complex2.miz
begin
theorem ::
COMPLEX2:1
Th1: for a,b be
Real st b
>
0 holds ex r be
Real st r
= ((b
* (
-
[\(a
/ b)/]))
+ a) &
0
<= r & r
< b
proof
let a,b be
Real such that
A1: b
>
0 ;
set ab =
[\(a
/ b)/];
set i = (
- ab);
take r = ((b
* i)
+ a);
thus r
= ((b
* i)
+ a);
ab
<= (a
/ b) by
INT_1:def 6;
then (ab
* b)
<= ((a
/ b)
* b) by
A1,
XREAL_1: 64;
then (ab
* b)
<= a by
A1,
XCMPLX_1: 87;
then (
- (ab
* b))
>= (
- a) by
XREAL_1: 24;
then ((b
* i)
+ a)
>= (a
+ (
- a)) by
XREAL_1: 6;
hence
0
<= r;
((a
/ b)
- 1)
< ab by
INT_1:def 6;
then (
- ((a
/ b)
- 1))
> i by
XREAL_1: 24;
then (((
- (a
/ b))
+ 1)
* b)
> (i
* b) by
A1,
XREAL_1: 68;
then ((
- ((a
/ b)
* b))
+ b)
> (i
* b);
then ((
- a)
+ b)
> (i
* b) by
A1,
XCMPLX_1: 87;
then (((
- a)
+ b)
+ a)
> r by
XREAL_1: 8;
hence thesis;
end;
theorem ::
COMPLEX2:2
Th2: for a,b,c be
Real st a
>
0 & b
>=
0 & c
>=
0 & b
< a & c
< a holds for i be
Integer st b
= (c
+ (a
* i)) holds b
= c
proof
let a,b,c be
Real such that
A1: a
>
0 and
A2: b
>=
0 and
A3: c
>=
0 and
A4: b
< a and
A5: c
< a;
A6: (
0
+ a)
<= (c
+ a) by
A3,
XREAL_1: 7;
let i be
Integer such that
A7: b
= (c
+ (a
* i));
per cases ;
suppose i
<
0 ;
then i
<= (
- 1) by
INT_1: 8;
then (a
* i)
<= (a
* (
- 1)) by
A1,
XREAL_1: 64;
then (c
+ (a
* i))
<= (c
- a) by
XREAL_1: 7;
hence thesis by
A2,
A5,
A7,
XREAL_1: 49;
end;
suppose i
=
0 ;
hence thesis by
A7;
end;
suppose i
>
0 ;
then (
0
+ 1)
<= i by
INT_1: 7;
then (a
* i)
>= a by
A1,
XREAL_1: 151;
then (c
+ (a
* i))
>= (c
+ a) by
XREAL_1: 7;
hence thesis by
A4,
A7,
A6,
XXREAL_0: 2;
end;
end;
theorem ::
COMPLEX2:3
Th3: for a,b be
Real holds (
sin (a
- b))
= (((
sin a)
* (
cos b))
- ((
cos a)
* (
sin b))) & (
cos (a
- b))
= (((
cos a)
* (
cos b))
+ ((
sin a)
* (
sin b)))
proof
let th1,th2 be
Real;
thus (
sin (th1
- th2))
= (
sin
. (th1
+ (
- th2))) by
SIN_COS:def 17
.= (((
sin
. th1)
* (
cos
. (
- th2)))
+ ((
cos
. th1)
* (
sin
. (
- th2)))) by
SIN_COS: 74
.= (((
sin
. th1)
* (
cos
. th2))
+ ((
cos
. th1)
* (
sin
. (
- th2)))) by
SIN_COS: 30
.= (((
sin
. th1)
* (
cos
. th2))
+ ((
cos
. th1)
* (
- (
sin
. th2)))) by
SIN_COS: 30
.= (((
sin th1)
* (
cos
. th2))
- ((
cos
. th1)
* (
sin
. th2))) by
SIN_COS:def 17
.= (((
sin th1)
* (
cos th2))
- ((
cos
. th1)
* (
sin
. th2))) by
SIN_COS:def 19
.= (((
sin th1)
* (
cos th2))
- ((
cos th1)
* (
sin
. th2))) by
SIN_COS:def 19
.= (((
sin th1)
* (
cos th2))
- ((
cos th1)
* (
sin th2))) by
SIN_COS:def 17;
thus (
cos (th1
- th2))
= (
cos
. (th1
+ (
- th2))) by
SIN_COS:def 19
.= (((
cos
. th1)
* (
cos
. (
- th2)))
- ((
sin
. th1)
* (
sin
. (
- th2)))) by
SIN_COS: 74
.= (((
cos
. th1)
* (
cos
. th2))
- ((
sin
. th1)
* (
sin
. (
- th2)))) by
SIN_COS: 30
.= (((
cos
. th1)
* (
cos
. th2))
- ((
sin
. th1)
* (
- (
sin
. th2)))) by
SIN_COS: 30
.= (((
cos th1)
* (
cos
. th2))
+ ((
sin
. th1)
* (
sin
. th2))) by
SIN_COS:def 19
.= (((
cos th1)
* (
cos th2))
+ ((
sin
. th1)
* (
sin
. th2))) by
SIN_COS:def 19
.= (((
cos th1)
* (
cos th2))
+ ((
sin th1)
* (
sin
. th2))) by
SIN_COS:def 17
.= (((
cos th1)
* (
cos th2))
+ ((
sin th1)
* (
sin th2))) by
SIN_COS:def 17;
end;
theorem ::
COMPLEX2:4
for a be
Real holds (
sin
. (a
-
PI ))
= (
- (
sin
. a)) & (
cos
. (a
-
PI ))
= (
- (
cos
. a))
proof
let th be
Real;
thus (
sin
. (th
-
PI ))
= (((
sin
. th)
* (
cos
. (
-
PI )))
+ ((
cos
. th)
* (
sin
. (
-
PI )))) by
SIN_COS: 74
.= (((
sin
. th)
* (
cos
.
PI ))
+ ((
cos
. th)
* (
sin
. (
-
PI )))) by
SIN_COS: 30
.= (((
sin
. th)
* (
cos
.
PI ))
+ ((
cos
. th)
* (
- (
sin
.
PI )))) by
SIN_COS: 30
.= (
- (
sin
. th)) by
SIN_COS: 76;
thus (
cos
. (th
-
PI ))
= (((
cos
. th)
* (
cos
. (
-
PI )))
- ((
sin
. th)
* (
sin
. (
-
PI )))) by
SIN_COS: 74
.= (((
cos
. th)
* (
cos
.
PI ))
- ((
sin
. th)
* (
sin
. (
-
PI )))) by
SIN_COS: 30
.= (((
cos
. th)
* (
cos
.
PI ))
- ((
sin
. th)
* (
- (
sin
.
PI )))) by
SIN_COS: 30
.= (
- (
cos
. th)) by
SIN_COS: 76;
end;
theorem ::
COMPLEX2:5
Th5: for a be
Real holds (
sin (a
-
PI ))
= (
- (
sin a)) & (
cos (a
-
PI ))
= (
- (
cos a))
proof
let r be
Real;
thus (
sin (r
-
PI ))
= (((
sin r)
* (
cos
PI ))
- ((
cos r)
* (
sin
PI ))) by
Th3
.= (
- (
sin r)) by
SIN_COS: 77;
thus (
cos (r
-
PI ))
= (((
cos r)
* (
cos
PI ))
+ ((
sin r)
* (
sin
PI ))) by
Th3
.= (
- (
cos r)) by
SIN_COS: 77;
end;
theorem ::
COMPLEX2:6
Th6: for a,b be
Real st a
in
].
0 , (
PI
/ 2).[ & b
in
].
0 , (
PI
/ 2).[ holds a
< b iff (
sin a)
< (
sin b)
proof
let a,b be
Real;
assume a
in
].
0 , (
PI
/ 2).[ & b
in
].
0 , (
PI
/ 2).[;
then
A1: a
in (
].
0 , (
PI
/ 2).[
/\ (
dom
sin )) & b
in (
].
0 , (
PI
/ 2).[
/\ (
dom
sin )) by
SIN_COS: 24,
XBOOLE_0:def 4;
A2: (
sin a)
= (
sin
. a) & (
sin b)
= (
sin
. b) by
SIN_COS:def 17;
hence a
< b implies (
sin a)
< (
sin b) by
A1,
RFUNCT_2: 20,
SIN_COS2: 2;
assume
A3: (
sin a)
< (
sin b);
assume a
>= b;
then a
> b by
A3,
XXREAL_0: 1;
hence contradiction by
A2,
A1,
A3,
RFUNCT_2: 20,
SIN_COS2: 2;
end;
theorem ::
COMPLEX2:7
Th7: for a,b be
Real st a
in
].(
PI
/ 2),
PI .[ & b
in
].(
PI
/ 2),
PI .[ holds a
< b iff (
sin a)
> (
sin b)
proof
let a,b be
Real;
assume a
in
].(
PI
/ 2),
PI .[ & b
in
].(
PI
/ 2),
PI .[;
then
A1: a
in (
].(
PI
/ 2),
PI .[
/\ (
dom
sin )) & b
in (
].(
PI
/ 2),
PI .[
/\ (
dom
sin )) by
SIN_COS: 24,
XBOOLE_0:def 4;
A2: (
sin a)
= (
sin
. a) & (
sin b)
= (
sin
. b) by
SIN_COS:def 17;
hence a
< b implies (
sin a)
> (
sin b) by
A1,
RFUNCT_2: 21,
SIN_COS2: 3;
assume
A3: (
sin a)
> (
sin b);
assume a
>= b;
then a
> b by
A3,
XXREAL_0: 1;
hence contradiction by
A2,
A1,
A3,
RFUNCT_2: 21,
SIN_COS2: 3;
end;
theorem ::
COMPLEX2:8
Th8: for a be
Real, i be
Integer holds (
sin a)
= (
sin (((2
*
PI )
* i)
+ a))
proof
let r be
Real, i be
Integer;
A1: (
sin
. r)
= (
sin r) by
SIN_COS:def 17;
A2: (
sin
. (((2
*
PI )
* i)
+ r))
= (
sin (((2
*
PI )
* i)
+ r)) by
SIN_COS:def 17;
A3: (
sin
. (((2
*
PI )
* (
- i))
+ (((2
*
PI )
* i)
+ r)))
= (
sin (((2
*
PI )
* (
- i))
+ (((2
*
PI )
* i)
+ r))) by
SIN_COS:def 17;
per cases ;
suppose i
>=
0 ;
then
reconsider iN = i as
Element of
NAT by
INT_1: 3;
(
sin r)
= (
sin (((2
*
PI )
* iN)
+ r)) by
A1,
A2,
SIN_COS2: 10;
hence thesis;
end;
suppose i
<
0 ;
then
reconsider iN = (
- i) as
Element of
NAT by
INT_1: 3;
set aa = (((2
*
PI )
* i)
+ r);
(
sin aa)
= (
sin (((2
*
PI )
* iN)
+ aa)) by
A2,
A3,
SIN_COS2: 10;
hence thesis;
end;
end;
theorem ::
COMPLEX2:9
Th9: for a be
Real, i be
Integer holds (
cos a)
= (
cos (((2
*
PI )
* i)
+ a))
proof
let r be
Real, i be
Integer;
A1: (
cos
. r)
= (
cos r) by
SIN_COS:def 19;
A2: (
cos
. (((2
*
PI )
* i)
+ r))
= (
cos (((2
*
PI )
* i)
+ r)) by
SIN_COS:def 19;
A3: (
cos
. (((2
*
PI )
* (
- i))
+ (((2
*
PI )
* i)
+ r)))
= (
cos (((2
*
PI )
* (
- i))
+ (((2
*
PI )
* i)
+ r))) by
SIN_COS:def 19;
per cases ;
suppose i
>=
0 ;
then
reconsider iN = i as
Element of
NAT by
INT_1: 3;
(
cos r)
= (
cos (((2
*
PI )
* iN)
+ r)) by
A1,
A2,
SIN_COS2: 11;
hence thesis;
end;
suppose i
<
0 ;
then
reconsider iN = (
- i) as
Element of
NAT by
INT_1: 3;
set aa = (((2
*
PI )
* i)
+ r);
(
cos aa)
= (
cos (((2
*
PI )
* iN)
+ aa)) by
A2,
A3,
SIN_COS2: 11;
hence thesis;
end;
end;
theorem ::
COMPLEX2:10
Th10: for a be
Real st (
sin a)
=
0 holds (
cos a)
<>
0
proof
let a be
Real;
assume that
A1: (
sin a)
=
0 and
A2: (
cos a)
=
0 ;
consider r be
Real such that
A3: r
= (((2
*
PI )
* (
-
[\(a
/ (2
*
PI ))/]))
+ a) and
A4:
0
<= r & r
< (2
*
PI ) by
Th1,
COMPTRIG: 5;
A5: (
cos a)
= (
cos r) by
A3,
Th9;
(
sin a)
= (
sin r) by
A3,
Th8;
then r
=
0 or r
=
PI by
A4,
A1,
COMPTRIG: 17;
hence thesis by
A5,
A2,
COMPTRIG: 5,
COMPTRIG: 18;
end;
theorem ::
COMPLEX2:11
Th11: for a,b be
Real st
0
<= a & a
< (2
*
PI ) &
0
<= b & b
< (2
*
PI ) & (
sin a)
= (
sin b) & (
cos a)
= (
cos b) holds a
= b
proof
let r,s be
Real such that
A1:
0
<= r and
A2: r
< (2
*
PI ) &
0
<= s and
A3: s
< (2
*
PI ) and
A4: (
sin r)
= (
sin s) & (
cos r)
= (
cos s);
A5: (
cos (r
- s))
= (((
cos r)
* (
cos s))
+ ((
sin r)
* (
sin s))) by
Th3
.= 1 by
A4,
SIN_COS: 29;
A6: (
sin (r
- s))
= (((
sin r)
* (
cos s))
- ((
cos r)
* (
sin s))) by
Th3
.=
0 by
A4;
A7: (
cos (s
- r))
= (((
cos r)
* (
cos s))
+ ((
sin r)
* (
sin s))) by
Th3
.= 1 by
A4,
SIN_COS: 29;
A8: (
sin (s
- r))
= (((
sin s)
* (
cos r))
- ((
cos s)
* (
sin r))) by
Th3
.=
0 by
A4;
per cases by
XXREAL_0: 1;
suppose
A9: r
> s;
(r
+
0 )
< ((2
*
PI )
+ s) by
A2,
XREAL_1: 8;
then
A10: (r
- s)
< (2
*
PI ) by
XREAL_1: 19;
r
> (s
+
0 ) by
A9;
then
0
<= (r
- s) by
XREAL_1: 20;
then (r
- s)
=
0 or (r
- s)
=
PI by
A6,
A10,
COMPTRIG: 17;
hence thesis by
A5,
SIN_COS: 77;
end;
suppose r
< s;
then s
> (r
+
0 );
then
A11:
0
<= (s
- r) by
XREAL_1: 20;
(s
+
0 )
< ((2
*
PI )
+ r) by
A1,
A3,
XREAL_1: 8;
then (s
- r)
< (2
*
PI ) by
XREAL_1: 19;
then (s
- r)
=
0 or (s
- r)
=
PI by
A8,
A11,
COMPTRIG: 17;
hence thesis by
A7,
SIN_COS: 77;
end;
suppose r
= s;
hence thesis;
end;
end;
begin
Lm1: (
Arg
0 )
=
0 by
COMPTRIG: 35;
::$Canceled
theorem ::
COMPLEX2:13
Th12: for z be
Complex st z
<>
0 holds ((
Arg z)
<
PI implies (
Arg (
- z))
= ((
Arg z)
+
PI )) & ((
Arg z)
>=
PI implies (
Arg (
- z))
= ((
Arg z)
-
PI ))
proof
let z be
Complex;
assume
A1: z
<>
0 ;
then
A2:
|.z.|
<>
0 by
COMPLEX1: 45;
z
= ((
|.z.|
* (
cos (
Arg z)))
+ ((
|.z.|
* (
sin (
Arg z)))
*
<i> )) by
COMPTRIG: 62;
then
A3: (
- z)
= ((
- (
|.z.|
* (
cos (
Arg z))))
+ ((
- (
|.z.|
* (
sin (
Arg z))))
*
<i> ));
(
Arg z)
< (2
*
PI ) by
COMPTRIG: 34;
then ((
Arg z)
+
0 )
< ((2
*
PI )
+
PI ) by
COMPTRIG: 5,
XREAL_1: 8;
then
A4: ((
Arg z)
-
PI )
< (2
*
PI ) by
XREAL_1: 19;
A5: (
- z)
= ((
|.(
- z).|
* (
cos (
Arg (
- z))))
+ ((
|.(
- z).|
* (
sin (
Arg (
- z))))
*
<i> )) by
COMPTRIG: 62;
A6:
|.z.|
=
|.(
- z).| by
COMPLEX1: 52;
then (
|.z.|
* (
sin (
Arg (
- z))))
= (
|.z.|
* (
- (
sin (
Arg z)))) by
A5,
A3,
COMPLEX1: 77;
then
A7: (
sin (
Arg (
- z)))
= (
- (
sin (
Arg z))) by
A2,
XCMPLX_1: 5;
then
A8: (
sin (
Arg (
- z)))
= (
sin ((
Arg z)
+
PI )) by
SIN_COS: 79;
(
|.z.|
* (
cos (
Arg (
- z))))
= (
|.z.|
* (
- (
cos (
Arg z)))) by
A5,
A3,
A6,
COMPLEX1: 77;
then
A9: (
cos (
Arg (
- z)))
= (
- (
cos (
Arg z))) by
A2,
XCMPLX_1: 5;
then
A10: (
cos (
Arg (
- z)))
= (
cos ((
Arg z)
+
PI )) by
SIN_COS: 79;
hereby
assume (
Arg z)
<
PI ;
then
A11: ((
Arg z)
+
PI )
< (
PI
+
PI ) by
XREAL_1: 8;
0
<= (
Arg z) by
COMPTRIG: 34;
hence (
Arg (
- z))
= ((
Arg z)
+
PI ) by
A1,
A5,
A10,
A8,
A11,
COMPTRIG: 5,
COMPTRIG:def 1;
end;
assume (
Arg z)
>=
PI ;
then
A12: ((
Arg z)
-
PI )
>= (
PI
-
PI ) by
XREAL_1: 9;
A13: (
sin (
Arg (
- z)))
= (
sin ((
Arg z)
-
PI )) by
A7,
Th5;
(
cos (
Arg (
- z)))
= (
cos ((
Arg z)
-
PI )) by
A9,
Th5;
hence thesis by
A1,
A5,
A13,
A12,
A4,
COMPTRIG:def 1;
end;
::$Canceled
theorem ::
COMPLEX2:15
Th13: for z be
Complex holds (
Arg z)
=
0 iff z
=
|.z.|
proof
let z be
Complex;
hereby
assume (
Arg z)
=
0 ;
then z
= ((
|.z.|
* (
cos
0 ))
+ ((
|.z.|
* (
sin
0 ))
*
<i> )) by
COMPTRIG: 62;
hence z
=
|.z.| by
SIN_COS: 31;
end;
assume z
=
|.z.|;
hence thesis by
COMPTRIG: 35,
COMPLEX1: 46;
end;
theorem ::
COMPLEX2:16
Th14: for z be
Complex st z
<>
0 holds (
Arg z)
<
PI iff (
Arg (
- z))
>=
PI
proof
let z be
Complex;
assume
A1: z
<>
0 ;
thus (
Arg z)
<
PI implies (
Arg (
- z))
>=
PI
proof
(
Arg z)
>=
0 by
COMPTRIG: 34;
then
A2: (
PI
+
0 )
<= (
PI
+ (
Arg z)) by
XREAL_1: 7;
assume (
Arg z)
<
PI ;
hence thesis by
A1,
A2,
Th12;
end;
thus (
Arg (
- z))
>=
PI implies (
Arg z)
<
PI
proof
(2
*
PI )
> (
Arg (
- z)) by
COMPTRIG: 34;
then
A3: ((
PI
+
PI )
-
PI )
> ((
Arg (
- z))
-
PI ) by
XREAL_1: 9;
assume (
Arg (
- z))
>=
PI ;
then (
Arg (
- (
- z)))
= ((
Arg (
- z))
-
PI ) by
A1,
Th12;
hence thesis by
A3;
end;
end;
theorem ::
COMPLEX2:17
Th15: for x,y be
Complex st x
<> y or (x
- y)
<>
0 holds (
Arg (x
- y))
<
PI iff (
Arg (y
- x))
>=
PI
proof
let z1,z2 be
Complex;
assume z1
<> z2 or (z1
- z2)
<>
0 ;
then (z1
- z2)
<>
0c ;
then (
Arg (z1
- z2))
<
PI iff (
Arg (
- (z1
- z2)))
>=
PI by
Th14;
hence thesis;
end;
theorem ::
COMPLEX2:18
Th16: for z be
Complex holds (
Arg z)
in
].
