asympt_1.miz



    begin

    reserve c,c1,c2,d,d1,d2,e,y for Real,

k,n,m,N,n1,N0,N1,N2,N3,M for Element of NAT ,

x for set;

    

     Lm1: for n be Nat st n >= 2 holds (2 to_power n) > (n + 1)

    proof

      defpred P[ Nat] means (2 to_power $1) > ($1 + 1);

      

       A1: for k be Nat st k >= 2 & P[k] holds P[(k + 1)]

      proof

        let k be Nat such that k >= 2 and

         A2: (2 to_power k) > (k + 1);

        (2 to_power (k + 1)) = ((2 to_power k) * (2 to_power 1)) by POWER: 27

        .= ((2 to_power k) * 2) by POWER: 25

        .= ((2 to_power k) + (2 to_power k));

        then

         A3: (2 to_power (k + 1)) > ((k + 1) + (2 to_power k)) by A2, XREAL_1: 6;

        reconsider k as Element of NAT by ORDINAL1:def 12;

        (2 to_power k) >= ( 0 + 1) by INT_1: 7, POWER: 34;

        then ((k + 1) + (2 to_power k)) >= ((k + 1) + 1) by XREAL_1: 6;

        hence thesis by A3, XXREAL_0: 2;

      end;

      (2 to_power 2) = (2 ^2 ) by POWER: 46

      .= 4;

      then

       A4: P[2];

      for n be Nat st n >= 2 holds P[n] from NAT_1:sch 8( A4, A1);

      hence thesis;

    end;

    reconsider zz = 0 as Element of REAL by XREAL_0:def 1;

    theorem :: ASYMPT_1:1

    for t,t1 be Real_Sequence st (t . 0 ) = 0 & (for n st n > 0 holds (t . n) = (((((12 * (n to_power 3)) * ( log (2,n))) - (5 * (n ^2 ))) + (( log (2,n)) ^2 )) + 36)) & (for n st n > 0 holds (t1 . n) = ((n to_power 3) * ( log (2,n)))) holds ex s,s1 be eventually-positive Real_Sequence st s = t & s1 = t1 & s in ( Big_Oh s1)

    proof

      ex s be Real_Sequence st (s . 0 ) = 0 & for n st n > 0 holds (s . n) = ((( log (2,n)) ^2 ) + 36)

      proof

        defpred P[ Element of NAT , Real] means ($1 = 0 implies $2 = 0 ) & ($1 > 0 implies $2 = ((( log (2,$1)) ^2 ) + 36));

        

         A1: for x be Element of NAT holds ex y be Element of REAL st P[x, y]

        proof

          let n;

          per cases ;

            suppose n = zz;

            hence thesis;

          end;

            suppose

             A2: n > 0 ;

            ((( log (2,n)) ^2 ) + 36) in REAL by XREAL_0:def 1;

            hence thesis by A2;

          end;

        end;

        consider h be sequence of REAL such that

         A3: for x be Element of NAT holds P[x, (h . x)] from FUNCT_2:sch 3( A1);

        take h;

        thus thesis by A3;

      end;

      then

      consider q be Real_Sequence such that

       A4: (q . 0 ) = 0 and

       A5: for n st n > 0 holds (q . n) = ((( log (2,n)) ^2 ) + 36);

      q is eventually-positive

      proof

        take 1;

        let n be Nat;

        

         A6: n in NAT by ORDINAL1:def 12;

        

         A7: ((( log (2,n)) ^2 ) + 36) > ( 0 + 0 ) by XREAL_1: 8, XREAL_1: 63;

        assume n >= 1;

        hence thesis by A5, A7, A6;

      end;

      then

      reconsider q as eventually-positive Real_Sequence;

      let f,g be Real_Sequence such that

       A8: (f . 0 ) = 0 and

       A9: for n st n > 0 holds (f . n) = (((((12 * (n to_power 3)) * ( log (2,n))) - (5 * (n ^2 ))) + (( log (2,n)) ^2 )) + 36) and

       A10: for n st n > 0 holds (g . n) = ((n to_power 3) * ( log (2,n)));

      

       A11: g is eventually-positive

      proof

        take 2;

        let n be Nat;

        assume

         A12: n >= 2;

        then ( log (2,n)) >= ( log (2,2)) by PRE_FF: 10;

        then

         A13: ( log (2,n)) >= 1 by POWER: 52;

        

         A14: n in NAT by ORDINAL1:def 12;

        (n to_power 3) > 0 by A12, POWER: 34;

        then ((n to_power 3) * ( log (2,n))) > ((n to_power 3) * 0 ) by A13, XREAL_1: 68;

        hence thesis by A10, A12, A14;

      end;

      4 = (2 ^2 )

      .= (2 to_power 2) by POWER: 46;

      

      then

       A15: ( log (2,4)) = (2 * ( log (2,2))) by POWER: 55

      .= (2 * 1) by POWER: 52

      .= 2;

      

       A16: for n st n >= 4 holds (7 * (n ^2 )) > (q . n)

      proof

        defpred P[ Nat] means (7 * ($1 ^2 )) > (q . $1);

        

         A17: for k be Nat st k >= 4 & P[k] holds P[(k + 1)]

        proof

          let k be Nat such that

           A18: k >= 4 and

           A19: (7 * (k ^2 )) > (q . k);

          

           A20: (q . (k + 1)) = ((( log (2,(k + 1))) ^2 ) + 36) by A5;

          k >= 2 by A18, XXREAL_0: 2;

          then

           A21: (2 to_power k) > (k + 1) by Lm1;

          (k + 1) > (k + 0 ) by XREAL_1: 8;

          then (2 to_power k) > k by A21, XXREAL_0: 2;

          then ( log (2,(2 to_power k))) > ( log (2,k)) by A18, POWER: 57;

          then (k * ( log (2,2))) > ( log (2,k)) by POWER: 55;

          then

           A22: (k * 1) > ( log (2,k)) by POWER: 52;

          ( log (2,k)) >= 2 by A15, A18, PRE_FF: 10;

          then (14 * k) > (2 * ( log (2,k))) by A22, XREAL_1: 98;

          then (((7 * 2) * k) + 7) > ((2 * ( log (2,k))) + 1) by XREAL_1: 8;

          then

           A23: ((( log (2,k)) ^2 ) + ((2 * ( log (2,k))) + 1)) < ((( log (2,k)) ^2 ) + ((7 * (2 * k)) + 7)) by XREAL_1: 6;

          ( log (2,(k + k))) = ( log (2,(2 * k)));

          then ( log (2,(k + k))) = (( log (2,k)) + ( log (2,2))) by A18, POWER: 53;

          

          then (( log (2,(k + k))) ^2 ) = ((( log (2,k)) + 1) ^2 ) by POWER: 52

          .= (((( log (2,k)) ^2 ) + (2 * ( log (2,k)))) + 1);

          then

           A24: ((( log (2,(k + k))) ^2 ) + 36) < (((( log (2,k)) ^2 ) + ((7 * (2 * k)) + 7)) + 36) by A23, XREAL_1: 6;

          k >= 1 by A18, XXREAL_0: 2;

          then (k + k) >= (k + 1) by XREAL_1: 6;

          then

           A25: ( log (2,(k + k))) >= ( log (2,(k + 1))) by PRE_FF: 10;

          (k + 1) >= (4 + 0 ) by A18, XREAL_1: 8;

          then ( log (2,(k + 1))) >= 2 by A15, PRE_FF: 10;

          then (( log (2,(k + k))) ^2 ) >= (( log (2,(k + 1))) ^2 ) by A25, SQUARE_1: 15;

          then

           A26: (q . (k + 1)) <= ((( log (2,(k + k))) ^2 ) + 36) by A20, XREAL_1: 6;

          (7 * ((k + 1) ^2 )) = ((7 * (k ^2 )) + ((7 * (2 * k)) + (7 * 1)));

          then

           A27: (7 * ((k + 1) ^2 )) > ((q . k) + ((7 * (2 * k)) + (7 * 1))) by A19, XREAL_1: 6;

          k in NAT by ORDINAL1:def 12;

          then (q . k) = ((( log (2,k)) ^2 ) + 36) by A5, A18;

          then ((q . k) + ((7 * (2 * k)) + (7 * 1))) > (q . (k + 1)) by A26, A24, XXREAL_0: 2;

          hence thesis by A27, XXREAL_0: 2;

        end;

        (q . 4) = ((2 ^2 ) + 36) by A5, A15

        .= 40;

        then

         A28: P[4];

        for n be Nat st n >= 4 holds P[n] from NAT_1:sch 8( A28, A17);

        hence thesis;

      end;

      reconsider g as eventually-positive Real_Sequence by A11;

      f is eventually-positive

      proof

        ( log (2,3)) > ( log (2,2)) by POWER: 57;

        then

         A29: ( log (2,3)) > 1 by POWER: 52;

        take 3;

        let n be Nat;

        assume

         A30: n >= 3;

        then

         A31: (n to_power 2) > 0 by POWER: 34;

        n > 1 by A30, XXREAL_0: 2;

        then

         A32: (n to_power 3) > (n to_power 2) by POWER: 39;

        

         A33: n in NAT by ORDINAL1:def 12;

        ( log (2,n)) >= ( log (2,3)) by A30, PRE_FF: 10;

        then ( log (2,n)) > 1 by A29, XXREAL_0: 2;

        then ((n to_power 3) * ( log (2,n))) > ((n to_power 2) * 1) by A32, A31, XREAL_1: 98;

        then (12 * ((n to_power 3) * ( log (2,n)))) > (5 * (n to_power 2)) by A31, XREAL_1: 98;

        then ((12 * (n to_power 3)) * ( log (2,n))) > ((5 * (n ^2 )) + 0 ) by POWER: 46;

        then (((12 * (n to_power 3)) * ( log (2,n))) - (5 * (n ^2 ))) > 0 by XREAL_1: 20;

        then ((((12 * (n to_power 3)) * ( log (2,n))) - (5 * (n ^2 ))) + (( log (2,n)) ^2 )) > ( 0 + 0 ) by XREAL_1: 8, XREAL_1: 63;

        then (((((12 * (n to_power 3)) * ( log (2,n))) - (5 * (n ^2 ))) + (( log (2,n)) ^2 )) + 36) > ( 0 + 0 );

        hence thesis by A9, A30, A33;

      end;

      then

      reconsider f as eventually-positive Real_Sequence;

      take f, g;

      ex s be Real_Sequence st (s . 0 ) = 0 & for n st n > 0 holds (s . n) = (((12 * (n to_power 3)) * ( log (2,n))) - (5 * (n ^2 )))

      proof

        defpred P[ Element of NAT , Real] means ($1 = 0 implies $2 = 0 ) & ($1 > 0 implies $2 = (((12 * ($1 to_power 3)) * ( log (2,$1))) - (5 * ($1 ^2 ))));

        

         A34: for x be Element of NAT holds ex y be Element of REAL st P[x, y]

        proof

          let n;

          

           A35: n = zz or n > 0 ;

          (((12 * (n to_power 3)) * ( log (2,n))) - (5 * (n ^2 ))) in REAL by XREAL_0:def 1;

          hence thesis by A35;

        end;

        consider h be sequence of REAL such that

         A36: for x be Element of NAT holds P[x, (h . x)] from FUNCT_2:sch 3( A34);

        take h;

        thus (h . 0 ) = 0 by A36;

        let n;

        thus thesis by A36;

      end;

      then

      consider p be Real_Sequence such that

       A37: (p . 0 ) = 0 and

       A38: for n st n > 0 holds (p . n) = (((12 * (n to_power 3)) * ( log (2,n))) - (5 * (n ^2 )));

      p is eventually-positive

      proof

        ( log (2,3)) > ( log (2,2)) by POWER: 57;

        then

         A39: ( log (2,3)) > 1 by POWER: 52;

        take 3;

        let n be Nat;

        assume

         A40: n >= 3;

        then

         A41: (n to_power 2) > 0 by POWER: 34;

        n > 1 by A40, XXREAL_0: 2;

        then

         A42: (n to_power 3) > (n to_power 2) by POWER: 39;

        

         A43: n in NAT by ORDINAL1:def 12;

        ( log (2,n)) >= ( log (2,3)) by A40, PRE_FF: 10;

        then ( log (2,n)) > 1 by A39, XXREAL_0: 2;

        then ((n to_power 3) * ( log (2,n))) > ((n to_power 2) * 1) by A42, A41, XREAL_1: 98;

        then (12 * ((n to_power 3) * ( log (2,n)))) > (5 * (n to_power 2)) by A41, XREAL_1: 98;

        then ((12 * (n to_power 3)) * ( log (2,n))) > ((5 * (n ^2 )) + 0 ) by POWER: 46;

        then (((12 * (n to_power 3)) * ( log (2,n))) - (5 * (n ^2 ))) > 0 by XREAL_1: 20;

        hence thesis by A38, A40, A43;

      end;

      then

      reconsider p as eventually-positive Real_Sequence;

      set t = ( max (p,q));

      consider N be Nat such that

       A44: for n be Nat st n >= N holds (t . n) > 0 by ASYMPT_0:def 4;

      

       A45: for n st n >= 4 holds (p . n) > (7 * (n ^2 ))

      proof

        let n;

        assume

         A46: n >= 4;

        then n > 1 by XXREAL_0: 2;

        then

         A47: (n to_power 3) > (n to_power 2) by POWER: 39;

        ( log (2,n)) >= ( log (2,4)) by A46, PRE_FF: 10;

        then

         A48: ( log (2,n)) > 1 by A15, XXREAL_0: 2;

        (n to_power 2) > 0 by A46, POWER: 34;

        then ((n to_power 3) * ( log (2,n))) > ((n to_power 2) * 1) by A47, A48, XREAL_1: 98;

        then (12 * ((n to_power 3) * ( log (2,n)))) > (12 * (n to_power 2)) by XREAL_1: 68;

        then

         A49: ((12 * (n to_power 3)) * ( log (2,n))) > (12 * (n ^2 )) by POWER: 46;

        (p . n) = (((12 * (n to_power 3)) * ( log (2,n))) - (5 * (n ^2 ))) by A38, A46;

        then (p . n) > ((12 * (n ^2 )) - (5 * (n ^2 ))) by A49, XREAL_1: 9;

        hence thesis;

      end;

      

       A50: for n st n >= 4 holds (p . n) > (q . n)

      proof

        let n;

        assume

         A51: n >= 4;

        then

         A52: (7 * (n ^2 )) > (q . n) by A16;

        (p . n) > (7 * (n ^2 )) by A45, A51;

        hence thesis by A52, XXREAL_0: 2;

      end;

      

       A53: for n st n >= 4 holds (t . n) = (p . n)

      proof

        let n;

        assume n >= 4;

        then

         A54: (p . n) > (q . n) by A50;

        

        thus (t . n) = ( max ((p . n),(q . n))) by ASYMPT_0:def 7

        .= (p . n) by A54, XXREAL_0:def 10;

      end;

      reconsider mN = ( max (4,N)) as Element of NAT by ORDINAL1:def 12;

       A55:

      now

        let n;

        assume

         A56: n >= mN;

        

         A57: ( max (4,N)) >= 4 by XXREAL_0: 25;

        

        then (t . n) = (p . n) by A53, A56, XXREAL_0: 2

        .= (((12 * (n to_power 3)) * ( log (2,n))) - (5 * (n ^2 ))) by A38, A56, A57;

        then (t . n) <= (((12 * (n to_power 3)) * ( log (2,n))) - 0 ) by XREAL_1: 13;

        then (t . n) <= (12 * ((n to_power 3) * ( log (2,n))));

        hence (t . n) <= (12 * (g . n)) by A10, A56, A57;

        ( max (4,N)) >= N by XXREAL_0: 25;

        then n >= N by A56, XXREAL_0: 2;

        hence (t . n) >= 0 by A44;

      end;

      t is Element of ( Funcs ( NAT , REAL )) by FUNCT_2: 8;

      then

       A58: t in ( Big_Oh g) by A55;

      for n be Nat holds (f . n) = ((p . n) + (q . n))

      proof

        let n be Nat;

        

         A59: n in NAT by ORDINAL1:def 12;

        thus (f . n) = ((p . n) + (q . n))

        proof

          per cases ;

            suppose n = 0 ;

            hence thesis by A8, A37, A4;

          end;

            suppose

             A60: n > 0 ;

            then (p . n) = (((12 * (n to_power 3)) * ( log (2,n))) - (5 * (n ^2 ))) by A38, A59;

            

            then ((p . n) + (q . n)) = ((((12 * (n to_power 3)) * ( log (2,n))) - (5 * (n ^2 ))) + ((( log (2,n)) ^2 ) + 36)) by A5, A60, A59

            .= (((((12 * (n to_power 3)) * ( log (2,n))) - (5 * (n ^2 ))) + (( log (2,n)) ^2 )) + 36);

            hence thesis by A9, A60, A59;

          end;

        end;

      end;

      

      then

       A61: ( Big_Oh f) = ( Big_Oh (p + q)) by SEQ_1: 7

      .= ( Big_Oh t) by ASYMPT_0: 9;

      f in ( Big_Oh f) by ASYMPT_0: 10;

      hence thesis by A61, A58, ASYMPT_0: 12;

    end;

    

     Lm2: for a be logbase Real, f be Real_Sequence st a > 1 & (for n st n > 0 holds (f . n) = ( log (a,n))) holds f is eventually-positive

    proof

      let a be logbase Real, f be Real_Sequence such that

       A1: a > 1 and

       A2: for n st n > 0 holds (f . n) = ( log (a,n));

      set N = [/a\];

      

       A3: [/a\] >= a by INT_1:def 7;

      

       A4: a > 0 by ASYMPT_0:def 1;

      then

       A5: N > 0 by INT_1:def 7;

      then

      reconsider N as Element of NAT by INT_1: 3;

      

       A6: a <> 1 by ASYMPT_0:def 1;

      now

        

         A7: ( log (a,N)) >= ( log (a,a)) by A1, A3, PRE_FF: 10;

        let n be Nat;

        

         A8: n in NAT by ORDINAL1:def 12;

        assume

         A9: n >= (N + 1);

        (N + 1) > (N + 0 ) by XREAL_1: 8;

        then n > N by A9, XXREAL_0: 2;

        then ( log (a,n)) > ( log (a,N)) by A1, A5, POWER: 57;

        then ( log (a,n)) > 0 by A4, A6, A7, POWER: 52;

        hence (f . n) > 0 by A2, A9, A8;

      end;

      hence thesis;

    end;

    theorem :: ASYMPT_1:2

    for a,b be logbase Real, f,g be Real_Sequence st a > 1 & b > 1 & (for n st n > 0 holds (f . n) = ( log (a,n))) & (for n st n > 0 holds (g . n) = ( log (b,n))) holds ex s,s1 be eventually-positive Real_Sequence st s = f & s1 = g & ( Big_Oh s) = ( Big_Oh s1)

    proof

      let a,b be logbase Real, f,g be Real_Sequence such that

       A1: a > 1 and

       A2: b > 1 and

       A3: for n st n > 0 holds (f . n) = ( log (a,n)) and

       A4: for n st n > 0 holds (g . n) = ( log (b,n));

      reconsider g as eventually-positive Real_Sequence by A2, A4, Lm2;

      reconsider f as eventually-positive Real_Sequence by A1, A3, Lm2;

      take f, g;

      

       A5: a <> 1 by ASYMPT_0:def 1;

      

       A6: b <> 1 by ASYMPT_0:def 1;

      

       A7: b > 0 by ASYMPT_0:def 1;

      

       A8: a > 0 by ASYMPT_0:def 1;

      now

        let x be object;

        hereby

          assume x in ( Big_Oh f);

          then

          consider t be Element of ( Funcs ( NAT , REAL )) such that

           A9: x = t and

           A10: ex c, N st c > 0 & for n st n >= N holds (t . n) <= (c * (f . n)) & (t . n) >= 0 ;

          consider c, N such that

           A11: c > 0 and

           A12: for n st n >= N holds (t . n) <= (c * (f . n)) & (t . n) >= 0 by A10;

           A13:

          now

            take N1 = (N + 1);

            let n;

            assume

             A14: n >= N1;

            

            then

             A15: (f . n) = ( log (a,n)) by A3

            .= (( log (a,b)) * ( log (b,n))) by A8, A5, A7, A6, A14, POWER: 56;

            (N + 1) > (N + 0 ) by XREAL_1: 8;

            then

             A16: n > N by A14, XXREAL_0: 2;

            then (t . n) <= (c * (f . n)) by A12;

            then (t . n) <= ((c * ( log (a,b))) * ( log (b,n))) by A15;

            hence (t . n) <= ((c * ( log (a,b))) * (g . n)) by A4, A14;

            thus (t . n) >= 0 by A12, A16;

          end;

          ( log (a,b)) > ( log (a,1)) by A1, A2, POWER: 57;

          then ( log (a,b)) > 0 by A8, A5, POWER: 51;

          then (c * ( log (a,b))) > (c * 0 ) by A11, XREAL_1: 68;

          hence x in ( Big_Oh g) by A9, A13;

        end;

        assume x in ( Big_Oh g);

        then

        consider t be Element of ( Funcs ( NAT , REAL )) such that

         A17: x = t and

         A18: ex c, N st c > 0 & for n st n >= N holds (t . n) <= (c * (g . n)) & (t . n) >= 0 ;

        consider c, N such that

         A19: c > 0 and

         A20: for n st n >= N holds (t . n) <= (c * (g . n)) & (t . n) >= 0 by A18;

         A21:

        now

          take N1 = (N + 1);

          let n;

          assume

           A22: n >= N1;

          

          then

           A23: (g . n) = ( log (b,n)) by A4

          .= (( log (b,a)) * ( log (a,n))) by A8, A5, A7, A6, A22, POWER: 56;

          (N + 1) > (N + 0 ) by XREAL_1: 8;

          then

           A24: n > N by A22, XXREAL_0: 2;

          then (t . n) <= (c * (g . n)) by A20;

          then (t . n) <= ((c * ( log (b,a))) * ( log (a,n))) by A23;

          hence (t . n) <= ((c * ( log (b,a))) * (f . n)) by A3, A22;

          thus (t . n) >= 0 by A20, A24;

        end;

        ( log (b,a)) > ( log (b,1)) by A1, A2, POWER: 57;

        then ( log (b,a)) > 0 by A7, A6, POWER: 51;

        then (c * ( log (b,a))) > (c * 0 ) by A19, XREAL_1: 68;

        hence x in ( Big_Oh f) by A17, A21;

      end;

      hence thesis by TARSKI: 2;

    end;

    definition

      let a,b,c be Real;

      :: ASYMPT_1:def1

      func seq_a^ (a,b,c) -> Real_Sequence means

      : Def1: (it . n) = (a to_power ((b * n) + c));

      existence

      proof

        deffunc F( Element of NAT ) = ( In ((a to_power ((b * $1) + c)), REAL ));

        consider h be sequence of REAL such that

         A1: for n be Element of NAT holds (h . n) = F(n) from FUNCT_2:sch 4;

        take h;

        let n;

        

        thus (h . n) = ( In ((a to_power ((b * n) + c)), REAL )) by A1

        .= ( In ((a to_power ((b * n) + c)), REAL ))

        .= (a to_power ((b * n) + c));

      end;

      uniqueness

      proof

        let j,k be Real_Sequence such that

         A2: for n holds (j . n) = (a to_power ((b * n) + c)) and

         A3: for n holds (k . n) = (a to_power ((b * n) + c));

        now

          let n;

          

          thus (j . n) = (a to_power ((b * n) + c)) by A2

          .= (k . n) by A3;

        end;

        hence thesis by FUNCT_2: 63;

      end;

    end

    registration

      let a be positive Real, b,c be Real;

      cluster ( seq_a^ (a,b,c)) -> eventually-positive;

      coherence

      proof

        take 0 ;

        set f = ( seq_a^ (a,b,c));

        let n be Nat;

        

         A1: n in NAT by ORDINAL1:def 12;

        assume n >= 0 ;

        (f . n) = (a to_power ((b * n) + c)) by Def1, A1;

        hence thesis by POWER: 34;

      end;

    end

    

     Lm3: for a,b,c be Real st a > 0 & c > 0 & c <> 1 holds (a to_power b) = (c to_power (b * ( log (c,a))))

    proof

      let a,b,c be Real;

      assume that

       A1: a > 0 and

       A2: c > 0 and

       A3: c <> 1;

      

       A4: (a to_power b) > 0 by A1, POWER: 34;

      ( log (c,(a to_power b))) = (b * ( log (c,a))) by A1, A2, A3, POWER: 55;

      hence thesis by A2, A3, A4, POWER:def 3;

    end;

    theorem :: ASYMPT_1:3

    for a,b be positive Real st a < b holds not ( seq_a^ (b,1, 0 )) in ( Big_Oh ( seq_a^ (a,1, 0 )))

    proof

      let a,b be positive Real such that

       A1: a < b;

      set g = ( seq_a^ (a,1, 0 ));

      set f = ( seq_a^ (b,1, 0 ));

      hereby

        set d = (( log (2,b)) - ( log (2,a)));

        assume f in ( Big_Oh g);

        then

        consider s be Element of ( Funcs ( NAT , REAL )) such that

         A2: s = f and

         A3: ex c, N st c > 0 & for n st n >= N holds (s . n) <= (c * (g . n)) & (s . n) >= 0 ;

        consider c, N such that

         A4: c > 0 and

         A5: for n st n >= N holds (s . n) <= (c * (g . n)) & (s . n) >= 0 by A3;

        set N0 = [/(( log (2,c)) / d)\];

        set N1 = ( max (N,N0));

        

         A6: N1 >= N by XXREAL_0: 25;

        

         A7: N1 = N or N1 = N0 by XXREAL_0: 16;

        

         A8: N1 >= N0 by XXREAL_0: 25;

        reconsider N1 as Element of NAT by A6, A7, INT_1: 3;

        set n = (N1 + 1);

        set e = (2 to_power (n * ( log (2,a))));

        

         A9: e > 0 by POWER: 34;

        

         A10: N0 >= (( log (2,c)) / d) by INT_1:def 7;

        ( log (2,b)) > (( log (2,a)) + 0 ) by A1, POWER: 57;

        then

         A11: d > 0 by XREAL_1: 20;

        

         A12: (N1 + 1) > (N1 + 0 ) by XREAL_1: 8;

        then n > N0 by A8, XXREAL_0: 2;

        then n > (( log (2,c)) / d) by A10, XXREAL_0: 2;

        then (n * d) > ((( log (2,c)) / d) * d) by A11, XREAL_1: 68;

        then (n * d) > ( log (2,c)) by A11, XCMPLX_1: 87;

        then (2 to_power (n * d)) > (2 to_power ( log (2,c))) by POWER: 39;

        then (2 to_power ((n * ( log (2,b))) - (n * ( log (2,a))))) > c by A4, POWER:def 3;

        then ((2 to_power (n * ( log (2,b)))) / e) > c by POWER: 29;

        then (((2 to_power (n * ( log (2,b)))) / e) * e) > (c * e) by A9, XREAL_1: 68;

        then (2 to_power (n * ( log (2,b)))) > (c * e) by A9, XCMPLX_1: 87;

        then (b to_power n) > (c * (2 to_power (n * ( log (2,a))))) by Lm3;

        then

         A13: (b to_power n) > (c * (a to_power n)) by Lm3;

        n > N by A6, A12, XXREAL_0: 2;

        then (f . n) <= (c * (g . n)) by A2, A5;

        then (b to_power ((1 * n) + 0 )) <= (c * (g . n)) by Def1;

        hence contradiction by A13, Def1;

      end;

    end;

    definition

      :: ASYMPT_1:def2

      func seq_logn -> Real_Sequence means

      : Def2: (it . 0 ) = 0 & for n st n > 0 holds (it . n) = ( log (2,n));

      existence

      proof

        defpred P[ Element of NAT , Real] means ($1 = 0 implies $2 = 0 ) & ($1 > 0 implies $2 = ( log (2,$1)));

        

         A1: for x be Element of NAT holds ex y be Element of REAL st P[x, y]

        proof

          let n;

          per cases ;

            suppose n = zz;

            hence thesis;

          end;

            suppose

             A2: n > 0 ;

            ( log (2,n)) in REAL by XREAL_0:def 1;

            hence thesis by A2;

          end;

        end;

        consider h be sequence of REAL such that

         A3: for x be Element of NAT holds P[x, (h . x)] from FUNCT_2:sch 3( A1);

        take h;

        thus (h . 0 ) = 0 by A3;

        let n;

        thus thesis by A3;

      end;

      uniqueness

      proof

        let j,k be Real_Sequence such that

         A4: (j . 0 ) = 0 and

         A5: for n st n > 0 holds (j . n) = ( log (2,n)) and

         A6: (k . 0 ) = 0 and

         A7: for n st n > 0 holds (k . n) = ( log (2,n));

        now

          let n;

          per cases ;

            suppose n = 0 ;

            hence (j . n) = (k . n) by A4, A6;

          end;

            suppose

             A8: n > 0 ;

            then (j . n) = ( log (2,n)) by A5;

            hence (j . n) = (k . n) by A7, A8;

          end;

        end;

        hence thesis by FUNCT_2: 63;

      end;

    end

    definition

      let a be Real;

      :: ASYMPT_1:def3

      func seq_n^ (a) -> Real_Sequence means

      : Def3: (it . 0 ) = 0 & for n st n > 0 holds (it . n) = (n to_power a);

      existence

      proof

        defpred P[ Element of NAT , Real] means ($1 = 0 implies $2 = 0 ) & ($1 > 0 implies $2 = ($1 to_power a));

        

         A1: for x be Element of NAT holds ex y be Element of REAL st P[x, y]

        proof

          let n;

          per cases ;

            suppose n = zz;

            hence thesis;

          end;

            suppose

             A2: n > 0 ;

            (n to_power a) in REAL by XREAL_0:def 1;

            hence thesis by A2;

          end;

        end;

        consider h be sequence of REAL such that

         A3: for x be Element of NAT holds P[x, (h . x)] from FUNCT_2:sch 3( A1);

        take h;

        thus (h . 0 ) = 0 by A3;

        let n;

        thus thesis by A3;

      end;

      uniqueness

      proof

        let j,k be Real_Sequence such that

         A4: (j . 0 ) = 0 and

         A5: for n st n > 0 holds (j . n) = (n to_power a) and

         A6: (k . 0 ) = 0 and

         A7: for n st n > 0 holds (k . n) = (n to_power a);

        now

          let n;

          per cases ;

            suppose n = 0 ;

            hence (j . n) = (k . n) by A4, A6;

          end;

            suppose

             A8: n > 0 ;

            then (j . n) = (n to_power a) by A5;

            hence (j . n) = (k . n) by A7, A8;

          end;

        end;

        hence thesis by FUNCT_2: 63;

      end;

    end

    registration

      cluster seq_logn -> eventually-positive;

      coherence

      proof

        take 2;

        set f = seq_logn ;

        let n be Nat;

        

         A1: n in NAT by ORDINAL1:def 12;

        assume

         A2: n >= 2;

        then

         A3: ( log (2,n)) >= ( log (2,2)) by PRE_FF: 10;

        (f . n) = ( log (2,n)) by A2, Def2, A1;

        hence thesis by A3, POWER: 52;

      end;

    end

    registration

      let a be Real;

      cluster ( seq_n^ a) -> eventually-positive;

      coherence

      proof

        take 1;

        set f = ( seq_n^ a);

        let n be Nat;

        

         A1: n in NAT by ORDINAL1:def 12;

        assume

         A2: n >= 1;

        then (f . n) = (n to_power a) by Def3, A1;

        hence thesis by A2, POWER: 34;

      end;

    end

    

     Lm4: for f,g be Real_Sequence, n be Nat holds ((f /" g) . n) = ((f . n) / (g . n))

    proof

      let f,g be Real_Sequence, n be Nat;

      

      thus ((f /" g) . n) = ((f . n) * ((g " ) . n)) by SEQ_1: 8

      .= ((f . n) * ((g . n) " )) by VALUED_1: 10

      .= ((f . n) / (g . n));

    end;

    

     Lm5: for f,g be eventually-nonnegative Real_Sequence holds f in ( Big_Oh g) & g in ( Big_Oh f) iff ( Big_Oh f) = ( Big_Oh g)

    proof

      let f,g be eventually-nonnegative Real_Sequence;

      hereby

        assume that

         A1: f in ( Big_Oh g) and

         A2: g in ( Big_Oh f);

        

         A3: ( Big_Oh g) c= ( Big_Oh f) by A2, ASYMPT_0: 11;

        ( Big_Oh f) c= ( Big_Oh g) by A1, ASYMPT_0: 11;

        hence ( Big_Oh f) = ( Big_Oh g) by A3, XBOOLE_0:def 10;

      end;

      thus thesis by ASYMPT_0: 10;

    end;

    theorem :: ASYMPT_1:4

    

     Th4: for f,g be eventually-nonnegative Real_Sequence holds ( Big_Oh f) c= ( Big_Oh g) & not ( Big_Oh f) = ( Big_Oh g) iff f in ( Big_Oh g) & not f in ( Big_Omega g)

    proof

      let f,g be eventually-nonnegative Real_Sequence;

      hereby

        assume that

         A1: ( Big_Oh f) c= ( Big_Oh g) and

         A2: not ( Big_Oh f) = ( Big_Oh g);

        

         A3: f in ( Big_Oh f) by ASYMPT_0: 10;

        now

          assume f in ( Big_Omega g);

          then g in ( Big_Oh f) by ASYMPT_0: 19;

          hence contradiction by A1, A2, A3, Lm5;

        end;

        hence f in ( Big_Oh g) & not f in ( Big_Omega g) by A1, A3;

      end;

      assume that

       A4: f in ( Big_Oh g) and

       A5: not f in ( Big_Omega g);

      now

        let x be object;

        assume x in ( Big_Oh f);

        then

        consider t be Element of ( Funcs ( NAT , REAL )) such that

         A6: x = t and

         A7: ex c, N st c > 0 & for n st n >= N holds (t . n) <= (c * (f . n)) & (t . n) >= 0 ;

        consider c, N such that c > 0 and

         A8: for n st n >= N holds (t . n) <= (c * (f . n)) & (t . n) >= 0 by A7;

        now

          reconsider N as Nat;

          take N;

          let n be Nat;

          

           A9: n in NAT by ORDINAL1:def 12;

          assume n >= N;

          hence (t . n) >= 0 by A8, A9;

        end;

        then

         A10: t is eventually-nonnegative;

        t in ( Big_Oh f) by A7;

        hence x in ( Big_Oh g) by A4, A6, A10, ASYMPT_0: 12;

      end;

      hence ( Big_Oh f) c= ( Big_Oh g) by TARSKI:def 3;

      assume ( Big_Oh f) = ( Big_Oh g);

      then g in ( Big_Oh f) by Lm5;

      hence contradiction by A5, ASYMPT_0: 19;

    end;

    

     Lm6: for a,b,c be Real st 0 < a & a <= b & c >= 0 holds (a to_power c) <= (b to_power c)

    proof

      let a,b,c be Real;

      assume that

       A1: 0 < a and

       A2: a <= b and

       A3: c >= 0 ;

      per cases by A3;

        suppose

         A4: c = 0 ;

        then (a to_power c) = 1 by POWER: 24;

        hence thesis by A4, POWER: 24;

      end;

        suppose

         A5: c > 0 ;

        per cases by A2, XXREAL_0: 1;

          suppose a = b;

          hence thesis;

        end;

          suppose a < b;

          hence thesis by A1, A5, POWER: 37;

        end;

      end;

    end;

    

     Lm7: for n be Nat st n >= 4 holds ((2 * n) + 3) < (2 to_power n)

    proof

      defpred P[ Nat] means ((2 * $1) + 3) < (2 to_power $1);

      

       A1: for k be Nat st k >= 4 & P[k] holds P[(k + 1)]

      proof

        let k be Nat such that

         A2: k >= 4 and

         A3: ((2 * k) + 3) < (2 to_power k);

        k > 1 by A2, XXREAL_0: 2;

        then (2 to_power k) > (2 to_power 1) by POWER: 39;

        then (2 to_power k) > 2 by POWER: 25;

        then

         A4: ((2 to_power k) + (2 to_power k)) > (2 + (2 to_power k)) by XREAL_1: 6;

        ((2 * (k + 1)) + 3) = (2 + ((2 * k) + 3));

        then ((2 * (k + 1)) + 3) < (2 + (2 to_power k)) by A3, XREAL_1: 6;

        then ((2 * (k + 1)) + 3) < (2 * (2 to_power k)) by A4, XXREAL_0: 2;

        then ((2 * (k + 1)) + 3) < ((2 to_power 1) * (2 to_power k)) by POWER: 25;

        hence thesis by POWER: 27;

      end;

      

       A5: P[4] by POWER: 62;

      for n be Nat st n >= 4 holds P[n] from NAT_1:sch 8( A5, A1);

      hence thesis;

    end;

    

     Lm8: for n st n >= 6 holds ((n + 1) ^2 ) < (2 to_power n)

    proof

      defpred P[ Nat] means (($1 + 1) ^2 ) < (2 to_power $1);

      

       A1: for k be Nat st k >= 6 & P[k] holds P[(k + 1)]

      proof

        let k be Nat such that

         A2: k >= 6 and

         A3: ((k + 1) ^2 ) < (2 to_power k);

        k >= 4 by A2, XXREAL_0: 2;

        then ((2 * k) + 3) < (2 to_power k) by Lm7;

        then

         A4: (((k + 1) ^2 ) + ((2 * k) + 3)) < (((k + 1) ^2 ) + (2 to_power k)) by XREAL_1: 6;

        (((k + 1) ^2 ) + (2 to_power k)) < ((2 to_power k) + (2 to_power k)) by A3, XREAL_1: 6;

        then (((k + 1) + 1) ^2 ) < (2 * (2 to_power k)) by A4, XXREAL_0: 2;

        then (((k + 1) + 1) ^2 ) < ((2 to_power 1) * (2 to_power k)) by POWER: 25;

        hence thesis by POWER: 27;

      end;

      

       A5: P[6] by POWER: 64;

      for n be Nat st n >= 6 holds P[n] from NAT_1:sch 8( A5, A1);

      hence thesis;

    end;

    

     Lm9: for c be Real st c > 6 holds (c ^2 ) < (2 to_power c)

    proof

      

       A1: 5 = (6 - 1);

      let c be Real such that

       A2: c > 6;

      set i0 = [\c/], i1 = [/c\];

      per cases ;

        suppose i0 = i1;

        then c is Integer by INT_1: 34;

        then

        reconsider c as Element of NAT by A2, INT_1: 3;

        (c + 0 ) < (c + 1) by XREAL_1: 8;

        then

         A3: (c ^2 ) < ((c + 1) ^2 ) by SQUARE_1: 16;

        ((c + 1) ^2 ) < (2 to_power c) by A2, Lm8;

        hence thesis by A3, XXREAL_0: 2;

      end;

        suppose not i0 = i1;

        then

         A4: (i0 + 1) = i1 by INT_1: 41;

        then

         A5: i0 = (i1 - 1);

        

         A6: i1 >= c by INT_1:def 7;

        then

        reconsider i1 as Element of NAT by A2, INT_1: 3;

        i1 > 6 by A2, A6, XXREAL_0: 2;

        then

         A7: i0 > 5 by A1, A5, XREAL_1: 9;

        then

        reconsider i0 as Element of NAT by INT_1: 3;

        i0 <= c by INT_1:def 6;

        then

         A8: (2 to_power i0) <= (2 to_power c) by PRE_FF: 8;

        i1 >= c by INT_1:def 7;

        then

         A9: (i1 ^2 ) >= (c ^2 ) by A2, SQUARE_1: 15;

        i0 >= (5 + 1) by A7, INT_1: 7;

        then (i1 ^2 ) < (2 to_power i0) by A4, Lm8;

        then (c ^2 ) < (2 to_power i0) by A9, XXREAL_0: 2;

        hence thesis by A8, XXREAL_0: 2;

      end;

    end;

    

     Lm10: for e be positive Real, f be Real_Sequence st (for n st n > 0 holds (f . n) = ( log (2,(n to_power e)))) holds (f /" ( seq_n^ e)) is convergent & ( lim (f /" ( seq_n^ e))) = 0

    proof

      let e be positive Real, f be Real_Sequence such that

       A1: for n st n > 0 holds (f . n) = ( log (2,(n to_power e)));

      set g = ( seq_n^ e);

      set h = (f /" g);

       A2:

      now

        let p be Real;

        reconsider p1 = p as Real;

        set i0 = [/((7 / p1) to_power (1 / e))\];

        set i1 = [/((p1 to_power ( - (2 / e))) + 1)\];

        set N = ( max (( max (i0,i1)),2));

        

         A3: N >= ( max (i0,i1)) by XXREAL_0: 25;

        

         A4: N is Integer

        proof

          per cases by XXREAL_0: 16;

            suppose N = ( max (i0,i1));

            hence thesis by XXREAL_0: 16;

          end;

            suppose N = 2;

            hence thesis;

          end;

        end;

        

         A5: ((p to_power ( - (2 / e))) + 1) > ((p to_power ( - (2 / e))) + 0 ) by XREAL_1: 8;

        i1 >= ((p to_power ( - (2 / e))) + 1) by INT_1:def 7;

        then

         A6: i1 > (p to_power ( - (2 / e))) by A5, XXREAL_0: 2;

        assume

         A7: p > 0 ;

        then

         A8: (p1 to_power 2) > 0 by POWER: 34;

        ( max (i0,i1)) >= i1 by XXREAL_0: 25;

        then

         A9: N >= i1 by A3, XXREAL_0: 2;

        

         A10: i0 >= ((7 / p) to_power (1 / e)) by INT_1:def 7;

        ( max (i0,i1)) >= i0 by XXREAL_0: 25;

        then

         A11: N >= i0 by A3, XXREAL_0: 2;

        

         A12: N >= 2 by XXREAL_0: 25;

        

         A13: (p1 to_power ( - (2 / e))) > 0 by A7, POWER: 34;

        

         A14: (7 * (p " )) > (7 * 0 ) by A7, XREAL_1: 68;

        then

         A15: ((7 / p1) to_power (1 / e)) > 0 by POWER: 34;

