euclid_8.miz
begin
reserve r,r1,r2,x,y,z,x1,x2,x3,y1,y2,y3 for
Real;
reserve R,R1,R2,R3 for
Element of (3
-tuples_on
REAL );
reserve p,q,p1,p2,p3,q1,q2 for
Element of (
REAL 3);
reserve f1,f2,f3,g1,g2,g3,h1,h2,h3 for
PartFunc of
REAL ,
REAL ;
reserve t,t0,t1,t2 for
Real;
definition
let x,y,z be
Real;
:: original:
|[
redefine
func
|[x,y,z]| ->
Element of (
REAL 3) ;
coherence
proof
reconsider x, y, z as
Element of
REAL by
XREAL_0:def 1;
<*x, y, z*> is
Element of (
REAL 3) by
FINSEQ_2: 104;
hence thesis;
end;
end
theorem ::
EUCLID_8:1
Th1: p
=
|[(p
. 1), (p
. 2), (p
. 3)]|
proof
consider x,y,z be
Element of
REAL such that
A1: p
=
<*x, y, z*> by
FINSEQ_2: 103;
A2: (p
. 1)
= x by
A1,
FINSEQ_1: 45;
(p
. 2)
= y by
A1,
FINSEQ_1: 45;
hence thesis by
A1,
A2,
FINSEQ_1: 45;
end;
Lm1: for r be
Real holds (r
* p)
=
|[(r
* (p
. 1)), (r
* (p
. 2)), (r
* (p
. 3))]|
proof
let r be
Real;
A1: ((r
* p)
. 1)
= (r
* (p
. 1)) by
RVSUM_1: 44;
A2: ((r
* p)
. 2)
= (r
* (p
. 2)) by
RVSUM_1: 44;
((r
* p)
. 3)
= (r
* (p
. 3)) by
RVSUM_1: 44;
hence thesis by
A1,
A2,
Th1;
end;
Lm2: (p1
+ p2)
=
|[((p1
. 1)
+ (p2
. 1)), ((p1
. 2)
+ (p2
. 2)), ((p1
. 3)
+ (p2
. 3))]|
proof
A1: ((p1
+ p2)
. 1)
= ((p1
. 1)
+ (p2
. 1)) by
RVSUM_1: 11;
A2: ((p1
+ p2)
. 2)
= ((p1
. 2)
+ (p2
. 2)) by
RVSUM_1: 11;
((p1
+ p2)
. 3)
= ((p1
. 3)
+ (p2
. 3)) by
RVSUM_1: 11;
hence thesis by
A1,
A2,
Th1;
end;
Lm3: ((
- p)
. 1)
= (
- (p
. 1)) & ((
- p)
. 2)
= (
- (p
. 2)) & ((
- p)
. 3)
= (
- (p
. 3))
proof
(
- p)
=
|[((
- 1)
* (p
. 1)), ((
- 1)
* (p
. 2)), ((
- 1)
* (p
. 3))]| by
Lm1
.=
|[(
- (p
. 1)), (
- (p
. 2)), (
- (p
. 3))]|;
hence thesis by
FINSEQ_1: 45;
end;
theorem ::
EUCLID_8:2
for f be
FinSequence of
REAL st (
len f)
= 3 holds f is
Element of (
REAL 3)
proof
let f be
FinSequence of
REAL ;
assume
A1: (
len f)
= 3;
reconsider x1 = (f
. 1), x2 = (f
. 2), x3 = (f
. 3) as
Element of
REAL by
XREAL_0:def 1;
<*x1, x2, x3*> is
Element of (3
-tuples_on
REAL ) by
FINSEQ_2: 104;
hence thesis by
A1,
FINSEQ_1: 45;
end;
Lm4: (p1
- p2)
=
|[((p1
. 1)
- (p2
. 1)), ((p1
. 2)
- (p2
. 2)), ((p1
. 3)
- (p2
. 3))]|
proof
A1: ((
- p2)
. 1)
= (
- (p2
. 1)) by
Lm3;
A2: ((
- p2)
. 2)
= (
- (p2
. 2)) by
Lm3;
((
- p2)
. 3)
= (
- (p2
. 3)) by
Lm3;
then (p1
+ (
- p2))
=
|[((p1
. 1)
+ (
- (p2
. 1))), ((p1
. 2)
+ (
- (p2
. 2))), ((p1
. 3)
+ (
- (p2
. 3)))]| by
A1,
A2,
Lm2;
hence thesis;
end;
Lm5:
|(p1, p2)|
= ((((p1
. 1)
* (p2
. 1))
+ ((p1
. 2)
* (p2
. 2)))
+ ((p1
. 3)
* (p2
. 3)))
proof
reconsider f1 = p1, f2 = p2 as
FinSequence of
REAL ;
A1: (
len f1)
= (
len
<*(p1
. 1), (p1
. 2), (p1
. 3)*>) by
Th1
.= 3 by
FINSEQ_1: 45;
(
len f2)
= (
len
<*(p2
. 1), (p2
. 2), (p2
. 3)*>) by
Th1
.= 3 by
FINSEQ_1: 45;
then
|(p1, p2)|
= (
Sum
<*((f1
. 1)
* (f2
. 1)), ((f1
. 2)
* (f2
. 2)), ((f1
. 3)
* (f2
. 3))*>) by
A1,
EUCLID_5: 28
.= ((((p1
. 1)
* (p2
. 1))
+ ((p1
. 2)
* (p2
. 2)))
+ ((p1
. 3)
* (f2
. 3))) by
RVSUM_1: 78;
hence thesis;
end;
Lm6: (r
*
|[x, y, z]|)
=
|[(r
* x), (r
* y), (r
* z)]|
proof
set p =
|[x, y, z]|;
(r
* p)
=
|[(r
* (p
. 1)), (r
* (p
. 2)), (r
* (p
. 3))]| by
Lm1
.=
|[(r
* x), (r
* (p
. 2)), (r
* (p
. 3))]| by
FINSEQ_1: 45
.=
|[(r
* x), (r
* y), (r
* (p
. 3))]| by
FINSEQ_1: 45
.=
|[(r
* x), (r
* y), (r
* z)]| by
FINSEQ_1: 45;
hence thesis;
end;
Lm7: (p1
+ (
- p2))
=
|[((p1
. 1)
- (p2
. 1)), ((p1
. 2)
- (p2
. 2)), ((p1
. 3)
- (p2
. 3))]|
proof
A1: (
- p2)
=
|[((
- 1)
* (p2
. 1)), ((
- 1)
* (p2
. 2)), ((
- 1)
* (p2
. 3))]| by
Lm1
.=
|[(
- (p2
. 1)), (
- (p2
. 2)), (
- (p2
. 3))]|;
(p1
+ (
- p2))
=
|[((p1
. 1)
+ ((
- p2)
. 1)), ((p1
. 2)
+ ((
- p2)
. 2)), ((p1
. 3)
+ ((
- p2)
. 3))]| by
Lm2
.=
|[((p1
. 1)
+ (
- (p2
. 1))), ((p1
. 2)
+ ((
- p2)
. 2)), ((p1
. 3)
+ ((
- p2)
. 3))]| by
A1,
FINSEQ_1: 45
.=
|[((p1
. 1)
+ (
- (p2
. 1))), ((p1
. 2)
+ (
- (p2
. 2))), ((p1
. 3)
+ ((
- p2)
. 3))]| by
A1,
FINSEQ_1: 45
.=
|[((p1
. 1)
+ (
- (p2
. 1))), ((p1
. 2)
+ (
- (p2
. 2))), ((p1
. 3)
+ (
- (p2
. 3)))]| by
A1,
FINSEQ_1: 45;
hence thesis;
end;
Lm8: (
|[x1, x2, x3]|
+
|[y1, y2, y3]|)
=
|[(x1
+ y1), (x2
+ y2), (x3
+ y3)]|
proof
A1: (
|[y1, y2, y3]|
. 1)
= y1 by
FINSEQ_1: 45;
A2: (
|[y1, y2, y3]|
. 2)
= y2 by
FINSEQ_1: 45;
A3: (
|[y1, y2, y3]|
. 3)
= y3 by
FINSEQ_1: 45;
A4: ((
|[x1, x2, x3]|
. 1)
+ (
|[y1, y2, y3]|
. 1))
= (x1
+ y1) by
A1,
FINSEQ_1: 45;
A5: ((
|[x1, x2, x3]|
. 2)
+ (
|[y1, y2, y3]|
. 2))
= (x2
+ y2) by
A2,
FINSEQ_1: 45;
((
|[x1, x2, x3]|
. 3)
+ (
|[y1, y2, y3]|
. 3))
= (x3
+ y3) by
A3,
FINSEQ_1: 45;
hence thesis by
A4,
A5,
Lm2;
end;
Lm9: ((p1
+ p2)
+ (q1
+ q2))
= ((p1
+ q1)
+ (p2
+ q2))
proof
thus ((p1
+ p2)
+ (q1
+ q2))
= (((p1
+ p2)
+ q1)
+ q2) by
RVSUM_1: 15
.= (((p1
+ q1)
+ p2)
+ q2) by
RVSUM_1: 15
.= ((p1
+ q1)
+ (p2
+ q2)) by
RVSUM_1: 15;
end;
Lm10: ((p1
+ p2)
- (q1
+ q2))
= ((p1
- q1)
+ (p2
- q2))
proof
thus ((p1
+ p2)
- (q1
+ q2))
= (((p1
+ p2)
- q1)
- q2) by
RVSUM_1: 39
.= ((p1
+ p2)
+ ((
- q1)
+ (
- q2))) by
RVSUM_1: 15
.= ((p1
- q1)
+ (p2
- q2)) by
Lm9;
end;
Lm11: (
|[x1, x2, x3]|
-
|[y1, y2, y3]|)
=
|[(x1
- y1), (x2
- y2), (x3
- y3)]|
proof
A1: (
|[y1, y2, y3]|
. 1)
= y1 by
FINSEQ_1: 45;
A2: (
|[y1, y2, y3]|
. 2)
= y2 by
FINSEQ_1: 45;
A3: (
|[y1, y2, y3]|
. 3)
= y3 by
FINSEQ_1: 45;
A4: ((
|[x1, x2, x3]|
. 1)
- (
|[y1, y2, y3]|
. 1))
= (x1
- y1) by
A1,
FINSEQ_1: 45;
A5: ((
|[x1, x2, x3]|
. 2)
- (
|[y1, y2, y3]|
. 2))
= (x2
- y2) by
A2,
FINSEQ_1: 45;
((
|[x1, x2, x3]|
. 3)
- (
|[y1, y2, y3]|
. 3))
= (x3
- y3) by
A3,
FINSEQ_1: 45;
hence thesis by
A4,
A5,
Lm7;
end;
definition
::
EUCLID_8:def1
func
<e1> ->
Element of (
REAL 3) equals
|[1,
0 ,
0 ]|;
coherence ;
::
EUCLID_8:def2
func
<e2> ->
Element of (
REAL 3) equals
|[
0 , 1,
0 ]|;
coherence ;
::
EUCLID_8:def3
func
<e3> ->
Element of (
REAL 3) equals
|[
0 ,
0 , 1]|;
coherence ;
end
Lm12: p
=
|[x, y, z]| implies
|(p, p)|
= (((x
^2 )
+ (y
^2 ))
+ (z
^2 ))
proof
assume p
=
|[x, y, z]|;
then (p
. 1)
= x & (p
. 2)
= y & (p
. 3)
= z by
FINSEQ_1: 45;
hence thesis by
Lm5;
end;
definition
let p1, p2;
::
EUCLID_8:def4
func p1
<X> p2 ->
Element of (
REAL 3) equals
|[(((p1
. 2)
* (p2
. 3))
- ((p1
. 3)
* (p2
. 2))), (((p1
. 3)
* (p2
. 1))
- ((p1
. 1)
* (p2
. 3))), (((p1
. 1)
* (p2
. 2))
- ((p1
. 2)
* (p2
. 1)))]|;
correctness ;
end
Lm13: (
|[x1, x2, x3]|
<X>
|[y1, y2, y3]|)
=
|[((x2
* y3)
- (x3
* y2)), ((x3
* y1)
- (x1
* y3)), ((x1
* y2)
- (x2
* y1))]|
proof
set p1 =
|[x1, x2, x3]|;
A1: (p1
. 1)
= x1 & (p1
. 2)
= x2 & (p1
. 3)
= x3 by
FINSEQ_1: 45;
set p2 =
|[y1, y2, y3]|;
(p2
. 1)
= y1 & (p2
. 2)
= y2 & (p2
. 3)
= y3 by
FINSEQ_1: 45;
hence thesis by
A1;
end;
Lm14: ((r
* p1)
<X> p2)
= (r
* (p1
<X> p2)) & ((r
* p1)
<X> p2)
= (p1
<X> (r
* p2))
proof
A1: ((p1
<X> p2)
. 1)
= (((p1
. 2)
* (p2
. 3))
- ((p1
. 3)
* (p2
. 2))) & ((p1
<X> p2)
. 2)
= (((p1
. 3)
* (p2
. 1))
- ((p1
. 1)
* (p2
. 3))) & ((p1
<X> p2)
. 3)
= (((p1
. 1)
* (p2
. 2))
- ((p1
. 2)
* (p2
. 1))) by
FINSEQ_1: 45;
A2: ((r
* p1)
<X> p2)
= (
|[(r
* (p1
. 1)), (r
* (p1
. 2)), (r
* (p1
. 3))]|
<X> p2) by
Lm1
.= (
|[(r
* (p1
. 1)), (r
* (p1
. 2)), (r
* (p1
. 3))]|
<X>
|[(p2
. 1), (p2
. 2), (p2
. 3)]|) by
Th1
.=
|[(((r
* (p1
. 2))
* (p2
. 3))
- ((r
* (p1
. 3))
* (p2
. 2))), (((r
* (p1
. 3))
* (p2
. 1))
- ((r
* (p1
. 1))
* (p2
. 3))), (((r
* (p1
. 1))
* (p2
. 2))
- ((r
* (p1
. 2))
* (p2
. 1)))]| by
Lm13;
then
A3: ((r
* p1)
<X> p2)
=
|[(r
* ((p1
<X> p2)
. 1)), (r
* ((p1
<X> p2)
. 2)), (r
* ((p1
<X> p2)
. 3))]| by
A1
.= (r
* (p1
<X> p2)) by
Lm1;
((r
* p1)
<X> p2)
=
|[(((p1
. 2)
* (r
* (p2
. 3)))
- ((p1
. 3)
* (r
* (p2
. 2)))), (((p1
. 3)
* (r
* (p2
. 1)))
- ((p1
. 1)
* (r
* (p2
. 3)))), (((p1
. 1)
* (r
* (p2
. 2)))
- ((p1
. 2)
* (r
* (p2
. 1))))]| by
A2
.= (
|[(p1
. 1), (p1
. 2), (p1
. 3)]|
<X>
|[(r
* (p2
. 1)), (r
* (p2
. 2)), (r
* (p2
. 3))]|) by
Lm13
.= (p1
<X>
|[(r
* (p2
. 1)), (r
* (p2
. 2)), (r
* (p2
. 3))]|) by
Th1
.= (p1
<X> (r
* p2)) by
Lm1;
hence thesis by
A3;
end;
theorem ::
EUCLID_8:3
(p1,p2)
are_ldependent2 implies (p1
<X> p2)
= (
0.REAL 3)
proof
assume (p1,p2)
are_ldependent2 ;
then
A1: ex a1,a2 be
Real st ((a1
* p1)
+ (a2
* p2))
= (
0.REAL 3) & (a1
<>
0 or a2
<>
0 ) by
EUCLIDLP:def 2;
now
per cases by
A1;
case ex a1,a2 be
Real st ((a1
* p1)
+ (a2
* p2))
= (
0.REAL 3) & a1
<>
0 ;
then
consider a1,a2 be
Real such that
A2: a1
<>
0 & ((a1
* p1)
+ (a2
* p2))
= (
0.REAL 3);
A3: ((1
/ a1)
* (a1
* p1))
= ((1
/ a1)
* (
- (a2
* p2))) by
A2,
RVSUM_1: 23
.= ((1
/ a1)
* (((
- 1)
* a2)
* p2)) by
RVSUM_1: 49
.= ((1
/ a1)
* ((
- a2)
* p2));
A4: ((1
/ a1)
* (a1
* p1))
= ((a1
* (1
/ a1))
* p1) by
EUCLID_4: 4
.= (1
* p1) by
A2,
XCMPLX_1: 106;
A5: (1
* p1)
=
|[(1
* (p1
. 1)), (1
* (p1
. 2)), (1
* (p1
. 3))]| by
Lm1
.= p1 by
Th1;
A6: (
0.REAL 3)
=
|[
0 ,
0 ,
0 ]| by
FINSEQ_2: 62;
(p1
<X> p2)
= ((((
- a2)
* (1
/ a1))
* p2)
<X> p2) by
A3,
A4,
A5,
EUCLID_4: 4
.= ((((
- a2)
/ a1)
* p2)
<X> p2) by
XCMPLX_1: 99;
then (p1
<X> p2)
= (((
- a2)
/ a1)
* (p2
<X> p2)) by
Lm14;
then (p1
<X> p2)
= (((
- a2)
/ a1)
* (
0.REAL 3)) by
FINSEQ_2: 62
.=
|[(((
- a2)
/ a1)
* ((
0.REAL 3)
. 1)), (((
- a2)
/ a1)
* ((
0.REAL 3)
. 2)), (((
- a2)
/ a1)
* ((
0.REAL 3)
. 3))]| by
Lm1
.=
|[(((
- a2)
/ a1)
*
0 ), (((
- a2)
/ a1)
* ((
0.REAL 3)
. 2)), (((
- a2)
/ a1)
* ((
0.REAL 3)
. 3))]| by
A6,
FINSEQ_1: 45
.=
|[
0 , (((
- a2)
/ a1)
*
0 ), (((
- a2)
/ a1)
* ((
0.REAL 3)
. 3))]| by
A6,
FINSEQ_1: 45
.= (
0.REAL 3) by
A6,
FINSEQ_1: 45;
hence thesis;
end;
case ex a1,a2 be
Real st ((a1
* p1)
+ (a2
* p2))
= (
0.REAL 3) & a2
<>
0 ;
then
consider a1,a2 be
Real such that
A7: a2
<>
0 & ((a1
* p1)
+ (a2
* p2))
= (
0.REAL 3);
A8: ((1
/ a2)
* (a2
* p2))
= ((1
/ a2)
* (
- (a1
* p1))) by
A7,
RVSUM_1: 23
.= ((1
/ a2)
* (((
- 1)
* a1)
* p1)) by
RVSUM_1: 49
.= ((1
/ a2)
* ((
- a1)
* p1));
A9: ((1
/ a2)
* (a2
* p2))
= ((a2
* (1
/ a2))
* p2) by
EUCLID_4: 4
.= (1
* p2) by
A7,
XCMPLX_1: 106;
A10: (1
* p2)
=
|[(1
* (p2
. 1)), (1
* (p2
. 2)), (1
* (p2
. 3))]| by
Lm1
.= p2 by
Th1;
A11: (
0.REAL 3)
=
|[
0 ,
0 ,
0 ]| by
FINSEQ_2: 62;
(p1
<X> p2)
= (p1
<X> (((
- a1)
* (1
/ a2))
* p1)) by
A8,
A9,
A10,
EUCLID_4: 4
.= (p1
<X> (((
- a1)
/ a2)
* p1)) by
XCMPLX_1: 99
.= ((((
- a1)
/ a2)
* p1)
<X> p1) by
Lm14
.= (((
- a1)
/ a2)
* (p1
<X> p1)) by
Lm14
.= (((
- a1)
/ a2)
* (
0.REAL 3)) by
FINSEQ_2: 62
.=
|[(((
- a1)
/ a2)
* ((
0.REAL 3)
. 1)), (((
- a1)
/ a2)
* ((
0.REAL 3)
. 2)), (((
- a1)
/ a2)
* ((
0.REAL 3)
. 3))]| by
Lm1
.=
|[(((
- a1)
/ a2)
*
0 ), (((
- a1)
/ a2)
* ((
0.REAL 3)
. 2)), (((
- a1)
/ a2)
* ((
0.REAL 3)
. 3))]| by
A11,
FINSEQ_1: 45
.=
|[
0 , (((
- a1)
/ a2)
*
0 ), (((
- a1)
/ a2)
* ((
0.REAL 3)
. 3))]| by
A11,
FINSEQ_1: 45
.= (
0.REAL 3) by
A11,
FINSEQ_1: 45;
hence thesis;
end;
end;
hence thesis;
end;
begin
theorem ::
EUCLID_8:4
|.
