comptrig.miz



    begin

    reserve x for Real;

    scheme :: COMPTRIG:sch1

    Regrwithout0 { P[ Nat] } :

P[1]

      provided

       A1: ex k be non zero Nat st P[k]

       and

       A2: for k be non zero Nat st k <> 1 & P[k] holds ex n be non zero Nat st n < k & P[n];

      consider t be non zero Nat such that

       A3: P[t] by A1;

      defpred R[ Nat] means P[($1 + 1)];

       A4:

      now

        let k be Nat;

        assume that

         A5: k <> 0 and

         A6: R[k];

        reconsider k1 = (k + 1) as non zero Element of NAT ;

        (k + 1) > ( 0 + 1) by A5, XREAL_1: 6;

        then

        consider n be non zero Nat such that

         A7: n < k1 and

         A8: P[n] by A2, A6;

        consider l be Nat such that

         A9: n = (l + 1) by NAT_1: 6;

        take l;

        thus l < k by A7, A9, XREAL_1: 6;

        thus R[l] by A8, A9;

      end;

      ex s be Nat st t = (s + 1) by NAT_1: 6;

      then

       A10: ex k be Nat st R[k] by A3;

       R[ 0 ] from NAT_1:sch 7( A10, A4);

      hence thesis;

    end;

    theorem :: COMPTRIG:1

    

     Th1: for z be Complex holds ( Re z) >= ( - |.z.|)

    proof

      let z be Complex;

       0 <= (( Im z) ^2 ) by XREAL_1: 63;

      then

       A1: ((( Re z) ^2 ) + 0 ) <= ((( Re z) ^2 ) + (( Im z) ^2 )) by XREAL_1: 7;

       0 <= (( Re z) ^2 ) by XREAL_1: 63;

      then ( sqrt (( Re z) ^2 )) <= |.z.| by A1, SQUARE_1: 26;

      then ( - ( sqrt (( Re z) ^2 ))) >= ( - |.z.|) by XREAL_1: 24;

      then ( Re z) >= ( - |.( Re z).|) & ( - |.( Re z).|) >= ( - |.z.|) by ABSVALUE: 4, COMPLEX1: 72;

      hence thesis by XXREAL_0: 2;

    end;

    theorem :: COMPTRIG:2

    for z be Complex holds ( Im z) >= ( - |.z.|)

    proof

      let z be Complex;

       0 <= (( Re z) ^2 ) by XREAL_1: 63;

      then

       A1: ((( Im z) ^2 ) + 0 ) <= ((( Re z) ^2 ) + (( Im z) ^2 )) by XREAL_1: 7;

       0 <= (( Im z) ^2 ) by XREAL_1: 63;

      then ( sqrt (( Im z) ^2 )) <= |.z.| by A1, SQUARE_1: 26;

      then ( - ( sqrt (( Im z) ^2 ))) >= ( - |.z.|) by XREAL_1: 24;

      then ( Im z) >= ( - |.( Im z).|) & ( - |.( Im z).|) >= ( - |.z.|) by ABSVALUE: 4, COMPLEX1: 72;

      hence thesis by XXREAL_0: 2;

    end;

    theorem :: COMPTRIG:3

    

     Th3: for z be Complex holds ( |.z.| ^2 ) = ((( Re z) ^2 ) + (( Im z) ^2 ))

    proof

      let z be Complex;

      

      thus ( |.z.| ^2 ) = |.(z * z).| by COMPLEX1: 65

      .= ((( Re z) ^2 ) + (( Im z) ^2 )) by COMPLEX1: 68;

    end;

    theorem :: COMPTRIG:4

    

     Th4: for n be Nat st x >= 0 & n <> 0 holds ((n -root x) |^ n) = x

    proof

      let n be Nat;

      assume that

       A1: x >= 0 and

       A2: n <> 0 ;

      n >= ( 0 + 1) by A2, NAT_1: 13;

      hence thesis by A1, POWER: 4;

    end;

    registration

      cluster PI -> non negative;

      coherence

      proof

         PI in ]. 0 , 4.[ by SIN_COS:def 28;

        hence thesis by XXREAL_1: 4;

      end;

    end

    begin

     PI in ]. 0 , 4.[ by SIN_COS:def 28;

    then

     Lm1: 0 < PI by XXREAL_1: 4;

    then

     Lm2: ( 0 + ( PI / 2)) < (( PI / 2) + ( PI / 2)) by XREAL_1: 6;

    

     Lm3: ( 0 + PI ) < ( PI + PI ) by Lm1, XREAL_1: 6;

    

     Lm4: ( 0 + ( PI / 2)) < ( PI + ( PI / 2)) by Lm1, XREAL_1: 6;

    

     Lm5: (( PI / 2) + ( PI / 2)) < ( PI + ( PI / 2)) by Lm2, XREAL_1: 6;

    (((3 / 2) * PI ) + ( PI / 2)) = (2 * PI );

    then

     Lm6: ((3 / 2) * PI ) < (2 * PI ) by Lm5, XREAL_1: 6;

    

     Lm7: 0 < ((3 / 2) * PI ) by Lm1;

    theorem :: COMPTRIG:5

     0 < ( PI / 2) & ( PI / 2) < PI & 0 < PI & ( - ( PI / 2)) < ( PI / 2) & PI < (2 * PI ) & ( PI / 2) < ((3 / 2) * PI ) & ( - ( PI / 2)) < 0 & 0 < (2 * PI ) & PI < ((3 / 2) * PI ) & ((3 / 2) * PI ) < (2 * PI ) & 0 < ((3 / 2) * PI ) by Lm2, Lm3, Lm4, XREAL_1: 6;

    theorem :: COMPTRIG:6

    

     Th6: for a,b,c,x be Real st x in ].a, c.[ holds x in ].a, b.[ or x = b or x in ].b, c.[

    proof

      let a,b,c,x be Real;

      assume that

       A1: x in ].a, c.[ and

       A2: not x in ].a, b.[ and

       A3: not x = b;

      x <= a or x >= b by A2, XXREAL_1: 4;

      then

       A4: x > b by A1, A3, XXREAL_0: 1, XXREAL_1: 4;

      x < c by A1, XXREAL_1: 4;

      hence thesis by A4, XXREAL_1: 4;

    end;

    theorem :: COMPTRIG:7

    

     Th7: x in ]. 0 , PI .[ implies ( sin . x) > 0

    proof

      assume

       A1: x in ]. 0 , PI .[;

      per cases by A1, Th6;

        suppose

         A2: x in ]. 0 , ( PI / 2).[;

        then x < ( PI / 2) by XXREAL_1: 4;

        then ( - x) > ( - ( PI / 2)) by XREAL_1: 24;

        then

         A3: (( - x) + ( PI / 2)) > (( - ( PI / 2)) + ( PI / 2)) by XREAL_1: 6;

         0 < x by A2, XXREAL_1: 4;

        then (( - x) + ( PI / 2)) < ( 0 + ( PI / 2)) by XREAL_1: 6;

        then (( PI / 2) - x) in ]. 0 , ( PI / 2).[ by A3, XXREAL_1: 4;

        then ( cos . (( PI / 2) - x)) > 0 by SIN_COS: 80;

        hence thesis by SIN_COS: 78;

      end;

        suppose x = ( PI / 2);

        hence thesis by SIN_COS: 76;

      end;

        suppose

         A4: x in ].( PI / 2), PI .[;

        then x < PI by XXREAL_1: 4;

        then

         A5: (x - ( PI / 2)) < ( PI - ( PI / 2)) by XREAL_1: 9;

        ( PI / 2) < x by A4, XXREAL_1: 4;

        then (( PI / 2) - ( PI / 2)) < (x - ( PI / 2)) by XREAL_1: 9;

        then (x - ( PI / 2)) in ]. 0 , ( PI / 2).[ by A5, XXREAL_1: 4;

        then ( cos . ( - (( PI / 2) - x))) > 0 by SIN_COS: 80;

        then ( cos . (( PI / 2) - x)) > 0 by SIN_COS: 30;

        hence thesis by SIN_COS: 78;

      end;

    end;

    theorem :: COMPTRIG:8

    

     Th8: x in [. 0 , PI .] implies ( sin . x) >= 0

    proof

      assume

       A1: x in [. 0 , PI .];

      then x <= PI by XXREAL_1: 1;

      then x = 0 or x = PI or 0 < x & x < PI by A1, XXREAL_0: 1, XXREAL_1: 1;

      then x = 0 or x = PI or x in ]. 0 , PI .[ by XXREAL_1: 4;

      hence thesis by Th7, SIN_COS: 30, SIN_COS: 76;

    end;

    theorem :: COMPTRIG:9

    

     Th9: x in ]. PI , (2 * PI ).[ implies ( sin . x) < 0

    proof

      

       A1: ( sin . (x - PI )) = ( sin . ( - ( PI - x)))

      .= ( - ( sin . ( PI + ( - x)))) by SIN_COS: 30

      .= ( - ( - ( sin . ( - x)))) by SIN_COS: 78

      .= ( - ( sin . x)) by SIN_COS: 30;

      assume

       A2: x in ]. PI , (2 * PI ).[;

      then x < (2 * PI ) by XXREAL_1: 4;

      then

       A3: (x - PI ) < ((2 * PI ) - PI ) by XREAL_1: 9;

       PI < x by A2, XXREAL_1: 4;

      then ( PI - PI ) < (x - PI ) by XREAL_1: 9;

      then (x - PI ) in ]. 0 , PI .[ by A3, XXREAL_1: 4;

      hence thesis by A1, Th7;

    end;

    theorem :: COMPTRIG:10

    

     Th10: x in [. PI , (2 * PI ).] implies ( sin . x) <= 0

    proof

      assume x in [. PI , (2 * PI ).];

      then PI <= x & x <= (2 * PI ) by XXREAL_1: 1;

      then x = PI or x = (2 * PI ) or PI < x & x < (2 * PI ) by XXREAL_0: 1;

      then x = PI or x = (2 * PI ) or x in ]. PI , (2 * PI ).[ by XXREAL_1: 4;

      hence thesis by Th9, SIN_COS: 76;

    end;

    theorem :: COMPTRIG:11

    

     Th11: x in ].( - ( PI / 2)), ( PI / 2).[ implies ( cos . x) > 0

    proof

      

       A1: ( sin . (x + ( PI / 2))) = ( cos . x) by SIN_COS: 78;

      assume

       A2: x in ].( - ( PI / 2)), ( PI / 2).[;

      then x < ( PI / 2) by XXREAL_1: 4;

      then

       A3: (x + ( PI / 2)) < (( PI / 2) + ( PI / 2)) by XREAL_1: 6;

      ( - ( PI / 2)) < x by A2, XXREAL_1: 4;

      then (( - ( PI / 2)) + ( PI / 2)) < (x + ( PI / 2)) by XREAL_1: 6;

      then (x + ( PI / 2)) in ]. 0 , PI .[ by A3, XXREAL_1: 4;

      hence thesis by A1, Th7;

    end;

    theorem :: COMPTRIG:12

    

     Th12: x in [.( - ( PI / 2)), ( PI / 2).] implies ( cos . x) >= 0

    proof

      assume x in [.( - ( PI / 2)), ( PI / 2).];

      then ( - ( PI / 2)) <= x & x <= ( PI / 2) by XXREAL_1: 1;

      then x = ( - ( PI / 2)) or x = ( PI / 2) or ( - ( PI / 2)) < x & x < ( PI / 2) by XXREAL_0: 1;

      then x = ( - ( PI / 2)) or x = ( PI / 2) or x in ].( - ( PI / 2)), ( PI / 2).[ by XXREAL_1: 4;

      hence thesis by Th11, SIN_COS: 30, SIN_COS: 76;

    end;

    theorem :: COMPTRIG:13

    

     Th13: x in ].( PI / 2), ((3 / 2) * PI ).[ implies ( cos . x) < 0

    proof

      

       A1: ( sin . (x + ( PI / 2))) = ( cos . x) by SIN_COS: 78;

      assume

       A2: x in ].( PI / 2), ((3 / 2) * PI ).[;

      then x < ((3 / 2) * PI ) by XXREAL_1: 4;

      then

       A3: (x + ( PI / 2)) < (((3 / 2) * PI ) + ( PI / 2)) by XREAL_1: 6;

      ( PI / 2) < x by A2, XXREAL_1: 4;

      then (( PI / 2) + ( PI / 2)) < (x + ( PI / 2)) by XREAL_1: 6;

      then (x + ( PI / 2)) in ]. PI , (2 * PI ).[ by A3, XXREAL_1: 4;

      hence thesis by A1, Th9;

    end;

    theorem :: COMPTRIG:14

    

