diff_2.miz
begin
reserve h,r,r1,r2,x0,x1,x2,x3,x4,x5,x,a,b,c,k for
Real,
f,f1,f2 for
Function of
REAL ,
REAL ;
theorem ::
DIFF_2:1
Th1:
[!f, x, (x
+ h)!]
= ((((
fdif (f,h))
. 1)
. x)
/ h)
proof
[!f, x, (x
+ h)!]
=
[!f, (x
+ h), x!] by
DIFF_1: 29
.= (((
fD (f,h))
. x)
/ h) by
DIFF_1: 3
.= (((
fD (((
fdif (f,h))
.
0 ),h))
. x)
/ h) by
DIFF_1:def 6
.= ((((
fdif (f,h))
. (
0 qua
Nat
+ 1))
. x)
/ h) by
DIFF_1:def 6;
hence thesis;
end;
theorem ::
DIFF_2:2
h
<>
0 implies
[!f, x, (x
+ h), (x
+ (2
* h))!]
= ((((
fdif (f,h))
. 2)
. x)
/ (2
* (h
^2 )))
proof
A1: ((
fdif (f,h))
. 1) is
Function of
REAL ,
REAL by
DIFF_1: 2;
assume
A2: h
<>
0 ;
then
A3: (x
+ h)
<> (x
+ (2
* h));
x
<> (x
+ h) & x
<> (x
+ (2
* h)) by
A2;
then (x,(x
+ h),(x
+ (2
* h)))
are_mutually_distinct by
A3,
ZFMISC_1:def 5;
then
[!f, x, (x
+ h), (x
+ (2
* h))!]
=
[!f, (x
+ (2
* h)), (x
+ h), x!] by
DIFF_1: 34
.= ((
[!f, (x
+ h), (x
+ (2
* h))!]
-
[!f, (x
+ h), x!])
/ ((x
+ (2
* h))
- x)) by
DIFF_1: 29
.= ((
[!f, (x
+ h), ((x
+ h)
+ h)!]
-
[!f, x, (x
+ h)!])
/ ((x
+ (2
* h))
- x)) by
DIFF_1: 29
.= ((((((
fdif (f,h))
. 1)
. (x
+ h))
/ h)
-
[!f, x, (x
+ h)!])
/ ((x
+ (2
* h))
- x)) by
Th1
.= ((((((
fdif (f,h))
. 1)
. (x
+ h))
/ h)
- ((((
fdif (f,h))
. 1)
. x)
/ h))
/ ((x
+ (2
* h))
- x)) by
Th1
.= ((((((
fdif (f,h))
. 1)
. (x
+ h))
- (((
fdif (f,h))
. 1)
. x))
/ h)
/ ((x
+ (2
* h))
- x)) by
XCMPLX_1: 120
.= ((((
fD (((
fdif (f,h))
. 1),h))
. x)
/ h)
/ (2
* h)) by
A1,
DIFF_1: 3
.= (((((
fdif (f,h))
. (1
+ 1))
. x)
/ h)
/ (2
* h)) by
DIFF_1:def 6
.= ((((
fdif (f,h))
. 2)
. x)
/ (h
* (2
* h))) by
XCMPLX_1: 78
.= ((((
fdif (f,h))
. 2)
. x)
/ (2
* (h
^2 )));
hence thesis;
end;
theorem ::
DIFF_2:3
Th3:
[!f, (x
- h), x!]
= ((((
bdif (f,h))
. 1)
. x)
/ h)
proof
[!f, (x
- h), x!]
=
[!f, x, (x
- h)!] by
DIFF_1: 29
.= (((
bD (f,h))
. x)
/ h) by
DIFF_1: 4
.= (((
bD (((
bdif (f,h))
.
0 ),h))
. x)
/ h) by
DIFF_1:def 7
.= ((((
bdif (f,h))
. (
0 qua
Nat
+ 1))
. x)
/ h) by
DIFF_1:def 7;
hence thesis;
end;
theorem ::
DIFF_2:4
h
<>
0 implies
[!f, (x
- (2
* h)), (x
- h), x!]
= ((((
bdif (f,h))
. 2)
. x)
/ (2
* (h
^2 )))
proof
set y = (x
- h);
A1: ((
bdif (f,h))
. 1) is
Function of
REAL ,
REAL by
DIFF_1: 12;
assume
A2: h
<>
0 ;
then
A3: (x
- h)
<> (x
- (2
* h));
x
<> (x
- h) & x
<> (x
- (2
* h)) by
A2;
then (x,(x
- h),(x
- (2
* h)))
are_mutually_distinct by
A3,
ZFMISC_1:def 5;
then
[!f, (x
- (2
* h)), (x
- h), x!]
=
[!f, x, (x
- h), (x
- (2
* h))!] by
DIFF_1: 34
.= ((
[!f, (x
- h), x!]
-
[!f, (x
- h), (x
- (2
* h))!])
/ (x
- (x
- (2
* h)))) by
DIFF_1: 29
.= ((((((
bdif (f,h))
. 1)
. x)
/ h)
-
[!f, (x
- h), (x
- (2
* h))!])
/ (x
- (x
- (2
* h)))) by
Th3
.= ((((((
bdif (f,h))
. 1)
. x)
/ h)
-
[!f, (y
- h), y!])
/ (x
- (x
- (2
* h)))) by
DIFF_1: 29
.= ((((((
bdif (f,h))
. 1)
. x)
/ h)
- ((((
bdif (f,h))
. 1)
. (x
- h))
/ h))
/ (x
- (x
- (2
* h)))) by
Th3
.= ((((((
bdif (f,h))
. 1)
. x)
- (((
bdif (f,h))
. 1)
. (x
- h)))
/ h)
/ (x
- (x
- (2
* h)))) by
XCMPLX_1: 120
.= ((((
bD (((
bdif (f,h))
. 1),h))
. x)
/ h)
/ (2
* h)) by
A1,
DIFF_1: 4
.= (((((
bdif (f,h))
. (1
+ 1))
. x)
/ h)
/ (2
* h)) by
DIFF_1:def 7
.= ((((
bdif (f,h))
. 2)
. x)
/ (h
* (2
* h))) by
XCMPLX_1: 78
.= ((((
bdif (f,h))
. 2)
. x)
/ (2
* (h
^2 )));
hence thesis;
end;
theorem ::
DIFF_2:5
Th5:
[!(r
(#) f), x0, x1, x2!]
= (r
*
[!f, x0, x1, x2!])
proof
[!(r
(#) f), x0, x1, x2!]
= (((r
*
[!f, x0, x1!])
-
[!(r
(#) f), x1, x2!])
/ (x0
- x2)) by
DIFF_1: 31
.= (((r
*
[!f, x0, x1!])
- (r
*
[!f, x1, x2!]))
/ (x0
- x2)) by
DIFF_1: 31
.= ((r
* (
[!f, x0, x1!]
-
[!f, x1, x2!]))
/ (x0
- x2));
hence thesis by
XCMPLX_1: 74;
end;
theorem ::
DIFF_2:6
Th6:
[!(f1
+ f2), x0, x1, x2!]
= (
[!f1, x0, x1, x2!]
+
[!f2, x0, x1, x2!])
proof
[!(f1
+ f2), x0, x1, x2!]
= (((
[!f1, x0, x1!]
+
[!f2, x0, x1!])
-
[!(f1
+ f2), x1, x2!])
/ (x0
- x2)) by
DIFF_1: 32
.= (((
[!f1, x0, x1!]
+
[!f2, x0, x1!])
- (
[!f1, x1, x2!]
+
[!f2, x1, x2!]))
/ (x0
- x2)) by
DIFF_1: 32
.= (((
[!f1, x0, x1!]
-
[!f1, x1, x2!])
+ (
[!f2, x0, x1!]
-
[!f2, x1, x2!]))
/ (x0
- x2));
hence thesis by
XCMPLX_1: 62;
end;
theorem ::
DIFF_2:7
[!((r1
(#) f1)
+ (r2
(#) f2)), x0, x1, x2!]
= ((r1
*
[!f1, x0, x1, x2!])
+ (r2
*
[!f2, x0, x1, x2!]))
proof
[!((r1
(#) f1)
+ (r2
(#) f2)), x0, x1, x2!]
= (
[!(r1
(#) f1), x0, x1, x2!]
+
[!(r2
(#) f2), x0, x1, x2!]) by
Th6
.= ((r1
*
[!f1, x0, x1, x2!])
+
[!(r2
(#) f2), x0, x1, x2!]) by
Th5;
hence thesis by
Th5;
end;
theorem ::
DIFF_2:8
Th8:
[!(r
(#) f), x0, x1, x2, x3!]
= (r
*
[!f, x0, x1, x2, x3!])
proof
[!(r
(#) f), x0, x1, x2, x3!]
= (((r
*
[!f, x0, x1, x2!])
-
[!(r
(#) f), x1, x2, x3!])
/ (x0
- x3)) by
Th5
.= (((r
*
[!f, x0, x1, x2!])
- (r
*
[!f, x1, x2, x3!]))
/ (x0
- x3)) by
Th5
.= ((r
* (
[!f, x0, x1, x2!]
-
[!f, x1, x2, x3!]))
/ (x0
- x3));
hence thesis by
XCMPLX_1: 74;
end;
theorem ::
DIFF_2:9
Th9:
[!(f1
+ f2), x0, x1, x2, x3!]
= (
[!f1, x0, x1, x2, x3!]
+
[!f2, x0, x1, x2, x3!])
proof
[!(f1
+ f2), x0, x1, x2, x3!]
= (((
[!f1, x0, x1, x2!]
+
[!f2, x0, x1, x2!])
-
[!(f1
+ f2), x1, x2, x3!])
/ (x0
- x3)) by
Th6
.= (((
[!f1, x0, x1, x2!]
+
[!f2, x0, x1, x2!])
- (
[!f1, x1, x2, x3!]
+
[!f2, x1, x2, x3!]))
/ (x0
- x3)) by
Th6
.= (((
[!f1, x0, x1, x2!]
-
[!f1, x1, x2, x3!])
+ (
[!f2, x0, x1, x2!]
-
[!f2, x1, x2, x3!]))
/ (x0
- x3));
hence thesis by
XCMPLX_1: 62;
end;
theorem ::
DIFF_2:10
[!((r1
(#) f1)
+ (r2
(#) f2)), x0, x1, x2, x3!]
= ((r1
*
[!f1, x0, x1, x2, x3!])
+ (r2
*
[!f2, x0, x1, x2, x3!]))
proof
[!((r1
(#) f1)
+ (r2
(#) f2)), x0, x1, x2, x3!]
= (
[!(r1
(#) f1), x0, x1, x2, x3!]
+
[!(r2
(#) f2), x0, x1, x2, x3!]) by
Th9
.= ((r1
*
[!f1, x0, x1, x2, x3!])
+
[!(r2
(#) f2), x0, x1, x2, x3!]) by
Th8;
hence thesis by
Th8;
end;
definition
let f be
real-valued
Function;
let x0,x1,x2,x3,x4 be
Real;
::
DIFF_2:def1
func
[!f,x0,x1,x2,x3,x4!] ->
Real equals ((
[!f, x0, x1, x2, x3!]
-
[!f, x1, x2, x3, x4!])
/ (x0
- x4));
correctness ;
end
theorem ::
DIFF_2:11
Th11:
[!(r
(#) f), x0, x1, x2, x3, x4!]
= (r
*
[!f, x0, x1, x2, x3, x4!])
proof
[!(r
(#) f), x0, x1, x2, x3, x4!]
= (((r
*
[!f, x0, x1, x2, x3!])
-
[!(r
(#) f), x1, x2, x3, x4!])
/ (x0
- x4)) by
Th8
.= (((r
*
[!f, x0, x1, x2, x3!])
- (r
*
[!f, x1, x2, x3, x4!]))
/ (x0
- x4)) by
Th8
.= ((r
* (
[!f, x0, x1, x2, x3!]
-
[!f, x1, x2, x3, x4!]))
/ (x0
- x4));
hence thesis by
XCMPLX_1: 74;
end;
theorem ::
DIFF_2:12
Th12:
[!(f1
+ f2), x0, x1, x2, x3, x4!]
= (
[!f1, x0, x1, x2, x3, x4!]
+
[!f2, x0, x1, x2, x3, x4!])
proof
[!(f1
+ f2), x0, x1, x2, x3, x4!]
= (((
[!f1, x0, x1, x2, x3!]
+
[!f2, x0, x1, x2, x3!])
-
[!(f1
+ f2), x1, x2, x3, x4!])
/ (x0
- x4)) by
Th9
.= (((
[!f1, x0, x1, x2, x3!]
+
[!f2, x0, x1, x2, x3!])
- (
[!f1, x1, x2, x3, x4!]
+
[!f2, x1, x2, x3, x4!]))
/ (x0
- x4)) by
Th9
.= (((
[!f1, x0, x1, x2, x3!]
-
[!f1, x1, x2, x3, x4!])
+ (
[!f2, x0, x1, x2, x3!]
-
[!f2, x1, x2, x3, x4!]))
/ (x0
- x4));
hence thesis by
XCMPLX_1: 62;
end;
theorem ::
DIFF_2:13
[!((r1
(#) f1)
+ (r2
(#) f2)), x0, x1, x2, x3, x4!]
= ((r1
*
[!f1, x0, x1, x2, x3, x4!])
+ (r2
*
[!f2, x0, x1, x2, x3, x4!]))
proof
[!((r1
(#) f1)
+ (r2
(#) f2)), x0, x1, x2, x3, x4!]
= (
[!(r1
(#) f1), x0, x1, x2, x3, x4!]
+
[!(r2
(#) f2), x0, x1, x2, x3, x4!]) by
Th12
.= ((r1
*
[!f1, x0, x1, x2, x3, x4!])
+
[!(r2
(#) f2), x0, x1, x2, x3, x4!]) by
Th11;
hence thesis by
Th11;
end;
definition
let f be
real-valued
Function;
let x0,x1,x2,x3,x4,x5 be
Real;
::
DIFF_2:def2
func
[!f,x0,x1,x2,x3,x4,x5!] ->
Real equals ((
[!f, x0, x1, x2, x3, x4!]
-
[!f, x1, x2, x3, x4, x5!])
/ (x0
- x5));
correctness ;
end
theorem ::
DIFF_2:14
Th14:
[!(r
(#) f), x0, x1, x2, x3, x4, x5!]
= (r
*
[!f, x0, x1, x2, x3, x4, x5!])
proof
[!(r
(#) f), x0, x1, x2, x3, x4, x5!]
= (((r
*
[!f, x0, x1, x2, x3, x4!])
-
[!(r
(#) f), x1, x2, x3, x4, x5!])
/ (x0
- x5)) by
Th11
.= (((r
*
[!f, x0, x1, x2, x3, x4!])
- (r
*
[!f, x1, x2, x3, x4, x5!]))
/ (x0
- x5)) by
Th11
.= ((r
* (
[!f, x0, x1, x2, x3, x4!]
-
[!f, x1, x2, x3, x4, x5!]))
/ (x0
- x5));
hence thesis by
XCMPLX_1: 74;
end;
theorem ::
DIFF_2:15
Th15:
[!(f1
+ f2), x0, x1, x2, x3, x4, x5!]
= (
[!f1, x0, x1, x2, x3, x4, x5!]
+
[!f2, x0, x1, x2, x3, x4, x5!])
proof
[!(f1
+ f2), x0, x1, x2, x3, x4, x5!]
= (((
[!f1, x0, x1, x2, x3, x4!]
+
[!f2, x0, x1, x2, x3, x4!])
-
[!(f1
+ f2), x1, x2, x3, x4, x5!])
/ (x0
- x5)) by
Th12
.= (((
[!f1, x0, x1, x2, x3, x4!]
+
[!f2, x0, x1, x2, x3, x4!])
- (
[!f1, x1, x2, x3, x4, x5!]
+
[!f2, x1, x2, x3, x4, x5!]))
/ (x0
- x5)) by
Th12
.= (((
[!f1, x0, x1, x2, x3, x4!]
-
[!f1, x1, x2, x3, x4, x5!])
+ (
[!f2, x0, x1, x2, x3, x4!]
-
[!f2, x1, x2, x3, x4, x5!]))
/ (x0
- x5));
hence thesis by
XCMPLX_1: 62;
end;
theorem ::
DIFF_2:16
[!((r1
(#) f1)
+ (r2
(#) f2)), x0, x1, x2, x3, x4, x5!]
= ((r1
*
[!f1, x0, x1, x2, x3, x4, x5!])
+ (r2
*
[!f2, x0, x1, x2, x3, x4, x5!]))
proof
[!((r1
(#) f1)
+ (r2
(#) f2)), x0, x1, x2, x3, x4, x5!]
= (
[!(r1
(#) f1), x0, x1, x2, x3, x4, x5!]
+
[!(r2
(#) f2), x0, x1, x2, x3, x4, x5!]) by
Th15
.= ((r1
*
[!f1, x0, x1, x2, x3, x4, x5!])
+
[!(r2
(#) f2), x0, x1, x2, x3, x4, x5!]) by
Th14;
hence thesis by
Th14;
end;
theorem ::
DIFF_2:17
(x0,x1,x2)
are_mutually_distinct implies
[!f, x0, x1, x2!]
= ((((f
. x0)
/ ((x0
- x1)
* (x0
- x2)))
+ ((f
. x1)
/ ((x1
- x0)
* (x1
- x2))))
+ ((f
. x2)
/ ((x2
- x0)
* (x2
- x1))))
proof
assume
A1: (x0,x1,x2)
are_mutually_distinct ;
then
A2: (x1
- x2)
<>
0 by
ZFMISC_1:def 5;
A3: (x0
- x1)
<>
0 by
A1,
ZFMISC_1:def 5;
A4: (x0
- x2)
<>
0 by
A1,
ZFMISC_1:def 5;
[!f, x0, x1, x2!]
