rcomp_3.miz



    begin

    registration

      let X be non empty set;

      cluster ( [#] X) -> non empty;

      coherence ;

    end

    registration

      cluster -> real-membered for SubSpace of RealSpace ;

      coherence

      proof

        let T be SubSpace of RealSpace ;

        the carrier of T is Subset of RealSpace by TOPMETR:def 1;

        hence the carrier of T is real-membered;

      end;

    end

    theorem :: RCOMP_3:1

    

     Th1: for X be non empty bounded_below real-membered set, Y be closed Subset of REAL st X c= Y holds ( lower_bound X) in Y

    proof

      let X be non empty bounded_below real-membered set;

      let Y be closed Subset of REAL ;

      assume

       A1: X c= Y;

      reconsider X as non empty bounded_below Subset of REAL by MEMBERED: 3;

      

       A2: ( lower_bound X) = ( lower_bound ( Cl X)) & ( lower_bound ( Cl X)) in ( Cl X) by RCOMP_1: 13, TOPREAL6: 68;

      ( Cl X) c= Y by A1, MEASURE6: 57;

      hence thesis by A2;

    end;

    theorem :: RCOMP_3:2

    

     Th2: for X be non empty bounded_above real-membered set, Y be closed Subset of REAL st X c= Y holds ( upper_bound X) in Y

    proof

      let X be non empty bounded_above real-membered set;

      let Y be closed Subset of REAL ;

      assume

       A1: X c= Y;

      reconsider X as non empty bounded_above Subset of REAL by MEMBERED: 3;

      

       A2: ( upper_bound X) = ( upper_bound ( Cl X)) & ( upper_bound ( Cl X)) in ( Cl X) by RCOMP_1: 12, TOPREAL6: 69;

      ( Cl X) c= Y by A1, MEASURE6: 57;

      hence thesis by A2;

    end;

    theorem :: RCOMP_3:3

    

     Th3: for X,Y be Subset of REAL holds ( Cl (X \/ Y)) = (( Cl X) \/ ( Cl Y))

    proof

      let X,Y be Subset of REAL ;

      reconsider A = X, B = Y as Subset of R^1 by TOPMETR: 17;

      

      thus ( Cl (X \/ Y)) = ( Cl (A \/ B)) by JORDAN5A: 24

      .= (( Cl A) \/ ( Cl B)) by PRE_TOPC: 20

      .= (( Cl X) \/ ( Cl B)) by JORDAN5A: 24

      .= (( Cl X) \/ ( Cl Y)) by JORDAN5A: 24;

    end;

    begin

    reserve a,b,r,s for Real;

    registration

      let r be Real, s be ExtReal;

      cluster [.r, s.[ -> bounded_below;

      coherence

      proof

        take r;

        let x be ExtReal;

        thus thesis by XXREAL_1: 3;

      end;

      cluster ].s, r.] -> bounded_above;

      coherence

      proof

        take r;

        let x be ExtReal;

        thus thesis by XXREAL_1: 2;

      end;

    end

    registration

      let r, s;

      cluster [.r, s.[ -> real-bounded;

      coherence

      proof

         [.r, s.[ is bounded_above

        proof

          take s;

          let x be ExtReal;

          thus thesis by XXREAL_1: 3;

        end;

        hence thesis;

      end;

      cluster ].r, s.] -> real-bounded;

      coherence

      proof

         ].r, s.] is bounded_below

        proof

          take r;

          let x be ExtReal;

          thus thesis by XXREAL_1: 2;

        end;

        hence thesis;

      end;

      cluster ].r, s.[ -> real-bounded;

      coherence

      proof

        

         A1: ].r, s.[ is bounded_above

        proof

          take s;

          let x be ExtReal;

          thus thesis by XXREAL_1: 4;

        end;

         ].r, s.[ is bounded_below

        proof

          take r;

          let x be ExtReal;

          thus thesis by XXREAL_1: 4;

        end;

        hence thesis by A1;

      end;

    end

    registration

      cluster open real-bounded interval non empty for Subset of REAL ;

      existence

      proof

        take ]. 0 , 1.[;

        thus thesis;

      end;

    end

    theorem :: RCOMP_3:4

    

     Th4: r < s implies ( lower_bound [.r, s.[) = r

    proof

      set X = [.r, s.[;

      assume

       A1: r < s;

      

       A2: for a st a in X holds r <= a by XXREAL_1: 3;

      

       A3: ((r + s) / 2) < s by A1, XREAL_1: 226;

      

       A4: r < ((r + s) / 2) by A1, XREAL_1: 226;

      

       A5: for b st 0 < b holds ex a st a in X & a < (r + b)

      proof

        let b such that

         A6: 0 < b and

         A7: for a st a in X holds a >= (r + b);

        per cases ;

          suppose (r + b) > s;

          then

           A8: ((r + s) / 2) < (r + b) by A3, XXREAL_0: 2;

          ((r + s) / 2) in X by A4, A3, XXREAL_1: 3;

          hence thesis by A7, A8;

        end;

          suppose

           A9: (r + b) <= s;

          

           A10: r < (r + b) by A6, XREAL_1: 29;

          then ((r + (r + b)) / 2) < (r + b) by XREAL_1: 226;

          then

           A11: ((r + (r + b)) / 2) < s by A9, XXREAL_0: 2;

          r < ((r + (r + b)) / 2) by A10, XREAL_1: 226;

          then ((r + (r + b)) / 2) in X by A11, XXREAL_1: 3;

          hence thesis by A7, A10, XREAL_1: 226;

        end;

      end;

      X is non empty by A1, XXREAL_1: 3;

      hence thesis by A2, A5, SEQ_4:def 2;

    end;

    theorem :: RCOMP_3:5

    

     Th5: r < s implies ( upper_bound [.r, s.[) = s

    proof

      set X = [.r, s.[;

      assume

       A1: r < s;

      

       A2: for a st a in X holds a <= s by XXREAL_1: 3;

      

       A3: r < ((r + s) / 2) by A1, XREAL_1: 226;

      

       A4: ((r + s) / 2) < s by A1, XREAL_1: 226;

      

       A5: for b st 0 < b holds ex a st a in X & (s - b) < a

      proof

        let b such that

         A6: 0 < b and

         A7: for a st a in X holds a <= (s - b);

        per cases ;

          suppose (s - b) <= r;

          then

           A8: ((r + s) / 2) > (s - b) by A3, XXREAL_0: 2;

          ((r + s) / 2) in X by A3, A4, XXREAL_1: 3;

          hence thesis by A7, A8;

        end;

          suppose

           A9: (s - b) > r;

          

           A10: (s - b) < (s - 0 ) by A6, XREAL_1: 15;

          then (s - b) < ((s + (s - b)) / 2) by XREAL_1: 226;

          then

           A11: r < ((s + (s - b)) / 2) by A9, XXREAL_0: 2;

          ((s + (s - b)) / 2) < s by A10, XREAL_1: 226;

          then ((s + (s - b)) / 2) in X by A11, XXREAL_1: 3;

          hence thesis by A7, A10, XREAL_1: 226;

        end;

      end;

      X is non empty by A1, XXREAL_1: 3;

      hence thesis by A2, A5, SEQ_4:def 1;

    end;

    theorem :: RCOMP_3:6

    

     Th6: r < s implies ( lower_bound ].r, s.]) = r

    proof

      set X = ].r, s.];

      assume

       A1: r < s;

      

       A2: for a st a in X holds r <= a by XXREAL_1: 2;

      

       A3: ((r + s) / 2) < s by A1, XREAL_1: 226;

      

       A4: r < ((r + s) / 2) by A1, XREAL_1: 226;

      

       A5: for b st 0 < b holds ex a st a in X & a < (r + b)

      proof

        let b such that

         A6: 0 < b and

         A7: for a st a in X holds a >= (r + b);

        per cases ;

          suppose (r + b) > s;

          then

           A8: ((r + s) / 2) < (r + b) by A3, XXREAL_0: 2;

          ((r + s) / 2) in X by A4, A3, XXREAL_1: 2;

          hence thesis by A7, A8;

        end;

          suppose

           A9: (r + b) <= s;

          

           A10: r < (r + b) by A6, XREAL_1: 29;

          then ((r + (r + b)) / 2) < (r + b) by XREAL_1: 226;

          then

           A11: ((r + (r + b)) / 2) < s by A9, XXREAL_0: 2;

          r < ((r + (r + b)) / 2) by A10, XREAL_1: 226;

          then ((r + (r + b)) / 2) in X by A11, XXREAL_1: 2;

          hence thesis by A7, A10, XREAL_1: 226;

        end;

      end;

      X is non empty by A1, XXREAL_1: 2;

      hence thesis by A2, A5, SEQ_4:def 2;

    end;

    theorem :: RCOMP_3:7

    

     Th7: r < s implies ( upper_bound ].r, s.]) = s

    proof

      set X = ].r, s.];

      assume

       A1: r < s;

      

       A2: for a st a in X holds a <= s by XXREAL_1: 2;

      

       A3: r < ((r + s) / 2) by A1, XREAL_1: 226;

      

       A4: ((r + s) / 2) < s by A1, XREAL_1: 226;

      

       A5: for b st 0 < b holds ex a st a in X & (s - b) < a

      proof

        let b such that

         A6: 0 < b and

         A7: for a st a in X holds a <= (s - b);

        per cases ;

          suppose (s - b) <= r;

          then

           A8: ((r + s) / 2) > (s - b) by A3, XXREAL_0: 2;

          ((r + s) / 2) in X by A3, A4, XXREAL_1: 2;

          hence thesis by A7, A8;

        end;

          suppose

           A9: (s - b) > r;

          

           A10: (s - b) < (s - 0 ) by A6, XREAL_1: 15;

          then (s - b) < ((s + (s - b)) / 2) by XREAL_1: 226;

          then

           A11: r < ((s + (s - b)) / 2) by A9, XXREAL_0: 2;

          ((s + (s - b)) / 2) < s by A10, XREAL_1: 226;

          then ((s + (s - b)) / 2) in X by A11, XXREAL_1: 2;

          hence thesis by A7, A10, XREAL_1: 226;

        end;

      end;

      X is non empty by A1, XXREAL_1: 2;

      hence thesis by A2, A5, SEQ_4:def 1;

    end;

    begin

    theorem :: RCOMP_3:8

    

     Th8: a <= b implies ( [.a, b.] /\ (( left_closed_halfline a) \/ ( right_closed_halfline b))) = {a, b}

    proof

      set A = ( left_closed_halfline a);

      set B = ( right_closed_halfline b);

      assume a <= b;

      then

       A1: a in [.a, b.] & b in [.a, b.] by XXREAL_1: 1;

      thus ( [.a, b.] /\ (A \/ B)) c= {a, b}

      proof

        let x be object;

        assume

         A2: x in ( [.a, b.] /\ (A \/ B));

        then

        reconsider x as Real;

        x in (A \/ B) by A2, XBOOLE_0:def 4;

        then x in A or x in B by XBOOLE_0:def 3;

        then

         A3: x <= a or x >= b by XXREAL_1: 234, XXREAL_1: 236;

        x in [.a, b.] by A2, XBOOLE_0:def 4;

        then a <= x & x <= b by XXREAL_1: 1;

        then x = a or x = b by A3, XXREAL_0: 1;

        hence thesis by TARSKI:def 2;

      end;

      let x be object;

      a in A by XXREAL_1: 234;

      then

       A4: a in (A \/ B) by XBOOLE_0:def 3;

      b in B by XXREAL_1: 236;

      then

       A5: b in (A \/ B) by XBOOLE_0:def 3;

      assume x in {a, b};

      then x = a or x = b by TARSKI:def 2;

      hence thesis by A1, A4, A5, XBOOLE_0:def 4;

    end;

     Lm1:

    now

      let a;

      assume ( left_open_halfline a) is bounded_below;

      then

      consider b such that

       A1: b is LowerBound of ( left_open_halfline a);

      

       A2: for r st r in ( left_open_halfline a) holds b <= r by A1, XXREAL_2:def 2;

      

       A3: (a - 1) < (a - 0 ) by XREAL_1: 15;

      then (a - 1) in ( left_open_halfline a) by XXREAL_1: 233;

      then (b - 1) < ((a - 1) - 0 ) by A2, XREAL_1: 15;

      then (b - 1) < a by A3, XXREAL_0: 2;

      then (b - 1) in ( left_open_halfline a) by XXREAL_1: 233;

      then (b - 0 ) <= (b - 1) by A1, XXREAL_2:def 2;

      hence contradiction by XREAL_1: 15;

    end;

     Lm2:

    now

      let a;

      assume ( right_open_halfline a) is bounded_above;

      then

      consider b such that

       A1: b is UpperBound of ( right_open_halfline a);

      

       A2: (a + 0 ) < (a + 1) by XREAL_1: 6;

      then (a + 1) in ( right_open_halfline a) by XXREAL_1: 235;

      then (a + 1) <= b by A1, XXREAL_2:def 1;

      then ((a + 1) + 0 ) <= (b + 1) by XREAL_1: 7;

      then a < (b + 1) by A2, XXREAL_0: 2;

      then (b + 1) in ( right_open_halfline a) by XXREAL_1: 235;

      then (b + 1) <= (b + 0 ) by A1, XXREAL_2:def 1;

      hence contradiction by XREAL_1: 6;

    end;

    registration

      let a;

      cluster ( left_closed_halfline a) -> non bounded_below bounded_above interval;

      coherence

      proof

        set A = ( left_closed_halfline a);

         not ( left_open_halfline a) is bounded_below by Lm1;

        hence A is non bounded_below by XXREAL_1: 21, XXREAL_2: 44;

        thus A is bounded_above;

        let r,s be ExtReal;

        assume

         A1: r in A & s in A;

        then

        reconsider rr = r, ss = s as Real;

        

         A2: s <= a by A1, XXREAL_1: 234;

        let x be object;

        assume

         A3: x in [.r, s.];

        then x in [.rr, ss.];

        then

        reconsider x as Real;

        x <= s by A3, XXREAL_1: 1;

        then x <= a by A2, XXREAL_0: 2;

        hence thesis by XXREAL_1: 234;

      end;

      cluster ( left_open_halfline a) -> non bounded_below bounded_above interval;

      coherence

      proof

        set A = ( left_open_halfline a);

        thus A is non bounded_below by Lm1;

        thus A is bounded_above

        proof

          take a;

          let x be ExtReal;

          thus thesis by XXREAL_1: 233;

        end;

        let r,s be ExtReal;

        assume

         A4: r in A;

        assume

         A5: s in A;

        then

         A6: s < a by XXREAL_1: 233;

        reconsider rr = r, ss = s as Real by A4, A5;

        let x be object;

        assume

         A7: x in [.r, s.];

        then x in [.rr, ss.];

        then

        reconsider x as Real;

        x <= s by A7, XXREAL_1: 1;

        then x < a by A6, XXREAL_0: 2;

        hence thesis by XXREAL_1: 233;

      end;

      cluster ( right_closed_halfline a) -> bounded_below non bounded_above interval;

      coherence

      proof

        set A = ( right_closed_halfline a);

        thus A is bounded_below;

         not ( right_open_halfline a) is bounded_above by Lm2;

        hence A is non bounded_above by XXREAL_1: 22, XXREAL_2: 43;

        let r,s be ExtReal;

        assume

         A8: r in A;

        then

         A9: a <= r by XXREAL_1: 236;

        assume s in A;

        then

        reconsider rr = r, ss = s as Real by A8;

        let x be object;

        assume

         A10: x in [.r, s.];

        then x in [.rr, ss.];

        then

        reconsider x as Real;

        r <= x by A10, XXREAL_1: 1;

        then a <= x by A9, XXREAL_0: 2;

        hence thesis by XXREAL_1: 236;

      end;

      cluster ( right_open_halfline a) -> bounded_below non bounded_above interval;

      coherence

      proof

        set A = ( right_open_halfline a);

        thus A is bounded_below

        proof

          take a;

          let x be ExtReal;

          thus thesis by XXREAL_1: 235;

        end;

        thus A is non bounded_above by Lm2;

        let r,s be ExtReal;

        assume

         A11: r in A;

        then

         A12: a < r by XXREAL_1: 235;

        assume s in A;

        then

        reconsider rr = r, ss = s as Real by A11;

        let x be object;

        assume

         A13: x in [.r, s.];

        then x in [.rr, ss.];

        then

        reconsider x as Real;

        r <= x by A13, XXREAL_1: 1;

        then a < x by A12, XXREAL_0: 2;

        hence thesis by XXREAL_1: 235;

      end;

    end

    theorem :: RCOMP_3:9

    

     Th9: ( upper_bound ( left_closed_halfline a)) = a

    proof

      set X = ( left_closed_halfline a);

      

       A1: for s st 0 < s holds ex r st r in X & (a - s) < r

      proof

        let s;

        assume 0 < s;

        then

         A2: (a - s) < (a - 0 ) by XREAL_1: 15;

        take a;

        thus a in X by XXREAL_1: 234;

        thus thesis by A2;

      end;

      for r st r in X holds r <= a by XXREAL_1: 234;

      hence thesis by A1, SEQ_4:def 1;

    end;

    theorem :: RCOMP_3:10

    

     Th10: ( upper_bound ( left_open_halfline a)) = a

    proof

      set X = ( left_open_halfline a);

      

       A1: for s st 0 < s holds ex r st r in X & (a - s) < r

      proof

        let s;

        assume 0 < s;

        then

         A2: (a - s) < (a - 0 ) by XREAL_1: 15;

        take (((a - s) + a) / 2);

        (((a - s) + a) / 2) < a by A2, XREAL_1: 226;

        hence thesis by A2, XREAL_1: 226, XXREAL_1: 233;

      end;

      for r st r in X holds r <= a by XXREAL_1: 233;

      hence thesis by A1, SEQ_4:def 1;

    end;

    theorem :: RCOMP_3:11

    

     Th11: ( lower_bound ( right_closed_halfline a)) = a

    proof

      set X = ( right_closed_halfline a);

      

       A1: for s st 0 < s holds ex r st r in X & r < (a + s)

      proof

        let s;

        assume 0 < s;

        then

         A2: (a + 0 ) < (a + s) by XREAL_1: 6;

        take a;

        thus a in X by XXREAL_1: 236;

        thus thesis by A2;

      end;

      for r st r in X holds a <= r by XXREAL_1: 236;

      hence thesis by A1, SEQ_4:def 2;

    end;

    theorem :: RCOMP_3:12

    

     Th12: ( lower_bound ( right_open_halfline a)) = a

    proof

      set X = ( right_open_halfline a);

      

       A1: for s st 0 < s holds ex r st r in X & r < (a + s)

      proof

        let s;

        assume 0 < s;

        then

         A2: (a + 0 ) < (a + s) by XREAL_1: 6;

        take (((a + a) + s) / 2);

        a < ((a + (a + s)) / 2) by A2, XREAL_1: 226;

        hence thesis by A2, XREAL_1: 226, XXREAL_1: 235;

      end;

      for r st r in X holds a <= r by XXREAL_1: 235;

      hence thesis by A1, SEQ_4:def 2;

    end;

    begin

    registration

      cluster ( [#] REAL ) -> interval non bounded_below non bounded_above;

      coherence ;

    end

    theorem :: RCOMP_3:13

    

     Th13: for X be real-bounded interval Subset of REAL st ( lower_bound X) in X & ( upper_bound X) in X holds X = [.( lower_bound X), ( upper_bound X).]

    proof

      let X be real-bounded interval Subset of REAL such that

       A1: ( lower_bound X) in X & ( upper_bound X) in X;

      reconsider X1 = X as non empty real-bounded interval Subset of REAL by A1;

      X1 c= [.( lower_bound X1), ( upper_bound X1).] by XXREAL_2: 69;

      hence X c= [.( lower_bound X), ( upper_bound X).];

      thus thesis by A1, XXREAL_2:def 12;

    end;

    theorem :: RCOMP_3:14

    

     Th14: for X be real-bounded Subset of REAL st not ( lower_bound X) in X holds X c= ].( lower_bound X), ( upper_bound X).]

    proof

      let X be real-bounded Subset of REAL such that

       A1: not ( lower_bound X) in X;

      let x be object;

      assume

       A2: x in X;

      then

      reconsider x as Real;

      ( lower_bound X) <= x by A2, SEQ_4:def 2;

      then

       A3: ( lower_bound X) < x by A1, A2, XXREAL_0: 1;

      x <= ( upper_bound X) by A2, SEQ_4:def 1;

      hence thesis by A3, XXREAL_1: 2;

    end;

    theorem :: RCOMP_3:15

    

     Th15: for X be real-bounded interval Subset of REAL st not ( lower_bound X) in X & ( upper_bound X) in X holds X = ].( lower_bound X), ( upper_bound X).]

    proof

      let X be real-bounded interval Subset of REAL such that

       A1: not ( lower_bound X) in X and

       A2: ( upper_bound X) in X;

      thus X c= ].( lower_bound X), ( upper_bound X).] by A1, Th14;

      let x be object;

      assume

       A3: x in ].( lower_bound X), ( upper_bound X).];

      then

      reconsider x as Real;

      ( lower_bound X) < x by A3, XXREAL_1: 2;

      then (( lower_bound X) - ( lower_bound X)) < (x - ( lower_bound X)) by XREAL_1: 14;

      then

      consider r such that

       A4: r in X and

       A5: r < (( lower_bound X) + (x - ( lower_bound X))) by A2, SEQ_4:def 2;

      x <= ( upper_bound X) by A3, XXREAL_1: 2;

      then

       A6: x in [.r, ( upper_bound X).] by A5, XXREAL_1: 1;

