csspace.miz
begin
definition
::
CSSPACE:def1
func
the_set_of_ComplexSequences -> non
empty
set equals (
Funcs (
NAT ,
COMPLEX ));
coherence ;
end
definition
let z be
object;
::
CSSPACE:def2
func
seq_id (z) ->
Complex_Sequence equals
:
Def2: z;
coherence by
A1,
FUNCT_2: 66;
end
registration
let z be
Element of
the_set_of_ComplexSequences ;
reduce (
seq_id z) to z;
reducibility by
Def2;
end
definition
let z be
object;
::
CSSPACE:def3
func
C_id (z) ->
Complex equals
:
Def3: z;
coherence by
A1;
end
registration
let z be
Complex;
reduce (
C_id z) to z;
reducibility by
Def3;
end
definition
::$Canceled
::
CSSPACE:def6
func
CZeroseq ->
Element of
the_set_of_ComplexSequences equals (
NAT
-->
0c );
coherence by
FUNCT_2: 8;
end
registration
let x be
Complex_Sequence;
reduce (
seq_id x) to x;
reducibility
proof
x
in
the_set_of_ComplexSequences by
FUNCT_2: 8;
hence thesis by
Def2;
end;
end
theorem ::
CSSPACE:1
for x be
Complex_Sequence holds (
seq_id x)
= x;
definition
::
CSSPACE:def7
func
Linear_Space_of_ComplexSequences ->
strict non
empty
CLSStruct equals (
ComplexVectSpace
NAT );
coherence ;
end
registration
cluster
Linear_Space_of_ComplexSequences ->
Abelian
add-associative
right_zeroed
right_complementable
vector-distributive
scalar-distributive
scalar-associative
scalar-unital;
coherence ;
end
registration
let z be
VECTOR of
Linear_Space_of_ComplexSequences ;
reduce (
seq_id z) to z;
reducibility by
Def2;
end
theorem ::
CSSPACE:2
Th2: for v,w be
VECTOR of
Linear_Space_of_ComplexSequences holds (v
+ w)
= ((
seq_id v)
+ (
seq_id w))
proof
let v,w be
VECTOR of
Linear_Space_of_ComplexSequences ;
reconsider v1 = v, w1 = w as
Element of (
Funcs (
NAT ,
COMPLEX ));
reconsider f = ((
ComplexFuncAdd
NAT )
. (v1,w1)) as
Function of
NAT ,
COMPLEX by
FUNCT_2: 66;
f
= ((
seq_id v)
+ (
seq_id w))
proof
let n be
Element of
NAT ;
thus (f
. n)
= ((v1
. n)
+ (w1
. n)) by
CFUNCDOM: 1
.= (((
seq_id v)
+ (
seq_id w))
. n) by
VALUED_1: 1;
end;
hence thesis;
end;
theorem ::
CSSPACE:3
Th3: for z be
Complex, v be
VECTOR of
Linear_Space_of_ComplexSequences holds (z
* v)
= (z
(#) (
seq_id v))
proof
let z be
Complex;
let v be
VECTOR of
Linear_Space_of_ComplexSequences ;
reconsider r1 = z as
Element of
COMPLEX by
XCMPLX_0:def 2;
reconsider v1 = v as
Element of (
Funcs (
NAT ,
COMPLEX ));
reconsider h = ((
ComplexFuncExtMult
NAT )
. (r1,v1)) as
Complex_Sequence by
FUNCT_2: 66;
h
= (z
(#) (
seq_id v))
proof
let n be
Element of
NAT ;
thus (h
. n)
= (z
* (v1
. n)) by
CFUNCDOM: 4
.= ((z
(#) (
seq_id v))
. n) by
VALUED_1: 6;
end;
hence thesis;
end;
theorem ::
CSSPACE:4
Th4: for n be
object holds ((
seq_id
CZeroseq )
. n)
=
0
proof
set f = (
seq_id
CZeroseq );
let n be
object;
per cases ;
suppose
A1: n
in (
dom f);
(
dom f)
=
NAT by
FUNCT_2:def 1;
hence thesis by
A1,
FUNCOP_1: 7;
end;
suppose not n
in (
dom f);
hence thesis by
FUNCT_1:def 2;
end;
end;
theorem ::
CSSPACE:5
for f be
Element of
the_set_of_ComplexSequences st for n be
Nat holds ((
seq_id f)
. n)
=
0 holds f
=
CZeroseq
proof
let f be
Element of
the_set_of_ComplexSequences ;
set g = (
seq_id f);
assume
A1: for n be
Nat holds (g
. n)
=
0 ;
A2: (
dom g)
=
NAT by
FUNCT_2:def 1;
for z be
object st z
in (
dom g) holds (g
. z)
=
0 by
A1;
hence f
=
CZeroseq by
A2,
FUNCOP_1: 11;
end;
::$Canceled
definition
let X be
ComplexLinearSpace;
let X1 be
Subset of X;
::
CSSPACE:def8
func
Add_ (X1,X) ->
BinOp of X1 equals
:
Def6: (the
addF of X
|| X1);
correctness
proof
A2: (
dom the
addF of X)
=
[:the
carrier of X, the
carrier of X:] by
FUNCT_2:def 1;
A3: for z be
object st z
in
[:X1, X1:] holds ((the
addF of X
|| X1)
. z)
in X1
proof
let z be
object such that
A4: z
in
[:X1, X1:];
consider r,x be
object such that
A5: r
in X1 and
A6: x
in X1 and
A7: z
=
[r, x] by
A4,
ZFMISC_1:def 2;
reconsider y = x, r1 = r as
VECTOR of X by
A5,
A6;
[r, x]
in (
dom (the
addF of X
|| X1)) by
A2,
A4,
A7,
RELAT_1: 62,
ZFMISC_1: 96;
then ((the
addF of X
|| X1)
. z)
= (r1
+ y) by
A7,
FUNCT_1: 47;
hence thesis by
A1,
A5,
A6;
end;
(
dom (the
addF of X
|| X1))
=
[:X1, X1:] by
A2,
RELAT_1: 62,
ZFMISC_1: 96;
hence thesis by
A3,
FUNCT_2: 3;
end;
end
definition
let X be
ComplexLinearSpace;
let X1 be
Subset of X;
::
CSSPACE:def9
func
Mult_ (X1,X) ->
Function of
[:
COMPLEX , X1:], X1 equals
:
Def7: (the
Mult of X
|
[:
COMPLEX , X1:]);
correctness
proof
A2: (
dom the
Mult of X)
=
[:
COMPLEX , the
carrier of X:] by
FUNCT_2:def 1;
A3:
[:
COMPLEX , X1:]
c=
[:
COMPLEX , the
carrier of X:] by
ZFMISC_1: 95;
A4: for z be
object st z
in
[:
COMPLEX , X1:] holds ((the
Mult of X
|
[:
COMPLEX , X1:])
. z)
in X1
proof
let z be
object such that
A5: z
in
[:
COMPLEX , X1:];
consider r,x be
object such that
A6: r
in
COMPLEX and
A7: x
in X1 and
A8: z
=
[r, x] by
A5,
ZFMISC_1:def 2;
reconsider r as
Complex by
A6;
reconsider y = x as
VECTOR of X by
A7;
[r, x]
in (
dom (the
Mult of X
|
[:
COMPLEX , X1:])) by
A3,
A2,
A5,
A8,
RELAT_1: 62;
then ((the
Mult of X
|
[:
COMPLEX , X1:])
. z)
= (r
* y) by
A8,
FUNCT_1: 47;
hence thesis by
A1,
A7;
end;
(
dom (the
Mult of X
|
[:
COMPLEX , X1:]))
=
[:
COMPLEX , X1:] by
A3,
A2,
RELAT_1: 62;
hence thesis by
A4,
FUNCT_2: 3;
end;
end
definition
let X be
ComplexLinearSpace, X1 be
Subset of X;
::
CSSPACE:def10
func
Zero_ (X1,X) ->
Element of X1 equals
:
Def8: (
0. X);
correctness
proof
set v = the
Element of X1;
v
in X1 by
A2;
then
reconsider v as
Element of X;
(v
- v)
= (
0. X) by
RLVECT_1: 15;
hence thesis by
A1,
A2,
CLVECT_1: 22;
end;
end
theorem ::
CSSPACE:11
Th6: for V be
ComplexLinearSpace, V1 be
Subset of V st V1 is
linearly-closed non
empty holds
CLSStruct (# V1, (
Zero_ (V1,V)), (
Add_ (V1,V)), (
Mult_ (V1,V)) #) is
Subspace of V
proof
let V be
ComplexLinearSpace;
let V1 be
Subset of V such that
A1: V1 is
linearly-closed and
A2: V1 is non
empty;
A3: (
Add_ (V1,V))
= (the
addF of V
|| V1) by
A1,
Def6;
A4: (
Mult_ (V1,V))
= (the
Mult of V
|
[:
COMPLEX , V1:]) by
A1,
Def7;
(
Zero_ (V1,V))
= (
0. V) by
A1,
A2,
Def8;
hence thesis by
A2,
A3,
A4,
CLVECT_1: 43;
end;
definition
::
CSSPACE:def11
func
the_set_of_l2ComplexSequences ->
Subset of
Linear_Space_of_ComplexSequences means
:
Def9: for x be
object holds x
in it iff x
in
the_set_of_ComplexSequences & (
|.(
seq_id x).|
(#)
|.(
seq_id x).|) is
summable;
existence
proof
defpred
P[
object] means (
|.(
seq_id $1).|
(#)
|.(
seq_id $1).|) is
summable;
consider IT be
set such that
A1: for x be
object holds x
in IT iff x
in
the_set_of_ComplexSequences &
P[x] from
XBOOLE_0:sch 1;
for x be
object st x
in IT holds x
in
the_set_of_ComplexSequences by
A1;
then IT is
Subset of
the_set_of_ComplexSequences by
TARSKI:def 3;
hence thesis by
A1;
end;
uniqueness
proof
let X1,X2 be
Subset of
Linear_Space_of_ComplexSequences ;
assume that
A2: for x be
object holds x
in X1 iff x
in
the_set_of_ComplexSequences & (
|.(
seq_id x).|
(#)
|.(
seq_id x).|) is
summable and
A3: for x be