        N in NAT by A12, A4, INT_1: 3;

        then

        reconsider N as Nat;

        take N;

        let n be Nat;

        set c = (p1 * (n to_power e));

        assume

         A16: n >= N;

        then n >= i0 by A11, XXREAL_0: 2;

        then n >= ((7 / p) to_power (1 / e)) by A10, XXREAL_0: 2;

        then (n to_power e) >= (((7 / p) to_power (1 / e)) to_power e) by A15, Lm6;

        then (n to_power e) >= ((7 / p1) to_power (e * (1 / e))) by A14, POWER: 33;

        then (n to_power e) >= ((7 / p) to_power 1) by XCMPLX_1: 106;

        then (n to_power e) >= (7 / p1) by POWER: 25;

        then (p * (n to_power e)) >= ((7 / p) * p) by A7, XREAL_1: 64;

        then (p * (n to_power e)) >= 7 by A7, XCMPLX_1: 87;

        then (p * (n to_power e)) > 6 by XXREAL_0: 2;

        then

         A17: ((p1 * (n to_power e)) ^2 ) < (2 to_power (p1 * (n to_power e))) by Lm9;

        n >= i1 by A9, A16, XXREAL_0: 2;

        then n > (p to_power ( - (2 / e))) by A6, XXREAL_0: 2;

        then (n to_power e) > ((p to_power ( - (2 / e))) to_power e) by A13, POWER: 37;

        then (n to_power e) > (p1 to_power (( - (2 / e)) * e)) by A7, POWER: 33;

        then (n to_power e) > (p to_power ( - ((2 / e) * e)));

        then (n to_power e) > (p to_power ( - 2)) by XCMPLX_1: 87;

        then ((p to_power 2) * (n to_power e)) > ((p to_power 2) * (p to_power ( - 2))) by A8, XREAL_1: 68;

        then ((p1 to_power 2) * (n to_power e)) > (p1 to_power (2 + ( - 2))) by A7, POWER: 27;

        then ((p1 to_power 2) * (n to_power e)) > 1 by POWER: 24;

        then ((p1 ^2 ) * (n to_power e)) > 1 by POWER: 46;

        then

         A18: (1 / (p * c)) < (1 / 1) by XREAL_1: 88;

        (2 to_power c) > 0 by POWER: 34;

        then

         A19: ((2 to_power c) / (c * p)) < ((2 to_power c) * 1) by A18, XREAL_1: 68;

        

         A20: (n to_power e) > 0 by A12, A16, POWER: 34;

        then (p * (n to_power e)) > (p * 0 ) by A7, XREAL_1: 68;

        then c < ((2 to_power c) / c) by A17, XREAL_1: 81;

        then (n to_power e) < (((2 to_power c) / c) / p) by A7, XREAL_1: 81;

        then (n to_power e) < ((2 to_power c) / (c * p)) by XCMPLX_1: 78;

        then (n to_power e) < (2 to_power c) by A19, XXREAL_0: 2;

        then ( log (2,(n to_power e))) < ( log (2,(2 to_power c))) by A20, POWER: 57;

        then ( log (2,(n to_power e))) < (c * ( log (2,2))) by POWER: 55;

        then ( log (2,(n to_power e))) < (c * 1) by POWER: 52;

        then

         A21: (( log (2,(n to_power e))) / (n to_power e)) < p by A12, A16, POWER: 34, XREAL_1: 83;

        n >= 2 by A12, A16, XXREAL_0: 2;

        then n > 1 by XXREAL_0: 2;

        then (n to_power e) > (n to_power 0 ) by POWER: 39;

        then (n to_power e) > 1 by POWER: 24;

        then ( log (2,(n to_power e))) > ( log (2,1)) by POWER: 57;

        then

         A22: ( log (2,(n to_power e))) > 0 by POWER: 51;

        reconsider nn = n as Element of NAT by ORDINAL1:def 12;

        (h . n) = ((f . n) / (g . nn)) by Lm4

        .= (( log (2,(nn to_power e))) / (g . n)) by A1, A12, A16

        .= (( log (2,(nn to_power e))) / (n to_power e)) by A12, A16, Def3;

        hence |.((h . n) - 0 ).| < p by A20, A21, A22, ABSVALUE:def 1;

      end;

      hence h is convergent by SEQ_2:def 6;

      hence thesis by A2, SEQ_2:def 7;

    end;

    

     Lm11: for e be Real st e > 0 holds ( seq_logn /" ( seq_n^ e)) is convergent & ( lim ( seq_logn /" ( seq_n^ e))) = 0

    proof

      set f = seq_logn ;

      let e be Real;

      assume e > 0 ;

      then

      reconsider e as positive Real;

      set g = ( seq_n^ e);

      set h = (f /" g);

      ex s be Real_Sequence st (s . 0 ) = 0 & for n st n > 0 holds (s . n) = ( log (2,(n to_power e)))

      proof

        defpred P[ Element of NAT , Real] means ($1 = 0 implies $2 = 0 ) & ($1 > 0 implies $2 = ( log (2,($1 to_power e))));

        

         A1: for x be Element of NAT holds ex y be Element of REAL st P[x, y]

        proof

          let n;

          per cases ;

            suppose n = zz;

            hence thesis;

          end;

            suppose

             A2: n > 0 ;

            ( log (2,(n to_power e))) in REAL by XREAL_0:def 1;

            hence thesis by A2;

          end;

        end;

        consider h be sequence of REAL such that

         A3: for x be Element of NAT holds P[x, (h . x)] from FUNCT_2:sch 3( A1);

        take h;

        thus (h . 0 ) = 0 by A3;

        let n;

        thus thesis by A3;

      end;

      then

      consider p be Real_Sequence such that

       A4: (p . 0 ) = 0 and

       A5: for n st n > 0 holds (p . n) = ( log (2,(n to_power e)));

      set q = (p /" g);

      

       A6: q is convergent by A5, Lm10;

      

       A7: 1 = (e / e) by XCMPLX_1: 60

      .= (e * (1 / e));

      

       A8: for n be Nat holds (h . n) = ((1 / e) * (q . n))

      proof

        let n be Nat;

        

         A9: n in NAT by ORDINAL1:def 12;

        

         A10: (h . n) = ((f . n) / (g . n)) by Lm4;

        

         A11: (q . n) = ((p . n) / (g . n)) by Lm4;

        per cases ;

          suppose

           A12: n = 0 ;

          

          then (h . n) = ( 0 / (g . n)) by A10, Def2

          .= ( 0 * (1 / e));

          hence thesis by A4, A11, A12;

        end;

          suppose

           A13: n > 0 ;

          then

           A14: (n to_power e) > 0 by POWER: 34;

          (h . n) = (( log (2,n)) / (g . n)) by A10, A13, Def2, A9

          .= (( log (2,(n to_power (e * (1 / e))))) / (g . n)) by A7, POWER: 25

          .= (( log (2,((n to_power e) to_power (1 / e)))) / (g . n)) by A13, POWER: 33

          .= (((1 / e) * ( log (2,(n to_power e)))) / (g . n)) by A14, POWER: 55

          .= (((1 / e) * ( log (2,(n to_power e)))) * ((g . n) " ))

          .= ((1 / e) * (( log (2,(n to_power e))) * ((g . n) " )))

          .= ((1 / e) * (( log (2,(n to_power e))) / (g . n)));

          hence thesis by A5, A11, A13, A9;

        end;

      end;

      then

       A15: h = ((1 / e) (#) q) by SEQ_1: 9;

      

       A16: ( lim q) = 0 by A5, Lm10;

      ( lim h) = ( lim ((1 / e) (#) q)) by A8, SEQ_1: 9

      .= ((1 / e) * 0 ) by A6, A16, SEQ_2: 8;

      hence thesis by A6, A15, SEQ_2: 7;

    end;

    theorem :: ASYMPT_1:5

    

     Th5: ( Big_Oh seq_logn ) c= ( Big_Oh ( seq_n^ (1 / 2))) & not ( Big_Oh seq_logn ) = ( Big_Oh ( seq_n^ (1 / 2)))

    proof

      set g = ( seq_n^ (1 / 2));

      set f = seq_logn ;

      

       A1: ( lim (f /" g)) = 0 by Lm11;

      

       A2: (f /" g) is convergent by Lm11;

      then not g in ( Big_Oh f) by A1, ASYMPT_0: 16;

      then

       A3: not f in ( Big_Omega g) by ASYMPT_0: 19;

      f in ( Big_Oh g) by A2, A1, ASYMPT_0: 16;

      hence thesis by A3, Th4;

    end;

    theorem :: ASYMPT_1:6

    ( seq_n^ (1 / 2)) in ( Big_Omega seq_logn ) & not seq_logn in ( Big_Omega ( seq_n^ (1 / 2)))

    proof

       seq_logn in ( Big_Oh ( seq_n^ (1 / 2))) by Th4, Th5;

      hence thesis by Th4, Th5, ASYMPT_0: 19;

    end;

    

     Lm12: for f be Real_Sequence holds for N holds (for n st n <= N holds (f . n) >= 0 ) implies ( Sum (f,N)) >= 0

    proof

      let f be Real_Sequence;

      defpred P[ Nat] means (for n st n <= $1 holds (f . n) >= 0 ) implies ( Sum (f,$1)) >= 0 ;

      

       A1: for N be Nat st P[N] holds P[(N + 1)]

      proof

        let N be Nat;

        assume

         A2: (for n st n <= N holds (f . n) >= 0 ) implies ( Sum (f,N)) >= 0 ;

        assume

         A3: for n st n <= (N + 1) holds (f . n) >= 0 ;

         A4:

        now

          let n;

          assume n <= N;

          then (n + 0 ) <= (N + 1) by XREAL_1: 7;

          hence (f . n) >= 0 by A3;

        end;

        (f . (N + 1)) >= 0 by A3;

        then (( Sum (f,N)) + (f . (N + 1))) >= ( 0 + 0 ) by A2, A4;

        then ((( Partial_Sums f) . N) + (f . (N + 1))) >= 0 by SERIES_1:def 5;

        then (( Partial_Sums f) . (N + 1)) >= 0 by SERIES_1:def 1;

        hence thesis by SERIES_1:def 5;

      end;

      

       A5: P[ 0 ]

      proof

        assume for n st n <= 0 holds (f . n) >= 0 ;

        then (f . 0 ) >= 0 ;

        then (( Partial_Sums f) . 0 ) >= 0 by SERIES_1:def 1;

        hence thesis by SERIES_1:def 5;

      end;

      for N be Nat holds P[N] from NAT_1:sch 2( A5, A1);

      hence thesis;

    end;

    

     Lm13: for f,g be Real_Sequence holds for N holds (for n st n <= N holds (f . n) <= (g . n)) implies ( Sum (f,N)) <= ( Sum (g,N))

    proof

      let f,g be Real_Sequence;

      defpred P[ Nat] means (for n st n <= $1 holds (f . n) <= (g . n)) implies ( Sum (f,$1)) <= ( Sum (g,$1));

      

       A1: for N be Nat st P[N] holds P[(N + 1)]

      proof

        let N be Nat;

        assume

         A2: (for n st n <= N holds (f . n) <= (g . n)) implies ( Sum (f,N)) <= ( Sum (g,N));

        assume

         A3: for n st n <= (N + 1) holds (f . n) <= (g . n);

         A4:

        now

          let n;

          assume n <= N;

          then (n + 0 ) <= (N + 1) by XREAL_1: 7;

          hence (f . n) <= (g . n) by A3;

        end;

        (f . (N + 1)) <= (g . (N + 1)) by A3;

        then (( Sum (f,N)) + (f . (N + 1))) <= (( Sum (g,N)) + (g . (N + 1))) by A2, A4, XREAL_1: 7;

        then ((( Partial_Sums f) . N) + (f . (N + 1))) <= (( Sum (g,N)) + (g . (N + 1))) by SERIES_1:def 5;

        then (( Partial_Sums f) . (N + 1)) <= (( Sum (g,N)) + (g . (N + 1))) by SERIES_1:def 1;

        then ( Sum (f,(N + 1))) <= (( Sum (g,N)) + (g . (N + 1))) by SERIES_1:def 5;

        then ( Sum (f,(N + 1))) <= ((( Partial_Sums g) . N) + (g . (N + 1))) by SERIES_1:def 5;

        then ( Sum (f,(N + 1))) <= (( Partial_Sums g) . (N + 1)) by SERIES_1:def 1;

        hence thesis by SERIES_1:def 5;

      end;

      

       A5: P[ 0 ]

      proof

        assume for n st n <= 0 holds (f . n) <= (g . n);

        then (f . 0 ) <= (g . 0 );

        then (( Partial_Sums f) . 0 ) <= (g . 0 ) by SERIES_1:def 1;

        then (( Partial_Sums f) . 0 ) <= (( Partial_Sums g) . 0 ) by SERIES_1:def 1;

        then ( Sum (f, 0 )) <= (( Partial_Sums g) . 0 ) by SERIES_1:def 5;

        hence thesis by SERIES_1:def 5;

      end;

      for N be Nat holds P[N] from NAT_1:sch 2( A5, A1);

      hence thesis;

    end;

    

     Lm14: for f be Real_Sequence, b be Real st (f . 0 ) = 0 & (for n st n > 0 holds (f . n) = b) holds for N be Element of NAT holds ( Sum (f,N)) = (b * N)

    proof

      let f be Real_Sequence, b be Real;

      defpred P[ Nat] means ( Sum (f,$1)) = (b * $1);

      assume that

       A1: (f . 0 ) = 0 and

       A2: for n st n > 0 holds (f . n) = b;

      

       A3: for N be Nat st P[N] holds P[(N + 1)]

      proof

        let N be Nat;

        assume

         A4: ( Sum (f,N)) = (b * N);

        ( Sum (f,(N + 1))) = (( Partial_Sums f) . (N + 1)) by SERIES_1:def 5

        .= ((( Partial_Sums f) . N) + (f . (N + 1))) by SERIES_1:def 1

        .= ((b * N) + (f . (N + 1))) by A4, SERIES_1:def 5

        .= ((b * N) + (b * 1)) by A2

        .= (b * (N + 1));

        hence thesis;

      end;

      (( Partial_Sums f) . 0 ) = 0 by A1, SERIES_1:def 1;

      then

       A5: P[ 0 ] by SERIES_1:def 5;

      for N be Nat holds P[N] from NAT_1:sch 2( A5, A3);

      hence thesis;

    end;

    

     Lm15: for f be Real_Sequence, N,M be Nat holds (( Sum (f,N,M)) + (f . (N + 1))) = ( Sum (f,(N + 1),M))

    proof

      let f be Real_Sequence, N,M be Nat;

      (( Sum (f,N,M)) + (f . (N + 1))) = ((( Sum (f,N)) - ( Sum (f,M))) + (f . (N + 1))) by SERIES_1:def 6

      .= ((( Sum (f,N)) + (f . (N + 1))) + ( - ( Sum (f,M))))

      .= (((( Partial_Sums f) . N) + (f . (N + 1))) + ( - ( Sum (f,M)))) by SERIES_1:def 5

      .= ((( Partial_Sums f) . (N + 1)) + ( - ( Sum (f,M)))) by SERIES_1:def 1

      .= (( Sum (f,(N + 1))) + ( - ( Sum (f,M)))) by SERIES_1:def 5

      .= (( Sum (f,(N + 1))) - ( Sum (f,M)))

      .= ( Sum (f,(N + 1),M)) by SERIES_1:def 6;

      hence thesis;

    end;

    

     Lm16: for f,g be Real_Sequence, M be Element of NAT holds for N st N >= (M + 1) holds (for n st (M + 1) <= n & n <= N holds (f . n) <= (g . n)) implies ( Sum (f,N,M)) <= ( Sum (g,N,M))

    proof

      let f,g be Real_Sequence, M be Element of NAT ;

      defpred P[ Nat] means (for n st (M + 1) <= n & n <= $1 holds (f . n) <= (g . n)) implies ( Sum (f,$1,M)) <= ( Sum (g,$1,M));

      

       A1: for N1 be Nat st N1 >= (M + 1) & P[N1] holds P[(N1 + 1)]

      proof

        let N1 be Nat;

        assume that

         A2: N1 >= (M + 1) and

         A3: (for n st (M + 1) <= n & n <= N1 holds (f . n) <= (g . n)) implies ( Sum (f,N1,M)) <= ( Sum (g,N1,M));

        assume

         A4: for n st (M + 1) <= n & n <= (N1 + 1) holds (f . n) <= (g . n);

         A5:

        now

          let n;

          assume that

           A6: (M + 1) <= n and

           A7: n <= N1;

          (n + 0 ) <= (N1 + 1) by A7, XREAL_1: 7;

          hence (f . n) <= (g . n) by A4, A6;

        end;

        (N1 + 1) >= ((M + 1) + 0 ) by A2, XREAL_1: 7;

        then (f . (N1 + 1)) <= (g . (N1 + 1)) by A4;

        then (( Sum (f,N1,M)) + (f . (N1 + 1))) <= ((g . (N1 + 1)) + ( Sum (g,N1,M))) by A3, A5, XREAL_1: 7;

        then ( Sum (f,(N1 + 1),M)) <= ((g . (N1 + 1)) + ( Sum (g,N1,M))) by Lm15;

        hence thesis by Lm15;

      end;

      

       A8: P[(M + 1)]

      proof

        

         A9: ( Sum (g,(M + 1),M)) = (( Sum (g,(M + 1))) - ( Sum (g,M))) by SERIES_1:def 6

        .= ((( Partial_Sums g) . (M + 1)) - ( Sum (g,M))) by SERIES_1:def 5

        .= (((g . (M + 1)) + (( Partial_Sums g) . M)) - ( Sum (g,M))) by SERIES_1:def 1

        .= (((g . (M + 1)) + ( Sum (g,M))) - ( Sum (g,M))) by SERIES_1:def 5

        .= ((g . (M + 1)) + 0 );

        

         A10: ( Sum (f,(M + 1),M)) = (( Sum (f,(M + 1))) - ( Sum (f,M))) by SERIES_1:def 6

        .= ((( Partial_Sums f) . (M + 1)) - ( Sum (f,M))) by SERIES_1:def 5

        .= (((f . (M + 1)) + (( Partial_Sums f) . M)) - ( Sum (f,M))) by SERIES_1:def 1

        .= (((f . (M + 1)) + ( Sum (f,M))) - ( Sum (f,M))) by SERIES_1:def 5

        .= ((f . (M + 1)) + 0 );

        assume for n st (M + 1) <= n & n <= (M + 1) holds (f . n) <= (g . n);

        hence thesis by A10, A9;

      end;

      for N be Nat st N >= (M + 1) holds P[N] from NAT_1:sch 8( A8, A1);

      hence thesis;

    end;

    

     Lm17: for n be Nat holds [/(n / 2)\] <= n

    proof

      let n be Nat;

      per cases ;

        suppose n = 0 ;

        hence thesis by INT_1: 30;

      end;

        suppose n > 0 ;

        then

         A1: n >= ( 0 + 1) by NAT_1: 13;

        per cases by A1, XXREAL_0: 1;

          suppose

           A2: n = 1;

          now

            assume [/(1 / 2)\] > 1;

            then

             A3: [/(1 / 2)\] >= (1 + 1) by INT_1: 7;

             [/(1 / 2)\] < ((1 / 2) + 1) by INT_1:def 7;

            hence contradiction by A3, XXREAL_0: 2;

          end;

          hence thesis by A2;

        end;

          suppose n > 1;

          then

           A4: n >= (1 + 1) by NAT_1: 13;

           A5:

          now

            assume ((n / 2) + 1) > n;

            then (2 * ((n / 2) + 1)) > (2 * n) by XREAL_1: 68;

            then ((2 * (n / 2)) + (2 * 1)) > (2 * n);

            then 2 > ((2 * n) - n) by XREAL_1: 19;

            hence contradiction by A4;

          end;

           [/(n / 2)\] < ((n / 2) + 1) by INT_1:def 7;

          hence thesis by A5, XXREAL_0: 2;

        end;

      end;

    end;

    

     Lm18: for f be Real_Sequence, b be Real, N be Element of NAT st (f . 0 ) = 0 & (for n st n > 0 holds (f . n) = b) holds for M be Element of NAT holds ( Sum (f,N,M)) = (b * (N - M))

    proof

      let f be Real_Sequence, b be Real, N be Element of NAT such that

       A1: (f . 0 ) = 0 and

       A2: for n st n > 0 holds (f . n) = b;

      defpred P[ Nat] means ( Sum (f,N,$1)) = (b * (N - $1));

      

       A3: for M be Nat st P[M] holds P[(M + 1)]

      proof

        let M be Nat;

        assume

         A4: ( Sum (f,N,M)) = (b * (N - M));

        ( Sum (f,N,(M + 1))) = (( Sum (f,N)) - ( Sum (f,(M + 1)))) by SERIES_1:def 6

        .= (( Sum (f,N)) - (( Partial_Sums f) . (M + 1))) by SERIES_1:def 5

        .= (( Sum (f,N)) - ((( Partial_Sums f) . M) + (f . (M + 1)))) by SERIES_1:def 1

        .= ((( Sum (f,N)) - (( Partial_Sums f) . M)) + ( - (f . (M + 1))))

        .= ((( Sum (f,N)) - ( Sum (f,M))) + ( - (f . (M + 1)))) by SERIES_1:def 5

        .= ((b * (N - M)) + ( - (f . (M + 1)))) by A4, SERIES_1:def 6

        .= ((b * (N - M)) + ( - b)) by A2

        .= (b * (N - (M + 1)));

        hence thesis;

      end;

      ( Sum (f, 0 )) = (( Partial_Sums f) . 0 ) by SERIES_1:def 5

      .= 0 by A1, SERIES_1:def 1;

      

      then ( Sum (f,N, 0 )) = (( Sum (f,N)) - 0 ) by SERIES_1:def 6

      .= (b * (N - 0 )) by A1, A2, Lm14;

      then

       A5: P[ 0 ];

      for M be Nat holds P[M] from NAT_1:sch 2( A5, A3);

      hence thesis;

    end;

    theorem :: ASYMPT_1:7

    for f be Real_Sequence, k be Element of NAT st (for n holds (f . n) = ( Sum (( seq_n^ k),n))) holds f in ( Big_Theta ( seq_n^ (k + 1)))

    proof

      let f be Real_Sequence, k be Element of NAT such that

       A1: for n holds (f . n) = ( Sum (( seq_n^ k),n));

      set g = ( seq_n^ (k + 1));

      

       A2: f is Element of ( Funcs ( NAT , REAL )) by FUNCT_2: 8;

       A3:

      now

        set p = ( seq_n^ k);

        let n;

        set n1 = [/(n / 2)\];

        ex s be Real_Sequence st (s . 0 ) = 0 & for m st m > 0 holds (s . m) = ((n / 2) to_power k)

        proof

          defpred P[ Element of NAT , Real] means ($1 = 0 implies $2 = 0 ) & ($1 > 0 implies $2 = ((n / 2) to_power k));

          

           A4: for x be Element of NAT holds ex y be Element of REAL st P[x, y]

          proof

            let x be Element of NAT ;

            per cases ;

              suppose x = zz;

              hence thesis;

            end;

              suppose

               A5: x > 0 ;

              reconsider y = ((n / 2) to_power k) as Element of REAL by XREAL_0:def 1;

              take y;

              thus thesis by A5;

            end;

          end;

          consider h be sequence of REAL such that

           A6: for x be Element of NAT holds P[x, (h . x)] from FUNCT_2:sch 3( A4);

          take h;

          thus (h . 0 ) = 0 by A6;

          let n;

          thus thesis by A6;

        end;

        then

        consider q be Real_Sequence such that

         A7: (q . 0 ) = 0 and

         A8: for m st m > 0 holds (q . m) = ((n / 2) to_power k);

        

         A9: [/(n / 2)\] >= (n / 2) by INT_1:def 7;

        then

        reconsider n1 as Element of NAT by INT_1: 3;

        set n2 = (n1 - 1);

        assume

         A10: n >= 1;

        then

         A11: (n * (2 " )) > ( 0 * (2 " )) by XREAL_1: 68;

        then

         A12: ((n / 2) to_power k) > 0 by POWER: 34;

        now

          assume n2 < 0 ;

          then ((n1 - 1) + 1) <= (( - 1) + 1);

          hence contradiction by A11, INT_1:def 7;

        end;

        then

        reconsider n2 as Element of NAT by INT_1: 3;

         A13:

        now

           [/(n / 2)\] < ((n / 2) + 1) by INT_1:def 7;

          then n2 < (n / 2) by XREAL_1: 19;

          then

           A14: ((n / 2) + n2) < ((n / 2) + (n / 2)) by XREAL_1: 6;

          assume (n - n2) < (n / 2);

          hence contradiction by A14, XREAL_1: 19;

        end;

        ( Sum (q,n,n2)) = ((n - n2) * ((n / 2) to_power k)) by A7, A8, Lm18;

        then ( Sum (q,n,n2)) >= ((n / 2) * ((n / 2) to_power k)) by A13, A12, XREAL_1: 64;

        then ( Sum (q,n,n2)) >= (((n / 2) to_power 1) * ((n / 2) to_power k)) by POWER: 25;

        then ( Sum (q,n,n2)) >= ((n / 2) to_power (k + 1)) by A11, POWER: 27;

        then

         A15: ( Sum (q,n,n2)) >= ((n to_power (k + 1)) / (2 to_power (k + 1))) by A10, POWER: 31;

        

         A16: (f . n) = ( Sum (p,n)) by A1;

         A17:

        now

          let m;

          assume m <= n;

          per cases ;

            suppose m = 0 ;

            hence (p . m) >= 0 by Def3;

          end;

            suppose m > 0 ;

            then (p . m) = (m to_power k) by Def3;

            hence (p . m) >= 0 ;

          end;

        end;

        now

          let m;

          n1 <= (n1 + 1) by NAT_1: 11;

          then

           A18: n2 <= n1 by XREAL_1: 20;

          

           A19: n1 <= n by Lm17;

          assume m <= n2;

          then m <= n1 by A18, XXREAL_0: 2;

          then m <= n by A19, XXREAL_0: 2;

          hence (p . m) >= 0 by A17;

        end;

        then ( Sum (p,n2)) >= 0 by Lm12;

        then

         A20: (( Sum (p,n)) + ( Sum (p,n2))) >= (( Sum (p,n)) + 0 ) by XREAL_1: 7;

        

         A21: for N0 st n1 <= N0 & N0 <= n holds (q . N0) <= (p . N0)

        proof

          let N0;

          assume that

           A22: n1 <= N0 and N0 <= n;

          

           A23: N0 >= (n / 2) by A9, A22, XXREAL_0: 2;

          

           A24: (p . N0) = (N0 to_power k) by A11, A9, A22, Def3;

          (q . N0) = ((n / 2) to_power k) by A8, A11, A9, A22;

          hence thesis by A11, A24, A23, Lm6;

        end;

        n >= (n2 + 1) by Lm17;

        then ( Sum (p,n,n2)) >= ( Sum (q,n,n2)) by A21, Lm16;

        then

         A25: ( Sum (p,n,n2)) >= ((n to_power (k + 1)) * ((2 to_power (k + 1)) " )) by A15, XXREAL_0: 2;

        ( Sum (p,n,n2)) = (( Sum (p,n)) - ( Sum (p,n2))) by SERIES_1:def 6;

        then

         A26: ( Sum (p,n)) >= ( Sum (p,n,n2)) by A20, XREAL_1: 20;

        (g . n) = (n to_power (k + 1)) by A10, Def3;

        hence (((2 to_power (k + 1)) " ) * (g . n)) <= (f . n) by A16, A26, A25, XXREAL_0: 2;

        ( Sum (p,n)) >= 0 by A17, Lm12;

        hence (f . n) >= 0 by A1;

      end;

      now

        set p = ( seq_n^ k);

        let n;

        assume

         A27: n >= 1;

        ex s be Real_Sequence st (s . 0 ) = 0 & for m st m > 0 holds (s . m) = (n to_power k)

        proof

          defpred P[ Element of NAT , Real] means ($1 = 0 implies $2 = 0 ) & ($1 > 0 implies $2 = (n to_power k));

          

           A28: for x be Element of NAT holds ex y be Element of REAL st P[x, y]

          proof

            let x be Element of NAT ;

            per cases ;

              suppose x = zz;

              hence thesis;

            end;

              suppose

               A29: x > 0 ;

              reconsider y = (n to_power k) as Element of REAL by XREAL_0:def 1;

              take y;

              thus thesis by A29;

            end;

          end;

          consider h be sequence of REAL such that

           A30: for x be Element of NAT holds P[x, (h . x)] from FUNCT_2:sch 3( A28);

          take h;

          thus (h . 0 ) = 0 by A30;

          let n;

          thus thesis by A30;

        end;

        then

        consider q be Real_Sequence such that

         A31: (q . 0 ) = 0 and

         A32: for m st m > 0 holds (q . m) = (n to_power k);

        now

          let m;

          assume

           A33: m <= n;

          per cases ;

            suppose m = 0 ;

            hence (p . m) <= (q . m) by A31, Def3;

          end;

            suppose

             A34: m > 0 ;

            then

             A35: (q . m) = (n to_power k) by A32;

            (p . m) = (m to_power k) by A34, Def3;

            hence (p . m) <= (q . m) by A33, A34, A35, Lm6;

          end;

        end;

        then

         A36: ( Sum (p,n)) <= ( Sum (q,n)) by Lm13;

        ( Sum (q,n)) = ((n to_power k) * n) by A31, A32, Lm14

        .= ((n to_power k) * (n to_power 1)) by POWER: 25

        .= (n to_power (k + 1)) by A27, POWER: 27

        .= (g . n) by A27, Def3;

        hence (f . n) <= (1 * (g . n)) by A1, A36;

         A37:

        now

          let m;

          assume m <= n;

          per cases ;

            suppose m = 0 ;

            hence (p . m) >= 0 by Def3;

          end;

            suppose m > 0 ;

            then (p . m) = (m to_power k) by Def3;

            hence (p . m) >= 0 ;

          end;

        end;

        (f . n) = ( Sum (p,n)) by A1;

        hence (f . n) >= 0 by A37, Lm12;

      end;

      then

       A38: f in ( Big_Oh g) by A2;

      (2 to_power (k + 1)) > 0 by POWER: 34;

      then f in ( Big_Omega g) by A2, A3;

      hence thesis by A38, XBOOLE_0:def 4;

    end;

    theorem :: ASYMPT_1:8

    for f be Real_Sequence st (for n st n > 0 holds (f . n) = (n to_power ( log (2,n)))) holds ex s be eventually-positive Real_Sequence st s = f & not s is smooth

    proof

      let f be Real_Sequence such that

       A1: for n st n > 0 holds (f . n) = (n to_power ( log (2,n)));

      

       A2: f is eventually-positive

      proof

        take 1;

        let n be Nat;

        

         A3: n in NAT by ORDINAL1:def 12;

        assume

         A4: n >= 1;

        then (f . n) = (n to_power ( log (2,n))) by A1, A3;

        hence thesis by A4, POWER: 34;

      end;

      set g = (f taken_every 2);

      reconsider f as eventually-positive Real_Sequence by A2;

      take f;

      now

        assume f is smooth;

        then f is_smooth_wrt 2;

        then

        consider t be Element of ( Funcs ( NAT , REAL )) such that

         A5: t = g and

         A6: ex c, N st c > 0 & for n st n >= N holds (t . n) <= (c * (f . n)) & (t . n) >= 0 ;

        consider c, N such that

         A7: c > 0 and

         A8: for n st n >= N holds (t . n) <= (c * (f . n)) & (t . n) >= 0 by A6;

        

         A9: ( sqrt c) > 0 by A7, SQUARE_1: 25;

        set N0 = [/(( sqrt c) / ( sqrt 2))\];

        reconsider N2 = ( max (N,N0)) as Integer by XXREAL_0: 16;

        set N1 = ( max (N2,2));

        

         A10: N1 >= N2 by XXREAL_0: 25;

        N2 >= N0 by XXREAL_0: 25;

        then

         A11: N1 >= N0 by A10, XXREAL_0: 2;

        

         A12: N1 is Integer by XXREAL_0: 16;

        N2 >= N by XXREAL_0: 25;

        then

         A13: N1 >= N by A10, XXREAL_0: 2;

        N1 >= 2 by XXREAL_0: 25;

        then

        reconsider N1 as Element of NAT by A12, INT_1: 3;

        set n = (N1 + 1);

        

         A14: (n to_power ( log (2,n))) > 0 by POWER: 34;

        

         A15: (2 * n) > (2 * 0 ) by XREAL_1: 68;

        

         A16: ( sqrt 2) <> 0 by SQUARE_1: 25;

        

         A17: ( sqrt 2) > 0 by SQUARE_1: 25;

        

         A18: N0 >= (( sqrt c) / ( sqrt 2)) by INT_1:def 7;

        

         A19: n > (N1 + 0 ) by XREAL_1: 8;

        then n > N0 by A11, XXREAL_0: 2;

        then n > (( sqrt c) / ( sqrt 2)) by A18, XXREAL_0: 2;

        then (n * ( sqrt 2)) > ((( sqrt c) / ( sqrt 2)) * ( sqrt 2)) by A17, XREAL_1: 68;

        then (n * ( sqrt 2)) > ( sqrt c) by A16, XCMPLX_1: 87;

        then ((n * ( sqrt 2)) ^2 ) > (( sqrt c) ^2 ) by A9, SQUARE_1: 16;

        then ((n ^2 ) * (( sqrt 2) ^2 )) > c by A7, SQUARE_1:def 2;

        then

         A20: (2 * (n ^2 )) > c by SQUARE_1:def 2;

        ((2 * (n ^2 )) * (n to_power ( log (2,n)))) = (((2 * n) * n) * (n to_power ( log (2,n))))

        .= (((2 * n) * (2 to_power ( log (2,n)))) * (n to_power ( log (2,n)))) by POWER:def 3

        .= ((2 * n) * ((2 to_power ( log (2,n))) * (n to_power ( log (2,n)))))

        .= ((2 * n) * ((2 * n) to_power ( log (2,n)))) by POWER: 30

        .= (((2 * n) to_power 1) * ((2 * n) to_power ( log (2,n)))) by POWER: 25

        .= ((2 * n) to_power (1 + ( log (2,n)))) by A15, POWER: 27

        .= ((2 * n) to_power (( log (2,2)) + ( log (2,n)))) by POWER: 52

        .= ((2 * n) to_power ( log (2,(2 * n)))) by POWER: 53;

        then ((2 * n) to_power ( log (2,(2 * n)))) > (c * (n to_power ( log (2,n)))) by A14, A20, XREAL_1: 68;

        then (f . (2 * n)) > (c * (n to_power ( log (2,n)))) by A1, A15;

        then (t . n) > (c * (n to_power ( log (2,n)))) by A5, ASYMPT_0:def 15;

        then

         A21: (t . n) > (c * (f . n)) by A1;

        n > N by A13, A19, XXREAL_0: 2;

        hence contradiction by A8, A21;

      end;

      hence thesis;

    end;

    definition

      ::$Canceled

    end

    registration

      cluster ( seq_const 1) -> eventually-nonnegative;

      coherence

      proof

        take 0 ;

        let n be Nat;

        assume n >= 0 ;

        thus thesis;

      end;

    end

    

     Lm19: for a,b,c be Real holds a > 1 & b >= a & c >= 1 implies ( log (a,c)) >= ( log (b,c))

    proof

      let a,b,c be Real;

      assume that

       A1: a > 1 and

       A2: b >= a and

       A3: c >= 1;

      b > 1 by A1, A2, XXREAL_0: 2;

      then ( log (b,c)) >= ( log (b,1)) by A3, PRE_FF: 10;

      then

       A4: ( log (b,c)) >= 0 by A1, A2, POWER: 51;

      ( log (a,b)) >= ( log (a,a)) by A1, A2, PRE_FF: 10;

      then ( log (a,b)) >= 1 by A1, POWER: 52;

      then (( log (a,b)) * ( log (b,c))) >= (1 * ( log (b,c))) by A4, XREAL_1: 64;

      hence thesis by A1, A2, A3, POWER: 56;

    end;

    theorem :: ASYMPT_1:9

    

     Th9: for f be eventually-nonnegative Real_Sequence holds ex F be FUNCTION_DOMAIN of NAT , REAL st F = {( seq_n^ 1)} & (f in (F to_power ( Big_Oh ( seq_const 1))) iff ex N, c, k st c > 0 & for n st n >= N holds 1 <= (f . n) & (f . n) <= (c * (( seq_n^ k) . n)))

    proof

      set p = ( seq_const 1);

      set G = ( Big_Oh ( seq_const 1));

      reconsider F = {( seq_n^ 1)} as FUNCTION_DOMAIN of NAT , REAL by FUNCT_2: 121;

      let h be eventually-nonnegative Real_Sequence;

      take F;

      thus F = {( seq_n^ 1)};

      now

        hereby

          reconsider i = 1 as Element of NAT ;

          assume h in (F to_power ( Big_Oh ( seq_const 1)));

          then

          consider t be Element of ( Funcs ( NAT , REAL )) such that

           A1: h = t and

           A2: ex f,g be Element of ( Funcs ( NAT , REAL )), N be Element of NAT st f in F & g in G & for n be Element of NAT st n >= N holds (t . n) = ((f . n) to_power (g . n));

          consider f,g be Element of ( Funcs ( NAT , REAL )), N0 be Element of NAT such that

           A3: f in F and

           A4: g in G and

           A5: for n be Element of NAT st n >= N0 holds (t . n) = ((f . n) to_power (g . n)) by A2;

          consider g9 be Element of ( Funcs ( NAT , REAL )) such that

           A6: g = g9 and

           A7: ex c, N st c > 0 & for n st n >= N holds (g9 . n) <= (c * (p . n)) & (g9 . n) >= 0 by A4;

          consider c, N1 such that

           A8: c > 0 and

           A9: for n st n >= N1 holds (g9 . n) <= (c * (p . n)) & (g9 . n) >= 0 by A7;

          set k = [/c\];

          

           A10: k > 0 by A8, INT_1:def 7;

          set N = ( max (2,( max (N0,N1))));

          

           A11: N >= ( max (N0,N1)) by XXREAL_0: 25;

          ( max (N0,N1)) >= N0 by XXREAL_0: 25;

          then

           A12: N >= N0 by A11, XXREAL_0: 2;

          

           A13: k >= c by INT_1:def 7;

          reconsider k as Element of NAT by A10, INT_1: 3;

          take N, i, k;

          thus i > 0 ;

          let n;

          assume

           A14: n >= N;

          

           A15: N >= 2 by XXREAL_0: 25;

          then n >= 2 by A14, XXREAL_0: 2;

          then

           A16: n > 1 by XXREAL_0: 2;

          then

           A17: (n to_power c) <= (n to_power k) by A13, PRE_FF: 8;

          f = ( seq_n^ 1) by A3, TARSKI:def 1;

          

          then (f . n) = (n to_power 1) by A15, A14, Def3

          .= n by POWER: 25;

          then

           A18: (h . n) = (n to_power (g . n)) by A1, A5, A12, A14, XXREAL_0: 2;

          ( max (N0,N1)) >= N1 by XXREAL_0: 25;

          then N >= N1 by A11, XXREAL_0: 2;

          then

           A19: n >= N1 by A14, XXREAL_0: 2;

          then (n to_power (g . n)) >= (n to_power 0 ) by A6, A16, PRE_FF: 8, A9;

          hence 1 <= (h . n) by A18, POWER: 24;

          

           A20: (p . n) = 1 by FUNCOP_1: 7;

          (g . n) <= (c * (p . n)) by A6, A9, A19;

          then (h . n) <= (n to_power (c * 1)) by A20, A16, A18, PRE_FF: 8;

          then (h . n) <= (n to_power k) by A17, XXREAL_0: 2;

          hence (h . n) <= (i * (( seq_n^ k) . n)) by A15, A14, Def3;

        end;

        reconsider f = ( seq_n^ 1) as Element of ( Funcs ( NAT , REAL )) by FUNCT_2: 8;

        reconsider t = h as Element of ( Funcs ( NAT , REAL )) by FUNCT_2: 8;

        given N0, c, k such that c > 0 and

         A21: for n st n >= N0 holds 1 <= (h . n) & (h . n) <= (c * (( seq_n^ k) . n));

        reconsider N = ( max (N0,2)) as Element of REAL by XREAL_0:def 1;

        defpred Q[ Element of NAT , Real] means ($1 < N implies $2 = 1) & ($1 >= N implies $2 = ( log ($1,(t . $1))));

        

         A22: N >= 2 by XXREAL_0: 25;

        then

         A23: N > 1 by XXREAL_0: 2;

        

         A24: for x be Element of NAT holds ex y be Element of REAL st Q[x, y]

        proof

          let n;

          per cases ;

            suppose

             A25: n < N;

            1 in REAL by XREAL_0:def 1;

            hence thesis by A25;

          end;

            suppose

             A26: n >= N;

            reconsider y = ( log (n,(t . n))) as Element of REAL by XREAL_0:def 1;

            take y;

            thus thesis by A26;

          end;

        end;

        consider g be sequence of REAL such that

         A27: for x be Element of NAT holds Q[x, (g . x)] from FUNCT_2:sch 3( A24);

        

         A28: N >= N0 by XXREAL_0: 25;

         A29:

        now

          let n be Element of NAT ;

          assume

           A30: n >= N;

          then n >= N0 by A28, XXREAL_0: 2;

          then

           A31: (t . n) >= 1 by A21;

          

          thus ((f . n) to_power (g . n)) = ((n to_power 1) to_power (g . n)) by A22, A30, Def3

          .= (n to_power (g . n)) by POWER: 25

          .= (n to_power (1 * ( log (n,(t . n))))) by A27, A30

          .= (t . n) by A23, A30, A31, POWER:def 3;

        end;

        set c1 = ( max (c,2));

        

         A32: N <> 1 by XXREAL_0: 25;

        set a = ( log (N,c1));

        set b = (k + a);

        

         A33: c1 >= 2 by XXREAL_0: 25;

        then

         A34: c1 > 1 by XXREAL_0: 2;

        

         A35: f in F by TARSKI:def 1;

        

         A36: g is Element of ( Funcs ( NAT , REAL )) by FUNCT_2: 8;

        

         A37: N > 0 by XXREAL_0: 25;

        now

          ( log (N,1)) = 0 by A37, A32, POWER: 51;

          then a > 0 by A23, A34, POWER: 57;

          hence b > 0 ;

          let n;

          

