clopban1.miz
    
    begin
    
    definition
    
      let X be
    set;
    
      let Y be non
    empty  
    set;
    
      let F be
    Function of 
    [:
    COMPLEX , Y:], Y; 
    
      let c be
    Complex, f be 
    Function of X, Y; 
    
      :: original:
    [;]
    
      redefine
    
      func F
    
    [;] (c,f) -> 
    Element of ( 
    Funcs (X,Y)) ; 
    
      coherence
    
      proof
    
        
    
        
    
    A1: ( 
    dom f) 
    = X by 
    FUNCT_2:def 1;
    
        c
    in  
    COMPLEX by 
    XCMPLX_0:def 2;
    
        then ((
    dom f) 
    --> c) is 
    Function of X, 
    COMPLEX by 
    A1,
    FUNCOP_1: 45;
    
        then
    
        reconsider g =
    <:((
    dom f) 
    --> c), f:> as 
    Function of X, 
    [:
    COMPLEX , Y:] by 
    FUNCT_3: 58;
    
        (F
    [;] (c,f)) 
    = (F 
    * g) by 
    FUNCOP_1:def 5;
    
        hence thesis by
    FUNCT_2: 8;
    
      end;
    
    end
    
    definition
    
      let X be non
    empty  
    set;
    
      let Y be
    ComplexLinearSpace;
    
      :: 
    
    CLOPBAN1:def1
    
      func
    
    FuncExtMult (X,Y) -> 
    Function of 
    [:
    COMPLEX , ( 
    Funcs (X,the 
    carrier of Y)):], ( 
    Funcs (X,the 
    carrier of Y)) means 
    
      :
    
    Def1: for c be 
    Complex, f be 
    Element of ( 
    Funcs (X,the 
    carrier of Y)), x be 
    Element of X holds ((it 
    .  
    [c, f])
    . x) 
    = (c 
    * (f 
    . x)); 
    
      existence
    
      proof
    
        deffunc
    
    F(
    Complex, 
    Element of ( 
    Funcs (X,the 
    carrier of Y))) = (the 
    Mult of Y 
    [;] ($1,$2)); 
    
        consider F be
    Function of 
    [:
    COMPLEX , ( 
    Funcs (X,the 
    carrier of Y)):], ( 
    Funcs (X,the 
    carrier of Y)) such that 
    
        
    
    A1: for c be 
    Element of 
    COMPLEX , f be 
    Element of ( 
    Funcs (X,the 
    carrier of Y)) holds (F 
    . (c,f)) 
    =  
    F(c,f) from
    BINOP_1:sch 4;
    
        take F;
    
        let c be
    Complex, f be 
    Element of ( 
    Funcs (X,the 
    carrier of Y)), x be 
    Element of X; 
    
        reconsider c1 = c as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
        
    
        
    
    A2: ( 
    dom (F 
    .  
    [c1, f]))
    = X by 
    FUNCT_2: 92;
    
        (F
    . (c1,f)) 
    = (the 
    Mult of Y 
    [;] (c1,f)) by 
    A1;
    
        
    
        hence ((F
    .  
    [c, f])
    . x) 
    = (the 
    Mult of Y 
    . (c,(f 
    . x))) by 
    A2,
    FUNCOP_1: 32
    
        .= (c
    * (f 
    . x)) by 
    CLVECT_1:def 1;
    
      end;
    
      uniqueness
    
      proof
    
        let it1,it2 be
    Function of 
    [:
    COMPLEX , ( 
    Funcs (X,the 
    carrier of Y)):], ( 
    Funcs (X,the 
    carrier of Y)) such that 
    
        
    
    A3: for c be 
    Complex, f be 
    Element of ( 
    Funcs (X,the 
    carrier of Y)), x be 
    Element of X holds ((it1 
    .  
    [c, f])
    . x) 
    = (c 
    * (f 
    . x)) and 
    
        
    
    A4: for c be 
    Complex, f be 
    Element of ( 
    Funcs (X,the 
    carrier of Y)), x be 
    Element of X holds ((it2 
    .  
    [c, f])
    . x) 
    = (c 
    * (f 
    . x)); 
    
        now
    
          let c be
    Element of 
    COMPLEX , f be 
    Element of ( 
    Funcs (X,the 
    carrier of Y)); 
    
          now
    
            let x be
    Element of X; 
    
            
    
            thus ((it1
    .  
    [c, f])
    . x) 
    = (c 
    * (f 
    . x)) by 
    A3
    
            .= ((it2
    .  
    [c, f])
    . x) by 
    A4;
    
          end;
    
          hence (it1
    . (c,f)) 
    = (it2 
    . (c,f)) by 
    FUNCT_2: 63;
    
        end;
    
        hence thesis;
    
      end;
    
    end
    
    reserve X for non
    empty  
    set;
    
    reserve Y for
    ComplexLinearSpace;
    
    reserve f,g,h for
    Element of ( 
    Funcs (X,the 
    carrier of Y)); 
    
    theorem :: 
    
    CLOPBAN1:1
    
    
    
    
    
    Th1: for x be 
    Element of X holds (( 
    FuncZero (X,Y)) 
    . x) 
    = ( 
    0. Y) 
    
    proof
    
      let x be
    Element of X; 
    
      
    
      thus ((
    FuncZero (X,Y)) 
    . x) 
    = ((X 
    --> ( 
    0. Y)) 
    . x) by 
    LOPBAN_1:def 3
    
      .= (
    0. Y) by 
    FUNCOP_1: 7;
    
    end;
    
    reserve a,b for
    Complex;
    
    theorem :: 
    
    CLOPBAN1:2
    
    
    
    
    
    Th2: h 
    = (( 
    FuncExtMult (X,Y)) 
    .  
    [a, f]) iff for x be
    Element of X holds (h 
    . x) 
    = (a 
    * (f 
    . x)) 
    
    proof
    
      thus h
    = (( 
    FuncExtMult (X,Y)) 
    .  
    [a, f]) implies for x be
    Element of X holds (h 
    . x) 
    = (a 
    * (f 
    . x)) by 
    Def1;
    
      reconsider a as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      now
    
        assume
    
        
    
    A1: for x be 
    Element of X holds (h 
    . x) 
    = (a 
    * (f 
    . x)); 
    
        for x be
    Element of X holds (h 
    . x) 
    = ((( 
    FuncExtMult (X,Y)) 
    .  
    [a, f])
    . x) 
    
        proof
    
          let x be
    Element of X; 
    
          
    
          thus (h
    . x) 
    = (a 
    * (f 
    . x)) by 
    A1
    
          .= (((
    FuncExtMult (X,Y)) 
    .  
    [a, f])
    . x) by 
    Def1;
    
        end;
    
        hence h
    = (( 
    FuncExtMult (X,Y)) 
    .  
    [a, f]) by
    FUNCT_2: 63;
    
      end;
    
      hence thesis;
    
    end;
    
    reserve u,v,w for
    VECTOR of 
    CLSStruct (# ( 
    Funcs (X,the 
    carrier of Y)), ( 
    FuncZero (X,Y)), ( 
    FuncAdd (X,Y)), ( 
    FuncExtMult (X,Y)) #); 
    
    theorem :: 
    
    CLOPBAN1:3
    
    
    
    
    
    Th3: (( 
    FuncAdd (X,Y)) 
    . (f,g)) 
    = (( 
    FuncAdd (X,Y)) 
    . (g,f)) 
    
    proof
    
      now
    
        let x be
    Element of X; 
    
        
    
        thus (((
    FuncAdd (X,Y)) 
    . (f,g)) 
    . x) 
    = ((g 
    . x) 
    + (f 
    . x)) by 
    LOPBAN_1: 1
    
        .= (((
    FuncAdd (X,Y)) 
    . (g,f)) 
    . x) by 
    LOPBAN_1: 1;
    
      end;
    
      hence thesis by
    FUNCT_2: 63;
    
    end;
    
    theorem :: 
    
    CLOPBAN1:4
    
    
    
    
    
    Th4: (( 
    FuncAdd (X,Y)) 
    . (f,(( 
    FuncAdd (X,Y)) 
    . (g,h)))) 
    = (( 
    FuncAdd (X,Y)) 
    . ((( 
    FuncAdd (X,Y)) 
    . (f,g)),h)) 
    
    proof
    
      now
    
        let x be
    Element of X; 
    
        
    
        thus (((
    FuncAdd (X,Y)) 
    . (f,(( 
    FuncAdd (X,Y)) 
    . (g,h)))) 
    . x) 
    = ((f 
    . x) 
    + ((( 
    FuncAdd (X,Y)) 
    . (g,h)) 
    . x)) by 
    LOPBAN_1: 1
    
        .= ((f
    . x) 
    + ((g 
    . x) 
    + (h 
    . x))) by 
    LOPBAN_1: 1
    
        .= (((f
    . x) 
    + (g 
    . x)) 
    + (h 
    . x)) by 
    RLVECT_1:def 3
    
        .= ((((
    FuncAdd (X,Y)) 
    . (f,g)) 
    . x) 
    + (h 
    . x)) by 
    LOPBAN_1: 1
    
        .= (((
    FuncAdd (X,Y)) 
    . ((( 
    FuncAdd (X,Y)) 
    . (f,g)),h)) 
    . x) by 
    LOPBAN_1: 1;
    
      end;
    
      hence thesis by
    FUNCT_2: 63;
    
    end;
    
    theorem :: 
    
    CLOPBAN1:5
    
    
    
    
    
    Th5: (( 
    FuncAdd (X,Y)) 
    . (( 
    FuncZero (X,Y)),f)) 
    = f 
    
    proof
    
      now
    
        let x be
    Element of X; 
    
        
    
        thus (((
    FuncAdd (X,Y)) 
    . (( 
    FuncZero (X,Y)),f)) 
    . x) 
    = ((( 
    FuncZero (X,Y)) 
    . x) 
    + (f 
    . x)) by 
    LOPBAN_1: 1
    
        .= ((
    0. Y) 
    + (f 
    . x)) by 
    Th1
    
        .= (f
    . x) by 
    RLVECT_1:def 4;
    
      end;
    
      hence thesis by
    FUNCT_2: 63;
    
    end;
    
    theorem :: 
    
    CLOPBAN1:6
    
    
    
    
    
    Th6: (( 
    FuncAdd (X,Y)) 
    . (f,(( 
    FuncExtMult (X,Y)) 
    .  
    [(
    -  
    1r ), f]))) 
    = ( 
    FuncZero (X,Y)) 
    
    proof
    
      reconsider mj = (
    -  
    1r ) as 
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      now
    
        let x be
    Element of X; 
    
        set y = (f
    . x); 
    
        
    
        thus (((
    FuncAdd (X,Y)) 
    . (f,(( 
    FuncExtMult (X,Y)) 
    .  
    [mj, f])))
    . x) 
    = ((f 
    . x) 
    + ((( 
    FuncExtMult (X,Y)) 
    .  
    [mj, f])
    . x)) by 
    LOPBAN_1: 1
    
        .= ((f
    . x) 
    + (( 
    -  
    1r ) 
    * y)) by 
    Th2
    
        .= ((f
    . x) 
    + ( 
    - y)) by 
    CLVECT_1: 3
    
        .= (
    0. Y) by 
    RLVECT_1: 5
    
        .= ((
    FuncZero (X,Y)) 
    . x) by 
    Th1;
    
      end;
    
      then ((
    FuncAdd (X,Y)) 
    . (f,(( 
    FuncExtMult (X,Y)) 
    .  
    [mj, f])))
    = ( 
    FuncZero (X,Y)) by 
    FUNCT_2: 63;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CLOPBAN1:7
    
    
    
    
    
    Th7: (( 
    FuncExtMult (X,Y)) 
    .  
    [
    1r , f]) 
    = f 
    
    proof
    
      now
    
        let x be
    Element of X; 
    
        
    
        thus (((
    FuncExtMult (X,Y)) 
    .  
    [
    1r , f]) 
    . x) 
    = ( 
    1r  
    * (f 
    . x)) by 
    Th2
    
        .= (f
    . x) by 
    CLVECT_1:def 5;
    
      end;
    
      hence thesis by
    FUNCT_2: 63;
    
    end;
    
    theorem :: 
    
    CLOPBAN1:8
    
    
    
    
    
    Th8: (( 
    FuncExtMult (X,Y)) 
    .  
    [a, ((
    FuncExtMult (X,Y)) 
    .  
    [b, f])])
    = (( 
    FuncExtMult (X,Y)) 
    .  
    [(a
    * b), f]) 
    
    proof
    
      reconsider a1 = a, b1 = b, ab = (a
    * b) as 
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      now
    
        let x be
    Element of X; 
    
        
    
        thus (((
    FuncExtMult (X,Y)) 
    .  
    [a1, ((
    FuncExtMult (X,Y)) 
    .  
    [b1, f])])
    . x) 
    = (a1 
    * ((( 
    FuncExtMult (X,Y)) 
    .  
    [b1, f])
    . x)) by 
    Th2
    
        .= (a
    * (b 
    * (f 
    . x))) by 
    Th2
    
        .= ((a
    * b) 
    * (f 
    . x)) by 
    CLVECT_1:def 4
    
        .= (((
    FuncExtMult (X,Y)) 
    .  
    [ab, f])
    . x) by 
    Th2;
    
      end;
    
      then ((
    FuncExtMult (X,Y)) 
    .  
    [a, ((
    FuncExtMult (X,Y)) 
    .  
    [b, f])])
    = (( 
    FuncExtMult (X,Y)) 
    .  
    [ab, f]) by
    FUNCT_2: 63;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CLOPBAN1:9
    
    
    
    
    
    Th9: (( 
    FuncAdd (X,Y)) 
    . ((( 
    FuncExtMult (X,Y)) 
    .  
    [a, f]),((
    FuncExtMult (X,Y)) 
    .  
    [b, f])))
    = (( 
    FuncExtMult (X,Y)) 
    .  
    [(a
    + b), f]) 
    
    proof
    
      reconsider a1 = a, b1 = b, ab = (a
    + b) as 
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      now
    
        let x be
    Element of X; 
    
        
    
        thus (((
    FuncAdd (X,Y)) 
    . ((( 
    FuncExtMult (X,Y)) 
    .  
    [a1, f]),((
    FuncExtMult (X,Y)) 
    .  
    [b1, f])))
    . x) 
    = (((( 
    FuncExtMult (X,Y)) 
    .  
    [a1, f])
    . x) 
    + ((( 
    FuncExtMult (X,Y)) 
    .  
    [b1, f])
    . x)) by 
    LOPBAN_1: 1
    
        .= ((a1
    * (f 
    . x)) 
    + ((( 
    FuncExtMult (X,Y)) 
    .  
    [b1, f])
    . x)) by 
    Th2
    
        .= ((a
    * (f 
    . x)) 
    + (b 
    * (f 
    . x))) by 
    Th2
    
        .= ((a
    + b) 
    * (f 
    . x)) by 
    CLVECT_1:def 3
    
        .= (((
    FuncExtMult (X,Y)) 
    .  
    [ab, f])
    . x) by 
    Th2;
    
      end;
    
      then ((
    FuncAdd (X,Y)) 
    . ((( 
    FuncExtMult (X,Y)) 
    .  
    [a, f]),((
    FuncExtMult (X,Y)) 
    .  
    [b, f])))
    = (( 
    FuncExtMult (X,Y)) 
    .  
    [(a
    + b), f]) by 
    FUNCT_2: 63;
    
      hence thesis;
    
    end;
    
    
    
    
    
    Lm1: (( 
    FuncAdd (X,Y)) 
    . ((( 
    FuncExtMult (X,Y)) 
    .  
    [a, f]),((
    FuncExtMult (X,Y)) 
    .  
    [a, g])))
    = (( 
    FuncExtMult (X,Y)) 
    .  
    [a, ((
    FuncAdd (X,Y)) 
    . (f,g))]) 
    
    proof
    
      reconsider a1 = a as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      now
    
        let x be
    Element of X; 
    
        
    
        thus (((
    FuncAdd (X,Y)) 
    . ((( 
    FuncExtMult (X,Y)) 
    .  
    [a1, f]),((
    FuncExtMult (X,Y)) 
    .  
    [a1, g])))
    . x) 
    = (((( 
    FuncExtMult (X,Y)) 
    .  
    [a1, f])
    . x) 
    + ((( 
    FuncExtMult (X,Y)) 
    .  
    [a1, g])
    . x)) by 
    LOPBAN_1: 1
    
        .= ((a1
    * (f 
    . x)) 
    + ((( 
    FuncExtMult (X,Y)) 
    .  
    [a1, g])
    . x)) by 
    Th2
    
        .= ((a
    * (f 
    . x)) 
    + (a 
    * (g 
    . x))) by 
    Th2
    
        .= (a
    * ((f 
    . x) 
    + (g 
    . x))) by 
    CLVECT_1:def 2
    
        .= (a
    * ((( 
    FuncAdd (X,Y)) 
    . (f,g)) 
    . x)) by 
    LOPBAN_1: 1
    
        .= (((
    FuncExtMult (X,Y)) 
    .  
    [a1, ((
    FuncAdd (X,Y)) 
    . (f,g))]) 
    . x) by 
    Th2;
    
      end;
    
      hence thesis by
    FUNCT_2: 63;
    
    end;
    
    theorem :: 
    
    CLOPBAN1:10
    
    
    
    
    
    Th10: 
    CLSStruct (# ( 
    Funcs (X,the 
    carrier of Y)), ( 
    FuncZero (X,Y)), ( 
    FuncAdd (X,Y)), ( 
    FuncExtMult (X,Y)) #) is 
    ComplexLinearSpace
    
    proof
    
      set IT =
    CLSStruct (# ( 
    Funcs (X,the 
    carrier of Y)), ( 
    FuncZero (X,Y)), ( 
    FuncAdd (X,Y)), ( 
    FuncExtMult (X,Y)) #); 
    
      
    
      
    
    A1: ((u 
    + v) 
    + w) 
    = (u 
    + (v 
    + w)) by 
    Th4;
    
      
    
      
    
    A2: u is 
    right_complementable
    
      proof
    
        reconsider u9 = u as
    Element of ( 
    Funcs (X,the 
    carrier of Y)); 
    
        reconsider mj = (
    -  
    1r ) as 
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
        reconsider w = ((
    FuncExtMult (X,Y)) 
    .  
    [mj, u9]) as
    VECTOR of IT; 
    
        take w;
    
        thus thesis by
    Th6;
    
      end;
    
      
    
      
    
    A3: for a be 
    Complex, u,v be 
    VECTOR of IT holds (a 
    * (u 
    + v)) 
    = ((a 
    * u) 
    + (a 
    * v)) 
    
      proof
    
        let a be
    Complex;
    
        let u,v be
    VECTOR of IT; 
    
        reconsider a as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
        (a
    * (u 
    + v)) 
    = ((a 
    * u) 
    + (a 
    * v)) 
    
        proof
    
          reconsider v9 = v, u9 = u as
    Element of ( 
    Funcs (X,the 
    carrier of Y)); 
    
          reconsider w = ((
    FuncExtMult (X,Y)) 
    .  
    [a, u9]), w9 = ((
    FuncExtMult (X,Y)) 
    .  
    [a, v9]) as
    VECTOR of IT; 
    