object holds x
in X2 iff x
in
the_set_of_ComplexSequences & (
|.(
seq_id x).|
(#)
|.(
seq_id x).|) is
summable;
A4: X2
c= X1
proof
let x be
object;
assume
A5: x
in X2;
then (
|.(
seq_id x).|
(#)
|.(
seq_id x).|) is
summable by
A3;
hence thesis by
A2,
A5;
end;
X1
c= X2
proof
let x be
object;
assume
A6: x
in X1;
then (
|.(
seq_id x).|
(#)
|.(
seq_id x).|) is
summable by
A2;
hence thesis by
A3,
A6;
end;
hence thesis by
A4,
XBOOLE_0:def 10;
end;
end
Lm1: (
|.(
seq_id
CZeroseq ).|
(#)
|.(
seq_id
CZeroseq ).|) is
absolutely_summable
proof
set f = (
seq_id
CZeroseq );
now
let n be
Nat;
A1: (f
. n)
=
0 by
Th4;
thus ((
|.f.|
(#)
|.f.|)
. n)
= ((
|.f.|
. n)
* (
|.f.|
. n)) by
SEQ_1: 8
.= ((
|.f.|
. n)
*
|.(f
. n).|) by
VALUED_1: 18
.=
0 by
A1,
COMPLEX1: 44;
end;
hence thesis by
COMSEQ_3: 3;
end;
registration
cluster
the_set_of_l2ComplexSequences -> non
empty;
coherence by
Lm1,
Def9;
end
theorem ::
CSSPACE:12
Th7:
the_set_of_l2ComplexSequences is
linearly-closed
proof
set W =
the_set_of_l2ComplexSequences ;
hereby
let v,u be
VECTOR of
Linear_Space_of_ComplexSequences such that
A1: v
in W and
A2: u
in W;
(
|.(
seq_id (v
+ u)).|
(#)
|.(
seq_id (v
+ u)).|) is
summable
proof
set r = (
|.(
seq_id (v
+ u)).|
(#)
|.(
seq_id (v
+ u)).|);
set q = (
|.(
seq_id u).|
(#)
|.(
seq_id u).|);
set p = (
|.(
seq_id v).|
(#)
|.(
seq_id v).|);
A3: for n be
Nat holds
0
<= (r
. n)
proof
let n be
Nat;
(r
. n)
= ((
|.(
seq_id (v
+ u)).|
. n)
* (
|.(
seq_id (v
+ u)).|
. n)) by
SEQ_1: 8;
hence thesis by
XREAL_1: 63;
end;
A4: for n be
Nat holds (r
. n)
<= (((2
(#) p)
+ (2
(#) q))
. n)
proof
set t =
|.(
seq_id u).|;
set s =
|.(
seq_id v).|;
let n be
Nat;
A5: n
in
NAT by
ORDINAL1:def 12;
reconsider sn = (s
. n), tn = (t
. n) as
Real;
A6: (r
. n)
= ((
|.(
seq_id (v
+ u)).|
. n)
^2 ) by
SEQ_1: 8;
(((2
(#) p)
+ (2
(#) q))
. n)
= (((2
(#) p)
. n)
+ ((2
(#) q)
. n)) by
SEQ_1: 7
.= ((2
* (p
. n))
+ ((2
(#) q)
. n)) by
SEQ_1: 9
.= ((2
* (p
. n))
+ (2
* (q
. n))) by
SEQ_1: 9
.= ((2
* ((s
. n)
* (s
. n)))
+ (2
* (q
. n))) by
SEQ_1: 8
.= ((2
* (sn
^2 ))
+ (2
* (tn
^2 ))) by
SEQ_1: 8;
then
A7: ((((2
(#) p)
+ (2
(#) q))
. n)
- (((sn
^2 )
+ ((2
* sn)
* tn))
+ (tn
^2 )))
= ((sn
- tn)
^2 );
A8: (v
+ u)
= ((
seq_id v)
+ (
seq_id u)) by
Th2;
(
|.(
seq_id (v
+ u)).|
. n)
=
|.((
seq_id (v
+ u))
. n).| by
VALUED_1: 18
.=
|.(((
seq_id v)
. n)
+ ((
seq_id u)
. n)).| by
A8,
VALUED_1: 1,
A5;
then (
|.(
seq_id (v
+ u)).|
. n)
<= (
|.((
seq_id v)
. n).|
+
|.((
seq_id u)
. n).|) by
COMPLEX1: 56;
then (
|.(
seq_id (v
+ u)).|
. n)
<= ((s
. n)
+
|.((
seq_id u)
. n).|) by
VALUED_1: 18;
then
A9: (
|.(
seq_id (v
+ u)).|
. n)
<= ((s
. n)
+ (t
. n)) by
VALUED_1: 18;
A10: (
0
+ (((sn
^2 )
+ ((2
* sn)
* tn))
+ (tn
^2 )))
<= (((2
(#) p)
+ (2
(#) q))
. n) by
A7,
XREAL_1: 19,
XREAL_1: 63;
0
<=
|.((
seq_id (v
+ u))
. n).| by
COMPLEX1: 46;
then
0
<= (
|.(
seq_id (v
+ u)).|
. n) by
VALUED_1: 18;
then ((
|.(
seq_id (v
+ u)).|
. n)
^2 )
<= (((s
. n)
+ (t
. n))
^2 ) by
A9,
SQUARE_1: 15;
hence thesis by
A6,
A10,
XXREAL_0: 2;
end;
(
|.(
seq_id u).|
(#)
|.(
seq_id u).|) is
summable by
A2,
Def9;
then
A11: (2
(#) q) is
summable by
SERIES_1: 10;
(
|.(
seq_id v).|
(#)
|.(
seq_id v).|) is
summable by
A1,
Def9;
then (2
(#) p) is
summable by
SERIES_1: 10;
then ((2
(#) p)
+ (2
(#) q)) is
summable by
A11,
SERIES_1: 7;
hence thesis by
A3,
A4,
SERIES_1: 20;
end;
hence (v
+ u)
in W by
Def9;
end;
let z be
Complex;
let v be
VECTOR of
Linear_Space_of_ComplexSequences ;
assume v
in W;
then
A12: (
|.(
seq_id v).|
(#)
|.(
seq_id v).|) is
summable by
Def9;
(z
* v)
= (z
(#) (
seq_id v)) by
Th3;
then
|.(
seq_id (z
* v)).|
= (
|.z.|
(#)
|.(
seq_id v).|) by
COMSEQ_1: 50;
then (
|.(
seq_id (z
* v)).|
(#)
|.(
seq_id (z
* v)).|)
= (
|.z.|
(#) ((
|.z.|
(#)
|.(
seq_id v).|)
(#)
|.(
seq_id v).|)) by
SEQ_1: 18
.= (
|.z.|
(#) (
|.z.|
(#) (
|.(
seq_id v).|
(#)
|.(
seq_id v).|))) by
SEQ_1: 18
.= ((
|.z.|
*
|.z.|)
(#) (
|.(
seq_id v).|
(#)
|.(
seq_id v).|)) by
SEQ_1: 23;
then (
|.(
seq_id (z
* v)).|
(#)
|.(
seq_id (z
* v)).|) is
summable by
A12,
SERIES_1: 10;
hence thesis by
Def9;
end;
registration
cluster
the_set_of_l2ComplexSequences ->
linearly-closed;
coherence by
Th7;
end
registration
let z be
Element of
the_set_of_l2ComplexSequences ;
reduce (
seq_id z) to z;
reducibility ;
end
theorem ::
CSSPACE:13
CLSStruct (#
the_set_of_l2ComplexSequences , (
Zero_ (
the_set_of_l2ComplexSequences ,
Linear_Space_of_ComplexSequences )), (
Add_ (
the_set_of_l2ComplexSequences ,
Linear_Space_of_ComplexSequences )), (
Mult_ (
the_set_of_l2ComplexSequences ,
Linear_Space_of_ComplexSequences )) #) is
Subspace of
Linear_Space_of_ComplexSequences by
Th6;
theorem ::
CSSPACE:14
Th9:
CLSStruct (#
the_set_of_l2ComplexSequences , (
Zero_ (
the_set_of_l2ComplexSequences ,
Linear_Space_of_ComplexSequences )), (
Add_ (
the_set_of_l2ComplexSequences ,
Linear_Space_of_ComplexSequences )), (
Mult_ (
the_set_of_l2ComplexSequences ,
Linear_Space_of_ComplexSequences )) #) is
ComplexLinearSpace by
Th6;
theorem ::
CSSPACE:15
the
carrier of
Linear_Space_of_ComplexSequences
=
the_set_of_ComplexSequences & (for x be
set holds x is
VECTOR of
Linear_Space_of_ComplexSequences iff x is
Complex_Sequence) & (for u be
VECTOR of
Linear_Space_of_ComplexSequences holds u
= (
seq_id u)) & (for u,v be
VECTOR of
Linear_Space_of_ComplexSequences holds (u
+ v)
= ((
seq_id u)
+ (
seq_id v))) & for z be
Complex holds for u be
VECTOR of
Linear_Space_of_ComplexSequences holds (z
* u)
= (z
(#) (
seq_id u)) by
FUNCT_2: 8,
FUNCT_2: 66,
Th2,
Th3;
begin
definition
struct (
CLSStruct)
CUNITSTR
(# the
carrier ->
set,
the
ZeroF ->
Element of the carrier,
the
addF ->
BinOp of the carrier,
the
Mult ->
Function of
[:
COMPLEX , the carrier:], the carrier,
the
scalar ->
Function of
[: the carrier, the carrier:],
COMPLEX #)
attr strict
strict;
end
registration
cluster non
empty
strict for
CUNITSTR;
existence
proof
set D = the non
empty
set, Z = the
Element of D, a = the
BinOp of D, m = the
Function of
[:
COMPLEX , D:], D, s = the
Function of
[:D, D:],
COMPLEX ;
take
CUNITSTR (# D, Z, a, m, s #);
thus thesis;
end;
end
registration
let D be non
empty
set, Z be
Element of D, a be
BinOp of D, m be
Function of
[:
COMPLEX , D:], D, s be
Function of
[:D, D:],
COMPLEX ;
cluster
CUNITSTR (# D, Z, a, m, s #) -> non
empty;
coherence ;
end
reserve X for non
empty
CUNITSTR;
reserve a,b for
Complex;
reserve x,y for
Point of X;
deffunc
09(
CUNITSTR) = (
0. $1);
definition
let X;
let x, y;
::
CSSPACE:def12
func x
.|. y ->
Complex equals (the
scalar of X
. (x,y));
correctness ;
end
set V0 = the
ComplexLinearSpace;
Lm2: the
carrier of (
(0). V0)
=
{(
0. V0)} by
CLVECT_1:def 9;
reconsider nilfunc = (
[:the
carrier of (
(0). V0), the
carrier of (
(0). V0):]
-->
0c ) as
Function of
[:the
carrier of (
(0). V0), the
carrier of (
(0). V0):],
COMPLEX ;
Lm3: for x,y be
VECTOR of (
(0). V0) holds (nilfunc
.