0 ,
PI .[ iff (
Im z)
>
0
proof
let z be
Complex;
thus (
Arg z)
in
].
0 ,
PI .[ implies (
Im z)
>
0
proof
assume (
Arg z)
in
].
0 ,
PI .[;
then
A1:
0
< (
Arg z) & (
Arg z)
<
PI by
XXREAL_1: 4;
A2: (
Arg z)
< (
PI
/ 2) or (
Arg z)
= (
PI
/ 2) or (
Arg z)
> (
PI
/ 2) by
XXREAL_0: 1;
now
per cases by
A1,
A2,
XXREAL_1: 4;
case (
Arg z)
in
].
0 , (
PI
/ 2).[;
hence thesis by
COMPTRIG: 41;
end;
case (
Arg z)
= (
PI
/ 2);
hence thesis by
COMPTRIG: 48,
SIN_COS: 77;
end;
case (
Arg z)
in
].(
PI
/ 2),
PI .[;
hence thesis by
COMPTRIG: 42;
end;
end;
hence thesis;
end;
A3:
].(
PI
/ 2),
PI .[
c=
].
0 ,
PI .[ by
COMPTRIG: 5,
XXREAL_1: 46;
A4:
].
0 , (
PI
/ 2).[
c=
].
0 ,
PI .[ by
COMPTRIG: 5,
XXREAL_1: 46;
thus (
Im z)
>
0 implies (
Arg z)
in
].
0 ,
PI .[
proof
assume
A5: (
Im z)
>
0 ;
now
per cases ;
case (
Re z)
>
0 ;
then (
Arg z)
in
].
0 , (
PI
/ 2).[ by
A5,
COMPTRIG: 41;
hence thesis by
A4;
end;
case (
Re z)
=
0 ;
then z
= (
0
+ ((
Im z)
*
<i> )) by
COMPLEX1: 13;
then (
Arg z)
= (
PI
/ 2) by
A5,
COMPTRIG: 37;
hence thesis by
COMPTRIG: 5,
XXREAL_1: 4;
end;
case (
Re z)
<
0 ;
then (
Arg z)
in
].(
PI
/ 2),
PI .[ by
A5,
COMPTRIG: 42;
hence thesis by
A3;
end;
end;
hence thesis;
end;
end;
theorem ::
COMPLEX2:19
for z be
Complex st (
Arg z)
<>
0 holds (
Arg z)
<
PI iff (
sin (
Arg z))
>
0
proof
let z be
Complex;
A1: (
Arg z)
>=
0 by
COMPTRIG: 34;
assume
A2: (
Arg z)
<>
0 ;
hereby
assume (
Arg z)
<
PI ;
then (
Arg z)
in
].
0 ,
PI .[ by
A2,
A1,
XXREAL_1: 4;
then (
Im z)
>
0 by
Th16;
hence (
sin (
Arg z))
>
0 by
COMPTRIG: 45;
end;
A3:
].
0 , (
PI
/ 2).[
c=
].
0 ,
PI .[ by
COMPTRIG: 5,
XXREAL_1: 46;
thus (
sin (
Arg z))
>
0 implies (
Arg z)
<
PI
proof
assume
A4: (
sin (
Arg z))
>
0 ;
then
A5: (
Im z)
>
0 by
COMPTRIG: 48;
now
per cases ;
suppose (
Re z)
>
0 ;
then (
Arg z)
in
].
0 , (
PI
/ 2).[ by
A5,
COMPTRIG: 41;
hence thesis by
A3,
XXREAL_1: 4;
end;
suppose (
Re z)
=
0 ;
then z
= (
0
+ ((
Im z)
*
<i> )) by
COMPLEX1: 13;
hence thesis by
A4,
COMPTRIG: 5,
COMPTRIG: 37,
COMPTRIG: 48;
end;
suppose (
Re z)
<
0 ;
then (
Arg z)
in
].(
PI
/ 2),
PI .[ by
A5,
COMPTRIG: 42;
hence thesis by
XXREAL_1: 4;
end;
end;
hence thesis;
end;
end;
theorem ::
COMPLEX2:20
for x,y be
Complex st (
Arg x)
<
PI & (
Arg y)
<
PI holds (
Arg (x
+ y))
<
PI
proof
let z1,z2 be
Complex;
assume that
A1: (
Arg z1)
<
PI and
A2: (
Arg z2)
<
PI ;
A3:
|.z2.|
= (
|.z2.|
+ (
0
*
<i> ));
A4:
|.z1.|
= (
|.z1.|
+ (
0
*
<i> ));
per cases by
COMPTRIG: 34;
suppose
A5: (
Arg z1)
=
0 ;
then z1
=
|.z1.| by
Th13;
then
A6: (
Im z1)
=
0 by
A4,
COMPLEX1: 12;
per cases by
COMPTRIG: 34;
suppose (
Arg z2)
=
0 ;
then z2
=
|.z2.| by
Th13;
then
A7: (z1
+ z2)
= ((
|.z1.|
+
|.z2.|)
+ (
0
*
<i> )) by
A5,
Th13;
0
<=
|.z1.| &
0
<=
|.z2.| by
COMPLEX1: 46;
hence thesis by
A7,
COMPTRIG: 5,
COMPTRIG: 35;
end;
suppose (
Arg z2)
>
0 ;
then (
Arg z2)
in
].
0 ,
PI .[ by
A2,
XXREAL_1: 4;
then
A8: (
Im z2)
>
0 by
Th16;
(
Im (z1
+ z2))
= ((
Im z1)
+ (
Im z2)) by
COMPLEX1: 8;
then (
Arg (z1
+ z2))
in
].
0 ,
PI .[ by
A6,
A8,
Th16;
hence thesis by
XXREAL_1: 4;
end;
end;
suppose (
Arg z1)
>
0 ;
then (
Arg z1)
in
].
0 ,
PI .[ by
A1,
XXREAL_1: 4;
then
A9: (
Im z1)
>
0 by
Th16;
per cases by
COMPTRIG: 34;
suppose (
Arg z2)
=
0 ;
then z2
=
|.z2.| by
Th13;
then
A10: (
Im z2)
=
0 by
A3,
COMPLEX1: 12;
(
Im (z1
+ z2))
= ((
Im z1)
+ (
Im z2)) by
COMPLEX1: 8;
then (
Arg (z1
+ z2))
in
].
0 ,
PI .[ by
A9,
A10,
Th16;
hence thesis by
XXREAL_1: 4;
end;
suppose (
Arg z2)
>
0 ;
then (
Arg z2)
in
].
0 ,
PI .[ by
A2,
XXREAL_1: 4;
then
A11: (
Im z2)
>
0 by
Th16;
(
Im (z1
+ z2))
= ((
Im z1)
+ (
Im z2)) by
COMPLEX1: 8;
then (
Arg (z1
+ z2))
in
].
0 ,
PI .[ by
A9,
A11,
Th16;
hence thesis by
XXREAL_1: 4;
end;
end;
end;
theorem ::
COMPLEX2:21
Th19: for z be
Complex holds (
Arg z)
=
0 iff (
Re z)
>=
0 & (
Im z)
=
0
proof
let z be
Complex;
A1:
|.z.|
= (
|.z.|
+ (
0
*
<i> ));
hereby
assume (
Arg z)
=
0 ;
then
A2: z
=
|.z.| by
Th13;
then (
Re z)
=
|.z.| by
A1,
COMPLEX1: 12;
hence (
Re z)
>=
0 & (
Im z)
=
0 by
A1,
A2,
COMPLEX1: 12,
COMPLEX1: 46;
end;
assume that
A3: (
Re z)
>=
0 and
A4: (
Im z)
=
0 ;
z
= ((
Re z)
+ (
0
*
<i> )) by
A4,
COMPLEX1: 13;
hence thesis by
A3,
COMPTRIG: 35;
end;
theorem ::
COMPLEX2:22
Th20: for z be
Complex holds (
Arg z)
=
PI iff (
Re z)
<
0 & (
Im z)
=
0
proof
let z be
Complex;
hereby
assume
A1: (
Arg z)
=
PI ;
per cases ;
suppose
A2: z
<>
0 ;
reconsider zz =
|.z.| as
Element of
REAL by
XREAL_0:def 1;
A3: z
= ((zz
* (
cos
PI ))
+ ((
|.z.|
* (
sin
PI ))
*
<i> )) & (
- (
-
|.z.|))
>
0 by
A1,
COMPLEX1: 47,
COMPTRIG:def 1,
A2;
(
cos
PI )
= (
- 1) & (
sin
PI )
=
0 by
SIN_COS: 77;
then
A5: z
= ((zz
* (
- 1))
+ ((zz
*
0 )
*
<i> )) by
A3;
hence (
Re z)
<
0 by
COMPLEX1:def 1,
A3;
thus (
Im z)
=
0 by
COMPLEX1:def 2,
A5;
end;
suppose z
=
0 ;
hence (
Re z)
<
0 & (
Im z)
=
0 by
A1,
COMPTRIG: 5,
COMPTRIG: 35;
end;
end;
assume that
A6: (
Re z)
<
0 and
A7: (
Im z)
=
0 ;
z
= ((
Re z)
+ (
0
*
<i> )) by
A7,
COMPLEX1: 13;
hence thesis by
A6,
COMPTRIG: 36;
end;
theorem ::
COMPLEX2:23
Th21: for z be
Complex holds (
Im z)
=
0 iff (
Arg z)
=
0 or (
Arg z)
=
PI
proof
let z be
Complex;
hereby
A1: (
Arg ((
Re z)
+ (
0
*
<i> )))
=
0 or (
Arg ((
Re z)
+ (
0
*
<i> )))
=
PI by
COMPTRIG: 35,
COMPTRIG: 36;
assume (
Im z)
=
0 ;
hence (
Arg z)
=
0 or (
Arg z)
=
PI by
A1,
COMPLEX1: 13;
end;
assume (
Arg z)
=
0 or (
Arg z)
=
PI ;
hence thesis by
Th19,
Th20;
end;
theorem ::
COMPLEX2:24
Th22: for z be
Complex st (
Arg z)
<=
PI holds (
Im z)
>=
0
proof
let z be
Complex;
assume
A1: (
Arg z)
<=
PI ;
per cases by
A1,
COMPTRIG: 34,
XXREAL_0: 1;
suppose (
Arg z)
=
PI or (
Arg z)
=
0 ;
hence thesis by
Th21;
end;
suppose
0
< (
Arg z) & (
Arg z)
<
PI ;
then (
Arg z)
in
].