= (((((f
. x0)
- (f
. x1))
/ (x0
- x1))
/ (x0
- x2))
- ((((f
. x1)
- (f
. x2))
/ (x1
- x2))
/ (x0
- x2))) by
XCMPLX_1: 120
.= ((((f
. x0)
- (f
. x1))
/ ((x0
- x1)
* (x0
- x2)))
- ((((f
. x1)
- (f
. x2))
/ (x1
- x2))
/ (x0
- x2))) by
XCMPLX_1: 78
.= ((((f
. x0)
- (f
. x1))
/ ((x0
- x1)
* (x0
- x2)))
- (((f
. x1)
- (f
. x2))
/ ((x1
- x2)
* (x0
- x2)))) by
XCMPLX_1: 78
.= ((((f
. x0)
/ ((x0
- x1)
* (x0
- x2)))
- ((f
. x1)
/ ((x0
- x1)
* (x0
- x2))))
- (((f
. x1)
- (f
. x2))
/ ((x1
- x2)
* (x0
- x2)))) by
XCMPLX_1: 120
.= ((((f
. x0)
/ ((x0
- x1)
* (x0
- x2)))
- ((f
. x1)
/ ((x0
- x1)
* (x0
- x2))))
- (((f
. x1)
/ ((x1
- x2)
* (x0
- x2)))
- ((f
. x2)
/ ((x1
- x2)
* (x0
- x2))))) by
XCMPLX_1: 120
.= ((((f
. x0)
/ ((x0
- x1)
* (x0
- x2)))
- (((f
. x1)
/ ((x0
- x1)
* (x0
- x2)))
+ ((f
. x1)
/ ((x1
- x2)
* (x0
- x2)))))
+ ((f
. x2)
/ ((x1
- x2)
* (x0
- x2))))
.= ((((f
. x0)
/ ((x0
- x1)
* (x0
- x2)))
- ((((f
. x1)
* (x1
- x2))
/ (((x0
- x1)
* (x0
- x2))
* (x1
- x2)))
+ ((f
. x1)
/ ((x1
- x2)
* (x0
- x2)))))
+ ((f
. x2)
/ ((x1
- x2)
* (x0
- x2)))) by
A2,
XCMPLX_1: 91
.= ((((f
. x0)
/ ((x0
- x1)
* (x0
- x2)))
- ((((f
. x1)
* (x1
- x2))
/ (((x0
- x1)
* (x0
- x2))
* (x1
- x2)))
+ (((f
. x1)
* (x0
- x1))
/ (((x1
- x2)
* (x0
- x2))
* (x0
- x1)))))
+ ((f
. x2)
/ ((x1
- x2)
* (x0
- x2)))) by
A3,
XCMPLX_1: 91
.= ((((f
. x0)
/ ((x0
- x1)
* (x0
- x2)))
- ((((f
. x1)
* (x1
- x2))
+ ((f
. x1)
* (x0
- x1)))
/ (((x0
- x1)
* (x0
- x2))
* (x1
- x2))))
+ ((f
. x2)
/ ((x1
- x2)
* (x0
- x2)))) by
XCMPLX_1: 62
.= ((((f
. x0)
/ ((x0
- x1)
* (x0
- x2)))
- (((f
. x1)
* (x0
- x2))
/ (((x0
- x1)
* (x1
- x2))
* (x0
- x2))))
+ ((f
. x2)
/ ((x1
- x2)
* (x0
- x2))))
.= ((((f
. x0)
/ ((x0
- x1)
* (x0
- x2)))
- ((f
. x1)
/ (
- ((x1
- x0)
* (x1
- x2)))))
+ ((f
. x2)
/ (
- ((x2
- x1)
* (x0
- x2))))) by
A4,
XCMPLX_1: 91
.= ((((f
. x0)
/ ((x0
- x1)
* (x0
- x2)))
+ (
- ((f
. x1)
/ (
- ((x1
- x0)
* (x1
- x2))))))
+ ((f
. x2)
/ ((
- (x2
- x1))
* (
- (x2
- x0)))));
hence thesis by
XCMPLX_1: 189;
end;
theorem ::
DIFF_2:18
(x0,x1,x2,x3)
are_mutually_distinct implies
[!f, x0, x1, x2, x3!]
=
[!f, x1, x2, x3, x0!] &
[!f, x0, x1, x2, x3!]
=
[!f, x3, x2, x1, x0!]
proof
set x10 = (x1
- x0);
set x20 = (x2
- x0);
set x30 = (x3
- x0);
set x12 = (x1
- x2);
set x13 = (x1
- x3);
set x23 = (x2
- x3);
assume
A1: (x0,x1,x2,x3)
are_mutually_distinct ;
then
A2: (x2
- x3)
<>
0 by
ZFMISC_1:def 6;
A3: (x3
- x0)
<>
0 by
A1,
ZFMISC_1:def 6;
A4: (x1
- x3)
<>
0 by
A1,
ZFMISC_1:def 6;
A5: (x1
- x0)
<>
0 by
A1,
ZFMISC_1:def 6;
A6: (x2
- x0)
<>
0 by
A1,
ZFMISC_1:def 6;
A7: (x1
- x2)
<>
0 by
A1,
ZFMISC_1:def 6;
A8:
[!f, x0, x1, x2, x3!]
= (((((((f
. x0)
- (f
. x1))
/ (
- (x1
- x0)))
- (((f
. x1)
- (f
. x2))
/ (x1
- x2)))
/ (
- (x2
- x0)))
- (((((f
. x1)
- (f
. x2))
/ (x1
- x2))
- (((f
. x2)
- (f
. x3))
/ (x2
- x3)))
/ (x1
- x3)))
/ (x0
- x3))
.= (((((
- (((f
. x0)
- (f
. x1))
/ (x1
- x0)))
- (((f
. x1)
- (f
. x2))
/ (x1
- x2)))
/ (
- (x2
- x0)))
- (((((f
. x1)
- (f
. x2))
/ (x1
- x2))
- (((f
. x2)
- (f
. x3))
/ (x2
- x3)))
/ (x1
- x3)))
/ (x0
- x3)) by
XCMPLX_1: 188
.= ((((
- ((((f
. x0)
- (f
. x1))
/ (x1
- x0))
+ (((f
. x1)
- (f
. x2))
/ (x1
- x2))))
/ (
- (x2
- x0)))
- (((((f
. x1)
- (f
. x2))
/ (x1
- x2))
- (((f
. x2)
- (f
. x3))
/ (x2
- x3)))
/ (x1
- x3)))
/ (x0
- x3))
.= (((((((f
. x0)
- (f
. x1))
/ (x1
- x0))
+ (((f
. x1)
- (f
. x2))
/ (x1
- x2)))
/ (x2
- x0))
- (((((f
. x1)
- (f
. x2))
/ (x1
- x2))
- (((f
. x2)
- (f
. x3))
/ (x2
- x3)))
/ (x1
- x3)))
/ (x0
- x3)) by
XCMPLX_1: 191
.= ((((((((f
. x0)
- (f
. x1))
* x12)
+ (((f
. x1)
- (f
. x2))
* x10))
/ (x10
* x12))
/ x20)
- (((((f
. x1)
- (f
. x2))
/ (x1
- x2))
- (((f
. x2)
- (f
. x3))
/ (x2
- x3)))
/ (x1
- x3)))
/ (x0
- x3)) by
A7,
A5,
XCMPLX_1: 116
.= ((((((((f
. x0)
- (f
. x1))
* x12)
+ (((f
. x1)
- (f
. x2))
* x10))
/ (x10
* x12))
/ x20)
- ((((((f
. x1)
- (f
. x2))
* x23)
- (((f
. x2)
- (f
. x3))
* x12))
/ (x12
* x23))
/ x13))
/ (x0
- x3)) by
A2,
A7,
XCMPLX_1: 130
.= (((((((f
. x0)
- (f
. x1))
* x12)
+ (((f
. x1)
- (f
. x2))
* x10))
/ ((x10
* x12)
* x20))
- ((((((f
. x1)
- (f
. x2))
* x23)
- (((f
. x2)
- (f
. x3))
* x12))
/ (x12
* x23))
/ x13))
/ (x0
- x3)) by
XCMPLX_1: 78
.= (((((((f
. x0)
- (f
. x1))
* x12)
+ (((f
. x1)
- (f
. x2))
* x10))
/ ((x10
* x12)
* x20))
- (((((f
. x1)
- (f
. x2))
* x23)
- (((f
. x2)
- (f
. x3))
* x12))
/ ((x12
* x23)
* x13)))
/ (x0
- x3)) by
XCMPLX_1: 78
.= ((
- ((((((f
. x0)
- (f
. x1))
* x12)
+ (((f
. x1)
- (f
. x2))
* x10))
/ ((x10
* x12)
* x20))
- (((((f
. x1)
- (f
. x2))
* x23)
- (((f
. x2)
- (f
. x3))
* x12))
/ ((x12
* x23)
* x13))))
/ (
- (x0
- x3))) by
XCMPLX_1: 191
.= (((((((f
. x1)
- (f
. x2))
* x23)
- (((f
. x2)
- (f
. x3))
* x12))
/ ((x12
* x23)
* x13))
- (((((f
. x0)
- (f
. x1))
* x12)
+ (((f
. x1)
- (f
. x2))
* x10))
/ ((x10
* x12)
* x20)))
/ (x3
- x0))
.= (((((((f
. x1)
- (f
. x2))
* x23)
- (((f
. x2)
- (f
. x3))
* x12))
/ ((x12
* x23)
* x13))
/ x30)
- ((((((f
. x0)
- (f
. x1))
* x12)
+ (((f
. x1)
- (f
. x2))
* x10))
/ ((x10
* x12)
* x20))
/ x30)) by
XCMPLX_1: 120
.= ((((((f
. x1)
- (f
. x2))
* x23)
- (((f
. x2)
- (f
. x3))
* x12))
/ (((x12
* x23)
* x13)
* x30))
- ((((((f
. x0)
- (f
. x1))
* x12)
+ (((f
. x1)
- (f
. x2))
* x10))
/ ((x10
* x12)
* x20))
/ x30)) by
XCMPLX_1: 78
.= ((((((f
. x1)
- (f
. x2))
* x23)
- (((f
. x2)
- (f
. x3))
* x12))
/ (((x12
* x23)
* x13)
* x30))
- (((((f
. x0)
- (f
. x1))
* x12)
+ (((f
. x1)
- (f
. x2))
* x10))
/ (((x10
* x12)
* x20)
* x30))) by
XCMPLX_1: 78
.= (((((((f
. x1)
- (f
. x2))
* x23)
- (((f
. x2)
- (f
. x3))
* x12))
* x20)
/ ((((x12
* x23)
* x13)
* x30)
* x20))
- (((((f
. x0)
- (f
. x1))
* x12)
+ (((f
. x1)
- (f
. x2))
* x10))
/ (((x10
* x12)
* x20)
* x30))) by
A6,
XCMPLX_1: 91
.= ((((((((f
. x1)
- (f
. x2))
* x23)
* x20)
- ((((f
. x2)
- (f
. x3))
* x12)
* x20))
* x10)
/ (((((x12
* x20)
* x30)
* x23)
* x13)
* x10))
- (((((f
. x0)
- (f
. x1))
* x12)
+ (((f
. x1)
- (f
. x2))
* x10))
/ (((x10
* x12)
* x20)
* x30))) by
A5,
XCMPLX_1: 91
.= ((((((((f
. x1)
- (f
. x2))
* x23)
* x20)
* x10)
- (((((f
. x2)
- (f
. x3))
* x12)
* x20)
* x10))
/ (((((x12
* x20)
* x30)
* x23)
* x13)
* x10))
- ((((((f
. x0)
- (f
. x1))
* x12)
+ (((f
. x1)
- (f
. x2))
* x10))
* (x23
* x13))
/ ((((x12
* x20)
* x30)
* x10)
* (x23
* x13)))) by
A2,
A4,
XCMPLX_1: 6,
XCMPLX_1: 91
.= ((((((((f
. x1)
- (f
. x2))
* x23)
* x20)
* x10)
- (((((f
. x2)
- (f
. x3))
* x12)
* x20)
* x10))
- ((((((f
. x0)
- (f
. x1))
* x12)
* x23)
* x13)
+ (((((f
. x1)
- (f
. x2))
* x10)
* x23)
* x13)))
/ (((((x12
* x20)
* x30)
* x23)
* x13)
* x10)) by
XCMPLX_1: 120
.= (((((
- ((((f
. x0)
* x12)
* x23)
* x13))
+ ((((f
. x1)
* x20)
* x23)
* x30))
- ((((f
. x2)
* x13)
* x10)
* x30))
+ ((((f
. x3)
* x12)
* x20)
* x10))
/ (((((x12
* x20)
* x30)
* x23)
* x13)
* x10));
A9:
[!f, x3, x2, x1, x0!]
= (((((((f
. x3)
- (f
. x2))
/ (
- (x2
- x3)))
- (((f
. x2)
- (f
. x1))
/ (
- (x1
- x2))))
/ (
- (x1
- x3)))
- (((((f
. x2)
- (f
. x1))
/ (
- (x1
- x2)))
- (((f
. x1)
- (f
. x0))
/ (x1
- x0)))
/ (x2
- x0)))
/ (x3
- x0))
.= (((((
- (((f
. x3)
- (f
. x2))
/ (x2
- x3)))
- (((f
. x2)
- (f
. x1))
/ (
- (x1
- x2))))
/ (
- (x1
- x3)))
- (((((f
. x2)
- (f
. x1))
/ (
- (x1
- x2)))
- (((f
. x1)
- (f
. x0))
/ (x1
- x0)))
/ (x2
- x0)))
/ (x3
- x0)) by
XCMPLX_1: 188
.= (((((
- (((f
. x3)
- (f
. x2))
/ (x2
- x3)))
- (
- (((f
. x2)
- (f
. x1))
/ (x1
- x2))))
/ (
- (x1
- x3)))
- (((((f
. x2)
- (f
. x1))
/ (
- (x1
- x2)))
- (((f
. x1)
- (f
. x0))
/ (x1
- x0)))
/ (x2
- x0)))
/ (x3
- x0)) by
XCMPLX_1: 188
.= ((((
- ((((f
. x3)
- (f
. x2))
/ (x2
- x3))
- (((f
. x2)
- (f
. x1))
/ (x1
- x2))))
/ (
- (x1
- x3)))
- (((((f
. x2)
- (f
. x1))
/ (
- (x1
- x2)))
- (((f
. x1)
- (f
. x0))
/ (x1
- x0)))
/ (x2
- x0)))
/ (x3
- x0))
.= (((((((f
. x3)
- (f
. x2))
/ (x2
- x3))
- (((f
. x2)
- (f
. x1))
/ (x1
- x2)))
/ (x1
- x3))
- (((((f
. x2)
- (f
. x1))
/ (
- (x1
- x2)))
- (((f
. x1)
- (f
. x0))
/ (x1
- x0)))
/ (x2
- x0)))
/ (x3
- x0)) by
XCMPLX_1: 191
.= (((((((f
. x3)
- (f
. x2))
/ (x2
- x3))
- (((f
. x2)
- (f
. x1))
/ (x1
- x2)))
/ (x1
- x3))
- (((
- (((f
. x2)
- (f
. x1))
/ (x1
- x2)))
- (((f
. x1)
- (f
. x0))
/ (x1
- x0)))
/ (x2
- x0)))
/ (x3
- x0)) by
XCMPLX_1: 188
.= (((((((f
. x3)
- (f
. x2))
/ x23)
- (((f
. x2)
- (f
. x1))
/ x12))
/ x13)
+ (
- ((
- ((((f
. x1)
- (f
. x0))
/ x10)
+ (((f
. x2)
- (f
. x1))
/ x12)))
/ x20)))
/ x30)
.= (((((((f
. x3)
- (f
. x2))
/ x23)
- (((f
. x2)
- (f
. x1))
/ x12))
/ x13)
+ (((((f
. x1)
- (f
. x0))
/ x10)
+ (((f
. x2)
- (f
. x1))
/ x12))
/ x20))
/ x30) by
XCMPLX_1: 190
.= ((((((((f
. x3)
- (f
. x2))
* x12)
- (((f
. x2)
- (f
. x1))
* x23))
/ (x23
* x12))
/ x13)
+ (((((f
. x1)
- (f
. x0))
/ x10)
+ (((f
. x2)
- (f
. x1))
/ x12))
/ x20))
/ x30) by
A2,
A7,
XCMPLX_1: 130
.= ((((((((f
. x3)
- (f
. x2))
* x12)
- (((f
. x2)
- (f
. x1))
* x23))
/ (x23
* x12))
/ x13)
+ ((((((f
. x1)
- (f
. x0))
* x12)
+ (((f
. x2)
- (f
. x1))
* x10))
/ (x10
* x12))
/ x20))
/ x30) by
A7,
A5,
XCMPLX_1: 116
.= (((((((f
. x3)
- (f
. x2))
* x12)
- (((f
. x2)
- (f
. x1))
* x23))
/ ((x23
* x12)
* x13))
+ ((((((f
. x1)
- (f
. x0))
* x12)
+ (((f
. x2)
- (f
. x1))
* x10))
/ (x10
* x12))
/ x20))
/ x30) by
XCMPLX_1: 78
.= (((((((f
. x3)
- (f
. x2))
* x12)
- (((f
. x2)
- (f
. x1))
* x23))
/ ((x23
* x12)
* x13))
+ (((((f
. x1)
- (f
. x0))
* x12)
+ (((f
. x2)
- (f
. x1))
* x10))
/ ((x10
* x12)
* x20)))
/ x30) by
XCMPLX_1: 78
.= (((((((f
. x3)
- (f
. x2))
* x12)
- (((f
. x2)
- (f
. x1))
* x23))
/ ((x23
* x12)
* x13))
+ ((((((f
. x1)
- (f
. x0))
* x12)
+ (((f
. x2)
- (f
. x1))
* x10))
* x13)
/ (((x10
* x12)
* x20)
* x13)))
/ x30) by
A4,
XCMPLX_1: 91
.= (((((((f
. x3)
- (f
. x2))
* x12)
- (((f
. x2)
- (f
. x1))
* x23))
/ ((x23
* x12)
* x13))
+ (((((((f
. x1)
- (f
. x0))
* x12)
* x13)
+ ((((f
. x2)
- (f
. x1))
* x10)
* x13))
* x23)
/ ((((x10
* x12)
* x13)
* x20)
* x23)))
/ x30) by
A2,
XCMPLX_1: 91
.= ((((((((f
. x3)
- (f
. x2))
* x12)
- (((f
. x2)
- (f
. x1))
* x23))
* x20)
/ (((x23
* x12)
* x13)
* x20))
+ (((((((f
. x1)
- (f
. x0))
* x12)
* x13)
* x23)
+ (((((f
. x2)
- (f
. x1))
* x10)
* x13)
* x23))
/ ((((x10
* x12)
* x13)
* x20)
* x23)))
/ x30) by
A6,
XCMPLX_1: 91
.= (((((((((f
. x3)
- (f
. x2))
* x12)
* x20)
- ((((f
. x2)
- (f
. x1))
* x23)
* x20))
* x10)
/ ((((x12
* x13)
* x20)
* x23)
* x10))
+ (((((((f
. x1)
- (f
. x0))
* x12)
* x13)
* x23)
+ (((((f
. x2)
- (f
. x1))
* x10)
* x13)
* x23))
/ ((((x10
* x12)
* x13)
* x20)
* x23)))
/ x30) by
A5,
XCMPLX_1: 91
.= (((((((((f
. x3)
- (f
. x2))
* x12)
* x20)
* x10)
- (((((f
. x2)
- (f
. x1))
* x23)
* x20)
* x10))
/ ((((x10
* x12)
* x13)
* x20)
* x23))
/ x30)
+ ((((((((f
. x1)
- (f
. x0))
* x12)
* x13)
* x23)
+ (((((f
. x2)
- (f
. x1))
* x10)
* x13)
* x23))
/ ((((x10
* x12)
* x13)
* x20)
* x23))
/ x30)) by
XCMPLX_1: 62
.= ((((((((f
. x3)
- (f
. x2))
* x12)
* x20)
* x10)
- (((((f
. x2)
- (f
. x1))
* x23)
* x20)
* x10))
/ (((((x10
* x12)
* x13)
* x20)
* x23)
* x30))
+ ((((((((f
. x1)
- (f
. x0))
* x12)
* x13)
* x23)
+ (((((f
. x2)
- (f
. x1))
* x10)
* x13)
* x23))
/ ((((x10
* x12)
* x13)
* x20)
* x23))
/ x30)) by
XCMPLX_1: 78
.= ((((((((f
. x3)
- (f
. x2))
* x12)
* x20)
* x10)
- (((((f
. x2)
- (f
. x1))
* x23)
* x20)
* x10))
/ (((((x10
* x12)
* x13)
* x20)
* x23)
* x30))
+ (((((((f
. x1)
- (f
. x0))
* x12)
* x13)
* x23)
+ (((((f
. x2)
- (f
. x1))
* x10)
* x13)
* x23))
/ (((((x10
* x12)
* x13)
* x20)
* x23)
* x30))) by
XCMPLX_1: 78
.= ((((((((f
. x3)
- (f
. x2))
* x12)
* x20)
* x10)
- (((((f
. x2)
- (f
. x1))
* x23)
* x20)
* x10))
+ ((((((f
. x1)
- (f
. x0))
* x12)
* x13)
* x23)
+ (((((f
. x2)
- (f
. x1))
* x10)
* x13)
* x23)))
/ (((((x10
* x12)
* x13)
* x20)
* x23)
* x30)) by
XCMPLX_1: 62
.=
[!f, x0, x1, x2, x3!] by
A8;
[!f, x1, x2, x3, x0!]