           A38: (( seq_const 1) . n) = 1 by FUNCOP_1: 7;

          assume

           A39: n >= N;

          then

           A40: n <> 1 by A22, XXREAL_0: 2;

          

           A41: (( seq_n^ k) . n) = (n to_power k) by A22, A39, Def3;

          then

           A42: (c * (( seq_n^ k) . n)) <= (c1 * (( seq_n^ k) . n)) by XREAL_1: 64, XXREAL_0: 25;

          (( seq_n^ k) . n) > 0 by A22, A39, A41, POWER: 34;

          

          then

           A43: ( log (n,(c1 * (( seq_n^ k) . n)))) = (( log (n,c1)) + ( log (n,(n to_power k)))) by A22, A33, A39, A40, A41, POWER: 53

          .= (( log (n,c1)) + (k * ( log (n,n)))) by A22, A39, A40, POWER: 55

          .= (( log (n,c1)) + (k * 1)) by A22, A39, A40, POWER: 52;

          a >= ( log (n,c1)) by A23, A34, A39, Lm19;

          then

           A44: (( log (n,c1)) + k) <= (a + k) by XREAL_1: 6;

          

           A45: n >= N0 by A28, A39, XXREAL_0: 2;

          then

           A46: 1 <= (t . n) by A21;

          (t . n) = ((f . n) to_power (g . n)) by A29, A39

          .= ((n to_power 1) to_power (g . n)) by A22, A39, Def3

          .= (n to_power (g . n)) by POWER: 25;

          

          then

           A47: ( log (n,(t . n))) = ((g . n) * ( log (n,n))) by A22, A39, A40, POWER: 55

          .= ((g . n) * 1) by A22, A39, A40, POWER: 52;

          n >= 2 by A22, A39, XXREAL_0: 2;

          then

           A48: n > 1 by XXREAL_0: 2;

          (t . n) <= (c * (( seq_n^ k) . n)) by A21, A45;

          then (t . n) <= (c1 * (( seq_n^ k) . n)) by A42, XXREAL_0: 2;

          then ( log (n,(t . n))) <= ( log (n,(c1 * (( seq_n^ k) . n)))) by A48, A46, PRE_FF: 10;

          hence (g . n) <= (b * (( seq_const 1) . n)) by A47, A43, A44, A38, XXREAL_0: 2;

          (g . n) = ( log (n,(t . n))) by A27, A39;

          then (g . n) >= ( log (n,1)) by A48, A46, PRE_FF: 10;

          hence (g . n) >= 0 by A22, A39, A40, POWER: 51;

        end;

        then g in G by A36;

        hence h in (F to_power ( Big_Oh ( seq_const 1))) by A36, A29, A35;

      end;

      hence thesis;

    end;

    begin

    theorem :: ASYMPT_1:10

    for f be Real_Sequence st (for n holds (f . n) = (((3 * (10 to_power 6)) - ((18 * (10 to_power 3)) * n)) + (27 * (n ^2 )))) holds f in ( Big_Oh ( seq_n^ 2))

    proof

      set g = ( seq_n^ 2);

      consider t1 be Element of NAT such that

       A1: t1 = ((10 * 10) * 10);

      consider t2 be Element of NAT such that

       A2: t2 = (t1 * t1);

      t1 = (10 * (10 ^2 )) by A1;

      then t1 = (10 * (10 to_power 2)) by POWER: 46;

      then t1 = ((10 to_power 1) * (10 to_power 2)) by POWER: 25;

      then

       A3: t1 = (10 to_power (1 + 2)) by POWER: 27;

      

      then

       A4: t2 = (10 to_power (3 + 3)) by A2, POWER: 27

      .= (10 to_power 6);

      

       A5: (10 to_power 3) = (10 to_power (2 + 1))

      .= ((10 to_power 2) * (10 to_power 1)) by POWER: 27

      .= ((10 to_power 2) * 10) by POWER: 25

      .= ((10 ^2 ) * 10) by POWER: 46

      .= 1000;

      

       A6: for n st n >= 400 holds (((18 * t1) * n) - (3 * t2)) < (27 * (n ^2 ))

      proof

        defpred P[ Nat] means (((18 * t1) * $1) - (3 * t2)) < (27 * ($1 ^2 ));

        

         A7: for k be Nat st k >= 400 & P[k] holds P[(k + 1)]

        proof

          let k be Nat such that

           A8: k >= 400 and

           A9: (((18 * t1) * k) - (3 * t2)) < (27 * (k ^2 ));

          (54 * 400) <= (54 * k) by A8, XREAL_1: 64;

          then

           A10: (18 * t1) < (54 * k) by A3, A5, XXREAL_0: 2;

          ((54 * k) + 0 ) <= ((54 * k) + 27) by XREAL_1: 7;

          then (18 * t1) < ((54 * k) + 27) by A10, XXREAL_0: 2;

          then

           A11: ((27 * (k ^2 )) + (18 * t1)) < ((27 * (k ^2 )) + ((54 * k) + 27)) by XREAL_1: 6;

          (((18 * t1) * (k + 1)) - (3 * t2)) = ((((18 * t1) * k) - (3 * t2)) + (18 * t1));

          then (((18 * t1) * (k + 1)) - (3 * t2)) < ((27 * (k ^2 )) + (18 * t1)) by A9, XREAL_1: 6;

          hence thesis by A11, XXREAL_0: 2;

        end;

        

         A12: P[400] by A2, A3, A5;

        for n be Nat st n >= 400 holds P[n] from NAT_1:sch 8( A12, A7);

        hence thesis;

      end;

      let f be Real_Sequence such that

       A13: for n holds (f . n) = (((3 * (10 to_power 6)) - ((18 * (10 to_power 3)) * n)) + (27 * (n ^2 )));

      

       A14: for n st n >= 400 holds (f . n) <= (27 * (n ^2 ))

      proof

        let n such that

         A15: n >= 400;

        now

          assume (f . n) > (27 * (n ^2 ));

          then (((3 * t2) - ((18 * (10 to_power 3)) * n)) + (27 * (n ^2 ))) > (27 * (n ^2 )) by A13, A4;

          then ((3 * t2) + ( - ((18 * t1) * n))) > ((27 * (n ^2 )) - (27 * (n ^2 ))) by A3, XREAL_1: 19;

          then ((3 * t2) - ((18 * t1) * n)) > 0 ;

          then

           A16: (3 * t2) > ( 0 + ((18 * t1) * n)) by XREAL_1: 20;

          ((18 * t1) * n) >= ((18 * t1) * 400) by A15, XREAL_1: 64;

          then (3 * (10 to_power (3 + 3))) > (t1 * 7200) by A4, A16, XXREAL_0: 2;

          then (3 * ((10 to_power 3) * (10 to_power 3))) > (t1 * 7200) by POWER: 27;

          hence contradiction by A3, A5;

        end;

        hence thesis;

      end;

       A17:

      now

        let n;

        assume

         A18: n >= 400;

        then (f . n) <= (27 * (n ^2 )) by A14;

        then (f . n) <= (27 * (n to_power 2)) by POWER: 46;

        hence (f . n) <= (27 * (g . n)) by A18, Def3;

        ( 0 + (((18 * t1) * n) - (3 * t2))) < (27 * (n ^2 )) by A6, A18;

        then 0 < ((27 * (n ^2 )) - (((18 * t1) * n) - (3 * t2))) by XREAL_1: 20;

        then 0 < (((3 * (10 to_power 6)) - ((18 * t1) * n)) + (27 * (n ^2 ))) by A4;

        hence (f . n) >= 0 by A13, A3;

      end;

      f is Element of ( Funcs ( NAT , REAL )) by FUNCT_2: 8;

      hence thesis by A17;

    end;

    begin

    theorem :: ASYMPT_1:11

    ( seq_n^ 2) in ( Big_Oh ( seq_n^ 3))

    proof

      set g = ( seq_n^ 3);

      set f = ( seq_n^ 2);

       A1:

      now

        let n;

        assume

         A2: n >= 2;

        then

         A3: n > 1 by XXREAL_0: 2;

        

         A4: (f . n) = (n to_power 2) by A2, Def3;

        (g . n) = (n to_power 3) by A2, Def3;

        hence (f . n) <= (1 * (g . n)) by A3, A4, POWER: 39;

        thus (f . n) >= 0 by A4;

      end;

      f is Element of ( Funcs ( NAT , REAL )) by FUNCT_2: 8;

      hence thesis by A1;

    end;

    theorem :: ASYMPT_1:12

     not ( seq_n^ 2) in ( Big_Omega ( seq_n^ 3))

    proof

      set g = ( seq_n^ 3);

      set f = ( seq_n^ 2);

      now

        assume ( seq_n^ 2) in ( Big_Omega ( seq_n^ 3));

        then

        consider s be Element of ( Funcs ( NAT , REAL )) such that

         A1: s = f and

         A2: ex d, N st d > 0 & for n st n >= N holds (d * (g . n)) <= (s . n) & (s . n) >= 0 ;

        consider d, N such that

         A3: d > 0 and

         A4: for n st n >= N holds (d * (g . n)) <= (s . n) & (s . n) >= 0 by A2;

        

         A5: (N + 2) > (1 + 0 ) by XREAL_1: 8;

        ex n st n >= N & (d * (g . n)) > (s . n)

        proof

          take n = ( max (N, [/((N + 2) / d)\]));

          

           A6: n >= N by XXREAL_0: 25;

          

           A7: n is Integer by XXREAL_0: 16;

          

           A8: [/((N + 2) / d)\] >= ((N + 2) / d) by INT_1:def 7;

          ((N + 2) * (d " )) > ( 0 * (d " )) by A3, XREAL_1: 68;

          then

           A9: n > 0 by A8, XXREAL_0: 25;

          reconsider n as Element of NAT by A6, A7, INT_1: 3;

          

           A10: ((f . n) * (n to_power ( - 2))) = ((n to_power 2) * (n to_power ( - 2))) by A9, Def3

          .= (n to_power (2 + ( - 2))) by A9, POWER: 27

          .= 1 by POWER: 24;

          

           A11: (n to_power ( - 2)) > 0 by A9, POWER: 34;

          

           A12: (d * n) >= (d * [/((N + 2) / d)\]) by A3, XREAL_1: 64, XXREAL_0: 25;

          (d * [/((N + 2) / d)\]) >= (d * ((N + 2) / d)) by A3, A8, XREAL_1: 64;

          then (d * n) >= (((N + 2) / d) * d) by A12, XXREAL_0: 2;

          then

           A13: (d * n) >= (N + 2) by A3, XCMPLX_1: 87;

          ((d * (g . n)) * (n to_power ( - 2))) = ((d * (n to_power 3)) * (n to_power ( - 2))) by A9, Def3

          .= (d * ((n to_power 3) * (n to_power ( - 2))))

          .= (d * (n to_power (3 + ( - 2)))) by A9, POWER: 27

          .= (d * n) by POWER: 25;

          then ((d * (g . n)) * (n to_power ( - 2))) > ((f . n) * (n to_power ( - 2))) by A5, A10, A13, XXREAL_0: 2;

          hence thesis by A1, A11, XREAL_1: 64, XXREAL_0: 25;

        end;

        hence contradiction by A4;

      end;

      hence thesis;

    end;

    theorem :: ASYMPT_1:13

    ex s be eventually-positive Real_Sequence st s = ( seq_a^ (2,1,1)) & ( seq_a^ (2,1, 0 )) in ( Big_Theta s)

    proof

      reconsider g = ( seq_a^ (2,1,1)) as eventually-positive Real_Sequence;

      set f = ( seq_a^ (2,1, 0 ));

      take g;

      thus g = ( seq_a^ (2,1,1));

      

       A1: f is Element of ( Funcs ( NAT , REAL )) by FUNCT_2: 8;

       A2:

      now

        let n;

        assume n >= 2;

        

         A3: (f . n) = (2 to_power ((1 * n) + 0 )) by Def1;

        

         A4: (g . n) = (2 to_power ((1 * n) + 1)) by Def1;

        

        then ((2 to_power ( - 1)) * (g . n)) = (2 to_power (( - 1) + (n + 1))) by POWER: 27

        .= (f . n) by A3;

        hence ((2 to_power ( - 1)) * (g . n)) <= (f . n);

        (n + 0 ) <= (n + 1) by XREAL_1: 7;

        hence (f . n) <= (1 * (g . n)) by A3, A4, PRE_FF: 8;

      end;

      

       A5: (2 to_power ( - 1)) > 0 by POWER: 34;

      ( Big_Theta g) = { s where s be Element of ( Funcs ( NAT , REAL )) : ex c, d, N st c > 0 & d > 0 & for n st n >= N holds (d * (g . n)) <= (s . n) & (s . n) <= (c * (g . n)) } by ASYMPT_0: 27;

      hence thesis by A1, A5, A2;

    end;

    definition

      let a be Element of NAT ;

      :: ASYMPT_1:def5

      func seq_n! (a) -> Real_Sequence means

      : Def4: (it . n) = ((n + a) ! );

      existence

      proof

        deffunc F( Element of NAT ) = ( In ((($1 + a) ! ), REAL ));

        consider h be sequence of REAL such that

         A1: for n be Element of NAT holds (h . n) = F(n) from FUNCT_2:sch 4;

        take h;

        let n;

        (h . n) = F(n) by A1;

        hence thesis;

      end;

      uniqueness

      proof

        let j,k be Real_Sequence such that

         A2: for n holds (j . n) = ((n + a) ! ) and

         A3: for n holds (k . n) = ((n + a) ! );

        now

          let n;

          

          thus (j . n) = ((n + a) ! ) by A2

          .= (k . n) by A3;

        end;

        hence thesis by FUNCT_2: 63;

      end;

    end

    registration

      let a be Element of NAT ;

      cluster ( seq_n! a) -> eventually-positive;

      coherence

      proof

        take 0 ;

        set f = ( seq_n! a);

        let n be Nat;

        

         A1: n in NAT by ORDINAL1:def 12;

        assume n >= 0 ;

        (f . n) = ((n + a) ! ) by Def4, A1;

        hence thesis by NEWTON: 17;

      end;

    end

    theorem :: ASYMPT_1:14

     not ( seq_n! 0 ) in ( Big_Theta ( seq_n! 1))

    proof

      set g = ( seq_n! 1);

      set f = ( seq_n! 0 );

      

       A1: ( Big_Theta g) = { s where s be Element of ( Funcs ( NAT , REAL )) : ex c, d, N st c > 0 & d > 0 & for n st n >= N holds (d * (g . n)) <= (s . n) & (s . n) <= (c * (g . n)) } by ASYMPT_0: 27;

      now

        assume f in ( Big_Theta g);

        then

        consider s be Element of ( Funcs ( NAT , REAL )) such that

         A2: s = f and

         A3: ex c, d, N st c > 0 & d > 0 & for n st n >= N holds (d * (g . n)) <= (s . n) & (s . n) <= (c * (g . n)) by A1;

        consider c, d, N such that c > 0 and

         A4: d > 0 and

         A5: for n st n >= N holds (d * (g . n)) <= (s . n) & (s . n) <= (c * (g . n)) by A3;

        ex n st n >= N & (d * (g . n)) > (f . n)

        proof

           [/((N + 1) / d)\] >= ((N + 1) / d) by INT_1:def 7;

          then ( [/((N + 1) / d)\] + 1) >= (((N + 1) / d) + 1) by XREAL_1: 6;

          then

           A6: (d * ( [/((N + 1) / d)\] + 1)) >= (d * (((N + 1) / d) + 1)) by A4, XREAL_1: 64;

          

           A7: (N + 1) >= (1 + 0 ) by XREAL_1: 6;

          (d * (((N + 1) / d) + 1)) = ((d * ((N + 1) / d)) + (d * 1))

          .= ((N + 1) + d) by A4, XCMPLX_1: 87;

          then

           A8: (d * (((N + 1) / d) + 1)) > 1 by A4, A7, XREAL_1: 8;

          take n = ( max (N, [/((N + 1) / d)\]));

          

           A9: n >= N by XXREAL_0: 25;

          

           A10: n >= [/((N + 1) / d)\] by XXREAL_0: 25;

          n is Integer by XXREAL_0: 16;

          then

          reconsider n as Element of NAT by A9, INT_1: 3;

          

           A11: (n ! ) <> 0 by NEWTON: 17;

          (n + 1) >= ( [/((N + 1) / d)\] + 1) by A10, XREAL_1: 6;

          then (d * (n + 1)) >= (d * ( [/((N + 1) / d)\] + 1)) by A4, XREAL_1: 64;

          then

           A12: (d * (n + 1)) >= (d * (((N + 1) / d) + 1)) by A6, XXREAL_0: 2;

          

           A13: ((f . n) * ((n ! ) " )) = (((n + 0 ) ! ) * ((n ! ) " )) by Def4

          .= 1 by A11, XCMPLX_0:def 7;

          ((d * (g . n)) * ((n ! ) " )) = ((d * ((n + 1) ! )) * ((n ! ) " )) by Def4

          .= ((d * ((n + 1) * (n ! ))) * ((n ! ) " )) by NEWTON: 15

          .= ((d * (n + 1)) * ((n ! ) * ((n ! ) " )))

          .= ((d * (n + 1)) * 1) by A11, XCMPLX_0:def 7

          .= (d * (n + 1));

          then ((d * (g . n)) * ((n ! ) " )) > 1 by A12, A8, XXREAL_0: 2;

          hence thesis by A13, XREAL_1: 64, XXREAL_0: 25;

        end;

        hence contradiction by A2, A5;

      end;

      hence thesis;

    end;

    begin

     Lm20:

    now

      let a,b,c,d be Real;

      assume that

       A1: 0 <= b and

       A2: a <= b and

       A3: 0 <= c and

       A4: c <= d;

      

       A5: (b * c) <= (b * d) by A1, A4, XREAL_1: 64;

      (a * c) <= (b * c) by A2, A3, XREAL_1: 64;

      hence (a * c) <= (b * d) by A5, XXREAL_0: 2;

    end;

    theorem :: ASYMPT_1:15

    for f be Real_Sequence st f in ( Big_Oh ( seq_n^ 1)) holds (f (#) f) in ( Big_Oh ( seq_n^ 2))

    proof

      let f be Real_Sequence;

      set h = ( seq_n^ 2);

      set g = ( seq_n^ 1);

      assume f in ( Big_Oh g);

      then

      consider t be Element of ( Funcs ( NAT , REAL )) such that

       A1: t = f and

       A2: ex c, N st c > 0 & for n st n >= N holds (t . n) <= (c * (g . n)) & (t . n) >= 0 ;

      consider c, N such that

       A3: c > 0 and

       A4: for n st n >= N holds (t . n) <= (c * (g . n)) & (t . n) >= 0 by A2;

      set d = ( max (c,(c * c)));

      

       A5: ( 0 to_power 1) = 0 by POWER:def 2;

       A6:

      now

        take N;

        let n;

        assume

         A7: n >= N;

        then

         A8: (t . n) >= 0 by A4;

        for n holds (g . n) <= (h . n)

        proof

          let n;

          per cases ;

            suppose

             A9: n = 0 ;

            then (g . n) = 0 by Def3;

            hence thesis by A9, Def3;

          end;

            suppose n > 0 ;

            then

             A10: n >= ( 0 + 1) by NAT_1: 13;

            thus (g . n) <= (h . n)

            proof

              per cases by A10, XXREAL_0: 1;

                suppose

                 A11: n = 1;

                

                 A12: (1 to_power 2) = 1 by POWER: 26;

                (1 to_power 1) = 1 by POWER: 26;

                then (g . n) = (1 to_power 2) by A11, A12, Def3;

                hence thesis by A11, Def3;

              end;

                suppose

                 A13: n > 1;

                then (n to_power 1) < (n to_power 2) by POWER: 39;

                then (g . n) < (n to_power 2) by A13, Def3;

                hence thesis by A13, Def3;

              end;

            end;

          end;

        end;

        then

         A14: (h . n) >= (g . n);

        (g . n) >= 0

        proof

          per cases ;

            suppose n = 0 ;

            hence thesis by Def3;

          end;

            suppose n > 0 ;

            

            then (g . n) = (n to_power 1) by Def3

            .= n by POWER: 25;

            hence thesis;

          end;

        end;

        then

         A15: ((c * c) * (h . n)) <= (d * (h . n)) by A14, XREAL_1: 64, XXREAL_0: 25;

        

         A16: ((n to_power 1) * (n to_power 1)) = (n to_power (1 + 1))

        proof

          per cases ;

            suppose n = 0 ;

            hence thesis by A5, POWER:def 2;

          end;

            suppose n > 0 ;

            hence thesis by POWER: 27;

          end;

        end;

        

         A17: ((g . n) * (g . n)) = (h . n)

        proof

          per cases ;

            suppose

             A18: n = 0 ;

            

            hence ((g . n) * (g . n)) = ( 0 * (g . n)) by Def3

            .= (h . n) by A18, Def3;

          end;

            suppose

             A19: n > 0 ;

            

            hence ((g . n) * (g . n)) = ((n to_power 1) * (g . n)) by Def3

            .= (n to_power (1 + 1)) by A16, A19, Def3

            .= (h . n) by A19, Def3;

          end;

        end;

        (t . n) <= (c * (g . n)) by A4, A7;

        then ((t . n) * (t . n)) <= ((c * (g . n)) * (c * (g . n))) by A8, Lm20;

        then ((t . n) * (t . n)) <= (d * (h . n)) by A17, A15, XXREAL_0: 2;

        hence ((t (#) t) . n) <= (d * (h . n)) by SEQ_1: 8;

        ((t . n) * (t . n)) >= ((t . n) * 0 ) by A8;

        hence ((t (#) t) . n) >= 0 by SEQ_1: 8;

      end;

      

       A20: (t (#) t) is Element of ( Funcs ( NAT , REAL )) by FUNCT_2: 8;

      d > 0 by A3, XXREAL_0: 25;

      hence thesis by A1, A20, A6;

    end;

    begin

    theorem :: ASYMPT_1:16

    ex s be eventually-positive Real_Sequence st s = ( seq_a^ (2,1, 0 )) & (2 (#) ( seq_n^ 1)) in ( Big_Oh ( seq_n^ 1)) & not ( seq_a^ (2,2, 0 )) in ( Big_Oh s)

    proof

      reconsider q = ( seq_a^ (2,1, 0 )) as eventually-positive Real_Sequence;

      set p = ( seq_a^ (2,2, 0 ));

      set g = ( seq_n^ 1);

      set f = (2 (#) ( seq_n^ 1));

      take q;

      thus q = ( seq_a^ (2,1, 0 ));

       A1:

      now

        let n;

        assume n >= 0 ;

        thus (f . n) <= (2 * (g . n)) by SEQ_1: 9;

        

         A2: (g . n) = n

        proof

          per cases ;

            suppose n = 0 ;

            hence thesis by Def3;

          end;

            suppose n > 0 ;

            

            hence (g . n) = (n to_power 1) by Def3

            .= n by POWER: 25;

          end;

        end;

        (2 * n) >= (2 * 0 );

        hence (f . n) >= 0 by A2, SEQ_1: 9;

      end;

      f is Element of ( Funcs ( NAT , REAL )) by FUNCT_2: 8;

      hence f in ( Big_Oh g) by A1;

      now

        assume p in ( Big_Oh q);

        then

        consider t be Element of ( Funcs ( NAT , REAL )) such that

         A3: t = p and

         A4: ex c, N st c > 0 & for n st n >= N holds (t . n) <= (c * (q . n)) & (t . n) >= 0 ;

        consider c, N such that

         A5: c > 0 and

         A6: for n st n >= N holds (t . n) <= (c * (q . n)) & (t . n) >= 0 by A4;

        ex n st n >= N & (t . n) > (c * (q . n))

        proof

          take n = ( max (N, [/(( log (2,c)) + 1)\]));

          

           A7: n >= N by XXREAL_0: 25;

          n is Integer by XXREAL_0: 16;

          then

          reconsider n as Element of NAT by A7, INT_1: 3;

          

           A8: (2 to_power n) >= (2 to_power [/(( log (2,c)) + 1)\]) by PRE_FF: 8, XXREAL_0: 25;

          

           A9: (2 to_power ( - n)) > 0 by POWER: 34;

           [/(( log (2,c)) + 1)\] >= (( log (2,c)) + 1) by INT_1:def 7;

          then

           A10: (2 to_power [/(( log (2,c)) + 1)\]) >= (2 to_power (( log (2,c)) + 1)) by PRE_FF: 8;

          

           A11: (2 to_power (( log (2,c)) + 1)) = ((2 to_power ( log (2,c))) * (2 to_power 1)) by POWER: 27

          .= (c * (2 to_power 1)) by A5, POWER:def 3

          .= (c * 2) by POWER: 25;

          ((c * (q . n)) * (2 to_power ( - n))) = ((c * (2 to_power ((1 * n) + 0 ))) * (2 to_power ( - n))) by Def1

          .= (c * ((2 to_power n) * (2 to_power ( - n))))

          .= (c * (2 to_power (n + ( - n)))) by POWER: 27

          .= (c * 1) by POWER: 24;

          then (2 to_power (( log (2,c)) + 1)) > ((c * (q . n)) * (2 to_power ( - n))) by A5, A11, XREAL_1: 68;

          then

           A12: (2 to_power [/(( log (2,c)) + 1)\]) > ((c * (q . n)) * (2 to_power ( - n))) by A10, XXREAL_0: 2;

          ((p . n) * (2 to_power ( - n))) = ((2 to_power ((2 * n) + 0 )) * (2 to_power ( - n))) by Def1

          .= (2 to_power ((2 * n) + (( - 1) * n))) by POWER: 27

          .= (2 to_power (1 * n));

          then ((p . n) * (2 to_power ( - n))) > ((c * (q . n)) * (2 to_power ( - n))) by A8, A12, XXREAL_0: 2;

          hence thesis by A3, A9, XREAL_1: 64, XXREAL_0: 25;

        end;

        hence contradiction by A6;

      end;

      hence thesis;

    end;

    begin

    theorem :: ASYMPT_1:17

    ( log (2,3)) < (159 / 100) implies ( seq_n^ ( log (2,3))) in ( Big_Oh ( seq_n^ (159 / 100))) & not ( seq_n^ ( log (2,3))) in ( Big_Omega ( seq_n^ (159 / 100))) & not ( seq_n^ ( log (2,3))) in ( Big_Theta ( seq_n^ (159 / 100)))

    proof

      set c = ((159 / 100) - ( log (2,3)));

      set g = ( seq_n^ (159 / 100));

      set f = ( seq_n^ ( log (2,3)));

      set h = (f /" g);

      assume

       A1: ( log (2,3)) < (159 / 100);

      then

       A2: (( log (2,3)) - ( log (2,3))) < ((159 / 100) - ( log (2,3))) by XREAL_1: 9;

      

       A3: (c / 2) <> 0 by A1;

       A4:

      now

        

         A5: (c * (1 / 2)) < (c * 1) by A2, XREAL_1: 68;

        let p be Real such that

         A6: p > 0 ;

        reconsider p1 = p as Real;

        

         A7: ((1 / p1) to_power (1 / (c / 2))) > 0 by A6, POWER: 34;

        set N1 = ( max ( [/((1 / p1) to_power (1 / (c / 2)))\],2));

        

         A8: N1 >= [/((1 / p) to_power (1 / (c / 2)))\] by XXREAL_0: 25;

        

         A9: N1 is Integer by XXREAL_0: 16;

        

         A10: N1 >= 2 by XXREAL_0: 25;

        then

         A11: N1 > 1 by XXREAL_0: 2;

        N1 in NAT by A10, A9, INT_1: 3;

        then

        reconsider N1 as Nat;

        take N1;

        let n be Nat;

        

         A12: n in NAT by ORDINAL1:def 12;

        

         A13: (h . n) = ((f . n) / (g . n)) by Lm4;

        assume

         A14: n >= N1;

        then (f . n) = (n to_power ( log (2,3))) by A10, Def3, A12;

        

        then

         A15: (h . n) = ((n to_power ( log (2,3))) / (n to_power (159 / 100))) by A10, A14, A13, Def3, A12

        .= (n to_power (( log (2,3)) - (159 / 100))) by A10, A14, POWER: 29

        .= (n to_power ( - c));

         [/((1 / p) to_power (1 / (c / 2)))\] >= ((1 / p) to_power (1 / (c / 2))) by INT_1:def 7;

        then N1 >= ((1 / p) to_power (1 / (c / 2))) by A8, XXREAL_0: 2;

        then n >= ((1 / p) to_power (1 / (c / 2))) by A14, XXREAL_0: 2;

        then (n to_power (c / 2)) >= (((1 / p) to_power (1 / (c / 2))) to_power (c / 2)) by A2, A7, Lm6;

        then (n to_power (c / 2)) >= ((1 / p1) to_power ((1 / (c / 2)) * (c / 2))) by A6, POWER: 33;

        then (n to_power (c / 2)) >= ((1 / p) to_power 1) by A3, XCMPLX_1: 87;

        then (n to_power (c / 2)) >= (1 / p1) by POWER: 25;

        then (1 / (n to_power (c / 2))) <= (1 / (p " )) by A6, XREAL_1: 85;

        then

         A16: (n to_power ( - (c / 2))) <= p by A10, A14, POWER: 28;

        n > 1 by A11, A14, XXREAL_0: 2;

        then

         A17: (n to_power (c / 2)) < (n to_power c) by A5, POWER: 39;

        (n to_power (c / 2)) > 0 by A10, A14, POWER: 34;

        then (1 / (n to_power (c / 2))) > (1 / (n to_power c)) by A17, XREAL_1: 88;

        then (n to_power ( - (c / 2))) > (1 / (n to_power c)) by A10, A14, POWER: 28;

        then (h . n) < (n to_power ( - (c / 2))) by A10, A14, A15, POWER: 28;

        then

         A18: (h . n) < p by A16, XXREAL_0: 2;

        (h . n) > 0 by A10, A14, A15, POWER: 34;

        hence |.((h . n) - 0 ).| < p by A18, ABSVALUE:def 1;

      end;

      then

       A19: h is convergent by SEQ_2:def 6;

      then

       A20: ( lim h) = 0 by A4, SEQ_2:def 7;

      hence f in ( Big_Oh g) by A19, ASYMPT_0: 16;

      

       A21: not g in ( Big_Oh f) by A19, A20, ASYMPT_0: 16;

      hence not f in ( Big_Omega g) by ASYMPT_0: 19;

       not f in ( Big_Omega g) by A21, ASYMPT_0: 19;

      hence thesis by XBOOLE_0:def 4;

    end;

    begin

    theorem :: ASYMPT_1:18

    for f,g be Real_Sequence st (for n holds (f . n) = (n mod 2)) & (for n holds (g . n) = ((n + 1) mod 2)) holds ex s,s1 be eventually-nonnegative Real_Sequence st s = f & s1 = g & not s in ( Big_Oh s1) & not s1 in ( Big_Oh s)

    proof

      let f,g be Real_Sequence such that

       A1: for n holds (f . n) = (n mod 2) and

       A2: for n holds (g . n) = ((n + 1) mod 2);

      g is eventually-nonnegative

      proof

        take 0 ;

        let n be Nat;

        

         A3: n in NAT by ORDINAL1:def 12;

        assume n >= 0 ;

        

         A4: (g . n) = ((n + 1) mod 2) by A2, A3;

        per cases by A4, NAT_D: 12;

          suppose (g . n) = 0 ;

          hence thesis;

        end;

          suppose (g . n) = 1;

          hence thesis;

        end;

      end;

      then

      reconsider g as eventually-nonnegative Real_Sequence;

      f is eventually-nonnegative

      proof

        take 0 ;

        let n be Nat;

        

         A5: n in NAT by ORDINAL1:def 12;

        assume n >= 0 ;

        

         A6: (f . n) = (n mod 2) by A1, A5;

        per cases by A6, NAT_D: 12;

          suppose (f . n) = 0 ;

          hence thesis;

        end;

          suppose (f . n) = 1;

          hence thesis;

        end;

      end;

      then

      reconsider f as eventually-nonnegative Real_Sequence;

       A7:

      now

        assume g in ( Big_Oh f);

        then

        consider t be Element of ( Funcs ( NAT , REAL )) such that

         A8: t = g and

         A9: ex c, N st c > 0 & for n st n >= N holds (t . n) <= (c * (f . n)) & (t . n) >= 0 ;

        consider c, N such that c > 0 and

         A10: for n st n >= N holds (t . n) <= (c * (f . n)) & (t . n) >= 0 by A9;

        ex n st n >= N & (t . n) > (c * (f . n))

        proof

          per cases by NAT_D: 12;

            suppose

             A11: (N mod 2) = 0 ;

            then (f . N) = 0 by A1;

            then

             A12: (c * (f . N)) = 0 ;

            (t . N) = ((N + 1) mod 2) by A2, A8

            .= (( 0 + (1 mod 2)) mod 2) by A11, EULER_2: 6

            .= (( 0 + 1) mod 2) by NAT_D: 14

            .= 1 by NAT_D: 14;

            hence thesis by A12;

          end;

            suppose

             A13: (N mod 2) = 1;

            (f . (N + 1)) = ((N + 1) mod 2) by A1

            .= ((1 + (1 mod 2)) mod 2) by A13, EULER_2: 6

            .= ((1 + 1) mod 2) by NAT_D: 14

            .= 0 by NAT_D: 25;

            then

             A14: (c * (f . (N + 1))) = 0 ;

            

             A15: (N + 1) >= N by NAT_1: 13;

            (t . (N + 1)) = (((N + 1) + 1) mod 2) by A2, A8

            .= ((N + (1 + 1)) mod 2)

            .= ((1 + (2 mod 2)) mod 2) by A13, EULER_2: 6

            .= ((1 + 0 ) mod 2) by NAT_D: 25

            .= 1 by NAT_D: 14;

            hence thesis by A15, A14;

          end;

        end;

        hence contradiction by A10;

      end;

      take f, g;

      now

        assume f in ( Big_Oh g);

        then

        consider t be Element of ( Funcs ( NAT , REAL )) such that

         A16: t = f and

         A17: ex c, N st c > 0 & for n st n >= N holds (t . n) <= (c * (g . n)) & (t . n) >= 0 ;

        consider c, N such that c > 0 and

         A18: for n st n >= N holds (t . n) <= (c * (g . n)) & (t . n) >= 0 by A17;

        ex n st n >= N & (t . n) > (c * (g . n))

        proof

          per cases by NAT_D: 12;

            suppose

             A19: (N mod 2) = 0 ;

            (g . (N + 1)) = (((N + 1) + 1) mod 2) by A2

            .= ((N + (1 + 1)) mod 2)

            .= (( 0 + (2 mod 2)) mod 2) by A19, EULER_2: 6

            .= (( 0 + 0 ) mod 2) by NAT_D: 25

            .= 0 by NAT_D: 26;

            then

             A20: (c * (g . (N + 1))) = 0 ;

            

             A21: (N + 1) >= N by NAT_1: 13;

            (t . (N + 1)) = ((N + 1) mod 2) by A1, A16

            .= (( 0 + (1 mod 2)) mod 2) by A19, EULER_2: 6

            .= (( 0 + 1) mod 2) by NAT_D: 14

            .= 1 by NAT_D: 14;

            hence thesis by A21, A20;

          end;

            suppose

             A22: (N mod 2) = 1;

            (g . N) = ((N + 1) mod 2) by A2

            .= ((1 + (1 mod 2)) mod 2) by A22, EULER_2: 6

            .= ((1 + 1) mod 2) by NAT_D: 14

            .= 0 by NAT_D: 25;

            then

             A23: (c * (g . N)) = 0 ;

            (t . N) = 1 by A1, A16, A22;

            hence thesis by A23;

          end;

        end;

        hence contradiction by A18;

      end;

      hence thesis by A7;

    end;

    begin

    theorem :: ASYMPT_1:19

    for f,g be eventually-nonnegative Real_Sequence holds ( Big_Oh f) = ( Big_Oh g) iff f in ( Big_Theta g)

    proof

      let f,g be eventually-nonnegative Real_Sequence;

      hereby

        assume

         A1: ( Big_Oh f) = ( Big_Oh g);

        then g in ( Big_Oh f) by ASYMPT_0: 10;

        then

         A2: f in ( Big_Omega g) by ASYMPT_0: 19;

        f in ( Big_Oh g) by A1, ASYMPT_0: 10;

        hence f in ( Big_Theta g) by A2, XBOOLE_0:def 4;

      end;

      assume

       A3: f in ( Big_Theta g);

      now

        let x be object;

        hereby

          assume x in ( Big_Oh f);

          then

          consider t be Element of ( Funcs ( NAT , REAL )) such that

           A4: x = t and

           A5: ex c, N st c > 0 & for n st n >= N holds (t . n) <= (c * (f . n)) & (t . n) >= 0 ;

          consider c, N such that c > 0 and

           A6: for n st n >= N holds (t . n) <= (c * (f . n)) & (t . n) >= 0 by A5;

          now

            reconsider N as Nat;

            take N;

            let n be Nat;

            

             A7: n in NAT by ORDINAL1:def 12;

            assume n >= N;

            hence (t . n) >= 0 by A6, A7;

          end;

          then

           A8: t is eventually-nonnegative;

          

           A9: f in ( Big_Oh g) by A3, XBOOLE_0:def 4;

          t in ( Big_Oh f) by A5;

          hence x in ( Big_Oh g) by A4, A8, A9, ASYMPT_0: 12;

        end;

        assume x in ( Big_Oh g);

        then

        consider t be Element of ( Funcs ( NAT , REAL )) such that

         A10: x = t and

         A11: ex c, N st c > 0 & for n st n >= N holds (t . n) <= (c * (g . n)) & (t . n) >= 0 ;

        consider c, N such that c > 0 and

         A12: for n st n >= N holds (t . n) <= (c * (g . n)) & (t . n) >= 0 by A11;

        now

          reconsider N as Nat;

          take N;

          let n be Nat;

          

           A13: n in NAT by ORDINAL1:def 12;

          assume n >= N;

          hence (t . n) >= 0 by A12, A13;

        end;

        then

         A14: t is eventually-nonnegative;

        f in ( Big_Omega g) by A3, XBOOLE_0:def 4;

        then

         A15: g in ( Big_Oh f) by ASYMPT_0: 19;

        t in ( Big_Oh g) by A11;

        hence x in ( Big_Oh f) by A10, A14, A15, ASYMPT_0: 12;

      end;

      hence thesis by TARSKI: 2;

    end;

    theorem :: ASYMPT_1:20

    for f,g be eventually-nonnegative Real_Sequence holds f in ( Big_Theta g) iff ( Big_Theta f) = ( Big_Theta g)

    proof

      let f,g be eventually-nonnegative Real_Sequence;

      

       A1: ( Big_Theta g) = { s where s be Element of ( Funcs ( NAT , REAL )) : ex c, d, N st c > 0 & d > 0 & for n st n >= N holds (d * (g . n)) <= (s . n) & (s . n) <= (c * (g . n)) } by ASYMPT_0: 27;

      consider N2 be Nat such that

       A2: for n be Nat st n >= N2 holds (g . n) >= 0 by ASYMPT_0:def 2;

      consider N1 be Nat such that

       A3: for n be Nat st n >= N1 holds (f . n) >= 0 by ASYMPT_0:def 2;

      

       A4: ( Big_Theta f) = { s where s be Element of ( Funcs ( NAT , REAL )) : ex c, d, N st c > 0 & d > 0 & for n st n >= N holds (d * (f . n)) <= (s . n) & (s . n) <= (c * (f . n)) } by ASYMPT_0: 27;

      hereby

        assume

         A5: f in ( Big_Theta g);

        now

          let x be object;

          

           A6: g in ( Big_Theta f) by A5, ASYMPT_0: 29;

          hereby

            assume x in ( Big_Theta f);

            then

            consider s be Element of ( Funcs ( NAT , REAL )) such that

             A7: s = x and

             A8: ex c, d, N st c > 0 & d > 0 & for n st n >= N holds (d * (f . n)) <= (s . n) & (s . n) <= (c * (f . n)) by A4;

            consider c, d, N3 such that c > 0 and

             A9: d > 0 and

             A10: for n st n >= N3 holds (d * (f . n)) <= (s . n) & (s . n) <= (c * (f . n)) by A8;

            reconsider N = ( max (N1,N3)) as Nat by TARSKI: 1;

            

             A11: N >= N3 by XXREAL_0: 25;

            

             A12: N >= N1 by XXREAL_0: 25;

            now

              take N;

              let n be Nat;

              

               A13: n in NAT by ORDINAL1:def 12;

              assume

               A14: n >= N;

              then n >= N1 by A12, XXREAL_0: 2;

              then (f . n) >= 0 by A3;

              then

               A15: (d * (f . n)) >= (d * 0 ) by A9;

              n >= N3 by A11, A14, XXREAL_0: 2;

              hence (s . n) >= 0 by A10, A15, A13;

            end;

            then

             A16: s is eventually-nonnegative;

            s in ( Big_Theta f) by A4, A8;

            hence x in ( Big_Theta g) by A5, A7, A16, ASYMPT_0: 30;

          end;

          assume x in ( Big_Theta g);

          then

          consider s be Element of ( Funcs ( NAT , REAL )) such that

           A17: s = x and

           A18: ex c, d, N st c > 0 & d > 0 & for n st n >= N holds (d * (g . n)) <= (s . n) & (s . n) <= (c * (g . n)) by A1;

          consider c, d, N3 such that c > 0 and

           A19: d > 0 and

           A20: for n st n >= N3 holds (d * (g . n)) <= (s . n) & (s . n) <= (c * (g . n)) by A18;

          reconsider N = ( max (N2,N3)) as Nat by TARSKI: 1;

          

           A21: N >= N3 by XXREAL_0: 25;

          

           A22: N >= N2 by XXREAL_0: 25;

          now

            take N;

            let n be Nat;

            

             A23: n in NAT by ORDINAL1:def 12;

            assume

             A24: n >= N;

            then n >= N2 by A22, XXREAL_0: 2;

            then (g . n) >= 0 by A2;

            then

             A25: (d * (g . n)) >= (d * 0 ) by A19;

            n >= N3 by A21, A24, XXREAL_0: 2;

            hence (s . n) >= 0 by A20, A25, A23;

          end;

          then

           A26: s is eventually-nonnegative;

          s in ( Big_Theta g) by A1, A18;

          hence x in ( Big_Theta f) by A17, A26, A6, ASYMPT_0: 30;

        end;

        hence ( Big_Theta f) = ( Big_Theta g) by TARSKI: 2;

      end;

      assume ( Big_Theta f) = ( Big_Theta g);

      hence thesis by ASYMPT_0: 28;

    end;

    begin

    

