sin_cos6.miz
begin
reserve r,r1,r2,s,x for
Real,
i for
Integer;
theorem ::
SIN_COS6:1
Th1:
0
<= r & r
< s implies
[\(r
/ s)/]
=
0
proof
assume
A1:
0
<= r & r
< s;
then (r
/ s)
< (s
/ s) by
XREAL_1: 74;
then ((r
/ s)
- 1)
< ((s
/ s)
- 1) by
XREAL_1: 9;
then ((r
/ s)
- 1)
< (1
- 1) by
A1,
XCMPLX_1: 60;
hence thesis by
A1,
INT_1:def 6;
end;
theorem ::
SIN_COS6:2
Th2: for f be
Function, X,Y be
set st (f
| X) is
one-to-one & Y
c= X holds (f
| Y) is
one-to-one
proof
let f be
Function, X,Y be
set such that
A1: (f
| X) is
one-to-one and
A2: Y
c= X;
let x,y be
object;
A3: (
dom (f
| Y))
= ((
dom f)
/\ Y) by
RELAT_1: 61;
assume
A4: x
in (
dom (f
| Y));
then
A5: x
in Y by
A3,
XBOOLE_0:def 4;
x
in (
dom f) by
A3,
A4,
XBOOLE_0:def 4;
then x
in ((
dom f)
/\ X) by
A2,
A5,
XBOOLE_0:def 4;
then
A6: x
in (
dom (f
| X)) by
RELAT_1: 61;
assume
A7: y
in (
dom (f
| Y));
then
A8: y
in Y by
A3,
XBOOLE_0:def 4;
y
in (
dom f) by
A3,
A7,
XBOOLE_0:def 4;
then y
in ((
dom f)
/\ X) by
A2,
A8,
XBOOLE_0:def 4;
then
A9: y
in (
dom (f
| X)) by
RELAT_1: 61;
assume
A10: ((f
| Y)
. x)
= ((f
| Y)
. y);
((f
| X)
. x)
= (f
. x) by
A2,
A5,
FUNCT_1: 49
.= ((f
| Y)
. x) by
A5,
FUNCT_1: 49
.= (f
. y) by
A8,
A10,
FUNCT_1: 49
.= ((f
| X)
. y) by
A2,
A8,
FUNCT_1: 49;
hence thesis by
A1,
A6,
A9;
end;
begin
theorem ::
SIN_COS6:3
Th3: (
- 1)
<= (
sin r)
proof
(
sin
. r)
in
[.(
- 1), 1.] by
COMPTRIG: 27;
then (
sin r)
in
[.(
- 1), 1.] by
SIN_COS:def 17;
hence thesis by
XXREAL_1: 1;
end;
theorem ::
SIN_COS6:4
Th4: (
sin r)
<= 1
proof
(
sin
. r)
in
[.(
- 1), 1.] by
COMPTRIG: 27;
then (
sin r)
in
[.(
- 1), 1.] by
SIN_COS:def 17;
hence thesis by
XXREAL_1: 1;
end;
theorem ::
SIN_COS6:5
Th5: (
- 1)
<= (
cos r)
proof
(
cos
. r)
in
[.(
- 1), 1.] by
COMPTRIG: 27;
then (
cos r)
in
[.(
- 1), 1.] by
SIN_COS:def 19;
hence thesis by
XXREAL_1: 1;
end;
theorem ::
SIN_COS6:6
Th6: (
cos r)
<= 1
proof
(
cos
. r)
in
[.(
- 1), 1.] by
COMPTRIG: 27;
then (
cos r)
in
[.(
- 1), 1.] by
SIN_COS:def 19;
hence thesis by
XXREAL_1: 1;
end;
deffunc
T(
Integer) = ((2
*
PI )
* $1);
Lm1:
[.((
- (
PI
/ 2))
+
T(0)), ((
PI
/ 2)
+
T(0)).]
=
[.(
- (
PI
/ 2)), (
PI
/ 2).];
Lm2:
[.((
PI
/ 2)
+
T(0)), (((3
/ 2)
*
PI )
+
T(0)).]
=
[.(
PI
/ 2), ((3
/ 2)
*
PI ).];
Lm3:
[.
T(0), (
PI
+
T(0)).]
=
[.
0 ,
PI .];
Lm4:
[.(
PI
+
T(0)), ((2
*
PI )
+
T(0)).]
=
[.
PI , (2
*
PI ).];
Lm5: ((r
^2 )
+ (s
^2 ))
= 1 implies (
- 1)
<= r & r
<= 1
proof
(s
^2 )
>=
0 by
XREAL_1: 63;
then (
- (s
^2 ))
<= (
-
0 );
then ((r
^2 )
- ((r
^2 )
+ (s
^2 )))
<=
0 ;
hence thesis by
SQUARE_1: 43;
end;
registration
cluster
PI ->
positive;
coherence
proof
PI
in
].
0 , 4.[ by
SIN_COS:def 28;
hence
PI
>
0 by
XXREAL_1: 4;
end;
end
Lm6: (
PI
/ 2)
< (
PI
/ 1) by
XREAL_1: 76;
Lm7: (1
*
PI )
< ((3
/ 2)
*
PI ) by
XREAL_1: 68;
Lm8: (
0
+
T())
< ((
PI
/ 2)
+
T()) by
XREAL_1: 6;
Lm9: ((3
/ 2)
*
PI )
< (2
*
PI ) by
XREAL_1: 68;
Lm10: (1
*
PI )
< (2
*
PI ) by
XREAL_1: 68;
theorem ::
SIN_COS6:7
Th7: (
sin (
- (
PI
/ 2)))
= (
- 1) & (
sin
. (
- (
PI
/ 2)))
= (
- 1)
proof
(
sin
. (
- (
PI
/ 2)))
= (
sin
. ((
- (
PI
/ 2))
+ (2
*
PI ))) by
SIN_COS: 78
.= (
- 1) by
SIN_COS: 76;
hence thesis by
SIN_COS:def 17;
end;
theorem ::
SIN_COS6:8
Th8: (
sin
. r)
= (
sin
. (r
+ ((2
*
PI )
* i)))
proof
thus (
sin
. r)
= (
sin r) by
SIN_COS:def 17
.= (
sin (r
+ ((2
*
PI )
* i))) by
COMPLEX2: 8
.= (
sin
. (r
+ ((2
*
PI )
* i))) by
SIN_COS:def 17;
end;
theorem ::
SIN_COS6:9
Th9: (
cos (
- (
PI
/ 2)))
=
0 & (
cos
. (
- (
PI
/ 2)))
=
0
proof
(
cos
. (
- (
PI
/ 2)))
= (
cos
. ((
- (
PI
/ 2))
+ (2
*
PI ))) by
SIN_COS: 78
.=
0 by
SIN_COS: 76;
hence thesis by
SIN_COS:def 19;
end;
theorem ::
SIN_COS6:10
Th10: (
cos
. r)
= (
cos
. (r
+ ((2
*
PI )
* i)))
proof
thus (
cos
. r)
= (
cos r) by
SIN_COS:def 19
.= (
cos (r
+ ((2
*
PI )
* i))) by
COMPLEX2: 9
.= (
cos
. (r
+ ((2
*
PI )
* i))) by
SIN_COS:def 19;
end;
theorem ::
SIN_COS6:11
Th11: ((2
*
PI )
* i)
< r & r
< (
PI
+ ((2
*
PI )
* i)) implies (
sin r)
>
0
proof
assume
T(i)
< r & r
< (
PI
+
T(i));
then (
T(i)
-
T(i))
< (r
-
T(i)) & (r
-
T(i))
< ((
PI
+
T(i))
-
T(i)) by
XREAL_1: 9;
then (r
-
T(i))
in
].
0 ,
PI .[ by
XXREAL_1: 4;
then (
sin
. (r
+
T(-)))
>
0 by
COMPTRIG: 7;
then (
sin
. r)
>
0 by
Th8;
hence thesis by
SIN_COS:def 17;
end;
theorem ::
SIN_COS6:12
Th12: (
PI
+ ((2
*
PI )
* i))
< r & r
< ((2
*
PI )
+ ((2
*
PI )
* i)) implies (
sin r)
<
0
proof
assume (
PI
+
T(i))
< r & r
< ((2
*
PI )
+
T(i));
then ((
PI
+
T(i))
-
T(i))
< (r
-
T(i)) & (r
-
T(i))
< (((2
*
PI )
+
T(i))
-
T(i)) by
XREAL_1: 9;
then (r
-
T(i))
in
].
PI , (2
*
PI ).[ by
XXREAL_1: 4;
then (
sin
. (r
+
T(-)))
<
0 by
COMPTRIG: 9;
then (
sin
. r)
<
0 by
Th8;
hence thesis by
SIN_COS:def 17;
end;
theorem ::
SIN_COS6:13
Th13: ((
- (
PI
/ 2))
+ ((2
*
PI )
* i))
< r & r
< ((
PI
/ 2)
+ ((2
*
PI )
* i)) implies (
cos r)
>
0
proof
assume that
A1: ((
- (
PI
/ 2))
+
T(i))
< r and
A2: r
< ((
PI
/ 2)
+
T(i));
(r
+ (
PI
/ 2))
< (((
PI
/ 2)
+
T(i))
+ (
PI
/ 2)) by
A2,
XREAL_1: 6;
then
A3: (r
+ (
PI
/ 2))
< (
PI
+
T(i));
A4: (
sin (r
+ (
PI
/ 2)))
= (
cos r) by
SIN_COS: 79;
(((
- (
PI
/ 2))
+
T(i))
+ (
PI
/ 2))
< (r
+ (
PI
/ 2)) by
A1,
XREAL_1: 6;
hence thesis by
A3,
A4,
Th11;
end;
theorem ::
SIN_COS6:14
Th14: ((
PI
/ 2)
+ ((2
*
PI )
* i))
< r & r
< (((3
/ 2)
*
PI )
+ ((2
*
PI )
* i)) implies (
cos r)
<
0
proof
assume that
A1: ((
PI
/ 2)
+
T(i))
< r and
A2: r
< (((3
/ 2)
*
PI )
+
T(i));
(((
PI
/ 2)
+
T(i))
+ (
PI
/ 2))
< (r
+ (
PI
/ 2)) by
A1,
XREAL_1: 6;
then
A3: (
PI
+
T(i))
< (r
+ (
PI
/ 2));
(r
+ (
PI
/ 2))
< ((((3
/ 2)
*
PI )
+
T(i))
+ (
PI
/ 2)) by
A2,
XREAL_1: 6;
then
A4: (r
+ (
PI
/ 2))
< ((2
*
PI )
+
T(i));
(
sin (r
+ (
PI
/ 2)))
= (
cos r) by
SIN_COS: 79;
hence thesis by
A3,
A4,
Th12;
end;
theorem ::
SIN_COS6:15
Th15: (((3
/ 2)
*
PI )
+ ((2
*
PI )
* i))
< r & r
< ((2
*
PI )
+ ((2
*
PI )
* i)) implies (
cos r)
>
0
proof
assume that
A1: (((3
/ 2)
*
PI )
+
T(i))
< r and
A2: r
< ((2
*
PI )
+
T(i));
((((3
/ 2)
*
PI )
+
T(i))
-
PI )
< (r
-
PI ) by
A1,
XREAL_1: 9;
then
A3: ((
PI
/ 2)
+
T(i))
< (r
-
PI );
(
PI
+
T(i))
< (((3
/ 2)
*
PI )
+
T(i)) & (r
-
PI )
< (((2
*
PI )
+
T(i))
-
PI ) by
A2,
COMPTRIG: 5,
XREAL_1: 6,
XREAL_1: 9;
then
A4: (r
-
PI )
< (((3
/ 2)
*
PI )
+
T(i)) by
XXREAL_0: 2;
(
cos (r
-
PI ))
= (
cos (
- (
PI
- r)))
.= (
cos (
PI
+ (
- r))) by
SIN_COS: 31
.= (
- (
cos (
- r))) by
SIN_COS: 79
.= (
- (
cos r)) by
SIN_COS: 31;
hence thesis by
A3,
A4,
Th14;
end;
theorem ::
SIN_COS6:16
((2
*
PI )
* i)
<= r & r
<= (
PI
+ ((2
*
PI )
* i)) implies (
sin r)
>=
0
proof
assume
A1: ((2
*
PI )
* i)
<= r & r
<= (
PI
+ ((2
*
PI )
* i));
per cases by
A1,
XXREAL_0: 1;
suppose ((2
*
PI )
* i)
< r & r
< (
PI
+ ((2
*
PI )
* i));
hence thesis by
Th11;
end;
suppose
A2: ((2
*
PI )
* i)
= r;
(
sin (
0
+ ((2
*
PI )
* i)))
= (
sin
0 ) by
COMPLEX2: 8;
hence thesis by
A2,
SIN_COS: 31;
end;
suppose r
= (
PI
+ ((2
*
PI )
* i));
hence thesis by
COMPLEX2: 8,
SIN_COS: 77;
end;
end;
theorem ::
SIN_COS6:17
(
PI
+ ((2
*
PI )
* i))
<= r & r
<= ((2
*
PI )
+ ((2
*
PI )
* i)) implies (
sin r)
<=
0
proof
assume (
PI
+ ((2
*
PI )
* i))
<= r & r
<= ((2
*
PI )
+ ((2
*
PI )
* i));
then (
PI
+ ((2
*
PI )
* i))
< r & r
< ((2
*
PI )
+ ((2
*
PI )
* i)) or (
PI
+ ((2
*
PI )
* i))
= r or r
= ((2
*
PI )
+ ((2
*
PI )
* i)) by
XXREAL_0: 1;
hence thesis by
Th12,
COMPLEX2: 8,
SIN_COS: 77;
end;
theorem ::
SIN_COS6:18
((
- (
PI
/ 2))
+ ((2
*
PI )
* i))
<= r & r
<= ((
PI
/ 2)
+ ((2
*
PI )
* i)) implies (
cos r)
>=
0
proof
assume ((
- (
PI
/ 2))
+ ((2
*
PI )
* i))
<= r & r
<= ((
PI
/ 2)
+ ((2
*
PI )
* i));
then ((
- (
PI
/ 2))
+ ((2
*
PI )
* i))
< r & r
< ((
PI
/ 2)
+ ((2
*
PI )
* i)) or ((
- (
PI
/ 2))
+ ((2
*
PI )
* i))
= r or r
= ((
PI
/ 2)
+ ((2
*
PI )
* i)) by
XXREAL_0: 1;
hence thesis by
Th9,
Th13,
COMPLEX2: 9,
SIN_COS: 77;
end;
theorem ::
SIN_COS6:19
((
PI
/ 2)
+ ((2
*
PI )
* i))
<= r & r
<= (((3
/ 2)
*
PI )
+ ((2
*
PI )
* i)) implies (
cos r)
<=
0
proof
assume ((
PI
/ 2)
+ ((2
*
PI )
* i))
<= r & r
<= (((3
/ 2)
*
PI )
+ ((2
*
PI )
* i));
then ((
PI
/ 2)
+ ((2
*
PI )
* i))
< r & r
< (((3
/ 2)
*
PI )
+ ((2
*
PI )
* i)) or ((
PI
/ 2)
+ ((2
*
PI )
* i))
= r or r
= (((3
/ 2)
*
PI )
+ ((2
*
PI )
* i)) by
XXREAL_0: 1;
hence thesis by
Th14,
COMPLEX2: 9,
SIN_COS: 77;
end;
theorem ::
SIN_COS6:20
(((3
/ 2)
*
PI )
+ ((2
*
PI )
* i))