= ((((((((f
. x1)
- (f
. x2))
* x23)
- (((f
. x2)
- (f
. x3))
* x12))
/ (x12
* x23))
/ x13)
- (((((f
. x2)
- (f
. x3))
/ (x2
- x3))
- (((f
. x3)
- (f
. x0))
/ (x3
- x0)))
/ (x2
- x0)))
/ (x1
- x0)) by
A2,
A7,
XCMPLX_1: 130
.= ((((((((f
. x1)
- (f
. x2))
* x23)
- (((f
. x2)
- (f
. x3))
* x12))
/ (x12
* x23))
/ x13)
- ((((((f
. x2)
- (f
. x3))
* x30)
- (((f
. x3)
- (f
. x0))
* x23))
/ (x23
* x30))
/ x20))
/ x10) by
A2,
A3,
XCMPLX_1: 130
.= (((((((f
. x1)
- (f
. x2))
* x23)
- (((f
. x2)
- (f
. x3))
* x12))
/ ((x12
* x23)
* x13))
- ((((((f
. x2)
- (f
. x3))
* x30)
- (((f
. x3)
- (f
. x0))
* x23))
/ (x23
* x30))
/ x20))
/ x10) by
XCMPLX_1: 78
.= (((((((f
. x1)
- (f
. x2))
* x23)
- (((f
. x2)
- (f
. x3))
* x12))
/ ((x12
* x23)
* x13))
- (((((f
. x2)
- (f
. x3))
* x30)
- (((f
. x3)
- (f
. x0))
* x23))
/ ((x23
* x30)
* x20)))
/ x10) by
XCMPLX_1: 78
.= (((((((f
. x1)
- (f
. x2))
* x23)
- (((f
. x2)
- (f
. x3))
* x12))
/ ((x12
* x23)
* x13))
/ x10)
- ((((((f
. x2)
- (f
. x3))
* x30)
- (((f
. x3)
- (f
. x0))
* x23))
/ ((x23
* x30)
* x20))
/ x10)) by
XCMPLX_1: 120
.= ((((((f
. x1)
- (f
. x2))
* x23)
- (((f
. x2)
- (f
. x3))
* x12))
/ (((x12
* x23)
* x13)
* x10))
- ((((((f
. x2)
- (f
. x3))
* x30)
- (((f
. x3)
- (f
. x0))
* x23))
/ ((x23
* x30)
* x20))
/ x10)) by
XCMPLX_1: 78
.= ((((((f
. x1)
- (f
. x2))
* x23)
- (((f
. x2)
- (f
. x3))
* x12))
/ (((x12
* x23)
* x13)
* x10))
- (((((f
. x2)
- (f
. x3))
* x30)
- (((f
. x3)
- (f
. x0))
* x23))
/ (((x23
* x30)
* x20)
* x10))) by
XCMPLX_1: 78
.= (((((((f
. x1)
- (f
. x2))
* x23)
- (((f
. x2)
- (f
. x3))
* x12))
* x30)
/ ((((x12
* x23)
* x13)
* x10)
* x30))
- (((((f
. x2)
- (f
. x3))
* x30)
- (((f
. x3)
- (f
. x0))
* x23))
/ (((x23
* x30)
* x20)
* x10))) by
A3,
XCMPLX_1: 91
.= ((((((((f
. x1)
- (f
. x2))
* x23)
* x30)
- ((((f
. x2)
- (f
. x3))
* x12)
* x30))
* x20)
/ (((((x12
* x23)
* x13)
* x10)
* x30)
* x20))
- (((((f
. x2)
- (f
. x3))
* x30)
- (((f
. x3)
- (f
. x0))
* x23))
/ (((x23
* x30)
* x20)
* x10))) by
A6,
XCMPLX_1: 91
.= ((((((((f
. x1)
- (f
. x2))
* x23)
* x30)
* x20)
- (((((f
. x2)
- (f
. x3))
* x12)
* x30)
* x20))
/ (((((x12
* x23)
* x13)
* x10)
* x30)
* x20))
- ((((((f
. x2)
- (f
. x3))
* x30)
- (((f
. x3)
- (f
. x0))
* x23))
* x13)
/ ((((x10
* x30)
* x20)
* x23)
* x13))) by
A4,
XCMPLX_1: 91
.= ((((((((f
. x1)
- (f
. x2))
* x23)
* x30)
* x20)
- (((((f
. x2)
- (f
. x3))
* x12)
* x30)
* x20))
/ (((((x12
* x23)
* x13)
* x10)
* x30)
* x20))
- (((((((f
. x2)
- (f
. x3))
* x30)
* x13)
- ((((f
. x3)
- (f
. x0))
* x23)
* x13))
* x12)
/ (((((x23
* x13)
* x10)
* x30)
* x20)
* x12))) by
A7,
XCMPLX_1: 91
.= ((((((((f
. x1)
- (f
. x2))
* x23)
* x30)
* x20)
- (((((f
. x2)
- (f
. x3))
* x12)
* x30)
* x20))
- ((((((f
. x2)
- (f
. x3))
* x30)
* x13)
* x12)
- (((((f
. x3)
- (f
. x0))
* x23)
* x13)
* x12)))
/ (((((x12
* x23)
* x13)
* x10)
* x30)
* x20)) by
XCMPLX_1: 120
.=
[!f, x0, x1, x2, x3!] by
A8;
hence thesis by
A9;
end;
theorem ::
DIFF_2:19
(x0,x1,x2,x3)
are_mutually_distinct implies
[!f, x0, x1, x2, x3!]
=
[!f, x1, x0, x2, x3!] &
[!f, x0, x1, x2, x3!]
=
[!f, x1, x2, x0, x3!]
proof
set x10 = (x1
- x0);
set x20 = (x2
- x0);
set x30 = (x3
- x0);
set x12 = (x1
- x2);
set x13 = (x1
- x3);
set x23 = (x2
- x3);
assume
A1: (x0,x1,x2,x3)
are_mutually_distinct ;
then
A2: (x2
- x3)
<>
0 by
ZFMISC_1:def 6;
A3: (x1
- x3)
<>
0 by
A1,
ZFMISC_1:def 6;
A4: (x1
- x2)
<>
0 by
A1,
ZFMISC_1:def 6;
A5: (x3
- x0)
<>
0 by
A1,
ZFMISC_1:def 6;
A6: (x2
- x0)
<>
0 by
A1,
ZFMISC_1:def 6;
A7: (x1
- x0)
<>
0 by
A1,
ZFMISC_1:def 6;
A8:
[!f, x0, x1, x2, x3!]
= (((((((f
. x0)
- (f
. x1))
/ (
- (x1
- x0)))
- (((f
. x1)
- (f
. x2))
/ (x1
- x2)))
/ (
- (x2
- x0)))
- (((((f
. x1)
- (f
. x2))
/ (x1
- x2))
- (((f
. x2)
- (f
. x3))
/ (x2
- x3)))
/ (x1
- x3)))
/ (x0
- x3))
.= (((((
- (((f
. x0)
- (f
. x1))
/ (x1
- x0)))
- (((f
. x1)
- (f
. x2))
/ (x1
- x2)))
/ (
- (x2
- x0)))
- (((((f
. x1)
- (f
. x2))
/ (x1
- x2))
- (((f
. x2)
- (f
. x3))
/ (x2
- x3)))
/ (x1
- x3)))
/ (x0
- x3)) by
XCMPLX_1: 188
.= ((((
- ((((f
. x0)
- (f
. x1))
/ (x1
- x0))
+ (((f
. x1)
- (f
. x2))
/ (x1
- x2))))
/ (
- (x2
- x0)))
- (((((f
. x1)
- (f
. x2))
/ (x1
- x2))
- (((f
. x2)
- (f
. x3))
/ (x2
- x3)))
/ (x1
- x3)))
/ (x0
- x3))
.= (((((((f
. x0)
- (f
. x1))
/ (x1
- x0))
+ (((f
. x1)
- (f
. x2))
/ (x1
- x2)))
/ (x2
- x0))
- (((((f
. x1)
- (f
. x2))
/ (x1
- x2))
- (((f
. x2)
- (f
. x3))
/ (x2
- x3)))
/ (x1
- x3)))
/ (x0
- x3)) by
XCMPLX_1: 191
.= ((((((((f
. x0)
- (f
. x1))
* x12)
+ (((f
. x1)
- (f
. x2))
* x10))
/ (x10
* x12))
/ x20)
- (((((f
. x1)
- (f
. x2))
/ (x1
- x2))
- (((f
. x2)
- (f
. x3))
/ (x2
- x3)))
/ (x1
- x3)))
/ (x0
- x3)) by
A4,
A7,
XCMPLX_1: 116
.= ((((((((f
. x0)
- (f
. x1))
* x12)
+ (((f
. x1)
- (f
. x2))
* x10))
/ (x10
* x12))
/ x20)
- ((((((f
. x1)
- (f
. x2))
* x23)
- (((f
. x2)
- (f
. x3))
* x12))
/ (x12
* x23))
/ x13))
/ (x0
- x3)) by
A2,
A4,
XCMPLX_1: 130
.= (((((((f
. x0)
- (f
. x1))
* x12)
+ (((f
. x1)
- (f
. x2))
* x10))
/ ((x10
* x12)
* x20))
- ((((((f
. x1)
- (f
. x2))
* x23)
- (((f
. x2)
- (f
. x3))
* x12))
/ (x12
* x23))
/ x13))
/ (x0
- x3)) by
XCMPLX_1: 78
.= (((((((f
. x0)
- (f
. x1))
* x12)
+ (((f
. x1)
- (f
. x2))
* x10))
/ ((x10
* x12)
* x20))
- (((((f
. x1)
- (f
. x2))
* x23)
- (((f
. x2)
- (f
. x3))
* x12))
/ ((x12
* x23)
* x13)))
/ (x0
- x3)) by
XCMPLX_1: 78
.= ((
- ((((((f
. x0)
- (f
. x1))
* x12)
+ (((f
. x1)
- (f
. x2))
* x10))
/ ((x10
* x12)
* x20))
- (((((f
. x1)
- (f
. x2))
* x23)
- (((f
. x2)
- (f
. x3))
* x12))
/ ((x12
* x23)
* x13))))
/ (
- (x0
- x3))) by
XCMPLX_1: 191
.= (((((((f
. x1)
- (f
. x2))
* x23)
- (((f
. x2)
- (f
. x3))
* x12))
/ ((x12
* x23)
* x13))
- (((((f
. x0)
- (f
. x1))
* x12)
+ (((f
. x1)
- (f
. x2))
* x10))
/ ((x10
* x12)
* x20)))
/ (x3
- x0))
.= (((((((f
. x1)
- (f
. x2))
* x23)
- (((f
. x2)
- (f
. x3))
* x12))
/ ((x12
* x23)
* x13))
/ x30)
- ((((((f
. x0)
- (f
. x1))
* x12)
+ (((f
. x1)
- (f
. x2))
* x10))
/ ((x10
* x12)
* x20))
/ x30)) by
XCMPLX_1: 120
.= ((((((f
. x1)
- (f
. x2))
* x23)
- (((f
. x2)
- (f
. x3))
* x12))
/ (((x12
* x23)
* x13)
* x30))
- ((((((f
. x0)
- (f
. x1))
* x12)
+ (((f
. x1)
- (f
. x2))
* x10))
/ ((x10
* x12)
* x20))
/ x30)) by
XCMPLX_1: 78
.= ((((((f
. x1)
- (f
. x2))
* x23)
- (((f
. x2)
- (f
. x3))
* x12))
/ (((x12
* x23)
* x13)
* x30))
- (((((f
. x0)
- (f
. x1))
* x12)
+ (((f
. x1)
- (f
. x2))
* x10))
/ (((x10
* x12)
* x20)
* x30))) by
XCMPLX_1: 78
.= (((((((f
. x1)
- (f
. x2))
* x23)
- (((f
. x2)
- (f
. x3))
* x12))
* x20)
/ ((((x12
* x23)
* x13)
* x30)
* x20))
- (((((f
. x0)
- (f
. x1))
* x12)
+ (((f
. x1)
- (f
. x2))
* x10))
/ (((x10
* x12)
* x20)
* x30))) by
A6,
XCMPLX_1: 91
.= ((((((((f
. x1)
- (f
. x2))
* x23)
* x20)
- ((((f
. x2)
- (f
. x3))
* x12)
* x20))
* x10)
/ (((((x12
* x20)
* x30)
* x23)
* x13)
* x10))
- (((((f
. x0)
- (f
. x1))
* x12)
+ (((f
. x1)
- (f
. x2))
* x10))
/ (((x10
* x12)
* x20)
* x30))) by
A7,
XCMPLX_1: 91
.= ((((((((f
. x1)
- (f
. x2))
* x23)
* x20)
* x10)
- (((((f
. x2)
- (f
. x3))
* x12)
* x20)
* x10))
/ (((((x12
* x20)
* x30)
* x23)
* x13)
* x10))
- ((((((f
. x0)
- (f
. x1))
* x12)
+ (((f
. x1)
- (f
. x2))
* x10))
* (x23
* x13))
/ ((((x12
* x20)
* x30)
* x10)
* (x23
* x13)))) by
A2,
A3,
XCMPLX_1: 6,
XCMPLX_1: 91
.= ((((((((f
. x1)
- (f
. x2))
* x23)
* x20)
* x10)
- (((((f
. x2)
- (f
. x3))
* x12)
* x20)
* x10))
- ((((((f
. x0)
- (f
. x1))
* x12)
* x23)
* x13)
+ (((((f
. x1)
- (f
. x2))
* x10)
* x23)
* x13)))
/ (((((x12
* x20)
* x30)
* x23)
* x13)
* x10)) by
XCMPLX_1: 120
.= (((((
- ((((f
. x0)
* x12)
* x23)
* x13))
+ ((((f
. x1)
* x20)
* x23)
* x30))
- ((((f
. x2)
* x13)
* x10)
* x30))
+ ((((f
. x3)
* x12)
* x20)
* x10))
/ (((((x12
* x20)
* x30)
* x23)
* x13)
* x10));
A9:
[!f, x1, x2, x0, x3!]