<e1> .|
= 1
proof
|(
<e1> ,
<e1> )|
= (((1
^2 )
+ (
0
^2 ))
+ (
0
^2 )) by
Lm12
.= 1;
hence thesis by
SQUARE_1: 18;
end;
theorem ::
EUCLID_8:5
|.
<e2> .|
= 1
proof
|(
<e2> ,
<e2> )|
= (((
0
^2 )
+ (1
^2 ))
+ (
0
^2 )) by
Lm12
.= 1;
hence thesis by
SQUARE_1: 18;
end;
theorem ::
EUCLID_8:6
|.
<e3> .|
= 1
proof
|(
<e3> ,
<e3> )|
= (((
0
^2 )
+ (
0
^2 ))
+ (1
^2 )) by
Lm12
.= 1;
hence thesis by
SQUARE_1: 18;
end;
theorem ::
EUCLID_8:7
(
<e1> ,
<e2> )
are_orthogonal
proof
(
<e1>
. 1)
= 1 & (
<e1>
. 2)
=
0 & (
<e1>
. 3)
=
0 & (
<e2>
. 1)
=
0 & (
<e2>
. 2)
= 1 & (
<e2>
. 3)
=
0 by
FINSEQ_1: 45;
then
|(
<e1> ,
<e2> )|
= (((1
*
0 )
+ (
0
* 1))
+ (
0
*
0 )) by
Lm5
.=
0 ;
hence (
<e1> ,
<e2> )
are_orthogonal ;
end;
theorem ::
EUCLID_8:8
(
<e1> ,
<e3> )
are_orthogonal
proof
(
<e1>
. 1)
= 1 & (
<e1>
. 2)
=
0 & (
<e1>
. 3)
=
0 & (
<e3>
. 1)
=
0 & (
<e3>
. 2)
=
0 & (
<e3>
. 3)
= 1 by
FINSEQ_1: 45;
then
|(
<e1> ,
<e3> )|
= (((1
*
0 )
+ (
0
*
0 ))
+ (
0
* 1)) by
Lm5
.=
0 ;
hence (
<e1> ,
<e3> )
are_orthogonal ;
end;
theorem ::
EUCLID_8:9
(
<e2> ,
<e3> )
are_orthogonal
proof
(
<e2>
. 1)
=
0 & (
<e2>
. 2)
= 1 & (
<e2>
. 3)
=
0 & (
<e3>
. 1)
=
0 & (
<e3>
. 2)
=
0 & (
<e3>
. 3)
= 1 by
FINSEQ_1: 45;
then
|(
<e2> ,
<e3> )|
= (((
0
*
0 )
+ (1
*
0 ))
+ (
0
* 1)) by
Lm5
.=
0 ;
hence (
<e2> ,
<e3> )
are_orthogonal ;
end;
theorem ::
EUCLID_8:10
|(
<e1> ,
<e1> )|
= 1
proof
(
<e1>
. 1)
= 1 & (
<e1>
. 2)
=
0 & (
<e1>
. 3)
=
0 by
FINSEQ_1: 45;
then
|(
<e1> ,
<e1> )|
= (((1
* 1)
+ (
0
*
0 ))
+ (
0
*
0 )) by
Lm5
.= 1;
hence thesis;
end;
theorem ::
EUCLID_8:11
|(
<e2> ,
<e2> )|
= 1
proof
(
<e2>
. 1)
=
0 & (
<e2>
. 2)
= 1 & (
<e2>
. 3)
=
0 by
FINSEQ_1: 45;
then
|(
<e2> ,
<e2> )|
= (((
0
*
0 )
+ (1
* 1))
+ (
0
*
0 )) by
Lm5
.= 1;
hence thesis;
end;
theorem ::
EUCLID_8:12
|(
<e3> ,
<e3> )|
= 1
proof
(
<e3>
. 1)
=
0 & (
<e3>
. 2)
=
0 & (
<e3>
. 3)
= 1 by
FINSEQ_1: 45;
then
|(
<e3> ,
<e3> )|
= (((
0
*
0 )
+ (
0
*
0 ))
+ (1
* 1)) by
Lm5
.= 1;
hence thesis;
end;
theorem ::
EUCLID_8:13
Th13:
|(p,
|[
0 ,
0 ,
0 ]|)|
=
0
proof
set e =
|[
0 ,
0 ,
0 ]|;
(e
. 1)
=
0 & (e
. 2)
=
0 & (e
. 3)
=
0 by
FINSEQ_1: 45;
hence
|(p, e)|
= ((((p
. 1)
*
0 )
+ ((p
. 2)
*
0 ))
+ ((p
. 3)
*
0 )) by
Lm5
.=
0 ;
end;
::$Canceled
theorem ::
EUCLID_8:16
(
<e1>
<X>
<e2> )
=
<e3>
proof
(
<e1>
<X>
<e2> )
=
|[((
0
*
0 )
- (
0
* 1)), ((
0
*
0 )
- (1
*
0 )), ((1
* 1)
- (
0
*
0 ))]| by
Lm13
.=
<e3> ;
hence thesis;
end;
theorem ::
EUCLID_8:17
(
<e2>
<X>
<e3> )
=
<e1>
proof
(
<e2>
<X>
<e3> )
=
|[((1
* 1)
- (
0
*
0 )), ((
0
*
0 )
- (
0
* 1)), ((
0
*
0 )
- (1
*
0 ))]| by
Lm13
.=
<e1> ;
hence thesis;
end;
theorem ::
EUCLID_8:18
(
<e3>
<X>
<e1> )
=
<e2>
proof
(
<e3>
<X>
<e1> )
=
|[((
0
*
0 )
- (1
*
0 )), ((1
* 1)
- (
0
*
0 )), ((
0
*
0 )
- (
0
* 1))]| by
Lm13
.=
<e2> ;
hence thesis;
end;
theorem ::
EUCLID_8:19
(
<e3>
<X>
<e2> )
= (
-
<e1> )
proof
A1: (
<e1>
. 1)
= 1 & (
<e1>
. 2)
=
0 & (
<e1>
. 3)
=
0 by
FINSEQ_1: 45;
(
<e3>
<X>
<e2> )
=
|[((
0
*
0 )
- (1
* 1)), ((1
*
0 )
- (
0
*
0 )), ((
0
* 1)
- (
0
*
0 ))]| by
Lm13
.=
|[((
- 1)
* (
<e1>
. 1)), ((
- 1)
* (
<e1>
. 2)), ((
- 1)
* (
<e1>
. 3))]| by
A1
.= (
-
<e1> ) by
Lm1;
hence thesis;
end;
theorem ::
EUCLID_8:20
(
<e1>
<X>
<e3> )
= (
-
<e2> )
proof
A1: (
<e2>
. 1)
=
0 & (
<e2>
. 2)
= 1 & (
<e2>
. 3)
=
0 by
FINSEQ_1: 45;
(
<e1>
<X>
<e3> )
=
|[((
0
* 1)
- (
0
*
0 )), ((
0
*
0 )
- (1
* 1)), ((1
*
0 )
- (
0
*
0 ))]| by
Lm13
.=
|[((
- 1)
* (
<e2>
. 1)), ((
- 1)
* (
<e2>
. 2)), ((
- 1)
* (
<e2>
. 3))]| by
A1
.= (
-
<e2> ) by
Lm1;
hence thesis;
end;
theorem ::
EUCLID_8:21
(
<e2>
<X>
<e1> )
= (
-
<e3> )
proof
A1: (
<e3>
. 1)
=
0 & (
<e3>
. 2)
=
0 & (
<e3>
. 3)
= 1 by
FINSEQ_1: 45;
(
<e2>
<X>
<e1> )
=
|[((1
*
0 )
- (
0
*
0 )), ((
0
* 1)
- (
0
*
0 )), ((
0
*
0 )
- (1
* 1))]| by
Lm13
.=
|[((
- 1)
* (
<e3>
. 1)), ((
- 1)
* (
<e3>
. 2)), ((
- 1)
* (
<e3>
. 3))]| by
A1
.= (
-
<e3> ) by
Lm1;
hence thesis;
end;
theorem ::
EUCLID_8:22
(p
<X>
|[
0 ,
0 ,
0 ]|)
=
|[
0 ,
0 ,
0 ]|
proof
p
=
|[(p
. 1), (p
. 2), (p
. 3)]| by
Th1;
hence (p
<X>
|[
0 ,
0 ,
0 ]|)
=
|[(((p
. 2)
*
0 )
- ((p
. 3)
*
0 )), (((p
. 3)
*
0 )
- ((p
. 1)
*
0 )), (((p
. 1)
*
0 )
- ((p
. 2)
*
0 ))]| by
Lm13
.=
|[
0 ,
0 ,
0 ]|;
end;
::$Canceled
theorem ::
EUCLID_8:25
Th21: (r
*
<e1> )
=
|[r,
0 ,
0 ]|
proof
(
<e1>
. 1)
= 1 & (
<e1>
. 2)
=
0 & (
<e1>
. 3)
=
0 by
FINSEQ_1: 45;
then (r
*
<e1> )
=
|[(r
* 1), (r
*
0 ), (r
*
0 )]| by
Lm1
.=
|[r,
0 ,
0 ]|;
hence thesis;
end;
theorem ::
EUCLID_8:26
Th22: (r
*
<e2> )
=
|[
0 , r,
0 ]|
proof
(
<e2>
. 1)
=
0 & (
<e2>
. 2)
= 1 & (
<e2>
. 3)
=
0 by
FINSEQ_1: 45;
then (r
*
<e2> )
=
|[(r
*
0 ), (r
* 1), (r
*
0 )]| by
Lm1
.=
|[
0 , r,
0 ]|;
hence thesis;
end;
theorem ::
EUCLID_8:27
Th23: (r
*
<e3> )
=
|[
0 ,
0 , r]|
proof
(
<e3>
. 1)
=
0 & (
<e3>
. 2)
=
0 & (
<e3>
. 3)
= 1 by
FINSEQ_1: 45;
then (r
*
<e3> )
=
|[(r
*
0 ), (r
*
0 ), (r
* 1)]| by
Lm1
.=
|[
0 ,
0 , r]|;
hence thesis;
end;
theorem ::
EUCLID_8:28
(1
* p)
= p by
RFUNCT_1: 21;
::$Canceled
theorem ::
EUCLID_8:31
(
-
<e1> )
=
|[(
- 1),
0 ,
0 ]|
proof
A1: (
<e1>
. 1)
= 1 & (
<e1>
. 2)
=
0 & (
<e1>
. 3)
=
0 by
FINSEQ_1: 45;
(
-
<e1> )
=
|[((
- 1)
* (
<e1>
. 1)), ((
- 1)
* (
<e1>
. 2)), ((
- 1)
* (
<e1>
. 3))]| by
Lm1
.=
|[(
- 1),
0 ,
0 ]| by
A1;
hence thesis;
end;
theorem ::
EUCLID_8:32
(
-
<e2> )
=
|[
0 , (
- 1),
0 ]|
proof
A1: (
<e2>
. 1)
=
0 & (
<e2>
. 2)
= 1 & (
<e2>
. 3)
=
0 by
FINSEQ_1: 45;
(
-
<e2> )
=
|[((
- 1)
* (
<e2>
. 1)), ((
- 1)
* (
<e2>
. 2)), ((
- 1)
* (
<e2>
. 3))]| by
Lm1
.=
|[
0 , (
- 1),
0 ]| by
A1;
hence thesis;
end;
theorem ::
EUCLID_8:33
(
-
<e3> )
=
|[
0 ,
0 , (
- 1)]|
proof
A1: (
<e3>
. 1)
=
0 & (
<e3>
. 2)
=
0 & (
<e3>
. 3)
= 1 by
FINSEQ_1: 45;
(
-
<e3> )
=
|[((
- 1)
* (
<e3>
. 1)), ((
- 1)
* (
<e3>
. 2)), ((
- 1)
* (
<e3>
. 3))]| by
Lm1
.=
|[
0 ,
0 , (
- 1)]| by
A1;
hence thesis;
end;
theorem ::
EUCLID_8:34
(
0
* p)
=
|[
0 ,
0 ,
0 ]|
proof
thus (
0
* p)
=
|[(
0
* (p
. 1)), (
0
* (p
. 2)), (
0
* (p
. 3))]| by
Lm1
.=
|[
0 ,
0 ,
0 ]|;
end;
::$Canceled
theorem ::
EUCLID_8:37
p
= ((((p
. 1)
*
<e1> )
+ ((p
. 2)
*
<e2> ))
+ ((p
. 3)
*
<e3> ))
proof
A1: (
<e1>
. 1)
= 1 & (
<e1>
. 2)
=
0 & (
<e1>
. 3)
=
0 by
FINSEQ_1: 45;
A2: (
<e2>
. 1)
=
0 & (
<e2>
. 2)
= 1 & (
<e2>
. 3)
=
0 by
FINSEQ_1: 45;
A3: (
<e3>
. 1)
=
0 & (
<e3>
. 2)
=
0 & (
<e3>
. 3)
= 1 by
FINSEQ_1: 45;
A4: ((((p
. 1)
*
<e1> )
+ ((p
. 2)
*
<e2> ))
+ ((p
. 3)
*
<e3> ))
= ((
|[((p
. 1)
* 1), ((p
. 1)
*
0 ), ((p
. 1)
*
0 )]|
+ ((p
. 2)
*
<e2> ))
+ ((p
. 3)
*
<e3> )) by
A1,
Lm1
.= ((
|[(p
. 1),
0 ,
0 ]|
+
|[((p
. 2)
*
0 ), ((p
. 2)
* 1), ((p
. 2)
*
0 )]|)
+ ((p
. 3)
*
<e3> )) by
A2,
Lm1
.= ((
|[(p
. 1),
0 ,
0 ]|
+
|[
0 , (p
. 2),
0 ]|)
+
|[((p
. 3)
*
0 ), ((p
. 3)
*
0 ), ((p
. 3)
* 1)]|) by
A3,
Lm1
.= ((
|[(p
. 1),
0 ,
0 ]|
+
|[
0 , (p
. 2),
0 ]|)
+
|[
0 ,
0 , (p
. 3)]|);
A5: (
|[(p
. 1),
0 ,
0 ]|
. 1)
= (p
. 1) & (
|[(p
. 1),
0 ,
0 ]|
. 2)
=
0 & (
|[(p
. 1),
0 ,
0 ]|
. 3)
=
0 by
FINSEQ_1: 45;
A6: (
|[
0 , (p
. 2),
0 ]|
. 1)
=
0 & (
|[
0 , (p
. 2),
0 ]|
. 2)
= (p
. 2) & (
|[
0 , (p
. 2),
0 ]|
. 3)
=
0 by
FINSEQ_1: 45;
A7: (
|[
0 ,
0 , (p
. 3)]|
. 1)
=
0 & (
|[
0 ,
0 , (p
. 3)]|
. 2)
=
0 & (
|[
0 ,
0 , (p
. 3)]|
. 3)
= (p
. 3) by
FINSEQ_1: 45;
A8: ((((p
. 1)
*
<e1> )
+ ((p
. 2)
*
<e2> ))
+ ((p
. 3)
*
<e3> ))
= (
|[((p
. 1)
+
0 ), (
0
+ (p
. 2)), (
0
+
0 )]|
+
|[
0 ,
0 , (p
. 3)]|) by
A4,
A5,
A6,
Lm2
.= (
|[(p
. 1), (p
. 2),
0 ]|
+
|[
0 ,
0 , (p
. 3)]|);
(
|[(p
. 1), (p
. 2),
0 ]|
. 1)
= (p
. 1) & (
|[(p
. 1), (p
. 2),
0 ]|
. 2)
= (p
. 2) & (
|[(p
. 1), (p
. 2),
0 ]|
. 3)
=
0 by
FINSEQ_1: 45;
then ((((p
. 1)
*
<e1> )
+ ((p
. 2)
*
<e2> ))
+ ((p
. 3)
*
<e3> ))
=
|[((p
. 1)
+
0 ), ((p
. 2)
+
0 ), (
0
+ (p
. 3))]| by
A7,
A8,
Lm2
.=
|[(p
. 1), (p
. 2), (p
. 3)]|;
hence p
= ((((p
. 1)
*
<e1> )
+ ((p
. 2)
*
<e2> ))
+ ((p
. 3)
*
<e3> )) by
Th1;
end;
theorem ::
EUCLID_8:38
Th30: (r
* p)
= ((((r
* (p
. 1))
*
<e1> )
+ ((r
* (p
. 2))
*
<e2> ))
+ ((r
* (p
. 3))
*
<e3> ))
proof
A1: (
<e1>
. 1)
= 1 & (
<e1>
. 2)
=
0 & (
<e1>
. 3)
=
0 by
FINSEQ_1: 45;
A2: (
<e2>
. 1)
=
0 & (
<e2>
. 2)
= 1 & (
<e2>
. 3)
=
0 by
FINSEQ_1: 45;
A3: (
<e3>
. 1)
=
0 & (
<e3>
. 2)
=
0 & (
<e3>
. 3)
= 1 by
FINSEQ_1: 45;
A4: ((((r
* (p
. 1))
*
<e1> )
+ ((r
* (p
. 2))
*
<e2> ))
+ ((r
* (p
. 3))
*
<e3> ))
= ((
|[((r
* (p
. 1))
* 1), ((r
* (p
. 1))
*
0 ), ((r
* (p
. 1))
*
0 )]|
+ ((r
* (p
. 2))
*
<e2> ))
+ ((r
* (p
. 3))
*
<e3> )) by
A1,
Lm1
.= ((
|[(r
* (p
. 1)),
0 ,
0 ]|
+
|[((r
* (p
. 2))
*
0 ), ((r
* (p
. 2))
* 1), ((r
* (p
. 2))
*
0 )]|)
+ ((r
* (p
. 3))
*
<e3> )) by
A2,
Lm1
.= ((
|[(r
* (p
. 1)),
0 ,
0 ]|
+
|[
0 , (r
* (p
. 2)),
0 ]|)
+
|[((r
* (p
. 3))
*
0 ), ((r
* (p
. 3))
*
0 ), ((r
* (p
. 3))
* 1)]|) by
A3,
Lm1
.= ((
|[(r
* (p
. 1)),
0 ,
0 ]|
+
|[
0 , (r
* (p
. 2)),
0 ]|)
+
|[
0 ,
0 , (r
* (p
. 3))]|);
A5: (
|[(r
* (p
. 1)),
0 ,
0 ]|
. 1)
= (r
* (p
. 1)) & (
|[(r
* (p
. 1)),
0 ,
0 ]|
. 2)
=
0 & (
|[(r
* (p
. 1)),
0 ,
0 ]|
. 3)
=
0 by
FINSEQ_1: 45;
A6: (
|[
0 , (r
* (p
. 2)),
0 ]|
. 1)
=
0 & (
|[
0 , (r
* (p
. 2)),
0 ]|
. 2)
= (r
* (p
. 2)) & (
|[
0 , (r
* (p
. 2)),
0 ]|
. 3)
=
0 by
FINSEQ_1: 45;
A7: (
|[
0 ,
0 , (r
* (p
. 3))]|
. 1)
=
0 & (
|[
0 ,
0 , (r
* (p
. 3))]|
. 2)
=
0 & (
|[
0 ,
0 , (r
* (p
. 3))]|
. 3)
= (r
* (p
. 3)) by
FINSEQ_1: 45;
A8: ((((r
* (p
. 1))
*
<e1> )
+ ((r
* (p
. 2))
*
<e2> ))
+ ((r
* (p
. 3))
*
<e3> ))
= (
|[((r
* (p
. 1))
+
0 ), (
0
+ (r
* (p
. 2))), (
0
+
0 )]|
+
|[
0 ,
0 , (r
* (p
. 3))]|) by
A4,
A5,
A6,
Lm2
.= (
|[(r
* (p
. 1)), (r
* (p
. 2)),
0 ]|
+
|[
0 ,
0 , (r
* (p
. 3))]|);
(
|[(r
* (p
. 1)), (r
* (p
. 2)),
0 ]|
. 1)
= (r
* (p
. 1)) & (
|[(r
* (p
. 1)), (r
* (p
. 2)),
0 ]|
. 2)
= (r
* (p
. 2)) & (
|[(r
* (p
. 1)), (r
* (p
. 2)),
0 ]|
. 3)
=
0 by
FINSEQ_1: 45;
then ((((r
* (p
. 1))
*
<e1> )
+ ((r
* (p
. 2))
*
<e2> ))
+ ((r
* (p
. 3))
*
<e3> ))
=
|[((r
* (p
. 1))