          (a
    * (u 
    + v)) 
    = (( 
    FuncExtMult (X,Y)) 
    .  
    [a, ((
    FuncAdd (X,Y)) 
    . (u9,v9))]) by 
    CLVECT_1:def 1
    
          .= ((
    FuncAdd (X,Y)) 
    . (w,w9)) by 
    Lm1
    
          .= (w
    + (a 
    * v)) by 
    CLVECT_1:def 1
    
          .= ((a
    * u) 
    + (a 
    * v)) by 
    CLVECT_1:def 1;
    
          hence thesis;
    
        end;
    
        hence thesis;
    
      end;
    
      
    
      
    
    A4: for a,b be 
    Complex, v be 
    VECTOR of IT holds ((a 
    * b) 
    * v) 
    = (a 
    * (b 
    * v)) 
    
      proof
    
        let a,b be
    Complex;
    
        let v be
    VECTOR of IT; 
    
        reconsider v9 = v as
    Element of ( 
    Funcs (X,the 
    carrier of Y)); 
    
        
    
        thus ((a
    * b) 
    * v) 
    = (( 
    FuncExtMult (X,Y)) 
    .  
    [(a
    * b), v9]) by 
    CLVECT_1:def 1
    
        .= ((
    FuncExtMult (X,Y)) 
    .  
    [a, ((
    FuncExtMult (X,Y)) 
    .  
    [b, v9])]) by
    Th8
    
        .= ((
    FuncExtMult (X,Y)) 
    .  
    [a, (b
    * v)]) by 
    CLVECT_1:def 1
    
        .= (a
    * (b 
    * v)) by 
    CLVECT_1:def 1;
    
      end;
    
      
    
      
    
    A5: for a,b be 
    Complex, v be 
    VECTOR of IT holds ((a 
    + b) 
    * v) 
    = ((a 
    * v) 
    + (b 
    * v)) 
    
      proof
    
        let a,b be
    Complex;
    
        let v be
    VECTOR of IT; 
    
        reconsider a, b as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
        reconsider v9 = v as
    Element of ( 
    Funcs (X,the 
    carrier of Y)); 
    
        reconsider w = ((
    FuncExtMult (X,Y)) 
    .  
    [a, v9]), w9 = ((
    FuncExtMult (X,Y)) 
    .  
    [b, v9]) as
    VECTOR of IT; 
    
        ((a
    + b) 
    * v) 
    = (( 
    FuncExtMult (X,Y)) 
    .  
    [(a
    + b), v9]) by 
    CLVECT_1:def 1
    
        .= ((
    FuncAdd (X,Y)) 
    . (w,w9)) by 
    Th9
    
        .= (w
    + (b 
    * v)) by 
    CLVECT_1:def 1
    
        .= ((a
    * v) 
    + (b 
    * v)) by 
    CLVECT_1:def 1;
    
        hence thesis;
    
      end;
    
      
    
      
    
    A6: (u 
    + ( 
    0. IT)) 
    = u 
    
      proof
    
        reconsider u9 = u as
    Element of ( 
    Funcs (X,the 
    carrier of Y)); 
    
        
    
        thus (u
    + ( 
    0. IT)) 
    = (( 
    FuncAdd (X,Y)) 
    . (( 
    FuncZero (X,Y)),u9)) by 
    Th3
    
        .= u by
    Th5;
    
      end;
    
      
    
      
    
    A7: for v be 
    VECTOR of IT holds ( 
    1r  
    * v) 
    = v 
    
      proof
    
        let v be
    VECTOR of IT; 
    
        reconsider v9 = v as
    Element of ( 
    Funcs (X,the 
    carrier of Y)); 
    
        
    
        thus (
    1r  
    * v) 
    = (( 
    FuncExtMult (X,Y)) 
    .  
    [
    1r , v9]) by 
    CLVECT_1:def 1
    
        .= v by
    Th7;
    
      end;
    
      (u
    + v) 
    = (v 
    + u) by 
    Th3;
    
      hence thesis by
    A1,
    A6,
    A2,
    A3,
    A5,
    A4,
    A7,
    ALGSTR_0:def 16,
    CLVECT_1:def 2,
    CLVECT_1:def 3,
    CLVECT_1:def 4,
    CLVECT_1:def 5,
    RLVECT_1:def 2,
    RLVECT_1:def 3,
    RLVECT_1:def 4;
    
    end;
    
    definition
    
      let X be non
    empty  
    set;
    
      let Y be
    ComplexLinearSpace;
    
      :: 
    
    CLOPBAN1:def2
    
      func
    
    ComplexVectSpace (X,Y) -> 
    ComplexLinearSpace equals 
    CLSStruct (# ( 
    Funcs (X,the 
    carrier of Y)), ( 
    FuncZero (X,Y)), ( 
    FuncAdd (X,Y)), ( 
    FuncExtMult (X,Y)) #); 
    
      coherence by
    Th10;
    
    end
    
    registration
    
      let X be non
    empty  
    set;
    
      let Y be
    ComplexLinearSpace;
    
      cluster ( 
    ComplexVectSpace (X,Y)) -> 
    strict;
    
      coherence ;
    
    end
    
    registration
    
      let X be non
    empty  
    set;
    
      let Y be
    ComplexLinearSpace;
    
      cluster ( 
    ComplexVectSpace (X,Y)) -> 
    constituted-Functions;
    
      coherence by
    MONOID_0: 80;
    
    end
    
    definition
    
      let X be non
    empty  
    set;
    
      let Y be
    ComplexLinearSpace;
    
      let f be
    VECTOR of ( 
    ComplexVectSpace (X,Y)); 
    
      let x be
    Element of X; 
    
      :: original:
    .
    
      redefine
    
      func f
    
    . x -> 
    VECTOR of Y ; 
    
      coherence
    
      proof
    
        consider g be
    Function such that 
    
        
    
    A1: f 
    = g and 
    
        
    
    A2: ( 
    dom g) 
    = X and 
    
        
    
    A3: ( 
    rng g) 
    c= the 
    carrier of Y by 
    FUNCT_2:def 2;
    
        (f
    . x) 
    in ( 
    rng g) by 
    A1,
    A2,
    FUNCT_1:def 3;
    
        hence thesis by
    A3;
    
      end;
    
    end
    
    theorem :: 
    
    CLOPBAN1:11
    
    for X be non
    empty  
    set, Y be 
    ComplexLinearSpace, f,g,h be 
    VECTOR of ( 
    ComplexVectSpace (X,Y)) holds h 
    = (f 
    + g) iff for x be 
    Element of X holds (h 
    . x) 
    = ((f 
    . x) 
    + (g 
    . x)) by 
    LOPBAN_1: 1;
    
    theorem :: 
    
    CLOPBAN1:12
    
    
    
    
    
    Th12: for X be non 
    empty  
    set, Y be 
    ComplexLinearSpace, f,h be 
    VECTOR of ( 
    ComplexVectSpace (X,Y)), c be 
    Complex holds h 
    = (c 
    * f) iff for x be 
    Element of X holds (h 
    . x) 
    = (c 
    * (f 
    . x)) 
    
    proof
    
      let X be non
    empty  
    set;
    
      let Y be
    ComplexLinearSpace;
    
      let f,h be
    VECTOR of ( 
    ComplexVectSpace (X,Y)); 
    
      let c be
    Complex;
    
      reconsider f9 = f, h9 = h as
    Element of ( 
    Funcs (X,the 
    carrier of Y)); 
    
      hereby
    
        assume
    
        
    
    A1: h 
    = (c 
    * f); 
    
        let x be
    Element of X; 
    
        h
    = (( 
    FuncExtMult (X,Y)) 
    .  
    [c, f9]) by
    A1,
    CLVECT_1:def 1;
    
        hence (h
    . x) 
    = (c 
    * (f 
    . x)) by 
    Th2;
    
      end;
    
      assume for x be
    Element of X holds (h 
    . x) 
    = (c 
    * (f 
    . x)); 
    
      then h9
    = (( 
    FuncExtMult (X,Y)) 
    .  
    [c, f9]) by
    Th2;
    
      hence thesis by
    CLVECT_1:def 1;
    
    end;
    
    begin
    
    definition
    
      let X,Y be non
    empty  
    CLSStruct;
    
      let IT be
    Function of X, Y; 
    
      :: 
    
    CLOPBAN1:def3
    
      attr IT is
    
    homogeneous means 
    
      :
    
    Def3: for x be 
    VECTOR of X, r be 
    Complex holds (IT 
    . (r 
    * x)) 
    = (r 
    * (IT 
    . x)); 
    
    end
    
    registration
    
      let X be non
    empty  
    CLSStruct;
    
      let Y be
    ComplexLinearSpace;
    
      cluster 
    additive
    homogeneous for 
    Function of X, Y; 
    
      existence
    
      proof
    
        set f = (the
    carrier of X 
    --> ( 
    0. Y)); 
    
        reconsider f as
    Function of X, Y; 
    
        take f;
    
        hereby
    
          let x,y be
    VECTOR of X; 
    
          
    
          thus (f
    . (x 
    + y)) 
    = ( 
    0. Y) by 
    FUNCOP_1: 7
    
          .= ((
    0. Y) 
    + ( 
    0. Y)) by 
    RLVECT_1: 4
    
          .= ((f
    . x) 
    + ( 
    0. Y)) by 
    FUNCOP_1: 7
    
          .= ((f
    . x) 
    + (f 
    . y)) by 
    FUNCOP_1: 7;
    
        end;
    
        hereby
    
          let x be
    VECTOR of X, c be 
    Complex;
    
          
    
          thus (f
    . (c 
    * x)) 
    = ( 
    0. Y) by 
    FUNCOP_1: 7
    
          .= (c
    * ( 
    0. Y)) by 
    CLVECT_1: 1
    
          .= (c
    * (f 
    . x)) by 
    FUNCOP_1: 7;
    
        end;
    
      end;
    
    end
    
    definition
    
      let X,Y be
    ComplexLinearSpace;
    
      mode
    
    LinearOperator of X,Y is 
    additive
    homogeneous  
    Function of X, Y; 
    
    end
    
    definition
    
      let X,Y be
    ComplexLinearSpace;
    
      :: 
    
    CLOPBAN1:def4
    
      func
    
    LinearOperators (X,Y) -> 
    Subset of ( 
    ComplexVectSpace (the 
    carrier of X,Y)) means 
    
      :
    
    Def4: for x be 
    set holds x 
    in it iff x is 
    LinearOperator of X, Y; 
    
      existence
    
      proof
    
        defpred
    
    P[
    object] means $1 is
    LinearOperator of X, Y; 
    
        consider IT be
    set such that 
    
        
    
    A1: for x be 
    object holds x 
    in IT iff x 
    in ( 
    Funcs (the 
    carrier of X,the 
    carrier of Y)) & 
    P[x] from
    XBOOLE_0:sch 1;
    
        take IT;
    
        for x be
    object st x 
    in IT holds x 
    in ( 
    Funcs (the 
    carrier of X,the 
    carrier of Y)) by 
    A1;
    
        hence IT is
    Subset of ( 
    ComplexVectSpace (the 
    carrier of X,Y)) by 
    TARSKI:def 3;
    
        let x be
    set;
    
        thus x
    in IT implies x is 
    LinearOperator of X, Y by 
    A1;
    
        assume
    
        
    
    A2: x is 
    LinearOperator of X, Y; 
    
        then x
    in ( 
    Funcs (the 
    carrier of X,the 
    carrier of Y)) by 
    FUNCT_2: 8;
    
        hence thesis by
    A1,
    A2;
    
      end;
    
      uniqueness
    
      proof
    
        let X1,X2 be
    Subset of ( 
    ComplexVectSpace (the 
    carrier of X,Y)); 
    
        assume that
    
        
    
    A3: for x be 
    set holds x 
    in X1 iff x is 
    LinearOperator of X, Y and 
    
        
    
    A4: for x be 
    set holds x 
    in X2 iff x is 
    LinearOperator of X, Y; 
    
        for x be
    object st x 
    in X2 holds x 
    in X1 
    
        proof
    
          let x be
    object;
    
          assume x
    in X2; 
    
          then x is
    LinearOperator of X, Y by 
    A4;
    
          hence thesis by
    A3;
    
        end;
    
        then
    
        
    
    A5: X2 
    c= X1 by 
    TARSKI:def 3;
    
        for x be
    object st x 
    in X1 holds x 
    in X2 
    
        proof
    
          let x be
    object;
    
          assume x
    in X1; 
    
          then x is
    LinearOperator of X, Y by 
    A3;
    
          hence thesis by
    A4;
    
        end;
    
        then X1
    c= X2 by 
    TARSKI:def 3;
    
        hence thesis by
    A5,
    XBOOLE_0:def 10;
    
      end;
    
    end
    
    registration
    
      let X,Y be
    ComplexLinearSpace;
    
      cluster ( 
    LinearOperators (X,Y)) -> non 
    empty
    functional;
    
      coherence
    
      proof
    
        set f = (the
    carrier of X 
    --> ( 
    0. Y)); 
    
        
    
        
    
    A1: f is 
    homogeneous
    
        proof
    
          let x be
    VECTOR of X, c be 
    Complex;
    
          
    
          thus (f
    . (c 
    * x)) 
    = ( 
    0. Y) by 
    FUNCOP_1: 7
    
          .= (c
    * ( 
    0. Y)) by 
    CLVECT_1: 1
    
          .= (c
    * (f 
    . x)) by 
    FUNCOP_1: 7;
    
        end;
    
        f is
    additive
    
        proof
    
          let x,y be
    VECTOR of X; 
    
          
    
          thus (f
    . (x 
    + y)) 
    = ( 
    0. Y) by 
    FUNCOP_1: 7
    
          .= ((
    0. Y) 
    + ( 
    0. Y)) by 
    RLVECT_1: 4
    
          .= ((f
    . x) 
    + ( 
    0. Y)) by 
    FUNCOP_1: 7
    
          .= ((f
    . x) 
    + (f 
    . y)) by 
    FUNCOP_1: 7;
    
        end;
    
        hence (
    LinearOperators (X,Y)) is non 
    empty by 
    A1,
    Def4;
    
        let x be
    object;
    
        thus thesis;
    
      end;
    
    end
    
    theorem :: 
    
    CLOPBAN1:13
    
    
    
    
    
    Th13: for X,Y be 
    ComplexLinearSpace holds ( 
    LinearOperators (X,Y)) is 
    linearly-closed
    
    proof
    
      let X,Y be
    ComplexLinearSpace;
    
      set W = (
    LinearOperators (X,Y)); 
    
      
    
      
    
    A1: for c be 
    Complex holds for v be 
    VECTOR of ( 
    ComplexVectSpace (the 
    carrier of X,Y)) st v 
    in W holds (c 
    * v) 
    in W 
    
      proof
    
        let c be
    Complex;
    
        let v be
    VECTOR of ( 
    ComplexVectSpace (the 
    carrier of X,Y)) such that 
    
        
    
    A2: v 
    in W; 
    
        (c
    * v) is 
    LinearOperator of X, Y 
    
        proof
    
          reconsider f = (c
    * v) as 
    Function of X, Y by 
    FUNCT_2: 66;
    
          
    
          
    
    A3: f is 
    homogeneous
    
          proof
    
            reconsider v9 = v as
    Element of ( 
    Funcs (the 
    carrier of X,the 
    carrier of Y)); 
    
            let x be
    VECTOR of X, s be 
    Complex;
    
            
    
            
    
    A4: v9 is 
    LinearOperator of X, Y by 
    A2,
    Def4;
    
            
    
            
    
    A5: f 
    = (( 
    FuncExtMult (the 
    carrier of X,Y)) 
    .  
    [c, v9]) by
    CLVECT_1:def 1;
    
            
    
            hence (f
    . (s 
    * x)) 
    = (c 
    * (v9 
    . (s 
    * x))) by 
    Th2
    
            .= (c
    * (s 
    * (v9 
    . x))) by 
    A4,
    Def3
    
            .= ((c
    * s) 
    * (v9 
    . x)) by 
    CLVECT_1:def 4
    
            .= (s
    * (c 
    * (v9 
    . x))) by 
    CLVECT_1:def 4
    
            .= (s
    * (f 
    . x)) by 
    A5,
    Th2;
    
          end;
    
          f is
    additive
    
          proof
    
            reconsider v9 = v as
    Element of ( 
    Funcs (the 
    carrier of X,the 
    carrier of Y)); 
    
            let x,y be
    VECTOR of X; 
    
            
    
            
    
    A6: v9 is 
    LinearOperator of X, Y by 
    A2,
    Def4;
    
            
    
            
    
    A7: f 
    = (( 
    FuncExtMult (the 
    carrier of X,Y)) 
    .  
    [c, v9]) by
    CLVECT_1:def 1;
    
            
    
            hence (f
    . (x 
    + y)) 
    = (c 
    * (v9 
    . (x 
    + y))) by 
    Th2
    
            .= (c
    * ((v9 
    . x) 
    + (v9 
    . y))) by 
    A6,
    VECTSP_1:def 20
    
            .= ((c
    * (v9 
    . x)) 
    + (c 
    * (v9 
    . y))) by 
    CLVECT_1:def 2
    
            .= ((f
    . x) 
    + (c 
    * (v9 
    . y))) by 
    A7,
    Th2
    
            .= ((f
    . x) 
    + (f 
    . y)) by 
    A7,
    Th2;
    
          end;
    
          hence thesis by
    A3;
    
        end;
    
        hence thesis by
    Def4;
    
      end;
    
      for v,u be
    VECTOR of ( 
    ComplexVectSpace (the 
    carrier of X,Y)) st v 
    in ( 
    LinearOperators (X,Y)) & u 
    in ( 
    LinearOperators (X,Y)) holds (v 
    + u) 
    in ( 
    LinearOperators (X,Y)) 
    
      proof
    
        let v,u be
    VECTOR of ( 
    ComplexVectSpace (the 
    carrier of X,Y)) such that 
    
        
    
    A8: v 
    in W and 
    
        
    
    A9: u 
    in W; 
    
        (v
    + u) is 
    LinearOperator of X, Y 
    
        proof
    
          reconsider f = (v
    + u) as 
    Function of X, Y by 
    FUNCT_2: 66;
    
          
    
          
    
    A10: f is 
    homogeneous
    
          proof
    
            reconsider v9 = v, u9 = u as
    Element of ( 
    Funcs (the 
    carrier of X,the 
    carrier of Y)); 
    
            let x be
    VECTOR of X, s be 
    Complex;
    
            
    
            
    
    A11: u9 is 
    LinearOperator of X, Y by 
    A9,
    Def4;
    
            
    
            
    
    A12: v9 is 
    LinearOperator of X, Y by 
    A8,
    Def4;
    
            
    
            thus (f
    . (s 
    * x)) 
    = ((u9 
    . (s 
    * x)) 
    + (v9 
    . (s 
    * x))) by 
    LOPBAN_1: 1
    
            .= ((s
    * (u9 
    . x)) 
    + (v9 
    . (s 
    * x))) by 
    A11,
    Def3
    