     Lm21: for n holds (((n ^2 ) - n) + 1) > 0

    proof

      defpred P[ Nat] means ((($1 ^2 ) - $1) + 1) > 0 ;

      

       A1: for k be Nat st P[k] holds P[(k + 1)]

      proof

        let k be Nat;

        assume (((k ^2 ) - k) + 1) > 0 ;

        then ((((k ^2 ) - k) + 1) + (2 * k)) > ( 0 + 0 );

        hence thesis;

      end;

      

       A2: P[ 0 ];

      for n be Nat holds P[n] from NAT_1:sch 2( A2, A1);

      hence thesis;

    end;

    

     Lm22: for f,g be Real_Sequence, N be Element of NAT , c be Real st f is convergent & ( lim f) = c & for n st n >= N holds (f . n) = (g . n) holds g is convergent & ( lim g) = c

    proof

      let f,g be Real_Sequence, N be Element of NAT , c be Real such that

       A1: f is convergent and

       A2: ( lim f) = c and

       A3: for n st n >= N holds (f . n) = (g . n);

       A4:

      now

        let p be Real;

        assume p > 0 ;

        then

        consider M be Nat such that

         A5: for n be Nat st n >= M holds |.((f . n) - c).| < p by A1, A2, SEQ_2:def 7;

        reconsider N1 = ( max (N,M)) as Nat by TARSKI: 1;

        

         A6: N1 >= N by XXREAL_0: 25;

        take N1;

        let n be Nat;

        

         A7: n in NAT by ORDINAL1:def 12;

        assume

         A8: n >= N1;

        N1 >= M by XXREAL_0: 25;

        then n >= M by A8, XXREAL_0: 2;

        then |.((f . n) - c).| < p by A5;

        hence |.((g . n) - c).| < p by A3, A6, A8, XXREAL_0: 2, A7;

      end;

      hence g is convergent by SEQ_2:def 6;

      hence thesis by A4, SEQ_2:def 7;

    end;

    

     Lm23: for n st n >= 1 holds (((n ^2 ) - n) + 1) <= (n ^2 )

    proof

      let n such that

       A1: n >= 1;

      now

        assume (((n ^2 ) - n) + 1) > (n ^2 );

        then (( - (n ^2 )) + ((n ^2 ) + (( - n) + 1))) > ((n ^2 ) + ( - (n ^2 ))) by XREAL_1: 6;

        then 1 > ( 0 - ( - n)) by XREAL_1: 19;

        hence contradiction by A1;

      end;

      hence thesis;

    end;

    

     Lm24: for n st n >= 1 holds (n ^2 ) <= (2 * (((n ^2 ) - n) + 1))

    proof

      defpred P[ Nat] means ($1 ^2 ) <= (2 * ((($1 ^2 ) - $1) + 1));

      

       A1: for k be Nat st k >= 1 & P[k] holds P[(k + 1)]

      proof

        let k be Nat such that

         A2: k >= 1 and

         A3: (k ^2 ) <= (2 * (((k ^2 ) - k) + 1));

        

         A4: ((k ^2 ) + ((2 * k) + 1)) <= ((2 * (((k ^2 ) - k) + 1)) + ((2 * k) + 1)) by A3, XREAL_1: 6;

        (2 * k) >= (2 * 1) by A2, XREAL_1: 64;

        then ((2 * k) + 2) >= (2 + 2) by XREAL_1: 6;

        then

         A5: ((2 * (k ^2 )) + 4) <= ((2 * (k ^2 )) + ((2 * k) + 2)) by XREAL_1: 6;

        ((2 * (k ^2 )) + 3) <= ((2 * (k ^2 )) + 4) by XREAL_1: 6;

        then ((2 * (((k ^2 ) - k) + 1)) + ((2 * k) + 1)) <= ((2 * (k ^2 )) + ((2 * k) + 2)) by A5, XXREAL_0: 2;

        hence thesis by A4, XXREAL_0: 2;

      end;

      

       A6: P[1];

      for n be Nat st n >= 1 holds P[n] from NAT_1:sch 8( A6, A1);

      hence thesis;

    end;

    

     Lm25: for e be Real st 0 < e & e < 1 holds ex N st for n st n >= N holds ((n * ( log (2,(1 + e)))) - (8 * ( log (2,n)))) > (8 * ( log (2,n)))

    proof

      set f = seq_logn ;

      let e be Real such that

       A1: 0 < e and

       A2: e < 1;

      set d = ( log (2,(1 + e)));

      set g = ( seq_n^ e);

      set h = (f /" g);

      

       A3: h is convergent by A1, Lm11;

      

       A4: ( lim h) = 0 by A1, Lm11;

      ( 0 + 1) < (e + 1) by A1, XREAL_1: 6;

      then ( log (2,1)) < ( log (2,(e + 1))) by POWER: 57;

      then

       A5: d > 0 by POWER: 51;

      then (d * (1 / 16)) > (d * 0 ) by XREAL_1: 68;

      then

      consider N be Nat such that

       A6: for n be Nat st n >= N holds |.((h . n) - 0 ).| < (d / 16) by A3, A4, SEQ_2:def 7;

      ex N st for n st n >= N holds ((n * ( log (2,(1 + e)))) - (8 * ( log (2,n)))) > (8 * ( log (2,n)))

      proof

        reconsider N1 = ( max (2,N)) as Element of NAT by ORDINAL1:def 12;

        

         A7: N1 >= 2 by XXREAL_0: 25;

        

         A8: N1 >= N by XXREAL_0: 25;

        now

          take N1;

          let n;

          assume

           A9: n >= N1;

          then

           A10: (n to_power e) > 0 by A7, POWER: 34;

          

           A11: n >= 2 by A7, A9, XXREAL_0: 2;

          then ( log (2,2)) <= ( log (2,n)) by PRE_FF: 10;

          then

           A12: 1 <= ( log (2,n)) by POWER: 52;

          

           A13: (h . n) = ((f . n) / (g . n)) by Lm4

          .= (( log (2,n)) / (g . n)) by A7, A9, Def2

          .= (( log (2,n)) / (n to_power e)) by A7, A9, Def3;

          n > 1 by A11, XXREAL_0: 2;

          then (n to_power 1) > (n to_power e) by A2, POWER: 39;

          then (1 / (n to_power 1)) < (1 / (n to_power e)) by A10, XREAL_1: 88;

          then (1 / n) < (1 / (n to_power e)) by POWER: 25;

          then

           A14: (( log (2,n)) / n) < (( log (2,n)) * (1 / (n to_power e))) by A12, XREAL_1: 68;

          n >= N by A8, A9, XXREAL_0: 2;

          then |.((h . n) - 0 ).| < (d / 16) by A6;

          then (h . n) < (d / 16) by A12, A13, A10, ABSVALUE:def 1;

          then

           A15: (( log (2,n)) / n) < (d / 16) by A13, A14, XXREAL_0: 2;

          (( log (2,n)) * (n " )) > ( 0 * (n " )) by A7, A9, A12, XREAL_1: 68;

          then (1 / (( log (2,n)) / n)) > (1 / (d / 16)) by A15, XREAL_1: 88;

          then (n / ( log (2,n))) > (1 / (d / 16)) by XCMPLX_1: 57;

          then (n / ( log (2,n))) > (16 / d) by XCMPLX_1: 57;

          then (d * (n / ( log (2,n)))) > ((16 / d) * d) by A5, XREAL_1: 68;

          then (d * (n / ( log (2,n)))) > 16 by A5, XCMPLX_1: 87;

          then ((d * (n / ( log (2,n)))) * ( log (2,n))) > (16 * ( log (2,n))) by A12, XREAL_1: 68;

          then (d * ((n / ( log (2,n))) * ( log (2,n)))) > (16 * ( log (2,n)));

          then (d * n) > ((8 + 8) * ( log (2,n))) by A12, XCMPLX_1: 87;

          then ((d * n) - (8 * ( log (2,n)))) > (((8 * ( log (2,n))) + (8 * ( log (2,n)))) - (8 * ( log (2,n)))) by XREAL_1: 9;

          hence ((n * d) - (8 * ( log (2,n)))) > (8 * ( log (2,n)));

        end;

        hence thesis;

      end;

      hence thesis;

    end;

    theorem :: ASYMPT_1:21

    for e be Real, f be Real_Sequence st 0 < e & (for n st n > 0 holds (f . n) = (n * ( log (2,n)))) holds ex s be eventually-positive Real_Sequence st s = f & ( Big_Oh s) c= ( Big_Oh ( seq_n^ (1 + e))) & not ( Big_Oh s) = ( Big_Oh ( seq_n^ (1 + e)))

    proof

      set seq = seq_logn ;

      let e be Real, f be Real_Sequence such that

       A1: 0 < e and

       A2: for n st n > 0 holds (f . n) = (n * ( log (2,n)));

      set seq1 = ( seq_n^ e);

      set p = (seq /" seq1);

      

       A3: ( lim p) = 0 by A1, Lm11;

      f is eventually-positive

      proof

        take 2;

        let n be Nat;

        

         A4: n in NAT by ORDINAL1:def 12;

        assume

         A5: n >= 2;

        then ( log (2,n)) >= ( log (2,2)) by PRE_FF: 10;

        then ( log (2,n)) >= 1 by POWER: 52;

        then (n * ( log (2,n))) > (n * 0 ) by A5, XREAL_1: 68;

        hence thesis by A2, A5, A4;

      end;

      then

      reconsider f as eventually-positive Real_Sequence;

      set g = ( seq_n^ (1 + e));

      set h = (f /" g);

      

       A6: for n st n >= 1 holds (h . n) = (p . n)

      proof

        let n;

        assume

         A7: n >= 1;

        (h . n) = ((f . n) / (g . n)) by Lm4

        .= ((n * ( log (2,n))) / (g . n)) by A2, A7

        .= ((n * ( log (2,n))) / (n to_power (1 + e))) by A7, Def3

        .= (((n to_power 1) * ( log (2,n))) / (n to_power (1 + e))) by POWER: 25

        .= (((n to_power 1) * ( log (2,n))) * ((n to_power (1 + e)) " ))

        .= (( log (2,n)) * ((n to_power 1) * ((n to_power (1 + e)) " )))

        .= (( log (2,n)) * ((n to_power 1) / (n to_power (1 + e))))

        .= (( log (2,n)) * (n to_power (1 - (1 + e)))) by A7, POWER: 29

        .= (( log (2,n)) * (n to_power (1 + (( - 1) + ( - e)))))

        .= (( log (2,n)) * (1 / (n to_power e))) by A7, POWER: 28

        .= (( log (2,n)) / (n to_power e))

        .= ((seq . n) / (n to_power e)) by A7, Def2

        .= ((seq . n) / (seq1 . n)) by A7, Def3

        .= (p . n) by Lm4;

        hence thesis;

      end;

      

       A8: p is convergent by A1, Lm11;

      then

       A9: ( lim h) = 0 by A3, A6, Lm22;

      

       A10: h is convergent by A8, A3, A6, Lm22;

      then not g in ( Big_Oh f) by A9, ASYMPT_0: 16;

      then

       A11: not f in ( Big_Omega g) by ASYMPT_0: 19;

      take f;

      f in ( Big_Oh g) by A10, A9, ASYMPT_0: 16;

      hence thesis by A11, Th4;

    end;

    theorem :: ASYMPT_1:22

    for e be Real, g be Real_Sequence st e < 1 & (for n st n > 1 holds (g . n) = ((n to_power 2) / ( log (2,n)))) holds ex s be eventually-positive Real_Sequence st s = g & ( Big_Oh ( seq_n^ (1 + e))) c= ( Big_Oh s) & not ( Big_Oh ( seq_n^ (1 + e))) = ( Big_Oh s)

    proof

      set seq = seq_logn ;

      let e be Real, g be Real_Sequence such that

       A1: e < 1 and

       A2: for n st n > 1 holds (g . n) = ((n to_power 2) / ( log (2,n)));

      set seq1 = ( seq_n^ (1 - e));

      set p = (seq /" seq1);

      set f = ( seq_n^ (1 + e));

      set h = (f /" g);

      g is eventually-positive

      proof

        take 2;

        let n be Nat;

        

         A3: n in NAT by ORDINAL1:def 12;

        assume

         A4: n >= 2;

        then ( log (2,n)) >= ( log (2,2)) by PRE_FF: 10;

        then

         A5: ( log (2,n)) >= 1 by POWER: 52;

        n > 1 by A4, XXREAL_0: 2;

        

        then

         A6: (g . n) = ((n to_power 2) / ( log (2,n))) by A2, A3

        .= ((n to_power 2) * (( log (2,n)) " ));

        (n to_power 2) > 0 by A4, POWER: 34;

        then ((n to_power 2) * (( log (2,n)) " )) > ((n to_power 2) * 0 ) by A5, XREAL_1: 68;

        hence thesis by A6;

      end;

      then

      reconsider g as eventually-positive Real_Sequence;

      

       A7: ((1 + e) - 2) = (e - 1);

      

       A8: for n st n >= 2 holds (h . n) = (p . n)

      proof

        let n;

        assume

         A9: n >= 2;

        then

         A10: n > 1 by XXREAL_0: 2;

        (h . n) = ((f . n) / (g . n)) by Lm4

        .= ((n to_power (1 + e)) / (g . n)) by A9, Def3

        .= ((n to_power (1 + e)) / ((n to_power 2) / ( log (2,n)))) by A2, A10

        .= ((n to_power (1 + e)) * (((n to_power 2) / ( log (2,n))) " ))

        .= ((n to_power (1 + e)) * (( log (2,n)) / (n to_power 2))) by XCMPLX_1: 213

        .= ((n to_power (1 + e)) * (( log (2,n)) * ((n to_power 2) " )))

        .= (((n to_power (1 + e)) * ((n to_power 2) " )) * ( log (2,n)))

        .= (((n to_power (1 + e)) / (n to_power 2)) * ( log (2,n)))

        .= ((n to_power ( - (1 - e))) * ( log (2,n))) by A7, A9, POWER: 29

        .= (( log (2,n)) * (1 / (n to_power (1 - e)))) by A9, POWER: 28

        .= (( log (2,n)) / (n to_power (1 - e)))

        .= ((seq . n) / (n to_power (1 - e))) by A9, Def2

        .= ((seq . n) / (seq1 . n)) by A9, Def3

        .= (p . n) by Lm4;

        hence thesis;

      end;

      take g;

      ( 0 + e) < 1 by A1;

      then

       A11: 0 < (1 - e) by XREAL_1: 20;

      then

       A12: p is convergent by Lm11;

      

       A13: ( lim p) = 0 by A11, Lm11;

      then

       A14: ( lim h) = 0 by A12, A8, Lm22;

      

       A15: h is convergent by A12, A13, A8, Lm22;

      then not g in ( Big_Oh f) by A14, ASYMPT_0: 16;

      then

       A16: not f in ( Big_Omega g) by ASYMPT_0: 19;

      f in ( Big_Oh g) by A15, A14, ASYMPT_0: 16;

      hence thesis by A16, Th4;

    end;

    theorem :: ASYMPT_1:23

    for f be Real_Sequence st (for n st n > 1 holds (f . n) = ((n to_power 2) / ( log (2,n)))) holds ex s be eventually-positive Real_Sequence st s = f & ( Big_Oh s) c= ( Big_Oh ( seq_n^ 8)) & not ( Big_Oh s) = ( Big_Oh ( seq_n^ 8))

    proof

      set g = ( seq_n^ 8);

      let f be Real_Sequence such that

       A1: for n st n > 1 holds (f . n) = ((n to_power 2) / ( log (2,n)));

      

       A2: f is eventually-positive

      proof

        take 2;

        let n be Nat;

        

         A3: n in NAT by ORDINAL1:def 12;

        assume

         A4: n >= 2;

        then ( log (2,n)) >= ( log (2,2)) by PRE_FF: 10;

        then

         A5: ( log (2,n)) >= 1 by POWER: 52;

        n > 1 by A4, XXREAL_0: 2;

        

        then

         A6: (f . n) = ((n to_power 2) / ( log (2,n))) by A1, A3

        .= ((n to_power 2) * (( log (2,n)) " ));

        (n to_power 2) > 0 by A4, POWER: 34;

        then ((n to_power 2) * (( log (2,n)) " )) > ((n to_power 2) * 0 ) by A5, XREAL_1: 68;

        hence thesis by A6;

      end;

      set h = (f /" g);

      reconsider f as eventually-positive Real_Sequence by A2;

       A7:

      now

        

         A8: ( log (2,3)) > ( log (2,2)) by POWER: 57;

        let p be Real;

        assume

         A9: p > 0 ;

        

         A10: [/(p to_power ( - (1 / 6)))\] >= (p to_power ( - (1 / 6))) by INT_1:def 7;

        reconsider p1 = p as Real;

        set N = ( max (3, [/(p1 to_power ( - (1 / 6)))\]));

        

         A11: N >= 3 by XXREAL_0: 25;

        

         A12: N is Integer by XXREAL_0: 16;

        

         A13: N >= [/(p to_power ( - (1 / 6)))\] by XXREAL_0: 25;

        N in NAT by A11, A12, INT_1: 3;

        then

        reconsider N as Nat;

        take N;

        let n be Nat;

        

         A14: n in NAT by ORDINAL1:def 12;

        assume

         A15: n >= N;

        then

         A16: n >= 3 by A11, XXREAL_0: 2;

        then

         A17: n > 1 by XXREAL_0: 2;

        

         A18: (h . n) = ((f . n) / (g . n)) by Lm4

        .= (((n to_power 2) / ( log (2,n))) / (g . n)) by A1, A17, A14

        .= (((n to_power 2) / ( log (2,n))) / (n to_power 8)) by A11, A15, Def3, A14

        .= (((n to_power 2) * (( log (2,n)) " )) / (n to_power 8))

        .= (((( log (2,n)) " ) * (n to_power 2)) * ((n to_power 8) " ))

        .= ((( log (2,n)) " ) * ((n to_power 2) * ((n to_power 8) " )))

        .= ((( log (2,n)) " ) * ((n to_power 2) / (n to_power 8)))

        .= ((( log (2,n)) " ) * (n to_power (2 - 8))) by A11, A15, POWER: 29

        .= ((( log (2,n)) " ) * (n to_power ( - 6)))

        .= ((( log (2,n)) " ) * (1 / (n to_power 6))) by A11, A15, POWER: 28

        .= ((1 / (n to_power 6)) * (1 / ( log (2,n))))

        .= (1 / ((n to_power 6) * ( log (2,n)))) by XCMPLX_1: 102;

        n >= [/(p to_power ( - (1 / 6)))\] by A13, A15, XXREAL_0: 2;

        then

         A19: n >= (p to_power ( - (1 / 6))) by A10, XXREAL_0: 2;

        (p1 to_power ( - (1 / 6))) > 0 by A9, POWER: 34;

        then (n to_power 6) >= ((p to_power ( - (1 / 6))) to_power 6) by A19, Lm6;

        then

         A20: (n to_power 6) >= (p1 to_power (( - (1 / 6)) * 6)) by A9, POWER: 33;

        (p1 to_power ( - 1)) > 0 by A9, POWER: 34;

        then (1 / (n to_power 6)) <= (1 / (p to_power ( - 1))) by A20, XREAL_1: 85;

        then (1 / (n to_power 6)) <= (1 / (1 / (p1 to_power 1))) by A9, POWER: 28;

        then

         A21: (1 / (n to_power 6)) <= p by POWER: 25;

        ( log (2,n)) >= ( log (2,3)) by A16, PRE_FF: 10;

        then ( log (2,n)) > ( log (2,2)) by A8, XXREAL_0: 2;

        then

         A22: ( log (2,n)) > 1 by POWER: 52;

        

         A23: (n to_power 6) > 0 by A11, A15, POWER: 34;

        then ((n to_power 6) * 1) < ((n to_power 6) * ( log (2,n))) by A22, XREAL_1: 68;

        then (h . n) < (1 / (n to_power 6)) by A23, A18, XREAL_1: 88;

        then (h . n) < p by A21, XXREAL_0: 2;

        hence |.((h . n) - 0 ).| < p by A22, A18, ABSVALUE:def 1;

      end;

      then

       A24: h is convergent by SEQ_2:def 6;

      then

       A25: ( lim h) = 0 by A7, SEQ_2:def 7;

      then not g in ( Big_Oh f) by A24, ASYMPT_0: 16;

      then

       A26: not f in ( Big_Omega g) by ASYMPT_0: 19;

      take f;

      f in ( Big_Oh g) by A24, A25, ASYMPT_0: 16;

      hence thesis by A26, Th4;

    end;

    theorem :: ASYMPT_1:24

    for g be Real_Sequence st (for n holds (g . n) = ((((n ^2 ) - n) + 1) to_power 4)) holds ex s be eventually-positive Real_Sequence st s = g & ( Big_Oh ( seq_n^ 8)) = ( Big_Oh s)

    proof

      let g be Real_Sequence such that

       A1: for n holds (g . n) = ((((n ^2 ) - n) + 1) to_power 4);

      g is eventually-positive

      proof

        take 0 ;

        let n be Nat;

        

         A2: n in NAT by ORDINAL1:def 12;

        assume n >= 0 ;

        (g . n) = ((((n ^2 ) - n) + 1) to_power 4) by A1, A2;

        hence thesis by Lm21, POWER: 34, A2;

      end;

      then

      reconsider g as eventually-positive Real_Sequence;

      take g;

      set f = ( seq_n^ 8);

       A3:

      now

        let n;

        

         A4: (g . n) = ((((n ^2 ) - n) + 1) to_power 4) by A1;

        assume

         A5: n >= 1;

        then

         A6: (((n ^2 ) - n) + 1) <= (n ^2 ) by Lm23;

        (f . n) = (n to_power (2 * 4)) by A5, Def3

        .= ((n to_power 2) to_power 4) by A5, POWER: 33

        .= ((n ^2 ) to_power 4) by POWER: 46;

        hence (g . n) <= (1 * (f . n)) by A4, A6, Lm6, Lm21;

        thus (g . n) >= 0 by A4, Lm21, POWER: 34;

      end;

       A7:

      now

        let n;

        

         A8: (g . n) = ((((n ^2 ) - n) + 1) to_power 4) by A1;

        

         A9: (((n ^2 ) - n) + 1) > 0 by Lm21;

        assume

         A10: n >= 1;

        

        then

         A11: (f . n) = (n to_power (2 * 4)) by Def3

        .= ((n to_power 2) to_power 4) by A10, POWER: 33

        .= ((n ^2 ) to_power 4) by POWER: 46;

        

         A12: (n * n) > (n * 0 ) by A10, XREAL_1: 68;

        (n ^2 ) <= (2 * (((n ^2 ) - n) + 1)) by A10, Lm24;

        then (f . n) <= ((2 * (((n ^2 ) - n) + 1)) to_power 4) by A11, A12, Lm6;

        hence (f . n) <= (16 * (g . n)) by A8, A9, POWER: 30, POWER: 62;

        thus (f . n) >= 0 by A11, A12, POWER: 34;

      end;

      f is Element of ( Funcs ( NAT , REAL )) by FUNCT_2: 8;

      then

       A13: f in ( Big_Oh g) by A7;

      g is Element of ( Funcs ( NAT , REAL )) by FUNCT_2: 8;

      then g in ( Big_Oh f) by A3;

      hence thesis by A13, Lm5;

    end;

    theorem :: ASYMPT_1:25

    for e be Real st 0 < e & e < 1 holds ex s be eventually-positive Real_Sequence st s = ( seq_a^ ((1 + e),1, 0 )) & ( Big_Oh ( seq_n^ 8)) c= ( Big_Oh s) & not ( Big_Oh ( seq_n^ 8)) = ( Big_Oh s)

    proof

      set f = ( seq_n^ 8);

      let e be Real such that

       A1: 0 < e and

       A2: e < 1;

      consider N such that

       A3: for n st n >= N holds ((n * ( log (2,(1 + e)))) - (8 * ( log (2,n)))) > (8 * ( log (2,n))) by A1, A2, Lm25;

      set g = ( seq_a^ ((1 + e),1, 0 ));

      set h = (f /" g);

      reconsider g as eventually-positive Real_Sequence by A1;

      take g;

      thus g = ( seq_a^ ((1 + e),1, 0 ));

       A4:

      now

        let p be Real such that

         A5: p > 0 ;

        reconsider p1 = p as Real;

        

         A6: ((1 / p1) to_power (1 / 8)) > 0 by A5, POWER: 34;

        set N1 = ( max (N,( max ( [/((1 / p1) to_power (1 / 8))\],2))));

        

         A7: N1 >= N by XXREAL_0: 25;

        

         A8: N1 is Integer

        proof

          per cases by XXREAL_0: 16;

            suppose N1 = N;

            hence thesis;

          end;

            suppose N1 = ( max ( [/((1 / p) to_power (1 / 8))\],2));

            hence thesis by XXREAL_0: 16;

          end;

        end;

        

         A9: N1 >= ( max ( [/((1 / p) to_power (1 / 8))\],2)) by XXREAL_0: 25;

        ( max ( [/((1 / p) to_power (1 / 8))\],2)) >= [/((1 / p) to_power (1 / 8))\] by XXREAL_0: 25;

        then

         A10: N1 >= [/((1 / p) to_power (1 / 8))\] by A9, XXREAL_0: 2;

        N1 in NAT by A7, A8, INT_1: 3;

        then

        reconsider N1 as Nat;

        take N1;

        let n be Nat;

        

         A11: n in NAT by ORDINAL1:def 12;

        assume

         A12: n >= N1;

        then n >= N by A7, XXREAL_0: 2;

        then ((n * ( log (2,(1 + e)))) - (8 * ( log (2,n)))) > (8 * ( log (2,n))) by A3, A11;

        then

         A13: (2 to_power ((n * ( log (2,(1 + e)))) - (8 * ( log (2,n))))) > (2 to_power (8 * ( log (2,n)))) by POWER: 39;

        

         A14: ( max ( [/((1 / p) to_power (1 / 8))\],2)) >= 2 by XXREAL_0: 25;

        

         A15: (g . n) = ((1 + e) to_power ((1 * n) + 0 )) by Def1;

        (h . n) = ((f . n) / (g . n)) by Lm4;

        

        then

         A16: (h . n) = ((n to_power 8) / ((1 + e) to_power n)) by A9, A14, A12, A15, Def3

        .= ((2 to_power (8 * ( log (2,n)))) / ((1 + e) to_power n)) by A9, A14, A12, Lm3

        .= ((2 to_power (8 * ( log (2,n)))) / (2 to_power (n * ( log (2,(1 + e)))))) by A1, Lm3

        .= (2 to_power ((8 * ( log (2,n))) - (n * ( log (2,(1 + e)))))) by POWER: 29

        .= (2 to_power ( - ((n * ( log (2,(1 + e)))) - (8 * ( log (2,n))))));

         [/((1 / p) to_power (1 / 8))\] >= ((1 / p) to_power (1 / 8)) by INT_1:def 7;

        then N1 >= ((1 / p) to_power (1 / 8)) by A10, XXREAL_0: 2;

        then n >= ((1 / p) to_power (1 / 8)) by A12, XXREAL_0: 2;

        then (n to_power 8) >= (((1 / p) to_power (1 / 8)) to_power 8) by A6, Lm6;

        then (n to_power 8) >= ((1 / p1) to_power ((1 / 8) * 8)) by A5, POWER: 33;

        then (n to_power 8) >= (1 / p1) by POWER: 25;

        then (1 / (n to_power 8)) <= (1 / (p " )) by A5, XREAL_1: 85;

        then (1 / (2 to_power (8 * ( log (2,n))))) <= p by A9, A14, A12, Lm3;

        then

         A17: (2 to_power ( - (8 * ( log (2,n))))) <= p by POWER: 28;

        (2 to_power (8 * ( log (2,n)))) > 0 by POWER: 34;

        then (1 / (2 to_power ((n * ( log (2,(1 + e)))) - (8 * ( log (2,n)))))) < (1 / (2 to_power (8 * ( log (2,n))))) by A13, XREAL_1: 88;

        then (2 to_power ( - ((n * ( log (2,(1 + e)))) - (8 * ( log (2,n)))))) < (1 / (2 to_power (8 * ( log (2,n))))) by POWER: 28;

        then (h . n) < (2 to_power ( - (8 * ( log (2,n))))) by A16, POWER: 28;

        then

         A18: (h . n) < p by A17, XXREAL_0: 2;

        (h . n) > 0 by A16, POWER: 34;

        hence |.((h . n) - 0 ).| < p by A18, ABSVALUE:def 1;

      end;

      then

       A19: h is convergent by SEQ_2:def 6;

      then

       A20: ( lim h) = 0 by A4, SEQ_2:def 7;

      then not g in ( Big_Oh f) by A19, ASYMPT_0: 16;

      then

       A21: not f in ( Big_Omega g) by ASYMPT_0: 19;

      f in ( Big_Oh g) by A19, A20, ASYMPT_0: 16;

      hence thesis by A21, Th4;

    end;

    begin

    

     Lm26: (2 to_power 12) = 4096

    proof

      

      thus (2 to_power 12) = (2 to_power (6 + 6))

      .= (64 * 64) by POWER: 27, POWER: 64

      .= 4096;

    end;

    

     Lm27: for n be Nat st n >= 3 holds (n ^2 ) > ((2 * n) + 1)

    proof

      defpred P[ Nat] means ($1 ^2 ) > ((2 * $1) + 1);

      

       A1: for n be Nat st n >= 3 & P[n] holds P[(n + 1)]

      proof

        let n be Nat;

        assume that

         A2: n >= 3 and

         A3: (n ^2 ) > ((2 * n) + 1);

        n > 1 by A2, XXREAL_0: 2;

        then (n + n) > (1 + 0 ) by XREAL_1: 8;

        then

         A4: ((2 * n) + (2 * (n + 1))) > (1 + (2 * (n + 1))) by XREAL_1: 6;

        ((n ^2 ) + (n + (n + 1))) > (((2 * n) + 1) + (n + (n + 1))) by A3, XREAL_1: 6;

        hence ((n + 1) ^2 ) > ((2 * (n + 1)) + 1) by A4, XXREAL_0: 2;

      end;

      

       A5: P[3];

      for n be Nat st n >= 3 holds P[n] from NAT_1:sch 8( A5, A1);

      hence thesis;

    end;

    

     Lm28: for n st n >= 10 holds (2 to_power (n - 1)) > ((2 * n) ^2 )

    proof

      defpred P[ Nat] means (2 to_power ($1 - 1)) > ((2 * $1) ^2 );

      

       A1: for n be Nat st n >= 10 & P[n] holds P[(n + 1)]

      proof

        let n be Nat;

        assume that

         A2: n >= 10 and

         A3: (2 to_power (n - 1)) > ((2 * n) ^2 );

         A4:

        now

          assume (((2 * n) ^2 ) * 2) <= ((2 * 2) * (((n * n) + (2 * n)) + 1));

          then (((2 * 2) * (n * n)) * 2) <= (((2 * 2) * (n * n)) + ((2 * 2) * ((2 * n) + 1)));

          then ((((2 * 2) * (n * n)) * 2) - ((2 * 2) * (n * n))) <= ((2 * 2) * ((2 * n) + 1)) by XREAL_1: 20;

          then (((2 * 2) " ) * ((2 * 2) * (n * n))) <= (((2 * 2) " ) * ((2 * 2) * ((2 * n) + 1))) by XREAL_1: 64;

          then

           A5: (n ^2 ) <= ((2 * n) + 1);

          n >= 3 by A2, XXREAL_0: 2;

          hence contradiction by A5, Lm27;

        end;

        (2 to_power ((n + 1) - 1)) = (2 to_power ((n + ( - 1)) + 1))

        .= ((2 to_power (n - 1)) * (2 to_power 1)) by POWER: 27

        .= ((2 to_power (n - 1)) * 2) by POWER: 25;

        then (2 to_power ((n + 1) - 1)) > (((2 * n) ^2 ) * 2) by A3, XREAL_1: 68;

        hence (2 to_power ((n + 1) - 1)) > ((2 * (n + 1)) ^2 ) by A4, XXREAL_0: 2;

      end;

      (2 to_power (10 - 1)) = (2 to_power (6 + 3))

      .= (64 * (2 to_power (2 + 1))) by POWER: 27, POWER: 64

      .= (64 * ((2 to_power 2) * (2 to_power 1))) by POWER: 27

      .= (64 * ((2 to_power (1 + 1)) * 2)) by POWER: 25

      .= (64 * (((2 to_power 1) * (2 to_power 1)) * 2)) by POWER: 27

      .= (64 * ((2 * (2 to_power 1)) * 2)) by POWER: 25

      .= (64 * ((2 * 2) * 2)) by POWER: 25

      .= 512;

      then

       A6: P[10];

      for n be Nat st n >= 10 holds P[n] from NAT_1:sch 8( A6, A1);

      hence thesis;

    end;

    

     Lm29: for n be Nat st n >= 9 holds ((n + 1) to_power 6) < (2 * (n to_power 6))

    proof

      defpred P[ Nat] means (($1 + 1) to_power 6) < (2 * ($1 to_power 6));

      

       A1: for n be Nat st n >= 9 & P[n] holds P[(n + 1)]

      proof

        let n be Nat;

        assume that

         A2: n >= 9 and

         A3: ((n + 1) to_power 6) < (2 * (n to_power 6));

        (((n + 1) to_power 6) / (n to_power 6)) < 2 by A2, A3, POWER: 34, XREAL_1: 83;

        then

         A4: (((n + 1) / n) to_power 6) < 2 by A2, POWER: 31;

         A5:

        now

          assume ((n + 2) / (n + 1)) >= ((n + 1) / n);

          then (((n + 2) / (n + 1)) * (n + 1)) >= (((n + 1) / n) * (n + 1)) by XREAL_1: 64;

          then (n + 2) >= (((n + 1) / n) * (n + 1)) by XCMPLX_1: 87;

          then ((n + 2) * n) >= ((((n + 1) / n) * (n + 1)) * n) by XREAL_1: 64;

          then ((n + 2) * n) >= ((((n + 1) / n) * n) * (n + 1));

          then ((n ^2 ) + (2 * n)) >= ((n + 1) ^2 ) by A2, XCMPLX_1: 87;

          then ((n ^2 ) + (2 * n)) >= (((n ^2 ) + (2 * n)) + (1 * 1));

          then (((n ^2 ) + (2 * n)) - ((n ^2 ) + (2 * n))) >= 1 by XREAL_1: 19;

          hence contradiction;

        end;

        

         A6: ((n + 1) to_power 6) > 0 by POWER: 34;

        ((n + 2) * ((n + 1) " )) > ( 0 * ((n + 1) " )) by XREAL_1: 68;

        then (((n + 2) / (n + 1)) to_power 6) < (((n + 1) / n) to_power 6) by A5, POWER: 37;

        then (((n + 2) / (n + 1)) to_power 6) < 2 by A4, XXREAL_0: 2;

        then (((n + 2) to_power 6) / ((n + 1) to_power 6)) < 2 by POWER: 31;

        then ((((n + 2) to_power 6) / ((n + 1) to_power 6)) * ((n + 1) to_power 6)) < (2 * ((n + 1) to_power 6)) by A6, XREAL_1: 68;

        hence thesis by A6, XCMPLX_1: 87;

      end;

      

       A7: P[9]

      proof

        

         A8: (9 to_power 2) = (9 to_power (1 + 1))

        .= ((9 to_power 1) * (9 to_power 1)) by POWER: 27

        .= (9 * (9 to_power 1)) by POWER: 25

        .= (9 * 9) by POWER: 25

        .= 81;

        (2 * (9 to_power 4)) = (2 * (9 to_power (2 + 2)))

        .= (2 * (81 * 81)) by A8, POWER: 27

        .= 13122;

        

        then

         A9: ((13122 * 9) * 9) = ((2 * ((9 to_power 4) * 9)) * 9)

        .= ((2 * ((9 to_power 4) * (9 to_power 1))) * 9) by POWER: 25

        .= ((2 * (9 to_power (4 + 1))) * 9) by POWER: 27

        .= (2 * ((9 to_power 5) * 9))

        .= (2 * ((9 to_power 5) * (9 to_power 1))) by POWER: 25

        .= (2 * (9 to_power (5 + 1))) by POWER: 27

        .= (2 * (9 to_power 6));

        consider t6 be Element of NAT such that

         A10: t6 = (((((10 * 10) * 10) * 10) * 10) * 10);

        

         A11: (10 to_power 3) = (10 to_power (2 + 1))

        .= ((10 to_power 2) * (10 to_power 1)) by POWER: 27

        .= ((10 to_power (1 + 1)) * 10) by POWER: 25

        .= (((10 to_power 1) * (10 to_power 1)) * 10) by POWER: 27

        .= ((10 * (10 to_power 1)) * 10) by POWER: 25

        .= ((10 * 10) * 10) by POWER: 25;

        (10 to_power 6) = (10 to_power (3 + 3))

        .= (((10 * 10) * 10) * ((10 * 10) * 10)) by A11, POWER: 27

        .= t6 by A10;

        hence thesis by A10, A9;

      end;

      for n be Nat st n >= 9 holds P[n] from NAT_1:sch 8( A7, A1);

      hence thesis;

    end;

    

     Lm30: for n st n >= 30 holds (2 to_power n) > (n to_power 6)

    proof

      defpred P[ Nat] means (2 to_power $1) > ($1 to_power 6);

      

       A1: for n be Nat st n >= 30 & P[n] holds P[(n + 1)]

      proof

        let n be Nat;

        assume that

         A2: n >= 30 and

         A3: (2 to_power n) > (n to_power 6);

        n >= 9 by A2, XXREAL_0: 2;

        then

         A4: ((n + 1) to_power 6) < (2 * (n to_power 6)) by Lm29;

        

         A5: (2 to_power (n + 1)) = ((2 to_power n) * (2 to_power 1)) by POWER: 27

        .= ((2 to_power n) * 2) by POWER: 25;

        ((2 to_power n) * 2) > ((n to_power 6) * 2) by A3, XREAL_1: 68;

        hence thesis by A5, A4, XXREAL_0: 2;

      end;

      (2 to_power 30) = (2 to_power (5 * 6))

      .= (32 to_power 6) by POWER: 33, POWER: 63;

      then

       A6: P[30] by POWER: 37;

      for n be Nat st n >= 30 holds P[n] from NAT_1:sch 8( A6, A1);

      hence thesis;

    end;

    

     Lm31: for x be Real st x > 9 holds (2 to_power x) > ((2 * x) ^2 )

    proof

      let x be Real such that

       A1: x > 9;

      set n = [/x\];

      

       A2: n >= x by INT_1:def 7;

      then

      reconsider n as Element of NAT by A1, INT_1: 3;

      (2 * n) >= (2 * x) by A2, XREAL_1: 64;

      then

       A3: ((2 * n) ^2 ) >= ((2 * x) * (2 * x)) by A1, Lm20;

      n > 9 by A1, A2, XXREAL_0: 2;

      then n >= (9 + 1) by NAT_1: 13;

      then

       A4: (2 to_power (n - 1)) > ((2 * n) ^2 ) by Lm28;

      ( [/x\] - [\x/]) <= 1

      proof

        per cases ;

          suppose x is Integer;

          then [\x/] = [/x\] by INT_1: 34;

          hence thesis;

        end;

          suppose not x is Integer;

          then not [\x/] = [/x\] by INT_1: 34;

          then ( [\x/] + 1) = [/x\] by INT_1: 41;

          hence thesis;

        end;

      end;

      then [/x\] <= (1 + [\x/]) by XREAL_1: 20;

      then [\x/] >= (n - 1) by XREAL_1: 20;

      then

       A5: (2 to_power [\x/]) >= (2 to_power (n - 1)) by PRE_FF: 8;

      x >= [\x/] by INT_1:def 6;

      then (2 to_power x) >= (2 to_power [\x/]) by PRE_FF: 8;

      then (2 to_power x) >= (2 to_power (n - 1)) by A5, XXREAL_0: 2;

      then (2 to_power x) > ((2 * n) ^2 ) by A4, XXREAL_0: 2;

      hence thesis by A3, XXREAL_0: 2;

    end;

    

     Lm32: ex N st for n st n >= N holds (( sqrt n) - ( log (2,n))) > 1

    proof

      ex N st for n st n >= N holds (n / 2) > (( log (2,n)) * ( log (2,n)))

      proof

        reconsider N = (2 to_power 10) as Element of NAT ;

        now

          take N;

          let n;

          set x = ( log (2,n));

          

           A1: (2 to_power 9) > 0 by POWER: 34;

          assume

           A2: n >= N;

          then

           A3: n > 0 by POWER: 34;

          (2 to_power 10) > (2 to_power 0 ) by POWER: 39;

          then n > (2 to_power 0 ) by A2, XXREAL_0: 2;

          then n > 1 by POWER: 24;

          then ( log (2,n)) > ( log (2,1)) by POWER: 57;

          then ( log (2,n)) > 0 by POWER: 51;

          then (( log (2,n)) * ( log (2,n))) > ( 0 * ( log (2,n))) by XREAL_1: 68;

          then

           A4: (4 * (( log (2,n)) * ( log (2,n)))) > (2 * (( log (2,n)) * ( log (2,n)))) by XREAL_1: 68;

          (2 to_power 10) > (2 to_power 1) by POWER: 39;

          then n > (2 to_power 1) by A2, XXREAL_0: 2;

          then

           A5: n > 2 by POWER: 25;

          then

           A6: (2 * n) > (2 * 2) by XREAL_1: 68;

          (n * n) > (2 * n) by A5, XREAL_1: 68;

          then (n ^2 ) > (2 * 2) by A6, XXREAL_0: 2;

          then ( log (2,(n ^2 ))) > ( log (2,(2 ^2 ))) by POWER: 57;

          then ( log (2,(n ^2 ))) > ( log (2,(2 to_power 2))) by POWER: 46;

          then ( log (2,(n ^2 ))) > (2 * ( log (2,2))) by POWER: 55;

          then

           A7: ( log (2,(n ^2 ))) > (2 * 1) by POWER: 52;

          then

           A8: (( log (2,(n ^2 ))) ^2 ) > 0 by SQUARE_1: 12;