= (((((((f
. x1)
- (f
. x2))
/ (x1
- x2))
- (((f
. x2)
- (f
. x0))
/ (x2
- x0)))
/ (x1
- x0))
- (((((f
. x2)
- (f
. x0))
/ (x2
- x0))
- (((f
. x0)
- (f
. x3))
/ (
- (x3
- x0))))
/ (x2
- x3)))
/ (x1
- x3))
.= (((((((f
. x1)
- (f
. x2))
/ (x1
- x2))
- (((f
. x2)
- (f
. x0))
/ (x2
- x0)))
/ (x1
- x0))
- (((((f
. x2)
- (f
. x0))
/ (x2
- x0))
- (
- (((f
. x0)
- (f
. x3))
/ (x3
- x0))))
/ (x2
- x3)))
/ (x1
- x3)) by
XCMPLX_1: 188
.= ((((((((f
. x1)
- (f
. x2))
* x20)
- (((f
. x2)
- (f
. x0))
* x12))
/ (x12
* x20))
/ x10)
- (((((f
. x2)
- (f
. x0))
/ x20)
+ (((f
. x0)
- (f
. x3))
/ x30))
/ x23))
/ x13) by
A4,
A6,
XCMPLX_1: 130
.= ((((((((f
. x1)
- (f
. x2))
* x20)
- (((f
. x2)
- (f
. x0))
* x12))
/ (x12
* x20))
/ x10)
- ((((((f
. x2)
- (f
. x0))
* x30)
+ (((f
. x0)
- (f
. x3))
* x20))
/ (x30
* x20))
/ x23))
/ x13) by
A5,
A6,
XCMPLX_1: 116
.= (((((((f
. x1)
- (f
. x2))
* x20)
- (((f
. x2)
- (f
. x0))
* x12))
/ ((x12
* x20)
* x10))
- ((((((f
. x2)
- (f
. x0))
* x30)
+ (((f
. x0)
- (f
. x3))
* x20))
/ (x30
* x20))
/ x23))
/ x13) by
XCMPLX_1: 78
.= (((((((f
. x1)
- (f
. x2))
* x20)
- (((f
. x2)
- (f
. x0))
* x12))
/ ((x12
* x20)
* x10))
- (((((f
. x2)
- (f
. x0))
* x30)
+ (((f
. x0)
- (f
. x3))
* x20))
/ ((x30
* x20)
* x23)))
/ x13) by
XCMPLX_1: 78
.= (((((((f
. x1)
- (f
. x2))
* x20)
- (((f
. x2)
- (f
. x0))
* x12))
/ ((x12
* x20)
* x10))
/ x13)
- ((((((f
. x2)
- (f
. x0))
* x30)
+ (((f
. x0)
- (f
. x3))
* x20))
/ ((x30
* x20)
* x23))
/ x13)) by
XCMPLX_1: 120
.= ((((((f
. x1)
- (f
. x2))
* x20)
- (((f
. x2)
- (f
. x0))
* x12))
/ (((x12
* x20)
* x10)
* x13))
- ((((((f
. x2)
- (f
. x0))
* x30)
+ (((f
. x0)
- (f
. x3))
* x20))
/ ((x30
* x20)
* x23))
/ x13)) by
XCMPLX_1: 78
.= ((((((f
. x1)
- (f
. x2))
* x20)
- (((f
. x2)
- (f
. x0))
* x12))
/ (((x12
* x20)
* x10)
* x13))
- (((((f
. x2)
- (f
. x0))
* x30)
+ (((f
. x0)
- (f
. x3))
* x20))
/ (((x30
* x20)
* x23)
* x13))) by
XCMPLX_1: 78
.= (((((((f
. x1)
- (f
. x2))
* x20)
- (((f
. x2)
- (f
. x0))
* x12))
* x30)
/ ((((x12
* x20)
* x10)
* x13)
* x30))
- (((((f
. x2)
- (f
. x0))
* x30)
+ (((f
. x0)
- (f
. x3))
* x20))
/ (((x30
* x20)
* x23)
* x13))) by
A5,
XCMPLX_1: 91
.= ((((((((f
. x1)
- (f
. x2))
* x20)
* x30)
- ((((f
. x2)
- (f
. x0))
* x12)
* x30))
* x23)
/ (((((x12
* x20)
* x10)
* x13)
* x30)
* x23))
- (((((f
. x2)
- (f
. x0))
* x30)
+ (((f
. x0)
- (f
. x3))
* x20))
/ (((x30
* x20)
* x23)
* x13))) by
A2,
XCMPLX_1: 91
.= ((((((((f
. x1)
- (f
. x2))
* x20)
* x30)
* x23)
- (((((f
. x2)
- (f
. x0))
* x12)
* x30)
* x23))
/ (((((x12
* x20)
* x10)
* x13)
* x30)
* x23))
- ((((((f
. x2)
- (f
. x0))
* x30)
+ (((f
. x0)
- (f
. x3))
* x20))
* x12)
/ ((((x30
* x20)
* x23)
* x13)
* x12))) by
A4,
XCMPLX_1: 91
.= ((((((((f
. x1)
- (f
. x2))
* x20)
* x30)
* x23)
- (((((f
. x2)
- (f
. x0))
* x12)
* x30)
* x23))
/ (((((x12
* x20)
* x10)
* x13)
* x30)
* x23))
- (((((((f
. x2)
- (f
. x0))
* x30)
* x12)
+ ((((f
. x0)
- (f
. x3))
* x20)
* x12))
* x10)
/ (((((x30
* x20)
* x23)
* x13)
* x12)
* x10))) by
A7,
XCMPLX_1: 91
.= ((((((((f
. x1)
- (f
. x2))
* x20)
* x30)
* x23)
- (((((f
. x2)
- (f
. x0))
* x12)
* x30)
* x23))
- ((((((f
. x2)
- (f
. x0))
* x30)
* x12)
* x10)
+ (((((f
. x0)
- (f
. x3))
* x20)
* x12)
* x10)))
/ (((((x30
* x20)
* x23)
* x13)
* x12)
* x10)) by
XCMPLX_1: 120
.=
[!f, x0, x1, x2, x3!] by
A8;
[!f, x1, x0, x2, x3!]
= (((((((f
. x1)
- (f
. x0))
/ (x1
- x0))
- (
- (((f
. x0)
- (f
. x2))
/ (x2
- x0))))
/ (x1
- x2))
- (((((f
. x0)
- (f
. x2))
/ (
- (x2
- x0)))
- (((f
. x2)
- (f
. x3))
/ (x2
- x3)))
/ (x0
- x3)))
/ (x1
- x3)) by
XCMPLX_1: 188
.= (((((((f
. x1)
- (f
. x0))
/ (x1
- x0))
+ (((f
. x0)
- (f
. x2))
/ (x2
- x0)))
/ (x1
- x2))
- (((
- (((f
. x0)
- (f
. x2))
/ (x2
- x0)))
- (((f
. x2)
- (f
. x3))
/ (x2
- x3)))
/ (
- (x3
- x0))))
/ (x1
- x3)) by
XCMPLX_1: 188
.= (((((((f
. x1)
- (f
. x0))
/ (x1
- x0))
+ (((f
. x0)
- (f
. x2))
/ (x2
- x0)))
/ (x1
- x2))
- ((
- ((((f
. x0)
- (f
. x2))
/ (x2
- x0))
+ (((f
. x2)
- (f
. x3))
/ (x2
- x3))))
/ (
- (x3
- x0))))
/ (x1
- x3))
.= (((((((f
. x1)
- (f
. x0))
/ (x1
- x0))
+ (((f
. x0)
- (f
. x2))
/ (x2
- x0)))
/ (x1
- x2))
- (((((f
. x0)
- (f
. x2))
/ (x2
- x0))
+ (((f
. x2)
- (f
. x3))
/ (x2
- x3)))
/ (x3
- x0)))
/ (x1
- x3)) by
XCMPLX_1: 191
.= ((((((((f
. x1)
- (f
. x0))
* x20)
+ (((f
. x0)
- (f
. x2))
* x10))
/ (x20
* x10))
/ x12)
- (((((f
. x0)
- (f
. x2))
/ x20)
+ (((f
. x2)
- (f
. x3))
/ x23))
/ x30))
/ x13) by
A6,
A7,
XCMPLX_1: 116
.= ((((((((f
. x1)
- (f
. x0))
* x20)
+ (((f
. x0)
- (f
. x2))
* x10))
/ (x10
* x20))
/ x12)
- ((((((f
. x0)
- (f
. x2))
* x23)
+ (((f
. x2)
- (f
. x3))
* x20))
/ (x23
* x20))
/ x30))
/ x13) by
A2,
A6,
XCMPLX_1: 116
.= (((((((f
. x1)
- (f
. x0))
* x20)
+ (((f
. x0)
- (f
. x2))
* x10))
/ ((x10
* x20)
* x12))
- ((((((f
. x0)
- (f
. x2))
* x23)
+ (((f
. x2)
- (f
. x3))
* x20))
/ (x23
* x20))
/ x30))
/ x13) by
XCMPLX_1: 78
.= (((((((f
. x1)
- (f
. x0))
* x20)
+ (((f
. x0)
- (f
. x2))
* x10))
/ ((x10
* x20)
* x12))
- (((((f
. x0)
- (f
. x2))
* x23)
+ (((f
. x2)
- (f
. x3))
* x20))
/ ((x23
* x20)
* x30)))
/ x13) by
XCMPLX_1: 78
.= (((((((f
. x1)
- (f
. x0))
* x20)
+ (((f
. x0)
- (f
. x2))
* x10))
/ ((x10
* x20)
* x12))
/ x13)
- ((((((f
. x0)
- (f
. x2))
* x23)
+ (((f
. x2)
- (f
. x3))
* x20))
/ ((x23
* x20)
* x30))
/ x13)) by
XCMPLX_1: 120
.= ((((((f
. x1)
- (f
. x0))
* x20)
+ (((f
. x0)
- (f
. x2))
* x10))
/ (((x10
* x20)
* x12)
* x13))
- ((((((f
. x0)
- (f
. x2))
* x23)
+ (((f
. x2)
- (f
. x3))
* x20))
/ ((x23
* x20)
* x30))
/ x13)) by
XCMPLX_1: 78
.= ((((((f
. x1)
- (f
. x0))
* x20)
+ (((f
. x0)
- (f
. x2))
* x10))
/ (((x10
* x20)
* x12)
* x13))
- (((((f
. x0)
- (f
. x2))
* x23)
+ (((f
. x2)
- (f
. x3))
* x20))
/ (((x23
* x20)
* x30)
* x13))) by
XCMPLX_1: 78
.= (((((((f
. x1)
- (f
. x0))
* x20)
+ (((f
. x0)
- (f
. x2))
* x10))
* x23)
/ ((((x10
* x20)
* x12)
* x13)
* x23))
- (((((f
. x0)
- (f
. x2))
* x23)
+ (((f
. x2)
- (f
. x3))
* x20))
/ (((x23
* x20)
* x30)
* x13))) by
A2,
XCMPLX_1: 91
.= ((((((((f
. x1)
- (f
. x0))
* x20)
* x23)
+ ((((f
. x0)
- (f
. x2))
* x10)
* x23))
* x30)
/ (((((x10
* x20)
* x12)
* x13)
* x23)
* x30))
- (((((f
. x0)
- (f
. x2))
* x23)
+ (((f
. x2)
- (f
. x3))
* x20))
/ (((x23
* x20)
* x30)
* x13))) by
A5,
XCMPLX_1: 91
.= ((((((((f
. x1)
- (f
. x0))
* x20)
* x23)
* x30)
+ (((((f
. x0)
- (f
. x2))
* x10)
* x23)
* x30))
/ (((((x10
* x20)
* x12)
* x13)
* x23)
* x30))
- ((((((f
. x0)
- (f
. x2))
* x23)
+ (((f
. x2)
- (f
. x3))
* x20))
* x10)
/ ((((x23
* x20)
* x30)
* x13)
* x10))) by
A7,
XCMPLX_1: 91
.= ((((((((f
. x1)
- (f
. x0))
* x20)
* x23)
* x30)
+ (((((f
. x0)
- (f
. x2))
* x10)
* x23)
* x30))
/ (((((x10
* x20)
* x12)
* x13)
* x23)
* x30))
- (((((((f
. x0)
- (f
. x2))
* x23)
* x10)
+ ((((f
. x2)
- (f
. x3))
* x20)
* x10))
* x12)
/ (((((x23
* x20)
* x30)
* x13)
* x10)
* x12))) by
A4,
XCMPLX_1: 91
.= ((((((((f
. x1)
- (f
. x0))
* x20)
* x23)
* x30)
+ (((((f
. x0)
- (f
. x2))
* x10)
* x23)
* x30))
- ((((((f
. x0)
- (f
. x2))
* x23)
* x10)
* x12)
+ (((((f
. x2)
- (f
. x3))
* x20)
* x10)
* x12)))
/ (((((x23
* x20)
* x30)
* x13)
* x10)
* x12)) by
XCMPLX_1: 120
.=
[!f, x0, x1, x2, x3!] by
A8;
hence thesis by
A9;
end;
theorem ::
DIFF_2:20
f is
constant implies
[!f, x0, x1, x2!]
=
0
proof
assume
A1: f is
constant;
then
[!f, x0, x1, x2!]
= ((
0 qua
Nat
-
[!f, x1, x2!])
/ (x0
- x2)) by
DIFF_1: 30
.= ((
0 qua
Nat
-
0 qua
Nat)
/ (x0
- x2)) by
A1,
DIFF_1: 30;
hence thesis;
end;
theorem ::
DIFF_2:21
Th21: x0
<> x1 implies
[!(
AffineMap (a,b)), x0, x1!]
= a
proof
assume x0
<> x1;
then
A1: (x0
- x1)
<>
0 ;
[!(
AffineMap (a,b)), x0, x1!]
= ((((a
* x0)
+ b)
- ((
AffineMap (a,b))
. x1))
/ (x0
- x1)) by
FCONT_1:def 4
.= ((((a
* x0)
+ b)
- ((a
* x1)
+ b))
/ (x0
- x1)) by
FCONT_1:def 4
.= ((a
* (x0
- x1))
/ (x0
- x1));
hence thesis by
A1,
XCMPLX_1: 89;
end;
theorem ::
DIFF_2:22
Th22: (x0,x1,x2)
are_mutually_distinct implies
[!(
AffineMap (a,b)), x0, x1, x2!]
=
0
proof
assume
A1: (x0,x1,x2)
are_mutually_distinct ;
then
A2: x1
<> x2 by
ZFMISC_1:def 5;
x0
<> x1 by
A1,
ZFMISC_1:def 5;
then
[!(
AffineMap (a,b)), x0, x1, x2!]
= ((a
-
[!(
AffineMap (a,b)), x1, x2!])
/ (x0
- x2)) by
Th21
.= ((a
- a)
/ (x0
- x2)) by
A2,
Th21;
hence thesis;
end;
theorem ::
DIFF_2:23
(x0,x1,x2,x3)
are_mutually_distinct implies
[!(
AffineMap (a,b)), x0, x1, x2, x3!]
=
0
proof
assume
A1: (x0,x1,x2,x3)
are_mutually_distinct ;
then
A2: x1
<> x2 by
ZFMISC_1:def 6;
x1
<> x3 & x2
<> x3 by
A1,
ZFMISC_1:def 6;
then
A3: (x1,x2,x3)
are_mutually_distinct by
A2,
ZFMISC_1:def 5;
x0
<> x1 & x0
<> x2 by
A1,
ZFMISC_1:def 6;
then (x0,x1,x2)
are_mutually_distinct by
A2,
ZFMISC_1:def 5;
then
[!(
AffineMap (a,b)), x0, x1, x2, x3!]
= ((
0 qua
Nat
-
[!(
AffineMap (a,b)), x1, x2, x3!])
/ (x0
- x3)) by
Th22
.= ((
0 qua
Nat
-
0 qua
Nat)
/ (x0
- x3)) by
A3,
Th22;
hence thesis;
end;
theorem ::
DIFF_2:24
for x holds ((
fD ((
AffineMap (a,b)),h))
. x)
= (a
* h)
proof
let x;
((
fD ((
AffineMap (a,b)),h))
. x)
= (((
AffineMap (a,b))
. (x
+ h))
- ((
AffineMap (a,b))
. x)) by
DIFF_1: 3
.= (((a
* (x
+ h))
+ b)
- ((
AffineMap (a,b))
. x)) by
FCONT_1:def 4
.= ((((a
* x)
+ (a
* h))
+ b)
- ((a
* x)
+ b)) by
FCONT_1:def 4;
hence thesis;
end;
theorem ::
DIFF_2:25
for x holds ((
bD ((
AffineMap (a,b)),h))
. x)
= (a
* h)
proof
let x;
((
bD ((
AffineMap (a,b)),h))
. x)
= (((
AffineMap (a,b))
. x)
- ((
AffineMap (a,b))
. (x
- h))) by
DIFF_1: 4
.= (((a
* x)
+ b)
- ((
AffineMap (a,b))
. (x
- h))) by
FCONT_1:def 4
.= (((a
* x)
+ b)
- ((a
* (x
- h))
+ b)) by
FCONT_1:def 4;
hence thesis;
end;
theorem ::
DIFF_2:26
for x holds ((
cD ((
AffineMap (a,b)),h))
. x)
= (a
* h)
proof
let x;
((
cD ((
AffineMap (a,b)),h))
. x)
= (((
AffineMap (a,b))
. (x
+ (h
/ 2)))
- ((
AffineMap (a,b))
. (x
- (h
/ 2)))) by
DIFF_1: 5
.= (((a
* (x
+ (h
/ 2)))
+ b)
- ((
AffineMap (a,b))
. (x
- (h
/ 2)))) by
FCONT_1:def 4
.= (((a
* (x
+ (h
/ 2)))
+ b)
- ((a
* (x
- (h
/ 2)))
+ b)) by
FCONT_1:def 4;
hence thesis;
end;
theorem ::
DIFF_2:27
Th27: (for x holds (f
. x)
= (((a
* (x
^2 ))
+ (b
* x))
+ c)) & x0
<> x1 implies
[!f, x0, x1!]
= ((a
* (x0
+ x1))
+ b)
proof
assume that
A1: for x holds (f
. x)
= (((a
* (x
^2 ))
+ (b
* x))
+ c) and
A2: x0
<> x1;
A3: (x0
- x1)
<>
0 by
A2;
[!f, x0, x1!]
= (((((a
* (x0
^2 ))
+ (b
* x0))
+ c)
- (f
. x1))
/ (x0
- x1)) by
A1
.= (((((a
* (x0
^2 ))
+ (b
* x0))
+ c)
- (((a
* (x1
^2 ))
+ (b
* x1))
+ c))
/ (x0
- x1)) by
A1
.= ((((a
* (x0
+ x1))
+ b)
* (x0
- x1))
/ (x0
- x1));
hence thesis by
A3,
XCMPLX_1: 89;
end;
theorem ::
DIFF_2:28
Th28: (for x holds (f
. x)
= (((a
* (x
^2 ))
+ (b
* x))
+ c)) & (x0,x1,x2)
are_mutually_distinct implies
[!f, x0, x1, x2!]
= a
proof
assume
A1: for x holds (f
. x)
= (((a
* (x
^2 ))
+ (b
* x))
+ c);
assume
A2: (x0,x1,x2)
are_mutually_distinct ;
then
A3: x1
<> x2 by
ZFMISC_1:def 5;
A4: (x0
- x2)
<>
0 by
A2,
ZFMISC_1:def 5;
x0
<> x1 by
A2,
ZFMISC_1:def 5;
then
[!f, x0, x1, x2!]
= ((((a
* (x0
+ x1))
+ b)
-
[!f, x1, x2!])
/ (x0
- x2)) by
A1,
Th27
.= ((((a
* (x0
+ x1))
+ b)
- ((a
* (x1
+ x2))
+ b))
/ (x0
- x2)) by
A1,
A3,
Th27
.= ((a
* (x0
- x2))
/ (x0
- x2));
hence thesis by
A4,
XCMPLX_1: 89;
end;
theorem ::
DIFF_2:29
Th29: (for x holds (f
. x)
= (((a
* (x
^2 ))
+ (b
* x))
+ c)) & (x0,x1,x2,x3)
are_mutually_distinct implies
[!f, x0, x1, x2, x3!]
=
0
proof
assume
A1: for x holds (f
. x)
= (((a
* (x
^2 ))
+ (b
* x))
+ c);
assume
A2: (x0,x1,x2,x3)
are_mutually_distinct ;
then
A3: x1
<> x2 by
ZFMISC_1:def 6;
x1
<> x3 & x2
<> x3 by
A2,
ZFMISC_1:def 6;
then
A4: (x1,x2,x3)
are_mutually_distinct by
A3,
ZFMISC_1:def 5;
x0
<> x1 & x0
<> x2 by
A2,
ZFMISC_1:def 6;
then (x0,x1,x2)
are_mutually_distinct by
A3,
ZFMISC_1:def 5;
then
[!f, x0, x1, x2, x3!]
= ((a
-
[!f, x1, x2, x3!])
/ (x0
- x3)) by
A1,
Th28
.= ((a
- a)
/ (x0
- x3)) by
A1,
A4,
Th28;
hence thesis;
end;
theorem ::
DIFF_2:30
(for x holds (f
. x)
= (((a
* (x
^2 ))
+ (b
* x))
+ c)) & (x0,x1,x2,x3,x4)
are_mutually_distinct implies
[!f, x0, x1, x2, x3, x4!]