            .= ((s
    * (u9 
    . x)) 
    + (s 
    * (v9 
    . x))) by 
    A12,
    Def3
    
            .= (s
    * ((u9 
    . x) 
    + (v9 
    . x))) by 
    CLVECT_1:def 2
    
            .= (s
    * (f 
    . x)) by 
    LOPBAN_1: 1;
    
          end;
    
          f is
    additive
    
          proof
    
            reconsider v9 = v, u9 = u as
    Element of ( 
    Funcs (the 
    carrier of X,the 
    carrier of Y)); 
    
            let x,y be
    VECTOR of X; 
    
            
    
            
    
    A13: u9 is 
    LinearOperator of X, Y by 
    A9,
    Def4;
    
            
    
            
    
    A14: v9 is 
    LinearOperator of X, Y by 
    A8,
    Def4;
    
            
    
            thus (f
    . (x 
    + y)) 
    = ((u9 
    . (x 
    + y)) 
    + (v9 
    . (x 
    + y))) by 
    LOPBAN_1: 1
    
            .= (((u9
    . x) 
    + (u9 
    . y)) 
    + (v9 
    . (x 
    + y))) by 
    A13,
    VECTSP_1:def 20
    
            .= (((u9
    . x) 
    + (u9 
    . y)) 
    + ((v9 
    . x) 
    + (v9 
    . y))) by 
    A14,
    VECTSP_1:def 20
    
            .= ((((u9
    . x) 
    + (u9 
    . y)) 
    + (v9 
    . x)) 
    + (v9 
    . y)) by 
    RLVECT_1:def 3
    
            .= ((((u9
    . x) 
    + (v9 
    . x)) 
    + (u9 
    . y)) 
    + (v9 
    . y)) by 
    RLVECT_1:def 3
    
            .= (((f
    . x) 
    + (u9 
    . y)) 
    + (v9 
    . y)) by 
    LOPBAN_1: 1
    
            .= ((f
    . x) 
    + ((u9 
    . y) 
    + (v9 
    . y))) by 
    RLVECT_1:def 3
    
            .= ((f
    . x) 
    + (f 
    . y)) by 
    LOPBAN_1: 1;
    
          end;
    
          hence thesis by
    A10;
    
        end;
    
        hence thesis by
    Def4;
    
      end;
    
      hence thesis by
    A1,
    CLVECT_1:def 7;
    
    end;
    
    theorem :: 
    
    CLOPBAN1:14
    
    for X,Y be
    ComplexLinearSpace holds 
    CLSStruct (# ( 
    LinearOperators (X,Y)), ( 
    Zero_ (( 
    LinearOperators (X,Y)),( 
    ComplexVectSpace (the 
    carrier of X,Y)))), ( 
    Add_ (( 
    LinearOperators (X,Y)),( 
    ComplexVectSpace (the 
    carrier of X,Y)))), ( 
    Mult_ (( 
    LinearOperators (X,Y)),( 
    ComplexVectSpace (the 
    carrier of X,Y)))) #) is 
    Subspace of ( 
    ComplexVectSpace (the 
    carrier of X,Y)) by 
    Th13,
    CSSPACE: 11;
    
    registration
    
      let X,Y be
    ComplexLinearSpace;
    
      cluster 
    CLSStruct (# ( 
    LinearOperators (X,Y)), ( 
    Zero_ (( 
    LinearOperators (X,Y)),( 
    ComplexVectSpace (the 
    carrier of X,Y)))), ( 
    Add_ (( 
    LinearOperators (X,Y)),( 
    ComplexVectSpace (the 
    carrier of X,Y)))), ( 
    Mult_ (( 
    LinearOperators (X,Y)),( 
    ComplexVectSpace (the 
    carrier of X,Y)))) #) -> 
    Abelian
    add-associative
    right_zeroed
    right_complementable
    vector-distributive
    scalar-distributive
    scalar-associative
    scalar-unital;
    
      coherence by
    Th13,
    CSSPACE: 11;
    
    end
    
    definition
    
      let X,Y be
    ComplexLinearSpace;
    
      :: 
    
    CLOPBAN1:def5
    
      func
    
    C_VectorSpace_of_LinearOperators (X,Y) -> 
    ComplexLinearSpace equals 
    CLSStruct (# ( 
    LinearOperators (X,Y)), ( 
    Zero_ (( 
    LinearOperators (X,Y)),( 
    ComplexVectSpace (the 
    carrier of X,Y)))), ( 
    Add_ (( 
    LinearOperators (X,Y)),( 
    ComplexVectSpace (the 
    carrier of X,Y)))), ( 
    Mult_ (( 
    LinearOperators (X,Y)),( 
    ComplexVectSpace (the 
    carrier of X,Y)))) #); 
    
      coherence ;
    
    end
    
    registration
    
      let X,Y be
    ComplexLinearSpace;
    
      cluster ( 
    C_VectorSpace_of_LinearOperators (X,Y)) -> 
    strict;
    
      coherence ;
    
    end
    
    registration
    
      let X,Y be
    ComplexLinearSpace;
    
      cluster ( 
    C_VectorSpace_of_LinearOperators (X,Y)) -> 
    constituted-Functions;
    
      coherence by
    MONOID_0: 80;
    
    end
    
    definition
    
      let X,Y be
    ComplexLinearSpace;
    
      let f be
    Element of ( 
    C_VectorSpace_of_LinearOperators (X,Y)); 
    
      let v be
    VECTOR of X; 
    
      :: original:
    .
    
      redefine
    
      func f
    
    . v -> 
    VECTOR of Y ; 
    
      coherence
    
      proof
    
        reconsider f as
    LinearOperator of X, Y by 
    Def4;
    
        (f
    . v) is 
    VECTOR of Y; 
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    CLOPBAN1:15
    
    
    
    
    
    Th15: for X,Y be 
    ComplexLinearSpace, f,g,h be 
    VECTOR of ( 
    C_VectorSpace_of_LinearOperators (X,Y)) holds h 
    = (f 
    + g) iff for x be 
    VECTOR of X holds (h 
    . x) 
    = ((f 
    . x) 
    + (g 
    . x)) 
    
    proof
    
      let X,Y be
    ComplexLinearSpace;
    
      let f,g,h be
    VECTOR of ( 
    C_VectorSpace_of_LinearOperators (X,Y)); 
    
      reconsider f9 = f, g9 = g, h9 = h as
    LinearOperator of X, Y by 
    Def4;
    
      
    
      
    
    A1: ( 
    C_VectorSpace_of_LinearOperators (X,Y)) is 
    Subspace of ( 
    ComplexVectSpace (the 
    carrier of X,Y)) by 
    Th13,
    CSSPACE: 11;
    
      then
    
      reconsider f1 = f as
    VECTOR of ( 
    ComplexVectSpace (the 
    carrier of X,Y)) by 
    CLVECT_1: 29;
    
      reconsider h1 = h as
    VECTOR of ( 
    ComplexVectSpace (the 
    carrier of X,Y)) by 
    A1,
    CLVECT_1: 29;
    
      reconsider g1 = g as
    VECTOR of ( 
    ComplexVectSpace (the 
    carrier of X,Y)) by 
    A1,
    CLVECT_1: 29;
    
      
    
    A2: 
    
      now
    
        assume
    
        
    
    A3: h 
    = (f 
    + g); 
    
        let x be
    Element of X; 
    
        h1
    = (f1 
    + g1) by 
    A1,
    A3,
    CLVECT_1: 32;
    
        hence (h9
    . x) 
    = ((f9 
    . x) 
    + (g9 
    . x)) by 
    LOPBAN_1: 1;
    
      end;
    
      now
    
        assume for x be
    Element of X holds (h9 
    . x) 
    = ((f9 
    . x) 
    + (g9 
    . x)); 
    
        then h1
    = (f1 
    + g1) by 
    LOPBAN_1: 1;
    
        hence h
    = (f 
    + g) by 
    A1,
    CLVECT_1: 32;
    
      end;
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    CLOPBAN1:16
    
    
    
    
    
    Th16: for X,Y be 
    ComplexLinearSpace, f,h be 
    VECTOR of ( 
    C_VectorSpace_of_LinearOperators (X,Y)), c be 
    Complex holds h 
    = (c 
    * f) iff for x be 
    VECTOR of X holds (h 
    . x) 
    = (c 
    * (f 
    . x)) 
    
    proof
    
      let X,Y be
    ComplexLinearSpace;
    
      let f,h be
    VECTOR of ( 
    C_VectorSpace_of_LinearOperators (X,Y)); 
    
      reconsider f9 = f, h9 = h as
    LinearOperator of X, Y by 
    Def4;
    
      let c be
    Complex;
    
      
    
      
    
    A1: ( 
    C_VectorSpace_of_LinearOperators (X,Y)) is 
    Subspace of ( 
    ComplexVectSpace (the 
    carrier of X,Y)) by 
    Th13,
    CSSPACE: 11;
    
      then
    
      reconsider f1 = f as
    VECTOR of ( 
    ComplexVectSpace (the 
    carrier of X,Y)) by 
    CLVECT_1: 29;
    
      reconsider h1 = h as
    VECTOR of ( 
    ComplexVectSpace (the 
    carrier of X,Y)) by 
    A1,
    CLVECT_1: 29;
    
      
    
    A2: 
    
      now
    
        assume
    
        
    
    A3: h 
    = (c 
    * f); 
    
        let x be
    Element of X; 
    
        h1
    = (c 
    * f1) by 
    A1,
    A3,
    CLVECT_1: 33;
    
        hence (h9
    . x) 
    = (c 
    * (f9 
    . x)) by 
    Th12;
    
      end;
    
      now
    
        assume for x be
    Element of X holds (h9 
    . x) 
    = (c 
    * (f9 
    . x)); 
    
        then h1
    = (c 
    * f1) by 
    Th12;
    
        hence h
    = (c 
    * f) by 
    A1,
    CLVECT_1: 33;
    
      end;
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    CLOPBAN1:17
    
    
    
    
    
    Th17: for X,Y be 
    ComplexLinearSpace holds ( 
    0. ( 
    C_VectorSpace_of_LinearOperators (X,Y))) 
    = (the 
    carrier of X 
    --> ( 
    0. Y)) 
    
    proof
    
      let X,Y be
    ComplexLinearSpace;
    
      
    
      
    
    A1: ( 
    0. ( 
    ComplexVectSpace (the 
    carrier of X,Y))) 
    = (the 
    carrier of X 
    --> ( 
    0. Y)) by 
    LOPBAN_1:def 3;
    
      (
    C_VectorSpace_of_LinearOperators (X,Y)) is 
    Subspace of ( 
    ComplexVectSpace (the 
    carrier of X,Y)) by 
    Th13,
    CSSPACE: 11;
    
      hence thesis by
    A1,
    CLVECT_1: 30;
    
    end;
    
    theorem :: 
    
    CLOPBAN1:18
    
    
    
    
    
    Th18: for X,Y be 
    ComplexLinearSpace holds (the 
    carrier of X 
    --> ( 
    0. Y)) is 
    LinearOperator of X, Y 
    
    proof
    
      let X,Y be
    ComplexLinearSpace;
    
      set f = (the
    carrier of X 
    --> ( 
    0. Y)); 
    
      reconsider f as
    Function of X, Y; 
    
      
    
      
    
    A1: f is 
    homogeneous
    
      proof
    
        let x be
    VECTOR of X, c be 
    Complex;
    
        
    
        thus (f
    . (c 
    * x)) 
    = ( 
    0. Y) by 
    FUNCOP_1: 7
    
        .= (c
    * ( 
    0. Y)) by 
    CLVECT_1: 1
    
        .= (c
    * (f 
    . x)) by 
    FUNCOP_1: 7;
    
      end;
    
      f is
    additive
    
      proof
    
        let x,y be
    VECTOR of X; 
    
        
    
        thus (f
    . (x 
    + y)) 
    = ( 
    0. Y) by 
    FUNCOP_1: 7
    
        .= ((
    0. Y) 
    + ( 
    0. Y)) by 
    RLVECT_1: 4
    
        .= ((f
    . x) 
    + ( 
    0. Y)) by 
    FUNCOP_1: 7
    
        .= ((f
    . x) 
    + (f 
    . y)) by 
    FUNCOP_1: 7;
    
      end;
    
      hence thesis by
    A1;
    
    end;
    
    begin
    
    theorem :: 
    
    CLOPBAN1:19
    
    
    
    
    
    Th19: for X be 
    ComplexNormSpace, seq be 
    sequence of X, g be 
    Point of X holds seq is 
    convergent & ( 
    lim seq) 
    = g implies 
    ||.seq.|| is
    convergent & ( 
    lim  
    ||.seq.||)
    =  
    ||.g.||
    
    proof
    
      let X be
    ComplexNormSpace;
    
      let seq be
    sequence of X; 
    
      let g be
    Point of X; 
    
      assume that
    
      
    
    A1: seq is 
    convergent and 
    
      
    
    A2: ( 
    lim seq) 
    = g; 
    
      
    
    A3: 
    
      now
    
        let r be
    Real;
    
        assume
    
        
    
    A4: r 
    >  
    0 ; 
    
        consider m1 be
    Nat such that 
    
        
    
    A5: for n be 
    Nat st n 
    >= m1 holds 
    ||.((seq
    . n) 
    - g).|| 
    < r by 
    A1,
    A2,
    A4,
    CLVECT_1:def 16;
    
        take k = m1;
    
        now
    
          let n be
    Nat;
    
          assume n
    >= k; 
    
          then
    
          
    
    A6: 
    ||.((seq
    . n) 
    - g).|| 
    < r by 
    A5;
    
          
    |.(
    ||.(seq
    . n).|| 
    -  
    ||.g.||).|
    <=  
    ||.((seq
    . n) 
    - g).|| by 
    CLVECT_1: 110;
    
          then
    |.(
    ||.(seq
    . n).|| 
    -  
    ||.g.||).|
    < r by 
    A6,
    XXREAL_0: 2;
    
          hence
    |.((
    ||.seq.||
    . n) 
    -  
    ||.g.||).|
    < r by 
    NORMSP_0:def 4;
    
        end;
    
        hence for n be
    Nat st k 
    <= n holds 
    |.((
    ||.seq.||
    . n) 
    -  
    ||.g.||).|
    < r; 
    
      end;
    
      
    ||.seq.|| is
    convergent by 
    A1,
    CLVECT_1: 117;
    
      hence thesis by
    A3,
    SEQ_2:def 7;
    
    end;
    
    definition
    
      let X,Y be
    ComplexNormSpace;
    
      let IT be
    LinearOperator of X, Y; 
    
      :: 
    
    CLOPBAN1:def6
    
      attr IT is
    
    Lipschitzian means 
    
      :
    
    Def6: ex K be 
    Real st 
    0  
    <= K & for x be 
    VECTOR of X holds 
    ||.(IT
    . x).|| 
    <= (K 
    *  
    ||.x.||);
    
    end
    
    theorem :: 
    
    CLOPBAN1:20
    
    
    
    
    
    Th20: for X,Y be 
    ComplexNormSpace holds for f be 
    LinearOperator of X, Y st (for x be 
    VECTOR of X holds (f 
    . x) 
    = ( 
    0. Y)) holds f is 
    Lipschitzian
    
    proof
    
      let X,Y be
    ComplexNormSpace;
    
      let f be
    LinearOperator of X, Y such that 
    
      
    
    A1: for x be 
    VECTOR of X holds (f 
    . x) 
    = ( 
    0. Y); 
    
      
    
    A2: 
    
      now
    
        let x be
    VECTOR of X; 
    
        
    
        thus
    ||.(f
    . x).|| 
    =  
    ||.(
    0. Y).|| by 
    A1
    
        .= (
    0  
    *  
    ||.x.||) by
    CLVECT_1: 102;
    
      end;
    
      take
    0 ; 
    
      thus thesis by
    A2;
    
    end;
    
    registration
    
      let X,Y be
    ComplexNormSpace;
    
      cluster 
    Lipschitzian for 
    LinearOperator of X, Y; 
    
      existence
    
      proof
    
        set f = (the
    carrier of X 
    --> ( 
    0. Y)); 
    
        reconsider f as
    LinearOperator of X, Y by 
    Th18;
    
        take f;
    
        for x be
    VECTOR of X holds (f 
    . x) 
    = ( 
    0. Y) by 
    FUNCOP_1: 7;
    
        hence thesis by
    Th20;
    
      end;
    
    end
    
    definition
    
      let X,Y be
    ComplexNormSpace;
    
      :: 
    
    CLOPBAN1:def7
    
      func
    
    BoundedLinearOperators (X,Y) -> 
    Subset of ( 
    C_VectorSpace_of_LinearOperators (X,Y)) means 
    
      :
    
    Def7: for x be 
    set holds x 
    in it iff x is 
    Lipschitzian  
    LinearOperator of X, Y; 
    
      existence
    
      proof
    
        defpred
    
    P[
    object] means $1 is
    Lipschitzian  
    LinearOperator of X, Y; 
    
        consider IT be
    set such that 
    
        
    
    A1: for x be 
    object holds x 
    in IT iff x 
    in ( 
    LinearOperators (X,Y)) & 
    P[x] from
    XBOOLE_0:sch 1;
    
        take IT;
    
        for x be
    object st x 
    in IT holds x 
    in ( 
    LinearOperators (X,Y)) by 
    A1;
    
        hence IT is
    Subset of ( 
    C_VectorSpace_of_LinearOperators (X,Y)) by 
    TARSKI:def 3;
    
        let x be
    set;
    
        thus x
    in IT implies x is 
    Lipschitzian  
    LinearOperator of X, Y by 
    A1;
    
        assume
    
        
    
    A2: x is 
    Lipschitzian  
    LinearOperator of X, Y; 
    
        then x
    in ( 
    LinearOperators (X,Y)) by 
    Def4;
    
        hence thesis by
    A1,
    A2;
    
      end;
    
      uniqueness
    
      proof
    
        let X1,X2 be
    Subset of ( 
    C_VectorSpace_of_LinearOperators (X,Y)); 
    
        assume that
    
        
    
    A3: for x be 
    set holds x 
    in X1 iff x is 
    Lipschitzian  
    LinearOperator of X, Y and 
    
        
    
    A4: for x be 
    set holds x 
    in X2 iff x is 
    Lipschitzian  
    LinearOperator of X, Y; 
    
        for x be
    object st x 
    in X2 holds x 
    in X1 
    
        proof
    
          let x be
    object;
    
          assume x
    in X2; 
    
          then x is
    Lipschitzian  
    LinearOperator of X, Y by 
    A4;
    
          hence thesis by
    A3;
    
        end;
    
        then
    
        
    