          (2 to_power 10) > (2 to_power 9) by POWER: 39;

          then n > (2 to_power 9) by A2, XXREAL_0: 2;

          then ( log (2,n)) > ( log (2,(2 to_power 9))) by A1, POWER: 57;

          then x > (9 * ( log (2,2))) by POWER: 55;

          then

           A9: x > (9 * 1) by POWER: 52;

          then

           A10: (2 * x) > ( 0 * x) by XREAL_1: 68;

          then ((2 * x) * (2 * x)) > ( 0 * (2 * x)) by XREAL_1: 68;

          then ( log (2,(2 to_power x))) > ( log (2,((2 * x) ^2 ))) by A9, Lm31, POWER: 57;

          then (x * ( log (2,2))) > ( log (2,((2 * x) ^2 ))) by POWER: 55;

          then (x * 1) > ( log (2,((2 * x) ^2 ))) by POWER: 52;

          then x > ( log (2,((2 * x) to_power 2))) by POWER: 46;

          then x > (2 * ( log (2,(2 * x)))) by A10, POWER: 55;

          then ( log (2,n)) > (2 * ( log (2,( log (2,(n to_power 2)))))) by A3, POWER: 55;

          then ( log (2,n)) > (2 * ( log (2,( log (2,(n ^2 )))))) by POWER: 46;

          then (2 to_power ( log (2,n))) > (2 to_power (2 * ( log (2,( log (2,(n ^2 ))))))) by POWER: 39;

          then n > (2 to_power (2 * ( log (2,( log (2,(n ^2 ))))))) by A3, POWER:def 3;

          then n > (2 to_power ( log (2,(( log (2,(n ^2 ))) to_power 2)))) by A7, POWER: 55;

          then n > (2 to_power ( log (2,(( log (2,(n ^2 ))) ^2 )))) by POWER: 46;

          then n > (( log (2,(n ^2 ))) ^2 ) by A8, POWER:def 3;

          then n > (( log (2,(n to_power 2))) ^2 ) by POWER: 46;

          then n > ((2 * ( log (2,n))) ^2 ) by A3, POWER: 55;

          then n > (2 * (( log (2,n)) * ( log (2,n)))) by A4, XXREAL_0: 2;

          hence (n / 2) > (( log (2,n)) * ( log (2,n))) by XREAL_1: 81;

        end;

        hence thesis;

      end;

      then

      consider N3 such that

       A11: for n st n >= N3 holds (n / 2) > (( log (2,n)) * ( log (2,n)));

      now

        take N = 30;

        let n;

        assume

         A12: n >= N;

        then

         A13: (n to_power 6) > 0 by POWER: 34;

        (2 to_power n) > (n to_power 6) by A12, Lm30;

        then ( log (2,(2 to_power n))) > ( log (2,(n to_power 6))) by A13, POWER: 57;

        then (n * ( log (2,2))) > ( log (2,(n to_power 6))) by POWER: 55;

        then (n * 1) > ( log (2,(n to_power 6))) by POWER: 52;

        then n > ((3 * 2) * ( log (2,n))) by A12, POWER: 55;

        then n > (3 * (2 * ( log (2,n))));

        hence (n / 3) > (2 * ( log (2,n))) by XREAL_1: 81;

      end;

      then

      consider N2 such that

       A14: for n st n >= N2 holds (n / 3) > (2 * ( log (2,n)));

      now

        take N = 7;

        let n;

        assume n >= N;

        then n > 6 by XXREAL_0: 2;

        then (n / 6) > (6 / 6) by XREAL_1: 74;

        hence (n / 6) > 1;

      end;

      then

      consider N1 such that

       A15: for n st n >= N1 holds (n / 6) > 1;

      set N = ( max (( max (N1,2)),( max (N2,N3))));

      

       A16: N >= ( max (N1,2)) by XXREAL_0: 25;

      ( max (N1,2)) >= 2 by XXREAL_0: 25;

      then

       A17: N >= 2 by A16, XXREAL_0: 2;

      

       A18: N >= ( max (N2,N3)) by XXREAL_0: 25;

      ( max (N2,N3)) >= N3 by XXREAL_0: 25;

      then

       A19: N >= N3 by A18, XXREAL_0: 2;

      ( max (N2,N3)) >= N2 by XXREAL_0: 25;

      then

       A20: N >= N2 by A18, XXREAL_0: 2;

      ( max (N1,2)) >= N1 by XXREAL_0: 25;

      then

       A21: N >= N1 by A16, XXREAL_0: 2;

      now

        let n;

        

         A22: ((1 + (2 * ( log (2,n)))) + (( log (2,n)) * ( log (2,n)))) = ((1 + ( log (2,n))) ^2 );

        assume

         A23: n >= N;

        then n >= N2 by A20, XXREAL_0: 2;

        then

         A24: (n / 3) > (2 * ( log (2,n))) by A14;

        n >= 2 by A17, A23, XXREAL_0: 2;

        then ( log (2,n)) >= ( log (2,2)) by PRE_FF: 10;

        then

         A25: ( log (2,n)) >= 1 by POWER: 52;

        n >= N1 by A21, A23, XXREAL_0: 2;

        then (n / 6) > 1 by A15;

        then

         A26: ((n / 6) + (n / 3)) > (1 + (2 * ( log (2,n)))) by A24, XREAL_1: 8;

        n >= N3 by A19, A23, XXREAL_0: 2;

        then

         A27: (n / 2) > (( log (2,n)) * ( log (2,n))) by A11;

        (((n / 6) + (n / 3)) + (n / 2)) = n;

        then n > ((1 + ( log (2,n))) ^2 ) by A26, A27, A22, XREAL_1: 8;

        then ( sqrt n) > ( sqrt ((1 + ( log (2,n))) ^2 )) by SQUARE_1: 27, XREAL_1: 63;

        then ( sqrt n) > (1 + ( log (2,n))) by A25, SQUARE_1: 22;

        hence (( sqrt n) - ( log (2,n))) > 1 by XREAL_1: 20;

      end;

      hence thesis;

    end;

    

     Lm33: (5 ! ) = 120

    proof

      ((4 + 1) ! ) = ((4 + 1) * (4 ! )) by NEWTON: 15

      .= (5 * ((3 + 1) * (3 ! ))) by NEWTON: 15

      .= (5 * (4 * ((2 + 1) * (2 ! )))) by NEWTON: 15

      .= 120 by NEWTON: 14;

      hence thesis;

    end;

    

     Lm34: for n st n >= 10 holds ((2 to_power (2 * n)) / (n ! )) < (1 / (2 to_power (n - 9)))

    proof

      defpred P[ Nat] means ((2 to_power (2 * $1)) / ($1 ! )) < (1 / (2 to_power ($1 - 9)));

      

       A1: not (4096 / 14175) >= (1 / 2);

      

       A2: 7 = (8 - 1);

      

       A3: for k be Nat st k >= 10 & P[k] holds P[(k + 1)]

      proof

        let k be Nat;

        assume that

         A4: k >= 10 and

         A5: ((2 to_power (2 * k)) / (k ! )) < (1 / (2 to_power (k - 9)));

        

         A6: (2 to_power 1) > 0 by POWER: 34;

         A7:

        now

          assume ((2 to_power 2) / (k + 1)) >= (1 / (2 to_power 1));

          then ((2 to_power 1) * ((2 to_power 2) * ((k + 1) " ))) >= ((1 / (2 to_power 1)) * (2 to_power 1)) by XREAL_1: 64;

          then (((2 to_power 1) * (2 to_power 2)) * ((k + 1) " )) >= ((1 / (2 to_power 1)) * (2 to_power 1));

          then ((2 to_power (1 + 2)) * ((k + 1) " )) >= ((1 / (2 to_power 1)) * (2 to_power 1)) by POWER: 27;

          then (8 / (k + 1)) >= 1 by A6, POWER: 61, XCMPLX_1: 106;

          then ((8 / (k + 1)) * (k + 1)) >= (1 * (k + 1)) by XREAL_1: 64;

          then 8 >= (k + 1) by XCMPLX_1: 87;

          then 7 >= k by A2, XREAL_1: 19;

          hence contradiction by A4, XXREAL_0: 2;

        end;

        (2 to_power ( - (k - 9))) > 0 by POWER: 34;

        then (1 / (2 to_power (k - 9))) > 0 by POWER: 28;

        then

         A8: (((2 to_power 2) / (k + 1)) * (1 / (2 to_power (k - 9)))) < ((1 / (2 to_power 1)) * (1 / (2 to_power (k - 9)))) by A7, XREAL_1: 68;

        (2 to_power 2) > 0 by POWER: 34;

        then

         A9: ((2 to_power 2) * ((k + 1) " )) > ( 0 * ((k + 1) " )) by XREAL_1: 68;

        ((2 to_power (2 * (k + 1))) / ((k + 1) ! )) = ((2 to_power ((2 * k) + (2 * 1))) / ((k + 1) ! ))

        .= (((2 to_power (2 * k)) * (2 to_power 2)) / ((k + 1) ! )) by POWER: 27

        .= (((2 to_power (2 * k)) * (2 to_power 2)) / ((k + 1) * (k ! ))) by NEWTON: 15

        .= (((2 to_power 2) / (k + 1)) * ((2 to_power (2 * k)) / (k ! ))) by XCMPLX_1: 76;

        then ((2 to_power (2 * (k + 1))) / ((k + 1) ! )) < (((2 to_power 2) / (k + 1)) * (1 / (2 to_power (k - 9)))) by A5, A9, XREAL_1: 68;

        then ((2 to_power (2 * (k + 1))) / ((k + 1) ! )) < ((1 / (2 to_power 1)) * (1 / (2 to_power (k - 9)))) by A8, XXREAL_0: 2;

        then ((2 to_power (2 * (k + 1))) / ((k + 1) ! )) < (1 / ((2 to_power 1) * (2 to_power (k - 9)))) by XCMPLX_1: 102;

        then ((2 to_power (2 * (k + 1))) / ((k + 1) ! )) < (1 / (2 to_power (1 + (k + ( - 9))))) by POWER: 27;

        hence ((2 to_power (2 * (k + 1))) / ((k + 1) ! )) < (1 / (2 to_power ((k + 1) - 9)));

      end;

      ((2 to_power (2 * 10)) / (10 ! )) = ((2 to_power 20) / ((9 + 1) * (9 ! ))) by NEWTON: 15

      .= ((2 to_power (1 + 19)) / (10 * (9 ! )))

      .= (((2 to_power 1) * (2 to_power 19)) / (10 * (9 ! ))) by POWER: 27

      .= ((2 * (2 to_power 19)) / (2 * (5 * (9 ! )))) by POWER: 25

      .= ((2 to_power 19) / (5 * (9 ! ))) by XCMPLX_1: 91

      .= ((2 to_power 19) / (5 * ((8 + 1) * (8 ! )))) by NEWTON: 15

      .= ((2 to_power 19) / ((5 * 9) * (8 ! )))

      .= ((2 to_power 19) / (45 * ((7 + 1) * (7 ! )))) by NEWTON: 15

      .= ((2 to_power (3 + 16)) / (8 * (45 * (7 ! ))))

      .= ((8 * (2 to_power 16)) / (8 * (45 * (7 ! )))) by POWER: 27, POWER: 61

      .= ((2 to_power 16) / (45 * (7 ! ))) by XCMPLX_1: 91

      .= ((2 to_power (4 + 12)) / (45 * ((6 + 1) * (6 ! )))) by NEWTON: 15

      .= (((2 to_power (3 + 1)) * 4096) / (45 * ((6 + 1) * (6 ! )))) by Lm26, POWER: 27

      .= (((8 * (2 to_power 1)) * 4096) / (45 * ((6 + 1) * (6 ! )))) by POWER: 27, POWER: 61

      .= (((8 * 2) * 4096) / (45 * ((6 + 1) * (6 ! )))) by POWER: 25

      .= ((16 * 4096) / ((45 * 7) * (6 ! )))

      .= ((16 * 4096) / (315 * ((5 + 1) * (5 ! )))) by NEWTON: 15

      .= (4096 / 14175) by Lm33;

      then

       A10: P[10] by A1, POWER: 25;

      for n be Nat st n >= 10 holds P[n] from NAT_1:sch 8( A10, A3);

      hence thesis;

    end;

    

     Lm35: for n st n >= 3 holds (2 * (n - 2)) >= (n - 1)

    proof

      defpred P[ Nat] means (2 * ($1 - 2)) >= ($1 - 1);

      

       A1: for n be Nat st n >= 3 & P[n] holds P[(n + 1)]

      proof

        let n be Nat;

        assume that n >= 3 and

         A2: (2 * (n - 2)) >= (n - 1);

        ((2 * (n - 2)) + 2) >= ((n + ( - 1)) + 1) by A2, XREAL_1: 7;

        hence (2 * ((n + 1) - 2)) >= ((n + 1) - 1);

      end;

      

       A3: P[3];

      for n be Nat st n >= 3 holds P[n] from NAT_1:sch 8( A3, A1);

      hence thesis;

    end;

    

     Lm36: (5 to_power 5) = 3125

    proof

      (5 to_power 5) = (5 to_power (4 + 1))

      .= ((5 to_power 4) * (5 to_power 1)) by POWER: 27

      .= ((5 to_power (3 + 1)) * 5) by POWER: 25

      .= (((5 to_power 3) * (5 to_power 1)) * 5) by POWER: 27

      .= (((5 to_power (2 + 1)) * 5) * 5) by POWER: 25

      .= ((((5 to_power 2) * (5 to_power 1)) * 5) * 5) by POWER: 27

      .= ((((5 to_power (1 + 1)) * 5) * 5) * 5) by POWER: 25

      .= (((((5 to_power 1) * (5 to_power 1)) * 5) * 5) * 5) by POWER: 27

      .= (((((5 to_power 1) * 5) * 5) * 5) * 5) by POWER: 25

      .= ((((5 * 5) * 5) * 5) * 5) by POWER: 25

      .= 3125;

      hence thesis;

    end;

    

     Lm37: (4 to_power 4) = 256

    proof

      (4 to_power 4) = (4 to_power (3 + 1))

      .= ((4 to_power 3) * (4 to_power 1)) by POWER: 27

      .= ((4 to_power (2 + 1)) * 4) by POWER: 25

      .= (((4 to_power 2) * (4 to_power 1)) * 4) by POWER: 27

      .= (((4 to_power (1 + 1)) * 4) * 4) by POWER: 25

      .= ((((4 to_power 1) * (4 to_power 1)) * 4) * 4) by POWER: 27

      .= ((((4 to_power 1) * 4) * 4) * 4) by POWER: 25

      .= (((4 * 4) * 4) * 4) by POWER: 25

      .= 256;

      hence thesis;

    end;

    

     Lm38: for a,b,d,e be Real holds ((a / b) / (d / e)) = ((a / d) * (e / b))

    proof

      let a,b,d,e be Real;

      

      thus ((a / b) / (d / e)) = ((a * e) / (b * d)) by XCMPLX_1: 84

      .= ((a / d) * (e / b)) by XCMPLX_1: 76;

    end;

    

     Lm39: for x be Real st x >= 0 holds ( sqrt x) = (x to_power (1 / 2))

    proof

      let x be Real;

      assume

       A1: x >= 0 ;

      per cases by A1;

        suppose x = 0 ;

        hence thesis by POWER:def 2, SQUARE_1: 17;

      end;

        suppose

         A2: x > 0 ;

        then

         A3: (x to_power (1 / 2)) > 0 by POWER: 34;

        ((x to_power (1 / 2)) ^2 ) = ((x to_power (1 / 2)) to_power 2) by POWER: 46

        .= (x to_power ((1 / 2) * 2)) by A2, POWER: 33

        .= x by POWER: 25;

        hence thesis by A3, SQUARE_1: 22;

      end;

    end;

    

     Lm40: ex N st for n st n >= N holds (n - (( sqrt n) * ( log (2,n)))) > (n / 2)

    proof

      set seq1 = ( seq_n^ (1 / 2));

      set seq = seq_logn ;

      set p = (seq /" seq1);

      

       A1: ( lim p) = 0 by Lm11;

      p is convergent by Lm11;

      then

      consider N be Nat such that

       A2: for n be Nat st n >= N holds |.((p . n) - 0 ).| < (1 / 2) by A1, SEQ_2:def 7;

      reconsider N as Element of NAT by ORDINAL1:def 12;

      set N1 = ( max (2,N));

      

       A3: N1 >= 2 by XXREAL_0: 25;

      

       A4: N1 >= N by XXREAL_0: 25;

      now

        let n;

        assume

         A5: n >= N1;

        then

         A6: ( sqrt n) > 0 by A3, SQUARE_1: 25;

        n >= N by A4, A5, XXREAL_0: 2;

        then |.((p . n) - 0 ).| < (1 / 2) by A2;

        then

         A7: (p . n) < (1 / 2) by ABSVALUE:def 1;

        

         A8: ( sqrt n) <> 0 by A3, A5, SQUARE_1: 25;

        (p . n) = ((seq . n) / (seq1 . n)) by Lm4

        .= (( log (2,n)) / (seq1 . n)) by A3, A5, Def2

        .= (( log (2,n)) / (n to_power (1 / 2))) by A3, A5, Def3

        .= (( log (2,n)) / ( sqrt n)) by Lm39;

        then ((( log (2,n)) / ( sqrt n)) * ( sqrt n)) < (( sqrt n) * (1 / 2)) by A6, A7, XREAL_1: 68;

        then ( log (2,n)) < (( sqrt n) * (1 / 2)) by A8, XCMPLX_1: 87;

        then (( sqrt n) * ( log (2,n))) < (( sqrt n) * (( sqrt n) * (1 / 2))) by A6, XREAL_1: 68;

        then (( sqrt n) * ( log (2,n))) < ((( sqrt n) ^2 ) * (1 / 2));

        then (( sqrt n) * ( log (2,n))) < (n * (1 / 2)) by SQUARE_1:def 2;

        then ((n / 2) + (( sqrt n) * ( log (2,n)))) < ((n / 2) + (n / 2)) by XREAL_1: 6;

        hence (n / 2) < (n - (( sqrt n) * ( log (2,n)))) by XREAL_1: 20;

      end;

      hence thesis;

    end;

    

     Lm41: for s be Real_Sequence st for n be Nat holds (s . n) = ((1 + (1 / (n + 1))) to_power (n + 1)) holds s is non-decreasing

    proof

      let s be Real_Sequence such that

       A1: for n be Nat holds (s . n) = ((1 + (1 / (n + 1))) to_power (n + 1));

      now

        let n be Nat;

        

         A2: ((1 + (1 / ((n + 1) + 1))) / (1 + (1 / (n + 1)))) = ((((1 * ((n + 1) + 1)) + 1) / ((n + 1) + 1)) / (1 + (1 / (n + 1)))) by XCMPLX_1: 113

        .= (((((n + 1) + 1) + 1) / ((n + 1) + 1)) / (((1 * (n + 1)) + 1) / (n + 1))) by XCMPLX_1: 113

        .= ((((n + (1 + 1)) + 1) * (n + 1)) / ((n + 2) * (n + 2))) by XCMPLX_1: 84

        .= (((((((n * n) + (n * 2)) + (2 * n)) + 3) + 1) - 1) / ((n + 2) * (n + 2)))

        .= ((((n + 2) * (n + 2)) / ((n + 2) * (n + 2))) - (1 / ((n + 2) * (n + 2))))

        .= (1 - (1 / ((n + 2) * (n + 2)))) by XCMPLX_1: 6, XCMPLX_1: 60;

        ((n + 1) + 1) > ( 0 + 1) by XREAL_1: 6;

        then ((n + 2) * (n + 2)) > 1 by XREAL_1: 161;

        then (1 / ((n + 2) * (n + 2))) < 1 by XREAL_1: 212;

        then ( - (1 / ((n + 2) * (n + 2)))) > ( - 1) by XREAL_1: 24;

        then ((1 + ( - (1 / ((n + 2) * (n + 2))))) to_power ((n + 1) + 1)) >= (1 + (((n + 1) + 1) * ( - (1 / ((n + 2) * (n + 2)))))) by POWER: 49;

        then ((1 - (1 / ((n + 2) * (n + 2)))) to_power ((n + 1) + 1)) >= (1 - (((n + 2) * 1) / ((n + 2) * (n + 2))));

        then ((1 - (1 / ((n + 2) * (n + 2)))) to_power ((n + 1) + 1)) >= (1 - ((((n + 2) / (n + 2)) * 1) / (n + 2))) by XCMPLX_1: 83;

        then

         A3: ((1 - (1 / ((n + 2) * (n + 2)))) to_power ((n + 1) + 1)) >= (1 - ((1 * 1) / (n + 2))) by XCMPLX_1: 60;

        ((s . (n + 1)) / (s . n)) = (((1 + (1 / ((n + 1) + 1))) to_power ((n + 1) + 1)) / (s . n)) by A1

        .= ((((1 + (1 / ((n + 1) + 1))) to_power ((n + 1) + 1)) / ((1 + (1 / (n + 1))) to_power (n + 1))) * 1) by A1

        .= ((((1 + (1 / ((n + 1) + 1))) to_power ((n + 1) + 1)) / ((1 + (1 / (n + 1))) to_power (n + 1))) * ((1 + (1 / (n + 1))) / (1 + (1 / (n + 1))))) by XCMPLX_1: 60

        .= (((1 + (1 / (n + 1))) * ((1 + (1 / ((n + 1) + 1))) to_power ((n + 1) + 1))) / (((1 + (1 / (n + 1))) to_power (n + 1)) * (1 + (1 / (n + 1))))) by XCMPLX_1: 76

        .= (((1 + (1 / (n + 1))) * ((1 + (1 / ((n + 1) + 1))) to_power ((n + 1) + 1))) / (((1 + (1 / (n + 1))) to_power (n + 1)) * ((1 + (1 / (n + 1))) to_power 1))) by POWER: 25

        .= (((1 + (1 / (n + 1))) * ((1 + (1 / ((n + 1) + 1))) to_power ((n + 1) + 1))) / ((1 + (1 / (n + 1))) to_power ((n + 1) + 1))) by POWER: 27

        .= ((1 + (1 / (n + 1))) * (((1 + (1 / ((n + 1) + 1))) to_power ((n + 1) + 1)) / ((1 + (1 / (n + 1))) to_power ((n + 1) + 1))))

        .= ((1 + (1 / (n + 1))) * (((1 + (1 / ((n + 1) + 1))) / (1 + (1 / (n + 1)))) to_power ((n + 1) + 1))) by POWER: 31;

        then ((s . (n + 1)) / (s . n)) >= ((1 + (1 / (n + 1))) * (1 - (1 / (n + 2)))) by A2, A3, XREAL_1: 64;

        then ((s . (n + 1)) / (s . n)) >= ((((1 * (n + 1)) + 1) / (n + 1)) * (1 - (1 / (n + 2)))) by XCMPLX_1: 113;

        then ((s . (n + 1)) / (s . n)) >= (((n + 2) / (n + 1)) * (((1 * (n + 2)) - 1) / (n + 2))) by XCMPLX_1: 127;

        then ((s . (n + 1)) / (s . n)) >= (((n + 1) * (n + 2)) / ((n + 1) * (n + 2))) by XCMPLX_1: 76;

        then

         A4: ((s . (n + 1)) / (s . n)) >= 1 by XCMPLX_1: 6, XCMPLX_1: 60;

        ((1 + (1 / (n + 1))) to_power (n + 1)) > 0 by POWER: 34;

        then (s . n) > 0 by A1;

        hence (s . (n + 1)) >= (s . n) by A4, XREAL_1: 191;

      end;

      hence thesis;

    end;

    

     Lm42: for n st n >= 1 holds (((n + 1) / n) to_power n) <= (((n + 2) / (n + 1)) to_power (n + 1))

    proof

      deffunc F( Nat) = ((1 + (1 / ($1 + 1))) to_power ($1 + 1));

      let n;

      consider seq be Real_Sequence such that

       A1: for n be Nat holds (seq . n) = F(n) from SEQ_1:sch 1;

      assume

       A2: n >= 1;

      then

      reconsider m = (n - 1) as Element of NAT by INT_1: 3;

      seq is non-decreasing by A1, Lm41;

      then (seq . m) <= (seq . (m + 1));

      then ((1 + (1 / (m + 1))) to_power (m + 1)) <= (seq . (m + 1)) by A1;

      then ((1 + (1 / n)) to_power n) <= ((1 + (1 / (n + 1))) to_power (n + 1)) by A1;

      then (((n / n) + (1 / n)) to_power n) <= ((1 + (1 / (n + 1))) to_power (n + 1)) by A2, XCMPLX_1: 60;

      then (((n + 1) / n) to_power n) <= ((((n + 1) / (n + 1)) + (1 / (n + 1))) to_power (n + 1)) by XCMPLX_1: 60;

      hence thesis;

    end;

    theorem :: ASYMPT_1:26

    for f,g be Real_Sequence st (for n st n > 0 holds (f . n) = (n to_power ( log (2,n)))) & (for n st n > 0 holds (g . n) = (n to_power ( sqrt n))) holds ex s,s1 be eventually-positive Real_Sequence st s = f & s1 = g & ( Big_Oh s) c= ( Big_Oh s1) & not ( Big_Oh s) = ( Big_Oh s1)

    proof

      let f,g be Real_Sequence such that

       A1: for n st n > 0 holds (f . n) = (n to_power ( log (2,n))) and

       A2: for n st n > 0 holds (g . n) = (n to_power ( sqrt n));

      set h = (f /" g);

      g is eventually-positive

      proof

        take 1;

        let n be Nat;

        

         A3: n in NAT by ORDINAL1:def 12;

        assume

         A4: n >= 1;

        then (g . n) = (n to_power ( sqrt n)) by A2, A3;

        hence thesis by A4, POWER: 34;

      end;

      then

      reconsider g as eventually-positive Real_Sequence;

      f is eventually-positive

      proof

        take 1;

        let n be Nat;

        

         A5: n in NAT by ORDINAL1:def 12;

        assume

         A6: n >= 1;

        then (f . n) = (n to_power ( log (2,n))) by A1, A5;

        hence thesis by A6, POWER: 34;

      end;

      then

      reconsider f as eventually-positive Real_Sequence;

      take f, g;

      consider N such that

       A7: for n st n >= N holds (( sqrt n) - ( log (2,n))) > 1 by Lm32;

       A8:

      now

        let p be Real such that

         A9: p > 0 ;

        set N1 = ( max (N,( max ( [/(1 / p)\],2))));

        

         A10: N1 >= N by XXREAL_0: 25;

        

         A11: N1 is Integer

        proof

          per cases by XXREAL_0: 16;

            suppose N1 = N;

            hence thesis;

          end;

            suppose N1 = ( max ( [/(1 / p)\],2));

            hence thesis by XXREAL_0: 16;

          end;

        end;

        

         A12: N1 >= ( max ( [/(1 / p)\],2)) by XXREAL_0: 25;

        ( max ( [/(1 / p)\],2)) >= [/(1 / p)\] by XXREAL_0: 25;

        then

         A13: N1 >= [/(1 / p)\] by A12, XXREAL_0: 2;

        

         A14: ( max ( [/(1 / p)\],2)) >= 2 by XXREAL_0: 25;

        then N1 >= 2 by A12, XXREAL_0: 2;

        then

         A15: N1 > 1 by XXREAL_0: 2;

        N1 in NAT by A10, A11, INT_1: 3;

        then

        reconsider N1 as Nat;

        take N1;

        let n be Nat;

        

         A16: n in NAT by ORDINAL1:def 12;

        

         A17: (h . n) = ((f . n) / (g . n)) by Lm4;

        assume

         A18: n >= N1;

        then (f . n) = (n to_power ( log (2,n))) by A1, A12, A14, A16;

        

        then

         A19: (h . n) = ((n to_power ( log (2,n))) / (n to_power ( sqrt n))) by A2, A12, A14, A18, A17, A16

        .= (n to_power (( log (2,n)) - ( sqrt n))) by A12, A14, A18, POWER: 29

        .= (n to_power ( - (( sqrt n) - ( log (2,n)))));

        then

         A20: (h . n) > 0 by A12, A14, A18, POWER: 34;

        n >= N by A10, A18, XXREAL_0: 2;

        then (( sqrt n) - ( log (2,n))) > 1 by A7, A16;

        then

         A21: (( - 1) * (( sqrt n) - ( log (2,n)))) < (( - 1) * 1) by XREAL_1: 69;

        n > 1 by A15, A18, XXREAL_0: 2;

        then

         A22: (n to_power ( - (( sqrt n) - ( log (2,n))))) < (n to_power ( - 1)) by A21, POWER: 39;

         [/(1 / p)\] >= (1 / p) by INT_1:def 7;

        then N1 >= (1 / p) by A13, XXREAL_0: 2;

        then n >= (1 / p) by A18, XXREAL_0: 2;

        then

         A23: (1 / n) <= (1 / (1 / p)) by A9, XREAL_1: 85;

        (n to_power ( - 1)) = (1 / (n to_power 1)) by A12, A14, A18, POWER: 28

        .= (1 / n) by POWER: 25;

        then (h . n) < p by A19, A22, A23, XXREAL_0: 2;

        hence |.((h . n) - 0 ).| < p by A20, ABSVALUE:def 1;

      end;

      then

       A24: h is convergent by SEQ_2:def 6;

      then

       A25: ( lim h) = 0 by A8, SEQ_2:def 7;

      then not g in ( Big_Oh f) by A24, ASYMPT_0: 16;

      then

       A26: not f in ( Big_Omega g) by ASYMPT_0: 19;

      f in ( Big_Oh g) by A24, A25, ASYMPT_0: 16;

      hence thesis by A26, Th4;

    end;

    theorem :: ASYMPT_1:27

    for f be Real_Sequence st (for n st n > 0 holds (f . n) = (n to_power ( sqrt n))) holds ex s,s1 be eventually-positive Real_Sequence st s = f & s1 = ( seq_a^ (2,1, 0 )) & ( Big_Oh s) c= ( Big_Oh s1) & not ( Big_Oh s) = ( Big_Oh s1)

    proof

      set g = ( seq_a^ (2,1, 0 ));

      let f be Real_Sequence such that

       A1: for n st n > 0 holds (f . n) = (n to_power ( sqrt n));

      

       A2: f is eventually-positive

      proof

        take 1;

        let n be Nat;

        

         A3: n in NAT by ORDINAL1:def 12;

        assume

         A4: n >= 1;

        then (f . n) = (n to_power ( sqrt n)) by A1, A3;

        hence thesis by A4, POWER: 34;

      end;

      set h = (f /" g);

      reconsider f as eventually-positive Real_Sequence by A2;

      reconsider g as eventually-positive Real_Sequence;

      take f, g;

      consider N such that

       A5: for n st n >= N holds (n - (( sqrt n) * ( log (2,n)))) > (n / 2) by Lm40;

       A6:

      now

        let p be Real;

        assume

         A7: p > 0 ;

        set N1 = ( max (N,( max ((2 * [/( log (2,(1 / p)))\]),2))));

        

         A8: N1 >= N by XXREAL_0: 25;

        

         A9: N1 is Integer

        proof

          per cases by XXREAL_0: 16;

            suppose N1 = N;

            hence thesis;

          end;

            suppose N1 = ( max ((2 * [/( log (2,(1 / p)))\]),2));

            hence thesis by XXREAL_0: 16;

          end;

        end;

        

         A10: N1 >= ( max ((2 * [/( log (2,(1 / p)))\]),2)) by XXREAL_0: 25;

        ( max ((2 * [/( log (2,(1 / p)))\]),2)) >= (2 * [/( log (2,(1 / p)))\]) by XXREAL_0: 25;

        then

         A11: N1 >= (2 * [/( log (2,(1 / p)))\]) by A10, XXREAL_0: 2;

        N1 in NAT by A8, A9, INT_1: 3;

        then

        reconsider N1 as Nat;

        take N1;

        let n be Nat;

        

         A12: n in NAT by ORDINAL1:def 12;

        

         A13: (h . n) = ((f . n) / (g . n)) by Lm4;

        

         A14: [/( log (2,(1 / p)))\] >= ( log (2,(1 / p))) by INT_1:def 7;

        assume

         A15: n >= N1;

        then n >= (2 * [/( log (2,(1 / p)))\]) by A11, XXREAL_0: 2;

        then (n / 2) >= [/( log (2,(1 / p)))\] by XREAL_1: 77;

        then (n / 2) >= ( log (2,(1 / p))) by A14, XXREAL_0: 2;

        then ( - (n / 2)) <= ( - ( log (2,(1 / p)))) by XREAL_1: 24;

        then (2 to_power ( - (n / 2))) <= (2 to_power ( - ( log (2,(1 / p))))) by PRE_FF: 8;

        then (2 to_power ( - (n / 2))) <= (1 / (2 to_power ( log (2,(1 / p))))) by POWER: 28;

        then

         A16: (2 to_power ( - (n / 2))) <= (1 / (1 / p)) by A7, POWER:def 3;

        

         A17: (g . n) = (2 to_power ((1 * n) + 0 )) by Def1

        .= (2 to_power n);

        

         A18: ( max ((2 * [/( log (2,(1 / p)))\]),2)) >= 2 by XXREAL_0: 25;

        

        then (f . n) = (n to_power ( sqrt n)) by A1, A10, A15, A12

        .= (2 to_power (( sqrt n) * ( log (2,n)))) by A10, A18, A15, Lm3;

        

        then

         A19: (h . n) = (2 to_power ((( sqrt n) * ( log (2,n))) - n)) by A13, A17, POWER: 29

        .= (2 to_power ( - (n - (( sqrt n) * ( log (2,n))))));

        then

         A20: (h . n) > 0 by POWER: 34;

        n >= N by A8, A15, XXREAL_0: 2;

        then (n - (( sqrt n) * ( log (2,n)))) > (n / 2) by A5, A12;

        then ( - (n - (( sqrt n) * ( log (2,n))))) < ( - (n / 2)) by XREAL_1: 24;

        then (2 to_power ( - (n - (( sqrt n) * ( log (2,n)))))) < (2 to_power ( - (n / 2))) by POWER: 39;

        then (h . n) < p by A19, A16, XXREAL_0: 2;

        hence |.((h . n) - 0 ).| < p by A20, ABSVALUE:def 1;

      end;

      then

       A21: h is convergent by SEQ_2:def 6;

      then

       A22: ( lim h) = 0 by A6, SEQ_2:def 7;

      then not g in ( Big_Oh f) by A21, ASYMPT_0: 16;

      then

       A23: not f in ( Big_Omega g) by ASYMPT_0: 19;

      f in ( Big_Oh g) by A21, A22, ASYMPT_0: 16;

      hence thesis by A23, Th4;

    end;

    theorem :: ASYMPT_1:28

    ex s,s1 be eventually-positive Real_Sequence st s = ( seq_a^ (2,1, 0 )) & s1 = ( seq_a^ (2,1,1)) & ( Big_Oh s) = ( Big_Oh s1)

    proof

      set g = ( seq_a^ (2,1,1));

      set f = ( seq_a^ (2,1, 0 ));

      set h = (f /" g);

      reconsider f as eventually-positive Real_Sequence;

      reconsider g as eventually-positive Real_Sequence;

      take f, g;

      thus f = ( seq_a^ (2,1, 0 )) & g = ( seq_a^ (2,1,1));

       A1:

      now

        let n;

        

         A2: (g . n) = (2 to_power ((1 * n) + 1)) by Def1;

        (f . n) = (2 to_power ((1 * n) + 0 )) by Def1;

        

        then (h . n) = ((2 to_power n) / (g . n)) by Lm4

        .= (2 to_power (n - (n + 1))) by A2, POWER: 29

        .= (2 to_power ( 0 + ( - 1)))

        .= (1 / (2 to_power 1)) by POWER: 28

        .= (1 / 2) by POWER: 25

        .= (2 " );

        hence (h . n) = (2 " );

      end;

       A3:

      now

        let p be Real such that

         A4: p > 0 ;

        reconsider N = 0 as Nat;

        take N;

        let n be Nat;

        

         A5: n in NAT by ORDINAL1:def 12;

        assume n >= N;

         |.((h . n) - (2 " )).| = |.((2 " ) - (2 " )).| by A1, A5

        .= 0 by ABSVALUE: 2;

        hence |.((h . n) - (2 " )).| < p by A4;

      end;

      then

       A6: h is convergent by SEQ_2:def 6;

      then ( lim h) > 0 by A3, SEQ_2:def 7;

      hence thesis by A6, ASYMPT_0: 15;

    end;

    theorem :: ASYMPT_1:29

    ex s,s1 be eventually-positive Real_Sequence st s = ( seq_a^ (2,1, 0 )) & s1 = ( seq_a^ (2,2, 0 )) & ( Big_Oh s) c= ( Big_Oh s1) & not ( Big_Oh s) = ( Big_Oh s1)

    proof

      reconsider g = ( seq_a^ (2,2, 0 )) as eventually-positive Real_Sequence;

      reconsider f = ( seq_a^ (2,1, 0 )) as eventually-positive Real_Sequence;

      take f, g;

      thus f = ( seq_a^ (2,1, 0 )) & g = ( seq_a^ (2,2, 0 ));

      set h = (f /" g);

      

       A1: for n holds (h . n) = (2 to_power ( - n))

      proof

        let n;

        (h . n) = ((f . n) / (g . n)) by Lm4

        .= ((2 to_power ((1 * n) + 0 )) / (g . n)) by Def1

        .= ((2 to_power (1 * n)) / (2 to_power ((2 * n) + 0 ))) by Def1

        .= (2 to_power ((1 * n) - (2 * n))) by POWER: 29

        .= (2 to_power ( - n));

        hence thesis;

      end;

       A2:

      now

        let p be Real;

        set N = ( max (1,( [/( log (2,(1 / p)))\] + 1)));

        

         A3: N >= 1 by XXREAL_0: 25;

        

         A4: N is Integer by XXREAL_0: 16;

        

         A5: [/( log (2,(1 / p)))\] >= ( log (2,(1 / p))) by INT_1:def 7;

        ( [/( log (2,(1 / p)))\] + 1) > [/( log (2,(1 / p)))\] by XREAL_1: 29;

        then ( [/( log (2,(1 / p)))\] + 1) > ( log (2,(1 / p))) by A5, XXREAL_0: 2;

        then

         A6: (2 to_power ( [/( log (2,(1 / p)))\] + 1)) > (2 to_power ( log (2,(1 / p)))) by POWER: 39;

        N in NAT by A3, A4, INT_1: 3;

        then

        reconsider N as Nat;

        assume

         A7: p > 0 ;

        take N;

        let n be Nat;

        

         A8: n in NAT by ORDINAL1:def 12;

        ( [/( log (2,(1 / p)))\] + 1) <= N by XXREAL_0: 25;

        then (2 to_power N) >= (2 to_power ( [/( log (2,(1 / p)))\] + 1)) by PRE_FF: 8;

        then

         A9: (2 to_power N) > (2 to_power ( log (2,(1 / p)))) by A6, XXREAL_0: 2;

        assume n >= N;

        then (2 to_power n) >= (2 to_power N) by PRE_FF: 8;

        then (2 to_power n) > (2 to_power ( log (2,(1 / p)))) by A9, XXREAL_0: 2;

        then (2 to_power n) > (1 / p) by A7, POWER:def 3;

        then ((2 to_power n) * p) > ((1 / p) * p) by A7, XREAL_1: 68;

        then

         A10: (p * (2 to_power n)) > 1 by A7, XCMPLX_1: 87;

        (2 to_power n) > 0 by POWER: 34;

        then ((p * (2 to_power n)) * ((2 to_power n) " )) > (1 * ((2 to_power n) " )) by A10, XREAL_1: 68;

        then

         A11: (p * ((2 to_power n) * ((2 to_power n) " ))) > ((2 to_power n) " );

        (2 to_power n) <> 0 by POWER: 34;

        then (p * 1) > ((2 to_power n) " ) by A11, XCMPLX_0:def 7;

        then

         A12: p > (1 / (2 to_power n));

        

         A13: (2 to_power ( - n)) > 0 by POWER: 34;

         |.((h . n) - 0 ).| = |.(2 to_power ( - n)).| by A1, A8;

        then |.((h . n) - 0 ).| = (2 to_power ( - n)) by A13, ABSVALUE:def 1;

        hence |.((h . n) - 0 ).| < p by A12, POWER: 28;

      end;

      then

       A14: h is convergent by SEQ_2:def 6;

      then

       A15: ( lim h) = 0 by A2, SEQ_2:def 7;

      then not g in ( Big_Oh f) by A14, ASYMPT_0: 16;

      then

       A16: not f in ( Big_Omega g) by ASYMPT_0: 19;

      f in ( Big_Oh g) by A14, A15, ASYMPT_0: 16;

      hence thesis by A16, Th4;

    end;

    theorem :: ASYMPT_1:30

    ex s be eventually-positive Real_Sequence st s = ( seq_a^ (2,2, 0 )) & ( Big_Oh s) c= ( Big_Oh ( seq_n! 0 )) & not ( Big_Oh s) = ( Big_Oh ( seq_n! 0 ))

    proof

      reconsider f = ( seq_a^ (2,2, 0 )) as eventually-positive Real_Sequence;

      set g = ( seq_n! 0 );

      take f;

      thus f = ( seq_a^ (2,2, 0 ));

      set h = (f /" g);

       A1:

      now

        let p be Real;

        assume

         A2: p > 0 ;

        set N = ( max (10, [/(9 + ( log (2,(1 / p))))\]));

        

         A3: N >= 10 by XXREAL_0: 25;

        

         A4: N is Integer by XXREAL_0: 16;

        

         A5: N >= [/(9 + ( log (2,(1 / p))))\] by XXREAL_0: 25;

        N in NAT by A3, A4, INT_1: 3;

        then

        reconsider N as Nat;

        take N;

        let n be Nat;

        

         A6: n in NAT by ORDINAL1:def 12;

        

         A7: [/(9 + ( log (2,(1 / p))))\] >= (9 + ( log (2,(1 / p)))) by INT_1:def 7;

        assume

         A8: n >= N;

        then n >= [/(9 + ( log (2,(1 / p))))\] by A5, XXREAL_0: 2;

        then n >= (9 + ( log (2,(1 / p)))) by A7, XXREAL_0: 2;

        then (n - 9) >= ( log (2,(1 / p))) by XREAL_1: 19;

        then (2 to_power (n - 9)) >= (2 to_power ( log (2,(1 / p)))) by PRE_FF: 8;

        then (2 to_power (n - 9)) >= (1 / p) by A2, POWER:def 3;

        then

         A9: (1 / (2 to_power (n - 9))) <= (1 / (1 / p)) by A2, XREAL_1: 85;