0 ,
PI .[ by
XXREAL_1: 4;
hence thesis by
Th16;
end;
end;
theorem ::
COMPLEX2:25
Th23: for z be
Element of
COMPLEX st z
<>
0 holds (
cos (
Arg (
- z)))
= (
- (
cos (
Arg z))) & (
sin (
Arg (
- z)))
= (
- (
sin (
Arg z)))
proof
let a be
Element of
COMPLEX ;
A1:
|.(
- a).|
=
|.a.| by
COMPLEX1: 52;
assume a
<>
0 ;
then
A2:
|.a.|
<>
0 by
COMPLEX1: 45;
a
= ((
|.a.|
* (
cos (
Arg a)))
+ ((
|.a.|
* (
sin (
Arg a)))
*
<i> )) & (
- a)
= ((
|.(
- a).|
* (
cos (
Arg (
- a))))
+ ((
|.(
- a).|
* (
sin (
Arg (
- a))))
*
<i> )) by
COMPTRIG: 62;
then
A3: (
0
+ (
0
*
<i> ))
= (((
|.a.|
* (
cos (
Arg a)))
+ (
|.a.|
* (
cos (
Arg (
- a)))))
+ (((
|.a.|
* (
sin (
Arg a)))
+ (
|.a.|
* (
sin (
Arg (
- a)))))
*
<i> )) by
A1;
then (
|.a.|
* ((
sin (
Arg a))
+ (
sin (
Arg (
- a)))))
=
0 by
COMPLEX1: 4,
COMPLEX1: 12;
then
A4: ((
sin (
Arg a))
+ (
- (
- (
sin (
Arg (
- a))))))
=
0 by
A2;
(
|.a.|
* ((
cos (
Arg a))
+ (
cos (
Arg (
- a)))))
=
0 by
A3,
COMPLEX1: 4,
COMPLEX1: 12;
then ((
cos (
Arg a))
+ (
- (
- (
cos (
Arg (
- a))))))
=
0 by
A2;
hence thesis by
A4;
end;
theorem ::
COMPLEX2:26
Th24: for a be
Complex st a
<>
0 holds (
cos (
Arg a))
= ((
Re a)
/
|.a.|) & (
sin (
Arg a))
= ((
Im a)
/
|.a.|)
proof
let a be
Complex;
a
= ((
|.a.|
* (
cos (
Arg a)))
+ ((
|.a.|
* (
sin (
Arg a)))
*
<i> )) by
COMPTRIG: 62;
then
A1: (
Re a)
= (
|.a.|
* (
cos (
Arg a))) & (
Im a)
= (
|.a.|
* (
sin (
Arg a))) by
COMPLEX1: 12;
assume a
<>
0 ;
hence thesis by
A1,
COMPLEX1: 45,
XCMPLX_1: 89;
end;
theorem ::
COMPLEX2:27
Th25: for a be
Complex, r be
Real st r
>
0 holds (
Arg (a
* r))
= (
Arg a)
proof
let a be
Complex, r be
Real such that
A1: r
>
0 ;
per cases ;
suppose a
=
0 ;
hence thesis;
end;
suppose
A2: a
<>
0 ;
then
A3: (
sin (
Arg a))
= ((
Im a)
/
|.a.|) by
Th24;
set b = (a
* r);
A4:
|.b.|
= (
|.a.|
*
|.r.|) by
COMPLEX1: 65
.= (
|.a.|
* r) by
A1,
ABSVALUE:def 1;
A5: (
cos (
Arg a))
= ((
Re a)
/
|.a.|) by
A2,
Th24;
A6:
0
<= (
Arg a) & (
Arg a)
< (2
*
PI ) by
COMPTRIG: 34;
r
= (r
+ (
0
*
<i> ));
then
A7: (
Re r)
= r & (
Im r)
=
0 by
COMPLEX1: 12;
then
A8: (
Im b)
= (((
Re a)
*
0 )
+ (r
* (
Im a))) by
COMPLEX1: 9
.= (r
* (
Im a));
A9: (
sin (
Arg b))
= ((
Im b)
/
|.b.|) by
A1,
A2,
Th24
.= (
sin (
Arg a)) by
A1,
A8,
A4,
A3,
XCMPLX_1: 91;
A10:
0
<= (
Arg b) & (
Arg b)
< (2
*
PI ) by
COMPTRIG: 34;
A11: (
Re b)
= (((
Re a)
* r)
- (
0
* (
Im a))) by
A7,
COMPLEX1: 9
.= (r
* (
Re a));
(
cos (
Arg b))
= ((
Re b)
/
|.b.|) by
A1,
A2,
Th24
.= (
cos (
Arg a)) by
A1,
A11,
A4,
A5,
XCMPLX_1: 91;
hence thesis by
A9,
A10,
A6,
Th11;
end;
end;
theorem ::
COMPLEX2:28
Th26: for a be
Complex, r be
Real st r
<
0 holds (
Arg (a
* r))
= (
Arg (
- a))
proof
let a be
Complex, r be
Real such that
A1: r
<
0 ;
per cases ;
suppose a
=
0 ;
hence thesis;
end;
suppose
A2: a
<>
0 ;
then
A3: (
cos (
Arg a))
= ((
Re a)
/
|.a.|) by
Th24;
A4:
0
<= (
Arg (
- a)) & (
Arg (
- a))
< (2
*
PI ) by
COMPTRIG: 34;
A5: (
sin (
Arg a))
= ((
Im a)
/
|.a.|) by
A2,
Th24;
set b = (a
* r);
A6: a
in
COMPLEX by
XCMPLX_0:def 2;
A7:
0
<= (
Arg b) & (
Arg b)
< (2
*
PI ) by
COMPTRIG: 34;
A8:
|.b.|
= (
|.a.|
*
|.r.|) by
COMPLEX1: 65
.= (
|.a.|
* (
- r)) by
A1,
ABSVALUE:def 1;
r
= (r
+ (
0
*
<i> ));
then
A9: (
Re r)
= r & (
Im r)
=
0 by
COMPLEX1: 12;
then (
Im b)
= (((
Re a)
*
0 )
+ (r
* (
Im a))) by
COMPLEX1: 9
.= (r
* (
Im a));
then
A10: (
sin (
Arg b))
= ((r
* (
Im a))
/ (
- (
|.a.|
* r))) by
A1,
A2,
A8,
Th24
.= (
- ((r
* (
Im a))
/ (
|.a.|
* r))) by
XCMPLX_1: 188
.= (
- (
sin (
Arg a))) by
A1,
A5,
XCMPLX_1: 91
.= (
sin (
Arg (
- a))) by
A2,
A6,
Th23;
(
Re b)
= (((
Re a)
* r)
- (
0
* (
Im a))) by
A9,
COMPLEX1: 9
.= (r
* (
Re a));
then (
cos (
Arg b))
= ((r
* (
Re a))
/ (
- (
|.a.|
* r))) by
A1,
A2,
A8,
Th24
.= (
- ((r
* (
Re a))
/ (
|.a.|
* r))) by
XCMPLX_1: 188
.= (
- (
cos (
Arg a))) by
A1,
A3,
XCMPLX_1: 91
.= (
cos (
Arg (
- a))) by
A2,
A6,
Th23;
hence thesis by
A10,
A7,
A4,
Th11;
end;
end;
begin
definition
let x,y be
Complex;
::
COMPLEX2:def1
func x
.|. y ->
Element of
COMPLEX equals (x
* (y
*' ));
correctness by
XCMPLX_0:def 2;
end
reserve a,b,c,d,x,y,z for
Complex;
theorem ::
COMPLEX2:29
Th27: (x
.|. y)
= ((((
Re x)
* (
Re y))
+ ((
Im x)
* (
Im y)))
+ (((
- ((
Re x)
* (
Im y)))
+ ((
Im x)
* (
Re y)))
*
<i> ))
proof
x
= ((
Re x)
+ ((
Im x)
*
<i> )) & (y
*' )
= ((
Re y)
- ((
Im y)
*
<i> )) by
COMPLEX1: 13,
COMPLEX1:def 11;
hence thesis;
end;
theorem ::
COMPLEX2:30
Th28: (z
.|. z)
= (((
Re z)
* (
Re z))
+ ((
Im z)
* (
Im z))) & (z
.|. z)
= (((
Re z)
^2 )
+ ((
Im z)
^2 ))
proof
thus (z
.|. z)
= ((((
Re z)
* (
Re z))
+ ((
Im z)
* (
Im z)))
+ (((
- ((
Im z)
* (
Re z)))
+ ((
Im z)
* (
Re z)))
*
<i> )) by
Th27
.= (((
Re z)
* (
Re z))
+ ((
Im z)
* (
Im z)));
hence thesis;
end;
theorem ::
COMPLEX2:31
Th29: (z
.|. z)
= (
|.z.|
^2 ) & (
|.z.|
^2 )
= (
Re (z
.|. z))
proof
A1: ((
Re z)
^2 )
>=
0 & ((
Im z)
^2 )
>=
0 by
XREAL_1: 63;
A2:
|.z.|
= (
sqrt (((
Re z)
^2 )
+ ((
Im z)
^2 ))) by
COMPLEX1:def 12;
thus
A3: (z
.|. z)
= (((
Re z)
^2 )
+ ((
Im z)
^2 )) by
Th28
.= (
|.z.|
^2 ) by
A1,
A2,
SQUARE_1:def 2;
(
|.z.|
^2 )
= ((
|.z.|
^2 )
+ (
0
*
<i> ) qua
Complex);
hence thesis by
A3,
COMPLEX1: 12;
end;
theorem ::
COMPLEX2:32
Th30:
|.(x
.|. y).|
= (
|.x.|
*
|.y.|)
proof
thus
|.(x
.|. y).|
= (
|.x.|
*
|.(y
*' ).|) by
COMPLEX1: 65
.= (
|.x.|
*
|.y.|) by
COMPLEX1: 53;
end;
theorem ::
COMPLEX2:33
(x
.|. x)
=
0 implies x
=
0
proof
assume (x
.|. x)
=
0 ;
then (((
Re x)
^2 )
+ ((
Im x)
^2 ))
=
0 by
Th28;
hence thesis by
COMPLEX1: 5;
end;
theorem ::
COMPLEX2:34
Th32: (y
.|. x)
= ((x
.|. y)
*' )
proof
thus (y
.|. x)
= (((y
* (x
*' ))
*' )
*' )
.= ((((x
*' )
*' )
* (y
*' ))
*' ) by
COMPLEX1: 35
.= ((x
.|. y)
*' );
end;
theorem ::
COMPLEX2:35
((x
+ y)
.|. z)
= ((x
.|. z)
+ (y
.|. z));
theorem ::
COMPLEX2:36
Th34: (x
.|. (y
+ z))
= ((x
.|. y)
+ (x
.|. z))
proof
thus (x
.|. (y
+ z))
= (x
* ((y
*' )
+ (z
*' ))) by
COMPLEX1: 32
.= ((x
.|. y)
+ (x
.|. z));
end;
theorem ::
COMPLEX2:37
((a
* x)
.|. y)
= (a
* (x
.|. y));
theorem ::
COMPLEX2:38
Th36: (x
.|. (a
* y))
= ((a
*' )
* (x
.|. y))
proof
thus (x
.|. (a
* y))
= (x
* ((a
*' )
* (y
*' ))) by
COMPLEX1: 35
.= ((a
*' )
* (x
.|. y));
end;
theorem ::
COMPLEX2:39
((a
* x)
.|. y)
= (x
.|. ((a
*' )
* y))
proof
thus ((a
* x)
.|. y)
= (x
* (((a
*' )
*' )
* (y
*' )))
.= (x
.|. ((a
*' )
* y)) by
COMPLEX1: 35;
end;
theorem ::
COMPLEX2:40
(((a
* x)
+ (b
* y))
.|. z)
= ((a
* (x
.|. z))
+ (b
* (y
.|. z)));
theorem ::
COMPLEX2:41
(x
.|. ((a
* y)
+ (b
* z)))
= (((a
*' )
* (x
.|. y))
+ ((b
*' )
* (x
.|. z)))
proof
thus (x
.|. ((a
* y)
+ (b
* z)))
= ((x
.|. (a
* y))
+ (x
.|. (b
* z))) by
Th34
.= (((a
*' )
* (x
.|. y))
+ (x
.|. (b
* z))) by
Th36
.= (((a
*' )
* (x
.|. y))
+ ((b
*' )
* (x
.|. z))) by
Th36;
end;
theorem ::
COMPLEX2:42
Th40: ((
- x)
.|. y)
= (x
.|. (
- y))
proof
thus ((
- x)
.|. y)
= ((
- (
1r
*' ))
* (x
.|. y)) by
COMPLEX1: 30,
COMPLEX1:def 4
.= (((
-
1r )
*' )
* (x
.|. y)) by
COMPLEX1: 33
.= (x
.|. ((
-
1r )
* y)) by
Th36
.= (x
.|. (
- y)) by
COMPLEX1:def 4;
end;
theorem ::
COMPLEX2:43
((
- x)
.|. y)
= (
- (x
.|. y));
theorem ::
COMPLEX2:44
Th42: (
- (x
.|. y))
= (x
.|. (
- y))
proof
thus (
- (x
.|. y))
= ((
- x)
.|. y)
.= (x
.|. (
- y)) by
Th40;
end;
theorem ::
COMPLEX2:45
((
- x)
.|. (
- y))
= (x
.|. y)
proof
((
- x)
.|. (
- y))
= (
- (x
.|. (
- y)))
.= (
- (
- (x
.|. y))) by
Th42;
hence thesis;
end;
theorem ::
COMPLEX2:46
((x
- y)
.|. z)
= ((x
.|. z)
- (y
.|. z));
theorem ::
COMPLEX2:47
Th45: (x
.|. (y
- z))
= ((x
.|. y)
- (x
.|. z))
proof
thus (x
.|. (y
- z))
= (x
* ((y
*' )
- (z
*' ))) by
COMPLEX1: 34
.= ((x
.|. y)
- (x
.|. z));
end;
theorem ::
COMPLEX2:48
((x
+ y)
.|. (x
+ y))
= ((((x
.|. x)
+ (x
.|. y))
+ (y
.|. x))
+ (y
.|. y))
proof
((x
+ y)
.|. (x
+ y))
= ((x
.|. (x
+ y))
+ (y
.|. (x
+ y)))
.= (((x
.|. x)
+ (x
.|. y))
+ (y
.|. (x
+ y))) by
Th34
.= (((x
.|. x)
+ (x
.|. y))
+ ((y
.|. x)
+ (y
.|. y))) by
Th34
.= ((((x
.|. x)
+ (x
.|. y))
+ (y
.|. x))
+ (y
.|. y));
hence thesis;
end;
theorem ::
COMPLEX2:49
Th47: ((x
- y)
.|. (x
- y))
= ((((x
.|. x)
- (x
.|. y))
- (y
.|. x))
+ (y
.|. y))
proof
((x
- y)
.|. (x
- y))
= ((x
.|. (x
- y))
- (y
.|. (x
- y)))
.= (((x
.|. x)
- (x
.|. y))
- (y
.|. (x
- y))) by
Th45
.= (((x
.|. x)
- (x
.|. y))
- ((y
.|. x)
- (y
.|. y))) by
Th45
.= ((((x
.|. x)
- (x
.|. y))
- (y
.|. x))
+ (y
.|. y));
hence thesis;
end;
Lm2: (
|.z.|
^2 )
= (((
Re z)
^2 )
+ ((
Im z)
^2 ))
proof
thus (
|.z.|
^2 )
=
|.(z
* z).| by
COMPLEX1: 65
.= (((
Re z)
^2 )
+ ((
Im z)
^2 )) by
COMPLEX1: 68;
end;
theorem ::
COMPLEX2:50
Th48: (
Re (x
.|. y))
=
0 iff (
Im (x
.|. y))
= (
|.x.|
*
|.y.|) or (
Im (x
.|. y))
= (
- (
|.x.|
*
|.y.|))
proof
hereby
assume
A1: (
Re (x
.|. y))
=
0 ;
((
|.x.|
*
|.y.|)
^2 )
= (
|.(x
.|. y).|
^2 ) by
Th30
.= ((
0
^2 )
+ ((
Im (x
.|. y))
^2 )) by
A1,
Lm2
.= ((
Im (x
.|. y))
^2 );
hence (
Im (x
.|. y))
= (
|.x.|
*
|.y.|) or (
Im (x
.|. y))
= (
- (
|.x.|
*
|.y.|)) by
SQUARE_1: 40;
end;
hereby
assume (
Im (x
.|. y))
= (
|.x.|
*
|.y.|) or (
Im (x
.|. y))
= (
- (
|.x.|
*
|.y.|));
then ((
Im (x
.|. y))
^2 )
= ((
|.x.|
*
|.y.|)
^2 )
.= (
|.(x
.|. y).|
^2 ) by
Th30
.= (((
Re (x
.|. y))
^2 )
+ ((
Im (x
.|. y))
^2 )) by
Lm2;
hence (
Re (x
.|. y))
=
0 ;
end;
end;
begin
definition
let a be
Complex, r be
Real;
::
COMPLEX2:def2
func
Rotate (a,r) ->
Element of
COMPLEX equals ((
|.a.|
* (
cos (r
+ (
Arg a))))
+ ((
|.a.|
* (
sin (r
+ (
Arg a))))
*
<i> ));
correctness by
XCMPLX_0:def 2;
end
reserve r for
Real;
theorem ::
COMPLEX2:51
(
Rotate (a,
0 ))
= a by
COMPTRIG: 62;
theorem ::
COMPLEX2:52
Th50: for a be
Complex holds (
Rotate (a,r))
=
0 iff a