<= r & r
<= ((2
*
PI )
+ ((2
*
PI )
* i)) implies (
cos r)
>=
0
proof
assume
A1: (((3
/ 2)
*
PI )
+ ((2
*
PI )
* i))
<= r & r
<= ((2
*
PI )
+ ((2
*
PI )
* i));
per cases by
A1,
XXREAL_0: 1;
suppose (((3
/ 2)
*
PI )
+ ((2
*
PI )
* i))
< r & r
< ((2
*
PI )
+ ((2
*
PI )
* i));
hence thesis by
Th15;
end;
suppose (((3
/ 2)
*
PI )
+ ((2
*
PI )
* i))
= r;
hence thesis by
COMPLEX2: 9,
SIN_COS: 77;
end;
suppose r
= ((2
*
PI )
+ ((2
*
PI )
* i));
hence thesis by
COMPLEX2: 9,
SIN_COS: 77;
end;
end;
theorem ::
SIN_COS6:21
Th21: ((2
*
PI )
* i)
<= r & r
< ((2
*
PI )
+ ((2
*
PI )
* i)) & (
sin r)
=
0 implies r
= ((2
*
PI )
* i) or r
= (
PI
+ ((2
*
PI )
* i))
proof
assume
A1:
T(i)
<= r & r
< ((2
*
PI )
+
T(i));
assume
A2: (
sin r)
=
0 ;
then
A3: r
<= (
PI
+
T(i)) or ((2
*
PI )
+
T(i))
<= r by
Th12;
r
<=
T(i) or r
>= (
PI
+
T(i)) by
A2,
Th11;
hence thesis by
A1,
A3,
XXREAL_0: 1;
end;
theorem ::
SIN_COS6:22
Th22: ((2
*
PI )
* i)
<= r & r
< ((2
*
PI )
+ ((2
*
PI )
* i)) & (
cos r)
=
0 implies r
= ((
PI
/ 2)
+ ((2
*
PI )
* i)) or r
= (((3
/ 2)
*
PI )
+ ((2
*
PI )
* i))
proof
assume that
A1:
T(i)
<= r and
A2: r
< ((2
*
PI )
+
T(i));
A3: ((
- (
PI
/ 2))
+
T(i))
< (
0
+
T(i)) by
XREAL_1: 6;
assume
A4: (
cos r)
=
0 ;
then
A5: ((
PI
/ 2)
+
T(i))
>= r or r
>= (((3
/ 2)
*
PI )
+
T(i)) by
Th14;
((
- (
PI
/ 2))
+
T(i))
>= r or r
>= ((
PI
/ 2)
+
T(i)) by
A4,
Th13;
then r
= ((
PI
/ 2)
+
T(i)) or r
= (((3
/ 2)
*
PI )
+
T(i)) or r
> (((3
/ 2)
*
PI )
+
T(i)) by
A1,
A5,
A3,
XXREAL_0: 1,
XXREAL_0: 2;
hence thesis by
A2,
A4,
Th15;
end;
theorem ::
SIN_COS6:23
Th23: (
sin r)
= (
- 1) implies r
= (((3
/ 2)
*
PI )
+ ((2
*
PI )
*
[\(r
/ (2
*
PI ))/]))
proof
set i =
[\(r
/ (2
*
PI ))/];
consider w be
Real such that
A1: w
= (((2
*
PI )
* (
- i))
+ r) and
A2:
0
<= w & w
< (2
*
PI ) by
COMPLEX2: 1;
assume
A3: (
sin r)
= (
- 1);
then (((
cos r)
* (
cos r))
+ ((
- 1)
* (
- 1)))
= 1 by
SIN_COS: 29;
then
A4: (
cos r)
=
0 ;
(
0
+
T(i))
<= (w
+
T(i)) & (w
+
T(i))
< ((2
*
PI )
+
T(i)) by
A2,
XREAL_1: 6;
then r
= ((
PI
/ 2)
+
T(i)) or r
= (((3
/ 2)
*
PI )
+
T(i)) by
A1,
A4,
Th22;
hence thesis by
A3,
COMPLEX2: 8,
SIN_COS: 77;
end;
theorem ::
SIN_COS6:24
Th24: (
sin r)
= 1 implies r
= ((
PI
/ 2)
+ ((2
*
PI )
*
[\(r
/ (2
*
PI ))/]))
proof
set i =
[\(r
/ (2
*
PI ))/];
consider w be
Real such that
A1: w
= (((2
*
PI )
* (
- i))
+ r) and
A2:
0
<= w & w
< (2
*
PI ) by
COMPLEX2: 1;
assume
A3: (
sin r)
= 1;
then (((
cos r)
* (
cos r))
+ (1
* 1))
= 1 by
SIN_COS: 29;
then
A4: (
cos r)
=
0 ;
(
0
+
T(i))
<= (w
+
T(i)) & (w
+
T(i))
< ((2
*
PI )
+
T(i)) by
A2,
XREAL_1: 6;
then r
= ((
PI
/ 2)
+
T(i)) or r
= (((3
/ 2)
*
PI )
+
T(i)) by
A1,
A4,
Th22;
hence thesis by
A3,
COMPLEX2: 8,
SIN_COS: 77;
end;
theorem ::
SIN_COS6:25
Th25: (
cos r)
= (
- 1) implies r
= (
PI
+ ((2
*
PI )
*
[\(r
/ (2
*
PI ))/]))
proof
set i =
[\(r
/ (2
*
PI ))/];
consider w be
Real such that
A1: w
= (((2
*
PI )
* (
- i))
+ r) and
A2:
0
<= w & w
< (2
*
PI ) by
COMPLEX2: 1;
assume
A3: (
cos r)
= (
- 1);
then (((
sin r)
* (
sin r))
+ ((
- 1)
* (
- 1)))
= 1 by
SIN_COS: 29;
then
A4: (
sin r)
=
0 ;
(
0
+
T(i))
<= (w
+
T(i)) & (w
+
T(i))
< ((2
*
PI )
+
T(i)) by
A2,
XREAL_1: 6;
then r
= (
0
+
T(i)) or r
= (
PI
+
T(i)) by
A1,
A4,
Th21;
hence thesis by
A3,
COMPLEX2: 9,
SIN_COS: 31;
end;
theorem ::
SIN_COS6:26
Th26: (
cos r)
= 1 implies r
= ((2
*
PI )
*
[\(r
/ (2
*
PI ))/])
proof
set i =
[\(r
/ (2
*
PI ))/];
consider w be
Real such that
A1: w
= (((2
*
PI )
* (
- i))
+ r) and
A2:
0
<= w & w
< (2
*
PI ) by
COMPLEX2: 1;
assume
A3: (
cos r)
= 1;
then (((
sin r)
* (
sin r))
+ (1
* 1))
= 1 by
SIN_COS: 29;
then
A4: (
sin r)
=
0 ;
(
0
+
T(i))
<= (w
+
T(i)) & (w
+
T(i))
< ((2
*
PI )
+
T(i)) by
A2,
XREAL_1: 6;
then r
= (
0
+
T(i)) or r
= (
PI
+
T(i)) by
A1,
A4,
Th21;
hence thesis by
A3,
COMPLEX2: 9,
SIN_COS: 77;
end;
theorem ::
SIN_COS6:27
Th27:
0
<= r & r
<= (2
*
PI ) & (
sin r)
= (
- 1) implies r
= ((3
/ 2)
*
PI )
proof
assume that
A1:
0
<= r and
A2: r
<= (2
*
PI ) and
A3: (
sin r)
= (
- 1);
A4: r
= (2
*
PI ) or r
< (2
*
PI ) by
A2,
XXREAL_0: 1;
thus r
= (((3
/ 2)
*
PI )
+ ((2
*
PI )
*
[\(r
/ (2
*
PI ))/])) by
A3,
Th23
.= (((3
/ 2)
*
PI )
+ ((2
*
PI )
*
0 )) by
A1,
A3,
A4,
Th1,
SIN_COS: 77
.= ((3
/ 2)
*
PI );
end;
theorem ::
SIN_COS6:28
Th28:
0
<= r & r
<= (2
*
PI ) & (
sin r)
= 1 implies r
= (
PI
/ 2)
proof
assume that
A1:
0
<= r and
A2: r
<= (2
*
PI ) and
A3: (
sin r)
= 1;
A4: r
= (2
*
PI ) or r
< (2
*
PI ) by
A2,
XXREAL_0: 1;
thus r
= ((
PI
/ 2)
+ ((2
*
PI )
*
[\(r
/ (2
*
PI ))/])) by
A3,
Th24
.= ((
PI
/ 2)
+ ((2
*
PI )
*
0 )) by
A1,
A3,
A4,
Th1,
SIN_COS: 77
.= (
PI
/ 2);
end;
theorem ::
SIN_COS6:29
Th29:
0
<= r & r
<= (2
*
PI ) & (
cos r)
= (
- 1) implies r
=
PI
proof
assume that
A1:
0
<= r and
A2: r
<= (2
*
PI ) and
A3: (
cos r)
= (
- 1);
A4: r
= (2
*
PI ) or r
< (2
*
PI ) by
A2,
XXREAL_0: 1;
thus r
= (
PI
+ ((2
*
PI )
*
[\(r
/ (2
*
PI ))/])) by
A3,
Th25
.= (
PI
+ ((2
*
PI )
*
0 )) by
A1,
A3,
A4,
Th1,
SIN_COS: 77
.=
PI ;
end;
theorem ::
SIN_COS6:30
Th30:
0
<= r & r
< (
PI
/ 2) implies (
sin r)
< 1
proof
assume that
A1:
0
<= r and
A2: r
< (
PI
/ 2) and
A3: (
sin r)
>= 1;
A4: (
sin r)
<= 1 by
Th4;
((1
/ 2)
*
PI )
<= (2
*
PI ) by
XREAL_1: 64;
then r
< (2
*
PI ) by
A2,
XXREAL_0: 2;
hence thesis by
A1,
A2,
A3,
A4,
Th28,
XXREAL_0: 1;
end;
theorem ::
SIN_COS6:31
Th31:
0
<= r & r
< ((3
/ 2)
*
PI ) implies (
sin r)
> (
- 1)
proof
assume that
A1:
0
<= r and
A2: r
< ((3
/ 2)
*
PI ) and
A3: (
sin r)
<= (
- 1);
A4: (
sin r)
>= (
- 1) by
Th3;
r
<= (2
*
PI ) by
A2,
Lm9,
XXREAL_0: 2;
hence thesis by
A1,
A2,
A3,
A4,
Th27,
XXREAL_0: 1;
end;
theorem ::
SIN_COS6:32
Th32: ((3
/ 2)
*
PI )
< r & r
<= (2
*
PI ) implies (
sin r)
> (
- 1)
proof
assume
A1: ((3
/ 2)
*
PI )
< r & r
<= (2
*
PI ) & (
sin r)
<= (
- 1);
(
sin r)
>= (
- 1) by
Th3;
hence thesis by
A1,
Th27,
XXREAL_0: 1;
end;
theorem ::
SIN_COS6:33
Th33: (
PI
/ 2)
< r & r
<= (2
*
PI ) implies (
sin r)
< 1
proof
assume
A1: (
PI
/ 2)
< r & r
<= (2
*
PI ) & (
sin r)
>= 1;
(
sin r)
<= 1 by
Th4;
hence thesis by
A1,
Th28,
XXREAL_0: 1;
end;
theorem ::
SIN_COS6:34
Th34:
0
< r & r
< (2
*
PI ) implies (
cos r)
< 1
proof
assume
0
< r & r
< (2
*
PI );
then
A1: (
cos r)
<> 1 by
COMPTRIG: 61;
(
cos r)
<= 1 by
Th6;
hence thesis by
A1,
XXREAL_0: 1;
end;
theorem ::
SIN_COS6:35
Th35:
0
<= r & r
<
PI implies (
cos r)
> (
- 1)
proof
assume that
A1:
0
<= r and
A2: r
<
PI ;
A3: (
cos r)
>= (
- 1) by
Th5;
r
<= (2
*
PI ) by
A2,
Lm10,
XXREAL_0: 2;
hence thesis by
A1,
A2,
A3,
Th29,
XXREAL_0: 1;
end;
theorem ::
SIN_COS6:36
Th36:
PI
< r & r
<= (2
*
PI ) implies (
cos r)
> (
- 1)
proof
assume
A1:
PI
< r & r
<= (2
*
PI );
(
cos r)
>= (
- 1) by
Th5;
hence thesis by
A1,
Th29,
XXREAL_0: 1;
end;
theorem ::
SIN_COS6:37
((2
*
PI )
* i)
<= r & r
< ((
PI
/ 2)
+ ((2
*
PI )
* i)) implies (
sin r)
< 1
proof
assume that
A1:
T(i)
<= r & r
< ((
PI
/ 2)
+
T(i)) and
A2: (
sin r)
>= 1;
A3: (
T(i)
-
T(i))
<= (r
-
T(i)) & (r
-
T(i))
< (((
PI
/ 2)
+
T(i))
-
T(i)) by
A1,
XREAL_1: 9;
A4: (
sin r)
<= 1 by
Th4;
(
sin (r
-
T(i)))
= (
sin (r
+
T(-)))
.= (
sin r) by
COMPLEX2: 8
.= 1 by
A2,
A4,
XXREAL_0: 1;
hence thesis by
A3,
Th30;
end;
theorem ::
SIN_COS6:38
((2
*
PI )
* i)
<= r & r
< (((3
/ 2)
*
PI )
+ ((2
*
PI )
* i)) implies (
sin r)
> (
- 1)
proof
assume that
A1:
T(i)
<= r & r
< (((3
/ 2)
*
PI )
+
T(i)) and
A2: (
sin r)
<= (
- 1);
A3: (
T(i)
-
T(i))
<= (r
-
T(i)) & (r
-
T(i))
< ((((3
/ 2)
*
PI )
+
T(i))
-
T(i)) by
A1,
XREAL_1: 9;
A4: (
sin r)
>= (
- 1) by
Th3;
(
sin (r
-
T(i)))
= (
sin (r
+
T(-)))
.= (
sin r) by
COMPLEX2: 8
.= (
- 1) by
A2,
A4,
XXREAL_0: 1;
hence thesis by
A3,
Th31;
end;
theorem ::
SIN_COS6:39
(((3
/ 2)
*
PI )
+ ((2
*
PI )
* i))
< r & r
<= ((2
*
PI )
+ ((2
*
PI )
* i)) implies (
sin r)
> (
- 1)
proof
assume that
A1: (((3
/ 2)
*
PI )
+
T(i))
< r & r
<= ((2
*
PI )
+
T(i)) and
A2: (
sin r)
<= (
- 1);
A3: ((((3
/ 2)
*
PI )
+
T(i))
-
T(i))
< (r
-
T(i)) & (r
-
T(i))
<= (((2
*
PI )
+
T(i))
-
T(i)) by
A1,
XREAL_1: 9;
A4: (
sin r)
>= (
- 1) by
Th3;
(
sin (r
-
T(i)))
= (
sin (r
+
T(-)))
.= (
sin r) by
COMPLEX2: 8
.= (
- 1) by
A2,
A4,
XXREAL_0: 1;
hence thesis by
A3,
Th32;
end;
theorem ::
SIN_COS6:40
((
PI
/ 2)
+ ((2
*
PI )
* i))
< r & r
<= ((2
*
PI )
+ ((2
*
PI )
* i)) implies (
sin r)
< 1
proof
assume that
A1: ((
PI
/ 2)
+
T(i))
< r & r
<= ((2