+
0 ), ((r
* (p
. 2))
+
0 ), (
0
+ (r
* (p
. 3)))]| by
A7,
A8,
Lm2
.=
|[(r
* (p
. 1)), (r
* (p
. 2)), (r
* (p
. 3))]|;
hence (r
* p)
= ((((r
* (p
. 1))
*
<e1> )
+ ((r
* (p
. 2))
*
<e2> ))
+ ((r
* (p
. 3))
*
<e3> )) by
Lm1;
end;
theorem ::
EUCLID_8:39
Th31:
|[x, y, z]|
= (((x
*
<e1> )
+ (y
*
<e2> ))
+ (z
*
<e3> ))
proof
A1: (
<e1>
. 1)
= 1 & (
<e1>
. 2)
=
0 & (
<e1>
. 3)
=
0 by
FINSEQ_1: 45;
A2: (
<e2>
. 1)
=
0 & (
<e2>
. 2)
= 1 & (
<e2>
. 3)
=
0 by
FINSEQ_1: 45;
A3: (
<e3>
. 1)
=
0 & (
<e3>
. 2)
=
0 & (
<e3>
. 3)
= 1 by
FINSEQ_1: 45;
set p =
|[x, y, z]|;
A4: (((x
*
<e1> )
+ (y
*
<e2> ))
+ (z
*
<e3> ))
= ((
|[(x
* 1), (x
*
0 ), (x
*
0 )]|
+ (y
*
<e2> ))
+ (z
*
<e3> )) by
A1,
Lm1
.= ((
|[x,
0 ,
0 ]|
+
|[(y
*
0 ), (y
* 1), (y
*
0 )]|)
+ (z
*
<e3> )) by
A2,
Lm1
.= ((
|[x,
0 ,
0 ]|
+
|[
0 , y,
0 ]|)
+
|[(z
*
0 ), (z
*
0 ), (z
* 1)]|) by
A3,
Lm1
.= ((
|[x,
0 ,
0 ]|
+
|[
0 , y,
0 ]|)
+
|[
0 ,
0 , z]|);
A5: (
|[x,
0 ,
0 ]|
. 1)
= x & (
|[x,
0 ,
0 ]|
. 2)
=
0 & (
|[x,
0 ,
0 ]|
. 3)
=
0 by
FINSEQ_1: 45;
A6: (
|[
0 , y,
0 ]|
. 1)
=
0 & (
|[
0 , y,
0 ]|
. 2)
= y & (
|[
0 , y,
0 ]|
. 3)
=
0 by
FINSEQ_1: 45;
A7: (
|[
0 ,
0 , z]|
. 1)
=
0 & (
|[
0 ,
0 , z]|
. 2)
=
0 & (
|[
0 ,
0 , z]|
. 3)
= z by
FINSEQ_1: 45;
A8: (((x
*
<e1> )
+ (y
*
<e2> ))
+ (z
*
<e3> ))
= (
|[(x
+
0 ), (y
+
0 ), (
0
+
0 )]|
+
|[
0 ,
0 , z]|) by
A4,
A5,
A6,
Lm2
.= (
|[x, y,
0 ]|
+
|[
0 ,
0 , z]|);
(
|[x, y,
0 ]|
. 1)
= x & (
|[x, y,
0 ]|
. 2)
= y & (
|[x, y,
0 ]|
. 3)
=
0 by
FINSEQ_1: 45;
then (((x
*
<e1> )
+ (y
*
<e2> ))
+ (z
*
<e3> ))
=
|[(x
+
0 ), (y
+
0 ), (
0
+ z)]| by
A7,
A8,
Lm2
.=
|[x, y, z]|;
hence p
= (((x
*
<e1> )
+ (y
*
<e2> ))
+ (z
*
<e3> ));
end;
theorem ::
EUCLID_8:40
Th32: (r
*
|[x, y, z]|)
= ((((r
* x)
*
<e1> )
+ ((r
* y)
*
<e2> ))
+ ((r
* z)
*
<e3> ))
proof
A1: (
<e1>
. 1)
= 1 & (
<e1>
. 2)
=
0 & (
<e1>
. 3)
=
0 by
FINSEQ_1: 45;
A2: (
<e2>
. 1)
=
0 & (
<e2>
. 2)
= 1 & (
<e2>
. 3)
=
0 by
FINSEQ_1: 45;
A3: (
<e3>
. 1)
=
0 & (
<e3>
. 2)
=
0 & (
<e3>
. 3)
= 1 by
FINSEQ_1: 45;
set p =
|[x, y, z]|;
A4: ((((r
* x)
*
<e1> )
+ ((r
* y)
*
<e2> ))
+ ((r
* z)
*
<e3> ))
= ((
|[((r
* x)
* 1), ((r
* x)
*
0 ), ((r
* x)
*
0 )]|
+ ((r
* y)
*
<e2> ))
+ ((r
* z)
*
<e3> )) by
A1,
Lm1
.= ((
|[(r
* x),
0 ,
0 ]|
+
|[((r
* y)
*
0 ), ((r
* y)
* 1), ((r
* y)
*
0 )]|)
+ ((r
* z)
*
<e3> )) by
A2,
Lm1
.= ((
|[(r
* x),
0 ,
0 ]|
+
|[
0 , (r
* y),
0 ]|)
+
|[((r
* z)
*
0 ), ((r
* z)
*
0 ), ((r
* z)
* 1)]|) by
A3,
Lm1
.= ((
|[(r
* x),
0 ,
0 ]|
+
|[
0 , (r
* y),
0 ]|)
+
|[
0 ,
0 , (r
* z)]|);
A5: (
|[(r
* x),
0 ,
0 ]|
. 1)
= (r
* x) & (
|[(r
* x),
0 ,
0 ]|
. 2)
=
0 & (
|[(r
* x),
0 ,
0 ]|
. 3)
=
0 by
FINSEQ_1: 45;
A6: (
|[
0 , (r
* y),
0 ]|
. 1)
=
0 & (
|[
0 , (r
* y),
0 ]|
. 2)
= (r
* y) & (
|[
0 , (r
* y),
0 ]|
. 3)
=
0 by
FINSEQ_1: 45;
A7: (
|[
0 ,
0 , (r
* z)]|
. 1)
=
0 & (
|[
0 ,
0 , (r
* z)]|
. 2)
=
0 & (
|[
0 ,
0 , (r
* z)]|
. 3)
= (r
* z) by
FINSEQ_1: 45;
A8: ((((r
* x)
*
<e1> )
+ ((r
* y)
*
<e2> ))
+ ((r
* z)
*
<e3> ))
= (
|[((r
* x)
+
0 ), ((r
* y)
+
0 ), (
0
+
0 )]|
+
|[
0 ,
0 , (r
* z)]|) by
A4,
A5,
A6,
Lm2
.= (
|[(r
* x), (r
* y),
0 ]|
+
|[
0 ,
0 , (r
* z)]|);
(
|[(r
* x), (r
* y),
0 ]|
. 1)
= (r
* x) & (
|[(r
* x), (r
* y),
0 ]|
. 2)
= (r
* y) & (
|[(r
* x), (r
* y),
0 ]|
. 3)
=
0 by
FINSEQ_1: 45;
then ((((r
* x)
*
<e1> )
+ ((r
* y)
*
<e2> ))
+ ((r
* z)
*
<e3> ))
=
|[((r
* x)
+
0 ), ((r
* y)
+
0 ), (
0
+ (r
* z))]| by
A7,
A8,
Lm2
.=
|[(r
* x), (r
* y), (r
* z)]|;
hence (r
* p)
= ((((r
* x)
*
<e1> )
+ ((r
* y)
*
<e2> ))
+ ((r
* z)
*
<e3> )) by
Lm6;
end;
theorem ::
EUCLID_8:41
(
- p)
= (((
- ((p
. 1)
*
<e1> ))
- ((p
. 2)
*
<e2> ))
- ((p
. 3)
*
<e3> ))
proof
(
- p)
= (((((
- 1)
* (p
. 1))
*
<e1> )
+ (((
- 1)
* (p
. 2))
*
<e2> ))
+ (((
- 1)
* (p
. 3))
*
<e3> )) by
Th30
.= (((
- ((p
. 1)
*
<e1> ))
+ (((
- 1)
* (p
. 2))
*
<e2> ))
+ ((
- (p
. 3))
*
<e3> )) by
RVSUM_1: 49
.= (((
- ((p
. 1)
*
<e1> ))
+ (
- ((p
. 2)
*
<e2> )))
+ (((
- 1)
* (p
. 3))
*
<e3> )) by
RVSUM_1: 49
.= (((
- ((p
. 1)
*
<e1> ))
- ((p
. 2)
*
<e2> ))
- ((p
. 3)
*
<e3> )) by
RVSUM_1: 49;
hence thesis;
end;
theorem ::
EUCLID_8:42
(
-
|[x, y, z]|)
= (((
- (x
*
<e1> ))
- (y
*
<e2> ))
- (z
*
<e3> ))
proof
(
-
|[x, y, z]|)
= (((((
- 1)
* x)
*
<e1> )
+ (((
- 1)
* y)
*
<e2> ))
+ (((
- 1)
* z)
*
<e3> )) by
Th32
.= (((
- (x
*
<e1> ))
+ (((
- 1)
* y)
*
<e2> ))
+ ((
- z)
*
<e3> )) by
RVSUM_1: 49
.= (((
- (x
*
<e1> ))
+ (
- (y
*
<e2> )))
+ (((
- 1)
* z)
*
<e3> )) by
RVSUM_1: 49
.= (((
- (x
*
<e1> ))
- (y
*
<e2> ))
- (z
*
<e3> )) by
RVSUM_1: 49;
hence thesis;
end;
theorem ::
EUCLID_8:43
(p1
+ p2)
= (((((p1
. 1)
+ (p2
. 1))
*
<e1> )
+ (((p1
. 2)
+ (p2
. 2))
*
<e2> ))
+ (((p1
. 3)
+ (p2
. 3))
*
<e3> ))
proof
A1: (
<e1>
. 1)
= 1 & (
<e1>
. 2)
=
0 & (
<e1>
. 3)
=
0 by
FINSEQ_1: 45;
A2: (
<e2>
. 1)
=
0 & (
<e2>
. 2)
= 1 & (
<e2>
. 3)
=
0 by
FINSEQ_1: 45;
A3: (
<e3>
. 1)
=
0 & (
<e3>
. 2)
=
0 & (
<e3>
. 3)
= 1 by
FINSEQ_1: 45;
A4: ((p1
+ p2)
. 1)
= ((p1
. 1)
+ (p2
. 1)) by
RVSUM_1: 11;
A5: ((p1
+ p2)
. 2)
= ((p1
. 2)
+ (p2
. 2)) by
RVSUM_1: 11;
A6: ((p1
+ p2)
. 3)
= ((p1
. 3)
+ (p2
. 3)) by
RVSUM_1: 11;
A7: (((((p1
+ p2)
. 1)
*
<e1> )
+ (((p1
+ p2)
. 2)
*
<e2> ))
+ (((p1
+ p2)
. 3)
*
<e3> ))
= ((
|[(((p1
+ p2)
. 1)
* 1), (((p1
+ p2)
. 1)
*
0 ), (((p1
+ p2)
. 1)
*
0 )]|
+ (((p1
+ p2)
. 2)
*
<e2> ))
+ (((p1
+ p2)
. 3)
*
<e3> )) by
A1,
Lm1
.= ((
|[((p1
+ p2)
. 1),
0 ,
0 ]|
+
|[(((p1
+ p2)
. 2)
*
0 ), (((p1
+ p2)
. 2)
* 1), (((p1
+ p2)
. 2)
*
0 )]|)
+ (((p1
+ p2)
. 3)
*
<e3> )) by
A2,
Lm1
.= ((
|[((p1
+ p2)
. 1),
0 ,
0 ]|
+
|[
0 , ((p1
+ p2)
. 2),
0 ]|)
+
|[(((p1
+ p2)
. 3)
*
0 ), (((p1
+ p2)
. 3)
*
0 ), (((p1
+ p2)
. 3)
* 1)]|) by
A3,
Lm1
.= ((
|[((p1
+ p2)
. 1),
0 ,
0 ]|
+
|[
0 , ((p1
+ p2)
. 2),
0 ]|)
+
|[
0 ,
0 , ((p1
+ p2)
. 3)]|);
A8: (
|[((p1
+ p2)
. 1),
0 ,
0 ]|
. 1)
= ((p1
+ p2)
. 1) & (
|[((p1
+ p2)
. 1),
0 ,
0 ]|
. 2)
=
0 & (
|[((p1
+ p2)
. 1),
0 ,
0 ]|
. 3)
=
0 by
FINSEQ_1: 45;
A9: (
|[
0 , ((p1
+ p2)
. 2),
0 ]|
. 1)
=
0 & (
|[
0 , ((p1
+ p2)
. 2),
0 ]|
. 2)
= ((p1
+ p2)
. 2) & (
|[
0 , ((p1
+ p2)
. 2),
0 ]|
. 3)
=
0 by
FINSEQ_1: 45;
A10: (
|[
0 ,
0 , ((p1
+ p2)
. 3)]|
. 1)
=
0 & (
|[
0 ,
0 , ((p1
+ p2)
. 3)]|
. 2)
=
0 & (
|[
0 ,
0 , ((p1
+ p2)
. 3)]|
. 3)
= ((p1
+ p2)
. 3) by
FINSEQ_1: 45;
A11: (((((p1
+ p2)
. 1)
*
<e1> )
+ (((p1
+ p2)
. 2)
*
<e2> ))
+ (((p1
+ p2)
. 3)
*
<e3> ))
= (
|[(((p1
+ p2)
. 1)
+
0 ), (
0
+ ((p1
+ p2)
. 2)), (
0
+
0 )]|
+
|[
0 ,
0 , ((p1
+ p2)
. 3)]|) by
A7,
A8,
A9,
Lm2
.= (
|[((p1
+ p2)
. 1), ((p1
+ p2)
. 2),
0 ]|
+
|[
0 ,
0 , ((p1
+ p2)
. 3)]|);
(
|[((p1
+ p2)
. 1), ((p1
+ p2)
. 2),
0 ]|
. 1)
= ((p1
+ p2)
. 1) & (
|[((p1
+ p2)
. 1), ((p1
+ p2)
. 2),
0 ]|
. 2)
= ((p1
+ p2)
. 2) & (
|[((p1
+ p2)
. 1), ((p1
+ p2)
. 2),
0 ]|
. 3)
=
0 by
FINSEQ_1: 45;
then (((((p1
+ p2)
. 1)
*
<e1> )
+ (((p1
+ p2)
. 2)
*
<e2> ))
+ (((p1
+ p2)
. 3)
*
<e3> ))
=
|[(((p1
+ p2)
. 1)
+
0 ), (((p1
+ p2)
. 2)
+
0 ), (
0
+ ((p1
+ p2)
. 3))]| by
A10,
A11,
Lm2
.=
|[((p1
+ p2)
. 1), ((p1
+ p2)
. 2), ((p1
+ p2)
. 3)]|;
hence thesis by
A4,
A5,
A6,
Th1;
end;
theorem ::
EUCLID_8:44
Th36: (p1
- p2)
= (((((p1
. 1)
- (p2
. 1))
*
<e1> )
+ (((p1
. 2)
- (p2
. 2))
*
<e2> ))
+ (((p1
. 3)
- (p2
. 3))
*
<e3> ))
proof
A1: (
<e1>
. 1)
= 1 & (
<e1>
. 2)
=
0 & (
<e1>
. 3)
=
0 by
FINSEQ_1: 45;
A2: (
<e2>
. 1)
=
0 & (
<e2>
. 2)
= 1 & (
<e2>
. 3)
=
0 by
FINSEQ_1: 45;
A3: (
<e3>
. 1)
=
0 & (
<e3>
. 2)
=
0 & (
<e3>
. 3)
= 1 by
FINSEQ_1: 45;
A4: ((p1
- p2)
. 1)
= ((p1
. 1)
- (p2
. 1)) by
RVSUM_1: 27;
A5: ((p1
- p2)
. 2)
= ((p1
. 2)
- (p2
. 2)) by
RVSUM_1: 27;
A6: ((p1
- p2)
. 3)
= ((p1
. 3)
- (p2
. 3)) by
RVSUM_1: 27;
A7: (((((p1
- p2)
. 1)
*
<e1> )
+ (((p1
- p2)
. 2)
*
<e2> ))
+ (((p1
- p2)
. 3)
*
<e3> ))
= ((
|[(((p1
- p2)
. 1)
* 1), (((p1
- p2)
. 1)
*
0 ), (((p1
- p2)
. 1)
*
0 )]|
+ (((p1
- p2)
. 2)
*
<e2> ))
+ (((p1
- p2)
. 3)
*
<e3> )) by
A1,
Lm1
.= ((
|[((p1
- p2)
. 1),
0 ,
0 ]|
+
|[(((p1
- p2)
. 2)
*
0 ), (((p1
- p2)
. 2)
* 1), (((p1
- p2)
. 2)
*
0 )]|)
+ (((p1
- p2)
. 3)
*
<e3> )) by
A2,
Lm1
.= ((
|[((p1
- p2)
. 1),
0 ,
0 ]|
+
|[
0 , ((p1
- p2)
. 2),
0 ]|)
+
|[(((p1
- p2)
. 3)
*
0 ), (((p1
- p2)
. 3)
*
0 ), (((p1
- p2)
. 3)
* 1)]|) by
A3,
Lm1
.= ((
|[((p1
- p2)
. 1),
0 ,
0 ]|
+
|[
0 , ((p1
- p2)
. 2),
0 ]|)
+
|[
0 ,
0 , ((p1
- p2)
. 3)]|);
A8: (
|[((p1
- p2)
. 1),
0 ,
0 ]|
. 1)
= ((p1
- p2)
. 1) & (
|[((p1
- p2)
. 1),
0 ,
0 ]|
. 2)
=
0 & (
|[((p1
- p2)
. 1),
0 ,
0 ]|
. 3)
=
0 by
FINSEQ_1: 45;
A9: (
|[
0 , ((p1
- p2)
. 2),
0 ]|
. 1)
=
0 & (
|[
0 , ((p1
- p2)
. 2),
0 ]|
. 2)
= ((p1
- p2)
. 2) & (
|[
0 , ((p1
- p2)
. 2),
0 ]|
. 3)
=
0 by
FINSEQ_1: 45;
A10: (
|[
0 ,
0 , ((p1
- p2)
. 3)]|
. 1)
=
0 & (
|[
0 ,
0 , ((p1
- p2)
. 3)]|
. 2)
=
0 & (
|[
0 ,
0 , ((p1
- p2)
. 3)]|
. 3)
= ((p1
- p2)
. 3) by
FINSEQ_1: 45;
A11: (((((p1
- p2)
. 1)
*
<e1> )
+ (((p1
- p2)
. 2)
*
<e2> ))
+ (((p1
- p2)
. 3)
*
<e3> ))
= (
|[(((p1
- p2)
. 1)
+
0 ), (
0
+ ((p1
- p2)
. 2)), (
0
+
0 )]|
+
|[
0 ,
0 , ((p1
- p2)
. 3)]|) by
A7,
A8,
A9,
Lm2
.= (
|[((p1
- p2)
. 1), ((p1
- p2)
. 2),
0 ]|
+
|[
0 ,
0 , ((p1
- p2)
. 3)]|);
(
|[((p1
- p2)
. 1), ((p1
- p2)
. 2),
0 ]|
. 1)
= ((p1
- p2)
. 1) & (
|[((p1
- p2)
. 1), ((p1
- p2)
. 2),
0 ]|
. 2)
= ((p1
- p2)
. 2) & (
|[((p1
- p2)
. 1), ((p1
- p2)
. 2),
0 ]|
. 3)
=
0 by
FINSEQ_1: 45;
then (((((p1
- p2)
. 1)
*
<e1> )
+ (((p1
- p2)
. 2)
*
<e2> ))
+ (((p1
- p2)
. 3)
*
<e3> ))
=
|[(((p1
- p2)
. 1)
+
0 ), (((p1
- p2)
. 2)
+
0 ), (
0
+ ((p1
- p2)
. 3))]| by
A10,
A11,
Lm2
.=
|[((p1
- p2)
. 1), ((p1
- p2)
. 2), ((p1
- p2)
. 3)]|;
hence thesis by
A4,
A5,
A6,
Th1;
end;
theorem ::
EUCLID_8:45
(
|[x1, x2, x3]|
+
|[y1, y2, y3]|)
= ((((x1
+ y1)
*
<e1> )
+ ((x2
+ y2)
*
<e2> ))
+ ((x3
+ y3)
*
<e3> ))
proof
A1: (
<e1>
. 1)
= 1 & (
<e1>
. 2)
=
0 & (
<e1>
. 3)
=
0 by
FINSEQ_1: 45;
A2: (
<e2>
. 1)
=
0 & (
<e2>
. 2)
= 1 & (
<e2>
. 3)
=
0 by
FINSEQ_1: 45;
A3: (
<e3>
. 1)