=
0
proof
let a be
Complex;
hereby
assume (
Rotate (a,r))
=
0 ;
then
A1: (
Rotate (a,r))
= (
0
+ (
0
*
<i> ));
per cases by
A1,
COMPLEX1: 77;
suppose
|.a.|
=
0 ;
hence a
=
0 by
COMPLEX1: 45;
end;
suppose (
cos (r
+ (
Arg a)))
=
0 & (
sin (r
+ (
Arg a)))
=
0 ;
hence a
=
0 by
Th10;
end;
end;
assume a
=
0 ;
hence thesis by
COMPLEX1: 44;
end;
theorem ::
COMPLEX2:53
Th51: for a be
Complex holds
|.(
Rotate (a,r)).|
=
|.a.|
proof
let a be
Complex;
(
Re (
Rotate (a,r)))
= (
|.a.|
* (
cos (r
+ (
Arg a)))) & (
Im (
Rotate (a,r)))
= (
|.a.|
* (
sin (r
+ (
Arg a)))) by
COMPLEX1: 12;
hence
|.(
Rotate (a,r)).|
= (
sqrt (((
|.a.|
* (
cos (r
+ (
Arg a))))
^2 )
+ ((
|.a.|
* (
sin (r
+ (
Arg a))))
^2 ))) by
COMPLEX1:def 12
.= (
sqrt ((
|.a.|
^2 )
* (((
cos (r
+ (
Arg a)))
^2 )
+ ((
sin (r
+ (
Arg a)))
^2 ))))
.= (
sqrt ((
|.a.|
^2 )
* 1)) by
SIN_COS: 29
.=
|.a.| by
COMPLEX1: 46,
SQUARE_1: 22;
end;
theorem ::
COMPLEX2:54
Th52: for a be
Complex st a
<>
0 holds ex i be
Integer st (
Arg (
Rotate (a,r)))
= (((2
*
PI )
* i)
+ (r
+ (
Arg a)))
proof
let a be
Complex;
A1:
|.a.|
=
|.(
Rotate (a,r)).| by
Th51;
assume a
<>
0 ;
then
A2: (
Rotate (a,r))
<>
0c by
Th50;
take (
-
[\((r
+ (
Arg a))
/ (2
*
PI ))/]);
consider AR be
Real such that
A3: AR
= (((2
*
PI )
* (
-
[\((r
+ (
Arg a))
/ (2
*
PI ))/]))
+ (r
+ (
Arg a))) and
A4:
0
<= AR & AR
< (2
*
PI ) by
Th1,
COMPTRIG: 5;
(
cos (r
+ (
Arg a)))
= (
cos AR) & (
sin (r
+ (
Arg a)))
= (
sin AR) by
A3,
Th8,
Th9;
hence thesis by
A2,
A1,
A3,
A4,
COMPTRIG:def 1;
end;
theorem ::
COMPLEX2:55
(
Rotate (a,(
- (
Arg a))))
=
|.a.| by
SIN_COS: 31;
theorem ::
COMPLEX2:56
Th54: (
Re (
Rotate (a,r)))
= (((
Re a)
* (
cos r))
- ((
Im a)
* (
sin r))) & (
Im (
Rotate (a,r)))
= (((
Re a)
* (
sin r))
+ ((
Im a)
* (
cos r)))
proof
a
= ((
|.a.|
* (
cos (
Arg a)))
+ ((
|.a.|
* (
sin (
Arg a)))
*
<i> )) by
COMPTRIG: 62;
then
A1: (
Re a)
= (
|.a.|
* (
cos (
Arg a))) & (
Im a)
= (
|.a.|
* (
sin (
Arg a))) by
COMPLEX1: 12;
thus (
Re (
Rotate (a,r)))
= (
|.a.|
* (
cos (r
+ (
Arg a)))) by
COMPLEX1: 12
.= (
|.a.|
* (((
cos r)
* (
cos (
Arg a)))
- ((
sin r)
* (
sin (
Arg a))))) by
SIN_COS: 75
.= (((
Re a)
* (
cos r))
- ((
Im a)
* (
sin r))) by
A1;
thus (
Im (
Rotate (a,r)))
= (
|.a.|
* (
sin (r
+ (
Arg a)))) by
COMPLEX1: 12
.= (
|.a.|
* (((
sin r)
* (
cos (
Arg a)))
+ ((
cos r)
* (
sin (
Arg a))))) by
SIN_COS: 75
.= (((
Re a)
* (
sin r))
+ ((
Im a)
* (
cos r))) by
A1;
end;
theorem ::
COMPLEX2:57
Th55: (
Rotate ((a
+ b),r))
= ((
Rotate (a,r))
+ (
Rotate (b,r)))
proof
set ab = (a
+ b);
set rab = (
Rotate (ab,r)), ra = (
Rotate (a,r)), rb = (
Rotate (b,r));
A1: (
Re ab)
= ((
Re a)
+ (
Re b)) & (
Im ab)
= ((
Im a)
+ (
Im b)) by
COMPLEX1: 8;
A2: (
Im rab)
= (((
Re ab)
* (
sin r))
+ ((
Im ab)
* (
cos r))) by
Th54;
(
Im ra)
= (((
Re a)
* (
sin r))
+ ((
Im a)
* (
cos r))) & (
Im rb)
= (((
Re b)
* (
sin r))
+ ((
Im b)
* (
cos r))) by
Th54;
then
A3: (
Im (ra
+ rb))
= ((((
Re a)
* (
sin r))
+ ((
Im a)
* (
cos r)))
+ (((
Re b)
* (
sin r))
+ ((
Im b)
* (
cos r)))) by
COMPLEX1: 8
.= (
Im rab) by
A2,
A1;
A4: (
Re rab)
= (((
Re ab)
* (
cos r))
- ((
Im ab)
* (
sin r))) by
Th54;
(
Re ra)
= (((
Re a)
* (
cos r))
- ((
Im a)
* (
sin r))) & (
Re rb)
= (((
Re b)
* (
cos r))
- ((
Im b)
* (
sin r))) by
Th54;
then (
Re (ra
+ rb))
= ((((
Re a)
* (
cos r))
- ((
Im a)
* (
sin r)))
+ (((
Re b)
* (
cos r))
- ((
Im b)
* (
sin r)))) by
COMPLEX1: 8
.= (
Re rab) by
A4,
A1;
hence thesis by
A3,
COMPLEX1: 3;
end;
theorem ::
COMPLEX2:58
Th56: (
Rotate ((
- a),r))
= (
- (
Rotate (a,r)))
proof
per cases ;
suppose
A1: a
<>
0c ;
A2: (
cos (r
+ (
Arg (
- a))))
= (
- (
cos (r
+ (
Arg a)))) & (
sin (r
+ (
Arg (
- a))))
= (
- (
sin (r
+ (
Arg a))))
proof
per cases ;
suppose (
Arg a)
<
PI ;
then (
Arg (
- a))
= (
PI
+ (
Arg a)) by
A1,
Th12;
then (r
+ (
Arg (
- a)))
= (
PI
+ (r
+ (
Arg a)));
hence thesis by
SIN_COS: 79;
end;
suppose (
Arg a)
>=
PI ;
then (
Arg (
- a))
= ((
Arg a)
-
PI ) by
A1,
Th12;
then (r
+ (
Arg (
- a)))
= (((
Arg a)
+ r)
-
PI );
hence thesis by
Th5;
end;
end;
|.a.|
=
|.(
- a).| by
COMPLEX1: 52;
hence thesis by
A2;
end;
suppose
A3: a
=
0c ;
hence (
Rotate ((
- a),r))
= (
-
0 ) by
Th50
.= (
- (
Rotate (a,r))) by
A3,
Th50;
end;
end;
theorem ::
COMPLEX2:59
Th57: (
Rotate ((a
- b),r))
= ((
Rotate (a,r))
- (
Rotate (b,r)))
proof
thus (
Rotate ((a
- b),r))
= ((
Rotate (a,r))
+ (
Rotate ((
- b),r))) by
Th55
.= ((
Rotate (a,r))
- (
Rotate (b,r))) by
Th56;
end;
theorem ::
COMPLEX2:60
Th58: (
Rotate (a,
PI ))
= (
- a)
proof
A1: a
= ((
|.a.|
* (
cos (
Arg a)))
+ ((
|.a.|
* (
sin (
Arg a)))
*
<i> )) by
COMPTRIG: 62;
A2: (
|.a.|
* (
- (
sin (
Arg a))))
= (
- (
|.a.|
* (
sin (
Arg a))))
.= (
- (
Im a)) by
A1,
COMPLEX1: 12;
A3: (
|.a.|
* (
- (
cos (
Arg a))))
= (
- (
|.a.|
* (
cos (
Arg a))))
.= (
- (
Re a)) by
A1,
COMPLEX1: 12;
thus (
Rotate (a,
PI ))
= ((
|.a.|
* (
- (
cos (
Arg a))))
+ ((
|.a.|
* (
sin (
PI
+ (
Arg a))))
*
<i> )) by
SIN_COS: 79
.= ((
|.a.|
* (
- (
cos (
Arg a))))
+ ((
|.a.|
* (
- (
sin (
Arg a))))
*
<i> )) by
SIN_COS: 79
.= (
- a) by
A3,
A2,
COMPLEX1: 83;
end;
begin
definition
let a,b be
Complex;
::
COMPLEX2:def3
func
angle (a,b) ->
Real equals
:
Def3: (
Arg (
Rotate (b,(
- (
Arg a))))) if (
Arg a)
=
0 or b
<>
0
otherwise ((2
*
PI )
- (
Arg a));
correctness ;
end
theorem ::
COMPLEX2:61
Th59: for a be
Complex holds r
>=
0 implies (
angle (r,a))
= (
Arg a)
proof
let a be
Complex;
assume r
>=
0 ;
then (
Arg r)
=
0 by
COMPTRIG: 35;
hence (
angle (r,a))
= (
Arg (
Rotate (a,(
-
0 )))) by
Def3
.= (
Arg a) by
COMPTRIG: 62;
end;
theorem ::
COMPLEX2:62
Th60: for a,b be
Complex holds (
Arg a)
= (
Arg b) & a
<>
0 & b
<>
0 implies (
Arg (
Rotate (a,r)))
= (
Arg (
Rotate (b,r)))
proof
let a,b be
Complex;
assume that
A1: (
Arg a)
= (
Arg b) and
A2: a
<>
0 and
A3: b
<>
0 ;
consider i be
Integer such that
A4: (
Arg (
Rotate (a,r)))
= (((2
*
PI )
* i)
+ (r
+ (
Arg a))) by
A2,
Th52;
consider j be
Integer such that
A5: (
Arg (
Rotate (b,r)))
= (((2
*
PI )
* j)
+ (r
+ (
Arg b))) by
A3,
Th52;
A6:
0
<= (
Arg (
Rotate (a,r))) &
0
<= (
Arg (
Rotate (b,r))) by
COMPTRIG: 34;
A7: (
Arg (
Rotate (a,r)))
< (2
*
PI ) & (
Arg (
Rotate (b,r)))
< (2
*
PI ) by
COMPTRIG: 34;
(
Arg (
Rotate (b,r)))
= (((2
*
PI )
* (j
- i))
+ (
Arg (
Rotate (a,r)))) by
A1,
A4,
A5;
hence thesis by
A6,
A7,
Th2;
end;
theorem ::
COMPLEX2:63
Th61: r
>
0 implies (
angle (a,b))
= (
angle ((a
* r),(b
* r)))
proof
assume
A1: r
>
0 ;
then
A2: (
Arg (a
* r))
= (
Arg a) by
Th25;
per cases ;
suppose
A3: b
<>
0 ;
hence (
angle (a,b))
= (
Arg (
Rotate (b,(
- (
Arg a))))) by
Def3
.= (
Arg (
Rotate ((b
* r),(
- (
Arg (a
* r)))))) by
A1,
A2,
A3,
Th25,
Th60
.= (
angle ((a
* r),(b
* r))) by
A1,
A3,
Def3;
end;
suppose
A4: b
=
0 ;
thus thesis
proof
per cases ;
suppose
A5: (
Arg a)
=
0 ;
hence (
angle (a,b))
= (
Arg (
Rotate (b,(
- (
Arg a))))) by
Def3
.= (
Arg
0c ) by
A4,
Th50
.= (
Arg (
Rotate ((b
* r),(
- (
Arg (a
* r)))))) by
A4,
Th50
.= (
angle ((a
* r),(b
* r))) by
A2,
A5,
Def3;
end;
suppose
A6: (
Arg a)
<>
0 ;
hence (
angle (a,b))
= ((2
*
PI )
- (
Arg a)) by
A4,
Def3
.= (
angle ((a
* r),(b
* r))) by
A2,
A4,
A6,
Def3;
end;
end;
end;
end;
theorem ::
COMPLEX2:64
Th62: a
<>
0 & b
<>
0 & (
Arg a)
= (
Arg b) implies (
Arg (
- a))
= (
Arg (
- b))
proof
assume a
<>
0 & b
<>
0 & (
Arg a)
= (
Arg b);
then (
Arg (
Rotate (a,
PI )))
= (
Arg (
Rotate (b,
PI ))) by
Th60;
then (
Arg (
- a))
= (
Arg (
Rotate (b,
PI ))) by
Th58;
hence thesis by
Th58;
end;
theorem ::
COMPLEX2:65
Th63: a
<>
0 & b
<>
0 implies (
angle (a,b))
= (
angle ((
Rotate (a,r)),(
Rotate (b,r))))
proof
assume that
A1: a
<>
0 and
A2: b
<>
0 ;
consider i be
Integer such that
A3: (
Arg (
Rotate (b,(
- (
Arg a)))))
= (((2
*
PI )
* i)
+ ((
- (
Arg a))
+ (
Arg b))) by
A2,
Th52;
consider l be
Integer such that
A4: (
Arg (
Rotate (b,r)))
= (((2
*
PI )
* l)
+ (r
+ (
Arg b))) by
A2,
Th52;
consider k be
Integer such that
A5: (
Arg (
Rotate (a,r)))
= (((2
*
PI )
* k)
+ (r
+ (
Arg a))) by
A1,
Th52;
A6:
0
<= (
Arg (
Rotate ((
Rotate (b,r)),(
- (
Arg (
Rotate (a,r))))))) & (
Arg (
Rotate ((
Rotate (b,r)),(
- (
Arg (
Rotate (a,r)))))))
< (2
*
PI ) by
COMPTRIG: 34;
A7:
0
<= (
Arg (
Rotate (b,(
- (
Arg a))))) & (
Arg (
Rotate (b,(
- (
Arg a)))))
< (2
*
PI ) by
COMPTRIG: 34;
A8: (
Rotate (b,r))
<>
0 by
A2,
Th50;
then
consider j be
Integer such that
A9: (
Arg (
Rotate ((
Rotate (b,r)),(
- (
Arg (
Rotate (a,r)))))))
= (((2
*
PI )
* j)
+ ((
- (
Arg (
Rotate (a,r))))
+ (
Arg (
Rotate (b,r))))) by
Th52;
A10: (
Arg (
Rotate ((
Rotate (b,r)),(
- (
Arg (
Rotate (a,r)))))))
= (((2
*
PI )
* (((j
- k)
+ l)
- i))
+ (
Arg (
Rotate (b,(
- (
Arg a)))))) by
A3,
A9,
A5,
A4;
thus (
angle (a,b))
= (
Arg (
Rotate (b,(
- (
Arg a))))) by
A2,
Def3
.= (
Arg (
Rotate ((
Rotate (b,r)),(
- (
Arg (
Rotate (a,r))))))) by
A10,
A7,
A6,
Th2
.= (
angle ((
Rotate (a,r)),(
Rotate (b,r)))) by
A8,
Def3;
end;
theorem ::
COMPLEX2:66
r
<
0 & a
<>
0 & b
<>
0 implies (
angle (a,b))
= (
angle ((a
* r),(b
* r)))
proof
assume that
A1: r
<
0 and
A2: a
<>
0 and
A3: b
<>
0 ;
consider i be
Integer such that
A4: (
Arg (
Rotate ((
- b),(
- (
Arg (
- a))))))
= (((2
*
PI )
* i)
+ ((
- (
Arg (
- a)))
+ (
Arg (
- b)))) by
A3,
Th52;
set br = (b
* r), ar = (a
* r);
(
Arg (b
* r))
= (
Arg (
- b)) & (
Arg (a
* r))
= (
Arg (
- a)) by
A1,
Th26;
then
consider j be
Integer such that
A5: (
Arg (
Rotate (br,(
- (
Arg ar)))))
= (((2
*
PI )
* j)
+ ((
- (
Arg (
- a)))
+ (
Arg (
- b)))) by
A1,
A3,
Th52;
A6: (
Arg (
Rotate (br,(
- (
Arg ar)))))
= (((2
*
PI )
* (j
- i))
+ (
Arg (
Rotate ((
- b),(
- (
Arg (