=
0
proof
assume
A1: for x holds (f
. x)
= (((a
* (x
^2 ))
+ (b
* x))
+ c);
assume
A2: (x0,x1,x2,x3,x4)
are_mutually_distinct ;
then
A3: x1
<> x2 & x1
<> x3 by
ZFMISC_1:def 7;
A4: x0
<> x3 by
A2,
ZFMISC_1:def 7;
A5: x2
<> x3 by
A2,
ZFMISC_1:def 7;
A6: x3
<> x4 by
A2,
ZFMISC_1:def 7;
x1
<> x4 & x2
<> x4 by
A2,
ZFMISC_1:def 7;
then
A7: (x1,x2,x3,x4)
are_mutually_distinct by
A3,
A5,
A6,
ZFMISC_1:def 6;
x0
<> x1 & x0
<> x2 by
A2,
ZFMISC_1:def 7;
then (x0,x1,x2,x3)
are_mutually_distinct by
A4,
A3,
A5,
ZFMISC_1:def 6;
then
[!f, x0, x1, x2, x3, x4!]
= ((
0 qua
Nat
-
[!f, x1, x2, x3, x4!])
/ (x0
- x4)) by
A1,
Th29
.= ((
0 qua
Nat
-
0 qua
Nat)
/ (x0
- x4)) by
A1,
A7,
Th29;
hence thesis;
end;
theorem ::
DIFF_2:31
(for x holds (f
. x)
= (((a
* (x
^2 ))
+ (b
* x))
+ c)) implies for x holds ((
fD (f,h))
. x)
= (((((2
* a)
* h)
* x)
+ (a
* (h
^2 )))
+ (b
* h))
proof
assume
A1: for x holds (f
. x)
= (((a
* (x
^2 ))
+ (b
* x))
+ c);
let x;
((
fD (f,h))
. x)
= ((f
. (x
+ h))
- (f
. x)) by
DIFF_1: 3
.= ((((a
* ((x
+ h)
^2 ))
+ (b
* (x
+ h)))
+ c)
- (f
. x)) by
A1
.= ((((a
* ((x
+ h)
^2 ))
+ (b
* (x
+ h)))
+ c)
- (((a
* (x
^2 ))
+ (b
* x))
+ c)) by
A1
.= (((((2
* a)
* h)
* x)
+ (a
* (h
^2 )))
+ (b
* h));
hence thesis;
end;
theorem ::
DIFF_2:32
(for x holds (f
. x)
= (((a
* (x
^2 ))
+ (b
* x))
+ c)) implies for x holds ((
bD (f,h))
. x)
= (((((2
* a)
* h)
* x)
- (a
* (h
^2 )))
+ (b
* h))
proof
assume
A1: for x holds (f
. x)
= (((a
* (x
^2 ))
+ (b
* x))
+ c);
let x;
((
bD (f,h))
. x)
= ((f
. x)
- (f
. (x
- h))) by
DIFF_1: 4
.= ((((a
* (x
^2 ))
+ (b
* x))
+ c)
- (f
. (x
- h))) by
A1
.= ((((a
* (x
^2 ))
+ (b
* x))
+ c)
- (((a
* ((x
- h)
^2 ))
+ (b
* (x
- h)))
+ c)) by
A1
.= (((((2
* a)
* h)
* x)
- (a
* (h
^2 )))
+ (b
* h));
hence thesis;
end;
theorem ::
DIFF_2:33
(for x holds (f
. x)
= (((a
* (x
^2 ))
+ (b
* x))
+ c)) implies for x holds ((
cD (f,h))
. x)
= ((((2
* a)
* h)
* x)
+ (b
* h))
proof
assume
A1: for x holds (f
. x)
= (((a
* (x
^2 ))
+ (b
* x))
+ c);
let x;
((
cD (f,h))
. x)
= ((f
. (x
+ (h
/ 2)))
- (f
. (x
- (h
/ 2)))) by
DIFF_1: 5
.= ((((a
* ((x
+ (h
/ 2))
^2 ))
+ (b
* (x
+ (h
/ 2))))
+ c)
- (f
. (x
- (h
/ 2)))) by
A1
.= ((((a
* ((x
+ (h
/ 2))
^2 ))
+ (b
* (x
+ (h
/ 2))))
+ c)
- (((a
* ((x
- (h
/ 2))
^2 ))
+ (b
* (x
- (h
/ 2))))
+ c)) by
A1
.= ((((2
* a)
* h)
* x)
+ (b
* h));
hence thesis;
end;
theorem ::
DIFF_2:34
Th34: (for x holds (f
. x)
= (k
/ x)) & x0
<> x1 & x0
<>
0 & x1
<>
0 implies
[!f, x0, x1!]
= (
- (k
/ (x0
* x1)))
proof
assume that
A1: for x holds (f
. x)
= (k
/ x) and
A2: x0
<> x1 and
A3: x0
<>
0 and
A4: x1
<>
0 ;
A5: (x1
- x0)
<>
0 by
A2;
[!f, x0, x1!]
= (((k
/ x0)
- (f
. x1))
/ (x0
- x1)) by
A1
.= (((k
/ x0)
- (k
/ x1))
/ (x0
- x1)) by
A1
.= ((((k
* x1)
/ (x0
* x1))
- (k
/ x1))
/ (x0
- x1)) by
A4,
XCMPLX_1: 91
.= ((((k
* x1)
/ (x0
* x1))
- ((k
* x0)
/ (x0
* x1)))
/ (x0
- x1)) by
A3,
XCMPLX_1: 91
.= ((((k
* x1)
- (k
* x0))
/ (x0
* x1))
/ (x0
- x1)) by
XCMPLX_1: 120
.= (((k
* (x1
- x0))
/ (x0
* x1))
/ (
- (x1
- x0)))
.= (
- (((k
* (x1
- x0))
/ (x0
* x1))
/ (x1
- x0))) by
XCMPLX_1: 188
.= (
- (((k
* (x1
- x0))
/ (x1
- x0))
/ (x0
* x1))) by
XCMPLX_1: 48;
hence thesis by
A5,
XCMPLX_1: 89;
end;
theorem ::
DIFF_2:35
Th35: (for x holds (f
. x)
= (k
/ x)) & x0
<>
0 & x1
<>
0 & x2
<>
0 & (x0,x1,x2)
are_mutually_distinct implies
[!f, x0, x1, x2!]
= (k
/ ((x0
* x1)
* x2))
proof
assume that
A1: for x holds (f
. x)
= (k
/ x) and
A2: x0
<>
0 and
A3: x1
<>
0 and
A4: x2
<>
0 ;
assume
A5: (x0,x1,x2)
are_mutually_distinct ;
then
A6: x1
<> x2 by
ZFMISC_1:def 5;
A7: (x0
- x2)
<>
0 by
A5,
ZFMISC_1:def 5;
x0
<> x1 by
A5,
ZFMISC_1:def 5;
then
[!f, x0, x1, x2!]
= (((
- (k
/ (x0
* x1)))
-
[!f, x1, x2!])
/ (x0
- x2)) by
A1,
A2,
A3,
Th34
.= (((
- (k
/ (x0
* x1)))
- (
- (k
/ (x1
* x2))))
/ (x0
- x2)) by
A1,
A3,
A4,
A6,
Th34
.= (((
- (k
/ (x0
* x1)))
+ (k
/ (x1
* x2)))
/ (x0
- x2))
.= (((
- ((k
* x2)
/ ((x0
* x1)
* x2)))
+ (k
/ (x1
* x2)))
/ (x0
- x2)) by
A4,
XCMPLX_1: 91
.= (((
- ((k
* x2)
/ ((x0
* x1)
* x2)))
+ ((k
* x0)
/ (x0
* (x1
* x2))))
/ (x0
- x2)) by
A2,
XCMPLX_1: 91
.= ((
- (((k
* x2)
/ ((x0
* x1)
* x2))
- ((k
* x0)
/ ((x0
* x1)
* x2))))
/ (x0
- x2))
.= ((
- (((k
* x2)
- (k
* x0))
/ ((x0
* x1)
* x2)))
/ (x0
- x2)) by
XCMPLX_1: 120
.= (((
- (k
* (x2
- x0)))
/ ((x0
* x1)
* x2))
/ (x0
- x2)) by
XCMPLX_1: 187
.= ((k
* (x0
- x2))
/ (((x0
* x1)
* x2)
* (x0
- x2))) by
XCMPLX_1: 78;
hence thesis by
A7,
XCMPLX_1: 91;
end;
theorem ::
DIFF_2:36
Th36: (for x holds (f
. x)
= (k
/ x)) & x0
<>
0 & x1
<>
0 & x2
<>
0 & x3
<>
0 & (x0,x1,x2,x3)
are_mutually_distinct implies
[!f, x0, x1, x2, x3!]
= (
- (k
/ (((x0
* x1)
* x2)
* x3)))
proof
assume that
A1: for x holds (f
. x)
= (k
/ x) and
A2: x0
<>
0 and
A3: x1
<>
0 & x2
<>
0 and
A4: x3
<>
0 ;
assume
A5: (x0,x1,x2,x3)
are_mutually_distinct ;
then
A6: x1
<> x2 by
ZFMISC_1:def 6;
x1
<> x3 & x2
<> x3 by
A5,
ZFMISC_1:def 6;
then
A7: (x1,x2,x3)
are_mutually_distinct by
A6,
ZFMISC_1:def 5;
A8: (x0
- x3)
<>
0 by
A5,
ZFMISC_1:def 6;
x0
<> x1 & x0
<> x2 by
A5,
ZFMISC_1:def 6;
then (x0,x1,x2)
are_mutually_distinct by
A6,
ZFMISC_1:def 5;
then
[!f, x0, x1, x2, x3!]
= (((k
/ ((x0
* x1)
* x2))
-
[!f, x1, x2, x3!])
/ (x0
- x3)) by
A1,
A2,
A3,
Th35
.= (((k
/ ((x0
* x1)
* x2))
- (k
/ ((x1
* x2)
* x3)))
/ (x0
- x3)) by
A1,
A3,
A4,
A7,
Th35
.= ((((k
* x3)
/ (((x0
* x1)
* x2)
* x3))
- (k
/ ((x1
* x2)
* x3)))
/ (x0
- x3)) by
A4,
XCMPLX_1: 91
.= ((((k
* x3)
/ (((x0
* x1)
* x2)
* x3))
- ((k
* x0)
/ (x0
* ((x1
* x2)
* x3))))
/ (x0
- x3)) by
A2,
XCMPLX_1: 91
.= ((((k
* x3)
- (k
* x0))
/ (((x0
* x1)
* x2)
* x3))
/ (x0
- x3)) by
XCMPLX_1: 120
.= (((
- k)
* (x0
- x3))
/ ((((x0
* x1)
* x2)
* x3)
* (x0
- x3))) by
XCMPLX_1: 78
.= ((
- k)
/ (((x0
* x1)
* x2)
* x3)) by
A8,
XCMPLX_1: 91;
hence thesis by
XCMPLX_1: 187;
end;
theorem ::
DIFF_2:37
(for x holds (f
. x)
= (k
/ x)) & x0
<>
0 & x1
<>
0 & x2
<>
0 & x3
<>
0 & x4
<>
0 & (x0,x1,x2,x3,x4)
are_mutually_distinct implies
[!f, x0, x1, x2, x3, x4!]
= (k
/ ((((x0
* x1)
* x2)
* x3)
* x4))
proof
assume that
A1: for x holds (f
. x)
= (k
/ x) and
A2: x0
<>
0 and
A3: x1
<>
0 & x2
<>
0 & x3
<>
0 and
A4: x4
<>
0 ;
assume
A5: (x0,x1,x2,x3,x4)
are_mutually_distinct ;
then
A6: x1
<> x2 & x1
<> x3 by
ZFMISC_1:def 7;
A7: x3
<> x4 by
A5,
ZFMISC_1:def 7;
A8: x2
<> x3 by
A5,
ZFMISC_1:def 7;
A9: (x0
- x4)
<>
0 by
A5,
ZFMISC_1:def 7;
A10: x0
<> x3 by
A5,
ZFMISC_1:def 7;
x1
<> x4 & x2
<> x4 by
A5,
ZFMISC_1:def 7;
then
A11: (x1,x2,x3,x4)
are_mutually_distinct by
A6,
A8,
A7,
ZFMISC_1:def 6;
x0
<> x1 & x0
<> x2 by
A5,
ZFMISC_1:def 7;
then (x0,x1,x2,x3)
are_mutually_distinct by
A10,
A6,
A8,
ZFMISC_1:def 6;
then
[!f, x0, x1, x2, x3, x4!]
= (((
- (k
/ (((x0
* x1)
* x2)
* x3)))
-
[!f, x1, x2, x3, x4!])
/ (x0
- x4)) by
A1,
A2,
A3,
Th36
.= (((
- (k
/ (((x0
* x1)
* x2)
* x3)))
- (
- (k
/ (((x1
* x2)
* x3)
* x4))))
/ (x0
- x4)) by
A1,
A3,
A4,
A11,
Th36
.= (((
- (k
/ (((x0
* x1)
* x2)
* x3)))
+ (k
/ (((x1
* x2)
* x3)
* x4)))
/ (x0
- x4))
.= (((
- ((k
* x4)
/ ((((x0
* x1)
* x2)
* x3)
* x4)))
+ (k
/ (((x1
* x2)
* x3)
* x4)))
/ (x0
- x4)) by
A4,
XCMPLX_1: 91
.= (((
- ((k
* x4)
/ ((((x0
* x1)
* x2)
* x3)
* x4)))
+ ((k
* x0)
/ (x0
* (((x1
* x2)
* x3)
* x4))))
/ (x0
- x4)) by
A2,
XCMPLX_1: 91
.= ((((k
* x0)
/ ((((x0
* x1)
* x2)
* x3)
* x4))
- ((k
* x4)
/ ((((x0
* x1)
* x2)
* x3)
* x4)))
/ (x0
- x4))
.= ((((k
* x0)
- (k
* x4))
/ ((((x0
* x1)
* x2)
* x3)
* x4))
/ (x0
- x4)) by
XCMPLX_1: 120
.= ((k
* (x0
- x4))
/ (((((x0
* x1)
* x2)
* x3)
* x4)
* (x0
- x4))) by
XCMPLX_1: 78;
hence thesis by
A9,
XCMPLX_1: 91;
end;
theorem ::
DIFF_2:38
(for x holds (f
. x)
= (k
/ x) & x
<>
0 & (x
+ h)
<>
0 ) implies for x holds ((
fD (f,h))
. x)
= ((
- (k
* h))
/ ((x
+ h)
* x));
theorem ::
DIFF_2:39
(for x holds (f
. x)
= (k
/ x) & x
<>
0 & (x
- h)
<>
0 ) implies for x holds ((
bD (f,h))
. x)
= ((
- (k
* h))
/ ((x
- h)
* x));
theorem ::
DIFF_2:40
(for x holds (f
. x)
= (k
/ x) & (x
+ (h
/ 2))
<>
0 & (x
- (h
/ 2))
<>
0 ) implies for x holds ((
cD (f,h))
. x)
= ((
- (k
* h))
/ ((x
- (h
/ 2))
* (x
+ (h
/ 2))))
proof
assume
A1: for x holds (f
. x)
= (k
/ x) & (x
+ (h
/ 2))
<>
0 & (x
- (h
/ 2))
<>
0 ;
let x;
A2: (x
+ (h
/ 2))
<>
0 by
A1;
A3: (x
- (h
/ 2))
<>
0 by
A1;
((
cD (f,h))
. x)
= ((f
. (x
+ (h
/ 2)))
- (f
. (x
- (h
/ 2)))) by
DIFF_1: 5
.= ((k
/ (x
+ (h
/ 2)))
- (f
. (x
- (h
/ 2)))) by
A1
.= ((k
/ (x
+ (h
/ 2)))
- (k
/ (x
- (h
/ 2)))) by
A1
.= (((k
* (x
- (h
/ 2)))
/ ((x
- (h
/ 2))
* (x
+ (h
/ 2))))
- (k
/ (x
- (h
/ 2)))) by
A3,
XCMPLX_1: 91
.= (((k
* (x
- (h
/ 2)))
/ ((x
- (h
/ 2))
* (x
+ (h
/ 2))))
- ((k
* (x
+ (h
/ 2)))
/ ((x
- (h
/ 2))
* (x
+ (h
/ 2))))) by
A2,
XCMPLX_1: 91
.= ((((k
* x)
- (k
* (h
/ 2)))
- (k
* (x
+ (h
/ 2))))
/ ((x
- (h
/ 2))
* (x
+ (h
/ 2)))) by
XCMPLX_1: 120;
hence thesis;
end;
theorem ::
DIFF_2:41
[!
sin , x0, x1!]
= (((2
* (
cos ((x0
+ x1)
/ 2)))
* (
sin ((x0
- x1)
/ 2)))
/ (x0
- x1))
proof
[!
sin , x0, x1!]
= (((
sin x0)
- (
sin x1))
/ (x0
- x1))
.= ((2
* ((
cos ((x0
+ x1)
/ 2))
* (
sin ((x0
- x1)
/ 2))))
/ (x0
- x1)) by
SIN_COS4: 16;
hence thesis;
end;
theorem ::
DIFF_2:42
for x holds ((
fD (
sin ,h))
. x)
= (2
* ((
cos (((2
* x)
+ h)
/ 2))
* (
sin (h
/ 2))))
proof
let x;
((
fD (
sin ,h))
. x)
= ((
sin (x
+ h))
- (
sin x)) by
DIFF_1: 3
.= (2
* ((
cos ((x
+ (h
+ x))
/ 2))
* (
sin (((x
+ h)
- x)
/ 2)))) by
SIN_COS4: 16;
hence thesis;
end;
theorem ::
DIFF_2:43
for x holds ((
bD (
sin ,h))
. x)
= (2
* ((
cos (((2
* x)
- h)
/ 2))
* (
sin (h
/ 2))))
proof
let x;
((
bD (
sin ,h))
. x)
= ((
sin x)
- (
sin (x
- h))) by
DIFF_1: 4
.= (2
* ((
cos ((x
+ (x
- h))
/ 2))
* (
sin ((x
- (x
- h))
/ 2)))) by
SIN_COS4: 16;
hence thesis;
end;
theorem ::
DIFF_2:44
for x holds ((
cD (
sin ,h))
. x)
= (2
* ((
cos x)
* (
sin (h
/ 2))))
proof
let x;
((
cD (
sin ,h))
. x)
= ((
sin (x
+ (h
/ 2)))
- (
sin (x
- (h
/ 2)))) by
DIFF_1: 5
.= (2
* ((
cos (((x
+ (h
/ 2))
+ (x
- (h
/ 2)))
/ 2))
* (
sin (((x
+ (h
/ 2))
- (x
- (h
/ 2)))
/ 2)))) by
SIN_COS4: 16;
hence thesis;
end;
theorem ::
DIFF_2:45
[!
cos , x0, x1!]