*
PI )
+
T(i)) and
A2: (
sin r)
>= 1;
A3: (((
PI
/ 2)
+
T(i))
-
T(i))
< (r
-
T(i)) & (r
-
T(i))
<= (((2
*
PI )
+
T(i))
-
T(i)) by
A1,
XREAL_1: 9;
A4: (
sin r)
<= 1 by
Th4;
(
sin (r
-
T(i)))
= (
sin (r
+
T(-)))
.= (
sin r) by
COMPLEX2: 8
.= 1 by
A2,
A4,
XXREAL_0: 1;
hence thesis by
A3,
Th33;
end;
theorem ::
SIN_COS6:41
((2
*
PI )
* i)
< r & r
< ((2
*
PI )
+ ((2
*
PI )
* i)) implies (
cos r)
< 1
proof
assume that
A1:
T(i)
< r & r
< ((2
*
PI )
+
T(i)) and
A2: (
cos r)
>= 1;
A3: (
T(i)
-
T(i))
< (r
-
T(i)) & (r
-
T(i))
< (((2
*
PI )
+
T(i))
-
T(i)) by
A1,
XREAL_1: 9;
A4: (
cos r)
<= 1 by
Th6;
(
cos (r
-
T(i)))
= (
cos (r
+
T(-)))
.= (
cos r) by
COMPLEX2: 9
.= 1 by
A2,
A4,
XXREAL_0: 1;
hence thesis by
A3,
Th34;
end;
theorem ::
SIN_COS6:42
((2
*
PI )
* i)
<= r & r
< (
PI
+ ((2
*
PI )
* i)) implies (
cos r)
> (
- 1)
proof
assume that
A1:
T(i)
<= r & r
< (
PI
+
T(i)) and
A2: (
cos r)
<= (
- 1);
A3: (
T(i)
-
T(i))
<= (r
-
T(i)) & (r
-
T(i))
< ((
PI
+
T(i))
-
T(i)) by
A1,
XREAL_1: 9;
A4: (
cos r)
>= (
- 1) by
Th5;
(
cos (r
-
T(i)))
= (
cos (r
+
T(-)))
.= (
cos r) by
COMPLEX2: 9
.= (
- 1) by
A2,
A4,
XXREAL_0: 1;
hence thesis by
A3,
Th35;
end;
theorem ::
SIN_COS6:43
(
PI
+ ((2
*
PI )
* i))
< r & r
<= ((2
*
PI )
+ ((2
*
PI )
* i)) implies (
cos r)
> (
- 1)
proof
assume that
A1: (
PI
+
T(i))
< r & r
<= ((2
*
PI )
+
T(i)) and
A2: (
cos r)
<= (
- 1);
A3: ((
PI
+
T(i))
-
T(i))
< (r
-
T(i)) & (r
-
T(i))
<= (((2
*
PI )
+
T(i))
-
T(i)) by
A1,
XREAL_1: 9;
A4: (
cos r)
>= (
- 1) by
Th5;
(
cos (r
-
T(i)))
= (
cos (r
+
T(-)))
.= (
cos r) by
COMPLEX2: 9
.= (
- 1) by
A2,
A4,
XXREAL_0: 1;
hence thesis by
A3,
Th36;
end;
theorem ::
SIN_COS6:44
(
cos ((2
*
PI )
* r))
= 1 implies r
in
INT
proof
reconsider d = 2 as
positive
Real;
assume
A1: (
cos ((2
*
PI )
* r))
= 1;
assume not r
in
INT ;
then not r is
integer by
INT_1:def 2;
then
reconsider t = (
frac r) as
positive
Real by
INT_1: 46;
set s =
[\r/];
A2: r
= (s
+ t) & ((d
*
PI )
* t)
< ((d
*
PI )
* 1) by
INT_1: 42,
INT_1: 43,
XREAL_1: 68;
(
cos ((2
*
PI )
* (s
+ t)))
= (
cos (((2
*
PI )
* s)
+ ((2
*
PI )
* t)))
.= (
cos ((2
*
PI )
* t)) by
COMPLEX2: 9;
hence contradiction by
A1,
A2,
Th34;
end;
theorem ::
SIN_COS6:45
Th45: (
sin
.:
[.(
- (
PI
/ 2)), (
PI
/ 2).])
=
[.(
- 1), 1.] by
COMPTRIG: 30,
RELAT_1: 115;
theorem ::
SIN_COS6:46
Th46: (
sin
.:
].(
- (
PI
/ 2)), (
PI
/ 2).[)
=
].(
- 1), 1.[
proof
(
sin
|
].(
- (
PI
/ 2)), (
PI
/ 2).[)
c= (
sin
|
[.(
- (
PI
/ 2)), (
PI
/ 2).]) by
RELAT_1: 75,
XXREAL_1: 25;
then
A1: (
rng (
sin
|
].(
- (
PI
/ 2)), (
PI
/ 2).[))
c= (
rng (
sin
|
[.(
- (
PI
/ 2)), (
PI
/ 2).])) by
RELAT_1: 11;
A2: (
rng (
sin
|
].(
- (
PI
/ 2)), (
PI
/ 2).[))
= (
sin
.:
].(
- (
PI
/ 2)), (
PI
/ 2).[) by
RELAT_1: 115;
thus (
sin
.:
].(
- (
PI
/ 2)), (
PI
/ 2).[)
c=
].(
- 1), 1.[
proof
let x be
object;
assume
A3: x
in (
sin
.:
].(
- (
PI
/ 2)), (
PI
/ 2).[);
then
consider a be
object such that
A4: a
in (
dom
sin ) and
A5: a
in
].(
- (
PI
/ 2)), (
PI
/ 2).[ and
A6: (
sin
. a)
= x by
FUNCT_1:def 6;
reconsider a, x as
Real by
A4,
A6;
set i =
[\(a
/ (2
*
PI ))/];
A7: (
T(i)
/ ((2
*
PI )
* 1))
= (i
/ 1) by
XCMPLX_1: 91;
A8: (
sin
. a)
= (
sin a) by
SIN_COS:def 17;
A9:
now
assume x
= 1;
then
A10: a
= ((
PI
/ 2)
+
T(i)) by
A6,
A8,
Th24;
then ((
PI
/ 2)
+
T(i))
< (
PI
/ 2) by
A5,
XXREAL_1: 4;
then (((
PI
/ 2)
+
T(i))
- (
PI
/ 2))
< ((
PI
/ 2)
- (
PI
/ 2)) by
XREAL_1: 9;
then i
<
0 ;
then
A11: i
<= (
- 1) by
INT_1: 8;
(
- (
PI
/ 2))
< ((
PI
/ 2)
+
T(i)) by
A5,
A10,
XXREAL_1: 4;
then ((
- (
PI
/ 2))
- (
PI
/ 2))
< (((
PI
/ 2)
+
T(i))
- (
PI
/ 2)) by
XREAL_1: 9;
then (((
- 1)
*
PI )
/ (2
*
PI ))
< i by
A7,
XREAL_1: 74;
then ((
- 1)
/ 2)
< i by
XCMPLX_1: 91;
hence contradiction by
A11,
XXREAL_0: 2;
end;
A12:
now
assume x
= (
- 1);
then
A13: a
= (((3
/ 2)
*
PI )
+
T(i)) by
A6,
A8,
Th23;
then (
- (
PI
/ 2))
< (((3
/ 2)
*
PI )
+
T(i)) by
A5,
XXREAL_1: 4;
then ((
- (
PI
/ 2))
- ((3
/ 2)
*
PI ))
< ((((3
/ 2)
*
PI )
+
T(i))
- ((3
/ 2)
*
PI )) by
XREAL_1: 9;
then ((
- (2
*
PI ))
/ (2
*
PI ))
< i by
A7,
XREAL_1: 74;
then (
- ((2
*
PI )
/ (2
*
PI )))
< i by
XCMPLX_1: 187;
then (
- 1)
< i by
XCMPLX_1: 60;
then
A14: ((
- 1)
+ 1)
<= i by
INT_1: 7;
(((3
/ 2)
*
PI )
+
T(i))
< (
PI
/ 2) by
A5,
A13,
XXREAL_1: 4;
then ((((3
/ 2)
*
PI )
+
T(i))
- ((3
/ 2)
*
PI ))
< ((
PI
/ 2)
- ((3
/ 2)
*
PI )) by
XREAL_1: 9;
then i
< ((
-
PI )
/ (2
*
PI )) by
A7,
XREAL_1: 74;
hence contradiction by
A14,
XCMPLX_1: 91;
end;
x
<= 1 by
A1,
A2,
A3,
COMPTRIG: 30,
XXREAL_1: 1;
then
A15: x
< 1 by
A9,
XXREAL_0: 1;
(
- 1)
<= x by
A1,
A2,
A3,
COMPTRIG: 30,
XXREAL_1: 1;
then (
- 1)
< x by
A12,
XXREAL_0: 1;
hence thesis by
A15,
XXREAL_1: 4;
end;
let a be
object;
assume
A16: a
in
].(
- 1), 1.[;
then
reconsider a as
Real;
(
- 1)
< a & a
< 1 by
A16,
XXREAL_1: 4;
then a
in (
rng (
sin
|
[.(
- (
PI
/ 2)), (
PI
/ 2).])) by
COMPTRIG: 30,
XXREAL_1: 1;
then
consider x be
object such that
A17: x
in (
dom (
sin
|
[.(
- (
PI
/ 2)), (
PI
/ 2).])) and
A18: ((
sin
|
[.(
- (
PI
/ 2)), (
PI
/ 2).])
. x)
= a by
FUNCT_1:def 3;
reconsider x as
Real by
A17;
A19: (
sin
. x)
= a by
A17,
A18,
FUNCT_1: 47;
(
dom (
sin
|
[.(
- (
PI
/ 2)), (
PI
/ 2).]))
=
[.(
- (
PI
/ 2)), (
PI
/ 2).] by
RELAT_1: 62,
SIN_COS: 24;
then (
- (
PI
/ 2))
<= x & x
<= (
PI
/ 2) by
A17,
XXREAL_1: 1;
then (
- (
PI
/ 2))
< x & x
< (
PI
/ 2) or (
- (
PI
/ 2))
= x or (
PI
/ 2)
= x by
XXREAL_0: 1;
then x
in
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
A16,
A19,
Th7,
SIN_COS: 76,
XXREAL_1: 4;
hence thesis by
A19,
FUNCT_1:def 6,
SIN_COS: 24;
end;
theorem ::
SIN_COS6:47
(
sin
.:
[.(
PI
/ 2), ((3
/ 2)
*
PI ).])
=
[.(
- 1), 1.] by
COMPTRIG: 31,
RELAT_1: 115;
theorem ::
SIN_COS6:48
(
sin
.:
].(
PI
/ 2), ((3
/ 2)
*
PI ).[)
=
].(
- 1), 1.[
proof
(
sin
|
].(
PI
/ 2), ((3
/ 2)
*
PI ).[)
c= (
sin
|
[.(
PI
/ 2), ((3
/ 2)
*
PI ).]) by
RELAT_1: 75,
XXREAL_1: 25;
then
A1: (
rng (
sin
|
].(
PI
/ 2), ((3
/ 2)
*
PI ).[))
c= (
rng (
sin
|
[.(
PI
/ 2), ((3
/ 2)
*
PI ).])) by
RELAT_1: 11;
A2: (
rng (
sin
|
].(
PI
/ 2), ((3
/ 2)
*
PI ).[))
= (
sin
.:
].(
PI
/ 2), ((3
/ 2)
*
PI ).[) by
RELAT_1: 115;
thus (
sin
.:
].(
PI
/ 2), ((3
/ 2)
*
PI ).[)
c=
].(
- 1), 1.[
proof
let x be
object;
assume
A3: x
in (
sin
.:
].(
PI
/ 2), ((3
/ 2)
*
PI ).[);
then
consider a be
object such that
A4: a
in (
dom
sin ) and
A5: a
in
].(
PI
/ 2), ((3
/ 2)
*
PI ).[ and
A6: (
sin
. a)
= x by
FUNCT_1:def 6;
reconsider a, x as
Real by
A4,
A6;
set i =
[\(a
/ (2
*
PI ))/];
A7: (
T(i)
/ ((2
*
PI )
* 1))
= (i
/ 1) by
XCMPLX_1: 91;
A8: (
sin
. a)
= (
sin a) by
SIN_COS:def 17;
A9:
now
assume x
= 1;
then
A10: a
= ((
PI
/ 2)
+
T(i)) by
A6,
A8,
Th24;
then (
PI
/ 2)
< ((
PI
/ 2)
+
T(i)) by
A5,
XXREAL_1: 4;
then ((
PI
/ 2)
- (
PI
/ 2))
< (((
PI
/ 2)
+
T(i))
- (
PI
/ 2)) by
XREAL_1: 9;
then
0
< i;
then
A11: (
0
+ 1)
<= i by
INT_1: 7;
((
PI
/ 2)
+
T(i))
< ((3
/ 2)
*
PI ) by
A5,
A10,
XXREAL_1: 4;
then (((
PI
/ 2)
+
T(i))
- (
PI
/ 2))
< (((3
/ 2)
*
PI )
- (
PI
/ 2)) by
XREAL_1: 9;
then i
< ((1
*
PI )
/ (2
*
PI )) by
A7,
XREAL_1: 74;
then i
< (1
/ 2) by
XCMPLX_1: 91;
hence contradiction by
A11,
XXREAL_0: 2;
end;
A12:
now
assume x
= (
- 1);
then
A13: a
= (((3
/ 2)
*
PI )
+
T(i)) by
A6,
A8,
Th23;
then (((3
/ 2)
*
PI )
+
T(i))
< ((3
/ 2)
*
PI ) by
A5,
XXREAL_1: 4;
then ((((3
/ 2)
*
PI )
+
T(i))
- ((3
/ 2)
*
PI ))
< (((3
/ 2)
*
PI )
- ((3
/ 2)
*
PI )) by
XREAL_1: 9;
then i
<
0 ;
then
A14: i
<= (
- 1) by
INT_1: 8;
(
PI
/ 2)
< (((3
/ 2)
*
PI )
+
T(i)) by
A5,
A13,
XXREAL_1: 4;
then ((
PI
/ 2)
- ((3
/ 2)
*
PI ))
< ((((3
/ 2)
*
PI )
+
T(i))
- ((3
/ 2)
*
PI )) by
XREAL_1: 9;
then (((
- 1)
*
PI )
/ (2
*
PI ))
< i by
A7,
XREAL_1: 74;
then ((
- 1)
/ 2)
< i by
XCMPLX_1: 91;
hence contradiction by
A14,
XXREAL_0: 2;
end;
x
<= 1 by
A1,
A2,
A3,
COMPTRIG: 31,
XXREAL_1: 1;
then
A15: x
< 1 by
A9,
XXREAL_0: 1;
(
- 1)
<= x by
A1,
A2,
A3,
COMPTRIG: 31,
XXREAL_1: 1;
then (
- 1)
< x by
A12,
XXREAL_0: 1;
hence thesis by
A15,
XXREAL_1: 4;
end;
let a be
object;
assume
A16: a
in
].(
- 1), 1.[;
then
reconsider a as
Real;
(
- 1)
< a & a
< 1 by
A16,
XXREAL_1: 4;
then a
in (
rng (
sin
|
[.(
PI
/ 2), ((3
/ 2)
*
PI ).])) by
COMPTRIG: 31,
XXREAL_1: 1;
then
consider x be
object such that
A17: x
in (
dom (
sin
|
[.(
PI
/ 2), ((3
/ 2)
*
PI ).])) and
A18: ((
sin
|
[.(
PI
/ 2), ((3
/ 2)
*
PI ).])