     Th14: x in [.( PI / 2), ((3 / 2) * PI ).] implies ( cos . x) <= 0

    proof

      assume x in [.( PI / 2), ((3 / 2) * PI ).];

      then ( PI / 2) <= x & x <= ((3 / 2) * PI ) by XXREAL_1: 1;

      then x = ( PI / 2) or x = ((3 / 2) * PI ) or ( PI / 2) < x & x < ((3 / 2) * PI ) by XXREAL_0: 1;

      then x = ( PI / 2) or x = ((3 / 2) * PI ) or x in ].( PI / 2), ((3 / 2) * PI ).[ by XXREAL_1: 4;

      hence thesis by Th13, SIN_COS: 76;

    end;

    theorem :: COMPTRIG:15

    

     Th15: x in ].((3 / 2) * PI ), (2 * PI ).[ implies ( cos . x) > 0

    proof

      

       A1: ( cos . (x - PI )) = ( cos . ( - ( PI - x)))

      .= ( cos . ( PI + ( - x))) by SIN_COS: 30

      .= ( - ( cos . ( - x))) by SIN_COS: 78

      .= ( - ( cos . x)) by SIN_COS: 30;

      assume

       A2: x in ].((3 / 2) * PI ), (2 * PI ).[;

      then x < (2 * PI ) by XXREAL_1: 4;

      then (x - PI ) < ((2 * PI ) - PI ) by XREAL_1: 9;

      then

       A3: (x - PI ) < ((3 / 2) * PI ) by Lm5, XXREAL_0: 2;

      ((3 / 2) * PI ) < x by A2, XXREAL_1: 4;

      then (((3 / 2) * PI ) - PI ) < (x - PI ) by XREAL_1: 9;

      then (x - PI ) in ].( PI / 2), ((3 / 2) * PI ).[ by A3, XXREAL_1: 4;

      hence thesis by A1, Th13;

    end;

    theorem :: COMPTRIG:16

    

     Th16: x in [.((3 / 2) * PI ), (2 * PI ).] implies ( cos . x) >= 0

    proof

      assume x in [.((3 / 2) * PI ), (2 * PI ).];

      then ((3 / 2) * PI ) <= x & x <= (2 * PI ) by XXREAL_1: 1;

      then x = ((3 / 2) * PI ) or x = (2 * PI ) or ((3 / 2) * PI ) < x & x < (2 * PI ) by XXREAL_0: 1;

      then x = ((3 / 2) * PI ) or x = (2 * PI ) or x in ].((3 / 2) * PI ), (2 * PI ).[ by XXREAL_1: 4;

      hence thesis by Th15, SIN_COS: 76;

    end;

    theorem :: COMPTRIG:17

    

     Th17: 0 <= x & x < (2 * PI ) & ( sin x) = 0 implies x = 0 or x = PI

    proof

      assume that

       A1: 0 <= x & x < (2 * PI ) and

       A2: ( sin x) = 0 ;

      ( sin . x) = 0 by A2, SIN_COS:def 17;

      then ( not x in ]. 0 , PI .[) & not x in ]. PI , (2 * PI ).[ by Th7, Th9;

      then x = 0 or x >= PI & PI >= x by A1, XXREAL_1: 4;

      hence thesis by XXREAL_0: 1;

    end;

    theorem :: COMPTRIG:18

    

     Th18: 0 <= x & x < (2 * PI ) & ( cos x) = 0 implies x = ( PI / 2) or x = ((3 / 2) * PI )

    proof

      assume that

       A1: 0 <= x and

       A2: x < (2 * PI ) and

       A3: ( cos x) = 0 ;

      

       A4: ( cos . x) = 0 by A3, SIN_COS:def 19;

      then not x in ].( PI / 2), ((3 / 2) * PI ).[ by Th13;

      then

       A5: ( PI / 2) >= x or x >= ((3 / 2) * PI ) by XXREAL_1: 4;

       not x in ].( - ( PI / 2)), ( PI / 2).[ by A4, Th11;

      then ( - ( PI / 2)) >= x or x >= ( PI / 2) by XXREAL_1: 4;

      then x = ( PI / 2) or x = ((3 / 2) * PI ) or x > ((3 / 2) * PI ) by A1, A5, Lm1, XXREAL_0: 1;

      then x = ( PI / 2) or x = ((3 / 2) * PI ) or x in ].((3 / 2) * PI ), (2 * PI ).[ by A2, XXREAL_1: 4;

      hence thesis by A4, Th15;

    end;

    theorem :: COMPTRIG:19

    

     Th19: ( sin | ].( - ( PI / 2)), ( PI / 2).[) is increasing

    proof

      

       A1: for x st x in ].( - ( PI / 2)), ( PI / 2).[ holds ( diff ( sin ,x)) > 0

      proof

        let x;

        assume x in ].( - ( PI / 2)), ( PI / 2).[;

        then 0 < ( cos . x) by Th11;

        hence thesis by SIN_COS: 68;

      end;

       ].( - ( PI / 2)), ( PI / 2).[ is open by RCOMP_1: 7;

      hence thesis by A1, FDIFF_1: 26, ROLLE: 9, SIN_COS: 24, SIN_COS: 68;

    end;

    theorem :: COMPTRIG:20

    

     Th20: ( sin | ].( PI / 2), ((3 / 2) * PI ).[) is decreasing

    proof

      

       A1: for x st x in ].( PI / 2), ((3 / 2) * PI ).[ holds ( diff ( sin ,x)) < 0

      proof

        let x;

        assume x in ].( PI / 2), ((3 / 2) * PI ).[;

        then 0 > ( cos . x) by Th13;

        hence thesis by SIN_COS: 68;

      end;

       ].( PI / 2), ((3 / 2) * PI ).[ is open by RCOMP_1: 7;

      hence thesis by A1, FDIFF_1: 26, ROLLE: 10, SIN_COS: 24, SIN_COS: 68;

    end;

    theorem :: COMPTRIG:21

    

     Th21: ( cos | ]. 0 , PI .[) is decreasing

    proof

      

       A1: for x st x in ]. 0 , PI .[ holds ( diff ( cos ,x)) < 0

      proof

        let x;

        assume x in ]. 0 , PI .[;

        then 0 < ( sin . x) by Th7;

        then ( 0 - ( sin . x)) < 0 ;

        hence thesis by SIN_COS: 67;

      end;

       ]. 0 , PI .[ is open by RCOMP_1: 7;

      hence thesis by A1, FDIFF_1: 26, ROLLE: 10, SIN_COS: 24, SIN_COS: 67;

    end;

    theorem :: COMPTRIG:22

    

     Th22: ( cos | ]. PI , (2 * PI ).[) is increasing

    proof

      

       A1: for x st x in ]. PI , (2 * PI ).[ holds ( diff ( cos ,x)) > 0

      proof

        let x;

        assume x in ]. PI , (2 * PI ).[;

        then ( 0 - ( sin . x)) > 0 by Th9, XREAL_1: 50;

        hence thesis by SIN_COS: 67;

      end;

       ]. PI , (2 * PI ).[ is open by RCOMP_1: 7;

      hence thesis by A1, FDIFF_1: 26, ROLLE: 9, SIN_COS: 24, SIN_COS: 67;

    end;

    theorem :: COMPTRIG:23

    ( sin | [.( - ( PI / 2)), ( PI / 2).]) is increasing

    proof

      now

        let r1,r2 be Real;

        assume that

         A1: r1 in ( [.( - ( PI / 2)), ( PI / 2).] /\ ( dom sin )) and

         A2: r2 in ( [.( - ( PI / 2)), ( PI / 2).] /\ ( dom sin )) and

         A3: r1 < r2;

        

         A4: r1 in ( dom sin ) by A1, XBOOLE_0:def 4;

        set r3 = ((r1 + r2) / 2);

        r1 in [.( - ( PI / 2)), ( PI / 2).] by A1, XBOOLE_0:def 4;

        then

         A5: ( - ( PI / 2)) <= r1 by XXREAL_1: 1;

         |.( sin r3).| <= 1 by SIN_COS: 27;

        then

         A6: |.( sin . r3).| <= 1 by SIN_COS:def 17;

        then

         A7: ( sin . r3) <= 1 by ABSVALUE: 5;

        r2 in [.( - ( PI / 2)), ( PI / 2).] by A2, XBOOLE_0:def 4;

        then

         A8: r2 <= ( PI / 2) by XXREAL_1: 1;

        

         A9: r1 < r3 by A3, XREAL_1: 226;

        then

         A10: ( - ( PI / 2)) < r3 by A5, XXREAL_0: 2;

        

         A11: r3 < r2 by A3, XREAL_1: 226;

        then r3 < ( PI / 2) by A8, XXREAL_0: 2;

        then r3 in ].( - ( PI / 2)), ( PI / 2).[ by A10, XXREAL_1: 4;

        then

         A12: r3 in ( ].( - ( PI / 2)), ( PI / 2).[ /\ ( dom sin )) by SIN_COS: 24, XBOOLE_0:def 4;

         |.( sin r2).| <= 1 by SIN_COS: 27;

        then |.( sin . r2).| <= 1 by SIN_COS:def 17;

        then

         A13: ( sin . r2) >= ( - 1) by ABSVALUE: 5;

        

         A14: r2 in ( dom sin ) by A2, XBOOLE_0:def 4;

        

         A15: ( sin . r3) >= ( - 1) by A6, ABSVALUE: 5;

        now

          per cases by A5, XXREAL_0: 1;

            suppose

             A16: ( - ( PI / 2)) < r1;

            then

             A17: ( - ( PI / 2)) < r2 by A3, XXREAL_0: 2;

            now

              per cases by A8, XXREAL_0: 1;

                suppose

                 A18: r2 < ( PI / 2);

                then r1 < ( PI / 2) by A3, XXREAL_0: 2;

                then r1 in ].( - ( PI / 2)), ( PI / 2).[ by A16, XXREAL_1: 4;

                then

                 A19: r1 in ( ].( - ( PI / 2)), ( PI / 2).[ /\ ( dom sin )) by A4, XBOOLE_0:def 4;

                r2 in ].( - ( PI / 2)), ( PI / 2).[ by A17, A18, XXREAL_1: 4;

                then r2 in ( ].( - ( PI / 2)), ( PI / 2).[ /\ ( dom sin )) by A14, XBOOLE_0:def 4;

                hence ( sin . r2) > ( sin . r1) by A3, A19, Th19, RFUNCT_2: 20;

              end;

                suppose

                 A20: r2 = ( PI / 2);

                then r1 in ].( - ( PI / 2)), ( PI / 2).[ by A3, A16, XXREAL_1: 4;

                then r1 in ( ].( - ( PI / 2)), ( PI / 2).[ /\ ( dom sin )) by A4, XBOOLE_0:def 4;

                then

                 A21: ( sin . r3) > ( sin . r1) by A9, A12, Th19, RFUNCT_2: 20;

                assume ( sin . r2) <= ( sin . r1);

                hence contradiction by A7, A20, A21, SIN_COS: 76, XXREAL_0: 2;

              end;

            end;

            hence ( sin . r2) > ( sin . r1);

          end;

            suppose

             A22: ( - ( PI / 2)) = r1;

            now

              per cases by A8, XXREAL_0: 1;

                suppose r2 < ( PI / 2);

                then r2 in ].( - ( PI / 2)), ( PI / 2).[ by A3, A22, XXREAL_1: 4;

                then r2 in ( ].( - ( PI / 2)), ( PI / 2).[ /\ ( dom sin )) by A14, XBOOLE_0:def 4;

                then

                 A23: ( sin . r2) > ( sin . r3) by A11, A12, Th19, RFUNCT_2: 20;

                assume ( sin . r2) <= ( sin . r1);

                then ( sin . r2) <= ( - 1) by A22, SIN_COS: 30, SIN_COS: 76;

                hence contradiction by A15, A13, A23, XXREAL_0: 1;

              end;

                suppose r2 = ( PI / 2);

                hence ( sin . r2) > ( sin . r1) by A22, SIN_COS: 30, SIN_COS: 76;

              end;

            end;

            hence ( sin . r2) > ( sin . r1);

          end;

        end;

        hence ( sin . r2) > ( sin . r1);

      end;

      hence thesis by RFUNCT_2: 20;

    end;

    theorem :: COMPTRIG:24

    ( sin | [.( PI / 2), ((3 / 2) * PI ).]) is decreasing

    proof

      now

        let r1,r2 be Real;

        assume that

         A1: r1 in ( [.( PI / 2), ((3 / 2) * PI ).] /\ ( dom sin )) and

         A2: r2 in ( [.( PI / 2), ((3 / 2) * PI ).] /\ ( dom sin )) and

         A3: r1 < r2;

        

         A4: r1 in ( dom sin ) by A1, XBOOLE_0:def 4;

         |.( sin r2).| <= 1 by SIN_COS: 27;

        then |.( sin . r2).| <= 1 by SIN_COS:def 17;

        then

         A5: ( sin . r2) <= 1 by ABSVALUE: 5;

         |.( sin r1).| <= 1 by SIN_COS: 27;

        then |.( sin . r1).| <= 1 by SIN_COS:def 17;

        then

         A6: ( sin . r1) >= ( - 1) by ABSVALUE: 5;

        r2 in [.( PI / 2), ((3 / 2) * PI ).] by A2, XBOOLE_0:def 4;

        then

         A7: r2 <= ((3 / 2) * PI ) by XXREAL_1: 1;

        set r3 = ((r1 + r2) / 2);

        r1 in [.( PI / 2), ((3 / 2) * PI ).] by A1, XBOOLE_0:def 4;

        then

         A8: ( PI / 2) <= r1 by XXREAL_1: 1;

         |.( sin r3).| <= 1 by SIN_COS: 27;

        then

         A9: |.( sin . r3).| <= 1 by SIN_COS:def 17;

        then

         A10: ( sin . r3) <= 1 by ABSVALUE: 5;