=
0 & (
<e3>
. 2)
=
0 & (
<e3>
. 3)
= 1 by
FINSEQ_1: 45;
A4: ((((x1
+ y1)
*
<e1> )
+ ((x2
+ y2)
*
<e2> ))
+ ((x3
+ y3)
*
<e3> ))
= ((
|[((x1
+ y1)
* 1), ((x1
+ y1)
*
0 ), ((x1
+ y1)
*
0 )]|
+ ((x2
+ y2)
*
<e2> ))
+ ((x3
+ y3)
*
<e3> )) by
A1,
Lm1
.= ((
|[(x1
+ y1),
0 ,
0 ]|
+
|[((x2
+ y2)
*
0 ), ((x2
+ y2)
* 1), ((x2
+ y2)
*
0 )]|)
+ ((x3
+ y3)
*
<e3> )) by
A2,
Lm1
.= ((
|[(x1
+ y1),
0 ,
0 ]|
+
|[
0 , (x2
+ y2),
0 ]|)
+
|[((x3
+ y3)
*
0 ), ((x3
+ y3)
*
0 ), ((x3
+ y3)
* 1)]|) by
A3,
Lm1
.= ((
|[(x1
+ y1),
0 ,
0 ]|
+
|[
0 , (x2
+ y2),
0 ]|)
+
|[
0 ,
0 , (x3
+ y3)]|);
A5: (
|[(x1
+ y1),
0 ,
0 ]|
. 1)
= (x1
+ y1) & (
|[(x1
+ y1),
0 ,
0 ]|
. 2)
=
0 & (
|[(x1
+ y1),
0 ,
0 ]|
. 3)
=
0 by
FINSEQ_1: 45;
A6: (
|[
0 , (x2
+ y2),
0 ]|
. 1)
=
0 & (
|[
0 , (x2
+ y2),
0 ]|
. 2)
= (x2
+ y2) & (
|[
0 , (x2
+ y2),
0 ]|
. 3)
=
0 by
FINSEQ_1: 45;
A7: (
|[
0 ,
0 , (x3
+ y3)]|
. 1)
=
0 & (
|[
0 ,
0 , (x3
+ y3)]|
. 2)
=
0 & (
|[
0 ,
0 , (x3
+ y3)]|
. 3)
= (x3
+ y3) by
FINSEQ_1: 45;
A8: ((((x1
+ y1)
*
<e1> )
+ ((x2
+ y2)
*
<e2> ))
+ ((x3
+ y3)
*
<e3> ))
= (
|[((x1
+ y1)
+
0 ), (
0
+ (x2
+ y2)), (
0
+
0 )]|
+
|[
0 ,
0 , (x3
+ y3)]|) by
A4,
A5,
A6,
Lm2
.= (
|[(x1
+ y1), (x2
+ y2),
0 ]|
+
|[
0 ,
0 , (x3
+ y3)]|);
(
|[(x1
+ y1), (x2
+ y2),
0 ]|
. 1)
= (x1
+ y1) & (
|[(x1
+ y1), (x2
+ y2),
0 ]|
. 2)
= (x2
+ y2) & (
|[(x1
+ y1), (x2
+ y2),
0 ]|
. 3)
=
0 by
FINSEQ_1: 45;
then
A9: ((((x1
+ y1)
*
<e1> )
+ ((x2
+ y2)
*
<e2> ))
+ ((x3
+ y3)
*
<e3> ))
=
|[((x1
+ y1)
+
0 ), ((x2
+ y2)
+
0 ), (
0
+ (x3
+ y3))]| by
A8,
A7,
Lm2
.=
|[(x1
+ y1), (x2
+ y2), (x3
+ y3)]|;
A10: (
|[x1, x2, x3]|
. 1)
= x1 & (
|[x1, x2, x3]|
. 2)
= x2 & (
|[x1, x2, x3]|
. 3)
= x3 by
FINSEQ_1: 45;
(
|[y1, y2, y3]|
. 1)
= y1 & (
|[y1, y2, y3]|
. 2)
= y2 & (
|[y1, y2, y3]|
. 3)
= y3 by
FINSEQ_1: 45;
hence thesis by
A10,
Lm2,
A9;
end;
theorem ::
EUCLID_8:46
(
|[x1, x2, x3]|
-
|[y1, y2, y3]|)
= ((((x1
- y1)
*
<e1> )
+ ((x2
- y2)
*
<e2> ))
+ ((x3
- y3)
*
<e3> ))
proof
A1: (
|[y1, y2, y3]|
. 1)
= y1 by
FINSEQ_1: 45;
A2: (
|[y1, y2, y3]|
. 2)
= y2 by
FINSEQ_1: 45;
A3: (
|[y1, y2, y3]|
. 3)
= y3 by
FINSEQ_1: 45;
A4: ((
|[x1, x2, x3]|
. 1)
- (
|[y1, y2, y3]|
. 1))
= (x1
- y1) by
A1,
FINSEQ_1: 45;
A5: ((
|[x1, x2, x3]|
. 2)
- (
|[y1, y2, y3]|
. 2))
= (x2
- y2) by
A2,
FINSEQ_1: 45;
((
|[x1, x2, x3]|
. 3)
- (
|[y1, y2, y3]|
. 3))
= (x3
- y3) by
A3,
FINSEQ_1: 45;
hence thesis by
A4,
A5,
Th36;
end;
theorem ::
EUCLID_8:47
((((p1
. 1)
*
<e1> )
+ ((p1
. 2)
*
<e2> ))
+ ((p1
. 3)
*
<e3> ))
= (((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> )) iff ((((p2
. 1)
*
<e1> )
+ ((p2
. 2)
*
<e2> ))
+ ((p2
. 3)
*
<e3> ))
= (((((p1
. 1)
- (p3
. 1))
*
<e1> )
+ (((p1
. 2)
- (p3
. 2))
*
<e2> ))
+ (((p1
. 3)
- (p3
. 3))
*
<e3> ))
proof
A1: ((r1
* R)
- (r2
* R))
= ((r1
- r2)
* R)
proof
((r1
* R)
- (r2
* R))
= ((r1
* R)
+ (((
- 1)
* r2)
* R)) by
RVSUM_1: 49
.= ((r1
+ (
- r2))
* R) by
RVSUM_1: 50;
hence thesis;
end;
A2: (
<e1>
. 1)
= 1 & (
<e1>
. 2)
=
0 & (
<e1>
. 3)
=
0 by
FINSEQ_1: 45;
A3: (
<e2>
. 1)
=
0 & (
<e2>
. 2)
= 1 & (
<e2>
. 3)
=
0 by
FINSEQ_1: 45;
A4: (
<e3>
. 1)
=
0 & (
<e3>
. 2)
=
0 & (
<e3>
. 3)
= 1 by
FINSEQ_1: 45;
thus ((((p1
. 1)
*
<e1> )
+ ((p1
. 2)
*
<e2> ))
+ ((p1
. 3)
*
<e3> ))
= (((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> )) implies ((((p2
. 1)
*
<e1> )
+ ((p2
. 2)
*
<e2> ))
+ ((p2
. 3)
*
<e3> ))
= (((((p1
. 1)
- (p3
. 1))
*
<e1> )
+ (((p1
. 2)
- (p3
. 2))
*
<e2> ))
+ (((p1
. 3)
- (p3
. 3))
*
<e3> ))
proof
assume ((((p1
. 1)
*
<e1> )
+ ((p1
. 2)
*
<e2> ))
+ ((p1
. 3)
*
<e3> ))
= (((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ));
then ((((((p1
. 1)
*
<e1> )
+ (((p1
. 2)
*
<e2> )
+ ((p1
. 3)
*
<e3> )))
- ((p3
. 1)
*
<e1> ))
- ((p3
. 2)
*
<e2> ))
- ((p3
. 3)
*
<e3> ))
= ((((((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
- ((p3
. 1)
*
<e1> ))
- ((p3
. 2)
*
<e2> ))
- ((p3
. 3)
*
<e3> )) by
RVSUM_1: 15;
then ((((((p1
. 1)
*
<e1> )
- ((p3
. 1)
*
<e1> ))
+ (((p1
. 2)
*
<e2> )
+ ((p1
. 3)
*
<e3> )))
- ((p3
. 2)
*
<e2> ))
- ((p3
. 3)
*
<e3> ))
= ((((((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
- ((p3
. 1)
*
<e1> ))
- ((p3
. 2)
*
<e2> ))
- ((p3
. 3)
*
<e3> )) by
RVSUM_1: 15;
then ((((((p1
. 1)
- (p3
. 1))
*
<e1> )
+ (((p1
. 2)
*
<e2> )
+ ((p1
. 3)
*
<e3> )))
- ((p3
. 2)
*
<e2> ))
- ((p3
. 3)
*
<e3> ))
= ((((((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
- ((p3
. 1)
*
<e1> ))
- ((p3
. 2)
*
<e2> ))
- ((p3
. 3)
*
<e3> )) by
A1;
then (((((((p1
. 1)
- (p3
. 1))
*
<e1> )
+ ((p1
. 2)
*
<e2> ))
+ ((p1
. 3)
*
<e3> ))
- ((p3
. 2)
*
<e2> ))
- ((p3
. 3)
*
<e3> ))
= ((((((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
- ((p3
. 1)
*
<e1> ))
- ((p3
. 2)
*
<e2> ))
- ((p3
. 3)
*
<e3> )) by
RVSUM_1: 15;
then (((((((p1
. 1)
- (p3
. 1))
*
<e1> )
+ ((p1
. 2)
*
<e2> ))
- ((p3
. 2)
*
<e2> ))
+ ((p1
. 3)
*
<e3> ))
- ((p3
. 3)
*
<e3> ))
= ((((((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
- ((p3
. 1)
*
<e1> ))
- ((p3
. 2)
*
<e2> ))
- ((p3
. 3)
*
<e3> )) by
RVSUM_1: 15;
then ((((((p1
. 1)
- (p3
. 1))
*
<e1> )
+ (((p1
. 2)
*
<e2> )
+ (
- ((p3
. 2)
*
<e2> ))))
+ ((p1
. 3)
*
<e3> ))
+ (
- ((p3
. 3)
*
<e3> )))
= ((((((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
- ((p3
. 1)
*
<e1> ))
- ((p3
. 2)
*
<e2> ))
- ((p3
. 3)
*
<e3> )) by
RVSUM_1: 15;
then (((((p1
. 1)
- (p3
. 1))
*
<e1> )
+ (((p1
. 2)
*
<e2> )
- ((p3
. 2)
*
<e2> )))
+ (((p1
. 3)
*
<e3> )
- ((p3
. 3)
*
<e3> )))
= ((((((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
- ((p3
. 1)
*
<e1> ))
- ((p3
. 2)
*
<e2> ))
- ((p3
. 3)
*
<e3> )) by
RVSUM_1: 15;
then (((((p1
. 1)
- (p3
. 1))
*
<e1> )
+ (((p1
. 2)
- (p3
. 2))
*
<e2> ))
+ (((p1
. 3)
*
<e3> )
- ((p3
. 3)
*
<e3> )))
= ((((((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
- ((p3
. 1)
*
<e1> ))
- ((p3
. 2)
*
<e2> ))
- ((p3
. 3)
*
<e3> )) by
A1;
then (((((p1
. 1)
- (p3
. 1))
*
<e1> )
+ (((p1
. 2)
- (p3
. 2))
*
<e2> ))
+ (((p1
. 3)
- (p3
. 3))
*
<e3> ))
= ((((((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
- ((p3
. 1)
*
<e1> ))
- ((p3
. 2)
*
<e2> ))
- ((p3
. 3)
*
<e3> )) by
A1;
then (((((p1
. 1)
- (p3
. 1))
*
<e1> )
+ (((p1
. 2)
- (p3
. 2))
*
<e2> ))
+ (((p1
. 3)
- (p3
. 3))
*
<e3> ))
= ((((((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
- ((p3
. 1)
*
<e1> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
- ((p3
. 2)
*
<e2> ))
- ((p3
. 3)
*
<e3> )) by
RVSUM_1: 15;
then (((((p1
. 1)
- (p3
. 1))
*
<e1> )
+ (((p1
. 2)
- (p3
. 2))
*
<e2> ))
+ (((p1
. 3)
- (p3
. 3))
*
<e3> ))
= ((((((((p2
. 1)
+ (p3
. 1))
*
<e1> )
- ((p3
. 1)
*
<e1> ))
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
- ((p3
. 2)
*
<e2> ))
- ((p3
. 3)
*
<e3> )) by
RVSUM_1: 15;
then (((((p1
. 1)
- (p3
. 1))
*
<e1> )
+ (((p1
. 2)
- (p3
. 2))
*
<e2> ))
+ (((p1
. 3)
- (p3
. 3))
*
<e3> ))
= ((((((((p2
. 1)
+ (p3
. 1))
*
<e1> )
- ((p3
. 1)
*
<e1> ))
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
- ((p3
. 2)
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
- ((p3
. 3)
*
<e3> )) by
RVSUM_1: 15;
then (((((p1
. 1)
- (p3
. 1))
*
<e1> )
+ (((p1
. 2)
- (p3
. 2))
*
<e2> ))
+ (((p1
. 3)
- (p3
. 3))
*
<e3> ))
= ((((((((p2
. 1)
*
<e1> )
+ ((p3
. 1)
*
<e1> ))
+ (
- ((p3
. 1)
*
<e1> )))
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
- ((p3
. 2)
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
- ((p3
. 3)
*
<e3> )) by
RVSUM_1: 50;
then (((((p1
. 1)
- (p3
. 1))
*
<e1> )
+ (((p1
. 2)
- (p3
. 2))
*
<e2> ))
+ (((p1
. 3)
- (p3
. 3))
*
<e3> ))
= (((((((p2
. 1)
*
<e1> )
+ (((p3
. 1)
*
<e1> )
- ((p3
. 1)
*
<e1> )))
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
- ((p3
. 2)
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
- ((p3
. 3)
*
<e3> )) by
RVSUM_1: 15;
then (((((p1
. 1)
- (p3
. 1))
*
<e1> )
+ (((p1
. 2)
- (p3
. 2))
*
<e2> ))
+ (((p1
. 3)
- (p3
. 3))
*
<e3> ))
= (((((((p2
. 1)
*
<e1> )
+ (
0.REAL 3))
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
- ((p3
. 2)
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
- ((p3
. 3)
*
<e3> )) by
EUCLIDLP: 2;
then (((((p1
. 1)
- (p3
. 1))
*
<e1> )
+ (((p1
. 2)
- (p3
. 2))
*
<e2> ))
+ (((p1
. 3)
- (p3
. 3))
*
<e3> ))
= ((((((p2
. 1)
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
- ((p3
. 2)
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
- ((p3
. 3)
*
<e3> )) by
EUCLID_4: 1;
then (((((p1
. 1)
- (p3
. 1))
*
<e1> )
+ (((p1
. 2)
- (p3
. 2))
*
<e2> ))
+ (((p1
. 3)
- (p3
. 3))
*
<e3> ))
= ((((((p2
. 1)
*
<e1> )
+ (((p2
. 2)
*
<e2> )
+ ((p3
. 2)
*
<e2> )))
- ((p3
. 2)
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
- ((p3
. 3)
*
<e3> )) by
RVSUM_1: 50;
then (((((p1
. 1)
- (p3
. 1))
*
<e1> )
+ (((p1
. 2)
- (p3
. 2))
*
<e2> ))
+ (((p1
. 3)
- (p3
. 3))
*
<e3> ))
= (((((((p2
. 1)
*
<e1> )
+ ((p2
. 2)
*
<e2> ))
+ ((p3
. 2)
*
<e2> ))
+ (
- ((p3
. 2)
*
<e2> )))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
- ((p3
. 3)
*
<e3> )) by
RVSUM_1: 15;
then (((((p1
. 1)
- (p3
. 1))
*
<e1> )
+ (((p1
. 2)
- (p3
. 2))
*
<e2> ))
+ (((p1
. 3)
- (p3
. 3))
*
<e3> ))
= ((((((p2
. 1)
*
<e1> )
+ ((p2
. 2)
*
<e2> ))
+ (((p3
. 2)
*
<e2> )
+ (
- ((p3
. 2)
*
<e2> ))))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
- ((p3
. 3)
*
<e3> )) by
RVSUM_1: 15;
then (((((p1
. 1)
- (p3
. 1))
*
<e1> )
+ (((p1
. 2)
- (p3
. 2))
*
<e2> ))
+ (((p1
. 3)
- (p3
. 3))
*
<e3> ))
= ((((((p2
. 1)
*
<e1> )
+ ((p2
. 2)
*
<e2> ))
+ (
0.REAL 3))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
- ((p3
. 3)
*
<e3> )) by
EUCLIDLP: 2;
then (((((p1
. 1)
- (p3
. 1))
*
<e1> )
+ (((p1
. 2)
- (p3
. 2))
*
<e2> ))
+ (((p1
. 3)
- (p3
. 3))
*
<e3> ))
= (((((p2
. 1)
*
<e1> )
+ ((p2
. 2)
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
- ((p3
. 3)
*
<e3> )) by
EUCLID_4: 1;
then (((((p1
. 1)
- (p3
. 1))
*
<e1> )
+ (((p1
. 2)
- (p3
. 2))
*
<e2> ))
