((((
Rea z1)
* (
Rea z))
- ((
Im1 z1)
* (
Im1 z)))
- ((
Im2 z1)
* (
Im2 z)))
- ((
Im3 z1)
* (
Im3 z))) & (
Im1 (z1
* z))
= (((((
Rea z1)
* (
Im1 z))
+ ((
Im1 z1)
* (
Rea z)))
+ ((
Im2 z1)
* (
Im3 z)))
- ((
Im3 z1)
* (
Im2 z))) & (
Im2 (z1
* z))
= (((((
Rea z1)
* (
Im2 z))
+ ((
Im2 z1)
* (
Rea z)))
+ ((
Im3 z1)
* (
Im1 z)))
- ((
Im1 z1)
* (
Im3 z))) & (
Im3 (z1
* z))
= (((((
Rea z1)
* (
Im3 z))
+ ((
Im3 z1)
* (
Rea z)))
+ ((
Im1 z1)
* (
Im2 z)))
- ((
Im2 z1)
* (
Im1 z))) by
QUATERNI: 97;
A2: (
Im2 (z
* z1))
= (((((
Rea z)
* (
Im2 z1))
+ ((
Im2 z)
* (
Rea z1)))
+ ((
Im3 z)
* (
Im1 z1)))
- ((
Im1 z)
* (
Im3 z1))) & (
Im3 (z
* z1))
= (((((
Rea z)
* (
Im3 z1))
+ ((
Im3 z)
* (
Rea z1)))
+ ((
Im1 z)
* (
Im2 z1)))
- ((
Im2 z)
* (
Im1 z1))) by
QUATERNI: 97;
(
Rea (z
* z1))
= (
- (
Im1 z1)) & (
Im1 (z
* z1))
= (
Rea z1) by
A1,
QUATERNI: 30,
QUATERNI: 97;
then
A3: (
Rea s)
= ((
- (
Im1 z1))
- (
- (
Im1 z1))) & (
Im1 s)
= ((
Rea z1)
- (
Rea z1)) by
A1,
QUATERNI: 30,
QUATERNI: 42;
(
Im2 s)
= ((
- (
Im3 z1))
- (
Im3 z1)) & (
Im3 s)
= ((
Im2 z1)
- (
- (
Im2 z1))) by
A2,
A1,
QUATERNI: 30,
QUATERNI: 42;
hence thesis by
A3,
QUATERNI: 24;
end;
theorem ::
QUATERN3:19
((
<i>
* z1)
+ (z1
*
<i> ))
=
[*(
- (2
* (
Im1 z1))), (2
* (
Rea z1)),
0 ,
0 *]
proof
set z =
<i> ;
A1: (z
* z1)
= ((((((((
Rea z)
* (
Rea z1))
- ((
Im1 z)
* (
Im1 z1)))
- ((
Im2 z)
* (
Im2 z1)))
- ((
Im3 z)
* (
Im3 z1)))
+ ((((((
Rea z)
* (
Im1 z1))
+ ((
Im1 z)
* (
Rea z1)))
+ ((
Im2 z)
* (
Im3 z1)))
- ((
Im3 z)
* (
Im2 z1)))
*
<i> ))
+ ((((((
Rea z)
* (
Im2 z1))
+ ((
Im2 z)
* (
Rea z1)))
+ ((
Im3 z)
* (
Im1 z1)))
- ((
Im1 z)
* (
Im3 z1)))
*
<j> ))
+ ((((((
Rea z)
* (
Im3 z1))
+ ((
Im3 z)
* (
Rea z1)))
+ ((
Im1 z)
* (
Im2 z1)))
- ((
Im2 z)
* (
Im1 z1)))
*
<k> )) by
QUATERNI: 93
.=
[*(
- (
Im1 z1)), (
Rea z1), (
- (
Im3 z1)), (
Im2 z1)*] by
QUATERN2: 1,
QUATERNI: 30;
then
A2: (
Im2 (z
* z1))
= (
- (
Im3 z1)) & (
Im3 (z
* z1))
= (
Im2 z1) by
QUATERNI: 23;
A3: (z1
* z)
= ((((((((
Rea z1)
* (
Rea z))
- ((
Im1 z1)
* (
Im1 z)))
- ((
Im2 z1)
* (
Im2 z)))
- ((
Im3 z1)
* (
Im3 z)))
+ ((((((
Rea z1)
* (
Im1 z))
+ ((
Im1 z1)
* (
Rea z)))
+ ((
Im2 z1)
* (
Im3 z)))
- ((
Im3 z1)
* (
Im2 z)))
*
<i> ))
+ ((((((
Rea z1)
* (
Im2 z))
+ ((
Im2 z1)
* (
Rea z)))
+ ((
Im3 z1)
* (
Im1 z)))
- ((
Im1 z1)
* (
Im3 z)))
*
<j> ))
+ ((((((
Rea z1)
* (
Im3 z))
+ ((
Im3 z1)
* (
Rea z)))
+ ((
Im1 z1)
* (
Im2 z)))
- ((
Im2 z1)
* (
Im1 z)))
*
<k> )) by
QUATERNI: 93
.=
[*(
- (
Im1 z1)), (
Rea z1), (
Im3 z1), (
- (
Im2 z1))*] by
QUATERN2: 1,
QUATERNI: 30;
then
A4: (
Rea (z1
* z))
= (
- (
Im1 z1)) & (
Im1 (z1
* z))
= (
Rea z1) by
QUATERNI: 23;
A5: (
Im2 (z1
* z))
= (
Im3 z1) & (
Im3 (z1
* z))
= (
- (
Im2 z1)) by
A3,
QUATERNI: 23;
(
Rea (z
* z1))
= (
- (
Im1 z1)) & (
Im1 (z
* z1))
= (
Rea z1) by
A1,
QUATERNI: 23;
then ((z
* z1)
+ (z1
* z))
= (((((
- (
Im1 z1))
+ (
- (
Im1 z1)))
+ (((
Rea z1)
+ (
Rea z1))
*
<i> ))
+ (((
- (
Im3 z1))
+ (
Im3 z1))
*
<j> ))
+ (((
Im2 z1)
+ (
- (
Im2 z1)))
*
<k> )) by
A2,
A4,
A5,
QUATERNI: 92;
hence thesis by
QUATERN2: 1;
end;
theorem ::
QUATERN3:20
((
<j>
* z1)
- (z1
*
<j> ))
=
[*
0 , (2
* (
Im3 z1)),
0 , (
- (2
* (
Im1 z1)))*]
proof
set z =
<j> ;
A1: (z
* z1)
= ((((((((
Rea z)
* (
Rea z1))
- ((
Im1 z)
* (
Im1 z1)))
- ((
Im2 z)
* (
Im2 z1)))
- ((
Im3 z)
* (
Im3 z1)))
+ ((((((
Rea z)
* (
Im1 z1))
+ ((
Im1 z)
* (
Rea z1)))
+ ((
Im2 z)
* (
Im3 z1)))
- ((
Im3 z)
* (
Im2 z1)))
*
<i> ))
+ ((((((
Rea z)
* (
Im2 z1))
+ ((
Im2 z)
* (
Rea z1)))
+ ((
Im3 z)
* (
Im1 z1)))
- ((
Im1 z)
* (
Im3 z1)))
*
<j> ))
+ ((((((
Rea z)
* (
Im3 z1))
+ ((
Im3 z)
* (
Rea z1)))
+ ((
Im1 z)
* (
Im2 z1)))
- ((
Im2 z)
* (
Im1 z1)))
*
<k> )) by
QUATERNI: 93
.=
[*(
- (
Im2 z1)), (
Im3 z1), (
Rea z1), (
- (
Im1 z1))*] by
QUATERN2: 1,
QUATERNI: 31;
(z1
* z)
= ((((((((
Rea z1)
* (
Rea z))
- ((
Im1 z1)
* (
Im1 z)))
- ((
Im2 z1)
* (
Im2 z)))
- ((
Im3 z1)
* (
Im3 z)))
+ ((((((
Rea z1)
* (
Im1 z))
+ ((
Im1 z1)
* (
Rea z)))
+ ((
Im2 z1)
* (
Im3 z)))
- ((
Im3 z1)
* (
Im2 z)))
*
<i> ))
+ ((((((
Rea z1)
* (
Im2 z))
+ ((
Im2 z1)
* (
Rea z)))
+ ((
Im3 z1)
* (
Im1 z)))
- ((
Im1 z1)
* (
Im3 z)))
*
<j> ))
+ ((((((
Rea z1)
* (
Im3 z))
+ ((
Im3 z1)
* (
Rea z)))
+ ((
Im1 z1)
* (
Im2 z)))
- ((
Im2 z1)
* (
Im1 z)))
*
<k> )) by
QUATERNI: 93
.=
[*(
- (
Im2 z1)), (
- (
Im3 z1)), (
Rea z1), (
Im1 z1)*] by
QUATERN2: 1,
QUATERNI: 31;
then ((z
* z1)
- (z1
* z))
=
[*((
- (
Im2 z1))
- (
- (
Im2 z1))), ((
Im3 z1)
- (
- (
Im3 z1))), ((
Rea z1)
- (
Rea z1)), ((
- (
Im1 z1))
- (
Im1 z1))*] by
A1,
QUATERN2: 5
.=
[*
0 , (2
* (
Im3 z1)),
0 , (
- (2
* (
Im1 z1)))*];
hence thesis;
end;
theorem ::
QUATERN3:21
((
<j>
* z1)
+ (z1
*
<j> ))
=
[*(
- (2
* (
Im2 z1))),
0 , (2
* (
Rea z1)),
0 *]
proof
set z =
<j> ;
A1: (z
* z1)
= ((((((((
Rea z)
* (
Rea z1))
- ((
Im1 z)
* (
Im1 z1)))
- ((
Im2 z)
* (
Im2 z1)))
- ((
Im3 z)
* (
Im3 z1)))
+ ((((((
Rea z)
* (
Im1 z1))
+ ((
Im1 z)
* (
Rea z1)))
+ ((
Im2 z)
* (
Im3 z1)))
- ((
Im3 z)
* (
Im2 z1)))
*
<i> ))
+ ((((((
Rea z)
* (
Im2 z1))
+ ((
Im2 z)
* (
Rea z1)))
+ ((
Im3 z)
* (
Im1 z1)))
- ((
Im1 z)
* (
Im3 z1)))
*
<j> ))
+ ((((((
Rea z)
* (
Im3 z1))
+ ((
Im3 z)
* (
Rea z1)))
+ ((
Im1 z)
* (
Im2 z1)))
- ((
Im2 z)
* (
Im1 z1)))
*
<k> )) by
QUATERNI: 93
.=
[*(
- (
Im2 z1)), (
Im3 z1), (
Rea z1), (
- (
Im1 z1))*] by
QUATERN2: 1,
QUATERNI: 31;
then
A2: (
Im2 (z
* z1))
= (
Rea z1) & (
Im3 (z
* z1))
= (
- (
Im1 z1)) by
QUATERNI: 23;
A3: (z1
* z)
= ((((((((
Rea z1)
* (
Rea z))
- ((
Im1 z1)
* (
Im1 z)))
- ((
Im2 z1)
* (
Im2 z)))
- ((
Im3 z1)
* (
Im3 z)))
+ ((((((
Rea z1)
* (
Im1 z))
+ ((
Im1 z1)
* (
Rea z)))
+ ((
Im2 z1)
* (
Im3 z)))
- ((
Im3 z1)
* (
Im2 z)))
*
<i> ))
+ ((((((
Rea z1)
* (
Im2 z))
+ ((
Im2 z1)
* (
Rea z)))
+ ((
Im3 z1)
* (
Im1 z)))
- ((
Im1 z1)
* (
Im3 z)))
*
<j> ))
+ ((((((
Rea z1)
* (
Im3 z))
+ ((
Im3 z1)
* (
Rea z)))
+ ((
Im1 z1)
* (
Im2 z)))
- ((
Im2 z1)
* (
Im1 z)))
*
<k> )) by
QUATERNI: 93
.=
[*(
- (
Im2 z1)), (
- (
Im3 z1)), (
Rea z1), (
Im1 z1)*] by
QUATERN2: 1,
QUATERNI: 31;
then
A4: (
Rea (z1
* z))
= (
- (
Im2 z1)) & (
Im1 (z1
* z))
= (
- (
Im3 z1)) by
QUATERNI: 23;
A5: (
Im2 (z1
* z))
= (
Rea z1) & (
Im3 (z1
* z))
= (
Im1 z1) by
A3,
QUATERNI: 23;
(
Rea (z
* z1))
= (
- (
Im2 z1)) & (
Im1 (z
* z1))
= (
Im3 z1) by
A1,
QUATERNI: 23;
then ((z1
* z)
+ (z
* z1))
= (((((
- (
Im2 z1))
+ (
- (
Im2 z1)))
+ (((
Im3 z1)
- (
Im3 z1))
*
<i> ))
+ (((
Rea z1)
+ (
Rea z1))
*
<j> ))
+ (((
- (
Im1 z1))
+ (
Im1 z1))
*
<k> )) by
A2,
A4,
A5,
QUATERNI: 92;
hence thesis by
QUATERN2: 1;
end;
theorem ::
QUATERN3:22
((
<k>
* z1)
- (z1
*
<k> ))
=
[*
0 , (
- (2
* (
Im2 z1))), (2
* (
Im1 z1)),
0 *]
proof
set z =
<k> ;
A1: (z
* z1)
= ((((((((
Rea z)
* (
Rea z1))
- ((
Im1 z)
* (
Im1 z1)))
- ((
Im2 z)
* (
Im2 z1)))
- ((
Im3 z)
* (
Im3 z1)))
+ ((((((
Rea z)
* (
Im1 z1))
+ ((
Im1 z)
* (
Rea z1)))
+ ((
Im2 z)
* (
Im3 z1)))
- ((
Im3 z)
* (
Im2 z1)))
*
<i> ))
+ ((((((
Rea z)
* (
Im2 z1))
+ ((
Im2 z)
* (
Rea z1)))
+ ((
Im3 z)
* (
Im1 z1)))
- ((
Im1 z)
* (
Im3 z1)))
*
<j> ))
+ ((((((
Rea z)
* (
Im3 z1))
+ ((
Im3 z)
* (
Rea z1)))
+ ((
Im1 z)
* (
Im2 z1)))
- ((
Im2 z)
* (
Im1 z1)))
*
<k> )) by
QUATERNI: 93
.=
[*(
- (
Im3 z1)), (
- (
Im2 z1)), (
Im1 z1), (
Rea z1)*] by
QUATERN2: 1,
QUATERNI: 31;
(z1
* z)
= ((((((((
Rea z1)
* (
Rea z))
- ((
Im1 z1)
* (
Im1 z)))
- ((
Im2 z1)
* (
Im2 z)))
- ((
Im3 z1)
* (
Im3 z)))
+ ((((((
Rea z1)
* (
Im1 z))
+ ((
Im1 z1)
* (
Rea z)))
+ ((
Im2 z1)
* (
Im3 z)))
- ((
Im3 z1)
* (
Im2 z)))
*
<i> ))
+ ((((((
Rea z1)
* (
Im2 z))
+ ((
Im2 z1)
* (
Rea z)))
+ ((
Im3 z1)
* (
Im1 z)))
- ((
Im1 z1)
* (
Im3 z)))
*
<j> ))
+ ((((((
Rea z1)
* (
Im3 z))
+ ((
Im3 z1)
* (
Rea z)))
+ ((
Im1 z1)
* (
Im2 z)))
- ((
Im2 z1)
* (
Im1 z)))
*
<k> )) by
QUATERNI: 93
.=
[*(
- (
Im3 z1)), (
Im2 z1), (
- (
Im1 z1)), (
Rea z1)*] by
QUATERN2: 1,
QUATERNI: 31;
then ((z
* z1)
- (z1
* z))
=
[*((
- (
Im3 z1))
- (
- (
Im3 z1))), ((
- (
Im2 z1))
- (
Im2 z1)), ((
Im1 z1)
- (
- (
Im1 z1))), ((
Rea z1)
- (
Rea z1))*] by
A1,
QUATERN2: 5
.=
[*
0 , (
- (2
* (
Im2 z1))), (2
* (
Im1 z1)),
0 *];
hence thesis;
end;
theorem ::
QUATERN3:23
((
<k>
* z1)
+ (z1
*
<k> ))
=
[*(
- (2
* (
Im3 z1))),
0 ,
0 , (2
* (
Rea z1))*]
proof
set z =
<k> ;
A1: (z
* z1)
= ((((((((
Rea z)
* (
Rea z1))
- ((
Im1 z)
* (
Im1 z1)))
- ((
Im2 z)
* (
Im2 z1)))
- ((
Im3 z)
* (
Im3 z1)))
+ ((((((
Rea z)
* (
Im1 z1))
+ ((
Im1 z)
* (
Rea z1)))
+ ((
Im2 z)
* (
Im3 z1)))
- ((
Im3 z)
* (
Im2 z1)))
*
<i> ))
+ ((((((
Rea z)
* (
Im2 z1))
+ ((
Im2 z)
* (
Rea z1)))
+ ((
Im3 z)
* (
Im1 z1)))
- ((
Im1 z)
* (
Im3 z1)))
*
<j> ))
+ ((((((
Rea z)
* (
Im3 z1))
+ ((
Im3 z)
* (
Rea z1)))
+ ((
Im1 z)
* (
Im2 z1)))
- ((
Im2 z)
* (
Im1 z1)))
*
<k> )) by
QUATERNI: 93
.=
[*(
- (
Im3 z1)), (
- (
Im2 z1)), (
Im1 z1), (
Rea z1)*] by
QUATERN2: 1,
QUATERNI: 31;
then
A2: (
Im2 (z
* z1))
= (
Im1 z1) & (
Im3 (z
* z1))
= (
Rea z1) by
QUATERNI: 23;
A3: (z1
* z)
= ((((((((
Rea z1)
* (
Rea z))
- ((
Im1 z1)
* (
Im1 z)))
- ((
Im2 z1)
* (
Im2 z)))
- ((
Im3 z1)
* (
Im3 z)))
+ ((((((
Rea z1)
* (
Im1 z))
+ ((
Im1 z1)
* (
Rea z)))
+ ((
Im2 z1)
* (
Im3 z)))
- ((
Im3 z1)
* (
Im2 z)))
*
<i> ))
+ ((((((
Rea z1)
* (
Im2 z))
+ ((
Im2 z1)
* (
Rea z)))
+ ((
Im3 z1)
* (
Im1 z)))
- ((
Im1 z1)
* (
Im3 z)))
*
<j> ))
+ ((((((
Rea z1)
* (
Im3 z))
+ ((
Im3 z1)
* (
Rea z)))
+ ((
Im1 z1)
* (
Im2 z)))
- ((
Im2 z1)
* (
Im1 z)))
*
<k> )) by
QUATERNI: 93
.=
[*(
- (
Im3 z1)), (
Im2 z1), (
- (
Im1 z1)), (
Rea z1)*] by
QUATERN2: 1,
QUATERNI: 31;
then
A4: (
Rea (z1
* z))
= (
- (
Im3 z1)) & (
Im1 (z1
* z))
= (
Im2 z1) by
QUATERNI: 23;
A5: (
Im2 (z1
* z))
= (
- (
Im1 z1)) & (
Im3 (z1
* z))
= (
Rea z1) by
A3,
QUATERNI: 23;
(
Rea (z
* z1))
= (
- (
Im3 z1)) & (
Im1 (z
* z1))
= (
- (
Im2 z1)) by
A1,
QUATERNI: 23;
then ((z1
* z)
+ (z
* z1))
= (((((
- (
Im3 z1))
+ (
- (
Im3 z1)))
+ (((
- (
Im2 z1))
+ (
Im2 z1))
*
<i> ))
+ (((
Im1 z1)
- (
Im1 z1))
*
<j> ))
+ (((
Rea z1)
+ (
Rea z1))
*
<k> )) by
A2,
A4,
A5,
QUATERNI: 92;
hence thesis by
QUATERN2: 1;
end;
theorem ::
QUATERN3:24
Th24: (
Rea ((1
/ (
|.z.|
^2 ))
* (z
*' )))
= ((1
/ (
|.z.|
^2 ))
* (
Rea z))
proof
(z
*' )
=
[*(
Rea z), (
- (
Im1 z)), (
- (
Im2 z)), (
- (
Im3 z))*] by
QUATERNI: 43;
then ((1
/ (
|.z.|
^2 ))
* (z
*' ))
=
[*((1
/ (
|.z.|
^2 ))
* (
Rea z)), ((1
/ (
|.z.|
^2 ))
* (
- (
Im1 z))), ((1
/ (
|.z.|
^2 ))
* (
- (
Im2 z))), ((1
/ (
|.z.|
^2 ))
* (
- (
Im3 z)))*] by
QUATERNI:def 21;
hence thesis by
QUATERNI: 23;
end;
theorem ::
QUATERN3:25
Th25: (
Im1 ((1
/ (
|.z.|