. x)
= a by
FUNCT_1:def 3;
reconsider x as
Real by
A17;
A19: (
sin
. x)
= a by
A17,
A18,
FUNCT_1: 47;
(
dom (
sin
|
[.(
PI
/ 2), ((3
/ 2)
*
PI ).]))
=
[.(
PI
/ 2), ((3
/ 2)
*
PI ).] by
RELAT_1: 62,
SIN_COS: 24;
then (
PI
/ 2)
<= x & x
<= ((3
/ 2)
*
PI ) by
A17,
XXREAL_1: 1;
then (
PI
/ 2)
< x & x
< ((3
/ 2)
*
PI ) or (
PI
/ 2)
= x or ((3
/ 2)
*
PI )
= x by
XXREAL_0: 1;
then x
in
].(
PI
/ 2), ((3
/ 2)
*
PI ).[ by
A16,
A19,
SIN_COS: 76,
XXREAL_1: 4;
hence thesis by
A19,
FUNCT_1:def 6,
SIN_COS: 24;
end;
theorem ::
SIN_COS6:49
Th49: (
cos
.:
[.
0 ,
PI .])
=
[.(
- 1), 1.] by
COMPTRIG: 32,
RELAT_1: 115;
theorem ::
SIN_COS6:50
Th50: (
cos
.:
].
0 ,
PI .[)
=
].(
- 1), 1.[
proof
(
cos
|
].
0 ,
PI .[)
c= (
cos
|
[.
0 ,
PI .]) by
RELAT_1: 75,
XXREAL_1: 25;
then
A1: (
rng (
cos
|
].
0 ,
PI .[))
c= (
rng (
cos
|
[.
0 ,
PI .])) by
RELAT_1: 11;
A2: (
rng (
cos
|
].
0 ,
PI .[))
= (
cos
.:
].
0 ,
PI .[) by
RELAT_1: 115;
thus (
cos
.:
].
0 ,
PI .[)
c=
].(
- 1), 1.[
proof
let x be
object;
assume
A3: x
in (
cos
.:
].
0 ,
PI .[);
then
consider a be
object such that
A4: a
in (
dom
cos ) and
A5: a
in
].
0 ,
PI .[ and
A6: (
cos
. a)
= x by
FUNCT_1:def 6;
reconsider a, x as
Real by
A4,
A6;
set i =
[\(a
/ (2
*
PI ))/];
A7: (
T(i)
/ ((2
*
PI )
* 1))
= (i
/ 1) by
XCMPLX_1: 91;
A8: (
cos
. a)
= (
cos a) by
SIN_COS:def 19;
A9:
now
assume x
= 1;
then
A10: a
=
T(i) by
A6,
A8,
Th26;
then
T(i)
<
PI by
A5,
XXREAL_1: 4;
then i
< ((1
*
PI )
/ (2
*
PI )) by
A7,
XREAL_1: 74;
then
A11: i
< (1
/ 2) by
XCMPLX_1: 91;
0
< i by
A5,
A10,
XXREAL_1: 4;
then (
0
+ 1)
<= i by
INT_1: 7;
hence contradiction by
A11,
XXREAL_0: 2;
end;
A12:
now
assume x
= (
- 1);
then
A13: a
= (
PI
+
T(i)) by
A6,
A8,
Th25;
then
0
< (
PI
+
T(i)) by
A5,
XXREAL_1: 4;
then (
0
-
PI )
< ((
PI
+
T(i))
-
PI ) by
XREAL_1: 9;
then ((
-
PI )
/ (2
*
PI ))
< (
T(i)
/ (2
*
PI )) by
XREAL_1: 74;
then (
- ((1
*
PI )
/ (2
*
PI )))
< i by
A7,
XCMPLX_1: 187;
then
A14: (
- (1
/ 2))
< i by
XCMPLX_1: 91;
(
PI
+
T(i))
<
PI by
A5,
A13,
XXREAL_1: 4;
then ((
PI
+
T(i))
-
PI )
< (
PI
-
PI ) by
XREAL_1: 9;
then i
<
0 ;
then i
<= (
- 1) by
INT_1: 8;
hence contradiction by
A14,
XXREAL_0: 2;
end;
x
<= 1 by
A1,
A2,
A3,
COMPTRIG: 32,
XXREAL_1: 1;
then
A15: x
< 1 by
A9,
XXREAL_0: 1;
(
- 1)
<= x by
A1,
A2,
A3,
COMPTRIG: 32,
XXREAL_1: 1;
then (
- 1)
< x by
A12,
XXREAL_0: 1;
hence thesis by
A15,
XXREAL_1: 4;
end;
let a be
object;
assume
A16: a
in
].(
- 1), 1.[;
then
reconsider a as
Real;
(
- 1)
< a & a
< 1 by
A16,
XXREAL_1: 4;
then a
in (
rng (
cos
|
[.
0 ,
PI .])) by
COMPTRIG: 32,
XXREAL_1: 1;
then
consider x be
object such that
A17: x
in (
dom (
cos
|
[.
0 ,
PI .])) and
A18: ((
cos
|
[.
0 ,
PI .])
. x)
= a by
FUNCT_1:def 3;
reconsider x as
Real by
A17;
A19: (
cos
. x)
= a by
A17,
A18,
FUNCT_1: 47;
A20: (
dom (
cos
|
[.
0 ,
PI .]))
=
[.
0 ,
PI .] by
RELAT_1: 62,
SIN_COS: 24;
then x
<=
PI by
A17,
XXREAL_1: 1;
then
0
< x & x
<
PI or
0
= x or
PI
= x by
A17,
A20,
XXREAL_0: 1,
XXREAL_1: 1;
then x
in
].
0 ,
PI .[ by
A16,
A19,
SIN_COS: 30,
SIN_COS: 76,
XXREAL_1: 4;
hence thesis by
A19,
FUNCT_1:def 6,
SIN_COS: 24;
end;
theorem ::
SIN_COS6:51
(
cos
.:
[.
PI , (2
*
PI ).])
=
[.(
- 1), 1.] by
COMPTRIG: 33,
RELAT_1: 115;
theorem ::
SIN_COS6:52
(
cos
.:
].
PI , (2
*
PI ).[)
=
].(
- 1), 1.[
proof
(
cos
|
].
PI , (2
*
PI ).[)
c= (
cos
|
[.
PI , (2
*
PI ).]) by
RELAT_1: 75,
XXREAL_1: 25;
then
A1: (
rng (
cos
|
].
PI , (2
*
PI ).[))
c= (
rng (
cos
|
[.
PI , (2
*
PI ).])) by
RELAT_1: 11;
A2: (
rng (
cos
|
].
PI , (2
*
PI ).[))
= (
cos
.:
].
PI , (2
*
PI ).[) by
RELAT_1: 115;
thus (
cos
.:
].
PI , (2
*
PI ).[)
c=
].(
- 1), 1.[
proof
let x be
object;
assume
A3: x
in (
cos
.:
].
PI , (2
*
PI ).[);
then
consider a be
object such that
A4: a
in (
dom
cos ) and
A5: a
in
].
PI , (2
*
PI ).[ and
A6: (
cos
. a)
= x by
FUNCT_1:def 6;
reconsider a, x as
Real by
A4,
A6;
set i =
[\(a
/ (2
*
PI ))/];
A7: (
T(i)
/ ((2
*
PI )
* 1))
= (i
/ 1) by
XCMPLX_1: 91;
A8: (
cos
. a)
= (
cos a) by
SIN_COS:def 19;
A9:
now
assume x
= 1;
then
A10: a
=
T(i) by
A6,
A8,
Th26;
then
T(i)
< (2
*
PI ) by
A5,
XXREAL_1: 4;
then i
< ((2
*
PI )
/ (2
*
PI )) by
A7,
XREAL_1: 74;
then
A11: i
< (1
+
0 ) by
XCMPLX_1: 60;
PI
<
T(i) by
A5,
A10,
XXREAL_1: 4;
hence contradiction by
A7,
A11,
INT_1: 7;
end;
A12:
now
assume x
= (
- 1);
then
A13: a
= (
PI
+
T(i)) by
A6,
A8,
Th25;
then
PI
< (
PI
+
T(i)) by
A5,
XXREAL_1: 4;
then (
PI
-
PI )
< ((
PI
+
T(i))
-
PI ) by
XREAL_1: 9;
then (
0
/ (2
*
PI ))
< i;
then
A14: (
0
+ 1)
<= i by
INT_1: 7;
(
PI
+
T(i))
< (2
*
PI ) by
A5,
A13,
XXREAL_1: 4;
then ((
PI
+
T(i))
-
PI )
< ((2
*
PI )
-
PI ) by
XREAL_1: 9;
then i
< ((1
*
PI )
/ (2
*
PI )) by
A7,
XREAL_1: 74;
then i
<= (1
/ 2) by
XCMPLX_1: 91;
hence contradiction by
A14,
XXREAL_0: 2;
end;
x
<= 1 by
A1,
A2,
A3,
COMPTRIG: 33,
XXREAL_1: 1;
then
A15: x
< 1 by
A9,
XXREAL_0: 1;
(
- 1)
<= x by
A1,
A2,
A3,
COMPTRIG: 33,
XXREAL_1: 1;
then (
- 1)
< x by
A12,
XXREAL_0: 1;
hence thesis by
A15,
XXREAL_1: 4;
end;
let a be
object;
assume
A16: a
in
].(
- 1), 1.[;
then
reconsider a as
Real;
(
- 1)
< a & a
< 1 by
A16,
XXREAL_1: 4;
then a
in (
rng (
cos
|
[.
PI , (2
*
PI ).])) by
COMPTRIG: 33,
XXREAL_1: 1;
then
consider x be
object such that
A17: x
in (
dom (
cos
|
[.
PI , (2
*
PI ).])) and
A18: ((
cos
|
[.
PI , (2
*
PI ).])
. x)
= a by
FUNCT_1:def 3;
reconsider x as
Real by
A17;
A19: (
cos
. x)
= a by
A17,
A18,
FUNCT_1: 47;
(
dom (
cos
|
[.
PI , (2
*
PI ).]))
=
[.
PI , (2
*
PI ).] by
RELAT_1: 62,
SIN_COS: 24;
then
PI
<= x & x
<= (2
*
PI ) by
A17,
XXREAL_1: 1;
then
PI
< x & x
< (2
*
PI ) or
PI
= x or (2
*
PI )
= x by
XXREAL_0: 1;
then x
in
].
PI , (2
*
PI ).[ by
A16,
A19,
SIN_COS: 76,
XXREAL_1: 4;
hence thesis by
A19,
FUNCT_1:def 6,
SIN_COS: 24;
end;
Lm11:
now
let i, r;
let p1,p2 be
Real;
assume
A1: r
in
[.(p1
+
T(i)), (p2
+
T(i)).];
then r
<= (p2
+
T(i)) by
XXREAL_1: 1;
then
A2: (r
+ (2
*
PI ))
<= ((p2
+
T(i))
+ (2
*
PI )) by
XREAL_1: 6;
(p1
+
T(i))
<= r by
A1,
XXREAL_1: 1;
then ((p1
+
T(i))
+ (2
*
PI ))
<= (r
+ (2
*
PI )) by
XREAL_1: 6;
hence (r
+ (2
*
PI ))
in
[.(p1
+
T(+)), (p2
+
T(+)).] by
A2,
XXREAL_1: 1;
end;
Lm12:
now
let i, r;
let p1,p2 be
Real;
assume r
in (
[.(p1
+
T(i)), (p2
+
T(i)).]
/\
REAL );
then r
in
[.(p1
+
T(i)), (p2
+
T(i)).] by
XBOOLE_0:def 4;
then (r
+ (2
*
PI ))
in
[.(p1
+
T(+)), (p2
+
T(+)).] by
Lm11;
hence (r
+ (2
*
PI ))
in (
[.(p1
+
T(+)), (p2
+
T(+)).]
/\
REAL ) by
XBOOLE_0:def 4;
end;
Lm13:
now
let i, r;
let p1,p2 be
Real;
assume
A1: r
in
[.(p1
+
T(i)), (p2
+
T(i)).];
then r
<= (p2
+
T(i)) by
XXREAL_1: 1;
then
A2: (r
- (2
*
PI ))
<= ((p2
+
T(i))
- (2
*
PI )) by
XREAL_1: 9;
(p1
+
T(i))
<= r by
A1,
XXREAL_1: 1;
then ((p1
+
T(i))
- (2
*
PI ))
<= (r
- (2
*
PI )) by
XREAL_1: 9;
hence (r
- (2
*
PI ))
in
[.(p1
+
T(-)), (p2
+
T(-)).] by
A2,
XXREAL_1: 1;
end;
Lm14:
now
let i, r;
let p1,p2 be
Real;
assume r
in (
[.(p1
+
T(i)), (p2
+
T(i)).]