+ (((p1
. 3)
- (p3
. 3))
*
<e3> ))
= (((((p2
. 1)
*
<e1> )
+ ((p2
. 2)
*
<e2> ))
+ (((p2
. 3)
*
<e3> )
+ ((p3
. 3)
*
<e3> )))
- ((p3
. 3)
*
<e3> )) by
RVSUM_1: 50;
then (((((p1
. 1)
- (p3
. 1))
*
<e1> )
+ (((p1
. 2)
- (p3
. 2))
*
<e2> ))
+ (((p1
. 3)
- (p3
. 3))
*
<e3> ))
= ((((((p2
. 1)
*
<e1> )
+ ((p2
. 2)
*
<e2> ))
+ ((p2
. 3)
*
<e3> ))
+ ((p3
. 3)
*
<e3> ))
- ((p3
. 3)
*
<e3> )) by
RVSUM_1: 15;
then (((((p1
. 1)
- (p3
. 1))
*
<e1> )
+ (((p1
. 2)
- (p3
. 2))
*
<e2> ))
+ (((p1
. 3)
- (p3
. 3))
*
<e3> ))
= (((((p2
. 1)
*
<e1> )
+ ((p2
. 2)
*
<e2> ))
+ ((p2
. 3)
*
<e3> ))
+ (((p3
. 3)
*
<e3> )
+ (
- ((p3
. 3)
*
<e3> )))) by
RVSUM_1: 15;
then (((((p1
. 1)
- (p3
. 1))
*
<e1> )
+ (((p1
. 2)
- (p3
. 2))
*
<e2> ))
+ (((p1
. 3)
- (p3
. 3))
*
<e3> ))
= (((((p2
. 1)
*
<e1> )
+ ((p2
. 2)
*
<e2> ))
+ ((p2
. 3)
*
<e3> ))
+ (
0.REAL 3)) by
EUCLIDLP: 2;
hence thesis by
EUCLID_4: 1;
end;
now
assume
A5: ((((p2
. 1)
*
<e1> )
+ ((p2
. 2)
*
<e2> ))
+ ((p2
. 3)
*
<e3> ))
= (((((p1
. 1)
- (p3
. 1))
*
<e1> )
+ (((p1
. 2)
- (p3
. 2))
*
<e2> ))
+ (((p1
. 3)
- (p3
. 3))
*
<e3> ));
(((((((p2
. 1)
*
<e1> )
+ ((p2
. 2)
*
<e2> ))
+ ((p2
. 3)
*
<e3> ))
+ ((p3
. 1)
*
<e1> ))
+ ((p3
. 2)
*
<e2> ))
+ ((p3
. 3)
*
<e3> ))
= (((((p2
. 1)
*
<e1> )
+ ((p2
. 2)
*
<e2> ))
+ ((p2
. 3)
*
<e3> ))
+ ((((p3
. 1)
*
<e1> )
+ ((p3
. 2)
*
<e2> ))
+ ((p3
. 3)
*
<e3> )))
proof
A6: (((p2
. 1)
*
<e1> )
. 1)
= ((p2
. 1)
* 1) by
A2,
RVSUM_1: 44
.= (p2
. 1);
A7: (((p2
. 1)
*
<e1> )
. 2)
= ((p2
. 1)
*
0 ) by
A2,
RVSUM_1: 44
.=
0 ;
A8: (((p2
. 1)
*
<e1> )
. 3)
= ((p2
. 1)
*
0 ) by
A2,
RVSUM_1: 44
.=
0 ;
A9: (((p2
. 2)
*
<e2> )
. 1)
= ((p2
. 2)
* (
<e2>
. 1)) by
RVSUM_1: 44
.=
0 by
A3;
A10: (((p2
. 2)
*
<e2> )
. 2)
= ((p2
. 2)
* 1) by
A3,
RVSUM_1: 44
.= (p2
. 2);
A11: (((p2
. 2)
*
<e2> )
. 3)
= ((p2
. 2)
*
0 ) by
A3,
RVSUM_1: 44
.=
0 ;
A12: (((p2
. 3)
*
<e3> )
. 1)
= ((p2
. 3)
*
0 ) by
A4,
RVSUM_1: 44
.=
0 ;
A13: (((p2
. 3)
*
<e3> )
. 2)
= ((p2
. 3)
*
0 ) by
A4,
RVSUM_1: 44
.=
0 ;
A14: (((p2
. 3)
*
<e3> )
. 3)
= ((p2
. 3)
* 1) by
A4,
RVSUM_1: 44
.= (p2
. 3);
A15: (((p3
. 1)
*
<e1> )
. 1)
= ((p3
. 1)
* 1) by
A2,
RVSUM_1: 44
.= (p3
. 1);
A16: (((p3
. 1)
*
<e1> )
. 2)
= ((p3
. 1)
*
0 ) by
A2,
RVSUM_1: 44
.=
0 ;
A17: (((p3
. 1)
*
<e1> )
. 3)
= ((p3
. 1)
*
0 ) by
A2,
RVSUM_1: 44
.=
0 ;
A18: (((p3
. 2)
*
<e2> )
. 1)
= ((p3
. 2)
* (
<e2>
. 1)) by
RVSUM_1: 44
.=
0 by
A3;
A19: (((p3
. 2)
*
<e2> )
. 2)
= ((p3
. 2)
* 1) by
A3,
RVSUM_1: 44
.= (p3
. 2);
A20: (((p3
. 2)
*
<e2> )
. 3)
= ((p3
. 2)
*
0 ) by
A3,
RVSUM_1: 44
.=
0 ;
A21: (((p3
. 3)
*
<e3> )
. 1)
= ((p3
. 3)
*
0 ) by
A4,
RVSUM_1: 44
.=
0 ;
A22: (((p3
. 3)
*
<e3> )
. 2)
= ((p3
. 3)
*
0 ) by
A4,
RVSUM_1: 44
.=
0 ;
A23: (((p3
. 3)
*
<e3> )
. 3)
= ((p3
. 3)
* 1) by
A4,
RVSUM_1: 44
.= (p3
. 3);
A24: ((((p2
. 1)
*
<e1> )
+ ((p2
. 2)
*
<e2> ))
+ ((p2
. 3)
*
<e3> ))
= (((p2
. 1)
*
<e1> )
+ (((p2
. 2)
*
<e2> )
+ ((p2
. 3)
*
<e3> ))) by
RVSUM_1: 15
.= (((p2
. 1)
*
<e1> )
+
|[(
0
+
0 ), ((p2
. 2)
+
0 ), (
0
+ (p2
. 3))]|) by
A9,
A10,
A11,
A12,
A13,
A14,
Lm2
.= (
|[(p2
. 1),
0 ,
0 ]|
+
|[
0 , (p2
. 2), (p2
. 3)]|) by
A6,
A7,
A8,
Th1
.=
|[((p2
. 1)
+
0 ), (
0
+ (p2
. 2)), (
0
+ (p2
. 3))]| by
Lm8
.=
|[(p2
. 1), (p2
. 2), (p2
. 3)]|;
A25: ((((p3
. 1)
*
<e1> )
+ ((p3
. 2)
*
<e2> ))
+ ((p3
. 3)
*
<e3> ))
= (((p3
. 1)
*
<e1> )
+ (((p3
. 2)
*
<e2> )
+ ((p3
. 3)
*
<e3> ))) by
RVSUM_1: 15
.= (((p3
. 1)
*
<e1> )
+
|[(
0
+
0 ), ((p3
. 2)
+
0 ), (
0
+ (p3
. 3))]|) by
A18,
A19,
A20,
A21,
A22,
A23,
Lm2
.= (
|[(p3
. 1),
0 ,
0 ]|
+
|[
0 , (p3
. 2), (p3
. 3)]|) by
A15,
A16,
A17,
Th1
.=
|[((p3
. 1)
+
0 ), (
0
+ (p3
. 2)), (
0
+ (p3
. 3))]| by
Lm8
.=
|[(p3
. 1), (p3
. 2), (p3
. 3)]|;
(((((((p2
. 1)
*
<e1> )
+ ((p2
. 2)
*
<e2> ))
+ ((p2
. 3)
*
<e3> ))
+ ((p3
. 1)
*
<e1> ))
+ ((p3
. 2)
*
<e2> ))
+ ((p3
. 3)
*
<e3> ))
= ((((((p2
. 1)
*
<e1> )
+ (((p2
. 2)
*
<e2> )
+ ((p2
. 3)
*
<e3> )))
+ ((p3
. 1)
*
<e1> ))
+ ((p3
. 2)
*
<e2> ))
+ ((p3
. 3)
*
<e3> )) by
RVSUM_1: 15
.= ((((((p2
. 1)
*
<e1> )
+
|[(
0
+
0 ), ((p2
. 2)
+
0 ), (
0
+ (p2
. 3))]|)
+ ((p3
. 1)
*
<e1> ))
+ ((p3
. 2)
*
<e2> ))
+ ((p3
. 3)
*
<e3> )) by
A9,
A10,
A11,
A12,
A13,
A14,
Lm2
.= ((((
|[(p2
. 1),
0 ,
0 ]|
+
|[
0 , (p2
. 2), (p2
. 3)]|)
+ ((p3
. 1)
*
<e1> ))
+ ((p3
. 2)
*
<e2> ))
+ ((p3
. 3)
*
<e3> )) by
A6,
A7,
A8,
Th1
.= (((
|[((p2
. 1)
+
0 ), (
0
+ (p2
. 2)), (
0
+ (p2
. 3))]|
+ ((p3
. 1)
*
<e1> ))
+ ((p3
. 2)
*
<e2> ))
+ ((p3
. 3)
*
<e3> )) by
Lm8
.= (((
|[(p2
. 1), (p2
. 2), (p2
. 3)]|
+
|[(p3
. 1),
0 ,
0 ]|)
+ ((p3
. 2)
*
<e2> ))
+ ((p3
. 3)
*
<e3> )) by
A15,
A16,
A17,
Th1
.= ((
|[((p2
. 1)
+ (p3
. 1)), ((p2
. 2)
+
0 ), ((p2
. 3)
+
0 )]|
+ ((p3
. 2)
*
<e2> ))
+ ((p3
. 3)
*
<e3> )) by
Lm8
.= ((
|[((p2
. 1)
+ (p3
. 1)), (p2
. 2), (p2
. 3)]|
+
|[
0 , (p3
. 2),
0 ]|)
+ ((p3
. 3)
*
<e3> )) by
A18,
A19,
A20,
Th1
.= (
|[(((p2
. 1)
+ (p3
. 1))
+
0 ), ((p2
. 2)
+ (p3
. 2)), ((p2
. 3)
+
0 )]|
+ ((p3
. 3)
*
<e3> )) by
Lm8
.= (
|[((p2
. 1)
+ (p3
. 1)), ((p2
. 2)
+ (p3
. 2)), (p2
. 3)]|
+
|[
0 ,
0 , (p3
. 3)]|) by
A21,
A22,
A23,
Th1
.=
|[(((p2
. 1)
+ (p3
. 1))
+
0 ), (((p2
. 2)
+ (p3
. 2))
+
0 ), ((p2
. 3)
+ (p3
. 3))]| by
Lm8;
hence thesis by
A24,
A25,
Lm8;
end;
then (((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
= ((((((((p1
. 1)
- (p3
. 1))
*
<e1> )
+ (((p1
. 2)
- (p3
. 2))
*
<e2> ))
+ (((p1
. 3)
- (p3
. 3))
*
<e3> ))
+ ((p3
. 1)
*
<e1> ))
+ ((p3
. 2)
*
<e2> ))
+ ((p3
. 3)
*
<e3> )) by
A5,
EUCLIDLP: 24;
then (((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
= (((((((p1
. 1)
- (p3
. 1))
*
<e1> )
+ ((((p1
. 2)
- (p3
. 2))
*
<e2> )
+ (((p1
. 3)
- (p3
. 3))
*
<e3> )))
+ ((p3
. 1)
*
<e1> ))
+ ((p3
. 2)
*
<e2> ))
+ ((p3
. 3)
*
<e3> )) by
RVSUM_1: 15;
then (((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
= (((((((p1
. 1)
*
<e1> )
- ((p3
. 1)
*
<e1> ))
+ ((((p1
. 2)
- (p3
. 2))
*
<e2> )
+ (((p1
. 3)
- (p3
. 3))
*
<e3> )))
+ ((p3
. 1)
*
<e1> ))
+ ((p3
. 2)
*
<e2> ))
+ ((p3
. 3)
*
<e3> )) by
A1;
then (((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
= (((((((p1
. 1)
*
<e1> )
+ ((((p1
. 2)
- (p3
. 2))
*
<e2> )
+ (((p1
. 3)
- (p3
. 3))
*
<e3> )))
- ((p3
. 1)
*
<e1> ))
+ ((p3
. 1)
*
<e1> ))
+ ((p3
. 2)
*
<e2> ))
+ ((p3
. 3)
*
<e3> )) by
RVSUM_1: 15;
then (((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
= ((((((p1
. 1)
*
<e1> )
+ ((((p1
. 2)
- (p3
. 2))
*
<e2> )
+ (((p1
. 3)
- (p3
. 3))
*
<e3> )))
+ (((p3
. 1)
*
<e1> )
- ((p3
. 1)
*
<e1> )))
+ ((p3
. 2)
*
<e2> ))
+ ((p3
. 3)
*
<e3> )) by
RVSUM_1: 15;
then (((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
= ((((((p1
. 1)
*
<e1> )
+ ((((p1
. 2)
- (p3
. 2))
*
<e2> )
+ (((p1
. 3)
- (p3
. 3))
*
<e3> )))
+ (
0.REAL 3))
+ ((p3
. 2)
*
<e2> ))
+ ((p3
. 3)
*
<e3> )) by
RVSUM_1: 37;
then (((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
= (((((p1
. 1)
*
<e1> )
+ ((((p1
. 2)
- (p3
. 2))
*
<e2> )
+ (((p1
. 3)
- (p3
. 3))
*
<e3> )))
+ ((p3
. 2)
*
<e2> ))
+ ((p3
. 3)
*
<e3> )) by
EUCLID_4: 1;
then (((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
= ((((((p1
. 1)
*
<e1> )
+ (((p1
. 2)
- (p3
. 2))
*
<e2> ))
+ (((p1
. 3)
- (p3
. 3))
*
<e3> ))
+ ((p3
. 2)
*
<e2> ))
+ ((p3
. 3)
*
<e3> )) by
RVSUM_1: 15;
then (((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
= ((((((p1
. 1)
*
<e1> )
+ (((p1
. 2)
- (p3
. 2))
*
<e2> ))
+ (((p1
. 3)
*
<e3> )
- ((p3
. 3)
*
<e3> )))
+ ((p3
. 2)
*
<e2> ))
+ ((p3
. 3)
*
<e3> )) by
A1;
then (((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
= (((((((p1
. 1)
*
<e1> )
+ (((p1
. 2)
- (p3
. 2))
*
<e2> ))
+ ((p1
. 3)
*
<e3> ))
- ((p3
. 3)
*
<e3> ))
+ ((p3
. 2)
*
<e2> ))
+ ((p3
. 3)
*
<e3> )) by
RVSUM_1: 15;
then (((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
= (((((((p1
. 1)
*
<e1> )
+ (((p1
. 2)
- (p3
. 2))
*
<e2> ))
+ ((p1
. 3)
*
<e3> ))
+ ((p3
. 2)
*
<e2> ))
- ((p3
. 3)
*
<e3> ))
+ ((p3
. 3)
*
<e3> )) by
RVSUM_1: 15;
then (((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
= ((((((p1
. 1)
*
<e1> )
+ (((p1
. 2)
- (p3
. 2))
*
<e2> ))
+ ((p1
. 3)
*
<e3> ))
+ ((p3
. 2)
*
<e2> ))
+ (((p3
. 3)
*
<e3> )
- ((p3
. 3)
*
<e3> ))) by
RVSUM_1: 15;
then (((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
= ((((((p1
. 1)
*
<e1> )
+ (((p1
. 2)
- (p3
. 2))
*
<e2> ))
+ ((p1
. 3)
*
<e3> ))
+ ((p3
. 2)
*
<e2> ))
+ (
0.REAL 3)) by
RVSUM_1: 37;
then (((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
= (((((p1
. 1)
*
<e1> )
+ (((p1
. 2)
- (p3
. 2))
*
<e2> ))
+ ((p1
. 3)
*
<e3> ))
+ ((p3
. 2)
*
<e2> )) by
EUCLID_4: 1;
then (((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
= ((((p1
. 1)
*
<e1> )
+ (((p1
. 2)
- (p3
. 2))
*
<e2> ))
+ (((p1
. 3)
*
<e3> )
+ ((p3
. 2)
*
<e2> ))) by
RVSUM_1: 15;
then (((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
= ((((p1
. 1)
*
<e1> )
+ (((p1
. 2)
*
<e2> )
- ((p3
. 2)
*
<e2> )))
+ (((p1
. 3)
*
<e3> )
+ ((p3
. 2)
*
<e2> ))) by
A1;
then (((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
= (((((p1
. 1)
*
<e1> )
+ ((p1
. 2)
*
<e2> ))
+ (
- ((p3
. 2)
*
<e2> )))
+ (((p1
. 3)
*
<e3> )
+ ((p3
. 2)
*
<e2> ))) by
RVSUM_1: 15;
then (((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
= ((((((p1
. 1)
*
<e1> )
+ ((p1
. 2)
*
<e2> ))
- ((p3
. 2)
*
<e2> ))
+ ((p1
. 3)
*
<e3> ))
+ ((p3
. 2)
*
<e2> )) by
RVSUM_1: 15;
then (((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
= ((((((p1
. 1)
*
<e1> )
+ ((p1
. 2)
*
<e2> ))
+ ((p1
. 3)
*
<e3> ))
- ((p3
. 2)
*
<e2> ))
+ ((p3
. 2)
*
<e2> )) by
RVSUM_1: 15;
then (((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
= (((((p1
. 1)
*
<e1> )
+ ((p1
. 2)
*
<e2> ))
+ ((p1
. 3)
*
<e3> ))
+ (((p3
. 2)
*
<e2> )
- ((p3
. 2)
*
<e2> ))) by
RVSUM_1: 15;
then (((((p2
. 1)
+ (p3
. 1))
*
<e1> )
+ (((p2
. 2)
+ (p3
. 2))
*
<e2> ))
+ (((p2
. 3)
+ (p3
. 3))
*
<e3> ))
= (((((p1
. 1)
*
<e1> )
+ ((p1
. 2)
*
<e2> ))
+ ((p1
. 3)
*
<e3> ))