^2 ))
* (z
*' )))
= (
- ((1
/ (
|.z.|
^2 ))
* (
Im1 z)))
proof
(z
*' )
=
[*(
Rea z), (
- (
Im1 z)), (
- (
Im2 z)), (
- (
Im3 z))*] by
QUATERNI: 43;
then ((1
/ (
|.z.|
^2 ))
* (z
*' ))
=
[*((1
/ (
|.z.|
^2 ))
* (
Rea z)), ((1
/ (
|.z.|
^2 ))
* (
- (
Im1 z))), ((1
/ (
|.z.|
^2 ))
* (
- (
Im2 z))), ((1
/ (
|.z.|
^2 ))
* (
- (
Im3 z)))*] by
QUATERNI:def 21;
hence thesis by
QUATERNI: 23;
end;
theorem ::
QUATERN3:26
Th26: (
Im2 ((1
/ (
|.z.|
^2 ))
* (z
*' )))
= (
- ((1
/ (
|.z.|
^2 ))
* (
Im2 z)))
proof
(z
*' )
=
[*(
Rea z), (
- (
Im1 z)), (
- (
Im2 z)), (
- (
Im3 z))*] by
QUATERNI: 43;
then ((1
/ (
|.z.|
^2 ))
* (z
*' ))
=
[*((1
/ (
|.z.|
^2 ))
* (
Rea z)), ((1
/ (
|.z.|
^2 ))
* (
- (
Im1 z))), ((1
/ (
|.z.|
^2 ))
* (
- (
Im2 z))), ((1
/ (
|.z.|
^2 ))
* (
- (
Im3 z)))*] by
QUATERNI:def 21;
hence thesis by
QUATERNI: 23;
end;
theorem ::
QUATERN3:27
Th27: (
Im3 ((1
/ (
|.z.|
^2 ))
* (z
*' )))
= (
- ((1
/ (
|.z.|
^2 ))
* (
Im3 z)))
proof
(z
*' )
=
[*(
Rea z), (
- (
Im1 z)), (
- (
Im2 z)), (
- (
Im3 z))*] by
QUATERNI: 43;
then ((1
/ (
|.z.|
^2 ))
* (z
*' ))
=
[*((1
/ (
|.z.|
^2 ))
* (
Rea z)), ((1
/ (
|.z.|
^2 ))
* (
- (
Im1 z))), ((1
/ (
|.z.|
^2 ))
* (
- (
Im2 z))), ((1
/ (
|.z.|
^2 ))
* (
- (
Im3 z)))*] by
QUATERNI:def 21;
hence thesis by
QUATERNI: 23;
end;
theorem ::
QUATERN3:28
((1
/ (
|.z.|
^2 ))
* (z
*' ))
=
[*((1
/ (
|.z.|
^2 ))
* (
Rea z)), (
- ((1
/ (
|.z.|
^2 ))
* (
Im1 z))), (
- ((1
/ (
|.z.|
^2 ))
* (
Im2 z))), (
- ((1
/ (
|.z.|
^2 ))
* (
Im3 z)))*]
proof
set zz = (
|.z.|
^2 );
((1
/ zz)
* (z
*' ))
=
[*(
Rea ((1
/ zz)
* (z
*' ))), (
Im1 ((1
/ zz)
* (z
*' ))), (
Im2 ((1
/ zz)
* (z
*' ))), (
Im3 ((1
/ zz)
* (z
*' )))*] by
QUATERNI: 24;
then ((1
/ zz)
* (z
*' ))
=
[*((1
/ zz)
* (
Rea z)), (
Im1 ((1
/ zz)
* (z
*' ))), (
Im2 ((1
/ zz)
* (z
*' ))), (
Im3 ((1
/ zz)
* (z
*' )))*] by
Th24;
then ((1
/ zz)
* (z
*' ))
=
[*((1
/ zz)
* (
Rea z)), (
- ((1
/ zz)
* (
Im1 z))), (
Im2 ((1
/ zz)
* (z
*' ))), (
Im3 ((1
/ zz)
* (z
*' )))*] by
Th25;
then ((1
/ zz)
* (z
*' ))
=
[*((1
/ zz)
* (
Rea z)), (
- ((1
/ zz)
* (
Im1 z))), (
- ((1
/ zz)
* (
Im2 z))), (
Im3 ((1
/ zz)
* (z
*' )))*] by
Th26;
hence thesis by
Th27;
end;
theorem ::
QUATERN3:29
(z
* ((1
/ (
|.z.|
^2 ))
* (z
*' )))
=
[*((
|.z.|
^2 )
/ (
|.z.|
^2 )),
0 ,
0 ,
0 *]
proof
set zz = (
|.z.|
^2 );
set z3 = ((1
/ zz)
* (z
*' ));
(z
* ((1
/ zz)
* (z
*' )))
= ((((((((
Rea z)
* (
Rea z3))
- ((
Im1 z)
* (
Im1 z3)))
- ((
Im2 z)
* (
Im2 z3)))
- ((
Im3 z)
* (
Im3 z3)))
+ ((((((
Rea z)
* (
Im1 z3))
+ ((
Im1 z)
* (
Rea z3)))
+ ((
Im2 z)
* (
Im3 z3)))
- ((
Im3 z)
* (
Im2 z3)))
*
<i> ))
+ ((((((
Rea z)
* (
Im2 z3))
+ ((
Im2 z)
* (
Rea z3)))
+ ((
Im3 z)
* (
Im1 z3)))
- ((
Im1 z)
* (
Im3 z3)))
*
<j> ))
+ ((((((
Rea z)
* (
Im3 z3))
+ ((
Im3 z)
* (
Rea z3)))
+ ((
Im1 z)
* (
Im2 z3)))
- ((
Im2 z)
* (
Im1 z3)))
*
<k> )) by
QUATERNI: 93
.=
[*(((((
Rea z)
* (
Rea z3))
- ((
Im1 z)
* (
Im1 z3)))
- ((
Im2 z)
* (
Im2 z3)))
- ((
Im3 z)
* (
Im3 z3))), (((((
Rea z)
* (
Im1 z3))
+ ((
Im1 z)
* (
Rea z3)))
+ ((
Im2 z)
* (
Im3 z3)))
- ((
Im3 z)
* (
Im2 z3))), (((((
Rea z)
* (
Im2 z3))
+ ((
Im2 z)
* (
Rea z3)))
+ ((
Im3 z)
* (
Im1 z3)))
- ((
Im1 z)
* (
Im3 z3))), (((((
Rea z)
* (
Im3 z3))
+ ((
Im3 z)
* (
Rea z3)))
+ ((
Im1 z)
* (
Im2 z3)))
- ((
Im2 z)
* (
Im1 z3)))*] by
QUATERN2: 1
.=
[*(((((
Rea z)
* ((1
/ zz)
* (
Rea z)))
- ((
Im1 z)
* (
Im1 z3)))
- ((
Im2 z)
* (
Im2 z3)))
- ((
Im3 z)
* (
Im3 z3))), (((((
Rea z)
* (
Im1 z3))
+ ((
Im1 z)
* (
Rea z3)))
+ ((
Im2 z)
* (
Im3 z3)))
- ((
Im3 z)
* (
Im2 z3))), (((((
Rea z)
* (
Im2 z3))
+ ((
Im2 z)
* (
Rea z3)))
+ ((
Im3 z)
* (
Im1 z3)))
- ((
Im1 z)
* (
Im3 z3))), (((((
Rea z)
* (
Im3 z3))
+ ((
Im3 z)
* (
Rea z3)))
+ ((
Im1 z)
* (
Im2 z3)))
- ((
Im2 z)
* (
Im1 z3)))*] by
Th24
.=
[*(((((
Rea z)
* ((1
/ zz)
* (
Rea z)))
- ((
Im1 z)
* (
- ((1
/ zz)
* (
Im1 z)))))
- ((
Im2 z)
* (
Im2 z3)))
- ((
Im3 z)
* (
Im3 z3))), (((((
Rea z)
* (
Im1 z3))
+ ((
Im1 z)
* (
Rea z3)))
+ ((
Im2 z)
* (
Im3 z3)))
- ((
Im3 z)
* (
Im2 z3))), (((((
Rea z)
* (
Im2 z3))
+ ((
Im2 z)
* (
Rea z3)))
+ ((
Im3 z)
* (
Im1 z3)))
- ((
Im1 z)
* (
Im3 z3))), (((((
Rea z)
* (
Im3 z3))
+ ((
Im3 z)
* (
Rea z3)))
+ ((
Im1 z)
* (
Im2 z3)))
- ((
Im2 z)
* (
Im1 z3)))*] by
Th25
.=
[*(((((
Rea z)
* ((1
/ zz)
* (
Rea z)))
- ((
Im1 z)
* (
- ((1
/ zz)
* (
Im1 z)))))
- ((
Im2 z)
* (
- ((1
/ zz)
* (
Im2 z)))))
- ((
Im3 z)
* (
Im3 z3))), (((((
Rea z)
* (
Im1 z3))
+ ((
Im1 z)
* (
Rea z3)))
+ ((
Im2 z)
* (
Im3 z3)))
- ((
Im3 z)
* (
Im2 z3))), (((((
Rea z)
* (
Im2 z3))
+ ((
Im2 z)
* (
Rea z3)))
+ ((
Im3 z)
* (
Im1 z3)))
- ((
Im1 z)
* (
Im3 z3))), (((((
Rea z)
* (
Im3 z3))
+ ((
Im3 z)
* (
Rea z3)))
+ ((
Im1 z)
* (
Im2 z3)))
- ((
Im2 z)
* (
Im1 z3)))*] by
Th26
.=
[*(((((
Rea z)
* ((1
/ zz)
* (
Rea z)))
- ((
Im1 z)
* (
- ((1
/ zz)
* (
Im1 z)))))
- ((
Im2 z)
* (
- ((1
/ zz)
* (
Im2 z)))))
- ((
Im3 z)
* (
- ((1
/ zz)
* (
Im3 z))))), (((((
Rea z)
* (
Im1 z3))
+ ((
Im1 z)
* (
Rea z3)))
+ ((
Im2 z)
* (
Im3 z3)))
- ((
Im3 z)
* (
Im2 z3))), (((((
Rea z)
* (
Im2 z3))
+ ((
Im2 z)
* (
Rea z3)))
+ ((
Im3 z)
* (
Im1 z3)))
- ((
Im1 z)
* (
Im3 z3))), (((((
Rea z)
* (
Im3 z3))
+ ((
Im3 z)
* (
Rea z3)))
+ ((
Im1 z)
* (
Im2 z3)))
- ((
Im2 z)
* (
Im1 z3)))*] by
Th27
.=
[*(((((
Rea z)
* ((1
/ zz)
* (
Rea z)))
- ((
Im1 z)
* (
- ((1
/ zz)
* (
Im1 z)))))
- ((
Im2 z)
* (
- ((1
/ zz)
* (
Im2 z)))))
- ((
Im3 z)
* (
- ((1
/ zz)
* (
Im3 z))))), (((((
Rea z)
* (
- ((1
/ zz)
* (
Im1 z))))
+ ((
Im1 z)
* (
Rea ((1
/ zz)
* (z
*' )))))
+ ((
Im2 z)
* (
Im3 ((1
/ zz)
* (z
*' )))))
- ((
Im3 z)
* (
Im2 ((1
/ zz)
* (z
*' ))))), (((((
Rea z)
* (
Im2 ((1
/ zz)
* (z
*' ))))
+ ((
Im2 z)
* (
Rea ((1
/ zz)
* (z
*' )))))
+ ((
Im3 z)
* (
Im1 ((1
/ zz)
* (z
*' )))))
- ((
Im1 z)
* (
Im3 ((1
/ zz)
* (z
*' ))))), (((((
Rea z)
* (
Im3 ((1
/ zz)
* (z
*' ))))
+ ((
Im3 z)
* (
Rea ((1
/ zz)
* (z
*' )))))
+ ((
Im1 z)
* (
Im2 ((1
/ zz)
* (z
*' )))))
- ((
Im2 z)
* (
Im1 ((1
/ zz)
* (z
*' )))))*] by
Th25
.=
[*(((((
Rea z)
* ((1
/ zz)
* (
Rea z)))
- ((
Im1 z)
* (
- ((1
/ zz)
* (
Im1 z)))))
- ((
Im2 z)
* (
- ((1
/ zz)
* (
Im2 z)))))
- ((
Im3 z)
* (
- ((1
/ zz)
* (
Im3 z))))), (((((
Rea z)
* (
- ((1
/ zz)
* (
Im1 z))))
+ ((
Im1 z)
* ((1
/ zz)
* (
Rea z))))
+ ((
Im2 z)
* (
Im3 ((1
/ zz)
* (z
*' )))))
- ((
Im3 z)
* (
Im2 ((1
/ zz)
* (z
*' ))))), (((((
Rea z)
* (
Im2 ((1
/ zz)
* (z
*' ))))
+ ((
Im2 z)
* (
Rea ((1
/ zz)
* (z
*' )))))
+ ((
Im3 z)
* (
Im1 ((1
/ zz)
* (z
*' )))))
- ((
Im1 z)
* (
Im3 ((1
/ zz)
* (z
*' ))))), (((((
Rea z)
* (
Im3 ((1
/ zz)
* (z
*' ))))
+ ((
Im3 z)
* (
Rea ((1
/ zz)
* (z
*' )))))
+ ((
Im1 z)
* (
Im2 ((1
/ zz)
* (z
*' )))))
- ((
Im2 z)
* (
Im1 ((1
/ zz)
* (z
*' )))))*] by
Th24
.=
[*(((((
Rea z)
* ((1
/ zz)
* (
Rea z)))
- ((
Im1 z)
* (
- ((1
/ zz)
* (
Im1 z)))))
- ((
Im2 z)
* (
- ((1
/ zz)
* (
Im2 z)))))
- ((
Im3 z)
* (
- ((1
/ zz)
* (
Im3 z))))), (((((
Rea z)
* (
- ((1
/ zz)
* (
Im1 z))))
+ ((
Im1 z)
* ((1
/ zz)
* (
Rea z))))
+ ((
Im2 z)
* (
- ((1
/ zz)
* (
Im3 z)))))
- ((
Im3 z)
* (
Im2 z3))), (((((
Rea z)
* (
Im2 z3))
+ ((
Im2 z)
* (
Rea z3)))
+ ((
Im3 z)
* (
Im1 z3)))
- ((
Im1 z)
* (
Im3 z3))), (((((
Rea z)
* (
Im3 z3))
+ ((
Im3 z)
* (
Rea z3)))
+ ((
Im1 z)
* (
Im2 z3)))
- ((
Im2 z)
* (
Im1 z3)))*] by
Th27
.=
[*(((((
Rea z)
* ((1
/ zz)
* (
Rea z)))
- ((
Im1 z)
* (
- ((1
/ zz)
* (
Im1 z)))))
- ((
Im2 z)
* (
- ((1
/ zz)
* (
Im2 z)))))
- ((
Im3 z)
* (
- ((1
/ zz)
* (
Im3 z))))), (((((
Rea z)
* (
- ((1
/ zz)
* (
Im1 z))))
+ ((
Im1 z)
* ((1
/ zz)
* (
Rea z))))
+ ((
Im2 z)
* (
- ((1
/ zz)
* (
Im3 z)))))
- ((
Im3 z)
* (
- ((1
/ zz)
* (
Im2 z))))), (((((
Rea z)
* (
Im2 z3))
+ ((
Im2 z)
* (
Rea z3)))
+ ((
Im3 z)
* (
Im1 z3)))
- ((
Im1 z)
* (
Im3 z3))), (((((
Rea z)
* (
Im3 z3))
+ ((
Im3 z)
* (
Rea z3)))
+ ((
Im1 z)
* (
Im2 z3)))
- ((
Im2 z)
* (
Im1 z3)))*] by
Th26
.=
[*(((((
Rea z)
* ((1
/ zz)
* (
Rea z)))
- ((
Im1 z)
* (
- ((1
/ zz)
* (
Im1 z)))))
- ((
Im2 z)
* (
- ((1
/ zz)
* (
Im2 z)))))
- ((
Im3 z)
* (
- ((1
/ zz)
* (
Im3 z))))), (((((
Rea z)
* (
- ((1
/ zz)
* (
Im1 z))))
+ ((
Im1 z)
* ((1
/ zz)
* (
Rea z))))
+ ((
Im2 z)
* (
- ((1
/ zz)
* (
Im3 z)))))
- ((
Im3 z)
* (
- ((1
/ zz)
* (
Im2 z))))), (((((
Rea z)
* (
- ((1
/ zz)
* (
Im2 z))))
+ ((
Im2 z)
* (
Rea z3)))
+ ((
Im3 z)
* (
Im1 z3)))
- ((
Im1 z)
* (
Im3 z3))), (((((
Rea z)
* (
Im3 z3))
+ ((
Im3 z)
* (
Rea z3)))
+ ((
Im1 z)
* (
Im2 z3)))
- ((
Im2 z)
* (
Im1 z3)))*] by
Th26
.=
[*(((((
Rea z)
* ((1
/ zz)
* (
Rea z)))
- ((
Im1 z)
* (
- ((1
/ zz)
* (
Im1 z)))))
- ((
Im2 z)
* (
- ((1
/ zz)
* (
Im2 z)))))
- ((
Im3 z)
* (
- ((1
/ zz)
* (
Im3 z))))), (((((
Rea z)
* (
- ((1
/ zz)
* (
Im1 z))))
+ ((
Im1 z)
* ((1
/ zz)
* (
Rea z))))
+ ((
Im2 z)
* (
- ((1
/ zz)
* (
Im3 z)))))
- ((
Im3 z)
* (
- ((1
/ zz)
* (
Im2 z))))), (((((
Rea z)
* (
- ((1
/ zz)
* (
Im2 z))))
+ ((
Im2 z)
* ((1
/ zz)
* (
Rea z))))
+ ((
Im3 z)
* (
Im1 z3)))
- ((
Im1 z)
* (
Im3 z3))), (((((
Rea z)
* (
Im3 z3))
+ ((
Im3 z)
* (
Rea z3)))
+ ((
Im1 z)
* (
Im2 z3)))
- ((
Im2 z)
* (
Im1 ((1
/ zz)
* (z
*' )))))*] by
Th24
.=
[*(((((
Rea z)
* ((1
/ zz)
* (
Rea z)))
- ((
Im1 z)
* (
- ((1
/ zz)
* (
Im1 z)))))
- ((
Im2 z)
* (
- ((1
/ zz)
* (
Im2 z)))))
- ((
Im3 z)
* (
- ((1
/ zz)
* (
Im3 z))))), (((((
Rea z)
* (
- ((1
/ zz)
* (
Im1 z))))
+ ((
Im1 z)
* ((1
/ zz)
* (
Rea z))))
+ ((
Im2 z)
* (
- ((1
/ zz)
* (
Im3 z)))))
- ((
Im3 z)
* (
- ((1
/ zz)
* (
Im2 z))))), (((((
Rea z)
* (
- ((1
/ zz)
* (
Im2 z))))
+ ((
Im2 z)
* ((1
/ zz)
* (
Rea z))))
+ ((
Im3 z)
* (
- ((1
/ zz)
* (
Im1 z)))))
- ((
Im1 z)
* (
Im3 z3))), (((((
Rea z)
* (
Im3 z3))
+ ((
Im3 z)
* (
Rea z3)))
+ ((
Im1 z)
* (
Im2 z3)))
- ((
Im2 z)
* (
Im1 z3)))*] by
Th25
.=
[*(((((
Rea z)
* ((1
/ zz)
* (
Rea z)))
- ((
Im1 z)
* (
- ((1
/ zz)
* (
Im1 z)))))
- ((
Im2 z)
* (
- ((1
/ zz)
* (
Im2 z)))))
- ((
Im3 z)
* (
- ((1
/ zz)
* (
Im3 z))))), (((((
Rea z)
* (
- ((1
/ zz)
* (
Im1 z))))
+ ((
Im1 z)
* ((1
/ zz)
* (
Rea z))))
+ ((
Im2 z)
* (
- ((1
/ zz)
* (
Im3 z)))))
- ((
Im3 z)
* (
- ((1
/ zz)
* (
Im2 z))))), (((((
Rea z)
* (
- ((1
/ zz)
* (
Im2 z))))
+ ((
Im2 z)
* ((1
/ zz)
* (
Rea z))))
+ ((
Im3 z)
* (
- ((1
/ zz)
* (
Im1 z)))))
- ((
Im1 z)
* (
- ((1
/ zz)
* (
Im3 z))))), (((((
Rea z)
* (
Im3 ((1
/ zz)
* (z
*' ))))
+ ((
Im3 z)
* (
Rea z3)))
+ ((
Im1 z)
* (
Im2 z3)))
- ((
Im2 z)
* (
Im1 z3)))*] by
Th27
.=
[*(((((
Rea z)
* ((1
/ zz)
* (
Rea z)))
- ((
Im1 z)
* (
- ((1
/ zz)
* (
Im1 z)))))
- ((
Im2 z)
* (
- ((1
/ zz)
* (
Im2 z)))))
- ((
Im3 z)
* (
- ((1
/ zz)
* (
Im3 z))))), (((((
