comptrig.miz
begin
reserve x for
Real;
scheme ::
COMPTRIG:sch1
Regrwithout0 { P[
Nat] } :
P[1]
provided
A1: ex k be non
zero
Nat st P[k]
and
A2: for k be non
zero
Nat st k
<> 1 & P[k] holds ex n be non
zero
Nat st n
< k & P[n];
consider t be non
zero
Nat such that
A3: P[t] by
A1;
defpred
R[
Nat] means P[($1
+ 1)];
A4:
now
let k be
Nat;
assume that
A5: k
<>
0 and
A6:
R[k];
reconsider k1 = (k
+ 1) as non
zero
Element of
NAT ;
(k
+ 1)
> (
0
+ 1) by
A5,
XREAL_1: 6;
then
consider n be non
zero
Nat such that
A7: n
< k1 and
A8: P[n] by
A2,
A6;
consider l be
Nat such that
A9: n
= (l
+ 1) by
NAT_1: 6;
take l;
thus l
< k by
A7,
A9,
XREAL_1: 6;
thus
R[l] by
A8,
A9;
end;
ex s be
Nat st t
= (s
+ 1) by
NAT_1: 6;
then
A10: ex k be
Nat st
R[k] by
A3;
R[
0 ] from
NAT_1:sch 7(
A10,
A4);
hence thesis;
end;
theorem ::
COMPTRIG:1
Th1: for z be
Complex holds (
Re z)
>= (
-
|.z.|)
proof
let z be
Complex;
0
<= ((
Im z)
^2 ) by
XREAL_1: 63;
then
A1: (((
Re z)
^2 )
+
0 )
<= (((
Re z)
^2 )
+ ((
Im z)
^2 )) by
XREAL_1: 7;
0
<= ((
Re z)
^2 ) by
XREAL_1: 63;
then (
sqrt ((
Re z)
^2 ))
<=
|.z.| by
A1,
SQUARE_1: 26;
then (
- (
sqrt ((
Re z)
^2 )))
>= (
-
|.z.|) by
XREAL_1: 24;
then (
Re z)
>= (
-
|.(
Re z).|) & (
-
|.(
Re z).|)
>= (
-
|.z.|) by
ABSVALUE: 4,
COMPLEX1: 72;
hence thesis by
XXREAL_0: 2;
end;
theorem ::
COMPTRIG:2
for z be
Complex holds (
Im z)
>= (
-
|.z.|)
proof
let z be
Complex;
0
<= ((
Re z)
^2 ) by
XREAL_1: 63;
then
A1: (((
Im z)
^2 )
+
0 )
<= (((
Re z)
^2 )
+ ((
Im z)
^2 )) by
XREAL_1: 7;
0
<= ((
Im z)
^2 ) by
XREAL_1: 63;
then (
sqrt ((
Im z)
^2 ))
<=
|.z.| by
A1,
SQUARE_1: 26;
then (
- (
sqrt ((
Im z)
^2 )))
>= (
-
|.z.|) by
XREAL_1: 24;
then (
Im z)
>= (
-
|.(
Im z).|) & (
-
|.(
Im z).|)
>= (
-
|.z.|) by
ABSVALUE: 4,
COMPLEX1: 72;
hence thesis by
XXREAL_0: 2;
end;
theorem ::
COMPTRIG:3
Th3: for z be
Complex holds (
|.z.|
^2 )
= (((
Re z)
^2 )
+ ((
Im z)
^2 ))
proof
let z be
Complex;
thus (
|.z.|
^2 )
=
|.(z
* z).| by
COMPLEX1: 65
.= (((
Re z)
^2 )
+ ((
Im z)
^2 )) by
COMPLEX1: 68;
end;
theorem ::
COMPTRIG:4
Th4: for n be
Nat st x
>=
0 & n
<>
0 holds ((n
-root x)
|^ n)
= x
proof
let n be
Nat;
assume that
A1: x
>=
0 and
A2: n
<>
0 ;
n
>= (
0
+ 1) by
A2,
NAT_1: 13;
hence thesis by
A1,
POWER: 4;
end;
registration
cluster
PI -> non
negative;
coherence
proof
PI
in
].
0 , 4.[ by
SIN_COS:def 28;
hence thesis by
XXREAL_1: 4;
end;
end
begin
PI
in
].
0 , 4.[ by
SIN_COS:def 28;
then
Lm1:
0
<
PI by
XXREAL_1: 4;
then
Lm2: (
0
+ (
PI
/ 2))
< ((
PI
/ 2)
+ (
PI
/ 2)) by
XREAL_1: 6;
Lm3: (
0
+
PI )
< (
PI
+
PI ) by
Lm1,
XREAL_1: 6;
Lm4: (
0
+ (
PI
/ 2))
< (
PI
+ (
PI
/ 2)) by
Lm1,
XREAL_1: 6;
Lm5: ((
PI
/ 2)
+ (
PI
/ 2))
< (
PI
+ (
PI
/ 2)) by
Lm2,
XREAL_1: 6;
(((3
/ 2)
*
PI )
+ (
PI
/ 2))
= (2
*
PI );
then
Lm6: ((3
/ 2)
*
PI )
< (2
*
PI ) by
Lm5,
XREAL_1: 6;
Lm7:
0
< ((3
/ 2)
*
PI ) by
Lm1;
theorem ::
COMPTRIG:5
0
< (
PI
/ 2) & (
PI
/ 2)
<
PI &
0
<
PI & (
- (
PI
/ 2))
< (
PI
/ 2) &
PI
< (2
*
PI ) & (
PI
/ 2)
< ((3
/ 2)
*
PI ) & (
- (
PI
/ 2))
<
0 &
0
< (2
*
PI ) &
PI
< ((3
/ 2)
*
PI ) & ((3
/ 2)
*
PI )
< (2
*
PI ) &
0
< ((3
/ 2)
*
PI ) by
Lm2,
Lm3,
Lm4,
XREAL_1: 6;
theorem ::
COMPTRIG:6
Th6: for a,b,c,x be
Real st x
in
].a, c.[ holds x
in
].a, b.[ or x
= b or x
in
].b, c.[
proof
let a,b,c,x be
Real;
assume that
A1: x
in
].a, c.[ and
A2: not x
in
].a, b.[ and
A3: not x
= b;
x
<= a or x
>= b by
A2,
XXREAL_1: 4;
then
A4: x
> b by
A1,
A3,
XXREAL_0: 1,
XXREAL_1: 4;
x
< c by
A1,
XXREAL_1: 4;
hence thesis by
A4,
XXREAL_1: 4;
end;
theorem ::
COMPTRIG:7
Th7: x
in
].
0 ,
PI .[ implies (
sin
. x)
>
0
proof
assume
A1: x
in
].
0 ,
PI .[;
per cases by
A1,
Th6;
suppose
A2: x
in
].
0 , (
PI
/ 2).[;
then x
< (
PI
/ 2) by
XXREAL_1: 4;
then (
- x)
> (
- (
PI
/ 2)) by
XREAL_1: 24;
then
A3: ((
- x)
+ (
PI
/ 2))
> ((
- (
PI
/ 2))
+ (
PI
/ 2)) by
XREAL_1: 6;
0
< x by
A2,
XXREAL_1: 4;
then ((
- x)
+ (
PI
/ 2))
< (
0
+ (
PI
/ 2)) by
XREAL_1: 6;
then ((
PI
/ 2)
- x)
in
].
0 , (
PI
/ 2).[ by
A3,
XXREAL_1: 4;
then (
cos
. ((
PI
/ 2)
- x))
>
0 by
SIN_COS: 80;
hence thesis by
SIN_COS: 78;
end;
suppose x
= (
PI
/ 2);
hence thesis by
SIN_COS: 76;
end;
suppose
A4: x
in
].(
PI
/ 2),
PI .[;
then x
<
PI by
XXREAL_1: 4;
then
A5: (x
- (
PI
/ 2))
< (
PI
- (
PI
/ 2)) by
XREAL_1: 9;
(
PI
/ 2)
< x by
A4,
XXREAL_1: 4;
then ((
PI
/ 2)
- (
PI
/ 2))
< (x
- (
PI
/ 2)) by
XREAL_1: 9;
then (x
- (
PI
/ 2))
in
].
0 , (
PI
/ 2).[ by
A5,
XXREAL_1: 4;
then (
cos
. (
- ((
PI
/ 2)
- x)))
>
0 by
SIN_COS: 80;
then (
cos
. ((
PI
/ 2)
- x))
>
0 by
SIN_COS: 30;
hence thesis by
SIN_COS: 78;
end;
end;
theorem ::
COMPTRIG:8
Th8: x
in
[.
0 ,
PI .] implies (
sin
. x)
>=
0
proof
assume
A1: x
in
[.
0 ,
PI .];
then x
<=
PI by
XXREAL_1: 1;
then x
=
0 or x
=
PI or
0
< x & x
<
PI by
A1,
XXREAL_0: 1,
XXREAL_1: 1;
then x
=
0 or x
=
PI or x
in
].
0 ,
PI .[ by
XXREAL_1: 4;
hence thesis by
Th7,
SIN_COS: 30,
SIN_COS: 76;
end;
theorem ::
COMPTRIG:9
Th9: x
in
].
PI , (2
*
PI ).[ implies (
sin
. x)
<
0
proof
A1: (
sin
. (x
-
PI ))
= (
sin
. (
- (
PI
- x)))
.= (
- (
sin
. (
PI
+ (
- x)))) by
SIN_COS: 30
.= (
- (
- (
sin
. (
- x)))) by
SIN_COS: 78
.= (
- (
sin
. x)) by
SIN_COS: 30;
assume
A2: x
in
].
PI , (2
*
PI ).[;
then x
< (2
*
PI ) by
XXREAL_1: 4;
then
A3: (x
-
PI )
< ((2
*
PI )
-
PI ) by
XREAL_1: 9;
PI
< x by
A2,
XXREAL_1: 4;
then (
PI
-
PI )
< (x
-
PI ) by
XREAL_1: 9;
then (x
-
PI )
in
].
0 ,
PI .[ by
A3,
XXREAL_1: 4;
hence thesis by
A1,
Th7;
end;
theorem ::
COMPTRIG:10
Th10: x
in
[.
PI , (2
*
PI ).] implies (
sin
. x)
<=
0
proof
assume x
in
[.
PI , (2
*
PI ).];
then
PI
<= x & x
<= (2
*
PI ) by
XXREAL_1: 1;
then x
=
PI or x
= (2
*
PI ) or
PI
< x & x
< (2
*
PI ) by
XXREAL_0: 1;
then x
=
PI or x
= (2
*
PI ) or x
in
].
PI , (2
*
PI ).[ by
XXREAL_1: 4;
hence thesis by
Th9,
SIN_COS: 76;
end;
theorem ::
COMPTRIG:11
Th11: x
in
].(
- (
PI
/ 2)), (
PI
/ 2).[ implies (
cos
. x)
>
0
proof
A1: (
sin
. (x
+ (
PI
/ 2)))
= (
cos
. x) by
SIN_COS: 78;
assume
A2: x
in
].(
- (
PI
/ 2)), (
PI
/ 2).[;
then x
< (
PI
/ 2) by
XXREAL_1: 4;
then
A3: (x
+ (
PI
/ 2))
< ((
PI
/ 2)
+ (
PI
/ 2)) by
XREAL_1: 6;
(
- (
PI
/ 2))
< x by
A2,
XXREAL_1: 4;
then ((
- (
PI
/ 2))
+ (
PI
/ 2))
< (x
+ (
PI
/ 2)) by
XREAL_1: 6;
then (x
+ (
PI
/ 2))
in
].
0 ,
PI .[ by
A3,
XXREAL_1: 4;
hence thesis by
A1,
Th7;
end;
theorem ::
COMPTRIG:12
Th12: x
in
[.(
- (
PI
/ 2)), (
PI
/ 2).] implies (
cos
. x)
>=
0
proof
assume x
in
[.(
- (
PI
/ 2)), (
PI
/ 2).];
then (
- (
PI
/ 2))
<= x & x
<= (
PI
/ 2) by
XXREAL_1: 1;
then x
= (
- (
PI
/ 2)) or x
= (
PI
/ 2) or (
- (
PI
/ 2))
< x & x
< (
PI
/ 2) by
XXREAL_0: 1;
then x
= (
- (
PI
/ 2)) or x
= (
PI
/ 2) or x
in
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
XXREAL_1: 4;
hence thesis by
Th11,
SIN_COS: 30,
SIN_COS: 76;
end;
theorem ::
COMPTRIG:13
Th13: x
in
].(
PI
/ 2), ((3
/ 2)
*
PI ).[ implies (
cos
. x)
<
0
proof
A1: (
sin
. (x
+ (
PI
/ 2)))
= (
cos
. x) by
SIN_COS: 78;
assume
A2: x
in
].(
PI
/ 2), ((3
/ 2)
*
PI ).[;
then x
< ((3
/ 2)
*
PI ) by
XXREAL_1: 4;
then
A3: (x
+ (
PI
/ 2))
< (((3
/ 2)
*
PI )
+ (
PI
/ 2)) by
XREAL_1: 6;
(
PI
/ 2)
< x by
A2,
XXREAL_1: 4;
then ((
PI
/ 2)
+ (
PI
/ 2))
< (x
+ (
PI
/ 2)) by
XREAL_1: 6;
then (x
+ (
PI
/ 2))
in
].