        

         A10: (h . n) = ((f . n) / (g . n)) by Lm4

        .= ((2 to_power ((2 * n) + 0 )) / (g . n)) by Def1, A6

        .= ((2 to_power ((2 * n) + 0 )) / ((n + 0 ) ! )) by Def4

        .= ((2 to_power (2 * n)) / (n ! ));

        n >= 10 by A3, A8, XXREAL_0: 2;

        then (h . n) < (1 / (2 to_power (n - 9))) by A10, Lm34, A6;

        then (h . n) < p by A9, XXREAL_0: 2;

        hence |.((h . n) - 0 ).| < p by A10, ABSVALUE:def 1;

      end;

      then

       A11: h is convergent by SEQ_2:def 6;

      then

       A12: ( lim h) = 0 by A1, SEQ_2:def 7;

      then not g in ( Big_Oh f) by A11, ASYMPT_0: 16;

      then

       A13: not f in ( Big_Omega g) by ASYMPT_0: 19;

      f in ( Big_Oh g) by A11, A12, ASYMPT_0: 16;

      hence thesis by A13, Th4;

    end;

    theorem :: ASYMPT_1:31

    ( Big_Oh ( seq_n! 0 )) c= ( Big_Oh ( seq_n! 1)) & ( Big_Oh ( seq_n! 0 )) <> ( Big_Oh ( seq_n! 1))

    proof

      set g = ( seq_n! 1);

      set f = ( seq_n! 0 );

      set h = (f /" g);

      

       A1: for n holds (h . n) = (1 / (n + 1))

      proof

        let n;

        

         A2: (n ! ) <> 0 by NEWTON: 17;

        (h . n) = ((f . n) / (g . n)) by Lm4

        .= (((n + 0 ) ! ) / (g . n)) by Def4

        .= ((n ! ) / ((n + 1) ! )) by Def4

        .= (((n ! ) * 1) / ((n + 1) * (n ! ))) by NEWTON: 15

        .= ((1 / (n + 1)) * ((n ! ) / (n ! ))) by XCMPLX_1: 76

        .= ((1 / (n + 1)) * 1) by A2, XCMPLX_1: 60;

        hence thesis;

      end;

       A3:

      now

        let p be Real;

        assume

         A4: p > 0 ;

        set N = ( max (1, [/(1 / p)\]));

        

         A5: N >= 1 by XXREAL_0: 25;

        

         A6: N >= [/(1 / p)\] by XXREAL_0: 25;

        N is Integer by XXREAL_0: 16;

        then

        reconsider N as Element of NAT by A5, INT_1: 3;

         [/(1 / p)\] >= (1 / p) by INT_1:def 7;

        then

         A7: N >= (1 / p) by A6, XXREAL_0: 2;

        reconsider N as Nat;

        take N;

        let n be Nat;

        

         A8: n in NAT by ORDINAL1:def 12;

        assume n >= N;

        then (n + 1) > N by NAT_1: 13;

        then (n + 1) > (1 / p) by A7, XXREAL_0: 2;

        then (1 / (n + 1)) < (1 / (1 / p)) by A4, XREAL_1: 88;

        then

         A9: (h . n) < p by A1, A8;

        

         A10: 0 < (1 / (n + 1));

        ( - p) < ( - 0 ) by A4, XREAL_1: 24;

        then

         A11: ( - p) < (h . n) by A1, A10, A8;

         |.(h . n).| < p

        proof

          per cases ;

            suppose (h . n) >= 0 ;

            hence thesis by A9, ABSVALUE:def 1;

          end;

            suppose

             A12: (h . n) < 0 ;

            

             A13: (( - 1) * ( - p)) > (( - 1) * (h . n)) by A11, XREAL_1: 69;

             |.(h . n).| = ( - (h . n)) by A12, ABSVALUE:def 1;

            hence thesis by A13;

          end;

        end;

        hence |.((h . n) - 0 ).| < p;

      end;

      then

       A14: h is convergent by SEQ_2:def 6;

      then

       A15: ( lim h) = 0 by A3, SEQ_2:def 7;

      then not g in ( Big_Oh f) by A14, ASYMPT_0: 16;

      then

       A16: not f in ( Big_Omega g) by ASYMPT_0: 19;

      f in ( Big_Oh g) by A14, A15, ASYMPT_0: 16;

      hence thesis by A16, Th4;

    end;

    theorem :: ASYMPT_1:32

    for g be Real_Sequence st (for n st n > 0 holds (g . n) = (n to_power n)) holds ex s be eventually-positive Real_Sequence st s = g & ( Big_Oh ( seq_n! 1)) c= ( Big_Oh s) & not ( Big_Oh ( seq_n! 1)) = ( Big_Oh s)

    proof

      set f = ( seq_n! 1);

      let g be Real_Sequence such that

       A1: for n st n > 0 holds (g . n) = (n to_power n);

      

       A2: g is eventually-positive

      proof

        take 1;

        let n be Nat;

        

         A3: n in NAT by ORDINAL1:def 12;

        assume

         A4: n >= 1;

        then (g . n) = (n to_power n) by A1, A3;

        hence thesis by A4, POWER: 34;

      end;

      set h = (f /" g);

      reconsider g as eventually-positive Real_Sequence by A2;

      deffunc F( Nat) = ((h . $1) / (h . ($1 + 1)));

      consider p be Real_Sequence such that

       A5: for n be Nat holds (p . n) = F(n) from SEQ_1:sch 1;

      defpred P1[ Nat] means (p . $1) > 2;

      

       A6: for n st n > 0 holds (p . n) = (((n + 1) / (n + 2)) * (((n + 1) / n) to_power n))

      proof

        let n;

        assume

         A7: n > 0 ;

        

         A8: ((n + 1) ! ) > 0 by NEWTON: 17;

        (p . n) = ((h . n) / (h . (n + 1))) by A5

        .= (((f . n) / (g . n)) / (h . (n + 1))) by Lm4

        .= ((((n + 1) ! ) / (g . n)) / (h . (n + 1))) by Def4

        .= ((((n + 1) ! ) / (n to_power n)) / (h . (n + 1))) by A1, A7

        .= ((((n + 1) ! ) / (n to_power n)) / ((f . (n + 1)) / (g . (n + 1)))) by Lm4

        .= ((((n + 1) ! ) / (n to_power n)) / ((((n + 1) + 1) ! ) / (g . (n + 1)))) by Def4

        .= ((((n + 1) ! ) / (n to_power n)) / ((((n + 1) + 1) ! ) / ((n + 1) to_power (n + 1)))) by A1

        .= ((((n + 1) ! ) / (((n + 1) + 1) ! )) * (((n + 1) to_power (n + 1)) / (n to_power n))) by Lm38

        .= ((((n + 1) ! ) / (((n + 1) + 1) * ((n + 1) ! ))) * (((n + 1) to_power (n + 1)) / (n to_power n))) by NEWTON: 15

        .= (((1 / ((n + 1) + 1)) * (((n + 1) ! ) / ((n + 1) ! ))) * (((n + 1) to_power (n + 1)) / (n to_power n))) by XCMPLX_1: 103

        .= (((1 / ((n + 1) + 1)) * 1) * (((n + 1) to_power (n + 1)) / (n to_power n))) by A8, XCMPLX_1: 60

        .= ((1 / (n + 2)) * ((((n + 1) to_power n) * ((n + 1) to_power 1)) / (n to_power n))) by POWER: 27

        .= ((1 / (n + 2)) * ((((n + 1) to_power n) * (n + 1)) / (n to_power n))) by POWER: 25

        .= ((1 / (n + 2)) * ((((n + 1) to_power n) * (n + 1)) * ((n to_power n) " )))

        .= ((1 / (n + 2)) * ((((n + 1) to_power n) * ((n to_power n) " )) * (n + 1)))

        .= ((1 / (n + 2)) * ((((n + 1) to_power n) / (n to_power n)) * (n + 1)))

        .= ((1 / (n + 2)) * ((((n + 1) / n) to_power n) * (n + 1))) by A7, POWER: 31

        .= (((n + 1) * (1 / (n + 2))) * (((n + 1) / n) to_power n))

        .= (((n + 1) / (n + 2)) * (((n + 1) / n) to_power n));

        hence thesis;

      end;

      

       A9: for k be Nat st k >= 4 & P1[k] holds P1[(k + 1)]

      proof

        let k be Nat;

        assume that

         A10: k >= 4 and

         A11: (p . k) > 2;

        ((k + 2) * ((k + 1) " )) > ( 0 * ((k + 1) " )) by XREAL_1: 68;

        then

         A12: (((k + 2) / (k + 1)) to_power (k + 1)) > 0 by POWER: 34;

        ((k + 1) * (k " )) > ( 0 * (k " )) by A10, XREAL_1: 68;

        then (((k + 1) / k) to_power k) > 0 by POWER: 34;

        then

         A13: ((((k + 1) / k) to_power k) * ((((k + 2) / (k + 1)) to_power (k + 1)) " )) > ( 0 * ((((k + 2) / (k + 1)) to_power (k + 1)) " )) by A12, XREAL_1: 68;

        

         A14: k in NAT by ORDINAL1:def 12;

         A15:

        now

          assume ((k + 1) * (k + 3)) >= ((k + 2) * (k + 2));

          then (((k * k) + (4 * k)) + 3) >= (((k * k) + (2 * (2 * k))) + (2 ^2 ));

          hence contradiction by XREAL_1: 6;

        end;

        then ((k + 1) * (k + 3)) < (1 * ((k + 2) * (k + 2)));

        then

         A16: (((k + 1) * (k + 3)) / ((k + 2) * (k + 2))) < 1 by XREAL_1: 83;

        ((k + 1) * (k + 3)) > ( 0 * (k + 3)) by XREAL_1: 68;

        then

         A17: (((k + 1) * (k + 3)) * (((k + 2) * (k + 2)) " )) > ( 0 * (((k + 2) * (k + 2)) " )) by A15, XREAL_1: 68;

        k >= 1 by A10, XXREAL_0: 2;

        then (((k + 1) / k) to_power k) <= (1 * (((k + 2) / (k + 1)) to_power (k + 1))) by A14, Lm42;

        then ((((k + 1) / k) to_power k) / (((k + 2) / (k + 1)) to_power (k + 1))) <= 1 by A12, XREAL_1: 79;

        then

         A18: ((((k + 1) * (k + 3)) / ((k + 2) * (k + 2))) * ((((k + 1) / k) to_power k) / (((k + 2) / (k + 1)) to_power (k + 1)))) < (1 * 1) by A13, A17, A16, XREAL_1: 98;

        ((k + 2) * ((k + 3) " )) > ( 0 * ((k + 3) " )) by XREAL_1: 68;

        then

         A19: (((k + 2) / (k + 3)) * (((k + 2) / (k + 1)) to_power (k + 1))) > (((k + 2) / (k + 3)) * 0 ) by A12, XREAL_1: 68;

        

         A20: (p . (k + 1)) = ((((k + 1) + 1) / ((k + 1) + 2)) * (((k + (1 + 1)) / (k + 1)) to_power (k + 1))) by A6

        .= (((k + 2) / (k + 3)) * (((k + 2) / (k + 1)) to_power (k + 1)));

        

        then ((p . k) / (p . (k + 1))) = ((((k + 1) / (k + 2)) * (((k + 1) / k) to_power k)) / (((k + 2) / (k + 3)) * (((k + 2) / (k + 1)) to_power (k + 1)))) by A6, A10, A14

        .= ((((k + 1) / (k + 2)) / ((k + 2) / (k + 3))) * ((((k + 1) / k) to_power k) / (((k + 2) / (k + 1)) to_power (k + 1)))) by XCMPLX_1: 76

        .= ((((k + 1) * (k + 3)) / ((k + 2) * (k + 2))) * ((((k + 1) / k) to_power k) / (((k + 2) / (k + 1)) to_power (k + 1)))) by XCMPLX_1: 84;

        then (((p . k) / (p . (k + 1))) * (p . (k + 1))) < (1 * (p . (k + 1))) by A20, A19, A18, XREAL_1: 68;

        then (p . (k + 1)) > (p . k) by A20, A19, XCMPLX_1: 87;

        hence thesis by A11, XXREAL_0: 2;

      end;

      defpred P[ Nat] means (h . $1) < (1 / ($1 - 2));

      take g;

      

       A21: for n st n >= 1 holds (h . n) > 0

      proof

        let n;

        

         A22: ((n + 1) ! ) > 0 by NEWTON: 17;

        assume

         A23: n >= 1;

        then (n to_power n) > 0 by POWER: 34;

        then

         A24: (((n + 1) ! ) * (1 / (n to_power n))) > (((n + 1) ! ) * 0 ) by A22, XREAL_1: 68;

        (h . n) = ((f . n) / (g . n)) by Lm4

        .= (((n + 1) ! ) / (g . n)) by Def4

        .= (((n + 1) ! ) / (n to_power n)) by A1, A23;

        hence thesis by A24;

      end;

      (p . 4) = (((4 + 1) / (4 + 2)) * (((4 + 1) / 4) to_power 4)) by A6

      .= ((5 / 6) * ((5 to_power 4) / 256)) by Lm37, POWER: 31

      .= ((5 * (5 to_power 4)) / (6 * 256))

      .= (((5 to_power 1) * (5 to_power 4)) / 1536) by POWER: 25

      .= ((5 to_power (4 + 1)) / 1536) by POWER: 27

      .= (3125 / 1536) by Lm36;

      then

       A25: P1[4];

      

       A26: for n be Nat st n >= 4 holds P1[n] from NAT_1:sch 8( A25, A9);

      

       A27: 3 = (4 - 1);

      

       A28: for k be Nat st k >= 4 & P[k] holds P[(k + 1)]

      proof

        let k be Nat;

        assume that

         A29: k >= 4 and

         A30: (h . k) < (1 / (k - 2));

        

         A31: k in NAT by ORDINAL1:def 12;

        

         A32: (h . (k + 1)) > 0 by A21, NAT_1: 11;

        (p . k) > 2 by A26, A29;

        then ((h . k) / (h . (k + 1))) > 2 by A5;

        then (((h . k) / (h . (k + 1))) * (h . (k + 1))) > (2 * (h . (k + 1))) by A32, XREAL_1: 68;

        then (h . k) > (2 * (h . (k + 1))) by A32, XCMPLX_1: 87;

        then

         A33: ((h . k) / 2) > (h . (k + 1)) by XREAL_1: 81;

        

         A34: (k - 1) >= 3 by A27, A29, XREAL_1: 9;

        k >= 3 by A29, XXREAL_0: 2;

        then (2 * (k - 2)) >= (k - 1) by A31, Lm35;

        then

         A35: (1 / (2 * (k - 2))) <= (1 / (k - 1)) by A34, XREAL_1: 85;

        ((h . k) * (1 / 2)) < ((1 / (k - 2)) * (1 / 2)) by A30, XREAL_1: 68;

        then ((h . k) / 2) < (1 / (2 * (k - 2))) by XCMPLX_1: 102;

        then ((h . k) / 2) < (1 / (k - 1)) by A35, XXREAL_0: 2;

        hence thesis by A33, XXREAL_0: 2;

      end;

      (h . 4) = ((f . 4) / (g . 4)) by Lm4

      .= (((4 + 1) ! ) / (g . 4)) by Def4

      .= (120 / 256) by A1, Lm33, Lm37;

      then

       A36: P[4];

      

       A37: for n be Nat st n >= 4 holds P[n] from NAT_1:sch 8( A36, A28);

       A38:

      now

        let p be Real;

        set N = [/((1 / p) + 4)\];

        

         A39: [/((1 / p) + 4)\] >= ((1 / p) + 4) by INT_1:def 7;

        assume

         A40: p > 0 ;

        then

         A41: (4 + (1 / p)) > 4 by XREAL_1: 29;

        then

         A42: N >= 4 by A39, XXREAL_0: 2;

        N in NAT by A39, A41, INT_1: 3;

        then

        reconsider N as Nat;

        take N;

        let n be Nat;

        

         A43: n in NAT by ORDINAL1:def 12;

        assume

         A44: n >= N;

        then

         A45: n >= 4 by A42, XXREAL_0: 2;

        then n >= 1 by XXREAL_0: 2;

        then

         A46: (h . n) > 0 by A21, A43;

        

         A47: ((1 / p) + 2) > (1 / p) by XREAL_1: 29;

        n >= (((1 / p) + 2) + 2) by A39, A44, XXREAL_0: 2;

        then (n - 2) >= ((1 / p) + 2) by XREAL_1: 19;

        then (n - 2) > (1 / p) by A47, XXREAL_0: 2;

        then

         A48: (1 / (n - 2)) < (1 / (1 / p)) by A40, XREAL_1: 88;

        (h . n) < (1 / (n - 2)) by A37, A45;

        then (h . n) < p by A48, XXREAL_0: 2;

        hence |.((h . n) - 0 ).| < p by A46, ABSVALUE:def 1;

      end;

      then

       A49: h is convergent by SEQ_2:def 6;

      then

       A50: ( lim h) = 0 by A38, SEQ_2:def 7;

      then not g in ( Big_Oh f) by A49, ASYMPT_0: 16;

      then

       A51: not f in ( Big_Omega g) by ASYMPT_0: 19;

      f in ( Big_Oh g) by A49, A50, ASYMPT_0: 16;

      hence thesis by A51, Th4;

    end;

    begin

    

     Lm43: for k,n be Nat st k <= n holds (n choose k) >= (((n + 1) choose k) / (n + 1))

    proof

      let k,n be Nat;

      set n1 = (n + 1);

      assume

       A1: k <= n;

      then

      reconsider l = (n - k) as Element of NAT by INT_1: 5;

      set l1 = (l + 1);

      

       A2: l1 = (n1 - k);

      ( 0 + 1) <= (l + 1) by XREAL_1: 6;

      then (1 / 1) >= (1 / l1) by XREAL_1: 85;

      then

       A3: ((n choose k) * (1 / 1)) >= ((n choose k) * (1 / l1)) by XREAL_1: 64;

      (n + 0 ) <= (n + 1) by XREAL_1: 6;

      then k <= (n + 1) by A1, XXREAL_0: 2;

      

      then ((n1 choose k) / n1) = (((n1 ! ) / ((k ! ) * (l1 ! ))) / n1) by A2, NEWTON:def 3

      .= (((n1 * (n ! )) / ((k ! ) * (l1 ! ))) / (n1 * 1)) by NEWTON: 15

      .= (((n1 * (n ! )) * (((k ! ) * (l1 ! )) " )) / (n1 * 1))

      .= ((n1 * ((n ! ) * (((k ! ) * (l1 ! )) " ))) / (n1 * 1))

      .= ((n1 * ((n ! ) / ((k ! ) * (l1 ! )))) / (n1 * 1))

      .= ((n1 / n1) * (((n ! ) / ((k ! ) * (l1 ! ))) / 1))

      .= (1 * (((n ! ) / ((k ! ) * (l1 ! ))) / 1)) by XCMPLX_1: 60

      .= ((n ! ) / ((k ! ) * ((l ! ) * l1))) by NEWTON: 15

      .= (((n ! ) * 1) / (((k ! ) * (l ! )) * l1))

      .= (((n ! ) / ((k ! ) * (l ! ))) * (1 / l1)) by XCMPLX_1: 76

      .= ((n choose k) * (1 / l1)) by A1, NEWTON:def 3;

      hence thesis by A3;

    end;

    theorem :: ASYMPT_1:33

    for n st n >= 1 holds for f be Real_Sequence, k be Element of NAT st (for n holds (f . n) = ( Sum (( seq_n^ k),n))) holds (f . n) >= ((n to_power (k + 1)) / (k + 1))

    proof

      defpred P[ Nat] means for f be Real_Sequence, k be Element of NAT st (for n holds (f . n) = ( Sum (( seq_n^ k),n))) holds (f . $1) >= (($1 to_power (k + 1)) / (k + 1));

      

       A1: for n be Nat st n >= 1 & P[n] holds P[(n + 1)]

      proof

        let n be Nat such that n >= 1 and

         A2: for f be Real_Sequence, k be Element of NAT st (for n holds (f . n) = ( Sum (( seq_n^ k),n))) holds (f . n) >= ((n to_power (k + 1)) / (k + 1));

        reconsider n as Element of NAT by ORDINAL1:def 12;

        let f be Real_Sequence, k be Element of NAT such that

         A3: for n holds (f . n) = ( Sum (( seq_n^ k),n));

        set R3 = ((n,1) In_Power (k + 1));

        ( len R3) = ((k + 1) + 1) by NEWTON:def 4

        .= (k + 2);

        then

        reconsider R3 as Element of ((k + 2) -tuples_on REAL ) by FINSEQ_2: 92;

        set R2 = (((k + 1) " ) * ((n,1) In_Power (k + 1)));

        ( len R2) = ( len ((n,1) In_Power (k + 1))) by NEWTON: 2

        .= ((k + 1) + 1) by NEWTON:def 4

        .= (k + 2);

        then

        reconsider R2 as Element of ((k + 2) -tuples_on REAL ) by FINSEQ_2: 92;

        reconsider nk = ((n to_power (k + 1)) / (k + 1)) as Element of REAL by XREAL_0:def 1;

        set R1 = ( <*nk*> ^ ((n,1) In_Power k));

        

         A4: ( len <*((n to_power (k + 1)) / (k + 1))*>) = 1 by FINSEQ_1: 40;

        set g = ( seq_n^ k);

        (f . n) >= ((n to_power (k + 1)) / (k + 1)) by A2, A3;

        then ( Sum (g,n)) >= ((n to_power (k + 1)) / (k + 1)) by A3;

        then

         A5: (( Partial_Sums g) . n) >= ((n to_power (k + 1)) / (k + 1)) by SERIES_1:def 5;

        reconsider nk = ((n to_power (k + 1)) / (k + 1)) as Element of REAL by XREAL_0:def 1;

        (g . (n + 1)) = ((n + 1) to_power k) by Def3

        .= ( Sum ((n,1) In_Power k)) by NEWTON: 30;

        then

         A6: (((n to_power (k + 1)) / (k + 1)) + (g . (n + 1))) = ( Sum ( <*nk*> ^ ((n,1) In_Power k))) by RVSUM_1: 76;

        ( len ((n,1) In_Power k)) = (k + 1) by NEWTON:def 4;

        

        then

         A7: ( len R1) = ((k + 1) + 1) by A4, FINSEQ_1: 22

        .= (k + 2);

        then

        reconsider R1 as Element of ((k + 2) -tuples_on REAL ) by FINSEQ_2: 92;

        

         A8: for i be Nat st i in ( Seg (k + 2)) holds (R2 . i) <= (R1 . i)

        proof

          set k1 = ((k + 1) " );

          let i be Nat such that

           A9: i in ( Seg (k + 2));

          

           A10: 1 <= i by A9, FINSEQ_1: 1;

          set r2 = (R2 . i), r1 = (R1 . i);

          

           A11: i <= (k + 2) by A9, FINSEQ_1: 1;

          per cases by A10, XXREAL_0: 1;

            suppose

             A12: i = 1;

            (n |^ (k + 1)) = (R3 . 1) by NEWTON: 28;

            

            then r2 = (k1 * (n |^ (k + 1))) by A12, RVSUM_1: 45

            .= ((n to_power (k + 1)) / (k + 1));

            hence thesis by A12, FINSEQ_1: 41;

          end;

            suppose

             A13: i > 1;

            set i0 = (i - 1);

            set m = (i0 - 1);

            

             A14: (i - 1) > (1 - 1) by A13, XREAL_1: 9;

            then

            reconsider i0 as Element of NAT by INT_1: 3;

            set l = (k - m);

            

             A15: i0 >= ( 0 + 1) by A14, INT_1: 7;

            then

            reconsider m as Element of NAT by INT_1: 3;

            set i3 = ((k + 1) - i0);

            ( len ((n,1) In_Power k)) = (k + 1) by NEWTON:def 4;

            then

             A16: ( dom ((n,1) In_Power k)) = ( Seg (k + 1)) by FINSEQ_1:def 3;

            (i - 1) <= ((k + 2) - 1) by A11, XREAL_1: 9;

            then

             A17: i0 in ( dom ((n,1) In_Power k)) by A15, A16, FINSEQ_1: 1;

            m = (i - 2);

            then

             A18: k >= (m + 0 ) by A11, XREAL_1: 20;

            then l >= 0 by XREAL_1: 19;

            then

            reconsider l as Element of NAT by INT_1: 3;

            

             A19: i3 = l;

            then

             A20: (i0 + 0 ) <= (k + 1) by XREAL_1: 19;

            reconsider i3 as Element of NAT by A19;

            ( len ((n,1) In_Power (k + 1))) = ((k + 1) + 1) by NEWTON:def 4;

            then ( dom ((n,1) In_Power (k + 1))) = ( Seg (k + 2)) by FINSEQ_1:def 3;

            then (R3 . i) = ((((k + 1) choose i0) * (n |^ i3)) * (1 |^ i0)) by A9, NEWTON:def 4;

            

            then

             A21: r2 = (k1 * ((((k + 1) choose i0) * (n |^ i3)) * (1 |^ i0))) by RVSUM_1: 45

            .= (k1 * ((((k + 1) choose l) * (n |^ l)) * (1 |^ i0))) by A20, NEWTON: 20

            .= (k1 * ((((k + 1) choose l) * (n |^ l)) * 1)) by NEWTON: 10

            .= ((k1 * ((k + 1) choose l)) * (n to_power l));

            (k - m) <= (k - 0 ) by XREAL_1: 13;

            then

             A22: (((k + 1) choose l) / (k + 1)) <= (k choose l) by Lm43;

            r1 = (((n,1) In_Power k) . i0) by A4, A7, A11, A13, FINSEQ_1: 24

            .= (((k choose m) * (n |^ l)) * (1 |^ m)) by A17, NEWTON:def 4

            .= (((k choose l) * (n |^ l)) * (1 |^ m)) by A18, NEWTON: 20

            .= (((k choose l) * (n |^ l)) * 1) by NEWTON: 10

            .= ((k choose l) * (n to_power l));

            hence thesis by A21, A22, XREAL_1: 64;

          end;

        end;

        (((n + 1) to_power (k + 1)) / (k + 1)) = (((n + 1) |^ (k + 1)) * ((k + 1) " ))

        .= (( Sum ((n,1) In_Power (k + 1))) * ((k + 1) " )) by NEWTON: 30

        .= ( Sum (((k + 1) " ) * ((n,1) In_Power (k + 1)))) by RVSUM_1: 87;

        then

         A23: (((n + 1) to_power (k + 1)) / (k + 1)) <= ( Sum R1) by A8, RVSUM_1: 82;

        (f . (n + 1)) = ( Sum (g,(n + 1))) by A3

        .= (( Partial_Sums g) . (n + 1)) by SERIES_1:def 5

        .= ((( Partial_Sums g) . n) + (g . (n + 1))) by SERIES_1:def 1;

        then (f . (n + 1)) >= (((n to_power (k + 1)) / (k + 1)) + (g . (n + 1))) by A5, XREAL_1: 6;

        hence thesis by A6, A23, XXREAL_0: 2;

      end;

      

       A24: P[1]

      proof

        let f be Real_Sequence, k be Element of NAT such that

         A25: for n holds (f . n) = ( Sum (( seq_n^ k),n));

        set g = ( seq_n^ k);

        

         A26: ((1 to_power (k + 1)) / (k + 1)) = (1 / (k + 1)) by POWER: 26;

        

         A27: ( 0 + 1) <= (k + 1) by XREAL_1: 6;

        (f . 1) = ( Sum (g,1)) by A25

        .= (( Partial_Sums g) . ( 0 + 1)) by SERIES_1:def 5

        .= ((( Partial_Sums g) . 0 ) + (g . 1)) by SERIES_1:def 1

        .= ((g . 1) + (g . 0 )) by SERIES_1:def 1

        .= ((1 to_power k) + (g . 0 )) by Def3

        .= (1 + (g . 0 )) by POWER: 26

        .= (1 + 0 ) by Def3

        .= (1 / 1);

        hence thesis by A26, A27, XREAL_1: 85;

      end;

      for n be Nat st n >= 1 holds P[n] from NAT_1:sch 8( A24, A1);

      hence thesis;

    end;

    begin

    

     Lm44: for f be Real_Sequence st (for n be Nat holds (f . n) = ( log (2,(n ! )))) holds for n holds (f . n) = ( Sum ( seq_logn ,n))

    proof

      set g = seq_logn ;

      let f be Real_Sequence such that

       A1: for n be Nat holds (f . n) = ( log (2,(n ! )));

      defpred P[ Nat] means (f . $1) = ( Sum (g,$1));

      

       A2: for k be Nat st P[k] holds P[(k + 1)]

      proof

        let k be Nat such that

         A3: (f . k) = ( Sum (g,k));

        

         A4: (k ! ) > 0 by NEWTON: 17;

        (f . (k + 1)) = ( log (2,((k + 1) ! ))) by A1

        .= ( log (2,((k + 1) * (k ! )))) by NEWTON: 15

        .= (( log (2,(k + 1))) + ( log (2,(k ! )))) by A4, POWER: 53

        .= (( log (2,(k + 1))) + ( Sum (g,k))) by A1, A3

        .= ((g . (k + 1)) + ( Sum (g,k))) by Def2

        .= ((g . (k + 1)) + (( Partial_Sums g) . k)) by SERIES_1:def 5

        .= (( Partial_Sums g) . (k + 1)) by SERIES_1:def 1

        .= ( Sum (g,(k + 1))) by SERIES_1:def 5;

        hence thesis;

      end;

      

       A5: ( Sum (g, 0 )) = (( Partial_Sums g) . 0 ) by SERIES_1:def 5

      .= (g . 0 ) by SERIES_1:def 1

      .= 0 by Def2;

      (f . 0 ) = ( log (2,1)) by A1, NEWTON: 12

      .= 0 by POWER: 51;

      then

       A6: P[ 0 ] by A5;

      for n be Nat holds P[n] from NAT_1:sch 2( A6, A2);

      hence thesis;

    end;

    

     Lm45: for n be Nat st n >= 4 holds (n * ( log (2,n))) >= (2 * n)

    proof

      let n be Nat;

      assume n >= 4;

      then ( log (2,n)) >= ( log (2,(2 ^2 ))) by PRE_FF: 10;

      then ( log (2,n)) >= ( log (2,(2 to_power 2))) by POWER: 46;

      then ( log (2,n)) >= (2 * ( log (2,2))) by POWER: 55;

      then ( log (2,n)) >= (2 * 1) by POWER: 52;

      hence thesis by XREAL_1: 64;

    end;

    theorem :: ASYMPT_1:34

    for f,g be Real_Sequence st (for n st n > 0 holds (g . n) = (n * ( log (2,n)))) & (for n be Nat holds (f . n) = ( log (2,(n ! )))) holds ex s be eventually-nonnegative Real_Sequence st s = g & f in ( Big_Theta s)

    proof

      set h = seq_logn ;

      let f,g be Real_Sequence such that

       A1: for n st n > 0 holds (g . n) = (n * ( log (2,n))) and

       A2: for n be Nat holds (f . n) = ( log (2,(n ! )));

      g is eventually-positive

      proof

        take 2;

        let n be Nat;

        

         A3: n in NAT by ORDINAL1:def 12;

        assume

         A4: n >= 2;

        then ( log (2,n)) >= ( log (2,2)) by PRE_FF: 10;

        then ( log (2,n)) >= 1 by POWER: 52;

        then (n * ( log (2,n))) > (n * 0 ) by A4, XREAL_1: 68;

        hence thesis by A1, A4, A3;

      end;

      then

      reconsider g as eventually-positive Real_Sequence;

       A5:

      now

        let n;

        set n1 = [/(n / 2)\];

        assume

         A6: n >= 4;

        

        then

         A7: ((n / 2) * ( log (2,(n / 2)))) = ((n / 2) * (( log (2,n)) - ( log (2,2)))) by POWER: 54

        .= ((n / 2) * (( log (2,n)) - 1)) by POWER: 52

        .= (((n * ( log (2,n))) / 2) - (n / 2));

        ex s be Real_Sequence st (s . 0 ) = 0 & for m st m > 0 holds (s . m) = ( log (2,(n / 2)))

        proof

          defpred P[ Element of NAT , Real] means ($1 = 0 implies $2 = 0 ) & ($1 > 0 implies $2 = ( log (2,(n / 2))));

          

           A8: for x be Element of NAT holds ex y be Element of REAL st P[x, y]

          proof

            let x be Element of NAT ;

            per cases ;

              suppose x = zz;

              hence thesis;

            end;

              suppose

               A9: x > 0 ;

              ( log (2,(n / 2))) in REAL by XREAL_0:def 1;

              hence thesis by A9;

            end;

          end;

          consider h be sequence of REAL such that

           A10: for x be Element of NAT holds P[x, (h . x)] from FUNCT_2:sch 3( A8);

          take h;

          thus (h . 0 ) = 0 by A10;

          let n;

          thus thesis by A10;

        end;

        then

        consider p be Real_Sequence such that

         A11: (p . 0 ) = 0 and

         A12: for m st m > 0 holds (p . m) = ( log (2,(n / 2)));

        

         A13: [/(n / 2)\] >= (n / 2) by INT_1:def 7;

        then

        reconsider n1 as Element of NAT by INT_1: 3;

        set n2 = (n1 - 1);

        

         A14: (n * (2 " )) > ( 0 * (2 " )) by A6, XREAL_1: 68;

         A15:

        now

          assume n2 < 0 ;

          then (n1 - 1) <= ( - 1) by INT_1: 8;

          then ((n1 - 1) + 1) <= (( - 1) + 1) by XREAL_1: 6;

          hence contradiction by A14, INT_1:def 7;

        end;

        ((n * ( log (2,n))) * (4 " )) >= ((2 * n) * (4 " )) by A6, Lm45, XREAL_1: 64;

        then (((n * ( log (2,n))) / 2) - ((n * ( log (2,n))) / 4)) >= (n / 2);

        then ((n * ( log (2,n))) / 2) >= ((n / 2) + ((n * ( log (2,n))) / 4)) by XREAL_1: 19;

        then

         A16: (((n * ( log (2,n))) / 2) - (n / 2)) >= ((n * ( log (2,n))) / 4) by XREAL_1: 19;

        (2 * 2) <= n by A6;

        then 2 <= (n / 2) by XREAL_1: 77;

        then ( log (2,2)) <= ( log (2,(n / 2))) by PRE_FF: 10;

        then

         A17: 1 <= ( log (2,(n / 2))) by POWER: 52;

        reconsider n2 as Element of NAT by A15, INT_1: 3;

        

         A18: for k st (n2 + 1) <= k & k <= n holds (p . k) <= (h . k)

        proof

          let k such that

           A19: (n2 + 1) <= k and k <= n;

          (n / 2) <= k by A13, A19, XXREAL_0: 2;

          then ( log (2,(n / 2))) <= ( log (2,k)) by A14, PRE_FF: 10;

          then (p . k) <= ( log (2,k)) by A12, A19;

          hence thesis by A19, Def2;

        end;

        n >= n1 by Lm17;

        then

         A20: ( Sum (h,n,n2)) >= ( Sum (p,n,n2)) by A18, Lm16;

         A21:

        now

           [/(n / 2)\] < ((n / 2) + 1) by INT_1:def 7;

          then n2 < (n / 2) by XREAL_1: 19;

          then

           A22: ((n / 2) + n2) < ((n / 2) + (n / 2)) by XREAL_1: 6;

          assume (n - n2) < (n / 2);

          hence contradiction by A22, XREAL_1: 19;

        end;

        for k st k <= n2 holds (h . k) >= 0

        proof

          let k such that k <= n2;

          per cases ;

            suppose k = 0 ;

            hence thesis by Def2;

          end;

            suppose

             A23: k > 0 ;

            then k >= ( 0 + 1) by NAT_1: 13;

            then ( log (2,k)) >= ( log (2,1)) by PRE_FF: 10;

            then ( log (2,k)) >= 0 by POWER: 51;

            hence thesis by A23, Def2;

          end;

        end;

        then ( Sum (h,n2)) >= 0 by Lm12;

        then (( Sum (h,n)) + ( Sum (h,n2))) >= (( Sum (h,n)) + 0 ) by XREAL_1: 6;

        then ( Sum (h,n)) >= (( Sum (h,n)) - ( Sum (h,n2))) by XREAL_1: 20;

        then

         A24: ( Sum (h,n)) >= ( Sum (h,n,n2)) by SERIES_1:def 6;

        ( Sum (p,n,n2)) = ((n - n2) * ( log (2,(n / 2)))) by A11, A12, Lm18;

        then

         A25: ( Sum (p,n,n2)) >= ((n / 2) * ( log (2,(n / 2)))) by A21, A17, XREAL_1: 64;

        ((n * ( log (2,n))) / 4) = ((g . n) / 4) by A1, A6

        .= ((1 / 4) * (g . n));

        then ( Sum (p,n,n2)) >= ((1 / 4) * (g . n)) by A25, A7, A16, XXREAL_0: 2;

        then ( Sum (h,n,n2)) >= ((1 / 4) * (g . n)) by A20, XXREAL_0: 2;

        then ( Sum (h,n)) >= ((1 / 4) * (g . n)) by A24, XXREAL_0: 2;

        hence ((1 / 4) * (g . n)) <= (f . n) by A2, Lm44;

        ex s be Real_Sequence st (s . 0 ) = 0 & for m st m > 0 holds (s . m) = ( log (2,n))

        proof

          defpred P[ Element of NAT , Real] means ($1 = 0 implies $2 = 0 ) & ($1 > 0 implies $2 = ( log (2,n)));

          

           A26: for x be Element of NAT holds ex y be Element of REAL st P[x, y]

          proof

            let x be Element of NAT ;

            per cases ;

              suppose x = zz;

              hence thesis;

            end;

              suppose

               A27: x > 0 ;

              ( log (2,n)) in REAL by XREAL_0:def 1;

              hence thesis by A27;

            end;

          end;

          consider h be sequence of REAL such that

           A28: for x be Element of NAT holds P[x, (h . x)] from FUNCT_2:sch 3( A26);

          take h;

          thus (h . 0 ) = 0 by A28;

          let n;

          thus thesis by A28;

        end;

        then

        consider q be Real_Sequence such that

         A29: (q . 0 ) = 0 and

         A30: for m st m > 0 holds (q . m) = ( log (2,n));

        

         A31: ( Sum (q,n)) = (n * ( log (2,n))) by A29, A30, Lm14;

        for k st k <= n holds (h . k) <= (q . k)

        proof

          let k such that

           A32: k <= n;

          per cases ;

            suppose k = 0 ;

            hence thesis by A29, Def2;

          end;

            suppose

             A33: k > 0 ;

            then ( log (2,k)) <= ( log (2,n)) by A32, PRE_FF: 10;

            then (h . k) <= ( log (2,n)) by A33, Def2;

            hence thesis by A30, A33;

          end;

        end;

        then

         A34: ( Sum (h,n)) <= ( Sum (q,n)) by Lm13;

        ( log (2,(n ! ))) = (f . n) by A2

        .= ( Sum (h,n)) by A2, Lm44;

        then ( log (2,(n ! ))) <= (1 * (g . n)) by A1, A6, A34, A31;

        hence (f . n) <= (1 * (g . n)) by A2;

      end;

      take g;

      

       A35: f is Element of ( Funcs ( NAT , REAL )) by FUNCT_2: 8;

      ( Big_Theta g) = { s where s be Element of ( Funcs ( NAT , REAL )) : ex c, d, N st c > 0 & d > 0 & for n st n >= N holds (d * (g . n)) <= (s . n) & (s . n) <= (c * (g . n)) } by ASYMPT_0: 27;

      hence thesis by A35, A5;

    end;

    begin

    theorem :: ASYMPT_1:35

    for f be eventually-nondecreasing eventually-nonnegative Real_Sequence, t be Real_Sequence st (for n holds ((n mod 2) = 0 implies (t . n) = 1) & ((n mod 2) = 1 implies (t . n) = n)) holds not t in ( Big_Theta f)

    proof

      let f be eventually-nondecreasing eventually-nonnegative Real_Sequence, t be Real_Sequence such that

       A1: for n holds ((n mod 2) = 0 implies (t . n) = 1) & ((n mod 2) = 1 implies (t . n) = n);

      

       A2: ( Big_Theta f) = { s where s be Element of ( Funcs ( NAT , REAL )) : ex c, d, N st c > 0 & d > 0 & for n st n >= N holds (d * (f . n)) <= (s . n) & (s . n) <= (c * (f . n)) } by ASYMPT_0: 27;

      hereby

        consider N0 be Nat such that

         A3: for n be Nat st n >= N0 holds (f . n) <= (f . (n + 1)) by ASYMPT_0:def 6;

        assume t in ( Big_Theta f);

        then

        consider s be Element of ( Funcs ( NAT , REAL )) such that

         A4: s = t and

         A5: ex c, d, N st c > 0 & d > 0 & for n st n >= N holds (d * (f . n)) <= (s . n) & (s . n) <= (c * (f . n)) by A2;

        consider c, d, N such that

         A6: c > 0 and

         A7: d > 0 and

         A8: for n st n >= N holds (d * (f . n)) <= (s . n) & (s . n) <= (c * (f . n)) by A5;

        set N1 = ( max (( [/(c / d)\] + 1),( max (N,N0))));

        

         A9: N1 >= ( [/(c / d)\] + 1) by XXREAL_0: 25;

        

         A10: N1 is Integer by XXREAL_0: 16;

        

         A11: N1 >= ( max (N,N0)) by XXREAL_0: 25;

        ( max (N,N0)) >= N0 by XXREAL_0: 25;

        then

         A12: N1 >= N0 by A11, XXREAL_0: 2;

        ( max (N,N0)) >= N by XXREAL_0: 25;

        then

         A13: N1 >= N by A11, XXREAL_0: 2;

        reconsider N1 as Element of NAT by A11, A10, INT_1: 3;

        thus contradiction

        proof

          per cases by NAT_D: 12;

            suppose

             A14: (N1 mod 2) = 1;

            