[x, y])
=
0c by
FUNCOP_1: 7;
(
0. V0)
in the
carrier of (
(0). V0) by
Lm2,
TARSKI:def 1;
then
Lm4: (nilfunc
.
[(
0. V0), (
0. V0)])
=
0c by
Lm3;
Lm5: for u be
VECTOR of (
(0). V0) holds
0
<= (
Re (nilfunc
.
[u, u])) & (
Im (nilfunc
.
[u, u]))
=
0 by
COMPLEX1: 4,
FUNCOP_1: 7;
Lm6: for u,v be
VECTOR of (
(0). V0) holds (nilfunc
.
[u, v])
= ((nilfunc
.
[v, u])
*' )
proof
let u,v be
VECTOR of (
(0). V0);
A1: v
= (
0. V0) by
Lm2,
TARSKI:def 1;
u
= (
0. V0) by
Lm2,
TARSKI:def 1;
hence thesis by
A1,
Lm4,
COMPLEX1: 28;
end;
Lm7: for u,v,w be
VECTOR of (
(0). V0) holds (nilfunc
.
[(u
+ v), w])
= ((nilfunc
.
[u, w])
+ (nilfunc
.
[v, w]))
proof
let u,v,w be
VECTOR of (
(0). V0);
A1: v
= (
0. V0) by
Lm2,
TARSKI:def 1;
A2: w
= (
0. V0) by
Lm2,
TARSKI:def 1;
u
= (
0. V0) by
Lm2,
TARSKI:def 1;
hence thesis by
A1,
A2,
Lm2,
Lm4,
TARSKI:def 1;
end;
Lm8: for u,v be
VECTOR of (
(0). V0), a holds (nilfunc
.
[(a
* u), v])
= (a
* (nilfunc
.
[u, v]))
proof
let u,v be
VECTOR of (
(0). V0);
let a;
A1: v
= (
0. V0) by
Lm2,
TARSKI:def 1;
u
= (
0. V0) by
Lm2,
TARSKI:def 1;
hence thesis by
A1,
Lm2,
Lm4,
TARSKI:def 1;
end;
set X0 =
CUNITSTR (# the
carrier of (
(0). V0), (
0. (
(0). V0)), the
addF of (
(0). V0), the
Mult of (
(0). V0), nilfunc #);
Lm9:
now
let x,y,z be
Point of X0;
let a;
09(X0)
= (
0. V0) by
CLVECT_1: 30;
hence (x
.|. x)
=
0c iff x
=
09(X0) by
Lm2,
Lm3,
TARSKI:def 1;
thus
0
<= (
Re (x
.|. x)) &
0
= (
Im (x
.|. x)) by
Lm5;
thus (x
.|. y)
= ((y
.|. x)
*' ) by
Lm6;
thus ((x
+ y)
.|. z)
= ((x
.|. z)
+ (y
.|. z))
proof
reconsider u = x, v = y, w = z as
VECTOR of (
(0). V0);
((x
+ y)
.|. z)
= (nilfunc
.
[(u
+ v), w]);
hence thesis by
Lm7;
end;
thus ((a
* x)
.|. y)
= (a
* (x
.|. y))
proof
reconsider u = x, v = y as
VECTOR of (
(0). V0);
((a
* x)
.|. y)
= (nilfunc
.
[(a
* u), v]);
hence thesis by
Lm8;
end;
end;
definition
let IT be non
empty
CUNITSTR;
::
CSSPACE:def13
attr IT is
ComplexUnitarySpace-like means
:
Def11: for x,y,w be
Point of IT, a holds ((x
.|. x)
=
0 iff x
= (
0. IT)) &
0
<= (
Re (x
.|. x)) &
0
= (
Im (x
.|. x)) & (x
.|. y)
= ((y
.|. x)
*' ) & ((x
+ y)
.|. w)
= ((x
.|. w)
+ (y
.|. w)) & ((a
* x)
.|. y)
= (a
* (x
.|. y));
end
registration
cluster
ComplexUnitarySpace-like
vector-distributive
scalar-distributive
scalar-associative
scalar-unital
Abelian
add-associative
right_zeroed
right_complementable
strict for non
empty
CUNITSTR;
existence
proof
take X0;
thus X0 is
ComplexUnitarySpace-like by
Lm9;
thus X0 is
vector-distributive
scalar-distributive
scalar-associative
scalar-unital
proof
thus for a holds for v,w be
VECTOR of X0 holds (a
* (v
+ w))
= ((a
* v)
+ (a
* w))
proof
let a;
let v,w be
VECTOR of X0;
reconsider v9 = v, w9 = w as
VECTOR of (
(0). V0);
thus (a
* (v
+ w))
= (a
* (v9
+ w9))
.= ((a
* v9)
+ (a
* w9)) by
CLVECT_1:def 2
.= ((a
* v)
+ (a
* w));
end;
thus for a, b holds for v be
VECTOR of X0 holds ((a
+ b)
* v)
= ((a
* v)
+ (b
* v))
proof
let a, b;
let v be
VECTOR of X0;
reconsider v9 = v as
VECTOR of (
(0). V0);
thus ((a
+ b)
* v)
= ((a
+ b)
* v9)
.= ((a
* v9)
+ (b
* v9)) by
CLVECT_1:def 3
.= ((a
* v)
+ (b
* v));
end;
thus for a, b holds for v be
VECTOR of X0 holds ((a
* b)
* v)
= (a
* (b
* v))
proof
let a, b;
let v be
VECTOR of X0;
reconsider v9 = v as
VECTOR of (
(0). V0);
thus ((a
* b)
* v)
= ((a
* b)
* v9)
.= (a
* (b
* v9)) by
CLVECT_1:def 4
.= (a
* (b
* v));
end;
let v be
VECTOR of X0;
reconsider v9 = v as
VECTOR of (
(0). V0);
thus (
1r
* v)
= (
1r
* v9)
.= v by
CLVECT_1:def 5;
end;
A1: for x,y be
VECTOR of X0 holds for x9,y9 be
VECTOR of (
(0). V0) st x
= x9 & y
= y9 holds (x
+ y)
= (x9
+ y9) & for a holds (a
* x)
= (a
* x9);
thus for v,w be
VECTOR of X0 holds (v
+ w)
= (w
+ v)
proof
let v,w be
VECTOR of X0;
reconsider v9 = v, w9 = w as
VECTOR of (
(0). V0);
thus (v
+ w)
= (w9
+ v9) by
A1
.= (w
+ v);
end;
thus for u,v,w be
VECTOR of X0 holds ((u
+ v)
+ w)
= (u
+ (v
+ w))
proof
let u,v,w be
VECTOR of X0;
reconsider u9 = u, v9 = v, w9 = w as
VECTOR of (
(0). V0);
thus ((u
+ v)
+ w)
= ((u9
+ v9)
+ w9)
.= (u9
+ (v9
+ w9)) by
RLVECT_1:def 3
.= (u
+ (v
+ w));
end;
thus for v be
VECTOR of X0 holds (v
+ (
0. X0))
= v
proof
let v be
VECTOR of X0;
reconsider v9 = v as
VECTOR of (
(0). V0);
thus (v
+ (
0. X0))
= (v9
+ (
0. (
(0). V0)))
.= v by
RLVECT_1: 4;
end;
thus X0 is
right_complementable
proof
let v be
VECTOR of X0;
reconsider v9 = v as
VECTOR of (
(0). V0);
consider w9 be
VECTOR of (
(0). V0) such that
A2: (v9
+ w9)
= (
0. (
(0). V0)) by
ALGSTR_0:def 11;
reconsider w = w9 as
VECTOR of X0;
take w;
thus thesis by
A2;
end;
thus thesis;
end;
end
definition
mode
ComplexUnitarySpace is
ComplexUnitarySpace-like
vector-distributive
scalar-distributive
scalar-associative
scalar-unital
Abelian
add-associative
right_zeroed
right_complementable non
empty
CUNITSTR;
end
reserve X for
ComplexUnitarySpace;
reserve x,y,z,u,v for
Point of X;
theorem ::
CSSPACE:16
((
0. X)
.|. (
0. X))
=
0 by
Def11;
theorem ::
CSSPACE:17
Th12: (x
.|. (y
+ z))
= ((x
.|. y)
+ (x
.|. z))
proof
thus (x
.|. (y
+ z))
= (((y
+ z)
.|. x)
*' ) by
Def11
.= (((y
.|. x)
+ (z
.|. x))
*' ) by
Def11
.= (((y
.|. x)
*' )
+ ((z
.|. x)
*' )) by
COMPLEX1: 32
.= ((x
.|. y)
+ ((z
.|. x)
*' )) by
Def11
.= ((x
.|. y)
+ (x
.|. z)) by
Def11;
end;
theorem ::
CSSPACE:18
Th13: (x
.|. (a
* y))
= ((a
*' )
* (x
.|. y))
proof
thus (x
.|. (a
* y))
= (((a
* y)
.|. x)
*' ) by
Def11
.= ((a
* (y
.|. x))
*' ) by
Def11
.= ((a
*' )
* ((y
.|. x)
*' )) by
COMPLEX1: 35
.= ((a
*' )
* (x
.|. y)) by
Def11;
end;
theorem ::
CSSPACE:19
Th14: ((a
* x)
.|. y)
= (x
.|. ((a
*' )
* y))
proof
((a
* x)
.|. y)
= (a
* (x
.|. y)) by
Def11
.= (((a
*' )
*' )
* ((y
.|. x)
*' )) by
Def11
.= (((a
*' )
* (y
.|. x))
*' ) by
COMPLEX1: 35
.= ((((a
*' )
* y)
.|. x)
*' ) by
Def11;
hence thesis by
Def11;
end;
theorem ::
CSSPACE:20
Th15: (((a
* x)
+ (b
* y))
.|. z)
= ((a
* (x
.|. z))
+ (b
* (y
.|. z)))
proof
(((a
* x)
+ (b
* y))
.|. z)
= (((a
* x)
.|. z)
+ ((b
* y)
.|. z)) by
Def11
.= ((a
* (x
.|. z))
+ ((b
* y)
.|. z)) by
Def11;
hence thesis by
Def11;
end;
theorem ::
CSSPACE:21
Th16: (x
.|. ((a
* y)
+ (b
* z)))
= (((a
*' )
* (x
.|. y))
+ ((b
*' )
* (x
.|. z)))
proof
(x
.|. ((a
* y)
+ (b
* z)))
= ((((a
* y)
+ (b
* z))
.|. x)
*' ) by
Def11