PI , (2
*
PI ).[ by
A3,
XXREAL_1: 4;
hence thesis by
A1,
Th9;
end;
theorem ::
COMPTRIG:14
Th14: x
in
[.(
PI
/ 2), ((3
/ 2)
*
PI ).] implies (
cos
. x)
<=
0
proof
assume x
in
[.(
PI
/ 2), ((3
/ 2)
*
PI ).];
then (
PI
/ 2)
<= x & x
<= ((3
/ 2)
*
PI ) by
XXREAL_1: 1;
then x
= (
PI
/ 2) or x
= ((3
/ 2)
*
PI ) or (
PI
/ 2)
< x & x
< ((3
/ 2)
*
PI ) by
XXREAL_0: 1;
then x
= (
PI
/ 2) or x
= ((3
/ 2)
*
PI ) or x
in
].(
PI
/ 2), ((3
/ 2)
*
PI ).[ by
XXREAL_1: 4;
hence thesis by
Th13,
SIN_COS: 76;
end;
theorem ::
COMPTRIG:15
Th15: x
in
].((3
/ 2)
*
PI ), (2
*
PI ).[ implies (
cos
. x)
>
0
proof
A1: (
cos
. (x
-
PI ))
= (
cos
. (
- (
PI
- x)))
.= (
cos
. (
PI
+ (
- x))) by
SIN_COS: 30
.= (
- (
cos
. (
- x))) by
SIN_COS: 78
.= (
- (
cos
. x)) by
SIN_COS: 30;
assume
A2: x
in
].((3
/ 2)
*
PI ), (2
*
PI ).[;
then x
< (2
*
PI ) by
XXREAL_1: 4;
then (x
-
PI )
< ((2
*
PI )
-
PI ) by
XREAL_1: 9;
then
A3: (x
-
PI )
< ((3
/ 2)
*
PI ) by
Lm5,
XXREAL_0: 2;
((3
/ 2)
*
PI )
< x by
A2,
XXREAL_1: 4;
then (((3
/ 2)
*
PI )
-
PI )
< (x
-
PI ) by
XREAL_1: 9;
then (x
-
PI )
in
].(
PI
/ 2), ((3
/ 2)
*
PI ).[ by
A3,
XXREAL_1: 4;
hence thesis by
A1,
Th13;
end;
theorem ::
COMPTRIG:16
Th16: x
in
[.((3
/ 2)
*
PI ), (2
*
PI ).] implies (
cos
. x)
>=
0
proof
assume x
in
[.((3
/ 2)
*
PI ), (2
*
PI ).];
then ((3
/ 2)
*
PI )
<= x & x
<= (2
*
PI ) by
XXREAL_1: 1;
then x
= ((3
/ 2)
*
PI ) or x
= (2
*
PI ) or ((3
/ 2)
*
PI )
< x & x
< (2
*
PI ) by
XXREAL_0: 1;
then x
= ((3
/ 2)
*
PI ) or x
= (2
*
PI ) or x
in
].((3
/ 2)
*
PI ), (2
*
PI ).[ by
XXREAL_1: 4;
hence thesis by
Th15,
SIN_COS: 76;
end;
theorem ::
COMPTRIG:17
Th17:
0
<= x & x
< (2
*
PI ) & (
sin x)
=
0 implies x
=
0 or x
=
PI
proof
assume that
A1:
0
<= x & x
< (2
*
PI ) and
A2: (
sin x)
=
0 ;
(
sin
. x)
=
0 by
A2,
SIN_COS:def 17;
then ( not x
in
].
0 ,
PI .[) & not x
in
].
PI , (2
*
PI ).[ by
Th7,
Th9;
then x
=
0 or x
>=
PI &
PI
>= x by
A1,
XXREAL_1: 4;
hence thesis by
XXREAL_0: 1;
end;
theorem ::
COMPTRIG:18
Th18:
0
<= x & x
< (2
*
PI ) & (
cos x)
=
0 implies x
= (
PI
/ 2) or x
= ((3
/ 2)
*
PI )
proof
assume that
A1:
0
<= x and
A2: x
< (2
*
PI ) and
A3: (
cos x)
=
0 ;
A4: (
cos
. x)
=
0 by
A3,
SIN_COS:def 19;
then not x
in
].(
PI
/ 2), ((3
/ 2)
*
PI ).[ by
Th13;
then
A5: (
PI
/ 2)
>= x or x
>= ((3
/ 2)
*
PI ) by
XXREAL_1: 4;
not x
in
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
A4,
Th11;
then (
- (
PI
/ 2))
>= x or x
>= (
PI
/ 2) by
XXREAL_1: 4;
then x
= (
PI
/ 2) or x
= ((3
/ 2)
*
PI ) or x
> ((3
/ 2)
*
PI ) by
A1,
A5,
Lm1,
XXREAL_0: 1;
then x
= (
PI
/ 2) or x
= ((3
/ 2)
*
PI ) or x
in
].((3
/ 2)
*
PI ), (2
*
PI ).[ by
A2,
XXREAL_1: 4;
hence thesis by
A4,
Th15;
end;
theorem ::
COMPTRIG:19
Th19: (
sin
|
].(
- (
PI
/ 2)), (
PI
/ 2).[) is
increasing
proof
A1: for x st x
in
].(
- (
PI
/ 2)), (
PI
/ 2).[ holds (
diff (
sin ,x))
>
0
proof
let x;
assume x
in
].(
- (
PI
/ 2)), (
PI
/ 2).[;
then
0
< (
cos
. x) by
Th11;
hence thesis by
SIN_COS: 68;
end;
].(
- (
PI
/ 2)), (
PI
/ 2).[ is
open by
RCOMP_1: 7;
hence thesis by
A1,
FDIFF_1: 26,
ROLLE: 9,
SIN_COS: 24,
SIN_COS: 68;
end;
theorem ::
COMPTRIG:20
Th20: (
sin
|
].(
PI
/ 2), ((3
/ 2)
*
PI ).[) is
decreasing
proof
A1: for x st x
in
].(
PI
/ 2), ((3
/ 2)
*
PI ).[ holds (
diff (
sin ,x))
<
0
proof
let x;
assume x
in
].(
PI
/ 2), ((3
/ 2)
*
PI ).[;
then
0
> (
cos
. x) by
Th13;
hence thesis by
SIN_COS: 68;
end;
].(
PI
/ 2), ((3
/ 2)
*
PI ).[ is
open by
RCOMP_1: 7;
hence thesis by
A1,
FDIFF_1: 26,
ROLLE: 10,
SIN_COS: 24,
SIN_COS: 68;
end;
theorem ::
COMPTRIG:21
Th21: (
cos
|
].
0 ,
PI .[) is
decreasing
proof
A1: for x st x
in
].
0 ,
PI .[ holds (
diff (
cos ,x))
<
0
proof
let x;
assume x
in
].
0 ,
PI .[;
then
0
< (
sin
. x) by
Th7;
then (
0
- (
sin
. x))
<
0 ;
hence thesis by
SIN_COS: 67;
end;
].
0 ,
PI .[ is
open by
RCOMP_1: 7;
hence thesis by
A1,
FDIFF_1: 26,
ROLLE: 10,
SIN_COS: 24,
SIN_COS: 67;
end;
theorem ::
COMPTRIG:22
Th22: (
cos
|
].
PI , (2
*
PI ).[) is
increasing
proof
A1: for x st x
in
].
PI , (2
*
PI ).[ holds (
diff (
cos ,x))
>
0
proof
let x;
assume x
in
].
PI , (2
*
PI ).[;
then (
0
- (
sin
. x))
>
0 by
Th9,
XREAL_1: 50;
hence thesis by
SIN_COS: 67;
end;
].
PI , (2
*
PI ).[ is
open by
RCOMP_1: 7;
hence thesis by
A1,
FDIFF_1: 26,
ROLLE: 9,
SIN_COS: 24,
SIN_COS: 67;
end;
theorem ::
COMPTRIG:23
(
sin
|
[.(
- (
PI
/ 2)), (
PI
/ 2).]) is
increasing
proof
now
let r1,r2 be
Real;
assume that
A1: r1
in (
[.(
- (
PI
/ 2)), (
PI
/ 2).]
/\ (
dom
sin )) and
A2: r2
in (
[.(
- (
PI
/ 2)), (
PI
/ 2).]
/\ (
dom
sin )) and
A3: r1
< r2;
A4: r1
in (
dom
sin ) by
A1,
XBOOLE_0:def 4;
set r3 = ((r1
+ r2)
/ 2);
r1
in
[.(
- (
PI
/ 2)), (
PI
/ 2).] by
A1,
XBOOLE_0:def 4;
then
A5: (
- (
PI
/ 2))
<= r1 by
XXREAL_1: 1;
|.(
sin r3).|
<= 1 by
SIN_COS: 27;
then
A6:
|.(
sin
. r3).|
<= 1 by
SIN_COS:def 17;
then
A7: (
sin
. r3)
<= 1 by
ABSVALUE: 5;
r2
in
[.(
- (
PI
/ 2)), (
PI
/ 2).] by
A2,
XBOOLE_0:def 4;
then
A8: r2
<= (
PI
/ 2) by
XXREAL_1: 1;
A9: r1
< r3 by
A3,
XREAL_1: 226;
then
A10: (
- (
PI
/ 2))
< r3 by
A5,
XXREAL_0: 2;
A11: r3
< r2 by
A3,
XREAL_1: 226;
then r3
< (
PI
/ 2) by
A8,
XXREAL_0: 2;
then r3
in
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
A10,
XXREAL_1: 4;
then
A12: r3
in (
].(
- (
PI
/ 2)), (
PI
/ 2).[
/\ (
dom
sin )) by
SIN_COS: 24,
XBOOLE_0:def 4;
|.(
sin r2).|
<= 1 by
SIN_COS: 27;
then
|.(
sin
. r2).|
<= 1 by
SIN_COS:def 17;
then
A13: (
sin
. r2)
>= (
- 1) by
ABSVALUE: 5;
A14: r2
in (
dom
sin ) by
A2,
XBOOLE_0:def 4;
A15: (
sin
. r3)
>= (
- 1) by
A6,
ABSVALUE: 5;
now
per cases by
A5,
XXREAL_0: 1;
suppose
A16: (
- (
PI
/ 2))
< r1;
then
A17: (
- (
PI
/ 2))
< r2 by
A3,
XXREAL_0: 2;
now
per cases by
A8,
XXREAL_0: 1;
suppose
A18: r2
< (
PI
/ 2);
then r1
< (
PI
/ 2) by
A3,
XXREAL_0: 2;
then r1
in
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
A16,
XXREAL_1: 4;
then
A19: r1
in (
].(
- (
PI
/ 2)), (
PI
/ 2).[
/\ (
dom
sin )) by
A4,
XBOOLE_0:def 4;
r2
in
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
A17,
A18,
XXREAL_1: 4;
then r2
in (
].(
- (
PI
/ 2)), (
PI
/ 2).[
/\ (
dom
sin )) by
A14,
XBOOLE_0:def 4;
hence (
sin
. r2)
> (
sin
. r1) by
A3,
A19,
Th19,
RFUNCT_2: 20;
end;
suppose
A20: r2
= (
PI
/ 2);
then r1
in
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
A3,
A16,
XXREAL_1: 4;
then r1
in (
].(
- (
PI
/ 2)), (
PI
/ 2).[
/\ (
dom
sin )) by
A4,
XBOOLE_0:def 4;
then
A21: (
sin
. r3)
> (
sin
. r1) by
A9,
A12,
Th19,
RFUNCT_2: 20;
assume (
sin
. r2)
<= (
sin
. r1);
hence contradiction by
A7,
A20,
A21,
SIN_COS: 76,
XXREAL_0: 2;
end;
end;
hence (
sin
. r2)
> (
sin
. r1);
end;
suppose
A22: (
- (
PI
/ 2))
= r1;
now
per cases by
A8,
XXREAL_0: 1;
suppose r2
< (
PI
/ 2);
then r2
in
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
A3,
A22,
XXREAL_1: 4;
then r2
in (
].(
- (
PI
/ 2)), (
PI
/ 2).[
/\ (
dom
sin )) by
A14,
XBOOLE_0:def 4;
then
A23: (
sin
. r2)
> (
sin
. r3) by
A11,
A12,
Th19,
RFUNCT_2: 20;
assume (
sin
. r2)
<= (
sin
. r1);
then (
sin
. r2)
<= (
- 1) by
A22,
SIN_COS: 30,
SIN_COS: 76;
hence contradiction by
A15,
A13,
A23,
XXREAL_0: 1;
end;
suppose r2
= (
PI
/ 2);
hence (
sin
. r2)
> (
sin
. r1) by
A22,
SIN_COS: 30,
SIN_COS: 76;
end;
end;
hence (
sin
. r2)
> (
sin
. r1);
end;
end;
hence (
sin
. r2)
> (
sin
. r1);
end;
hence thesis by
RFUNCT_2: 20;
end;
theorem ::
COMPTRIG:24
(
sin
|
[.(
PI
/ 2), ((3
/ 2)
*
PI ).]) is
decreasing
proof
now
let r1,r2 be
Real;
assume that
A1: r1
in (
[.(
PI
/ 2), ((3
/ 2)
*
PI ).]
/\ (
dom
sin )) and
A2: r2
in (
[.(
PI
/ 2), ((3
/ 2)
*
PI ).]