        

         A11: r2 in ( dom sin ) by A2, XBOOLE_0:def 4;

        

         A12: r1 < r3 by A3, XREAL_1: 226;

        then

         A13: ( PI / 2) < r3 by A8, XXREAL_0: 2;

        

         A14: r3 < r2 by A3, XREAL_1: 226;

        then r3 < ((3 / 2) * PI ) by A7, XXREAL_0: 2;

        then r3 in ].( PI / 2), ((3 / 2) * PI ).[ by A13, XXREAL_1: 4;

        then

         A15: r3 in ( ].( PI / 2), ((3 / 2) * PI ).[ /\ ( dom sin )) by SIN_COS: 24, XBOOLE_0:def 4;

        

         A16: ( sin . r3) >= ( - 1) by A9, ABSVALUE: 5;

        now

          per cases by A8, XXREAL_0: 1;

            suppose

             A17: ( PI / 2) < r1;

            then

             A18: ( PI / 2) < r2 by A3, XXREAL_0: 2;

            now

              per cases by A7, XXREAL_0: 1;

                suppose

                 A19: r2 < ((3 / 2) * PI );

                then r1 < ((3 / 2) * PI ) by A3, XXREAL_0: 2;

                then r1 in ].( PI / 2), ((3 / 2) * PI ).[ by A17, XXREAL_1: 4;

                then

                 A20: r1 in ( ].( PI / 2), ((3 / 2) * PI ).[ /\ ( dom sin )) by A4, XBOOLE_0:def 4;

                r2 in ].( PI / 2), ((3 / 2) * PI ).[ by A18, A19, XXREAL_1: 4;

                then r2 in ( ].( PI / 2), ((3 / 2) * PI ).[ /\ ( dom sin )) by A11, XBOOLE_0:def 4;

                hence ( sin . r2) < ( sin . r1) by A3, A20, Th20, RFUNCT_2: 21;

              end;

                suppose

                 A21: r2 = ((3 / 2) * PI );

                then r1 in ].( PI / 2), ((3 / 2) * PI ).[ by A3, A17, XXREAL_1: 4;

                then r1 in ( ].( PI / 2), ((3 / 2) * PI ).[ /\ ( dom sin )) by A4, XBOOLE_0:def 4;

                then

                 A22: ( sin . r3) < ( sin . r1) by A12, A15, Th20, RFUNCT_2: 21;

                assume ( sin . r2) >= ( sin . r1);

                hence contradiction by A6, A16, A21, A22, SIN_COS: 76, XXREAL_0: 1;

              end;

            end;

            hence ( sin . r2) < ( sin . r1);

          end;

            suppose

             A23: ( PI / 2) = r1;

            now

              per cases by A7, XXREAL_0: 1;

                suppose r2 < ((3 / 2) * PI );

                then r2 in ].( PI / 2), ((3 / 2) * PI ).[ by A3, A23, XXREAL_1: 4;

                then r2 in ( ].( PI / 2), ((3 / 2) * PI ).[ /\ ( dom sin )) by A11, XBOOLE_0:def 4;

                then

                 A24: ( sin . r2) < ( sin . r3) by A14, A15, Th20, RFUNCT_2: 21;

                assume ( sin . r2) >= ( sin . r1);

                hence contradiction by A10, A5, A23, A24, SIN_COS: 76, XXREAL_0: 1;

              end;

                suppose r2 = ((3 / 2) * PI );

                hence ( sin . r2) < ( sin . r1) by A23, SIN_COS: 76;

              end;

            end;

            hence ( sin . r2) < ( sin . r1);

          end;

        end;

        hence ( sin . r2) < ( sin . r1);

      end;

      hence thesis by RFUNCT_2: 21;

    end;

    theorem :: COMPTRIG:25

    

     Th25: ( cos | [. 0 , PI .]) is decreasing

    proof

      now

        let r1,r2 be Real;

        assume that

         A1: r1 in ( [. 0 , PI .] /\ ( dom cos )) and

         A2: r2 in ( [. 0 , PI .] /\ ( dom cos )) and

         A3: r1 < r2;

        

         A4: r1 in ( dom cos ) by A1, XBOOLE_0:def 4;

         |.( cos r2).| <= 1 by SIN_COS: 27;

        then |.( cos . r2).| <= 1 by SIN_COS:def 19;

        then

         A5: ( cos . r2) <= 1 by ABSVALUE: 5;

         |.( cos r1).| <= 1 by SIN_COS: 27;

        then |.( cos . r1).| <= 1 by SIN_COS:def 19;

        then

         A6: ( cos . r1) >= ( - 1) by ABSVALUE: 5;

        r2 in [. 0 , PI .] by A2, XBOOLE_0:def 4;

        then

         A7: r2 <= PI by XXREAL_1: 1;

        set r3 = ((r1 + r2) / 2);

        

         A8: r1 < r3 by A3, XREAL_1: 226;

         |.( cos r3).| <= 1 by SIN_COS: 27;

        then

         A9: |.( cos . r3).| <= 1 by SIN_COS:def 19;

        then

         A10: ( cos . r3) <= 1 by ABSVALUE: 5;

        

         A11: r2 in ( dom cos ) by A2, XBOOLE_0:def 4;

        

         A12: r1 in [. 0 , PI .] by A1, XBOOLE_0:def 4;

        then

         A13: 0 < r3 by A8, XXREAL_1: 1;

        

         A14: r3 < r2 by A3, XREAL_1: 226;

        then r3 < PI by A7, XXREAL_0: 2;

        then r3 in ]. 0 , PI .[ by A13, XXREAL_1: 4;

        then

         A15: r3 in ( ]. 0 , PI .[ /\ ( dom cos )) by SIN_COS: 24, XBOOLE_0:def 4;

        

         A16: ( cos . r3) >= ( - 1) by A9, ABSVALUE: 5;

        now

          per cases by A12, XXREAL_1: 1;

            suppose

             A17: 0 < r1;

            now

              per cases by A7, XXREAL_0: 1;

                suppose

                 A18: r2 < PI ;

                then r1 < PI by A3, XXREAL_0: 2;

                then r1 in ]. 0 , PI .[ by A17, XXREAL_1: 4;

                then

                 A19: r1 in ( ]. 0 , PI .[ /\ ( dom cos )) by A4, XBOOLE_0:def 4;

                r2 in ]. 0 , PI .[ by A3, A17, A18, XXREAL_1: 4;

                then r2 in ( ]. 0 , PI .[ /\ ( dom cos )) by A11, XBOOLE_0:def 4;

                hence ( cos . r2) < ( cos . r1) by A3, A19, Th21, RFUNCT_2: 21;

              end;

                suppose

                 A20: r2 = PI ;

                then r1 in ]. 0 , PI .[ by A3, A17, XXREAL_1: 4;

                then r1 in ( ]. 0 , PI .[ /\ ( dom cos )) by A4, XBOOLE_0:def 4;

                then

                 A21: ( cos . r3) < ( cos . r1) by A8, A15, Th21, RFUNCT_2: 21;

                assume ( cos . r2) >= ( cos . r1);

                hence contradiction by A6, A16, A20, A21, SIN_COS: 76, XXREAL_0: 1;

              end;

            end;

            hence ( cos . r2) < ( cos . r1);

          end;

            suppose

             A22: 0 = r1;

            now

              per cases by A7, XXREAL_0: 1;

                suppose r2 < PI ;

                then r2 in ]. 0 , PI .[ by A3, A22, XXREAL_1: 4;

                then r2 in ( ]. 0 , PI .[ /\ ( dom cos )) by A11, XBOOLE_0:def 4;

                then

                 A23: ( cos . r2) < ( cos . r3) by A14, A15, Th21, RFUNCT_2: 21;

                assume ( cos . r2) >= ( cos . r1);

                hence contradiction by A10, A5, A22, A23, SIN_COS: 30, XXREAL_0: 1;

              end;

                suppose r2 = PI ;

                hence ( cos . r2) < ( cos . r1) by A22, SIN_COS: 30, SIN_COS: 76;

              end;

            end;

            hence ( cos . r2) < ( cos . r1);

          end;

        end;

        hence ( cos . r2) < ( cos . r1);

      end;

      hence thesis by RFUNCT_2: 21;

    end;

    theorem :: COMPTRIG:26

    

     Th26: ( cos | [. PI , (2 * PI ).]) is increasing

    proof

      now

        let r1,r2 be Real;

        assume that

         A1: r1 in ( [. PI , (2 * PI ).] /\ ( dom cos )) and

         A2: r2 in ( [. PI , (2 * PI ).] /\ ( dom cos )) and

         A3: r1 < r2;

        

         A4: r1 in ( dom cos ) by A1, XBOOLE_0:def 4;

        set r3 = ((r1 + r2) / 2);

        r1 in [. PI , (2 * PI ).] by A1, XBOOLE_0:def 4;

        then

         A5: PI <= r1 by XXREAL_1: 1;

         |.( cos r3).| <= 1 by SIN_COS: 27;

        then

         A6: |.( cos . r3).| <= 1 by SIN_COS:def 19;

        then

         A7: ( cos . r3) <= 1 by ABSVALUE: 5;

        r2 in [. PI , (2 * PI ).] by A2, XBOOLE_0:def 4;

        then

         A8: r2 <= (2 * PI ) by XXREAL_1: 1;

        

         A9: r1 < r3 by A3, XREAL_1: 226;

        then

         A10: PI < r3 by A5, XXREAL_0: 2;

        

         A11: r3 < r2 by A3, XREAL_1: 226;

        then r3 < (2 * PI ) by A8, XXREAL_0: 2;

        then r3 in ]. PI , (2 * PI ).[ by A10, XXREAL_1: 4;

        then

         A12: r3 in ( ]. PI , (2 * PI ).[ /\ ( dom cos )) by SIN_COS: 24, XBOOLE_0:def 4;

         |.( cos r2).| <= 1 by SIN_COS: 27;

        then |.( cos . r2).| <= 1 by SIN_COS:def 19;

        then

         A13: ( cos . r2) >= ( - 1) by ABSVALUE: 5;

        

         A14: r2 in ( dom cos ) by A2, XBOOLE_0:def 4;

        

         A15: ( cos . r3) >= ( - 1) by A6, ABSVALUE: 5;

        now

          per cases by A5, XXREAL_0: 1;

            suppose

             A16: PI < r1;

            then

             A17: PI < r2 by A3, XXREAL_0: 2;

            now

              per cases by A8, XXREAL_0: 1;

                suppose

                 A18: r2 < (2 * PI );

                then r1 < (2 * PI ) by A3, XXREAL_0: 2;

                then r1 in ]. PI , (2 * PI ).[ by A16, XXREAL_1: 4;

                then

                 A19: r1 in ( ]. PI , (2 * PI ).[ /\ ( dom cos )) by A4, XBOOLE_0:def 4;

                r2 in ]. PI , (2 * PI ).[ by A17, A18, XXREAL_1: 4;

                then r2 in ( ]. PI , (2 * PI ).[ /\ ( dom cos )) by A14, XBOOLE_0:def 4;

                hence ( cos . r2) > ( cos . r1) by A3, A19, Th22, RFUNCT_2: 20;

              end;

                suppose

                 A20: r2 = (2 * PI );

                then r1 in ]. PI , (2 * PI ).[ by A3, A16, XXREAL_1: 4;

                then r1 in ( ]. PI , (2 * PI ).[ /\ ( dom cos )) by A4, XBOOLE_0:def 4;

                then

                 A21: ( cos . r3) > ( cos . r1) by A9, A12, Th22, RFUNCT_2: 20;

                assume ( cos . r2) <= ( cos . r1);

                hence contradiction by A7, A20, A21, SIN_COS: 76, XXREAL_0: 2;

              end;

            end;

            hence ( cos . r2) > ( cos . r1);

          end;

            suppose

             A22: PI = r1;

            now

              per cases by A8, XXREAL_0: 1;

                suppose r2 < (2 * PI );

                then r2 in ]. PI , (2 * PI ).[ by A3, A22, XXREAL_1: 4;

                then r2 in ( ]. PI , (2 * PI ).[ /\ ( dom cos )) by A14, XBOOLE_0:def 4;

                then

                 A23: ( cos . r2) > ( cos . r3) by A11, A12, Th22, RFUNCT_2: 20;

                assume ( cos . r2) <= ( cos . r1);

                hence contradiction by A15, A13, A22, A23, SIN_COS: 76, XXREAL_0: 1;

              end;

                suppose r2 = (2 * PI );

                hence ( cos . r2) > ( cos . r1) by A22, SIN_COS: 76;

              end;

            end;

            hence ( cos . r2) > ( cos . r1);

          end;

        end;

        hence ( cos . r2) > ( cos . r1);

      end;

      hence thesis by RFUNCT_2: 20;

    end;

    theorem :: COMPTRIG:27

    