.= (((a
* (y
.|. x))
+ (b
* (z
.|. x)))
*' ) by
Th15
.= (((a
* (y
.|. x))
*' )
+ ((b
* (z
.|. x))
*' )) by
COMPLEX1: 32
.= (((a
*' )
* ((y
.|. x)
*' ))
+ ((b
* (z
.|. x))
*' )) by
COMPLEX1: 35
.= (((a
*' )
* ((y
.|. x)
*' ))
+ ((b
*' )
* ((z
.|. x)
*' ))) by
COMPLEX1: 35
.= (((a
*' )
* (x
.|. y))
+ ((b
*' )
* ((z
.|. x)
*' ))) by
Def11;
hence thesis by
Def11;
end;
theorem ::
CSSPACE:22
Th17: ((
- x)
.|. y)
= (x
.|. (
- y))
proof
((
- x)
.|. y)
= (((
-
1r )
* x)
.|. y) by
CLVECT_1: 3
.= (x
.|. (((
-
1r )
*' )
* y)) by
Th14
.= (x
.|. ((
-
1r )
* y)) by
COMPLEX1: 30,
COMPLEX1: 33;
hence thesis by
CLVECT_1: 3;
end;
theorem ::
CSSPACE:23
Th18: ((
- x)
.|. y)
= (
- (x
.|. y))
proof
((
- x)
.|. y)
= (((
-
1r )
* x)
.|. y) by
CLVECT_1: 3
.= ((
- 1)
* (x
.|. y)) by
Def11,
COMPLEX1:def 4;
hence thesis;
end;
theorem ::
CSSPACE:24
Th19: (x
.|. (
- y))
= (
- (x
.|. y))
proof
(x
.|. (
- y))
= ((
- x)
.|. y) by
Th17;
hence thesis by
Th18;
end;
theorem ::
CSSPACE:25
Th20: ((
- x)
.|. (
- y))
= (x
.|. y)
proof
((
- x)
.|. (
- y))
= (
- (x
.|. (
- y))) by
Th18
.= (
- (
- (x
.|. y))) by
Th19;
hence thesis;
end;
theorem ::
CSSPACE:26
Th21: ((x
- y)
.|. z)
= ((x
.|. z)
- (y
.|. z))
proof
((x
- y)
.|. z)
= ((x
.|. z)
+ ((
- y)
.|. z)) by
Def11
.= ((x
.|. z)
+ (
- (y
.|. z))) by
Th18;
hence thesis;
end;
theorem ::
CSSPACE:27
Th22: (x
.|. (y
- z))
= ((x
.|. y)
- (x
.|. z))
proof
(x
.|. (y
- z))
= ((x
.|. y)
+ (x
.|. (
- z))) by
Th12
.= ((x
.|. y)
+ (
- (x
.|. z))) by
Th19;
hence thesis;
end;
theorem ::
CSSPACE:28
((x
- y)
.|. (u
- v))
= ((((x
.|. u)
- (x
.|. v))
- (y
.|. u))
+ (y
.|. v))
proof
((x
- y)
.|. (u
- v))
= ((x
.|. (u
- v))
- (y
.|. (u
- v))) by
Th21
.= (((x
.|. u)
- (x
.|. v))
- (y
.|. (u
- v))) by
Th22
.= (((x
.|. u)
- (x
.|. v))
- ((y
.|. u)
- (y
.|. v))) by
Th22;
hence thesis;
end;
theorem ::
CSSPACE:29
Th24: ((
0. X)
.|. x)
=
0
proof
(
09(X)
.|. x)
= ((x
+ (
- x))
.|. x) by
RLVECT_1: 5
.= ((x
.|. x)
+ ((
- x)
.|. x)) by
Def11
.= ((x
.|. x)
+ (
- (x
.|. x))) by
Th18;
hence thesis;
end;
theorem ::
CSSPACE:30
Th25: (x
.|. (
0. X))
=
0
proof
(x
.|. (
0. X))
= (((
0. X)
.|. x)
*' ) by
Def11
.=
0c by
Th24,
COMPLEX1: 28;
hence thesis;
end;
theorem ::
CSSPACE:31
Th26: ((x
+ y)
.|. (x
+ y))
= ((((x
.|. x)
+ (x
.|. y))
+ (y
.|. x))
+ (y
.|. y))
proof
((x
+ y)
.|. (x
+ y))
= ((x
.|. (x
+ y))
+ (y
.|. (x
+ y))) by
Def11
.= (((x
.|. x)
+ (x
.|. y))
+ (y
.|. (x
+ y))) by
Th12
.= (((x
.|. x)
+ (x
.|. y))
+ ((y
.|. x)
+ (y
.|. y))) by
Th12;
hence thesis;
end;
theorem ::
CSSPACE:32
((x
+ y)
.|. (x
- y))
= ((((x
.|. x)
- (x
.|. y))
+ (y
.|. x))
- (y
.|. y))
proof
((x
+ y)
.|. (x
- y))
= ((x
.|. (x
- y))
+ (y
.|. (x
- y))) by
Def11
.= (((x
.|. x)
- (x
.|. y))
+ (y
.|. (x
- y))) by
Th22
.= (((x
.|. x)
- (x
.|. y))
+ ((y
.|. x)
- (y
.|. y))) by
Th22
.= ((((x
.|. x)
- (x
.|. y))
+ (y
.|. x))
+ (
- (y
.|. y)));
hence thesis;
end;
theorem ::
CSSPACE:33
Th28: ((x
- y)
.|. (x
- y))
= ((((x
.|. x)
- (x
.|. y))
- (y
.|. x))
+ (y
.|. y))
proof
((x
- y)
.|. (x
- y))
= ((x
.|. (x
- y))
- (y
.|. (x
- y))) by
Th21
.= (((x
.|. x)
- (x
.|. y))
- (y
.|. (x
- y))) by
Th22
.= (((x
.|. x)
- (x
.|. y))
- ((y
.|. x)
- (y
.|. y))) by
Th22;
hence thesis;
end;
Lm10: for p,q be
Complex, x,y be
Point of X holds (((p
* x)
+ (q
* y))
.|. ((p
* x)
+ (q
* y)))
= (((((p
* (p
*' ))
* (x
.|. x))
+ ((p
* (q
*' ))
* (x
.|. y)))
+ (((p
*' )
* q)
* (y
.|. x)))
+ ((q
* (q
*' ))
* (y
.|. y)))
proof
let p,q be
Complex;
let x,y be
Point of X;
(((p
* x)
+ (q
* y))
.|. ((p
* x)
+ (q
* y)))
= ((p
* (x
.|. ((p
* x)
+ (q
* y))))
+ (q
* (y
.|. ((p
* x)
+ (q
* y))))) by
Th15
.= ((p
* (((p
*' )
* (x
.|. x))
+ ((q
*' )
* (x
.|. y))))
+ (q
* (y
.|. ((p
* x)
+ (q
* y))))) by
Th16
.= ((((p
* (p
*' ))
* (x
.|. x))
+ ((p
* (q
*' ))
* (x
.|. y)))
+ (q
* (((p
*' )
* (y
.|. x))
+ ((q
*' )
* (y
.|. y))))) by
Th16
.= ((((p
* (p
*' ))
* (x
.|. x))
+ ((p
* (q
*' ))
* (x
.|. y)))
+ (((q
* (p
*' ))
* (y
.|. x))
+ ((q
* (q
*' ))
* (y
.|. y))));
hence thesis;
end;
theorem ::
CSSPACE:34
Th29:
|.(x
.|. x).|
= (
Re (x
.|. x))
proof
A1: (
Im (x
.|. x))
=
0 by
Def11;
(
Re (x
.|. x))
>=
0 by
Def11;
then
|.((
Re (x
.|. x))
+ ((
Im (x
.|. x))
*
<i> )).|
= (
Re (x
.|. x)) by
A1,
ABSVALUE:def 1;
hence thesis by
COMPLEX1: 13;
end;
theorem ::
CSSPACE:35
Th30:
|.(x
.|. y).|
<= ((
sqrt
|.(x
.|. x).|)
* (
sqrt
|.(y
.|. y).|))
proof
A1: y
<>
09(X) implies
|.(x
.|. y).|
<= ((
sqrt
|.(x
.|. x).|)
* (
sqrt
|.(y
.|. y).|))
proof
assume y
<>
09(X);
then (y
.|. y)
<>
0c by
Def11;
then
A2:
|.(y
.|. y).|
<>
0 by
COMPLEX1: 45;
A3: ((
Re (x
.|. y))
^2 )
>=
0 by
XREAL_1: 63;
set c2 = (
- (x
.|. y));
reconsider c1 = (
|.(y
.|. y).|
+ (
0
*
<i> )) as
Element of
COMPLEX by
XCMPLX_0:def 2;
A4: (
Re (c1
* ((c1
* (x
.|. x))
+ (c2
* (y
.|. x)))))
= (((
Re c1)
* (
Re ((c1
* (x
.|. x))
+ (c2
* (y
.|. x)))))
- ((
Im c1)
* (
Im ((c1
* (x
.|. x))
+ (c2
* (y
.|. x)))))) by
COMPLEX1: 9
.= (((
Re c1)
* (
Re ((c1
* (x
.|. x))
+ (c2
* (y
.|. x)))))
- (
0
* (
Im ((c1
* (x
.|. x))
+ (c2
* (y
.|. x)))))) by
COMPLEX1: 12
.= ((
Re c1)
* (
Re ((c1
* (x
.|. x))
+ (c2
* (y
.|. x)))));
A5: (
Re (c2
* (y
.|. x)))
= (
Re (
- ((x
.|. y)
* (y
.|. x))))
.= (
- (
Re ((x
.|. y)
* (y
.|. x)))) by
COMPLEX1: 17
.= (
- (
Re ((x
.|. y)
* ((x
.|. y)
*' )))) by
Def11;
A6: (
Im ((x
.|. y)
* ((x
.|. y)
*' )))
=
0 by
COMPLEX1: 40;
A7: (
Im (y
.|. y))
=
0 by
Def11;
A8: (
Re (y
.|. y))
>=
0 by
Def11;
then
|.((
Re (y
.|. y))
+ ((
Im (y
.|. y))
*
<i> )).|
= (
Re (y
.|. y)) by
A7,
ABSVALUE:def 1;
then
A9:
|.(y
.|. y).|
= (
Re (y
.|. y)) by
COMPLEX1: 13;
then
A10: (y
.|. y)
= c1 by
A7,
COMPLEX1: 13;
(((c1
* x)
+ (c2
* y))
.|. ((c1
* x)
+ (c2
* y)))
= (((((c1
* (c1
*' ))
* (x
.|. x))
+ ((c1
* (c2
*' ))
* (x
.|. y)))
+ (((c1
*' )
* c2)
* (y
.|. x)))
+ ((c2
* (c2
*' ))
* (y
.|. y))) by
Lm10
.= ((((c1
* ((c1
*' )
* (x
.|. x)))
+ (c1
* ((c2
*' )
* (x
.|. y))))
+ ((c1
*' )
* (c2
* (y
.|. x))))
+ (c1
* (c2
* (c2
*' )))) by
A7,
A9,
COMPLEX1: 13
.= (((c1
* (((c1
*' )
* (x
.|. x))
+ ((c2
*' )
* (x
.|. y))))
+ (c1
* (c2
* (y
.|. x))))
+ (c1
* (c2
* (c2
*' )))) by
A10,
Def11
.= (c1
* (((((c1
*' )
* (x
.|. x))
+ ((c2
*' )
* (x
.|. y)))
+ (c2
* (y
.|. x)))
+ (c2
* (c2
*' ))))
.= (c1
* ((((c1
* (x
.|. x))
+ ((x
.|. y)
* (c2