+ (
0.REAL 3)) by
RVSUM_1: 37;
hence thesis by
EUCLID_4: 1;
end;
hence thesis;
end;
definition
let f1,f2,f3 be
PartFunc of
REAL ,
REAL ;
::
EUCLID_8:def5
func
VFunc (f1,f2,f3) ->
Function of
REAL , (
REAL 3) means
:
Def5: for t holds (it
. t)
=
|[(f1
. t), (f2
. t), (f3
. t)]|;
existence
proof
defpred
P[
object,
object] means $2
=
|[(f1
. $1), (f2
. $1), (f3
. $1)]|;
A1: for x be
Element of
REAL holds ex y be
Element of (
REAL 3) st
P[x, y];
consider F be
Function of
REAL , (
REAL 3) such that
A2: for t be
Element of
REAL holds
P[t, (F
. t)] from
FUNCT_2:sch 3(
A1);
A3: for t be
Real holds
P[t, (F
. t)]
proof
let t be
Real;
reconsider t as
Element of
REAL by
XREAL_0:def 1;
P[t, (F
. t)] by
A2;
hence thesis;
end;
take F;
thus thesis by
A3;
end;
uniqueness
proof
let F,G be
Function of
REAL , (
REAL 3);
assume that
A4: for t holds (F
. t)
=
|[(f1
. t), (f2
. t), (f3
. t)]| and
A5: for t holds (G
. t)
=
|[(f1
. t), (f2
. t), (f3
. t)]|;
now
let t be
Element of
REAL ;
(F
. t)
=
|[(f1
. t), (f2
. t), (f3
. t)]| by
A4;
hence (F
. t)
= (G
. t) by
A5;
end;
hence thesis by
FUNCT_2: 63;
end;
end
theorem ::
EUCLID_8:48
((
VFunc (f1,f2,f3))
. t)
= ((((f1
. t)
*
<e1> )
+ ((f2
. t)
*
<e2> ))
+ ((f3
. t)
*
<e3> ))
proof
A1: (
<e1>
. 1)
= 1 & (
<e1>
. 2)
=
0 & (
<e1>
. 3)
=
0 by
FINSEQ_1: 45;
A2: (
<e2>
. 1)
=
0 & (
<e2>
. 2)
= 1 & (
<e2>
. 3)
=
0 by
FINSEQ_1: 45;
A3: (
<e3>
. 1)
=
0 & (
<e3>
. 2)
=
0 & (
<e3>
. 3)
= 1 by
FINSEQ_1: 45;
A4: ((((f1
. t)
*
<e1> )
+ ((f2
. t)
*
<e2> ))
+ ((f3
. t)
*
<e3> ))
= ((
|[((f1
. t)
* 1), ((f1
. t)
*
0 ), ((f1
. t)
*
0 )]|
+ ((f2
. t)
*
<e2> ))
+ ((f3
. t)
*
<e3> )) by
A1,
Lm1
.= ((
|[(f1
. t),
0 ,
0 ]|
+
|[((f2
. t)
*
0 ), ((f2
. t)
* 1), ((f2
. t)
*
0 )]|)
+ ((f3
. t)
*
<e3> )) by
A2,
Lm1
.= ((
|[(f1
. t),
0 ,
0 ]|
+
|[
0 , (f2
. t),
0 ]|)
+
|[((f3
. t)
*
0 ), ((f3
. t)
*
0 ), ((f3
. t)
* 1)]|) by
A3,
Lm1
.= ((
|[(f1
. t),
0 ,
0 ]|
+
|[
0 , (f2
. t),
0 ]|)
+
|[
0 ,
0 , (f3
. t)]|);
A5: (
|[(f1
. t),
0 ,
0 ]|
. 1)
= (f1
. t) & (
|[(f1
. t),
0 ,
0 ]|
. 2)
=
0 & (
|[(f1
. t),
0 ,
0 ]|
. 3)
=
0 by
FINSEQ_1: 45;
A6: (
|[
0 , (f2
. t),
0 ]|
. 1)
=
0 & (
|[
0 , (f2
. t),
0 ]|
. 2)
= (f2
. t) & (
|[
0 , (f2
. t),
0 ]|
. 3)
=
0 by
FINSEQ_1: 45;
A7: (
|[
0 ,
0 , (f3
. t)]|
. 1)
=
0 & (
|[
0 ,
0 , (f3
. t)]|
. 2)
=
0 & (
|[
0 ,
0 , (f3
. t)]|
. 3)
= (f3
. t) by
FINSEQ_1: 45;
A8: ((((f1
. t)
*
<e1> )
+ ((f2
. t)
*
<e2> ))
+ ((f3
. t)
*
<e3> ))
= (
|[((f1
. t)
+
0 ), (
0
+ (f2
. t)), (
0
+
0 )]|
+
|[
0 ,
0 , (f3
. t)]|) by
A4,
A5,
A6,
Lm2
.= (
|[(f1
. t), (f2
. t),
0 ]|
+
|[
0 ,
0 , (f3
. t)]|);
(
|[(f1
. t), (f2
. t),
0 ]|
. 1)
= (f1
. t) & (
|[(f1
. t), (f2
. t),
0 ]|
. 2)
= (f2
. t) & (
|[(f1
. t), (f2
. t),
0 ]|
. 3)
=
0 by
FINSEQ_1: 45;
then ((((f1
. t)
*
<e1> )
+ ((f2
. t)
*
<e2> ))
+ ((f3
. t)
*
<e3> ))
=
|[((f1
. t)
+
0 ), ((f2
. t)
+
0 ), (
0
+ (f3
. t))]| by
A7,
A8,
Lm2
.=
|[(f1
. t), (f2
. t), (f3
. t)]|;
hence ((
VFunc (f1,f2,f3))
. t)
= ((((f1
. t)
*
<e1> )
+ ((f2
. t)
*
<e2> ))
+ ((f3
. t)
*
<e3> )) by
Def5;
end;
theorem ::
EUCLID_8:49
Th41: p
= ((
VFunc (f1,f2,f3))
. t) iff (p
. 1)
= (f1
. t) & (p
. 2)
= (f2
. t) & (p
. 3)
= (f3
. t)
proof
thus p
= ((
VFunc (f1,f2,f3))
. t) implies (p
. 1)
= (f1
. t) & (p
. 2)
= (f2
. t) & (p
. 3)
= (f3
. t)
proof
assume p
= ((
VFunc (f1,f2,f3))
. t);
then p
=
|[(f1
. t), (f2
. t), (f3
. t)]| by
Def5;
hence thesis by
FINSEQ_1: 45;
end;
assume (p
. 1)
= (f1
. t) & (p
. 2)
= (f2
. t) & (p
. 3)
= (f3
. t);
then p
=
|[(f1
. t), (f2
. t), (f3
. t)]| by
Th1;
hence p
= ((
VFunc (f1,f2,f3))
. t) by
Def5;
end;
theorem ::
EUCLID_8:50
Th42: (
len p)
= 3 & (
dom p)
= (
Seg 3)
proof
p
=
|[(p
. 1), (p
. 2), (p
. 3)]| by
Th1;
hence thesis by
FINSEQ_1: 45,
FINSEQ_1: 89;
end;
theorem ::
EUCLID_8:51
Th43: (
mlt (p,q))
=
<*((p
. 1)
* (q
. 1)), ((p
. 2)
* (q
. 2)), ((p
. 3)
* (q
. 3))*>
proof
(
len p)
= 3 & (
len q)
= 3 by
Th42;
hence thesis by
EUCLID_5: 28;
end;
theorem ::
EUCLID_8:52
(r
* p)
=
|[(r
* (p
. 1)), (r
* (p
. 2)), (r
* (p
. 3))]| by
Lm1;
::$Canceled
theorem ::
EUCLID_8:54
(
len (
- p))
= (
len p)
proof
A1: (
len p)
= 3 by
Th42;
(
- p)
=
|[((
- p)
. 1), ((
- p)
. 2), ((
- p)
. 3)]| by
Th1;
hence thesis by
A1,
FINSEQ_1: 45;
end;
theorem ::
EUCLID_8:55
(p
+ q)
=
|[((p
. 1)
+ (q
. 1)), ((p
. 2)
+ (q
. 2)), ((p
. 3)
+ (q
. 3))]| by
Lm2;
theorem ::
EUCLID_8:56
(p
= ((
VFunc (f1,f2,f3))
. t1) & q
= ((
VFunc (g1,g2,g3))
. t2) & p
= q) implies ((f1
. t1)
= (g1
. t2) & (f2
. t1)
= (g2
. t2) & (f3
. t1)
= (g3
. t2))
proof
assume
A1: p
= ((
VFunc (f1,f2,f3))
. t1) & q
= ((
VFunc (g1,g2,g3))
. t2) & p
= q;
then
A2: (p
. 1)
= (f1
. t1) & (q
. 1)
= (g1
. t2) by
Th41;
A3: (p
. 2)
= (f2
. t1) & (q
. 2)
= (g2
. t2) by
A1,
Th41;
(p
. 3)
= (f3
. t1) & (q
. 3)
= (g3
. t2) by
A1,
Th41;
hence thesis by
A1,
A2,
A3;
end;
theorem ::
EUCLID_8:57
((f1
. t1)
= (g1
. t2) & (f2
. t1)
= (g2
. t2) & (f3
. t1)
= (g3
. t2)) implies ((
VFunc (f1,f2,f3))
. t1)
= ((
VFunc (g1,g2,g3))
. t2)
proof
assume
A1: (f1
. t1)
= (g1
. t2) & (f2
. t1)
= (g2
. t2) & (f3
. t1)
= (g3
. t2);
set p =
|[(f1
. t1), (f2
. t1), (f3
. t1)]|;
set q =
|[(g1
. t2), (g2
. t2), (g3
. t2)]|;
p
= ((
VFunc (f1,f2,f3))
. t1) & q
= ((
VFunc (g1,g2,g3))
. t2) by
Def5;
hence thesis by
A1;
end;
theorem ::
EUCLID_8:58
Th49: for r be
Real holds (r
* p)
=
|[(r
* (p
. 1)), (r
* (p
. 2)), (r
* (p
. 3))]|
proof
let r be
Real;
A1: ((r
* p)
. 1)
= (r
* (p
. 1)) by
RVSUM_1: 44;
A2: ((r
* p)
. 2)
= (r
* (p
. 2)) by
RVSUM_1: 44;
((r
* p)
. 3)
= (r
* (p
. 3)) by
RVSUM_1: 44;
hence (r
* p)
=
|[(r
* (p
. 1)), (r
* (p
. 2)), (r
* (p
. 3))]| by
A1,
A2,
Th1;
end;
theorem ::
EUCLID_8:59
Th50: for r be
Real holds (r
*
|[x, y, z]|)
=
|[(r
* x), (r
* y), (r
* z)]|
proof
let r be
Real;
set p =
|[x, y, z]|;
(r
* p)
=
|[(r
* (p
. 1)), (r
* (p
. 2)), (r
* (p
. 3))]| by
Th49
.=
|[(r
* x), (r
* (p
. 2)), (r
* (p
. 3))]| by
FINSEQ_1: 45
.=
|[(r
* x), (r
* y), (r
* (p
. 3))]| by
FINSEQ_1: 45
.=
|[(r
* x), (r
* y), (r
* z)]| by
FINSEQ_1: 45;
hence thesis;
end;
theorem ::
EUCLID_8:60
Th51: (
- p)
=
|[(
- (p
. 1)), (
- (p
. 2)), (
- (p
. 3))]|
proof
reconsider r = (
- 1) as
Element of
REAL by
XREAL_0:def 1;
(r
* p)
=
|[((
- 1)
* (p
. 1)), ((
- 1)
* (p
. 2)), ((
- 1)
* (p
. 3))]| by
Th49
.=
|[(
- (p
. 1)), (
- (p
. 2)), (
- (p
. 3))]|;
hence thesis;
end;
theorem ::
EUCLID_8:61
Th52: ((
- p)
. 1)
= (
- (p
. 1)) & ((
- p)
. 2)
= (
- (p
. 2)) & ((
- p)
. 3)
= (
- (p
. 3))
proof
(
- p)
=
|[(
- (p
. 1)), (
- (p
. 2)), (
- (p
. 3))]| by
Th51;
hence thesis by
FINSEQ_1: 45;
end;
theorem ::
EUCLID_8:62
(p1
- p2)
=
|[((p1
. 1)
- (p2
. 1)), ((p1
. 2)
- (p2
. 2)), ((p1
. 3)
- (p2
. 3))]|
proof
A1: ((
- p2)
. 1)
= (
- (p2
. 1)) by
Th52;
A2: ((
- p2)
. 2)
= (
- (p2
. 2)) by
Th52;
((
- p2)
. 3)
= (
- (p2
. 3)) by
Th52;
then (p1
+ (
- p2))
=
|[((p1
. 1)
+ (
- (p2
. 1))), ((p1
. 2)
+ (
- (p2
. 2))), ((p1
. 3)
+ (
- (p2
. 3)))]| by
A1,
A2,
Lm2;
hence thesis;
end;
theorem ::
EUCLID_8:63
|(p, q)|
= ((((p
. 1)
* (q
. 1))
+ ((p
. 2)
* (q
. 2)))
+ ((p
. 3)
* (q
. 3))) by
Lm5;
theorem ::
EUCLID_8:64
Th55:
|(p, p)|
= ((((p
. 1)
^2 )
+ ((p
. 2)
^2 ))
+ ((p
. 3)
^2 ))
proof
p
=
|[(p
. 1), (p
. 2), (p
. 3)]| by
Th1;
hence thesis by
Lm12;
end;
theorem ::
EUCLID_8:65
Th56:
|.p.|
= (
sqrt ((((p
. 1)
^2 )
+ ((p
. 2)
^2 ))
+ ((p
. 3)
^2 )))
proof
|.p.|
= (
sqrt (
Sum
<*((p
. 1)
* (p
. 1)), ((p
. 2)
* (p
. 2)), ((p
. 3)
* (p
. 3))*>)) by
Th43
.= (
sqrt ((((p
. 1)
^2 )
+ ((p
. 2)
^2 ))
+ ((p
. 3)
^2 ))) by
RVSUM_1: 78;
hence thesis;
end;
theorem ::
EUCLID_8:66
|.(r
* p).|
= (
|.r.|
* (
sqrt ((((p
. 1)
^2 )
+ ((p
. 2)
^2 ))
+ ((p
. 3)
^2 ))))
proof
|.(r
* p).|
= (
|.r.|
*
|.p.|) by
EUCLID: 11
.= (
|.r.|
* (
sqrt ((((p
. 1)
^2 )
+ ((p
. 2)
^2 ))
+ ((p
. 3)
^2 )))) by
Th56;
hence thesis;
end;
theorem ::
EUCLID_8:67
((r1
* p)
+ (r2
* p))
= ((r1
+ r2)
*
|[(p
. 1), (p
. 2), (p
. 3)]|)
proof
((r1
* p)
+ (r2
* p))
= ((r1
+ r2)
* p) by
RVSUM_1: 50;
hence thesis by
Th1;
end;
theorem ::
EUCLID_8:68
|((r
* p1), p2)|
= (r
*
|(p1, p2)|) by
RVSUM_1: 131;
theorem ::
EUCLID_8:69
((r1
* p)
- (r2
* p))
= ((r1
- r2)
*
|[(p
. 1), (p
. 2), (p
. 3)]|)
proof
((r1
* R)
- (r2
* R))
= ((r1
- r2)
* R)
proof
((r1
* R)
- (r2
* R))
= ((r1
* R)
+ (((
- 1)
* r2)
* R)) by
RVSUM_1: 49
.= ((r1
+ (
- r2))
* R) by
RVSUM_1: 50;
hence thesis;
end;
then ((r1
* p)
- (r2
* p))
= ((r1
- r2)
* p);
hence thesis by
Th1;
end;
theorem ::
EUCLID_8:70
|((r
* p), q)|
= (r
* ((((p
. 1)
* (q
. 1))
+ ((p
. 2)
* (q
. 2)))
+ ((p
. 3)
* (q
. 3))))
proof
|((r
* p), q)|
= (r
*
|(p, q)|) by
RVSUM_1: 131;
hence thesis by
Lm5;
end;
theorem ::
EUCLID_8:71
|(p, (
0.REAL 3))|
=
0
proof
(
0.REAL 3)
=
|[
0 ,
0 ,
0 ]| by
FINSEQ_2: 62;
hence thesis by
Th13;
end;
theorem ::
EUCLID_8:72
|((
- p1), p2)|
= (
-
|(p1, p2)|) by
RVSUM_1: 132;
theorem ::
EUCLID_8:73
|((
- p1), (
- p2))|
=
|(p1, p2)| by
RVSUM_1: 133;
theorem ::
EUCLID_8:74
|((p1
- p2), q)|
= (
|(p1, q)|
-
|(p2, q)|) by
RVSUM_1: 134;
theorem ::
EUCLID_8:75
|((p1
+ p2), q)|
= (
|(p1, q)|
+
|(p2, q)|) by
RVSUM_1: 130;
theorem ::
EUCLID_8:76
|(((r1
* p1)
+ (r2
* p2)), q)|
= ((r1
*
|(p1, q)|)
+ (r2
*
|(p2, q)|)) by
RVSUM_1: 135;
theorem ::
EUCLID_8:77
|((p1
+ p2), (q1
+ q2))|
= (((
|(p1, q1)|
+
|(p1, q2)|)
+
|(p2, q1)|)
+
|(p2, q2)|) by
RVSUM_1: 136;
theorem ::
EUCLID_8:78
|((p1
- p2), (q1
- q2))|
= (((
|(p1, q1)|
-
|(p1, q2)|)
-
|(p2, q1)|)
+
|(p2, q2)|) by
RVSUM_1: 137;
theorem ::
EUCLID_8:79
Th70:
|(p, p)|
=
0 iff p
= (
0.REAL 3)
proof
thus
|(p, p)|
=
0 implies p
= (
0.REAL 3)
proof
assume
|(p, p)|
=
0 ;
then (
Sum (
sqr p))
=
0 ;
hence thesis by
RVSUM_1: 91;
end;
assume p
= (
0.REAL 3);
then
A1: p
=
|[
0 ,
0 ,
0 ]| by
FINSEQ_2: 62;
then
A2: (p
. 1)
=
0 by
FINSEQ_1: 45;
A3: (p
. 2)
=
0 by
A1,
FINSEQ_1: 45;
(p
. 3)
=
0 by
A1,