     Th27: ( sin . x) in [.( - 1), 1.] & ( cos . x) in [.( - 1), 1.]

    proof

       |.( cos x).| <= 1 by SIN_COS: 27;

      then |.( cos . x).| <= 1 by SIN_COS:def 19;

      then

       A1: ( - 1) <= ( cos . x) & ( cos . x) <= 1 by ABSVALUE: 5;

       |.( sin x).| <= 1 by SIN_COS: 27;

      then |.( sin . x).| <= 1 by SIN_COS:def 17;

      then ( - 1) <= ( sin . x) & ( sin . x) <= 1 by ABSVALUE: 5;

      hence thesis by A1, XXREAL_1: 1;

    end;

    theorem :: COMPTRIG:28

    ( rng sin ) = [.( - 1), 1.]

    proof

      now

        let y be object;

        thus y in [.( - 1), 1.] implies ex x be object st x in ( dom sin ) & y = ( sin . x)

        proof

          assume

           A1: y in [.( - 1), 1.];

          then

          reconsider y1 = y as Real;

          y1 in ( [.( - 1), 1.] \/ [.1, ( sin . ( - ( PI / 2))).]) by A1, XBOOLE_0:def 3;

          then ( sin | [.( - ( PI / 2)), ( PI / 2).]) is continuous & y1 in ( [.( sin . ( - ( PI / 2))), ( sin . ( PI / 2)).] \/ [.( sin . ( PI / 2)), ( sin . ( - ( PI / 2))).]) by SIN_COS: 30, SIN_COS: 76;

          then

          consider x be Real such that x in [.( - ( PI / 2)), ( PI / 2).] and

           A2: y1 = ( sin . x) by FCONT_2: 15, SIN_COS: 24;

          take x;

          x in REAL by XREAL_0:def 1;

          hence thesis by A2, SIN_COS: 24;

        end;

        thus (ex x be object st x in ( dom sin ) & y = ( sin . x)) implies y in [.( - 1), 1.] by Th27, SIN_COS: 24;

      end;

      hence thesis by FUNCT_1:def 3;

    end;

    theorem :: COMPTRIG:29

    ( rng cos ) = [.( - 1), 1.]

    proof

      now

        let y be object;

        thus y in [.( - 1), 1.] implies ex x be object st x in ( dom cos ) & y = ( cos . x)

        proof

          assume

           A1: y in [.( - 1), 1.];

          then

          reconsider y1 = y as Real;

          ( cos | [. 0 , PI .]) is continuous & y1 in ( [.( cos . 0 ), ( cos . PI ).] \/ [.( cos . PI ), ( cos . 0 ).]) by A1, SIN_COS: 30, SIN_COS: 76, XBOOLE_0:def 3;

          then

          consider x be Real such that x in [. 0 , PI .] and

           A2: y1 = ( cos . x) by FCONT_2: 15, SIN_COS: 24;

          take x;

          x in REAL by XREAL_0:def 1;

          hence thesis by A2, SIN_COS: 24;

        end;

        thus (ex x be object st x in ( dom cos ) & y = ( cos . x)) implies y in [.( - 1), 1.] by Th27, SIN_COS: 24;

      end;

      hence thesis by FUNCT_1:def 3;

    end;

    theorem :: COMPTRIG:30

    ( rng ( sin | [.( - ( PI / 2)), ( PI / 2).])) = [.( - 1), 1.]

    proof

      set sin1 = ( sin | [.( - ( PI / 2)), ( PI / 2).]);

      now

        let y be object;

        thus y in [.( - 1), 1.] implies ex x be object st x in ( dom sin1) & y = (sin1 . x)

        proof

          assume

           A1: y in [.( - 1), 1.];

          then

          reconsider y1 = y as Real;

          ( PI / 2) in [.( - ( PI / 2)), ( PI / 2).] by XXREAL_1: 1;

          then

           A2: (sin1 . ( PI / 2)) = ( sin . ( PI / 2)) by FUNCT_1: 49;

          ( - ( PI / 2)) in [.( - ( PI / 2)), ( PI / 2).] by XXREAL_1: 1;

          then (sin1 . ( - ( PI / 2))) = ( sin . ( - ( PI / 2))) by FUNCT_1: 49;

          then y1 in [.(sin1 . ( - ( PI / 2))), (sin1 . ( PI / 2)).] by A1, A2, SIN_COS: 30, SIN_COS: 76;

          then

           A3: (sin1 | [.( - ( PI / 2)), ( PI / 2).]) is continuous & y1 in ( [.(sin1 . ( - ( PI / 2))), (sin1 . ( PI / 2)).] \/ [.(sin1 . ( PI / 2)), (sin1 . ( - ( PI / 2))).]) by XBOOLE_0:def 3;

          ( dom sin1) = ( [.( - ( PI / 2)), ( PI / 2).] /\ REAL ) by RELAT_1: 61, SIN_COS: 24

          .= [.( - ( PI / 2)), ( PI / 2).] by XBOOLE_1: 28;

          then

          consider x be Real such that

           A4: x in [.( - ( PI / 2)), ( PI / 2).] and

           A5: y1 = (sin1 . x) by A3, FCONT_2: 15;

          take x;

          x in ( REAL /\ [.( - ( PI / 2)), ( PI / 2).]) by A4, XBOOLE_0:def 4;

          hence thesis by A5, RELAT_1: 61, SIN_COS: 24;

        end;

        thus (ex x be object st x in ( dom sin1) & y = (sin1 . x)) implies y in [.( - 1), 1.]

        proof

          given x be object such that

           A6: x in ( dom sin1) and

           A7: y = (sin1 . x);

          ( dom sin1) c= ( dom sin ) by RELAT_1: 60;

          then

          reconsider x1 = x as Real by A6, SIN_COS: 24;

          y = ( sin . x1) by A6, A7, FUNCT_1: 47;

          hence thesis by Th27;

        end;

      end;

      hence thesis by FUNCT_1:def 3;

    end;

    theorem :: COMPTRIG:31

    ( rng ( sin | [.( PI / 2), ((3 / 2) * PI ).])) = [.( - 1), 1.]

    proof

      set sin1 = ( sin | [.( PI / 2), ((3 / 2) * PI ).]);

      now

        let y be object;

        thus y in [.( - 1), 1.] implies ex x be object st x in ( dom sin1) & y = (sin1 . x)

        proof

          ((3 / 2) * PI ) in [.( PI / 2), ((3 / 2) * PI ).] by Lm4, XXREAL_1: 1;

          then

           A1: (sin1 . ((3 / 2) * PI )) = ( sin . ((3 / 2) * PI )) by FUNCT_1: 49;

          assume

           A2: y in [.( - 1), 1.];

          then

          reconsider y1 = y as Real;

          

           A3: ( dom sin1) = ( [.( PI / 2), ((3 / 2) * PI ).] /\ REAL ) by RELAT_1: 61, SIN_COS: 24

          .= [.( PI / 2), ((3 / 2) * PI ).] by XBOOLE_1: 28;

          ( PI / 2) in [.( PI / 2), ((3 / 2) * PI ).] by Lm4, XXREAL_1: 1;

          then (sin1 . ( PI / 2)) = ( sin . ( PI / 2)) by FUNCT_1: 49;

          then (sin1 | [.( PI / 2), ((3 / 2) * PI ).]) is continuous & y1 in ( [.(sin1 . ( PI / 2)), (sin1 . ((3 / 2) * PI )).] \/ [.(sin1 . ((3 / 2) * PI )), (sin1 . ( PI / 2)).]) by A2, A1, SIN_COS: 76, XBOOLE_0:def 3;

          then

          consider x be Real such that

           A4: x in [.( PI / 2), ((3 / 2) * PI ).] and

           A5: y1 = (sin1 . x) by A3, Lm4, FCONT_2: 15;

          take x;

          x in ( REAL /\ [.( PI / 2), ((3 / 2) * PI ).]) by A4, XBOOLE_0:def 4;

          hence thesis by A5, RELAT_1: 61, SIN_COS: 24;

        end;

        thus (ex x be object st x in ( dom sin1) & y = (sin1 . x)) implies y in [.( - 1), 1.]

        proof

          given x be object such that

           A6: x in ( dom sin1) and

           A7: y = (sin1 . x);

          ( dom sin1) c= ( dom sin ) by RELAT_1: 60;

          then

          reconsider x1 = x as Real by A6, SIN_COS: 24;

          y = ( sin . x1) by A6, A7, FUNCT_1: 47;

          hence thesis by Th27;

        end;

      end;

      hence thesis by FUNCT_1:def 3;

    end;

    theorem :: COMPTRIG:32

    

     Th32: ( rng ( cos | [. 0 , PI .])) = [.( - 1), 1.]

    proof

      set cos1 = ( cos | [. 0 , PI .]);

      now

        let y be object;

        thus y in [.( - 1), 1.] implies ex x be object st x in ( dom cos1) & y = (cos1 . x)

        proof

           PI in [. 0 , PI .] by XXREAL_1: 1;

          then

           A1: (cos1 . PI ) = ( cos . PI ) by FUNCT_1: 49;

          assume

           A2: y in [.( - 1), 1.];

          then

          reconsider y1 = y as Real;

          

           A3: ( dom cos1) = ( [. 0 , PI .] /\ REAL ) by RELAT_1: 61, SIN_COS: 24

          .= [. 0 , PI .] by XBOOLE_1: 28;

           0 in [. 0 , PI .] by XXREAL_1: 1;

          then (cos1 . 0 ) = ( cos . 0 ) by FUNCT_1: 49;

          then (cos1 | [. 0 , PI .]) is continuous & y1 in ( [.(cos1 . 0 ), (cos1 . PI ).] \/ [.(cos1 . PI ), (cos1 . 0 ).]) by A2, A1, SIN_COS: 30, SIN_COS: 76, XBOOLE_0:def 3;

          then

          consider x be Real such that

           A4: x in [. 0 , PI .] and

           A5: y1 = (cos1 . x) by A3, FCONT_2: 15;

          take x;

          x in ( REAL /\ [. 0 , PI .]) by A4, XBOOLE_0:def 4;

          hence thesis by A5, RELAT_1: 61, SIN_COS: 24;

        end;

        thus (ex x be object st x in ( dom cos1) & y = (cos1 . x)) implies y in [.( - 1), 1.]

        proof

          given x be object such that

           A6: x in ( dom cos1) and

           A7: y = (cos1 . x);

          ( dom cos1) c= ( dom cos ) by RELAT_1: 60;

          then

          reconsider x1 = x as Real by A6, SIN_COS: 24;

          y = ( cos . x1) by A6, A7, FUNCT_1: 47;

          hence thesis by Th27;

        end;

      end;

      hence thesis by FUNCT_1:def 3;

    end;

    theorem :: COMPTRIG:33

    

     Th33: ( rng ( cos | [. PI , (2 * PI ).])) = [.( - 1), 1.]

    proof

      set cos1 = ( cos | [. PI , (2 * PI ).]);

      now

        let y be object;

        thus y in [.( - 1), 1.] implies ex x be object st x in ( dom cos1) & y = (cos1 . x)

        proof

          (2 * PI ) in [. PI , (2 * PI ).] by Lm3, XXREAL_1: 1;

          then

           A1: (cos1 . (2 * PI )) = ( cos . (2 * PI )) by FUNCT_1: 49;

          assume

           A2: y in [.( - 1), 1.];

          then

          reconsider y1 = y as Real;

          

           A3: ( dom cos1) = ( [. PI , (2 * PI ).] /\ REAL ) by RELAT_1: 61, SIN_COS: 24

          .= [. PI , (2 * PI ).] by XBOOLE_1: 28;

           PI in [. PI , (2 * PI ).] by Lm3, XXREAL_1: 1;

          then (cos1 . PI ) = ( cos . PI ) by FUNCT_1: 49;

          then (cos1 | [. PI , (2 * PI ).]) is continuous & y1 in ( [.(cos1 . PI ), (cos1 . (2 * PI )).] \/ [.(cos1 . (2 * PI )), (cos1 . PI ).]) by A2, A1, SIN_COS: 76, XBOOLE_0:def 3;

          then

          consider x be Real such that

           A4: x in [. PI , (2 * PI ).] and

           A5: y1 = (cos1 . x) by A3, Lm3, FCONT_2: 15;

          take x;

          x in ( REAL /\ [. PI , (2 * PI ).]) by A4, XBOOLE_0:def 4;

          hence thesis by A5, RELAT_1: 61, SIN_COS: 24;

        end;

        thus (ex x be object st x in ( dom cos1) & y = (cos1 . x)) implies y in [.( - 1), 1.]