       [.r, ( upper_bound X).] c= X by A2, A4, XXREAL_2:def 12;

      hence thesis by A6;

    end;

    theorem :: RCOMP_3:16

    

     Th16: for X be real-bounded Subset of REAL st not ( upper_bound X) in X holds X c= [.( lower_bound X), ( upper_bound X).[

    proof

      let X be real-bounded Subset of REAL such that

       A1: not ( upper_bound X) in X;

      let x be object;

      assume

       A2: x in X;

      then

      reconsider x as Real;

      x <= ( upper_bound X) by A2, SEQ_4:def 1;

      then

       A3: x < ( upper_bound X) by A1, A2, XXREAL_0: 1;

      ( lower_bound X) <= x by A2, SEQ_4:def 2;

      hence thesis by A3, XXREAL_1: 3;

    end;

    theorem :: RCOMP_3:17

    

     Th17: for X be real-bounded interval Subset of REAL st ( lower_bound X) in X & not ( upper_bound X) in X holds X = [.( lower_bound X), ( upper_bound X).[

    proof

      let X be real-bounded interval Subset of REAL such that

       A1: ( lower_bound X) in X and

       A2: not ( upper_bound X) in X;

      thus X c= [.( lower_bound X), ( upper_bound X).[ by A2, Th16;

      let x be object;

      assume

       A3: x in [.( lower_bound X), ( upper_bound X).[;

      then

      reconsider x as Real;

      x < ( upper_bound X) by A3, XXREAL_1: 3;

      then (x - x) < (( upper_bound X) - x) by XREAL_1: 14;

      then

      consider r such that

       A4: r in X and

       A5: (( upper_bound X) - (( upper_bound X) - x)) < r by A1, SEQ_4:def 1;

      ( lower_bound X) <= x by A3, XXREAL_1: 3;

      then

       A6: x in [.( lower_bound X), r.] by A5, XXREAL_1: 1;

       [.( lower_bound X), r.] c= X by A1, A4, XXREAL_2:def 12;

      hence thesis by A6;

    end;

    theorem :: RCOMP_3:18

    

     Th18: for X be real-bounded Subset of REAL st not ( lower_bound X) in X & not ( upper_bound X) in X holds X c= ].( lower_bound X), ( upper_bound X).[

    proof

      let X be real-bounded Subset of REAL such that

       A1: not ( lower_bound X) in X and

       A2: not ( upper_bound X) in X;

      let x be object;

      assume

       A3: x in X;

      then

      reconsider x as Real;

      x <= ( upper_bound X) by A3, SEQ_4:def 1;

      then

       A4: x < ( upper_bound X) by A2, A3, XXREAL_0: 1;

      ( lower_bound X) <= x by A3, SEQ_4:def 2;

      then ( lower_bound X) < x by A1, A3, XXREAL_0: 1;

      hence thesis by A4, XXREAL_1: 4;

    end;

    theorem :: RCOMP_3:19

    

     Th19: for X be non empty real-bounded interval Subset of REAL st not ( lower_bound X) in X & not ( upper_bound X) in X holds X = ].( lower_bound X), ( upper_bound X).[

    proof

      let X be non empty real-bounded interval Subset of REAL ;

      assume ( not ( lower_bound X) in X) & not ( upper_bound X) in X;

      hence X c= ].( lower_bound X), ( upper_bound X).[ by Th18;

      let x be object;

      assume

       A1: x in ].( lower_bound X), ( upper_bound X).[;

      then

      reconsider x as Real;

      ( lower_bound X) < x by A1, XXREAL_1: 4;

      then (( lower_bound X) - ( lower_bound X)) < (x - ( lower_bound X)) by XREAL_1: 14;

      then

      consider s such that

       A2: s in X & s < (( lower_bound X) + (x - ( lower_bound X))) by SEQ_4:def 2;

      x < ( upper_bound X) by A1, XXREAL_1: 4;

      then (x - x) < (( upper_bound X) - x) by XREAL_1: 14;

      then

      consider r such that

       A3: r in X & (( upper_bound X) - (( upper_bound X) - x)) < r by SEQ_4:def 1;

       [.s, r.] c= X & x in [.s, r.] by A2, A3, XXREAL_1: 1, XXREAL_2:def 12;

      hence thesis;

    end;

    theorem :: RCOMP_3:20

    

     Th20: for X be Subset of REAL st X is bounded_above holds X c= ( left_closed_halfline ( upper_bound X))

    proof

      let X be Subset of REAL such that

       A1: X is bounded_above;

      let x be object;

      assume

       A2: x in X;

      then

      reconsider x as Real;

      x <= ( upper_bound X) by A1, A2, SEQ_4:def 1;

      hence thesis by XXREAL_1: 234;

    end;

    theorem :: RCOMP_3:21

    

     Th21: for X be interval Subset of REAL st not X is bounded_below & X is bounded_above & ( upper_bound X) in X holds X = ( left_closed_halfline ( upper_bound X))

    proof

      let X be interval Subset of REAL such that

       A1: not X is bounded_below and

       A2: X is bounded_above and

       A3: ( upper_bound X) in X;

      thus X c= ( left_closed_halfline ( upper_bound X)) by A2, Th20;

      let x be object;

      assume

       A4: x in ( left_closed_halfline ( upper_bound X));

      then

      reconsider x as Real;

       not x is LowerBound of X by A1;

      then

      consider r be ExtReal such that

       A5: r in X and

       A6: x > r by XXREAL_2:def 2;

      reconsider r as Real by A5;

      x <= ( upper_bound X) by A4, XXREAL_1: 234;

      then

       A7: x in [.r, ( upper_bound X).] by A6, XXREAL_1: 1;

       [.r, ( upper_bound X).] c= X by A3, A5, XXREAL_2:def 12;

      hence thesis by A7;

    end;

    theorem :: RCOMP_3:22

    

     Th22: for X be Subset of REAL st X is bounded_above & not ( upper_bound X) in X holds X c= ( left_open_halfline ( upper_bound X))

    proof

      let X be Subset of REAL such that

       A1: X is bounded_above and

       A2: not ( upper_bound X) in X;

      let x be object;

      assume

       A3: x in X;

      then

      reconsider x as Real;

      x <= ( upper_bound X) by A1, A3, SEQ_4:def 1;

      then x < ( upper_bound X) by A2, A3, XXREAL_0: 1;

      hence thesis by XXREAL_1: 233;

    end;

    theorem :: RCOMP_3:23

    

     Th23: for X be non empty interval Subset of REAL st not X is bounded_below & X is bounded_above & not ( upper_bound X) in X holds X = ( left_open_halfline ( upper_bound X))

    proof

      let X be non empty interval Subset of REAL such that

       A1: not X is bounded_below and

       A2: X is bounded_above and

       A3: not ( upper_bound X) in X;

      thus X c= ( left_open_halfline ( upper_bound X)) by A2, A3, Th22;

      let x be object;

      assume

       A4: x in ( left_open_halfline ( upper_bound X));

      then

      reconsider x as Real;

       not x is LowerBound of X by A1;

      then

      consider r be ExtReal such that

       A5: r in X & x > r by XXREAL_2:def 2;

      reconsider r as Real by A5;

      x < ( upper_bound X) by A4, XXREAL_1: 233;

      then (x - x) < (( upper_bound X) - x) by XREAL_1: 14;

      then

      consider s such that

       A6: s in X & (( upper_bound X) - (( upper_bound X) - x)) < s by A2, SEQ_4:def 1;

       [.r, s.] c= X & x in [.r, s.] by A5, A6, XXREAL_1: 1, XXREAL_2:def 12;

      hence thesis;

    end;

    theorem :: RCOMP_3:24

    

     Th24: for X be Subset of REAL st X is bounded_below holds X c= ( right_closed_halfline ( lower_bound X))

    proof

      let X be Subset of REAL such that

       A1: X is bounded_below;

      let x be object;

      assume

       A2: x in X;

      then

      reconsider x as Real;

      ( lower_bound X) <= x by A1, A2, SEQ_4:def 2;

      hence thesis by XXREAL_1: 236;

    end;

    theorem :: RCOMP_3:25

    

     Th25: for X be interval Subset of REAL st X is bounded_below & not X is bounded_above & ( lower_bound X) in X holds X = ( right_closed_halfline ( lower_bound X))

    proof

      let X be interval Subset of REAL such that

       A1: X is bounded_below and

       A2: not X is bounded_above and

       A3: ( lower_bound X) in X;

      thus X c= ( right_closed_halfline ( lower_bound X)) by A1, Th24;

      let x be object;

      assume

       A4: x in ( right_closed_halfline ( lower_bound X));

      then

      reconsider x as Real;

       not x is UpperBound of X by A2;

      then

      consider r be ExtReal such that

       A5: r in X and

       A6: x < r by XXREAL_2:def 1;

      reconsider r as Real by A5;

      ( lower_bound X) <= x by A4, XXREAL_1: 236;

      then

       A7: x in [.( lower_bound X), r.] by A6, XXREAL_1: 1;

       [.( lower_bound X), r.] c= X by A3, A5, XXREAL_2:def 12;

      hence thesis by A7;

    end;

    theorem :: RCOMP_3:26

    

     Th26: for X be Subset of REAL st X is bounded_below & not ( lower_bound X) in X holds X c= ( right_open_halfline ( lower_bound X))

    proof

      let X be Subset of REAL such that

       A1: X is bounded_below and

       A2: not ( lower_bound X) in X;

      let x be object;

      assume

       A3: x in X;

      then

      reconsider x as Real;

      ( lower_bound X) <= x by A1, A3, SEQ_4:def 2;

      then ( lower_bound X) < x by A2, A3, XXREAL_0: 1;

      hence thesis by XXREAL_1: 235;

    end;

    theorem :: RCOMP_3:27

    

     Th27: for X be non empty interval Subset of REAL st X is bounded_below & not X is bounded_above & not ( lower_bound X) in X holds X = ( right_open_halfline ( lower_bound X))

    proof

      let X be non empty interval Subset of REAL such that

       A1: X is bounded_below and

       A2: not X is bounded_above and

       A3: not ( lower_bound X) in X;

      thus X c= ( right_open_halfline ( lower_bound X)) by A1, A3, Th26;

      let x be object;

      assume

       A4: x in ( right_open_halfline ( lower_bound X));

      then

      reconsider x as Real;

       not x is UpperBound of X by A2;

      then

      consider r be ExtReal such that

       A5: r in X & x < r by XXREAL_2:def 1;

      ( lower_bound X) < x by A4, XXREAL_1: 235;

      then (( lower_bound X) - ( lower_bound X)) < (x - ( lower_bound X)) by XREAL_1: 14;

      then

      consider s such that

       A6: s in X & s < (( lower_bound X) + (x - ( lower_bound X))) by A1, SEQ_4:def 2;

      reconsider r as Real by A5;

       [.s, r.] c= X & x in [.s, r.] by A5, A6, XXREAL_1: 1, XXREAL_2:def 12;

      hence thesis;

    end;

    theorem :: RCOMP_3:28

    

     Th28: for X be interval Subset of REAL st not X is bounded_above & not X is bounded_below holds X = REAL

    proof

      let X be interval Subset of REAL ;

      assume that

       A1: not X is bounded_above and

       A2: not X is bounded_below;

      thus X c= REAL ;

      let x be object;

      assume x in REAL ;

      then

      reconsider x as Real;

       not x is UpperBound of X by A1;

      then

      consider r be ExtReal such that

       A3: r in X & r > x by XXREAL_2:def 1;

      reconsider r as Real by A3;

       not x is LowerBound of X by A2;

      then

      consider s be ExtReal such that

       A4: s in X & s < x by XXREAL_2:def 2;

      reconsider s as Real by A4;

       [.s, r.] c= X & x in [.s, r.] by A3, A4, XXREAL_1: 1, XXREAL_2:def 12;

      hence thesis;

    end;

    theorem :: RCOMP_3:29

    

     Th29: for X be interval Subset of REAL holds X is empty or X = REAL or (ex a st X = ( left_closed_halfline a)) or (ex a st X = ( left_open_halfline a)) or (ex a st X = ( right_closed_halfline a)) or (ex a st X = ( right_open_halfline a)) or (ex a, b st a <= b & X = [.a, b.]) or (ex a, b st a < b & X = [.a, b.[) or (ex a, b st a < b & X = ].a, b.]) or ex a, b st a < b & X = ].a, b.[

    proof

      let X be interval Subset of REAL ;

      assume X is non empty;

      then

      reconsider X as non empty interval Subset of REAL ;

      per cases ;

        suppose X is real-bounded;

        then

        reconsider X as non empty real-bounded interval Subset of REAL ;

        per cases ;

          suppose X is trivial;

          then

          consider x be object such that

           A1: X = {x} by ZFMISC_1: 131;

          x in X by A1, TARSKI:def 1;

          then

          reconsider x as Real;

          X = [.x, x.] by A1, XXREAL_1: 17;

          hence thesis;

        end;

          suppose X is non trivial;

          then ex p,q be object st p in X & q in X & p <> q;

          then

           A2: ( lower_bound X) < ( upper_bound X) by SEQ_4: 12;

          per cases ;

            suppose ( upper_bound X) in X & ( lower_bound X) in X;

            then X = [.( lower_bound X), ( upper_bound X).] by Th13;

            hence thesis by A2;

          end;

            suppose ( upper_bound X) in X & not ( lower_bound X) in X;

            then X = ].( lower_bound X), ( upper_bound X).] by Th15;

            hence thesis by A2;

          end;

            suppose not ( upper_bound X) in X & ( lower_bound X) in X;

            then X = [.( lower_bound X), ( upper_bound X).[ by Th17;

            hence thesis by A2;

          end;

            suppose not ( upper_bound X) in X & not ( lower_bound X) in X;

            then X = ].( lower_bound X), ( upper_bound X).[ by Th19;

            hence thesis by A2;

          end;

        end;

      end;

        suppose

         A3: not X is real-bounded;

        per cases by A3;

          suppose

           A4: not X is bounded_below & X is bounded_above;

          per cases ;

            suppose ( upper_bound X) in X;

            then X = ( left_closed_halfline ( upper_bound X)) by A4, Th21;

            hence thesis;

          end;

            suppose not ( upper_bound X) in X;

            then X = ( left_open_halfline ( upper_bound X)) by A4, Th23;

            hence thesis;

          end;

        end;

          suppose

           A5: not X is bounded_above & X is bounded_below;

          per cases ;

            suppose ( lower_bound X) in X;

            then X = ( right_closed_halfline ( lower_bound X)) by A5, Th25;

            hence thesis;

          end;

            suppose not ( lower_bound X) in X;

            then X = ( right_open_halfline ( lower_bound X)) by A5, Th27;

            hence thesis;

          end;

        end;

          suppose not X is bounded_above & not X is bounded_below;

          hence thesis by Th28;

        end;

      end;

    end;

    theorem :: RCOMP_3:30

    

     Th30: for X be non empty interval Subset of REAL st not r in X holds r <= ( lower_bound X) or ( upper_bound X) <= r

    proof

      let X be non empty interval Subset of REAL such that

       A1: not r in X;

      per cases by Th29;

        suppose X = REAL ;

        hence thesis by A1, XREAL_0:def 1;

      end;

        suppose ex a st X = ( left_closed_halfline a);

        then

        consider a such that

         A2: X = ( left_closed_halfline a);

        ( upper_bound X) = a by A2, Th9;

        hence thesis by A1, A2, XXREAL_1: 234;

      end;

        suppose ex a st X = ( left_open_halfline a);

        then

        consider a such that

         A3: X = ( left_open_halfline a);

        ( upper_bound X) = a by A3, Th10;

        hence thesis by A1, A3, XXREAL_1: 233;

      end;

        suppose ex a st X = ( right_closed_halfline a);

        then

        consider a such that

         A4: X = ( right_closed_halfline a);

        ( lower_bound X) = a by A4, Th11;

        hence thesis by A1, A4, XXREAL_1: 236;

      end;

        suppose ex a st X = ( right_open_halfline a);

        then

        consider a such that

         A5: X = ( right_open_halfline a);

        ( lower_bound X) = a by A5, Th12;

        hence thesis by A1, A5, XXREAL_1: 235;

      end;

        suppose ex a, b st a <= b & X = [.a, b.];

        then

        consider a, b such that

         A6: a <= b and

         A7: X = [.a, b.];

        ( lower_bound X) = a & ( upper_bound X) = b by A6, A7, JORDAN5A: 19;

        hence thesis by A1, A7, XXREAL_1: 1;

      end;

        suppose ex a, b st a < b & X = [.a, b.[;

        then

        consider a, b such that

         A8: a < b and

         A9: X = [.a, b.[;

        ( lower_bound X) = a & ( upper_bound X) = b by A8, A9, Th4, Th5;

        hence thesis by A1, A9, XXREAL_1: 3;

      end;

        suppose ex a, b st a < b & X = ].a, b.];

        then

        consider a, b such that

         A10: a < b and

         A11: X = ].a, b.];

        ( lower_bound X) = a & ( upper_bound X) = b by A10, A11, Th6, Th7;

        hence thesis by A1, A11, XXREAL_1: 2;

      end;

        suppose ex a, b st a < b & X = ].a, b.[;

        then

        consider a, b such that

         A12: a < b and

         A13: X = ].a, b.[;

        ( lower_bound X) = a & ( upper_bound X) = b by A12, A13, TOPREAL6: 17;

        hence thesis by A1, A13, XXREAL_1: 4;

      end;

    end;

    theorem :: RCOMP_3:31

    

     Th31: for X,Y be non empty real-bounded interval Subset of REAL st ( lower_bound X) <= ( lower_bound Y) & ( upper_bound Y) <= ( upper_bound X) & (( lower_bound X) = ( lower_bound Y) & ( lower_bound Y) in Y implies ( lower_bound X) in X) & (( upper_bound X) = ( upper_bound Y) & ( upper_bound Y) in Y implies ( upper_bound X) in X) holds Y c= X

    proof

      let X,Y be non empty real-bounded interval Subset of REAL such that

       A1: ( lower_bound X) <= ( lower_bound Y) and

       A2: ( upper_bound Y) <= ( upper_bound X) and

       A3: ( lower_bound X) = ( lower_bound Y) & ( lower_bound Y) in Y implies ( lower_bound X) in X and

       A4: ( upper_bound X) = ( upper_bound Y) & ( upper_bound Y) in Y implies ( upper_bound X) in X;

      let x be object;

      assume

       A5: x in Y;

      then

      reconsider x as Real;

      

       A6: Y c= [.( lower_bound Y), ( upper_bound Y).] by XXREAL_2: 69;

      then

       A7: ( lower_bound Y) <= x by A5, XXREAL_1: 1;

      then

       A8: ( lower_bound X) <= x by A1, XXREAL_0: 2;

      

       A9: x <= ( upper_bound Y) by A5, A6, XXREAL_1: 1;

      then

       A10: x <= ( upper_bound X) by A2, XXREAL_0: 2;

      per cases by Th29;

        suppose X = ( [#] REAL );

        hence thesis;

      end;

        suppose (ex a st X = ( left_closed_halfline a)) or (ex a st X = ( left_open_halfline a)) or (ex a st X = ( right_closed_halfline a)) or ex a st X = ( right_open_halfline a);

        hence thesis;

      end;

        suppose ex a, b st a <= b & X = [.a, b.];

        then

        consider a, b such that

         A11: a <= b and

         A12: X = [.a, b.];

        ( lower_bound X) = a & ( upper_bound X) = b by A11, A12, JORDAN5A: 19;

        hence thesis by A8, A10, A12, XXREAL_1: 1;

      end;

        suppose ex a, b st a < b & X = [.a, b.[;

        then

        consider a, b such that

         A13: a < b and

         A14: X = [.a, b.[;

        

         A15: ( lower_bound X) = a by A13, A14, Th4;

        

         A16: ( upper_bound X) = b by A13, A14, Th5;

        per cases by Th29;

          suppose Y = ( [#] REAL );

          hence thesis;

        end;

          suppose (ex a st Y = ( left_closed_halfline a)) or (ex a st Y = ( left_open_halfline a)) or (ex a st Y = ( right_closed_halfline a)) or ex a st Y = ( right_open_halfline a);

          hence thesis;

        end;

          suppose ex a, b st a <= b & Y = [.a, b.];

          then

          consider a1,b1 be Real such that

           A17: a1 <= b1 & Y = [.a1, b1.];

          

           A18: ( upper_bound Y) = b1 by A17, JORDAN5A: 19;

          then b1 < b by A2, A4, A14, A16, A17, XXREAL_0: 1, XXREAL_1: 1, XXREAL_1: 3;

          then x < b by A9, A18, XXREAL_0: 2;

          hence thesis by A8, A14, A15, XXREAL_1: 3;

        end;

          suppose ex a, b st a < b & Y = [.a, b.[;

          then

          consider a1,b1 be Real such that

           A19: a1 < b1 & Y = [.a1, b1.[;

          ( upper_bound Y) = b1 & x < b1 by A5, A19, Th5, XXREAL_1: 3;

          then x < b by A2, A16, XXREAL_0: 2;

          hence thesis by A8, A14, A15, XXREAL_1: 3;

        end;

          suppose ex a, b st a < b & Y = ].a, b.];

          then

          consider a1,b1 be Real such that

           A20: a1 < b1 & Y = ].a1, b1.];

          