/\ (
dom
sin )) and
A3: r1
< r2;
A4: r1
in (
dom
sin ) by
A1,
XBOOLE_0:def 4;
|.(
sin r2).|
<= 1 by
SIN_COS: 27;
then
|.(
sin
. r2).|
<= 1 by
SIN_COS:def 17;
then
A5: (
sin
. r2)
<= 1 by
ABSVALUE: 5;
|.(
sin r1).|
<= 1 by
SIN_COS: 27;
then
|.(
sin
. r1).|
<= 1 by
SIN_COS:def 17;
then
A6: (
sin
. r1)
>= (
- 1) by
ABSVALUE: 5;
r2
in
[.(
PI
/ 2), ((3
/ 2)
*
PI ).] by
A2,
XBOOLE_0:def 4;
then
A7: r2
<= ((3
/ 2)
*
PI ) by
XXREAL_1: 1;
set r3 = ((r1
+ r2)
/ 2);
r1
in
[.(
PI
/ 2), ((3
/ 2)
*
PI ).] by
A1,
XBOOLE_0:def 4;
then
A8: (
PI
/ 2)
<= r1 by
XXREAL_1: 1;
|.(
sin r3).|
<= 1 by
SIN_COS: 27;
then
A9:
|.(
sin
. r3).|
<= 1 by
SIN_COS:def 17;
then
A10: (
sin
. r3)
<= 1 by
ABSVALUE: 5;
A11: r2
in (
dom
sin ) by
A2,
XBOOLE_0:def 4;
A12: r1
< r3 by
A3,
XREAL_1: 226;
then
A13: (
PI
/ 2)
< r3 by
A8,
XXREAL_0: 2;
A14: r3
< r2 by
A3,
XREAL_1: 226;
then r3
< ((3
/ 2)
*
PI ) by
A7,
XXREAL_0: 2;
then r3
in
].(
PI
/ 2), ((3
/ 2)
*
PI ).[ by
A13,
XXREAL_1: 4;
then
A15: r3
in (
].(
PI
/ 2), ((3
/ 2)
*
PI ).[
/\ (
dom
sin )) by
SIN_COS: 24,
XBOOLE_0:def 4;
A16: (
sin
. r3)
>= (
- 1) by
A9,
ABSVALUE: 5;
now
per cases by
A8,
XXREAL_0: 1;
suppose
A17: (
PI
/ 2)
< r1;
then
A18: (
PI
/ 2)
< r2 by
A3,
XXREAL_0: 2;
now
per cases by
A7,
XXREAL_0: 1;
suppose
A19: r2
< ((3
/ 2)
*
PI );
then r1
< ((3
/ 2)
*
PI ) by
A3,
XXREAL_0: 2;
then r1
in
].(
PI
/ 2), ((3
/ 2)
*
PI ).[ by
A17,
XXREAL_1: 4;
then
A20: r1
in (
].(
PI
/ 2), ((3
/ 2)
*
PI ).[
/\ (
dom
sin )) by
A4,
XBOOLE_0:def 4;
r2
in
].(
PI
/ 2), ((3
/ 2)
*
PI ).[ by
A18,
A19,
XXREAL_1: 4;
then r2
in (
].(
PI
/ 2), ((3
/ 2)
*
PI ).[
/\ (
dom
sin )) by
A11,
XBOOLE_0:def 4;
hence (
sin
. r2)
< (
sin
. r1) by
A3,
A20,
Th20,
RFUNCT_2: 21;
end;
suppose
A21: r2
= ((3
/ 2)
*
PI );
then r1
in
].(
PI
/ 2), ((3
/ 2)
*
PI ).[ by
A3,
A17,
XXREAL_1: 4;
then r1
in (
].(
PI
/ 2), ((3
/ 2)
*
PI ).[
/\ (
dom
sin )) by
A4,
XBOOLE_0:def 4;
then
A22: (
sin
. r3)
< (
sin
. r1) by
A12,
A15,
Th20,
RFUNCT_2: 21;
assume (
sin
. r2)
>= (
sin
. r1);
hence contradiction by
A6,
A16,
A21,
A22,
SIN_COS: 76,
XXREAL_0: 1;
end;
end;
hence (
sin
. r2)
< (
sin
. r1);
end;
suppose
A23: (
PI
/ 2)
= r1;
now
per cases by
A7,
XXREAL_0: 1;
suppose r2
< ((3
/ 2)
*
PI );
then r2
in
].(
PI
/ 2), ((3
/ 2)
*
PI ).[ by
A3,
A23,
XXREAL_1: 4;
then r2
in (
].(
PI
/ 2), ((3
/ 2)
*
PI ).[
/\ (
dom
sin )) by
A11,
XBOOLE_0:def 4;
then
A24: (
sin
. r2)
< (
sin
. r3) by
A14,
A15,
Th20,
RFUNCT_2: 21;
assume (
sin
. r2)
>= (
sin
. r1);
hence contradiction by
A10,
A5,
A23,
A24,
SIN_COS: 76,
XXREAL_0: 1;
end;
suppose r2
= ((3
/ 2)
*
PI );
hence (
sin
. r2)
< (
sin
. r1) by
A23,
SIN_COS: 76;
end;
end;
hence (
sin
. r2)
< (
sin
. r1);
end;
end;
hence (
sin
. r2)
< (
sin
. r1);
end;
hence thesis by
RFUNCT_2: 21;
end;
theorem ::
COMPTRIG:25
Th25: (
cos
|
[.
0 ,
PI .]) is
decreasing
proof
now
let r1,r2 be
Real;
assume that
A1: r1
in (
[.
0 ,
PI .]
/\ (
dom
cos )) and
A2: r2
in (
[.
0 ,
PI .]
/\ (
dom
cos )) and
A3: r1
< r2;
A4: r1
in (
dom
cos ) by
A1,
XBOOLE_0:def 4;
|.(
cos r2).|
<= 1 by
SIN_COS: 27;
then
|.(
cos
. r2).|
<= 1 by
SIN_COS:def 19;
then
A5: (
cos
. r2)
<= 1 by
ABSVALUE: 5;
|.(
cos r1).|
<= 1 by
SIN_COS: 27;
then
|.(
cos
. r1).|
<= 1 by
SIN_COS:def 19;
then
A6: (
cos
. r1)
>= (
- 1) by
ABSVALUE: 5;
r2
in
[.
0 ,
PI .] by
A2,
XBOOLE_0:def 4;
then
A7: r2
<=
PI by
XXREAL_1: 1;
set r3 = ((r1
+ r2)
/ 2);
A8: r1
< r3 by
A3,
XREAL_1: 226;
|.(
cos r3).|
<= 1 by
SIN_COS: 27;
then
A9:
|.(
cos
. r3).|
<= 1 by
SIN_COS:def 19;
then
A10: (
cos
. r3)
<= 1 by
ABSVALUE: 5;
A11: r2
in (
dom
cos ) by
A2,
XBOOLE_0:def 4;
A12: r1
in
[.
0 ,
PI .] by
A1,
XBOOLE_0:def 4;
then
A13:
0
< r3 by
A8,
XXREAL_1: 1;
A14: r3
< r2 by
A3,
XREAL_1: 226;
then r3
<
PI by
A7,
XXREAL_0: 2;
then r3
in
].
0 ,
PI .[ by
A13,
XXREAL_1: 4;
then
A15: r3
in (
].
0 ,
PI .[
/\ (
dom
cos )) by
SIN_COS: 24,
XBOOLE_0:def 4;
A16: (
cos
. r3)
>= (
- 1) by
A9,
ABSVALUE: 5;
now
per cases by
A12,
XXREAL_1: 1;
suppose
A17:
0
< r1;
now
per cases by
A7,
XXREAL_0: 1;
suppose
A18: r2
<
PI ;
then r1
<
PI by
A3,
XXREAL_0: 2;
then r1
in
].
0 ,
PI .[ by
A17,
XXREAL_1: 4;
then
A19: r1
in (
].
0 ,
PI .[
/\ (
dom
cos )) by
A4,
XBOOLE_0:def 4;
r2
in
].
0 ,
PI .[ by
A3,
A17,
A18,
XXREAL_1: 4;
then r2
in (
].
0 ,
PI .[
/\ (
dom
cos )) by
A11,
XBOOLE_0:def 4;
hence (
cos
. r2)
< (
cos
. r1) by
A3,
A19,
Th21,
RFUNCT_2: 21;
end;
suppose
A20: r2
=
PI ;
then r1
in
].
0 ,
PI .[ by
A3,
A17,
XXREAL_1: 4;
then r1
in (
].
0 ,
PI .[
/\ (
dom
cos )) by
A4,
XBOOLE_0:def 4;
then
A21: (
cos
. r3)
< (
cos
. r1) by
A8,
A15,
Th21,
RFUNCT_2: 21;
assume (
cos
. r2)
>= (
cos
. r1);
hence contradiction by
A6,
A16,
A20,
A21,
SIN_COS: 76,
XXREAL_0: 1;
end;
end;
hence (
cos
. r2)
< (
cos
. r1);
end;
suppose
A22:
0
= r1;
now
per cases by
A7,
XXREAL_0: 1;
suppose r2
<
PI ;
then r2
in
].
0 ,
PI .[ by
A3,
A22,
XXREAL_1: 4;
then r2
in (
].
0 ,
PI .[
/\ (
dom
cos )) by
A11,
XBOOLE_0:def 4;
then
A23: (
cos
. r2)
< (
cos
. r3) by
A14,
A15,
Th21,
RFUNCT_2: 21;
assume (
cos
. r2)
>= (
cos
. r1);
hence contradiction by
A10,
A5,
A22,
A23,
SIN_COS: 30,
XXREAL_0: 1;
end;
suppose r2
=
PI ;
hence (
cos
. r2)
< (
cos
. r1) by
A22,
SIN_COS: 30,
SIN_COS: 76;
end;
end;
hence (
cos
. r2)
< (
cos
. r1);
end;
end;
hence (
cos
. r2)
< (
cos
. r1);
end;
hence thesis by
RFUNCT_2: 21;
end;
theorem ::
COMPTRIG:26
Th26: (
cos
|
[.
PI , (2
*
PI ).]) is
increasing
proof
now
let r1,r2 be
Real;
assume that
A1: r1
in (
[.
PI , (2
*
PI ).]
/\ (
dom
cos )) and
A2: r2
in (
[.
PI , (2
*
PI ).]
/\ (
dom
cos )) and
A3: r1
< r2;
A4: r1
in (
dom
cos ) by
A1,
XBOOLE_0:def 4;
set r3 = ((r1
+ r2)
/ 2);
r1
in
[.
PI , (2
*
PI ).] by
A1,
XBOOLE_0:def 4;
then
A5:
PI
<= r1 by
XXREAL_1: 1;
|.(
cos r3).|
<= 1 by
SIN_COS: 27;
then
A6:
|.(
cos
. r3).|
<= 1 by
SIN_COS:def 19;
then
A7: (
cos
. r3)
<= 1 by
ABSVALUE: 5;
r2
in
[.
PI , (2
*
PI ).] by
A2,
XBOOLE_0:def 4;
then
A8: r2
<= (2
*
PI ) by
XXREAL_1: 1;
A9: r1
< r3 by
A3,
XREAL_1: 226;
then
A10:
PI
< r3 by
A5,
XXREAL_0: 2;
A11: r3
< r2 by
A3,
XREAL_1: 226;
then r3
< (2
*
PI ) by
A8,
XXREAL_0: 2;
then r3
in
].
PI , (2
*
PI ).[ by
A10,
XXREAL_1: 4;
then
A12: r3
in (
].
PI , (2
*
PI ).[
/\ (
dom
cos )) by
SIN_COS: 24,
XBOOLE_0:def 4;
|.(
cos r2).|
<= 1 by
SIN_COS: 27;
then
|.(
cos
. r2).|
<= 1 by
SIN_COS:def 19;
then
A13: (
cos
. r2)
>= (
- 1) by
ABSVALUE: 5;
A14: r2
in (
dom
cos ) by
A2,
XBOOLE_0:def 4;
A15: (
cos
. r3)
>= (
- 1) by
A6,
ABSVALUE: 5;
now
per cases by
A5,
XXREAL_0: 1;
suppose
A16:
PI
< r1;
then
A17:
PI
< r2 by
A3,
XXREAL_0: 2;
now
per cases by
A8,
XXREAL_0: 1;
suppose
A18: r2
< (2
*
PI );
then r1
< (2
*
PI ) by
A3,
XXREAL_0: 2;
then r1
in
].
PI , (2
*
PI ).[ by
A16,
XXREAL_1: 4;
then
A19: r1
in (
].
PI , (2
*
PI ).[
/\ (
dom
cos )) by
A4,
XBOOLE_0:def 4;
r2
in
].
PI , (2
*
PI ).[ by
A17,
A18,
XXREAL_1: 4;
then r2
in (
].
PI , (2
*
PI ).[
/\ (
dom
cos )) by
A14,
XBOOLE_0:def 4;
hence (
cos
. r2)
> (
cos
. r1) by
A3,
A19,
Th22,
RFUNCT_2: 20;
end;
suppose
A20: r2
= (2
*
PI );
then r1
in
].
PI , (2
*
PI ).[ by
A3,
A16,
XXREAL_1: 4;
then r1
in (
].
PI , (2
*
PI ).[
/\ (
dom
cos )) by
A4,
XBOOLE_0:def 4;
then
A21: (
cos
. r3)
> (
cos
. r1) by
A9,
A12,
Th22,
RFUNCT_2: 20;
assume (
cos
. r2)
<= (
cos
. r1);
hence contradiction by
A7,
A20,
A21,
SIN_COS: 76,
XXREAL_0: 2;
end;
end;
hence (
cos
. r2)
> (
cos
. r1);
end;
suppose
A22:
PI
= r1;
now
per cases by
A8,
XXREAL_0: 1;
suppose r2
< (2
*
PI );
then r2
in
].
PI , (2
*
PI ).[ by
A3,
A22,
XXREAL_1: 4;
then r2
in (
].