/\
REAL );
then r
in
[.(p1
+
T(i)), (p2
+
T(i)).] by
XBOOLE_0:def 4;
then (r
- (2
*
PI ))
in
[.(p1
+
T(-)), (p2
+
T(-)).] by
Lm13;
hence (r
- (2
*
PI ))
in (
[.(p1
+
T(-)), (p2
+
T(-)).]
/\
REAL ) by
XBOOLE_0:def 4;
end;
theorem ::
SIN_COS6:53
Th53: (
sin
|
[.((
- (
PI
/ 2))
+ ((2
*
PI )
* i)), ((
PI
/ 2)
+ ((2
*
PI )
* i)).]) is
increasing
proof
defpred
P[
Integer] means (
sin
|
[.((
- (
PI
/ 2))
+
T($1)), ((
PI
/ 2)
+
T($1)).]) is
increasing;
A1: for i holds
P[i] implies
P[(i
- 1)] &
P[(i
+ 1)]
proof
let i such that
A2:
P[i];
set Z =
[.((
- (
PI
/ 2))
+
T(+)), ((
PI
/ 2)
+
T(+)).];
thus
P[(i
- 1)]
proof
set Y =
[.((
- (
PI
/ 2))
+
T(-)), ((
PI
/ 2)
+
T(-)).];
now
let r1, r2;
assume r1
in (Y
/\ (
dom
sin )) & r2
in (Y
/\ (
dom
sin ));
then
A3: (r1
+ (2
*
PI ))
in (Z
/\ (
dom
sin )) & (r2
+ (2
*
PI ))
in (Z
/\ (
dom
sin )) by
Lm12,
SIN_COS: 24;
assume r1
< r2;
then (r1
+ (2
*
PI ))
< (r2
+ (2
*
PI )) by
XREAL_1: 6;
then (
sin
. (r1
+ (2
*
PI )))
< (
sin
. (r2
+ ((2
*
PI )
* 1))) by
A2,
A3,
RFUNCT_2: 20;
then (
sin
. (r1
+ ((2
*
PI )
* 1)))
< (
sin
. r2) by
Th8;
hence (
sin
. r1)
< (
sin
. r2) by
Th8;
end;
hence thesis by
RFUNCT_2: 20;
end;
set Y =
[.((
- (
PI
/ 2))
+
T(+)), ((
PI
/ 2)
+
T(+)).];
A4: Z
=
[.((
- (
PI
/ 2))
+
T(-)), ((
PI
/ 2)
+
T(-)).];
now
let r1, r2;
assume r1
in (Y
/\ (
dom
sin )) & r2
in (Y
/\ (
dom
sin ));
then
A5: (r1
- (2
*
PI ))
in (Z
/\ (
dom
sin )) & (r2
- (2
*
PI ))
in (Z
/\ (
dom
sin )) by
A4,
Lm14,
SIN_COS: 24;
assume r1
< r2;
then (r1
- (2
*
PI ))
< (r2
- (2
*
PI )) by
XREAL_1: 9;
then (
sin
. (r1
- (2
*
PI )))
< (
sin
. (r2
+ ((2
*
PI )
* (
- 1)))) by
A2,
A5,
RFUNCT_2: 20;
then (
sin
. (r1
+ ((2
*
PI )
* (
- 1))))
< (
sin
. r2) by
Th8;
hence (
sin
. r1)
< (
sin
. r2) by
Th8;
end;
hence thesis by
RFUNCT_2: 20;
end;
A6:
P[
0 ] by
COMPTRIG: 23;
for i holds
P[i] from
INT_1:sch 4(
A6,
A1);
hence thesis;
end;
theorem ::
SIN_COS6:54
Th54: (
sin
|
[.((
PI
/ 2)
+ ((2
*
PI )
* i)), (((3
/ 2)
*
PI )
+ ((2
*
PI )
* i)).]) is
decreasing
proof
defpred
P[
Integer] means (
sin
|
[.((
PI
/ 2)
+
T($1)), (((3
/ 2)
*
PI )
+
T($1)).]) is
decreasing;
A1: for i holds
P[i] implies
P[(i
- 1)] &
P[(i
+ 1)]
proof
let i such that
A2:
P[i];
set Z =
[.((
PI
/ 2)
+
T(+)), (((3
/ 2)
*
PI )
+
T(+)).];
thus
P[(i
- 1)]
proof
set Y =
[.((
PI
/ 2)
+
T(-)), (((3
/ 2)
*
PI )
+
T(-)).];
now
let r1, r2;
assume r1
in (Y
/\ (
dom
sin )) & r2
in (Y
/\ (
dom
sin ));
then
A3: (r1
+ (2
*
PI ))
in (Z
/\ (
dom
sin )) & (r2
+ (2
*
PI ))
in (Z
/\ (
dom
sin )) by
Lm12,
SIN_COS: 24;
assume r1
< r2;
then (r1
+ (2
*
PI ))
< (r2
+ (2
*
PI )) by
XREAL_1: 6;
then (
sin
. (r1
+ (2
*
PI )))
> (
sin
. (r2
+ ((2
*
PI )
* 1))) by
A2,
A3,
RFUNCT_2: 21;
then (
sin
. (r1
+ ((2
*
PI )
* 1)))
> (
sin
. r2) by
Th8;
hence (
sin
. r1)
> (
sin
. r2) by
Th8;
end;
hence thesis by
RFUNCT_2: 21;
end;
set Y =
[.((
PI
/ 2)
+
T(+)), (((3
/ 2)
*
PI )
+
T(+)).];
A4: Z
=
[.((
PI
/ 2)
+
T(-)), (((3
/ 2)
*
PI )
+
T(-)).];
now
let r1, r2;
assume r1
in (Y
/\ (
dom
sin )) & r2
in (Y
/\ (
dom
sin ));
then
A5: (r1
- (2
*
PI ))
in (Z
/\ (
dom
sin )) & (r2
- (2
*
PI ))
in (Z
/\ (
dom
sin )) by
A4,
Lm14,
SIN_COS: 24;
assume r1
< r2;
then (r1
- (2
*
PI ))
< (r2
- (2
*
PI )) by
XREAL_1: 9;
then (
sin
. (r1
- (2
*
PI )))
> (
sin
. (r2
+ ((2
*
PI )
* (
- 1)))) by
A2,
A5,
RFUNCT_2: 21;
then (
sin
. (r1
+ ((2
*
PI )
* (
- 1))))
> (
sin
. r2) by
Th8;
hence (
sin
. r1)
> (
sin
. r2) by
Th8;
end;
hence thesis by
RFUNCT_2: 21;
end;
A6:
P[
0 ] by
COMPTRIG: 24;
for i holds
P[i] from
INT_1:sch 4(
A6,
A1);
hence thesis;
end;
theorem ::
SIN_COS6:55
Th55: (
cos
|
[.((2
*
PI )
* i), (
PI
+ ((2
*
PI )
* i)).]) is
decreasing
proof
defpred
P[
Integer] means (
cos
|
[.
T($1), (
PI
+
T($1)).]) is
decreasing;
A1: for i holds
P[i] implies
P[(i
- 1)] &
P[(i
+ 1)]
proof
let i such that
A2:
P[i];
set Z =
[.(
0
+
T(+)), (
PI
+
T(+)).];
thus
P[(i
- 1)]
proof
set Y =
[.
T(-), (
PI
+
T(-)).];
A3: Y
=
[.(
0
+
T(-)), (
PI
+
T(-)).];
now
let r1, r2;
assume r1
in (Y
/\ (
dom
cos )) & r2
in (Y
/\ (
dom
cos ));
then
A4: (r1
+ (2
*
PI ))
in (Z
/\ (
dom
cos )) & (r2
+ (2
*
PI ))
in (Z
/\ (
dom
cos )) by
A3,
Lm12,
SIN_COS: 24;
assume r1
< r2;
then (r1
+ (2
*
PI ))
< (r2
+ (2
*
PI )) by
XREAL_1: 6;
then (
cos
. (r1
+ (2
*
PI )))
> (
cos
. (r2
+ ((2
*
PI )
* 1))) by
A2,
A4,
RFUNCT_2: 21;
then (
cos
. (r1
+ ((2
*
PI )
* 1)))
> (
cos
. r2) by
Th10;
hence (
cos
. r1)
> (
cos
. r2) by
Th10;
end;
hence thesis by
RFUNCT_2: 21;
end;
set Y =
[.
T(+), (
PI
+
T(+)).];
A5: Y
=
[.(
0
+
T(+)), (
PI
+
T(+)).] & Z
=
[.
T(-), (
PI
+
T(-)).];
now
let r1, r2;
assume r1
in (Y
/\ (
dom
cos )) & r2
in (Y
/\ (
dom
cos ));
then
A6: (r1
- (2
*
PI ))
in (Z
/\ (
dom
cos )) & (r2
- (2
*
PI ))
in (Z
/\ (
dom
cos )) by
A5,
Lm14,
SIN_COS: 24;
assume r1
< r2;
then (r1
- (2
*
PI ))
< (r2
- (2
*
PI )) by
XREAL_1: 9;
then (
cos
. (r1
- (2
*
PI )))
> (
cos
. (r2
+ ((2
*
PI )
* (
- 1)))) by
A2,
A6,
RFUNCT_2: 21;
then (
cos
. (r1
+ ((2
*
PI )
* (
- 1))))
> (
cos
. r2) by
Th10;
hence (
cos
. r1)
> (
cos
. r2) by
Th10;
end;
hence thesis by
RFUNCT_2: 21;
end;
A7:
P[
0 ] by
COMPTRIG: 25;
for i holds
P[i] from
INT_1:sch 4(
A7,
A1);
hence thesis;
end;
theorem ::
SIN_COS6:56
Th56: (
cos
|
[.(
PI
+ ((2
*
PI )
* i)), ((2
*
PI )
+ ((2
*
PI )
* i)).]) is
increasing
proof
defpred
P[
Integer] means (
cos
|
[.(
PI
+
T($1)), ((2
*
PI )
+
T($1)).]) is
increasing;
A1: for i holds
P[i] implies
P[(i
- 1)] &
P[(i
+ 1)]
proof
let i such that
A2:
P[i];
set Z =
[.(
PI
+
T(+)), ((2
*
PI )
+
T(+)).];
thus
P[(i
- 1)]
proof
set Y =
[.(
PI
+
T(-)), ((2
*
PI )
+
T(-)).];
now
let r1, r2;
assume r1
in (Y
/\ (
dom
cos )) & r2
in (Y
/\ (
dom
cos ));
then
A3: (r1
+ (2
*
PI ))
in (Z
/\ (
dom
cos )) & (r2
+ (2
*
PI ))
in (Z
/\ (
dom
cos )) by
Lm12,
SIN_COS: 24;
assume r1
< r2;
then (r1
+ (2
*
PI ))
< (r2
+ (2
*
PI )) by
XREAL_1: 6;
then (
cos
. (r1
+ (2
*
PI )))
< (
cos
. (r2
+ ((2
*
PI )
* 1))) by
A2,
A3,
RFUNCT_2: 20;
then (
cos
. (r1
+ ((2
*
PI )
* 1)))
< (
cos
. r2) by
Th10;
hence (
cos
. r1)
< (
cos
. r2) by
Th10;
end;
hence thesis by
RFUNCT_2: 20;
end;
set Y =
[.(
PI
+
T(+)), ((2
*
PI )
+
T(+)).];
A4: Z
=
[.(
PI
+
T(-)), ((2
*
PI )
+
T(-)).];
now
let r1, r2;
assume r1
in (Y
/\ (
dom
cos )) & r2
in (Y
/\ (
dom
cos ));
then
A5: (r1
- (2
*
PI ))
in (Z
/\ (
dom
cos )) & (r2
- (2
*
PI ))
in (Z
/\ (
dom
cos )) by
A4,
Lm14,
SIN_COS: 24;
assume r1
< r2;
then (r1
- (2
*
PI ))
< (r2
- (2
*
PI )) by
XREAL_1: 9;
then (
cos
. (r1
- (2
*
PI )))
< (
cos
. (r2
+ ((2
*
PI )
* (
- 1)))) by
A2,
A5,
RFUNCT_2: 20;
then (
cos
. (r1
+ ((2
*
PI )
* (
- 1))))
< (
cos
. r2) by
Th10;
hence (
cos
. r1)
< (
cos
. r2) by
Th10;
end;
hence thesis by
RFUNCT_2: 20;
end;
A6:
P[
0 ] by
COMPTRIG: 26;
for i holds
P[i] from
INT_1:sch 4(
A6,
A1);
hence thesis;
end;
theorem ::
SIN_COS6:57
Th57: (
sin
|
[.((
- (
PI
/ 2))
+ ((2
*
PI )
* i)), ((
PI
/ 2)
+ ((2
*
PI )
* i)).]) is
one-to-one
proof
set Q =
[.((
- (
PI
/ 2))
+ ((2
*
PI )
* i)), ((
PI
/ 2)
+ ((2
*
PI )
* i)).];
(
sin
| Q) is
increasing by
Th53;
hence thesis by
FCONT_3: 8;
end;
theorem ::
SIN_COS6:58
Th58: (
sin
|
[.((
PI
/ 2)
+ ((2
*
PI )
* i)), (((3
/ 2)
*
PI )
+ ((2
*
PI )
* i)).]) is
one-to-one
proof
set Q =
[.((
PI
/ 2)
+ ((2
*
PI )
* i)), (((3
/ 2)
*
PI )
+ ((2
*
PI )
* i)).];
(
sin
| Q) is
decreasing by
Th54;
hence thesis by
FCONT_3: 8;
end;
registration
cluster (
sin
|
[.(
- (
PI
/ 2)), (
PI
/ 2).]) ->
one-to-one;
coherence by
Lm1,
Th57;
cluster (
sin
|
[.(
PI
/ 2), ((3
/ 2)
*
PI ).]) ->
one-to-one;
coherence by
Lm2,
Th58;
end
registration
cluster (
sin
|
[.(
- (
PI
/ 2)),
0 .]) ->
one-to-one;
coherence
proof
(
sin
|
[.(
- (
PI
/ 2)), (
PI
/ 2).]) is
one-to-one;
hence thesis by
Th2,
XXREAL_1: 34;
end;
cluster (
sin
|
[.
0 , (
PI
/ 2).]) ->
one-to-one;
coherence
proof
(
sin
|
[.(
- (
PI
/ 2)), (
PI
/ 2).]) is
one-to-one;
hence thesis by
Th2,
XXREAL_1: 34;
end;
cluster (
sin
|
[.(
PI
/ 2),
PI .]) ->
one-to-one;
coherence
proof
(
sin
|
[.(
PI
/ 2), ((3
/ 2)
*
PI ).]) is
one-to-one;
hence thesis by
Lm7,
Th2,
XXREAL_1: 34;
end;
cluster (
sin
|
[.