           A21: ( upper_bound Y) = b1 by A20, Th7;

          then b1 < b by A2, A4, A14, A16, A20, XXREAL_0: 1, XXREAL_1: 2, XXREAL_1: 3;

          then x < b by A9, A21, XXREAL_0: 2;

          hence thesis by A8, A14, A15, XXREAL_1: 3;

        end;

          suppose ex a, b st a < b & Y = ].a, b.[;

          then

          consider a1,b1 be Real such that

           A22: a1 < b1 & Y = ].a1, b1.[;

          ( upper_bound Y) = b1 & x < b1 by A5, A22, TOPREAL6: 17, XXREAL_1: 4;

          then x < b by A2, A16, XXREAL_0: 2;

          hence thesis by A8, A14, A15, XXREAL_1: 3;

        end;

      end;

        suppose ex a, b st a < b & X = ].a, b.];

        then

        consider a, b such that

         A23: a < b and

         A24: X = ].a, b.];

        

         A25: ( lower_bound X) = a by A23, A24, Th6;

        

         A26: ( upper_bound X) = b by A23, A24, Th7;

        per cases by Th29;

          suppose Y = ( [#] REAL );

          hence thesis;

        end;

          suppose (ex a st Y = ( left_closed_halfline a)) or (ex a st Y = ( left_open_halfline a)) or (ex a st Y = ( right_closed_halfline a)) or ex a st Y = ( right_open_halfline a);

          hence thesis;

        end;

          suppose ex a, b st a <= b & Y = [.a, b.];

          then

          consider a1,b1 be Real such that

           A27: a1 <= b1 & Y = [.a1, b1.];

          

           A28: ( lower_bound Y) = a1 by A27, JORDAN5A: 19;

          then a < a1 by A1, A3, A24, A25, A27, XXREAL_0: 1, XXREAL_1: 1, XXREAL_1: 2;

          then a < x by A7, A28, XXREAL_0: 2;

          hence thesis by A10, A24, A26, XXREAL_1: 2;

        end;

          suppose ex a, b st a < b & Y = [.a, b.[;

          then

          consider a1,b1 be Real such that

           A29: a1 < b1 and

           A30: Y = [.a1, b1.[;

          ( lower_bound Y) = a1 by A29, A30, Th4;

          then

           A31: a < a1 by A1, A3, A24, A25, A29, A30, XXREAL_0: 1, XXREAL_1: 2, XXREAL_1: 3;

          a1 <= x by A5, A30, XXREAL_1: 3;

          then a < x by A31, XXREAL_0: 2;

          hence thesis by A10, A24, A26, XXREAL_1: 2;

        end;

          suppose ex a, b st a < b & Y = ].a, b.];

          then

          consider a1,b1 be Real such that

           A32: a1 < b1 & Y = ].a1, b1.];

          ( lower_bound Y) = a1 & a1 < x by A5, A32, Th6, XXREAL_1: 2;

          then a < x by A1, A25, XXREAL_0: 2;

          hence thesis by A10, A24, A26, XXREAL_1: 2;

        end;

          suppose ex a, b st a < b & Y = ].a, b.[;

          then

          consider a1,b1 be Real such that

           A33: a1 < b1 & Y = ].a1, b1.[;

          ( lower_bound Y) = a1 & a1 < x by A5, A33, TOPREAL6: 17, XXREAL_1: 4;

          then a < x by A1, A25, XXREAL_0: 2;

          hence thesis by A10, A24, A26, XXREAL_1: 2;

        end;

      end;

        suppose ex a, b st a < b & X = ].a, b.[;

        then

        consider a, b such that

         A34: a < b and

         A35: X = ].a, b.[;

        

         A36: ( lower_bound X) = a by A34, A35, TOPREAL6: 17;

        

         A37: ( upper_bound X) = b by A34, A35, TOPREAL6: 17;

        per cases by Th29;

          suppose Y = ( [#] REAL );

          hence thesis;

        end;

          suppose (ex a st Y = ( left_closed_halfline a)) or (ex a st Y = ( left_open_halfline a)) or (ex a st Y = ( right_closed_halfline a)) or ex a st Y = ( right_open_halfline a);

          hence thesis;

        end;

          suppose ex a, b st a <= b & Y = [.a, b.];

          then

          consider a1,b1 be Real such that

           A38: a1 <= b1 and

           A39: Y = [.a1, b1.];

          ( upper_bound Y) = b1 by A38, A39, JORDAN5A: 19;

          then

           A40: b1 < b by A2, A4, A35, A37, A38, A39, XXREAL_0: 1, XXREAL_1: 1, XXREAL_1: 4;

          x <= b1 by A5, A39, XXREAL_1: 1;

          then

           A41: x < b by A40, XXREAL_0: 2;

          

           A42: ( lower_bound Y) = a1 by A38, A39, JORDAN5A: 19;

          then a < a1 by A1, A3, A35, A36, A38, A39, XXREAL_0: 1, XXREAL_1: 1, XXREAL_1: 4;

          then a < x by A7, A42, XXREAL_0: 2;

          hence thesis by A35, A41, XXREAL_1: 4;

        end;

          suppose ex a, b st a < b & Y = [.a, b.[;

          then

          consider a1,b1 be Real such that

           A43: a1 < b1 and

           A44: Y = [.a1, b1.[;

          ( lower_bound Y) = a1 by A43, A44, Th4;

          then

           A45: a < a1 by A1, A3, A35, A36, A43, A44, XXREAL_0: 1, XXREAL_1: 3, XXREAL_1: 4;

          a1 <= x by A5, A44, XXREAL_1: 3;

          then

           A46: a < x by A45, XXREAL_0: 2;

          ( upper_bound Y) = b1 & x < b1 by A5, A43, A44, Th5, XXREAL_1: 3;

          then x < b by A2, A37, XXREAL_0: 2;

          hence thesis by A35, A46, XXREAL_1: 4;

        end;

          suppose ex a, b st a < b & Y = ].a, b.];

          then

          consider a1,b1 be Real such that

           A47: a1 < b1 and

           A48: Y = ].a1, b1.];

          ( upper_bound Y) = b1 by A47, A48, Th7;

          then

           A49: b1 < b by A2, A4, A35, A37, A47, A48, XXREAL_0: 1, XXREAL_1: 2, XXREAL_1: 4;

          x <= b1 by A5, A48, XXREAL_1: 2;

          then

           A50: x < b by A49, XXREAL_0: 2;

          ( lower_bound Y) = a1 & a1 < x by A5, A47, A48, Th6, XXREAL_1: 2;

          then a < x by A1, A36, XXREAL_0: 2;

          hence thesis by A35, A50, XXREAL_1: 4;

        end;

          suppose ex a, b st a < b & Y = ].a, b.[;

          then

          consider a1,b1 be Real such that

           A51: a1 < b1 & Y = ].a1, b1.[;

          ( lower_bound Y) = a1 & a1 < x by A5, A51, TOPREAL6: 17, XXREAL_1: 4;

          then

           A52: a < x by A1, A36, XXREAL_0: 2;

          ( upper_bound Y) = b1 & x < b1 by A5, A51, TOPREAL6: 17, XXREAL_1: 4;

          then x < b by A2, A37, XXREAL_0: 2;

          hence thesis by A35, A52, XXREAL_1: 4;

        end;

      end;

    end;

    registration

      cluster open closed interval non empty non real-bounded for Subset of REAL ;

      existence

      proof

        take ( [#] REAL );

        thus thesis;

      end;

    end

    begin

    theorem :: RCOMP_3:32

    

     Th32: for X be Subset of R^1 st a <= b & X = [.a, b.] holds ( Fr X) = {a, b}

    proof

      let X be Subset of R^1 such that

       A1: a <= b and

       A2: X = [.a, b.];

      

       A3: ( Cl X) = ( Cl [.a, b.]) by A2, JORDAN5A: 24

      .= [.a, b.] by MEASURE6: 59;

      

       A4: ( [.a, b.] /\ (( left_closed_halfline a) \/ ( right_closed_halfline b))) = {a, b} by A1, Th8;

      set LO = ( R^1 ( left_open_halfline a)), RC = ( R^1 ( right_closed_halfline b)), RO = ( R^1 ( right_open_halfline b)), LC = ( R^1 ( left_closed_halfline a));

      

       A5: RC = ( right_closed_halfline b) by TOPREALB:def 3;

      

       A6: LC = ( left_closed_halfline a) by TOPREALB:def 3;

      

       A7: RO = ( right_open_halfline b) by TOPREALB:def 3;

      

       A8: LO = ( left_open_halfline a) by TOPREALB:def 3;

      then

       A9: ( [.a, b.] ` ) = (LO \/ RO) by A7, XXREAL_1: 385;

      ( Cl (X ` )) = ( Cl ( [.a, b.] ` )) by A2, JORDAN5A: 24, TOPMETR: 17

      .= (( Cl ( left_open_halfline a)) \/ ( Cl ( right_open_halfline b))) by A8, A7, A9, Th3

      .= (( Cl LO) \/ ( Cl ( right_open_halfline b))) by A8, JORDAN5A: 24

      .= (( Cl LO) \/ ( Cl RO)) by A7, JORDAN5A: 24

      .= (LC \/ ( Cl RO)) by A6, BORSUK_5: 51, TOPREALB:def 3

      .= (LC \/ RC) by A5, BORSUK_5: 49, TOPREALB:def 3

      .= (( left_closed_halfline a) \/ ( right_closed_halfline b)) by A5, TOPREALB:def 3;

      hence thesis by A3, A4, TOPS_1:def 2;

    end;

    theorem :: RCOMP_3:33

    for X be Subset of R^1 st a < b & X = ].a, b.[ holds ( Fr X) = {a, b}

    proof

      let X be Subset of R^1 such that

       A1: a < b and

       A2: X = ].a, b.[;

      

       A3: ( Cl X) = ( Cl ].a, b.[) by A2, JORDAN5A: 24

      .= [.a, b.] by A1, JORDAN5A: 26;

      set RC = ( R^1 ( right_closed_halfline b)), LC = ( R^1 ( left_closed_halfline a));

      

       A4: RC = ( right_closed_halfline b) & LC = ( left_closed_halfline a) by TOPREALB:def 3;

      then

       A5: ( ].a, b.[ ` ) = (LC \/ RC) by XXREAL_1: 398;

      

       A6: ( [.a, b.] /\ (( left_closed_halfline a) \/ ( right_closed_halfline b))) = {a, b} by A1, Th8;

      ( Cl (X ` )) = ( Cl ( ].a, b.[ ` )) by A2, JORDAN5A: 24, TOPMETR: 17

      .= (( Cl ( left_closed_halfline a)) \/ ( Cl ( right_closed_halfline b))) by A4, A5, Th3

      .= (( Cl ( left_closed_halfline a)) \/ ( right_closed_halfline b)) by MEASURE6: 59

      .= (( left_closed_halfline a) \/ ( right_closed_halfline b)) by MEASURE6: 59;

      hence thesis by A3, A6, TOPS_1:def 2;

    end;

    theorem :: RCOMP_3:34

    

     Th34: for X be Subset of R^1 st a < b & X = [.a, b.[ holds ( Fr X) = {a, b}

    proof

      let X be Subset of R^1 such that

       A1: a < b and

       A2: X = [.a, b.[;

      

       A3: ( Cl X) = [.a, b.] & ( [.a, b.] /\ (( left_closed_halfline a) \/ ( right_closed_halfline b))) = {a, b} by A1, A2, Th8, BORSUK_5: 35;

      set LO = ( R^1 ( left_open_halfline a)), RC = ( R^1 ( right_closed_halfline b)), LC = ( R^1 ( left_closed_halfline a));

      

       A4: RC = ( right_closed_halfline b) by TOPREALB:def 3;

      

       A5: LO = ( left_open_halfline a) by TOPREALB:def 3;

      then

       A6: ( [.a, b.[ ` ) = (LO \/ RC) by A4, XXREAL_1: 382;

      

       A7: LC = ( left_closed_halfline a) by TOPREALB:def 3;

      ( Cl (X ` )) = ( Cl ( [.a, b.[ ` )) by A2, JORDAN5A: 24, TOPMETR: 17

      .= (( Cl ( left_open_halfline a)) \/ ( Cl ( right_closed_halfline b))) by A5, A4, A6, Th3

      .= (( Cl LO) \/ ( Cl ( right_closed_halfline b))) by A5, JORDAN5A: 24

      .= (( Cl LO) \/ ( Cl RC)) by A4, JORDAN5A: 24

      .= (LC \/ ( Cl RC)) by A7, BORSUK_5: 51, TOPREALB:def 3

      .= (( left_closed_halfline a) \/ ( right_closed_halfline b)) by A4, A7, PRE_TOPC: 22;

      hence thesis by A3, TOPS_1:def 2;

    end;

    theorem :: RCOMP_3:35

    

     Th35: for X be Subset of R^1 st a < b & X = ].a, b.] holds ( Fr X) = {a, b}

    proof

      let X be Subset of R^1 such that

       A1: a < b and

       A2: X = ].a, b.];

      

       A3: ( Cl X) = [.a, b.] & ( [.a, b.] /\ (( left_closed_halfline a) \/ ( right_closed_halfline b))) = {a, b} by A1, A2, Th8, BORSUK_5: 36;

      

       A4: ( ].a, b.] ` ) = (( left_closed_halfline a) \/ ( right_open_halfline b)) by XXREAL_1: 399;

      set RO = ( R^1 ( right_open_halfline b)), LC = ( R^1 ( left_closed_halfline a));

      

       A5: RO = ( right_open_halfline b) by TOPREALB:def 3;

      

       A6: LC = ( left_closed_halfline a) by TOPREALB:def 3;

      ( Cl (X ` )) = ( Cl ( ].a, b.] ` )) by A2, JORDAN5A: 24, TOPMETR: 17

      .= (( Cl ( left_closed_halfline a)) \/ ( Cl ( right_open_halfline b))) by A4, Th3

      .= (( Cl LC) \/ ( Cl ( right_open_halfline b))) by A6, JORDAN5A: 24

      .= (( Cl LC) \/ ( Cl RO)) by A5, JORDAN5A: 24

      .= (LC \/ ( Cl RO)) by PRE_TOPC: 22

      .= (( left_closed_halfline a) \/ ( right_closed_halfline b)) by A6, BORSUK_5: 49, TOPREALB:def 3;

      hence thesis by A3, TOPS_1:def 2;

    end;

    theorem :: RCOMP_3:36

    for X be Subset of R^1 st X = [.a, b.] holds ( Int X) = ].a, b.[

    proof

      let X be Subset of R^1 such that

       A1: X = [.a, b.];

      

       A2: ( Int X) c= X by TOPS_1: 16;

      thus ( Int X) c= ].a, b.[

      proof

        let x be object;

        assume

         A3: x in ( Int X);

        then

        reconsider x as Point of R^1 ;

         A4:

        now

          now

            assume a > b;

            then X = ( {} R^1 ) by A1, XXREAL_1: 29;

            hence contradiction by A3;

          end;

          then ( Fr X) = {a, b} by A1, Th32;

          then

           A5: a in ( Fr X) & b in ( Fr X) by TARSKI:def 2;

          

           A6: ( Int X) misses ( Fr X) by TOPS_1: 39;

          assume x = a or x = b;

          hence contradiction by A3, A6, A5, XBOOLE_0: 3;

        end;

        x <= b by A1, A2, A3, XXREAL_1: 1;

        then

         A7: x < b by A4, XXREAL_0: 1;

        a <= x by A1, A2, A3, XXREAL_1: 1;

        then a < x by A4, XXREAL_0: 1;

        hence thesis by A7, XXREAL_1: 4;

      end;

      reconsider Y = ].a, b.[ as open Subset of R^1 by BORSUK_5: 39, TOPMETR: 17;

      Y c= ( Int X) by A1, TOPS_1: 24, XXREAL_1: 37;

      hence thesis;

    end;

    theorem :: RCOMP_3:37

    for X be Subset of R^1 st X = ].a, b.[ holds ( Int X) = ].a, b.[

    proof

      let X be Subset of R^1 ;

      assume

       A1: X = ].a, b.[;

      then

      reconsider X as open Subset of R^1 by BORSUK_5: 39;

      ( Int X) = X by TOPS_1: 23;

      hence thesis by A1;

    end;

    theorem :: RCOMP_3:38

    

     Th38: for X be Subset of R^1 st X = [.a, b.[ holds ( Int X) = ].a, b.[

    proof

      let X be Subset of R^1 such that

       A1: X = [.a, b.[;

      

       A2: ( Int X) c= X by TOPS_1: 16;

      thus ( Int X) c= ].a, b.[

      proof

        let x be object;

        assume

         A3: x in ( Int X);

        then

        reconsider x as Point of R^1 ;

         A4:

        now

          now

            assume a >= b;

            then X = ( {} R^1 ) by A1, XXREAL_1: 27;

            hence contradiction by A3;

          end;

          then ( Fr X) = {a, b} by A1, Th34;

          then

           A5: ( Int X) misses ( Fr X) & a in ( Fr X) by TARSKI:def 2, TOPS_1: 39;

          assume x = a;

          hence contradiction by A3, A5, XBOOLE_0: 3;

        end;

        a <= x by A1, A2, A3, XXREAL_1: 3;

        then

         A6: a < x by A4, XXREAL_0: 1;

        x < b by A1, A2, A3, XXREAL_1: 3;

        hence thesis by A6, XXREAL_1: 4;

      end;

      reconsider Y = ].a, b.[ as open Subset of R^1 by BORSUK_5: 39, TOPMETR: 17;

      Y c= ( Int X) by A1, TOPS_1: 24, XXREAL_1: 45;

      hence thesis;

    end;

    theorem :: RCOMP_3:39

    

     Th39: for X be Subset of R^1 st X = ].a, b.] holds ( Int X) = ].a, b.[

    proof

      let X be Subset of R^1 such that

       A1: X = ].a, b.];

      

       A2: ( Int X) c= X by TOPS_1: 16;

      thus ( Int X) c= ].a, b.[

      proof

        let x be object;

        assume

         A3: x in ( Int X);

        then

        reconsider x as Point of R^1 ;

         A4:

        now

          now

            assume a >= b;

            then X = ( {} R^1 ) by A1, XXREAL_1: 26;

            hence contradiction by A3;

          end;

          then ( Fr X) = {a, b} by A1, Th35;

          then

           A5: ( Int X) misses ( Fr X) & b in ( Fr X) by TARSKI:def 2, TOPS_1: 39;

          assume x = b;

          hence contradiction by A3, A5, XBOOLE_0: 3;

        end;

        x <= b by A1, A2, A3, XXREAL_1: 2;

        then

         A6: x < b by A4, XXREAL_0: 1;

        a < x by A1, A2, A3, XXREAL_1: 2;

        hence thesis by A6, XXREAL_1: 4;

      end;

      reconsider Y = ].a, b.[ as open Subset of R^1 by BORSUK_5: 39, TOPMETR: 17;

      Y c= ( Int X) by A1, TOPS_1: 24, XXREAL_1: 41;

      hence thesis;

    end;

    registration

      let T be real-membered TopStruct, X be interval Subset of T;

      cluster (T | X) -> interval;

      coherence by PRE_TOPC:def 5;

    end

    registration

      let A be interval Subset of REAL ;

      cluster ( R^1 A) -> interval;

      coherence by TOPREALB:def 3;

    end

    registration

      cluster connected -> interval for Subset of R^1 ;

      coherence by BORSUK_5: 77;

      cluster interval -> connected for Subset of R^1 ;

      coherence

      proof

        let X be Subset of R^1 such that

         A1: X is interval;

        

         A2: X is Subset of REAL by MEMBERED: 3;

        per cases by A1, A2, Th29;

          suppose X is empty;

          then

          reconsider A = X as empty Subset of R^1 ;

          A is interval;

          hence thesis;

        end;

          suppose X = REAL ;

          then

          reconsider A = X as non empty interval Subset of R^1 ;

          ( R^1 | A) is connected;

          hence ( R^1 | X) is connected;

        end;

          suppose ex a st X = ( left_closed_halfline a);

          then

          consider a such that

           A3: X = ( left_closed_halfline a);

          reconsider A = X as non empty interval Subset of R^1 by A3;

          ( R^1 | A) is connected;

          hence ( R^1 | X) is connected;

        end;

          suppose ex a st X = ( left_open_halfline a);

          then

          consider a such that

           A4: X = ( left_open_halfline a);

          reconsider A = X as non empty interval Subset of R^1 by A4;

          ( R^1 | A) is connected;

          hence ( R^1 | X) is connected;

        end;

          suppose ex a st X = ( right_closed_halfline a);

          then

          consider a such that

           A5: X = ( right_closed_halfline a);

          reconsider A = X as non empty interval Subset of R^1 by A5;

          ( R^1 | A) is connected;

          hence ( R^1 | X) is connected;

        end;

          suppose ex a st X = ( right_open_halfline a);

          then

          consider a such that

           A6: X = ( right_open_halfline a);

          reconsider A = X as non empty interval Subset of R^1 by A6;

          ( R^1 | A) is connected;

          hence ( R^1 | X) is connected;

        end;

          suppose ex a, b st a <= b & X = [.a, b.];

          then

          reconsider A = X as non empty interval Subset of R^1 by XXREAL_1: 1;

          ( R^1 | A) is connected;

          hence ( R^1 | X) is connected;

        end;

          suppose ex a, b st a < b & X = [.a, b.[;

          then

          reconsider A = X as non empty interval Subset of R^1 by XXREAL_1: 3;