Rea z)
* (
- ((1
/ zz)
* (
Im1 z))))
+ ((
Im1 z)
* ((1
/ zz)
* (
Rea z))))
+ ((
Im2 z)
* (
- ((1
/ zz)
* (
Im3 z)))))
- ((
Im3 z)
* (
- ((1
/ zz)
* (
Im2 z))))), (((((
Rea z)
* (
- ((1
/ zz)
* (
Im2 z))))
+ ((
Im2 z)
* ((1
/ zz)
* (
Rea z))))
+ ((
Im3 z)
* (
- ((1
/ zz)
* (
Im1 z)))))
- ((
Im1 z)
* (
- ((1
/ zz)
* (
Im3 z))))), (((((
Rea z)
* (
- ((1
/ zz)
* (
Im3 z))))
+ ((
Im3 z)
* (
Rea ((1
/ zz)
* (z
*' )))))
+ ((
Im1 z)
* (
Im2 ((1
/ zz)
* (z
*' )))))
- ((
Im2 z)
* (
Im1 ((1
/ zz)
* (z
*' )))))*] by
Th27
.=
[*(((((
Rea z)
* ((1
/ zz)
* (
Rea z)))
- ((
Im1 z)
* (
- ((1
/ zz)
* (
Im1 z)))))
- ((
Im2 z)
* (
- ((1
/ zz)
* (
Im2 z)))))
- ((
Im3 z)
* (
- ((1
/ zz)
* (
Im3 z))))), (((((
Rea z)
* (
- ((1
/ zz)
* (
Im1 z))))
+ ((
Im1 z)
* ((1
/ zz)
* (
Rea z))))
+ ((
Im2 z)
* (
- ((1
/ zz)
* (
Im3 z)))))
- ((
Im3 z)
* (
- ((1
/ zz)
* (
Im2 z))))), (((((
Rea z)
* (
- ((1
/ zz)
* (
Im2 z))))
+ ((
Im2 z)
* ((1
/ zz)
* (
Rea z))))
+ ((
Im3 z)
* (
- ((1
/ zz)
* (
Im1 z)))))
- ((
Im1 z)
* (
- ((1
/ zz)
* (
Im3 z))))), (((((
Rea z)
* (
- ((1
/ zz)
* (
Im3 z))))
+ ((
Im3 z)
* ((1
/ zz)
* (
Rea z))))
+ ((
Im1 z)
* (
Im2 ((1
/ zz)
* (z
*' )))))
- ((
Im2 z)
* (
Im1 ((1
/ zz)
* (z
*' )))))*] by
Th24
.=
[*(((((
Rea z)
* ((1
/ zz)
* (
Rea z)))
- ((
Im1 z)
* (
- ((1
/ zz)
* (
Im1 z)))))
- ((
Im2 z)
* (
- ((1
/ zz)
* (
Im2 z)))))
- ((
Im3 z)
* (
- ((1
/ zz)
* (
Im3 z))))), (((((
Rea z)
* (
- ((1
/ zz)
* (
Im1 z))))
+ ((
Im1 z)
* ((1
/ zz)
* (
Rea z))))
+ ((
Im2 z)
* (
- ((1
/ zz)
* (
Im3 z)))))
- ((
Im3 z)
* (
- ((1
/ zz)
* (
Im2 z))))), (((((
Rea z)
* (
- ((1
/ zz)
* (
Im2 z))))
+ ((
Im2 z)
* ((1
/ zz)
* (
Rea z))))
+ ((
Im3 z)
* (
- ((1
/ zz)
* (
Im1 z)))))
- ((
Im1 z)
* (
- ((1
/ zz)
* (
Im3 z))))), (((((
Rea z)
* (
- ((1
/ zz)
* (
Im3 z))))
+ ((
Im3 z)
* ((1
/ zz)
* (
Rea z))))
+ ((
Im1 z)
* (
- ((1
/ zz)
* (
Im2 z)))))
- ((
Im2 z)
* (
Im1 ((1
/ zz)
* (z
*' )))))*] by
Th26
.=
[*(((((
Rea z)
* ((1
/ zz)
* (
Rea z)))
- ((
Im1 z)
* (
- ((1
/ zz)
* (
Im1 z)))))
- ((
Im2 z)
* (
- ((1
/ zz)
* (
Im2 z)))))
- ((
Im3 z)
* (
- ((1
/ zz)
* (
Im3 z))))), (((((
Rea z)
* (
- ((1
/ zz)
* (
Im1 z))))
+ ((
Im1 z)
* ((1
/ zz)
* (
Rea z))))
+ ((
Im2 z)
* (
- ((1
/ zz)
* (
Im3 z)))))
- ((
Im3 z)
* (
- ((1
/ zz)
* (
Im2 z))))), (((((
Rea z)
* (
- ((1
/ zz)
* (
Im2 z))))
+ ((
Im2 z)
* ((1
/ zz)
* (
Rea z))))
+ ((
Im3 z)
* (
- ((1
/ zz)
* (
Im1 z)))))
- ((
Im1 z)
* (
- ((1
/ zz)
* (
Im3 z))))), (((((
Rea z)
* (
- ((1
/ zz)
* (
Im3 z))))
+ ((
Im3 z)
* ((1
/ zz)
* (
Rea z))))
+ ((
Im1 z)
* (
- ((1
/ zz)
* (
Im2 z)))))
- ((
Im2 z)
* (
- ((1
/ zz)
* (
Im1 z)))))*] by
Th25
.=
[*((((((
Rea z)
^2 )
+ ((
Im1 z)
^2 ))
+ ((
Im2 z)
^2 ))
+ ((
Im3 z)
^2 ))
/ zz),
0 ,
0 ,
0 *]
.=
[*(zz
/ zz),
0 ,
0 ,
0 *] by
Th11;
hence thesis;
end;
theorem ::
QUATERN3:30
(
|.((z1
* z2)
* z3).|
^2 )
= (((
|.z1.|
^2 )
* (
|.z2.|
^2 ))
* (
|.z3.|
^2 ))
proof
(
|.((z1
* z2)
* z3).|
^2 )
= (
|.(z1
* (z2
* z3)).|
^2 ) by
QUATERN2: 16
.= ((
|.z1.|
^2 )
* (
|.(z2
* z3).|
^2 )) by
Th17
.= ((
|.z1.|
^2 )
* ((
|.z2.|
^2 )
* (
|.z3.|
^2 ))) by
Th17
.= (((
|.z1.|
^2 )
* (
|.z2.|
^2 ))
* (
|.z3.|
^2 ));
hence thesis;
end;
theorem ::
QUATERN3:31
(
Rea ((z1
* z2)
* z3))
= (
Rea ((z3
* z1)
* z2))
proof
(
Rea ((z1
* z2)
* z3))
= (
Rea (z1
* (z2
* z3))) by
QUATERN2: 16
.= (
Rea ((z2
* z3)
* z1)) by
Th1
.= (
Rea (z2
* (z3
* z1))) by
QUATERN2: 16
.= (
Rea ((z3
* z1)
* z2)) by
Th1;
hence thesis;
end;
theorem ::
QUATERN3:32
Th32:
|.(z
* z).|
=
|.((z
*' )
* (z
*' )).|
proof
|.((z
*' )
* (z
*' )).|
= (
|.(z
*' ).|
*
|.(z
*' ).|) by
QUATERNI: 87
.= (
|.z.|
*
|.(z
*' ).|) by
QUATERNI: 73
.= (
|.z.|
*
|.z.|) by
QUATERNI: 73;
hence thesis by
QUATERNI: 87;
end;
theorem ::
QUATERN3:33
|.((z
*' )
* (z
*' )).|
= (
|.z.|
^2 )
proof
|.((z
*' )
* (z
*' )).|
=
|.(z
* z).| by
Th32;
hence thesis by
QUATERNI: 87;
end;
theorem ::
QUATERN3:34
|.((z1
* z2)
* z3).|
= ((
|.z1.|
*
|.z2.|)
*
|.z3.|)
proof
|.((z1
* z2)
* z3).|
=
|.(z1
* (z2
* z3)).| by
QUATERN2: 16
.= (
|.z1.|
*
|.(z2
* z3).|) by
QUATERNI: 87
.= (
|.z1.|
* (
|.z2.|
*
|.z3.|)) by
QUATERNI: 87
.= ((
|.z1.|
*
|.z2.|)
*
|.z3.|);
hence thesis;
end;
theorem ::
QUATERN3:35
|.((z1
+ z2)
+ z3).|
<= ((
|.z1.|
+
|.z2.|)
+
|.z3.|)
proof
|.((z1
+ z2)
+ z3).|
=
|.(z1
+ (z2
+ z3)).| by
QUATERN2: 2;
then
|.((z1
+ z2)
+ z3).|
<= (
|.z1.|
+
|.(z2
+ z3).|) by
QUATERNI: 79;
then
A1: (
|.((z1
+ z2)
+ z3).|
-
|.z1.|)
<=
|.(z2
+ z3).| by
XREAL_1: 20;
|.(z2
+ z3).|
<= (
|.z2.|
+
|.z3.|) by
QUATERNI: 79;
then ((
|.((z1
+ z2)
+ z3).|
-
|.z1.|)
+
|.(z2
+ z3).|)
<= (
|.(z2
+ z3).|
+ (
|.z2.|
+
|.z3.|)) by
A1,
XREAL_1: 7;
then (
|.((z1
+ z2)
+ z3).|
-
|.z1.|)
<= ((
|.(z2
+ z3).|
+ (
|.z2.|
+
|.z3.|))
-
|.(z2
+ z3).|) by
XREAL_1: 19;
then
|.((z1
+ z2)
+ z3).|
<= ((
|.z2.|
+
|.z3.|)
+
|.z1.|) by
XREAL_1: 20;
hence thesis;
end;
theorem ::
QUATERN3:36
|.((z1
+ z2)
- z3).|
<= ((
|.z1.|
+
|.z2.|)
+
|.z3.|)
proof
|.((z1
+ z2)
- z3).|
=
|.(z1
+ (z2
- z3)).| by
QUATERN2: 2;
then
|.((z1
+ z2)
- z3).|
<= (
|.z1.|
+
|.(z2
- z3).|) by
QUATERNI: 79;
then
A1: (
|.((z1
+ z2)
- z3).|
-
|.z1.|)
<=
|.(z2
- z3).| by
XREAL_1: 20;
|.(z2
- z3).|
<= (
|.z2.|
+
|.z3.|) by
QUATERNI: 80;
then ((
|.((z1
+ z2)
- z3).|
-
|.z1.|)
+
|.(z2
- z3).|)
<= (
|.(z2
- z3).|
+ (
|.z2.|
+
|.z3.|)) by
A1,
XREAL_1: 7;
then (
|.((z1
+ z2)
- z3).|
-
|.z1.|)
<= ((
|.(z2
- z3).|
+ (
|.z2.|
+
|.z3.|))
-
|.(z2
- z3).|) by
XREAL_1: 19;
then
|.((z1
+ z2)
- z3).|
<= ((
|.z2.|
+
|.z3.|)
+
|.z1.|) by
XREAL_1: 20;
hence thesis;
end;
theorem ::
QUATERN3:37
|.((z1
- z2)
- z3).|
<= ((
|.z1.|
+
|.z2.|)
+
|.z3.|)
proof
|.((z1
- z2)
- z3).|
<= (
|.(z1
- z2).|
+
|.z3.|) &
|.(z1
- z2).|
<= (
|.z1.|
+
|.z2.|) by
QUATERNI: 80;
then (
|.((z1
- z2)
- z3).|
+
|.(z1
- z2).|)
<= ((
|.(z1
- z2).|
+
|.z3.|)
+ (
|.z1.|
+
|.z2.|)) by
XREAL_1: 7;
then
|.((z1
- z2)
- z3).|
<= (((
|.(z1
- z2).|
+
|.z3.|)
+ (
|.z1.|
+
|.z2.|))
-
|.(z1
- z2).|) by
XREAL_1: 19;
hence thesis;
end;
theorem ::
QUATERN3:38
(
|.z1.|
-
|.z2.|)
<= ((
|.(z1
+ z2).|
+
|.(z1
- z2).|)
/ 2)
proof
(
|.z1.|
-
|.z2.|)
<=
|.(z1
+ z2).| & (
|.z1.|
-
|.z2.|)
<=
|.(z1
- z2).| by
QUATERNI: 81,
QUATERNI: 82;
then ((
|.z1.|
-
|.z2.|)
+ (
|.z1.|
-
|.z2.|))
<= (
|.(z1
+ z2).|
+
|.(z1
- z2).|) by
XREAL_1: 7;
then (2
* (
|.z1.|
-
|.z2.|))
<= (
|.(z1
+ z2).|
+
|.(z1
- z2).|);
hence thesis by
XREAL_1: 77;
end;
theorem ::
QUATERN3:39
(
|.z1.|
-
|.z2.|)
<= ((
|.(z1
+ z2).|
+
|.(z2
- z1).|)
/ 2)
proof
(
|.z1.|
-
|.z2.|)
<=
|.(z1
+ z2).| & (
|.z1.|
-
|.z2.|)
<=
|.(z1
- z2).| by
QUATERNI: 81,
QUATERNI: 82;
then ((
|.z1.|
-
|.z2.|)
+ (
|.z1.|
-
|.z2.|))
<= (
|.(z1
+ z2).|
+
|.(z1
- z2).|) by
XREAL_1: 7;
then (2
* (
|.z1.|
-
|.z2.|))
<= (
|.(z1
+ z2).|
+
|.(z2
- z1).|) by
QUATERNI: 83;
hence thesis by
XREAL_1: 77;
end;
theorem ::
QUATERN3:40
|.(
|.z1.|
-
|.z2.|).|
<=
|.(z2
- z1).|
proof
|.(
|.z1.|
-
|.z2.|).|
<=
|.(z1
- z2).| by
QUATERNI: 86;
hence thesis by
QUATERNI: 83;
end;
theorem ::
QUATERN3:41
|.(
|.z1.|
-
|.z2.|).|
<= (
|.z1.|
+
|.z2.|)
proof
|.(
|.z1.|
-
|.z2.|).|
<=
|.(z1
- z2).| &
|.(z1
- z2).|
<= (
|.z1.|
+
|.z2.|) by
QUATERNI: 80,
QUATERNI: 86;
then (
|.(
|.z1.|
-
|.z2.|).|
+
|.(z1
- z2).|)
<= (
|.(z1
- z2).|
+ (
|.z1.|
+
|.z2.|)) by
XREAL_1: 7;
then
|.(
|.z1.|
-
|.z2.|).|
<= (((
|.(z1
- z2).|
+
|.z1.|)
+
|.z2.|)
-
|.(z1
- z2).|) by
XREAL_1: 19;
hence thesis;
end;
theorem ::
QUATERN3:42
(
|.z1.|
-
|.z2.|)
<= (
|.(z1
- z).|
+
|.(z
- z2).|)
proof
(
|.z1.|
-
|.z2.|)
<=
|.(z1
- z2).| &
|.(z1
- z2).|
<= (
|.(z1
- z).|
+
|.(z
- z2).|) by
QUATERNI: 82,
QUATERNI: 85;
then ((
|.z1.|
-
|.z2.|)
+
|.(z1
- z2).|)
<= (
|.(z1
- z2).|
+ (
|.(z1
- z).|
+
|.(z
- z2).|)) by
XREAL_1: 7;
then (
|.z1.|
-
|.z2.|)
<= (((
|.(z1
- z2).|
+
|.(z1
- z).|)
+
|.(z
- z2).|)
-
|.(z1
- z2).|) by
XREAL_1: 19;
hence thesis;
end;
theorem ::
QUATERN3:43
(
|.z1.|
-
|.z2.|)
<>
0 implies (((
|.z1.|
^2 )
+ (
|.z2.|
^2 ))
- ((2
*
|.z1.|)
*
|.z2.|))
>
0
proof
assume (
|.z1.|
-
|.z2.|)
<>
0 ;
then ((
|.z1.|
-
|.z2.|)
^2 )
>
0 by
SQUARE_1: 12;
hence thesis;
end;
theorem ::
QUATERN3:44
(
|.z1.|
+
|.z2.|)
>= ((
|.(z1
+ z2).|
+
|.(z2
- z1).|)
/ 2)
proof
|.(z1
+ z2).|
<= (
|.z1.|
+
|.z2.|) &
|.(z1
- z2).|
<= (
|.z1.|
+
|.z2.|) by
QUATERNI: 79,
QUATERNI: 80;
then (
|.(z1
+ z2).|
+
|.(z1
- z2).|)
<= ((
|.z1.|
+
|.z2.|)
+ (
|.z1.|
+
|.z2.|)) by
XREAL_1: 7;
then (
|.(z1
+ z2).|
+
|.(z2
- z1).|)
<= (2
* (
|.z1.|
+
|.z2.|)) by
QUATERNI: 83;
hence thesis by
XREAL_1: 79;
end;
theorem ::
QUATERN3:45
(
|.z1.|
+
|.z2.|)
>= ((
|.(z1
+ z2).|
+
|.(z1
- z2).|)
/ 2)
proof
|.(z1
+ z2).|
<= (
|.z1.|
+
|.z2.|) &
|.(z1
- z2).|
<= (
|.z1.|
+
|.z2.|) by
QUATERNI: 79,
QUATERNI: 80;
then (
|.(z1
+ z2).|
+
|.(z1
- z2).|)
<= ((
|.z1.|
+
|.z2.|)
+ (
|.z1.|
+
|.z2.|)) by
XREAL_1: 7;
then (
|.(z1
+ z2).|
+
|.(z1
- z2).|)
<= (2
* (
|.z1.|
+
|.z2.|));
hence thesis by
XREAL_1: 79;
end;
theorem ::
QUATERN3:46
((z1
* z2)
" )
= ((z2
" )
* (z1
" ))
proof
set z3 = (z1
* z2);
A1: (((((
Rea (z2
" ))
* (
Im1 (z1
" )))
+ ((
Im1 (z2
" ))
* (
Rea (z1
" ))))
+ ((
Im2 (z2
" ))
* (
Im3 (z1
" ))))
- ((
Im3 (z2
" ))
* (
Im2 (z1
" ))))
= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* (
Im1 (z1
" )))
+ ((
Im1 (z2
" ))
* (
Rea (z1
" ))))
+ ((
Im2 (z2
" ))
* (
Im3 (z1
" ))))
- ((
Im3 (z2
" ))
* (
Im2 (z1
" )))) by
QUATERN2: 29
.= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* (
- ((
Im1 z1)
/ (
|.z1.|
^2 ))))
+ ((
Im1 (z2
" ))
* (
Rea (z1
" ))))
+ ((
Im2 (z2
" ))
* (
Im3 (z1
" ))))
- ((
Im3 (z2
" ))
* (
Im2 (z1
" )))) by
QUATERN2: 29
.= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* (
- ((
Im1 z1)
/ (
|.z1.|
^2 ))))
+ ((
- ((
Im1 z2)
/ (
|.z2.|
^2 )))
* (
Rea (z1
" ))))
+ ((
Im2 (z2
" ))
* (
Im3 (z1
" ))))
- ((
Im3 (z2
" ))
* (
Im2 (z1
" )))) by
QUATERN2: 29
.= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* (
- ((
Im1 z1)
/ (
|.z1.|
^2 ))))
+ ((
- ((
Im1 z2)
/ (
|.z2.|
^2 )))
* ((
Rea z1)
/ (
|.z1.|
^2 ))))
+ ((
Im2 (z2
" ))
* (
Im3 (z1
" ))))
- ((
Im3 (z2
" ))
* (
Im2 (z1
" )))) by
QUATERN2: 29
.= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* (
- ((
Im1 z1)
/ (
|.z1.|
^2 ))))
+ ((
- ((
Im1 z2)
/ (
|.z2.|
^2 )))
* ((
Rea z1)
/ (
|.z1.|
^2 ))))
+ ((
- ((
Im2 z2)
/ (
|.z2.|
^2 )))
* (
Im3 (z1
" ))))
- ((
Im3 (z2
" ))
* (
Im2 (z1
" )))) by
QUATERN2: 29
.= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* (
- ((
Im1 z1)
/ (
|.z1.|
^2 ))))
+ ((
- ((
Im1 z2)
/ (
|.z2.|
^2 )))
* ((
Rea z1)
/ (
|.z1.|
^2 ))))
+ ((
- ((
Im2 z2)
/ (
|.z2.|