             A15: [/(c / d)\] >= (c / d) by INT_1:def 7;

            ( [/(c / d)\] + 1) > ( [/(c / d)\] + 0 ) by XREAL_1: 8;

            then ( [/(c / d)\] + 1) > (c / d) by A15, XXREAL_0: 2;

            then N1 > (c / d) by A9, XXREAL_0: 2;

            then (N1 * (c " )) > ((c " ) * (c / d)) by A6, XREAL_1: 68;

            then (N1 / c) > (((c " ) * c) * (1 / d));

            then

             A16: (N1 / c) > (1 * (1 / d)) by A6, XCMPLX_0:def 7;

            

             A17: (f . (N1 + 1)) >= (f . N1) by A3, A12;

            (s . N1) = N1 by A1, A4, A14;

            then N1 <= (c * (f . N1)) by A8, A13;

            then (N1 / c) <= (f . N1) by A6, XREAL_1: 79;

            then (f . N1) > (1 / d) by A16, XXREAL_0: 2;

            then (f . (N1 + 1)) > (1 / d) by A17, XXREAL_0: 2;

            then

             A18: (d * (1 / d)) < (d * (f . (N1 + 1))) by A7, XREAL_1: 68;

            (N1 + 1) > (N1 + 0 ) by XREAL_1: 8;

            then

             A19: (N1 + 1) > N by A13, XXREAL_0: 2;

            ((N1 + 1) mod 2) = ((1 + (1 mod 2)) mod 2) by A14, EULER_2: 6

            .= ((1 + 1) mod 2) by NAT_D: 14

            .= 0 by NAT_D: 25;

            then (t . (N1 + 1)) = 1 by A1;

            then (d * (f . (N1 + 1))) <= 1 by A4, A8, A19;

            hence thesis by A7, A18, XCMPLX_1: 106;

          end;

            suppose

             A20: (N1 mod 2) = 0 ;

            

            then ((N1 + 1) mod 2) = (( 0 + (1 mod 2)) mod 2) by EULER_2: 6

            .= (( 0 + 1) mod 2) by NAT_D: 14

            .= 1 by NAT_D: 14;

            then

             A21: (s . (N1 + 1)) = (N1 + 1) by A1, A4;

            

             A22: [/(c / d)\] >= (c / d) by INT_1:def 7;

            

             A23: (N1 + 1) > (N1 + 0 ) by XREAL_1: 8;

            then (N1 + 1) > N0 by A12, XXREAL_0: 2;

            then

             A24: (f . ((N1 + 1) + 1)) >= (f . (N1 + 1)) by A3;

            ( [/(c / d)\] + 1) > ( [/(c / d)\] + 0 ) by XREAL_1: 8;

            then ( [/(c / d)\] + 1) > (c / d) by A22, XXREAL_0: 2;

            then N1 > (c / d) by A9, XXREAL_0: 2;

            then (N1 + 1) > (c / d) by A23, XXREAL_0: 2;

            then ((N1 + 1) * (c " )) > ((c " ) * (c / d)) by A6, XREAL_1: 68;

            then ((N1 + 1) / c) > (((c " ) * c) * (1 / d));

            then

             A25: ((N1 + 1) / c) > (1 * (1 / d)) by A6, XCMPLX_0:def 7;

            (N1 + 1) > N by A13, A23, XXREAL_0: 2;

            then (N1 + 1) <= (c * (f . (N1 + 1))) by A8, A21;

            then ((N1 + 1) / c) <= (f . (N1 + 1)) by A6, XREAL_1: 79;

            then (f . (N1 + 1)) > (1 / d) by A25, XXREAL_0: 2;

            then (f . (N1 + 2)) > (1 / d) by A24, XXREAL_0: 2;

            then

             A26: (d * (1 / d)) < (d * (f . (N1 + 2))) by A7, XREAL_1: 68;

            (N1 + 2) > (N1 + 0 ) by XREAL_1: 8;

            then

             A27: (N1 + 2) > N by A13, XXREAL_0: 2;

            ((N1 + 2) mod 2) = (( 0 + (2 mod 2)) mod 2) by A20, EULER_2: 6

            .= (( 0 + 0 ) mod 2) by NAT_D: 25

            .= 0 by NAT_D: 26;

            then (t . (N1 + 2)) = 1 by A1;

            then (d * (f . (N1 + 2))) <= 1 by A4, A8, A27;

            hence thesis by A7, A26, XCMPLX_1: 106;

          end;

        end;

      end;

    end;

    begin

    

     Lm46: for n be Nat st n >= 2 holds [/(n / 2)\] < n

    proof

      let n be Nat such that

       A1: n >= 2;

       A2:

      now

        assume ((n / 2) + 1) > n;

        then (2 * ((n / 2) + 1)) > (2 * n) by XREAL_1: 68;

        then ((2 * (n / 2)) + (2 * 1)) > (2 * n);

        then 2 > ((2 * n) - n) by XREAL_1: 19;

        hence contradiction by A1;

      end;

       [/(n / 2)\] < ((n / 2) + 1) by INT_1:def 7;

      hence thesis by A2, XXREAL_0: 2;

    end;

    begin

    definition

      :: ASYMPT_1:def6

      func POWEROF2SET -> non empty Subset of NAT equals the set of all (2 to_power n) where n be Element of NAT ;

      coherence

      proof

        set IT = the set of all (2 to_power n) where n be Element of NAT ;

         A1:

        now

          let x be object;

          assume x in IT;

          then ex n be Element of NAT st (2 to_power n) = x;

          hence x in NAT ;

        end;

        (2 to_power 1) in IT;

        hence thesis by A1, TARSKI:def 3;

      end;

    end

    

     Lm47: for n be Nat st n >= 2 holds (n ^2 ) > (n + 1)

    proof

      defpred P[ Nat] means ($1 ^2 ) > ($1 + 1);

      

       A1: for k be Nat st k >= 2 & P[k] holds P[(k + 1)]

      proof

        let k be Nat such that

         A2: k >= 2 and

         A3: (k ^2 ) > (k + 1);

        (2 * k) > (2 * 0 ) by A2, XREAL_1: 68;

        then ((2 * k) + 1) > ( 0 + 1) by XREAL_1: 6;

        then

         A4: ((k + 1) + ((2 * k) + 1)) > ((k + 1) + 1) by XREAL_1: 6;

        ((k ^2 ) + ((2 * k) + 1)) > ((k + 1) + ((2 * k) + 1)) by A3, XREAL_1: 6;

        hence ((k + 1) ^2 ) > ((k + 1) + 1) by A4, XXREAL_0: 2;

      end;

      

       A5: P[2];

      for n be Nat st n >= 2 holds P[n] from NAT_1:sch 8( A5, A1);

      hence thesis;

    end;

    

     Lm48: for n be Nat st n >= 1 holds ((2 to_power (n + 1)) - (2 to_power n)) > 1

    proof

      let n be Nat;

      assume n >= 1;

      then (2 to_power n) >= (2 to_power 1) by PRE_FF: 8;

      then ((2 to_power n) * 1) >= 2 by POWER: 25;

      then (((2 to_power n) * 2) - ((2 to_power n) * 1)) > 1 by XXREAL_0: 2;

      then (((2 to_power n) * (2 to_power 1)) - (2 to_power n)) > 1 by POWER: 25;

      hence thesis by POWER: 27;

    end;

    

     Lm49: for n be Nat st n >= 2 holds not ((2 to_power n) - 1) in POWEROF2SET

    proof

      

       A1: 1 = (2 - 1);

      let n be Nat;

      assume n >= 2;

      then (n - 1) >= 1 by A1, XREAL_1: 9;

      then ((2 to_power ((n + ( - 1)) + 1)) - (2 to_power (n - 1))) > 1 by Lm48;

      then (2 to_power n) > (1 + (2 to_power (n - 1))) by XREAL_1: 20;

      then

       A3: ((2 to_power n) - 1) > (2 to_power (n - 1)) by XREAL_1: 20;

      assume ((2 to_power n) - 1) in POWEROF2SET ;

      then

      consider m such that

       A4: (2 to_power m) = ((2 to_power n) - 1);

      now

        assume m >= n;

        then

         A5: (2 to_power m) >= (2 to_power n) by PRE_FF: 8;

        ((2 to_power n) + 1) > ((2 to_power n) + 0 ) by XREAL_1: 6;

        hence contradiction by A4, A5, XREAL_1: 19;

      end;

      then (m + 1) <= n by INT_1: 7;

      then

       A6: m <= (n - 1) by XREAL_1: 19;

      m >= (n - 1) by A4, A3, POWER: 39;

      hence contradiction by A4, A3, A6, XXREAL_0: 1;

    end;

    theorem :: ASYMPT_1:36

    for f be Real_Sequence st (for n holds (n in POWEROF2SET implies (f . n) = n) & ( not n in POWEROF2SET implies (f . n) = (2 to_power n))) holds f in ( Big_Theta (( seq_n^ 1), POWEROF2SET )) & not f in ( Big_Theta ( seq_n^ 1)) & ( seq_n^ 1) is smooth & not f is eventually-nondecreasing

    proof

      set X = POWEROF2SET ;

      set p = seq_logn ;

      set g = ( seq_n^ 1);

      set h = (g taken_every 2);

      set q = (p /" g);

       A1:

      now

        let n;

        assume

         A2: n >= 1;

        then

         A3: (2 * n) > (2 * 0 ) by XREAL_1: 68;

        

         A4: (h . n) = (g . (2 * n)) by ASYMPT_0:def 15

        .= ((2 * n) to_power 1) by A3, Def3

        .= (2 * n) by POWER: 25;

        (g . n) = (n to_power 1) by A2, Def3

        .= n by POWER: 25;

        hence (h . n) <= (2 * (g . n)) by A4;

        thus (h . n) >= 0 by A4;

      end;

      let f be Real_Sequence such that

       A5: for n holds (n in POWEROF2SET implies (f . n) = n) & ( not n in POWEROF2SET implies (f . n) = (2 to_power n));

       A6:

      now

        let n such that

         A7: n >= 1 and

         A8: n in X;

        

         A9: (g . n) = (n to_power 1) by A7, Def3

        .= n by POWER: 25;

        hence (1 * (g . n)) <= (f . n) by A5, A8;

        thus (f . n) <= (1 * (g . n)) by A5, A8, A9;

      end;

      f is Element of ( Funcs ( NAT , REAL )) by FUNCT_2: 8;

      hence f in ( Big_Theta (g,X)) by A6;

      

       A10: ( Big_Theta g) = { t where t be Element of ( Funcs ( NAT , REAL )) : ex c, d, N st c > 0 & d > 0 & for n st n >= N holds (d * (g . n)) <= (t . n) & (t . n) <= (c * (g . n)) } by ASYMPT_0: 27;

      hereby

        

         A11: ( lim q) = 0 by Lm11;

        q is convergent by Lm11;

        then

        consider N0 be Nat such that

         A12: for m be Nat st m >= N0 holds |.((q . m) - 0 ).| < (1 / 2) by A11, SEQ_2:def 7;

        assume f in ( Big_Theta g);

        then

        consider t be Element of ( Funcs ( NAT , REAL )) such that

         A13: t = f and

         A14: ex c, d, N st c > 0 & d > 0 & for n st n >= N holds (d * (g . n)) <= (t . n) & (t . n) <= (c * (g . n)) by A10;

        consider c, d, N such that

         A15: c > 0 and d > 0 and

         A16: for n st n >= N holds (d * (g . n)) <= (t . n) & (t . n) <= (c * (g . n)) by A14;

        set N2 = ( max (( max (N0,N)),( max ( [/c\],2))));

        

         A17: N2 >= ( max (N0,N)) by XXREAL_0: 25;

        

         A18: N2 is Integer

        proof

          per cases by XXREAL_0: 16;

            suppose N2 = ( max (N0,N));

            hence thesis;

          end;

            suppose N2 = ( max ( [/c\],2));

            hence thesis by XXREAL_0: 16;

          end;

        end;

        ( max (N0,N)) >= N0 by XXREAL_0: 25;

        then

         A19: N2 >= N0 by A17, XXREAL_0: 2;

        

         A20: N2 >= ( max ( [/c\],2)) by XXREAL_0: 25;

        ( max ( [/c\],2)) >= [/c\] by XXREAL_0: 25;

        then

         A21: N2 >= [/c\] by A20, XXREAL_0: 2;

        

         A22: ( max ( [/c\],2)) >= 2 by XXREAL_0: 25;

        then

         A23: N2 >= 2 by A20, XXREAL_0: 2;

        ( max (N0,N)) >= N by XXREAL_0: 25;

        then

         A24: N2 >= N by A17, XXREAL_0: 2;

        

         A25: [/c\] >= c by INT_1:def 7;

        reconsider N2 as Element of NAT by A17, A18, INT_1: 3;

        set N3 = ((2 to_power N2) - 1);

        (2 to_power N2) > 0 by POWER: 34;

        then (2 to_power N2) >= ( 0 + 1) by NAT_1: 13;

        then

        reconsider N3 as Element of NAT by INT_1: 3;

        

         A26: (2 to_power N3) > 0 by POWER: 34;

         not N3 in POWEROF2SET by A20, A22, Lm49, XXREAL_0: 2;

        then

         A27: (t . N3) = (2 to_power N3) by A5, A13;

        (2 to_power N2) > (N2 + 1) by A23, Lm1;

        then

         A28: N3 > N2 by XREAL_1: 20;

        

        then

         A29: (g . N3) = (N3 to_power 1) by Def3

        .= N3 by POWER: 25;

        N3 >= N by A24, A28, XXREAL_0: 2;

        then (2 to_power N3) <= (c * N3) by A16, A27, A29;

        then ( log (2,(2 to_power N3))) <= ( log (2,(c * N3))) by A26, PRE_FF: 10;

        then (N3 * ( log (2,2))) <= ( log (2,(c * N3))) by POWER: 55;

        then (N3 * 1) <= ( log (2,(c * N3))) by POWER: 52;

        then

         A30: N3 <= (( log (2,c)) + ( log (2,N3))) by A15, A28, POWER: 53;

        N3 >= [/c\] by A21, A28, XXREAL_0: 2;

        then N3 >= c by A25, XXREAL_0: 2;

        then ( log (2,N3)) >= ( log (2,c)) by A15, PRE_FF: 10;

        then (( log (2,N3)) + ( log (2,N3))) >= (( log (2,c)) + ( log (2,N3))) by XREAL_1: 6;

        then N3 <= (2 * ( log (2,N3))) by A30, XXREAL_0: 2;

        then (N3 / 2) <= ( log (2,N3)) by XREAL_1: 79;

        then ((N3 " ) * (N3 * (1 / 2))) <= (( log (2,N3)) * (N3 " )) by XREAL_1: 64;

        then (((N3 " ) * N3) * (1 / 2)) <= (( log (2,N3)) * (N3 " ));

        then

         A31: (( log (2,N3)) / N3) >= (1 / 2) by A28, XCMPLX_0:def 7;

        N3 >= N0 by A19, A28, XXREAL_0: 2;

        then

         A32: |.((q . N3) - 0 ).| < (1 / 2) by A12;

        (q . N3) = ((p . N3) / (g . N3)) by Lm4

        .= (( log (2,N3)) / (g . N3)) by A28, Def2

        .= (( log (2,N3)) / (N3 to_power 1)) by A28, Def3

        .= (( log (2,N3)) / N3) by POWER: 25;

        hence contradiction by A31, A32, ABSVALUE:def 1;

      end;

      now

        let n be Nat;

        

         A33: n in NAT by ORDINAL1:def 12;

        assume n >= 0 ;

        

         A34: (n + 0 ) <= (n + 1) by XREAL_1: 6;

        

         A35: (g . n) = n

        proof

          per cases ;

            suppose n = 0 ;

            hence thesis by Def3;

          end;

            suppose n > 0 ;

            

            hence (g . n) = (n to_power 1) by Def3, A33

            .= n by POWER: 25;

          end;

        end;

        (g . (n + 1)) = ((n + 1) to_power 1) by Def3

        .= (n + 1) by POWER: 25;

        hence (g . n) <= (g . (n + 1)) by A35, A34;

      end;

      then

       A36: g is eventually-nondecreasing;

      h is Element of ( Funcs ( NAT , REAL )) by FUNCT_2: 8;

      then g is_smooth_wrt 2 by A36, A1;

      hence g is smooth by ASYMPT_0: 37;

      

       A37: 3 = (4 - 1);

      hereby

        assume f is eventually-nondecreasing;

        then

        consider N be Nat such that

         A38: for n be Nat st n >= N holds (f . n) <= (f . (n + 1));

        set N1 = ((2 to_power (N + 2)) - 1);

        

         A39: (2 to_power 2) = (2 ^2 ) by POWER: 46

        .= 4;

        

         A40: (N + 2) >= ( 0 + 2) by XREAL_1: 6;

        then (2 to_power (N + 2)) >= (2 to_power 2) by PRE_FF: 8;

        then N1 >= 3 by A37, A39, XREAL_1: 9;

        then

        reconsider N1 as Element of NAT by INT_1: 3;

        (2 to_power (N + 2)) > ((N + 2) + 1) by A40, Lm1;

        then

         A41: N1 > (N + 2) by XREAL_1: 20;

        (N + 2) >= (N + 0 ) by XREAL_1: 6;

        then

         A42: N1 >= N by A41, XXREAL_0: 2;

        (N1 + 1) in POWEROF2SET ;

        then

         A43: (f . (N1 + 1)) = (N1 + 1) by A5;

         not N1 in POWEROF2SET by A40, Lm49;

        then (f . N1) = (2 to_power N1) by A5;

        then (f . N1) > (f . (N1 + 1)) by A43, A41, POWER: 39;

        hence contradiction by A38, A42;

      end;

    end;

    theorem :: ASYMPT_1:37

    for f,g be Real_Sequence st (for n st n > 0 holds (f . n) = (n to_power (2 to_power [\( log (2,n))/]))) & (for n st n > 0 holds (g . n) = (n to_power n)) holds ex s be eventually-positive Real_Sequence st s = g & f in ( Big_Theta (s, POWEROF2SET )) & not f in ( Big_Theta s) & f is eventually-nondecreasing & s is eventually-nondecreasing & not s is_smooth_wrt 2

    proof

      set X = POWEROF2SET ;

      let f,g be Real_Sequence such that

       A1: for n st n > 0 holds (f . n) = (n to_power (2 to_power [\( log (2,n))/])) and

       A2: for n st n > 0 holds (g . n) = (n to_power n);

      

       A3: g is eventually-positive

      proof

        take 1;

        let n be Nat;

        

         A4: n in NAT by ORDINAL1:def 12;

        assume

         A5: n >= 1;

        then (g . n) = (n to_power n) by A2, A4;

        hence thesis by A5, POWER: 34;

      end;

      set h = (g taken_every 2);

      reconsider g as eventually-positive Real_Sequence by A3;

       A6:

      now

        let n such that

         A7: n >= 1 and

         A8: n in X;

        consider n1 be Element of NAT such that

         A9: n = (2 to_power n1) by A8;

        

         A10: (f . n) = (n to_power (2 to_power [\( log (2,n))/])) by A1, A7;

        ( log (2,n)) = (n1 * ( log (2,2))) by A9, POWER: 55

        .= (n1 * 1) by POWER: 52;

        then

         A11: (f . n) = (n to_power n) by A10, A9, INT_1: 25;

        hence (1 * (g . n)) <= (f . n) by A2, A7;

        thus (f . n) <= (1 * (g . n)) by A2, A7, A11;

      end;

      

       A12: ( Big_Theta g) = { t where t be Element of ( Funcs ( NAT , REAL )) : ex c, d, N st c > 0 & d > 0 & for n st n >= N holds (d * (g . n)) <= (t . n) & (t . n) <= (c * (g . n)) } by ASYMPT_0: 27;

       A13:

      now

        assume f in ( Big_Theta g);

        then

        consider t be Element of ( Funcs ( NAT , REAL )) such that

         A14: t = f and

         A15: ex c, d, N st c > 0 & d > 0 & for n st n >= N holds (d * (g . n)) <= (t . n) & (t . n) <= (c * (g . n)) by A12;

        consider c, d, N such that c > 0 and

         A16: d > 0 and

         A17: for n st n >= N holds (d * (g . n)) <= (t . n) & (t . n) <= (c * (g . n)) by A15;

        set N1 = ( max ( [/(1 / d)\],( max (N,2))));

        

         A18: N1 >= [/(1 / d)\] by XXREAL_0: 25;

        

         A19: N1 is Integer by XXREAL_0: 16;

        

         A20: N1 >= ( max (N,2)) by XXREAL_0: 25;

        ( max (N,2)) >= N by XXREAL_0: 25;

        then

         A21: N1 >= N by A20, XXREAL_0: 2;

        ( max (N,2)) >= 2 by XXREAL_0: 25;

        then

         A22: N1 >= 2 by A20, XXREAL_0: 2;

        reconsider N1 as Element of NAT by A20, A19, INT_1: 3;

        reconsider N2 = (2 to_power N1) as Element of NAT ;

        

         A23: N2 > (N1 + 1) by A22, Lm1;

        N1 > 1 by A22, XXREAL_0: 2;

        then ((2 to_power (N1 + 1)) - (2 to_power N1)) > 1 by Lm48;

        then (2 to_power (N1 + 1)) > (N2 + 1) by XREAL_1: 20;

        then ( log (2,(2 to_power (N1 + 1)))) > ( log (2,(N2 + 1))) by POWER: 57;

        then ((N1 + 1) * ( log (2,2))) > ( log (2,(N2 + 1))) by POWER: 55;

        then

         A24: ((N1 + 1) * 1) > ( log (2,(N2 + 1))) by POWER: 52;

         A25:

        now

          assume [\( log (2,(N2 + 1)))/] > N1;

          then

           A26: [\( log (2,(N2 + 1)))/] >= (N1 + 1) by INT_1: 7;

          ( log (2,(N2 + 1))) >= [\( log (2,(N2 + 1)))/] by INT_1:def 6;

          hence contradiction by A24, A26, XXREAL_0: 2;

        end;

        

         A27: (g . (N2 + 1)) = ((N2 + 1) to_power (N2 + 1)) by A2;

        then

         A28: (g . (N2 + 1)) > 0 by POWER: 34;

        (N1 + 1) > (N1 + 0 ) by XREAL_1: 8;

        then

         A29: N2 > N1 by A23, XXREAL_0: 2;

        

         A30: (N2 + 1) > (N2 + 0 ) by XREAL_1: 8;

        then (N2 + 1) > N1 by A29, XXREAL_0: 2;

        then (N2 + 1) > N by A21, XXREAL_0: 2;

        then

         A31: (d * (g . (N2 + 1))) <= (t . (N2 + 1)) by A17;

         [/(1 / d)\] >= (1 / d) by INT_1:def 7;

        then N1 >= (1 / d) by A18, XXREAL_0: 2;

        then N2 >= (1 / d) by A29, XXREAL_0: 2;

        then

         A32: (N2 + 1) > ((1 / d) + 0 ) by XREAL_1: 8;

        ( log (2,N2)) = (N1 * ( log (2,2))) by POWER: 55

        .= (N1 * 1) by POWER: 52;

        then ( log (2,(N2 + 1))) > N1 by A23, A30, POWER: 57;

        then [\( log (2,(N2 + 1)))/] >= [\N1/] by PRE_FF: 9;

        then

         A33: [\( log (2,(N2 + 1)))/] >= N1 by INT_1: 25;

        (t . (N2 + 1)) = ((N2 + 1) to_power (2 to_power [\( log (2,(N2 + 1)))/])) by A1, A14;

        

        then ((g . (N2 + 1)) / (t . (N2 + 1))) = (((N2 + 1) to_power (N2 + 1)) / ((N2 + 1) to_power N2)) by A27, A33, A25, XXREAL_0: 1

        .= ((N2 + 1) to_power ((N2 + 1) - N2)) by POWER: 29

        .= (N2 + 1) by POWER: 25;

        then (1 / ((g . (N2 + 1)) / (t . (N2 + 1)))) < (1 / (1 / d)) by A16, A32, XREAL_1: 88;

        then ((t . (N2 + 1)) / (g . (N2 + 1))) < d by XCMPLX_1: 57;

        then (((t . (N2 + 1)) / (g . (N2 + 1))) * (g . (N2 + 1))) < (d * (g . (N2 + 1))) by A28, XREAL_1: 68;

        hence contradiction by A31, A28, XCMPLX_1: 87;

      end;

       A34:

      now

        assume g is_smooth_wrt 2;

        then

        consider t be Element of ( Funcs ( NAT , REAL )) such that

         A35: t = h and

         A36: ex c, N st c > 0 & for n st n >= N holds (t . n) <= (c * (g . n)) & (t . n) >= 0 ;

        consider c, N such that c > 0 and

         A37: for n st n >= N holds (t . n) <= (c * (g . n)) & (t . n) >= 0 by A36;

        set N0 = ( max ( [/c\],( max (N,2))));

        

         A38: N0 >= [/c\] by XXREAL_0: 25;

        

         A39: N0 is Integer by XXREAL_0: 16;

        

         A40: N0 >= ( max (N,2)) by XXREAL_0: 25;

        ( max (N,2)) >= N by XXREAL_0: 25;

        then

         A41: N0 >= N by A40, XXREAL_0: 2;

        

         A42: ( max (N,2)) >= 2 by XXREAL_0: 25;

        then

         A43: (2 * N0) > (1 * N0) by A40, XREAL_1: 68;

        

         A44: N0 >= 2 by A40, A42, XXREAL_0: 2;

        then

         A45: N0 > 1 by XXREAL_0: 2;

        reconsider N0 as Element of NAT by A40, A39, INT_1: 3;

         [/c\] >= c by INT_1:def 7;

        then

         A46: N0 >= c by A38, XXREAL_0: 2;

        N0 >= 1 by A44, XXREAL_0: 2;

        then (N0 + N0) >= (N0 + 1) by XREAL_1: 6;

        then

         A47: (N0 to_power (2 * N0)) >= (N0 to_power (N0 + 1)) by A45, PRE_FF: 8;

        (N0 to_power (N0 + 1)) = ((N0 to_power N0) * (N0 to_power 1)) by A40, A42, POWER: 27

        .= ((N0 to_power N0) * N0) by POWER: 25;

        then

         A48: (N0 to_power (N0 + 1)) >= (c * (N0 to_power N0)) by A46, XREAL_1: 64;

        (h . N0) = (g . (2 * N0)) by ASYMPT_0:def 15

        .= ((2 * N0) to_power (2 * N0)) by A2, A43;

        then (h . N0) > (N0 to_power (2 * N0)) by A40, A42, A43, POWER: 37;

        then (h . N0) > (N0 to_power (N0 + 1)) by A47, XXREAL_0: 2;

        then (h . N0) > (c * (N0 to_power N0)) by A48, XXREAL_0: 2;

        then (h . N0) > (c * (g . N0)) by A2, A40, A42;

        hence contradiction by A35, A37, A41;

      end;

       A49:

      now

        let n be Nat;

        

         A50: n in NAT by ORDINAL1:def 12;

        

         A51: (f . (n + 1)) = ((n + 1) to_power (2 to_power [\( log (2,(n + 1)))/])) by A1;

        assume

         A52: n >= 2;

        then

         A53: (f . n) = (n to_power (2 to_power [\( log (2,n))/])) by A1, A50;

        

         A54: (n + 1) > (n + 0 ) by XREAL_1: 8;

        then ( log (2,n)) <= ( log (2,(n + 1))) by A52, POWER: 57;

        then [\( log (2,n))/] <= [\( log (2,(n + 1)))/] by PRE_FF: 9;

        then

         A55: (2 to_power [\( log (2,n))/]) <= (2 to_power [\( log (2,(n + 1)))/]) by PRE_FF: 8;

        (n + 1) > ( 0 + 1) by A52, XREAL_1: 8;

        then

         A56: ((n + 1) to_power (2 to_power [\( log (2,n))/])) <= ((n + 1) to_power (2 to_power [\( log (2,(n + 1)))/])) by A55, PRE_FF: 8;

        ( log (2,n)) >= ( log (2,2)) by A52, PRE_FF: 10;

        then ( log (2,n)) >= 1 by POWER: 52;

        then [\( log (2,n))/] >= [\1/] by PRE_FF: 9;

        then [\( log (2,n))/] >= 1 by INT_1: 25;

        then (2 to_power [\( log (2,n))/]) > (2 to_power 0 ) by POWER: 39;

        then (n to_power (2 to_power [\( log (2,n))/])) <= ((n + 1) to_power (2 to_power [\( log (2,n))/])) by A52, A54, POWER: 37;

        hence (f . n) <= (f . (n + 1)) by A53, A51, A56, XXREAL_0: 2;

      end;

       A57:

      now

        let n be Nat;

        

         A58: n in NAT by ORDINAL1:def 12;

        assume

         A59: n >= 1;

        

         A60: (n + 1) > (n + 0 ) by XREAL_1: 8;

        then

         A61: (n to_power n) < ((n + 1) to_power n) by A59, POWER: 37;

        (n + 1) >= (1 + 1) by A59, XREAL_1: 6;

        then (n + 1) > 1 by XXREAL_0: 2;

        then

         A62: ((n + 1) to_power n) < ((n + 1) to_power (n + 1)) by A60, POWER: 39;

        

         A63: (g . (n + 1)) = ((n + 1) to_power (n + 1)) by A2;

        (g . n) = (n to_power n) by A2, A59, A58;

        hence (g . n) <= (g . (n + 1)) by A63, A62, A61, XXREAL_0: 2;

      end;

      take g;

      f is Element of ( Funcs ( NAT , REAL )) by FUNCT_2: 8;

      hence thesis by A6, A13, A49, A57, A34;

    end;

    theorem :: ASYMPT_1:38

    for g be Real_Sequence st (for n holds (n in POWEROF2SET implies (g . n) = n) & ( not n in POWEROF2SET implies (g . n) = (n to_power 2))) holds ex s be eventually-positive Real_Sequence st s = g & ( seq_n^ 1) in ( Big_Theta (s, POWEROF2SET )) & not ( seq_n^ 1) in ( Big_Theta s) & (s taken_every 2) in ( Big_Oh s) & ( seq_n^ 1) is eventually-nondecreasing & not s is eventually-nondecreasing

    proof

      let g be Real_Sequence such that

       A1: for n holds (n in POWEROF2SET implies (g . n) = n) & ( not n in POWEROF2SET implies (g . n) = (n to_power 2));

      

       A2: g is eventually-positive

      proof

        take 1;

        let n be Nat;

        

         A3: n in NAT by ORDINAL1:def 12;

        assume

         A4: n >= 1;

        thus (g . n) > 0

        proof

          per cases ;

            suppose n in POWEROF2SET ;

            hence thesis by A1, A4;

          end;

            suppose not n in POWEROF2SET ;

            then (g . n) = (n to_power 2) by A1, A3;

            hence thesis by A4, POWER: 34;

          end;

        end;

      end;

      set h = (g taken_every 2);

      reconsider s = g as eventually-positive Real_Sequence by A2;

      take s;

      thus s = g;

      set X = POWEROF2SET ;

      set f = ( seq_n^ 1);

      

       A5: h is Element of ( Funcs ( NAT , REAL )) by FUNCT_2: 8;

       A6:

      now

        let n;

        assume n >= 0 ;

        

         A7: (h . n) = (g . (2 * n)) by ASYMPT_0:def 15;

        thus (h . n) <= (4 * (g . n))

        proof

          per cases ;

            suppose

             A8: n in POWEROF2SET ;

            then

            consider m such that

             A9: n = (2 to_power m);

            (2 * n) = ((2 to_power 1) * (2 to_power m)) by A9, POWER: 25

            .= (2 to_power (m + 1)) by POWER: 27;

            then (2 * n) in POWEROF2SET ;

            then

             A10: (g . (2 * n)) = (2 * n) by A1;

            (g . n) = n by A1, A8;

            hence thesis by A7, A10, XREAL_1: 64;

          end;

            suppose

             A11: not n in POWEROF2SET ;

            now

              assume (2 * n) in POWEROF2SET ;

              then

              consider m such that

               A12: (2 * n) = (2 to_power m);

              thus contradiction

              proof

                per cases ;

                  suppose

                   A13: m = 0 ;

                   A14:

                  now

                    assume (1 / 2) is Element of NAT ;

                    then ( 0 + 1) <= (1 / 2) by NAT_1: 13;

                    hence contradiction;

                  end;

                  ((n * 2) * (2 " )) = (1 * (2 " )) by A12, A13, POWER: 24;

                  hence thesis by A14;

                end;

                  suppose m > 0 ;

                  then m >= ( 0 + 1) by NAT_1: 13;

                  then

                   A15: (m - 1) is Element of NAT by INT_1: 3;

                  (2 * n) = (2 to_power ((m + ( - 1)) + 1)) by A12

                  .= ((2 to_power (m - 1)) * (2 to_power 1)) by POWER: 27

                  .= ((2 to_power (m - 1)) * 2) by POWER: 25;

                  hence thesis by A11, A15;

                end;

              end;

            end;

            

            then

             A16: (g . (2 * n)) = ((2 * n) to_power 2) by A1

            .= ((2 * n) ^2 ) by POWER: 46

            .= (4 * (n ^2 ));

            (g . n) = (n to_power 2) by A1, A11

            .= (n ^2 ) by POWER: 46;

            hence thesis by A16, ASYMPT_0:def 15;

          end;

        end;

        thus (h . n) >= 0

        proof

          per cases ;

            suppose (2 * n) in POWEROF2SET ;

            hence thesis by A1, A7;

          end;

            suppose not (2 * n) in POWEROF2SET ;

            then (g . (2 * n)) = ((2 * n) to_power 2) by A1;

            hence thesis by ASYMPT_0:def 15;

          end;

        end;

      end;

      

       A17: ( Big_Theta s) = { t where t be Element of ( Funcs ( NAT , REAL )) : ex c, d, N st c > 0 & d > 0 & for n st n >= N holds (d * (g . n)) <= (t . n) & (t . n) <= (c * (g . n)) } by ASYMPT_0: 27;

       A18:

      now

        assume f in ( Big_Theta s);

        then

        consider t be Element of ( Funcs ( NAT , REAL )) such that

         A19: t = f and

         A20: ex c, d, N st c > 0 & d > 0 & for n st n >= N holds (d * (g . n)) <= (t . n) & (t . n) <= (c * (g . n)) by A17;

        consider c, d, N such that c > 0 and

         A21: d > 0 and

         A22: for n st n >= N holds (d * (g . n)) <= (t . n) & (t . n) <= (c * (g . n)) by A20;

        set N0 = ( max (( max (N,2)), [/(1 / d)\]));

        

         A23: N0 >= ( max (N,2)) by XXREAL_0: 25;

        ( max (N,2)) >= N by XXREAL_0: 25;

        then

         A24: N0 >= N by A23, XXREAL_0: 2;

        

         A25: N0 >= [/(1 / d)\] by XXREAL_0: 25;

        

         A26: ( max (N,2)) >= 2 by XXREAL_0: 25;

        then

         A27: N0 >= 2 by A23, XXREAL_0: 2;

        N0 is Integer by XXREAL_0: 16;

        then

        reconsider N0 as Element of NAT by A23, INT_1: 3;

        set N1 = ((2 to_power N0) - 1);

        (2 to_power N0) > 0 by POWER: 34;

        then (2 to_power N0) >= ( 0 + 1) by NAT_1: 13;

        then

        reconsider N1 as Element of NAT by INT_1: 3;

        

         A28: [/(1 / d)\] >= (1 / d) by INT_1:def 7;

         not N1 in POWEROF2SET by A23, A26, Lm49, XXREAL_0: 2;

        

        then

         A29: (g . N1) = (N1 to_power 2) by A1

        .= (N1 ^2 ) by POWER: 46;

        (2 to_power N0) > (N0 + 1) by A27, Lm1;

        then

         A30: N1 > N0 by XREAL_1: 20;

        then

         A31: N1 >= N by A24, XXREAL_0: 2;

        N1 > [/(1 / d)\] by A25, A30, XXREAL_0: 2;

        then N1 > (1 / d) by A28, XXREAL_0: 2;

        then (N1 * N1) > (N1 * (1 / d)) by A30, XREAL_1: 68;

        then (d * (N1 ^2 )) > ((N1 * (1 / d)) * d) by A21, XREAL_1: 68;

        then (d * (N1 ^2 )) > (N1 * ((1 / d) * d));

        then

         A32: (d * (N1 ^2 )) > (N1 * 1) by A21, XCMPLX_1: 87;

        (t . N1) = (N1 to_power 1) by A19, A30, Def3

        .= N1 by POWER: 25;

        hence contradiction by A22, A31, A32, A29;

      end;

      

       A33: 3 = (4 - 1);

       A34:

      now

        assume g is eventually-nondecreasing;

        then

        consider N be Nat such that

         A35: for n be Nat st n >= N holds (g . n) <= (g . (n + 1));

        set N0 = ( max (N,1));

        set N1 = ((2 to_power (2 * N0)) - 1);

        

         A36: N0 >= N by XXREAL_0: 25;

        (2 to_power (2 * N0)) >= (2 to_power 0 ) by PRE_FF: 8;

        then (2 to_power (2 * N0)) >= 1 by POWER: 24;

        then ((2 to_power (2 * N0)) - 1) >= (1 - 1) by XREAL_1: 9;

        then

        reconsider N1 as Element of NAT by INT_1: 3;

        

         A37: (2 * N0) >= (2 * 1) by XREAL_1: 64, XXREAL_0: 25;

        then (2 to_power (2 * N0)) > ((2 * N0) + 1) by Lm1;

        then

         A38: N1 > (2 * N0) by XREAL_1: 20;

        (2 to_power (2 * N0)) >= (2 to_power 2) by A37, PRE_FF: 8;

        then (2 to_power (2 * N0)) >= (2 ^2 ) by POWER: 46;

        then N1 >= 3 by A33, XREAL_1: 9;

        then N1 >= 2 by XXREAL_0: 2;

        then

         A39: (N1 ^2 ) > (N1 + 1) by Lm47;

        

         A40: (2 * N0) in NAT by ORDINAL1:def 12;

        (2 * N0) >= (2 * 1) by XREAL_1: 64, XXREAL_0: 25;

        then not N1 in POWEROF2SET by Lm49;

        then

         A41: (g . N1) = (N1 to_power 2) by A1;

        (2 * N0) >= (1 * N0) by XREAL_1: 64;

        then N1 >= N0 by A38, XXREAL_0: 2;

        then

         A42: N1 >= N by A36, XXREAL_0: 2;

        (N1 + 1) in POWEROF2SET by A40;

        then (g . (N1 + 1)) = (N1 + 1) by A1;

        then (g . N1) > (g . (N1 + 1)) by A41, A39, POWER: 46;

        hence contradiction by A35, A42;

      end;

       A43:

      now

        let n be Nat;

        

         A44: n in NAT by ORDINAL1:def 12;

        assume n >= 0 ;

        

         A45: (n + 0 ) <= (n + 1) by XREAL_1: 6;

        

         A46: (f . n) = n

        proof

          per cases ;

            suppose n = 0 ;

            hence thesis by Def3;

          end;

            suppose n > 0 ;

            

            hence (f . n) = (n to_power 1) by Def3, A44

            .= n by POWER: 25;

          end;

        end;

        (f . (n + 1)) = ((n + 1) to_power 1) by Def3

        .= (n + 1) by POWER: 25;

        hence (f . n) <= (f . (n + 1)) by A46, A45;

      end;

      reconsider jj = 1 as Real;

      reconsider j = 1 as Element of NAT ;

       A47:

      now

        let n such that

         A48: n >= j and

         A49: n in X;

        

         A50: (f . n) = (n to_power 1) by A48, Def3

        .= n by POWER: 25;

        hence (jj * (s . n)) <= (f . n) by A1, A49;

        thus (f . n) <= (jj * (s . n)) by A1, A49, A50;

      end;

      f is Element of ( Funcs ( NAT , REAL )) by FUNCT_2: 8;

      hence ( seq_n^ 1) in ( Big_Theta (s, POWEROF2SET )) by A47;

      thus thesis by A18, A5, A6, A43, A34;

    end;

    begin

    

     Lm50: for n be Nat st n >= 2 holds (n ! ) > 1

    proof

      defpred P[ Nat] means ($1 ! ) > 1;

      

       A1: for k be Nat st k >= 2 & P[k] holds P[(k + 1)]

      proof

        let k be Nat such that

         A2: k >= 2 and

         A3: (k ! ) > 1;

        

         A4: (k + 1) > ( 0 + 1) by A2, XREAL_1: 6;

        ((k + 1) * (k ! )) > ((k + 1) * 1) by A3, XREAL_1: 68;

        then ((k + 1) * (k ! )) > 1 by A4, XXREAL_0: 2;

        hence thesis by NEWTON: 15;

      end;

      

       A5: P[2] by NEWTON: 14;

      for n be Nat st n >= 2 holds P[n] from NAT_1:sch 8( A5, A1);

      hence thesis;

    end;

    

     Lm51: for n1,n be Nat st n <= n1 holds (n ! ) <= (n1 ! )

    proof

      defpred P[ Nat] means for n be Nat st n <= $1 holds (n ! ) <= ($1 ! );

      

       A1: for k be Nat st P[k] holds P[(k + 1)]

      proof

        let k be Nat such that

         A2: for n be Nat st n <= k holds (n ! ) <= (k ! );

        let n be Nat such that

         A3: n <= (k + 1);

        per cases by A3, NAT_1: 8;

          suppose

           A4: n <= k;

          (k + 1) >= ( 0 + 1) by XREAL_1: 6;

          then ((k + 1) * (k ! )) >= (1 * (k ! )) by XREAL_1: 64;

          then

           A5: ((k + 1) ! ) >= (k ! ) by NEWTON: 15;

          (n ! ) <= (k ! ) by A2, A4;

          hence thesis by A5, XXREAL_0: 2;

        end;

          suppose n = (k + 1);

          hence thesis;

        end;

      end;

      

       A6: P[ 0 ];

      for n1 be Nat holds P[n1] from NAT_1:sch 2( A6, A1);

      hence thesis;

    end;

    

     Lm52: for k st k >= 1 holds ex n st ((n ! ) <= k & k < ((n + 1) ! ) & for m st (m ! ) <= k & k < ((m + 1) ! ) holds m = n)

    proof

      defpred P[ Nat] means ex n st ((n ! ) <= $1 & $1 < ((n + 1) ! ) & for m st (m ! ) <= $1 & $1 < ((m + 1) ! ) holds m = n);