        proof

          given x be object such that

           A6: x in ( dom cos1) and

           A7: y = (cos1 . x);

          ( dom cos1) c= ( dom cos ) by RELAT_1: 60;

          then

          reconsider x1 = x as Real by A6, SIN_COS: 24;

          y = ( cos . x1) by A6, A7, FUNCT_1: 47;

          hence thesis by Th27;

        end;

      end;

      hence thesis by FUNCT_1:def 3;

    end;

    begin

    definition

      let z be Complex;

      :: COMPTRIG:def1

      func Arg z -> Real means

      : Def1: z = (( |.z.| * ( cos it )) + (( |.z.| * ( sin it )) * <i> )) & 0 <= it & it < (2 * PI ) if z <> 0

      otherwise it = 0 ;

      existence

      proof

        thus z <> 0 implies ex r be Real st z = (( |.z.| * ( cos r)) + (( |.z.| * ( sin r)) * <i> )) & 0 <= r & r < (2 * PI )

        proof

           |.z.| >= 0 by COMPLEX1: 46;

          then

           A1: (( Re z) / |.z.|) <= 1 by COMPLEX1: 54, XREAL_1: 185;

          assume

           A2: z <> 0 ;

          then

           A3: |.z.| <> 0 by COMPLEX1: 45;

          now

            per cases ;

              suppose

               A4: ( Im z) >= 0 ;

              set 0PI = [. 0 , PI .];

              reconsider cos1 = ( cos | 0PI) as PartFunc of 0PI, REAL by PARTFUN1: 10;

              reconsider cos1 as one-to-one PartFunc of 0PI, REAL by Th25, RFUNCT_2: 50;

              reconsider r = ((cos1 " ) . (( Re z) / |.z.|)) as Real;

              

               A5: ( |.z.| ^2 ) = ((( Re z) ^2 ) + (( Im z) ^2 )) by Th3;

              take r;

              ( Re z) >= ( - |.z.|) by Th1;

              then ( - 1) <= (( Re z) / |.z.|) by COMPLEX1: 46, XREAL_1: 193;

              then

               A6: (( Re z) / |.z.|) in ( rng cos1) by A1, Th32, XXREAL_1: 1;

              then (( Re z) / |.z.|) in ( dom (cos1 " )) by FUNCT_1: 33;

              then r in ( rng (cos1 " )) by FUNCT_1:def 3;

              then r in ( dom cos1) by FUNCT_1: 33;

              then

               A7: r in [. 0 , PI .] by RELAT_1: 57;

              then r <= PI by XXREAL_1: 1;

              then

               A8: r = PI or r < PI by XXREAL_0: 1;

              

               A9: ( cos r) = ( cos . r) by SIN_COS:def 19

              .= (cos1 . r) by A7, FUNCT_1: 49

              .= (( Re z) / |.z.|) by A6, FUNCT_1: 35;

               0 = r or 0 < r by A7, XXREAL_1: 1;

              then r = 0 or r = PI or r in ]. 0 , PI .[ by A8, XXREAL_1: 4;

              then

               A10: ( sin . r) >= 0 by Th7, SIN_COS: 30, SIN_COS: 76;

              ((( cos . r) ^2 ) + (( sin . r) ^2 )) = 1 by SIN_COS: 28;

              

              then (( sin . r) ^2 ) = (1 - (( cos . r) ^2 ))

              .= (1 - ((( Re z) / |.z.|) ^2 )) by A9, SIN_COS:def 19

              .= (1 - ((( Re z) ^2 ) / ( |.z.| ^2 ))) by XCMPLX_1: 76

              .= ((( |.z.| ^2 ) / ( |.z.| ^2 )) - ((( Re z) ^2 ) / ( |.z.| ^2 ))) by A3, XCMPLX_1: 60

              .= ((( |.z.| ^2 ) - (( Re z) ^2 )) / ( |.z.| ^2 ))

              .= ((( Im z) / |.z.|) ^2 ) by A5, XCMPLX_1: 76;

              

              then ( sin . r) = ( sqrt ((( Im z) / |.z.|) ^2 )) by A10, SQUARE_1: 22

              .= |.(( Im z) / |.z.|).| by COMPLEX1: 72

              .= ( |.( Im z).| / |. |.z.|.|) by COMPLEX1: 67

              .= ( |.( Im z).| / |.z.|);

              then |.( Im z).| = ( |.z.| * ( sin . r)) by A2, COMPLEX1: 45, XCMPLX_1: 87;

              

              then

               A11: ( Im z) = ( |.z.| * ( sin . r)) by A4, ABSVALUE:def 1

              .= ( |.z.| * ( sin r)) by SIN_COS:def 17;

              ( Re z) = ( |.z.| * ( cos r)) by A2, A9, COMPLEX1: 45, XCMPLX_1: 87;

              hence z = (( |.z.| * ( cos r)) + (( |.z.| * ( sin r)) * <i> )) by A11, COMPLEX1: 13;

              thus 0 <= r by A7, XXREAL_1: 1;

              r <= PI by A7, XXREAL_1: 1;

              hence r < (2 * PI ) by Lm3, XXREAL_0: 2;

            end;

              suppose

               A12: ( Im z) < 0 ;

              per cases ;

                suppose

                 A13: ( Re z) <> |.z.|;

                set 0PI = [. PI , (2 * PI ).];

                reconsider cos1 = ( cos | 0PI) as PartFunc of 0PI, REAL by PARTFUN1: 10;

                reconsider cos1 as one-to-one PartFunc of 0PI, REAL by Th26, RFUNCT_2: 50;

                reconsider r = ((cos1 " ) . (( Re z) / |.z.|)) as Real;

                ( Re z) >= ( - |.z.|) by Th1;

                then ( - 1) <= (( Re z) / |.z.|) by COMPLEX1: 46, XREAL_1: 193;

                then

                 A14: (( Re z) / |.z.|) in ( rng cos1) by A1, Th33, XXREAL_1: 1;

                then

                 A15: (( Re z) / |.z.|) in ( dom (cos1 " )) by FUNCT_1: 33;

                then r in ( rng (cos1 " )) by FUNCT_1:def 3;

                then r in ( dom cos1) by FUNCT_1: 33;

                then

                 A16: r in [. PI , (2 * PI ).] by RELAT_1: 57;

                then r <= (2 * PI ) by XXREAL_1: 1;

                then

                 A17: r = (2 * PI ) or r < (2 * PI ) by XXREAL_0: 1;

                

                 A18: (( Re z) / |.z.|) <> 1 by A13, XCMPLX_1: 58;

                

                 A19: r <> (2 * PI )

                proof

                  (2 * PI ) in [. PI , (2 * PI ).] by Lm3, XXREAL_1: 1;

                  then (2 * PI ) in ( dom cos1) & (cos1 . (2 * PI )) = 1 by FUNCT_1: 49, RELAT_1: 57, SIN_COS: 24, SIN_COS: 76;

                  then

                   A20: ((cos1 " ) . 1) = (2 * PI ) by FUNCT_1: 32;

                  1 in ( rng cos1) by Th33, XXREAL_1: 1;

                  then

                   A21: 1 in ( dom (cos1 " )) by FUNCT_1: 33;

                  assume r = (2 * PI );

                  hence contradiction by A18, A15, A21, A20, FUNCT_1:def 4;

                end;

                

                 A22: ( cos r) = ( cos . r) by SIN_COS:def 19

                .= (cos1 . r) by A16, FUNCT_1: 49

                .= (( Re z) / |.z.|) by A14, FUNCT_1: 35;

                 PI <= r by A16, XXREAL_1: 1;

                then PI = r or PI < r by XXREAL_0: 1;

                then r = PI or r = (2 * PI ) or r in ]. PI , (2 * PI ).[ by A17, XXREAL_1: 4;

                then

                 A23: ( sin . r) <= 0 by Th9, SIN_COS: 76;

                take r;

                

                 A24: ( |.z.| ^2 ) = ((( Re z) ^2 ) + (( Im z) ^2 )) by Th3;

                ((( cos . r) ^2 ) + (( sin . r) ^2 )) = 1 by SIN_COS: 28;

                

                then (( sin . r) ^2 ) = (1 - (( cos . r) ^2 ))

                .= (1 - ((( Re z) / |.z.|) ^2 )) by A22, SIN_COS:def 19

                .= (1 - ((( Re z) ^2 ) / ( |.z.| ^2 ))) by XCMPLX_1: 76

                .= ((( |.z.| ^2 ) / ( |.z.| ^2 )) - ((( Re z) ^2 ) / ( |.z.| ^2 ))) by A3, XCMPLX_1: 60

                .= ((( |.z.| ^2 ) - (( Re z) ^2 )) / ( |.z.| ^2 ))

                .= ((( Im z) / |.z.|) ^2 ) by A24, XCMPLX_1: 76;

                

                then ( - ( sin . r)) = ( sqrt ((( Im z) / |.z.|) ^2 )) by A23, SQUARE_1: 23

                .= |.(( Im z) / |.z.|).| by COMPLEX1: 72

                .= ( |.( Im z).| / |. |.z.|.|) by COMPLEX1: 67

                .= ( |.( Im z).| / |.z.|);

                then ( sin . r) = (( - |.( Im z).|) / |.z.|);

                then ( - |.( Im z).|) = ( |.z.| * ( sin . r)) by A2, COMPLEX1: 45, XCMPLX_1: 87;

                

                then

                 A25: ( - ( - ( Im z))) = ( |.z.| * ( sin . r)) by A12, ABSVALUE:def 1

                .= ( |.z.| * ( sin r)) by SIN_COS:def 17;

                ( Re z) = ( |.z.| * ( cos r)) by A2, A22, COMPLEX1: 45, XCMPLX_1: 87;

                hence z = (( |.z.| * ( cos r)) + (( |.z.| * ( sin r)) * <i> )) by A25, COMPLEX1: 13;

                thus 0 <= r by A16, XXREAL_1: 1;

                r <= (2 * PI ) by A16, XXREAL_1: 1;

                hence r < (2 * PI ) by A19, XXREAL_0: 1;

              end;

                suppose

                 A26: ( Re z) = |.z.|;

                reconsider r = 0 as Real;

                take r;

                (( Re z) ^2 ) = ((( Re z) ^2 ) + (( Im z) ^2 )) by A26, Th3;

                then ( Im z) = 0 ;

                hence z = (( |.z.| * ( cos r)) + (( |.z.| * ( sin r)) * <i> )) by A26, COMPLEX1: 13, SIN_COS: 31;

                thus 0 <= r;

                thus r < (2 * PI ) by Lm1;

              end;

            end;

          end;

          hence thesis;

        end;

        thus thesis;

      end;

      uniqueness

      proof

        z <> 0 implies for x,y be Real st z = (( |.z.| * ( cos x)) + (( |.z.| * ( sin x)) * <i> )) & 0 <= x & x < (2 * PI ) & z = (( |.z.| * ( cos y)) + (( |.z.| * ( sin y)) * <i> )) & 0 <= y & y < (2 * PI ) holds x = y

        proof

          assume z <> 0 ;

          then

           A27: |.z.| <> 0 by COMPLEX1: 45;

          let x,y be Real;

          assume that

           A28: z = (( |.z.| * ( cos x)) + (( |.z.| * ( sin x)) * <i> )) and

           A29: 0 <= x and

           A30: x < (2 * PI ) and

           A31: z = (( |.z.| * ( cos y)) + (( |.z.| * ( sin y)) * <i> )) and

           A32: 0 <= y and

           A33: y < (2 * PI );

          ( |.z.| * ( cos x)) = ( |.z.| * ( cos y)) by A28, A31, COMPLEX1: 77;

          then ( cos x) = ( cos y) by A27, XCMPLX_1: 5;

          then ( cos x) = ( cos . y) by SIN_COS:def 19;

          then

           A34: ( cos . x) = ( cos . y) by SIN_COS:def 19;