PI , (2
*
PI ).[
/\ (
dom
cos )) by
A14,
XBOOLE_0:def 4;
then
A23: (
cos
. r2)
> (
cos
. r3) by
A11,
A12,
Th22,
RFUNCT_2: 20;
assume (
cos
. r2)
<= (
cos
. r1);
hence contradiction by
A15,
A13,
A22,
A23,
SIN_COS: 76,
XXREAL_0: 1;
end;
suppose r2
= (2
*
PI );
hence (
cos
. r2)
> (
cos
. r1) by
A22,
SIN_COS: 76;
end;
end;
hence (
cos
. r2)
> (
cos
. r1);
end;
end;
hence (
cos
. r2)
> (
cos
. r1);
end;
hence thesis by
RFUNCT_2: 20;
end;
theorem ::
COMPTRIG:27
Th27: (
sin
. x)
in
[.(
- 1), 1.] & (
cos
. x)
in
[.(
- 1), 1.]
proof
|.(
cos x).|
<= 1 by
SIN_COS: 27;
then
|.(
cos
. x).|
<= 1 by
SIN_COS:def 19;
then
A1: (
- 1)
<= (
cos
. x) & (
cos
. x)
<= 1 by
ABSVALUE: 5;
|.(
sin x).|
<= 1 by
SIN_COS: 27;
then
|.(
sin
. x).|
<= 1 by
SIN_COS:def 17;
then (
- 1)
<= (
sin
. x) & (
sin
. x)
<= 1 by
ABSVALUE: 5;
hence thesis by
A1,
XXREAL_1: 1;
end;
theorem ::
COMPTRIG:28
(
rng
sin )
=
[.(
- 1), 1.]
proof
now
let y be
object;
thus y
in
[.(
- 1), 1.] implies ex x be
object st x
in (
dom
sin ) & y
= (
sin
. x)
proof
assume
A1: y
in
[.(
- 1), 1.];
then
reconsider y1 = y as
Real;
y1
in (
[.(
- 1), 1.]
\/
[.1, (
sin
. (
- (
PI
/ 2))).]) by
A1,
XBOOLE_0:def 3;
then (
sin
|
[.(
- (
PI
/ 2)), (
PI
/ 2).]) is
continuous & y1
in (
[.(
sin
. (
- (
PI
/ 2))), (
sin
. (
PI
/ 2)).]
\/
[.(
sin
. (
PI
/ 2)), (
sin
. (
- (
PI
/ 2))).]) by
SIN_COS: 30,
SIN_COS: 76;
then
consider x be
Real such that x
in
[.(
- (
PI
/ 2)), (
PI
/ 2).] and
A2: y1
= (
sin
. x) by
FCONT_2: 15,
SIN_COS: 24;
take x;
x
in
REAL by
XREAL_0:def 1;
hence thesis by
A2,
SIN_COS: 24;
end;
thus (ex x be
object st x
in (
dom
sin ) & y
= (
sin
. x)) implies y
in
[.(
- 1), 1.] by
Th27,
SIN_COS: 24;
end;
hence thesis by
FUNCT_1:def 3;
end;
theorem ::
COMPTRIG:29
(
rng
cos )
=
[.(
- 1), 1.]
proof
now
let y be
object;
thus y
in
[.(
- 1), 1.] implies ex x be
object st x
in (
dom
cos ) & y
= (
cos
. x)
proof
assume
A1: y
in
[.(
- 1), 1.];
then
reconsider y1 = y as
Real;
(
cos
|
[.
0 ,
PI .]) is
continuous & y1
in (
[.(
cos
.
0 ), (
cos
.
PI ).]
\/
[.(
cos
.
PI ), (
cos
.
0 ).]) by
A1,
SIN_COS: 30,
SIN_COS: 76,
XBOOLE_0:def 3;
then
consider x be
Real such that x
in
[.
0 ,
PI .] and
A2: y1
= (
cos
. x) by
FCONT_2: 15,
SIN_COS: 24;
take x;
x
in
REAL by
XREAL_0:def 1;
hence thesis by
A2,
SIN_COS: 24;
end;
thus (ex x be
object st x
in (
dom
cos ) & y
= (
cos
. x)) implies y
in
[.(
- 1), 1.] by
Th27,
SIN_COS: 24;
end;
hence thesis by
FUNCT_1:def 3;
end;
theorem ::
COMPTRIG:30
(
rng (
sin
|
[.(
- (
PI
/ 2)), (
PI
/ 2).]))
=
[.(
- 1), 1.]
proof
set sin1 = (
sin
|
[.(
- (
PI
/ 2)), (
PI
/ 2).]);
now
let y be
object;
thus y
in
[.(
- 1), 1.] implies ex x be
object st x
in (
dom sin1) & y
= (sin1
. x)
proof
assume
A1: y
in
[.(
- 1), 1.];
then
reconsider y1 = y as
Real;
(
PI
/ 2)
in
[.(
- (
PI
/ 2)), (
PI
/ 2).] by
XXREAL_1: 1;
then
A2: (sin1
. (
PI
/ 2))
= (
sin
. (
PI
/ 2)) by
FUNCT_1: 49;
(
- (
PI
/ 2))
in
[.(
- (
PI
/ 2)), (
PI
/ 2).] by
XXREAL_1: 1;
then (sin1
. (
- (
PI
/ 2)))
= (
sin
. (
- (
PI
/ 2))) by
FUNCT_1: 49;
then y1
in
[.(sin1
. (
- (
PI
/ 2))), (sin1
. (
PI
/ 2)).] by
A1,
A2,
SIN_COS: 30,
SIN_COS: 76;
then
A3: (sin1
|
[.(
- (
PI
/ 2)), (
PI
/ 2).]) is
continuous & y1
in (
[.(sin1
. (
- (
PI
/ 2))), (sin1
. (
PI
/ 2)).]
\/
[.(sin1
. (
PI
/ 2)), (sin1
. (
- (
PI
/ 2))).]) by
XBOOLE_0:def 3;
(
dom sin1)
= (
[.(
- (
PI
/ 2)), (
PI
/ 2).]
/\
REAL ) by
RELAT_1: 61,
SIN_COS: 24
.=
[.(
- (
PI
/ 2)), (
PI
/ 2).] by
XBOOLE_1: 28;
then
consider x be
Real such that
A4: x
in
[.(
- (
PI
/ 2)), (
PI
/ 2).] and
A5: y1
= (sin1
. x) by
A3,
FCONT_2: 15;
take x;
x
in (
REAL
/\
[.(
- (
PI
/ 2)), (
PI
/ 2).]) by
A4,
XBOOLE_0:def 4;
hence thesis by
A5,
RELAT_1: 61,
SIN_COS: 24;
end;
thus (ex x be
object st x
in (
dom sin1) & y
= (sin1
. x)) implies y
in
[.(
- 1), 1.]
proof
given x be
object such that
A6: x
in (
dom sin1) and
A7: y
= (sin1
. x);
(
dom sin1)
c= (
dom
sin ) by
RELAT_1: 60;
then
reconsider x1 = x as
Real by
A6,
SIN_COS: 24;
y
= (
sin
. x1) by
A6,
A7,
FUNCT_1: 47;
hence thesis by
Th27;
end;
end;
hence thesis by
FUNCT_1:def 3;
end;
theorem ::
COMPTRIG:31
(
rng (
sin
|
[.(
PI
/ 2), ((3
/ 2)
*
PI ).]))
=
[.(
- 1), 1.]
proof
set sin1 = (
sin
|
[.(
PI
/ 2), ((3
/ 2)
*
PI ).]);
now
let y be
object;
thus y
in
[.(
- 1), 1.] implies ex x be
object st x
in (
dom sin1) & y
= (sin1
. x)
proof
((3
/ 2)
*
PI )
in
[.(
PI
/ 2), ((3
/ 2)
*
PI ).] by
Lm4,
XXREAL_1: 1;
then
A1: (sin1
. ((3
/ 2)
*
PI ))
= (
sin
. ((3
/ 2)
*
PI )) by
FUNCT_1: 49;
assume
A2: y
in
[.(
- 1), 1.];
then
reconsider y1 = y as
Real;
A3: (
dom sin1)
= (
[.(
PI
/ 2), ((3
/ 2)
*
PI ).]
/\
REAL ) by
RELAT_1: 61,
SIN_COS: 24
.=
[.(
PI
/ 2), ((3
/ 2)
*
PI ).] by
XBOOLE_1: 28;
(
PI
/ 2)
in
[.(
PI
/ 2), ((3
/ 2)
*
PI ).] by
Lm4,
XXREAL_1: 1;
then (sin1
. (
PI
/ 2))
= (
sin
. (
PI
/ 2)) by
FUNCT_1: 49;
then (sin1
|
[.(
PI
/ 2), ((3
/ 2)
*
PI ).]) is
continuous & y1
in (
[.(sin1
. (
PI
/ 2)), (sin1
. ((3
/ 2)
*
PI )).]
\/
[.(sin1
. ((3
/ 2)
*
PI )), (sin1
. (
PI
/ 2)).]) by
A2,
A1,
SIN_COS: 76,
XBOOLE_0:def 3;
then
consider x be
Real such that
A4: x
in
[.(
PI
/ 2), ((3
/ 2)
*
PI ).] and
A5: y1
= (sin1
. x) by
A3,
Lm4,
FCONT_2: 15;
take x;
x
in (
REAL
/\
[.(
PI
/ 2), ((3
/ 2)
*
PI ).]) by
A4,
XBOOLE_0:def 4;
hence thesis by
A5,
RELAT_1: 61,
SIN_COS: 24;
end;
thus (ex x be
object st x
in (
dom sin1) & y
= (sin1
. x)) implies y
in
[.(
- 1), 1.]
proof
given x be
object such that
A6: x
in (
dom sin1) and
A7: y
= (sin1
. x);
(
dom sin1)
c= (
dom
sin ) by
RELAT_1: 60;
then
reconsider x1 = x as
Real by
A6,
SIN_COS: 24;
y
= (
sin
. x1) by
A6,
A7,
FUNCT_1: 47;
hence thesis by
Th27;
end;
end;
hence thesis by
FUNCT_1:def 3;
end;
theorem ::
COMPTRIG:32
Th32: (
rng (
cos
|
[.
0 ,
PI .]))
=
[.(
- 1), 1.]
proof
set cos1 = (
cos
|
[.
0 ,
PI .]);
now
let y be
object;
thus y
in
[.(
- 1), 1.] implies ex x be
object st x
in (
dom cos1) & y
= (cos1
. x)
proof
PI
in
[.
0 ,
PI .] by
XXREAL_1: 1;
then
A1: (cos1
.
PI )
= (
cos
.
PI ) by
FUNCT_1: 49;
assume
A2: y
in
[.(
- 1), 1.];
then
reconsider y1 = y as
Real;
A3: (
dom cos1)
= (
[.
0 ,
PI .]
/\
REAL ) by
RELAT_1: 61,
SIN_COS: 24
.=
[.
0 ,
PI .] by
XBOOLE_1: 28;
0
in
[.
0 ,
PI .] by
XXREAL_1: 1;
then (cos1
.
0 )
= (
cos
.
0 ) by
FUNCT_1: 49;
then (cos1
|
[.
0 ,
PI .]) is
continuous & y1
in (
[.(cos1
.
0 ), (cos1
.
PI ).]
\/
[.(cos1
.
PI ), (cos1
.
0 ).]) by
A2,
A1,
SIN_COS: 30,
SIN_COS: 76,
XBOOLE_0:def 3;
then
consider x be
Real such that
A4: x
in
[.
0 ,
PI .] and
A5: y1
= (cos1
. x) by
A3,
FCONT_2: 15;
take x;
x
in (
REAL
/\
[.
0 ,
PI .]) by
A4,
XBOOLE_0:def 4;
hence thesis by
A5,
RELAT_1: 61,
SIN_COS: 24;
end;
thus (ex x be
object st x
in (
dom cos1) & y
= (cos1
. x)) implies y
in
[.(
- 1), 1.]
proof
given x be
object such that
A6: x
in (
dom cos1) and
A7: y
= (cos1
. x);
(
dom cos1)
c= (
dom
cos ) by
RELAT_1: 60;
then
reconsider x1 = x as
Real by
A6,
SIN_COS: 24;
y
= (
cos
. x1) by
A6,
A7,
FUNCT_1: 47;
hence thesis by
Th27;
end;
end;
hence thesis by
FUNCT_1:def 3;
end;
theorem ::
COMPTRIG:33
Th33: (
rng (
cos
|
[.
PI , (2
*
PI ).]))
=
[.(
- 1), 1.]
proof
set cos1 = (
cos
|
[.
PI , (2
*
PI ).]);
now
let y be
object;
thus y
in
[.(
- 1), 1.] implies ex x be
object st x
in (
dom cos1) & y
= (cos1
. x)
proof
(2
*
PI )
in
[.
PI , (2
*
PI ).] by
Lm3,
XXREAL_1: 1;
then
A1: (cos1
. (2
*
PI ))
= (
cos
. (2
*
PI )) by
FUNCT_1: 49;
assume
A2: y
in
[.(
- 1), 1.];
then
reconsider y1 = y as
Real;
A3: (
dom cos1)
= (
[.
PI , (2
*
PI ).]
/\
REAL ) by
RELAT_1: 61,
SIN_COS: 24
.=
[.
PI , (2
*
PI ).] by
XBOOLE_1: 28;
PI
in
[.
PI , (2
*
PI ).] by
Lm3,
XXREAL_1: 1;
then (cos1
.
PI )
= (
cos
.
PI ) by
FUNCT_1: 49;
then (cos1
|
[.
PI , (2
*
PI ).]) is
continuous & y1
in (
[.(cos1
.
PI ), (cos1
. (2
*
PI )).]
\/
[.(cos1
. (2
*
PI )), (cos1
.
PI ).]) by
A2,
A1,
SIN_COS: 76,
XBOOLE_0:def 3;
then
consider x be
Real such that
A4: x
in
[.
PI , (2
*
PI ).] and
A5: y1
= (cos1
. x) by
A3,
Lm3,
FCONT_2: 15;
take x;
x
in (
REAL
/\
[.