= (
- (((2
* (
sin ((x0
+ x1)
/ 2)))
* (
sin ((x0
- x1)
/ 2)))
/ (x0
- x1)))
proof
[!
cos , x0, x1!]
= (((
cos x0)
- (
cos x1))
/ (x0
- x1))
.= ((
- (2
* ((
sin ((x0
+ x1)
/ 2))
* (
sin ((x0
- x1)
/ 2)))))
/ (x0
- x1)) by
SIN_COS4: 18;
hence thesis by
XCMPLX_1: 187;
end;
theorem ::
DIFF_2:46
for x holds ((
fD (
cos ,h))
. x)
= (
- (2
* ((
sin (((2
* x)
+ h)
/ 2))
* (
sin (h
/ 2)))))
proof
let x;
((
fD (
cos ,h))
. x)
= ((
cos (x
+ h))
- (
cos x)) by
DIFF_1: 3
.= (
- (2
* ((
sin ((x
+ (x
+ h))
/ 2))
* (
sin (((x
+ h)
- x)
/ 2))))) by
SIN_COS4: 18;
hence thesis;
end;
theorem ::
DIFF_2:47
for x holds ((
bD (
cos ,h))
. x)
= (
- (2
* ((
sin (((2
* x)
- h)
/ 2))
* (
sin (h
/ 2)))))
proof
let x;
((
bD (
cos ,h))
. x)
= ((
cos x)
- (
cos (x
- h))) by
DIFF_1: 4
.= (
- (2
* ((
sin ((x
+ (x
- h))
/ 2))
* (
sin ((x
- (x
- h))
/ 2))))) by
SIN_COS4: 18;
hence thesis;
end;
theorem ::
DIFF_2:48
for x holds ((
cD (
cos ,h))
. x)
= (
- (2
* ((
sin x)
* (
sin (h
/ 2)))))
proof
let x;
((
cD (
cos ,h))
. x)
= ((
cos (x
+ (h
/ 2)))
- (
cos (x
- (h
/ 2)))) by
DIFF_1: 5
.= (
- (2
* ((
sin (((x
+ (h
/ 2))
+ (x
- (h
/ 2)))
/ 2))
* (
sin (((x
+ (h
/ 2))
- (x
- (h
/ 2)))
/ 2))))) by
SIN_COS4: 18;
hence thesis;
end;
theorem ::
DIFF_2:49
[!(
sin
(#)
sin ), x0, x1!]
= (((1
/ 2)
* ((
cos (2
* x1))
- (
cos (2
* x0))))
/ (x0
- x1))
proof
[!(
sin
(#)
sin ), x0, x1!]
= ((((
sin
. x0)
* (
sin
. x0))
- ((
sin
(#)
sin )
. x1))
/ (x0
- x1)) by
VALUED_1: 5
.= ((((
sin x0)
* (
sin x0))
- ((
sin x1)
* (
sin x1)))
/ (x0
- x1)) by
VALUED_1: 5
.= (((
- ((1
/ 2)
* ((
cos (x0
+ x0))
- (
cos (x0
- x0)))))
- ((
sin x1)
* (
sin x1)))
/ (x0
- x1)) by
SIN_COS4: 29
.= (((
- ((1
/ 2)
* ((
cos (x0
+ x0))
- (
cos (x0
- x0)))))
- (
- ((1
/ 2)
* ((
cos (x1
+ x1))
- (
cos (x1
- x1))))))
/ (x0
- x1)) by
SIN_COS4: 29
.= (((1
/ 2)
* ((
cos (2
* x1))
- (
cos (2
* x0))))
/ (x0
- x1));
hence thesis;
end;
theorem ::
DIFF_2:50
for x holds ((
fD ((
sin
(#)
sin ),h))
. x)
= ((1
/ 2)
* ((
cos (2
* x))
- (
cos (2
* (x
+ h)))))
proof
let x;
((
fD ((
sin
(#)
sin ),h))
. x)
= (((
sin
(#)
sin )
. (x
+ h))
- ((
sin
(#)
sin )
. x)) by
DIFF_1: 3
.= (((
sin
. (x
+ h))
* (
sin
. (x
+ h)))
- ((
sin
(#)
sin )
. x)) by
VALUED_1: 5
.= (((
sin (x
+ h))
* (
sin (x
+ h)))
- ((
sin x)
* (
sin x))) by
VALUED_1: 5
.= ((
- ((1
/ 2)
* ((
cos ((x
+ h)
+ (x
+ h)))
- (
cos ((x
+ h)
- (x
+ h))))))
- ((
sin x)
* (
sin x))) by
SIN_COS4: 29
.= ((
- ((1
/ 2)
* ((
cos (2
* (x
+ h)))
- (
cos
0 ))))
- (
- ((1
/ 2)
* ((
cos (x
+ x))
- (
cos (x
- x)))))) by
SIN_COS4: 29;
hence thesis;
end;
theorem ::
DIFF_2:51
for x holds ((
bD ((
sin
(#)
sin ),h))
. x)
= ((1
/ 2)
* ((
cos (2
* (x
- h)))
- (
cos (2
* x))))
proof
let x;
((
bD ((
sin
(#)
sin ),h))
. x)
= (((
sin
(#)
sin )
. x)
- ((
sin
(#)
sin )
. (x
- h))) by
DIFF_1: 4
.= (((
sin
. x)
* (
sin
. x))
- ((
sin
(#)
sin )
. (x
- h))) by
VALUED_1: 5
.= (((
sin x)
* (
sin x))
- ((
sin (x
- h))
* (
sin (x
- h)))) by
VALUED_1: 5
.= ((
- ((1
/ 2)
* ((
cos (x
+ x))
- (
cos (x
- x)))))
- ((
sin (x
- h))
* (
sin (x
- h)))) by
SIN_COS4: 29
.= ((
- ((1
/ 2)
* ((
cos (2
* x))
- (
cos
0 ))))
- (
- ((1
/ 2)
* ((
cos ((x
- h)
+ (x
- h)))
- (
cos ((x
- h)
- (x
- h))))))) by
SIN_COS4: 29;
hence thesis;
end;
theorem ::
DIFF_2:52
for x holds ((
cD ((
sin
(#)
sin ),h))
. x)
= ((1
/ 2)
* ((
cos ((2
* x)
- h))
- (
cos ((2
* x)
+ h))))
proof
let x;
((
cD ((
sin
(#)
sin ),h))
. x)
= (((
sin
(#)
sin )
. (x
+ (h
/ 2)))
- ((
sin
(#)
sin )
. (x
- (h
/ 2)))) by
DIFF_1: 5
.= (((
sin
. (x
+ (h
/ 2)))
* (
sin
. (x
+ (h
/ 2))))
- ((
sin
(#)
sin )
. (x
- (h
/ 2)))) by
VALUED_1: 5
.= (((
sin (x
+ (h
/ 2)))
* (
sin (x
+ (h
/ 2))))
- ((
sin (x
- (h
/ 2)))
* (
sin (x
- (h
/ 2))))) by
VALUED_1: 5
.= ((
- ((1
/ 2)
* ((
cos ((x
+ (h
/ 2))
+ (x
+ (h
/ 2))))
- (
cos ((x
+ (h
/ 2))
- (x
+ (h
/ 2)))))))
- ((
sin (x
- (h
/ 2)))
* (
sin (x
- (h
/ 2))))) by
SIN_COS4: 29
.= ((
- ((1
/ 2)
* ((
cos (2
* (x
+ (h
/ 2))))
- (
cos
0 ))))
- (
- ((1
/ 2)
* ((
cos ((x
- (h
/ 2))
+ (x
- (h
/ 2))))
- (
cos ((x
- (h
/ 2))
- (x
- (h
/ 2)))))))) by
SIN_COS4: 29;
hence thesis;
end;
theorem ::
DIFF_2:53
[!(
sin
(#)
cos ), x0, x1!]
= (((1
/ 2)
* ((
sin (2
* x0))
- (
sin (2
* x1))))
/ (x0
- x1))
proof
[!(
sin
(#)
cos ), x0, x1!]
= ((((
sin
. x0)
* (
cos
. x0))
- ((
sin
(#)
cos )
. x1))
/ (x0
- x1)) by
VALUED_1: 5
.= ((((
sin x0)
* (
cos x0))
- ((
sin x1)
* (
cos x1)))
/ (x0
- x1)) by
VALUED_1: 5
.= ((((1
/ 2)
* ((
sin (x0
+ x0))
+ (
sin (x0
- x0))))
- ((
sin x1)
* (
cos x1)))
/ (x0
- x1)) by
SIN_COS4: 30
.= ((((1
/ 2)
* ((
sin (x0
+ x0))
+ (
sin (x0
- x0))))
- ((1
/ 2)
* ((
sin (x1
+ x1))
+ (
sin (x1
- x1)))))
/ (x0
- x1)) by
SIN_COS4: 30
.= (((1
/ 2)
* ((
sin (2
* x0))
- (
sin (2
* x1))))
/ (x0
- x1));
hence thesis;
end;
theorem ::
DIFF_2:54
for x holds ((
fD ((
sin
(#)
cos ),h))
. x)
= ((1
/ 2)
* ((
sin (2
* (x
+ h)))
- (
sin (2
* x))))
proof
let x;
((
fD ((
sin
(#)
cos ),h))
. x)
= (((
sin
(#)
cos )
. (x
+ h))
- ((
sin
(#)
cos )
. x)) by
DIFF_1: 3
.= (((
sin
. (x
+ h))
* (
cos
. (x
+ h)))
- ((
sin
(#)
cos )
. x)) by
VALUED_1: 5
.= (((
sin (x
+ h))
* (
cos (x
+ h)))
- ((
sin x)
* (
cos x))) by
VALUED_1: 5
.= (((1
/ 2)
* ((
sin ((x
+ h)
+ (x
+ h)))
+ (
sin ((x
+ h)
- (x
+ h)))))
- ((
sin x)
* (
cos x))) by
SIN_COS4: 30
.= (((1
/ 2)
* ((
sin (2
* (x
+ h)))
+ (
sin
0 )))
- ((1
/ 2)
* ((
sin (x
+ x))
+ (
sin (x
- x))))) by
SIN_COS4: 30
.= (((1
/ 2)
* (
sin (2
* (x
+ h))))
- ((1
/ 2)
* (
sin (2
* x))));
hence thesis;
end;
theorem ::
DIFF_2:55
for x holds ((
bD ((
sin
(#)
cos ),h))
. x)
= ((1
/ 2)
* ((
sin (2
* x))
- (
sin (2
* (x
- h)))))
proof
let x;
((
bD ((
sin
(#)
cos ),h))
. x)
= (((
sin
(#)
cos )
. x)
- ((
sin
(#)
cos )
. (x
- h))) by
DIFF_1: 4
.= (((
sin
. x)
* (
cos
. x))
- ((
sin
(#)
cos )
. (x
- h))) by
VALUED_1: 5
.= (((
sin x)
* (
cos x))
- ((
sin (x
- h))
* (
cos (x
- h)))) by
VALUED_1: 5
.= (((1
/ 2)
* ((
sin (x
+ x))
+ (
sin (x
- x))))
- ((
sin (x
- h))
* (
cos (x
- h)))) by
SIN_COS4: 30
.= (((1
/ 2)
* ((
sin (x
+ x))
+ (
sin
0 )))
- ((1
/ 2)
* ((
sin ((x
- h)
+ (x
- h)))
+ (
sin ((x
- h)
- (x
- h)))))) by
SIN_COS4: 30
.= (((1
/ 2)
* (
sin (2
* x)))
- ((1
/ 2)
* (
sin (2
* (x
- h)))));
hence thesis;
end;
theorem ::
DIFF_2:56
for x holds ((
cD ((
sin
(#)
cos ),h))
. x)
= ((1
/ 2)
* ((
sin ((2
* x)
+ h))
- (
sin ((2
* x)
- h))))
proof
let x;
((
cD ((
sin
(#)
cos ),h))
. x)
= (((
sin
(#)
cos )
. (x
+ (h
/ 2)))
- ((
sin
(#)
cos )
. (x
- (h
/ 2)))) by
DIFF_1: 5
.= (((
sin
. (x
+ (h
/ 2)))
* (
cos
. (x
+ (h
/ 2))))
- ((
sin
(#)
cos )
. (x
- (h
/ 2)))) by
VALUED_1: 5
.= (((
sin (x
+ (h
/ 2)))
* (
cos (x
+ (h
/ 2))))
- ((
sin (x
- (h
/ 2)))
* (
cos (x
- (h
/ 2))))) by
VALUED_1: 5
.= (((1
/ 2)
* ((
sin ((x
+ (h
/ 2))
+ (x
+ (h
/ 2))))
+ (
sin ((x
+ (h
/ 2))
- (x
+ (h
/ 2))))))
- ((
sin (x
- (h
/ 2)))
* (
cos (x
- (h
/ 2))))) by
SIN_COS4: 30
.= (((1
/ 2)
* ((
sin ((x
+ (h
/ 2))
+ (x
+ (h
/ 2))))
+ (
sin ((x
+ (h
/ 2))
- (x
+ (h
/ 2))))))
- ((1
/ 2)
* ((
sin ((x
- (h
/ 2))
+ (x
- (h
/ 2))))
+ (
sin ((x
- (h
/ 2))
- (x
- (h
/ 2))))))) by
SIN_COS4: 30
.= (((1
/ 2)
* (
sin (2
* (x
+ (h
/ 2)))))
- ((1
/ 2)
* (
sin (2
* (x
- (h
/ 2))))));
hence thesis;
end;
theorem ::
DIFF_2:57
[!(
cos
(#)
cos ), x0, x1!]
= (((1
/ 2)
* ((
cos (2
* x0))
- (
cos (2
* x1))))
/ (x0
- x1))
proof
[!(
cos
(#)
cos ), x0, x1!]
= ((((
cos
. x0)
* (
cos
. x0))
- ((
cos
(#)
cos )
. x1))
/ (x0
- x1)) by
VALUED_1: 5
.= ((((
cos x0)
* (
cos x0))
- ((
cos x1)
* (
cos x1)))
/ (x0
- x1)) by
VALUED_1: 5
.= ((((1
/ 2)
* ((
cos (x0
+ x0))
+ (
cos (x0
- x0))))
- ((
cos x1)
* (
cos x1)))
/ (x0
- x1)) by
SIN_COS4: 32
.= ((((1
/ 2)
* ((
cos (x0
+ x0))
+ (
cos (x0
- x0))))
- ((1
/ 2)
* ((
cos (x1
+ x1))
+ (
cos (x1
- x1)))))
/ (x0
- x1)) by
SIN_COS4: 32
.= ((((1
/ 2)
* (
cos (2
* x0)))
- ((1
/ 2)
* (
cos (2
* x1))))
/ (x0
- x1));
hence thesis;
end;
theorem ::
DIFF_2:58
for x holds ((
fD ((
cos
(#)
cos ),h))
. x)
= ((1
/ 2)
* ((
cos (2
* (x
+ h)))
- (
cos (2
* x))))
proof
let x;
((
fD ((
cos
(#)
cos ),h))
. x)
= (((
cos
(#)
cos )
. (x
+ h))
- ((
cos
(#)
cos )
. x)) by
DIFF_1: 3
.= (((
cos
. (x
+ h))
* (
cos
. (x
+ h)))
- ((
cos
(#)
cos )
. x)) by
VALUED_1: 5
.= (((
cos (x
+ h))
* (
cos (x
+ h)))
- ((
cos x)
* (
cos x))) by
VALUED_1: 5
.= (((1
/ 2)
* ((
cos ((x
+ h)
+ (x
+ h)))
+ (
cos ((x
+ h)
- (x
+ h)))))
- ((
cos x)
* (
cos x))) by
SIN_COS4: 32
.= (((1
/ 2)
* ((
cos (2
* (x
+ h)))
+ (
cos
0 )))
- ((1
/ 2)
* ((
cos (x
+ x))
+ (
cos (x
- x))))) by
SIN_COS4: 32
.= (((1
/ 2)
* (
cos (2
* (x
+ h))))
- ((1
/ 2)
* (
cos (2
* x))));
hence thesis;
end;
theorem ::
DIFF_2:59
for x holds ((
bD ((
cos
(#)
cos ),h))
. x)
= ((1
/ 2)
* ((
cos (2
* x))
- (
cos (2
* (x
- h)))))
proof
let x;
((
bD ((
cos
(#)
cos ),h))
. x)
= (((
cos
(#)
cos )
. x)
- ((
cos
(#)
cos )
. (x
- h))) by
DIFF_1: 4
.= (((
cos
. x)
* (
cos
. x))
- ((
cos
(#)
cos )
. (x
- h))) by
VALUED_1: 5
.= (((
cos x)
* (
cos x))
- ((
cos (x
- h))
* (
cos (x
- h)))) by
VALUED_1: 5
.= (((1
/ 2)
* ((
cos (x
+ x))
+ (
cos (x
- x))))
- ((
cos (x
- h))
* (
cos (x
- h)))) by
SIN_COS4: 32
.= (((1
/ 2)
* ((
cos (x
+ x))
+ (
cos (x
- x))))
- ((1
/ 2)
* ((
cos ((x
- h)
+ (x
- h)))
+ (
cos ((x
- h)
- (x
- h)))))) by
SIN_COS4: 32
.= (((1
/ 2)
* (
cos (2
* x)))
- ((1
/ 2)
* (
cos (2
* (x
- h)))));
hence thesis;
end;
theorem ::
DIFF_2:60
for x holds ((
cD ((
cos
(#)
cos ),h))
. x)
= ((1
/ 2)
* ((
cos ((2
* x)
+ h))
- (
cos ((2
* x)
- h))))
proof
let x;
((
cD ((
cos
(#)
cos ),h))
. x)
= (((
cos
(#)
cos )
. (x
+ (h
/ 2)))
- ((
cos
(#)
cos )
. (x
- (h
/ 2)))) by
DIFF_1: 5
.= (((
cos
. (x
+ (h
/ 2)))
* (
cos
. (x
+ (h
/ 2))))
- ((
cos
(#)
cos )
. (x
- (h
/ 2)))) by
VALUED_1: 5
.= (((
cos (x
+ (h
/ 2)))
* (
cos (x
+ (h
/ 2))))
- ((
cos (x
- (h
/ 2)))
* (
cos (x
- (h
/ 2))))) by
VALUED_1: 5
.= (((1
/ 2)
* ((
cos ((x
+ (h
/ 2))
+ (x
+ (h
/ 2))))
+ (
cos ((x
+ (h
/ 2))
- (x
+ (h
/ 2))))))
- ((
cos (x
- (h
/ 2)))
* (
cos (x
- (h
/ 2))))) by
SIN_COS4: 32
.= (((1
/ 2)
* ((
cos ((x
+ (h
/ 2))
+ (x
+ (h
/ 2))))
+ (
cos ((x
+ (h
/ 2))
- (x
+ (h
/ 2))))))
- ((1
/ 2)
* ((
cos ((x
- (h
/ 2))
+ (x
- (h
/ 2))))
+ (
cos ((x
- (h
/ 2))
- (x
- (h
/ 2))))))) by
SIN_COS4: 32
.= (((1
/ 2)
* (
cos (2
* (x
+ (h
/ 2)))))
- ((1
/ 2)
* (
cos (2
* (x
- (h
/ 2))))));
hence thesis;
end;
theorem ::
DIFF_2:61
[!((
sin
(#)
sin )
(#)
cos ), x0, x1!]