*' )))
+ (c2
* (y
.|. x)))
+ (c2
* (c2
*' )))) by
A10,
Def11
.= (c1
* ((c1
* (x
.|. x))
+ (c2
* (y
.|. x))));
then (
Re c1)
>=
0 & (
Re ((c1
* (x
.|. x))
+ (c2
* (y
.|. x))))
>=
0 or (
Re c1)
<=
0 & (
Re ((c1
* (x
.|. x))
+ (c2
* (y
.|. x))))
<=
0 by
A4,
Def11;
then ((
Re (c1
* (x
.|. x)))
+ (
Re (c2
* (y
.|. x))))
>=
0 by
A8,
A7,
A9,
A2,
COMPLEX1: 8,
COMPLEX1: 13;
then ((
Re (c1
* (x
.|. x)))
- (
Re ((x
.|. y)
* ((x
.|. y)
*' ))))
>=
0 by
A5;
then
A11: (
Re (c1
* (x
.|. x)))
>= ((
Re ((x
.|. y)
* ((x
.|. y)
*' )))
+
0 ) by
XREAL_1: 19;
A12: (
Im (x
.|. x))
=
0 by
Def11;
A13: ((
Im (x
.|. y))
^2 )
>=
0 by
XREAL_1: 63;
(
Im c1)
=
0 by
A7,
A9,
COMPLEX1: 13;
then (
Im (c1
* (x
.|. x)))
= (((
Re c1)
*
0 )
+ ((
Re (x
.|. x))
*
0 )) by
A12,
COMPLEX1: 9;
then
A14:
|.(c1
* (x
.|. x)).|
=
|.(
Re (c1
* (x
.|. x))).| by
COMPLEX1: 50;
(
Re ((x
.|. y)
* ((x
.|. y)
*' )))
= (((
Re (x
.|. y))
^2 )
+ ((
Im (x
.|. y))
^2 )) by
COMPLEX1: 40;
then
A15: (
Re ((x
.|. y)
* ((x
.|. y)
*' )))
>= (
0
+
0 ) by
A3,
A13;
then
|.(
Re ((x
.|. y)
* ((x
.|. y)
*' ))).|
= (
Re ((x
.|. y)
* ((x
.|. y)
*' ))) by
ABSVALUE:def 1;
then
|.(
Re (c1
* (x
.|. x))).|
>=
|.(
Re ((x
.|. y)
* ((x
.|. y)
*' ))).| by
A11,
A15,
ABSVALUE:def 1;
then
|.(c1
* (x
.|. x)).|
>=
|.((x
.|. y)
* ((x
.|. y)
*' )).| by
A6,
A14,
COMPLEX1: 50;
then (
|.(x
.|. x).|
*
|.(y
.|. y).|)
>=
|.((x
.|. y)
* ((x
.|. y)
*' )).| by
A10,
COMPLEX1: 65;
then (
|.(x
.|. x).|
*
|.(y
.|. y).|)
>= (
|.(x
.|. y).|
*
|.((x
.|. y)
*' ).|) by
COMPLEX1: 65;
then
A16: (
|.(x
.|. x).|
*
|.(y
.|. y).|)
>= (
|.(x
.|. y).|
*
|.(x
.|. y).|) by
COMPLEX1: 53;
(
|.(x
.|. y).|
^2 )
>=
0 by
XREAL_1: 63;
then
A17: (
sqrt (
|.(x
.|. x).|
*
|.(y
.|. y).|))
>= (
sqrt (
|.(x
.|. y).|
^2 )) by
A16,
SQUARE_1: 26;
A18:
|.(y
.|. y).|
>=
0 by
COMPLEX1: 46;
|.(x
.|. x).|
>=
0 by
COMPLEX1: 46;
then ((
sqrt
|.(x
.|. x).|)
* (
sqrt
|.(y
.|. y).|))
>= (
sqrt (
|.(x
.|. y).|
^2 )) by
A17,
A18,
SQUARE_1: 29;
hence thesis by
COMPLEX1: 46,
SQUARE_1: 22;
end;
y
=
09(X) implies
|.(x
.|. y).|
<= ((
sqrt
|.(x
.|. x).|)
* (
sqrt
|.(y
.|. y).|))
proof
assume
A19: y
=
09(X);
then (y
.|. y)
=
0c by
Def11;
hence thesis by
A19,
Th25,
COMPLEX1: 44,
SQUARE_1: 17;
end;
hence thesis by
A1;
end;
definition
let X;
let x, y;
::
CSSPACE:def14
pred x,y
are_orthogonal means
:
Def12: (x
.|. y)
=
0 ;
symmetry by
Def11,
COMPLEX1: 28;
end
theorem ::
CSSPACE:36
(x,y)
are_orthogonal implies (x,(
- y))
are_orthogonal
proof
assume (x,y)
are_orthogonal ;
then (
- (x
.|. y))
= (
-
0 );
hence thesis by
Th19;
end;
theorem ::
CSSPACE:37
(x,y)
are_orthogonal implies ((
- x),y)
are_orthogonal
proof
assume (x,y)
are_orthogonal ;
then (
- (x
.|. y))
= (
-
0 );
hence thesis by
Th18;
end;
theorem ::
CSSPACE:38
(x,y)
are_orthogonal implies ((
- x),(
- y))
are_orthogonal by
Th20;
theorem ::
CSSPACE:39
(x,(
0. X))
are_orthogonal
proof
((
0. X)
.|. x)
=
0 by
Th24;
hence thesis by
Def12;
end;
theorem ::
CSSPACE:40
(x,y)
are_orthogonal implies ((x
+ y)
.|. (x
+ y))
= ((x
.|. x)
+ (y
.|. y))
proof
assume
A1: (x,y)
are_orthogonal ;
then (y
.|. x)
=
0c by
Def12;
then ((x
+ y)
.|. (x
+ y))
= (((x
.|. x)
+
0c )
+ (y
.|. y)) by
A1,
Th26;
hence thesis;
end;
theorem ::
CSSPACE:41
(x,y)
are_orthogonal implies ((x
- y)
.|. (x
- y))
= ((x
.|. x)
+ (y
.|. y))
proof
assume
A1: (x,y)
are_orthogonal ;
((x
- y)
.|. (x
- y))
= ((((x
.|. x)
- (x
.|. y))
- (y
.|. x))
+ (y
.|. y)) by
Th28
.= (((x
.|. x)
+ (y
.|. y))
-
0 ) by
A1,
Def12;
hence thesis;
end;
definition
let X, x;
::
CSSPACE:def15
func
||.x.|| ->
Real equals (
sqrt
|.(x
.|. x).|);
correctness ;
end
theorem ::
CSSPACE:42
Th37:
||.x.||
=
0 iff x
= (
0. X)
proof
thus
||.x.||
=
0 implies x
=
09(X)
proof
0
<= (
Re (x
.|. x)) by
Def11;
then
A1:
0
<=
|.(x
.|. x).| by
Th29;
assume
||.x.||
=
0 ;
then
|.(x
.|. x).|
=
0 by
A1,
SQUARE_1: 24;
then (x
.|. x)
=
0c by
COMPLEX1: 45;
hence thesis by
Def11;
end;
assume x
=
09(X);
hence thesis by
Def11,
COMPLEX1: 44,
SQUARE_1: 17;
end;
theorem ::
CSSPACE:43
Th38:
||.(a
* x).||
= (
|.a.|
*
||.x.||)
proof
A1:
0
<=
|.(a
* a).| by
COMPLEX1: 46;
0
<= (
Re (x
.|. x)) by
Def11;
then
A2:
0
<=
|.(x
.|. x).| by
Th29;
||.(a
* x).||
= (
sqrt
|.(a
* (x
.|. (a
* x))).|) by
Def11
.= (
sqrt
|.(a
* ((a
*' )
* (x
.|. x))).|) by
Th13
.= (
sqrt
|.((a
* (a
*' ))
* (x
.|. x)).|)
.= (
sqrt (
|.(a
* (a
*' )).|
*
|.(x
.|. x).|)) by
COMPLEX1: 65
.= (
sqrt (
|.(a
* a).|
*
|.(x
.|. x).|)) by
COMPLEX1: 69
.= ((
sqrt
|.(a
* a).|)
* (
sqrt
|.(x
.|. x).|)) by
A1,
A2,
SQUARE_1: 29
.= ((
sqrt (
|.a.|
^2 ))
* (
sqrt
|.(x
.|. x).|)) by
COMPLEX1: 65
.= (
|.a.|
* (
sqrt
|.(x
.|. x).|)) by
COMPLEX1: 46,
SQUARE_1: 22;
hence thesis;
end;
theorem ::
CSSPACE:44
Th39:
0
<=
||.x.||
proof
0
<= (
Re (x
.|. x)) by
Def11;
then
0
<=
|.(x
.|. x).| by
Th29;
hence thesis by
SQUARE_1:def 2;
end;
theorem ::
CSSPACE:45
|.(x
.|. y).|
<= (
||.x.||
*
||.y.||) by
Th30;
theorem ::
CSSPACE:46
Th41:
||.(x
+ y).||
<= (
||.x.||
+
||.y.||)
proof
A1: (
||.(x
+ y).||
^2 )
>=
0 by
XREAL_1: 63;
(
Re ((x
+ y)
.|. (x
+ y)))
>=
0 by
Def11;
then
A2:
|.((x
+ y)
.|. (x
+ y)).|
>=
0 by
Th29;
(
sqrt (
||.(x
+ y).||
^2 ))
= (
sqrt
|.((x
+ y)
.|. (x
+ y)).|) by
Th39,
SQUARE_1: 22;
then
A3: (
||.(x
+ y).||
^2 )
=
|.((x
+ y)
.|. (x
+ y)).| by
A2,
A1,
SQUARE_1: 28;
|.(y
.|. y).|
>=
0 by
COMPLEX1: 46;
then
A4:
|.(y
.|. y).|
= (
||.y.||
^2 ) by
SQUARE_1:def 2;
A5: (
- (
Im (x
.|. y)))
= (
Im ((x
.|. y)
*' )) by
COMPLEX1: 27
.= (
Im (y
.|. x)) by
Def11;
(
Im ((((x
.|. x)
+ (x
.|. y))
+ (y
.|. x))
+ (y
.|. y)))
= ((
Im (((x
.|. x)
+ (x
.|. y))
+ (y
.|. x)))
+ (
Im (y
.|. y))) by
COMPLEX1: 8
.= (((
Im ((x
.|. x)
+ (x
.|. y)))
+ (
Im (y
.|. x)))
+ (
Im (y
.|. y))) by
COMPLEX1: 8
.= ((((
Im (x
.|. x))
+ (
Im (x
.|. y)))
+ (
Im (y
.|. x)))
+ (
Im (y
.|. y))) by
COMPLEX1: 8
.= (((
0
+ (
Im (x
.|. y)))
+ (
Im (y
.|. x)))
+ (
Im (y
.|. y))) by
Def11
.= (((
Im (x
.|. y))
+ (
Im (y
.|. x)))
+
0 ) by
Def11;
then
A6: ((((x
.|. x)
+ (x
.|. y))
+ (y
.|. x))
+ (y
.|. y))
= ((
Re ((((x
.|. x)
+ (x
.|. y))
+ (y
.|. x))
+ (y
.|. y)))
+ (
0
*
<i> )) by
A5,
COMPLEX1: 13;
A7: (
Re (x
.|. y))
= (
Re ((x
.|. y)
*' )) by
COMPLEX1: 27
.= (
Re (y
.|. x)) by
Def11;
A8: (
Re (x
.|. y))
<=
|.(x
.|. y).| by
COMPLEX1: 54;
|.(x
.|. y).|