PI , (2
*
PI ).]) by
A4,
XBOOLE_0:def 4;
hence thesis by
A5,
RELAT_1: 61,
SIN_COS: 24;
end;
thus (ex x be
object st x
in (
dom cos1) & y
= (cos1
. x)) implies y
in
[.(
- 1), 1.]
proof
given x be
object such that
A6: x
in (
dom cos1) and
A7: y
= (cos1
. x);
(
dom cos1)
c= (
dom
cos ) by
RELAT_1: 60;
then
reconsider x1 = x as
Real by
A6,
SIN_COS: 24;
y
= (
cos
. x1) by
A6,
A7,
FUNCT_1: 47;
hence thesis by
Th27;
end;
end;
hence thesis by
FUNCT_1:def 3;
end;
begin
definition
let z be
Complex;
::
COMPTRIG:def1
func
Arg z ->
Real means
:
Def1: z
= ((
|.z.|
* (
cos it ))
+ ((
|.z.|
* (
sin it ))
*
<i> )) &
0
<= it & it
< (2
*
PI ) if z
<>
0
otherwise it
=
0 ;
existence
proof
thus z
<>
0 implies ex r be
Real st z
= ((
|.z.|
* (
cos r))
+ ((
|.z.|
* (
sin r))
*
<i> )) &
0
<= r & r
< (2
*
PI )
proof
|.z.|
>=
0 by
COMPLEX1: 46;
then
A1: ((
Re z)
/
|.z.|)
<= 1 by
COMPLEX1: 54,
XREAL_1: 185;
assume
A2: z
<>
0 ;
then
A3:
|.z.|
<>
0 by
COMPLEX1: 45;
now
per cases ;
suppose
A4: (
Im z)
>=
0 ;
set 0PI =
[.
0 ,
PI .];
reconsider cos1 = (
cos
| 0PI) as
PartFunc of 0PI,
REAL by
PARTFUN1: 10;
reconsider cos1 as
one-to-one
PartFunc of 0PI,
REAL by
Th25,
RFUNCT_2: 50;
reconsider r = ((cos1
" )
. ((
Re z)
/
|.z.|)) as
Real;
A5: (
|.z.|
^2 )
= (((
Re z)
^2 )
+ ((
Im z)
^2 )) by
Th3;
take r;
(
Re z)
>= (
-
|.z.|) by
Th1;
then (
- 1)
<= ((
Re z)
/
|.z.|) by
COMPLEX1: 46,
XREAL_1: 193;
then
A6: ((
Re z)
/
|.z.|)
in (
rng cos1) by
A1,
Th32,
XXREAL_1: 1;
then ((
Re z)
/
|.z.|)
in (
dom (cos1
" )) by
FUNCT_1: 33;
then r
in (
rng (cos1
" )) by
FUNCT_1:def 3;
then r
in (
dom cos1) by
FUNCT_1: 33;
then
A7: r
in
[.
0 ,
PI .] by
RELAT_1: 57;
then r
<=
PI by
XXREAL_1: 1;
then
A8: r
=
PI or r
<
PI by
XXREAL_0: 1;
A9: (
cos r)
= (
cos
. r) by
SIN_COS:def 19
.= (cos1
. r) by
A7,
FUNCT_1: 49
.= ((
Re z)
/
|.z.|) by
A6,
FUNCT_1: 35;
0
= r or
0
< r by
A7,
XXREAL_1: 1;
then r
=
0 or r
=
PI or r
in
].
0 ,
PI .[ by
A8,
XXREAL_1: 4;
then
A10: (
sin
. r)
>=
0 by
Th7,
SIN_COS: 30,
SIN_COS: 76;
(((
cos
. r)
^2 )
+ ((
sin
. r)
^2 ))
= 1 by
SIN_COS: 28;
then ((
sin
. r)
^2 )
= (1
- ((
cos
. r)
^2 ))
.= (1
- (((
Re z)
/
|.z.|)
^2 )) by
A9,
SIN_COS:def 19
.= (1
- (((
Re z)
^2 )
/ (
|.z.|
^2 ))) by
XCMPLX_1: 76
.= (((
|.z.|
^2 )
/ (
|.z.|
^2 ))
- (((
Re z)
^2 )
/ (
|.z.|
^2 ))) by
A3,
XCMPLX_1: 60
.= (((
|.z.|
^2 )
- ((
Re z)
^2 ))
/ (
|.z.|
^2 ))
.= (((
Im z)
/
|.z.|)
^2 ) by
A5,
XCMPLX_1: 76;
then (
sin
. r)
= (
sqrt (((
Im z)
/
|.z.|)
^2 )) by
A10,
SQUARE_1: 22
.=
|.((
Im z)
/
|.z.|).| by
COMPLEX1: 72
.= (
|.(
Im z).|
/
|.
|.z.|.|) by
COMPLEX1: 67
.= (
|.(
Im z).|
/
|.z.|);
then
|.(
Im z).|
= (
|.z.|
* (
sin
. r)) by
A2,
COMPLEX1: 45,
XCMPLX_1: 87;
then
A11: (
Im z)
= (
|.z.|
* (
sin
. r)) by
A4,
ABSVALUE:def 1
.= (
|.z.|
* (
sin r)) by
SIN_COS:def 17;
(
Re z)
= (
|.z.|
* (
cos r)) by
A2,
A9,
COMPLEX1: 45,
XCMPLX_1: 87;
hence z
= ((
|.z.|
* (
cos r))
+ ((
|.z.|
* (
sin r))
*
<i> )) by
A11,
COMPLEX1: 13;
thus
0
<= r by
A7,
XXREAL_1: 1;
r
<=
PI by
A7,
XXREAL_1: 1;
hence r
< (2
*
PI ) by
Lm3,
XXREAL_0: 2;
end;
suppose
A12: (
Im z)
<
0 ;
per cases ;
suppose
A13: (
Re z)
<>
|.z.|;
set 0PI =
[.
PI , (2
*
PI ).];
reconsider cos1 = (
cos
| 0PI) as
PartFunc of 0PI,
REAL by
PARTFUN1: 10;
reconsider cos1 as
one-to-one
PartFunc of 0PI,
REAL by
Th26,
RFUNCT_2: 50;
reconsider r = ((cos1
" )
. ((
Re z)
/
|.z.|)) as
Real;
(
Re z)
>= (
-
|.z.|) by
Th1;
then (
- 1)
<= ((
Re z)
/
|.z.|) by
COMPLEX1: 46,
XREAL_1: 193;
then
A14: ((
Re z)
/
|.z.|)
in (
rng cos1) by
A1,
Th33,
XXREAL_1: 1;
then
A15: ((
Re z)
/
|.z.|)
in (
dom (cos1
" )) by
FUNCT_1: 33;
then r
in (
rng (cos1
" )) by
FUNCT_1:def 3;
then r
in (
dom cos1) by
FUNCT_1: 33;
then
A16: r
in
[.
PI , (2
*
PI ).] by
RELAT_1: 57;
then r
<= (2
*
PI ) by
XXREAL_1: 1;
then
A17: r
= (2
*
PI ) or r
< (2
*
PI ) by
XXREAL_0: 1;
A18: ((
Re z)
/
|.z.|)
<> 1 by
A13,
XCMPLX_1: 58;
A19: r
<> (2
*
PI )
proof
(2
*
PI )
in
[.
PI , (2
*
PI ).] by
Lm3,
XXREAL_1: 1;
then (2
*
PI )
in (
dom cos1) & (cos1
. (2
*
PI ))
= 1 by
FUNCT_1: 49,
RELAT_1: 57,
SIN_COS: 24,
SIN_COS: 76;
then
A20: ((cos1
" )
. 1)
= (2
*
PI ) by
FUNCT_1: 32;
1
in (
rng cos1) by
Th33,
XXREAL_1: 1;
then
A21: 1
in (
dom (cos1
" )) by
FUNCT_1: 33;
assume r
= (2
*
PI );
hence contradiction by
A18,
A15,
A21,
A20,
FUNCT_1:def 4;
end;
A22: (
cos r)
= (
cos
. r) by
SIN_COS:def 19
.= (cos1
. r) by
A16,
FUNCT_1: 49
.= ((
Re z)
/
|.z.|) by
A14,
FUNCT_1: 35;
PI
<= r by
A16,
XXREAL_1: 1;
then
PI
= r or
PI
< r by
XXREAL_0: 1;
then r
=
PI or r
= (2
*
PI ) or r
in
].
PI , (2
*
PI ).[ by
A17,
XXREAL_1: 4;
then
A23: (
sin
. r)
<=
0 by
Th9,
SIN_COS: 76;
take r;
A24: (
|.z.|
^2 )
= (((
Re z)
^2 )
+ ((
Im z)
^2 )) by
Th3;
(((
cos
. r)
^2 )
+ ((
sin
. r)
^2 ))
= 1 by
SIN_COS: 28;
then ((
sin
. r)
^2 )
= (1
- ((
cos
. r)
^2 ))
.= (1
- (((
Re z)
/
|.z.|)
^2 )) by
A22,
SIN_COS:def 19
.= (1
- (((
Re z)
^2 )
/ (
|.z.|
^2 ))) by
XCMPLX_1: 76
.= (((
|.z.|
^2 )
/ (
|.z.|
^2 ))
- (((
Re z)
^2 )
/ (
|.z.|
^2 ))) by
A3,
XCMPLX_1: 60
.= (((
|.z.|
^2 )
- ((
Re z)
^2 ))
/ (
|.z.|
^2 ))
.= (((
Im z)
/
|.z.|)
^2 ) by
A24,
XCMPLX_1: 76;
then (
- (
sin
. r))
= (
sqrt (((
Im z)
/
|.z.|)
^2 )) by
A23,
SQUARE_1: 23
.=
|.((
Im z)
/
|.z.|).| by
COMPLEX1: 72
.= (
|.(
Im z).|
/
|.
|.z.|.|) by
COMPLEX1: 67
.= (
|.(
Im z).|
/
|.z.|);
then (
sin
. r)
= ((
-
|.(
Im z).|)
/
|.z.|);
then (
-
|.(
Im z).|)
= (
|.z.|
* (
sin
. r)) by
A2,
COMPLEX1: 45,
XCMPLX_1: 87;
then
A25: (
- (
- (
Im z)))
= (
|.z.|
* (
sin
. r)) by
A12,
ABSVALUE:def 1
.= (
|.z.|
* (
sin r)) by
SIN_COS:def 17;
(
Re z)
= (
|.z.|
* (
cos r)) by
A2,
A22,
COMPLEX1: 45,
XCMPLX_1: 87;
hence z
= ((
|.z.|
* (
cos r))
+ ((
|.z.|
* (
sin r))
*
<i> )) by
A25,
COMPLEX1: 13;
thus
0
<= r by
A16,
XXREAL_1: 1;
r
<= (2
*
PI ) by
A16,
XXREAL_1: 1;
hence r
< (2
*
PI ) by
A19,
XXREAL_0: 1;
end;
suppose
A26: (
Re z)
=
|.z.|;
reconsider r =
0 as
Real;
take r;
((
Re z)
^2 )
= (((
Re z)
^2 )
+ ((
Im z)
^2 )) by
A26,
Th3;
then (
Im z)
=
0 ;
hence z
= ((
|.z.|
* (
cos r))
+ ((
|.z.|
* (
sin r))
*
<i> )) by
A26,
COMPLEX1: 13,
SIN_COS: 31;
thus
0
<= r;
thus r
< (2
*
PI ) by
Lm1;
end;
end;
end;
hence thesis;
end;
thus thesis;
end;
uniqueness
proof
z
<>
0 implies for x,y be
Real st z
= ((
|.z.|
* (
cos x))
+ ((
|.z.|
* (
sin x))
*
<i> )) &
0
<= x & x
< (2
*
PI ) & z
= ((
|.z.|
* (
cos y))
+ ((
|.z.|
* (
sin y))
*
<i> )) &
0
<= y & y
< (2
*
PI ) holds x
= y
proof
assume z
<>
0 ;
then
A27:
|.z.|
<>
0 by
COMPLEX1: 45;
let x,y be
Real;
assume that
A28: z
= ((
|.z.|
* (
cos x))
+ ((
|.z.|
* (
sin x))
*
<i> )) and
A29:
0
<= x and
A30: x
< (2
*
PI ) and
A31: z
= ((
|.z.|
* (
cos y))
+ ((
|.z.|
* (
sin y))
*
<i> )) and
A32:
0
<= y and
A33: y
< (2
*
PI );
(
|.z.|
* (
cos x))
= (
|.z.|
* (
cos y)) by
A28,
A31,
COMPLEX1: 77;
then (
cos x)
= (
cos y) by
A27,
XCMPLX_1: 5;
then (
cos x)
= (
cos
. y) by
SIN_COS:def 19;
then
A34: (
cos
. x)
= (
cos
. y) by
SIN_COS:def 19;
(
|.z.|
* (
sin x))
= (
|.z.|
* (
sin y)) by
A28,
A31,
COMPLEX1: 77;
then (
sin x)
= (
sin y) by
A27,
XCMPLX_1: 5;
then
A35: (
sin x)
= (
sin
. y) by
SIN_COS:def 17;
now
per cases ;
suppose
A36: x
<=
PI & y
<=
PI ;
then y
in
[.
0 ,
PI .] by
A32,
XXREAL_1: 1;
then
A37: y
in (
[.
0 ,
PI .]
/\ (
dom
cos )) by
SIN_COS: 24,
XBOOLE_0:def 4;
assume x
<> y;
then
A38: x
< y or y
< x by
XXREAL_0: 1;
x
in
[.
0 ,
PI .] by
A29,
A36,
XXREAL_1: 1;
then x
in (
[.
0 ,
PI .]
/\ (
dom
cos )) by
SIN_COS: 24,
XBOOLE_0:def 4;
hence contradiction by
A34,
A37,
A38,
Th25,
RFUNCT_2: 21;
end;
suppose
A39: x
>
PI & y
>
PI ;
then y
in
[.
PI , (2
*
PI ).] by
A33,
XXREAL_1: 1;
then
A40: y
in (
[.
PI , (2
*
PI ).]
/\ (
dom
cos )) by
SIN_COS: 24,
XBOOLE_0:def 4;
assume x
<> y;
then
A41: x
< y or y
< x by
XXREAL_0: 1;
x
in
[.
PI , (2
*
PI ).] by
A30,
A39,
XXREAL_1: 1;
then x
in (
[.
PI , (2
*
PI ).]