= (
- (((1
/ 2)
* (((
sin ((3
* (x1
+ x0))
/ 2))
* (
sin ((3
* (x1
- x0))
/ 2)))
+ ((
sin ((x0
+ x1)
/ 2))
* (
sin ((x0
- x1)
/ 2)))))
/ (x0
- x1)))
proof
set y = (3
* x0);
set z = (3
* x1);
[!((
sin
(#)
sin )
(#)
cos ), x0, x1!]
= (((((
sin
(#)
sin )
. x0)
* (
cos
. x0))
- (((
sin
(#)
sin )
(#)
cos )
. x1))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
sin
. x0)
* (
sin
. x0))
* (
cos
. x0))
- (((
sin
(#)
sin )
(#)
cos )
. x1))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
sin
. x0)
* (
sin
. x0))
* (
cos
. x0))
- (((
sin
(#)
sin )
. x1)
* (
cos
. x1)))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
sin x0)
* (
sin x0))
* (
cos x0))
- (((
sin x1)
* (
sin x1))
* (
cos x1)))
/ (x0
- x1)) by
VALUED_1: 5
.= ((((1
/ 4)
* ((((
- (
cos ((x0
+ x0)
- x0)))
+ (
cos ((x0
+ x0)
- x0)))
+ (
cos ((x0
+ x0)
- x0)))
- (
cos ((x0
+ x0)
+ x0))))
- (((
sin x1)
* (
sin x1))
* (
cos x1)))
/ (x0
- x1)) by
SIN_COS4: 34
.= ((((1
/ 4)
* ((
cos x0)
- (
cos (3
* x0))))
- ((1
/ 4)
* ((((
- (
cos ((x1
+ x1)
- x1)))
+ (
cos ((x1
+ x1)
- x1)))
+ (
cos ((x1
+ x1)
- x1)))
- (
cos ((x1
+ x1)
+ x1)))))
/ (x0
- x1)) by
SIN_COS4: 34
.= ((((1
/ 4)
* ((
cos x0)
- (
cos x1)))
+ ((1
/ 4)
* ((
cos z)
- (
cos y))))
/ (x0
- x1))
.= ((((1
/ 4)
* (
- (2
* ((
sin ((x0
+ x1)
/ 2))
* (
sin ((x0
- x1)
/ 2))))))
+ ((1
/ 4)
* ((
cos z)
- (
cos y))))
/ (x0
- x1)) by
SIN_COS4: 18
.= ((((1
/ 4)
* (
- (2
* ((
sin ((x0
+ x1)
/ 2))
* (
sin ((x0
- x1)
/ 2))))))
+ ((1
/ 4)
* (
- (2
* ((
sin ((z
+ y)
/ 2))
* (
sin ((z
- y)
/ 2)))))))
/ (x0
- x1)) by
SIN_COS4: 18
.= ((
- ((1
/ 2)
* (((
sin ((3
* (x1
+ x0))
/ 2))
* (
sin ((3
* (x1
- x0))
/ 2)))
+ ((
sin ((x0
+ x1)
/ 2))
* (
sin ((x0
- x1)
/ 2))))))
/ (x0
- x1));
hence thesis by
XCMPLX_1: 187;
end;
theorem ::
DIFF_2:62
for x holds ((
fD (((
sin
(#)
sin )
(#)
cos ),h))
. x)
= ((1
/ 2)
* (((
sin (((6
* x)
+ (3
* h))
/ 2))
* (
sin ((3
* h)
/ 2)))
- ((
sin (((2
* x)
+ h)
/ 2))
* (
sin (h
/ 2)))))
proof
let x;
set y = (3
* x);
set z = (3
* h);
((
fD (((
sin
(#)
sin )
(#)
cos ),h))
. x)
= ((((
sin
(#)
sin )
(#)
cos )
. (x
+ h))
- (((
sin
(#)
sin )
(#)
cos )
. x)) by
DIFF_1: 3
.= ((((
sin
(#)
sin )
. (x
+ h))
* (
cos
. (x
+ h)))
- (((
sin
(#)
sin )
(#)
cos )
. x)) by
VALUED_1: 5
.= ((((
sin
. (x
+ h))
* (
sin
. (x
+ h)))
* (
cos
. (x
+ h)))
- (((
sin
(#)
sin )
(#)
cos )
. x)) by
VALUED_1: 5
.= ((((
sin
. (x
+ h))
* (
sin
. (x
+ h)))
* (
cos
. (x
+ h)))
- (((
sin
(#)
sin )
. x)
* (
cos
. x))) by
VALUED_1: 5
.= ((((
sin (x
+ h))
* (
sin (x
+ h)))
* (
cos (x
+ h)))
- (((
sin x)
* (
sin x))
* (
cos x))) by
VALUED_1: 5
.= (((1
/ 4)
* ((((
- (
cos (((x
+ h)
+ (x
+ h))
- (x
+ h))))
+ (
cos (((x
+ h)
+ (x
+ h))
- (x
+ h))))
+ (
cos (((x
+ h)
+ (x
+ h))
- (x
+ h))))
- (
cos (((x
+ h)
+ (x
+ h))
+ (x
+ h)))))
- (((
sin x)
* (
sin x))
* (
cos x))) by
SIN_COS4: 34
.= (((1
/ 4)
* ((
cos (x
+ h))
- (
cos (3
* (x
+ h)))))
- ((1
/ 4)
* ((((
- (
cos ((x
+ x)
- x)))
+ (
cos ((x
+ x)
- x)))
+ (
cos ((x
+ x)
- x)))
- (
cos ((x
+ x)
+ x))))) by
SIN_COS4: 34
.= (((1
/ 4)
* ((
cos (x
+ h))
- (
cos x)))
- ((1
/ 4)
* ((
cos (3
* (x
+ h)))
- (
cos (3
* x)))))
.= (((1
/ 4)
* (
- (2
* ((
sin (((x
+ h)
+ x)
/ 2))
* (
sin (((x
+ h)
- x)
/ 2))))))
- ((1
/ 4)
* ((
cos (3
* (x
+ h)))
- (
cos (3
* x))))) by
SIN_COS4: 18
.= (((1
/ 4)
* (
- (2
* ((
sin (((2
* x)
+ h)
/ 2))
* (
sin (h
/ 2))))))
- ((1
/ 4)
* (
- (2
* ((
sin (((y
+ z)
+ y)
/ 2))
* (
sin (((y
+ z)
- y)
/ 2))))))) by
SIN_COS4: 18
.= (((1
/ 2)
* ((
sin (((6
* x)
+ (3
* h))
/ 2))
* (
sin ((3
* h)
/ 2))))
- ((1
/ 2)
* ((
sin (((2
* x)
+ h)
/ 2))
* (
sin (h
/ 2)))));
hence thesis;
end;
theorem ::
DIFF_2:63
for x holds ((
bD (((
sin
(#)
sin )
(#)
cos ),h))
. x)
= (((1
/ 2)
* ((
sin (((6
* x)
- (3
* h))
/ 2))
* (
sin ((3
* h)
/ 2))))
- ((1
/ 2)
* ((
sin (((2
* x)
- h)
/ 2))
* (
sin (h
/ 2)))))
proof
let x;
set y = (3
* x);
set z = (3
* h);
((
bD (((
sin
(#)
sin )
(#)
cos ),h))
. x)
= ((((
sin
(#)
sin )
(#)
cos )
. x)
- (((
sin
(#)
sin )
(#)
cos )
. (x
- h))) by
DIFF_1: 4
.= ((((
sin
(#)
sin )
. x)
* (
cos
. x))
- (((
sin
(#)
sin )
(#)
cos )
. (x
- h))) by
VALUED_1: 5
.= ((((
sin
. x)
* (
sin
. x))
* (
cos
. x))
- (((
sin
(#)
sin )
(#)
cos )
. (x
- h))) by
VALUED_1: 5
.= ((((
sin
. x)
* (
sin
. x))
* (
cos
. x))
- (((
sin
(#)
sin )
. (x
- h))
* (
cos
. (x
- h)))) by
VALUED_1: 5
.= ((((
sin x)
* (
sin x))
* (
cos x))
- (((
sin (x
- h))
* (
sin (x
- h)))
* (
cos (x
- h)))) by
VALUED_1: 5
.= (((1
/ 4)
* ((((
- (
cos ((x
+ x)
- x)))
+ (
cos ((x
+ x)
- x)))
+ (
cos ((x
+ x)
- x)))
- (
cos ((x
+ x)
+ x))))
- (((
sin (x
- h))
* (
sin (x
- h)))
* (
cos (x
- h)))) by
SIN_COS4: 34
.= (((1
/ 4)
* ((
cos x)
- (
cos (3
* x))))
- ((1
/ 4)
* ((((
- (
cos (((x
- h)
+ (x
- h))
- (x
- h))))
+ (
cos (((x
- h)
+ (x
- h))
- (x
- h))))
+ (
cos (((x
- h)
+ (x
- h))
- (x
- h))))
- (
cos (((x
- h)
+ (x
- h))
+ (x
- h)))))) by
SIN_COS4: 34
.= (((1
/ 4)
* ((
cos x)
- (
cos (x
- h))))
- ((1
/ 4)
* ((
cos (3
* x))
- (
cos (3
* (x
- h))))))
.= (((1
/ 4)
* (
- (2
* ((
sin ((x
+ (x
- h))
/ 2))
* (
sin ((x
- (x
- h))
/ 2))))))
- ((1
/ 4)
* ((
cos (3
* x))
- (
cos (3
* (x
- h)))))) by
SIN_COS4: 18
.= (((1
/ 4)
* (
- (2
* ((
sin (((2
* x)
- h)
/ 2))
* (
sin (h
/ 2))))))
- ((1
/ 4)
* (
- (2
* ((
sin ((y
+ (y
- z))
/ 2))
* (
sin ((y
- (y
- z))
/ 2))))))) by
SIN_COS4: 18
.= (((1
/ 2)
* ((
sin (((6
* x)
- (3
* h))
/ 2))
* (
sin ((3
* h)
/ 2))))
- ((1
/ 2)
* ((
sin (((2
* x)
- h)
/ 2))
* (
sin (h
/ 2)))));
hence thesis;
end;
theorem ::
DIFF_2:64
for x holds ((
cD (((
sin
(#)
sin )
(#)
cos ),h))
. x)
= ((
- ((1
/ 2)
* ((
sin x)
* (
sin (h
/ 2)))))
+ ((1
/ 2)
* ((
sin (3
* x))
* (
sin ((3
* h)
/ 2)))))
proof
let x;
set y = (3
* x);
set z = (3
* h);
((
cD (((
sin
(#)
sin )
(#)
cos ),h))
. x)
= ((((
sin
(#)
sin )
(#)
cos )
. (x
+ (h
/ 2)))
- (((
sin
(#)
sin )
(#)
cos )
. (x
- (h
/ 2)))) by
DIFF_1: 5
.= ((((
sin
(#)
sin )
. (x
+ (h
/ 2)))
* (
cos
. (x
+ (h
/ 2))))
- (((
sin
(#)
sin )
(#)
cos )
. (x
- (h
/ 2)))) by
VALUED_1: 5
.= ((((
sin
. (x
+ (h
/ 2)))
* (
sin
. (x
+ (h
/ 2))))
* (
cos
. (x
+ (h
/ 2))))
- (((
sin
(#)
sin )
(#)
cos )
. (x
- (h
/ 2)))) by
VALUED_1: 5
.= ((((
sin
. (x
+ (h
/ 2)))
* (
sin
. (x
+ (h
/ 2))))
* (
cos
. (x
+ (h
/ 2))))
- (((
sin
(#)
sin )
. (x
- (h
/ 2)))
* (
cos
. (x
- (h
/ 2))))) by
VALUED_1: 5
.= ((((
sin (x
+ (h
/ 2)))
* (
sin (x
+ (h
/ 2))))
* (
cos (x
+ (h
/ 2))))
- (((
sin (x
- (h
/ 2)))
* (
sin (x
- (h
/ 2))))
* (
cos (x
- (h
/ 2))))) by
VALUED_1: 5
.= (((1
/ 4)
* ((((
- (
cos (((x
+ (h
/ 2))
+ (x
+ (h
/ 2)))
- (x
+ (h
/ 2)))))
+ (
cos (((x
+ (h
/ 2))
+ (x
+ (h
/ 2)))
- (x
+ (h
/ 2)))))
+ (
cos (((x
+ (h
/ 2))
+ (x
+ (h
/ 2)))
- (x
+ (h
/ 2)))))
- (
cos (((x
+ (h
/ 2))
+ (x
+ (h
/ 2)))
+ (x
+ (h
/ 2))))))
- (((
sin (x
- (h
/ 2)))
* (
sin (x
- (h
/ 2))))
* (
cos (x
- (h
/ 2))))) by
SIN_COS4: 34
.= (((1
/ 4)
* ((
cos (x
+ (h
/ 2)))
- (
cos (3
* (x
+ (h
/ 2))))))
- ((1
/ 4)
* ((((
- (
cos (((x
- (h
/ 2))
+ (x
- (h
/ 2)))
- (x
- (h
/ 2)))))
+ (
cos (((x
- (h
/ 2))
+ (x
- (h
/ 2)))
- (x
- (h
/ 2)))))
+ (
cos (((x
- (h
/ 2))
+ (x
- (h
/ 2)))
- (x
- (h
/ 2)))))
- (
cos (((x
- (h
/ 2))
+ (x
- (h
/ 2)))
+ (x
- (h
/ 2))))))) by
SIN_COS4: 34
.= (((1
/ 4)
* ((
cos (x
+ (h
/ 2)))
- (
cos (x
- (h
/ 2)))))
- ((1
/ 4)
* ((
cos (3
* (x
+ (h
/ 2))))
- (
cos (3
* (x
- (h
/ 2)))))))
.= (((1
/ 4)
* (
- (2
* ((
sin (((x
+ (h
/ 2))
+ (x
- (h
/ 2)))
/ 2))
* (
sin (((x
+ (h
/ 2))
- (x
- (h
/ 2)))
/ 2))))))
- ((1
/ 4)
* ((
cos (3
* (x
+ (h
/ 2))))
- (
cos (3
* (x
- (h
/ 2))))))) by
SIN_COS4: 18
.= (((1
/ 4)
* (
- (2
* ((
sin x)
* (
sin (h
/ 2))))))
- ((1
/ 4)
* (
- (2
* ((
sin (((y
+ (z
/ 2))
+ (y
- (z
/ 2)))
/ 2))
* (
sin (((y
+ (z
/ 2))
- (y
- (z
/ 2)))
/ 2))))))) by
SIN_COS4: 18
.= ((
- ((1
/ 2)
* ((
sin x)
* (
sin (h
/ 2)))))
+ ((1
/ 2)
* ((
sin (3
* x))
* (
sin ((3
* h)
/ 2)))));
hence thesis;
end;
theorem ::
DIFF_2:65
[!((
sin
(#)
cos )
(#)
cos ), x0, x1!]
= (((1
/ 2)
* (((
cos ((x0
+ x1)
/ 2))
* (
sin ((x0
- x1)
/ 2)))
+ ((
cos ((3
* (x0
+ x1))
/ 2))
* (
sin ((3
* (x0
- x1))
/ 2)))))
/ (x0
- x1))
proof
set y = (3
* x0);
set z = (3
* x1);
[!((
sin
(#)
cos )
(#)
cos ), x0, x1!]