    A5: X2 
    c= X1 by 
    TARSKI:def 3;
    
        for x be
    object st x 
    in X1 holds x 
    in X2 
    
        proof
    
          let x be
    object;
    
          assume x
    in X1; 
    
          then x is
    Lipschitzian  
    LinearOperator of X, Y by 
    A3;
    
          hence thesis by
    A4;
    
        end;
    
        then X1
    c= X2 by 
    TARSKI:def 3;
    
        hence thesis by
    A5,
    XBOOLE_0:def 10;
    
      end;
    
    end
    
    registration
    
      let X,Y be
    ComplexNormSpace;
    
      cluster ( 
    BoundedLinearOperators (X,Y)) -> non 
    empty;
    
      coherence
    
      proof
    
        set f = (the
    carrier of X 
    --> ( 
    0. Y)); 
    
        reconsider f as
    LinearOperator of X, Y by 
    Th18;
    
        for x be
    VECTOR of X holds (f 
    . x) 
    = ( 
    0. Y) by 
    FUNCOP_1: 7;
    
        then f is
    Lipschitzian by 
    Th20;
    
        hence thesis by
    Def7;
    
      end;
    
    end
    
    theorem :: 
    
    CLOPBAN1:21
    
    
    
    
    
    Th21: for X,Y be 
    ComplexNormSpace holds ( 
    BoundedLinearOperators (X,Y)) is 
    linearly-closed
    
    proof
    
      let X,Y be
    ComplexNormSpace;
    
      set W = (
    BoundedLinearOperators (X,Y)); 
    
      
    
      
    
    A1: for v,u be 
    VECTOR of ( 
    C_VectorSpace_of_LinearOperators (X,Y)) st v 
    in W & u 
    in W holds (v 
    + u) 
    in W 
    
      proof
    
        let v,u be
    VECTOR of ( 
    C_VectorSpace_of_LinearOperators (X,Y)) such that 
    
        
    
    A2: v 
    in W and 
    
        
    
    A3: u 
    in W; 
    
        reconsider f = (v
    + u) as 
    LinearOperator of X, Y by 
    Def4;
    
        f is
    Lipschitzian
    
        proof
    
          reconsider v1 = v as
    Lipschitzian  
    LinearOperator of X, Y by 
    A2,
    Def7;
    
          consider K2 be
    Real such that 
    
          
    
    A4: 
    0  
    <= K2 and 
    
          
    
    A5: for x be 
    VECTOR of X holds 
    ||.(v1
    . x).|| 
    <= (K2 
    *  
    ||.x.||) by
    Def6;
    
          reconsider u1 = u as
    Lipschitzian  
    LinearOperator of X, Y by 
    A3,
    Def7;
    
          consider K1 be
    Real such that 
    
          
    
    A6: 
    0  
    <= K1 and 
    
          
    
    A7: for x be 
    VECTOR of X holds 
    ||.(u1
    . x).|| 
    <= (K1 
    *  
    ||.x.||) by
    Def6;
    
          take K3 = (K1
    + K2); 
    
          now
    
            let x be
    VECTOR of X; 
    
            
    
            
    
    A8: 
    ||.((u1
    . x) 
    + (v1 
    . x)).|| 
    <= ( 
    ||.(u1
    . x).|| 
    +  
    ||.(v1
    . x).||) by 
    CLVECT_1:def 13;
    
            
    
            
    
    A9: 
    ||.(v1
    . x).|| 
    <= (K2 
    *  
    ||.x.||) by
    A5;
    
            
    ||.(u1
    . x).|| 
    <= (K1 
    *  
    ||.x.||) by
    A7;
    
            then
    
            
    
    A10: ( 
    ||.(u1
    . x).|| 
    +  
    ||.(v1
    . x).||) 
    <= ((K1 
    *  
    ||.x.||)
    + (K2 
    *  
    ||.x.||)) by
    A9,
    XREAL_1: 7;
    
            
    ||.(f
    . x).|| 
    =  
    ||.((u1
    . x) 
    + (v1 
    . x)).|| by 
    Th15;
    
            hence
    ||.(f
    . x).|| 
    <= (K3 
    *  
    ||.x.||) by
    A8,
    A10,
    XXREAL_0: 2;
    
          end;
    
          hence thesis by
    A6,
    A4;
    
        end;
    
        hence thesis by
    Def7;
    
      end;
    
      for c be
    Complex, v be 
    VECTOR of ( 
    C_VectorSpace_of_LinearOperators (X,Y)) st v 
    in W holds (c 
    * v) 
    in W 
    
      proof
    
        let c be
    Complex;
    
        let v be
    VECTOR of ( 
    C_VectorSpace_of_LinearOperators (X,Y)) such that 
    
        
    
    A11: v 
    in W; 
    
        reconsider f = (c
    * v) as 
    LinearOperator of X, Y by 
    Def4;
    
        f is
    Lipschitzian
    
        proof
    
          reconsider v1 = v as
    Lipschitzian  
    LinearOperator of X, Y by 
    A11,
    Def7;
    
          consider K be
    Real such that 
    
          
    
    A12: 
    0  
    <= K and 
    
          
    
    A13: for x be 
    VECTOR of X holds 
    ||.(v1
    . x).|| 
    <= (K 
    *  
    ||.x.||) by
    Def6;
    
          take (
    |.c.|
    * K); 
    
          
    
    A14: 
    
          now
    
            let x be
    VECTOR of X; 
    
            
    0  
    <=  
    |.c.| by
    COMPLEX1: 46;
    
            then
    
            
    
    A15: ( 
    |.c.|
    *  
    ||.(v1
    . x).||) 
    <= ( 
    |.c.|
    * (K 
    *  
    ||.x.||)) by
    A13,
    XREAL_1: 64;
    
            
    ||.(c
    * (v1 
    . x)).|| 
    = ( 
    |.c.|
    *  
    ||.(v1
    . x).||) by 
    CLVECT_1:def 13;
    
            hence
    ||.(f
    . x).|| 
    <= (( 
    |.c.|
    * K) 
    *  
    ||.x.||) by
    A15,
    Th16;
    
          end;
    
          
    0  
    <=  
    |.c.| by
    COMPLEX1: 46;
    
          hence thesis by
    A12,
    A14;
    
        end;
    
        hence thesis by
    Def7;
    
      end;
    
      hence thesis by
    A1,
    CLVECT_1:def 7;
    
    end;
    
    theorem :: 
    
    CLOPBAN1:22
    
    for X,Y be
    ComplexNormSpace holds 
    CLSStruct (# ( 
    BoundedLinearOperators (X,Y)), ( 
    Zero_ (( 
    BoundedLinearOperators (X,Y)),( 
    C_VectorSpace_of_LinearOperators (X,Y)))), ( 
    Add_ (( 
    BoundedLinearOperators (X,Y)),( 
    C_VectorSpace_of_LinearOperators (X,Y)))), ( 
    Mult_ (( 
    BoundedLinearOperators (X,Y)),( 
    C_VectorSpace_of_LinearOperators (X,Y)))) #) is 
    Subspace of ( 
    C_VectorSpace_of_LinearOperators (X,Y)) by 
    Th21,
    CSSPACE: 11;
    
    registration
    
      let X,Y be
    ComplexNormSpace;
    
      cluster 
    CLSStruct (# ( 
    BoundedLinearOperators (X,Y)), ( 
    Zero_ (( 
    BoundedLinearOperators (X,Y)),( 
    C_VectorSpace_of_LinearOperators (X,Y)))), ( 
    Add_ (( 
    BoundedLinearOperators (X,Y)),( 
    C_VectorSpace_of_LinearOperators (X,Y)))), ( 
    Mult_ (( 
    BoundedLinearOperators (X,Y)),( 
    C_VectorSpace_of_LinearOperators (X,Y)))) #) -> 
    Abelian
    add-associative
    right_zeroed
    right_complementable
    vector-distributive
    scalar-distributive
    scalar-associative
    scalar-unital;
    
      coherence by
    Th21,
    CSSPACE: 11;
    
    end
    
    definition
    
      let X,Y be
    ComplexNormSpace;
    
      :: 
    
    CLOPBAN1:def8
    
      func
    
    C_VectorSpace_of_BoundedLinearOperators (X,Y) -> 
    ComplexLinearSpace equals 
    CLSStruct (# ( 
    BoundedLinearOperators (X,Y)), ( 
    Zero_ (( 
    BoundedLinearOperators (X,Y)),( 
    C_VectorSpace_of_LinearOperators (X,Y)))), ( 
    Add_ (( 
    BoundedLinearOperators (X,Y)),( 
    C_VectorSpace_of_LinearOperators (X,Y)))), ( 
    Mult_ (( 
    BoundedLinearOperators (X,Y)),( 
    C_VectorSpace_of_LinearOperators (X,Y)))) #); 
    
      coherence ;
    
    end
    
    registration
    
      let X,Y be
    ComplexNormSpace;
    
      cluster ( 
    C_VectorSpace_of_BoundedLinearOperators (X,Y)) -> 
    strict;
    
      coherence ;
    
    end
    
    registration
    
      let X,Y be
    ComplexNormSpace;
    
      cluster -> 
    Function-like
    Relation-like for 
    Element of ( 
    C_VectorSpace_of_BoundedLinearOperators (X,Y)); 
    
      coherence ;
    
    end
    
    definition
    
      let X,Y be
    ComplexNormSpace;
    
      let f be
    Element of ( 
    C_VectorSpace_of_BoundedLinearOperators (X,Y)); 
    
      let v be
    VECTOR of X; 
    
      :: original:
    .
    
      redefine
    
      func f
    
    . v -> 
    VECTOR of Y ; 
    
      coherence
    
      proof
    
        reconsider f as
    LinearOperator of X, Y by 
    Def7;
    
        (f
    . v) is 
    VECTOR of Y; 
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    CLOPBAN1:23
    
    
    
    
    
    Th23: for X,Y be 
    ComplexNormSpace, f,g,h be 
    VECTOR of ( 
    C_VectorSpace_of_BoundedLinearOperators (X,Y)) holds h 
    = (f 
    + g) iff for x be 
    VECTOR of X holds (h 
    . x) 
    = ((f 
    . x) 
    + (g 
    . x)) 
    
    proof
    
      let X,Y be
    ComplexNormSpace;
    
      let f,g,h be
    VECTOR of ( 
    C_VectorSpace_of_BoundedLinearOperators (X,Y)); 
    
      
    
      
    
    A1: ( 
    C_VectorSpace_of_BoundedLinearOperators (X,Y)) is 
    Subspace of ( 
    C_VectorSpace_of_LinearOperators (X,Y)) by 
    Th21,
    CSSPACE: 11;
    
      then
    
      reconsider f1 = f as
    VECTOR of ( 
    C_VectorSpace_of_LinearOperators (X,Y)) by 
    CLVECT_1: 29;
    
      reconsider h1 = h as
    VECTOR of ( 
    C_VectorSpace_of_LinearOperators (X,Y)) by 
    A1,
    CLVECT_1: 29;
    
      reconsider g1 = g as
    VECTOR of ( 
    C_VectorSpace_of_LinearOperators (X,Y)) by 
    A1,
    CLVECT_1: 29;
    
      hereby
    
        assume
    
        
    
    A2: h 
    = (f 
    + g); 
    
        let x be
    Element of X; 
    
        h1
    = (f1 
    + g1) by 
    A1,
    A2,
    CLVECT_1: 32;
    
        hence (h
    . x) 
    = ((f 
    . x) 
    + (g 
    . x)) by 
    Th15;
    
      end;
    
      assume for x be
    Element of X holds (h 
    . x) 
    = ((f 
    . x) 
    + (g 
    . x)); 
    
      then h1
    = (f1 
    + g1) by 
    Th15;
    
      hence thesis by
    A1,
    CLVECT_1: 32;
    
    end;
    
    theorem :: 
    
    CLOPBAN1:24
    
    
    
    
    
    Th24: for X,Y be 
    ComplexNormSpace, f,h be 
    VECTOR of ( 
    C_VectorSpace_of_BoundedLinearOperators (X,Y)), c be 
    Complex holds h 
    = (c 
    * f) iff for x be 
    VECTOR of X holds (h 
    . x) 
    = (c 
    * (f 
    . x)) 
    
    proof
    
      let X,Y be
    ComplexNormSpace;
    
      let f,h be
    VECTOR of ( 
    C_VectorSpace_of_BoundedLinearOperators (X,Y)); 
    
      let c be
    Complex;
    
      
    
      
    
    A1: ( 
    C_VectorSpace_of_BoundedLinearOperators (X,Y)) is 
    Subspace of ( 
    C_VectorSpace_of_LinearOperators (X,Y)) by 
    Th21,
    CSSPACE: 11;
    
      then
    
      reconsider f1 = f as
    VECTOR of ( 
    C_VectorSpace_of_LinearOperators (X,Y)) by 
    CLVECT_1: 29;
    
      reconsider h1 = h as
    VECTOR of ( 
    C_VectorSpace_of_LinearOperators (X,Y)) by 
    A1,
    CLVECT_1: 29;
    
      hereby
    
        assume
    
        
    
    A2: h 
    = (c 
    * f); 
    
        let x be
    Element of X; 
    
        h1
    = (c 
    * f1) by 
    A1,
    A2,
    CLVECT_1: 33;
    
        hence (h
    . x) 
    = (c 
    * (f 
    . x)) by 
    Th16;
    
      end;
    
      assume for x be
    Element of X holds (h 
    . x) 
    = (c 
    * (f 
    . x)); 
    
      then h1
    = (c 
    * f1) by 
    Th16;
    
      hence thesis by
    A1,
    CLVECT_1: 33;
    
    end;
    
    theorem :: 
    
    CLOPBAN1:25
    
    
    
    
    
    Th25: for X,Y be 
    ComplexNormSpace holds ( 
    0. ( 
    C_VectorSpace_of_BoundedLinearOperators (X,Y))) 
    = (the 
    carrier of X 
    --> ( 
    0. Y)) 
    
    proof
    
      let X,Y be
    ComplexNormSpace;
    
      
    
      
    
    A1: ( 
    0. ( 
    C_VectorSpace_of_LinearOperators (X,Y))) 
    = (the 
    carrier of X 
    --> ( 
    0. Y)) by 
    Th17;
    
      (
    C_VectorSpace_of_BoundedLinearOperators (X,Y)) is 
    Subspace of ( 
    C_VectorSpace_of_LinearOperators (X,Y)) by 
    Th21,
    CSSPACE: 11;
    
      hence thesis by
    A1,
    CLVECT_1: 30;
    
    end;
    
    definition
    
      let X,Y be
    ComplexNormSpace;
    
      let f be
    object;
    
      :: 
    
    CLOPBAN1:def9
    
      func
    
    modetrans (f,X,Y) -> 
    Lipschitzian  
    LinearOperator of X, Y equals 
    
      :
    
    Def9: f; 
    
      coherence by
    A1,
    Def7;
    
    end
    
    definition
    
      let X,Y be
    ComplexNormSpace;
    
      let u be
    LinearOperator of X, Y; 
    
      :: 
    
    CLOPBAN1:def10
    
      func
    
    PreNorms (u) -> non 
    empty  
    Subset of 
    REAL equals { 
    ||.(u
    . t).|| where t be 
    VECTOR of X : 
    ||.t.||
    <= 1 }; 
    
      coherence
    
      proof
    
        
    
    A1: 
    
        now
    
          let x be
    object;
    
          now
    
            assume x
    in { 
    ||.(u
    . t).|| where t be 
    VECTOR of X : 
    ||.t.||
    <= 1 }; 
    
            then ex t be
    VECTOR of X st x 
    =  
    ||.(u
    . t).|| & 
    ||.t.||
    <= 1; 
    
            hence x
    in  
    REAL ; 
    
          end;
    
          hence x
    in { 
    ||.(u
    . t).|| where t be 
    VECTOR of X : 
    ||.t.||
    <= 1 } implies x 
    in  
    REAL ; 
    
        end;
    
        
    ||.(
    0. X).|| 
    =  
    0 by 
    CLVECT_1: 102;
    
        then
    ||.(u
    . ( 
    0. X)).|| 
    in { 
    ||.(u
    . t).|| where t be 
    VECTOR of X : 
    ||.t.||
    <= 1 }; 
    
        hence thesis by
    A1,
    TARSKI:def 3;
    
      end;
    
    end
    
    theorem :: 
    
    CLOPBAN1:26
    
    
    
    
    
    Th26: for X,Y be 
    ComplexNormSpace, g be 
    Lipschitzian  
    LinearOperator of X, Y holds ( 
    PreNorms g) is 
    bounded_above
    
    proof
    
      let X,Y be
    ComplexNormSpace;
    
      let g be
    Lipschitzian  
    LinearOperator of X, Y; 
    
      (
    PreNorms g) is 
    bounded_above
    
      proof
    
        consider K be
    Real such that 
    
        
    
    A1: 
    0  
    <= K and 
    
        
    
    A2: for x be 
    VECTOR of X holds 
    ||.(g
    . x).|| 
    <= (K 
    *  
    ||.x.||) by
    Def6;
    
        take K;
    
        let r be
    ExtReal;
    
        assume r
    in ( 
    PreNorms g); 
    
        then
    
        consider t be
    VECTOR of X such that 
    
        
    
    A3: r 
    =  
    ||.(g
    . t).|| and 
    
        
    
    A4: 
    ||.t.||
    <= 1; 
    
        
    
        
    
    A5: 
    ||.(g
    . t).|| 
    <= (K 
    *  
    ||.t.||) by
    A2;
    
        (K
    *  
    ||.t.||)
    <= (K 
    * 1) by 
    A1,
    A4,
    XREAL_1: 64;
    
        hence r
    <= K by 
    A3,
    A5,
    XXREAL_0: 2;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CLOPBAN1:27
    
    for X,Y be
    ComplexNormSpace, g be 
    LinearOperator of X, Y holds g is 
    Lipschitzian iff ( 
    PreNorms g) is 
    bounded_above
    
    proof
    
      let X,Y be
    ComplexNormSpace;
    
      let g be
    LinearOperator of X, Y; 
    
      now
    
        reconsider K = (
    upper_bound ( 
    PreNorms g)) as 
    Real;
    
        assume
    
        
    
    A1: ( 
    PreNorms g) is 
    bounded_above;
    
        
    
    A2: 
    
        now
    
          let t be
    VECTOR of X; 
    
          now
    
            per cases ;
    
              case
    
              
    
    A3: t 
    = ( 
    0. X); 
    
              then
    
              
    
    A4: 
    ||.t.||
    =  
    0 by 
    NORMSP_0:def 6;
    
              (g
    . t) 
    = (g 
    . ( 
    0c  
    * ( 
    0. X))) by 
    A3,
    CLVECT_1: 1
    
              .= (
    0c  
    * (g 
    . ( 
    0. X))) by 
    Def3
    
              .= (
    0. Y) by 
    CLVECT_1: 1;
    
              hence
    ||.(g
    . t).|| 
    <= (K 
    *  
    ||.t.||) by
    A4,
    NORMSP_0:def 6;
    
            end;
    
              case
    
              
    
    A5: t 
    <> ( 
    0. X); 
    
              reconsider t0 = ((
    ||.t.||
    " ) 
    + ( 
    0  
    *  
    <i> )) as 
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
              reconsider t1 = (t0
    * t) as 
    VECTOR of X; 
    
              
    
              
    
    A6: 
    ||.t.||
    <>  
    0 by 
    A5,
    NORMSP_0:def 5;
    
              then
    
              
    
    A7: 
    ||.t.||
    >  
    0 by 
    CLVECT_1: 105;
    