<= (
||.x.||
*
||.y.||) by
Th30;
then (
Re (x
.|. y))
<= (
||.x.||
*
||.y.||) by
A8,
XXREAL_0: 2;
then
A9: (2
* (
Re (x
.|. y)))
<= (2
* (
||.x.||
*
||.y.||)) by
XREAL_1: 64;
(
Re ((((x
.|. x)
+ (x
.|. y))
+ (y
.|. x))
+ (y
.|. y)))
= (
Re ((x
+ y)
.|. (x
+ y))) by
Th26;
then
A10: (
Re ((((x
.|. x)
+ (x
.|. y))
+ (y
.|. x))
+ (y
.|. y)))
>=
0 by
Def11;
(
Re ((((x
.|. x)
+ (x
.|. y))
+ (y
.|. x))
+ (y
.|. y)))
= ((
Re (((x
.|. x)
+ (x
.|. y))
+ (y
.|. x)))
+ (
Re (y
.|. y))) by
COMPLEX1: 8
.= (((
Re ((x
.|. x)
+ (x
.|. y)))
+ (
Re (y
.|. x)))
+ (
Re (y
.|. y))) by
COMPLEX1: 8
.= ((((
Re (x
.|. x))
+ (
Re (x
.|. y)))
+ (
Re (y
.|. x)))
+ (
Re (y
.|. y))) by
COMPLEX1: 8
.= (((
|.(x
.|. x).|
+ (
Re (x
.|. y)))
+ (
Re (y
.|. x)))
+ (
Re (y
.|. y))) by
Th29
.= (((
|.(x
.|. x).|
+ (
Re (x
.|. y)))
+ (
Re (y
.|. x)))
+
|.(y
.|. y).|) by
Th29;
then
|.((((x
.|. x)
+ (x
.|. y))
+ (y
.|. x))
+ (y
.|. y)).|
= ((
|.(x
.|. x).|
+ (2
* (
Re (x
.|. y))))
+
|.(y
.|. y).|) by
A7,
A10,
A6,
ABSVALUE:def 1;
then
A11: (
||.(x
+ y).||
^2 )
= ((2
* (
Re (x
.|. y)))
+ (
|.(x
.|. x).|
+
|.(y
.|. y).|)) by
A3,
Th26;
A12:
||.y.||
>=
0 by
Th39;
|.(x
.|. x).|
>=
0 by
COMPLEX1: 46;
then ((
sqrt
|.(x
.|. x).|)
^2 )
=
|.(x
.|. x).| by
SQUARE_1:def 2;
then (
||.(x
+ y).||
^2 )
<= ((2
* (
||.x.||
*
||.y.||))
+ ((
||.x.||
^2 )
+
|.(y
.|. y).|)) by
A11,
A9,
XREAL_1: 6;
then
A13: (
||.(x
+ y).||
^2 )
<= ((
||.x.||
+
||.y.||)
^2 ) by
A4;
||.x.||
>=
0 by
Th39;
hence thesis by
A12,
A13,
SQUARE_1: 16;
end;
theorem ::
CSSPACE:47
Th42:
||.(
- x).||
=
||.x.||
proof
||.(
- x).||
=
||.((
-
1r )
* x).|| by
CLVECT_1: 3
.= (
|.(
-
1r ).|
*
||.x.||) by
Th38
.= (
|.
1r .|
*
||.x.||) by
COMPLEX1: 52;
hence thesis by
COMPLEX1: 48;
end;
theorem ::
CSSPACE:48
Th43: (
||.x.||
-
||.y.||)
<=
||.(x
- y).||
proof
((x
- y)
+ y)
= (x
- (y
- y)) by
RLVECT_1: 29
.= (x
-
09(X)) by
RLVECT_1: 15
.= x by
RLVECT_1: 13;
then
||.x.||
<= (
||.(x
- y).||
+
||.y.||) by
Th41;
hence thesis by
XREAL_1: 20;
end;
theorem ::
CSSPACE:49
|.(
||.x.||
-
||.y.||).|
<=
||.(x
- y).||
proof
((y
- x)
+ x)
= (y
- (x
- x)) by
RLVECT_1: 29
.= (y
-
09(X)) by
RLVECT_1: 15
.= y by
RLVECT_1: 13;
then
||.y.||
<= (
||.(y
- x).||
+
||.x.||) by
Th41;
then (
||.y.||
-
||.x.||)
<=
||.(y
- x).|| by
XREAL_1: 20;
then (
||.y.||
-
||.x.||)
<=
||.(
- (x
- y)).|| by
RLVECT_1: 33;
then (
||.y.||
-
||.x.||)
<=
||.(x
- y).|| by
Th42;
then
A1: (
-
||.(x
- y).||)
<= (
- (
||.y.||
-
||.x.||)) by
XREAL_1: 24;
(
||.x.||
-
||.y.||)
<=
||.(x
- y).|| by
Th43;
hence thesis by
A1,
ABSVALUE: 5;
end;
definition
let X, x, y;
::
CSSPACE:def16
func
dist (x,y) ->
Real equals
||.(x
- y).||;
correctness ;
end
definition
let X, x, y;
:: original:
dist
redefine
func
dist (x,y);
commutativity
proof
let x, y;
thus (
dist (x,y))
=
||.(
- (y
- x)).|| by
RLVECT_1: 33
.= (
dist (y,x)) by
Th42;
end;
end
theorem ::
CSSPACE:50
Th45: (
dist (x,x))
=
0
proof
thus (
dist (x,x))
=
||.
09(X).|| by
RLVECT_1: 15
.=
0 by
Th37;
end;
theorem ::
CSSPACE:51
(
dist (x,z))
<= ((
dist (x,y))
+ (
dist (y,z)))
proof
(
dist (x,z))
=
||.((x
- z)
+
09(X)).|| by
RLVECT_1: 4
.=
||.((x
- z)
+ (y
- y)).|| by
RLVECT_1: 15
.=
||.(x
- (z
- (y
- y))).|| by
RLVECT_1: 29
.=
||.(x
- (y
+ (z
- y))).|| by
RLVECT_1: 29
.=
||.((x
- y)
- (z
- y)).|| by
RLVECT_1: 27
.=
||.((x
- y)
+ (y
- z)).|| by
RLVECT_1: 33;
hence thesis by
Th41;
end;
theorem ::
CSSPACE:52
Th47: x
<> y iff (
dist (x,y))
<>
0
proof
thus x
<> y implies (
dist (x,y))
<>
0
proof
assume that
A1: x
<> y and
A2: (
dist (x,y))
=
0 ;
(x
- y)
=
09(X) by
A2,
Th37;
hence contradiction by
A1,
RLVECT_1: 21;
end;
thus thesis by
Th45;
end;
theorem ::
CSSPACE:53
(
dist (x,y))
>=
0 by
Th39;
theorem ::
CSSPACE:54
x
<> y iff (
dist (x,y))
>
0
proof
thus x
<> y implies (
dist (x,y))
>
0
proof
assume x
<> y;
then (
dist (x,y))
<>
0 by
Th47;
hence thesis by
Th39;
end;
thus thesis by
Th45;
end;
theorem ::
CSSPACE:55
(
dist (x,y))
= (
sqrt
|.((x
- y)
.|. (x
- y)).|);
theorem ::
CSSPACE:56
(
dist ((x
+ y),(u
+ v)))
<= ((
dist (x,u))
+ (
dist (y,v)))
proof
(
dist ((x
+ y),(u
+ v)))
=
||.(((
- u)
+ (
- v))
+ (x
+ y)).|| by
RLVECT_1: 31
.=
||.((x
+ ((
- u)
+ (
- v)))
+ y).|| by
RLVECT_1:def 3
.=
||.(((x
- u)
+ (
- v))
+ y).|| by
RLVECT_1:def 3
.=
||.((x
- u)
+ (y
- v)).|| by
RLVECT_1:def 3;
hence thesis by
Th41;
end;
theorem ::
CSSPACE:57
(
dist ((x
- y),(u
- v)))
<= ((
dist (x,u))
+ (
dist (y,v)))
proof
(
dist ((x
- y),(u
- v)))
=
||.(((x
- y)
- u)
+ v).|| by
RLVECT_1: 29
.=
||.((x
- (u
+ y))
+ v).|| by
RLVECT_1: 27
.=
||.(((x
- u)
- y)
+ v).|| by
RLVECT_1: 27
.=
||.((x
- u)
- (y
- v)).|| by
RLVECT_1: 29
.=
||.((x
- u)
+ (
- (y
- v))).||;
then (
dist ((x
- y),(u
- v)))
<= (
||.(x
- u).||
+
||.(
- (y
- v)).||) by
Th41;
hence thesis by
Th42;
end;
theorem ::
CSSPACE:58
(
dist ((x
- z),(y
- z)))
= (
dist (x,y))
proof
thus (
dist ((x
- z),(y
- z)))
=
||.(((x
- z)
- y)
+ z).|| by
RLVECT_1: 29
.=
||.((x
- (y
+ z))
+ z).|| by
RLVECT_1: 27
.=
||.(((x
- y)
- z)
+ z).|| by
RLVECT_1: 27
.=
||.((x
- y)
- (z
- z)).|| by
RLVECT_1: 29
.=
||.((x
- y)
-
09(X)).|| by
RLVECT_1: 15
.= (
dist (x,y)) by
RLVECT_1: 13;
end;
theorem ::
CSSPACE:59
(
dist ((x
- z),(y
- z)))
<= ((
dist (z,x))
+ (
dist (z,y)))
proof
(
dist ((x
- z),(y
- z)))
=
||.((x
- z)
+ (z
- y)).|| by
RLVECT_1: 33
.=
||.((
- (z
- x))
+ (z
- y)).|| by
RLVECT_1: 33;
then (
dist ((x
- z),(y
- z)))
<= (
||.(
- (z
- x)).||
+
||.(z
- y).||) by
Th41;
hence thesis by
Th42;
end;
reserve seq,seq1,seq2,seq3 for
sequence of X;
reserve n for
Nat;
definition
let X, seq1, seq2;
:: original:
+
redefine
func seq1
+ seq2;
commutativity
proof
let seq1, seq2;
now
let n be
Element of
NAT ;
thus ((seq1
+ seq2)
. n)
= ((seq2
. n)
+ (seq1
. n)) by
NORMSP_1:def 2
.= ((seq2
+ seq1)
. n) by
NORMSP_1:def 2;
end;
hence thesis by
FUNCT_2: 63;
end;
end
theorem ::
CSSPACE:60
(seq1
+ (seq2
+ seq3))
= ((seq1
+ seq2)
+ seq3)
proof
now
let n be
Element of
NAT ;
thus ((seq1
+ (seq2
+ seq3))
. n)
= ((seq1
. n)
+ ((seq2
+ seq3)
. n)) by
NORMSP_1:def 2
.= ((seq1
. n)
+ ((seq2
. n)
+ (seq3
. n))) by
NORMSP_1:def 2
.= (((seq1
. n)
+ (seq2
. n))
+ (seq3
. n)) by
RLVECT_1:def 3
.= (((seq1
+ seq2)
. n)
+ (seq3
. n)) by
NORMSP_1:def 2
.= (((seq1
+ seq2)
+ seq3)
. n) by