- a))))))) by
A4,
A5;
A7:
0
<= (
Arg (
Rotate (br,(
- (
Arg ar))))) & (
Arg (
Rotate (br,(
- (
Arg ar)))))
< (2
*
PI ) by
COMPTRIG: 34;
A8:
0
<= (
Arg (
Rotate ((
- b),(
- (
Arg (
- a)))))) & (
Arg (
Rotate ((
- b),(
- (
Arg (
- a))))))
< (2
*
PI ) by
COMPTRIG: 34;
thus (
angle (a,b))
= (
angle ((
Rotate (a,
PI )),(
Rotate (b,
PI )))) by
A2,
A3,
Th63
.= (
angle ((
- a),(
Rotate (b,
PI )))) by
Th58
.= (
angle ((
- a),(
- b))) by
Th58
.= (
Arg (
Rotate ((
- b),(
- (
Arg (
- a)))))) by
A3,
Def3
.= (
Arg (
Rotate (br,(
- (
Arg ar))))) by
A6,
A7,
A8,
Th2
.= (
angle ((a
* r),(b
* r))) by
A1,
A3,
Def3;
end;
theorem ::
COMPLEX2:67
a
<>
0 & b
<>
0 implies (
angle (a,b))
= (
angle ((
- a),(
- b)))
proof
assume a
<>
0 & b
<>
0 ;
hence (
angle (a,b))
= (
angle ((
Rotate (a,
PI )),(
Rotate (b,
PI )))) by
Th63
.= (
angle ((
- a),(
Rotate (b,
PI )))) by
Th58
.= (
angle ((
- a),(
- b))) by
Th58;
end;
theorem ::
COMPLEX2:68
b
<>
0 & (
angle (a,b))
=
0 implies (
angle (a,(
- b)))
=
PI
proof
assume that
A1: b
<>
0 and
A2: (
angle (a,b))
=
0 ;
A3: (
Arg (
Rotate (b,(
- (
Arg a)))))
=
0 by
A1,
A2,
Def3;
A4: (
Arg (
Rotate ((
- b),(
- (
Arg a)))))
= (
Arg (
- (
Rotate (b,(
- (
Arg a)))))) by
Th56;
(
Rotate (b,(
- (
Arg a))))
<>
0 by
A1,
Th50;
then (
Arg (
- (
Rotate (b,(
- (
Arg a))))))
= ((
Arg (
Rotate (b,(
- (
Arg a)))))
+
PI ) by
A3,
Th12,
COMPTRIG: 5
.=
PI by
A3;
hence thesis by
A1,
A4,
Def3;
end;
theorem ::
COMPLEX2:69
Th67: a
<>
0 & b
<>
0 implies (
cos (
angle (a,b)))
= ((
Re (a
.|. b))
/ (
|.a.|
*
|.b.|)) & (
sin (
angle (a,b)))
= (
- ((
Im (a
.|. b))
/ (
|.a.|
*
|.b.|)))
proof
assume that
A1: a
<>
0 and
A2: b
<>
0 ;
A3:
|.a.|
<>
0 &
|.b.|
<>
0 by
A1,
A2,
COMPLEX1: 45;
set ra = (
Rotate (a,(
- (
Arg a)))), rb = (
Rotate (b,(
- (
Arg a)))), r = (
- (
Arg a));
set mabi = ((
|.a.|
*
|.b.|)
" );
A4:
|.a.|
>=
0 &
|.b.|
>=
0 by
COMPLEX1: 46;
(
angle (a,b))
= (
angle (ra,rb)) by
A1,
A2,
Th63;
then
A5: (
angle (a,b))
= (
angle ((
|.a.|
* mabi),(rb
* mabi))) by
A3,
A4,
Th61,
SIN_COS: 31
.= (
Arg (rb
* mabi)) by
A4,
Th59;
A6: a
= ((
|.a.|
* (
cos (
Arg a)))
+ ((
|.a.|
* (
sin (
Arg a)))
*
<i> )) by
COMPTRIG: 62;
then (
Re a)
= (
|.a.|
* (
cos (
Arg a))) by
COMPLEX1: 12;
then
A7: (
cos (
Arg a))
= ((
Re a)
/
|.a.|) by
A1,
COMPLEX1: 45,
XCMPLX_1: 89;
(
Im a)
= (
|.a.|
* (
sin (
Arg a))) by
A6,
COMPLEX1: 12;
then
A8: (
sin (
Arg a))
= ((
Im a)
/
|.a.|) by
A1,
COMPLEX1: 45,
XCMPLX_1: 89;
A9: (a
.|. b)
= ((((
Re a)
* (
Re b))
+ ((
Im a)
* (
Im b)))
+ (((
- ((
Re a)
* (
Im b)))
+ ((
Im a)
* (
Re b)))
*
<i> )) by
Th27;
then
A10: (
Re (a
.|. b))
= (((
Re a)
* (
Re b))
+ ((
Im a)
* (
Im b))) by
COMPLEX1: 12;
(
Re rb)
= (((
Re b)
* (
cos r))
- ((
Im b)
* (
sin r))) by
Th54;
then
A11: (
Re rb)
= (((
Re b)
* (
cos r))
- ((
Im b)
* (
- (
sin (
Arg a))))) by
SIN_COS: 31
.= (((
Re b)
* ((
Re a)
/
|.a.|))
+ ((
Im b)
* ((
Im a)
/
|.a.|))) by
A7,
A8,
SIN_COS: 31
.= ((
Re (a
.|. b))
/
|.a.|) by
A10;
A12: ((
Im rb)
^2 )
>=
0 by
XREAL_1: 63;
(
Im rb)
= (((
Re b)
* (
sin r))
+ ((
Im b)
* (
cos r))) by
Th54;
then
A13: (
Im rb)
= (((
Re b)
* (
- (
sin (
Arg a))))
+ ((
Im b)
* (
cos r))) by
SIN_COS: 31
.= (((
- (
Re b))
* ((
Im a)
/
|.a.|))
+ ((
Im b)
* ((
Re a)
/
|.a.|))) by
A7,
A8,
SIN_COS: 31
.= (
- ((
- (((
- (
Re b))
* (
Im a))
+ ((
Im b)
* (
Re a))))
/
|.a.|))
.= (
- ((
Im (a
.|. b))
/
|.a.|)) by
A9,
COMPLEX1: 12;
set IT = (rb
* mabi);
set mab = (
|.a.|
*
|.b.|);
A14: (mabi
^2 )
>=
0 & ((
Re rb)
^2 )
>=
0 by
XREAL_1: 63;
mabi
= (mabi
+ (
0
*
<i> ));
then
A15: (
Re mabi)
= mabi & (
Im mabi)
=
0 by
COMPLEX1: 12;
then
A16: (
Re IT)
= (((
Re rb)
* mabi)
- ((
Im rb)
*
0 )) by
COMPLEX1: 9
.= ((
Re rb)
* mabi);
A17: (
Im IT)
= (((
Re rb)
*
0 )
+ ((
Im rb)
* mabi)) by
A15,
COMPLEX1: 9
.= ((
Im rb)
* mabi);
then
A18:
|.IT.|
= (
sqrt ((((
Re rb)
* mabi)
^2 )
+ (((
Im rb)
* mabi)
^2 ))) by
A16,
COMPLEX1:def 12
.= (
sqrt ((mabi
^2 )
* (((
Re rb)
^2 )
+ ((
Im rb)
^2 ))))
.= ((
sqrt (mabi
^2 ))
* (
sqrt (((
Re rb)
^2 )
+ ((
Im rb)
^2 )))) by
A14,
A12,
SQUARE_1: 29
.= (mabi
* (
sqrt (((
Re rb)
^2 )
+ ((
Im rb)
^2 )))) by
A4,
SQUARE_1: 22
.= (mabi
*
|.rb.|) by
COMPLEX1:def 12
.= (mabi
*
|.b.|) by
Th51;
A19: IT
= ((
|.IT.|
* (
cos (
Arg IT)))
+ ((
|.IT.|
* (
sin (
Arg IT)))
*
<i> )) by
COMPTRIG: 62;
then (
|.IT.|
* (
cos (
Arg IT)))
= ((
Re rb)
* mabi) by
A16,
COMPLEX1: 12;
hence (
cos (
angle (a,b)))
= (((
Re rb)
* mabi)
/
|.IT.|) by
A3,
A5,
A18,
XCMPLX_1: 89
.= ((
Re rb)
* (mabi
/
|.IT.|))
.= (((
Re (a
.|. b))
/
|.a.|)
* ((mabi
/ mabi)
/
|.b.|)) by
A11,
A18,
XCMPLX_1: 78
.= (((
Re (a
.|. b))
/
|.a.|)
* (1
/
|.b.|)) by
A3,
XCMPLX_1: 60
.= (((
Re (a
.|. b))
* 1)
/ (
|.a.|
*
|.b.|)) by
XCMPLX_1: 76
.= ((
Re (a
.|. b))
/ mab);
(
|.IT.|
* (
sin (
Arg IT)))
= ((
Im rb)
* mabi) by
A19,
A17,
COMPLEX1: 12;
hence (
sin (
angle (a,b)))
= (((
Im rb)
* mabi)
/
|.IT.|) by
A3,
A5,
A18,
XCMPLX_1: 89
.= ((
Im rb)
* (mabi
/
|.IT.|))
.= ((
- ((
Im (a
.|. b))
/
|.a.|))
* ((mabi
/ mabi)
/
|.b.|)) by
A13,
A18,
XCMPLX_1: 78
.= (((
- (
Im (a
.|. b)))
/
|.a.|)
* (1
/
|.b.|)) by
A3,
XCMPLX_1: 60
.= (((
- (
Im (a
.|. b)))
* 1)
/ (
|.a.|
*
|.b.|)) by
XCMPLX_1: 76
.= (
- ((
Im (a
.|. b))
/ mab));
end;
definition
let x,y,z be
Complex;
::
COMPLEX2:def4
func
angle (x,y,z) ->
Real equals
:
Def4: ((
Arg (z
- y))
- (
Arg (x
- y))) if ((
Arg (z
- y))
- (
Arg (x
- y)))
>=
0
otherwise ((2
*
PI )
+ ((
Arg (z
- y))
- (
Arg (x
- y))));
correctness ;
end
theorem ::
COMPLEX2:70
Th68:
0
<= (
angle (x,y,z)) & (
angle (x,y,z))
< (2
*
PI )
proof
now
per cases ;
case
A1: ((
Arg (z
- y))
- (
Arg (x
- y)))
>=
0 ;
(
Arg (x
- y))
>=
0 by
COMPTRIG: 34;
then ((
Arg (z
- y))
+
0 )
<= ((
Arg (z
- y))
+ (
Arg (x
- y))) by
XREAL_1: 7;
then
A2: (
Arg (z
- y))
< (2
*
PI ) & ((
Arg (z
- y))
- (
Arg (x
- y)))
<= (
Arg (z
- y)) by
COMPTRIG: 34,
XREAL_1: 20;
(
angle (x,y,z))
= ((
Arg (z
- y))
- (
Arg (x
- y))) by
A1,
Def4;
hence thesis by
A1,
A2,
XXREAL_0: 2;
end;
case
A3: ((
Arg (z
- y))
- (
Arg (x
- y)))
<
0 ;
(
Arg (z
- y))
>=
0 by
COMPTRIG: 34;
then ((
Arg (x
- y))
+
0 )
<= ((
Arg (x
- y))
+ (
Arg (z
- y))) by
XREAL_1: 7;
then (
Arg (x
- y))
< (2
*
PI ) & ((
Arg (x
- y))
- (
Arg (z
- y)))
<= (
Arg (x
- y)) by
COMPTRIG: 34,
XREAL_1: 20;
then ((
Arg (x
- y))
- (
Arg (z
- y)))
< (2
*
PI ) by
XXREAL_0: 2;
then
A4: ((2
*
PI )
- ((
Arg (x
- y))
- (
Arg (z
- y))))
>
0 by
XREAL_1: 50;
(((
Arg (z
- y))
- (
Arg (x
- y)))
+ (2
*
PI ))
< (
0
+ (2
*
PI )) by
A3,
XREAL_1: 8;
hence thesis by
A3,
A4,
Def4;
end;
end;
hence thesis;
end;
theorem ::
COMPLEX2:71
Th69: (
angle (x,y,z))
= (
angle ((x
- y),
0 ,(z
- y)))
proof
now
per cases ;
case
A1: ((
Arg ((z
- y)
-
0c ))
- (
Arg ((x
- y)
-
0c )))
>=
0 ;
then (
angle ((x
- y),
0c ,(z
- y)))
= ((
Arg (z
- y))
- (
Arg (x
- y))) by
Def4;
hence (
angle ((x
- y),
0c ,(z
- y)))
= (
angle (x,y,z)) by
A1,
Def4;
end;
case
A2: ((
Arg ((z
- y)
-
0c ))
- (
Arg ((x
- y)
-
0c )))
<
0 ;
then (
angle ((x
- y),
0c ,(z
- y)))
= ((2
*
PI )
+ ((
Arg (z
- y))
- (
Arg (x
- y)))) by
Def4;
hence (
angle ((x
- y),
0c ,(z
- y)))
= (
angle (x,y,z)) by
A2,
Def4;
end;
end;
hence thesis;
end;
theorem ::
COMPLEX2:72
Th70: (
angle (a,b,c))
= (
angle ((a
+ d),(b
+ d),(c
+ d)))
proof
thus (
angle (a,b,c))
= (
angle ((a
- b),
0c ,(c
- b))) by
Th69
.= (
angle (((a
+ d)
- (b
+ d)),
0c ,((c
+ d)
- (b
+ d))))
.= (
angle ((a
+ d),(b
+ d),(c
+ d))) by
Th69;
end;
theorem ::
COMPLEX2:73
Th71: (
angle (a,b))
= (
angle (a,
0 ,b))
proof
set ab2 = (
angle (a,b));
A1:
0
<= (
Arg (
Rotate (b,(
- (
Arg a))))) & (
Arg (
Rotate (b,(
- (
Arg a)))))
< (2
*
PI ) by
COMPTRIG: 34;
per cases ;
suppose
A2: b
<>
0 ;
then
A3: ab2
= (
Arg (
Rotate (b,(
- (
Arg a))))) by
Def3;
thus thesis
proof
per cases ;
suppose ((
Arg (b
-
0c ))
- (
Arg (a
-
0c )))
>=
0 ;
then
A4: (
angle (a,
0c ,b))
= ((
- (
Arg a))
+ (
Arg b)) by
Def4;
A5: (
angle (a,
0c ,b))
< (2
*
PI ) by
Th68;
(ex i be
Integer st (
Arg (
Rotate (b,(
- (
Arg a)))))
= (((2
*
PI )
* i)
+ ((
- (
Arg a))
+ (
Arg b)))) &
0
<= (
angle (a,
0c ,b)) by
A2,
Th52,
Th68;
hence thesis by
A1,
A3,
A4,
A5,
Th2;
end;
suppose
A6: ((
Arg (b
-
0c ))
- (
Arg (a
-
0c )))
<
0 ;
consider i be
Integer such that
A7: (
Arg (
Rotate (b,(
- (
Arg a)))))
= (((2
*
PI )
* i)
+ ((
- (
Arg a))
+ (
Arg b))) by
A2,
Th52;
A8: (((2
*
PI )
* i)
+ ((
- (
Arg a))
+ (
Arg b)))
= (((2
*
PI )
* (i
- 1))
+ ((2
*
PI )
+ ((
- (
Arg a))
+ (
Arg b))));
A9: (
angle (a,
0c ,b))
= ((2
*
PI )
+ ((
Arg b)
+ (
- (
Arg a)))) by
A6,
Def4;
then
0
<= ((2
*
PI )
+ ((
- (
Arg a))
+ (
Arg b))) & ((2
*
PI )
+ ((
- (
Arg a))
+ (
Arg b)))
< (2
*
PI ) by
Th68;
hence thesis by
A1,
A3,
A9,
A7,
A8,
Th2;
end;
end;
end;
suppose
A10: b
=
0 ;
thus thesis
proof
per cases ;
suppose
A11: (
Arg a)
=
0 ;
then
A12: ((
Arg (b
-
0c ))
- (
Arg (a
-
0c )))
=
0 by
A10,
COMPTRIG: 35;
ab2
= (
Arg (
Rotate (b,(
- (
Arg a))))) by
A11,
Def3
.=
0 by
A10,
Lm1,
Th50;
hence thesis by
A12,
Def4;
end;
suppose
A13: (
Arg a)
<>
0 ;
then
A14:
0
< (
- (
- (
Arg a))) by
COMPTRIG: 34;
((
Arg (b
-
0c ))
- (
Arg (a
-
0c )))
= (
- (
Arg a)) by
A10,
Lm1;
then (
angle (a,
0c ,b))
= ((2
*
PI )
- (
Arg a)) by
A14,
Def4;
hence thesis by
A10,
A13,
Def3;
end;
end;
end;
end;
theorem ::
COMPLEX2:74
Th72: (
angle (x,y,z))
=
0 implies (
Arg (x
- y))
= (
Arg (z
- y)) & (
angle (z,y,x))
=
0
proof
assume
A1: (
angle (x,y,z))
=
0 ;
now
per cases ;
case ((
Arg (z
- y))
- (
Arg (x
- y)))
>=
0 ;
then ((
Arg (z
- y))
- (
Arg (x
- y)))
=
0 by
A1,
Def4;
hence thesis by
Def4;
end;
case
A2: ((
Arg (z
- y))
- (
Arg (x
- y)))
<
0 ;
then (
- ((
Arg (z
- y))
- (
Arg (x
- y))))
>
0 ;
then
A3: (