              
    
              
    
    A8: 
    |.((
    ||.t.||
    " ) 
    + ( 
    0  
    *  
    <i> )).| 
    =  
    |.(1
    * ( 
    ||.t.||
    " )).| 
    
              .=
    |.(1
    /  
    ||.t.||).| by
    XCMPLX_0:def 9
    
              .= (1
    /  
    |.
    ||.t.||.|) by
    ABSVALUE: 7
    
              .= (1
    /  
    ||.t.||) by
    A7,
    ABSVALUE:def 1
    
              .= (1
    * ( 
    ||.t.||
    " )) by 
    XCMPLX_0:def 9
    
              .= (
    ||.t.||
    " ); 
    
              
    
              then
    
              
    
    A9: ( 
    ||.(g
    . t).|| 
    /  
    ||.t.||)
    = ( 
    ||.(g
    . t).|| 
    *  
    |.t0.|) by
    XCMPLX_0:def 9
    
              .=
    ||.(t0
    * (g 
    . t)).|| by 
    CLVECT_1:def 13
    
              .=
    ||.(g
    . t1).|| by 
    Def3;
    
              
    ||.t1.||
    = ( 
    |.t0.|
    *  
    ||.t.||) by
    CLVECT_1:def 13
    
              .= 1 by
    A6,
    A8,
    XCMPLX_0:def 7;
    
              then (
    ||.(g
    . t).|| 
    /  
    ||.t.||)
    in ( 
    PreNorms g) by 
    A9;
    
              then
    
              
    
    A10: ( 
    ||.(g
    . t).|| 
    /  
    ||.t.||)
    <= K by 
    A1,
    SEQ_4:def 1;
    
              ((
    ||.(g
    . t).|| 
    /  
    ||.t.||)
    *  
    ||.t.||)
    = (( 
    ||.(g
    . t).|| 
    * ( 
    ||.t.||
    " )) 
    *  
    ||.t.||) by
    XCMPLX_0:def 9
    
              .= (
    ||.(g
    . t).|| 
    * (( 
    ||.t.||
    " ) 
    *  
    ||.t.||))
    
              .= (
    ||.(g
    . t).|| 
    * 1) by 
    A6,
    XCMPLX_0:def 7
    
              .=
    ||.(g
    . t).||; 
    
              hence
    ||.(g
    . t).|| 
    <= (K 
    *  
    ||.t.||) by
    A7,
    A10,
    XREAL_1: 64;
    
            end;
    
          end;
    
          hence
    ||.(g
    . t).|| 
    <= (K 
    *  
    ||.t.||);
    
        end;
    
        take K;
    
        
    0  
    <= K 
    
        proof
    
          consider r0 be
    object such that 
    
          
    
    A11: r0 
    in ( 
    PreNorms g) by 
    XBOOLE_0:def 1;
    
          reconsider r0 as
    Real by 
    A11;
    
          now
    
            let r be
    Real;
    
            assume r
    in ( 
    PreNorms g); 
    
            then ex t be
    VECTOR of X st r 
    =  
    ||.(g
    . t).|| & 
    ||.t.||
    <= 1; 
    
            hence
    0  
    <= r by 
    CLVECT_1: 105;
    
          end;
    
          then
    0  
    <= r0 by 
    A11;
    
          hence thesis by
    A1,
    A11,
    SEQ_4:def 1;
    
        end;
    
        hence g is
    Lipschitzian by 
    A2;
    
      end;
    
      hence thesis by
    Th26;
    
    end;
    
    definition
    
      let X,Y be
    ComplexNormSpace;
    
      :: 
    
    CLOPBAN1:def11
    
      func
    
    BoundedLinearOperatorsNorm (X,Y) -> 
    Function of ( 
    BoundedLinearOperators (X,Y)), 
    REAL means 
    
      :
    
    Def11: for x be 
    object st x 
    in ( 
    BoundedLinearOperators (X,Y)) holds (it 
    . x) 
    = ( 
    upper_bound ( 
    PreNorms ( 
    modetrans (x,X,Y)))); 
    
      existence
    
      proof
    
        deffunc
    
    F(
    object) = (
    upper_bound ( 
    PreNorms ( 
    modetrans ($1,X,Y)))); 
    
        
    
        
    
    A1: for z be 
    object st z 
    in ( 
    BoundedLinearOperators (X,Y)) holds 
    F(z)
    in  
    REAL by 
    XREAL_0:def 1;
    
        ex f be
    Function of ( 
    BoundedLinearOperators (X,Y)), 
    REAL st for x be 
    object st x 
    in ( 
    BoundedLinearOperators (X,Y)) holds (f 
    . x) 
    =  
    F(x) from
    FUNCT_2:sch 2(
    A1);
    
        hence thesis;
    
      end;
    
      uniqueness
    
      proof
    
        let NORM1,NORM2 be
    Function of ( 
    BoundedLinearOperators (X,Y)), 
    REAL such that 
    
        
    
    A2: for x be 
    object st x 
    in ( 
    BoundedLinearOperators (X,Y)) holds (NORM1 
    . x) 
    = ( 
    upper_bound ( 
    PreNorms ( 
    modetrans (x,X,Y)))) and 
    
        
    
    A3: for x be 
    object st x 
    in ( 
    BoundedLinearOperators (X,Y)) holds (NORM2 
    . x) 
    = ( 
    upper_bound ( 
    PreNorms ( 
    modetrans (x,X,Y)))); 
    
        
    
        
    
    A4: for z be 
    object st z 
    in ( 
    BoundedLinearOperators (X,Y)) holds (NORM1 
    . z) 
    = (NORM2 
    . z) 
    
        proof
    
          let z be
    object such that 
    
          
    
    A5: z 
    in ( 
    BoundedLinearOperators (X,Y)); 
    
          (NORM1
    . z) 
    = ( 
    upper_bound ( 
    PreNorms ( 
    modetrans (z,X,Y)))) by 
    A2,
    A5;
    
          hence thesis by
    A3,
    A5;
    
        end;
    
        
    
        
    
    A6: ( 
    dom NORM2) 
    = ( 
    BoundedLinearOperators (X,Y)) by 
    FUNCT_2:def 1;
    
        (
    dom NORM1) 
    = ( 
    BoundedLinearOperators (X,Y)) by 
    FUNCT_2:def 1;
    
        hence thesis by
    A6,
    A4;
    
      end;
    
    end
    
    theorem :: 
    
    CLOPBAN1:28
    
    
    
    
    
    Th28: for X,Y be 
    ComplexNormSpace, f be 
    Lipschitzian  
    LinearOperator of X, Y holds ( 
    modetrans (f,X,Y)) 
    = f 
    
    proof
    
      let X,Y be
    ComplexNormSpace;
    
      let f be
    Lipschitzian  
    LinearOperator of X, Y; 
    
      f
    in ( 
    BoundedLinearOperators (X,Y)) by 
    Def7;
    
      hence thesis by
    Def9;
    
    end;
    
    theorem :: 
    
    CLOPBAN1:29
    
    
    
    
    
    Th29: for X,Y be 
    ComplexNormSpace, f be 
    Lipschitzian  
    LinearOperator of X, Y holds (( 
    BoundedLinearOperatorsNorm (X,Y)) 
    . f) 
    = ( 
    upper_bound ( 
    PreNorms f)) 
    
    proof
    
      let X,Y be
    ComplexNormSpace;
    
      let f be
    Lipschitzian  
    LinearOperator of X, Y; 
    
      reconsider f9 = f as
    set;
    
      f
    in ( 
    BoundedLinearOperators (X,Y)) by 
    Def7;
    
      
    
      hence ((
    BoundedLinearOperatorsNorm (X,Y)) 
    . f) 
    = ( 
    upper_bound ( 
    PreNorms ( 
    modetrans (f9,X,Y)))) by 
    Def11
    
      .= (
    upper_bound ( 
    PreNorms f)) by 
    Th28;
    
    end;
    
    definition
    
      let X,Y be
    ComplexNormSpace;
    
      :: 
    
    CLOPBAN1:def12
    
      func
    
    C_NormSpace_of_BoundedLinearOperators (X,Y) -> non 
    empty  
    CNORMSTR equals 
    CNORMSTR (# ( 
    BoundedLinearOperators (X,Y)), ( 
    Zero_ (( 
    BoundedLinearOperators (X,Y)),( 
    C_VectorSpace_of_LinearOperators (X,Y)))), ( 
    Add_ (( 
    BoundedLinearOperators (X,Y)),( 
    C_VectorSpace_of_LinearOperators (X,Y)))), ( 
    Mult_ (( 
    BoundedLinearOperators (X,Y)),( 
    C_VectorSpace_of_LinearOperators (X,Y)))), ( 
    BoundedLinearOperatorsNorm (X,Y)) #); 
    
      coherence ;
    
    end
    
    theorem :: 
    
    CLOPBAN1:30
    
    
    
    
    
    Th30: for X,Y be 
    ComplexNormSpace holds (the 
    carrier of X 
    --> ( 
    0. Y)) 
    = ( 
    0. ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y))) 
    
    proof
    
      let X,Y be
    ComplexNormSpace;
    
      (the
    carrier of X 
    --> ( 
    0. Y)) 
    = ( 
    0. ( 
    C_VectorSpace_of_BoundedLinearOperators (X,Y))) by 
    Th25
    
      .= (
    0. ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CLOPBAN1:31
    
    
    
    
    
    Th31: for X,Y be 
    ComplexNormSpace, f be 
    Point of ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y)), g be 
    Lipschitzian  
    LinearOperator of X, Y st g 
    = f holds for t be 
    VECTOR of X holds 
    ||.(g
    . t).|| 
    <= ( 
    ||.f.||
    *  
    ||.t.||)
    
    proof
    
      let X,Y be
    ComplexNormSpace;
    
      let f be
    Point of ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
      let g be
    Lipschitzian  
    LinearOperator of X, Y such that 
    
      
    
    A1: g 
    = f; 
    
      
    
      
    
    A2: ( 
    PreNorms g) is non 
    empty
    bounded_above by 
    Th26;
    
      now
    
        let t be
    VECTOR of X; 
    
        now
    
          per cases ;
    
            case
    
            
    
    A3: t 
    = ( 
    0. X); 
    
            then
    
            
    
    A4: 
    ||.t.||
    =  
    0 by 
    NORMSP_0:def 6;
    
            (g
    . t) 
    = (g 
    . ( 
    0c  
    * ( 
    0. X))) by 
    A3,
    CLVECT_1: 1
    
            .= (
    0c  
    * (g 
    . ( 
    0. X))) by 
    Def3
    
            .= (
    0. Y) by 
    CLVECT_1: 1;
    
            hence
    ||.(g
    . t).|| 
    <= ( 
    ||.f.||
    *  
    ||.t.||) by
    A4,
    NORMSP_0:def 6;
    
          end;
    
            case
    
            
    
    A5: t 
    <> ( 
    0. X); 
    
            reconsider t0 = ((
    ||.t.||
    " ) 
    + ( 
    0  
    *  
    <i> )) as 
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
            reconsider t1 = (t0
    * t) as 
    VECTOR of X; 
    
            
    
            
    
    A6: 
    ||.t.||
    <>  
    0 by 
    A5,
    NORMSP_0:def 5;
    
            then
    
            
    
    A7: 
    ||.t.||
    >  
    0 by 
    CLVECT_1: 105;
    
            
    
            
    
    A8: 
    |.t0.|
    =  
    |.(1
    * ( 
    ||.t.||
    " )).| 
    
            .=
    |.(1
    /  
    ||.t.||).| by
    XCMPLX_0:def 9
    
            .= (1
    /  
    |.
    ||.t.||.|) by
    ABSVALUE: 7
    
            .= (1
    /  
    ||.t.||) by
    A7,
    ABSVALUE:def 1
    
            .= (1
    * ( 
    ||.t.||
    " )) by 
    XCMPLX_0:def 9
    
            .= (
    ||.t.||
    " ); 
    
            
    
            then
    
            
    
    A9: ( 
    ||.(g
    . t).|| 
    /  
    ||.t.||)
    = ( 
    ||.(g
    . t).|| 
    *  
    |.t0.|) by
    XCMPLX_0:def 9
    
            .=
    ||.(t0
    * (g 
    . t)).|| by 
    CLVECT_1:def 13
    
            .=
    ||.(g
    . t1).|| by 
    Def3;
    
            
    ||.t1.||
    = ( 
    |.t0.|
    *  
    ||.t.||) by
    CLVECT_1:def 13
    
            .= 1 by
    A6,
    A8,
    XCMPLX_0:def 7;
    
            then (
    ||.(g
    . t).|| 
    /  
    ||.t.||)
    in { 
    ||.(g
    . s).|| where s be 
    VECTOR of X : 
    ||.s.||
    <= 1 } by 
    A9;
    
            then (
    ||.(g
    . t).|| 
    /  
    ||.t.||)
    <= ( 
    upper_bound ( 
    PreNorms g)) by 
    A2,
    SEQ_4:def 1;
    
            then (
    ||.(g
    . t).|| 
    /  
    ||.t.||)
    <= (( 
    BoundedLinearOperatorsNorm (X,Y)) 
    . g) by 
    Th29;
    
            then
    
            
    
    A10: ( 
    ||.(g
    . t).|| 
    /  
    ||.t.||)
    <=  
    ||.f.|| by
    A1;
    
            ((
    ||.(g
    . t).|| 
    /  
    ||.t.||)
    *  
    ||.t.||)
    = (( 
    ||.(g
    . t).|| 
    * ( 
    ||.t.||
    " )) 
    *  
    ||.t.||) by
    XCMPLX_0:def 9
    
            .= (
    ||.(g
    . t).|| 
    * (( 
    ||.t.||
    " ) 
    *  
    ||.t.||))
    
            .= (
    ||.(g
    . t).|| 
    * 1) by 
    A6,
    XCMPLX_0:def 7
    
            .=
    ||.(g
    . t).||; 
    
            hence
    ||.(g
    . t).|| 
    <= ( 
    ||.f.||
    *  
    ||.t.||) by
    A7,
    A10,
    XREAL_1: 64;
    
          end;
    
        end;
    
        hence
    ||.(g
    . t).|| 
    <= ( 
    ||.f.||
    *  
    ||.t.||);
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CLOPBAN1:32
    
    
    
    
    
    Th32: for X,Y be 
    ComplexNormSpace, f be 
    Point of ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y)) holds 
    0  
    <=  
    ||.f.||
    
    proof
    
      let X,Y be
    ComplexNormSpace;
    
      let f be
    Point of ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
      reconsider g = f as
    Lipschitzian  
    LinearOperator of X, Y by 
    Def7;
    
      consider r0 be
    object such that 
    
      
    
    A1: r0 
    in ( 
    PreNorms g) by 
    XBOOLE_0:def 1;
    
      reconsider r0 as
    Real by 
    A1;
    
      
    
      
    
    A2: ( 
    PreNorms g) is non 
    empty
    bounded_above by 
    Th26;
    
      
    
      
    
    A3: (( 
    BoundedLinearOperatorsNorm (X,Y)) 
    . f) 
    = ( 
    upper_bound ( 
    PreNorms g)) by 
    Th29;
    
      now
    
        let r be
    Real;
    
        assume r
    in ( 
    PreNorms g); 
    
        then ex t be
    VECTOR of X st r 
    =  
    ||.(g
    . t).|| & 
    ||.t.||
    <= 1; 
    
        hence
    0  
    <= r by 
    CLVECT_1: 105;
    
      end;
    
      then
    0  
    <= r0 by 
    A1;
    
      then
    0  
    <= ( 
    upper_bound ( 
    PreNorms g)) by 
    A2,
    A1,
    SEQ_4:def 1;
    
      hence thesis by
    A3;
    
    end;
    
    theorem :: 
    
    CLOPBAN1:33
    
    
    
    
    
    Th33: for X,Y be 
    ComplexNormSpace, f be 
    Point of ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y)) st f 
    = ( 
    0. ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y))) holds 
    0  
    =  
    ||.f.||
    
    proof
    
      let X,Y be
    ComplexNormSpace;
    
      let f be
    Point of ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y)) such that 
    
      
    
    A1: f 
    = ( 
    0. ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y))); 
    
      thus
    ||.f.||
    =  
    0  
    
      proof
    
        reconsider g = f as
    Lipschitzian  
    LinearOperator of X, Y by 
    Def7;
    
        set z = (the
    carrier of X 
    --> ( 
    0. Y)); 
    
        reconsider z as
    Function of the 
    carrier of X, the 
    carrier of Y; 
    
        consider r0 be
    object such that 
    
        
    
    A2: r0 
    in ( 
    PreNorms g) by 
    XBOOLE_0:def 1;
    
        reconsider r0 as
    Real by 
    A2;
    
        
    
        
    
    A3: (for s be 
    Real st s 
    in ( 
    PreNorms g) holds s 
    <=  
    0 ) implies ( 
    upper_bound ( 
    PreNorms g)) 
    <=  
    0 by 
    SEQ_4: 45;
    
        
    
        
    
    A4: ( 
    PreNorms g) is non 
    empty
    bounded_above by 
    Th26;
    
        
    
        
    
    A5: z 
    = g by 
    A1,
    Th30;
    
        
    
    A6: 
    
        now
    
          let r be
    Real;
    
          assume r
    in ( 
    PreNorms g); 
    
          then
    
          consider t be
    VECTOR of X such that 
    
          
    
    A7: r 
    =  
    ||.(g
    . t).|| and 
    ||.t.||
    <= 1; 
    
          
    ||.(g
    . t).|| 
    =  
    ||.(
    0. Y).|| by 
    A5,
    FUNCOP_1: 7
    
          .=
    0 by 
    NORMSP_0:def 6;
    
          hence
    0  
    <= r & r 
    <=  
    0 by 
    A7;
    
        end;
    
        then
    0  
    <= r0 by 
    A2;
    
        then (
    upper_bound ( 
    PreNorms g)) 
    =  
    0 by 
    A6,
    A4,
    A2,
    A3,
    SEQ_4:def 1;
    
        then ((
    BoundedLinearOperatorsNorm (X,Y)) 
    . f) 
    =  
    0 by 
    Th29;
    
        hence thesis;
    
      end;
    
    end;
    
    registration
    
      let X,Y be
    ComplexNormSpace;
    
      cluster -> 
    Function-like
    Relation-like for 
    Element of ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
      coherence ;
    
    end
    
    definition
    
      let X,Y be
    ComplexNormSpace;
    
      let f be
    Element of ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
      let v be
    VECTOR of X; 
    
      :: original:
    .
    
      redefine
    
      func f
    
    . v -> 
    VECTOR of Y ; 
    
      coherence
    
      proof
    
        reconsider f as
    LinearOperator of X, Y by 
    Def7;
    
        (f
    . v) is 
    VECTOR of Y; 
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    CLOPBAN1:34
    
    
    
    
    