^2 )))
* (
- ((
Im3 z1)
/ (
|.z1.|
^2 )))))
- ((
Im3 (z2
" ))
* (
Im2 (z1
" )))) by
QUATERN2: 29
.= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* (
- ((
Im1 z1)
/ (
|.z1.|
^2 ))))
+ ((
- ((
Im1 z2)
/ (
|.z2.|
^2 )))
* ((
Rea z1)
/ (
|.z1.|
^2 ))))
+ ((
- ((
Im2 z2)
/ (
|.z2.|
^2 )))
* (
- ((
Im3 z1)
/ (
|.z1.|
^2 )))))
- ((
- ((
Im3 z2)
/ (
|.z2.|
^2 )))
* (
Im2 (z1
" )))) by
QUATERN2: 29
.= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* ((
- (
Im1 z1))
/ (
|.z1.|
^2 )))
+ ((
- ((
Im1 z2)
/ (
|.z2.|
^2 )))
* ((
Rea z1)
/ (
|.z1.|
^2 ))))
+ ((
- ((
Im2 z2)
/ (
|.z2.|
^2 )))
* (
- ((
Im3 z1)
/ (
|.z1.|
^2 )))))
- ((
- ((
Im3 z2)
/ (
|.z2.|
^2 )))
* (
- ((
Im2 z1)
/ (
|.z1.|
^2 ))))) by
QUATERN2: 29
.= ((((((
Rea z2)
* (
- (
Im1 z1)))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 )))
+ (((
- (
Im1 z2))
/ (
|.z2.|
^2 ))
* ((
Rea z1)
/ (
|.z1.|
^2 ))))
+ ((
- ((
Im2 z2)
/ (
|.z2.|
^2 )))
* (
- ((
Im3 z1)
/ (
|.z1.|
^2 )))))
- ((
- ((
Im3 z2)
/ (
|.z2.|
^2 )))
* (
- ((
Im2 z1)
/ (
|.z1.|
^2 ))))) by
XCMPLX_1: 76
.= ((((((
Rea z2)
* (
- (
Im1 z1)))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 )))
+ (((
- (
Im1 z2))
* (
Rea z1))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 ))))
+ (((
Im2 z2)
/ (
|.z2.|
^2 ))
* ((
Im3 z1)
/ (
|.z1.|
^2 ))))
- ((
- ((
Im3 z2)
/ (
|.z2.|
^2 )))
* (
- ((
Im2 z1)
/ (
|.z1.|
^2 ))))) by
XCMPLX_1: 76
.= ((((((
Rea z2)
* (
- (
Im1 z1)))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 )))
+ (((
- (
Im1 z2))
* (
Rea z1))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 ))))
+ (((
Im2 z2)
* (
Im3 z1))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 ))))
- (((
Im3 z2)
/ (
|.z2.|
^2 ))
* ((
Im2 z1)
/ (
|.z1.|
^2 )))) by
XCMPLX_1: 76
.= ((((((
Rea z2)
* (
- (
Im1 z1)))
+ ((
- (
Im1 z2))
* (
Rea z1)))
+ ((
Im2 z2)
* (
Im3 z1)))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 )))
- (((
Im3 z2)
* (
Im2 z1))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 )))) by
XCMPLX_1: 76
.= ((((((
Rea z2)
* (
- (
Im1 z1)))
+ ((
- (
Im1 z2))
* (
Rea z1)))
+ ((
Im2 z2)
* (
Im3 z1)))
- ((
Im3 z2)
* (
Im2 z1)))
/ ((
|.z2.|
*
|.z1.|)
^2 ));
A2: (((((
Rea (z2
" ))
* (
Im2 (z1
" )))
+ ((
Im2 (z2
" ))
* (
Rea (z1
" ))))
+ ((
Im3 (z2
" ))
* (
Im1 (z1
" ))))
- ((
Im1 (z2
" ))
* (
Im3 (z1
" ))))
= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* (
Im2 (z1
" )))
+ ((
Im2 (z2
" ))
* (
Rea (z1
" ))))
+ ((
Im3 (z2
" ))
* (
Im1 (z1
" ))))
- ((
Im1 (z2
" ))
* (
Im3 (z1
" )))) by
QUATERN2: 29
.= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* (
- ((
Im2 z1)
/ (
|.z1.|
^2 ))))
+ ((
Im2 (z2
" ))
* (
Rea (z1
" ))))
+ ((
Im3 (z2
" ))
* (
Im1 (z1
" ))))
- ((
Im1 (z2
" ))
* (
Im3 (z1
" )))) by
QUATERN2: 29
.= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* (
- ((
Im2 z1)
/ (
|.z1.|
^2 ))))
+ ((
- ((
Im2 z2)
/ (
|.z2.|
^2 )))
* (
Rea (z1
" ))))
+ ((
Im3 (z2
" ))
* (
Im1 (z1
" ))))
- ((
Im1 (z2
" ))
* (
Im3 (z1
" )))) by
QUATERN2: 29
.= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* (
- ((
Im2 z1)
/ (
|.z1.|
^2 ))))
+ ((
- ((
Im2 z2)
/ (
|.z2.|
^2 )))
* ((
Rea z1)
/ (
|.z1.|
^2 ))))
+ ((
Im3 (z2
" ))
* (
Im1 (z1
" ))))
- ((
Im1 (z2
" ))
* (
Im3 (z1
" )))) by
QUATERN2: 29
.= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* (
- ((
Im2 z1)
/ (
|.z1.|
^2 ))))
+ ((
- ((
Im2 z2)
/ (
|.z2.|
^2 )))
* ((
Rea z1)
/ (
|.z1.|
^2 ))))
+ ((
- ((
Im3 z2)
/ (
|.z2.|
^2 )))
* (
Im1 (z1
" ))))
- ((
Im1 (z2
" ))
* (
Im3 (z1
" )))) by
QUATERN2: 29
.= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* (
- ((
Im2 z1)
/ (
|.z1.|
^2 ))))
+ ((
- ((
Im2 z2)
/ (
|.z2.|
^2 )))
* ((
Rea z1)
/ (
|.z1.|
^2 ))))
+ ((
- ((
Im3 z2)
/ (
|.z2.|
^2 )))
* (
- ((
Im1 z1)
/ (
|.z1.|
^2 )))))
- ((
Im1 (z2
" ))
* (
Im3 (z1
" )))) by
QUATERN2: 29
.= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* (
- ((
Im2 z1)
/ (
|.z1.|
^2 ))))
+ ((
- ((
Im2 z2)
/ (
|.z2.|
^2 )))
* ((
Rea z1)
/ (
|.z1.|
^2 ))))
+ ((
- ((
Im3 z2)
/ (
|.z2.|
^2 )))
* (
- ((
Im1 z1)
/ (
|.z1.|
^2 )))))
- ((
- ((
Im1 z2)
/ (
|.z2.|
^2 )))
* (
Im3 (z1
" )))) by
QUATERN2: 29
.= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* (
- ((
Im2 z1)
/ (
|.z1.|
^2 ))))
+ ((
- ((
Im2 z2)
/ (
|.z2.|
^2 )))
* ((
Rea z1)
/ (
|.z1.|
^2 ))))
+ ((
- ((
Im3 z2)
/ (
|.z2.|
^2 )))
* (
- ((
Im1 z1)
/ (
|.z1.|
^2 )))))
- ((
- ((
Im1 z2)
/ (
|.z2.|
^2 )))
* (
- ((
Im3 z1)
/ (
|.z1.|
^2 ))))) by
QUATERN2: 29
.= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* ((
- (
Im2 z1))
/ (
|.z1.|
^2 )))
+ (((
- (
Im2 z2))
/ (
|.z2.|
^2 ))
* ((
Rea z1)
/ (
|.z1.|
^2 ))))
+ (((
Im3 z2)
/ (
|.z2.|
^2 ))
* ((
Im1 z1)
/ (
|.z1.|
^2 ))))
- (((
Im1 z2)
/ (
|.z2.|
^2 ))
* ((
Im3 z1)
/ (
|.z1.|
^2 ))))
.= ((((((
Rea z2)
* (
- (
Im2 z1)))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 )))
+ (((
- (
Im2 z2))
/ (
|.z2.|
^2 ))
* ((
Rea z1)
/ (
|.z1.|
^2 ))))
+ (((
Im3 z2)
/ (
|.z2.|
^2 ))
* ((
Im1 z1)
/ (
|.z1.|
^2 ))))
- (((
Im1 z2)
/ (
|.z2.|
^2 ))
* ((
Im3 z1)
/ (
|.z1.|
^2 )))) by
XCMPLX_1: 76
.= ((((((
Rea z2)
* (
- (
Im2 z1)))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 )))
+ (((
- (
Im2 z2))
* (
Rea z1))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 ))))
+ (((
Im3 z2)
/ (
|.z2.|
^2 ))
* ((
Im1 z1)
/ (
|.z1.|
^2 ))))
- (((
Im1 z2)
/ (
|.z2.|
^2 ))
* ((
Im3 z1)
/ (
|.z1.|
^2 )))) by
XCMPLX_1: 76
.= ((((((
Rea z2)
* (
- (
Im2 z1)))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 )))
+ (((
- (
Im2 z2))
* (
Rea z1))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 ))))
+ (((
Im3 z2)
* (
Im1 z1))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 ))))
- (((
Im1 z2)
/ (
|.z2.|
^2 ))
* ((
Im3 z1)
/ (
|.z1.|
^2 )))) by
XCMPLX_1: 76
.= ((((((
Rea z2)
* (
- (
Im2 z1)))
+ ((
- (
Im2 z2))
* (
Rea z1)))
+ ((
Im3 z2)
* (
Im1 z1)))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 )))
- (((
Im1 z2)
* (
Im3 z1))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 )))) by
XCMPLX_1: 76
.= ((((((
Rea z2)
* (
- (
Im2 z1)))
+ ((
- (
Im2 z2))
* (
Rea z1)))
+ ((
Im3 z2)
* (
Im1 z1)))
- ((
Im1 z2)
* (
Im3 z1)))
/ ((
|.z2.|
*
|.z1.|)
^2 ));
A3: (((((
Rea (z2
" ))
* (
Im3 (z1
" )))
+ ((
Im3 (z2
" ))
* (
Rea (z1
" ))))
+ ((
Im1 (z2
" ))
* (
Im2 (z1
" ))))
- ((
Im2 (z2
" ))
* (
Im1 (z1
" ))))
= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* (
Im3 (z1
" )))
+ ((
Im3 (z2
" ))
* (
Rea (z1
" ))))
+ ((
Im1 (z2
" ))
* (
Im2 (z1
" ))))
- ((
Im2 (z2
" ))
* (
Im1 (z1
" )))) by
QUATERN2: 29
.= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* (
- ((
Im3 z1)
/ (
|.z1.|
^2 ))))
+ ((
Im3 (z2
" ))
* (
Rea (z1
" ))))
+ ((
Im1 (z2
" ))
* (
Im2 (z1
" ))))
- ((
Im2 (z2
" ))
* (
Im1 (z1
" )))) by
QUATERN2: 29
.= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* (
- ((
Im3 z1)
/ (
|.z1.|
^2 ))))
+ ((
- ((
Im3 z2)
/ (
|.z2.|
^2 )))
* (
Rea (z1
" ))))
+ ((
Im1 (z2
" ))
* (
Im2 (z1
" ))))
- ((
Im2 (z2
" ))
* (
Im1 (z1
" )))) by
QUATERN2: 29
.= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* (
- ((
Im3 z1)
/ (
|.z1.|
^2 ))))
+ ((
- ((
Im3 z2)
/ (
|.z2.|
^2 )))
* ((
Rea z1)
/ (
|.z1.|
^2 ))))
+ ((
Im1 (z2
" ))
* (
Im2 (z1
" ))))
- ((
Im2 (z2
" ))
* (
Im1 (z1
" )))) by
QUATERN2: 29
.= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* (
- ((
Im3 z1)
/ (
|.z1.|
^2 ))))
+ ((
- ((
Im3 z2)
/ (
|.z2.|
^2 )))
* ((
Rea z1)
/ (
|.z1.|
^2 ))))
+ ((
- ((
Im1 z2)
/ (
|.z2.|
^2 )))
* (
Im2 (z1
" ))))
- ((
Im2 (z2
" ))
* (
Im1 (z1
" )))) by
QUATERN2: 29
.= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* (
- ((
Im3 z1)
/ (
|.z1.|
^2 ))))
+ ((
- ((
Im3 z2)
/ (
|.z2.|
^2 )))
* ((
Rea z1)
/ (
|.z1.|
^2 ))))
+ ((
- ((
Im1 z2)
/ (
|.z2.|
^2 )))
* (
- ((
Im2 z1)
/ (
|.z1.|
^2 )))))
- ((
Im2 (z2
" ))
* (
Im1 (z1
" )))) by
QUATERN2: 29
.= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* (
- ((
Im3 z1)
/ (
|.z1.|
^2 ))))
+ ((
- ((
Im3 z2)
/ (
|.z2.|
^2 )))
* ((
Rea z1)
/ (
|.z1.|
^2 ))))
+ ((
- ((
Im1 z2)
/ (
|.z2.|
^2 )))
* (
- ((
Im2 z1)
/ (
|.z1.|
^2 )))))
- ((
- ((
Im2 z2)
/ (
|.z2.|
^2 )))
* (
Im1 (z1
" )))) by
QUATERN2: 29
.= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* (
- ((
Im3 z1)
/ (
|.z1.|
^2 ))))
+ ((
- ((
Im3 z2)
/ (
|.z2.|
^2 )))
* ((
Rea z1)
/ (
|.z1.|
^2 ))))
+ ((
- ((
Im1 z2)
/ (
|.z2.|
^2 )))
* (
- ((
Im2 z1)
/ (
|.z1.|
^2 )))))
- ((
- ((
Im2 z2)
/ (
|.z2.|
^2 )))
* (
- ((
Im1 z1)
/ (
|.z1.|
^2 ))))) by
QUATERN2: 29
.= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* ((
- (
Im3 z1))
/ (
|.z1.|
^2 )))
- (((
Im3 z2)
/ (
|.z2.|
^2 ))
* ((
Rea z1)
/ (
|.z1.|
^2 ))))
+ (((
Im1 z2)
/ (
|.z2.|
^2 ))
* ((
Im2 z1)
/ (
|.z1.|
^2 ))))
- (((
Im2 z2)
/ (
|.z2.|
^2 ))
* ((
Im1 z1)
/ (
|.z1.|
^2 ))))
.= ((((((
Rea z2)
* (
- (
Im3 z1)))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 )))
- (((
Im3 z2)
/ (
|.z2.|
^2 ))
* ((
Rea z1)
/ (
|.z1.|
^2 ))))
+ (((
Im1 z2)
/ (
|.z2.|
^2 ))
* ((
Im2 z1)
/ (
|.z1.|
^2 ))))
- (((
Im2 z2)
/ (
|.z2.|
^2 ))
* ((
Im1 z1)
/ (
|.z1.|
^2 )))) by
XCMPLX_1: 76
.= ((((((
Rea z2)
* (
- (
Im3 z1)))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 )))
- (((
Im3 z2)
* (
Rea z1))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 ))))
+ (((
Im1 z2)
/ (
|.z2.|
^2 ))
* ((
Im2 z1)
/ (
|.z1.|
^2 ))))
- (((
Im2 z2)
/ (
|.z2.|
^2 ))
* ((
Im1 z1)
/ (
|.z1.|
^2 )))) by
XCMPLX_1: 76
.= ((((((
Rea z2)
* (
- (
Im3 z1)))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 )))
- (((
Im3 z2)
* (
Rea z1))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 ))))
+ (((
Im1 z2)
* (
Im2 z1))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 ))))
- (((
Im2 z2)
/ (
|.z2.|
^2 ))
* ((
Im1 z1)
/ (
|.z1.|
^2 )))) by
XCMPLX_1: 76
.= ((((((
Rea z2)
* (
- (
Im3 z1)))
- ((
Im3 z2)
* (
Rea z1)))
+ ((
Im1 z2)
* (
Im2 z1)))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 )))
- (((
Im2 z2)
* (
Im1 z1))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 )))) by
XCMPLX_1: 76
.= ((((((
Rea z2)
* (
- (
Im3 z1)))
- ((
Im3 z2)
* (
Rea z1)))
+ ((
Im1 z2)
* (
Im2 z1)))
- ((
Im2 z2)
* (
Im1 z1)))
/ ((
|.z2.|
*
|.z1.|)
^2 ));
(((((
Rea (z2
" ))
* (
Rea (z1
" )))
- ((
Im1 (z2
" ))
* (
Im1 (z1
" ))))
- ((
Im2 (z2
" ))
* (
Im2 (z1
" ))))
- ((
Im3 (z2
" ))
* (
Im3 (z1
" ))))
= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* (
Rea (z1
" )))
- ((
Im1 (z2
" ))
* (
Im1 (z1
" ))))
- ((
Im2 (z2
" ))
* (
Im2 (z1
" ))))
- ((
Im3 (z2
" ))
* (
Im3 (z1
" )))) by
QUATERN2: 29
.= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* ((