/\ (
dom
cos )) by
SIN_COS: 24,
XBOOLE_0:def 4;
hence contradiction by
A34,
A40,
A41,
Th26,
RFUNCT_2: 20;
end;
suppose
A42: x
<=
PI & y
>
PI ;
then y
in
].
PI , (2
*
PI ).[ by
A33,
XXREAL_1: 4;
then
A43: (
sin
. y)
<
0 by
Th9;
x
in
[.
0 ,
PI .] by
A29,
A42,
XXREAL_1: 1;
then (
sin
. x)
>=
0 by
Th8;
hence thesis by
A35,
A43,
SIN_COS:def 17;
end;
suppose
A44: y
<=
PI & x
>
PI ;
then x
in
].
PI , (2
*
PI ).[ by
A30,
XXREAL_1: 4;
then
A45: (
sin
. x)
<
0 by
Th9;
y
in
[.
0 ,
PI .] by
A32,
A44,
XXREAL_1: 1;
then (
sin
. y)
>=
0 by
Th8;
hence thesis by
A35,
A45,
SIN_COS:def 17;
end;
end;
hence thesis;
end;
hence thesis;
end;
consistency ;
end
theorem ::
COMPTRIG:34
Th34: for z be
Complex holds
0
<= (
Arg z) & (
Arg z)
< (2
*
PI )
proof
let z be
Complex;
0
<= (
Arg z) & (
Arg z)
< (2
*
PI ) or z
=
0 by
Def1;
hence thesis by
Def1,
Lm6,
Lm7;
end;
theorem ::
COMPTRIG:35
Th35: for x be
Real st x
>=
0 holds (
Arg x)
=
0
proof
let x be
Real;
A1:
0
<= (
Arg (x
+ (
0
*
<i> ))) & (
Arg (x
+ (
0
*
<i> )))
< (2
*
PI ) by
Th34;
assume
A2: x
>=
0 ;
per cases by
A2;
suppose
A3: x
> (
-
0 );
then
A4: (x
+ (
0
*
<i> ))
= ((
|.(x
+ (
0
*
<i> )).|
* (
cos (
Arg (x
+ (
0
*
<i> )))))
+ ((
|.(x
+ (
0
*
<i> )).|
* (
sin (
Arg (x
+ (
0
*
<i> )))))
*
<i> )) by
Def1;
|.(x
+ (
0
*
<i> )).|
<>
0 by
A3,
COMPLEX1: 45;
then (
sin (
Arg (x
+ (
0
*
<i> ))))
=
0 by
A4,
COMPLEX1: 77;
then (
Arg (x
+ (
0
*
<i> )))
=
0 or (
|.(x
+ (
0
*
<i> )).|
* (
- 1))
= x by
A1,
A4,
Th17,
SIN_COS: 77;
then (
Arg (x
+ (
0
*
<i> )))
=
0 or
|.(x
+ (
0
*
<i> )).|
<
0 by
A3;
hence thesis by
COMPLEX1: 46;
end;
suppose (x
+ (
0
*
<i> ))
=
0 ;
hence thesis by
Def1;
end;
end;
theorem ::
COMPTRIG:36
Th36: for x be
Real st x
<
0 holds (
Arg x)
=
PI
proof
let x be
Real;
A1:
0
<= (
Arg (x
+ (
0
*
<i> ))) & (
Arg (x
+ (
0
*
<i> )))
< (2
*
PI ) by
Th34;
assume
A2: x
<
0 ;
then
A3: (x
+ (
0
*
<i> ))
= ((
|.(x
+ (
0
*
<i> )).|
* (
cos (
Arg (x
+ (
0
*
<i> )))))
+ ((
|.(x
+ (
0
*
<i> )).|
* (
sin (
Arg (x
+ (
0
*
<i> )))))
*
<i> )) by
Def1;
|.(x
+ (
0
*
<i> )).|
<>
0 by
A2,
COMPLEX1: 45;
then (
sin (
Arg (x
+ (
0
*
<i> ))))
=
0 by
A3,
COMPLEX1: 77;
then (
Arg (x
+ (
0
*
<i> )))
=
PI or (
|.(x
+ (
0
*
<i> )).|
* 1)
= x by
A1,
A3,
Th17,
SIN_COS: 31;
hence thesis by
A2,
COMPLEX1: 46;
end;
theorem ::
COMPTRIG:37
Th37: for x be
Real st x
>
0 holds (
Arg (x
*
<i> ))
= (
PI
/ 2)
proof
let x be
Real;
A1:
0
<= (
Arg (
0
+ (x
*
<i> ))) & (
Arg (
0
+ (x
*
<i> )))
< (2
*
PI ) by
Th34;
assume
A2: x
>
0 ;
then
A3: (
0
+ (x
*
<i> ))
<>
0 ;
then
A4: (
0
+ (x
*
<i> ))
= ((
|.(
0
+ (x
*
<i> )).|
* (
cos (
Arg (
0
+ (x
*
<i> )))))
+ ((
|.(
0
+ (x
*
<i> )).|
* (
sin (
Arg (
0
+ (x
*
<i> )))))
*
<i> )) by
Def1;
|.(
0
+ (x
*
<i> )).|
<>
0 by
A3,
COMPLEX1: 45;
then (
cos (
Arg (
0
+ (x
*
<i> ))))
=
0 by
A4,
COMPLEX1: 77;
then (
Arg (
0
+ (x
*
<i> )))
= (
PI
/ 2) or (
|.(
0
+ (x
*
<i> )).|
* (
- 1))
= x by
A1,
A4,
Th18,
SIN_COS: 77;
then (
Arg (
0
+ (x
*
<i> )))
= (
PI
/ 2) or
|.(
0
+ (x
*
<i> )).|
<
0 by
A2;
hence thesis by
COMPLEX1: 46;
end;
theorem ::
COMPTRIG:38
Th38: for x be
Real st x
<
0 holds (
Arg (x
*
<i> ))
= ((3
/ 2)
*
PI )
proof
let x be
Real;
A1:
0
<= (
Arg (
0
+ (x
*
<i> ))) & (
Arg (
0
+ (x
*
<i> )))
< (2
*
PI ) by
Th34;
assume
A2: x
<
0 ;
then
A3: (
0
+ (x
*
<i> ))
<>
0 ;
then
A4: (
0
+ (x
*
<i> ))
= ((
|.(
0
+ (x
*
<i> )).|
* (
cos (
Arg (
0
+ (x
*
<i> )))))
+ ((
|.(
0
+ (x
*
<i> )).|
* (
sin (
Arg (
0
+ (x
*
<i> )))))
*
<i> )) by
Def1;
|.(
0
+ (x
*
<i> )).|
<>
0 by
A3,
COMPLEX1: 45;
then (
cos (
Arg (
0
+ (x
*
<i> ))))
=
0 by
A4,
COMPLEX1: 77;
then (
Arg (
0
+ (x
*
<i> )))
= ((3
/ 2)
*
PI ) or (
|.(
0
+ (x
*
<i> )).|
* 1)
= x by
A1,
A4,
Th18,
SIN_COS: 77;
hence thesis by
A2,
COMPLEX1: 46;
end;
theorem ::
COMPTRIG:39
(
Arg 1)
=
0 by
Th35;
theorem ::
COMPTRIG:40
(
Arg
<i> )
= (
PI
/ 2)
proof
<i>
= (
0
+ (1
*
<i> ));
hence thesis by
Th37;
end;
theorem ::
COMPTRIG:41
Th41: for z be
Complex holds (
Arg z)
in
].
0 , (
PI
/ 2).[ iff (
Re z)
>
0 & (
Im z)
>
0
proof
let z be
Complex;
A1: (
Arg z)
< (2
*
PI ) by
Th34;
thus (
Arg z)
in
].
0 , (
PI
/ 2).[ implies (
Re z)
>
0 & (
Im z)
>
0
proof
assume
A2: (
Arg z)
in
].
0 , (
PI
/ 2).[;
then
A3: (
Arg z)
>
0 by
XXREAL_1: 4;
then z
<>
0 by
Def1;
then
A4: z
= ((
|.z.|
* (
cos (
Arg z)))
+ ((
|.z.|
* (
sin (
Arg z)))
*
<i> )) &
|.z.|
>
0 by
Def1,
COMPLEX1: 47;
(
cos (
Arg z))
>
0 by
A2,
SIN_COS: 81;
hence (
Re z)
>
0 by
A4,
COMPLEX1: 12;
(
Arg z)
< (
PI
/ 2) by
A2,
XXREAL_1: 4;
then (
Arg z)
<
PI by
Lm2,
XXREAL_0: 2;
then (
Arg z)
in
].
0 ,
PI .[ by
A3,
XXREAL_1: 4;
then (
sin
. (
Arg z))
>
0 by
Th7;
then (
sin (
Arg z))
>
0 by
SIN_COS:def 17;
hence thesis by
A4,
COMPLEX1: 12;
end;
assume that
A5: (
Re z)
>
0 and
A6: (
Im z)
>
0 ;
z
= ((
Re z)
+ ((
Im z)
*
<i> )) by
COMPLEX1: 13;
then z
<> (
0
+ (
0
*
<i> )) by
A5,
COMPLEX1: 77;
then
A7:
|.z.|
>
0 & z
= ((
|.z.|
* (
cos (
Arg z)))
+ ((
|.z.|
* (
sin (
Arg z)))
*
<i> )) by
Def1,
COMPLEX1: 47;
then (
sin (
Arg z))
>
0 by
A6,
COMPLEX1: 12;
then
A8: (
sin
. (
Arg z))
>
0 by
SIN_COS:def 17;
(
cos (
Arg z))
>
0 by
A5,
A7,
COMPLEX1: 12;
then (
cos
. (
Arg z))
>
0 by
SIN_COS:def 19;
then
A9: not (
Arg z)
in
[.(
PI
/ 2), ((3
/ 2)
*
PI ).] by
Th14;
0
<= (
Arg z) by
Th34;
then
A10: (
Arg z)
>
0 by
A8,
SIN_COS: 30;
not (
Arg z)
in
[.
PI , (2
*
PI ).] by
A8,
Th10;
then (
PI
/ 2)
> (
Arg z) or
PI
> (
Arg z) & ((3
/ 2)
*
PI )
< (
Arg z) by
A1,
A9,
XXREAL_1: 1;
hence thesis by
A10,
Lm5,
XXREAL_0: 2,
XXREAL_1: 4;
end;
theorem ::
COMPTRIG:42
Th42: for z be
Complex holds (
Arg z)
in
].(
PI
/ 2),
PI .[ iff (
Re z)
<
0 & (
Im z)
>
0
proof
let z be
Complex;
thus (
Arg z)
in
].(
PI
/ 2),
PI .[ implies (
Re z)
<
0 & (
Im z)
>
0
proof
assume
A1: (
Arg z)
in
].(
PI
/ 2),
PI .[;
then (
Arg z)
<
PI by
XXREAL_1: 4;
then
A2: (
Arg z)
< ((3
/ 2)
*
PI ) by
Lm5,
XXREAL_0: 2;
A3: (
Arg z)
> (
PI
/ 2) by
A1,
XXREAL_1: 4;
then z
<>
0 by
Def1;
then
A4: z
= ((
|.z.|
* (
cos (
Arg z)))
+ ((
|.z.|
* (
sin (
Arg z)))
*
<i> )) &
|.z.|
>
0 by
Def1,
COMPLEX1: 47;
(
PI
/ 2)
< (
Arg z) by
A1,
XXREAL_1: 4;
then (
Arg z)
in
].(
PI
/ 2), ((3
/ 2)
*
PI ).[ by
A2,
XXREAL_1: 4;
then (
cos
. (
Arg z))
<
0 by
Th13;
then (
cos (
Arg z))
<
0 by
SIN_COS:def 19;
hence (
Re z)
<
0 by
A4,
COMPLEX1: 12;
(
Arg z)
<
PI by
A1,
XXREAL_1: 4;
then (
Arg z)
in
].
0 ,
PI .[ by
A3,
XXREAL_1: 4;
then (
sin
. (
Arg z))
>
0 by
Th7;
then (
sin (
Arg z))
>
0 by
SIN_COS:def 17;
hence thesis by
A4,
COMPLEX1: 12;
end;
assume that
A5: (
Re z)
<
0 and
A6: (
Im z)
>
0 ;
z
= ((
Re z)
+ ((
Im z)
*
<i> )) by
COMPLEX1: 13;
then z
<> (
0
+ (
0
*
<i> )) by
A5,
COMPLEX1: 77;
then
A7:
|.z.|
>
0 & z
= ((
|.z.|
* (
cos (
Arg z)))
+ ((
|.z.|
* (
sin (
Arg z)))
*
<i> )) by
Def1,
COMPLEX1: 47;
then (
sin (
Arg z))
>
0 by
A6,
COMPLEX1: 12;
then (
sin
. (
Arg z))
>
0 by
SIN_COS:def 17;
then
A8: not (
Arg z)
in
[.
PI , (2
*
PI ).] by
Th10;
(
cos (
Arg z))
<
0 by
A5,
A7,
COMPLEX1: 12;
then (
cos
. (
Arg z))
<
0 by
SIN_COS:def 19;
then not (
Arg z)
in
[.(
- (
PI
/ 2)), (
PI
/ 2).] by
Th12;
then
A9: (
Arg z)
< (
- (
PI
/ 2)) or (
Arg z)
> (
PI
/ 2) by
XXREAL_1: 1;
(
Arg z)
< (2
*
PI ) by
Th34;
then (
Arg z)
<
PI by
A8,
XXREAL_1: 1;
hence thesis by
A9,
Th34,
XXREAL_1: 4;
end;
theorem ::
COMPTRIG:43
Th43: for z be
Complex holds (
Arg z)
in
].
PI , ((3
/ 2)
*
PI ).[ iff (
Re z)
<
0 & (
Im z)
<
0
proof
let z be
Complex;
thus (
Arg z)
in
].