PI , ((3
/ 2)
*
PI ).]) ->
one-to-one;
coherence
proof
(
sin
|
[.(
PI
/ 2), ((3
/ 2)
*
PI ).]) is
one-to-one;
hence thesis by
Lm6,
Th2,
XXREAL_1: 34;
end;
cluster (
sin
|
[.((3
/ 2)
*
PI ), (2
*
PI ).]) ->
one-to-one;
coherence
proof
(
sin
|
[.((
- (
PI
/ 2))
+
T()), ((
PI
/ 2)
+
T()).]) is
one-to-one by
Th57;
hence thesis by
Lm8,
Th2,
XXREAL_1: 34;
end;
end
registration
cluster (
sin
|
].(
- (
PI
/ 2)), (
PI
/ 2).[) ->
one-to-one;
coherence
proof
(
sin
|
[.(
- (
PI
/ 2)), (
PI
/ 2).]) is
one-to-one;
hence thesis by
Th2,
XXREAL_1: 25;
end;
cluster (
sin
|
].(
PI
/ 2), ((3
/ 2)
*
PI ).[) ->
one-to-one;
coherence
proof
(
sin
|
[.(
PI
/ 2), ((3
/ 2)
*
PI ).]) is
one-to-one;
hence thesis by
Th2,
XXREAL_1: 25;
end;
cluster (
sin
|
].(
- (
PI
/ 2)),
0 .[) ->
one-to-one;
coherence
proof
(
sin
|
[.(
- (
PI
/ 2)),
0 .]) is
one-to-one;
hence thesis by
Th2,
XXREAL_1: 25;
end;
cluster (
sin
|
].
0 , (
PI
/ 2).[) ->
one-to-one;
coherence
proof
(
sin
|
[.
0 , (
PI
/ 2).]) is
one-to-one;
hence thesis by
Th2,
XXREAL_1: 25;
end;
cluster (
sin
|
].(
PI
/ 2),
PI .[) ->
one-to-one;
coherence
proof
(
sin
|
[.(
PI
/ 2),
PI .]) is
one-to-one;
hence thesis by
Th2,
XXREAL_1: 25;
end;
cluster (
sin
|
].
PI , ((3
/ 2)
*
PI ).[) ->
one-to-one;
coherence
proof
(
sin
|
[.
PI , ((3
/ 2)
*
PI ).]) is
one-to-one;
hence thesis by
Th2,
XXREAL_1: 25;
end;
cluster (
sin
|
].((3
/ 2)
*
PI ), (2
*
PI ).[) ->
one-to-one;
coherence
proof
(
sin
|
[.((3
/ 2)
*
PI ), (2
*
PI ).]) is
one-to-one;
hence thesis by
Th2,
XXREAL_1: 25;
end;
end
theorem ::
SIN_COS6:59
Th59: (
cos
|
[.((2
*
PI )
* i), (
PI
+ ((2
*
PI )
* i)).]) is
one-to-one
proof
set Q1 =
[.((2
*
PI )
* i), (
PI
+ ((2
*
PI )
* i)).];
(
cos
| Q1) is
decreasing by
Th55;
hence thesis by
FCONT_3: 8;
end;
theorem ::
SIN_COS6:60
Th60: (
cos
|
[.(
PI
+ ((2
*
PI )
* i)), ((2
*
PI )
+ ((2
*
PI )
* i)).]) is
one-to-one
proof
set Q1 =
[.(
PI
+ ((2
*
PI )
* i)), ((2
*
PI )
+ ((2
*
PI )
* i)).];
(
cos
| Q1) is
increasing by
Th56;
hence thesis by
FCONT_3: 8;
end;
registration
cluster (
cos
|
[.
0 ,
PI .]) ->
one-to-one;
coherence by
Lm3,
Th59;
cluster (
cos
|
[.
PI , (2
*
PI ).]) ->
one-to-one;
coherence by
Lm4,
Th60;
end
registration
cluster (
cos
|
[.
0 , (
PI
/ 2).]) ->
one-to-one;
coherence
proof
(
cos
|
[.
0 ,
PI .]) is
one-to-one;
hence thesis by
Lm6,
Th2,
XXREAL_1: 34;
end;
cluster (
cos
|
[.(
PI
/ 2),
PI .]) ->
one-to-one;
coherence
proof
(
cos
|
[.
0 ,
PI .]) is
one-to-one;
hence thesis by
Th2,
XXREAL_1: 34;
end;
cluster (
cos
|
[.
PI , ((3
/ 2)
*
PI ).]) ->
one-to-one;
coherence
proof
(
cos
|
[.
PI , (2
*
PI ).]) is
one-to-one;
hence thesis by
Lm9,
Th2,
XXREAL_1: 34;
end;
cluster (
cos
|
[.((3
/ 2)
*
PI ), (2
*
PI ).]) ->
one-to-one;
coherence
proof
(
cos
|
[.
PI , (2
*
PI ).]) is
one-to-one;
hence thesis by
Lm7,
Th2,
XXREAL_1: 34;
end;
end
registration
cluster (
cos
|
].
0 ,
PI .[) ->
one-to-one;
coherence
proof
(
cos
|
[.
0 ,
PI .]) is
one-to-one;
hence thesis by
Th2,
XXREAL_1: 25;
end;
cluster (
cos
|
].
PI , (2
*
PI ).[) ->
one-to-one;
coherence
proof
(
cos
|
[.
PI , (2
*
PI ).]) is
one-to-one;
hence thesis by
Th2,
XXREAL_1: 25;
end;
cluster (
cos
|
].
0 , (
PI
/ 2).[) ->
one-to-one;
coherence
proof
(
cos
|
[.
0 , (
PI
/ 2).]) is
one-to-one;
hence thesis by
Th2,
XXREAL_1: 25;
end;
cluster (
cos
|
].(
PI
/ 2),
PI .[) ->
one-to-one;
coherence
proof
(
cos
|
[.(
PI
/ 2),
PI .]) is
one-to-one;
hence thesis by
Th2,
XXREAL_1: 25;
end;
cluster (
cos
|
].
PI , ((3
/ 2)
*
PI ).[) ->
one-to-one;
coherence
proof
(
cos
|
[.
PI , ((3
/ 2)
*
PI ).]) is
one-to-one;
hence thesis by
Th2,
XXREAL_1: 25;
end;
cluster (
cos
|
].((3
/ 2)
*
PI ), (2
*
PI ).[) ->
one-to-one;
coherence
proof
(
cos
|
[.((3
/ 2)
*
PI ), (2
*
PI ).]) is
one-to-one;
hence thesis by
Th2,
XXREAL_1: 25;
end;
end
theorem ::
SIN_COS6:61
((2
*
PI )
* i)
<= r & r
< ((2
*
PI )
+ ((2
*
PI )
* i)) & ((2
*
PI )
* i)
<= s & s
< ((2
*
PI )
+ ((2
*
PI )
* i)) & (
sin r)
= (
sin s) & (
cos r)
= (
cos s) implies r
= s
proof
assume that
A1: ((2
*
PI )
* i)
<= r and
A2: r
< ((2
*
PI )
+ ((2
*
PI )
* i)) & ((2
*
PI )
* i)
<= s and
A3: s
< ((2
*
PI )
+ ((2
*
PI )
* i)) and
A4: (
sin r)
= (
sin s) & (
cos r)
= (
cos s);
A5: (
cos (r
- s))
= (((
cos r)
* (
cos s))
+ ((
sin r)
* (
sin s))) by
COMPLEX2: 3
.= 1 by
A4,
SIN_COS: 29;
A6: (
sin (r
- s))
= (((
sin r)
* (
cos s))
- ((
cos r)
* (
sin s))) by
COMPLEX2: 3
.=
0 by
A4;
A7: (
cos (s
- r))
= (((
cos r)
* (
cos s))
+ ((
sin r)
* (
sin s))) by
COMPLEX2: 3
.= 1 by
A4,
SIN_COS: 29;
A8: (
sin (s
- r))
= (((
sin s)
* (
cos r))
- ((
cos s)
* (
sin r))) by
COMPLEX2: 3
.=
0 by
A4;
per cases by
XXREAL_0: 1;
suppose
A9: r
> s;
(r
+ ((2
*
PI )
* i))
< (((2
*
PI )
+ ((2
*
PI )
* i))
+ s) by
A2,
XREAL_1: 8;
then ((r
+ ((2
*
PI )
* i))
- ((2
*
PI )
* i))
< ((((2
*
PI )
+ ((2
*
PI )
* i))
+ s)
- ((2
*
PI )
* i)) by
XREAL_1: 9;
then r
< ((2
*
PI )
+ s);
then
A10: (r
- s)
< (2
*
PI ) by
XREAL_1: 19;
r
> (s
+
0 ) by
A9;
then
0
<= (r
- s) by
XREAL_1: 20;
then (r
- s)
=
0 or (r
- s)
=
PI by
A6,
A10,
COMPTRIG: 17;
hence thesis by
A5,
SIN_COS: 77;
end;
suppose
A11: r
< s;
(s
+ ((2
*
PI )
* i))
< (((2
*
PI )
+ ((2
*
PI )
* i))
+ r) by
A1,
A3,
XREAL_1: 8;
then ((s
+ ((2
*
PI )
* i))
- ((2
*
PI )
* i))
< ((((2
*
PI )
+ ((2
*
PI )
* i))
+ r)
- ((2
*
PI )
* i)) by
XREAL_1: 9;
then s
< ((2
*
PI )
+ r);
then
A12: (s
- r)
< (2
*
PI ) by
XREAL_1: 19;
s
> (r
+
0 ) by
A11;
then
0
<= (s
- r) by
XREAL_1: 20;
then (s
- r)
=
0 or (s
- r)
=
PI by
A8,
A12,
COMPTRIG: 17;
hence thesis by
A7,
SIN_COS: 77;
end;
suppose r
= s;
hence thesis;
end;
end;
begin
definition
::
SIN_COS6:def1
func
arcsin ->
PartFunc of
REAL ,
REAL equals ((
sin
|
[.(
- (
PI
/ 2)), (
PI
/ 2).])
" );
coherence ;
end
definition
let r be
object;
::
SIN_COS6:def2
func
arcsin r ->
number equals (
arcsin
. r);
coherence ;
end
registration
let r be
object;
cluster (
arcsin r) ->
real;
coherence ;
end
Lm15: (
arcsin qua
Function
" )
= (
sin
|
[.(
- (
PI
/ 2)), (
PI
/ 2).]) by
FUNCT_1: 43;
theorem ::
SIN_COS6:62
Th62: (
rng
arcsin )
=
[.(
- (
PI
/ 2)), (
PI
/ 2).]
proof
(
dom (
sin
|
[.(
- (
PI
/ 2)), (
PI
/ 2).]))
=
[.(
- (
PI
/ 2)), (
PI
/ 2).] by
RELAT_1: 62,
SIN_COS: 24;
hence thesis by
FUNCT_1: 33;
end;
registration
cluster
arcsin ->
one-to-one;
coherence ;
end
theorem ::
SIN_COS6:63
Th63: (
dom
arcsin )
=
[.(
- 1), 1.] by
COMPTRIG: 30,
FUNCT_1: 33;
theorem ::
SIN_COS6:64
Th64: ((
sin
|
[.(
- (
PI
/ 2)), (
PI
/ 2).]) qua
Function
*
arcsin )
= (
id
[.(
- 1), 1.]) by
COMPTRIG: 30,
FUNCT_1: 39;
theorem ::
SIN_COS6:65
(
arcsin
* (
sin
|
[.(
- (
PI
/ 2)), (
PI
/ 2).]))
= (
id
[.(
- 1), 1.]) by
COMPTRIG: 30,
FUNCT_1: 39;
theorem ::
SIN_COS6:66
Th66: ((
sin
|
[.(
- (
PI
/ 2)), (
PI
/ 2).])
*
arcsin )
= (
id
[.(
- (
PI
/ 2)), (
PI
/ 2).]) by
Lm15,
Th62,
FUNCT_1: 39;
theorem ::
SIN_COS6:67
(
arcsin qua
Function
* (
sin
|
[.(
- (
PI
/ 2)), (
PI
/ 2).]))
= (
id
[.(
- (
PI
/ 2)), (
PI
/ 2).]) by
Lm15,
Th62,
FUNCT_1: 39;
theorem ::
SIN_COS6:68
Th68: (
- 1)
<= r & r
<= 1 implies (
sin (
arcsin r))
= r
proof
assume (
- 1)
<= r & r
<= 1;
then
A1: r
in
[.(
- 1), 1.] by
XXREAL_1: 1;
then
A2: (
arcsin
. r)
in
[.(
- (
PI
/ 2)), (
PI
/ 2).] by
Th62,
Th63,
FUNCT_1:def 3;
thus (
sin (
arcsin r))
= (
sin
. (
arcsin
. r)) by
SIN_COS:def 17
.= ((
sin
|
[.(
- (
PI
/ 2)), (
PI
/ 2).]) qua
Function
. (
arcsin
. r)) by
A2,
FUNCT_1: 49
.= ((
id
[.(
- 1), 1.])
. r) by
A1,
Th63,
Th64,
FUNCT_1: 13
.= r by
A1,
FUNCT_1: 18;
end;
theorem ::
SIN_COS6:69
Th69: (
- (
PI
/ 2))
<= r & r
<= (
PI
/ 2) implies (
arcsin (
sin r))
= r
proof
A1: (
dom (
sin
|
[.(
- (
PI
/ 2)), (
PI
/ 2).]))
=
[.(
- (
PI
/ 2)), (
PI
/ 2).] by
RELAT_1: 62,
SIN_COS: 24;
assume (
- (
PI
/ 2))
<= r & r
<= (
PI
/ 2);
then
A2: r
in
[.(
- (
PI
/ 2)), (
PI
/ 2).] by
XXREAL_1: 1;
thus (
arcsin (
sin r))
= (
arcsin
. (
sin
. r)) by
SIN_COS:def 17
.= (
arcsin
. ((
sin
|
[.(
- (
PI
/ 2)), (
PI
/ 2).])
. r)) by
A2,
FUNCT_1: 49
.= ((
id
[.(
- (
PI
/ 2)), (
PI
/ 2).])