NORMSP_1:def 2;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
CSSPACE:61
seq1 is
constant & seq2 is
constant & seq
= (seq1
+ seq2) implies seq is
constant
proof
assume that
A1: seq1 is
constant and
A2: seq2 is
constant and
A3: seq
= (seq1
+ seq2);
consider x such that
A4: for n be
Nat holds (seq1
. n)
= x by
A1;
consider y such that
A5: for n be
Nat holds (seq2
. n)
= y by
A2;
take z = (x
+ y);
let n be
Nat;
thus (seq
. n)
= ((seq1
. n)
+ (seq2
. n)) by
A3,
NORMSP_1:def 2
.= (x
+ (seq2
. n)) by
A4
.= z by
A5;
end;
theorem ::
CSSPACE:62
seq1 is
constant & seq2 is
constant & seq
= (seq1
- seq2) implies seq is
constant
proof
assume that
A1: seq1 is
constant and
A2: seq2 is
constant and
A3: seq
= (seq1
- seq2);
consider x such that
A4: for n be
Nat holds (seq1
. n)
= x by
A1;
consider y such that
A5: for n be
Nat holds (seq2
. n)
= y by
A2;
take z = (x
- y);
let n be
Nat;
thus (seq
. n)
= ((seq1
. n)
- (seq2
. n)) by
A3,
NORMSP_1:def 3
.= (x
- (seq2
. n)) by
A4
.= z by
A5;
end;
theorem ::
CSSPACE:63
seq1 is
constant & seq
= (a
* seq1) implies seq is
constant
proof
assume that
A1: seq1 is
constant and
A2: seq
= (a
* seq1);
consider x such that
A3: for n be
Nat holds (seq1
. n)
= x by
A1;
take z = (a
* x);
let n be
Nat;
thus (seq
. n)
= (a
* (seq1
. n)) by
A2,
CLVECT_1:def 14
.= z by
A3;
end;
theorem ::
CSSPACE:64
(seq1
- seq2)
= (seq1
+ (
- seq2))
proof
now
let n be
Element of
NAT ;
thus ((seq1
- seq2)
. n)
= ((seq1
. n)
- (seq2
. n)) by
NORMSP_1:def 3
.= ((seq1
. n)
+ ((
- seq2)
. n)) by
BHSP_1: 44
.= ((seq1
+ (
- seq2))
. n) by
NORMSP_1:def 2;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
CSSPACE:65
seq
= (seq
+ (
0. X))
proof
now
let n be
Element of
NAT ;
thus ((seq
+
09(X))
. n)
= ((seq
. n)
+
09(X)) by
BHSP_1:def 6
.= (seq
. n) by
RLVECT_1: 4;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
CSSPACE:66
(a
* (seq1
+ seq2))
= ((a
* seq1)
+ (a
* seq2))
proof
now
let n be
Element of
NAT ;
thus ((a
* (seq1
+ seq2))
. n)
= (a
* ((seq1
+ seq2)
. n)) by
CLVECT_1:def 14
.= (a
* ((seq1
. n)
+ (seq2
. n))) by
NORMSP_1:def 2
.= ((a
* (seq1
. n))
+ (a
* (seq2
. n))) by
CLVECT_1:def 2
.= (((a
* seq1)
. n)
+ (a
* (seq2
. n))) by
CLVECT_1:def 14
.= (((a
* seq1)
. n)
+ ((a
* seq2)
. n)) by
CLVECT_1:def 14
.= (((a
* seq1)
+ (a
* seq2))
. n) by
NORMSP_1:def 2;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
CSSPACE:67
((a
+ b)
* seq)
= ((a
* seq)
+ (b
* seq))
proof
now
let n be
Element of
NAT ;
thus (((a
+ b)
* seq)
. n)
= ((a
+ b)
* (seq
. n)) by
CLVECT_1:def 14
.= ((a
* (seq
. n))
+ (b
* (seq
. n))) by
CLVECT_1:def 3
.= (((a
* seq)
. n)
+ (b
* (seq
. n))) by
CLVECT_1:def 14
.= (((a
* seq)
. n)
+ ((b
* seq)
. n)) by
CLVECT_1:def 14
.= (((a
* seq)
+ (b
* seq))
. n) by
NORMSP_1:def 2;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
CSSPACE:68
((a
* b)
* seq)
= (a
* (b
* seq))
proof
now
let n be
Element of
NAT ;
thus (((a
* b)
* seq)
. n)
= ((a
* b)
* (seq
. n)) by
CLVECT_1:def 14
.= (a
* (b
* (seq
. n))) by
CLVECT_1:def 4
.= (a
* ((b
* seq)
. n)) by
CLVECT_1:def 14
.= ((a
* (b
* seq))
. n) by
CLVECT_1:def 14;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
CSSPACE:69
(
1r
* seq)
= seq
proof
now
let n be
Element of
NAT ;
thus ((
1r
* seq)
. n)
= (
1r
* (seq
. n)) by
CLVECT_1:def 14
.= (seq
. n) by
CLVECT_1:def 5;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
CSSPACE:70
((
-
1r )
* seq)
= (
- seq)
proof
now
let n be
Element of
NAT ;
thus (((
-
1r )
* seq)
. n)
= ((
-
1r )
* (seq
. n)) by
CLVECT_1:def 14
.= (
- (seq
. n)) by
CLVECT_1: 3
.= ((
- seq)
. n) by
BHSP_1: 44;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
CSSPACE:71
(seq
- x)
= (seq
+ (
- x))
proof
now
let n be
Element of
NAT ;
thus ((seq
- x)
. n)
= ((seq
. n)
- x) by
NORMSP_1:def 4
.= ((seq
+ (
- x))
. n) by
BHSP_1:def 6;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
CSSPACE:72
(seq1
- seq2)
= (
- (seq2
- seq1))
proof
now
let n be
Element of
NAT ;
thus ((seq1
- seq2)
. n)
= ((seq1
. n)
- (seq2
. n)) by
NORMSP_1:def 3
.= (
- ((seq2
. n)
- (seq1
. n))) by
RLVECT_1: 33
.= (
- ((seq2
- seq1)
. n)) by
NORMSP_1:def 3
.= ((
- (seq2
- seq1))
. n) by
BHSP_1: 44;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
CSSPACE:73
seq
= (seq
- (
0. X))
proof
now
let n be
Element of
NAT ;
thus ((seq
-
09(X))
. n)
= ((seq
. n)
-
09(X)) by
NORMSP_1:def 4
.= (seq
. n) by
RLVECT_1: 13;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
CSSPACE:74
seq
= (
- (
- seq))
proof
now
let n be
Element of
NAT ;
thus ((
- (
- seq))
. n)
= (
- ((
- seq)
. n)) by
BHSP_1: 44
.= (
- (
- (seq
. n))) by
BHSP_1: 44
.= (seq
. n) by
RLVECT_1: 17;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
CSSPACE:75
(seq1
- (seq2
+ seq3))
= ((seq1
- seq2)
- seq3)
proof
now
let n be
Element of
NAT ;
thus ((seq1
- (seq2
+ seq3))
. n)
= ((seq1
. n)
- ((seq2
+ seq3)
. n)) by
NORMSP_1:def 3
.= ((seq1
. n)
- ((seq2
. n)
+ (seq3
. n))) by
NORMSP_1:def 2
.= (((seq1
. n)
- (seq2
. n))
- (seq3
. n)) by
RLVECT_1: 27
.= (((seq1
- seq2)
. n)
- (seq3
. n)) by
NORMSP_1:def 3
.= (((seq1
- seq2)
- seq3)
. n) by
NORMSP_1:def 3;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
CSSPACE:76
((seq1
+ seq2)
- seq3)
= (seq1
+ (seq2
- seq3))
proof
now
let n be
Element of
NAT ;
thus (((seq1
+ seq2)
- seq3)
. n)
= (((seq1
+ seq2)
. n)
- (seq3
. n)) by
NORMSP_1:def 3
.= (((seq1
. n)
+ (seq2
. n))
- (seq3
. n)) by
NORMSP_1:def 2
.= ((seq1
. n)
+ ((seq2
. n)
- (seq3
. n))) by
RLVECT_1:def 3
.= ((seq1
. n)
+ ((seq2
- seq3)
. n)) by
NORMSP_1:def 3
.= ((seq1
+ (seq2
- seq3))
. n) by
NORMSP_1:def 2;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
CSSPACE:77
(seq1
- (seq2
- seq3))
= ((seq1
- seq2)
+ seq3)
proof
now
let n be
Element of
NAT ;
thus ((seq1
- (seq2
- seq3))
. n)
= ((seq1
. n)
- ((seq2
- seq3)
. n)) by
NORMSP_1:def 3
.= ((seq1
. n)
- ((seq2
. n)
- (seq3
. n))) by
NORMSP_1:def 3
.= (((seq1
. n)
- (seq2
. n))
+ (seq3
. n)) by
RLVECT_1: 29
.= (((seq1
- seq2)
. n)
+ (seq3
. n)) by
NORMSP_1:def 3
.= (((seq1
- seq2)
+ seq3)
. n) by
NORMSP_1:def 2;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
CSSPACE:78
(a
* (seq1
- seq2))
= ((a
* seq1)
- (a
* seq2))
proof
now
let n be
Element of
NAT ;
thus ((a
* (seq1
- seq2))
. n)