          ( R^1 | A) is connected;

          hence ( R^1 | X) is connected;

        end;

          suppose ex a, b st a < b & X = ].a, b.];

          then

          reconsider A = X as non empty interval Subset of R^1 by XXREAL_1: 2;

          ( R^1 | A) is connected;

          hence ( R^1 | X) is connected;

        end;

          suppose ex a, b st a < b & X = ].a, b.[;

          then

          reconsider A = X as non empty interval Subset of R^1 by XXREAL_1: 33;

          ( R^1 | A) is connected;

          hence ( R^1 | X) is connected;

        end;

      end;

    end

    begin

    registration

      let r;

      cluster ( Closed-Interval-TSpace (r,r)) -> 1 -element;

      coherence

      proof

         {r} is 1 -element & the carrier of ( Closed-Interval-TSpace (r,r)) = [.r, r.] by TOPMETR: 18;

        hence the carrier of ( Closed-Interval-TSpace (r,r)) is 1 -element by XXREAL_1: 17;

      end;

    end

    theorem :: RCOMP_3:40

    r <= s implies for A be Subset of ( Closed-Interval-TSpace (r,s)) holds A is real-bounded Subset of REAL

    proof

      assume r <= s;

      then

       A1: the carrier of ( Closed-Interval-TSpace (r,s)) = [.r, s.] by TOPMETR: 18;

      let A be Subset of ( Closed-Interval-TSpace (r,s));

      A is bounded_above bounded_below by A1, XXREAL_2: 43, XXREAL_2: 44;

      hence thesis by A1, XBOOLE_1: 1;

    end;

    theorem :: RCOMP_3:41

    

     Th41: r <= s implies for X be Subset of ( Closed-Interval-TSpace (r,s)) st X = [.a, b.[ & r < a & b <= s holds ( Int X) = ].a, b.[

    proof

      set L = ( Closed-Interval-TSpace (r,s));

      set c = ((r + a) / 2);

      set C1 = ( R^1 ].c, b.[);

      

       A1: C1 = ].c, b.[ by TOPREALB:def 3;

      assume r <= s;

      then

       A2: the carrier of L = [.r, s.] by TOPMETR: 18;

      let X be Subset of ( Closed-Interval-TSpace (r,s)) such that

       A3: X = [.a, b.[ and

       A4: r < a and

       A5: b <= s;

      

       A6: r < c by A4, XREAL_1: 226;

      

       A7: C1 c= the carrier of L

      proof

        let x be object;

        assume

         A8: x in C1;

        then

        reconsider x as Real;

        x < b by A1, A8, XXREAL_1: 4;

        then

         A9: x <= s by A5, XXREAL_0: 2;

        c < x by A1, A8, XXREAL_1: 4;

        then r <= x by A6, XXREAL_0: 2;

        hence thesis by A2, A9, XXREAL_1: 1;

      end;

      reconsider A = X as Subset of R^1 by PRE_TOPC: 11;

      

       A10: c < a by A4, XREAL_1: 226;

      A c= C1

      proof

        let x be object;

        assume

         A11: x in A;

        then

        reconsider x as Real;

        a <= x by A3, A11, XXREAL_1: 3;

        then

         A12: c < x by A10, XXREAL_0: 2;

        x < b by A3, A11, XXREAL_1: 3;

        hence thesis by A1, A12, XXREAL_1: 4;

      end;

      then ( Int A) = ( Int X) by A7, TOPS_3: 57;

      hence thesis by A3, Th38;

    end;

    theorem :: RCOMP_3:42

    

     Th42: r <= s implies for X be Subset of ( Closed-Interval-TSpace (r,s)) st X = ].a, b.] & r <= a & b < s holds ( Int X) = ].a, b.[

    proof

      set L = ( Closed-Interval-TSpace (r,s));

      set c = ((b + s) / 2);

      set C1 = ( R^1 ].a, c.[);

      

       A1: C1 = ].a, c.[ by TOPREALB:def 3;

      assume r <= s;

      then

       A2: the carrier of L = [.r, s.] by TOPMETR: 18;

      let X be Subset of ( Closed-Interval-TSpace (r,s)) such that

       A3: X = ].a, b.] and

       A4: r <= a and

       A5: b < s;

      

       A6: c < s by A5, XREAL_1: 226;

      

       A7: C1 c= the carrier of L

      proof

        let x be object;

        assume

         A8: x in C1;

        then

        reconsider x as Real;

        x < c by A1, A8, XXREAL_1: 4;

        then

         A9: x <= s by A6, XXREAL_0: 2;

        a < x by A1, A8, XXREAL_1: 4;

        then r <= x by A4, XXREAL_0: 2;

        hence thesis by A2, A9, XXREAL_1: 1;

      end;

      reconsider A = X as Subset of R^1 by PRE_TOPC: 11;

      

       A10: b < c by A5, XREAL_1: 226;

      A c= C1

      proof

        let x be object;

        assume

         A11: x in A;

        then

        reconsider x as Real;

        x <= b by A3, A11, XXREAL_1: 2;

        then

         A12: x < c by A10, XXREAL_0: 2;

        a < x by A3, A11, XXREAL_1: 2;

        hence thesis by A1, A12, XXREAL_1: 4;

      end;

      then ( Int A) = ( Int X) by A7, TOPS_3: 57;

      hence thesis by A3, Th39;

    end;

    theorem :: RCOMP_3:43

    

     Th43: for X be Subset of ( Closed-Interval-TSpace (r,s)), Y be Subset of REAL st X = Y holds X is connected iff Y is interval

    proof

      let X be Subset of ( Closed-Interval-TSpace (r,s)), Y be Subset of REAL such that

       A1: X = Y;

      reconsider Z = X as Subset of R^1 by A1, TOPMETR: 17;

      hereby

        assume X is connected;

        then Z is connected by CONNSP_1: 23;

        hence Y is interval by A1;

      end;

      assume Y is interval;

      then Z is connected by A1;

      hence thesis by CONNSP_1: 23;

    end;

    registration

      let T be TopSpace;

      cluster open closed connected for Subset of T;

      existence

      proof

        take ( {} T);

        thus thesis;

      end;

    end

    registration

      let T be non empty connected TopSpace;

      cluster non empty open closed connected for Subset of T;

      existence

      proof

        take ( [#] T);

        thus thesis by CONNSP_1: 27;

      end;

    end

    theorem :: RCOMP_3:44

    

     Th44: r <= s implies for X be open connected Subset of ( Closed-Interval-TSpace (r,s)) holds X is empty or X = [.r, s.] or (ex a be Real st r < a & a <= s & X = [.r, a.[) or (ex a be Real st r <= a & a < s & X = ].a, s.]) or ex a,b be Real st r <= a & a < b & b <= s & X = ].a, b.[

    proof

      set L = ( Closed-Interval-TSpace (r,s));

      assume

       A1: r <= s;

      then

       A2: the carrier of L = [.r, s.] by TOPMETR: 18;

      let X be open connected Subset of L;

      X is bounded_above bounded_below Subset of REAL by A2, XBOOLE_1: 1, XXREAL_2: 43, XXREAL_2: 44;

      then

      reconsider Y = X as real-bounded interval Subset of REAL by Th43;

      

       A3: the carrier of L = ( [#] L) & L is connected by A1, TREAL_1: 20;

      

       A4: s in [.r, s.] by A1, XXREAL_1: 1;

      

       A5: r in [.r, s.] by A1, XXREAL_1: 1;

      per cases by Th29;

        suppose Y is empty or Y = ( [#] REAL );

        hence thesis;

      end;

        suppose (ex a st Y = ( left_closed_halfline a)) or (ex a st Y = ( left_open_halfline a)) or (ex a st Y = ( right_closed_halfline a)) or ex a st Y = ( right_open_halfline a);

        hence thesis;

      end;

        suppose ex a, b st a <= b & Y = [.a, b.];

        then

        consider a, b such that

         A6: a <= b and

         A7: Y = [.a, b.];

        

         A8: X <> ( {} L) by A6, A7, XXREAL_1: 1;

        

         A9: r <= a & b <= s by A2, A6, A7, XXREAL_1: 50;

        then

         A10: X is closed by A7, TOPREALA: 23;

        now

          assume

           A11: r <> a or b <> s;

          per cases by A9, A11, XXREAL_0: 1;

            suppose r < a;

            then not r in X by A7, XXREAL_1: 1;

            hence contradiction by A2, A3, A5, A8, A10, CONNSP_1: 13;

          end;

            suppose b < s;

            then not s in X by A7, XXREAL_1: 1;

            hence contradiction by A2, A3, A4, A8, A10, CONNSP_1: 13;

          end;

        end;

        hence thesis by A7;

      end;

        suppose ex a, b st a < b & Y = [.a, b.[;

        then

        consider a, b such that

         A12: a < b and

         A13: Y = [.a, b.[;

        

         A14: b <= s by A2, A12, A13, XXREAL_1: 52;

        

         A15: r <= a by A2, A12, A13, XXREAL_1: 52;

        now

          assume r <> a;

          then

           A16: r < a by A15, XXREAL_0: 1;

          now

            ( Int X) = ].a, b.[ by A1, A13, A14, A16, Th41;

            then

             A17: not a in ( Int X) by XXREAL_1: 4;

            assume ( Int X) = X;

            hence contradiction by A12, A13, A17, XXREAL_1: 3;

          end;

          hence contradiction by TOPS_1: 23;

        end;

        hence thesis by A12, A13, A14;

      end;

        suppose ex a, b st a < b & Y = ].a, b.];

        then

        consider a, b such that

         A18: a < b and

         A19: Y = ].a, b.];

        

         A20: r <= a by A2, A18, A19, XXREAL_1: 53;

        

         A21: b <= s by A2, A18, A19, XXREAL_1: 53;

        now

          assume b <> s;

          then

           A22: b < s by A21, XXREAL_0: 1;

          now

            ( Int X) = ].a, b.[ by A1, A19, A20, A22, Th42;

            then

             A23: not b in ( Int X) by XXREAL_1: 4;

            assume ( Int X) = X;

            hence contradiction by A18, A19, A23, XXREAL_1: 2;

          end;

          hence contradiction by TOPS_1: 23;

        end;

        hence thesis by A18, A19, A20;

      end;

        suppose ex a, b st a < b & Y = ].a, b.[;

        then

        consider a, b such that

         A24: a < b & Y = ].a, b.[;

        r <= a & b <= s by A2, A24, XXREAL_1: 51;

        hence thesis by A24;

      end;

    end;

    begin

    deffunc F( set) = $1;

    defpred P[ set, set] means $1 c= $2;

    theorem :: RCOMP_3:45

    

     Th45: for T be 1-sorted, F be finite Subset-Family of T holds for F1 be Subset-Family of T st F is Cover of T & F1 = (F \ { X where X be Subset of T : X in F & ex Y be Subset of T st Y in F & X c< Y }) holds F1 is Cover of T

    proof

      let T be 1-sorted, F be finite Subset-Family of T, F1 be Subset-Family of T such that

       A1: the carrier of T c= ( union F) and

       A2: F1 = (F \ { X where X be Subset of T : X in F & ex Y be Subset of T st Y in F & X c< Y });

      set ZAW = { X where X be Subset of T : X in F & ex Y be Subset of T st Y in F & X c< Y };

      thus the carrier of T c= ( union F1)

      proof

        let t be object;

        assume t in the carrier of T;

        then

        consider Z be set such that

         A3: t in Z and

         A4: Z in F by A1, TARSKI:def 4;

        set ALL = { X where X be Subset of T : Z c< X & X in F };

        per cases ;

          suppose

           A5: ALL is empty;

          now

            assume Z in ZAW;

            then

            consider X be Subset of T such that

             A6: Z = X and X in F and

             A7: ex Y be Subset of T st Y in F & X c< Y;

            consider Y be Subset of T such that

             A8: Y in F & X c< Y by A7;

            Y in ALL by A6, A8;

            hence contradiction by A5;

          end;

          then Z in F1 by A2, A4, XBOOLE_0:def 5;

          hence thesis by A3, TARSKI:def 4;

        end;

          suppose ALL is non empty;

          then

          consider w be object such that

           A9: w in ALL;

          consider R be Relation of ALL such that

           A10: for x,y be set holds [x, y] in R iff x in ALL & y in ALL & P[x, y] from RELSET_1:sch 5;

          

           A11: R is_reflexive_in ALL by A10;

          then

           A12: ( field R) = ALL by ORDERS_1: 13;

          

           A13: R partially_orders ALL

          proof

            thus R is_reflexive_in ALL by A11;

            thus R is_transitive_in ALL

            proof

              let x,y,z be object;

              assume that

               A14: x in ALL and y in ALL and

               A15: z in ALL;

              assume

               A16: [x, y] in R & [y, z] in R;

              reconsider x, y, z as set by TARSKI: 1;

              x c= y & y c= z by A10, A16;

              then x c= z;

              hence thesis by A10, A14, A15;

            end;

            let x,y be object;

            assume that x in ALL and y in ALL;

            assume

             A17: [x, y] in R & [y, x] in R;

            reconsider x, y as set by TARSKI: 1;

            x c= y & y c= x by A10, A17;

            hence thesis by XBOOLE_0:def 10;

          end;

          

           A18: R is reflexive by A11, A12;

          ALL has_upper_Zorn_property_wrt R

          proof

            let Y be set such that

             A19: Y c= ALL and

             A20: (R |_2 Y) is being_linear-order;

            per cases ;

              suppose

               A21: Y is non empty;

              defpred U[ set] means $1 is non empty & $1 c= Y implies ( union $1) in Y;

              take ( union Y);

              

               A22: U[ {} ];

              

               A23: for A,B be set st A in Y & B in Y holds (A \/ B) in Y

              proof

                

                 A24: (R |_2 Y) c= R by XBOOLE_1: 17;

                (R |_2 Y) is connected by A20;

                then

                 A25: (R |_2 Y) is_connected_in ( field (R |_2 Y));

                let A,B be set such that

                 A26: A in Y & B in Y;

                ( field (R |_2 Y)) = Y by A12, A18, A19, ORDERS_1: 71;

                then [A, B] in (R |_2 Y) or [B, A] in (R |_2 Y) or A = B by A26, A25;

                then A c= B or B c= A by A10, A24;

                hence thesis by A26, XBOOLE_1: 12;

              end;

              

               A27: for x,B be set st x in Y & B c= Y & U[B] holds U[(B \/ {x})]

              proof

                let x,B be set such that

                 A28: x in Y and

                 A29: B c= Y & U[B] and (B \/ {x}) is non empty and (B \/ {x}) c= Y;

                

                 A30: ( union {x}) = x by ZFMISC_1: 25;

                per cases ;

                  suppose B is empty;

                  hence thesis by A28, ZFMISC_1: 25;

                end;

                  suppose B is non empty;

                  then (x \/ ( union B)) in Y by A23, A28, A29;

                  hence thesis by A30, ZFMISC_1: 78;

                end;

              end;

              consider y be object such that

               A31: y in Y by A21;

              y in ALL by A19, A31;

              then

              consider X be Subset of T such that

               A32: X = y and

               A33: Z c< X and X in F;

              

               A34: X c= ( union Y) by A31, A32, ZFMISC_1: 74;

              then

               A35: Z <> ( union Y) by A33, XBOOLE_0:def 8;

              Z c= X by A33;

              then Z c= ( union Y) by A34;

              then

               A36: Z c< ( union Y) by A35;

              

               A37: ALL c= F

              proof

                let x be object;

                assume x in ALL;

                then ex X be Subset of T st X = x & Z c< X & X in F;

                hence thesis;

              end;

              then

               A38: Y c= F by A19;

              

               A39: Y is finite by A19, A37;

               U[Y] from FINSET_1:sch 2( A39, A22, A27);

              then ( union Y) in F by A21, A38;

              hence

               A40: ( union Y) in ALL by A36;

              let z be set;

              assume

               A41: z in Y;

              then P[z, ( union Y)] by ZFMISC_1: 74;

              hence thesis by A10, A19, A40, A41;

            end;

              suppose

               A42: Y is empty;

              reconsider w as set by TARSKI: 1;

              take w;

              thus w in ALL by A9;

              thus thesis by A42;

            end;

          end;

          then

          consider M be set such that

           A43: M is_maximal_in R by A12, A13, ORDERS_1: 63;

          

           A44: M in ( field R) by A43;

          then

           A45: ex X be Subset of T st X = M & Z c< X & X in F by A12;

          now

            assume M in ZAW;

            then

            consider H be Subset of T such that

             A46: M = H and H in F and

             A47: ex Y be Subset of T st Y in F & H c< Y;

            consider Y be Subset of T such that

             A48: Y in F and

             A49: H c< Y by A47;

            Z c< Y by A45, A46, A49, XBOOLE_1: 56;

            then

             A50: Y in ALL by A48;

            H c= Y by A49;

            then [M, Y] in R by A10, A12, A44, A46, A50;

            hence contradiction by A12, A43, A46, A49, A50;

          end;

          then

           A51: M in F1 by A2, A45, XBOOLE_0:def 5;

          Z c= M by A45;

          hence thesis by A3, A51, TARSKI:def 4;

        end;

      end;

    end;

    theorem :: RCOMP_3:46

    

     Th46: for S be 1 -element 1-sorted, s be Point of S, F be Subset-Family of S st F is Cover of S holds {s} in F

    proof

      let S be 1 -element 1-sorted, s be Point of S, F be Subset-Family of S such that

       A1: the carrier of S c= ( union F);

      consider d be Element of S such that

       A2: the carrier of S = {d} by TEX_1:def 1;

      s in the carrier of S;

      then

      consider Z be set such that

       A3: s in Z and

       A4: Z in F by A1, TARSKI:def 4;

      

       A5: s = d by ZFMISC_1:def 10;

      Z = {s}

      proof

        thus for x be object st x in Z holds x in {s} by A4, A2, A5;

        let x be object;

        thus thesis by A3, TARSKI:def 1;

      end;

      hence thesis by A4;

    end;

    definition

      let T be TopStruct, F be Subset-Family of T;

      :: RCOMP_3:def1

      attr F is connected means for X be Subset of T st X in F holds X is connected;

    end

    registration

      let T be TopSpace;

      cluster non empty open closed connected for Subset-Family of T;

      existence

      proof

         {( {} T)} c= ( bool the carrier of T)

        proof

          let x be object;

          assume x in {( {} T)};

          then x = ( {} T) by TARSKI:def 1;

          hence thesis;

        end;

        then

        reconsider F = {( {} T)} as Subset-Family of T;

        take F;

        thus F is non empty;

        thus for P be Subset of T holds P in F implies P is open by TARSKI:def 1;

        thus for P be Subset of T holds P in F implies P is closed by TARSKI:def 1;

        thus for P be Subset of T holds P in F implies P is connected by TARSKI:def 1;

      end;

    end

    reserve n,m for Nat,

F for Subset-Family of ( Closed-Interval-TSpace (r,s));

    

     Lm3: [.r, s.] in F & r <= s implies ( rng <* [.r, s.]*>) c= F & ( union ( rng <* [.r, s.]*>)) = [.r, s.] & for n be Nat st 1 <= n holds (n <= ( len <* [.r, s.]*>) implies ( <* [.r, s.]*> /. n) is non empty) & ((n + 1) <= ( len <* [.r, s.]*>) implies ( lower_bound ( <* [.r, s.]*> /. n)) <= ( lower_bound ( <* [.r, s.]*> /. (n + 1))) & ( upper_bound ( <* [.r, s.]*> /. n)) <= ( upper_bound ( <* [.r, s.]*> /. (n + 1))) & ( lower_bound ( <* [.r, s.]*> /. (n + 1))) < ( upper_bound ( <* [.r, s.]*> /. n))) & ((n + 2) <= ( len <* [.r, s.]*>) implies ( upper_bound ( <* [.r, s.]*> /. n)) <= ( lower_bound ( <* [.r, s.]*> /. (n + 2))))

    proof

      assume that

       A1: [.r, s.] in F and

       A2: r <= s;

      set f = <* [.r, s.]*>;

      

       A3: ( rng f) = { [.r, s.]} by FINSEQ_1: 38;

      thus ( rng f) c= F by A1, A3, TARSKI:def 1;

      thus ( union ( rng f)) = [.r, s.] by A3, ZFMISC_1: 25;

      let n be Nat;

      assume

       A4: 1 <= n;

      hereby

        assume n <= ( len f);

        then n <= 1 by FINSEQ_1: 39;

        then n = 1 by A4, XXREAL_0: 1;

        then (f /. n) = [.r, s.] by FINSEQ_4: 16;

        hence (f /. n) is non empty by A2, XXREAL_1: 1;

      end;

      hereby

        assume (n + 1) <= ( len f);

        then (n + 1) <= ( 0 + 1) by FINSEQ_1: 39;

        hence ( lower_bound (f /. n)) <= ( lower_bound (f /. (n + 1))) & ( upper_bound (f /. n)) <= ( upper_bound (f /. (n + 1))) & ( lower_bound (f /. (n + 1))) < ( upper_bound (f /. n)) by A4, XREAL_1: 6;

      end;

      assume (n + 2) <= ( len f);

      then ((n + 1) + 1) <= ( 0 + 1) by FINSEQ_1: 39;

      hence thesis by XREAL_1: 6;

    end;

    theorem :: RCOMP_3:47

    