angle (z,y,x))
= ((
Arg (x
- y))
- (
Arg (z
- y))) by
Def4;
(
angle (x,y,z))
= ((2
*
PI )
+ ((
Arg (z
- y))
- (
Arg (x
- y)))) by
A2,
Def4;
hence contradiction by
A1,
A3,
Th68;
end;
end;
hence thesis;
end;
theorem ::
COMPLEX2:75
Th73: a
<>
0 & b
<>
0 implies ((
Re (a
.|. b))
=
0 iff (
angle (a,
0 ,b))
= (
PI
/ 2) or (
angle (a,
0 ,b))
= ((3
/ 2)
*
PI ))
proof
A1: (
- ((
Im (a
.|. b))
/ (
|.a.|
*
|.b.|)))
= ((
- (
Im (a
.|. b)))
/ (
|.a.|
*
|.b.|));
assume
A2: a
<>
0 & b
<>
0 ;
then
A3:
|.a.|
<>
0 &
|.b.|
<>
0 by
COMPLEX1: 45;
A4: (
angle (a,b))
= (
angle (a,
0c ,b)) &
0
<= (
angle (a,
0c ,b)) by
Th68,
Th71;
A5: (
angle (a,
0c ,b))
< (2
*
PI ) & (
PI
/ 2)
< (2
*
PI ) by
Th68,
COMPTRIG: 5,
XXREAL_0: 2;
A6: (
cos (
angle (a,b)))
= ((
Re (a
.|. b))
/ (
|.a.|
*
|.b.|)) by
A2,
Th67;
A7: (
sin (
angle (a,b)))
= (
- ((
Im (a
.|. b))
/ (
|.a.|
*
|.b.|))) by
A2,
Th67;
hereby
assume
A8: (
Re (a
.|. b))
=
0 ;
then (
Im (a
.|. b))
= (
|.a.|
*
|.b.|) or (
Im (a
.|. b))
= (
- (
|.a.|
*
|.b.|)) by
Th48;
then (
sin (
angle (a,b)))
= 1 or (
sin (
angle (a,b)))
= (
- 1) by
A7,
A3,
A1,
XCMPLX_1: 60;
hence (
angle (a,
0 ,b))
= (
PI
/ 2) or (
angle (a,
0 ,b))
= ((3
/ 2)
*
PI ) by
A6,
A4,
A5,
A8,
Th11,
COMPTRIG: 5,
SIN_COS: 77;
end;
assume (
angle (a,
0 ,b))
= (
PI
/ 2) or (
angle (a,
0 ,b))
= ((3
/ 2)
*
PI );
hence thesis by
A6,
A3,
Th71,
SIN_COS: 77;
end;
theorem ::
COMPLEX2:76
a
<>
0 & b
<>
0 implies ((
Im (a
.|. b))
= (
|.a.|
*
|.b.|) or (
Im (a
.|. b))
= (
- (
|.a.|
*
|.b.|)) iff (
angle (a,
0 ,b))
= (
PI
/ 2) or (
angle (a,
0 ,b))
= ((3
/ 2)
*
PI ))
proof
assume
A1: a
<>
0 & b
<>
0 ;
hereby
assume (
Im (a
.|. b))
= (
|.a.|
*
|.b.|) or (
Im (a
.|. b))
= (
- (
|.a.|
*
|.b.|));
then (
Re (a
.|. b))
=
0 by
Th48;
hence (
angle (a,
0 ,b))
= (
PI
/ 2) or (
angle (a,
0 ,b))
= ((3
/ 2)
*
PI ) by
A1,
Th73;
end;
hereby
assume (
angle (a,
0 ,b))
= (
PI
/ 2) or (
angle (a,
0 ,b))
= ((3
/ 2)
*
PI );
then (
Re (a
.|. b))
=
0 by
A1,
Th73;
hence (
Im (a
.|. b))
= (
|.a.|
*
|.b.|) or (
Im (a
.|. b))
= (
- (
|.a.|
*
|.b.|)) by
Th48;
end;
end;
Lm3: for a,b,c be
Complex st a
<> b & c
<> b holds (
Re ((a
- b)
.|. (c
- b)))
=
0 iff (
angle (a,b,c))
= (
PI
/ 2) or (
angle (a,b,c))
= ((3
/ 2)
*
PI )
proof
let x,y,z be
Complex;
assume x
<> y & z
<> y;
then
A1: (x
- y)
<>
0c & (z
- y)
<>
0c ;
(
angle (x,y,z))
= (
angle ((x
- y),
0c ,(z
- y))) by
Th69;
hence thesis by
A1,
Th73;
end;
theorem ::
COMPLEX2:77
x
<> y & z
<> y & ((
angle (x,y,z))
= (
PI
/ 2) or (
angle (x,y,z))
= ((3
/ 2)
*
PI )) implies ((
|.(x
- y).|
^2 )
+ (
|.(z
- y).|
^2 ))
= (
|.(x
- z).|
^2 )
proof
assume
A1: x
<> y & z
<> y & ((
angle (x,y,z))
= (
PI
/ 2) or (
angle (x,y,z))
= ((3
/ 2)
*
PI ));
set x3 = (x
- z);
A2: ((
|.(x
- y).|
^2 )
+ (
|.(z
- y).|
^2 ))
= ((
Re ((x
- y)
.|. (x
- y)))
+ (
|.(z
- y).|
^2 )) by
Th29
.= ((
Re ((x
- y)
.|. (x
- y)))
+ (
Re ((z
- y)
.|. (z
- y)))) by
Th29
.= (
Re (((x
- y)
.|. (x
- y))
+ ((z
- y)
.|. (z
- y)))) by
COMPLEX1: 8;
x3
= ((x
- y)
- (z
- y));
then ((x
- z)
.|. (x
- z))
= (((((x
- y)
.|. (x
- y))
- ((x
- y)
.|. (z
- y)))
- ((z
- y)
.|. (x
- y)))
+ ((z
- y)
.|. (z
- y))) by
Th47;
then (
Re ((x
- z)
.|. (x
- z)))
= (
Re ((((x
- y)
.|. (x
- y))
+ ((z
- y)
.|. (z
- y)))
- (((x
- y)
.|. (z
- y))
+ ((z
- y)
.|. (x
- y)))))
.= ((
Re (((x
- y)
.|. (x
- y))
+ ((z
- y)
.|. (z
- y))))
- (
Re (((x
- y)
.|. (z
- y))
+ ((z
- y)
.|. (x
- y))))) by
COMPLEX1: 19
.= ((
Re (((x
- y)
.|. (x
- y))
+ ((z
- y)
.|. (z
- y))))
- ((
Re ((x
- y)
.|. (z
- y)))
+ (
Re ((z
- y)
.|. (x
- y))))) by
COMPLEX1: 8
.= ((
Re (((x
- y)
.|. (x
- y))
+ ((z
- y)
.|. (z
- y))))
- ((
Re ((x
- y)
.|. (z
- y)))
+ (
Re (((x
- y)
.|. (z
- y))
*' )))) by
Th32
.= ((
Re (((x
- y)
.|. (x
- y))
+ ((z
- y)
.|. (z
- y))))
- ((
Re ((x
- y)
.|. (z
- y)))
+ (
Re ((x
- y)
.|. (z
- y))))) by
COMPLEX1: 27
.= ((
Re (((x
- y)
.|. (x
- y))
+ ((z
- y)
.|. (z
- y))))
- (
0
+ (
Re ((x
- y)
.|. (z
- y))))) by
A1,
Lm3
.= ((
Re (((x
- y)
.|. (x
- y))
+ ((z
- y)
.|. (z
- y))))
-
0 ) by
A1,
Lm3
.= (
Re (((x
- y)
.|. (x
- y))
+ ((z
- y)
.|. (z
- y))));
hence thesis by
A2,
Th29;
end;
theorem ::
COMPLEX2:78
Th76: a
<> b & b
<> c implies (
angle (a,b,c))
= (
angle ((
Rotate (a,r)),(
Rotate (b,r)),(
Rotate (c,r))))
proof
set cb = (c
- b), ab = (a
- b);
set rc = (
Rotate (c,r)), rb = (
Rotate (b,r)), ra = (
Rotate (a,r));
set rcb = ((
Rotate (c,r))
- (
Rotate (b,r))), rab = ((
Rotate (a,r))
- (
Rotate (b,r)));
assume that
A1: a
<> b and
A2: b
<> c;
A3:
0
<= (
angle (a,b,c)) & (
angle (a,b,c))
< (2
*
PI ) by
Th68;
cb
<>
0 by
A2;
then
consider cbi be
Integer such that
A4: (
Arg (
Rotate (cb,r)))
= (((2
*
PI )
* cbi)
+ (r
+ (
Arg cb))) by
Th52;
ab
<>
0 by
A1;
then
consider abi be
Integer such that
A5: (
Arg (
Rotate (ab,r)))
= (((2
*
PI )
* abi)
+ (r
+ (
Arg ab))) by
Th52;
A6:
0
<= (
angle ((
Rotate (a,r)),(
Rotate (b,r)),(
Rotate (c,r)))) & (
angle ((
Rotate (a,r)),(
Rotate (b,r)),(
Rotate (c,r))))
< (2
*
PI ) by
Th68;
rab
= (
Rotate (ab,r)) by
Th57;
then
A7: ((
Arg rcb)
- (
Arg rab))
= (((((2
*
PI )
* cbi)
+ r)
+ (
Arg cb))
- ((((2
*
PI )
* abi)
+ r)
+ (
Arg ab))) by
A5,
A4,
Th57
.= (((
Arg cb)
- (
Arg ab))
+ ((2
*
PI )
* (cbi
- abi)));
per cases ;
suppose ((
Arg (c
- b))
- (
Arg (a
- b)))
>=
0 ;
then
A8: (
angle (a,b,c))
= ((
Arg (c
- b))
- (
Arg (a
- b))) by
Def4;
thus (
angle (a,b,c))
= (
angle ((
Rotate (a,r)),(
Rotate (b,r)),(
Rotate (c,r))))
proof
per cases ;
suppose ((
Arg rcb)
- (
Arg rab))
>=
0 ;
then (
angle (ra,rb,rc))
= ((
Arg rcb)
- (
Arg rab)) by
Def4;
hence thesis by
A3,
A6,
A7,
A8,
Th2;
end;
suppose ((
Arg rcb)
- (
Arg rab))
<
0 ;
then (
angle (ra,rb,rc))
= ((((
Arg cb)
- (
Arg ab))
+ ((2
*
PI )
* (cbi
- abi)))
+ (2
*
PI )) by
A7,
Def4
.= (((
Arg cb)
- (
Arg ab))
+ ((2
*
PI )
* ((cbi
- abi)
+ 1)));
hence thesis by
A3,
A6,
A8,
Th2;
end;
end;
end;
suppose ((
Arg cb)
- (
Arg ab))
<
0 ;
then
A9: (
angle (a,b,c))
= ((2
*
PI )
+ ((
Arg cb)
- (
Arg ab))) by
Def4;
thus thesis
proof
per cases ;
suppose ((
Arg rcb)
- (
Arg rab))
>=
0 ;
then (
angle (ra,rb,rc))
= (((2
*
PI )
+ ((
Arg cb)
- (
Arg ab)))
+ ((2
*
PI )
* ((cbi
- abi)
+ (
- 1)))) by
A7,
Def4;
hence thesis by
A3,
A6,
A9,
Th2;
end;
suppose ((
Arg rcb)
- (
Arg rab))
<
0 ;
then (
angle (ra,rb,rc))
= ((((
Arg cb)
- (
Arg ab))
+ ((2
*
PI )
* (cbi
- abi)))
+ (2
*
PI )) by
A7,
Def4
.= (((2
*
PI )
+ ((
Arg cb)
- (
Arg ab)))
+ ((2
*
PI )
* (cbi
- abi)));
hence thesis by
A3,
A6,
A9,
Th2;
end;
end;
end;
end;
theorem ::
COMPLEX2:79
Th77: (
angle (a,b,a))
=
0
proof
((
Arg (a
- b))
- (
Arg (a
- b)))
=
0 ;
hence thesis by
Def4;
end;
Lm4: (
angle (x,y,z))
<>
0 implies (
angle (z,y,x))
= ((2
*
PI )
- (
angle (x,y,z)))
proof
assume
A1: (
angle (x,y,z))
<>
0 ;
now
per cases ;
case
A2: ((
Arg (x
- y))
- (
Arg (z
- y)))
>
0 ;
then (
- (
- ((
Arg (x
- y))
- (
Arg (z
- y)))))
>
0 ;
then (
angle (x,y,z))
= ((2
*
PI )
+ ((
Arg (z
- y))
- (
Arg (x
- y)))) by
Def4
.= ((2
*
PI )
- ((
Arg (x
- y))
- (
Arg (z
- y))));
hence thesis by
A2,
Def4;
end;
case
A3: ((
Arg (x
- y))
- (
Arg (z
- y)))
<=
0 ;
((
Arg (x
- y))
- (
Arg (z
- y)))
<>
0 by
A1,
Def4;
then
A4: (
angle (z,y,x))
= ((2
*
PI )
- ((
Arg (z
- y))
- (
Arg (x
- y)))) by
A3,
Def4;
(
- (
- ((
Arg (x
- y))
- (
Arg (z
- y)))))
<=
0 by
A3;
then ((
angle (x,y,z))
+ (
angle (z,y,x)))
= (((2
*
PI )
- ((
Arg (z
- y))
- (
Arg (x
- y))))
+ ((
Arg (z
- y))
- (
Arg (x
- y)))) by
A4,
Def4
.= (2
*
PI );
hence thesis;
end;
end;
hence thesis;
end;
theorem ::
COMPLEX2:80
Th78: (
angle (a,b,c))
<>
0 iff ((
angle (a,b,c))
+ (
angle (c,b,a)))
= (2
*
PI )
proof
hereby
assume (
angle (a,b,c))
<>
0 ;
then (
angle (c,b,a))
= ((2
*
PI )
- (
angle (a,b,c))) by
Lm4;
hence ((
angle (a,b,c))
+ (
angle (c,b,a)))
= (2
*
PI );
end;
assume ((
angle (a,b,c))
+ (
angle (c,b,a)))
= (2
*
PI ) & (
angle (a,b,c))
=
0 ;
hence contradiction by
Th68;
end;
theorem ::
COMPLEX2:81
(
angle (a,b,c))
<>
0 implies (
angle (c,b,a))
<>
0
proof
assume (
angle (a,b,c))
<>
0 ;
then
A1: ((
angle (a,b,c))
+ (
angle (c,b,a)))
= (2
*
PI ) by
Th78;
assume not thesis;
hence contradiction by
A1,
Th68;
end;
theorem ::
COMPLEX2:82
(
angle (a,b,c))
=
PI implies (
angle (c,b,a))
=
PI
proof
assume
A1: (
angle (a,b,c))
=
PI ;
then ((
angle (a,b,c))
+ (
angle (c,b,a)))
= (
0
+ (2
*
PI )) by
Th78,
COMPTRIG: 5;
hence thesis by
A1;
end;
theorem ::
COMPLEX2:83
Th81: a
<> b & a
<> c & b
<> c implies (
angle (a,b,c))
<>
0 or (
angle (b,c,a))
<>
0 or (
angle (c,a,b))
<>
0
proof
assume that
A1: a
<> b & a
<> c and
A2: b
<> c;
A3: (b
- a)
<>
0 & (a
- c)
<>
0 by
A1;
(c
- b)
<>
0 by
A2;
then
A4: (
Arg (c
- b))
<
PI iff (
Arg (
- (c
- b)))
>=
PI by
Th14;
A5: (
- (b
- a))
= (a
- b) & (
- (a
- c))
= (c
- a);
A6: (
- (c
- a))
= (a
- c);
assume
A7: not thesis;
then
A8: (
Arg (a
- c))
= (
Arg (b
- c)) by
Th72;
(
Arg (b
- a))
= (
Arg (c
- a)) by
A7,
Th72;
then (
Arg (a
- b))
= (
Arg (a
- c)) by
A3,
A5,
A6,
Th62;
hence thesis by
A7,
A8,
A4,
Th72;
end;
Lm5: (
Im a)
=
0 & (
Re a)
>
0 &
0
< (
Arg b) & (
Arg b)
<
PI implies (((
angle (a,
0c ,b))
+ (
angle (
0c ,b,a)))
+ (
angle (b,a,
0c )))
=
PI &
0
< (
angle (
0c ,b,a)) &
0
< (
angle (b,a,
0c ))
proof
assume that
A1: (
Im a)
=
0 and
A2: (
Re a)
>
0 and
A3:
0
< (
Arg b) and
A4: (
Arg b)
<
PI ;
a
= ((
Re a)
+ (
0
*
<i> )) by
A1,
COMPLEX1: 13;
then
A5: (
Arg a)
=
0 by
A2,
COMPTRIG: 35;
then
A6: ((
Arg a)
- (
Arg (
- a)))
= ((
Arg a)
- ((
Arg a)
+
PI )) by
A2,
Th12,
COMPLEX1: 4,
COMPTRIG: 5
.= (
-
PI );
((
Arg (b
-
0c ))
- (
Arg (a
-
0c )))
>=
0 by
A3,
A5;
then
A7: (
angle (a,
0c ,b))
= ((
Arg b)
- (
Arg a)) by
Def4;
(
Arg b)
in
].