PI , ((3
/ 2)
*
PI ).[ implies (
Re z)
<
0 & (
Im z)
<
0
proof
assume
A1: (
Arg z)
in
].
PI , ((3
/ 2)
*
PI ).[;
then
PI
< (
Arg z) by
XXREAL_1: 4;
then
A2: (
PI
/ 2)
< (
Arg z) by
Lm2,
XXREAL_0: 2;
A3: (
Arg z)
>
PI by
A1,
XXREAL_1: 4;
then z
<>
0 by
Def1;
then
A4: z
= ((
|.z.|
* (
cos (
Arg z)))
+ ((
|.z.|
* (
sin (
Arg z)))
*
<i> )) &
|.z.|
>
0 by
Def1,
COMPLEX1: 47;
(
Arg z)
< ((3
/ 2)
*
PI ) by
A1,
XXREAL_1: 4;
then (
Arg z)
in
].(
PI
/ 2), ((3
/ 2)
*
PI ).[ by
A2,
XXREAL_1: 4;
then (
cos
. (
Arg z))
<
0 by
Th13;
then (
cos (
Arg z))
<
0 by
SIN_COS:def 19;
hence (
Re z)
<
0 by
A4,
COMPLEX1: 12;
(
Arg z)
< ((3
/ 2)
*
PI ) by
A1,
XXREAL_1: 4;
then (
Arg z)
< (2
*
PI ) by
Lm6,
XXREAL_0: 2;
then (
Arg z)
in
].
PI , (2
*
PI ).[ by
A3,
XXREAL_1: 4;
then (
sin
. (
Arg z))
<
0 by
Th9;
then (
sin (
Arg z))
<
0 by
SIN_COS:def 17;
hence thesis by
A4,
COMPLEX1: 12;
end;
assume that
A5: (
Re z)
<
0 and
A6: (
Im z)
<
0 ;
z
= ((
Re z)
+ ((
Im z)
*
<i> )) by
COMPLEX1: 13;
then z
<> (
0
+ (
0
*
<i> )) by
A5,
COMPLEX1: 77;
then
A7:
|.z.|
>
0 & z
= ((
|.z.|
* (
cos (
Arg z)))
+ ((
|.z.|
* (
sin (
Arg z)))
*
<i> )) by
Def1,
COMPLEX1: 47;
then (
cos (
Arg z))
<
0 by
A5,
COMPLEX1: 12;
then (
cos
. (
Arg z))
<
0 by
SIN_COS:def 19;
then
A8: not (
Arg z)
in
[.((3
/ 2)
*
PI ), (2
*
PI ).] by
Th16;
(
sin (
Arg z))
<
0 by
A6,
A7,
COMPLEX1: 12;
then (
sin
. (
Arg z))
<
0 by
SIN_COS:def 17;
then
A9: not (
Arg z)
in
[.
0 ,
PI .] by
Th8;
(
Arg z)
< (2
*
PI ) by
Th34;
then
A10: (
Arg z)
< ((3
/ 2)
*
PI ) by
A8,
XXREAL_1: 1;
0
<= (
Arg z) by
Th34;
then (
Arg z)
>
PI by
A9,
XXREAL_1: 1;
hence thesis by
A10,
XXREAL_1: 4;
end;
theorem ::
COMPTRIG:44
Th44: for z be
Complex holds (
Arg z)
in
].((3
/ 2)
*
PI ), (2
*
PI ).[ iff (
Re z)
>
0 & (
Im z)
<
0
proof
let z be
Complex;
thus (
Arg z)
in
].((3
/ 2)
*
PI ), (2
*
PI ).[ implies (
Re z)
>
0 & (
Im z)
<
0
proof
assume
A1: (
Arg z)
in
].((3
/ 2)
*
PI ), (2
*
PI ).[;
then
A2: (
Arg z)
< (2
*
PI ) by
XXREAL_1: 4;
A3: (
Arg z)
> ((3
/ 2)
*
PI ) by
A1,
XXREAL_1: 4;
then z
<>
0 by
Def1;
then
A4: z
= ((
|.z.|
* (
cos (
Arg z)))
+ ((
|.z.|
* (
sin (
Arg z)))
*
<i> )) &
|.z.|
>
0 by
Def1,
COMPLEX1: 47;
(
cos
. (
Arg z))
>
0 by
A1,
Th15;
then (
cos (
Arg z))
>
0 by
SIN_COS:def 19;
hence (
Re z)
>
0 by
A4,
COMPLEX1: 12;
(
Arg z)
>
PI by
A3,
Lm5,
XXREAL_0: 2;
then (
Arg z)
in
].
PI , (2
*
PI ).[ by
A2,
XXREAL_1: 4;
then (
sin
. (
Arg z))
<
0 by
Th9;
then (
sin (
Arg z))
<
0 by
SIN_COS:def 17;
hence thesis by
A4,
COMPLEX1: 12;
end;
assume that
A5: (
Re z)
>
0 and
A6: (
Im z)
<
0 ;
z
= ((
Re z)
+ ((
Im z)
*
<i> )) by
COMPLEX1: 13;
then z
<> (
0
+ (
0
*
<i> )) by
A5,
COMPLEX1: 77;
then
A7:
|.z.|
>
0 & z
= ((
|.z.|
* (
cos (
Arg z)))
+ ((
|.z.|
* (
sin (
Arg z)))
*
<i> )) by
Def1,
COMPLEX1: 47;
then (
sin (
Arg z))
<
0 by
A6,
COMPLEX1: 12;
then (
sin
. (
Arg z))
<
0 by
SIN_COS:def 17;
then
A8: not (
Arg z)
in
[.
0 ,
PI .] by
Th8;
(
cos (
Arg z))
>
0 by
A5,
A7,
COMPLEX1: 12;
then (
cos
. (
Arg z))
>
0 by
SIN_COS:def 19;
then not (
Arg z)
in
[.(
PI
/ 2), ((3
/ 2)
*
PI ).] by
Th14;
then
A9: (
Arg z)
< (
PI
/ 2) or (
Arg z)
> ((3
/ 2)
*
PI ) by
XXREAL_1: 1;
0
<= (
Arg z) by
Th34;
then
A10: (
Arg z)
>
PI by
A8,
XXREAL_1: 1;
(
Arg z)
< (2
*
PI ) by
Th34;
hence thesis by
A10,
A9,
Lm2,
XXREAL_0: 2,
XXREAL_1: 4;
end;
theorem ::
COMPTRIG:45
Th45: for z be
Complex st (
Im z)
>
0 holds (
sin (
Arg z))
>
0
proof
let z be
Complex;
(
Re z)
<
0 or (
Re z)
=
0 or (
Re z)
>
0 ;
then
A1: (
Re z)
<
0 or (
Re z)
>
0 or z
= (
0
+ ((
Im z)
*
<i> )) by
COMPLEX1: 13;
assume (
Im z)
>
0 ;
then (
Arg z)
in
].(
PI
/ 2),
PI .[ or (
Arg z)
in
].
0 , (
PI
/ 2).[ or (
Arg z)
= (
PI
/ 2) by
A1,
Th37,
Th41,
Th42;
then
A2: (
PI
/ 2)
< (
Arg z) & (
Arg z)
<
PI or
0
< (
Arg z) & (
Arg z)
< (
PI
/ 2) or (
Arg z)
= (
PI
/ 2) by
XXREAL_1: 4;
then (
Arg z)
<
PI by
Lm2,
XXREAL_0: 2;
then (
Arg z)
in
].
0 ,
PI .[ by
A2,
XXREAL_1: 4;
then (
sin
. (
Arg z))
>
0 by
Th7;
hence thesis by
SIN_COS:def 17;
end;
theorem ::
COMPTRIG:46
Th46: for z be
Complex st (
Im z)
<
0 holds (
sin (
Arg z))
<
0
proof
let z be
Complex;
(
Re z)
<
0 or (
Re z)
=
0 or (
Re z)
>
0 ;
then
A1: (
Re z)
<
0 or (
Re z)
>
0 or z
= (
0
+ ((
Im z)
*
<i> )) by
COMPLEX1: 13;
assume (
Im z)
<
0 ;
then (
Arg z)
in
].
PI , ((3
/ 2)
*
PI ).[ or (
Arg z)
in
].((3
/ 2)
*
PI ), (2
*
PI ).[ or (
Arg z)
= ((3
/ 2)
*
PI ) by
A1,
Th38,
Th43,
Th44;
then
PI
< (
Arg z) & (
Arg z)
< ((3
/ 2)
*
PI ) or ((3
/ 2)
*
PI )
< (
Arg z) & (
Arg z)
< (2
*
PI ) or (
Arg z)
= ((3
/ 2)
*
PI ) by
XXREAL_1: 4;
then
PI
< (
Arg z) & (
Arg z)
< (2
*
PI ) by
Lm5,
Lm6,
XXREAL_0: 2;
then (
Arg z)
in
].
PI , (2
*
PI ).[ by
XXREAL_1: 4;
then (
sin
. (
Arg z))
<
0 by
Th9;
hence thesis by
SIN_COS:def 17;
end;
theorem ::
COMPTRIG:47
for z be
Complex st (
Im z)
>=
0 holds (
sin (
Arg z))
>=
0
proof
let z be
Complex;
assume (
Im z)
>=
0 ;
then (
Im z)
>
0 or (
Im z)
=
0 ;
then (
sin (
Arg z))
>
0 or z
= ((
Re z)
+ (
0
*
<i> )) & ((
Re z)
>=
0 or (
Re z)
<
0 ) by
Th45,
COMPLEX1: 13;
hence thesis by
Th35,
Th36,
SIN_COS: 31,
SIN_COS: 77;
end;
theorem ::
COMPTRIG:48
for z be
Complex st (
Im z)
<=
0 holds (
sin (
Arg z))
<=
0
proof
let z be
Complex;
assume (
Im z)
<=
0 ;
then (
Im z)
<
0 or (
Im z)
=
0 ;
then (
sin (
Arg z))
<
0 or z
= ((
Re z)
+ (
0
*
<i> )) & ((
Re z)
>=
0 or (
Re z)
<
0 ) by
Th46,
COMPLEX1: 13;
hence thesis by
Th35,
Th36,
SIN_COS: 31,
SIN_COS: 77;
end;
theorem ::
COMPTRIG:49
Th49: for z be
Complex st (
Re z)
>
0 holds (
cos (
Arg z))
>
0
proof
let z be
Complex;
(
Im z)
<
0 or (
Im z)
=
0 or (
Im z)
>
0 ;
then
A1: (
Im z)
<
0 or (
Im z)
>
0 or z
= ((
Re z)
+ (
0
*
<i> )) by
COMPLEX1: 13;
assume (
Re z)
>
0 ;
then (
Arg z)
in
].
0 , (
PI
/ 2).[ or (
Arg z)
in
].((3
/ 2)
*
PI ), (2
*
PI ).[ or (
Arg z)
=
0 by
A1,
Th35,
Th41,
Th44;
then (
cos
. (
Arg z))
>
0 by
Th15,
SIN_COS: 30,
SIN_COS: 80;
hence thesis by
SIN_COS:def 19;
end;
theorem ::
COMPTRIG:50
Th50: for z be
Complex st (
Re z)
<
0 holds (
cos (
Arg z))
<
0
proof
let z be
Complex;
(
Im z)
<
0 or (
Im z)
=
0 or (
Im z)
>
0 ;
then
A1: (
Im z)
<
0 or (
Im z)
>
0 or z
= ((
Re z)
+ (
0
*
<i> )) by
COMPLEX1: 13;
assume (
Re z)
<
0 ;
then (
Arg z)
in
].(
PI
/ 2),
PI .[ or (
Arg z)
in
].