    Th34: for X,Y be 
    ComplexNormSpace, f,g,h be 
    Point of ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y)) holds h 
    = (f 
    + g) iff for x be 
    VECTOR of X holds (h 
    . x) 
    = ((f 
    . x) 
    + (g 
    . x)) 
    
    proof
    
      let X,Y be
    ComplexNormSpace;
    
      let f,g,h be
    Point of ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
      reconsider f1 = f, g1 = g, h1 = h as
    VECTOR of ( 
    C_VectorSpace_of_BoundedLinearOperators (X,Y)); 
    
      h
    = (f 
    + g) iff h1 
    = (f1 
    + g1); 
    
      hence thesis by
    Th23;
    
    end;
    
    theorem :: 
    
    CLOPBAN1:35
    
    
    
    
    
    Th35: for X,Y be 
    ComplexNormSpace, f,h be 
    Point of ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y)), c be 
    Complex holds h 
    = (c 
    * f) iff for x be 
    VECTOR of X holds (h 
    . x) 
    = (c 
    * (f 
    . x)) 
    
    proof
    
      let X,Y be
    ComplexNormSpace;
    
      let f,h be
    Point of ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
      let c be
    Complex;
    
      reconsider f1 = f as
    VECTOR of ( 
    C_VectorSpace_of_BoundedLinearOperators (X,Y)); 
    
      reconsider h1 = h as
    VECTOR of ( 
    C_VectorSpace_of_BoundedLinearOperators (X,Y)); 
    
      
    
    A1: 
    
      now
    
        assume h1
    = (c 
    * f1); 
    
        
    
        hence h
    = (( 
    Mult_ (( 
    BoundedLinearOperators (X,Y)),( 
    C_VectorSpace_of_LinearOperators (X,Y)))) 
    .  
    [c, f1]) by
    CLVECT_1:def 1
    
        .= (c
    * f) by 
    CLVECT_1:def 1;
    
      end;
    
      now
    
        assume h
    = (c 
    * f); 
    
        
    
        hence h1
    = (( 
    Mult_ (( 
    BoundedLinearOperators (X,Y)),( 
    C_VectorSpace_of_LinearOperators (X,Y)))) 
    .  
    [c, f]) by
    CLVECT_1:def 1
    
        .= (c
    * f1) by 
    CLVECT_1:def 1;
    
      end;
    
      hence thesis by
    A1,
    Th24;
    
    end;
    
    theorem :: 
    
    CLOPBAN1:36
    
    
    
    
    
    Th36: for X,Y be 
    ComplexNormSpace, f,g be 
    Point of ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y)), c be 
    Complex holds ( 
    ||.f.||
    =  
    0 iff f 
    = ( 
    0. ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y)))) & 
    ||.(c
    * f).|| 
    = ( 
    |.c.|
    *  
    ||.f.||) &
    ||.(f
    + g).|| 
    <= ( 
    ||.f.||
    +  
    ||.g.||)
    
    proof
    
      let X,Y be
    ComplexNormSpace;
    
      let f,g be
    Point of ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
      let c be
    Complex;
    
      
    
    A1: 
    
      now
    
        assume
    
        
    
    A2: f 
    = ( 
    0. ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y))); 
    
        thus
    ||.f.||
    =  
    0  
    
        proof
    
          reconsider g = f as
    Lipschitzian  
    LinearOperator of X, Y by 
    Def7;
    
          set z = (the
    carrier of X 
    --> ( 
    0. Y)); 
    
          reconsider z as
    Function of the 
    carrier of X, the 
    carrier of Y; 
    
          consider r0 be
    object such that 
    
          
    
    A3: r0 
    in ( 
    PreNorms g) by 
    XBOOLE_0:def 1;
    
          reconsider r0 as
    Real by 
    A3;
    
          
    
          
    
    A4: (for s be 
    Real st s 
    in ( 
    PreNorms g) holds s 
    <=  
    0 ) implies ( 
    upper_bound ( 
    PreNorms g)) 
    <=  
    0 by 
    SEQ_4: 45;
    
          
    
          
    
    A5: ( 
    PreNorms g) is non 
    empty
    bounded_above by 
    Th26;
    
          
    
          
    
    A6: z 
    = g by 
    A2,
    Th30;
    
          
    
    A7: 
    
          now
    
            let r be
    Real;
    
            assume r
    in ( 
    PreNorms g); 
    
            then
    
            consider t be
    VECTOR of X such that 
    
            
    
    A8: r 
    =  
    ||.(g
    . t).|| and 
    ||.t.||
    <= 1; 
    
            
    ||.(g
    . t).|| 
    =  
    ||.(
    0. Y).|| by 
    A6,
    FUNCOP_1: 7
    
            .=
    0 by 
    NORMSP_0:def 6;
    
            hence
    0  
    <= r & r 
    <=  
    0 by 
    A8;
    
          end;
    
          then
    0  
    <= r0 by 
    A3;
    
          then (
    upper_bound ( 
    PreNorms g)) 
    =  
    0 by 
    A7,
    A5,
    A3,
    A4,
    SEQ_4:def 1;
    
          then ((
    BoundedLinearOperatorsNorm (X,Y)) 
    . f) 
    =  
    0 by 
    Th29;
    
          hence thesis;
    
        end;
    
      end;
    
      
    
      
    
    A9: 
    ||.(f
    + g).|| 
    <= ( 
    ||.f.||
    +  
    ||.g.||)
    
      proof
    
        reconsider f1 = f, g1 = g, h1 = (f
    + g) as 
    Lipschitzian  
    LinearOperator of X, Y by 
    Def7;
    
        
    
        
    
    A10: (for s be 
    Real st s 
    in ( 
    PreNorms h1) holds s 
    <= ( 
    ||.f.||
    +  
    ||.g.||)) implies (
    upper_bound ( 
    PreNorms h1)) 
    <= ( 
    ||.f.||
    +  
    ||.g.||) by
    SEQ_4: 45;
    
        
    
    A11: 
    
        now
    
          let t be
    VECTOR of X such that 
    
          
    
    A12: 
    ||.t.||
    <= 1; 
    
          
    0  
    <=  
    ||.g.|| by
    Th32;
    
          then
    
          
    
    A13: ( 
    ||.g.||
    *  
    ||.t.||)
    <= ( 
    ||.g.||
    * 1) by 
    A12,
    XREAL_1: 64;
    
          
    0  
    <=  
    ||.f.|| by
    Th32;
    
          then (
    ||.f.||
    *  
    ||.t.||)
    <= ( 
    ||.f.||
    * 1) by 
    A12,
    XREAL_1: 64;
    
          then
    
          
    
    A14: (( 
    ||.f.||
    *  
    ||.t.||)
    + ( 
    ||.g.||
    *  
    ||.t.||))
    <= (( 
    ||.f.||
    * 1) 
    + ( 
    ||.g.||
    * 1)) by 
    A13,
    XREAL_1: 7;
    
          
    
          
    
    A15: 
    ||.((f1
    . t) 
    + (g1 
    . t)).|| 
    <= ( 
    ||.(f1
    . t).|| 
    +  
    ||.(g1
    . t).||) by 
    CLVECT_1:def 13;
    
          
    
          
    
    A16: 
    ||.(g1
    . t).|| 
    <= ( 
    ||.g.||
    *  
    ||.t.||) by
    Th31;
    
          
    ||.(f1
    . t).|| 
    <= ( 
    ||.f.||
    *  
    ||.t.||) by
    Th31;
    
          then (
    ||.(f1
    . t).|| 
    +  
    ||.(g1
    . t).||) 
    <= (( 
    ||.f.||
    *  
    ||.t.||)
    + ( 
    ||.g.||
    *  
    ||.t.||)) by
    A16,
    XREAL_1: 7;
    
          then
    
          
    
    A17: ( 
    ||.(f1
    . t).|| 
    +  
    ||.(g1
    . t).||) 
    <= ( 
    ||.f.||
    +  
    ||.g.||) by
    A14,
    XXREAL_0: 2;
    
          
    ||.(h1
    . t).|| 
    =  
    ||.((f1
    . t) 
    + (g1 
    . t)).|| by 
    Th34;
    
          hence
    ||.(h1
    . t).|| 
    <= ( 
    ||.f.||
    +  
    ||.g.||) by
    A15,
    A17,
    XXREAL_0: 2;
    
        end;
    
        
    
    A18: 
    
        now
    
          let r be
    Real;
    
          assume r
    in ( 
    PreNorms h1); 
    
          then ex t be
    VECTOR of X st r 
    =  
    ||.(h1
    . t).|| & 
    ||.t.||
    <= 1; 
    
          hence r
    <= ( 
    ||.f.||
    +  
    ||.g.||) by
    A11;
    
        end;
    
        ((
    BoundedLinearOperatorsNorm (X,Y)) 
    . (f 
    + g)) 
    = ( 
    upper_bound ( 
    PreNorms h1)) by 
    Th29;
    
        hence thesis by
    A18,
    A10;
    
      end;
    
      
    
      
    
    A19: 
    ||.(c
    * f).|| 
    = ( 
    |.c.|
    *  
    ||.f.||)
    
      proof
    
        reconsider f1 = f, h1 = (c
    * f) as 
    Lipschitzian  
    LinearOperator of X, Y by 
    Def7;
    
        
    
        
    
    A20: (for s be 
    Real st s 
    in ( 
    PreNorms h1) holds s 
    <= ( 
    |.c.|
    *  
    ||.f.||)) implies (
    upper_bound ( 
    PreNorms h1)) 
    <= ( 
    |.c.|
    *  
    ||.f.||) by
    SEQ_4: 45;
    
        
    
    A21: 
    
        now
    
          
    
          
    
    A22: 
    0  
    <=  
    ||.f.|| by
    Th32;
    
          let t be
    VECTOR of X; 
    
          assume
    ||.t.||
    <= 1; 
    
          then
    
          
    
    A23: ( 
    ||.f.||
    *  
    ||.t.||)
    <= ( 
    ||.f.||
    * 1) by 
    A22,
    XREAL_1: 64;
    
          
    ||.(f1
    . t).|| 
    <= ( 
    ||.f.||
    *  
    ||.t.||) by
    Th31;
    
          then
    
          
    
    A24: 
    ||.(f1
    . t).|| 
    <=  
    ||.f.|| by
    A23,
    XXREAL_0: 2;
    
          
    
          
    
    A25: 
    ||.(c
    * (f1 
    . t)).|| 
    = ( 
    |.c.|
    *  
    ||.(f1
    . t).||) by 
    CLVECT_1:def 13;
    
          
    
          
    
    A26: 
    0  
    <=  
    |.c.| by
    COMPLEX1: 46;
    
          
    ||.(h1
    . t).|| 
    =  
    ||.(c
    * (f1 
    . t)).|| by 
    Th35;
    
          hence
    ||.(h1
    . t).|| 
    <= ( 
    |.c.|
    *  
    ||.f.||) by
    A25,
    A24,
    A26,
    XREAL_1: 64;
    
        end;
    
        
    
    A27: 
    
        now
    
          let r be
    Real;
    
          assume r
    in ( 
    PreNorms h1); 
    
          then ex t be
    VECTOR of X st r 
    =  
    ||.(h1
    . t).|| & 
    ||.t.||
    <= 1; 
    
          hence r
    <= ( 
    |.c.|
    *  
    ||.f.||) by
    A21;
    
        end;
    
        
    
    A28: 
    
        now
    
          per cases ;
    
            case
    
            
    
    A29: c 
    <>  
    0c ; 
    
            
    
    A30: 
    
            now
    
              
    
              
    
    A31: 
    0  
    <=  
    ||.(c
    * f).|| by 
    Th32;
    
              let t be
    VECTOR of X; 
    
              assume
    ||.t.||
    <= 1; 
    
              then
    
              
    
    A32: ( 
    ||.(c
    * f).|| 
    *  
    ||.t.||)
    <= ( 
    ||.(c
    * f).|| 
    * 1) by 
    A31,
    XREAL_1: 64;
    
              
    ||.(h1
    . t).|| 
    <= ( 
    ||.(c
    * f).|| 
    *  
    ||.t.||) by
    Th31;
    
              then
    
              
    
    A33: 
    ||.(h1
    . t).|| 
    <=  
    ||.(c
    * f).|| by 
    A32,
    XXREAL_0: 2;
    
              (h1
    . t) 
    = (c 
    * (f1 
    . t)) by 
    Th35;
    
              
    
              then
    
              
    
    A34: ((c 
    " ) 
    * (h1 
    . t)) 
    = (((c 
    " ) 
    * c) 
    * (f1 
    . t)) by 
    CLVECT_1:def 4
    
              .= (
    1r  
    * (f1 
    . t)) by 
    A29,
    COMPLEX1:def 4,
    XCMPLX_0:def 7
    
              .= (f1
    . t) by 
    CLVECT_1:def 5;
    
              
    
              
    
    A35: 
    |.(c
    " ).| 
    = ( 
    |.c.|
    " ) by 
    COMPLEX1: 66;
    
              
    
              
    
    A36: 
    0  
    <=  
    |.(c
    " ).| by 
    COMPLEX1: 46;
    
              
    ||.((c
    " ) 
    * (h1 
    . t)).|| 
    = ( 
    |.(c
    " ).| 
    *  
    ||.(h1
    . t).||) by 
    CLVECT_1:def 13;
    
              hence
    ||.(f1
    . t).|| 
    <= (( 
    |.c.|
    " ) 
    *  
    ||.(c
    * f).||) by 
    A34,
    A33,
    A36,
    A35,
    XREAL_1: 64;
    
            end;
    
            
    
    A37: 
    
            now
    
              let r be
    Real;
    
              assume r
    in ( 
    PreNorms f1); 
    
              then ex t be
    VECTOR of X st r 
    =  
    ||.(f1
    . t).|| & 
    ||.t.||
    <= 1; 
    
              hence r
    <= (( 
    |.c.|
    " ) 
    *  
    ||.(c
    * f).||) by 
    A30;
    
            end;
    
            
    
            
    
    A38: (for s be 
    Real st s 
    in ( 
    PreNorms f1) holds s 
    <= (( 
    |.c.|
    " ) 
    *  
    ||.(c
    * f).||)) implies ( 
    upper_bound ( 
    PreNorms f1)) 
    <= (( 
    |.c.|
    " ) 
    *  
    ||.(c
    * f).||) by 
    SEQ_4: 45;
    
            
    
            
    
    A39: 
    0  
    <=  
    |.c.| by
    COMPLEX1: 46;
    
            ((
    BoundedLinearOperatorsNorm (X,Y)) 
    . f) 
    = ( 
    upper_bound ( 
    PreNorms f1)) by 
    Th29;
    
            then
    ||.f.||
    <= (( 
    |.c.|
    " ) 
    *  
    ||.(c
    * f).||) by 
    A37,
    A38;
    
            then (
    |.c.|
    *  
    ||.f.||)
    <= ( 
    |.c.|
    * (( 
    |.c.|
    " ) 
    *  
    ||.(c
    * f).||)) by 
    A39,
    XREAL_1: 64;
    
            then
    
            
    
    A40: ( 
    |.c.|
    *  
    ||.f.||)
    <= (( 
    |.c.|
    * ( 
    |.c.|
    " )) 
    *  
    ||.(c
    * f).||); 
    
            
    |.c.|
    <>  
    0 by 
    A29,
    COMPLEX1: 47;
    
            then (
    |.c.|
    *  
    ||.f.||)
    <= (1 
    *  
    ||.(c
    * f).||) by 
    A40,
    XCMPLX_0:def 7;
    
            hence (
    |.c.|
    *  
    ||.f.||)
    <=  
    ||.(c
    * f).||; 
    
          end;
    
            case
    
            
    
    A41: c 
    =  
    0c ; 
    
            reconsider fz = f as
    VECTOR of ( 
    C_VectorSpace_of_BoundedLinearOperators (X,Y)); 
    
            (c
    * f) 
    = (( 
    Mult_ (( 
    BoundedLinearOperators (X,Y)),( 
    C_VectorSpace_of_LinearOperators (X,Y)))) 
    .  
    [c, f]) by
    CLVECT_1:def 1
    
            .= (c
    * fz) by 
    CLVECT_1:def 1
    
            .= (
    0. ( 
    C_VectorSpace_of_BoundedLinearOperators (X,Y))) by 
    A41,
    CLVECT_1: 1
    
            .= (
    0. ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y))); 
    
            hence thesis by
    A41,
    Th33,
    COMPLEX1: 44;
    
          end;
    
        end;
    
        ((
    BoundedLinearOperatorsNorm (X,Y)) 
    . (c 
    * f)) 
    = ( 
    upper_bound ( 
    PreNorms h1)) by 
    Th29;
    
        then
    ||.(c
    * f).|| 
    <= ( 
    |.c.|
    *  
    ||.f.||) by
    A27,
    A20;
    
        hence thesis by
    A28,
    XXREAL_0: 1;
    
      end;
    
      now
    
        reconsider g = f as
    Lipschitzian  
    LinearOperator of X, Y by 
    Def7;
    
        set z = (the
    carrier of X 
    --> ( 
    0. Y)); 
    
        reconsider z as
    Function of the 
    carrier of X, the 
    carrier of Y; 
    
        assume
    
        
    
    A42: 
    ||.f.||
    =  
    0 ; 
    
        now
    
          let t be
    VECTOR of X; 
    
          
    ||.(g
    . t).|| 
    <= ( 
    ||.f.||
    *  
    ||.t.||) by
    Th31;
    
          then
    ||.(g
    . t).|| 
    =  
    0 by 
    A42,
    CLVECT_1: 105;
    
          
    
          hence (g
    . t) 
    = ( 
    0. Y) by 
    NORMSP_0:def 5
    
          .= (z
    . t) by 
    FUNCOP_1: 7;
    
        end;
    
        then g
    = z by 
    FUNCT_2: 63;
    
        hence f
    = ( 
    0. ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y))) by 
    Th30;
    
      end;
    
      hence thesis by
    A1,
    A19,
    A9;
    
    end;
    
    theorem :: 
    
    CLOPBAN1:37
    
    
    
    
    
    Th37: for X,Y be 
    ComplexNormSpace holds ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y)) is 
    reflexive
    discerning
    ComplexNormSpace-like
    
    proof
    
      let X,Y be
    ComplexNormSpace;
    
      thus (
    C_NormSpace_of_BoundedLinearOperators (X,Y)) is 
    reflexive by 
    Th36;
    
      for x,y be
    Point of ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y)) holds for c be 
    Complex holds ( 
    ||.x.||
    =  
    0 iff x 
    = ( 
    0. ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y)))) & 
    ||.(c
    * x).|| 
    = ( 
    |.c.|
    *  
    ||.x.||) &
    ||.(x
    + y).|| 
    <= ( 
    ||.x.||
    +  
    ||.y.||) by
    Th36;
    
      hence thesis by
    CLVECT_1:def 13;
    
    end;
    
    theorem :: 
    
    CLOPBAN1:38
    
    
    
    
    
    Th38: for X,Y be 
    ComplexNormSpace holds ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y)) is 
    ComplexNormSpace
    
    proof
    
      let X,Y be
    ComplexNormSpace;
    