. r) by
A2,
A1,
Th66,
FUNCT_1: 13
.= r by
A2,
FUNCT_1: 18;
end;
theorem ::
SIN_COS6:70
(
arcsin (
- 1))
= (
- (
PI
/ 2)) by
Th7,
Th69;
theorem ::
SIN_COS6:71
(
arcsin
0 )
=
0 by
Th69,
SIN_COS: 31;
theorem ::
SIN_COS6:72
(
arcsin 1)
= (
PI
/ 2) by
Th69,
SIN_COS: 77;
theorem ::
SIN_COS6:73
(
- 1)
<= r & r
<= 1 & (
arcsin r)
= (
- (
PI
/ 2)) implies r
= (
- 1) by
Th7,
Th68;
theorem ::
SIN_COS6:74
(
- 1)
<= r & r
<= 1 & (
arcsin r)
=
0 implies r
=
0 by
Th68,
SIN_COS: 31;
theorem ::
SIN_COS6:75
(
- 1)
<= r & r
<= 1 & (
arcsin r)
= (
PI
/ 2) implies r
= 1 by
Th68,
SIN_COS: 77;
theorem ::
SIN_COS6:76
Th76: (
- 1)
<= r & r
<= 1 implies (
- (
PI
/ 2))
<= (
arcsin r) & (
arcsin r)
<= (
PI
/ 2)
proof
assume (
- 1)
<= r & r
<= 1;
then r
in
[.(
- 1), 1.] by
XXREAL_1: 1;
then (
arcsin
. r)
in (
rng
arcsin ) by
Th63,
FUNCT_1:def 3;
hence thesis by
Th62,
XXREAL_1: 1;
end;
theorem ::
SIN_COS6:77
Th77: (
- 1)
< r & r
< 1 implies (
- (
PI
/ 2))
< (
arcsin r) & (
arcsin r)
< (
PI
/ 2)
proof
assume
A1: (
- 1)
< r & r
< 1;
then (
- (
PI
/ 2))
<= (
arcsin r) & (
arcsin r)
<= (
PI
/ 2) by
Th76;
then (
- (
PI
/ 2))
< (
arcsin r) & (
arcsin r)
< (
PI
/ 2) or (
- (
PI
/ 2))
= (
arcsin r) or (
arcsin r)
= (
PI
/ 2) by
XXREAL_0: 1;
hence thesis by
A1,
Th7,
Th68,
SIN_COS: 77;
end;
theorem ::
SIN_COS6:78
Th78: (
- 1)
<= r & r
<= 1 implies (
arcsin r)
= (
- (
arcsin (
- r)))
proof
assume (
- 1)
<= r & r
<= 1;
then
A1: (
- (
- 1))
>= (
- r) & (
- r)
>= (
- 1) by
XREAL_1: 24;
then (
arcsin (
- r))
<= (
PI
/ 2) by
Th76;
then
A2: (
- (
PI
/ 2))
<= (
- (
arcsin (
- r))) by
XREAL_1: 24;
(
- (
PI
/ 2))
<= (
arcsin (
- r)) by
A1,
Th76;
then
A3: (
- (
arcsin (
- r)))
<= (
- (
- (
PI
/ 2))) by
XREAL_1: 24;
r
= (
0
- (1
* (
- r)))
.= (((
sin
0 )
* (
cos (
arcsin (
- r))))
- ((
cos
0 )
* (
sin (
arcsin (
- r))))) by
A1,
Th68,
SIN_COS: 31
.= (
sin (
0
- (
arcsin (
- r)))) by
COMPLEX2: 3;
hence thesis by
A2,
A3,
Th69;
end;
theorem ::
SIN_COS6:79
Th79:
0
<= s & ((r
^2 )
+ (s
^2 ))
= 1 implies (
cos (
arcsin r))
= s
proof
set x = (
arcsin r);
assume that
A1:
0
<= s and
A2: ((r
^2 )
+ (s
^2 ))
= 1;
A3: (
- 1)
<= r & r
<= 1 by
A2,
Lm5;
then (
- (
PI
/ 2))
<= x & x
<= (
PI
/ 2) by
Th76;
then
A4: x
in
[.(
- (
PI
/ 2)), (
PI
/ 2).] by
XXREAL_1: 1;
(((
sin
. x)
^2 )
+ ((
cos
. x)
^2 ))
= 1 by
SIN_COS: 28;
then ((
cos
. x)
^2 )
= (1
- ((
sin
. x)
^2 ))
.= (1
- ((
sin x)
^2 )) by
SIN_COS:def 17
.= (1
- (r
^2 )) by
A3,
Th68;
then
A5: (
cos
. x)
= s or (
cos
. x)
= (
- s) by
A2,
SQUARE_1: 40;
(
- (
- (
- s)))
<
0 or s
=
0 by
A1;
hence thesis by
A5,
A4,
COMPTRIG: 12,
SIN_COS:def 19;
end;
theorem ::
SIN_COS6:80
s
<=
0 & ((r
^2 )
+ (s
^2 ))
= 1 implies (
cos (
arcsin r))
= (
- s)
proof
set x = (
arcsin r);
assume that
A1: s
<=
0 and
A2: ((r
^2 )
+ (s
^2 ))
= 1;
A3: (
- 1)
<= r & r
<= 1 by
A2,
Lm5;
then (
- (
PI
/ 2))
<= x & x
<= (
PI
/ 2) by
Th76;
then
A4: x
in
[.(
- (
PI
/ 2)), (
PI
/ 2).] by
XXREAL_1: 1;
(((
sin
. x)
^2 )
+ ((
cos
. x)
^2 ))
= 1 by
SIN_COS: 28;
then ((
cos
. x)
^2 )
= (1
- ((
sin
. x)
^2 ))
.= (1
- ((
sin x)
^2 )) by
SIN_COS:def 17
.= (1
- (r
^2 )) by
A3,
Th68;
then
A5: (
cos
. x)
= s or (
cos
. x)
= (
- s) by
A2,
SQUARE_1: 40;
0
> s or s
=
0 by
A1;
hence thesis by
A5,
A4,
COMPTRIG: 12,
SIN_COS:def 19;
end;
theorem ::
SIN_COS6:81
Th81: (
- 1)
<= r & r
<= 1 implies (
cos (
arcsin r))
= (
sqrt (1
- (r
^2 )))
proof
set s = (
sqrt (1
- (r
^2 )));
assume (
- 1)
<= r & r
<= 1;
then ((r
^2 )
+
0 )
<= (1
^2 ) by
SQUARE_1: 49;
then
0
<= (1
- (r
^2 )) by
XREAL_1: 19;
then
0
<= s & ((r
^2 )
+ (s
^2 ))
= ((r
^2 )
+ (1
- (r
^2 ))) by
SQUARE_1:def 2;
hence thesis by
Th79;
end;
theorem ::
SIN_COS6:82
(
arcsin
|
[.(
- 1), 1.]) is
increasing
proof
set f = (
sin
|
[.(
- (
PI
/ 2)), (
PI
/ 2).]);
(f
.:
[.(
- (
PI
/ 2)), (
PI
/ 2).])
=
[.(
- 1), 1.] & (((f
|
[.(
- (
PI
/ 2)), (
PI
/ 2).])
" )
| (f
.:
[.(
- (
PI
/ 2)), (
PI
/ 2).])) is
increasing by
Th45,
COMPTRIG: 23,
FCONT_3: 9,
RELAT_1: 129;
hence thesis by
RELAT_1: 72;
end;
theorem ::
SIN_COS6:83
arcsin
is_differentiable_on
].(
- 1), 1.[ & ((
- 1)
< r & r
< 1 implies (
diff (
arcsin ,r))
= (1
/ (
sqrt (1
- (r
^2 )))))
proof
set g = (
arcsin
|
].(
- 1), 1.[);
set h = (
sin
|
[.(
- (
PI
/ 2)), (
PI
/ 2).]);
set f = (
sin
|
].(
- (
PI
/ 2)), (
PI
/ 2).[);
A1: (
dom f)
= (
].(
- (
PI
/ 2)), (
PI
/ 2).[
/\
REAL ) by
RELAT_1: 61,
SIN_COS: 24
.=
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
XBOOLE_1: 28;
set x = (
arcsin
. r);
set s = (
sqrt (1
- (r
^2 )));
A2:
].(
- 1), 1.[
c= (
dom
arcsin ) by
Th63,
XXREAL_1: 25;
A3:
sin
is_differentiable_on
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
FDIFF_1: 26,
SIN_COS: 68;
then
A4: f
is_differentiable_on
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
FDIFF_2: 16;
A5:
now
let x0 be
Real such that
A6: x0
in
].(
- (
PI
/ 2)), (
PI
/ 2).[;
(
diff (f,x0))
= ((f
`|
].(
- (
PI
/ 2)), (
PI
/ 2).[)
. x0) by
A4,
A6,
FDIFF_1:def 7
.= ((
sin
`|
].(
- (
PI
/ 2)), (
PI
/ 2).[)
. x0) by
A3,
FDIFF_2: 16
.= (
diff (
sin ,x0)) by
A3,
A6,
FDIFF_1:def 7
.= (
cos
. x0) by
SIN_COS: 68;
hence
0
< (
diff (f,x0)) by
A6,
COMPTRIG: 11;
end;
A7: (f
" )
= ((h
|
].(
- (
PI
/ 2)), (
PI
/ 2).[)
" ) by
RELAT_1: 74,
XXREAL_1: 25
.= ((h
" )
| (h
.:
].(
- (
PI
/ 2)), (
PI
/ 2).[)) by
RFUNCT_2: 17
.= g by
Th46,
RELAT_1: 129,
XXREAL_1: 25;
then
A8: (f
|
].(
- (
PI
/ 2)), (
PI
/ 2).[)
= f & (
dom (f
" ))
=
].(
- 1), 1.[ by
Th63,
RELAT_1: 62,
RELAT_1: 72,
XXREAL_1: 25;
then
A9: g
is_differentiable_on
].(
- 1), 1.[ by
A7,
A4,
A1,
A5,
FDIFF_2: 48;
then for x st x
in
].(
- 1), 1.[ holds g
is_differentiable_in x by
FDIFF_1: 9;
hence
A10:
arcsin
is_differentiable_on
].(
- 1), 1.[ by
A2,
FDIFF_1:def 6;
assume
A11: (
- 1)
< r & r
< 1;
then
A12: r
in
].(
- 1), 1.[ by
XXREAL_1: 4;
then
A13: (g
. r)
= x by
FUNCT_1: 49;
x
= (
arcsin r);
then (
- (
PI
/ 2))
< x & x
< (
PI
/ 2) by
A11,
Th77;
then
A14: x
in
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
XXREAL_1: 4;
then
A15: (
diff (f,x))
= ((f
`|
].(
- (
PI
/ 2)), (
PI
/ 2).[)
. x) by
A4,
FDIFF_1:def 7
.= ((
sin
`|
].(
- (
PI
/ 2)), (
PI
/ 2).[)
. x) by
A3,
FDIFF_2: 16
.= (
diff (
sin ,x)) by
A3,
A14,
FDIFF_1:def 7
.= (
cos
. x) by
SIN_COS: 68
.= (
cos (
arcsin r)) by
SIN_COS:def 19
.= s by
A11,
Th81;
thus (
diff (
arcsin ,r))
= ((
arcsin
`|
].(
- 1), 1.[)
. r) by
A10,
A12,
FDIFF_1:def 7
.= ((g
`|
].(
- 1), 1.[)
. r) by
A10,
FDIFF_2: 16
.= (
diff (g,r)) by
A9,
A12,
FDIFF_1:def 7
.= (1
/ s) by
A7,
A8,
A4,
A1,
A5,
A12,
A13,
A15,
FDIFF_2: 48;
end;
theorem ::
SIN_COS6:84
(
arcsin
|
[.(
- 1), 1.]) is
continuous
proof
set f = (
sin
|
[.(
- (
PI
/ 2)), (
PI
/ 2).]);
(
dom f)
=
[.(
- (
PI
/ 2)), (
PI
/ 2).] by
RELAT_1: 62,
SIN_COS: 24;
then (f
|
[.(
- (
PI
/ 2)), (
PI
/ 2).])
= f & (((f
|
[.(
- (
PI
/ 2)), (
PI
/ 2).])
" )
| (f
.:
[.(
- (
PI
/ 2)), (
PI
/ 2).])) is
continuous by
COMPTRIG: 23,
FCONT_1: 47,
RELAT_1: 73;
hence thesis by
COMPTRIG: 30,
RELAT_1: 115;
end;
begin
definition
::
SIN_COS6:def3
func
arccos ->
PartFunc of
REAL ,
REAL equals ((
cos
|
[.
0 ,
PI .])
" );
coherence ;
end
definition
let r be
object;
::
SIN_COS6:def4
func
arccos r ->
number equals (
arccos
. r);
coherence ;
end
registration
let r be
object;
cluster (
arccos r) ->
real;
coherence ;
end
Lm16: (
arccos qua
Function
" )
= (
cos
|
[.
0 ,
PI .]) by
FUNCT_1: 43;
theorem ::
SIN_COS6:85
Th85: (
rng
arccos )
=
[.
0 ,
PI .]
proof
(
dom (
cos
|
[.
0 ,
PI .]))
=
[.
0 ,
PI .] by
RELAT_1: 62,
SIN_COS: 24;
hence thesis by
FUNCT_1: 33;
end;
registration
cluster
arccos ->
one-to-one;
coherence ;
end
theorem ::
SIN_COS6:86
Th86: (
dom
arccos )
=
[.(
- 1), 1.] by
COMPTRIG: 32,
FUNCT_1: 33;
theorem ::
SIN_COS6:87
Th87: ((
cos
|
[.
0 ,
PI .]) qua
Function
*
arccos )
= (
id
[.(
- 1), 1.]) by
COMPTRIG: 32,
FUNCT_1: 39;
theorem ::
SIN_COS6:88
(
arccos
* (
cos
|
[.
0 ,
PI .]))
= (
id
[.(
- 1), 1.]) by
COMPTRIG: 32,
FUNCT_1: 39;
theorem ::
SIN_COS6:89
Th89: ((
cos
|
[.
0 ,
PI .])
*
arccos )
= (
id
[.
0 ,
PI .]) by
Lm16,
Th85,
FUNCT_1: 39;
theorem ::
SIN_COS6:90
(
arccos qua
Function
* (
cos
|
[.
0 ,
PI .]))
= (
id
[.
0 ,
PI .]) by
Lm16,
Th85,
FUNCT_1: 39;
theorem ::
SIN_COS6:91
Th91: (
- 1)
<= r & r
<= 1 implies (
cos (
arccos r))
= r
proof
assume (
- 1)
<= r & r
<= 1;
then
A1: r
in
[.(
- 1), 1.] by
XXREAL_1: 1;
then
A2: (
arccos
. r)
in
[.
0 ,
PI .] by
Th85,
Th86,
FUNCT_1:def 3;
thus (
cos (
arccos r))
= (
cos
. (
arccos
. r)) by
SIN_COS:def 19
.= ((
cos
|
[.
0 ,
PI .]) qua
Function
. (
arccos
. r)) by
A2,
FUNCT_1: 49
.= ((
id
[.(
- 1), 1.])
. r) by
A1,
Th86,
Th87,
FUNCT_1: 13
.= r by
A1,
FUNCT_1: 18;
end;
theorem ::
SIN_COS6:92
Th92:
0
<= r & r
<=
PI implies (
arccos (
cos r))
= r
proof
A1: (
dom (
cos
|
[.
0 ,
PI .]))
=
[.
0 ,
PI .] by
RELAT_1: 62,
SIN_COS: 24;
assume
0
<= r & r
<=
PI ;
then
A2: r
in
[.