     Th47: for L be TopSpace, G,G1 be Subset-Family of L st G is Cover of L & G is finite holds for ALL be set st G1 = (G \ { X where X be Subset of L : X in G & ex Y be Subset of L st Y in G & X c< Y }) & ALL = { C where C be Subset-Family of L : C is Cover of L & C c= G1 } holds ALL has_lower_Zorn_property_wrt ( RelIncl ALL)

    proof

      let L be TopSpace;

      let G,G1 be Subset-Family of L;

      assume that

       A1: G is Cover of L and

       A2: G is finite;

      let ALL be set;

      set ZAW = { X where X be Subset of L : X in G & ex Y be Subset of L st Y in G & X c< Y };

      assume that

       A3: G1 = (G \ ZAW) and

       A4: ALL = { C where C be Subset-Family of L : C is Cover of L & C c= G1 };

      

       A5: G1 is Cover of L by A1, A2, A3, Th45;

      set R = ( RelIncl ALL);

      

       A6: ( field R) = ALL by WELLORD2:def 1;

      let Y be set such that

       A7: Y c= ALL and

       A8: (R |_2 Y) is being_linear-order;

      per cases ;

        suppose

         A9: Y is non empty;

        defpred A[ set] means $1 is non empty implies ( meet $1) in Y;

        set E = { F(D) where D be Subset-Family of L : D in ( bool G1) };

        take x = ( meet Y);

        

         A10: ALL c= E

        proof

          let a be object;

          assume a in ALL;

          then ex C be Subset-Family of L st a = C & C is Cover of L & C c= G1 by A4;

          hence thesis;

        end;

        

         A11: ( bool G1) is finite by A2, A3;

        E is finite from FRAENKEL:sch 21( A11);

        then

         A12: Y is finite by A7, A10;

        

         A13: for x,B be set st x in Y & B c= Y & A[B] holds A[(B \/ {x})]

        proof

          let x,B be set such that

           A14: x in Y and B c= Y and

           A15: A[B] and (B \/ {x}) is non empty;

          per cases ;

            suppose B is empty;

            hence thesis by A14, SETFAM_1: 10;

          end;

            suppose

             A16: B is non empty;

            (R |_2 Y) is connected by A8;

            then

             A17: (R |_2 Y) is_connected_in ( field (R |_2 Y));

            ( field (R |_2 Y)) = Y by A6, A7, ORDERS_1: 71;

            then [x, ( meet B)] in (R |_2 Y) or [( meet B), x] in (R |_2 Y) or x = ( meet B) by A14, A15, A16, A17;

            then [x, ( meet B)] in R or [( meet B), x] in R or x = ( meet B) by XBOOLE_0:def 4;

            then

             A18: ( meet B) c= x or x c= ( meet B) by A7, A14, A15, A16, WELLORD2:def 1;

            ( meet (B \/ {x})) = (( meet B) /\ ( meet {x})) by A16, SETFAM_1: 9

            .= (( meet B) /\ x) by SETFAM_1: 10;

            hence thesis by A14, A15, A16, A18, XBOOLE_1: 28;

          end;

        end;

        consider y be object such that

         A19: y in Y by A9;

        y in ALL by A7, A19;

        then

         A20: ex C be Subset-Family of L st y = C & C is Cover of L & C c= G1 by A4;

        then

        reconsider X = x as Subset-Family of L by A19, SETFAM_1: 7;

        

         A21: A[ {} ];

        

         A22: A[Y] from FINSET_1:sch 2( A12, A21, A13);

        

         A23: X is Cover of L

        proof

          let a be object;

          assume

           A24: a in the carrier of L;

          ( meet Y) in ALL by A7, A9, A22;

          then

          consider C be Subset-Family of L such that

           A25: ( meet Y) = C and

           A26: C is Cover of L and C c= G1 by A4;

          the carrier of L c= ( union C) by A26, SETFAM_1:def 11;

          hence thesis by A24, A25;

        end;

        x c= G1 by A19, A20, SETFAM_1: 7;

        hence

         A27: x in ALL by A4, A23;

        let y be set;

        assume

         A28: y in Y;

        then x c= y by SETFAM_1: 7;

        hence thesis by A7, A27, A28, WELLORD2:def 1;

      end;

        suppose

         A29: Y is empty;

        take G1;

        thus thesis by A4, A5, A29;

      end;

    end;

    theorem :: RCOMP_3:48

    

     Th48: for L be TopSpace, G,ALL be set st ALL = { C where C be Subset-Family of L : C is Cover of L & C c= G } holds for M be set st M is_minimal_in ( RelIncl ALL) & M in ( field ( RelIncl ALL)) holds for A1 be Subset of L st A1 in M holds not ex A2,A3 be Subset of L st A2 in M & A3 in M & A1 c= (A2 \/ A3) & A1 <> A2 & A1 <> A3

    proof

      let L be TopSpace;

      let G be set;

      let ALL be set such that

       A1: ALL = { C where C be Subset-Family of L : C is Cover of L & C c= G };

      set R = ( RelIncl ALL);

      let M be set such that

       A2: M is_minimal_in ( RelIncl ALL) and

       A3: M in ( field ( RelIncl ALL));

      

       A4: ( field R) = ALL by WELLORD2:def 1;

      then

      consider C be Subset-Family of L such that

       A5: M = C and

       A6: C is Cover of L and

       A7: C c= G by A1, A3;

      let A1 be Subset of L such that

       A8: A1 in M;

      set Y = (C \ {A1});

      

       A9: Y <> M by A8, ZFMISC_1: 56;

      given A2,A3 be Subset of L such that

       A10: A2 in M and

       A11: A3 in M and

       A12: A1 c= (A2 \/ A3) and

       A13: A1 <> A2 and

       A14: A1 <> A3;

      

       A15: ( union C) = ( [#] L) by A6, SETFAM_1: 45;

      ( union Y) = the carrier of L

      proof

        thus ( union Y) c= the carrier of L;

        let x be object;

        assume

         A16: x in the carrier of L;

        per cases ;

          suppose

           A17: x in A1;

          per cases by A12, A17, XBOOLE_0:def 3;

            suppose

             A18: x in A2;

            A2 in Y by A5, A10, A13, ZFMISC_1: 56;

            hence thesis by A18, TARSKI:def 4;

          end;

            suppose

             A19: x in A3;

            A3 in Y by A5, A11, A14, ZFMISC_1: 56;

            hence thesis by A19, TARSKI:def 4;

          end;

        end;

          suppose

           A20: not x in A1;

          consider Z be set such that

           A21: x in Z and

           A22: Z in C by A15, A16, TARSKI:def 4;

          Z in Y by A20, A21, A22, ZFMISC_1: 56;

          hence thesis by A21, TARSKI:def 4;

        end;

      end;

      then

       A23: Y is Cover of L by SETFAM_1:def 11;

      

       A24: Y c= M by A5, XBOOLE_1: 36;

      then Y c= G by A5, A7;

      then

       A25: Y in ALL by A1, A23;

      then [Y, M] in R by A4, A3, A24, WELLORD2:def 1;

      hence contradiction by A4, A2, A9, A25;

    end;

    registration

      let X be Subset-Family of REAL ;

      cluster -> real-membered for Element of X;

      coherence

      proof

        let S be Element of X;

        per cases ;

          suppose X is non empty;

          then S in X;

          then S in ( bool REAL );

          then S c= REAL ;

          hence thesis;

        end;

          suppose X is empty;

          then S = {} by SUBSET_1:def 1;

          then S c= REAL ;

          hence thesis;

        end;

      end;

    end

    definition

      let r,s be Real;

      let F be Subset-Family of ( Closed-Interval-TSpace (r,s));

      :: RCOMP_3:def2

      mode IntervalCover of F -> FinSequence of ( bool REAL ) means

      : Def2: ( rng it ) c= F & ( union ( rng it )) = [.r, s.] & (for n be Nat st 1 <= n holds (n <= ( len it ) implies (it /. n) is non empty) & ((n + 1) <= ( len it ) implies ( lower_bound (it /. n)) <= ( lower_bound (it /. (n + 1))) & ( upper_bound (it /. n)) <= ( upper_bound (it /. (n + 1))) & ( lower_bound (it /. (n + 1))) < ( upper_bound (it /. n))) & ((n + 2) <= ( len it ) implies ( upper_bound (it /. n)) <= ( lower_bound (it /. (n + 2))))) & ( [.r, s.] in F implies it = <* [.r, s.]*>) & ( not [.r, s.] in F implies (ex p be Real st r < p & p <= s & (it . 1) = [.r, p.[) & (ex p be Real st r <= p & p < s & (it . ( len it )) = ].p, s.]) & for n be Nat st 1 < n & n < ( len it ) holds ex p,q be Real st r <= p & p < q & q <= s & (it . n) = ].p, q.[);

      existence

      proof

        per cases ;

          suppose

           A5: [.r, s.] in F;

          take f = <* [.r, s.]*>;

          

           A6: ( rng f) = { [.r, s.]} by FINSEQ_1: 38;

          thus ( rng f) c= F by A5, A6, TARSKI:def 1;

          thus ( union ( rng f)) = [.r, s.] by A6, ZFMISC_1: 25;

          thus thesis by A4, A5, Lm3;

        end;

          suppose

           A7: not [.r, s.] in F;

          set L = ( Closed-Interval-TSpace (r,s));

          

           A8: the carrier of L = [.r, s.] by A4, TOPMETR: 18;

           A9:

          now

            let A be Subset of L;

            thus A is bounded_above bounded_below by A8, XXREAL_2: 43, XXREAL_2: 44;

            hence A is real-bounded Subset of REAL by A8, XBOOLE_1: 1;

          end;

          L is compact by A4, HEINE: 4;

          then ( [#] L) is compact by COMPTS_1: 1;

          then

          consider G be Subset-Family of L such that

           A10: G c= F and

           A11: G is Cover of ( [#] L) and

           A12: G is finite by A1, A2, COMPTS_1:def 4;

          set ZAW = { X where X be Subset of L : X in G & ex Y be Subset of L st Y in G & X c< Y };

          set G1 = (G \ ZAW);

          set ALL = { C where C be Subset-Family of L : C is Cover of L & C c= G1 };

          set R = ( RelIncl ALL);

          

           A13: R is_antisymmetric_in ALL by WELLORD2: 21;

          set RM = { ( lower_bound ].c, s.]) where c be Real : ].c, s.] in G1 };

          set LM = { ( upper_bound [.r, b.[) where b be Real : [.r, b.[ in G1 };

          

           A14: G1 c= G by XBOOLE_1: 36;

          then

           A15: G1 c= F by A10;

          

           A16: for X be set st X in G1 holds X is interval Subset of REAL

          proof

            let X be set;

            assume X in G1;

            then

            reconsider X as connected Subset of L by A3, A15;

            reconsider Y = X as Subset of REAL by A8, XBOOLE_1: 1;

            Y is interval by Th43;

            hence thesis;

          end;

          reconsider T = L as non empty connected TopSpace by A4, TREAL_1: 20;

          set LM1 = { ( upper_bound E) where E be Subset of L : E in G1 };

          

           A17: LM c= LM1

          proof

            let x be object;

            assume x in LM;

            then ex b be Real st x = ( upper_bound [.r, b.[) & [.r, b.[ in G1;

            hence thesis;

          end;

          

           A18: LM c= REAL

          proof

            let x be object;

            assume x in LM;

            then ex b be Real st x = ( upper_bound [.r, b.[) & [.r, b.[ in G1;

            hence thesis by XREAL_0:def 1;

          end;

          set RM1 = { ( lower_bound E) where E be Subset of L : E in G1 };

          

           A19: RM c= RM1

          proof

            let x be object;

            assume x in RM;

            then ex b be Real st x = ( lower_bound ].b, s.]) & ].b, s.] in G1;

            hence thesis;

          end;

          

           A20: RM c= REAL

          proof

            let x be object;

            assume x in RM;

            then ex b be Real st x = ( lower_bound ].b, s.]) & ].b, s.] in G1;

            hence thesis by XREAL_0:def 1;

          end;

          

           A21: ( field R) = ALL by WELLORD2:def 1;

          R is_reflexive_in ALL & R is_transitive_in ALL by WELLORD2: 19, WELLORD2: 20;

          then R partially_orders ALL by A13;

          then

          consider M be set such that

           A22: M is_minimal_in R by A11, A12, A21, Th47, ORDERS_1: 64;

          

           A23: M in ( field R) by A22;

          then

          consider C be Subset-Family of L such that

           A24: M = C and

           A25: C is Cover of L and

           A26: C c= G1 by A21;

          

           A27: ( union C) = ( [#] L) by A25, SETFAM_1: 45;

          

           A28: s in [.r, s.] by A4, XXREAL_1: 1;

          then

          consider R2 be set such that

           A29: s in R2 and

           A30: R2 in C by A8, A27, TARSKI:def 4;

          r in [.r, s.] by A4, XXREAL_1: 1;

          then

          consider R1 be set such that

           A31: r in R1 and

           A32: R1 in C by A8, A27, TARSKI:def 4;

          

           A33: R1 in G1 by A26, A32;

          then

           A34: R1 in F by A15;

          

           A35: R2 in G1 by A26, A30;

          then

           A36: R2 in F by A15;

          reconsider R1, R2 as open connected Subset of L by A2, A3, A15, A33, A35;

           A37:

          now

            per cases by A4, A7, A29, A36, Th44;

              suppose ex a be Real st r < a & a <= s & R2 = [.r, a.[;

              hence RM is non empty by A29, XXREAL_1: 3;

            end;

              suppose ex a be Real st r <= a & a < s & R2 = ].a, s.];

              then

              consider a be Real such that r <= a and a < s and

               A38: R2 = ].a, s.];

              ( lower_bound ].a, s.]) in RM by A26, A30, A38;

              hence RM is non empty;

            end;

              suppose ex a,b be Real st r <= a & a < b & b <= s & R2 = ].a, b.[;

              hence RM is non empty by A29, XXREAL_1: 4;

            end;

          end;

           A39:

          now

            per cases by A4, A7, A31, A34, Th44;

              suppose ex a be Real st r < a & a <= s & R1 = [.r, a.[;

              then

              consider a be Real such that r < a and a <= s and

               A40: R1 = [.r, a.[;

              ( upper_bound [.r, a.[) in LM by A26, A32, A40;

              hence LM is non empty;

            end;

              suppose ex a be Real st r <= a & a < s & R1 = ].a, s.];

              hence LM is non empty by A31, XXREAL_1: 2;

            end;

              suppose ex a,b be Real st r <= a & a < b & b <= s & R1 = ].a, b.[;

              hence LM is non empty by A31, XXREAL_1: 4;

            end;

          end;

          

           A41: G1 is finite by A12;

          RM1 is finite from FRAENKEL:sch 21( A41);

          then

          reconsider RM as non empty finite Subset of REAL by A19, A37, A20;

          F c= ( bool REAL )

          proof

            let a be object;

            reconsider aa = a as set by TARSKI: 1;

            assume a in F;

            then aa c= REAL by A8, XBOOLE_1: 1;

            hence thesis;

          end;

          then G1 c= ( bool REAL ) by A15;

          then

          reconsider X = C as non empty finite Subset-Family of REAL by A12, A26, A32, XBOOLE_1: 1;

          LM1 is finite from FRAENKEL:sch 21( A41);

          then

          reconsider LM as non empty finite Subset of REAL by A17, A39, A18;

          reconsider kL = ( max LM) as Real;

          set LEWY = [.r, kL.[;

          kL in LM by XXREAL_2:def 8;

          then

          consider b be Real such that

           A42: kL = ( upper_bound [.r, b.[) and

           A43: [.r, b.[ in G1;

          

           A44: ( union G) = ( [#] L) by A11, SETFAM_1: 45;

           A45:

          now

            consider x be object such that

             A46: x in the carrier of L by XBOOLE_0:def 1;

            consider g be set such that

             A47: x in g and

             A48: g in G by A44, A46, TARSKI:def 4;

             {} c= g;

            then

             A49: {} c< g by A47;

            assume

             A50: {} in G1;

            then {} in G by XBOOLE_0:def 5;

            then {} in ZAW by A48, A49;

            hence contradiction by A50, XBOOLE_0:def 5;

          end;

          then

           A51: ( upper_bound LEWY) = kL by A42, A43, Th5, XXREAL_1: 27;

          

           A52: r < b by A45, A43, XXREAL_1: 27;

          then r < kL by A42, Th5;

          then

           A53: ( lower_bound LEWY) = r by Th4;

          reconsider LEWY as non empty Subset of L by A45, A42, A43, Th5, XXREAL_1: 27;

          

           A54: kL = b by A45, A42, A43, Th5, XXREAL_1: 27;

          

           A55: for A be Subset of L st r in A & A in G1 holds A = LEWY

          proof

            let A be Subset of L;

            assume that

             A56: r in A and

             A57: A in G1;

            

             A58: A in F & A is open by A2, A15, A57;

             A59:

            now

              assume

               A60: (ex a be Real st r <= a & a < s & A = ].a, s.]) or ex a,b be Real st r <= a & a < b & b <= s & A = ].a, b.[;

              per cases by A60;

                suppose ex a be Real st r <= a & a < s & A = ].a, s.];

                hence contradiction by A56, XXREAL_1: 2;

              end;

                suppose ex a,b be Real st r <= a & a < b & b <= s & A = ].a, b.[;

                hence contradiction by A56, XXREAL_1: 4;

              end;

            end;

            A is connected by A3, A15, A57;

            then

            consider ak be Real such that

             A61: r < ak and ak <= s and

             A62: A = [.r, ak.[ by A4, A7, A56, A58, A59, Th44;

            

             A63: A c= LEWY

            proof

              ( upper_bound A) = ak by A61, A62, Th5;

              then ak in LM by A57, A62;

              then

               A64: ak <= kL by XXREAL_2:def 8;

              let a be object;

              assume

               A65: a in A;

              then a in [.r, s.] by A8;

              then

              reconsider a as Real;

              a < ak by A62, A65, XXREAL_1: 3;

              then

               A66: a < kL by A64, XXREAL_0: 2;

              r <= a by A62, A65, XXREAL_1: 3;

              hence thesis by A66, XXREAL_1: 3;

            end;

            assume A <> LEWY;

            then A c< LEWY by A63;

            then A in ZAW by A14, A43, A54, A57;

            hence contradiction by A57, XBOOLE_0:def 5;

          end;

          then

          reconsider LLEWY = LEWY as Element of X by A26, A31, A32;

          reconsider pP = ( min RM) as Real;

          set PRAWY = ].pP, s.];

          pP in RM by XXREAL_2:def 7;

          then

          consider b be Real such that

           A67: pP = ( lower_bound ].b, s.]) and

           A68: ].b, s.] in G1;

          

           A69: ( lower_bound PRAWY) = pP by A45, A67, A68, Th6, XXREAL_1: 26;

          

           A70: b < s by A45, A68, XXREAL_1: 26;

          then pP < s by A67, Th6;

          then

           A71: ( upper_bound PRAWY) = s by Th7;

          reconsider PRAWY as non empty Subset of L by A45, A67, A68, Th6, XXREAL_1: 26;

          

           A72: pP = b by A45, A67, A68, Th6, XXREAL_1: 26;

          

           A73: for A be Subset of L st A in G1 & A <> LEWY & A <> PRAWY holds ex a,b be Real st a < b & A = ].a, b.[

          proof

            let A be Subset of L such that

             A74: A in G1 and

             A75: A <> LEWY and

             A76: A <> PRAWY;

            

             A77: A in F & A is open connected by A3, A2, A15, A74;

            per cases by A4, A7, A45, A74, A77, Th44;

              suppose ex a be Real st r < a & a <= s & A = [.r, a.[;

              then

              consider a be Real such that r < a and a <= s and

               A78: A = [.r, a.[;

              per cases ;

                suppose a <= kL;

                then A c= LEWY by A78, XXREAL_1: 38;

                then A c< LEWY by A75;

                then A in ZAW by A14, A43, A54, A74;

                hence thesis by A74, XBOOLE_0:def 5;

              end;

                suppose a > kL;

                then LEWY c= A by A78, XXREAL_1: 38;

                then LEWY c< A by A75;

                then LEWY in ZAW by A14, A43, A54, A74;

                hence thesis by A43, A54, XBOOLE_0:def 5;

              end;

            end;

              suppose ex a be Real st r <= a & a < s & A = ].a, s.];

              then

              consider a be Real such that r <= a and a < s and

               A79: A = ].a, s.];

              per cases ;

                suppose a >= pP;

                then A c= PRAWY by A79, XXREAL_1: 42;

                then A c< PRAWY by A76;

                then A in ZAW by A14, A68, A72, A74;

                hence thesis by A74, XBOOLE_0:def 5;

              end;

                suppose a < pP;

                then PRAWY c= A by A79, XXREAL_1: 42;

                then PRAWY c< A by A76;

                then PRAWY in ZAW by A14, A68, A72, A74;

                hence thesis by A68, A72, XBOOLE_0:def 5;

              end;

            end;

              suppose ex a,b be Real st r <= a & a < b & b <= s & A = ].a, b.[;

              then

              consider a,b be Real such that r <= a and

               A80: a < b and b <= s and

               A81: A = ].a, b.[;

              reconsider a, b as Real;

              take a, b;

              thus thesis by A80, A81;

            end;

          end;

          

           A82: for A be Subset of L st A in G1 & ( upper_bound A) in A holds A = PRAWY

          proof

            let A be Subset of L such that

             A83: A in G1 and

             A84: ( upper_bound A) in A and

             A85: A <> PRAWY;

            A <> LEWY by A51, A84, XXREAL_1: 3;

            then

            consider a,b be Real such that

             A86: a < b and

             A87: A = ].a, b.[ by A73, A83, A85;