      
    CLSStruct (# ( 
    BoundedLinearOperators (X,Y)), ( 
    Zero_ (( 
    BoundedLinearOperators (X,Y)),( 
    C_VectorSpace_of_LinearOperators (X,Y)))), ( 
    Add_ (( 
    BoundedLinearOperators (X,Y)),( 
    C_VectorSpace_of_LinearOperators (X,Y)))), ( 
    Mult_ (( 
    BoundedLinearOperators (X,Y)),( 
    C_VectorSpace_of_LinearOperators (X,Y)))) #) is 
    ComplexLinearSpace;
    
      hence thesis by
    Th37,
    CSSPACE3: 2;
    
    end;
    
    registration
    
      let X,Y be
    ComplexNormSpace;
    
      cluster ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y)) -> 
    reflexive
    discerning
    ComplexNormSpace-like
    vector-distributive
    scalar-distributive
    scalar-associative
    scalar-unital
    Abelian
    add-associative
    right_zeroed
    right_complementable;
    
      coherence by
    Th38;
    
    end
    
    theorem :: 
    
    CLOPBAN1:39
    
    
    
    
    
    Th39: for X,Y be 
    ComplexNormSpace, f,g,h be 
    Point of ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y)) holds h 
    = (f 
    - g) iff for x be 
    VECTOR of X holds (h 
    . x) 
    = ((f 
    . x) 
    - (g 
    . x)) 
    
    proof
    
      let X,Y be
    ComplexNormSpace;
    
      let f,g,h be
    Point of ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
      reconsider f9 = f, g9 = g, h9 = h as
    Lipschitzian  
    LinearOperator of X, Y by 
    Def7;
    
      hereby
    
        assume h
    = (f 
    - g); 
    
        then (h
    + g) 
    = (f 
    - (g 
    - g)) by 
    RLVECT_1: 29;
    
        then (h
    + g) 
    = (f 
    - ( 
    0. ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y)))) by 
    RLVECT_1: 15;
    
        then
    
        
    
    A1: (h 
    + g) 
    = f by 
    RLVECT_1: 13;
    
        now
    
          let x be
    VECTOR of X; 
    
          (f9
    . x) 
    = ((h9 
    . x) 
    + (g9 
    . x)) by 
    A1,
    Th34;
    
          then ((f9
    . x) 
    - (g9 
    . x)) 
    = ((h9 
    . x) 
    + ((g9 
    . x) 
    - (g9 
    . x))) by 
    RLVECT_1:def 3;
    
          then ((f9
    . x) 
    - (g9 
    . x)) 
    = ((h9 
    . x) 
    + ( 
    0. Y)) by 
    RLVECT_1: 15;
    
          hence ((f9
    . x) 
    - (g9 
    . x)) 
    = (h9 
    . x) by 
    RLVECT_1: 4;
    
        end;
    
        hence for x be
    VECTOR of X holds (h 
    . x) 
    = ((f 
    . x) 
    - (g 
    . x)); 
    
      end;
    
      assume
    
      
    
    A2: for x be 
    VECTOR of X holds (h 
    . x) 
    = ((f 
    . x) 
    - (g 
    . x)); 
    
      now
    
        let x be
    VECTOR of X; 
    
        (h9
    . x) 
    = ((f9 
    . x) 
    - (g9 
    . x)) by 
    A2;
    
        then ((h9
    . x) 
    + (g9 
    . x)) 
    = ((f9 
    . x) 
    - ((g9 
    . x) 
    - (g9 
    . x))) by 
    RLVECT_1: 29;
    
        then ((h9
    . x) 
    + (g9 
    . x)) 
    = ((f9 
    . x) 
    - ( 
    0. Y)) by 
    RLVECT_1: 15;
    
        hence ((h9
    . x) 
    + (g9 
    . x)) 
    = (f9 
    . x) by 
    RLVECT_1: 13;
    
      end;
    
      then f
    = (h 
    + g) by 
    Th34;
    
      then (f
    - g) 
    = (h 
    + (g 
    - g)) by 
    RLVECT_1:def 3;
    
      then (f
    - g) 
    = (h 
    + ( 
    0. ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y)))) by 
    RLVECT_1: 15;
    
      hence thesis by
    RLVECT_1: 4;
    
    end;
    
    begin
    
    definition
    
      let X be
    ComplexNormSpace;
    
      :: 
    
    CLOPBAN1:def13
    
      attr X is
    
    complete means 
    
      :
    
    Def13: for seq be 
    sequence of X holds seq is 
    Cauchy_sequence_by_Norm implies seq is 
    convergent;
    
    end
    
    registration
    
      cluster 
    complete for 
    ComplexNormSpace;
    
      existence by
    Def13,
    CSSPACE3: 9;
    
    end
    
    definition
    
      mode
    
    ComplexBanachSpace is 
    complete  
    ComplexNormSpace;
    
    end
    
    
    
    
    
    Lm2: for e be 
    Real, seq be 
    Real_Sequence st (seq is 
    convergent & ex k be 
    Nat st for i be 
    Nat st k 
    <= i holds (seq 
    . i) 
    <= e) holds ( 
    lim seq) 
    <= e 
    
    proof
    
      let e be
    Real;
    
      let seq be
    Real_Sequence such that 
    
      
    
    A1: seq is 
    convergent and 
    
      
    
    A2: ex k be 
    Nat st for i be 
    Nat st k 
    <= i holds (seq 
    . i) 
    <= e; 
    
      consider k be
    Nat such that 
    
      
    
    A3: for i be 
    Nat st k 
    <= i holds (seq 
    . i) 
    <= e by 
    A2;
    
      reconsider e as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
      set cseq = (
    seq_const e); 
    
      
    
      
    
    A4: ( 
    lim cseq) 
    = (cseq 
    .  
    0 ) by 
    SEQ_4: 26
    
      .= e by
    SEQ_1: 57;
    
      
    
    A5: 
    
      now
    
        let i be
    Nat;
    
        
    
        
    
    A6: ((seq 
    ^\ k) 
    . i) 
    = (seq 
    . (k 
    + i)) by 
    NAT_1:def 3;
    
        (seq
    . (k 
    + i)) 
    <= e by 
    A3,
    NAT_1: 11;
    
        hence ((seq
    ^\ k) 
    . i) 
    <= (cseq 
    . i) by 
    A6,
    SEQ_1: 57;
    
      end;
    
      (
    lim (seq 
    ^\ k)) 
    = ( 
    lim seq) by 
    A1,
    SEQ_4: 20;
    
      hence thesis by
    A1,
    A5,
    A4,
    SEQ_2: 18;
    
    end;
    
    theorem :: 
    
    CLOPBAN1:40
    
    
    
    
    
    Th40: for X be 
    ComplexNormSpace, seq be 
    sequence of X st seq is 
    convergent holds 
    ||.seq.|| is
    convergent & ( 
    lim  
    ||.seq.||)
    =  
    ||.(
    lim seq).|| 
    
    proof
    
      let X be
    ComplexNormSpace;
    
      let seq be
    sequence of X such that 
    
      
    
    A1: seq is 
    convergent;
    
      
    
    A2: 
    
      now
    
        let e1 be
    Real such that 
    
        
    
    A3: e1 
    >  
    0 ; 
    
        reconsider e = e1 as
    Real;
    
        consider k be
    Nat such that 
    
        
    
    A4: for n be 
    Nat st n 
    >= k holds 
    ||.((seq
    . n) 
    - ( 
    lim seq)).|| 
    < e by 
    A1,
    A3,
    CLVECT_1:def 16;
    
        take k;
    
        now
    
          let m be
    Nat;
    
          assume m
    >= k; 
    
          then
    
          
    
    A5: 
    ||.((seq
    . m) 
    - ( 
    lim seq)).|| 
    < e by 
    A4;
    
          
    ||.(seq
    . m).|| 
    = ( 
    ||.seq.||
    . m) by 
    NORMSP_0:def 4;
    
          then
    |.((
    ||.seq.||
    . m) 
    -  
    ||.(
    lim seq).||).| 
    <=  
    ||.((seq
    . m) 
    - ( 
    lim seq)).|| by 
    CLVECT_1: 110;
    
          hence
    |.((
    ||.seq.||
    . m) 
    -  
    ||.(
    lim seq).||).| 
    < e1 by 
    A5,
    XXREAL_0: 2;
    
        end;
    
        hence for m be
    Nat st m 
    >= k holds 
    |.((
    ||.seq.||
    . m) 
    -  
    ||.(
    lim seq).||).| 
    < e1; 
    
      end;
    
      then
    ||.seq.|| is
    convergent by 
    SEQ_2:def 6;
    
      hence thesis by
    A2,
    SEQ_2:def 7;
    
    end;
    
    theorem :: 
    
    CLOPBAN1:41
    
    
    
    
    
    Th41: for X,Y be 
    ComplexNormSpace st Y is 
    complete holds for seq be 
    sequence of ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y)) st seq is 
    Cauchy_sequence_by_Norm holds seq is 
    convergent
    
    proof
    
      let X,Y be
    ComplexNormSpace such that 
    
      
    
    A1: Y is 
    complete;
    
      let vseq be
    sequence of ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y)) such that 
    
      
    
    A2: vseq is 
    Cauchy_sequence_by_Norm;
    
      defpred
    
    P[
    set, 
    set] means ex xseq be
    sequence of Y st (for n be 
    Nat holds (xseq 
    . n) 
    = (( 
    modetrans ((vseq 
    . n),X,Y)) 
    . $1)) & xseq is 
    convergent & $2 
    = ( 
    lim xseq); 
    
      
    
      
    
    A3: for x be 
    Element of X holds ex y be 
    Element of Y st 
    P[x, y]
    
      proof
    
        let x be
    Element of X; 
    
        deffunc
    
    F(
    Nat) = ((
    modetrans ((vseq 
    . $1),X,Y)) 
    . x); 
    
        consider xseq be
    sequence of Y such that 
    
        
    
    A4: for n be 
    Element of 
    NAT holds (xseq 
    . n) 
    =  
    F(n) from
    FUNCT_2:sch 4;
    
        
    
        
    
    A5: for n be 
    Nat holds (xseq 
    . n) 
    =  
    F(n)
    
        proof
    
          let n be
    Nat;
    
          n
    in  
    NAT by 
    ORDINAL1:def 12;
    
          hence thesis by
    A4;
    
        end;
    
        take (
    lim xseq); 
    
        
    
        
    
    A6: for m,k be 
    Nat holds 
    ||.((xseq
    . m) 
    - (xseq 
    . k)).|| 
    <= ( 
    ||.((vseq
    . m) 
    - (vseq 
    . k)).|| 
    *  
    ||.x.||)
    
        proof
    
          let m,k be
    Nat;
    
          
    
          
    
    A7: k 
    in  
    NAT by 
    ORDINAL1:def 12;
    
          
    
          
    
    A8: m 
    in  
    NAT by 
    ORDINAL1:def 12;
    
          reconsider h1 = ((vseq
    . m) 
    - (vseq 
    . k)) as 
    Lipschitzian  
    LinearOperator of X, Y by 
    Def7;
    
          
    
          
    
    A9: (xseq 
    . k) 
    = (( 
    modetrans ((vseq 
    . k),X,Y)) 
    . x) by 
    A4,
    A7;
    
          (vseq
    . m) is 
    Lipschitzian  
    LinearOperator of X, Y by 
    Def7;
    
          then
    
          
    
    A10: ( 
    modetrans ((vseq 
    . m),X,Y)) 
    = (vseq 
    . m) by 
    Th28;
    
          (vseq
    . k) is 
    Lipschitzian  
    LinearOperator of X, Y by 
    Def7;
    
          then
    
          
    
    A11: ( 
    modetrans ((vseq 
    . k),X,Y)) 
    = (vseq 
    . k) by 
    Th28;
    
          (xseq
    . m) 
    = (( 
    modetrans ((vseq 
    . m),X,Y)) 
    . x) by 
    A4,
    A8;
    
          then ((xseq
    . m) 
    - (xseq 
    . k)) 
    = (h1 
    . x) by 
    A10,
    A11,
    A9,
    Th39;
    
          hence thesis by
    Th31;
    
        end;
    
        now
    
          let e be
    Real such that 
    
          
    
    A12: e 
    >  
    0 ; 
    
          now
    
            per cases ;
    
              case
    
              
    
    A13: x 
    = ( 
    0. X); 
    
              take k =
    0 ; 
    
              thus for n,m be
    Nat st n 
    >= k & m 
    >= k holds 
    ||.((xseq
    . n) 
    - (xseq 
    . m)).|| 
    < e 
    
              proof
    
                let n,m be
    Nat such that n 
    >= k and m 
    >= k; 
    
                
    
                
    
    A14: n 
    in  
    NAT by 
    ORDINAL1:def 12;
    
                
    
                
    
    A15: m 
    in  
    NAT by 
    ORDINAL1:def 12;
    
                
    
                
    
    A16: (xseq 
    . m) 
    = (( 
    modetrans ((vseq 
    . m),X,Y)) 
    . x) by 
    A4,
    A15
    
                .= ((
    modetrans ((vseq 
    . m),X,Y)) 
    . ( 
    0c  
    * x)) by 
    A13,
    CLVECT_1: 1
    
                .= (
    0c  
    * (( 
    modetrans ((vseq 
    . m),X,Y)) 
    . x)) by 
    Def3
    
                .= (
    0. Y) by 
    CLVECT_1: 1;
    
                (xseq
    . n) 
    = (( 
    modetrans ((vseq 
    . n),X,Y)) 
    . x) by 
    A4,
    A14
    
                .= ((
    modetrans ((vseq 
    . n),X,Y)) 
    . ( 
    0c  
    * x)) by 
    A13,
    CLVECT_1: 1
    
                .= (
    0c  
    * (( 
    modetrans ((vseq 
    . n),X,Y)) 
    . x)) by 
    Def3
    
                .= (
    0. Y) by 
    CLVECT_1: 1;
    
                
    
                then
    ||.((xseq
    . n) 
    - (xseq 
    . m)).|| 
    =  
    ||.(
    0. Y).|| by 
    A16,
    RLVECT_1: 13
    
                .=
    0 by 
    NORMSP_0:def 6;
    
                hence thesis by
    A12;
    
              end;
    
            end;
    
              case x
    <> ( 
    0. X); 
    
              then
    
              
    
    A17: 
    ||.x.||
    <>  
    0 by 
    NORMSP_0:def 5;
    
              then
    
              
    
    A18: 
    ||.x.||
    >  
    0 by 
    CLVECT_1: 105;
    
              then
    
              consider k be
    Nat such that 
    
              
    
    A19: for n,m be 
    Nat st n 
    >= k & m 
    >= k holds 
    ||.((vseq
    . n) 
    - (vseq 
    . m)).|| 
    < (e 
    /  
    ||.x.||) by
    A2,
    A12,
    CSSPACE3: 8;
    
              take k;
    
              thus for n,m be
    Nat st n 
    >= k & m 
    >= k holds 
    ||.((xseq
    . n) 
    - (xseq 
    . m)).|| 
    < e 
    
              proof
    
                let n,m be
    Nat such that 
    
                
    
    A20: n 
    >= k and 
    
                
    
    A21: m 
    >= k; 
    
                
    ||.((vseq
    . n) 
    - (vseq 
    . m)).|| 
    < (e 
    /  
    ||.x.||) by
    A19,
    A20,
    A21;
    
                then
    
                
    
    A22: ( 
    ||.((vseq
    . n) 
    - (vseq 
    . m)).|| 
    *  
    ||.x.||)
    < ((e 
    /  
    ||.x.||)
    *  
    ||.x.||) by
    A18,
    XREAL_1: 68;
    
                
    
                
    
    A23: ((e 
    /  
    ||.x.||)
    *  
    ||.x.||)
    = ((e 
    * ( 
    ||.x.||
    " )) 
    *  
    ||.x.||) by
    XCMPLX_0:def 9
    
                .= (e
    * (( 
    ||.x.||
    " ) 
    *  
    ||.x.||))
    
                .= (e
    * 1) by 
    A17,
    XCMPLX_0:def 7
    
                .= e;
    
                
    ||.((xseq
    . n) 
    - (xseq 
    . m)).|| 
    <= ( 
    ||.((vseq
    . n) 
    - (vseq 
    . m)).|| 
    *  
    ||.x.||) by
    A6;
    
                hence thesis by
    A22,
    A23,
    XXREAL_0: 2;
    
              end;
    
            end;
    
          end;
    
          hence ex k be
    Nat st for n,m be 
    Nat st n 
    >= k & m 
    >= k holds 
    ||.((xseq
    . n) 
    - (xseq 
    . m)).|| 
    < e; 
    
        end;
    
        then xseq is
    Cauchy_sequence_by_Norm by 
    CSSPACE3: 8;
    
        then xseq is
    convergent by 
    A1;
    
        hence thesis by
    A5;
    
      end;
    
      consider f be
    Function of the 
    carrier of X, the 
    carrier of Y such that 
    
      
    
    A24: for x be 
    Element of X holds 
    P[x, (f
    . x)] from 
    FUNCT_2:sch 3(
    A3);
    
      reconsider tseq = f as
    Function of X, Y; 
    
      
    
    A25: 
    
      now
    
        let x,y be
    VECTOR of X; 
    
        consider xseq be
    sequence of Y such that 
    
        
    
    A26: for n be 
    Nat holds (xseq 
    . n) 
    = (( 
    modetrans ((vseq 
    . n),X,Y)) 
    . x) and 
    
        
    
    A27: xseq is 
    convergent and 
    
        
    
    A28: (tseq 
    . x) 
    = ( 
    lim xseq) by 
    A24;
    
        consider zseq be
    sequence of Y such that 
    
        
    
    A29: for n be 
    Nat holds (zseq 
    . n) 
    = (( 
    modetrans ((vseq 
    . n),X,Y)) 
    . (x 
    + y)) and zseq is 
    convergent and 
    
        
    
    A30: (tseq 
    . (x 
    + y)) 
    = ( 
    lim zseq) by 
    A24;
    
        consider yseq be
    sequence of Y such that 
    
        
    
    A31: for n be 
    Nat holds (yseq 
    . n) 
    = (( 
    modetrans ((vseq 
    . n),X,Y)) 
    . y) and 
    
        
    
    A32: yseq is 
    convergent and 
    
        
    
    A33: (tseq 
    . y) 
    = ( 
    lim yseq) by 
    A24;
    
        now
    
          let n be
    Nat;
    
          
    
          thus (zseq
    . n) 
    = (( 
    modetrans ((vseq 
    . n),X,Y)) 
    . (x 
    + y)) by 
    A29
    
          .= (((
    modetrans ((vseq 
    . n),X,Y)) 
    . x) 
    + (( 
    modetrans ((vseq 
    . n),X,Y)) 
    . y)) by 
    VECTSP_1:def 20
    
          .= ((xseq
    . n) 
    + (( 
    modetrans ((vseq 
    . n),X,Y)) 
    . y)) by 
    A26
    
          .= ((xseq
    . n) 
    + (yseq 
    . n)) by 
    A31;
    
        end;
    
        then zseq
    = (xseq 
    + yseq) by 
    NORMSP_1:def 2;
    
        hence (tseq
    . (x 
    + y)) 
    = ((tseq 
    . x) 
    + (tseq 
    . y)) by 
    A27,
    A28,
    A32,
    A33,
    A30,
    CLVECT_1: 119;
    
      end;
    
      now
    
        let x be
    VECTOR of X; 
    
        let c be
    Complex;
    
        consider xseq be
    sequence of Y such that 
    
        
    