0 ,
PI .] by
XXREAL_1: 1;
thus (
arccos (
cos r))
= (
arccos
. (
cos
. r)) by
SIN_COS:def 19
.= (
arccos
. ((
cos
|
[.
0 ,
PI .])
. r)) by
A2,
FUNCT_1: 49
.= ((
id
[.
0 ,
PI .])
. r) by
A2,
A1,
Th89,
FUNCT_1: 13
.= r by
A2,
FUNCT_1: 18;
end;
theorem ::
SIN_COS6:93
(
arccos (
- 1))
=
PI by
Th92,
SIN_COS: 77;
theorem ::
SIN_COS6:94
(
arccos
0 )
= (
PI
/ 2) by
Lm6,
Th92,
SIN_COS: 77;
theorem ::
SIN_COS6:95
(
arccos 1)
=
0 by
Th92,
SIN_COS: 31;
theorem ::
SIN_COS6:96
(
- 1)
<= r & r
<= 1 & (
arccos r)
=
0 implies r
= 1 by
Th91,
SIN_COS: 31;
theorem ::
SIN_COS6:97
(
- 1)
<= r & r
<= 1 & (
arccos r)
= (
PI
/ 2) implies r
=
0 by
Th91,
SIN_COS: 77;
theorem ::
SIN_COS6:98
(
- 1)
<= r & r
<= 1 & (
arccos r)
=
PI implies r
= (
- 1) by
Th91,
SIN_COS: 77;
theorem ::
SIN_COS6:99
Th99: (
- 1)
<= r & r
<= 1 implies
0
<= (
arccos r) & (
arccos r)
<=
PI
proof
assume (
- 1)
<= r & r
<= 1;
then r
in
[.(
- 1), 1.] by
XXREAL_1: 1;
then (
arccos
. r)
in (
rng
arccos ) by
Th86,
FUNCT_1:def 3;
hence thesis by
Th85,
XXREAL_1: 1;
end;
theorem ::
SIN_COS6:100
Th100: (
- 1)
< r & r
< 1 implies
0
< (
arccos r) & (
arccos r)
<
PI
proof
assume
A1: (
- 1)
< r & r
< 1;
then (
arccos r)
<=
PI by
Th99;
then
0
< (
arccos r) & (
arccos r)
<
PI or
0
= (
arccos r) or (
arccos r)
=
PI by
A1,
Th99,
XXREAL_0: 1;
hence thesis by
A1,
Th91,
SIN_COS: 31,
SIN_COS: 77;
end;
theorem ::
SIN_COS6:101
Th101: (
- 1)
<= r & r
<= 1 implies (
arccos r)
= (
PI
- (
arccos (
- r)))
proof
assume (
- 1)
<= r & r
<= 1;
then
A1: (
- (
- 1))
>= (
- r) & (
- r)
>= (
- 1) by
XREAL_1: 24;
then (
0
+ (
arccos (
- r)))
<=
PI by
Th99;
then
A2:
0
<= (
PI
- (
arccos (
- r))) by
XREAL_1: 19;
0
<= (
arccos (
- r)) by
A1,
Th99;
then (
PI
+
0 )
<= (
PI
+ (
arccos (
- r))) by
XREAL_1: 6;
then
A3: (
PI
- (
arccos (
- r)))
<=
PI by
XREAL_1: 20;
r
= ((
- 1)
* (
- r))
.= (((
cos
PI )
* (
cos (
arccos (
- r))))
+ ((
sin
PI )
* (
sin (
arccos (
- r))))) by
A1,
Th91,
SIN_COS: 77
.= (
cos (
PI
- (
arccos (
- r)))) by
COMPLEX2: 3;
hence thesis by
A2,
A3,
Th92;
end;
theorem ::
SIN_COS6:102
Th102:
0
<= s & ((r
^2 )
+ (s
^2 ))
= 1 implies (
sin (
arccos r))
= s
proof
set x = (
arccos r);
assume that
A1:
0
<= s and
A2: ((r
^2 )
+ (s
^2 ))
= 1;
A3: (
- 1)
<= r & r
<= 1 by
A2,
Lm5;
then
0
<= x & x
<=
PI by
Th99;
then
A4: x
in
[.
0 ,
PI .] by
XXREAL_1: 1;
(((
sin
. x)
^2 )
+ ((
cos
. x)
^2 ))
= 1 by
SIN_COS: 28;
then ((
sin
. x)
^2 )
= (1
- ((
cos
. x)
^2 ))
.= (1
- ((
cos x)
^2 )) by
SIN_COS:def 19
.= (1
- (r
^2 )) by
A3,
Th91;
then
A5: (
sin
. x)
= s or (
sin
. x)
= (
- s) by
A2,
SQUARE_1: 40;
(
- (
- (
- s)))
<
0 or s
=
0 by
A1;
hence thesis by
A5,
A4,
COMPTRIG: 8,
SIN_COS:def 17;
end;
theorem ::
SIN_COS6:103
s
<=
0 & ((r
^2 )
+ (s
^2 ))
= 1 implies (
sin (
arccos r))
= (
- s)
proof
set x = (
arccos r);
assume that
A1: s
<=
0 and
A2: ((r
^2 )
+ (s
^2 ))
= 1;
A3: (
- 1)
<= r & r
<= 1 by
A2,
Lm5;
then
0
<= x & x
<=
PI by
Th99;
then
A4: x
in
[.
0 ,
PI .] by
XXREAL_1: 1;
(((
sin
. x)
^2 )
+ ((
cos
. x)
^2 ))
= 1 by
SIN_COS: 28;
then ((
sin
. x)
^2 )
= (1
- ((
cos
. x)
^2 ))
.= (1
- ((
cos x)
^2 )) by
SIN_COS:def 19
.= (1
- (r
^2 )) by
A3,
Th91;
then
A5: (
sin
. x)
= s or (
sin
. x)
= (
- s) by
A2,
SQUARE_1: 40;
0
> s or s
=
0 by
A1;
hence thesis by
A5,
A4,
COMPTRIG: 8,
SIN_COS:def 17;
end;
theorem ::
SIN_COS6:104
Th104: (
- 1)
<= r & r
<= 1 implies (
sin (
arccos r))
= (
sqrt (1
- (r
^2 )))
proof
set s = (
sqrt (1
- (r
^2 )));
assume (
- 1)
<= r & r
<= 1;
then ((r
^2 )
+
0 )
<= (1
^2 ) by
SQUARE_1: 49;
then
0
<= (1
- (r
^2 )) by
XREAL_1: 19;
then
0
<= s & ((r
^2 )
+ (s
^2 ))
= ((r
^2 )
+ (1
- (r
^2 ))) by
SQUARE_1:def 2;
hence thesis by
Th102;
end;
theorem ::
SIN_COS6:105
(
arccos
|
[.(
- 1), 1.]) is
decreasing
proof
set f = (
cos
|
[.
0 ,
PI .]);
(f
.:
[.
0 ,
PI .])
=
[.(
- 1), 1.] & (((f
|
[.
0 ,
PI .])
" )
| (f
.:
[.
0 ,
PI .])) is
decreasing by
Th49,
COMPTRIG: 25,
FCONT_3: 10,
RELAT_1: 129;
hence thesis by
RELAT_1: 72;
end;
theorem ::
SIN_COS6:106
arccos
is_differentiable_on
].(
- 1), 1.[ & ((
- 1)
< r & r
< 1 implies (
diff (
arccos ,r))
= (
- (1
/ (
sqrt (1
- (r
^2 ))))))
proof
set g = (
arccos
|
].(
- 1), 1.[);
set h = (
cos
|
[.
0 ,
PI .]);
set f = (
cos
|
].
0 ,
PI .[);
A1: (
dom f)
= (
].
0 ,
PI .[
/\
REAL ) by
RELAT_1: 61,
SIN_COS: 24
.=
].
0 ,
PI .[ by
XBOOLE_1: 28;
set x = (
arccos
. r);
set s = (
sqrt (1
- (r
^2 )));
A2:
].(
- 1), 1.[
c= (
dom
arccos ) by
Th86,
XXREAL_1: 25;
A3:
cos
is_differentiable_on
].
0 ,
PI .[ by
FDIFF_1: 26,
SIN_COS: 67;
then
A4: f
is_differentiable_on
].
0 ,
PI .[ by
FDIFF_2: 16;
A5:
now
let x0 be
Real such that
A6: x0
in
].
0 ,
PI .[;
A7: (
- (
- (
sin
. x0)))
>
0 by
A6,
COMPTRIG: 7;
(
diff (f,x0))
= ((f
`|
].
0 ,
PI .[)
. x0) by
A4,
A6,
FDIFF_1:def 7
.= ((
cos
`|
].
0 ,
PI .[)
. x0) by
A3,
FDIFF_2: 16
.= (
diff (
cos ,x0)) by
A3,
A6,
FDIFF_1:def 7
.= (
- (
sin
. x0)) by
SIN_COS: 67;
hence
0
> (
diff (f,x0)) by
A7;
end;
A8: (f
" )
= ((h
|
].
0 ,
PI .[)
" ) by
RELAT_1: 74,
XXREAL_1: 25
.= ((h
" )
| (h
.:
].
0 ,
PI .[)) by
RFUNCT_2: 17
.= g by
Th50,
RELAT_1: 129,
XXREAL_1: 25;
then
A9: (f
|
].
0 ,
PI .[)
= f & (
dom (f
" ))
=
].(
- 1), 1.[ by
Th86,
RELAT_1: 62,
RELAT_1: 72,
XXREAL_1: 25;
then
A10: g
is_differentiable_on
].(
- 1), 1.[ by
A8,
A4,
A1,
A5,
FDIFF_2: 48;
then for x st x
in
].(
- 1), 1.[ holds g
is_differentiable_in x by
FDIFF_1: 9;
hence
A11:
arccos
is_differentiable_on
].(
- 1), 1.[ by
A2,
FDIFF_1:def 6;
assume
A12: (
- 1)
< r & r
< 1;
then
A13: r
in
].(
- 1), 1.[ by
XXREAL_1: 4;
then
A14: (g
. r)
= x by
FUNCT_1: 49;
x
= (
arccos r);
then
0
< x & x
<
PI by
A12,
Th100;
then
A15: x
in
].
0 ,
PI .[ by
XXREAL_1: 4;
then
A16: (
diff (f,x))
= ((f
`|
].
0 ,
PI .[)
. x) by
A4,
FDIFF_1:def 7
.= ((
cos
`|
].
0 ,
PI .[)
. x) by
A3,
FDIFF_2: 16
.= (
diff (
cos ,x)) by
A3,
A15,
FDIFF_1:def 7
.= (
- (
sin
. x)) by
SIN_COS: 67
.= (
- (
sin (
arccos r))) by
SIN_COS:def 17
.= (
- s) by
A12,
Th104;
thus (
diff (
arccos ,r))
= ((
arccos
`|
].(
- 1), 1.[)
. r) by
A11,
A13,
FDIFF_1:def 7
.= ((g
`|
].(
- 1), 1.[)
. r) by
A11,
FDIFF_2: 16
.= (
diff (g,r)) by
A10,
A13,
FDIFF_1:def 7
.= (1
/ (
- s)) by
A8,
A9,
A4,
A1,
A5,
A13,
A14,
A16,
FDIFF_2: 48
.= ((
- 1)
/ s) by
XCMPLX_1: 192
.= (
- (1
/ s)) by
XCMPLX_1: 187;
end;
theorem ::
SIN_COS6:107
(
arccos
|
[.(
- 1), 1.]) is
continuous
proof
set f = (
cos
|
[.
0 ,
PI .]);
(
dom f)
=
[.
0 ,
PI .] by
RELAT_1: 62,
SIN_COS: 24;
then (f
|
[.
0 ,
PI .])
= f & (((f
|
[.
0 ,
PI .])
" )
| (f
.:
[.
0 ,
PI .])) is
continuous by
COMPTRIG: 25,
FCONT_1: 47,
RELAT_1: 73;
hence thesis by
COMPTRIG: 32,
RELAT_1: 115;
end;
theorem ::
SIN_COS6:108
Th108: (
- 1)
<= r & r
<= 1 implies ((
arcsin r)
+ (
arccos r))
= (
PI
/ 2)
proof
assume
A1: (
- 1)
<= r & r
<= 1;
then ((
- (
PI
/ 2))
+ (
PI
/ 2))
<= (
arccos r) by
Th99;
then (
- (
PI
/ 2))
<= ((
arccos r)
- (
PI
/ 2)) by
XREAL_1: 19;
then
A2: (
- (
- (
PI
/ 2)))
>= (
- ((
arccos r)
- (
PI
/ 2))) by
XREAL_1: 24;
(
arccos r)
<= ((
PI
/ 2)
+ (
PI
/ 2)) by
A1,
Th99;
then ((
arccos r)
- (
PI
/ 2))
<= (
PI
/ 2) by
XREAL_1: 20;
then
A3: (
- ((
arccos r)
- (
PI
/ 2)))
>= (
- (
PI
/ 2)) by
XREAL_1: 24;
r
= (((
sin (
PI
/ 2))
* (
cos (
arccos r)))
- ((
cos (
PI
/ 2))
* (
sin (
arccos r)))) by
A1,
Th91,
SIN_COS: 77
.= (
sin ((
PI
/ 2)
- (
arccos r))) by
COMPLEX2: 3;
then (
arcsin r)
= ((
PI
/ 2)
- (
arccos r)) by
A2,
A3,
Th69;
hence thesis;
end;
theorem ::
SIN_COS6:109
(
- 1)
<= r & r
<= 1 implies ((
arccos (
- r))
- (
arcsin r))
= (
PI
/ 2)
proof
assume
A1: (
- 1)
<= r & r
<= 1;
then
A2: ((
arcsin r)
+ (
arccos r))
= ((
PI
/ 2)
+
0 ) by
Th108;
(
- (
- 1))
>= (
- r) & (
- r)
>= (
- 1) by
A1,
XREAL_1: 24;
then (
arccos (
- r))
= (
PI
- (
arccos (
- (
- r)))) by
Th101
.= ((
arcsin r)
+ (
PI
/ 2)) by
A2;
hence thesis;
end;
theorem ::
SIN_COS6:110
(
- 1)
<= r & r
<= 1 implies ((
arccos r)
- (
arcsin (
- r)))
= (
PI
/ 2)
proof
assume
A1: (
- 1)
<= r & r
<= 1;
then
A2: ((
arcsin r)
+ (
arccos r))
= ((
PI
/ 2)
+
0 ) by
Th108;
(
- (
- 1))
>= (
- r) & (
- r)
>= (
- 1) by
A1,
XREAL_1: 24;
then (
arcsin (
- r))
= (
- (
arcsin (
- (
- r)))) by
Th78
.= ((
arccos r)
- (
PI
/ 2)) by
A2;
hence thesis;
end;