0 ,
PI .[ by
A3,
A4,
XXREAL_1: 4;
then
A8: (
Im b)
>
0 by
Th16;
then
A9: ((
Arg b)
- (
Arg (
- b)))
= ((
Arg b)
- ((
Arg b)
+
PI )) by
A4,
Th12,
COMPLEX1: 4
.= (
-
PI );
A10: (
Im (a
- b))
= ((
Im a)
- (
Im b)) by
COMPLEX1: 19
.= (
- (
Im b)) by
A1;
then
A11: (
Arg (a
- b))
>
PI by
A8,
Th22;
then (
Arg (b
- a))
<=
PI by
A8,
A10,
Th15,
COMPLEX1: 4;
then
A12: (
- (
Arg (b
- a)))
>= (
-
PI ) by
XREAL_1: 24;
A13: ((
Arg (a
- b))
- (
Arg (b
- a)))
= ((
Arg (a
- b))
- (
Arg (
- (a
- b))))
.= ((
Arg (a
- b))
- ((
Arg (a
- b))
-
PI )) by
A8,
A10,
A11,
Th12,
COMPLEX1: 4
.=
PI ;
(
Arg (
- a))
= ((
Arg a)
+
PI ) by
A2,
A5,
Th12,
COMPLEX1: 4,
COMPTRIG: 5
.=
PI by
A5;
then ((
Arg (
- a))
+ (
- (
Arg (b
- a))))
>= ((
0
-
PI )
+
PI ) by
A12,
XREAL_1: 7;
then
A14: (
angle (b,a,
0c ))
= ((
Arg (
0c
- a))
- (
Arg (b
- a))) by
Def4;
now
let a,b be
Complex such that
A15: (
Im a)
=
0 and
A16: (
Re a)
>
0 and
A17:
0
< (
Arg b) & (
Arg b)
<
PI ;
A18: ((
Re b)
+ (
- (
Re a)))
< ((
Re b)
+
0 ) by
A16,
XREAL_1: 8;
set ba = (b
- a);
set B = (
Arg b), BA = (
Arg ba), mb =
|.b.|, mba =
|.(b
- a).|;
A19: (
Re (b
- a))
= ((
Re b)
- (
Re a)) by
COMPLEX1: 19;
(b
- a)
= ((mba
* (
cos BA))
+ ((mba
* (
sin BA))
*
<i> )) & (b
- a)
= ((
Re ba)
+ ((
Im ba)
*
<i> )) by
COMPTRIG: 62,
COMPLEX1: 13;
then
A20: (
Im ba)
= (mba
* (
sin BA)) by
COMPLEX1: 77;
set Rb = (
Re b), Rba = (
Re ba), Ib = (
Im b), Iba = (
Im ba);
A21: (
Im (b
- a))
= ((
Im b)
- (
Im a)) by
COMPLEX1: 19
.= (
Im b) by
A15;
then
A22: mb
= (
sqrt ((Rb
^2 )
+ (Ib
^2 ))) & mba
= (
sqrt ((Rba
^2 )
+ (Ib
^2 ))) by
COMPLEX1:def 12;
A23: (Rb
^2 )
>=
0 & (Ib
^2 )
>=
0 by
XREAL_1: 63;
A24: (Rba
^2 )
>=
0 & (Ib
^2 )
>=
0 by
XREAL_1: 63;
(
Arg b)
in
].
0 ,
PI .[ by
A17,
XXREAL_1: 4;
then
A25: (
Im b)
>
0 by
Th16;
then
A26: mb
>=
0 by
COMPLEX1: 4,
COMPLEX1: 47;
A27: mba
>=
0 by
A25,
A21,
COMPLEX1: 4,
COMPLEX1: 47;
A28: (
sin BA)
>
0 by
A25,
A21,
COMPTRIG: 45;
A29: mb
<>
0 by
A25,
COMPLEX1: 4,
COMPLEX1: 47;
b
= ((mb
* (
cos B))
+ ((mb
* (
sin B))
*
<i> )) & b
= ((
Re b)
+ ((
Im b)
*
<i> )) by
COMPTRIG: 62,
COMPLEX1: 13;
then (
Im b)
= (mb
* (
sin B)) by
COMPLEX1: 77;
then
A30: (mba
/ mb)
= ((
sin B)
/ (
sin BA)) by
A21,
A20,
A29,
A28,
XCMPLX_1: 94;
per cases ;
suppose
A31:
0
< (
Re ba);
then (Rb
^2 )
> (Rba
^2 ) by
A19,
A18,
SQUARE_1: 16;
then ((Rb
^2 )
+ (Ib
^2 ))
> ((Rba
^2 )
+ (Ib
^2 )) by
XREAL_1: 8;
then mb
> mba by
A22,
A24,
SQUARE_1: 27;
then (mba
/ mb)
< 1 by
A27,
XREAL_1: 189;
then (((
sin B)
/ (
sin BA))
* (
sin BA))
< (1
* (
sin BA)) by
A28,
A30,
XREAL_1: 68;
then
A32: (
sin B)
< (1
* (
sin BA)) by
A28,
XCMPLX_1: 87;
B
in
].
0 , (
PI
/ 2).[ & BA
in
].
0 , (
PI
/ 2).[ by
A25,
A21,
A19,
A18,
A31,
COMPTRIG: 41;
then BA
> B by
A32,
Th6;
then (BA
+ (
- B))
> (B
+ (
- B)) by
XREAL_1: 8;
hence ((
Arg ba)
- (
Arg b))
>
0 ;
end;
suppose
A33:
0
= Rba;
then ba
= (
0
+ (Iba
*
<i> )) by
COMPLEX1: 13;
then
A34: BA
= (
PI
/ 2) by
A25,
A21,
COMPTRIG: 37;
B
in
].
0 , (
PI
/ 2).[ by
A16,
A25,
A19,
A33,
COMPTRIG: 41;
then B
< BA by
A34,
XXREAL_1: 4;
then (B
+ (
- B))
< (BA
+ (
- B)) by
XREAL_1: 8;
hence ((
Arg ba)
- (
Arg b))
>
0 ;
end;
suppose
A35:
0
> (
Re ba);
thus ((
Arg ba)
- (
Arg b))
>
0
proof
per cases ;
suppose
0
< (
Re b);
then B
in
].
0 , (
PI
/ 2).[ by
A25,
COMPTRIG: 41;
then
A36: B
< (
PI
/ 2) by
XXREAL_1: 4;
BA
in
].(
PI
/ 2),
PI .[ by
A25,
A21,
A35,
COMPTRIG: 42;
then BA
> (
PI
/ 2) by
XXREAL_1: 4;
then BA
> B by
A36,
XXREAL_0: 2;
then (B
+ (
- B))
< (BA
+ (
- B)) by
XREAL_1: 8;
hence thesis;
end;
suppose
0
= (
Re b);
then b
= (
0
+ (Ib
*
<i> )) by
COMPLEX1: 13;
then
A37: B
= (
PI
/ 2) by
A25,
COMPTRIG: 37;
BA
in
].(
PI
/ 2),
PI .[ by
A25,
A21,
A35,
COMPTRIG: 42;
then B
< BA by
A37,
XXREAL_1: 4;
then (B
+ (
- B))
< (BA
+ (
- B)) by
XREAL_1: 8;
hence thesis;
end;
suppose
A38:
0
> (
Re b);
then (Rb
^2 )
< (Rba
^2 ) by
A19,
A18,
SQUARE_1: 44;
then ((Rb
^2 )
+ (Ib
^2 ))
< ((Rba
^2 )
+ (Ib
^2 )) by
XREAL_1: 8;
then mb
< mba by
A22,
A23,
SQUARE_1: 27;
then (mba
/ mb)
> 1 by
A26,
A29,
XREAL_1: 187;
then (((
sin B)
/ (
sin BA))
* (
sin BA))
> (1
* (
sin BA)) by
A28,
A30,
XREAL_1: 68;
then
A39: (
sin B)
> (1
* (
sin BA)) by
A28,
XCMPLX_1: 87;
A40: B
in
].(
PI
/ 2),
PI .[ by
A25,
A38,
COMPTRIG: 42;
BA
in
].(
PI
/ 2),
PI .[ by
A25,
A21,
A35,
COMPTRIG: 42;
then BA
> B by
A40,
A39,
Th7;
then (BA
+ (
- B))
> (B
+ (
- B)) by
XREAL_1: 8;
hence thesis;
end;
end;
end;
end;
then ((
Arg (b
- a))
- (
Arg b))
>
0 by
A1,
A2,
A3,
A4;
then ((
Arg (
- (a
- b)))
- (
Arg b))
>
0 ;
then (((
Arg (a
- b))
-
PI )
- (
Arg b))
>
0 by
A8,
A10,
A11,
Th12,
COMPLEX1: 4;
then
A41: ((
Arg (a
- b))
- ((
Arg b)
+
PI ))
>
0 ;
then ((
Arg (a
- b))
- (
Arg (
- b)))
>
0 by
A4,
A8,
Th12,
COMPLEX1: 4;
then (
angle (
0c ,b,a))
= ((
Arg (a
- b))
- (
Arg (
0c
- b))) by
Def4;
hence (((
angle (a,
0c ,b))
+ (
angle (
0c ,b,a)))
+ (
angle (b,a,
0c )))
= (((((
Arg b)
- (
Arg (
- b)))
- (
Arg a))
+ (
Arg (a
- b)))
+ ((
Arg (
- a))
- (
Arg (b
- a)))) by
A7,
A14
.=
PI by
A9,
A6,
A13;
((
Arg (a
- b))
- (
Arg (
0c
- b)))
>
0 by
A4,
A8,
A41,
Th12,
COMPLEX1: 4;
hence
0
< (
angle (
0c ,b,a)) by
Def4;
A42: (
Arg a)
>=
0 by
COMPTRIG: 34;
(2
*
PI )
> (
0
+ (
Arg (a
- b))) by
COMPTRIG: 34;
then
A43: ((2
*
PI )
- (
Arg (a
- b)))
>
0 by
XREAL_1: 20;
((
Arg (
- a))
- ((
Arg (a
- b))
-
PI ))
= ((
Arg a)
+ ((2
*
PI )
- (
Arg (a
- b)))) by
A6;
hence thesis by
A14,
A13,
A43,
A42;
end;
theorem ::
COMPLEX2:84
Th82: a
<> b & b
<> c &
0
< (
angle (a,b,c)) & (
angle (a,b,c))
<
PI implies (((
angle (a,b,c))
+ (
angle (b,c,a)))
+ (
angle (c,a,b)))
=
PI &
0
< (
angle (b,c,a)) &
0
< (
angle (c,a,b))
proof
assume that
A1: a
<> b and
A2: b
<> c and
A3:
0
< (
angle (a,b,c)) and
A4: (
angle (a,b,c))
<
PI ;
A5: (c
- b)
<>
0 by
A2;
set r = (
- (
Arg (a
+ (
- b))));
set A = (
Rotate ((a
+ (
- b)),r)), B = (
Rotate ((c
+ (
- b)),r));
A6: (
Rotate (
0c ,r))
=
0c by
Th50;
A7: (c
+ (
- b))
<> (a
+ (
- b)) by
A3,
Th77;
A8: (
angle (b,c,a))
= (
angle ((b
+ (
- b)),(c
+ (
- b)),(a
+ (
- b)))) by
Th70
.= (
angle (
0c ,B,A)) by
A6,
A7,
A5,
Th76;
A9: (
angle ((a
+ (
- b)),
0c ,(c
+ (
- b))))
= (
angle ((a
+ (
- b)),(b
+ (
- b)),(c
+ (
- b))))
.= (
angle (a,b,c)) by
Th70;
A10: (a
- b)
<>
0 by
A1;
then
A11: (
angle ((a
+ (
- b)),
0c ,(c
+ (
- b))))
= (
angle (A,
0c ,B)) by
A6,
A5,
Th76;
(a
+ (
- b))
<>
0c by
A1;
then
|.(a
+ (
- b)).|
>
0 by
COMPLEX1: 47;
then
A12: (
Im A)
=
0 & (
Re A)
>
0 by
COMPLEX1: 12,
SIN_COS: 31;
then
A13: (
Arg A)
=
0c by
Th19;
then ((
Arg (B
-
0c ))
- (
Arg (A
-
0c )))
>=
0 by
COMPTRIG: 34;
then
A14: (
angle (a,b,c))
= (
Arg B) by
A9,
A11,
A13,
Def4;
A15: (
angle (c,a,b))
= (
angle ((c
+ (
- b)),(a
+ (
- b)),(b
+ (
- b)))) by
Th70
.= (
angle (B,A,
0c )) by
A6,
A10,
A7,
Th76;
hence (((
angle (a,b,c))
+ (
angle (b,c,a)))
+ (
angle (c,a,b)))
=
PI by
A3,
A4,
A9,
A11,
A12,
A14,
A8,
Lm5;
thus
0
< (
angle (b,c,a)) by
A3,
A4,
A12,
A14,
A8,
Lm5;
thus thesis by
A3,
A4,
A12,
A14,
A15,
Lm5;
end;
theorem ::
COMPLEX2:85
Th83: a
<> b & b
<> c & (
angle (a,b,c))
>
PI implies (((
angle (a,b,c))
+ (
angle (b,c,a)))
+ (
angle (c,a,b)))
= (5
*
PI ) & (
angle (b,c,a))
>
PI & (
angle (c,a,b))
>
PI
proof
assume that
A1: a
<> b & b
<> c and
A2: (
angle (a,b,c))
>
PI ;
A3: (
angle (c,b,a))
<
PI
proof
assume not thesis;
then ((
angle (a,b,c))
+ (
angle (c,b,a)))
> (
PI
+
PI ) by
A2,
XREAL_1: 8;
hence contradiction by
A2,
Th78,
COMPTRIG: 5;
end;
A4: ((
angle (a,b,c))
+ (
angle (c,b,a)))
= ((2
*
PI )
+
0 ) by
A2,
Th78,
COMPTRIG: 5;
then
A5: (
angle (c,b,a))
<>
0 by
Th68;
A6:
0
<= (
angle (c,b,a)) by
Th68;
then (
angle (b,a,c))
>
0 by
A1,
A5,
A3,
Th82;
then
A7: ((
angle (c,a,b))
+ (
angle (b,a,c)))
= ((2
*
PI )
+
0 ) by
Th78;
(
angle (a,c,b))
>
0 by
A1,
A6,
A5,
A3,
Th82;
then ((
angle (b,c,a))
+ (
angle (a,c,b)))
= ((2
*
PI )
+
0 ) by
Th78;
then (((
angle (a,b,c))
+ (
angle (b,c,a)))
+ (
angle (c,a,b)))
= ((((2
*
PI )
+ (2
*
PI ))
+ (2
*
PI ))
- (((
angle (c,b,a))
+ (
angle (b,a,c)))
+ (
angle (a,c,b)))) by
A4,
A7;
hence
A8: (((
angle (a,b,c))
+ (
angle (b,c,a)))
+ (
angle (c,a,b)))
= (((((2
*
PI )
+ (2
*
PI ))
+
PI )
+
PI )
-
PI ) by