          ( |.z.| * ( sin x)) = ( |.z.| * ( sin y)) by A28, A31, COMPLEX1: 77;

          then ( sin x) = ( sin y) by A27, XCMPLX_1: 5;

          then

           A35: ( sin x) = ( sin . y) by SIN_COS:def 17;

          now

            per cases ;

              suppose

               A36: x <= PI & y <= PI ;

              then y in [. 0 , PI .] by A32, XXREAL_1: 1;

              then

               A37: y in ( [. 0 , PI .] /\ ( dom cos )) by SIN_COS: 24, XBOOLE_0:def 4;

              assume x <> y;

              then

               A38: x < y or y < x by XXREAL_0: 1;

              x in [. 0 , PI .] by A29, A36, XXREAL_1: 1;

              then x in ( [. 0 , PI .] /\ ( dom cos )) by SIN_COS: 24, XBOOLE_0:def 4;

              hence contradiction by A34, A37, A38, Th25, RFUNCT_2: 21;

            end;

              suppose

               A39: x > PI & y > PI ;

              then y in [. PI , (2 * PI ).] by A33, XXREAL_1: 1;

              then

               A40: y in ( [. PI , (2 * PI ).] /\ ( dom cos )) by SIN_COS: 24, XBOOLE_0:def 4;

              assume x <> y;

              then

               A41: x < y or y < x by XXREAL_0: 1;

              x in [. PI , (2 * PI ).] by A30, A39, XXREAL_1: 1;

              then x in ( [. PI , (2 * PI ).] /\ ( dom cos )) by SIN_COS: 24, XBOOLE_0:def 4;

              hence contradiction by A34, A40, A41, Th26, RFUNCT_2: 20;

            end;

              suppose

               A42: x <= PI & y > PI ;

              then y in ]. PI , (2 * PI ).[ by A33, XXREAL_1: 4;

              then

               A43: ( sin . y) < 0 by Th9;

              x in [. 0 , PI .] by A29, A42, XXREAL_1: 1;

              then ( sin . x) >= 0 by Th8;

              hence thesis by A35, A43, SIN_COS:def 17;

            end;

              suppose

               A44: y <= PI & x > PI ;

              then x in ]. PI , (2 * PI ).[ by A30, XXREAL_1: 4;

              then

               A45: ( sin . x) < 0 by Th9;

              y in [. 0 , PI .] by A32, A44, XXREAL_1: 1;

              then ( sin . y) >= 0 by Th8;

              hence thesis by A35, A45, SIN_COS:def 17;

            end;

          end;

          hence thesis;

        end;

        hence thesis;

      end;

      consistency ;

    end

    theorem :: COMPTRIG:34

    

     Th34: for z be Complex holds 0 <= ( Arg z) & ( Arg z) < (2 * PI )

    proof

      let z be Complex;

       0 <= ( Arg z) & ( Arg z) < (2 * PI ) or z = 0 by Def1;

      hence thesis by Def1, Lm6, Lm7;

    end;

    theorem :: COMPTRIG:35

    

     Th35: for x be Real st x >= 0 holds ( Arg x) = 0

    proof

      let x be Real;

      

       A1: 0 <= ( Arg (x + ( 0 * <i> ))) & ( Arg (x + ( 0 * <i> ))) < (2 * PI ) by Th34;

      assume

       A2: x >= 0 ;

      per cases by A2;

        suppose

         A3: x > ( - 0 );

        then

         A4: (x + ( 0 * <i> )) = (( |.(x + ( 0 * <i> )).| * ( cos ( Arg (x + ( 0 * <i> ))))) + (( |.(x + ( 0 * <i> )).| * ( sin ( Arg (x + ( 0 * <i> ))))) * <i> )) by Def1;

         |.(x + ( 0 * <i> )).| <> 0 by A3, COMPLEX1: 45;

        then ( sin ( Arg (x + ( 0 * <i> )))) = 0 by A4, COMPLEX1: 77;

        then ( Arg (x + ( 0 * <i> ))) = 0 or ( |.(x + ( 0 * <i> )).| * ( - 1)) = x by A1, A4, Th17, SIN_COS: 77;

        then ( Arg (x + ( 0 * <i> ))) = 0 or |.(x + ( 0 * <i> )).| < 0 by A3;

        hence thesis by COMPLEX1: 46;

      end;

        suppose (x + ( 0 * <i> )) = 0 ;

        hence thesis by Def1;

      end;

    end;

    theorem :: COMPTRIG:36

    

     Th36: for x be Real st x < 0 holds ( Arg x) = PI

    proof

      let x be Real;

      

       A1: 0 <= ( Arg (x + ( 0 * <i> ))) & ( Arg (x + ( 0 * <i> ))) < (2 * PI ) by Th34;

      assume

       A2: x < 0 ;

      then

       A3: (x + ( 0 * <i> )) = (( |.(x + ( 0 * <i> )).| * ( cos ( Arg (x + ( 0 * <i> ))))) + (( |.(x + ( 0 * <i> )).| * ( sin ( Arg (x + ( 0 * <i> ))))) * <i> )) by Def1;

       |.(x + ( 0 * <i> )).| <> 0 by A2, COMPLEX1: 45;

      then ( sin ( Arg (x + ( 0 * <i> )))) = 0 by A3, COMPLEX1: 77;

      then ( Arg (x + ( 0 * <i> ))) = PI or ( |.(x + ( 0 * <i> )).| * 1) = x by A1, A3, Th17, SIN_COS: 31;

      hence thesis by A2, COMPLEX1: 46;

    end;

    theorem :: COMPTRIG:37

    

     Th37: for x be Real st x > 0 holds ( Arg (x * <i> )) = ( PI / 2)

    proof

      let x be Real;

      

       A1: 0 <= ( Arg ( 0 + (x * <i> ))) & ( Arg ( 0 + (x * <i> ))) < (2 * PI ) by Th34;

      assume

       A2: x > 0 ;

      then

       A3: ( 0 + (x * <i> )) <> 0 ;

      then

       A4: ( 0 + (x * <i> )) = (( |.( 0 + (x * <i> )).| * ( cos ( Arg ( 0 + (x * <i> ))))) + (( |.( 0 + (x * <i> )).| * ( sin ( Arg ( 0 + (x * <i> ))))) * <i> )) by Def1;

       |.( 0 + (x * <i> )).| <> 0 by A3, COMPLEX1: 45;

      then ( cos ( Arg ( 0 + (x * <i> )))) = 0 by A4, COMPLEX1: 77;

      then ( Arg ( 0 + (x * <i> ))) = ( PI / 2) or ( |.( 0 + (x * <i> )).| * ( - 1)) = x by A1, A4, Th18, SIN_COS: 77;

      then ( Arg ( 0 + (x * <i> ))) = ( PI / 2) or |.( 0 + (x * <i> )).| < 0 by A2;

      hence thesis by COMPLEX1: 46;

    end;

    theorem :: COMPTRIG:38

    

     Th38: for x be Real st x < 0 holds ( Arg (x * <i> )) = ((3 / 2) * PI )

    proof

      let x be Real;

      

       A1: 0 <= ( Arg ( 0 + (x * <i> ))) & ( Arg ( 0 + (x * <i> ))) < (2 * PI ) by Th34;

      assume

       A2: x < 0 ;

      then

       A3: ( 0 + (x * <i> )) <> 0 ;

      then

       A4: ( 0 + (x * <i> )) = (( |.( 0 + (x * <i> )).| * ( cos ( Arg ( 0 + (x * <i> ))))) + (( |.( 0 + (x * <i> )).| * ( sin ( Arg ( 0 + (x * <i> ))))) * <i> )) by Def1;

       |.( 0 + (x * <i> )).| <> 0 by A3, COMPLEX1: 45;

      then ( cos ( Arg ( 0 + (x * <i> )))) = 0 by A4, COMPLEX1: 77;

      then ( Arg ( 0 + (x * <i> ))) = ((3 / 2) * PI ) or ( |.( 0 + (x * <i> )).| * 1) = x by A1, A4, Th18, SIN_COS: 77;

      hence thesis by A2, COMPLEX1: 46;

    end;

    theorem :: COMPTRIG:39

    ( Arg 1) = 0 by Th35;

    theorem :: COMPTRIG:40

    ( Arg <i> ) = ( PI / 2)

    proof

       <i> = ( 0 + (1 * <i> ));

      hence thesis by Th37;

    end;

    theorem :: COMPTRIG:41

    

     Th41: for z be Complex holds ( Arg z) in ]. 0 , ( PI / 2).[ iff ( Re z) > 0 & ( Im z) > 0

    proof

      let z be Complex;

      

       A1: ( Arg z) < (2 * PI ) by Th34;

      thus ( Arg z) in ]. 0 , ( PI / 2).[ implies ( Re z) > 0 & ( Im z) > 0

      proof

        assume

         A2: ( Arg z) in ]. 0 , ( PI / 2).[;

        then

         A3: ( Arg z) > 0 by XXREAL_1: 4;

        then z <> 0 by Def1;

        then

         A4: z = (( |.z.| * ( cos ( Arg z))) + (( |.z.| * ( sin ( Arg z))) * <i> )) & |.z.| > 0 by Def1, COMPLEX1: 47;

        ( cos ( Arg z)) > 0 by A2, SIN_COS: 81;

        hence ( Re z) > 0 by A4, COMPLEX1: 12;

        ( Arg z) < ( PI / 2) by A2, XXREAL_1: 4;

        then ( Arg z) < PI by Lm2, XXREAL_0: 2;

        then ( Arg z) in ]. 0 , PI .[ by A3, XXREAL_1: 4;

        then ( sin . ( Arg z)) > 0 by Th7;

        then ( sin ( Arg z)) > 0 by SIN_COS:def 17;

        hence thesis by A4, COMPLEX1: 12;

      end;

      assume that

       A5: ( Re z) > 0 and

       A6: ( Im z) > 0 ;

      z = (( Re z) + (( Im z) * <i> )) by COMPLEX1: 13;

      then z <> ( 0 + ( 0 * <i> )) by A5, COMPLEX1: 77;

      then

       A7: |.z.| > 0 & z = (( |.z.| * ( cos ( Arg z))) + (( |.z.| * ( sin ( Arg z))) * <i> )) by Def1, COMPLEX1: 47;

      then ( sin ( Arg z)) > 0 by A6, COMPLEX1: 12;

      then

       A8: ( sin . ( Arg z)) > 0 by SIN_COS:def 17;

      ( cos ( Arg z)) > 0 by A5, A7, COMPLEX1: 12;

      then ( cos . ( Arg z)) > 0 by SIN_COS:def 19;

      then

       A9: not ( Arg z) in [.( PI / 2), ((3 / 2) * PI ).] by Th14;

       0 <= ( Arg z) by Th34;

      then

       A10: ( Arg z) > 0 by A8, SIN_COS: 30;

       not ( Arg z) in [. PI , (2 * PI ).] by A8, Th10;

      then ( PI / 2) > ( Arg z) or PI > ( Arg z) & ((3 / 2) * PI ) < ( Arg z) by A1, A9, XXREAL_1: 1;

      hence thesis by A10, Lm5, XXREAL_0: 2, XXREAL_1: 4;

    end;

    theorem :: COMPTRIG:42

    

     Th42: for z be Complex holds ( Arg z) in ].( PI / 2), PI .[ iff ( Re z) < 0 & ( Im z) > 0

    proof

      let z be Complex;

      thus ( Arg z) in ].( PI / 2), PI .[ implies ( Re z) < 0 & ( Im z) > 0

      proof

        assume

         A1: ( Arg z) in ].( PI / 2), PI .[;

        then ( Arg z) < PI by XXREAL_1: 4;

        then

         A2: ( Arg z) < ((3 / 2) * PI ) by Lm5, XXREAL_0: 2;

        

         A3: ( Arg z) > ( PI / 2) by A1, XXREAL_1: 4;

        then z <> 0 by Def1;

        then

         A4: z = (( |.z.| * ( cos ( Arg z))) + (( |.z.| * ( sin ( Arg z))) * <i> )) & |.z.| > 0 by Def1, COMPLEX1: 47;

        ( PI / 2) < ( Arg z) by A1, XXREAL_1: 4;

        then ( Arg z) in ].( PI / 2), ((3 / 2) * PI ).[ by A2, XXREAL_1: 4;

        then ( cos . ( Arg z)) < 0 by Th13;

        then ( cos ( Arg z)) < 0 by SIN_COS:def 19;

        hence ( Re z) < 0 by A4, COMPLEX1: 12;

        ( Arg z) < PI by A1, XXREAL_1: 4;

        then ( Arg z) in ]. 0 , PI .[ by A3, XXREAL_1: 4;

        then ( sin . ( Arg z)) > 0 by Th7;

        then ( sin ( Arg z)) > 0 by SIN_COS:def 17;

        hence thesis by A4, COMPLEX1: 12;

      end;

      assume that

       A5: ( Re z) < 0 and

       A6: ( Im z) > 0 ;

      z = (( Re z) + (( Im z) * <i> )) by COMPLEX1: 13;

      then z <> ( 0 + ( 0 * <i> )) by A5, COMPLEX1: 77;

      then

       A7: |.z.| > 0 & z = (( |.z.| * ( cos ( Arg z))) + (( |.z.| * ( sin ( Arg z))) * <i> )) by Def1, COMPLEX1: 47;

      then ( sin ( Arg z)) > 0 by A6, COMPLEX1: 12;

      then ( sin . ( Arg z)) > 0 by SIN_COS:def 17;

      then

       A8: not ( Arg z) in [. PI , (2 * PI ).] by Th10;

      ( cos ( Arg z)) < 0 by A5, A7, COMPLEX1: 12;

      then ( cos . ( Arg z)) < 0 by SIN_COS:def 19;

      then not ( Arg z) in [.( - ( PI / 2)), ( PI / 2).] by Th12;

      then

       A9: ( Arg z) < ( - ( PI / 2)) or ( Arg z) > ( PI / 2) by XXREAL_1: 1;