Rea z1)
/ (
|.z1.|
^2 )))
- ((
Im1 (z2
" ))
* (
Im1 (z1
" ))))
- ((
Im2 (z2
" ))
* (
Im2 (z1
" ))))
- ((
Im3 (z2
" ))
* (
Im3 (z1
" )))) by
QUATERN2: 29
.= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* ((
Rea z1)
/ (
|.z1.|
^2 )))
- ((
- ((
Im1 z2)
/ (
|.z2.|
^2 )))
* (
Im1 (z1
" ))))
- ((
Im2 (z2
" ))
* (
Im2 (z1
" ))))
- ((
Im3 (z2
" ))
* (
Im3 (z1
" )))) by
QUATERN2: 29
.= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* ((
Rea z1)
/ (
|.z1.|
^2 )))
- ((
- ((
Im1 z2)
/ (
|.z2.|
^2 )))
* (
- ((
Im1 z1)
/ (
|.z1.|
^2 )))))
- ((
Im2 (z2
" ))
* (
Im2 (z1
" ))))
- ((
Im3 (z2
" ))
* (
Im3 (z1
" )))) by
QUATERN2: 29
.= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* ((
Rea z1)
/ (
|.z1.|
^2 )))
- ((
- ((
Im1 z2)
/ (
|.z2.|
^2 )))
* (
- ((
Im1 z1)
/ (
|.z1.|
^2 )))))
- ((
- ((
Im2 z2)
/ (
|.z2.|
^2 )))
* (
Im2 (z1
" ))))
- ((
Im3 (z2
" ))
* (
Im3 (z1
" )))) by
QUATERN2: 29
.= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* ((
Rea z1)
/ (
|.z1.|
^2 )))
- ((
- ((
Im1 z2)
/ (
|.z2.|
^2 )))
* (
- ((
Im1 z1)
/ (
|.z1.|
^2 )))))
- ((
- ((
Im2 z2)
/ (
|.z2.|
^2 )))
* (
- ((
Im2 z1)
/ (
|.z1.|
^2 )))))
- ((
Im3 (z2
" ))
* (
Im3 (z1
" )))) by
QUATERN2: 29
.= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* ((
Rea z1)
/ (
|.z1.|
^2 )))
- ((
- ((
Im1 z2)
/ (
|.z2.|
^2 )))
* (
- ((
Im1 z1)
/ (
|.z1.|
^2 )))))
- ((
- ((
Im2 z2)
/ (
|.z2.|
^2 )))
* (
- ((
Im2 z1)
/ (
|.z1.|
^2 )))))
- ((
- ((
Im3 z2)
/ (
|.z2.|
^2 )))
* (
Im3 (z1
" )))) by
QUATERN2: 29
.= ((((((
Rea z2)
/ (
|.z2.|
^2 ))
* ((
Rea z1)
/ (
|.z1.|
^2 )))
- ((
- ((
Im1 z2)
/ (
|.z2.|
^2 )))
* (
- ((
Im1 z1)
/ (
|.z1.|
^2 )))))
- ((
- ((
Im2 z2)
/ (
|.z2.|
^2 )))
* (
- ((
Im2 z1)
/ (
|.z1.|
^2 )))))
- ((
- ((
Im3 z2)
/ (
|.z2.|
^2 )))
* (
- ((
Im3 z1)
/ (
|.z1.|
^2 ))))) by
QUATERN2: 29
.= ((((((
Rea z2)
* (
Rea z1))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 )))
- (((
Im1 z2)
/ (
|.z2.|
^2 ))
* ((
Im1 z1)
/ (
|.z1.|
^2 ))))
- (((
Im2 z2)
/ (
|.z2.|
^2 ))
* ((
Im2 z1)
/ (
|.z1.|
^2 ))))
- (((
Im3 z2)
/ (
|.z2.|
^2 ))
* ((
Im3 z1)
/ (
|.z1.|
^2 )))) by
XCMPLX_1: 76
.= ((((((
Rea z2)
* (
Rea z1))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 )))
- (((
Im1 z2)
* (
Im1 z1))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 ))))
- (((
Im2 z2)
/ (
|.z2.|
^2 ))
* ((
Im2 z1)
/ (
|.z1.|
^2 ))))
- (((
Im3 z2)
/ (
|.z2.|
^2 ))
* ((
Im3 z1)
/ (
|.z1.|
^2 )))) by
XCMPLX_1: 76
.= ((((((
Rea z2)
* (
Rea z1))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 )))
- (((
Im1 z2)
* (
Im1 z1))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 ))))
- (((
Im2 z2)
* (
Im2 z1))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 ))))
- (((
Im3 z2)
/ (
|.z2.|
^2 ))
* ((
Im3 z1)
/ (
|.z1.|
^2 )))) by
XCMPLX_1: 76
.= ((((((
Rea z2)
* (
Rea z1))
- ((
Im1 z2)
* (
Im1 z1)))
- ((
Im2 z2)
* (
Im2 z1)))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 )))
- (((
Im3 z2)
* (
Im3 z1))
/ ((
|.z2.|
^2 )
* (
|.z1.|
^2 )))) by
XCMPLX_1: 76
.= ((((((
Rea z2)
* (
Rea z1))
- ((
Im1 z2)
* (
Im1 z1)))
- ((
Im2 z2)
* (
Im2 z1)))
- ((
Im3 z2)
* (
Im3 z1)))
/ ((
|.z2.|
*
|.z1.|)
^2 ));
then
A4: ((z2
" )
* (z1
" ))
= (((((((((
Rea z2)
* (
Rea z1))
- ((
Im1 z2)
* (
Im1 z1)))
- ((
Im2 z2)
* (
Im2 z1)))
- ((
Im3 z2)
* (
Im3 z1)))
/ ((
|.z2.|
*
|.z1.|)
^2 ))
+ ((
- ((((((
Rea z2)
* (
Im1 z1))
+ ((
Im1 z2)
* (
Rea z1)))
- ((
Im2 z2)
* (
Im3 z1)))
+ ((
Im3 z2)
* (
Im2 z1)))
/ ((
|.z2.|
*
|.z1.|)
^2 )))
*
<i> ))
+ ((
- ((((((
Rea z2)
* (
Im2 z1))
+ ((
Im2 z2)
* (
Rea z1)))
- ((
Im3 z2)
* (
Im1 z1)))
+ ((
Im1 z2)
* (
Im3 z1)))
/ ((
|.z2.|
*
|.z1.|)
^2 )))
*
<j> ))
+ ((
- ((((((
Rea z2)
* (
Im3 z1))
+ ((
Im3 z2)
* (
Rea z1)))
- ((
Im1 z2)
* (
Im2 z1)))
+ ((
Im2 z2)
* (
Im1 z1)))
/ ((
|.z2.|
*
|.z1.|)
^2 )))
*
<k> )) by
A1,
A2,
A3,
QUATERNI: 93
.= (((((((((
Rea z2)
* (
Rea z1))
- ((
Im1 z2)
* (
Im1 z1)))
- ((
Im2 z2)
* (
Im2 z1)))
- ((
Im3 z2)
* (
Im3 z1)))
/ ((
|.z2.|
*
|.z1.|)
^2 ))
+ (
- (((((((
Rea z2)
* (
Im1 z1))
+ ((
Im1 z2)
* (
Rea z1)))
- ((
Im2 z2)
* (
Im3 z1)))
+ ((
Im3 z2)
* (
Im2 z1)))
/ ((
|.z2.|
*
|.z1.|)
^2 ))
*
<i> )))
+ ((
- ((((((
Rea z2)
* (
Im2 z1))
+ ((
Im2 z2)
* (
Rea z1)))
- ((
Im3 z2)
* (
Im1 z1)))
+ ((
Im1 z2)
* (
Im3 z1)))
/ ((
|.z2.|
*
|.z1.|)
^2 )))
*
<j> ))
+ ((
- ((((((
Rea z2)
* (
Im3 z1))
+ ((
Im3 z2)
* (
Rea z1)))
- ((
Im1 z2)
* (
Im2 z1)))
+ ((
Im2 z2)
* (
Im1 z1)))
/ ((
|.z2.|
*
|.z1.|)
^2 )))
*
<k> )) by
QUATERN2: 9
.= (((((((((
Rea z2)
* (
Rea z1))
- ((
Im1 z2)
* (
Im1 z1)))
- ((
Im2 z2)
* (
Im2 z1)))
- ((
Im3 z2)
* (
Im3 z1)))
/ ((
|.z2.|
*
|.z1.|)
^2 ))
+ (
- (((((((
Rea z2)
* (
Im1 z1))
+ ((
Im1 z2)
* (
Rea z1)))
- ((
Im2 z2)
* (
Im3 z1)))
+ ((
Im3 z2)
* (
Im2 z1)))
/ ((
|.z2.|
*
|.z1.|)
^2 ))
*
<i> )))
+ (
- (((((((
Rea z2)
* (
Im2 z1))
+ ((
Im2 z2)
* (
Rea z1)))
- ((
Im3 z2)
* (
Im1 z1)))
+ ((
Im1 z2)
* (
Im3 z1)))
/ ((
|.z2.|
*
|.z1.|)
^2 ))
*
<j> )))
+ ((
- ((((((
Rea z2)
* (
Im3 z1))
+ ((
Im3 z2)
* (
Rea z1)))
- ((
Im1 z2)
* (
Im2 z1)))
+ ((
Im2 z2)
* (
Im1 z1)))
/ ((
|.z2.|
*
|.z1.|)
^2 )))
*
<k> )) by
QUATERN2: 9
.= (((((((((
Rea z2)
* (
Rea z1))
- ((
Im1 z2)
* (
Im1 z1)))
- ((
Im2 z2)
* (
Im2 z1)))
- ((
Im3 z2)
* (
Im3 z1)))
/ ((
|.z2.|
*
|.z1.|)
^2 ))
- (((((((
Rea z2)
* (
Im1 z1))
+ ((
Im1 z2)
* (
Rea z1)))
- ((
Im2 z2)
* (
Im3 z1)))
+ ((
Im3 z2)
* (
Im2 z1)))
/ ((
|.z2.|
*
|.z1.|)
^2 ))
*
<i> ))
- (((((((
Rea z2)
* (
Im2 z1))
+ ((
Im2 z2)
* (
Rea z1)))
- ((
Im3 z2)
* (
Im1 z1)))
+ ((
Im1 z2)
* (
Im3 z1)))
/ ((
|.z2.|
*
|.z1.|)
^2 ))
*
<j> ))
- (((((((
Rea z2)
* (
Im3 z1))
+ ((
Im3 z2)
* (
Rea z1)))
- ((
Im1 z2)
* (
Im2 z1)))
+ ((
Im2 z2)
* (
Im1 z1)))
/ ((
|.z2.|
*
|.z1.|)
^2 ))
*
<k> )) by
QUATERN2: 9;
(z3
" )
= (((((
Rea z3)
/ (
|.z3.|
^2 ))
- (((
Im1 z3)
/ (
|.z3.|
^2 ))
*
<i> ))
- (((
Im2 z3)
/ (
|.z3.|
^2 ))
*
<j> ))
- (((
Im3 z3)
/ (
|.z3.|
^2 ))
*
<k> )) by
QUATERN2: 28
.= (((((
Rea z3)
/ ((
|.z1.|
*
|.z2.|)
^2 ))
- (((
Im1 z3)
/ (
|.z3.|
^2 ))
*
<i> ))
- (((
Im2 z3)
/ (
|.z3.|
^2 ))
*
<j> ))
- (((
Im3 z3)
/ (
|.z3.|
^2 ))
*
<k> )) by
QUATERNI: 87
.= (((((
Rea z3)
/ ((
|.z1.|
*
|.z2.|)
^2 ))
- (((
Im1 z3)
/ ((
|.z1.|
*
|.z2.|)
^2 ))
*
<i> ))
- (((
Im2 z3)
/ (
|.z3.|
^2 ))
*
<j> ))
- (((
Im3 z3)
/ (
|.z3.|
^2 ))
*
<k> )) by
QUATERNI: 87
.= (((((
Rea z3)
/ ((
|.z1.|
*
|.z2.|)
^2 ))
- (((
Im1 z3)
/ ((
|.z1.|
*
|.z2.|)
^2 ))
*
<i> ))
- (((
Im2 z3)
/ ((
|.z1.|
*
|.z2.|)
^2 ))
*
<j> ))
- (((
Im3 z3)
/ (
|.z3.|
^2 ))
*
<k> )) by
QUATERNI: 87
.= (((((
Rea z3)
/ ((
|.z1.|
*
|.z2.|)
^2 ))
- (((
Im1 z3)
/ ((
|.z1.|
*
|.z2.|)
^2 ))
*
<i> ))
- (((
Im2 z3)
/ ((
|.z1.|
*
|.z2.|)
^2 ))
*
<j> ))
- (((
Im3 z3)
/ ((
|.z1.|
*
|.z2.|)
^2 ))
*
<k> )) by
QUATERNI: 87
.= (((((((((
Rea z1)
* (
Rea z2))
- ((
Im1 z1)
* (
Im1 z2)))
- ((
Im2 z1)
* (
Im2 z2)))
- ((
Im3 z1)
* (
Im3 z2)))
/ ((
|.z1.|
*
|.z2.|)
^2 ))
- (((
Im1 (z1
* z2))
/ ((
|.z1.|
*
|.z2.|)
^2 ))
*
<i> ))
- (((
Im2 (z1
* z2))
/ ((
|.z1.|
*
|.z2.|)
^2 ))
*
<j> ))
- (((
Im3 (z1
* z2))
/ ((
|.z1.|
*
|.z2.|)
^2 ))
*
<k> )) by
QUATERNI: 97
.= (((((((((
Rea z1)
* (
Rea z2))
- ((
Im1 z1)
* (
Im1 z2)))
- ((
Im2 z1)
* (
Im2 z2)))
- ((
Im3 z1)
* (
Im3 z2)))
/ ((
|.z1.|
*
|.z2.|)
^2 ))
- (((((((
Rea z1)
* (
Im1 z2))
+ ((
Im1 z1)
* (
Rea z2)))
+ ((
Im2 z1)
* (
Im3 z2)))
- ((
Im3 z1)
* (
Im2 z2)))
/ ((
|.z1.|
*
|.z2.|)
^2 ))
*
<i> ))
- (((
Im2 (z1
* z2))
/ ((
|.z1.|
*
|.z2.|)
^2 ))
*
<j> ))
- (((
Im3 (z1
* z2))
/ ((
|.z1.|
*
|.z2.|)
^2 ))
*
<k> )) by
QUATERNI: 97
.= (((((((((
Rea z1)
* (
Rea z2))
- ((
Im1 z1)
* (
Im1 z2)))
- ((
Im2 z1)
* (
Im2 z2)))
- ((
Im3 z1)
* (
Im3 z2)))
/ ((
|.z1.|
*
|.z2.|)
^2 ))
- (((((((
Rea z1)
* (
Im1 z2))
+ ((
Im1 z1)
* (
Rea z2)))
+ ((
Im2 z1)
* (
Im3 z2)))
- ((
Im3 z1)
* (
Im2 z2)))
/ ((
|.z1.|
*
|.z2.|)
^2 ))
*
<i> ))
- (((((((
Rea z1)
* (
Im2 z2))
+ ((
Im2 z1)
* (
Rea z2)))
+ ((
Im3 z1)
* (
Im1 z2)))
- ((
Im1 z1)
* (
Im3 z2)))
/ ((
|.z1.|
*
|.z2.|)
^2 ))
*
<j> ))
- (((
Im3 (z1
* z2))
/ ((
|.z1.|
*
|.z2.|)
^2 ))
*
<k> )) by
QUATERNI: 97
.= (((((((((
Rea z1)
* (
Rea z2))
- ((
Im1 z1)
* (
Im1 z2)))
- ((
Im2 z1)
* (
Im2 z2)))
- ((
Im3 z1)
* (
Im3 z2)))
/ ((
|.z1.|
*
|.z2.|)
^2 ))
- (((((((
Rea z1)
* (
Im1 z2))
+ ((
Im1 z1)
* (
Rea z2)))
+ ((
Im2 z1)
* (
Im3 z2)))
- ((
Im3 z1)
* (
Im2 z2)))
/ ((
|.z1.|
*
|.z2.|)
^2 ))
*
<i> ))
- (((((((
Rea z1)
* (
Im2 z2))
+ ((
Im2 z1)
* (
Rea z2)))
+ ((
Im3 z1)
* (
Im1 z2)))
- ((
Im1 z1)
* (
Im3 z2)))
/ ((
|.z1.|
*
|.z2.|)
^2 ))
*
<j> ))
- (((((((
Rea z1)
* (
Im3 z2))
+ ((
Im3 z1)
* (
Rea z2)))
+ ((
Im1 z1)
* (
Im2 z2)))
- ((
Im2 z1)
* (
Im1 z2)))
/ ((
|.z1.|
*
|.z2.|)
^2 ))
*
<k> )) by
QUATERNI: 97;
hence thesis by
A4;
end;
theorem ::
QUATERN3:47
((z
*' )
" )
= ((z
" )
*' )
proof
(
Im1 ((z
*' )
" ))
= (
- ((
Im1 (z
*' ))
/ (
|.(z
*' ).|
^2 ))) by
QUATERN2: 29;
then
A1: (
Im1 ((z
*' )
" ))
= (
- ((
- (
Im1 z))
/ (
|.(z
*' ).|
^2 ))) by
QUATERNI: 44;
(
Im2 ((z
*' )
" ))
= (
- ((
Im2 (z
*' ))
/ (
|.(z
*' ).|
^2 ))) by
QUATERN2: 29;
then
A2: (
Im2 ((z
*' )
" ))
= (
- ((
- (
Im2 z))
/ (
|.(z
*' ).|
^2 ))) by
QUATERNI: 44;
(
Im2 ((z
" )
*' ))
= (
- (
Im2 (z
" ))) by
QUATERNI: 44;
then (
Im2 ((z
" )
*' ))
= (
- (
- ((
Im2 z)
/ (
|.z.|
^2 )))) by
QUATERN2: 29;
then
A3: (
Im2 ((z
" )
*' ))
= (
- (
- ((
Im2 z)
/ (
|.(z
*' ).|
^2 )))) by
QUATERNI: 73;
(
Im1 ((z
" )
*' ))
= (
- (
Im1 (z
" ))) by
QUATERNI: 44;
then (
Im1 ((z
" )
*' ))
= (
- (
- ((
Im1 z)
/ (
|.z.|
^2 )))) by
QUATERN2: 29;
then
A4: (
Im1 ((z
" )
*' ))
= (
- (
- ((
Im1 z)
/ (
|.(z
*' ).|
^2 )))) by
QUATERNI: 73;
(
Im3 ((z
" )
*' ))
= (
- (
Im3 (z
" ))) by
QUATERNI: 44;
then (
Im3 ((z
" )
*' ))
= (
- (
- ((
Im3 z)
/ (
|.z.|
^2 )))) by
QUATERN2: 29;
then
A5: (
Im3 ((z
" )
*' ))
= (
- (
- ((
Im3 z)
/ (
|.(z
*' ).|
^2 )))) by
QUATERNI: 73;
(
Rea ((z
" )
*' ))
= (
Rea (z
" )) by
QUATERNI: 44;
then (
Rea ((z
" )
*' ))
= ((
Rea z)
/ (
|.z.|
^2 )) by
QUATERN2: 29;
then
A6: (
Rea ((z
" )
*' ))
= ((
Rea z)
/ (
|.(z
*' ).|
^2 )) by
QUATERNI: 73;
(
Im3 ((z
*' )
" ))
= (
- ((
Im3 (z
*' ))
/ (
|.(z
*' ).|
^2 ))) by
QUATERN2: 29;
then
A7: (
Im3 ((z
*' )
" ))
= (
- ((
- (
Im3 z))
/ (
|.(z
*' ).|
^2 ))) by
QUATERNI: 44;
(
Rea ((z
*' )
" ))
= ((
Rea (z
*' ))
/ (
|.(z
*' ).|
^2 )) by
QUATERN2: 29;
then (
Rea ((z
*' )
" ))
= ((
Rea z)
/ (
|.(z
*' ).|
^2 )) by
QUATERNI: 44;
hence thesis by
A1,
A2,
A7,
A6,
A4,
A3,
A5,
QUATERNI: 25;
end;
theorem ::
QUATERN3:48
(
1q
" )
=
1q
proof
A1: (
Im3 (
1q
" ))
= (
- ((
Im3
1q )
/ (
|.