A1,
A6,
A5,
A3,
Th82
.= (5
*
PI );
A9: (
angle (a,b,c))
< (2
*
PI ) by
Th68;
(
angle (b,c,a))
< (2
*
PI ) by
Th68;
then
A10: (((2
*
PI )
+ (2
*
PI ))
+
PI )
= (5
*
PI ) & ((
angle (a,b,c))
+ (
angle (b,c,a)))
< ((2
*
PI )
+ (2
*
PI )) by
A9,
XREAL_1: 8;
A11: (((2
*
PI )
+
PI )
+ (2
*
PI ))
= (5
*
PI );
hereby
assume (
angle (b,c,a))
<=
PI ;
then
A12: ((
angle (a,b,c))
+ (
angle (b,c,a)))
< ((2
*
PI )
+
PI ) by
A9,
XREAL_1: 8;
(
angle (c,a,b))
< (2
*
PI ) by
Th68;
hence contradiction by
A8,
A11,
A12,
XREAL_1: 8;
end;
assume (
angle (c,a,b))
<=
PI ;
hence contradiction by
A8,
A10,
XREAL_1: 8;
end;
Lm6: (
Im a)
=
0 & (
Re a)
>
0 & (
Arg b)
=
PI implies (((
angle (a,
0 ,b))
+ (
angle (
0 ,b,a)))
+ (
angle (b,a,
0 )))
=
PI &
0
= (
angle (
0 ,b,a)) &
0
= (
angle (b,a,
0 ))
proof
assume that
A1: (
Im a)
=
0 and
A2: (
Re a)
>
0 and
A3: (
Arg b)
=
PI ;
A4: (
Im (a
- b))
= ((
Im a)
- (
Im b)) by
COMPLEX1: 19
.= (
- (
Im b)) by
A1;
A5: ((
Re b)
+
0 )
< (
Re a) by
A2,
A3,
Th20;
then ((
Re a)
- (
Re b))
>
0 by
XREAL_1: 20;
then
A6: (
Re (a
- b))
>
0 by
COMPLEX1: 19;
a
= ((
Re a)
+ (
0
*
<i> )) by
A1,
COMPLEX1: 13;
then
A7: (
Arg a)
=
0 by
A2,
COMPTRIG: 35;
then
A8: ((
Arg (b
-
0c ))
- (
Arg (a
-
0c )))
>
0 by
A3,
COMPTRIG: 5;
(
- (
- ((
Re a)
- (
Re b))))
>
0 by
A5,
XREAL_1: 20;
then ((
Re b)
- (
Re a))
<
0 ;
then
A9: (
Re (b
- a))
<
0 by
COMPLEX1: 19;
A10: (
Im (b
- a))
= ((
Im b)
- (
Im a)) by
COMPLEX1: 19
.=
0 by
A1,
A3,
Th20;
then
A11: (
- (
Arg (b
- a)))
= (
-
PI ) by
A9,
Th20;
A12: (
Arg (b
- a))
=
PI by
A9,
A10,
Th20;
A13: (
Arg (
- b))
= ((
Arg b)
-
PI ) by
A3,
Lm1,
Th12,
COMPTRIG: 5;
A14: (
Im b)
=
0 by
A3,
Th20;
then
A15: (
Arg (a
- b))
=
0 by
A4,
A6,
Th19;
(
Arg (
- a))
= ((
Arg a)
+
PI ) by
A2,
A7,
Th12,
COMPLEX1: 4,
COMPTRIG: 5
.=
PI by
A7;
then
A16: (
angle (b,a,
0c ))
= ((
Arg (
0c
- a))
- (
Arg (b
- a))) by
A11,
Def4;
A17: ((
Arg a)
- (
Arg (
- a)))
= ((
Arg a)
- ((
Arg a)
+
PI )) by
A2,
A7,
Th12,
COMPLEX1: 4,
COMPTRIG: 5
.= (
-
PI );
A18: (
Arg (
- b))
= ((
Arg b)
-
PI ) by
A3,
Lm1,
Th12,
COMPTRIG: 5;
then
A19: ((
Arg (a
- b))
- (
Arg (
0c
- b)))
=
0 by
A3,
A14,
A4,
A6,
Th19;
then (
angle (
0c ,b,a))
= ((
Arg (a
- b))
- (
Arg (
- b))) by
Def4;
hence
A20: (((
angle (a,
0 ,b))
+ (
angle (
0 ,b,a)))
+ (
angle (b,a,
0 )))
= ((((
Arg b)
- (
Arg a))
+ ((
Arg (a
- b))
- (
Arg (
- b))))
+ ((
Arg (
0
- a))
- (
Arg (b
- a)))) by
A8,
A16,
Def4
.= (((((
Arg b)
- (
Arg (
- b)))
- (
Arg a))
+ (
Arg (a
- b)))
+ ((
Arg (
- a))
- (
Arg (b
- a))))
.=
PI by
A15,
A12,
A13,
A17;
(((
Arg (a
- b))
+
PI )
- (
Arg b))
=
0 by
A3,
A14,
A4,
A6,
Th19;
then
A21: (
angle (
0c ,b,a))
= ((
Arg (a
- b))
- (
Arg (
0c
- b))) by
A18,
Def4;
thus
0
= (
angle (
0 ,b,a)) by
A19,
Def4;
(
angle (a,
0c ,b))
= ((
Arg b)
- (
Arg a)) by
A8,
Def4;
hence thesis by
A3,
A7,
A19,
A21,
A20,
XCMPLX_1: 3;
end;
theorem ::
COMPLEX2:86
Th84: a
<> b & b
<> c & (
angle (a,b,c))
=
PI implies (
angle (b,c,a))
=
0 & (
angle (c,a,b))
=
0
proof
assume that
A1: a
<> b and
A2: b
<> c and
A3: (
angle (a,b,c))
=
PI ;
A4: (c
- b)
<>
0 by
A2;
set r = (
- (
Arg (a
+ (
- b))));
set A = (
Rotate ((a
+ (
- b)),r)), B = (
Rotate ((c
+ (
- b)),r));
A5: (
Rotate (
0c ,r))
=
0c by
Th50;
A6: (
angle ((a
+ (
- b)),
0c ,(c
+ (
- b))))
= (
angle ((a
+ (
- b)),(b
+ (
- b)),(c
+ (
- b))))
.= (
angle (a,b,c)) by
Th70;
A7: (c
+ (
- b))
<> (a
+ (
- b)) by
A3,
Th77,
COMPTRIG: 5;
A8: (a
- b)
<>
0 by
A1;
then
A9: (
angle ((a
+ (
- b)),
0c ,(c
+ (
- b))))
= (
angle (A,
0c ,B)) by
A5,
A4,
Th76;
(a
+ (
- b))
<>
0c by
A1;
then
|.(a
+ (
- b)).|
>
0 by
COMPLEX1: 47;
then
A10: (
Im A)
=
0 & (
Re A)
>
0 by
COMPLEX1: 12,
SIN_COS: 31;
then
A11: (
Arg A)
=
0c by
Th19;
then ((
Arg (B
-
0c ))
- (
Arg (A
-
0c )))
>=
0 by
COMPTRIG: 34;
then
A12: (
angle (a,b,c))
= (
Arg B) by
A6,
A9,
A11,
Def4;
(
angle (b,c,a))
= (
angle ((b
+ (
- b)),(c
+ (
- b)),(a
+ (
- b)))) by
Th70
.= (
angle (
0c ,B,A)) by
A5,
A7,
A4,
Th76;
hence (
angle (b,c,a))
=
0 by
A3,
A10,
A12,
Lm6;
(
angle (c,a,b))
= (
angle ((c
+ (
- b)),(a
+ (
- b)),(b
+ (
- b)))) by
Th70
.= (
angle (B,A,
0c )) by
A5,
A8,
A7,
Th76;
hence thesis by
A3,
A10,
A12,
Lm6;
end;
theorem ::
COMPLEX2:87
Th85: a
<> b & a
<> c & b
<> c & (
angle (a,b,c))
=
0 implies (
angle (b,c,a))
=
0 & (
angle (c,a,b))
=
PI or (
angle (b,c,a))
=
PI & (
angle (c,a,b))
=
0
proof
assume that
A1: a
<> b and
A2: a
<> c and
A3: b
<> c and
A4: (
angle (a,b,c))
=
0 ;
per cases by
A1,
A2,
A3,
A4,
Th81;
suppose
A5: (
angle (b,c,a))
<>
0 ;
A6:
0
<= (
angle (b,c,a)) by
Th68;
thus thesis
proof
per cases by
XXREAL_0: 1;
suppose (
angle (b,c,a))
<
PI ;
hence thesis by
A2,
A3,
A4,
A5,
A6,
Th82;
end;
suppose (
angle (b,c,a))
=
PI ;
hence thesis by
A2,
A3,
Th84;
end;
suppose (
angle (b,c,a))
>
PI ;
hence thesis by
A2,
A3,
A4,
Th83,
COMPTRIG: 5;
end;
end;
end;
suppose
A7: (
angle (c,a,b))
<>
0 ;
A8:
0
<= (
angle (c,a,b)) by
Th68;
thus thesis
proof
per cases by
XXREAL_0: 1;
suppose (
angle (c,a,b))
<
PI ;
hence thesis by
A1,
A2,
A4,
A7,
A8,
Th82;
end;
suppose (
angle (c,a,b))
=
PI ;
hence thesis by
A1,
A2,
Th84;
end;
suppose (
angle (c,a,b))
>
PI ;
hence thesis by
A1,
A2,
A4,
Th83,
COMPTRIG: 5;
end;
end;
end;
end;
theorem ::
COMPLEX2:88
(((
angle (a,b,c))
+ (
angle (b,c,a)))
+ (
angle (c,a,b)))
=
PI or (((
angle (a,b,c))
+ (
angle (b,c,a)))
+ (
angle (c,a,b)))
= (5
*
PI ) iff a
<> b & a
<> c & b
<> c
proof
hereby
assume
A1: (((
angle (a,b,c))
+ (
angle (b,c,a)))
+ (
angle (c,a,b)))
=
PI or (((
angle (a,b,c))
+ (
angle (b,c,a)))
+ (
angle (c,a,b)))
= (5
*
PI );
per cases by
A1;
suppose
A2: (((
angle (a,b,c))
+ (
angle (b,c,a)))
+ (
angle (c,a,b)))
=
PI ;
thus a
<> b & a
<> c & b
<> c
proof
assume
A3: not (a
<> b & a
<> c & b
<> c);
per cases by
A3;
suppose
A4: a
= b;
A5: (
angle (a,c,a))
=
0 by
Th77;
not ((
angle (a,a,c))
=
0 & (
angle (c,a,a))
=
0 ) by
A2,
A4,
Th77,
COMPTRIG: 5;
hence contradiction by
A2,
A4,
A5,
Th78,
COMPTRIG: 5;
end;
suppose
A6: a
= c;
A7: (
angle (a,b,a))
=
0 by
Th77;
not ((
angle (a,a,b))
=
0 & (
angle (b,a,a))
=
0 ) by
A2,
A6,
Th77,
COMPTRIG: 5;
hence contradiction by
A2,
A6,
A7,
Th78,
COMPTRIG: 5;
end;
suppose
A8: b
= c;
A9: (
angle (b,a,b))
=
0 by
Th77;
not ((
angle (a,b,b))
=
0 & (
angle (b,b,a))
=
0 ) by
A2,
A8,
Th77,
COMPTRIG: 5;
hence contradiction by
A2,
A8,
A9,
Th78,
COMPTRIG: 5;
end;
end;
end;
suppose
A10: (((
angle (a,b,c))
+ (
angle (b,c,a)))
+ (
angle (c,a,b)))
= (5
*
PI );
A11: ((2
+ 2)
*
PI )
< (5
*
PI ) by
COMPTRIG: 5,
XREAL_1: 68;
then
A12: ((2
*
PI )
+ (2
*
PI ))
< (5
*
PI );
thus a
<> b & a
<> c & b
<> c
proof
assume
A13: not (a
<> b & a
<> c & b
<> c);
per cases by
A13;
suppose a
= b;
then (
angle (b,c,a))
=
0 by
Th77;
then
A14: ((
angle (a,b,c))
+ (
angle (b,c,a)))
< (2
*
PI ) by
Th68;
(
angle (c,a,b))
< (2
*
PI ) by
Th68;
hence contradiction by
A10,
A12,
A14,
XREAL_1: 8;
end;
suppose
A15: b
= c;
(
angle (a,b,c))
< (2
*
PI ) & (
angle (b,c,a))
< (2
*
PI ) by
Th68;
then
A16: ((
angle (a,b,c))
+ (
angle (b,c,a)))
< ((2
*
PI )
+ (2
*
PI )) by
XREAL_1: 8;
(
angle (c,a,b))
=
0 by
A15,
Th77;
hence contradiction by
A10,
A11,
A16;
end;
suppose a
= c;
then (
angle (a,b,c))
=
0 by
Th77;
then
A17: ((
angle (a,b,c))
+ (
angle (b,c,a)))
< (2
*
PI ) by
Th68;
(
angle (c,a,b))
< (2
*
PI ) by
Th68;
hence contradiction by
A10,
A12,
A17,
XREAL_1: 8;
end;
end;
end;
end;
assume that
A18: a
<> b and
A19: a
<> c and
A20: b
<> c;
per cases by
XXREAL_0: 1;
suppose
A21: (
angle (a,b,c))
=
0 ;
((
angle (b,c,a))
+ (
angle (c,a,b)))
=
PI
proof
per cases by
A18,
A19,
A20,
A21,
Th85;
suppose (
angle (b,c,a))
=
0 & (
angle (c,a,b))
=
PI ;
hence thesis;
end;
suppose (
angle (b,c,a))
=
PI & (
angle (c,a,b))
=
0 ;
hence thesis;
end;
end;
hence thesis by
A21;
end;
suppose
A22:
0
<> (
angle (a,b,c)) & (
angle (a,b,c))
<
PI ;
0
<= (
angle (a,b,c)) by
Th68;
hence thesis by
A18,
A20,
A22,
Th82;
end;
suppose
A23:
0
<> (
angle (a,b,c)) & (
angle (a,b,c))
=
PI ;
then (
angle (b,c,a))
=
0 by
A18,
A20,
Th84;
hence thesis by
A18,
A20,
A23,
Th84;
end;
suppose
0
<> (
angle (a,b,c)) & (
angle (a,b,c))
>
PI ;
hence thesis by
A18,
A20,
Th83;
end;
end;