FINSEQ_1: 45;
then
|(p, p)|
= (((
0
^2 )
+ (
0
^2 ))
+ (
0
^2 )) by
A2,
A3,
Th55;
hence
|(p, p)|
=
0 ;
end;
theorem ::
EUCLID_8:80
|.p.|
=
0 iff p
= (
0.REAL 3)
proof
thus
|.p.|
=
0 implies p
= (
0.REAL 3)
proof
assume
A1:
|.p.|
=
0 ;
|(p, p)|
>=
0 by
RVSUM_1: 119;
then ((
sqrt
|(p, p)|)
^2 )
=
|(p, p)| by
SQUARE_1:def 2;
hence thesis by
A1,
Th70;
end;
assume p
= (
0.REAL 3);
then
A2: p
=
|[
0 ,
0 ,
0 ]| by
FINSEQ_2: 62;
then
A3: (p
. 1)
=
0 by
FINSEQ_1: 45;
A4: (p
. 2)
=
0 by
A2,
FINSEQ_1: 45;
(p
. 3)
=
0 by
A2,
FINSEQ_1: 45;
then
|(p, p)|
= (((
0
^2 )
+ (
0
^2 ))
+ (
0
^2 )) by
A3,
A4,
Th55;
hence thesis by
SQUARE_1: 17;
end;
theorem ::
EUCLID_8:81
|((p
- q), (p
- q))|
= ((
|(p, p)|
- (2
*
|(p, q)|))
+
|(q, q)|) by
RVSUM_1: 139;
theorem ::
EUCLID_8:82
|((p
+ q), (p
+ q))|
= ((
|(p, p)|
+ (2
*
|(p, q)|))
+
|(q, q)|) by
RVSUM_1: 138;
theorem ::
EUCLID_8:83
Th74: (p1
<X> p2)
= (
- (p2
<X> p1))
proof
(
- (p2
<X> p1))
=
|[((
- 1)
* (((p2
. 2)
* (p1
. 3))
- ((p2
. 3)
* (p1
. 2)))), ((
- 1)
* (((p2
. 3)
* (p1
. 1))
- ((p2
. 1)
* (p1
. 3)))), ((
- 1)
* (((p2
. 1)
* (p1
. 2))
- ((p2
. 2)
* (p1
. 1))))]| by
Th50
.= (p1
<X> p2);
hence thesis;
end;
theorem ::
EUCLID_8:84
Th75: (
|[x1, x2, x3]|
<X>
|[y1, y2, y3]|)
=
|[((x2
* y3)
- (x3
* y2)), ((x3
* y1)
- (x1
* y3)), ((x1
* y2)
- (x2
* y1))]|
proof
set p1 =
|[x1, x2, x3]|;
A1: (p1
. 1)
= x1 & (p1
. 2)
= x2 & (p1
. 3)
= x3 by
FINSEQ_1: 45;
set p2 =
|[y1, y2, y3]|;
(p2
. 1)
= y1 & (p2
. 2)
= y2 & (p2
. 3)
= y3 by
FINSEQ_1: 45;
hence thesis by
A1;
end;
theorem ::
EUCLID_8:85
((r
* p1)
<X> p2)
= (r
* (p1
<X> p2)) & ((r
* p1)
<X> p2)
= (p1
<X> (r
* p2))
proof
A1: ((r
* p1)
<X> p2)
= (
|[(r
* (p1
. 1)), (r
* (p1
. 2)), (r
* (p1
. 3))]|
<X> p2) by
Th49
.= (
|[(r
* (p1
. 1)), (r
* (p1
. 2)), (r
* (p1
. 3))]|
<X>
|[(p2
. 1), (p2
. 2), (p2
. 3)]|) by
Th1
.=
|[(((r
* (p1
. 2))
* (p2
. 3))
- ((r
* (p1
. 3))
* (p2
. 2))), (((r
* (p1
. 3))
* (p2
. 1))
- ((r
* (p1
. 1))
* (p2
. 3))), (((r
* (p1
. 1))
* (p2
. 2))
- ((r
* (p1
. 2))
* (p2
. 1)))]| by
Th75;
then
A2: ((r
* p1)
<X> p2)
=
|[(r
* (((p1
. 2)
* (p2
. 3))
- ((p1
. 3)
* (p2
. 2)))), (r
* (((p1
. 3)
* (p2
. 1))
- ((p1
. 1)
* (p2
. 3)))), (r
* (((p1
. 1)
* (p2
. 2))
- ((p1
. 2)
* (p2
. 1))))]|
.= (r
* (p1
<X> p2)) by
Th50;
((r
* p1)
<X> p2)
=
|[(((p1
. 2)
* (r
* (p2
. 3)))
- ((p1
. 3)
* (r
* (p2
. 2)))), (((p1
. 3)
* (r
* (p2
. 1)))
- ((p1
. 1)
* (r
* (p2
. 3)))), (((p1
. 1)
* (r
* (p2
. 2)))
- ((p1
. 2)
* (r
* (p2
. 1))))]| by
A1
.= (
|[(p1
. 1), (p1
. 2), (p1
. 3)]|
<X>
|[(r
* (p2
. 1)), (r
* (p2
. 2)), (r
* (p2
. 3))]|) by
Th75
.= (p1
<X>
|[(r
* (p2
. 1)), (r
* (p2
. 2)), (r
* (p2
. 3))]|) by
Th1
.= (p1
<X> (r
* p2)) by
Th49;
hence thesis by
A2;
end;
theorem ::
EUCLID_8:86
Th77: (p1
<X> (p2
+ p3))
= ((p1
<X> p2)
+ (p1
<X> p3))
proof
A1: (p2
+ p3)
=
|[((p2
. 1)
+ (p3
. 1)), ((p2
. 2)
+ (p3
. 2)), ((p2
. 3)
+ (p3
. 3))]| by
Lm2;
then
A2: ((p2
+ p3)
. 1)
= ((p2
. 1)
+ (p3
. 1)) by
FINSEQ_1: 45;
A3: ((p2
+ p3)
. 2)
= ((p2
. 2)
+ (p3
. 2)) by
A1,
FINSEQ_1: 45;
A4: ((p2
+ p3)
. 3)
= ((p2
. 3)
+ (p3
. 3)) by
A1,
FINSEQ_1: 45;
((p1
<X> p2)
+ (p1
<X> p3))
=
|[((((p1
. 2)
* (p2
. 3))
- ((p1
. 3)
* (p2
. 2)))
+ (((p1
. 2)
* (p3
. 3))
- ((p1
. 3)
* (p3
. 2)))), ((((p1
. 3)
* (p2
. 1))
- ((p1
. 1)
* (p2
. 3)))
+ (((p1
. 3)
* (p3
. 1))
- ((p1
. 1)
* (p3
. 3)))), ((((p1
. 1)
* (p2
. 2))
- ((p1
. 2)
* (p2
. 1)))
+ (((p1
. 1)
* (p3
. 2))
- ((p1
. 2)
* (p3
. 1))))]| by
Lm8
.=
|[(((((p1
. 2)
* (p2
. 3))
- ((p1
. 3)
* (p2
. 2)))
+ ((p1
. 2)
* (p3
. 3)))
- ((p1
. 3)
* (p3
. 2))), (((((p1
. 3)
* (p2
. 1))
- ((p1
. 1)
* (p2
. 3)))
+ ((p1
. 3)
* (p3
. 1)))
- ((p1
. 1)
* (p3
. 3))), (((((p1
. 1)
* (p2
. 2))
- ((p1
. 2)
* (p2
. 1)))
+ ((p1
. 1)
* (p3
. 2)))
- ((p1
. 2)
* (p3
. 1)))]|;
hence thesis by
A2,
A3,
A4;
end;
theorem ::
EUCLID_8:87
Th78: ((p1
+ p2)
<X> p3)
= ((p1
<X> p3)
+ (p2
<X> p3))
proof
((p1
+ p2)
<X> p3)
= (
- (p3
<X> (p1
+ p2))) by
Th74
.= (
- ((p3
<X> p1)
+ (p3
<X> p2))) by
Th77
.= (
- ((p3
<X> p1)
- (p2
<X> p3))) by
Th74
.= ((
- (p3
<X> p1))
+ (p2
<X> p3)) by
RVSUM_1: 36;
hence thesis by
Th74;
end;
theorem ::
EUCLID_8:88
((p1
+ p2)
<X> (q1
+ q2))
= ((((p1
<X> q1)
+ (p1
<X> q2))
+ (p2
<X> q1))
+ (p2
<X> q2))
proof
((p1
+ p2)
<X> (q1
+ q2))
= ((p1
<X> (q1
+ q2))
+ (p2
<X> (q1
+ q2))) by
Th78;
then ((p1
+ p2)
<X> (q1
+ q2))
= (((p1
<X> q1)
+ (p1
<X> q2))
+ (p2
<X> (q1
+ q2))) by
Th77;
then ((p1
+ p2)
<X> (q1
+ q2))
= (((p1
<X> q1)
+ (p1
<X> q2))
+ ((p2
<X> q1)
+ (p2
<X> q2))) by
Th77;
hence thesis by
RVSUM_1: 15;
end;
theorem ::
EUCLID_8:89
(p1
<X> (p2
<X> p3))
= ((
|(p1, p3)|
* p2)
- (
|(p1, p2)|
* p3))
proof
A1: p2
=
|[(p2
. 1), (p2
. 2), (p2
. 3)]| by
Th1;
A2: p3
=
|[(p3
. 1), (p3
. 2), (p3
. 3)]| by
Th1;
(p1
<X> (p2
<X> p3))
= (
|[(p1
. 1), (p1
. 2), (p1
. 3)]|
<X>
|[(((p2
. 2)
* (p3
. 3))
- ((p2
. 3)
* (p3
. 2))), (((p2
. 3)
* (p3
. 1))
- ((p2
. 1)
* (p3
. 3))), (((p2
. 1)
* (p3
. 2))
- ((p2
. 2)
* (p3
. 1)))]|) by
Th1;
then (p1
<X> (p2
<X> p3))
=
|[(((p1
. 2)
* (((p2
. 1)
* (p3
. 2))
- ((p2
. 2)
* (p3
. 1))))
- ((p1
. 3)
* (((p2
. 3)
* (p3
. 1))
- ((p2
. 1)
* (p3
. 3))))), (((p1
. 3)
* (((p2
. 2)
* (p3
. 3))
- ((p2
. 3)
* (p3
. 2))))
- ((p1
. 1)
* (((p2
. 1)
* (p3
. 2))
- ((p2
. 2)
* (p3
. 1))))), (((p1
. 1)
* (((p2
. 3)
* (p3
. 1))
- ((p2
. 1)
* (p3
. 3))))
- ((p1
. 2)
* (((p2
. 2)
* (p3
. 3))
- ((p2
. 3)
* (p3
. 2)))))]| by
Th75;
then
A3: (p1
<X> (p2
<X> p3))
=
|[((((((p1
. 2)
* (p3
. 2))
+ ((p1
. 3)
* (p3
. 3)))
+ ((p1
. 1)
* (p3
. 1)))
* (p2
. 1))
- (((((p1
. 2)
* (p2
. 2))
+ ((p1
. 3)
* (p2
. 3)))
+ ((p1
. 1)
* (p2
. 1)))
* (p3
. 1))), ((((((p1
. 3)
* (p3
. 3))
+ ((p1
. 1)
* (p3
. 1)))
+ ((p1
. 2)
* (p3
. 2)))
* (p2
. 2))
- (((((p1
. 3)
* (p2
. 3))
+ ((p1
. 1)
* (p2
. 1)))
+ ((p1
. 2)
* (p2
. 2)))
* (p3
. 2))), ((((((p1
. 1)
* (p3
. 1))
+ ((p1
. 2)
* (p3
. 2)))
+ ((p1
. 3)
* (p3
. 3)))
* (p2
. 3))
- (((((p1
. 1)
* (p2
. 1))
+ ((p1
. 2)
* (p2
. 2)))
+ ((p1
. 3)
* (p2
. 3)))
* (p3
. 3)))]|;
|(p1, p3)|
= ((((p1
. 1)
* (p3
. 1))
+ ((p1
. 2)
* (p3
. 2)))
+ ((p1
. 3)
* (p3
. 3))) by
Lm5;
then
A4: (p1
<X> (p2
<X> p3))
= (
|[(
|(p1, p3)|
* (p2
. 1)), (
|(p1, p3)|
* (p2
. 2)), (
|(p1, p3)|
* (p2
. 3))]|
-
|[(((((p1
. 1)
* (p2
. 1))
+ ((p1
. 2)
* (p2
. 2)))
+ ((p1
. 3)
* (p2
. 3)))
* (p3
. 1)), (((((p1
. 1)
* (p2
. 1))
+ ((p1
. 2)
* (p2
. 2)))
+ ((p1
. 3)
* (p2
. 3)))
* (p3
. 2)), (((((p1
. 1)
* (p2
. 1))
+ ((p1
. 2)
* (p2
. 2)))
+ ((p1
. 3)
* (p2
. 3)))
* (p3
. 3))]|) by
A3,
Lm11;
|(p1, p2)|
= ((((p1
. 1)
* (p2
. 1))
+ ((p1
. 2)
* (p2
. 2)))
+ ((p1
. 3)
* (p2
. 3))) by
Lm5;
then (p1
<X> (p2
<X> p3))
= ((
|(p1, p3)|
*
|[(p2
. 1), (p2
. 2), (p2
. 3)]|)
-
|[(
|(p1, p2)|
* (p3
. 1)), (
|(p1, p2)|
* (p3
. 2)), (
|(p1, p2)|
* (p3
. 3))]|) by
A4,
Th50;
hence thesis by
A1,
A2,
Th50;
end;
definition
let p1, p2, p3;
::
EUCLID_8:def6
func
|{p1,p2,p3}| ->
Real equals
|(p1, (p2
<X> p3))|;
coherence ;
end
theorem ::
EUCLID_8:90
|{p1, p1, p2}|
=
0
proof
A1: ((p1
<X> p2)
. 1)
= (((p1
. 2)
* (p2
. 3))
- ((p1
. 3)
* (p2
. 2))) by
FINSEQ_1: 45;
A2: ((p1
<X> p2)
. 2)
= (((p1
. 3)
* (p2
. 1))
- ((p1
. 1)
* (p2
. 3))) by
FINSEQ_1: 45;
((p1
<X> p2)
. 3)
= (((p1
. 1)
* (p2
. 2))
- ((p1
. 2)
* (p2
. 1))) by
FINSEQ_1: 45;
then
|{p1, p1, p2}|
= ((((p1
. 1)
* (((p1
. 2)
* (p2
. 3))
- ((p1
. 3)
* (p2
. 2))))
+ ((p1
. 2)
* (((p1
. 3)
* (p2
. 1))
- ((p1
. 1)
* (p2
. 3)))))
+ ((p1
. 3)
* (((p1
. 1)
* (p2
. 2))
- ((p1
. 2)
* (p2
. 1))))) by
A2,
A1,
Lm5
.=
0 ;
hence thesis;
end;
theorem ::
EUCLID_8:91
|{p2, p1, p2}|
=
0
proof
A1: ((p1
<X> p2)
. 1)
= (((p1
. 2)
* (p2
. 3))
- ((p1
. 3)
* (p2
. 2))) by
FINSEQ_1: 45;
A2: ((p1
<X> p2)
. 2)
= (((p1
. 3)
* (p2
. 1))
- ((p1
. 1)
* (p2
. 3))) by
FINSEQ_1: 45;
((p1
<X> p2)
. 3)
= (((p1
. 1)
* (p2
. 2))
- ((p1
. 2)
* (p2
. 1))) by
FINSEQ_1: 45;
then
|{p2, p1, p2}|
= ((((p2
. 1)
* (((p1
. 2)
* (p2
. 3))
- ((p1
. 3)
* (p2
. 2))))
+ ((p2
. 2)
* (((p1
. 3)
* (p2
. 1))
- ((p1
. 1)
* (p2
. 3)))))
+ ((p2
. 3)
* (((p1
. 1)
* (p2
. 2))
- ((p1
. 2)
* (p2
. 1))))) by
A2,
A1,
Lm5
.=
0 ;
hence thesis;
end;
theorem ::
EUCLID_8:92
|{p1, p2, p2}|
=
0
proof
|{p1, p2, p2}|
= ((((p1
. 1)
* ((p2
<X> p2)
. 1))
+ ((p1
. 2)
* ((p2
<X> p2)
. 2)))
+ ((p1
. 3)
* ((p2
<X> p2)
. 3))) by
Lm5
.= ((((p1
. 1)
* (((p2
. 2)
* (p2
. 3))
- ((p2
. 3)
* (p2
. 2))))
+ ((p1
. 2)
* ((p2
<X> p2)
. 2)))
+ ((p1
. 3)
* ((p2
<X> p2)
. 3))) by
FINSEQ_1: 45
.= ((((p1
. 1)
* (((p2
. 2)
* (p2
. 3))
- ((p2
. 3)
* (p2
. 2))))
+ ((p1
. 2)
* (((p2
. 3)
* (p2
. 1))
- ((p2
. 1)
* (p2
. 3)))))
+ ((p1
. 3)
* ((p2
<X> p2)
. 3))) by
FINSEQ_1: 45
.= (((((p1
. 1)
* ((p2
. 2)
* (p2
. 3)))
- ((p1
. 1)
* ((p2
. 3)
* (p2
. 2))))
+ ((p1
. 2)
* (((p2
. 3)
* (p2
. 1))
- ((p2
. 1)
* (p2
. 3)))))
+ ((p1
. 3)
* (((p2
. 1)
* (p2
. 2))
- ((p2
. 2)
* (p2
. 1))))) by
FINSEQ_1: 45
.= ((
0
- ((p2
. 2)
* ((p2
. 1)
* (p2
. 3))))
+ ((p2
. 2)
* ((p2
. 1)
* (p2
. 3))));
hence thesis;
end;
theorem ::
EUCLID_8:93
Th84:
|{p1, p2, p3}|
=
|{p2, p3, p1}|
proof
|{p1, p2, p3}|
=
|(
|[(p1
. 1), (p1
. 2), (p1
. 3)]|,
|[(((p2
. 2)
* (p3
. 3))
- ((p2
. 3)
* (p3
. 2))), (((p2
. 3)
* (p3
. 1))
- ((p2
. 1)
* (p3
. 3))), (((p2
. 1)
* (p3
. 2))
- ((p2
. 2)
* (p3
. 1)))]|)| by
Th1
.= ((((p1
. 1)
* (((p2
. 2)
* (p3
. 3))
- ((p2
. 3)
* (p3
. 2))))
+ ((p1
. 2)
* (((p2
. 3)
* (p3
. 1))
- ((p2
. 1)
* (p3
. 3)))))
+ ((p1
. 3)
* (((p2
. 1)
* (p3
. 2))
- ((p2
. 2)
* (p3
. 1))))) by
EUCLID_5: 30
.= ((((p2
. 1)
* (((p3
. 2)
* (p1
. 3))
- ((p3
. 3)
* (p1
. 2))))
+ ((p2
. 2)
* (((p3
. 3)
* (p1
. 1))
- ((p3
. 1)
* (p1
. 3)))))
+ ((p2
. 3)
* (((p3
. 1)
* (p1
. 2))
- ((p3
. 2)
* (p1
. 1)))))
.=
|(
|[(p2
. 1), (p2
. 2), (p2
. 3)]|,
|[(((p3
. 2)
* (p1
. 3))
- ((p3
. 3)
* (p1
. 2))), (((p3
. 3)
* (p1
. 1))
- ((p3
. 1)
* (p1
. 3))), (((p3
. 1)
* (p1
. 2))
- ((p3
. 2)
* (p1