1q .|
^2 ))) by
QUATERN2: 29
.=
0 by
QUATERNI: 29;
A2: (
Im2 (
1q
" ))
= (
- ((
Im2
1q )
/ (
|.
1q .|
^2 ))) by
QUATERN2: 29
.=
0 by
QUATERNI: 29;
A3: (
Im1 (
1q
" ))
= (
- ((
Im1
1q )
/ (
|.
1q .|
^2 ))) by
QUATERN2: 29
.=
0 by
QUATERNI: 29;
(
Rea (
1q
" ))
= ((
Rea
1q )
/ (
|.
1q .|
^2 )) by
QUATERN2: 29
.= 1 by
QUATERNI: 29,
QUATERNI: 68;
then (
1q
" )
=
[*1,
0 ,
0 ,
0 *] by
A3,
A2,
A1,
QUATERNI: 24;
hence thesis by
QUATERNI: 24,
QUATERNI: 29;
end;
theorem ::
QUATERN3:49
|.z1.|
=
|.z2.| &
|.z1.|
<>
0 & (z1
" )
= (z2
" ) implies z1
= z2
proof
assume that
A1:
|.z1.|
=
|.z2.| and
A2:
|.z1.|
<>
0 and
A3: (z1
" )
= (z2
" );
A4: (
|.z1.|
^2 )
<>
0 by
A2,
XCMPLX_1: 6;
(
Im3 (z1
" ))
= (
- ((
Im3 z1)
/ (
|.z1.|
^2 ))) by
QUATERN2: 29;
then (
- ((
Im3 z1)
/ (
|.z1.|
^2 )))
= (
- ((
Im3 z2)
/ (
|.z2.|
^2 ))) by
A3,
QUATERN2: 29;
then
A5: (
Im3 z1)
= (
Im3 z2) by
A1,
A4,
XCMPLX_1: 53;
(
Im2 (z1
" ))
= (
- ((
Im2 z1)
/ (
|.z1.|
^2 ))) by
QUATERN2: 29;
then (
- ((
Im2 z1)
/ (
|.z1.|
^2 )))
= (
- ((
Im2 z2)
/ (
|.z2.|
^2 ))) by
A3,
QUATERN2: 29;
then
A6: (
Im2 z1)
= (
Im2 z2) by
A1,
A4,
XCMPLX_1: 53;
(
Im1 (z1
" ))
= (
- ((
Im1 z1)
/ (
|.z1.|
^2 ))) by
QUATERN2: 29;
then (
- ((
Im1 z1)
/ (
|.z1.|
^2 )))
= (
- ((
Im1 z2)
/ (
|.z2.|
^2 ))) by
A3,
QUATERN2: 29;
then
A7: (
Im1 z1)
= (
Im1 z2) by
A1,
A4,
XCMPLX_1: 53;
(
Rea (z1
" ))
= ((
Rea z1)
/ (
|.z1.|
^2 )) by
QUATERN2: 29;
then ((
Rea z1)
/ (
|.z1.|
^2 ))
= ((
Rea z2)
/ (
|.z2.|
^2 )) by
A3,
QUATERN2: 29;
then (
Rea z1)
= (
Rea z2) by
A1,
A4,
XCMPLX_1: 53;
hence thesis by
A7,
A6,
A5,
QUATERNI: 25;
end;
theorem ::
QUATERN3:50
((z1
- z2)
* (z3
+ z4))
= ((((z1
* z3)
- (z2
* z3))
+ (z1
* z4))
- (z2
* z4))
proof
((z1
- z2)
* (z3
+ z4))
= (((z1
- z2)
* z3)
+ ((z1
- z2)
* z4)) by
QUATERN2: 17
.= (((z1
* z3)
- (z2
* z3))
+ ((z1
- z2)
* z4)) by
QUATERN2: 23
.= (((z1
* z3)
- (z2
* z3))
+ ((z1
* z4)
- (z2
* z4))) by
QUATERN2: 23
.= ((((z1
* z3)
- (z2
* z3))
+ (z1
* z4))
- (z2
* z4)) by
QUATERN2: 2;
hence thesis;
end;
theorem ::
QUATERN3:51
((z1
+ z2)
* (z3
+ z4))
= ((((z1
* z3)
+ (z2
* z3))
+ (z1
* z4))
+ (z2
* z4))
proof
((z1
+ z2)
* (z3
+ z4))
= (((z1
+ z2)
* z3)
+ ((z1
+ z2)
* z4)) by
QUATERN2: 17
.= (((z1
* z3)
+ (z2
* z3))
+ ((z1
+ z2)
* z4)) by
QUATERN2: 18
.= (((z1
* z3)
+ (z2
* z3))
+ ((z1
* z4)
+ (z2
* z4))) by
QUATERN2: 18
.= ((((z1
* z3)
+ (z2
* z3))
+ (z1
* z4))
+ (z2
* z4)) by
QUATERN2: 2;
hence thesis;
end;
theorem ::
QUATERN3:52
Th52: (
- (z1
+ z2))
= ((
- z1)
- z2)
proof
A1: ((
- z1)
- z2)
= (((
-
1q )
* z1)
- z2) by
QUATERN2: 19
.= (((
-
1q )
* z1)
+ ((
-
1q )
* z2)) by
QUATERN2: 19;
(
- (z1
+ z2))
= ((
-
1q )
* (z1
+ z2)) by
QUATERN2: 19
.= (((
-
1q )
* z1)
+ ((
-
1q )
* z2)) by
QUATERN2: 17;
hence thesis by
A1;
end;
theorem ::
QUATERN3:53
Th53: (
- (z1
- z2))
= ((
- z1)
+ z2)
proof
(
- (z1
- z2))
= ((
-
1q )
* (z1
- z2)) by
QUATERN2: 19
.= (((
-
1q )
* z1)
- ((
-
1q )
* z2)) by
QUATERN2: 24
.= (((
-
1q )
* z1)
- (
- z2)) by
QUATERN2: 19;
hence thesis by
QUATERN2: 19;
end;
theorem ::
QUATERN3:54
Th54: (z
- (z1
+ z2))
= ((z
- z1)
- z2)
proof
A1: ((z
- z1)
- z2)
= ((z
+ ((
-
1q )
* z1))
+ (
- z2)) by
QUATERN2: 19
.= ((z
+ ((
-
1q )
* z1))
+ ((
-
1q )
* z2)) by
QUATERN2: 19;
(
- (z1
+ z2))
= ((
-
1q )
* (z1
+ z2)) by
QUATERN2: 19
.= (((
-
1q )
* z1)
+ ((
-
1q )
* z2)) by
QUATERN2: 17;
hence thesis by
A1,
QUATERN2: 2;
end;
theorem ::
QUATERN3:55
Th55: (z
- (z1
- z2))
= ((z
- z1)
+ z2)
proof
(
- (z1
- z2))
= ((
-
1q )
* (z1
- z2)) by
QUATERN2: 19
.= (((
-
1q )
* z1)
- ((
-
1q )
* z2)) by
QUATERN2: 24;
then (z
- (z1
- z2))
= (z
+ (((
-
1q )
* z1)
- (
- z2))) by
QUATERN2: 19
.= ((z
+ ((
-
1q )
* z1))
+ z2) by
QUATERN2: 2;
hence thesis by
QUATERN2: 19;
end;
theorem ::
QUATERN3:56
((z1
+ z2)
* (z3
- z4))
= ((((z1
* z3)
+ (z2
* z3))
- (z1
* z4))
- (z2
* z4))
proof
((z1
+ z2)
* (z3
- z4))
= (((z1
+ z2)
* z3)
- ((z1
+ z2)
* z4)) by
QUATERN2: 24
.= (((z1
* z3)
+ (z2
* z3))
- ((z1
+ z2)
* z4)) by
QUATERN2: 18
.= (((z1
* z3)
+ (z2
* z3))
- ((z1
* z4)
+ (z2
* z4))) by
QUATERN2: 18
.= ((((z1
* z3)
+ (z2
* z3))
- (z1
* z4))
- (z2
* z4)) by
Th54;
hence thesis;
end;
theorem ::
QUATERN3:57
Th57: ((z1
- z2)
* (z3
- z4))
= ((((z1
* z3)
- (z2
* z3))
- (z1
* z4))
+ (z2
* z4))
proof
((z1
- z2)
* (z3
- z4))
= (((z1
- z2)
* z3)
- ((z1
- z2)
* z4)) by
QUATERN2: 24
.= (((z1
* z3)
- (z2
* z3))
- ((z1
- z2)
* z4)) by
QUATERN2: 23
.= (((z1
* z3)
- (z2
* z3))
- ((z1
* z4)
- (z2
* z4))) by
QUATERN2: 23
.= ((((z1
* z3)
- (z2
* z3))
- (z1
* z4))
+ (z2
* z4)) by
Th55;
hence thesis;
end;
theorem ::
QUATERN3:58
(
- ((z1
+ z2)
+ z3))
= (((
- z1)
- z2)
- z3)
proof
(
- ((z1
+ z2)
+ z3))
= (
- (z1
+ (z2
+ z3))) by
QUATERN2: 2
.= ((
- z1)
- (z2
+ z3)) by
Th52
.= (((
- z1)
- z2)
- z3) by
Th54;
hence thesis;
end;
theorem ::
QUATERN3:59
(
- ((z1
- z2)
- z3))
= (((
- z1)
+ z2)
+ z3)
proof
(
- ((z1
- z2)
- z3))
= ((
- (z1
- z2))
+ z3) by
Th53
.= (((
- z1)
+ z2)
+ z3) by
Th53;
hence thesis;
end;
theorem ::
QUATERN3:60
(
- ((z1
- z2)
+ z3))
= (((
- z1)
+ z2)
- z3)
proof
(
- ((z1
- z2)
+ z3))
= ((
- (z1
- z2))
- z3) by
Th52
.= (((
- z1)
+ z2)
- z3) by
Th53;
hence thesis;
end;
theorem ::
QUATERN3:61
(
- ((z1
+ z2)
- z3))
= (((
- z1)
- z2)
+ z3)
proof
(
- ((z1
+ z2)
- z3))
= ((
- (z1
+ z2))
+ z3) by
Th53
.= (((
- z1)
- z2)
+ z3) by
Th52;
hence thesis;
end;
theorem ::
QUATERN3:62
(z1
+ z)
= (z2
+ z) implies z1
= z2
proof
A1: (
Rea (z1
+ z))
= ((
Rea z1)
+ (
Rea z)) & (
Im1 (z1
+ z))
= ((
Im1 z1)
+ (
Im1 z)) by
QUATERNI: 36;
A2: (
Im2 (z1
+ z))
= ((
Im2 z1)
+ (
Im2 z)) & (
Im3 (z1
+ z))
= ((
Im3 z1)
+ (
Im3 z)) by
QUATERNI: 36;
A3: (
Im2 (z2
+ z))
= ((
Im2 z2)
+ (
Im2 z)) & (
Im3 (z2
+ z))
= ((
Im3 z2)
+ (
Im3 z)) by
QUATERNI: 36;
A4: (
Rea (z2
+ z))
= ((
Rea z2)
+ (
Rea z)) & (
Im1 (z2
+ z))
= ((
Im1 z2)
+ (
Im1 z)) by
QUATERNI: 36;
assume (z1
+ z)
= (z2
+ z);
hence thesis by
A1,
A2,
A4,
A3,
QUATERNI: 25;
end;
theorem ::
QUATERN3:63
(z1
- z)
= (z2
- z) implies z1
= z2
proof
A1: (
Rea (z1
- z))
= ((
Rea z1)
- (
Rea z)) & (
Im1 (z1
- z))
= ((
Im1 z1)
- (
Im1 z)) by
QUATERNI: 42;
A2: (
Im2 (z1
- z))
= ((
Im2 z1)
- (
Im2 z)) & (
Im3 (z1
- z))
= ((
Im3 z1)
- (
Im3 z)) by
QUATERNI: 42;
A3: (
Im2 (z2
- z))
= ((
Im2 z2)
- (
Im2 z)) & (
Im3 (z2
- z))
= ((
Im3 z2)
- (
Im3 z)) by
QUATERNI: 42;
A4: (
Rea (z2
- z))
= ((
Rea z2)
- (
Rea z)) & (
Im1 (z2
- z))
= ((
Im1 z2)
- (
Im1 z)) by
QUATERNI: 42;
assume (z1
- z)
= (z2
- z);
hence thesis by
A1,
A2,
A4,
A3,
QUATERNI: 25;
end;
theorem ::
QUATERN3:64
(((z1
+ z2)
- z3)
* z4)
= (((z1
* z4)
+ (z2
* z4))
- (z3
* z4))
proof
(((z1
+ z2)
- z3)
* z4)
= (((z1
+ z2)
* z4)
- (z3
* z4)) by
QUATERN2: 23
.= (((z1
* z4)
+ (z2
* z4))
- (z3
* z4)) by
QUATERN2: 18;
hence thesis;
end;
theorem ::
QUATERN3:65
(((z1
- z2)
+ z3)
* z4)
= (((z1
* z4)
- (z2
* z4))
+ (z3
* z4))
proof
(((z1
- z2)
+ z3)
* z4)
= (((z1
- z2)
* z4)
+ (z3
* z4)) by
QUATERN2: 18
.= (((z1
* z4)
- (z2
* z4))
+ (z3
* z4)) by
QUATERN2: 23;
hence thesis;
end;
theorem ::
QUATERN3:66
(((z1
- z2)
- z3)
* z4)
= (((z1
* z4)
- (z2
* z4))
- (z3
* z4))
proof
(((z1
- z2)
- z3)
* z4)
= (((z1
- z2)
* z4)
- (z3
* z4)) by
QUATERN2: 23
.= (((z1
* z4)
- (z2
* z4))
- (z3
* z4)) by
QUATERN2: 23;
hence thesis;
end;
theorem ::
QUATERN3:67
(((z1
+ z2)
+ z3)
* z4)
= (((z1
* z4)
+ (z2
* z4))
+ (z3
* z4))
proof
(((z1
+ z2)
+ z3)
* z4)
= (((z1
+ z2)
* z4)
+ (z3
* z4)) by
QUATERN2: 18
.= (((z1
* z4)
+ (z2
* z4))
+ (z3
* z4)) by
QUATERN2: 18;
hence thesis;
end;
theorem ::
QUATERN3:68
((z1
- z2)
* z3)
= ((z2
- z1)
* (
- z3))
proof
((z2
- z1)
* (
- z3))
= ((z2
* (
- z3))
- (z1
* (
- z3))) by
QUATERN2: 23
.= ((
- (z2
* z3))
- (z1
* (
- z3))) by
QUATERN2: 21
.= ((
- (z2
* z3))
- (
- (z1
* z3))) by
QUATERN2: 21
.= ((z1
* z3)
- (z2
* z3));
hence thesis by
QUATERN2: 23;
end;
theorem ::
QUATERN3:69
(z3
* (z1
- z2))
= ((
- z3)
* (z2
- z1))
proof
((
- z3)
* (z2
- z1))
= (((
- z3)
* z2)
- ((
- z3)
* z1)) by
QUATERN2: 24
.= ((
- (z3
* z2))
- ((
- z3)
* z1)) by
QUATERN2: 20
.= ((
- (z3
* z2))
- (
- (z3
* z1))) by
QUATERN2: 20
.= ((z3
* z1)
- (z3
* z2));
hence thesis by
QUATERN2: 24;
end;
theorem ::
QUATERN3:70
Th70: (((z1
- z2)
- z3)
+ z4)
= (((z4
- z3)
- z2)
+ z1)
proof
(
Im1 (((z1
- z2)
- z3)
+ z4))
= ((
Im1 ((z1
- z2)
- z3))
+ (
Im1 z4)) by
QUATERNI: 36;
then (
Im1 (((z1
- z2)
- z3)
+ z4))
= (((
Im1 (z1
- z2))
- (
Im1 z3))
+ (
Im1 z4)) by
QUATERNI: 42;
then
A1: (
Im1 (((z1
- z2)
- z3)
+ z4))
= ((((
Im1 z1)
- (
Im1 z2))
- (
Im1 z3))
+ (
Im1 z4)) by
QUATERNI: 42;
(
Im2 (((z1
- z2)
- z3)
+ z4))
= ((
Im2 ((z1
- z2)
- z3))
+ (
Im2 z4)) by
QUATERNI: 36;
then (
Im2 (((z1
- z2)
- z3)
+ z4))
= (((
Im2 (z1