= (((((
sin
(#)
cos )
. x0)
* (
cos
. x0))
- (((
sin
(#)
cos )
(#)
cos )
. x1))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
sin
. x0)
* (
cos
. x0))
* (
cos
. x0))
- (((
sin
(#)
cos )
(#)
cos )
. x1))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
sin
. x0)
* (
cos
. x0))
* (
cos
. x0))
- (((
sin
(#)
cos )
. x1)
* (
cos
. x1)))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
sin x0)
* (
cos x0))
* (
cos x0))
- (((
sin x1)
* (
cos x1))
* (
cos x1)))
/ (x0
- x1)) by
VALUED_1: 5
.= ((((1
/ 4)
* ((((
sin ((x0
+ x0)
- x0))
- (
sin ((x0
+ x0)
- x0)))
+ (
sin ((x0
+ x0)
- x0)))
+ (
sin ((x0
+ x0)
+ x0))))
- (((
sin x1)
* (
cos x1))
* (
cos x1)))
/ (x0
- x1)) by
SIN_COS4: 35
.= ((((1
/ 4)
* ((
sin x0)
+ (
sin (3
* x0))))
- ((1
/ 4)
* ((((
sin ((x1
+ x1)
- x1))
- (
sin ((x1
+ x1)
- x1)))
+ (
sin ((x1
+ x1)
- x1)))
+ (
sin ((x1
+ x1)
+ x1)))))
/ (x0
- x1)) by
SIN_COS4: 35
.= ((((1
/ 4)
* ((
sin x0)
- (
sin x1)))
+ ((1
/ 4)
* ((
sin (3
* x0))
- (
sin (3
* x1)))))
/ (x0
- x1))
.= ((((1
/ 4)
* (2
* ((
cos ((x0
+ x1)
/ 2))
* (
sin ((x0
- x1)
/ 2)))))
+ ((1
/ 4)
* ((
sin y)
- (
sin z))))
/ (x0
- x1)) by
SIN_COS4: 16
.= ((((1
/ 2)
* ((
cos ((x0
+ x1)
/ 2))
* (
sin ((x0
- x1)
/ 2))))
+ ((1
/ 4)
* (2
* ((
cos ((y
+ z)
/ 2))
* (
sin ((y
- z)
/ 2))))))
/ (x0
- x1)) by
SIN_COS4: 16
.= (((1
/ 2)
* (((
cos ((x0
+ x1)
/ 2))
* (
sin ((x0
- x1)
/ 2)))
+ ((
cos ((3
* (x0
+ x1))
/ 2))
* (
sin ((3
* (x0
- x1))
/ 2)))))
/ (x0
- x1));
hence thesis;
end;
theorem ::
DIFF_2:66
for x holds ((
fD (((
sin
(#)
cos )
(#)
cos ),h))
. x)
= ((1
/ 2)
* (((
cos (((2
* x)
+ h)
/ 2))
* (
sin (h
/ 2)))
+ ((
cos (((6
* x)
+ (3
* h))
/ 2))
* (
sin ((3
* h)
/ 2)))))
proof
let x;
set y = (3
* x);
set z = (3
* h);
((
fD (((
sin
(#)
cos )
(#)
cos ),h))
. x)
= ((((
sin
(#)
cos )
(#)
cos )
. (x
+ h))
- (((
sin
(#)
cos )
(#)
cos )
. x)) by
DIFF_1: 3
.= ((((
sin
(#)
cos )
. (x
+ h))
* (
cos
. (x
+ h)))
- (((
sin
(#)
cos )
(#)
cos )
. x)) by
VALUED_1: 5
.= ((((
sin
. (x
+ h))
* (
cos
. (x
+ h)))
* (
cos
. (x
+ h)))
- (((
sin
(#)
cos )
(#)
cos )
. x)) by
VALUED_1: 5
.= ((((
sin
. (x
+ h))
* (
cos
. (x
+ h)))
* (
cos
. (x
+ h)))
- (((
sin
(#)
cos )
. x)
* (
cos
. x))) by
VALUED_1: 5
.= ((((
sin (x
+ h))
* (
cos (x
+ h)))
* (
cos (x
+ h)))
- (((
sin x)
* (
cos x))
* (
cos x))) by
VALUED_1: 5
.= (((1
/ 4)
* ((((
sin (((x
+ h)
+ (x
+ h))
- (x
+ h)))
- (
sin (((x
+ h)
+ (x
+ h))
- (x
+ h))))
+ (
sin (((x
+ h)
+ (x
+ h))
- (x
+ h))))
+ (
sin (((x
+ h)
+ (x
+ h))
+ (x
+ h)))))
- (((
sin x)
* (
cos x))
* (
cos x))) by
SIN_COS4: 35
.= (((1
/ 4)
* ((
sin (x
+ h))
+ (
sin (3
* (x
+ h)))))
- ((1
/ 4)
* ((((
sin ((x
+ x)
- x))
- (
sin ((x
+ x)
- x)))
+ (
sin ((x
+ x)
- x)))
+ (
sin ((x
+ x)
+ x))))) by
SIN_COS4: 35
.= (((1
/ 4)
* ((
sin (x
+ h))
- (
sin x)))
+ ((1
/ 4)
* ((
sin (3
* (x
+ h)))
- (
sin (3
* x)))))
.= (((1
/ 4)
* (2
* ((
cos (((x
+ h)
+ x)
/ 2))
* (
sin (((x
+ h)
- x)
/ 2)))))
+ ((1
/ 4)
* ((
sin (3
* (x
+ h)))
- (
sin (3
* x))))) by
SIN_COS4: 16
.= (((1
/ 4)
* (2
* ((
cos (((2
* x)
+ h)
/ 2))
* (
sin (h
/ 2)))))
+ ((1
/ 4)
* (2
* ((
cos (((y
+ z)
+ y)
/ 2))
* (
sin (((y
+ z)
- y)
/ 2)))))) by
SIN_COS4: 16
.= (((1
/ 2)
* ((
cos (((2
* x)
+ h)
/ 2))
* (
sin (h
/ 2))))
+ ((1
/ 2)
* ((
cos (((6
* x)
+ (3
* h))
/ 2))
* (
sin ((3
* h)
/ 2)))));
hence thesis;
end;
theorem ::
DIFF_2:67
for x holds ((
bD (((
sin
(#)
cos )
(#)
cos ),h))
. x)
= ((1
/ 2)
* (((
cos (((2
* x)
- h)
/ 2))
* (
sin (h
/ 2)))
+ ((
cos (((6
* x)
- (3
* h))
/ 2))
* (
sin ((3
* h)
/ 2)))))
proof
let x;
set y = (3
* x);
set z = (3
* h);
((
bD (((
sin
(#)
cos )
(#)
cos ),h))
. x)
= ((((
sin
(#)
cos )
(#)
cos )
. x)
- (((
sin
(#)
cos )
(#)
cos )
. (x
- h))) by
DIFF_1: 4
.= ((((
sin
(#)
cos )
. x)
* (
cos
. x))
- (((
sin
(#)
cos )
(#)
cos )
. (x
- h))) by
VALUED_1: 5
.= ((((
sin
. x)
* (
cos
. x))
* (
cos
. x))
- (((
sin
(#)
cos )
(#)
cos )
. (x
- h))) by
VALUED_1: 5
.= ((((
sin
. x)
* (
cos
. x))
* (
cos
. x))
- (((
sin
(#)
cos )
. (x
- h))
* (
cos
. (x
- h)))) by
VALUED_1: 5
.= ((((
sin x)
* (
cos x))
* (
cos x))
- (((
sin (x
- h))
* (
cos (x
- h)))
* (
cos (x
- h)))) by
VALUED_1: 5
.= (((1
/ 4)
* ((((
sin ((x
+ x)
- x))
- (
sin ((x
+ x)
- x)))
+ (
sin ((x
+ x)
- x)))
+ (
sin ((x
+ x)
+ x))))
- (((
sin (x
- h))
* (
cos (x
- h)))
* (
cos (x
- h)))) by
SIN_COS4: 35
.= (((1
/ 4)
* ((
sin x)
+ (
sin (3
* x))))
- ((1
/ 4)
* ((((
sin (((x
- h)
+ (x
- h))
- (x
- h)))
- (
sin (((x
- h)
+ (x
- h))
- (x
- h))))
+ (
sin (((x
- h)
+ (x
- h))
- (x
- h))))
+ (
sin (((x
- h)
+ (x
- h))
+ (x
- h)))))) by
SIN_COS4: 35
.= (((1
/ 4)
* ((
sin x)
- (
sin (x
- h))))
+ ((1
/ 4)
* ((
sin (3
* x))
- (
sin (3
* (x
- h))))))
.= (((1
/ 4)
* (2
* ((
cos ((x
+ (x
- h))
/ 2))
* (
sin ((x
- (x
- h))
/ 2)))))
+ ((1
/ 4)
* ((
sin (3
* x))
- (
sin (3
* (x
- h)))))) by
SIN_COS4: 16
.= (((1
/ 4)
* (2
* ((
cos (((2
* x)
- h)
/ 2))
* (
sin (h
/ 2)))))
+ ((1
/ 4)
* (2
* ((
cos ((y
+ (y
- z))
/ 2))
* (
sin ((y
- (y
- z))
/ 2)))))) by
SIN_COS4: 16
.= (((1
/ 2)
* ((
cos (((2
* x)
- h)
/ 2))
* (
sin (h
/ 2))))
+ ((1
/ 2)
* ((
cos (((6
* x)
- (3
* h))
/ 2))
* (
sin ((3
* h)
/ 2)))));
hence thesis;
end;
theorem ::
DIFF_2:68
for x holds ((
cD (((
sin
(#)
cos )
(#)
cos ),h))
. x)
= ((1
/ 2)
* (((
cos x)
* (
sin (h
/ 2)))
+ ((
cos (3
* x))
* (
sin ((3
* h)
/ 2)))))
proof
let x;
set y = (3
* x);
set z = (3
* h);
((
cD (((
sin
(#)
cos )
(#)
cos ),h))
. x)
= ((((
sin
(#)
cos )
(#)
cos )
. (x
+ (h
/ 2)))
- (((
sin
(#)
cos )
(#)
cos )
. (x
- (h
/ 2)))) by
DIFF_1: 5
.= ((((
sin
(#)
cos )
. (x
+ (h
/ 2)))
* (
cos
. (x
+ (h
/ 2))))
- (((
sin
(#)
cos )
(#)
cos )
. (x
- (h
/ 2)))) by
VALUED_1: 5
.= ((((
sin
. (x
+ (h
/ 2)))
* (
cos
. (x
+ (h
/ 2))))
* (
cos
. (x
+ (h
/ 2))))
- (((
sin
(#)
cos )
(#)
cos )
. (x
- (h
/ 2)))) by
VALUED_1: 5
.= ((((
sin
. (x
+ (h
/ 2)))
* (
cos
. (x
+ (h
/ 2))))
* (
cos
. (x
+ (h
/ 2))))
- (((
sin
(#)
cos )
. (x
- (h
/ 2)))
* (
cos
. (x
- (h
/ 2))))) by
VALUED_1: 5
.= ((((
sin (x
+ (h
/ 2)))
* (
cos (x
+ (h
/ 2))))
* (
cos (x
+ (h
/ 2))))
- (((
sin (x
- (h
/ 2)))
* (
cos (x
- (h
/ 2))))
* (
cos (x
- (h
/ 2))))) by
VALUED_1: 5
.= (((1
/ 4)
* ((((
sin (((x
+ (h
/ 2))
+ (x
+ (h
/ 2)))
- (x
+ (h
/ 2))))
- (
sin (((x
+ (h
/ 2))
+ (x
+ (h
/ 2)))
- (x
+ (h
/ 2)))))
+ (
sin (((x
+ (h
/ 2))
+ (x
+ (h
/ 2)))
- (x
+ (h
/ 2)))))
+ (
sin (((x
+ (h
/ 2))
+ (x
+ (h
/ 2)))
+ (x
+ (h
/ 2))))))
- (((
sin (x
- (h
/ 2)))
* (
cos (x
- (h
/ 2))))
* (
cos (x
- (h
/ 2))))) by
SIN_COS4: 35
.= (((1
/ 4)
* ((
sin (x
+ (h
/ 2)))
+ (
sin (3
* (x
+ (h
/ 2))))))
- ((1
/ 4)
* ((((
sin (((x
- (h
/ 2))
+ (x
- (h
/ 2)))
- (x
- (h
/ 2))))
- (
sin (((x
- (h
/ 2))
+ (x
- (h
/ 2)))
- (x
- (h
/ 2)))))
+ (
sin (((x
- (h
/ 2))
+ (x
- (h
/ 2)))
- (x
- (h
/ 2)))))
+ (
sin (((x
- (h
/ 2))
+ (x
- (h
/ 2)))
+ (x
- (h
/ 2))))))) by
SIN_COS4: 35
.= (((1
/ 4)
* ((
sin (x
+ (h
/ 2)))
- (
sin (x
- (h
/ 2)))))
+ ((1
/ 4)
* ((
sin (3
* (x
+ (h
/ 2))))
- (
sin (3
* (x
- (h
/ 2)))))))
.= (((1
/ 4)
* (2
* ((
cos (((x
+ (h
/ 2))
+ (x
- (h
/ 2)))
/ 2))
* (
sin (((x
+ (h
/ 2))
- (x
- (h
/ 2)))
/ 2)))))
+ ((1
/ 4)
* ((
sin (3
* (x
+ (h
/ 2))))
- (
sin (3
* (x
- (h
/ 2))))))) by
SIN_COS4: 16
.= (((1
/ 4)
* (2
* ((
cos x)
* (
sin (h
/ 2)))))
+ ((1
/ 4)
* (2
* ((
cos (((y
+ (z
/ 2))
+ (y
- (z
/ 2)))
/ 2))
* (
sin (((y
+ (z
/ 2))
- (y
- (z
/ 2)))
/ 2)))))) by
SIN_COS4: 16
.= (((1
/ 2)
* ((
cos x)
* (
sin (h
/ 2))))
+ ((1
/ 2)
* ((
cos (3
* x))
* (
sin ((3
* h)
/ 2)))));
hence thesis;
end;
theorem ::
DIFF_2:69
x0
in (
dom
tan ) & x1
in (
dom
tan ) implies
[!
tan , x0, x1!]
= ((
sin (x0
- x1))
/ (((
cos x0)
* (
cos x1))
* (x0
- x1)))
proof
assume that
A1: x0
in (
dom
tan ) and
A2: x1
in (
dom
tan );
A3: (
tan
. x0)
= ((
sin
. x0)
* ((
cos
. x0)
" )) by
A1,
RFUNCT_1:def 1
.= ((
sin
. x0)
* (1
/ (
cos
. x0))) by
XCMPLX_1: 215
.= (
tan x0) by
XCMPLX_1: 99;
A4: (
tan
. x1)
= ((
sin
. x1)
* ((
cos
. x1)
" )) by
A2,
RFUNCT_1:def 1
.= ((
sin
. x1)
* (1
/ (
cos
. x1))) by
XCMPLX_1: 215
.= (
tan x1) by
XCMPLX_1: 99;
(
cos x0)
<>
0 & (
cos x1)
<>
0 by
A1,
A2,
FDIFF_8: 1;
then
[!
tan , x0, x1!]
= (((
sin (x0
- x1))
/ ((
cos x0)
* (
cos x1)))
/ (x0
- x1)) by
A3,
A4,
SIN_COS4: 20
.= ((
sin (x0
- x1))
/ (((
cos x0)
* (
cos x1))
* (x0
- x1))) by
XCMPLX_1: 78;
hence thesis;
end;
theorem ::
DIFF_2:70
x0
in (
dom
cot ) & x1
in (
dom
cot ) implies
[!
cot , x0, x1!]
= (
- ((
sin (x0
- x1))
/ (((
sin x0)
* (
sin x1))
* (x0
- x1))))
proof
assume that
A1: x0
in (
dom
cot ) and
A2: x1
in (
dom
cot );
A3: (
cot
. x0)
= ((
cos
. x0)
* ((
sin
. x0)
" )) by
A1,
RFUNCT_1:def 1
.= ((
cos
. x0)
* (1
/ (
sin
. x0))) by
XCMPLX_1: 215
.= (
cot x0) by
XCMPLX_1: 99;
A4: (
cot
. x1)
= ((
cos
. x1)
* ((
sin
. x1)
" )) by
A2,
RFUNCT_1:def 1
.= ((
cos
. x1)
* (1
/ (
sin
. x1))) by
XCMPLX_1: 215
.= (
cot x1) by
XCMPLX_1: 99;
(
sin x0)
<>
0 & (
sin x1)
<>
0 by
A1,
A2,
FDIFF_8: 2;
then
[!
cot , x0, x1!]
= ((
- ((
sin (x0
- x1))
/ ((
sin x0)
* (
sin x1))))
/ (x0
- x1)) by
A3,
A4,
SIN_COS4: 24
.= (
- (((
sin (x0
- x1))
/ ((
sin x0)
* (
sin x1)))
/ (x0
- x1))) by
XCMPLX_1: 187;
hence thesis by
XCMPLX_1: 78;
end;
theorem ::
DIFF_2:71
x0
in (
dom
cosec ) & x1
in (
dom
cosec ) implies
[!
cosec , x0, x1!]
= (((2
* (
cos ((x1
+ x0)
/ 2)))
* (
sin ((x1
- x0)
/ 2)))
/ (((
sin x1)
* (
sin x0))
* (x0
- x1)))
proof
assume that
A1: x0
in (
dom
cosec ) and
A2: x1
in (
dom
cosec );
A3: (
cosec
. x1)
= ((
sin
. x1)
" ) by
A2,
RFUNCT_1:def 2
.= (
cosec x1) by
XCMPLX_1: 215;
(
cosec
. x0)
= ((
sin
. x0)
" ) by
A1,
RFUNCT_1:def 2
.= (
cosec x0) by
XCMPLX_1: 215;
then
[!
cosec , x0, x1!]
= ((((1
* (
sin x1))
/ ((
sin x0)
* (
sin x1)))
- (1
/ (
sin x1)))
/ (x0
- x1)) by
A2,
A3,
RFUNCT_1: 3,
XCMPLX_1: 91
.= ((((1
* (
sin x1))
/ ((
sin x0)
* (
sin x1)))
- ((1
* (
sin x0))
/ ((
sin x1)
* (
sin x0))))
/ (x0
- x1)) by
A1,
RFUNCT_1: 3,
XCMPLX_1: 91
.= ((((
sin x1)
- (
sin x0))
/ ((
sin x1)
* (
sin x0)))
/ (x0
- x1)) by
XCMPLX_1: 120
.= (((
sin x1)
- (
sin x0))
/ (((
sin x1)
* (
sin x0))
* (x0
- x1))) by
XCMPLX_1: 78
.= ((2
* ((
cos ((x1
+ x0)
/ 2))
* (
sin ((x1
- x0)
/ 2))))
/ (((
sin x1)
* (
sin x0))
* (x0
- x1))) by
SIN_COS4: 16;
hence thesis;
end;
theorem ::
DIFF_2:72
x0
in (
dom
sec ) & x1
in (
dom
sec ) implies
[!
sec , x0, x1!]
= (
- (((2
* (
sin ((x1
+ x0)
/ 2)))
* (
sin ((x1
- x0)
/ 2)))
/ (((
cos x1)
* (
cos x0))
* (x0
- x1))))
proof
assume that
A1: x0
in (
dom
sec ) and
A2: x1
in (
dom
sec );
A3: (
sec
. x1)
= ((
cos
. x1)
" ) by
A2,
RFUNCT_1:def 2
.= (
sec x1) by
XCMPLX_1: 215;
(
sec
. x0)
= ((
cos
. x0)
" ) by
A1,
RFUNCT_1:def 2
.= (
sec x0) by
XCMPLX_1: 215;
then
[!
sec , x0, x1!]
= ((((1
* (
cos x1))
/ ((
cos x0)
* (
cos x1)))
- (1
/ (
cos x1)))
/ (x0
- x1)) by
A2,
A3,
RFUNCT_1: 3,
XCMPLX_1: 91
.= ((((1
* (
cos x1))
/ ((
cos x0)
* (
cos x1)))
- ((1
* (
cos x0))
/ ((
cos x1)
* (
cos x0))))
/ (x0
- x1)) by
A1,
RFUNCT_1: 3,
XCMPLX_1: 91
.= ((((
cos x1)
- (
cos x0))
/ ((
cos x1)
* (
cos x0)))
/ (x0
- x1)) by
XCMPLX_1: 120
.= (((
cos x1)
- (
cos x0))
/ (((
cos x1)
* (
cos x0))
* (x0
- x1))) by
XCMPLX_1: 78
.= ((
- (2
* ((
sin ((x1
+ x0)
/ 2))
* (
sin ((x1
- x0)
/ 2)))))
/ (((
cos x1)
* (
cos x0))
* (x0
- x1))) by
SIN_COS4: 18
.= (
- ((2
* ((
sin ((x1
+ x0)
/ 2))
* (
sin ((x1
- x0)
/ 2))))
/ (((
cos x1)
* (
cos x0))
* (x0
- x1)))) by
XCMPLX_1: 187;
hence thesis;
end;