            ( upper_bound A) = b by A86, A87, TOPREAL6: 17;

            hence contradiction by A84, A87, XXREAL_1: 4;

          end;

          defpred F[ set, set, set] means ex S be Element of X st S = $2 & ( upper_bound S qua real-membered set) in $3;

          

           A88: X c= F by A15, A26;

          

           A89: for Z be Subset of REAL st Z in X holds Z is non empty open connected Subset of T

          proof

            let Z be Subset of REAL ;

            assume

             A90: Z in X;

            then Z is non empty interval by A45, A16, A26;

            hence thesis by A2, A88, A90, Th43;

          end;

          

           A91: for n be Nat st 1 <= n & n < ( card X) holds for x be Element of X holds ex y be Element of X st F[n, x, y]

          proof

            let n be Nat such that 1 <= n and n < ( card X);

            let x be Element of X;

            reconsider x1 = x as Subset of REAL ;

            

             A92: x1 is non empty by A89;

            

             A93: x c= ( union X) by ZFMISC_1: 74;

            then x c= [.r, s.] by A8, A27;

            then x1 is bounded_above by XXREAL_2: 43;

            then ( upper_bound x) is Element of L by A8, A27, A92, A93, Th2;

            then

            consider y be set such that

             A94: ( upper_bound x) in y and

             A95: y in X by A27, TARSKI:def 4;

            reconsider y as Element of X by A95;

            take y, x;

            thus thesis by A94;

          end;

          consider IT be FinSequence of X such that

           A96: ( len IT) = ( card X) and

           A97: (IT . 1) = LLEWY or ( card X) = 0 and

           A98: for n be Nat st 1 <= n & n < ( card X) holds F[n, (IT . n), (IT . (n + 1))] from RECDEF_1:sch 4( A91);

          

           A99: ( rng IT) c= X;

          ( rng IT) c= ( bool REAL ) by XBOOLE_1: 1;

          then

          reconsider IT as FinSequence of ( bool REAL ) by FINSEQ_1:def 4;

          

           A100: IT is non empty by A96;

          then

           A101: ( rng IT) is non empty;

          then

           A102: 1 in ( dom IT) by FINSEQ_3: 32;

          then

           A103: (IT /. 1) = (IT . 1) by PARTFUN1:def 6;

          

           A104: for n be Nat st n in ( dom IT) holds (IT . n) in X & (IT /. n) in X

          proof

            let n be Nat;

            assume n in ( dom IT);

            then (IT . n) = (IT /. n) & (IT . n) in ( rng IT) by FUNCT_1:def 3, PARTFUN1:def 6;

            hence thesis by A99;

          end;

          

           A105: for n be Nat st n in ( dom IT) holds (IT . n) in G1 & (IT /. n) in G1 by A104, A26;

          

           A106: for i be Nat st i in ( dom IT) holds for x be Point of L st x < ( upper_bound (IT /. i)) holds ex j be Nat st j in ( dom IT) & j <= i & x in (IT /. j)

          proof

            defpred Q[ Nat] means $1 in ( dom IT) implies for x be Point of L st x < ( upper_bound (IT /. $1)) holds ex j be Nat st j in ( dom IT) & j <= $1 & x in (IT /. j);

            

             A107: Q[n] implies Q[(n + 1)]

            proof

              assume that

               A108: Q[n] and

               A109: (n + 1) in ( dom IT);

              

               A110: (IT /. (n + 1)) = (IT . (n + 1)) by A109, PARTFUN1:def 6;

              let x be Point of L such that

               A111: x < ( upper_bound (IT /. (n + 1)));

              per cases by A109, TOPREALA: 2;

                suppose

                 A112: n = 0 ;

                take 1;

                thus 1 in ( dom IT) by A101, FINSEQ_3: 32;

                thus 1 <= (n + 1) by A112;

                r <= x by A8, XXREAL_1: 1;

                hence thesis by A51, A97, A111, A110, A112, XXREAL_1: 3;

              end;

                suppose

                 A113: n in ( dom IT);

                (n + 1) <= ( len IT) by A109, FINSEQ_3: 25;

                then

                 A114: n < ( len IT) by NAT_1: 13;

                1 <= n by A113, FINSEQ_3: 25;

                then

                 A115: ex S be Element of X st S = (IT . n) & ( upper_bound S) in (IT . (n + 1)) by A96, A98, A114;

                (IT /. (n + 1)) in X by A104, A109;

                then

                 A116: (IT /. (n + 1)) is bounded_below by A9;

                (IT /. n) = (IT . n) by A113, PARTFUN1:def 6;

                then

                 A117: ( lower_bound (IT /. (n + 1))) <= ( upper_bound (IT /. n)) by A110, A116, A115, SEQ_4:def 2;

                

                 A118: (IT /. (n + 1)) is interval Subset of REAL & (IT /. (n + 1)) is non empty by A45, A16, A105, A109;

                per cases by XXREAL_0: 1;

                  suppose x < ( upper_bound (IT /. n));

                  then

                  consider j be Nat such that

                   A119: j in ( dom IT) and

                   A120: j <= n and

                   A121: x in (IT /. j) by A108, A113;

                  take j;

                  thus j in ( dom IT) by A119;

                  (j + 0 ) < (n + 1) by A120, XREAL_1: 8;

                  hence j <= (n + 1);

                  thus thesis by A121;

                end;

                  suppose

                   A122: x = ( upper_bound (IT /. n));

                  take (n + 1);

                  thus (n + 1) in ( dom IT) by A109;

                  thus (n + 1) <= (n + 1);

                  thus thesis by A110, A113, A115, A122, PARTFUN1:def 6;

                end;

                  suppose

                   A123: x > ( upper_bound (IT /. n));

                  take (n + 1);

                  thus (n + 1) in ( dom IT) by A109;

                  thus (n + 1) <= (n + 1);

                  ( lower_bound (IT /. (n + 1))) < x by A117, A123, XXREAL_0: 2;

                  hence thesis by A111, A118, Th30;

                end;

              end;

            end;

            

             A124: Q[ 0 ] by FINSEQ_3: 24;

            

             A125: Q[n] from NAT_1:sch 2( A124, A107);

            let i be Nat;

            assume i in ( dom IT);

            hence thesis by A125;

          end;

          

           A126: s in ].b, s.] by A70, XXREAL_1: 2;

          

           A127: for i be Nat st i in ( dom IT) holds for j be Nat st j in ( dom IT) & i < j holds ex y be Point of L st y in (IT /. j) & for x be Point of L st x in (IT /. i) holds x < y

          proof

            let i be Nat such that

             A128: i in ( dom IT);

            defpred W[ Nat] means $1 in ( dom IT) & i < $1 implies ex y be Point of L st y in (IT /. $1) & for x be Point of L st x in (IT /. i) holds x < y;

            

             A129: for n holds W[n] implies W[(n + 1)]

            proof

              let n;

              assume that

               A130: W[n] and

               A131: (n + 1) in ( dom IT);

              

               A132: (IT /. (n + 1)) = (IT . (n + 1)) by A131, PARTFUN1:def 6;

              assume

               A133: i < (n + 1);

              then

               A134: i <= n by NAT_1: 13;

              per cases by A131, TOPREALA: 2;

                suppose n = 0 ;

                then i = 0 by A133, NAT_1: 13;

                hence thesis by A128, FINSEQ_3: 24;

              end;

                suppose

                 A135: n in ( dom IT);

                then

                 A136: (IT /. n) in X by A104;

                then

                 A137: (IT /. n) is bounded_above by A9;

                

                 A138: (IT /. n) = (IT . n) by A135, PARTFUN1:def 6;

                then (IT /. n) in ( rng IT) by A135, FUNCT_1:def 3;

                then

                 A139: (IT /. n) is non empty & (IT /. n) is Subset of L by A89, A99;

                then ( upper_bound (IT /. n)) in [.r, s.] by A8, A137, Th2;

                then

                 A140: ( upper_bound (IT /. n)) <= s by XXREAL_1: 1;

                

                 A141: (IT /. (n + 1)) in X by A104, A131;

                

                 A142: 1 <= n by A135, FINSEQ_3: 25;

                

                 A143: (IT /. (n + 1)) in ( rng IT) by A131, A132, FUNCT_1:def 3;

                then

                 A144: (IT /. (n + 1)) is open connected Subset of L by A89, A99;

                then

                 A145: (IT /. (n + 1)) is interval Subset of REAL by Th43;

                

                 A146: (n + 1) <= ( len IT) by A131, FINSEQ_3: 25;

                then n is Element of NAT & n < ( card X) by A96, NAT_1: 13, ORDINAL1:def 12;

                then

                consider S be Element of X such that

                 A147: S = (IT . n) and

                 A148: ( upper_bound S) in (IT . (n + 1)) by A98, A142;

                (IT /. (n + 1)) is bounded_below by A9, A144;

                then

                 A149: ( lower_bound (IT /. (n + 1))) <= ( upper_bound S) by A132, A148, SEQ_4:def 2;

                

                 A150: (IT /. (n + 1)) is bounded_above by A9, A144;

                then

                 A151: ( upper_bound S) <= ( upper_bound (IT /. (n + 1))) by A132, A148, SEQ_4:def 1;

                

                 A152: (IT /. (n + 1)) is non empty by A89, A99, A143;

                then ( upper_bound (IT /. (n + 1))) in [.r, s.] by A8, A144, A150, Th2;

                then

                 A153: ( upper_bound (IT /. (n + 1))) <= s by XXREAL_1: 1;

                per cases by A134, XXREAL_0: 1;

                  suppose i < n;

                  then

                  consider y be Point of L such that

                   A154: y in (IT /. n) and

                   A155: for x be Point of L st x in (IT /. i) holds x < y by A130, A135;

                  

                   A156: y <= ( upper_bound (IT /. n)) by A137, A154, SEQ_4:def 1;

                  per cases by A151, XXREAL_0: 1;

                    suppose

                     A157: ( upper_bound S) < ( upper_bound (IT /. (n + 1)));

                    set y1 = ((( upper_bound S) + ( upper_bound (IT /. (n + 1)))) / 2);

                    

                     A158: ( upper_bound S) < y1 by A157, XREAL_1: 226;

                    ( upper_bound S) in [.r, s.] by A8, A138, A137, A139, A147, Th2;

                    then r <= ( upper_bound S) by XXREAL_1: 1;

                    then

                     A159: r <= y1 by A158, XXREAL_0: 2;

                    y1 < ( upper_bound (IT /. (n + 1))) by A157, XREAL_1: 226;

                    then y1 < s by A153, XXREAL_0: 2;

                    then

                    reconsider y1 as Point of L by A8, A159, XXREAL_1: 1;

                    take y1;

                    ( lower_bound (IT /. (n + 1))) < y1 by A149, A158, XXREAL_0: 2;

                    hence y1 in (IT /. (n + 1)) by A145, A152, A157, Th30, XREAL_1: 226;

                    let x be Point of L;

                    assume x in (IT /. i);

                    then x < ( upper_bound (IT /. n)) by A155, A156, XXREAL_0: 2;

                    hence thesis by A138, A147, A158, XXREAL_0: 2;

                  end;

                    suppose

                     A160: ( upper_bound S) = ( upper_bound (IT /. (n + 1)));

                    reconsider y1 = s as Point of L by A4, A8, XXREAL_1: 1;

                    take y1;

                    (IT /. (n + 1)) = PRAWY by A26, A82, A132, A148, A141, A160;

                    hence y1 in (IT /. (n + 1)) by A70, A72, XXREAL_1: 2;

                    let x be Point of L;

                    assume x in (IT /. i);

                    then x < ( upper_bound (IT /. n)) by A155, A156, XXREAL_0: 2;

                    hence thesis by A140, XXREAL_0: 2;

                  end;

                end;

                  suppose

                   A161: i = n;

                  reconsider y1 = ( upper_bound (IT /. n)) as Element of L by A8, A137, A139, Th2;

                  take y1;

                  thus y1 in (IT /. (n + 1)) by A132, A135, A147, A148, PARTFUN1:def 6;

                  let x be Point of L;

                  assume

                   A162: x in (IT /. i);

                   A163:

                  now

                    set IT1 = (IT | ( Seg n));

                    

                     A164: ( rng IT1) c= ( rng IT) by RELAT_1: 70;

                    ( rng IT1) c= ( bool the carrier of L)

                    proof

                      let A be object;

                      assume A in ( rng IT1);

                      then A in ( rng IT) by A164;

                      then A in X by A99;

                      hence thesis;

                    end;

                    then

                    reconsider FI = ( rng IT1) as Subset-Family of L;

                    assume x = ( upper_bound (IT /. n));

                    then

                     A165: (IT /. n) = PRAWY by A26, A82, A136, A161, A162;

                     A166:

                    now

                      ( union FI) = the carrier of L

                      proof

                        thus ( union FI) c= the carrier of L;

                        let l be object;

                        assume l in the carrier of L;

                        then

                        reconsider l as Point of L;

                        per cases ;

                          suppose l < ( upper_bound (IT /. n));

                          then

                          consider j be Nat such that

                           A167: j in ( dom IT) and

                           A168: j <= n and

                           A169: l in (IT /. j) by A106, A135;

                          1 <= j by A167, FINSEQ_3: 25;

                          then j in ( Seg n) by A168, FINSEQ_1: 1;

                          then

                           A170: (IT . j) in FI by A167, FUNCT_1: 50;

                          (IT . j) = (IT /. j) by A167, PARTFUN1:def 6;

                          hence thesis by A169, A170, TARSKI:def 4;

                        end;

                          suppose

                           A171: l >= ( upper_bound (IT /. n));

                          n in ( Seg n) by A142, FINSEQ_1: 1;

                          then

                           A172: (IT . n) in FI by A135, FUNCT_1: 50;

                          l <= s by A8, XXREAL_1: 1;

                          then l = s by A71, A165, A171, XXREAL_0: 1;

                          hence thesis by A72, A126, A138, A165, A172, TARSKI:def 4;

                        end;

                      end;

                      then

                       A173: FI is Cover of L by SETFAM_1:def 11;

                      assume

                       A174: FI <> X;

                      

                       A175: FI c= X by A99, A164;

                      then FI c= G1 by A26;

                      then

                       A176: FI in ALL by A173;

                      then [FI, M] in R by A21, A23, A24, A175, WELLORD2:def 1;

                      hence contradiction by A21, A22, A24, A174, A176;

                    end;

                    ( Seg n) c= ( dom IT)

                    proof

                      let x be object;

                      

                       A177: (n + 0 ) <= (n + 1) by XREAL_1: 6;

                      assume

                       A178: x in ( Seg n);

                      then

                      reconsider x as Nat;

                      x <= n by A178, FINSEQ_1: 1;

                      then x <= (n + 1) by A177, XXREAL_0: 2;

                      then

                       A179: x <= ( len IT) by A146, XXREAL_0: 2;

                      1 <= x by A178, FINSEQ_1: 1;

                      hence thesis by A179, FINSEQ_3: 25;

                    end;

                    then ( dom IT1) = ( Seg n) by RELAT_1: 62;

                    then ( card ( rng IT1)) <= ( card ( dom IT1)) & ( card ( dom IT1)) = n by CARD_2: 47, FINSEQ_1: 57;

                    then (n + 1) <= (n + 0 ) by A96, A146, A166, XXREAL_0: 2;

                    hence contradiction by XREAL_1: 6;

                  end;

                  x <= ( upper_bound (IT /. n)) by A137, A161, A162, SEQ_4:def 1;

                  hence thesis by A163, XXREAL_0: 1;

                end;

              end;

            end;

            

             A180: W[ 0 ];

            for n holds W[n] from NAT_1:sch 2( A180, A129);

            hence thesis;

          end;

          

           A181: IT is one-to-one

          proof

            let i,j be object such that

             A182: i in ( dom IT) & j in ( dom IT) and

             A183: (IT . i) = (IT . j);

            

             A184: (IT /. i) = (IT . i) & (IT /. j) = (IT . j) by A182, PARTFUN1:def 6;

            assume

             A185: i <> j;

            reconsider i, j as Nat by A182;

            per cases by A185, XXREAL_0: 1;

              suppose i < j;

              then ex y be Point of L st y in (IT /. j) & for x be Point of L st x in (IT /. i) holds x < y by A127, A182;

              hence thesis by A183, A184;

            end;

              suppose j < i;

              then ex y be Point of L st y in (IT /. i) & for x be Point of L st x in (IT /. j) holds x < y by A127, A182;

              hence thesis by A183, A184;

            end;

          end;

          

           A186: for i,j be Nat st i in ( dom IT) & j in ( dom IT) & i <> j holds (IT /. i) <> (IT /. j)

          proof

            let i,j be Nat such that

             A187: i in ( dom IT) & j in ( dom IT) and

             A188: i <> j;

            (IT /. i) = (IT . i) & (IT /. j) = (IT . j) by A187, PARTFUN1:def 6;

            hence thesis by A181, A187, A188;

          end;

          

           A189: for A be Subset of L st s in A & A in G1 holds A = PRAWY

          proof

            let A be Subset of L;

            assume that

             A190: s in A and

             A191: A in G1;

            

             A192: A in F & A is open by A2, A15, A191;

             A193:

            now

              assume

               A194: (ex a be Real st r < a & a <= s & A = [.r, a.[) or ex a,b be Real st r <= a & a < b & b <= s & A = ].a, b.[;

              per cases by A194;

                suppose ex a be Real st r < a & a <= s & A = [.r, a.[;

                hence contradiction by A190, XXREAL_1: 3;

              end;

                suppose ex a,b be Real st r <= a & a < b & b <= s & A = ].a, b.[;

                hence contradiction by A190, XXREAL_1: 4;

              end;

            end;

            A is connected by A3, A15, A191;

            then

            consider ak be Real such that r <= ak and

             A195: ak < s and

             A196: A = ].ak, s.] by A4, A7, A190, A192, A193, Th44;

            

             A197: A c= PRAWY

            proof

              ( lower_bound A) = ak by A195, A196, Th6;

              then ak in RM by A191, A196;

              then

               A198: pP <= ak by XXREAL_2:def 7;

              let a be object;

              assume

               A199: a in A;

              then a in [.r, s.] by A8;

              then

              reconsider a as Real;

              ak < a by A196, A199, XXREAL_1: 2;

              then

               A200: pP < a by A198, XXREAL_0: 2;

              a <= s by A196, A199, XXREAL_1: 2;

              hence thesis by A200, XXREAL_1: 2;

            end;

            assume A <> PRAWY;

            then A c< PRAWY by A197;

            then A in ZAW by A14, A68, A72, A191;

            hence contradiction by A191, XBOOLE_0:def 5;

          end;

          take IT;

          thus ( rng IT) c= F by A88, A99;

          ( dom IT) = ( Seg ( len IT)) by FINSEQ_1:def 3;

          then

           A201: ( card ( dom IT)) = ( card X) by A96, FINSEQ_1: 57;

          reconsider IT1 = IT as Function of ( dom IT), X by A99, FUNCT_2: 2;

          IT1 is onto by A201, A181, FINSEQ_4: 63;

          then

           A202: ( rng IT) = X;

          hence ( union ( rng IT)) = [.r, s.] by A8, A27;

          ex Z be set st s in Z & Z in C by A28, A8, A27, TARSKI:def 4;

          then PRAWY in X by A26, A189;

          then

          consider i be object such that

           A203: i in ( dom IT) and

           A204: (IT . i) = PRAWY by A202, FUNCT_1:def 3;

          reconsider i as Element of NAT by A203;

          

           A205: i <= ( len IT) by A203, FINSEQ_3: 25;

          

           A206: (IT /. i) = (IT . i) by A203, PARTFUN1:def 6;

          

           A207: 1 <= i by A203, FINSEQ_3: 25;

           A208:

          now

            assume i <> ( len IT);

            then

             A209: i < ( len IT) by A205, XXREAL_0: 1;

            then

             A210: ex S be Element of X st S = (IT . i) & ( upper_bound S) in (IT . (i + 1)) by A96, A98, A207;

            ( 0 + 1) <= (i + 1) & (i + 1) <= ( len IT) by A209, NAT_1: 13;

            then

             A211: (i + 1) in ( dom IT) by FINSEQ_3: 25;

            then (IT /. (i + 1)) = (IT . (i + 1)) & (IT /. (i + 1)) in G1 by A105, PARTFUN1:def 6;

            then (i + 0 ) = (i + 1) by A71, A189, A186, A203, A204, A206, A210, A211;

            hence contradiction;

          end;

          

           A212: ( len IT) in ( dom IT) by A100, FINSEQ_5: 6;

          

           A213: for n be Nat st 1 < n & n < ( len IT) holds ex a,b be Real st r <= a & a < b & b <= s & (IT /. n) = ].a, b.[

          proof

            let n be Nat such that

             A214: 1 < n and

             A215: n < ( len IT);

            

             A216: n in ( dom IT) by A214, A215, FINSEQ_3: 25;

            then (IT . n) in ( rng IT) by FUNCT_1:def 3;

            then

             A217: (IT /. n) in ( rng IT) by A216, PARTFUN1:def 6;

            then

             A218: (IT /. n) in X by A99;

            then

             A219: (IT /. n) in G1 & (IT /. n) in F by A26, A88;

            