    A34: for n be 
    Nat holds (xseq 
    . n) 
    = (( 
    modetrans ((vseq 
    . n),X,Y)) 
    . x) and 
    
        
    
    A35: xseq is 
    convergent and 
    
        
    
    A36: (tseq 
    . x) 
    = ( 
    lim xseq) by 
    A24;
    
        consider zseq be
    sequence of Y such that 
    
        
    
    A37: for n be 
    Nat holds (zseq 
    . n) 
    = (( 
    modetrans ((vseq 
    . n),X,Y)) 
    . (c 
    * x)) and zseq is 
    convergent and 
    
        
    
    A38: (tseq 
    . (c 
    * x)) 
    = ( 
    lim zseq) by 
    A24;
    
        now
    
          let n be
    Nat;
    
          
    
          thus (zseq
    . n) 
    = (( 
    modetrans ((vseq 
    . n),X,Y)) 
    . (c 
    * x)) by 
    A37
    
          .= (c
    * (( 
    modetrans ((vseq 
    . n),X,Y)) 
    . x)) by 
    Def3
    
          .= (c
    * (xseq 
    . n)) by 
    A34;
    
        end;
    
        then zseq
    = (c 
    * xseq) by 
    CLVECT_1:def 14;
    
        hence (tseq
    . (c 
    * x)) 
    = (c 
    * (tseq 
    . x)) by 
    A35,
    A36,
    A38,
    CLVECT_1: 122;
    
      end;
    
      then
    
      reconsider tseq as
    LinearOperator of X, Y by 
    A25,
    Def3,
    VECTSP_1:def 20;
    
      now
    
        let e1 be
    Real such that 
    
        
    
    A39: e1 
    >  
    0 ; 
    
        reconsider e = e1 as
    Real;
    
        consider k be
    Nat such that 
    
        
    
    A40: for n,m be 
    Nat st n 
    >= k & m 
    >= k holds 
    ||.((vseq
    . n) 
    - (vseq 
    . m)).|| 
    < e by 
    A2,
    A39,
    CSSPACE3: 8;
    
        take k;
    
        now
    
          let m be
    Nat;
    
          assume m
    >= k; 
    
          then
    
          
    
    A41: 
    ||.((vseq
    . m) 
    - (vseq 
    . k)).|| 
    < e by 
    A40;
    
          
    
          
    
    A42: 
    ||.(vseq
    . m).|| 
    = ( 
    ||.vseq.||
    . m) by 
    NORMSP_0:def 4;
    
          
    
          
    
    A43: 
    ||.(vseq
    . k).|| 
    = ( 
    ||.vseq.||
    . k) by 
    NORMSP_0:def 4;
    
          
    |.(
    ||.(vseq
    . m).|| 
    -  
    ||.(vseq
    . k).||).| 
    <=  
    ||.((vseq
    . m) 
    - (vseq 
    . k)).|| by 
    CLVECT_1: 110;
    
          hence
    |.((
    ||.vseq.||
    . m) 
    - ( 
    ||.vseq.||
    . k)).| 
    < e1 by 
    A43,
    A42,
    A41,
    XXREAL_0: 2;
    
        end;
    
        hence for m be
    Nat st m 
    >= k holds 
    |.((
    ||.vseq.||
    . m) 
    - ( 
    ||.vseq.||
    . k)).| 
    < e1; 
    
      end;
    
      then
    
      
    
    A44: 
    ||.vseq.|| is
    convergent by 
    SEQ_4: 41;
    
      
    
      
    
    A45: tseq is 
    Lipschitzian
    
      proof
    
        take (
    lim  
    ||.vseq.||);
    
        
    
    A46: 
    
        now
    
          let x be
    VECTOR of X; 
    
          consider xseq be
    sequence of Y such that 
    
          
    
    A47: for n be 
    Nat holds (xseq 
    . n) 
    = (( 
    modetrans ((vseq 
    . n),X,Y)) 
    . x) and 
    
          
    
    A48: xseq is 
    convergent and 
    
          
    
    A49: (tseq 
    . x) 
    = ( 
    lim xseq) by 
    A24;
    
          
    
          
    
    A50: 
    ||.(tseq
    . x).|| 
    = ( 
    lim  
    ||.xseq.||) by
    A48,
    A49,
    Th19;
    
          
    
          
    
    A51: for m be 
    Nat holds 
    ||.(xseq
    . m).|| 
    <= ( 
    ||.(vseq
    . m).|| 
    *  
    ||.x.||)
    
          proof
    
            let m be
    Nat;
    
            
    
            
    
    A52: (xseq 
    . m) 
    = (( 
    modetrans ((vseq 
    . m),X,Y)) 
    . x) by 
    A47;
    
            (vseq
    . m) is 
    Lipschitzian  
    LinearOperator of X, Y by 
    Def7;
    
            hence thesis by
    A52,
    Th28,
    Th31;
    
          end;
    
          
    
          
    
    A53: for n be 
    Nat holds ( 
    ||.xseq.||
    . n) 
    <= (( 
    ||.x.||
    (#)  
    ||.vseq.||)
    . n) 
    
          proof
    
            let n be
    Nat;
    
            
    
            
    
    A54: ( 
    ||.xseq.||
    . n) 
    =  
    ||.(xseq
    . n).|| by 
    NORMSP_0:def 4;
    
            
    
            
    
    A55: 
    ||.(vseq
    . n).|| 
    = ( 
    ||.vseq.||
    . n) by 
    NORMSP_0:def 4;
    
            
    ||.(xseq
    . n).|| 
    <= ( 
    ||.(vseq
    . n).|| 
    *  
    ||.x.||) by
    A51;
    
            hence thesis by
    A54,
    A55,
    SEQ_1: 9;
    
          end;
    
          
    
          
    
    A56: ( 
    ||.x.||
    (#)  
    ||.vseq.||) is
    convergent by 
    A44;
    
          
    
          
    
    A57: ( 
    lim ( 
    ||.x.||
    (#)  
    ||.vseq.||))
    = (( 
    lim  
    ||.vseq.||)
    *  
    ||.x.||) by
    A44,
    SEQ_2: 8;
    
          
    ||.xseq.|| is
    convergent by 
    A48,
    A49,
    Th19;
    
          hence
    ||.(tseq
    . x).|| 
    <= (( 
    lim  
    ||.vseq.||)
    *  
    ||.x.||) by
    A50,
    A53,
    A56,
    A57,
    SEQ_2: 18;
    
        end;
    
        now
    
          let n be
    Nat;
    
          
    ||.(vseq
    . n).|| 
    >=  
    0 by 
    CLVECT_1: 105;
    
          hence (
    ||.vseq.||
    . n) 
    >=  
    0 by 
    NORMSP_0:def 4;
    
        end;
    
        hence thesis by
    A44,
    A46,
    SEQ_2: 17;
    
      end;
    
      
    
      
    
    A58: for e be 
    Real st e 
    >  
    0 holds ex k be 
    Nat st for n be 
    Nat st n 
    >= k holds for x be 
    VECTOR of X holds 
    ||.(((
    modetrans ((vseq 
    . n),X,Y)) 
    . x) 
    - (tseq 
    . x)).|| 
    <= (e 
    *  
    ||.x.||)
    
      proof
    
        let e be
    Real;
    
        assume e
    >  
    0 ; 
    
        then
    
        consider k be
    Nat such that 
    
        
    
    A59: for n,m be 
    Nat st n 
    >= k & m 
    >= k holds 
    ||.((vseq
    . n) 
    - (vseq 
    . m)).|| 
    < e by 
    A2,
    CSSPACE3: 8;
    
        take k;
    
        now
    
          let n be
    Nat such that 
    
          
    
    A60: n 
    >= k; 
    
          now
    
            let x be
    VECTOR of X; 
    
            consider xseq be
    sequence of Y such that 
    
            
    
    A61: for n be 
    Nat holds (xseq 
    . n) 
    = (( 
    modetrans ((vseq 
    . n),X,Y)) 
    . x) and 
    
            
    
    A62: xseq is 
    convergent and 
    
            
    
    A63: (tseq 
    . x) 
    = ( 
    lim xseq) by 
    A24;
    
            
    
            
    
    A64: for m,k be 
    Nat holds 
    ||.((xseq
    . m) 
    - (xseq 
    . k)).|| 
    <= ( 
    ||.((vseq
    . m) 
    - (vseq 
    . k)).|| 
    *  
    ||.x.||)
    
            proof
    
              let m,k be
    Nat;
    
              reconsider h1 = ((vseq
    . m) 
    - (vseq 
    . k)) as 
    Lipschitzian  
    LinearOperator of X, Y by 
    Def7;
    
              
    
              
    
    A65: (xseq 
    . k) 
    = (( 
    modetrans ((vseq 
    . k),X,Y)) 
    . x) by 
    A61;
    
              (vseq
    . m) is 
    Lipschitzian  
    LinearOperator of X, Y by 
    Def7;
    
              then
    
              
    
    A66: ( 
    modetrans ((vseq 
    . m),X,Y)) 
    = (vseq 
    . m) by 
    Th28;
    
              (vseq
    . k) is 
    Lipschitzian  
    LinearOperator of X, Y by 
    Def7;
    
              then
    
              
    
    A67: ( 
    modetrans ((vseq 
    . k),X,Y)) 
    = (vseq 
    . k) by 
    Th28;
    
              (xseq
    . m) 
    = (( 
    modetrans ((vseq 
    . m),X,Y)) 
    . x) by 
    A61;
    
              then ((xseq
    . m) 
    - (xseq 
    . k)) 
    = (h1 
    . x) by 
    A66,
    A67,
    A65,
    Th39;
    
              hence thesis by
    Th31;
    
            end;
    
            
    
            
    
    A68: for m be 
    Nat st m 
    >= k holds 
    ||.((xseq
    . n) 
    - (xseq 
    . m)).|| 
    <= (e 
    *  
    ||.x.||)
    
            proof
    
              let m be
    Nat;
    
              assume m
    >= k; 
    
              then
    
              
    
    A69: 
    ||.((vseq
    . n) 
    - (vseq 
    . m)).|| 
    < e by 
    A59,
    A60;
    
              
    
              
    
    A70: 
    ||.((xseq
    . n) 
    - (xseq 
    . m)).|| 
    <= ( 
    ||.((vseq
    . n) 
    - (vseq 
    . m)).|| 
    *  
    ||.x.||) by
    A64;
    
              
    0  
    <=  
    ||.x.|| by
    CLVECT_1: 105;
    
              then (
    ||.((vseq
    . n) 
    - (vseq 
    . m)).|| 
    *  
    ||.x.||)
    <= (e 
    *  
    ||.x.||) by
    A69,
    XREAL_1: 64;
    
              hence thesis by
    A70,
    XXREAL_0: 2;
    
            end;
    
            
    ||.((xseq
    . n) 
    - (tseq 
    . x)).|| 
    <= (e 
    *  
    ||.x.||)
    
            proof
    
              deffunc
    
    F(
    Nat) =
    ||.((xseq
    . $1) 
    - (xseq 
    . n)).||; 
    
              consider rseq be
    Real_Sequence such that 
    
              
    
    A71: for m be 
    Nat holds (rseq 
    . m) 
    =  
    F(m) from
    SEQ_1:sch 1;
    
              now
    
                let x be
    object;
    
                assume x
    in  
    NAT ; 
    
                then
    
                reconsider k = x as
    Nat;
    
                
    
                thus (rseq
    . x) 
    =  
    ||.((xseq
    . k) 
    - (xseq 
    . n)).|| by 
    A71
    
                .=
    ||.((xseq
    - (xseq 
    . n)) 
    . k).|| by 
    NORMSP_1:def 4
    
                .= (
    ||.(xseq
    - (xseq 
    . n)).|| 
    . x) by 
    NORMSP_0:def 4;
    
              end;
    
              then
    
              
    
    A72: rseq 
    =  
    ||.(xseq
    - (xseq 
    . n)).|| by 
    FUNCT_2: 12;
    
              
    
              
    
    A73: (xseq 
    - (xseq 
    . n)) is 
    convergent by 
    A62,
    CLVECT_1: 115;
    
              (
    lim (xseq 
    - (xseq 
    . n))) 
    = ((tseq 
    . x) 
    - (xseq 
    . n)) by 
    A62,
    A63,
    CLVECT_1: 121;
    
              then
    
              
    
    A74: ( 
    lim rseq) 
    =  
    ||.((tseq
    . x) 
    - (xseq 
    . n)).|| by 
    A73,
    A72,
    Th40;
    
              for m be
    Nat st m 
    >= k holds (rseq 
    . m) 
    <= (e 
    *  
    ||.x.||)
    
              proof
    
                let m be
    Nat such that 
    
                
    
    A75: m 
    >= k; 
    
                (rseq
    . m) 
    =  
    ||.((xseq
    . m) 
    - (xseq 
    . n)).|| by 
    A71
    
                .=
    ||.((xseq
    . n) 
    - (xseq 
    . m)).|| by 
    CLVECT_1: 108;
    
                hence thesis by
    A68,
    A75;
    
              end;
    
              then (
    lim rseq) 
    <= (e 
    *  
    ||.x.||) by
    A73,
    A72,
    Lm2,
    Th40;
    
              hence thesis by
    A74,
    CLVECT_1: 108;
    
            end;
    
            hence
    ||.(((
    modetrans ((vseq 
    . n),X,Y)) 
    . x) 
    - (tseq 
    . x)).|| 
    <= (e 
    *  
    ||.x.||) by
    A61;
    
          end;
    
          hence for x be
    VECTOR of X holds 
    ||.(((
    modetrans ((vseq 
    . n),X,Y)) 
    . x) 
    - (tseq 
    . x)).|| 
    <= (e 
    *  
    ||.x.||);
    
        end;
    
        hence thesis;
    
      end;
    
      reconsider tseq as
    Lipschitzian  
    LinearOperator of X, Y by 
    A45;
    
      reconsider tv = tseq as
    Point of ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y)) by 
    Def7;
    
      
    
      
    
    A76: for e be 
    Real st e 
    >  
    0 holds ex k be 
    Nat st for n be 
    Nat st n 
    >= k holds 
    ||.((vseq
    . n) 
    - tv).|| 
    <= e 
    
      proof
    
        let e be
    Real such that 
    
        
    
    A77: e 
    >  
    0 ; 
    
        consider k be
    Nat such that 
    
        
    
    A78: for n be 
    Nat st n 
    >= k holds for x be 
    VECTOR of X holds 
    ||.(((
    modetrans ((vseq 
    . n),X,Y)) 
    . x) 
    - (tseq 
    . x)).|| 
    <= (e 
    *  
    ||.x.||) by
    A58,
    A77;
    
        now
    
          set g1 = tseq;
    
          let n be
    Nat such that 
    
          
    
    A79: n 
    >= k; 
    
          reconsider h1 = ((vseq
    . n) 
    - tv) as 
    Lipschitzian  
    LinearOperator of X, Y by 
    Def7;
    
          set f1 = (
    modetrans ((vseq 
    . n),X,Y)); 
    
          
    
    A80: 
    
          now
    
            let t be
    VECTOR of X; 
    
            assume
    ||.t.||
    <= 1; 
    
            then
    
            
    
    A81: (e 
    *  
    ||.t.||)
    <= (e 
    * 1) by 
    A77,
    XREAL_1: 64;
    
            
    
            
    
    A82: 
    ||.((f1
    . t) 
    - (g1 
    . t)).|| 
    <= (e 
    *  
    ||.t.||) by
    A78,
    A79;
    
            (vseq
    . n) is 
    Lipschitzian  
    LinearOperator of X, Y by 
    Def7;
    
            then (
    modetrans ((vseq 
    . n),X,Y)) 
    = (vseq 
    . n) by 
    Th28;
    
            then
    ||.(h1
    . t).|| 
    =  
    ||.((f1
    . t) 
    - (g1 
    . t)).|| by 
    Th39;
    
            hence
    ||.(h1
    . t).|| 
    <= e by 
    A82,
    A81,
    XXREAL_0: 2;
    
          end;
    
          
    
    A83: 
    
          now
    
            let r be
    Real;
    
            assume r
    in ( 
    PreNorms h1); 
    
            then ex t be
    VECTOR of X st r 
    =  
    ||.(h1
    . t).|| & 
    ||.t.||
    <= 1; 
    
            hence r
    <= e by 
    A80;
    
          end;
    
          
    
          
    
    A84: (for s be 
    Real st s 
    in ( 
    PreNorms h1) holds s 
    <= e) implies ( 
    upper_bound ( 
    PreNorms h1)) 
    <= e by 
    SEQ_4: 45;
    
          ((
    BoundedLinearOperatorsNorm (X,Y)) 
    . ((vseq 
    . n) 
    - tv)) 
    = ( 
    upper_bound ( 
    PreNorms h1)) by 
    Th29;
    
          hence
    ||.((vseq
    . n) 
    - tv).|| 
    <= e by 
    A83,
    A84;
    
        end;
    
        hence thesis;
    
      end;
    
      for e be
    Real st e 
    >  
    0 holds ex m be 
    Nat st for n be 
    Nat st n 
    >= m holds 
    ||.((vseq
    . n) 
    - tv).|| 
    < e 
    
      proof
    
        let e be
    Real such that 
    
        
    
    A85: e 
    >  
    0 ; 
    
        reconsider ee = e as
    Real;
    
        consider m be
    Nat such that 
    
        
    
    A86: for n be 
    Nat st n 
    >= m holds 
    ||.((vseq
    . n) 
    - tv).|| 
    <= (ee 
    / 2) by 
    A76,
    A85;
    
        
    
        
    
    A87: (e 
    / 2) 
    < e by 
    A85,
    XREAL_1: 216;
    
        now
    
          let n be
    Nat;
    
          assume n
    >= m; 
    
          then
    ||.((vseq
    . n) 
    - tv).|| 
    <= (e 
    / 2) by 
    A86;
    
          hence
    ||.((vseq
    . n) 
    - tv).|| 
    < e by 
    A87,
    XXREAL_0: 2;
    
        end;
    
        hence thesis;
    
      end;
    
      hence thesis by
    CLVECT_1:def 15;
    
    end;
    
    theorem :: 
    
    CLOPBAN1:42
    
    
    
    
    
    Th42: for X be 
    ComplexNormSpace, Y be 
    ComplexBanachSpace holds ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y)) is 
    ComplexBanachSpace
    
    proof
    
      let X be
    ComplexNormSpace;
    
      let Y be
    ComplexBanachSpace;
    
      for seq be
    sequence of ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y)) st seq is 
    Cauchy_sequence_by_Norm holds seq is 
    convergent by 
    Th41;
    
      hence thesis by
    Def13;
    
    end;
    
    registration
    
      let X be
    ComplexNormSpace;
    
      let Y be
    ComplexBanachSpace;
    
      cluster ( 
    C_NormSpace_of_BoundedLinearOperators (X,Y)) -> 
    complete;
    
      coherence by
    Th42;
    
    end