      ( Arg z) < (2 * PI ) by Th34;

      then ( Arg z) < PI by A8, XXREAL_1: 1;

      hence thesis by A9, Th34, XXREAL_1: 4;

    end;

    theorem :: COMPTRIG:43

    

     Th43: for z be Complex holds ( Arg z) in ]. PI , ((3 / 2) * PI ).[ iff ( Re z) < 0 & ( Im z) < 0

    proof

      let z be Complex;

      thus ( Arg z) in ]. PI , ((3 / 2) * PI ).[ implies ( Re z) < 0 & ( Im z) < 0

      proof

        assume

         A1: ( Arg z) in ]. PI , ((3 / 2) * PI ).[;

        then PI < ( Arg z) by XXREAL_1: 4;

        then

         A2: ( PI / 2) < ( Arg z) by Lm2, XXREAL_0: 2;

        

         A3: ( Arg z) > PI by A1, XXREAL_1: 4;

        then z <> 0 by Def1;

        then

         A4: z = (( |.z.| * ( cos ( Arg z))) + (( |.z.| * ( sin ( Arg z))) * <i> )) & |.z.| > 0 by Def1, COMPLEX1: 47;

        ( Arg z) < ((3 / 2) * PI ) by A1, XXREAL_1: 4;

        then ( Arg z) in ].( PI / 2), ((3 / 2) * PI ).[ by A2, XXREAL_1: 4;

        then ( cos . ( Arg z)) < 0 by Th13;

        then ( cos ( Arg z)) < 0 by SIN_COS:def 19;

        hence ( Re z) < 0 by A4, COMPLEX1: 12;

        ( Arg z) < ((3 / 2) * PI ) by A1, XXREAL_1: 4;

        then ( Arg z) < (2 * PI ) by Lm6, XXREAL_0: 2;

        then ( Arg z) in ]. PI , (2 * PI ).[ by A3, XXREAL_1: 4;

        then ( sin . ( Arg z)) < 0 by Th9;

        then ( sin ( Arg z)) < 0 by SIN_COS:def 17;

        hence thesis by A4, COMPLEX1: 12;

      end;

      assume that

       A5: ( Re z) < 0 and

       A6: ( Im z) < 0 ;

      z = (( Re z) + (( Im z) * <i> )) by COMPLEX1: 13;

      then z <> ( 0 + ( 0 * <i> )) by A5, COMPLEX1: 77;

      then

       A7: |.z.| > 0 & z = (( |.z.| * ( cos ( Arg z))) + (( |.z.| * ( sin ( Arg z))) * <i> )) by Def1, COMPLEX1: 47;

      then ( cos ( Arg z)) < 0 by A5, COMPLEX1: 12;

      then ( cos . ( Arg z)) < 0 by SIN_COS:def 19;

      then

       A8: not ( Arg z) in [.((3 / 2) * PI ), (2 * PI ).] by Th16;

      ( sin ( Arg z)) < 0 by A6, A7, COMPLEX1: 12;

      then ( sin . ( Arg z)) < 0 by SIN_COS:def 17;

      then

       A9: not ( Arg z) in [. 0 , PI .] by Th8;

      ( Arg z) < (2 * PI ) by Th34;

      then

       A10: ( Arg z) < ((3 / 2) * PI ) by A8, XXREAL_1: 1;

       0 <= ( Arg z) by Th34;

      then ( Arg z) > PI by A9, XXREAL_1: 1;

      hence thesis by A10, XXREAL_1: 4;

    end;

    theorem :: COMPTRIG:44

    

     Th44: for z be Complex holds ( Arg z) in ].((3 / 2) * PI ), (2 * PI ).[ iff ( Re z) > 0 & ( Im z) < 0

    proof

      let z be Complex;

      thus ( Arg z) in ].((3 / 2) * PI ), (2 * PI ).[ implies ( Re z) > 0 & ( Im z) < 0

      proof

        assume

         A1: ( Arg z) in ].((3 / 2) * PI ), (2 * PI ).[;

        then

         A2: ( Arg z) < (2 * PI ) by XXREAL_1: 4;

        

         A3: ( Arg z) > ((3 / 2) * PI ) by A1, XXREAL_1: 4;

        then z <> 0 by Def1;

        then

         A4: z = (( |.z.| * ( cos ( Arg z))) + (( |.z.| * ( sin ( Arg z))) * <i> )) & |.z.| > 0 by Def1, COMPLEX1: 47;

        ( cos . ( Arg z)) > 0 by A1, Th15;

        then ( cos ( Arg z)) > 0 by SIN_COS:def 19;

        hence ( Re z) > 0 by A4, COMPLEX1: 12;

        ( Arg z) > PI by A3, Lm5, XXREAL_0: 2;

        then ( Arg z) in ]. PI , (2 * PI ).[ by A2, XXREAL_1: 4;

        then ( sin . ( Arg z)) < 0 by Th9;

        then ( sin ( Arg z)) < 0 by SIN_COS:def 17;

        hence thesis by A4, COMPLEX1: 12;

      end;

      assume that

       A5: ( Re z) > 0 and

       A6: ( Im z) < 0 ;

      z = (( Re z) + (( Im z) * <i> )) by COMPLEX1: 13;

      then z <> ( 0 + ( 0 * <i> )) by A5, COMPLEX1: 77;

      then

       A7: |.z.| > 0 & z = (( |.z.| * ( cos ( Arg z))) + (( |.z.| * ( sin ( Arg z))) * <i> )) by Def1, COMPLEX1: 47;

      then ( sin ( Arg z)) < 0 by A6, COMPLEX1: 12;

      then ( sin . ( Arg z)) < 0 by SIN_COS:def 17;

      then

       A8: not ( Arg z) in [. 0 , PI .] by Th8;

      ( cos ( Arg z)) > 0 by A5, A7, COMPLEX1: 12;

      then ( cos . ( Arg z)) > 0 by SIN_COS:def 19;

      then not ( Arg z) in [.( PI / 2), ((3 / 2) * PI ).] by Th14;

      then

       A9: ( Arg z) < ( PI / 2) or ( Arg z) > ((3 / 2) * PI ) by XXREAL_1: 1;

       0 <= ( Arg z) by Th34;

      then

       A10: ( Arg z) > PI by A8, XXREAL_1: 1;

      ( Arg z) < (2 * PI ) by Th34;

      hence thesis by A10, A9, Lm2, XXREAL_0: 2, XXREAL_1: 4;

    end;

    theorem :: COMPTRIG:45

    

     Th45: for z be Complex st ( Im z) > 0 holds ( sin ( Arg z)) > 0

    proof

      let z be Complex;

      ( Re z) < 0 or ( Re z) = 0 or ( Re z) > 0 ;

      then

       A1: ( Re z) < 0 or ( Re z) > 0 or z = ( 0 + (( Im z) * <i> )) by COMPLEX1: 13;

      assume ( Im z) > 0 ;

      then ( Arg z) in ].( PI / 2), PI .[ or ( Arg z) in ]. 0 , ( PI / 2).[ or ( Arg z) = ( PI / 2) by A1, Th37, Th41, Th42;

      then

       A2: ( PI / 2) < ( Arg z) & ( Arg z) < PI or 0 < ( Arg z) & ( Arg z) < ( PI / 2) or ( Arg z) = ( PI / 2) by XXREAL_1: 4;

      then ( Arg z) < PI by Lm2, XXREAL_0: 2;

      then ( Arg z) in ]. 0 , PI .[ by A2, XXREAL_1: 4;

      then ( sin . ( Arg z)) > 0 by Th7;

      hence thesis by SIN_COS:def 17;

    end;

    theorem :: COMPTRIG:46

    

     Th46: for z be Complex st ( Im z) < 0 holds ( sin ( Arg z)) < 0

    proof

      let z be Complex;

      ( Re z) < 0 or ( Re z) = 0 or ( Re z) > 0 ;

      then

       A1: ( Re z) < 0 or ( Re z) > 0 or z = ( 0 + (( Im z) * <i> )) by COMPLEX1: 13;

      assume ( Im z) < 0 ;

      then ( Arg z) in ]. PI , ((3 / 2) * PI ).[ or ( Arg z) in ].((3 / 2) * PI ), (2 * PI ).[ or ( Arg z) = ((3 / 2) * PI ) by A1, Th38, Th43, Th44;

      then PI < ( Arg z) & ( Arg z) < ((3 / 2) * PI ) or ((3 / 2) * PI ) < ( Arg z) & ( Arg z) < (2 * PI ) or ( Arg z) = ((3 / 2) * PI ) by XXREAL_1: 4;

      then PI < ( Arg z) & ( Arg z) < (2 * PI ) by Lm5, Lm6, XXREAL_0: 2;

      then ( Arg z) in ]. PI , (2 * PI ).[ by XXREAL_1: 4;

      then ( sin . ( Arg z)) < 0 by Th9;

      hence thesis by SIN_COS:def 17;

    end;

    theorem :: COMPTRIG:47

    for z be Complex st ( Im z) >= 0 holds ( sin ( Arg z)) >= 0

    proof

      let z be Complex;

      assume ( Im z) >= 0 ;

      then ( Im z) > 0 or ( Im z) = 0 ;

      then ( sin ( Arg z)) > 0 or z = (( Re z) + ( 0 * <i> )) & (( Re z) >= 0 or ( Re z) < 0 ) by Th45, COMPLEX1: 13;

      hence thesis by Th35, Th36, SIN_COS: 31, SIN_COS: 77;

    end;

    theorem :: COMPTRIG:48

    for z be Complex st ( Im z) <= 0 holds ( sin ( Arg z)) <= 0

    proof

      let z be Complex;

      assume ( Im z) <= 0 ;

      then ( Im z) < 0 or ( Im z) = 0 ;

      then ( sin ( Arg z)) < 0 or z = (( Re z) + ( 0 * <i> )) & (( Re z) >= 0 or ( Re z) < 0 ) by Th46, COMPLEX1: 13;

      hence thesis by Th35, Th36, SIN_COS: 31, SIN_COS: 77;

    end;

    theorem :: COMPTRIG:49

    

     Th49: for z be Complex st ( Re z) > 0 holds ( cos ( Arg z)) > 0

    proof

      let z be Complex;

      ( Im z) < 0 or ( Im z) = 0 or ( Im z) > 0 ;

      then

       A1: ( Im z) < 0 or ( Im z) > 0 or z = (( Re z) + ( 0 * <i> )) by COMPLEX1: 13;

      assume ( Re z) > 0 ;

      then ( Arg z) in ]. 0 , ( PI / 2).[ or ( Arg z) in ].((3 / 2) * PI ), (2 * PI ).[ or ( Arg z) = 0 by A1, Th35, Th41, Th44;

      then ( cos . ( Arg z)) > 0 by Th15, SIN_COS: 30, SIN_COS: 80;

      hence thesis by SIN_COS:def 19;

    end;

    theorem :: COMPTRIG:50

    

     Th50: for z be Complex st ( Re z) < 0 holds ( cos ( Arg z)) < 0

    proof

      let z be Complex;

      ( Im z) < 0 or ( Im z) = 0 or ( Im z) > 0 ;

      then

       A1: ( Im z) < 0 or ( Im z) > 0 or z = (( Re z) + ( 0 * <i> )) by COMPLEX1: 13;

      assume ( Re z) < 0 ;

      then ( Arg z) in ].( PI / 2), PI .[ or ( Arg z) in ]. PI , ((3 / 2) * PI ).[ or ( Arg z) = PI by A1, Th36, Th42, Th43;

      then ( PI / 2) < ( Arg z) & ( Arg z) < PI or PI < ( Arg z) & ( Arg z) < ((3 / 2) * PI ) or ( Arg z) = PI by XXREAL_1: 4;

      then ( PI / 2) < ( Arg z) & ( Arg z) < ((3 / 2) * PI ) by Lm2, Lm5, XXREAL_0: 2;

      then ( Arg z) in ].( PI / 2), ((3 / 2) * PI ).[ by XXREAL_1: 4;

      then ( cos . ( Arg z)) < 0 by Th13;

      hence thesis by SIN_COS:def 19;

    end;

    theorem :: COMPTRIG:51

    for z be Complex st ( Re z) >= 0 holds ( cos ( Arg z)) >= 0

    proof

      let z be Complex;

      assume ( Re z) >= 0 ;

      then ( Re z) > 0 or ( Re z) = 0 ;

      then ( cos ( Arg z)) > 0 or z = ( 0 + (( Im z) * <i> )) & (( Im z) > 0 or ( Im z) < 0 or ( Im z) = 0 ) by Th49, COMPLEX1: 13;

      hence thesis by Def1, Th37, Th38, SIN_COS: 31, SIN_COS: 77;

    end;

    theorem :: COMPTRIG:52

    for z be Complex st ( Re z) <= 0 & z <> 0 holds ( cos ( Arg z)) <= 0

    proof

      let z be Complex;

      assume that

       A1: ( Re z) <= 0 and

       A2: z <> 0 ;

      

       A3: 0 = ( 0 + ( 0 * <i> ));