= (a
* ((seq1
- seq2)
. n)) by
CLVECT_1:def 14
.= (a
* ((seq1
. n)
- (seq2
. n))) by
NORMSP_1:def 3
.= ((a
* (seq1
. n))
- (a
* (seq2
. n))) by
CLVECT_1: 9
.= (((a
* seq1)
. n)
- (a
* (seq2
. n))) by
CLVECT_1:def 14
.= (((a
* seq1)
. n)
- ((a
* seq2)
. n)) by
CLVECT_1:def 14
.= (((a
* seq1)
- (a
* seq2))
. n) by
NORMSP_1:def 3;
end;
hence thesis by
FUNCT_2: 63;
end;
begin
definition
::
CSSPACE:def17
func
cl_scalar ->
Function of
[:
the_set_of_l2ComplexSequences ,
the_set_of_l2ComplexSequences :],
COMPLEX means for x,y be
object st x
in
the_set_of_l2ComplexSequences & y
in
the_set_of_l2ComplexSequences holds (it
. (x,y))
= (
Sum ((
seq_id x)
(#) ((
seq_id y)
*' )));
existence
proof
deffunc
F(
object,
object) = (
Sum ((
seq_id $1)
(#) ((
seq_id $2)
*' )));
set X =
the_set_of_l2ComplexSequences ;
A1: for x,y be
object st x
in X & y
in X holds
F(x,y)
in
COMPLEX ;
ex f be
Function of
[:X, X:],
COMPLEX st for x,y be
object st x
in X & y
in X holds (f
. (x,y))
=
F(x,y) from
BINOP_1:sch 2(
A1);
hence thesis;
end;
uniqueness
proof
set X =
the_set_of_l2ComplexSequences ;
let scalar1,scalar2 be
Function of
[:X, X:],
COMPLEX such that
A2: for x,y be
object st x
in X & y
in X holds (scalar1
. (x,y))
= (
Sum ((
seq_id x)
(#) ((
seq_id y)
*' ))) and
A3: for x,y be
object st x
in X & y
in X holds (scalar2
. (x,y))
= (
Sum ((
seq_id x)
(#) ((
seq_id y)
*' )));
for x,y be
set st x
in X & y
in X holds (scalar1
. (x,y))
= (scalar2
. (x,y))
proof
let x,y be
set such that
A4: x
in X and
A5: y
in X;
thus (scalar1
. (x,y))
= (
Sum ((
seq_id x)
(#) ((
seq_id y)
*' ))) by
A2,
A4,
A5
.= (scalar2
. (x,y)) by
A3,
A4,
A5;
end;
hence thesis;
end;
end
registration
cluster
CUNITSTR (#
the_set_of_l2ComplexSequences , (
Zero_ (
the_set_of_l2ComplexSequences ,
Linear_Space_of_ComplexSequences )), (
Add_ (
the_set_of_l2ComplexSequences ,
Linear_Space_of_ComplexSequences )), (
Mult_ (
the_set_of_l2ComplexSequences ,
Linear_Space_of_ComplexSequences )),
cl_scalar #) -> non
empty;
coherence ;
end
definition
::
CSSPACE:def18
func
Complex_l2_Space -> non
empty
CUNITSTR equals
CUNITSTR (#
the_set_of_l2ComplexSequences , (
Zero_ (
the_set_of_l2ComplexSequences ,
Linear_Space_of_ComplexSequences )), (
Add_ (
the_set_of_l2ComplexSequences ,
Linear_Space_of_ComplexSequences )), (
Mult_ (
the_set_of_l2ComplexSequences ,
Linear_Space_of_ComplexSequences )),
cl_scalar #);
correctness ;
end
theorem ::
CSSPACE:79
Th74: for l be
CLSStruct st the CLSStruct of l is
ComplexLinearSpace holds l is
ComplexLinearSpace
proof
let l be
CLSStruct such that
A1: the CLSStruct of l is
ComplexLinearSpace;
reconsider l as non
empty
CLSStruct by
A1;
reconsider l0 =
CLSStruct (# the
carrier of l, (
0. l), the
addF of l, the
Mult of l #) as
ComplexLinearSpace by
A1;
A2: l is
Abelian
proof
let v,w be
VECTOR of l;
reconsider v1 = v as
VECTOR of l0;
reconsider w1 = w as
VECTOR of l0;
thus (v
+ w)
= (v1
+ w1)
.= (w1
+ v1)
.= (w
+ v);
end;
A3: l is
add-associative
proof
let u,v,w be
VECTOR of l;
reconsider u1 = u as
VECTOR of l0;
reconsider v1 = v as
VECTOR of l0;
reconsider w1 = w as
VECTOR of l0;
thus ((u
+ v)
+ w)
= ((u1
+ v1)
+ w1)
.= (u1
+ (v1
+ w1)) by
RLVECT_1:def 3
.= (u
+ (v
+ w));
end;
A4: l is
vector-distributive
scalar-distributive
scalar-associative
scalar-unital
proof
thus for z be
Complex, v,w be
VECTOR of l holds (z
* (v
+ w))
= ((z
* v)
+ (z
* w))
proof
let z be
Complex;
let v,w be
VECTOR of l;
reconsider v1 = v, w1 = w as
VECTOR of l0;
thus (z
* (v
+ w))
= (z
* (v1
+ w1))
.= ((z
* v1)
+ (z
* w1)) by
CLVECT_1:def 2
.= ((z
* v)
+ (z
* w));
end;
thus for z1,z2 be
Complex, v be
VECTOR of l holds ((z1
+ z2)
* v)
= ((z1
* v)
+ (z2
* v))
proof
let z1,z2 be
Complex;
let v be
VECTOR of l;
reconsider v1 = v as
VECTOR of l0;
thus ((z1
+ z2)
* v)
= ((z1
+ z2)
* v1)
.= ((z1
* v1)
+ (z2
* v1)) by
CLVECT_1:def 3
.= ((z1
* v)
+ (z2
* v));
end;
thus for z1,z2 be
Complex, v be
VECTOR of l holds ((z1
* z2)
* v)
= (z1
* (z2
* v))
proof
let z1,z2 be
Complex;
let v be
VECTOR of l;
reconsider v1 = v as
VECTOR of l0;
thus ((z1
* z2)
* v)
= ((z1
* z2)
* v1)
.= (z1
* (z2
* v1)) by
CLVECT_1:def 4
.= (z1
* (z2
* v));
end;
let v be
VECTOR of l;
reconsider v1 = v as
VECTOR of l0;
thus (
1r
* v)
= (
1r
* v1)
.= v by
CLVECT_1:def 5;
end;
A5: l is
right_complementable
proof
let v be
VECTOR of l;
reconsider v1 = v as
VECTOR of l0;
consider w1 be
VECTOR of l0 such that
A6: (v1
+ w1)
= (
0. l0) by
ALGSTR_0:def 11;
reconsider w = w1 as
VECTOR of l;
take w;
thus thesis by
A6;
end;
l is
right_zeroed
proof
let v be
VECTOR of l;
reconsider v1 = v as
VECTOR of l0;
thus (v
+ (
0. l))
= (v1
+ (
0. l0))
.= v by
RLVECT_1:def 4;
end;
hence thesis by
A2,
A3,
A5,
A4;
end;
theorem ::
CSSPACE:80
for seq be
Complex_Sequence st (for n be
Nat holds (seq
. n)
=
0c ) holds seq is
summable & (
Sum seq)
=
0c
proof
let seq be
Complex_Sequence such that
A1: for n be
Nat holds (seq
. n)
=
0c ;
A2: for m be
Nat holds ((
Partial_Sums seq)
. m)
=
0c
proof
defpred
P[
Nat] means (seq
. $1)
= ((
Partial_Sums seq)
. $1);
let m be
Nat;
A3: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A4: (seq
. k)
= ((
Partial_Sums seq)
. k);
thus (seq
. (k
+ 1))
= (
0c
+ (seq
. (k
+ 1)))
.= ((seq
. k)
+ (seq
. (k
+ 1))) by
A1
.= ((
Partial_Sums seq)
. (k
+ 1)) by
A4,
SERIES_1:def 1;
end;
A5:
P[
0 ] by
SERIES_1:def 1;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A5,
A3);
hence ((
Partial_Sums seq)
. m)
= (seq
. m)
.=
0c by
A1;
end;
A6: for p be
Real st
0
< p holds ex n be
Nat st for m be
Nat st n
<= m holds
|.(((
Partial_Sums seq)
. m)
-
0c ).|
< p
proof
let p be
Real such that
A7:
0
< p;
take
0 ;
let m be
Nat such that
0
<= m;
thus thesis by
A2,
A7,
COMPLEX1: 44;
end;
then
A8: (
Partial_Sums seq) qua
Complex_Sequence is
convergent by
COMSEQ_2:def 5;
then (
lim (
Partial_Sums seq))
=
0c by
A6,
COMSEQ_2:def 6;
hence thesis by
A8,
COMSEQ_3:def 7,
COMSEQ_3:def 8;
end;
registration
cluster
Complex_l2_Space ->
Abelian
add-associative
right_zeroed
right_complementable
vector-distributive
scalar-distributive
scalar-associative
scalar-unital;
coherence by
Th9,
Th74;
end
theorem ::
CSSPACE:81
(
|.(
seq_id
CZeroseq ).|
(#)
|.(
seq_id
CZeroseq ).|) is
absolutely_summable by
Lm1;