             A220: (IT /. n) is open connected Subset of L by A89, A99, A217;

            per cases by A4, A7, A45, A219, A220, Th44;

              suppose ex a be Real st r < a & a <= s & (IT /. n) = [.r, a.[;

              then

              consider a be Real such that

               A221: r < a and a <= s and

               A222: (IT /. n) = [.r, a.[;

              r in [.r, a.[ by A221, XXREAL_1: 3;

              hence thesis by A26, A55, A97, A102, A103, A186, A214, A216, A218, A222;

            end;

              suppose ex a be Real st r <= a & a < s & (IT /. n) = ].a, s.];

              then

              consider a be Real such that r <= a and

               A223: a < s and

               A224: (IT /. n) = ].a, s.];

              ( upper_bound ].a, s.]) = s & s in ].a, s.] by A223, Th7, XXREAL_1: 2;

              hence thesis by A26, A82, A212, A186, A204, A206, A208, A215, A216, A218, A224;

            end;

              suppose ex a,b be Real st r <= a & a < b & b <= s & (IT /. n) = ].a, b.[;

              then

              consider a,b be Real such that

               A225: r <= a & a < b & b <= s & (IT /. n) = ].a, b.[;

              reconsider a, b as Real;

              take a, b;

              thus thesis by A225;

            end;

          end;

           A226:

          now

            let n be Nat such that

             A227: 1 <= n;

            reconsider m = n as Element of NAT by ORDINAL1:def 12;

            hereby

              assume n <= ( len IT);

              then m in ( dom IT) & (IT /. n) = (IT . n) by A227, FINSEQ_3: 25, FINSEQ_4: 15;

              then (IT /. n) in ( rng IT) by FUNCT_1:def 3;

              then (IT /. n) in X by A99;

              hence (IT /. n) is non empty by A45, A26;

            end;

            hereby

              assume

               A228: (n + 1) <= ( len IT);

              then

               A229: m < ( len IT) by NAT_1: 13;

              then

               A230: (IT /. n) = (IT . n) by A227, FINSEQ_4: 15;

              

               A231: m in ( dom IT) by A227, A229, FINSEQ_3: 25;

              then (IT /. n) in ( rng IT) by A230, FUNCT_1:def 3;

              then

               A232: (IT /. n) in X by A99;

              then

               A233: (IT /. n) in G1 by A26;

              

               A234: (IT /. n) is non empty real-bounded interval Subset of REAL by A9, A45, A16, A26, A232;

              

               A235: ex S be Element of X st S = (IT . n) & ( upper_bound S) in (IT . (n + 1)) by A96, A98, A227, A229;

              

               A236: 1 < (m + 1) by A227, NAT_1: 13;

              then

               A237: (IT /. (m + 1)) = (IT . (m + 1)) by A228, FINSEQ_4: 15;

              

               A238: (n + 1) in ( dom IT) by A228, A236, FINSEQ_3: 25;

              then

               A239: (IT /. (n + 1)) in ( rng IT) by A237, FUNCT_1:def 3;

              then

               A240: (IT /. (n + 1)) in X by A99;

              then

               A241: (IT /. (n + 1)) in G1 by A26;

              (n + 0 ) < (n + 1) by XREAL_1: 6;

              then

               A242: (IT /. n) <> (IT /. (n + 1)) by A186, A231, A238;

              

               A243: (IT /. (n + 1)) is non empty real-bounded interval Subset of REAL by A9, A45, A16, A26, A240;

              (IT /. (n + 1)) c= ( union X) by A99, A239, ZFMISC_1: 74;

              then (IT /. (n + 1)) c= [.r, s.] by A8, A27;

              then

               A244: (IT /. (n + 1)) is bounded_above by XXREAL_2: 43;

              then

               A245: ( upper_bound (IT /. n)) <= ( upper_bound (IT /. (n + 1))) by A235, A230, A237, SEQ_4:def 1;

              hereby

                assume

                 A246: ( lower_bound (IT /. n)) > ( lower_bound (IT /. (n + 1)));

                ( upper_bound (IT /. (n + 1))) = ( upper_bound (IT /. n)) & ( upper_bound (IT /. n)) in (IT /. n) implies ( upper_bound (IT /. (n + 1))) in (IT /. (n + 1)) by A26, A82, A212, A186, A204, A206, A208, A229, A231, A232;

                then (IT /. n) c= (IT /. (n + 1)) by A234, A243, A245, A246, Th31;

                then (IT /. n) c< (IT /. (n + 1)) by A242;

                then (IT /. n) in ZAW by A14, A233, A241;

                hence contradiction by A26, A232, XBOOLE_0:def 5;

              end;

              thus ( upper_bound (IT /. n)) <= ( upper_bound (IT /. (n + 1))) by A235, A230, A237, A244, SEQ_4:def 1;

              per cases by A228, XXREAL_0: 1;

                suppose

                 A247: (n + 1) = ( len IT);

                then pP < ( upper_bound (IT /. n)) by A204, A208, A235, A230, XXREAL_1: 2;

                hence ( lower_bound (IT /. (n + 1))) < ( upper_bound (IT /. n)) by A204, A206, A208, A247, Th6, XXREAL_1: 26;

              end;

                suppose (n + 1) < ( len IT);

                then

                consider a1,b1 be Real such that r <= a1 and

                 A248: a1 < b1 and b1 <= s and

                 A249: (IT /. (n + 1)) = ].a1, b1.[ by A213, A236;

                a1 < ( upper_bound (IT /. n)) by A235, A230, A237, A249, XXREAL_1: 4;

                hence ( lower_bound (IT /. (n + 1))) < ( upper_bound (IT /. n)) by A248, A249, TOPREAL6: 17;

              end;

            end;

          end;

          hereby

            let n be Nat such that

             A250: 1 <= n;

            thus

             A251: (n <= ( len IT) implies (IT /. n) is non empty) & ((n + 1) <= ( len IT) implies ( lower_bound (IT /. n)) <= ( lower_bound (IT /. (n + 1))) & ( upper_bound (IT /. n)) <= ( upper_bound (IT /. (n + 1))) & ( lower_bound (IT /. (n + 1))) < ( upper_bound (IT /. n))) by A226, A250;

            reconsider m = n as Nat;

            

             A252: (n + 0 ) < (n + 1) by XREAL_1: 6;

            then

             A253: 1 < (m + 1) by A250, XXREAL_0: 2;

            assume

             A254: (n + 2) <= ( len IT);

            then

             A255: ((n + 1) + 1) <= ( len IT);

            then

             A256: (m + 1) < ( len IT) by NAT_1: 13;

            then

             A257: (n + 1) in ( dom IT) by A253, FINSEQ_3: 25;

            then (IT /. (n + 1)) = (IT . (n + 1)) by PARTFUN1:def 6;

            then (IT /. (n + 1)) in ( rng IT) by A257, FUNCT_1:def 3;

            then

             A258: (IT /. (n + 1)) in X by A99;

            ( 0 + 1) <= (n + 1) by XREAL_1: 6;

            then

             A259: ( upper_bound (IT /. (n + 1))) <= ( upper_bound (IT /. ((n + 1) + 1))) by A226, A254;

            assume

             A260: ( upper_bound (IT /. n)) > ( lower_bound (IT /. (n + 2)));

            consider a1,b1 be Real such that r <= a1 and

             A261: a1 < b1 and b1 <= s and

             A262: (IT /. (n + 1)) = ].a1, b1.[ by A213, A253, A256;

            

             A263: ( lower_bound ].a1, b1.[) = a1 by A261, TOPREAL6: 17;

            

             A264: ( upper_bound ].a1, b1.[) = b1 by A261, TOPREAL6: 17;

            

             A265: (IT /. (n + 1)) c= ((IT /. n) \/ (IT /. (n + 2)))

            proof

              let x be object;

              assume

               A266: x in (IT /. (n + 1));

              then

              reconsider x as Real;

              

               A267: a1 < x by A262, A266, XXREAL_1: 4;

              

               A268: x < b1 by A262, A266, XXREAL_1: 4;

              per cases ;

                suppose

                 A269: x < ( upper_bound (IT /. n));

                per cases ;

                  suppose

                   A270: n = 1;

                  then ( lower_bound (IT /. n)) <= x by A8, A53, A97, A103, A258, A266, XXREAL_1: 1;

                  then x in (IT /. n) by A42, A54, A53, A97, A103, A269, A270, XXREAL_1: 3;

                  hence thesis by XBOOLE_0:def 3;

                end;

                  suppose

                   A271: n <> 1;

                  (n + 0 ) < (n + 2) by XREAL_1: 6;

                  then

                   A272: n < ( len IT) by A254, XXREAL_0: 2;

                  

                   A273: ( lower_bound (IT /. n)) < x by A251, A255, A262, A263, A267, NAT_1: 13, XXREAL_0: 2;

                  1 < n by A250, A271, XXREAL_0: 1;

                  then

                  consider a,b be Real such that r <= a and

                   A274: a < b and b <= s and

                   A275: (IT /. n) = ].a, b.[ by A213, A272;

                  ( lower_bound (IT /. n)) = a & ( upper_bound (IT /. n)) = b by A274, A275, TOPREAL6: 17;

                  then x in (IT /. n) by A269, A275, A273, XXREAL_1: 4;

                  hence thesis by XBOOLE_0:def 3;

                end;

              end;

                suppose x >= ( upper_bound (IT /. n));

                then

                 A276: x > ( lower_bound (IT /. (n + 2))) by A260, XXREAL_0: 2;

                per cases ;

                  suppose

                   A277: ( len IT) = (n + 2);

                  x <= s by A8, A258, A266, XXREAL_1: 1;

                  then x in (IT /. (n + 2)) by A69, A204, A206, A208, A276, A277, XXREAL_1: 2;

                  hence thesis by XBOOLE_0:def 3;

                end;

                  suppose

                   A278: ( len IT) <> (n + 2);

                  (n + 1) < (n + 2) by XREAL_1: 6;

                  then

                   A279: 1 < (n + 2) by A253, XXREAL_0: 2;

                  ((n + 1) + 1) < ( len IT) by A254, A278, XXREAL_0: 1;

                  then

                  consider a2,b2 be Real such that r <= a2 and

                   A280: a2 < b2 and b2 <= s and

                   A281: (IT /. (n + 2)) = ].a2, b2.[ by A213, A279;

                  ( upper_bound ].a2, b2.[) = b2 by A280, TOPREAL6: 17;

                  then

                   A282: x < b2 by A259, A262, A264, A268, A281, XXREAL_0: 2;

                  ( lower_bound ].a2, b2.[) = a2 by A280, TOPREAL6: 17;

                  then x in (IT /. (n + 2)) by A276, A281, A282, XXREAL_1: 4;

                  hence thesis by XBOOLE_0:def 3;

                end;

              end;

            end;

            (m + 1) <= (m + 2) by XREAL_1: 6;

            then 1 <= (m + 2) by A253, XXREAL_0: 2;

            then

             A283: (m + 2) in ( dom IT) by A254, FINSEQ_3: 25;

            then (IT /. (n + 2)) = (IT . (n + 2)) by PARTFUN1:def 6;

            then (IT /. (n + 2)) in ( rng IT) by A283, FUNCT_1:def 3;

            then

             A284: (IT /. (n + 2)) in X by A99;

            m <= ( len IT) by A252, A256, XXREAL_0: 2;

            then

             A285: n in ( dom IT) by A250, FINSEQ_3: 25;

            then (IT /. n) = (IT . n) by PARTFUN1:def 6;

            then (IT /. n) in ( rng IT) by A285, FUNCT_1:def 3;

            then

             A286: (IT /. n) in X by A99;

            (n + 1) < (n + 2) by XREAL_1: 6;

            then

             A287: (IT /. (n + 2)) <> (IT /. (n + 1)) by A186, A257, A283;

            (n + 0 ) < (n + 1) by XREAL_1: 6;

            then (IT /. n) <> (IT /. (n + 1)) by A186, A285, A257;

            hence contradiction by A22, A24, A286, A258, A284, A287, A265, Th48;

          end;

          thus [.r, s.] in F implies IT = <* [.r, s.]*> by A7;

          assume not [.r, s.] in F;

          thus ex p be Real st r < p & p <= s & (IT . 1) = [.r, p.[

          proof

            take kL;

            thus r < kL by A42, A52, Th5;

            ( upper_bound LEWY) <= ( upper_bound [.r, s.]) by A8, SEQ_4: 48;

            hence kL <= s by A4, A51, JORDAN5A: 19;

            thus thesis by A97;

          end;

          thus ex p be Real st r <= p & p < s & (IT . ( len IT)) = ].p, s.]

          proof

            take pP;

            ( lower_bound [.r, s.]) <= ( lower_bound PRAWY) by A8, SEQ_4: 47;

            hence r <= pP by A4, A69, JORDAN5A: 19;

            thus pP < s by A67, A70, Th6;

            thus thesis by A204, A208;

          end;

          let n be Nat such that

           A288: 1 < n & n < ( len IT);

          consider a,b be Real such that

           A289: r <= a & a < b & b <= s & (IT /. n) = ].a, b.[ by A213, A288;

          take a, b;

          thus thesis by A288, A289, FINSEQ_4: 15;

        end;

      end;

    end

    theorem :: RCOMP_3:49

    F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open connected & r <= s & [.r, s.] in F implies <* [.r, s.]*> is IntervalCover of F

    proof

      assume that

       A1: F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open & F is connected and

       A2: r <= s & [.r, s.] in F;

      set f = <* [.r, s.]*>;

      

       A3: for n be Nat st 1 <= n holds (n <= ( len f) implies (f /. n) is non empty) & ((n + 1) <= ( len f) implies ( lower_bound (f /. n)) <= ( lower_bound (f /. (n + 1))) & ( upper_bound (f /. n)) <= ( upper_bound (f /. (n + 1))) & ( lower_bound (f /. (n + 1))) < ( upper_bound (f /. n))) & ((n + 2) <= ( len f) implies ( upper_bound (f /. n)) <= ( lower_bound (f /. (n + 2)))) by A2, Lm3;

      ( rng f) c= F & ( union ( rng f)) = [.r, s.] by A2, Lm3;

      hence thesis by A1, A2, A3, Def2;

    end;

    reserve C for IntervalCover of F;

    theorem :: RCOMP_3:50

    

     Th50: for F be Subset-Family of ( Closed-Interval-TSpace (r,r)), C be IntervalCover of F holds F is Cover of ( Closed-Interval-TSpace (r,r)) & F is open connected implies C = <* [.r, r.]*>

    proof

      set L = ( Closed-Interval-TSpace (r,r));

      let F be Subset-Family of L, C be IntervalCover of F;

      assume that

       A1: F is Cover of L and

       A2: F is open & F is connected;

      

       A3: [.r, r.] = {r} by XXREAL_1: 17;

      the carrier of L = [.r, r.] by TOPMETR: 18;

      then r in the carrier of L by A3, TARSKI:def 1;

      then {r} in F by A1, Th46;

      hence thesis by A1, A2, A3, Def2;

    end;

    theorem :: RCOMP_3:51

    

     Th51: F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open connected & r <= s implies 1 <= ( len C)

    proof

      assume that

       A1: F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open & F is connected and

       A2: r <= s;

      assume not thesis;

      then (( len C) + 1) <= ( 0 + 1) by NAT_1: 13;

      then

       A3: C is empty by XREAL_1: 6;

      ( union ( rng C)) = [.r, s.] by A1, A2, Def2;

      hence thesis by A2, A3, RELAT_1: 38, XXREAL_1: 1, ZFMISC_1: 2;

    end;

    theorem :: RCOMP_3:52

    

     Th52: F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open connected & r <= s & ( len C) = 1 implies C = <* [.r, s.]*>

    proof

      assume that

       A1: F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open & F is connected & r <= s and

       A2: ( len C) = 1;

      

       A3: ( union ( rng C)) = [.r, s.] by A1, Def2;

      C is non empty by A2;

      then ( rng C) is non empty;

      then 1 in ( dom C) by FINSEQ_3: 32;

      then

       A4: (C . 1) in ( rng C) by FUNCT_1:def 3;

      (C . 1) = [.r, s.]

      proof

        thus for a be object st a in (C . 1) holds a in [.r, s.] by A3, A4, TARSKI:def 4;

        let a be object;

        

         A5: ( dom C) = {1} by A2, FINSEQ_1: 2, FINSEQ_1:def 3;

        assume a in [.r, s.];

        then

        consider Z be set such that

         A6: a in Z and

         A7: Z in ( rng C) by A3, TARSKI:def 4;

        ex x be object st x in ( dom C) & (C . x) = Z by A7, FUNCT_1:def 3;

        hence thesis by A6, A5, TARSKI:def 1;

      end;

      hence thesis by A2, FINSEQ_1: 40;

    end;

    theorem :: RCOMP_3:53

    F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open connected & r <= s & n in ( dom C) & m in ( dom C) & n < m implies ( lower_bound (C /. n)) <= ( lower_bound (C /. m))

    proof

      assume that

       A1: F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open & F is connected & r <= s and

       A2: n in ( dom C) and

       A3: m in ( dom C) & n < m;

      defpred P[ Nat] means $1 in ( dom C) & n < $1 implies ( lower_bound (C /. n)) <= ( lower_bound (C /. $1));

      

       A4: for k be Nat st P[k] holds P[(k + 1)]

      proof

        let k be Nat such that

         A5: P[k] and

         A6: (k + 1) in ( dom C) and

         A7: n < (k + 1);

        per cases by A6, TOPREALA: 2;

          suppose k = 0 ;

          then n = 0 by A7, NAT_1: 13;

          hence thesis by A2, FINSEQ_3: 24;

        end;

          suppose

           A8: k in ( dom C);

          

           A9: (k + 1) <= ( len C) by A6, FINSEQ_3: 25;

          

           A10: n <= k by A7, NAT_1: 13;

          1 <= k by A8, FINSEQ_3: 25;

          then ( lower_bound (C /. k)) <= ( lower_bound (C /. (k + 1))) by A1, A9, Def2;

          hence thesis by A5, A8, A10, XXREAL_0: 1, XXREAL_0: 2;

        end;

      end;

      

       A11: P[ 0 ];

      for k be Nat holds P[k] from NAT_1:sch 2( A11, A4);

      hence thesis by A3;

    end;

    theorem :: RCOMP_3:54

    F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open connected & r <= s & n in ( dom C) & m in ( dom C) & n < m implies ( upper_bound (C /. n)) <= ( upper_bound (C /. m))

    proof

      assume that

       A1: F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open & F is connected & r <= s and

       A2: n in ( dom C) and

       A3: m in ( dom C) & n < m;

      defpred P[ Nat] means $1 in ( dom C) & n < $1 implies ( upper_bound (C /. n)) <= ( upper_bound (C /. $1));

      

       A4: for k be Nat st P[k] holds P[(k + 1)]

      proof

        let k be Nat such that

         A5: P[k] and

         A6: (k + 1) in ( dom C) and

         A7: n < (k + 1);

        per cases by A6, TOPREALA: 2;

          suppose k = 0 ;

          then n = 0 by A7, NAT_1: 13;

          hence thesis by A2, FINSEQ_3: 24;

        end;

          suppose

           A8: k in ( dom C);

          

           A9: (k + 1) <= ( len C) by A6, FINSEQ_3: 25;

          

           A10: n <= k by A7, NAT_1: 13;

          1 <= k by A8, FINSEQ_3: 25;

          then ( upper_bound (C /. k)) <= ( upper_bound (C /. (k + 1))) by A1, A9, Def2;

          hence thesis by A5, A8, A10, XXREAL_0: 1, XXREAL_0: 2;

        end;

      end;

      

       A11: P[ 0 ];

      for k be Nat holds P[k] from NAT_1:sch 2( A11, A4);

      hence thesis by A3;

    end;

    theorem :: RCOMP_3:55

    

     Th55: F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open connected & r <= s & 1 <= n & (n + 1) <= ( len C) implies ].( lower_bound (C /. (n + 1))), ( upper_bound (C /. n)).[ is non empty

    proof

      assume F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open & F is connected & r <= s & 1 <= n & (n + 1) <= ( len C);

      then ( lower_bound (C /. (n + 1))) < ( upper_bound (C /. n)) by Def2;

      hence thesis by XXREAL_1: 33;

    end;

    theorem :: RCOMP_3:56

    F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open connected & r <= s implies ( lower_bound (C /. 1)) = r

    proof

      assume that

       A1: F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open & F is connected and

       A2: r <= s;

      1 <= ( len C) by A1, A2, Th51;

      then

       A3: (C . 1) = (C /. 1) by FINSEQ_4: 15;

      per cases ;

        suppose [.r, s.] in F;

        then C = <* [.r, s.]*> by A1, A2, Def2;

        then (C /. 1) = [.r, s.] by FINSEQ_4: 16;

        hence thesis by A2, JORDAN5A: 19;

      end;

        suppose not [.r, s.] in F;

        then ex p be Real st r < p & p <= s & (C . 1) = [.r, p.[ by A1, A2, Def2;

        hence thesis by A3, Th4;

      end;

    end;

    theorem :: RCOMP_3:57

    

     Th57: F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open connected & r <= s implies r in (C /. 1)

    proof

      assume that

       A1: F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open & F is connected and

       A2: r <= s;

      1 <= ( len C) by A1, A2, Th51;

      then

       A3: (C . 1) = (C /. 1) by FINSEQ_4: 15;

      per cases ;

        suppose [.r, s.] in F;

        then C = <* [.r, s.]*> by A1, A2, Def2;

        then (C /. 1) = [.r, s.] by FINSEQ_4: 16;

        hence thesis by A2, XXREAL_1: 1;

      end;

        suppose not [.r, s.] in F;

        then ex p be Real st r < p & p <= s & (C . 1) = [.r, p.[ by A1, A2, Def2;

        hence thesis by A3, XXREAL_1: 3;

      end;

    end;

    theorem :: RCOMP_3:58

    F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open connected & r <= s implies ( upper_bound (C /. ( len C))) = s

    proof

      assume that

       A1: F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open & F is connected and