      ( Re z) < 0 or ( Re z) = 0 by A1;

      then ( cos ( Arg z)) < 0 or z = ( 0 + (( Im z) * <i> )) & (( Im z) >= 0 or ( Im z) < 0 ) by Th50, COMPLEX1: 13;

      then ( cos ( Arg z)) < 0 or z = ( 0 + (( Im z) * <i> )) & (( Im z) > 0 or ( Im z) < 0 ) by A2, A3;

      hence thesis by Th37, Th38, SIN_COS: 77;

    end;

    theorem :: COMPTRIG:53

    

     Th53: for x be Real, n be Nat holds ((( cos x) + (( sin x) * <i> )) |^ n) = (( cos (n * x)) + (( sin (n * x)) * <i> ))

    proof

      let x be Real;

      defpred P[ Nat] means ((( cos x) + (( sin x) * <i> )) |^ $1) = (( cos ($1 * x)) + (( sin ($1 * x)) * <i> ));

       A1:

      now

        let n be Nat;

        assume P[n];

        

        then ((( cos x) + (( sin x) * <i> )) |^ (n + 1)) = ((( cos (n * x)) + (( sin (n * x)) * <i> )) * (( cos x) + (( sin x) * <i> ))) by NEWTON: 6

        .= ((((( cos (n * x)) * ( cos x)) - (( sin (n * x)) * ( sin x))) + ((( cos (n * x)) * ( sin x)) * <i> )) + ((( cos x) * ( sin (n * x))) * <i> ))

        .= ((( cos ((n * x) + x)) + ((( cos (n * x)) * ( sin x)) * <i> )) + ((( cos x) * ( sin (n * x))) * <i> )) by SIN_COS: 75

        .= (( cos ((n * x) + x)) + (((( cos (n * x)) * ( sin x)) + (( cos x) * ( sin (n * x)))) * <i> ))

        .= (( cos ((n + 1) * x)) + (( sin ((n + 1) * x)) * <i> )) by SIN_COS: 75;

        hence P[(n + 1)];

      end;

      

       A2: P[ 0 ] by NEWTON: 4, SIN_COS: 31;

      thus for n be Nat holds P[n] from NAT_1:sch 2( A2, A1);

    end;

    theorem :: COMPTRIG:54

    for z be Element of COMPLEX holds for n be Nat st z <> 0 or n <> 0 holds (z |^ n) = ((( |.z.| |^ n) * ( cos (n * ( Arg z)))) + ((( |.z.| |^ n) * ( sin (n * ( Arg z)))) * <i> ))

    proof

      let z be Element of COMPLEX ;

      let n be Nat;

      assume

       A1: z <> 0 or n <> 0 ;

      per cases by A1;

        suppose z <> 0 ;

        

        hence (z |^ n) = ((( |.z.| * ( cos ( Arg z))) + (( |.z.| * ( sin ( Arg z))) * <i> )) |^ n) by Def1

        .= ((( |.z.| + ( 0 * <i> )) * (( cos ( Arg z)) + (( sin ( Arg z)) * <i> ))) |^ n)

        .= ((( |.z.| + ( 0 * <i> )) |^ n) * ((( cos ( Arg z)) + (( sin ( Arg z)) * <i> )) |^ n)) by NEWTON: 7

        .= ((( |.z.| |^ n) + ( 0 * <i> )) * (( cos (n * ( Arg z))) + (( sin (n * ( Arg z))) * <i> ))) by Th53

        .= ((( |.z.| |^ n) * ( cos (n * ( Arg z)))) + ((( |.z.| |^ n) * ( sin (n * ( Arg z)))) * <i> ));

      end;

        suppose

         A2: z = 0 & n > 0 ;

        then

         A3: n >= (1 + 0 ) by NAT_1: 13;

        

        hence (z |^ n) = (( 0 * ( cos (n * ( Arg z)))) + (( 0 * ( sin (n * ( Arg z)))) * <i> )) by A2, NEWTON: 11

        .= (( 0 * ( cos (n * ( Arg z)))) + ((( |.z.| |^ n) * ( sin (n * ( Arg z)))) * <i> )) by A2, A3, COMPLEX1: 44, NEWTON: 11

        .= ((( |.z.| |^ n) * ( cos (n * ( Arg z)))) + ((( |.z.| |^ n) * ( sin (n * ( Arg z)))) * <i> )) by A2, A3, COMPLEX1: 44, NEWTON: 11;

      end;

    end;

    theorem :: COMPTRIG:55

    

     Th55: for x be Real, n,k be Nat st n <> 0 holds ((( cos ((x + ((2 * PI ) * k)) / n)) + (( sin ((x + ((2 * PI ) * k)) / n)) * <i> )) |^ n) = (( cos x) + (( sin x) * <i> ))

    proof

      let x be Real;

      let n,k be Nat;

      assume

       A1: n <> 0 ;

      

      thus ((( cos ((x + ((2 * PI ) * k)) / n)) + (( sin ((x + ((2 * PI ) * k)) / n)) * <i> )) |^ n) = (( cos (n * ((x + ((2 * PI ) * k)) / n))) + (( sin (n * ((x + ((2 * PI ) * k)) / n))) * <i> )) by Th53

      .= (( cos (x + ((2 * PI ) * k))) + (( sin (n * ((x + ((2 * PI ) * k)) / n))) * <i> )) by A1, XCMPLX_1: 87

      .= (( cos (x + ((2 * PI ) * k))) + (( sin (x + ((2 * PI ) * k))) * <i> )) by A1, XCMPLX_1: 87

      .= (( cos . (x + ((2 * PI ) * k))) + (( sin (x + ((2 * PI ) * k))) * <i> )) by SIN_COS:def 19

      .= (( cos . (x + ((2 * PI ) * k))) + (( sin . (x + ((2 * PI ) * k))) * <i> )) by SIN_COS:def 17

      .= (( cos . (x + ((2 * PI ) * k))) + (( sin . x) * <i> )) by SIN_COS2: 10

      .= (( cos . x) + (( sin . x) * <i> )) by SIN_COS2: 11

      .= (( cos . x) + (( sin x) * <i> )) by SIN_COS:def 17

      .= (( cos x) + (( sin x) * <i> )) by SIN_COS:def 19;

    end;

    theorem :: COMPTRIG:56

    

     Th56: for z be Complex holds for n,k be Nat st n <> 0 holds z = ((((n -root |.z.|) * ( cos ((( Arg z) + ((2 * PI ) * k)) / n))) + (((n -root |.z.|) * ( sin ((( Arg z) + ((2 * PI ) * k)) / n))) * <i> )) |^ n)

    proof

      let z be Complex;

      let n,k be Nat;

      assume

       A1: n <> 0 ;

      then

       A2: n >= ( 0 + 1) by NAT_1: 13;

      per cases ;

        suppose

         A3: z <> 0 ;

        

        thus ((((n -root |.z.|) * ( cos ((( Arg z) + ((2 * PI ) * k)) / n))) + (((n -root |.z.|) * ( sin ((( Arg z) + ((2 * PI ) * k)) / n))) * <i> )) |^ n) = ((((n -root |.z.|) + ( 0 * <i> )) * (( cos ((( Arg z) + ((2 * PI ) * k)) / n)) + (( sin ((( Arg z) + ((2 * PI ) * k)) / n)) * <i> ))) |^ n)

        .= ((((n -root |.z.|) + ( 0 * <i> )) |^ n) * ((( cos ((( Arg z) + ((2 * PI ) * k)) / n)) + (( sin ((( Arg z) + ((2 * PI ) * k)) / n)) * <i> )) |^ n)) by NEWTON: 7

        .= ((((n -root |.z.|) + ( 0 * <i> )) |^ n) * (( cos ( Arg z)) + (( sin ( Arg z)) * <i> ))) by A1, Th55

        .= (( |.z.| + ( 0 * <i> )) * (( cos ( Arg z)) + (( sin ( Arg z)) * <i> ))) by A1, Th4, COMPLEX1: 46

        .= ((( |.z.| * ( cos ( Arg z))) - ( 0 * ( sin ( Arg z)))) + ((( |.z.| * ( sin ( Arg z))) + ( 0 * ( cos ( Arg z)))) * <i> ))

        .= z by A3, Def1;

      end;

        suppose

         A4: z = 0 ;

        

        hence ((((n -root |.z.|) * ( cos ((( Arg z) + ((2 * PI ) * k)) / n))) + (((n -root |.z.|) * ( sin ((( Arg z) + ((2 * PI ) * k)) / n))) * <i> )) |^ n) = ((( 0 * ( cos ((( Arg z) + ((2 * PI ) * k)) / n))) + (((n -root 0 ) * ( sin ((( Arg z) + ((2 * PI ) * k)) / n))) * <i> )) |^ n) by A2, COMPLEX1: 44, POWER: 5

        .= (( 0 + (( 0 * ( sin ((( Arg z) + ((2 * PI ) * k)) / n))) * <i> )) |^ n) by A2, POWER: 5

        .= z by A2, A4, NEWTON: 11;

      end;

    end;

    definition

      let x be Complex;

      let n be non zero Nat;

      :: COMPTRIG:def2

      mode CRoot of n,x -> Complex means

      : Def2: (it |^ n) = x;

      existence

      proof

        reconsider z = (((n -root |.x.|) * ( cos ((( Arg x) + ((2 * PI ) * 0 )) / n))) + (((n -root |.x.|) * ( sin ((( Arg x) + ((2 * PI ) * 0 )) / n))) * <i> )) as Element of COMPLEX by XCMPLX_0:def 2;

        take z;

        thus thesis by Th56;

      end;

    end

    theorem :: COMPTRIG:57

    for x be Element of COMPLEX holds for n be non zero Nat holds for k be Nat holds (((n -root |.x.|) * ( cos ((( Arg x) + ((2 * PI ) * k)) / n))) + (((n -root |.x.|) * ( sin ((( Arg x) + ((2 * PI ) * k)) / n))) * <i> )) is CRoot of n, x

    proof

      let x be Element of COMPLEX ;

      let n be non zero Nat;

      let k be Nat;

      reconsider z = (((n -root |.x.|) * ( cos ((( Arg x) + ((2 * PI ) * k)) / n))) + (((n -root |.x.|) * ( sin ((( Arg x) + ((2 * PI ) * k)) / n))) * <i> )) as Element of COMPLEX by XCMPLX_0:def 2;

      (z |^ n) = x by Th56;

      hence thesis by Def2;

    end;

    theorem :: COMPTRIG:58

    for x be Element of COMPLEX holds for v be CRoot of 1, x holds v = x

    proof

      let x be Element of COMPLEX ;

      let v be CRoot of 1, x;

      (v |^ 1) = x by Def2;

      hence thesis;

    end;

    theorem :: COMPTRIG:59

    for n be non zero Nat holds for v be CRoot of n, 0 holds v = 0

    proof

      let n be non zero Nat;

      let v be CRoot of n, 0 ;

      defpred P[ Nat] means (v |^ $1) = 0 ;

      assume

       A1: v <> 0 ;

       A2:

      now

        let k be non zero Nat;

        assume that

         A3: k <> 1 and

         A4: P[k];

        consider t be Nat such that

         A5: k = (t + 1) by NAT_1: 6;

        reconsider t as non zero Nat by A3, A5;

        take t;

        thus t < k by A5, NAT_1: 13;

        (v |^ k) = ((v |^ t) * v) by A5, NEWTON: 6;

        hence P[t] by A1, A4;

      end;

      

       A6: ex n be non zero Nat st P[n]

      proof

        take n;

        thus thesis by Def2;

      end;

       P[1] from Regrwithout0( A6, A2);

      hence thesis by A1;

    end;

    theorem :: COMPTRIG:60

    for n be non zero Nat holds for x be Element of COMPLEX holds for v be CRoot of n, x st v = 0 holds x = 0

    proof

      let n be non zero Nat;

      let x be Element of COMPLEX ;

      let v be CRoot of n, x;

      assume v = 0 ;

      then n >= ( 0 + 1) & ( 0 |^ n) = x by Def2, NAT_1: 13;

      hence thesis by NEWTON: 11;

    end;

    theorem :: COMPTRIG:61

    for a be Real st 0 <= a & a < (2 * PI ) & ( cos a) = 1 holds a = 0

    proof

      let a be Real such that

       A1: 0 <= a & a < (2 * PI ) and

       A2: ( cos a) = 1;

      ((1 * 1) + (( sin a) * ( sin a))) = 1 by A2, SIN_COS: 29;

      then ( sin a) = 0 ;

      hence thesis by A1, A2, Th17, SIN_COS: 77;

    end;

    theorem :: COMPTRIG:62

    for z be Complex holds z = (( |.z.| * ( cos ( Arg z))) + (( |.z.| * ( sin ( Arg z))) * <i> ))

    proof

      let z be Complex;

      per cases ;

        suppose z = 0 ;

        hence thesis by COMPLEX1: 44;

      end;

        suppose z <> 0 ;

        hence thesis by Def1;

      end;

    end;