PI , ((3
/ 2)
*
PI ).[ or (
Arg z)
=
PI by
A1,
Th36,
Th42,
Th43;
then (
PI
/ 2)
< (
Arg z) & (
Arg z)
<
PI or
PI
< (
Arg z) & (
Arg z)
< ((3
/ 2)
*
PI ) or (
Arg z)
=
PI by
XXREAL_1: 4;
then (
PI
/ 2)
< (
Arg z) & (
Arg z)
< ((3
/ 2)
*
PI ) by
Lm2,
Lm5,
XXREAL_0: 2;
then (
Arg z)
in
].(
PI
/ 2), ((3
/ 2)
*
PI ).[ by
XXREAL_1: 4;
then (
cos
. (
Arg z))
<
0 by
Th13;
hence thesis by
SIN_COS:def 19;
end;
theorem ::
COMPTRIG:51
for z be
Complex st (
Re z)
>=
0 holds (
cos (
Arg z))
>=
0
proof
let z be
Complex;
assume (
Re z)
>=
0 ;
then (
Re z)
>
0 or (
Re z)
=
0 ;
then (
cos (
Arg z))
>
0 or z
= (
0
+ ((
Im z)
*
<i> )) & ((
Im z)
>
0 or (
Im z)
<
0 or (
Im z)
=
0 ) by
Th49,
COMPLEX1: 13;
hence thesis by
Def1,
Th37,
Th38,
SIN_COS: 31,
SIN_COS: 77;
end;
theorem ::
COMPTRIG:52
for z be
Complex st (
Re z)
<=
0 & z
<>
0 holds (
cos (
Arg z))
<=
0
proof
let z be
Complex;
assume that
A1: (
Re z)
<=
0 and
A2: z
<>
0 ;
A3:
0
= (
0
+ (
0
*
<i> ));
(
Re z)
<
0 or (
Re z)
=
0 by
A1;
then (
cos (
Arg z))
<
0 or z
= (
0
+ ((
Im z)
*
<i> )) & ((
Im z)
>=
0 or (
Im z)
<
0 ) by
Th50,
COMPLEX1: 13;
then (
cos (
Arg z))
<
0 or z
= (
0
+ ((
Im z)
*
<i> )) & ((
Im z)
>
0 or (
Im z)
<
0 ) by
A2,
A3;
hence thesis by
Th37,
Th38,
SIN_COS: 77;
end;
theorem ::
COMPTRIG:53
Th53: for x be
Real, n be
Nat holds (((
cos x)
+ ((
sin x)
*
<i> ))
|^ n)
= ((
cos (n
* x))
+ ((
sin (n
* x))
*
<i> ))
proof
let x be
Real;
defpred
P[
Nat] means (((
cos x)
+ ((
sin x)
*
<i> ))
|^ $1)
= ((
cos ($1
* x))
+ ((
sin ($1
* x))
*
<i> ));
A1:
now
let n be
Nat;
assume
P[n];
then (((
cos x)
+ ((
sin x)
*
<i> ))
|^ (n
+ 1))
= (((
cos (n
* x))
+ ((
sin (n
* x))
*
<i> ))
* ((
cos x)
+ ((
sin x)
*
<i> ))) by
NEWTON: 6
.= (((((
cos (n
* x))
* (
cos x))
- ((
sin (n
* x))
* (
sin x)))
+ (((
cos (n
* x))
* (
sin x))
*
<i> ))
+ (((
cos x)
* (
sin (n
* x)))
*
<i> ))
.= (((
cos ((n
* x)
+ x))
+ (((
cos (n
* x))
* (
sin x))
*
<i> ))
+ (((
cos x)
* (
sin (n
* x)))
*
<i> )) by
SIN_COS: 75
.= ((
cos ((n
* x)
+ x))
+ ((((
cos (n
* x))
* (
sin x))
+ ((
cos x)
* (
sin (n
* x))))
*
<i> ))
.= ((
cos ((n
+ 1)
* x))
+ ((
sin ((n
+ 1)
* x))
*
<i> )) by
SIN_COS: 75;
hence
P[(n
+ 1)];
end;
A2:
P[
0 ] by
NEWTON: 4,
SIN_COS: 31;
thus for n be
Nat holds
P[n] from
NAT_1:sch 2(
A2,
A1);
end;
theorem ::
COMPTRIG:54
for z be
Element of
COMPLEX holds for n be
Nat st z
<>
0 or n
<>
0 holds (z
|^ n)
= (((
|.z.|
|^ n)
* (
cos (n
* (
Arg z))))
+ (((
|.z.|
|^ n)
* (
sin (n
* (
Arg z))))
*
<i> ))
proof
let z be
Element of
COMPLEX ;
let n be
Nat;
assume
A1: z
<>
0 or n
<>
0 ;
per cases by
A1;
suppose z
<>
0 ;
hence (z
|^ n)
= (((
|.z.|
* (
cos (
Arg z)))
+ ((
|.z.|
* (
sin (
Arg z)))
*
<i> ))
|^ n) by
Def1
.= (((
|.z.|
+ (
0
*
<i> ))
* ((
cos (
Arg z))
+ ((
sin (
Arg z))
*
<i> )))
|^ n)
.= (((
|.z.|
+ (
0
*
<i> ))
|^ n)
* (((
cos (
Arg z))
+ ((
sin (
Arg z))
*
<i> ))
|^ n)) by
NEWTON: 7
.= (((
|.z.|
|^ n)
+ (
0
*
<i> ))
* ((
cos (n
* (
Arg z)))
+ ((
sin (n
* (
Arg z)))
*
<i> ))) by
Th53
.= (((
|.z.|
|^ n)
* (
cos (n
* (
Arg z))))
+ (((
|.z.|
|^ n)
* (
sin (n
* (
Arg z))))
*
<i> ));
end;
suppose
A2: z
=
0 & n
>
0 ;
then
A3: n
>= (1
+
0 ) by
NAT_1: 13;
hence (z
|^ n)
= ((
0
* (
cos (n
* (
Arg z))))
+ ((
0
* (
sin (n
* (
Arg z))))
*
<i> )) by
A2,
NEWTON: 11
.= ((
0
* (
cos (n
* (
Arg z))))
+ (((
|.z.|
|^ n)
* (
sin (n
* (
Arg z))))
*
<i> )) by
A2,
A3,
COMPLEX1: 44,
NEWTON: 11
.= (((
|.z.|
|^ n)
* (
cos (n
* (
Arg z))))
+ (((
|.z.|
|^ n)
* (
sin (n
* (
Arg z))))
*
<i> )) by
A2,
A3,
COMPLEX1: 44,
NEWTON: 11;
end;
end;
theorem ::
COMPTRIG:55
Th55: for x be
Real, n,k be
Nat st n
<>
0 holds (((
cos ((x
+ ((2
*
PI )
* k))
/ n))
+ ((
sin ((x
+ ((2
*
PI )
* k))
/ n))
*
<i> ))
|^ n)
= ((
cos x)
+ ((
sin x)
*
<i> ))
proof
let x be
Real;
let n,k be
Nat;
assume
A1: n
<>
0 ;
thus (((
cos ((x
+ ((2
*
PI )
* k))
/ n))
+ ((
sin ((x
+ ((2
*
PI )
* k))
/ n))
*
<i> ))
|^ n)
= ((
cos (n
* ((x
+ ((2
*
PI )
* k))
/ n)))
+ ((
sin (n
* ((x
+ ((2
*
PI )
* k))
/ n)))
*
<i> )) by
Th53
.= ((
cos (x
+ ((2
*
PI )
* k)))
+ ((
sin (n
* ((x
+ ((2
*
PI )
* k))
/ n)))
*
<i> )) by
A1,
XCMPLX_1: 87
.= ((
cos (x
+ ((2
*
PI )
* k)))
+ ((
sin (x
+ ((2
*
PI )
* k)))
*
<i> )) by
A1,
XCMPLX_1: 87
.= ((
cos
. (x
+ ((2
*
PI )
* k)))
+ ((
sin (x
+ ((2
*
PI )
* k)))
*
<i> )) by
SIN_COS:def 19
.= ((
cos
. (x
+ ((2
*
PI )
* k)))
+ ((
sin
. (x
+ ((2
*
PI )
* k)))
*
<i> )) by
SIN_COS:def 17
.= ((
cos
. (x
+ ((2
*
PI )
* k)))
+ ((
sin
. x)
*
<i> )) by
SIN_COS2: 10
.= ((
cos
. x)
+ ((
sin
. x)
*
<i> )) by
SIN_COS2: 11
.= ((
cos
. x)
+ ((
sin x)
*
<i> )) by
SIN_COS:def 17
.= ((
cos x)
+ ((
sin x)
*
<i> )) by
SIN_COS:def 19;
end;
theorem ::
COMPTRIG:56
Th56: for z be
Complex holds for n,k be
Nat st n
<>
0 holds z
= ((((n
-root
|.z.|)
* (
cos (((
Arg z)
+ ((2
*
PI )
* k))
/ n)))
+ (((n
-root
|.z.|)
* (
sin (((
Arg z)
+ ((2
*
PI )
* k))
/ n)))
*
<i> ))
|^ n)
proof
let z be
Complex;
let n,k be
Nat;
assume
A1: n
<>
0 ;
then
A2: n
>= (
0
+ 1) by
NAT_1: 13;
per cases ;
suppose
A3: z
<>
0 ;
thus ((((n
-root
|.z.|)
* (
cos (((
Arg z)
+ ((2
*
PI )
* k))
/ n)))
+ (((n
-root
|.z.|)
* (
sin (((
Arg z)
+ ((2
*
PI )
* k))
/ n)))
*
<i> ))
|^ n)
= ((((n
-root
|.z.|)
+ (
0
*
<i> ))
* ((
cos (((
Arg z)
+ ((2
*
PI )
* k))
/ n))
+ ((
sin (((
Arg z)
+ ((2
*
PI )
* k))
/ n))
*
<i> )))
|^ n)
.= ((((n
-root
|.z.|)
+ (
0
*
<i> ))
|^ n)
* (((
cos (((
Arg z)
+ ((2
*
PI )
* k))
/ n))
+ ((
sin (((
Arg z)
+ ((2
*
PI )
* k))
/ n))
*
<i> ))
|^ n)) by
NEWTON: 7
.= ((((n
-root
|.z.|)
+ (
0
*
<i> ))
|^ n)
* ((
cos (
Arg z))
+ ((
sin (
Arg z))
*
<i> ))) by
A1,
Th55
.= ((
|.z.|
+ (
0
*
<i> ))
* ((
cos (
Arg z))
+ ((
sin (
Arg z))
*
<i> ))) by
A1,
Th4,
COMPLEX1: 46
.= (((
|.z.|
* (
cos (
Arg z)))
- (
0
* (
sin (
Arg z))))
+ (((
|.z.|
* (
sin (
Arg z)))
+ (
0
* (
cos (
Arg z))))
*
<i> ))
.= z by
A3,
Def1;
end;
suppose
A4: z
=
0 ;
hence ((((n
-root
|.z.|)
* (
cos (((
Arg z)
+ ((2
*
PI )
* k))
/ n)))
+ (((n
-root
|.z.|)
* (
sin (((
Arg z)
+ ((2
*
PI )
* k))
/ n)))
*
<i> ))
|^ n)
= (((
0
* (
cos (((
Arg z)
+ ((2
*
PI )
* k))
/ n)))
+ (((n
-root
0 )
* (
sin (((
Arg z)
+ ((2
*
PI )
* k))
/ n)))
*
<i> ))
|^ n) by
A2,
COMPLEX1: 44,
POWER: 5
.= ((
0
+ ((
0
* (
sin (((
Arg z)
+ ((2
*
PI )
* k))
/ n)))
*
<i> ))
|^ n) by
A2,
POWER: 5
.= z by
A2,
A4,
NEWTON: 11;
end;
end;
definition
let x be
Complex;
let n be non
zero
Nat;
::
COMPTRIG:def2
mode
CRoot of n,x ->
Complex means
:
Def2: (it
|^ n)
= x;
existence
proof
reconsider z = (((n
-root
|.x.|)
* (
cos (((
Arg x)
+ ((2
*
PI )
*
0 ))
/ n)))
+ (((n
-root
|.x.|)
* (
sin (((
Arg x)
+ ((2
*
PI )
*
0 ))
/ n)))
*
<i> )) as
Element of
COMPLEX by
XCMPLX_0:def 2;
take z;
thus thesis by
Th56;
end;
end
theorem ::
COMPTRIG:57
for x be
Element of
COMPLEX holds for n be non
zero
Nat holds for k be
Nat holds (((n
-root
|.x.|)
* (
cos (((
Arg x)
+ ((2
*
PI )
* k))
/ n)))
+ (((n
-root
|.x.|)
* (
sin (((
Arg x)
+ ((2
*
PI )
* k))
/ n)))
*
<i> )) is
CRoot of n, x
proof
let x be
Element of
COMPLEX ;
let n be non
zero
Nat;
let k be
Nat;
reconsider z = (((n
-root
|.x.|)
* (
cos (((
Arg x)
+ ((2
*
PI )
* k))
/ n)))
+ (((n
-root
|.x.|)
* (
sin (((
Arg x)
+ ((2
*
PI )
* k))
/ n)))
*
<i> )) as
Element of
COMPLEX by
XCMPLX_0:def 2;
(z
|^ n)
= x by
Th56;
hence thesis by
Def2;
end;
theorem ::
COMPTRIG:58
for x be
Element of
COMPLEX holds for v be
CRoot of 1, x holds v
= x
proof
let x be
Element of
COMPLEX ;
let v be
CRoot of 1, x;
(v
|^ 1)
= x by
Def2;
hence thesis;
end;
theorem ::
COMPTRIG:59
for n be non
zero
Nat holds for v be
CRoot of n,
0 holds v
=
0
proof
let n be non
zero
Nat;
let v be
CRoot of n,
0 ;
defpred
P[
Nat] means (v
|^ $1)
=
0 ;
assume
A1: v
<>
0 ;
A2:
now
let k be non
zero
Nat;
assume that
A3: k
<> 1 and
A4:
P[k];
consider t be
Nat such that
A5: k
= (t
+ 1) by
NAT_1: 6;
reconsider t as non
zero
Nat by
A3,
A5;
take t;
thus t
< k by
A5,
NAT_1: 13;
(v
|^ k)
= ((v
|^ t)
* v) by
A5,
NEWTON: 6;
hence
P[t] by
A1,
A4;
end;
A6: ex n be non
zero
Nat st
P[n]
proof
take n;
thus thesis by
Def2;
end;
P[1] from
Regrwithout0(
A6,
A2);
hence thesis by
A1;
end;
theorem ::
COMPTRIG:60
for n be non
zero
Nat holds for x be
Element of
COMPLEX holds for v be
CRoot of n, x st v
=
0 holds x
=
0
proof
let n be non
zero
Nat;
let x be
Element of
COMPLEX ;
let v be
CRoot of n, x;
assume v
=
0 ;
then n
>= (
0
+ 1) & (
0
|^ n)
= x by
Def2,
NAT_1: 13;
hence thesis by
NEWTON: 11;
end;
theorem ::
COMPTRIG:61
for a be
Real st
0
<= a & a
< (2
*
PI ) & (
cos a)
= 1 holds a
=
0
proof
let a be
Real such that
A1:
0
<= a & a
< (2
*
PI ) and
A2: (
cos a)
= 1;
((1
* 1)
+ ((
sin a)
* (
sin a)))
= 1 by
A2,
SIN_COS: 29;
then (
sin a)
=
0 ;
hence thesis by
A1,
A2,
Th17,
SIN_COS: 77;
end;
theorem ::
COMPTRIG:62
for z be
Complex holds z
= ((
|.z.|
* (
cos (
Arg z)))
+ ((
|.z.|
* (
sin (
Arg z)))
*
<i> ))
proof
let z be
Complex;
per cases ;
suppose z
=
0 ;
hence thesis by
COMPLEX1: 44;
end;
suppose z
<>
0 ;
hence thesis by
Def1;
end;
end;