- z2))
- (
Im2 z3))
+ (
Im2 z4)) by
QUATERNI: 42;
then
A2: (
Im2 (((z1
- z2)
- z3)
+ z4))
= ((((
Im2 z1)
- (
Im2 z2))
- (
Im2 z3))
+ (
Im2 z4)) by
QUATERNI: 42;
(
Im2 (((z4
- z3)
- z2)
+ z1))
= ((
Im2 ((z4
- z3)
- z2))
+ (
Im2 z1)) by
QUATERNI: 36;
then (
Im2 (((z4
- z3)
- z2)
+ z1))
= (((
Im2 (z4
- z3))
- (
Im2 z2))
+ (
Im2 z1)) by
QUATERNI: 42;
then
A3: (
Im2 (((z4
- z3)
- z2)
+ z1))
= ((((
Im2 z4)
- (
Im2 z3))
- (
Im2 z2))
+ (
Im2 z1)) by
QUATERNI: 42;
(
Im1 (((z4
- z3)
- z2)
+ z1))
= ((
Im1 ((z4
- z3)
- z2))
+ (
Im1 z1)) by
QUATERNI: 36;
then (
Im1 (((z4
- z3)
- z2)
+ z1))
= (((
Im1 (z4
- z3))
- (
Im1 z2))
+ (
Im1 z1)) by
QUATERNI: 42;
then
A4: (
Im1 (((z4
- z3)
- z2)
+ z1))
= ((((
Im1 z4)
- (
Im1 z3))
- (
Im1 z2))
+ (
Im1 z1)) by
QUATERNI: 42;
(
Im3 (((z4
- z3)
- z2)
+ z1))
= ((
Im3 ((z4
- z3)
- z2))
+ (
Im3 z1)) by
QUATERNI: 36;
then (
Im3 (((z4
- z3)
- z2)
+ z1))
= (((
Im3 (z4
- z3))
- (
Im3 z2))
+ (
Im3 z1)) by
QUATERNI: 42;
then
A5: (
Im3 (((z4
- z3)
- z2)
+ z1))
= ((((
Im3 z4)
- (
Im3 z3))
- (
Im3 z2))
+ (
Im3 z1)) by
QUATERNI: 42;
(
Rea (((z4
- z3)
- z2)
+ z1))
= ((
Rea ((z4
- z3)
- z2))
+ (
Rea z1)) by
QUATERNI: 36;
then (
Rea (((z4
- z3)
- z2)
+ z1))
= (((
Rea (z4
- z3))
- (
Rea z2))
+ (
Rea z1)) by
QUATERNI: 42;
then
A6: (
Rea (((z4
- z3)
- z2)
+ z1))
= ((((
Rea z4)
- (
Rea z3))
- (
Rea z2))
+ (
Rea z1)) by
QUATERNI: 42;
(
Im3 (((z1
- z2)
- z3)
+ z4))
= ((
Im3 ((z1
- z2)
- z3))
+ (
Im3 z4)) by
QUATERNI: 36;
then (
Im3 (((z1
- z2)
- z3)
+ z4))
= (((
Im3 (z1
- z2))
- (
Im3 z3))
+ (
Im3 z4)) by
QUATERNI: 42;
then
A7: (
Im3 (((z1
- z2)
- z3)
+ z4))
= ((((
Im3 z1)
- (
Im3 z2))
- (
Im3 z3))
+ (
Im3 z4)) by
QUATERNI: 42;
(
Rea (((z1
- z2)
- z3)
+ z4))
= ((
Rea ((z1
- z2)
- z3))
+ (
Rea z4)) by
QUATERNI: 36;
then (
Rea (((z1
- z2)
- z3)
+ z4))
= (((
Rea (z1
- z2))
- (
Rea z3))
+ (
Rea z4)) by
QUATERNI: 42;
then (
Rea (((z1
- z2)
- z3)
+ z4))
= ((((
Rea z1)
- (
Rea z2))
- (
Rea z3))
+ (
Rea z4)) by
QUATERNI: 42;
hence thesis by
A1,
A2,
A7,
A6,
A4,
A3,
A5,
QUATERNI: 25;
end;
theorem ::
QUATERN3:71
((z1
- z2)
* (z3
- z4))
= ((z2
- z1)
* (z4
- z3))
proof
((z2
- z1)
* (z4
- z3))
= (((z2
- z1)
* z4)
- ((z2
- z1)
* z3)) by
QUATERN2: 24
.= (((z2
* z4)
- (z1
* z4))
- ((z2
- z1)
* z3)) by
QUATERN2: 23
.= (((z2
* z4)
- (z1
* z4))
- ((z2
* z3)
- (z1
* z3))) by
QUATERN2: 23
.= ((((z2
* z4)
- (z1
* z4))
- (z2
* z3))
+ (z1
* z3)) by
Th55
.= ((((z1
* z3)
- (z2
* z3))
- (z1
* z4))
+ (z2
* z4)) by
Th70;
hence thesis by
Th57;
end;
theorem ::
QUATERN3:72
((z
- z1)
- z2)
= ((z
- z2)
- z1)
proof
(
Im1 ((z
- z1)
- z2))
= ((
Im1 (z
- z1))
- (
Im1 z2)) by
QUATERNI: 42;
then
A1: (
Im1 ((z
- z1)
- z2))
= (((
Im1 z)
- (
Im1 z1))
- (
Im1 z2)) by
QUATERNI: 42;
(
Im2 ((z
- z1)
- z2))
= ((
Im2 (z
- z1))
- (
Im2 z2)) by
QUATERNI: 42;
then
A2: (
Im2 ((z
- z1)
- z2))
= (((
Im2 z)
- (
Im2 z1))
- (
Im2 z2)) by
QUATERNI: 42;
(
Im2 ((z
- z2)
- z1))
= ((
Im2 (z
- z2))
- (
Im2 z1)) by
QUATERNI: 42;
then
A3: (
Im2 ((z
- z2)
- z1))
= (((
Im2 z)
- (
Im2 z2))
- (
Im2 z1)) by
QUATERNI: 42;
(
Im1 ((z
- z2)
- z1))
= ((
Im1 (z
- z2))
- (
Im1 z1)) by
QUATERNI: 42;
then
A4: (
Im1 ((z
- z2)
- z1))
= (((
Im1 z)
- (
Im1 z2))
- (
Im1 z1)) by
QUATERNI: 42;
(
Im3 ((z
- z2)
- z1))
= ((
Im3 (z
- z2))
- (
Im3 z1)) by
QUATERNI: 42;
then
A5: (
Im3 ((z
- z2)
- z1))
= (((
Im3 z)
- (
Im3 z2))
- (
Im3 z1)) by
QUATERNI: 42;
(
Rea ((z
- z2)
- z1))
= ((
Rea (z
- z2))
- (
Rea z1)) by
QUATERNI: 42;
then
A6: (
Rea ((z
- z2)
- z1))
= (((
Rea z)
- (
Rea z2))
- (
Rea z1)) by
QUATERNI: 42;
(
Im3 ((z
- z1)
- z2))
= ((
Im3 (z
- z1))
- (
Im3 z2)) by
QUATERNI: 42;
then
A7: (
Im3 ((z
- z1)
- z2))
= (((
Im3 z)
- (
Im3 z1))
- (
Im3 z2)) by
QUATERNI: 42;
(
Rea ((z
- z1)
- z2))
= ((
Rea (z
- z1))
- (
Rea z2)) by
QUATERNI: 42;
then (
Rea ((z
- z1)
- z2))
= (((
Rea z)
- (
Rea z1))
- (
Rea z2)) by
QUATERNI: 42;
hence thesis by
A1,
A2,
A7,
A6,
A4,
A3,
A5,
QUATERNI: 25;
end;
theorem ::
QUATERN3:73
(z
" )
=
[*((
Rea z)
/ (
|.z.|
^2 )), (
- ((
Im1 z)
/ (
|.z.|
^2 ))), (
- ((
Im2 z)
/ (
|.z.|
^2 ))), (
- ((
Im3 z)
/ (
|.z.|
^2 )))*]
proof
(z
" )
=
[*(
Rea (z
" )), (
Im1 (z
" )), (
Im2 (z
" )), (
Im3 (z
" ))*] by
QUATERNI: 24
.=
[*((
Rea z)
/ (
|.z.|
^2 )), (
Im1 (z
" )), (
Im2 (z
" )), (
Im3 (z
" ))*] by
QUATERN2: 29
.=
[*((
Rea z)
/ (
|.z.|
^2 )), (
- ((
Im1 z)
/ (
|.z.|
^2 ))), (
Im2 (z
" )), (
Im3 (z
" ))*] by
QUATERN2: 29
.=
[*((
Rea z)
/ (
|.z.|
^2 )), (
- ((
Im1 z)
/ (
|.z.|
^2 ))), (
- ((
Im2 z)
/ (
|.z.|
^2 ))), (
Im3 (z
" ))*] by
QUATERN2: 29
.=
[*((
Rea z)
/ (
|.z.|
^2 )), (
- ((
Im1 z)
/ (
|.z.|
^2 ))), (
- ((
Im2 z)
/ (
|.z.|
^2 ))), (
- ((
Im3 z)
/ (
|.z.|
^2 )))*] by
QUATERN2: 29;
hence thesis;
end;
theorem ::
QUATERN3:74
(z1
/ z2)
=
[*((((((
Rea z2)
* (
Rea z1))
+ ((
Im1 z1)
* (
Im1 z2)))
+ ((
Im2 z2)
* (
Im2 z1)))
+ ((
Im3 z2)
* (
Im3 z1)))
/ (
|.z2.|
^2 )), ((((((
Rea z2)
* (
Im1 z1))
- ((
Im1 z2)
* (
Rea z1)))
- ((
Im2 z2)
* (
Im3 z1)))
+ ((
Im3 z2)
* (
Im2 z1)))
/ (
|.z2.|
^2 )), ((((((
Rea z2)
* (
Im2 z1))
+ ((
Im1 z2)
* (
Im3 z1)))
- ((
Im2 z2)
* (
Rea z1)))
- ((
Im3 z2)
* (
Im1 z1)))
/ (
|.z2.|
^2 )), ((((((
Rea z2)
* (
Im3 z1))
- ((
Im1 z2)
* (
Im2 z1)))
+ ((
Im2 z2)
* (
Im1 z1)))
- ((
Im3 z2)
* (
Rea z1)))
/ (
|.z2.|
^2 ))*]
proof
(z1
/ z2)
=
[*(
Rea (z1
/ z2)), (
Im1 (z1
/ z2)), (
Im2 (z1
/ z2)), (
Im3 (z1
/ z2))*] by
QUATERNI: 24
.=
[*((((((
Rea z2)
* (
Rea z1))
+ ((
Im1 z1)
* (
Im1 z2)))
+ ((
Im2 z2)
* (
Im2 z1)))
+ ((
Im3 z2)
* (
Im3 z1)))
/ (
|.z2.|
^2 )), (
Im1 (z1
/ z2)), (
Im2 (z1
/ z2)), (
Im3 (z1
/ z2))*] by
QUATERN2: 30
.=
[*((((((
Rea z2)
* (
Rea z1))
+ ((
Im1 z1)
* (
Im1 z2)))
+ ((
Im2 z2)
* (
Im2 z1)))
+ ((
Im3 z2)
* (
Im3 z1)))
/ (
|.z2.|
^2 )), ((((((
Rea z2)
* (
Im1 z1))
- ((
Im1 z2)
* (
Rea z1)))
- ((
Im2 z2)
* (
Im3 z1)))
+ ((
Im3 z2)
* (
Im2 z1)))
/ (
|.z2.|
^2 )), (
Im2 (z1
/ z2)), (
Im3 (z1
/ z2))*] by
QUATERN2: 30
.=
[*((((((
Rea z2)
* (
Rea z1))
+ ((
Im1 z1)
* (
Im1 z2)))
+ ((
Im2 z2)
* (
Im2 z1)))
+ ((
Im3 z2)
* (
Im3 z1)))
/ (
|.z2.|
^2 )), ((((((
Rea z2)
* (
Im1 z1))
- ((
Im1 z2)
* (
Rea z1)))
- ((
Im2 z2)
* (
Im3 z1)))
+ ((
Im3 z2)
* (
Im2 z1)))
/ (
|.z2.|
^2 )), ((((((
Rea z2)
* (
Im2 z1))
+ ((
Im1 z2)
* (
Im3 z1)))
- ((
Im2 z2)
* (
Rea z1)))
- ((
Im3 z2)
* (
Im1 z1)))
/ (
|.z2.|
^2 )), (
Im3 (z1
/ z2))*] by
QUATERN2: 30
.=
[*((((((
Rea z2)
* (
Rea z1))
+ ((
Im1 z1)
* (
Im1 z2)))
+ ((
Im2 z2)
* (
Im2 z1)))
+ ((
Im3 z2)
* (
Im3 z1)))
/ (
|.z2.|
^2 )), ((((((
Rea z2)
* (
Im1 z1))
- ((
Im1 z2)
* (
Rea z1)))
- ((
Im2 z2)
* (
Im3 z1)))
+ ((
Im3 z2)
* (
Im2 z1)))
/ (
|.z2.|
^2 )), ((((((
Rea z2)
* (
Im2 z1))
+ ((
Im1 z2)
* (
Im3 z1)))
- ((
Im2 z2)
* (
Rea z1)))
- ((
Im3 z2)
* (
Im1 z1)))
/ (
|.z2.|
^2 )), ((((((
Rea z2)
* (
Im3 z1))
- ((
Im1 z2)
* (
Im2 z1)))
+ ((
Im2 z2)
* (
Im1 z1)))
- ((
Im3 z2)
* (
Rea z1)))
/ (
|.z2.|
^2 ))*] by
QUATERN2: 30;
hence thesis;
end;
reconsider jj = 1 as
Element of
REAL by
XREAL_0:def 1;
Lm2:
<i>
=
[*(
In (
0 ,
REAL )), jj*] by
ARYTM_0:def 5;
theorem ::
QUATERN3:75
(
<i>
" )
= (
-
<i> )
proof
A1: (
Im3 (
<i>
" ))
= (
- ((
Im3
<i> )
/ (
|.
<i> .|
^2 ))) by
QUATERN2: 29
.=
0 by
QUATERNI: 30;
A2: (
Im2 (
<i>
" ))
= (
- ((
Im2
<i> )
/ (
|.
<i> .|
^2 ))) by
QUATERN2: 29
.=
0 by
QUATERNI: 30;
A3: (
Im1 (
<i>
" ))
= (
- ((
Im1
<i> )
/ (
|.
<i> .|
^2 ))) by
QUATERN2: 29
.= (
- 1) by
QUATERNI: 30,
QUATERNI: 69;
(
Rea (
<i>
" ))
= ((
Rea
<i> )
/ (
|.
<i> .|
^2 )) by
QUATERN2: 29
.=
0 by
QUATERNI: 30;
then (
<i>
" )
=
[*(
-
0 ), (
- 1), (
-
0 ), (
-
0 )*] by
A3,
A2,
A1,
QUATERNI: 24
.= (
-
[*
0 , jj,
0 ,
0 *]) by
QUATERN2: 4
.= (
-
<i> ) by
Lm2,
QUATERNI:def 6;
hence thesis;
end;
theorem ::
QUATERN3:76
(
<j>
" )
= (
-
<j> )
proof
A1: (
Im3 (
<j>
" ))
= (
- ((
Im3
<j> )
/ (
|.
<j> .|
^2 ))) by
QUATERN2: 29
.=
0 by
QUATERNI: 31;
A2: (
Im2 (
<j>
" ))
= (
- ((
Im2
<j> )
/ (
|.
<j> .|
^2 ))) by
QUATERN2: 29
.= (
- 1) by
QUATERNI: 31,
QUATERNI: 70;
A3: (
Im1 (
<j>
" ))
= (
- ((
Im1
<j> )
/ (
|.
<j> .|
^2 ))) by
QUATERN2: 29
.=
0 by
QUATERNI: 31;
(
Rea (
<j>
" ))
= ((
Rea
<j> )
/ (
|.
<j> .|
^2 )) by
QUATERN2: 29
.=
0 by
QUATERNI: 31;
then (
<j>
" )
=
[*(
-
0 ), (
-
0 ), (
- jj), (
-
0 )*] by
A3,
A2,
A1,
QUATERNI: 24
.= (
-
<j> ) by
QUATERN2: 4;
hence thesis;
end;
theorem ::
QUATERN3:77
(
<k>
" )
= (
-
<k> )
proof
A1: (
Im3 (
<k>
" ))
= (
- ((
Im3
<k> )
/ (
|.
<k> .|
^2 ))) by
QUATERN2: 29
.= (
- 1) by
QUATERNI: 31,
QUATERNI: 71;
A2: (
Im2 (
<k>
" ))
= (
- ((
Im2
<k> )
/ (
|.
<k> .|
^2 ))) by
QUATERN2: 29
.=
0 by
QUATERNI: 31;
A3: (
Im1 (
<k>
" ))
= (
- ((
Im1
<k> )
/ (
|.
<k> .|
^2 ))) by
QUATERN2: 29
.=
0 by
QUATERNI: 31;
(
Rea (
<k>
" ))
= ((
Rea
<k> )
/ (
|.