       A2: r <= s;

      1 <= ( len C) by A1, A2, Th51;

      then

       A3: (C . ( len C)) = (C /. ( len C)) by FINSEQ_4: 15;

      per cases ;

        suppose [.r, s.] in F;

        then C = <* [.r, s.]*> by A1, A2, Def2;

        then (C /. 1) = [.r, s.] & ( len C) = 1 by FINSEQ_1: 39, FINSEQ_4: 16;

        hence thesis by A2, JORDAN5A: 19;

      end;

        suppose not [.r, s.] in F;

        then ex p be Real st r <= p & p < s & (C . ( len C)) = ].p, s.] by A1, A2, Def2;

        hence thesis by A3, Th7;

      end;

    end;

    theorem :: RCOMP_3:59

    

     Th59: F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open connected & r <= s implies s in (C /. ( len C))

    proof

      assume that

       A1: F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open & F is connected and

       A2: r <= s;

      1 <= ( len C) by A1, A2, Th51;

      then

       A3: (C . ( len C)) = (C /. ( len C)) by FINSEQ_4: 15;

      per cases ;

        suppose [.r, s.] in F;

        then C = <* [.r, s.]*> by A1, A2, Def2;

        then (C /. 1) = [.r, s.] & ( len C) = 1 by FINSEQ_1: 39, FINSEQ_4: 16;

        hence thesis by A2, XXREAL_1: 1;

      end;

        suppose not [.r, s.] in F;

        then ex p be Real st r <= p & p < s & (C . ( len C)) = ].p, s.] by A1, A2, Def2;

        hence thesis by A3, XXREAL_1: 2;

      end;

    end;

    definition

      let r,s be Real;

      let F be Subset-Family of ( Closed-Interval-TSpace (r,s)), C be IntervalCover of F;

      :: RCOMP_3:def3

      mode IntervalCoverPts of C -> FinSequence of REAL means

      : Def3: ( len it ) = (( len C) + 1) & (it . 1) = r & (it . ( len it )) = s & for n be Nat st 1 <= n & (n + 1) < ( len it ) holds (it . (n + 1)) in ].( lower_bound (C /. (n + 1))), ( upper_bound (C /. n)).[;

      existence

      proof

        set A = (( len C) + 1);

        defpred P[ Nat, set] means ($1 = 1 implies $2 = r) & ($1 = A implies $2 = s) & (2 <= $1 & $1 <= ( len C) implies $2 in ].( lower_bound (C /. $1)), ( upper_bound (C /. ($1 - 1))).[);

        

         A2: ( 0 + 1) <= ( len C) by A1, Th51;

        then

         A3: ( 0 + 1) < A by XREAL_1: 6;

        

         A4: for k be Nat st k in ( Seg A) holds ex x be Element of REAL st P[k, x]

        proof

          reconsider r, s as Element of REAL by XREAL_0:def 1;

          let k be Nat;

          

           A5: (( len C) + 0 ) < A by XREAL_1: 6;

          assume k in ( Seg A);

          then

           A6: 1 <= k & k <= A by FINSEQ_1: 1;

          per cases by A6, XXREAL_0: 1;

            suppose

             A7: k = 1;

            take r;

            thus thesis by A2, A7;

          end;

            suppose

             A8: k = A;

            take s;

            thus thesis by A2, A5, A8;

          end;

            suppose that

             A9: 1 < k and

             A10: k < A;

            

             A11: (k - 1) in NAT by A9, INT_1: 5;

            

             A12: k <= ( len C) by A10, NAT_1: 13;

            (1 - 1) < (k - 1) by A9, XREAL_1: 14;

            then ( 0 + 1) <= (k - 1) by A11, NAT_1: 13;

            then ].( lower_bound (C /. ((k - 1) + 1))), ( upper_bound (C /. (k - 1))).[ is non empty by A1, A11, A12, Th55;

            then

            consider x be object such that

             A13: x in ].( lower_bound (C /. ((k - 1) + 1))), ( upper_bound (C /. (k - 1))).[;

            reconsider x as Real by A13;

            take x;

            thus thesis by A9, A10, A13;

          end;

        end;

        consider p be FinSequence of REAL such that

         A14: ( dom p) = ( Seg A) and

         A15: for k be Nat st k in ( Seg A) holds P[k, (p . k)] from FINSEQ_1:sch 5( A4);

        take p;

        thus

         A16: ( len p) = (( len C) + 1) by A14, FINSEQ_1:def 3;

        1 in ( Seg A) by A3, FINSEQ_1: 1;

        hence (p . 1) = r by A15;

        ( len p) in ( Seg A) by A3, A16, FINSEQ_1: 1;

        hence (p . ( len p)) = s by A15, A16;

        let n be Nat;

        assume 1 <= n;

        then

         A17: (1 + 1) <= (n + 1) by XREAL_1: 6;

        assume

         A18: (n + 1) < ( len p);

        ( 0 + 1) <= (n + 1) by XREAL_1: 6;

        then

         A19: (n + 1) in ( Seg A) by A16, A18, FINSEQ_1: 1;

        (n + 1) <= ( len C) by A16, A18, NAT_1: 13;

        then (p . (n + 1)) in ].( lower_bound (C /. (n + 1))), ( upper_bound (C /. ((n + 1) - 1))).[ by A15, A19, A17;

        hence thesis;

      end;

    end

    reserve G for IntervalCoverPts of C;

    theorem :: RCOMP_3:60

    

     Th60: F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open connected & r <= s implies 2 <= ( len G)

    proof

      assume

       A1: F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open & F is connected & r <= s;

      then 1 <= ( len C) by Th51;

      then (1 + 1) <= (( len C) + 1) by XREAL_1: 6;

      hence thesis by A1, Def3;

    end;

    theorem :: RCOMP_3:61

    

     Th61: F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open connected & r <= s & ( len C) = 1 implies G = <*r, s*>

    proof

      assume that

       A1: F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open & F is connected & r <= s and

       A2: ( len C) = 1;

      

       A3: (G . 1) = r by A1, Def3;

      

       A4: ( len G) = (( len C) + 1) by A1, Def3;

      then (G . 2) = s by A1, A2, Def3;

      hence thesis by A2, A4, A3, FINSEQ_1: 44;

    end;

    theorem :: RCOMP_3:62

    

     Th62: F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open connected & r <= s & 1 <= n & (n + 1) < ( len G) implies (G . (n + 1)) < ( upper_bound (C /. n))

    proof

      assume F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open & F is connected & r <= s & 1 <= n & (n + 1) < ( len G);

      then (G . (n + 1)) in ].( lower_bound (C /. (n + 1))), ( upper_bound (C /. n)).[ by Def3;

      hence thesis by XXREAL_1: 4;

    end;

    theorem :: RCOMP_3:63

    

     Th63: F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open connected & r <= s & 1 < n & n <= ( len C) implies ( lower_bound (C /. n)) < (G . n)

    proof

      set w = (n -' 1);

      assume

       A1: F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open & F is connected & r <= s;

      then

       A2: ( len G) = (( len C) + 1) by Def3;

      assume that

       A3: 1 < n and

       A4: n <= ( len C);

      

       A5: n < (( len C) + 1) by A4, NAT_1: 13;

      (1 - 1) <= (n - 1) by A3, XREAL_1: 9;

      then

       A6: w = (n - 1) by XREAL_0:def 2;

      then n = (w + 1);

      then 1 <= w by A3, NAT_1: 13;

      then (G . (w + 1)) in ].( lower_bound (C /. (w + 1))), ( upper_bound (C /. w)).[ by A1, A2, A6, A5, Def3;

      hence thesis by A6, XXREAL_1: 4;

    end;

    theorem :: RCOMP_3:64

    

     Th64: F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open connected & r <= s & 1 <= n & n < ( len C) implies (G . n) <= ( lower_bound (C /. (n + 1)))

    proof

      assume that

       A1: F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open & F is connected and

       A2: r <= s;

      set w = (n -' 1);

      assume that

       A3: 1 <= n and

       A4: n < ( len C);

      

       A5: (n + 1) <= ( len C) by A4, NAT_1: 13;

      per cases by A3, XXREAL_0: 1;

        suppose

         A6: n = 1;

        ( 0 + 1) <= (n + 1) by XREAL_1: 6;

        then

         A7: (C /. (n + 1)) is non empty by A1, A2, A5, Def2;

        

         A8: (G . 1) = r by A1, A2, Def3;

        

         A9: ( rng C) c= F by A1, A2, Def2;

        (1 + 1) <= ( len C) by A4, A6, NAT_1: 13;

        then

         A10: 2 in ( dom C) by FINSEQ_3: 25;

        then (C . 2) in ( rng C) by FUNCT_1:def 3;

        then (C . 2) in F by A9;

        then (C /. 2) in F by A10, PARTFUN1:def 6;

        then (C /. (n + 1)) c= the carrier of ( Closed-Interval-TSpace (r,s)) by A6;

        then

         A11: (C /. (n + 1)) c= [.r, s.] by A2, TOPMETR: 18;

        then (C /. (n + 1)) is bounded_below by XXREAL_2: 44;

        then ( lower_bound (C /. (n + 1))) in [.r, s.] by A7, A11, Th1;

        hence thesis by A6, A8, XXREAL_1: 1;

      end;

        suppose 1 < n;

        then

         A12: (1 - 1) < (n - 1) by XREAL_1: 9;

        then

         A13: w = (n - 1) by XREAL_0:def 2;

        then

         A14: ( 0 + 1) <= w by A12, NAT_1: 13;

        ( len G) = (( len C) + 1) by A1, A2, Def3;

        then

         A15: (n + 1) < ((( len G) - 1) + 1) by A4, XREAL_1: 6;

        (n - 1) < (n - 0 ) by XREAL_1: 15;

        then (w + 1) < (n + 1) by A13, XREAL_1: 6;

        then (w + 1) < ( len G) by A15, XXREAL_0: 2;

        then

         A16: (G . (w + 1)) < ( upper_bound (C /. w)) by A1, A2, A14, Th62;

        (n + 1) <= ( len C) by A4, NAT_1: 13;

        then ( upper_bound (C /. w)) <= ( lower_bound (C /. (w + 2))) by A1, A2, A13, A14, Def2;

        hence thesis by A13, A16, XXREAL_0: 2;

      end;

    end;

    theorem :: RCOMP_3:65

    

     Th65: F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open connected & r < s implies G is increasing

    proof

      assume that

       A1: F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open & F is connected and

       A2: r < s;

      let m,n be Nat such that

       A3: m in ( dom G) & n in ( dom G) & m < n;

      defpred P[ Nat] means m < $1 & m in ( dom G) & $1 in ( dom G) implies (G . m) < (G . $1);

      

       A4: for k be Nat st P[k] holds P[(k + 1)]

      proof

        

         A5: ( len G) = (( len C) + 1) by A1, A2, Def3;

        let k be Nat such that

         A6: P[k] and

         A7: m < (k + 1) and

         A8: m in ( dom G) and

         A9: (k + 1) in ( dom G);

        

         A10: 1 <= m by A8, FINSEQ_3: 25;

        

         A11: (k + 1) <= ( len G) by A9, FINSEQ_3: 25;

        (k + 0 ) <= (k + 1) by XREAL_1: 6;

        then

         A12: k <= ( len G) by A11, XXREAL_0: 2;

        

         A13: m <= k by A7, NAT_1: 13;

        then

         A14: 1 <= k by A10, XXREAL_0: 2;

        per cases by A14, A11, XXREAL_0: 1;

          suppose that

           A15: 1 < k and

           A16: (k + 1) < ( len G);

          (G . (k + 1)) in ].( lower_bound (C /. (k + 1))), ( upper_bound (C /. k)).[ by A1, A2, A15, A16, Def3;

          then

           A17: ( lower_bound (C /. (k + 1))) < (G . (k + 1)) by XXREAL_1: 4;

          k < ( len C) by A5, A16, XREAL_1: 6;

          then (G . k) <= ( lower_bound (C /. (k + 1))) by A1, A2, A15, Th64;

          then (G . k) < (G . (k + 1)) by A17, XXREAL_0: 2;

          hence thesis by A6, A8, A13, A12, A15, FINSEQ_3: 25, XXREAL_0: 1, XXREAL_0: 2;

        end;

          suppose

           A18: k = 1;

          

           A19: 1 <= ( len C) by A1, A2, Th51;

          

           A20: m <= 1 by A7, A18, NAT_1: 13;

          per cases by A19, XXREAL_0: 1;

            suppose

             A21: 1 < ( len C);

            then (1 + 1) <= ( len C) by NAT_1: 13;

            then

             A22: ( lower_bound (C /. 2)) < (G . 2) by A1, A2, Th63;

            (G . 1) <= ( lower_bound (C /. (1 + 1))) by A1, A2, A21, Th64;

            then (G . 1) < (G . 2) by A22, XXREAL_0: 2;

            hence thesis by A10, A18, A20, XXREAL_0: 1;

          end;

            suppose 1 = ( len C);

            then G = <*r, s*> by A1, A2, Th61;

            then (G . 1) = r & (G . 2) = s by FINSEQ_1: 44;

            hence thesis by A2, A10, A18, A20, XXREAL_0: 1;

          end;

        end;

          suppose

           A23: (k + 1) = ( len G);

          then

           A24: (G . (k + 1)) = s by A1, A2, Def3;

          per cases by A10, XXREAL_0: 1;

            suppose

             A25: 1 < m;

            set z = (m -' 1);

            (1 - 1) <= (m - 1) by A10, XREAL_1: 9;

            then

             A26: z = (m - 1) by XREAL_0:def 2;

            then

             A27: (z + 1) < ( len G) by A7, A23;

            then

             A28: z <= ( len C) by A5, XREAL_1: 6;

            (1 + 1) <= m by A25, NAT_1: 13;

            then

             A29: ((1 + 1) - 1) <= (m - 1) by XREAL_1: 9;

            then

             A30: 1 <= z by XREAL_0:def 2;

            then

             A31: (C /. z) is non empty by A1, A2, A28, Def2;

            

             A32: ( rng C) c= F by A1, A2, Def2;

            

             A33: z in ( dom C) by A30, A28, FINSEQ_3: 25;

            then (C . z) in ( rng C) by FUNCT_1:def 3;

            then (C . z) in F by A32;

            then (C /. z) in F by A33, PARTFUN1:def 6;

            then (C /. z) c= the carrier of ( Closed-Interval-TSpace (r,s));

            then

             A34: (C /. z) c= [.r, s.] by A2, TOPMETR: 18;

            then (C /. z) is bounded_above by XXREAL_2: 43;

            then ( upper_bound (C /. z)) in [.r, s.] by A34, A31, Th2;

            then

             A35: ( upper_bound (C /. z)) <= s by XXREAL_1: 1;

            (G . m) < ( upper_bound (C /. z)) by A1, A2, A26, A29, A27, Th62;

            hence thesis by A24, A35, XXREAL_0: 2;

          end;

            suppose m = 1;

            hence thesis by A1, A2, A24, Def3;

          end;

        end;

      end;

      

       A36: P[ 0 ];

      for k be Nat holds P[k] from NAT_1:sch 2( A36, A4);

      hence thesis by A3;

    end;

    theorem :: RCOMP_3:66

    F is Cover of ( Closed-Interval-TSpace (r,s)) & F is open connected & r <= s & 1 <= n & n < ( len G) implies [.(G . n), (G . (n + 1)).] c= (C . n)

    proof

      set L = ( Closed-Interval-TSpace (r,s));

      assume that

       A1: F is Cover of L & F is open and

       A2: F is connected and

       A3: r <= s and

       A4: 1 <= n and

       A5: n < ( len G);

      

       A6: ( len G) = (( len C) + 1) by A1, A2, A3, Def3;

      then

       A7: n <= ( len C) by A5, NAT_1: 13;

      then

       A8: (C /. n) = (C . n) by A4, FINSEQ_4: 15;

      n in ( dom C) by A4, A7, FINSEQ_3: 25;

      then

       A9: (C . n) in ( rng C) by FUNCT_1:def 3;

      ( rng C) c= F by A1, A2, A3, Def2;

      then (C /. n) in F by A8, A9;

      then (C /. n) is connected Subset of L by A2;

      then

       A10: (C /. n) is interval by Th43;

      

       A11: (C /. n) is non empty by A1, A2, A3, A4, A7, Def2;

      

       A12: (n + 1) <= ( len G) by A5, NAT_1: 13;

      ( 0 + 1) <= (n + 1) by XREAL_1: 6;

      then

       A13: (n + 1) in ( dom G) by A12, FINSEQ_3: 25;

      

       A14: n in ( dom G) by A4, A5, FINSEQ_3: 25;

      

       A15: (n + 0 ) < (n + 1) by XREAL_1: 6;

      per cases by A3, XXREAL_0: 1;

        suppose r = s;

        then C = <* [.r, r.]*> by A1, A2, Th50;

        then

         A16: ( len C) = 1 by FINSEQ_1: 40;

        then G = <*r, s*> by A1, A2, A3, Th61;

        then

         A17: (G . 1) = r & (G . 2) = s by FINSEQ_1: 44;

        n = 1 & C = <* [.r, s.]*> by A1, A2, A3, A4, A7, A16, Th52, XXREAL_0: 1;

        hence thesis by A17, FINSEQ_1: 40;

      end;

        suppose r < s;

        then G is increasing by A1, A2, Th65;

        then

         A18: (G . n) < (G . (n + 1)) by A14, A13, A15;

        

         A19: 2 <= ( len G) by A1, A2, A3, Th60;

        per cases by A4, A12, A19, XXREAL_0: 1;

          suppose that

           A20: n = 1 and

           A21: ( len G) = 2;

          G = <*r, s*> by A1, A2, A3, A6, A21, Th61;

          then

           A22: (G . 1) = r & (G . 2) = s by FINSEQ_1: 44;

          C = <* [.r, s.]*> by A1, A2, A3, A6, A21, Th52;

          hence thesis by A20, A22, FINSEQ_1: 40;

        end;

          suppose that

           A23: n = 1 and

           A24: (1 + 1) < ( len G);

          (G . (1 + 1)) in ].( lower_bound (C /. (1 + 1))), ( upper_bound (C /. 1)).[ by A1, A2, A3, A24, Def3;

          then

           A25: ( lower_bound (C /. (1 + 1))) < (G . 2) by XXREAL_1: 4;

          (1 + 1) <= ( len C) by A6, A24, NAT_1: 13;

          then ( lower_bound (C /. 1)) <= ( lower_bound (C /. (1 + 1))) by A1, A2, A3, Def2;

          then

           A26: ( lower_bound (C /. n)) < (G . (n + 1)) by A23, A25, XXREAL_0: 2;

          

           A27: (G . 1) = r & r in (C /. 1) by A1, A2, A3, Def3, Th57;

          (G . (n + 1)) < ( upper_bound (C /. n)) by A1, A2, A3, A23, A24, Th62;

          then (G . (n + 1)) in (C . n) by A8, A10, A11, A26, Th30;

          hence thesis by A8, A10, A23, A27;

        end;

          suppose that

           A28: 1 < n and

           A29: ( len G) = (n + 1);

          (1 - 1) < (n - 1) by A28, XREAL_1: 9;

          then

           A30: ( 0 + 1) <= (n - 1) & (n - 1) is Element of NAT by INT_1: 3, INT_1: 7;

          then (G . ((n - 1) + 1)) in ].( lower_bound (C /. ((n - 1) + 1))), ( upper_bound (C /. (n - 1))).[ by A1, A2, A3, A15, A29, Def3;

          then

           A31: (G . n) < ( upper_bound (C /. (n - 1))) by XXREAL_1: 4;

          ( upper_bound (C /. (n - 1))) <= ( upper_bound (C /. ((n - 1) + 1))) by A1, A2, A3, A6, A29, A30, Def2;

          then

           A32: (G . n) < ( upper_bound (C /. n)) by A31, XXREAL_0: 2;

          (G . ( len G)) = s by A1, A2, A3, Def3;

          then

           A33: (G . (n + 1)) in (C . n) by A1, A2, A3, A6, A8, A29, Th59;

          ( lower_bound (C /. n)) < (G . n) by A1, A2, A3, A6, A28, A29, Th63;

          then (G . n) in (C . n) by A8, A10, A11, A32, Th30;

          hence thesis by A8, A10, A33;

        end;

          suppose that

           A34: 1 < n and

           A35: (n + 1) < ( len G);

          

           A36: (G . (n + 1)) < ( upper_bound (C /. n)) by A1, A2, A3, A4, A35, Th62;

          n <= ( len C) by A5, A6, NAT_1: 13;

          then

           A37: ( lower_bound (C /. n)) < (G . n) by A1, A2, A3, A34, Th63;

          then ( lower_bound (C /. n)) < (G . (n + 1)) by A18, XXREAL_0: 2;

          then

           A38: (G . (n + 1)) in (C . n) by A8, A10, A11, A36, Th30;

          (G . n) < ( upper_bound (C /. n)) by A18, A36, XXREAL_0: 2;

          then (G . n) in (C . n) by A8, A10, A11, A37, Th30;

          hence thesis by A8, A10, A38;

        end;

      end;

    end;