      

       A1: for k be Nat st k >= 1 & P[k] holds P[(k + 1)]

      proof

        let k be Nat;

        assume that k >= 1 and

         A2: ex n st ((n ! ) <= k & k < ((n + 1) ! ) & for m st (m ! ) <= k & k < ((m + 1) ! ) holds m = n);

        consider n such that

         A3: (n ! ) <= k and

         A4: k < ((n + 1) ! ) and for m st (m ! ) <= k & k < ((m + 1) ! ) holds m = n by A2;

        

         A5: (k + 1) <= ((n + 1) ! ) by A4, INT_1: 7;

        per cases by A5, XXREAL_0: 1;

          suppose

           A6: (k + 1) < ((n + 1) ! );

          take n;

          (k + 0 ) <= (k + 1) by XREAL_1: 6;

          hence (n ! ) <= (k + 1) by A3, XXREAL_0: 2;

          thus (k + 1) < ((n + 1) ! ) by A6;

          let m;

          assume that

           A7: (m ! ) <= (k + 1) and

           A8: (k + 1) < ((m + 1) ! );

          now

            assume

             A9: m <> n;

            thus contradiction

            proof

              per cases by A9, XXREAL_0: 1;

                suppose m > n;

                then m >= (n + 1) by NAT_1: 13;

                then (m ! ) >= ((n + 1) ! ) by Lm51;

                hence thesis by A6, A7, XXREAL_0: 2;

              end;

                suppose m < n;

                then (m + 1) <= n by NAT_1: 13;

                then ((m + 1) ! ) <= (n ! ) by Lm51;

                then

                 A10: ((m + 1) ! ) <= k by A3, XXREAL_0: 2;

                k <= (k + 1) by NAT_1: 11;

                hence thesis by A8, A10, XXREAL_0: 2;

              end;

            end;

          end;

          hence thesis;

        end;

          suppose

           A11: (k + 1) = ((n + 1) ! );

          take N = (n + 1);

          thus (N ! ) <= (k + 1) by A11;

          

           A12: (N ! ) > 0 by NEWTON: 17;

          (N + 1) > ( 0 + 1) by XREAL_1: 6;

          then ((N + 1) * (N ! )) > (1 * (N ! )) by A12, XREAL_1: 68;

          hence (k + 1) < ((N + 1) ! ) by A11, NEWTON: 15;

          let m;

          assume that

           A13: (m ! ) <= (k + 1) and

           A14: (k + 1) < ((m + 1) ! );

          now

            assume

             A15: m <> N;

            thus contradiction

            proof

              per cases by A15, XXREAL_0: 1;

                suppose m > N;

                then m >= (N + 1) by NAT_1: 13;

                then (m ! ) >= ((N + 1) ! ) by Lm51;

                then

                 A16: (k + 1) >= ((N + 1) ! ) by A13, XXREAL_0: 2;

                (n + 2) >= ( 0 + 2) by XREAL_1: 6;

                then

                 A17: (N + 1) > 1 by XXREAL_0: 2;

                (N ! ) > 0 by NEWTON: 17;

                then ((N + 1) * (N ! )) > (1 * (N ! )) by A17, XREAL_1: 68;

                hence thesis by A11, A16, NEWTON: 15;

              end;

                suppose m < N;

                then (m + 1) <= N by NAT_1: 13;

                hence thesis by A11, A14, Lm51;

              end;

            end;

          end;

          hence thesis;

        end;

      end;

      

       A18: P[1]

      proof

        take 1;

        thus (1 ! ) <= 1 & 1 < ((1 + 1) ! ) by NEWTON: 13, NEWTON: 14;

        let m;

        assume that

         A19: (m ! ) <= 1 and

         A20: 1 < ((m + 1) ! );

         A21:

        now

          assume m > 1;

          then m >= (1 + 1) by NAT_1: 13;

          hence contradiction by A19, Lm50;

        end;

        m <> 0 by A20, NEWTON: 13;

        then m >= ( 0 + 1) by NAT_1: 13;

        hence thesis by A21, XXREAL_0: 1;

      end;

      for k be Nat st k >= 1 holds P[k] from NAT_1:sch 8( A18, A1);

      hence thesis;

    end;

    definition

      let x be Nat;

      :: ASYMPT_1:def7

      func Step1 (x) -> Element of NAT means

      : Def6: ex n st (n ! ) <= x & x < ((n + 1) ! ) & it = (n ! ) if x <> 0

      otherwise it = 0 ;

      consistency ;

      existence

      proof

        

         A1: x in NAT by ORDINAL1:def 12;

        hereby

          assume x <> 0 ;

          then x >= ( 0 + 1) by NAT_1: 13;

          then

          consider k be Element of NAT such that

           A2: (k ! ) <= x and

           A3: x < ((k + 1) ! ) and for m st (m ! ) <= x & x < ((m + 1) ! ) holds m = k by Lm52, A1;

          consider k1 be Real such that

           A4: k1 = (k ! );

          reconsider k1 as Element of NAT by A4;

          take k1;

          thus ex m st (m ! ) <= x & x < ((m + 1) ! ) & k1 = (m ! ) by A2, A3, A4;

        end;

        thus thesis;

      end;

      uniqueness

      proof

        let n1,n2 be Element of NAT ;

        now

          assume that

           A5: ex n st (n ! ) <= x & x < ((n + 1) ! ) & n1 = (n ! ) and

           A6: ex n st (n ! ) <= x & x < ((n + 1) ! ) & n2 = (n ! );

          consider n such that

           A7: (n ! ) <= x and

           A8: x < ((n + 1) ! ) and

           A9: n1 = (n ! ) by A5;

          consider m such that

           A10: (m ! ) <= x and

           A11: x < ((m + 1) ! ) and

           A12: n2 = (m ! ) by A6;

          now

            assume

             A13: m <> n;

            thus contradiction

            proof

              per cases by A13, XXREAL_0: 1;

                suppose m > n;

                then m >= (n + 1) by INT_1: 7;

                then (m ! ) >= ((n + 1) ! ) by Lm51;

                hence thesis by A8, A10, XXREAL_0: 2;

              end;

                suppose m < n;

                then (m + 1) <= n by INT_1: 7;

                then ((m + 1) ! ) <= (n ! ) by Lm51;

                hence thesis by A7, A11, XXREAL_0: 2;

              end;

            end;

          end;

          hence n1 = n2 by A9, A12;

        end;

        hence thesis;

      end;

    end

    

     Lm53: for n be Nat st n >= 3 holds (n ! ) > n

    proof

      let n be Nat;

      assume

       A1: n >= 3;

      set n1 = (n - 1);

      2 = (3 - 1);

      then

       A2: n1 >= 2 by A1, XREAL_1: 9;

      then

      reconsider n1 as Element of NAT by INT_1: 3;

      (n1 ! ) >= 2 by A2, Lm51, NEWTON: 14;

      then (n1 ! ) > 1 by XXREAL_0: 2;

      then

       A3: (n * (n1 ! )) > (n * 1) by A1, XREAL_1: 68;

      (n1 + 1) = n;

      hence thesis by A3, NEWTON: 15;

    end;

    theorem :: ASYMPT_1:39

    for f be Real_Sequence st (for n holds (f . n) = ( Step1 n)) holds ex s be eventually-positive Real_Sequence st s = f & not s is smooth & (for n holds (f . n) <= (( seq_n^ 1) . n)) & f is eventually-nondecreasing

    proof

      set g = ( seq_n^ 1);

      let f be Real_Sequence such that

       A1: for n holds (f . n) = ( Step1 n);

      f is eventually-positive

      proof

        take 1;

        let n be Nat;

        

         A2: n in NAT by ORDINAL1:def 12;

        assume n >= 1;

        then

         A3: ex m st (m ! ) <= n & n < ((m + 1) ! ) & ( Step1 n) = (m ! ) by Def6;

        (f . n) = ( Step1 n) by A1, A2;

        hence thesis by A3, NEWTON: 17;

      end;

      then

      reconsider s = f as eventually-positive Real_Sequence;

      take s;

      thus s = f;

      now

        let k;

        thus (f . k) <= (f . (k + 1))

        proof

          per cases ;

            suppose

             A4: k = 0 ;

            

             A5: (f . ( 0 + 1)) = ( Step1 1) by A1;

            (f . 0 ) = ( Step1 0 ) by A1

            .= 0 by Def6;

            hence thesis by A4, A5;

          end;

            suppose k > 0 ;

            then

            consider n1 such that

             A6: (n1 ! ) <= k and

             A7: k < ((n1 + 1) ! ) and

             A8: ( Step1 k) = (n1 ! ) by Def6;

            

             A9: (k + 1) <= ((n1 + 1) ! ) by A7, INT_1: 7;

            

             A10: k <= (k + 1) by NAT_1: 11;

            

             A11: (f . k) = (n1 ! ) by A1, A8;

            per cases by A9, XXREAL_0: 1;

              suppose

               A12: (k + 1) < ((n1 + 1) ! );

              (n1 ! ) <= (k + 1) by A10, A6, XXREAL_0: 2;

              then ( Step1 (k + 1)) = (n1 ! ) by A12, Def6;

              hence thesis by A1, A11;

            end;

              suppose

               A13: (k + 1) = ((n1 + 1) ! );

              

               A14: ((n1 + 1) ! ) > 0 by NEWTON: 17;

              (n1 + 2) > ( 0 + 1) by XREAL_1: 8;

              then (1 * ((n1 + 1) ! )) < ((n1 + 2) * ((n1 + 1) ! )) by A14, XREAL_1: 68;

              then

               A15: (k + 1) < (((n1 + 1) + 1) ! ) by A13, NEWTON: 15;

              (f . (k + 1)) = ( Step1 (k + 1)) by A1

              .= ((n1 + 1) ! ) by A13, A15, Def6;

              hence thesis by A11, Lm51, NAT_1: 11;

            end;

          end;

        end;

      end;

      then

       A16: for k st k >= 0 holds (f . k) <= (f . (k + 1));

      

       A17: 1 = (2 - 1);

      hereby

        set h = (f taken_every 2);

        assume s is smooth;

        then s is_smooth_wrt 2;

        then

        consider t be Element of ( Funcs ( NAT , REAL )) such that

         A18: t = h and

         A19: ex c, N st c > 0 & for n st n >= N holds (t . n) <= (c * (f . n)) & (t . n) >= 0 ;

        consider c, N such that c > 0 and

         A20: for n st n >= N holds (t . n) <= (c * (f . n)) & (t . n) >= 0 by A19;

        set n2 = ( max (( max (N,3)),( [/c\] + 1)));

        

         A21: n2 >= ( max (N,3)) by XXREAL_0: 25;

        ( max (N,3)) >= N by XXREAL_0: 25;

        then

         A22: n2 >= N by A21, XXREAL_0: 2;

        

         A23: n2 >= ( [/c\] + 1) by XXREAL_0: 25;

        

         A24: n2 is Integer by XXREAL_0: 16;

        

         A25: ( max (N,3)) >= 3 by XXREAL_0: 25;

        then

         A26: n2 >= 3 by A21, XXREAL_0: 2;

        reconsider n2 as Element of NAT by A21, A24, INT_1: 3;

        set n1 = ((n2 ! ) - 1);

        

         A27: n2 > 2 by A26, XXREAL_0: 2;

        then

         A28: (n2 ! ) >= 2 by Lm51, NEWTON: 14;

        then

         A29: n1 >= 1 by A17, XREAL_1: 9;

        set n3 = (n2 - 1);

        (1 + 1) <= n2 by A26, XXREAL_0: 2;

        then

         A30: 1 <= (n2 - 1) by XREAL_1: 19;

        

         A31: n3 >= 1 by A17, A27, XREAL_1: 9;

        reconsider n1 as Element of NAT by A29, INT_1: 3;

        

         A32: (t . n1) = (f . (2 * n1)) by A18, ASYMPT_0:def 15;

        (n2 ! ) > n2 by A26, Lm53;

        then (n2 ! ) >= (n2 + 1) by INT_1: 7;

        then n1 >= n2 by XREAL_1: 19;

        then n1 >= N by A22, XXREAL_0: 2;

        then

         A33: (t . n1) <= (c * (f . n1)) by A20;

        n2 < (n2 + 1) by NAT_1: 13;

        then (n2 * (n2 ! )) < ((n2 + 1) * (n2 ! )) by A28, XREAL_1: 68;

        then

         A34: (n2 * (n2 ! )) < ((n2 + 1) ! ) by NEWTON: 15;

        ((n2 ! ) + 2) <= ((n2 ! ) + (n2 ! )) by A28, XREAL_1: 6;

        then

         A35: (n2 ! ) <= ((2 * (n2 ! )) - (2 * 1)) by XREAL_1: 19;

        

         A36: ((n2 ! ) - 1) < ((n2 ! ) - 0 ) by XREAL_1: 15;

        then

         A37: (2 * n1) < (2 * (n2 ! )) by XREAL_1: 68;

        reconsider n3 as Element of NAT by A31, INT_1: 3;

        (n3 ! ) >= 1 by A31, Lm51, NEWTON: 13;

        then (1 * 1) <= ((n2 - 1) * (n3 ! )) by A30, Lm20;

        then (n2 * 1) <= (((n2 - 1) * (n3 ! )) * n2) by XREAL_1: 64;

        then n2 <= ((n2 - 1) * ((n3 ! ) * (n3 + 1)));

        then n2 <= ((n2 - 1) * (n2 ! )) by NEWTON: 15;

        then

         A38: ((n2 ! ) + n2) <= (((n2 ! ) * 1) + ((n2 - 1) * (n2 ! ))) by XREAL_1: 6;

        

         A39: (n3 + 1) = (n2 + 0 );

        then (n2 * (n3 ! )) = (n2 ! ) by NEWTON: 15;

        then (n2 * (n3 ! )) <= ((n2 * (n2 ! )) - n2) by A38, XREAL_1: 19;

        then (n3 ! ) <= ((n2 * ((n2 ! ) - 1)) / (n2 * 1)) by A21, A25, XREAL_1: 77;

        then

         A40: (n3 ! ) <= (((n2 ! ) - 1) / 1) by A21, A25, XCMPLX_1: 91;

        

         A41: [/c\] >= c by INT_1:def 7;

        ( [/c\] + 1) > ( [/c\] + 0 ) by XREAL_1: 8;

        then ( [/c\] + 1) > c by A41, XXREAL_0: 2;

        then

         A42: n2 > c by A23, XXREAL_0: 2;

        

         A43: (n3 ! ) > 0 by NEWTON: 17;

        (2 * (n2 ! )) <= (n2 * (n2 ! )) by A27, XREAL_1: 64;

        then (2 * (n2 ! )) < ((n2 + 1) ! ) by A34, XXREAL_0: 2;

        then

         A44: (2 * n1) < ((n2 + 1) ! ) by A37, XXREAL_0: 2;

        

         A45: (f . (2 * n1)) = ( Step1 (2 * n1)) by A1

        .= ((n3 + 1) ! ) by A28, A44, A35, Def6

        .= (n2 * (n3 ! )) by NEWTON: 15;

        (f . n1) = ( Step1 n1) by A1

        .= (n3 ! ) by A29, A36, A39, A40, Def6;

        hence contradiction by A33, A32, A45, A42, A43, XREAL_1: 68;

      end;

      hereby

        let n;

        thus (f . n) <= (g . n)

        proof

          per cases ;

            suppose

             A46: n = 0 ;

            (f . 0 ) = ( Step1 0 ) by A1

            .= 0 by Def6;

            hence thesis by A46, Def3;

          end;

            suppose

             A47: n > 0 ;

            

            then

             A48: (g . n) = (n to_power 1) by Def3

            .= n by POWER: 25;

            ex n1 st (n1 ! ) <= n & n < ((n1 + 1) ! ) & ( Step1 n) = (n1 ! ) by A47, Def6;

            hence thesis by A1, A48;

          end;

        end;

      end;

      reconsider zz = 0 as Nat;

      take zz;

      let n be Nat;

      n in NAT by ORDINAL1:def 12;

      hence thesis by A16;

    end;

    begin

    

     Lm54: (( seq_n^ 1) - ( seq_const 1)) is eventually-positive

    proof

      take 2;

      set g = ( seq_const 1);

      set f = ( seq_n^ 1);

      let n be Nat;

      

       A1: n in NAT by ORDINAL1:def 12;

      

       A2: (g . n) = 1 by FUNCOP_1: 7, A1;

      assume

       A3: n >= 2;

      then

       A4: n > (1 + 0 ) by XXREAL_0: 2;

      

       A5: (f . n) = (n to_power 1) by A3, Def3, A1

      .= n by POWER: 25;

      ((f - g) . n) = ((f . n) + (( - g) . n)) by SEQ_1: 7

      .= (n + ( - 1)) by A5, A2, SEQ_1: 10

      .= (n - 1);

      hence thesis by A4, XREAL_1: 20;

    end;

    theorem :: ASYMPT_1:40

    for F be eventually-nonnegative Real_Sequence st F = (( seq_n^ 1) - ( seq_const 1)) holds (( Big_Theta F) + ( Big_Theta ( seq_n^ 1))) = ( Big_Theta ( seq_n^ 1))

    proof

      set q = ( seq_const 1);

      set p = ( seq_n^ 1);

      set f = (p - q);

      set g = p;

      

       A1: ( Big_Theta g) = { t where t be Element of ( Funcs ( NAT , REAL )) : ex c, d, N st c > 0 & d > 0 & for n st n >= N holds (d * (g . n)) <= (t . n) & (t . n) <= (c * (g . n)) } by ASYMPT_0: 27;

      let F be eventually-nonnegative Real_Sequence;

      assume F = (( seq_n^ 1) - ( seq_const 1));

      then

       A2: ( Big_Theta F) = { t where t be Element of ( Funcs ( NAT , REAL )) : ex c, d, N st c > 0 & d > 0 & for n st n >= N holds (d * (f . n)) <= (t . n) & (t . n) <= (c * (f . n)) } by ASYMPT_0: 27;

      now

        let x be object;

        hereby

          assume x in (( Big_Theta F) + ( Big_Theta g));

          then

          consider t be Element of ( Funcs ( NAT , REAL )) such that

           A3: t = x and

           A4: ex f9,g9 be Element of ( Funcs ( NAT , REAL )) st f9 in ( Big_Theta F) & g9 in ( Big_Theta g) & for n be Element of NAT holds (t . n) = ((f9 . n) + (g9 . n));

          consider f9,g9 be Element of ( Funcs ( NAT , REAL )) such that

           A5: f9 in ( Big_Theta F) and

           A6: g9 in ( Big_Theta g) and

           A7: for n be Element of NAT holds (t . n) = ((f9 . n) + (g9 . n)) by A4;

          ex r be Element of ( Funcs ( NAT , REAL )) st r = f9 & ex c, d, N st c > 0 & d > 0 & for n st n >= N holds (d * (f . n)) <= (r . n) & (r . n) <= (c * (f . n)) by A2, A5;

          then

          consider c1, d1, N1 such that

           A8: c1 > 0 and

           A9: d1 > 0 and

           A10: for n st n >= N1 holds (d1 * (f . n)) <= (f9 . n) & (f9 . n) <= (c1 * (f . n));

          ex s be Element of ( Funcs ( NAT , REAL )) st s = g9 & ex c, d, N st c > 0 & d > 0 & for n st n >= N holds (d * (g . n)) <= (s . n) & (s . n) <= (c * (g . n)) by A1, A6;

          then

          consider c2, d2, N2 such that

           A11: c2 > 0 and

           A12: d2 > 0 and

           A13: for n st n >= N2 holds (d2 * (g . n)) <= (g9 . n) & (g9 . n) <= (c2 * (g . n));

          set d = d2, c = (c1 + c2);

          set N = ( max (1,( max (N1,N2))));

          

           A14: N >= 1 by XXREAL_0: 25;

          

           A15: N >= ( max (N1,N2)) by XXREAL_0: 25;

          ( max (N1,N2)) >= N2 by XXREAL_0: 25;

          then

           A16: N >= N2 by A15, XXREAL_0: 2;

          ( max (N1,N2)) >= N1 by XXREAL_0: 25;

          then

           A17: N >= N1 by A15, XXREAL_0: 2;

          now

            let n;

            

             A18: (( seq_const 1) . n) = 1 by FUNCOP_1: 7;

            assume

             A19: n >= N;

            

            then

             A20: (g . n) = (n to_power 1) by A14, Def3

            .= n by POWER: 25;

            n >= 1 by A14, A19, XXREAL_0: 2;

            then ( - n) <= ( - 1) by XREAL_1: 24;

            then (( - n) * d1) <= (( - 1) * d1) by A9, XREAL_1: 64;

            then

             A21: ((n * ( - d1)) + ((d1 + d2) * n)) <= (( - d1) + ((d1 + d2) * n)) by XREAL_1: 6;

            

             A22: (f . n) = ((( seq_n^ 1) . n) + (( - ( seq_const 1)) . n)) by SEQ_1: 7

            .= ((( seq_n^ 1) . n) + ( - (( seq_const 1) . n))) by SEQ_1: 10

            .= ((n to_power 1) + ( - (( seq_const 1) . n))) by A14, A19, Def3

            .= (n + ( - 1)) by A18, POWER: 25;

            

             A23: n >= N2 by A16, A19, XXREAL_0: 2;

            then (d2 * (g . n)) <= (g9 . n) by A13;

            then

             A24: ((d1 * (f . n)) + (d2 * (g . n))) <= ((d1 * (f . n)) + (g9 . n)) by XREAL_1: 6;

            (g9 . n) <= (c2 * (g . n)) by A13, A23;

            then

             A25: ((c1 * (f . n)) + (g9 . n)) <= ((c1 * (f . n)) + (c2 * (g . n))) by XREAL_1: 6;

            

             A26: n >= N1 by A17, A19, XXREAL_0: 2;

            then (f9 . n) <= (c1 * (f . n)) by A10;

            then ((f9 . n) + (g9 . n)) <= ((c1 * (f . n)) + (g9 . n)) by XREAL_1: 6;

            then

             A27: ((f9 . n) + (g9 . n)) <= ((c1 * (f . n)) + (c2 * (g . n))) by A25, XXREAL_0: 2;

            (d1 * (f . n)) <= (f9 . n) by A10, A26;

            then ((d1 * (f . n)) + (g9 . n)) <= ((f9 . n) + (g9 . n)) by XREAL_1: 6;

            then ((d1 * (f . n)) + (d2 * (g . n))) <= ((f9 . n) + (g9 . n)) by A24, XXREAL_0: 2;

            then (d2 * n) <= ((f9 . n) + (g9 . n)) by A20, A22, A21, XXREAL_0: 2;

            hence (d * (g . n)) <= (t . n) by A7, A20;

            (( - c1) + ((c1 + c2) * n)) <= ( 0 + ((c1 + c2) * n)) by A8, XREAL_1: 6;

            then ((f9 . n) + (g9 . n)) <= ((c1 + c2) * n) by A20, A22, A27, XXREAL_0: 2;

            hence (t . n) <= (c * (g . n)) by A7, A20;

          end;

          hence x in ( Big_Theta g) by A1, A3, A8, A11, A12;

        end;

        assume x in ( Big_Theta g);

        then

        consider t be Element of ( Funcs ( NAT , REAL )) such that

         A28: t = x and

         A29: ex c, d, N st c > 0 & d > 0 & for n st n >= N holds (d * (g . n)) <= (t . n) & (t . n) <= (c * (g . n)) by A1;

        consider c, d, N such that

         A30: c > 0 and

         A31: d > 0 and

         A32: for n st n >= N holds (d * (g . n)) <= (t . n) & (t . n) <= (c * (g . n)) by A29;

        set f9 = ((2 " ) (#) t), g9 = ((2 " ) (#) t);

        

         A33: f9 is Element of ( Funcs ( NAT , REAL )) by FUNCT_2: 8;

        

         A34: for n be Element of NAT holds (t . n) = ((f9 . n) + (g9 . n))

        proof

          let n be Element of NAT ;

          (f9 . n) = ((2 " ) * (t . n)) by SEQ_1: 9;

          hence thesis;

        end;

        

         A35: ((2 " ) * d) > ((2 " ) * 0 ) by A31, XREAL_1: 68;

        set N0 = ( max (N,2));

        

         A36: N0 >= N by XXREAL_0: 25;

        

         A37: N0 >= 2 by XXREAL_0: 25;

        reconsider N0 as Element of NAT ;

         A38:

        now

          let n;

          assume n >= N0;

          then

           A39: n >= N by A36, XXREAL_0: 2;

          then

           A40: ((2 " ) * (t . n)) <= ((2 " ) * (c * (g . n))) by A32, XREAL_1: 64;

          ((2 " ) * (d * (g . n))) <= ((2 " ) * (t . n)) by A32, A39, XREAL_1: 64;

          hence (((2 " ) * d) * (g . n)) <= (g9 . n) & (g9 . n) <= (((2 " ) * c) * (g . n)) by A40, SEQ_1: 9;

        end;

        ((2 " ) * c) > ((2 " ) * 0 ) by A30, XREAL_1: 68;

        then

         A41: g9 in ( Big_Theta g) by A1, A35, A33, A38;

        now

          let n;

          

           A42: (q . n) = 1 by FUNCOP_1: 7;

          assume

           A43: n >= N0;

          

          then

           A44: (g . n) = ((n to_power 1) - 0 ) by A37, Def3

          .= (n - 0 ) by POWER: 25;

          n >= 2 by A37, A43, XXREAL_0: 2;

          then (n + 2) <= (n + n) by XREAL_1: 6;

          then n <= ((2 * n) - (2 * 1)) by XREAL_1: 19;

          then ((2 " ) * n) <= ((2 " ) * (2 * (n - 1))) by XREAL_1: 64;

          then

           A45: (c * ((2 " ) * n)) <= (c * (n - 1)) by A30, XREAL_1: 64;

          

           A46: n >= N by A36, A43, XXREAL_0: 2;

          then

           A47: ((2 " ) * (d * (g . n))) <= ((2 " ) * (t . n)) by A32, XREAL_1: 64;

          

           A48: (f . n) = ((p . n) + (( - q) . n)) by SEQ_1: 7

          .= ((p . n) + ( - 1)) by A42, SEQ_1: 10

          .= ((p . n) - 1)

          .= ((n to_power 1) - 1) by A37, A43, Def3

          .= (n - 1) by POWER: 25;

          then (f . n) <= (g . n) by A44, XREAL_1: 13;

          then (((2 " ) * d) * (f . n)) <= (((2 " ) * d) * (g . n)) by A31, XREAL_1: 64;

          then (((2 " ) * d) * (f . n)) <= ((2 " ) * (t . n)) by A47, XXREAL_0: 2;

          hence (((2 " ) * d) * (f . n)) <= (f9 . n) by SEQ_1: 9;

          ((2 " ) * (t . n)) <= ((2 " ) * (c * (g . n))) by A32, A46, XREAL_1: 64;

          then ((2 " ) * (t . n)) <= (c * (f . n)) by A48, A44, A45, XXREAL_0: 2;

          hence (f9 . n) <= (c * (f . n)) by SEQ_1: 9;

        end;

        then f9 in ( Big_Theta F) by A2, A30, A35, A33;

        hence x in (( Big_Theta F) + ( Big_Theta g)) by A28, A33, A41, A34;

      end;

      hence thesis by TARSKI: 2;

    end;

    begin

    theorem :: ASYMPT_1:41

    ex F be FUNCTION_DOMAIN of NAT , REAL st F = {( seq_n^ 1)} & (for n holds (( seq_n^ ( - 1)) . n) <= (( seq_n^ 1) . n)) & not ( seq_n^ ( - 1)) in (F to_power ( Big_Oh ( seq_const 1)))

    proof

      set t = ( seq_n^ ( - 1));

      reconsider F = {( seq_n^ 1)} as FUNCTION_DOMAIN of NAT , REAL by FUNCT_2: 121;

      take F;

      thus F = {( seq_n^ 1)};

       A1:

      now

        let n;

        per cases ;

          suppose

           A2: n = 0 ;

          then (( seq_n^ ( - 1)) . n) = 0 by Def3;

          hence (( seq_n^ ( - 1)) . n) <= (( seq_n^ 1) . n) by A2, Def3;

        end;

          suppose

           A3: n > 0 ;

          then

           A4: n >= ( 0 + 1) by INT_1: 7;

          

           A5: (n to_power ( - 1)) <= (n to_power 1)

          proof

            per cases by A4, XXREAL_0: 1;

              suppose

               A6: n = 1;

              then (n to_power ( - 1)) = 1 by POWER: 26;

              hence thesis by A6, POWER: 26;

            end;

              suppose n > 1;

              hence thesis by PRE_FF: 8;

            end;

          end;

          (( seq_n^ ( - 1)) . n) = (n to_power ( - 1)) by A3, Def3;

          hence (( seq_n^ ( - 1)) . n) <= (( seq_n^ 1) . n) by A3, A5, Def3;

        end;

      end;

      now

        assume

         A7: t in (F to_power ( Big_Oh ( seq_const 1)));

        ex H be FUNCTION_DOMAIN of NAT , REAL st H = F & (t in (H to_power ( Big_Oh ( seq_const 1))) iff ex N, c, k st c > 0 & for n st n >= N holds 1 <= (t . n) & (t . n) <= (c * (( seq_n^ k) . n))) by Th9;

        then

        consider N0, c, k such that c > 0 and

         A8: for n st n >= N0 holds 1 <= (t . n) & (t . n) <= (c * (( seq_n^ k) . n)) by A7;

        set N = ( max (N0,2));

        

         A9: N >= 2 by XXREAL_0: 25;

        

         A10: N >= N0 by XXREAL_0: 25;

        now

          let n;

          assume

           A11: n >= N;

          then n >= 2 by A9, XXREAL_0: 2;

          then

           A12: n > 1 by XXREAL_0: 2;

          n >= N0 by A10, A11, XXREAL_0: 2;

          then

           A13: (t . n) >= 1 by A8;

          (t . n) = (n to_power ( - 1)) by A9, A11, Def3;

          hence contradiction by A13, A12, POWER: 36;

        end;

        hence contradiction;

      end;

      hence thesis by A1;

    end;

    begin

    theorem :: ASYMPT_1:42

    for c be non negative Real, x,f be eventually-nonnegative Real_Sequence st ex e, N st e > 0 & for n st n >= N holds (f . n) >= e holds x in ( Big_Oh (c + f)) implies x in ( Big_Oh f)

    proof

      let c be non negative Real, x,f be eventually-nonnegative Real_Sequence;

      given e, N0 such that

       A1: e > 0 and

       A2: for n st n >= N0 holds (f . n) >= e;

      assume x in ( Big_Oh (c + f));

      then

      consider t be Element of ( Funcs ( NAT , REAL )) such that

       A3: x = t and

       A4: ex d, N st d > 0 & for n st n >= N holds (t . n) <= (d * ((c + f) . n)) & (t . n) >= 0 ;

      consider d, N1 such that

       A5: d > 0 and

       A6: for n st n >= N1 holds (t . n) <= (d * ((c + f) . n)) & (t . n) >= 0 by A4;

      set b = ( max ((2 * d),(((2 * d) * c) / e)));

      (2 * d) > (2 * 0 ) by A5, XREAL_1: 68;

      then

       A7: b > 0 by XXREAL_0: 25;

      set N = ( max (N0,N1));

      

       A8: N >= N1 by XXREAL_0: 25;

      

       A9: N >= N0 by XXREAL_0: 25;

      now

        let n;

        assume

         A10: n >= N;

        then

         A11: n >= N1 by A8, XXREAL_0: 2;

        then (t . n) <= (d * ((c + f) . n)) by A6;

        then

         A12: (t . n) <= (d * (c + (f . n))) by VALUED_1: 2;

        

         A13: n >= N0 by A9, A10, XXREAL_0: 2;

        thus (t . n) <= (b * (f . n))

        proof

          per cases ;

            suppose c >= (f . n);

            then (d * c) >= (d * (f . n)) by A5, XREAL_1: 64;

            then ((d * c) + (d * c)) >= ((d * c) + (d * (f . n))) by XREAL_1: 6;

            then (t . n) <= ((2 * (d * c)) * 1) by A12, XXREAL_0: 2;

            then

             A14: (t . n) <= ((2 * (d * c)) * ((1 / e) * e)) by A1, XCMPLX_1: 106;

            (b * e) >= ((((2 * d) * c) / e) * e) by A1, XREAL_1: 64, XXREAL_0: 25;

            then

             A15: (t . n) <= (b * e) by A14, XXREAL_0: 2;

            (b * (f . n)) >= (b * e) by A2, A7, A13, XREAL_1: 64;

            hence thesis by A15, XXREAL_0: 2;

          end;

            suppose c < (f . n);

            then (d * c) < (d * (f . n)) by A5, XREAL_1: 68;

            then ((d * c) + (d * (f . n))) < ((d * (f . n)) + (d * (f . n))) by XREAL_1: 6;

            then

             A16: (t . n) < (2 * (d * (f . n))) by A12, XXREAL_0: 2;

            (f . n) > 0 by A1, A2, A13;

            then (b * (f . n)) >= ((2 * d) * (f . n)) by XREAL_1: 64, XXREAL_0: 25;

            hence thesis by A16, XXREAL_0: 2;

          end;

        end;

        thus (t . n) >= 0 by A6, A11;

      end;

      hence thesis by A3, A7;

    end;

    begin

    theorem :: ASYMPT_1:43

    (2 to_power 12) = 4096 by Lm26;

    theorem :: ASYMPT_1:44

    for n st n >= 3 holds (n ^2 ) > ((2 * n) + 1) by Lm27;

    theorem :: ASYMPT_1:45

    for n st n >= 10 holds (2 to_power (n - 1)) > ((2 * n) ^2 ) by Lm28;

    theorem :: ASYMPT_1:46

    for n st n >= 9 holds ((n + 1) to_power 6) < (2 * (n to_power 6)) by Lm29;

    theorem :: ASYMPT_1:47

    for n st n >= 30 holds (2 to_power n) > (n to_power 6) by Lm30;

    theorem :: ASYMPT_1:48

    for x be Real st x > 9 holds (2 to_power x) > ((2 * x) ^2 ) by Lm31;

    theorem :: ASYMPT_1:49

    ex N st for n st n >= N holds (( sqrt n) - ( log (2,n))) > 1 by Lm32;

    theorem :: ASYMPT_1:50

    for a,b,c be Real st a > 0 & c > 0 & c <> 1 holds (a to_power b) = (c to_power (b * ( log (c,a)))) by Lm3;

    theorem :: ASYMPT_1:51

    (5 ! ) = 120 by Lm33;

    theorem :: ASYMPT_1:52

    (5 to_power 5) = 3125 by Lm36;

    theorem :: ASYMPT_1:53

    (4 to_power 4) = 256 by Lm37;

    theorem :: ASYMPT_1:54

    for n holds (((n ^2 ) - n) + 1) > 0 by Lm21;

    theorem :: ASYMPT_1:55

    for n be Nat st n >= 2 holds (n ! ) > 1 by Lm50;

    theorem :: ASYMPT_1:56

    for n1,n be Nat st n <= n1 holds (n ! ) <= (n1 ! ) by Lm51;

    theorem :: ASYMPT_1:57

    for k st k >= 1 holds ex n st ((n ! ) <= k & k < ((n + 1) ! ) & for m st (m ! ) <= k & k < ((m + 1) ! ) holds m = n) by Lm52;

    theorem :: ASYMPT_1:58

    for n be Nat st n >= 2 holds [/(n / 2)\] < n by Lm46;

    theorem :: ASYMPT_1:59

    for n be Nat st n >= 3 holds (n ! ) > n by Lm53;

    theorem :: ASYMPT_1:60

    (( seq_n^ 1) - ( seq_const 1)) is eventually-positive by Lm54;

    theorem :: ASYMPT_1:61

    for n st n >= 2 holds (2 to_power n) > (n + 1) by Lm1;

    theorem :: ASYMPT_1:62

    for a be logbase Real, f be Real_Sequence st a > 1 & (f . 0 ) = 0 & (for n st n > 0 holds (f . n) = ( log (a,n))) holds f is eventually-positive by Lm2;

    theorem :: ASYMPT_1:63

    for f,g be eventually-nonnegative Real_Sequence holds f in ( Big_Oh g) & g in ( Big_Oh f) iff ( Big_Oh f) = ( Big_Oh g) by Lm5;

    theorem :: ASYMPT_1:64

    for a,b,c be Real st 0 < a & a <= b & c >= 0 holds (a to_power c) <= (b to_power c) by Lm6;

    theorem :: ASYMPT_1:65

    for n st n >= 4 holds ((2 * n) + 3) < (2 to_power n) by Lm7;

    theorem :: ASYMPT_1:66

    for n st n >= 6 holds ((n + 1) ^2 ) < (2 to_power n) by Lm8;

    theorem :: ASYMPT_1:67

    for c be Real st c > 6 holds (c ^2 ) < (2 to_power c) by Lm9;

    theorem :: ASYMPT_1:68

    for e be positive Real, f be Real_Sequence st (f . 0 ) = 0 & (for n st n > 0 holds (f . n) = ( log (2,(n to_power e)))) holds (f /" ( seq_n^ e)) is convergent & ( lim (f /" ( seq_n^ e))) = 0 by Lm10;

    theorem :: ASYMPT_1:69

    for e be Real st e > 0 holds ( seq_logn /" ( seq_n^ e)) is convergent & ( lim ( seq_logn /" ( seq_n^ e))) = 0 by Lm11;

    theorem :: ASYMPT_1:70

    for f be Real_Sequence holds for N holds (for n st n <= N holds (f . n) >= 0 ) implies ( Sum (f,N)) >= 0 by Lm12;

    theorem :: ASYMPT_1:71

    for f,g be Real_Sequence holds for N holds (for n st n <= N holds (f . n) <= (g . n)) implies ( Sum (f,N)) <= ( Sum (g,N)) by Lm13;

    theorem :: ASYMPT_1:72

    for f be Real_Sequence, b be Real st (f . 0 ) = 0 & (for n st n > 0 holds (f . n) = b) holds for N be Element of NAT holds ( Sum (f,N)) = (b * N) by Lm14;

    theorem :: ASYMPT_1:73

    for f be Real_Sequence, N,M be Element of NAT holds (( Sum (f,N,M)) + (f . (N + 1))) = ( Sum (f,(N + 1),M)) by Lm15;

    theorem :: ASYMPT_1:74

    for f,g be Real_Sequence, M be Element of NAT holds for N st N >= (M + 1) holds (for n st (M + 1) <= n & n <= N holds (f . n) <= (g . n)) implies ( Sum (f,N,M)) <= ( Sum (g,N,M)) by Lm16;

    theorem :: ASYMPT_1:75

    for n holds [/(n / 2)\] <= n by Lm17;

    theorem :: ASYMPT_1:76

    for f be Real_Sequence, b be Real, N be Element of NAT st (f . 0 ) = 0 & (for n st n > 0 holds (f . n) = b) holds for M be Element of NAT holds ( Sum (f,N,M)) = (b * (N - M)) by Lm18;

    theorem :: ASYMPT_1:77

    for f,g be Real_Sequence, N be Element of NAT , c be Real st f is convergent & ( lim f) = c & for n st n >= N holds (f . n) = (g . n) holds g is convergent & ( lim g) = c by Lm22;

    theorem :: ASYMPT_1:78

    for n st n >= 1 holds (((n ^2 ) - n) + 1) <= (n ^2 ) by Lm23;

    theorem :: ASYMPT_1:79

    for n st n >= 1 holds (n ^2 ) <= (2 * (((n ^2 ) - n) + 1)) by Lm24;

    theorem :: ASYMPT_1:80

    for e be Real st 0 < e & e < 1 holds ex N st for n st n >= N holds ((n * ( log (2,(1 + e)))) - (8 * ( log (2,n)))) > (8 * ( log (2,n))) by Lm25;

    theorem :: ASYMPT_1:81

    for n st n >= 10 holds ((2 to_power (2 * n)) / (n ! )) < (1 / (2 to_power (n - 9))) by Lm34;

    theorem :: ASYMPT_1:82

    for n st n >= 3 holds (2 * (n - 2)) >= (n - 1) by Lm35;

    theorem :: ASYMPT_1:83

    for c be Real st c >= 0 holds (c to_power (1 / 2)) = ( sqrt c) by Lm39;

    theorem :: ASYMPT_1:84

    ex N st for n st n >= N holds (n - (( sqrt n) * ( log (2,n)))) > (n / 2) by Lm40;

    theorem :: ASYMPT_1:85

    for s be Real_Sequence st for n be Nat holds (s . n) = ((1 + (1 / (n + 1))) to_power (n + 1)) holds s is non-decreasing by Lm41;

    theorem :: ASYMPT_1:86

    for n st n >= 1 holds (((n + 1) / n) to_power n) <= (((n + 2) / (n + 1)) to_power (n + 1)) by Lm42;

    theorem :: ASYMPT_1:87

    for k,n be Nat st k <= n holds (n choose k) >= (((n + 1) choose k) / (n + 1)) by Lm43;

    theorem :: ASYMPT_1:88

    for f be Real_Sequence st (for n be Nat holds (f . n) = ( log (2,(n ! )))) holds for n holds (f . n) = ( Sum ( seq_logn ,n)) by Lm44;

    theorem :: ASYMPT_1:89

    for n be Nat st n >= 4 holds (n * ( log (2,n))) >= (2 * n) by Lm45;

    theorem :: ASYMPT_1:90

    for n be Nat st n >= 2 holds (n ^2 ) > (n + 1) by Lm47;

    theorem :: ASYMPT_1:91

    for n be Nat st n >= 1 holds ((2 to_power (n + 1)) - (2 to_power n)) > 1 by Lm48;

    theorem :: ASYMPT_1:92

    for n be Nat st n >= 2 holds not ((2 to_power n) - 1) in POWEROF2SET by Lm49;

    theorem :: ASYMPT_1:93

    for n, k st k >= 1 & (n ! ) <= k & k < ((n + 1) ! ) holds ( Step1 k) = (n ! ) by Def6;

    theorem :: ASYMPT_1:94

    for a,b,c be Real st a > 1 & b >= a & c >= 1 holds ( log (a,c)) >= ( log (b,c)) by Lm19;