<k> .|
^2 )) by
QUATERN2: 29
.=
0 by
QUATERNI: 31;
then (
<k>
" )
=
[*(
-
0 ), (
-
0 ), (
-
0 ), (
- jj)*] by
A3,
A2,
A1,
QUATERNI: 24
.= (
-
<k> ) by
QUATERN2: 4;
hence thesis;
end;
definition
let z be
Quaternion;
::
QUATERN3:def1
func z
^2 ->
Number equals (z
* z);
correctness ;
end
registration
let z be
Quaternion;
cluster (z
^2 ) ->
quaternion;
coherence ;
end
definition
let z be
Element of
QUATERNION ;
:: original:
^2
redefine
func z
^2 ->
Element of
QUATERNION ;
correctness ;
end
theorem ::
QUATERN3:78
Th78: (z
^2 )
=
[*(((((
Rea z)
^2 )
- ((
Im1 z)
^2 ))
- ((
Im2 z)
^2 ))
- ((
Im3 z)
^2 )), (2
* ((
Rea z)
* (
Im1 z))), (2
* ((
Rea z)
* (
Im2 z))), (2
* ((
Rea z)
* (
Im3 z)))*]
proof
(z
^2 )
=
[*(
Rea (z
^2 )), (
Im1 (z
^2 )), (
Im2 (z
^2 )), (
Im3 (z
^2 ))*] by
QUATERNI: 24
.=
[*(((((
Rea z)
^2 )
- ((
Im1 z)
^2 ))
- ((
Im2 z)
^2 ))
- ((
Im3 z)
^2 )), (
Im1 (z
^2 )), (
Im2 (z
^2 )), (
Im3 (z
^2 ))*] by
QUATERNI: 40
.=
[*(((((
Rea z)
^2 )
- ((
Im1 z)
^2 ))
- ((
Im2 z)
^2 ))
- ((
Im3 z)
^2 )), (2
* ((
Rea z)
* (
Im1 z))), (
Im2 (z
^2 )), (
Im3 (z
^2 ))*] by
QUATERNI: 40
.=
[*(((((
Rea z)
^2 )
- ((
Im1 z)
^2 ))
- ((
Im2 z)
^2 ))
- ((
Im3 z)
^2 )), (2
* ((
Rea z)
* (
Im1 z))), (2
* ((
Rea z)
* (
Im2 z))), (
Im3 (z
^2 ))*] by
QUATERNI: 40
.=
[*(((((
Rea z)
^2 )
- ((
Im1 z)
^2 ))
- ((
Im2 z)
^2 ))
- ((
Im3 z)
^2 )), (2
* ((
Rea z)
* (
Im1 z))), (2
* ((
Rea z)
* (
Im2 z))), (2
* ((
Rea z)
* (
Im3 z)))*] by
QUATERNI: 40;
hence thesis;
end;
theorem ::
QUATERN3:79
(
0q
^2 )
=
0
proof
A1:
0q
=
[*(
In (
0 ,
REAL )), (
In (
0 ,
REAL ))*] by
ARYTM_0:def 5
.=
[*
0 ,
0 ,
0 ,
0 *] by
QUATERNI: 91;
then
A2: (
Rea
0q )
=
0 & (
Im1
0q )
=
0 by
QUATERNI: 23;
A3: (
Im2
0q )
=
0 & (
Im3
0q )
=
0 by
A1,
QUATERNI: 23;
(
0q
^2 )
=
[*(((((
Rea
0q )
^2 )
- ((
Im1
0q )
^2 ))
- ((
Im2
0q )
^2 ))
- ((
Im3
0q )
^2 )), (2
* ((
Rea
0q )
* (
Im1
0q ))), (2
* ((
Rea
0q )
* (
Im2
0q ))), (2
* ((
Rea
0q )
* (
Im3
0q )))*] by
Th78
.=
[*(
In (
0 ,
REAL )), (
In (
0 ,
REAL ))*] by
A2,
A3,
QUATERNI: 91
.=
0 by
ARYTM_0:def 5;
hence thesis;
end;
theorem ::
QUATERN3:80
(
1q
^2 )
= 1
proof
A1:
1q
=
[*jj, (
In (
0 ,
REAL ))*] by
ARYTM_0:def 5
.=
[*jj,
0 ,
0 ,
0 *] by
QUATERNI: 91;
then
A2: (
Rea
1q )
= 1 & (
Im1
1q )
=
0 by
QUATERNI: 23;
A3: (
Im2
1q )
=
0 & (
Im3
1q )
=
0 by
A1,
QUATERNI: 23;
(
1q
^2 )
=
[*(((((
Rea
1q )
^2 )
- ((
Im1
1q )
^2 ))
- ((
Im2
1q )
^2 ))
- ((
Im3
1q )
^2 )), (2
* ((
Rea
1q )
* (
Im1
1q ))), (2
* ((
Rea
1q )
* (
Im2
1q ))), (2
* ((
Rea
1q )
* (
Im3
1q )))*] by
Th78
.=
[*jj, (
In (
0 ,
REAL ))*] by
A2,
A3,
QUATERNI: 91
.= 1 by
ARYTM_0:def 5;
hence thesis;
end;
theorem ::
QUATERN3:81
Th81: (z
^2 )
= ((
- z)
^2 )
proof
((
- z)
^2 )
=
[*(((((
Rea (
- z))
^2 )
- ((
Im1 (
- z))
^2 ))
- ((
Im2 (
- z))
^2 ))
- ((
Im3 (
- z))
^2 )), (2
* ((
Rea (
- z))
* (
Im1 (
- z)))), (2
* ((
Rea (
- z))
* (
Im2 (
- z)))), (2
* ((
Rea (
- z))
* (
Im3 (
- z))))*] by
Th78
.=
[*(((((
- (
Rea z))
^2 )
- ((
Im1 (
- z))
^2 ))
- ((
Im2 (
- z))
^2 ))
- ((
Im3 (
- z))
^2 )), (2
* ((
Rea (
- z))
* (
Im1 (
- z)))), (2
* ((
Rea (
- z))
* (
Im2 (
- z)))), (2
* ((
Rea (
- z))
* (
Im3 (
- z))))*] by
QUATERNI: 41
.=
[*(((((
- (
Rea z))
^2 )
- ((
- (
Im1 z))
^2 ))
- ((
Im2 (
- z))
^2 ))
- ((
Im3 (
- z))
^2 )), (2
* ((
Rea (
- z))
* (
Im1 (
- z)))), (2
* ((
Rea (
- z))
* (
Im2 (
- z)))), (2
* ((
Rea (
- z))
* (
Im3 (
- z))))*] by
QUATERNI: 41
.=
[*(((((
- (
Rea z))
^2 )
- ((
- (
Im1 z))
^2 ))
- ((
- (
Im2 z))
^2 ))
- ((
Im3 (
- z))
^2 )), (2
* ((
Rea (
- z))
* (
Im1 (
- z)))), (2
* ((
Rea (
- z))
* (
Im2 (
- z)))), (2
* ((
Rea (
- z))
* (
Im3 (
- z))))*] by
QUATERNI: 41
.=
[*(((((
- (
Rea z))
^2 )
- ((
- (
Im1 z))
^2 ))
- ((
- (
Im2 z))
^2 ))
- ((
- (
Im3 z))
^2 )), (2
* ((
Rea (
- z))
* (
Im1 (
- z)))), (2
* ((
Rea (
- z))
* (
Im2 (
- z)))), (2
* ((
Rea (
- z))
* (
Im3 (
- z))))*] by
QUATERNI: 41
.=
[*(((((
- (
Rea z))
^2 )
- ((
- (
Im1 z))
^2 ))
- ((
- (
Im2 z))
^2 ))
- ((
- (
Im3 z))
^2 )), (2
* ((
- (
Rea z))
* (
Im1 (
- z)))), (2
* ((
Rea (
- z))
* (
Im2 (
- z)))), (2
* ((
Rea (
- z))
* (
Im3 (
- z))))*] by
QUATERNI: 41
.=
[*(((((
- (
Rea z))
^2 )
- ((
- (
Im1 z))
^2 ))
- ((
- (
Im2 z))
^2 ))
- ((
- (
Im3 z))
^2 )), (2
* ((
- (
Rea z))
* (
- (
Im1 z)))), (2
* ((
Rea (
- z))
* (
Im2 (
- z)))), (2
* ((
Rea (
- z))
* (
Im3 (
- z))))*] by
QUATERNI: 41
.=
[*(((((
- (
Rea z))
^2 )
- ((
- (
Im1 z))
^2 ))
- ((
- (
Im2 z))
^2 ))
- ((
- (
Im3 z))
^2 )), (2
* ((
- (
Rea z))
* (
- (
Im1 z)))), (2
* ((
- (
Rea z))
* (
Im2 (
- z)))), (2
* ((
Rea (
- z))
* (
Im3 (
- z))))*] by
QUATERNI: 41
.=
[*(((((
- (
Rea z))
^2 )
- ((
- (
Im1 z))
^2 ))
- ((
- (
Im2 z))
^2 ))
- ((
- (
Im3 z))
^2 )), (2
* ((
- (
Rea z))
* (
- (
Im1 z)))), (2
* ((
- (
Rea z))
* (
- (
Im2 z)))), (2
* ((
Rea (
- z))
* (
Im3 (
- z))))*] by
QUATERNI: 41
.=
[*(((((
- (
Rea z))
^2 )
- ((
- (
Im1 z))
^2 ))
- ((
- (
Im2 z))
^2 ))
- ((
- (
Im3 z))
^2 )), (2
* ((
- (
Rea z))
* (
- (
Im1 z)))), (2
* ((
- (
Rea z))
* (
- (
Im2 z)))), (2
* ((
- (
Rea z))
* (
Im3 (
- z))))*] by
QUATERNI: 41
.=
[*(((((
- (
Rea z))
^2 )
- ((
- (
Im1 z))
^2 ))
- ((
- (
Im2 z))
^2 ))
- ((
- (
Im3 z))
^2 )), (2
* ((
- (
Rea z))
* (
- (
Im1 z)))), (2
* ((
- (
Rea z))
* (
- (
Im2 z)))), (2
* ((
- (
Rea z))
* (
- (
Im3 z))))*] by
QUATERNI: 41
.=
[*(((((
Rea z)
^2 )
- ((
Im1 z)
^2 ))
- ((
Im2 z)
^2 ))
- ((
Im3 z)
^2 )), (2
* ((
Rea z)
* (
Im1 z))), (2
* ((
Rea z)
* (
Im2 z))), (2
* ((
Rea z)
* (
Im3 z)))*];
hence thesis by
Th78;
end;
definition
let z be
Quaternion;
::
QUATERN3:def2
func z
^3 ->
Number equals ((z
* z)
* z);
coherence ;
end
registration
let z be
Quaternion;
cluster (z
^3 ) ->
quaternion;
coherence ;
end
definition
let z be
Element of
QUATERNION ;
:: original:
^3
redefine
func z
^3 ->
Element of
QUATERNION ;
correctness ;
end
theorem ::
QUATERN3:82
(
0q
^3 )
=
0
proof
A1:
0q
=
[*(
In (
0 ,
REAL )), (
In (
0 ,
REAL ))*] by
ARYTM_0:def 5
.=
[*
0 ,
0 ,
0 ,
0 *] by
QUATERNI: 91;
then
A2: (
Rea
0q )
=
0 & (
Im1
0q )
=
0 by
QUATERNI: 23;
A3: (
Im2
0q )
=
0 & (
Im3
0q )
=
0 by
A1,
QUATERNI: 23;
(
0q
^2 )
=
[*(((((
Rea
0q )
^2 )
- ((
Im1
0q )
^2 ))
- ((
Im2
0q )
^2 ))
- ((
Im3
0q )
^2 )), (2
* ((
Rea
0q )
* (
Im1
0q ))), (2
* ((
Rea
0q )
* (
Im2
0q ))), (2
* ((
Rea
0q )
* (
Im3
0q )))*] by
Th78
.=
[*(
In (
0 ,
REAL )), (
In (
0 ,
REAL ))*] by
A2,
A3,
QUATERNI: 91
.=
0 by
ARYTM_0:def 5;
hence thesis;
end;
theorem ::
QUATERN3:83
(
1q
^3 )
= 1
proof
A1:
1q
=
[*jj, (
In (
0 ,
REAL ))*] by
ARYTM_0:def 5
.=
[*jj,
0 ,
0 ,
0 *] by
QUATERNI: 91;
then
A2: (
Rea
1q )
= 1 & (
Im1
1q )
=
0 by
QUATERNI: 23;
A3: (
Im2
1q )
=
0 & (
Im3
1q )
=
0 by
A1,
QUATERNI: 23;
(
1q
^2 )
=
[*(((((
Rea
1q )
^2 )
- ((
Im1
1q )
^2 ))
- ((
Im2
1q )
^2 ))
- ((
Im3
1q )
^2 )), (2
* ((
Rea
1q )
* (
Im1
1q ))), (2
* ((
Rea
1q )
* (
Im2
1q ))), (2
* ((
Rea
1q )
* (
Im3
1q )))*] by
Th78
.=
[*jj, (
In (
0 ,
REAL ))*] by
A2,
A3,
QUATERNI: 91
.= 1 by
ARYTM_0:def 5;
hence thesis;
end;
theorem ::
QUATERN3:84
(
<i>
^3 )
= (
-
<i> )
proof
<i>
=
[*
0 , jj,
0 ,
0 *] by
Lm2,
QUATERNI:def 6;
then ((
<i>
*
<i> )
*
<i> )
= (
[*((((
0
*
0 )
- (1
* 1))
- (
0
*
0 ))
- (
0
*
0 )), ((((
0
* 1)
+ (1
*
0 ))
+ (
0
*
0 ))
- (
0
*
0 )), ((((
0
*
0 )
+ (
0
*
0 ))
+ (1
*
0 ))
- (
0
* 1)), ((((
0
*
0 )
+ (
0
*
0 ))
+ (1
*
0 ))
- (
0
* 1))*]
*
[*
0 , 1,
0 ,
0 *]) by
QUATERNI:def 10
.=
[*(((((
- 1)
*
0 )
- (
0
* 1))
- (
0
*
0 ))
- (
0
*
0 )), (((((
- 1)
* 1)
+ (
0
*
0 ))
+ (
0
*
0 ))
- (
0
*
0 )), (((((
- 1)
*
0 )
+ (
0
*
0 ))
+ (1
*
0 ))
- (
0
*
0 )), (((((
- 1)
*
0 )
+ (
0
*
0 ))
+ (
0
*
0 ))
- (
0
* jj))*] by
QUATERNI:def 10
.= (
-
[*
0 , jj,
0 ,
0 *]) by
QUATERN2: 4;
hence thesis by
Lm2,
QUATERNI:def 6;
end;
theorem ::
QUATERN3:85
(
<j>
^3 )
= (
-
<j> )
proof
((
<j>
*
<j> )
*
<j> )
= (
[*((((
0
*
0 )
- (
0
*
0 ))
- (1
* 1))
- (
0
*
0 )), ((((
0
*
0 )
+ (
0
*
0 ))
+ (
0
*
0 ))
- (
0
* 1)), ((((
0
* 1)
+ (
0
* 1))
+ (
0
*
0 ))
- (
0
*
0 )), ((((
0
*
0 )
+ (
0
*
0 ))
+ (
0
* 1))
- (1
*
0 ))*]
*
[*
0 ,
0 , jj,
0 *]) by
QUATERNI:def 10
.=
[*(((((
- 1)
*
0 )
- (
0
*
0 ))
- (
0
* 1))
- (
0
*
0 )), (((((
- 1)
*
0 )
+ (
0
*
0 ))
+ (
0
*
0 ))
- (
0
* 1)), (((((
- 1)
* 1)
+ (
0
*
0 ))
+ (
0
*
0 ))
- (
0
*
0 )), (((((
- 1)
*
0 )
+ (
0
*
0 ))
+ (
0
* 1))
- (
0
*
0 ))*] by
QUATERNI:def 10
.= (
-
[*
0 ,
0 , jj,
0 *]) by
QUATERN2: 4;
hence thesis;
end;
theorem ::
QUATERN3:86
(
<k>
^3 )
= (
-
<k> )
proof
((
<k>
*
<k> )
*
<k> )
= (
[*((((
0
*
0 )
- (
0
*
0 ))
- (
0
*
0 ))
- (1
* 1)), ((((
0
*
0 )
+ (
0
*
0 ))
+ (
0
* 1))
- (1
*
0 )), ((((
0
*
0 )
+ (
0
*
0 ))
+ (
0
* 1))
- (1
*
0 )), ((((
0
* 1)
+ (1
*
0 ))
+ (
0
*
0 ))
- (
0
*
0 ))*]
*
[*
0 ,
0 ,
0 , jj*]) by
QUATERNI:def 10
.=
[*(((((
- 1)
*
0 )
- (
0
*
0 ))
- (
0
*
0 ))
- (
0
* 1)), (((((
- 1)
*
0 )
+ (
0
*
0 ))
+ (
0
* 1))
- (
0
*
0 )), (((((
- 1)
*
0 )
+ (
0
*
0 ))
+ (
0
*
0 ))
- (1
*
0 )), (((((
- 1)
* 1)
+ (
0
*
0 ))
+ (
0
*
0 ))
- (
0
*
0 ))*] by
QUATERNI:def 10
.= (
-
[*
0 ,
0 ,
0 , jj*]) by
QUATERN2: 4;
hence thesis;
end;
theorem ::
QUATERN3:87
((
-
1q )
^2 )
= 1
proof
1q
=
[*jj, (
In (
0 ,
REAL ))*] by
ARYTM_0:def 5
.=
[*jj,
0 ,
0 ,
0 *] by
QUATERNI: 91;
then
A1: (
-
1q )
=
[*(
- jj), (
-
0 ), (
-
0 ), (
-
0 )*] by
QUATERN2: 4;
then
A2: (
Rea (
-
1q ))
= (
- 1) & (
Im1 (
-
1q ))
=
0 by
QUATERNI: 23;
A3: (
Im2 (
-
1q ))
=
0 & (
Im3 (
-
1q ))
=
0 by
A1,
QUATERNI: 23;
((
-
1q )
^2 )
=
[*(((((
Rea (
-
1q ))
^2 )
- ((
Im1 (
-
1q ))
^2 ))
- ((
Im2 (
-
1q ))
^2 ))
- ((
Im3 (
-
1q ))
^2 )), (2
* ((
Rea (
-
1q ))
* (
Im1 (
-
1q )))), (2
* ((
Rea (
-
1q ))
* (
Im2 (
-
1q )))), (2
* ((
Rea (
-
1q ))
* (
Im3 (
-
1q ))))*] by
Th78
.=
[*jj, (
In (
0 ,
REAL ))*] by
A2,
A3,
QUATERNI: 91
.= 1 by
ARYTM_0:def 5;
hence thesis;
end;
theorem ::
QUATERN3:88
((
-
1q )
^3 )
= (
- 1)
proof
A1:
1q
=
[*jj, (
In (
0 ,
REAL ))*] by
ARYTM_0:def 5
.=
[*1,
0 ,
0 ,
0 *] by
QUATERNI: 91;
then
A2: (
-
1q )
=
[*(
- jj), (
-
0 ), (
-
0 ), (
-
0 )*] by
QUATERN2: 4;
then
A3: (
Rea (
-
1q ))
= (
- 1) & (
Im1 (
-
1q ))
=
0 by
QUATERNI: 23;
A4: (
Im2 (
-
1q ))
=
0 & (
Im3 (
-
1q ))
=
0 by
A2,
QUATERNI: 23;
((
-
1q )
^2 )
=
[*(((((
Rea (
-
1q ))
^2 )
- ((
Im1 (
-
1q ))
^2 ))
- ((
Im2 (
-
1q ))
^2 ))
- ((
Im3 (
-
1q ))
^2 )), (2
* ((
Rea (
-
1q ))
* (
Im1 (
-
1q )))), (2
* ((
Rea (
-
1q ))
* (
Im2 (
-
1q )))), (2
* ((
Rea (
-
1q ))
* (
Im3 (
-
1q ))))*] by
Th78
.=
[*jj, (
In (
0 ,
REAL ))*] by
A3,
A4,
QUATERNI: 91
.= 1 by
ARYTM_0:def 5;
then ((
-
1q )
^3 )
= (
-
1q ) by
QUATERN2: 15
.=
[*(
- jj), (
-
0 ), (
-
0 ), (
-
0 )*] by
A1,
QUATERN2: 4
.=
[*(
- jj), (
- (
In (
0 ,
REAL )))*] by
QUATERNI: 91
.= (
- 1) by
ARYTM_0:def 5;
hence thesis;
end;
theorem ::
QUATERN3:89
(z
^3 )
= (
- ((
- z)
^3 ))
proof
A1: (z
^3 )
= (z
* (z
^2 )) by
QUATERN2: 16;
((
- z)
^3 )
= ((
- z)
* ((
- z)
^2 )) by
QUATERN2: 16
.= ((
- z)
* (z
^2 )) by
Th81
.= (((
-
1q )
* z)
* (z
^2 )) by
QUATERN2: 19
.= ((
-
1q )
* (z
* (z
^2 ))) by
QUATERN2: 16
.= (
- (z
^3 )) by
A1,
QUATERN2: 19;
hence thesis;
end;