. 1)))]|)| by
EUCLID_5: 30
.=
|(p2, (p3
<X> p1))| by
Th1;
hence thesis;
end;
theorem ::
EUCLID_8:94
|{p1, p2, p3}|
=
|((p1
<X> p2), p3)|
proof
|{p1, p2, p3}|
=
|(
|[(p1
. 1), (p1
. 2), (p1
. 3)]|,
|[(((p2
. 2)
* (p3
. 3))
- ((p2
. 3)
* (p3
. 2))), (((p2
. 3)
* (p3
. 1))
- ((p2
. 1)
* (p3
. 3))), (((p2
. 1)
* (p3
. 2))
- ((p2
. 2)
* (p3
. 1)))]|)| by
Th1
.= ((((p1
. 1)
* (((p2
. 2)
* (p3
. 3))
- ((p2
. 3)
* (p3
. 2))))
+ ((p1
. 2)
* (((p2
. 3)
* (p3
. 1))
- ((p2
. 1)
* (p3
. 3)))))
+ ((p1
. 3)
* (((p2
. 1)
* (p3
. 2))
- ((p2
. 2)
* (p3
. 1))))) by
EUCLID_5: 30
.= (((((p2
. 2)
* ((p1
. 1)
* (p3
. 3)))
- ((p2
. 3)
* ((p1
. 1)
* (p3
. 2))))
+ (((p2
. 3)
* ((p1
. 2)
* (p3
. 1)))
- ((p2
. 1)
* ((p1
. 2)
* (p3
. 3)))))
+ (((p2
. 1)
* ((p1
. 3)
* (p3
. 2)))
- ((p2
. 2)
* ((p1
. 3)
* (p3
. 1)))));
then
|{p1, p2, p3}|
= ((((((p2
. 3)
* (p1
. 2))
- ((p2
. 2)
* (p1
. 3)))
* (p3
. 1))
+ ((((p2
. 1)
* (p1
. 3))
- ((p2
. 3)
* (p1
. 1)))
* (p3
. 2)))
+ ((((p2
. 2)
* (p1
. 1))
- ((p2
. 1)
* (p1
. 2)))
* (p3
. 3)))
.=
|((p1
<X> p2),
|[(p3
. 1), (p3
. 2), (p3
. 3)]|)| by
EUCLID_5: 30
.=
|((p1
<X> p2), p3)| by
Th1;
hence thesis;
end;
theorem ::
EUCLID_8:95
|{p1, p2, q}|
=
|((q
<X> p1), p2)|
proof
|{p1, p2, q}|
=
|{p2, q, p1}| by
Th84;
hence thesis;
end;
begin
definition
let f1,f2,f3 be
PartFunc of
REAL ,
REAL ;
let t0 be
Real;
::
EUCLID_8:def7
func
VFuncdiff (f1,f2,f3,t0) ->
Element of (
REAL 3) equals
|[(
diff (f1,t0)), (
diff (f2,t0)), (
diff (f3,t0))]|;
coherence ;
end
theorem ::
EUCLID_8:96
f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0 implies (
VFuncdiff (f1,f2,f3,t0))
= ((((
diff (f1,t0))
*
<e1> )
+ ((
diff (f2,t0))
*
<e2> ))
+ ((
diff (f3,t0))
*
<e3> )) by
Th31;
theorem ::
EUCLID_8:97
Th88: (f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0) & (g1
is_differentiable_in t0 & g2
is_differentiable_in t0 & g3
is_differentiable_in t0) implies (
VFuncdiff ((f1
+ g1),(f2
+ g2),(f3
+ g3),t0))
= ((
VFuncdiff (f1,f2,f3,t0))
+ (
VFuncdiff (g1,g2,g3,t0)))
proof
assume that
A1: f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0 and
A2: g1
is_differentiable_in t0 & g2
is_differentiable_in t0 & g3
is_differentiable_in t0;
set p =
|[(
diff (f1,t0)), (
diff (f2,t0)), (
diff (f3,t0))]|;
set q =
|[(
diff (g1,t0)), (
diff (g2,t0)), (
diff (g3,t0))]|;
A3: (p
. 1)
= (
diff (f1,t0)) & (p
. 2)
= (
diff (f2,t0)) & (p
. 3)
= (
diff (f3,t0)) by
FINSEQ_1: 45;
A4: (q
. 1)
= (
diff (g1,t0)) & (q
. 2)
= (
diff (g2,t0)) & (q
. 3)
= (
diff (g3,t0)) by
FINSEQ_1: 45;
(
VFuncdiff ((f1
+ g1),(f2
+ g2),(f3
+ g3),t0))
=
|[((
diff (f1,t0))
+ (
diff (g1,t0))), (
diff ((f2
+ g2),t0)), (
diff ((f3
+ g3),t0))]| by
A1,
A2,
FDIFF_1: 13
.=
|[((
diff (f1,t0))
+ (
diff (g1,t0))), ((
diff (f2,t0))
+ (
diff (g2,t0))), (
diff ((f3
+ g3),t0))]| by
A1,
A2,
FDIFF_1: 13
.=
|[((p
. 1)
+ (q
. 1)), ((p
. 2)
+ (q
. 2)), ((p
. 3)
+ (q
. 3))]| by
A1,
A2,
A3,
A4,
FDIFF_1: 13
.= ((
VFuncdiff (f1,f2,f3,t0))
+ (
VFuncdiff (g1,g2,g3,t0))) by
Lm2;
hence thesis;
end;
theorem ::
EUCLID_8:98
Th89: (f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0) & (g1
is_differentiable_in t0 & g2
is_differentiable_in t0 & g3
is_differentiable_in t0) implies (
VFuncdiff ((f1
- g1),(f2
- g2),(f3
- g3),t0))
= ((
VFuncdiff (f1,f2,f3,t0))
- (
VFuncdiff (g1,g2,g3,t0)))
proof
assume that
A1: f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0 and
A2: g1
is_differentiable_in t0 & g2
is_differentiable_in t0 & g3
is_differentiable_in t0;
set p =
|[(
diff (f1,t0)), (
diff (f2,t0)), (
diff (f3,t0))]|;
set q =
|[(
diff (g1,t0)), (
diff (g2,t0)), (
diff (g3,t0))]|;
A3: (p
. 1)
= (
diff (f1,t0)) & (p
. 2)
= (
diff (f2,t0)) & (p
. 3)
= (
diff (f3,t0)) by
FINSEQ_1: 45;
A4: (q
. 1)
= (
diff (g1,t0)) & (q
. 2)
= (
diff (g2,t0)) & (q
. 3)
= (
diff (g3,t0)) by
FINSEQ_1: 45;
(
VFuncdiff ((f1
- g1),(f2
- g2),(f3
- g3),t0))
=
|[((
diff (f1,t0))
- (
diff (g1,t0))), (
diff ((f2
- g2),t0)), (
diff ((f3
- g3),t0))]| by
A1,
A2,
FDIFF_1: 14
.=
|[((
diff (f1,t0))
- (
diff (g1,t0))), ((
diff (f2,t0))
- (
diff (g2,t0))), (
diff ((f3
- g3),t0))]| by
A1,
A2,
FDIFF_1: 14
.=
|[((p
. 1)
- (q
. 1)), ((p
. 2)
- (q
. 2)), ((p
. 3)
- (q
. 3))]| by
A1,
A2,
A3,
A4,
FDIFF_1: 14
.= ((
VFuncdiff (f1,f2,f3,t0))
- (
VFuncdiff (g1,g2,g3,t0))) by
Lm4;
hence thesis;
end;
theorem ::
EUCLID_8:99
Th90: (f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0) implies (
VFuncdiff ((r
(#) f1),(r
(#) f2),(r
(#) f3),t0))
= (r
* (
VFuncdiff (f1,f2,f3,t0)))
proof
assume
A1: f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0;
set p =
|[(
diff (f1,t0)), (
diff (f2,t0)), (
diff (f3,t0))]|;
A2: (p
. 1)
= (
diff (f1,t0)) & (p
. 2)
= (
diff (f2,t0)) & (p
. 3)
= (
diff (f3,t0)) by
FINSEQ_1: 45;
(
VFuncdiff ((r
(#) f1),(r
(#) f2),(r
(#) f3),t0))
=
|[(r
* (
diff (f1,t0))), (
diff ((r
(#) f2),t0)), (
diff ((r
(#) f3),t0))]| by
A1,
FDIFF_1: 15
.=
|[(r
* (
diff (f1,t0))), (r
* (
diff (f2,t0))), (
diff ((r
(#) f3),t0))]| by
A1,
FDIFF_1: 15
.=
|[(r
* (p
. 1)), (r
* (p
. 2)), (r
* (p
. 3))]| by
A1,
A2,
FDIFF_1: 15
.= (r
* (
VFuncdiff (f1,f2,f3,t0))) by
Lm1;
hence thesis;
end;
theorem ::
EUCLID_8:100
Th91: (f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0) & (g1
is_differentiable_in t0 & g2
is_differentiable_in t0 & g3
is_differentiable_in t0) implies (
VFuncdiff ((f1
(#) g1),(f2
(#) g2),(f3
(#) g3),t0))
= (
|[((g1
. t0)
* (
diff (f1,t0))), ((g2
. t0)
* (
diff (f2,t0))), ((g3
. t0)
* (
diff (f3,t0)))]|
+
|[((f1
. t0)
* (
diff (g1,t0))), ((f2
. t0)
* (
diff (g2,t0))), ((f3
. t0)
* (
diff (g3,t0)))]|)
proof
assume that
A1: f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0 and
A2: g1
is_differentiable_in t0 & g2
is_differentiable_in t0 & g3
is_differentiable_in t0;
set p =
|[((g1
. t0)
* (
diff (f1,t0))), ((g2
. t0)
* (
diff (f2,t0))), ((g3
. t0)
* (
diff (f3,t0)))]|;
set q =
|[((f1
. t0)
* (
diff (g1,t0))), ((f2
. t0)
* (
diff (g2,t0))), ((f3
. t0)
* (
diff (g3,t0)))]|;
A3: (p
. 1)
= ((g1
. t0)
* (
diff (f1,t0))) & (p
. 2)
= ((g2
. t0)
* (
diff (f2,t0))) & (p
. 3)
= ((g3
. t0)
* (
diff (f3,t0))) by
FINSEQ_1: 45;
A4: (q
. 1)
= ((f1
. t0)
* (
diff (g1,t0))) & (q
. 2)
= ((f2
. t0)
* (
diff (g2,t0))) & (q
. 3)
= ((f3
. t0)
* (
diff (g3,t0))) by
FINSEQ_1: 45;
(
VFuncdiff ((f1
(#) g1),(f2
(#) g2),(f3
(#) g3),t0))
=
|[(((g1
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g1,t0)))), (
diff ((f2
(#) g2),t0)), (
diff ((f3
(#) g3),t0))]| by
A1,
A2,
FDIFF_1: 16
.=
|[(((g1
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g1,t0)))), (((g2
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g2,t0)))), (
diff ((f3
(#) g3),t0))]| by
A1,
A2,
FDIFF_1: 16
.=
|[((p
. 1)
+ (q
. 1)), ((p
. 2)
+ (q
. 2)), ((p
. 3)
+ (q
. 3))]| by
A1,
A2,
A3,
A4,
FDIFF_1: 16
.= (
|[((g1
. t0)
* (
diff (f1,t0))), ((g2
. t0)
* (
diff (f2,t0))), ((g3
. t0)
* (
diff (f3,t0)))]|
+
|[((f1
. t0)
* (
diff (g1,t0))), ((f2
. t0)
* (
diff (g2,t0))), ((f3
. t0)
* (
diff (g3,t0)))]|) by
Lm2;
hence thesis;
end;
theorem ::
EUCLID_8:101
Th92: (f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0) & (g1
is_differentiable_in (f1
. t0) & g2
is_differentiable_in (f2
. t0) & g3
is_differentiable_in (f3
. t0)) implies (
VFuncdiff ((g1
* f1),(g2
* f2),(g3
* f3),t0))
=
|[((
diff (g1,(f1
. t0)))
* (
diff (f1,t0))), ((
diff (g2,(f2
. t0)))
* (
diff (f2,t0))), ((
diff (g3,(f3
. t0)))
* (
diff (f3,t0)))]|
proof
assume that
A1: f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0 and
A2: g1
is_differentiable_in (f1
. t0) & g2
is_differentiable_in (f2
. t0) & g3
is_differentiable_in (f3
. t0);
(
VFuncdiff ((g1
* f1),(g2
* f2),(g3
* f3),t0))
=
|[((
diff (g1,(f1
. t0)))
* (
diff (f1,t0))), (
diff ((g2
* f2),t0)), (
diff ((g3
* f3),t0))]| by
A1,
A2,
FDIFF_2: 13
.=
|[((
diff (g1,(f1
. t0)))
* (
diff (f1,t0))), ((
diff (g2,(f2
. t0)))
* (
diff (f2,t0))), (
diff ((g3
* f3),t0))]| by
A1,
A2,
FDIFF_2: 13
.=
|[((
diff (g1,(f1
. t0)))
* (
diff (f1,t0))), ((
diff (g2,(f2
. t0)))
* (
diff (f2,t0))), ((
diff (g3,(f3
. t0)))
* (
diff (f3,t0)))]| by
A1,
A2,
FDIFF_2: 13;
hence thesis;
end;
theorem ::
EUCLID_8:102
(f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0) & (g1
is_differentiable_in t0 & g2
is_differentiable_in t0 & g3
is_differentiable_in t0) & ((g1
. t0)
<>
0 & (g2
. t0)
<>
0 & (g3
. t0)
<>
0 ) implies (
VFuncdiff ((f1
/ g1),(f2
/ g2),(f3
/ g3),t0))
=
|[((((
diff (f1,t0))
* (g1
. t0))
- ((
diff (g1,t0))
* (f1
. t0)))
/ ((g1
. t0)
^2 )), ((((
diff (f2,t0))
* (g2
. t0))
- ((
diff (g2,t0))
* (f2
. t0)))
/ ((g2
. t0)
^2 )), ((((
diff (f3,t0))
* (g3
. t0))
- ((
diff (g3,t0))
* (f3
. t0)))
/ ((g3
. t0)
^2 ))]|
proof
assume that
A1: f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0 and
A2: g1
is_differentiable_in t0 & g2
is_differentiable_in t0 & g3
is_differentiable_in t0 and
A3: (g1
. t0)
<>
0 & (g2
. t0)
<>
0 & (g3
. t0)
<>
0 ;
(
VFuncdiff ((f1
/ g1),(f2
/ g2),(f3
/ g3),t0))
=
|[((((
diff (f1,t0))
* (g1
. t0))
- ((
diff (g1,t0))
* (f1
. t0)))
/ ((g1
. t0)
^2 )), (
diff ((f2
/ g2),t0)), (
diff ((f3
/ g3),t0))]| by
A1,
A2,
A3,
FDIFF_2: 14
.=
|[((((
diff (f1,t0))
* (g1
. t0))
- ((
diff (g1,t0))
* (f1
. t0)))
/ ((g1
. t0)
^2 )), ((((
diff (f2,t0))
* (g2
. t0))
- ((
diff (g2,t0))
* (f2
. t0)))
/ ((g2
. t0)
^2 )), (
diff ((f3
/ g3),t0))]| by
A1,
A2,
A3,
FDIFF_2: 14
.=
|[((((
diff (f1,t0))
* (g1
. t0))
- ((
diff (g1,t0))
* (f1
. t0)))
/ ((g1
. t0)
^2 )), ((((
diff (f2,t0))
* (g2
. t0))
- ((
diff (g2,t0))
* (f2
. t0)))
/ ((g2
. t0)
^2 )), ((((
diff (f3,t0))
* (g3
. t0))
- ((
diff (g3,t0))
* (f3
. t0)))
/ ((g3
. t0)
^2 ))]| by
A1,
A2,
A3,
FDIFF_2: 14;
hence thesis;
end;
theorem ::
EUCLID_8:103
Th94: (f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0) & ((f1
. t0)
<>
0 & (f2
. t0)
<>
0 & (f3
. t0)
<>
0 ) implies (
VFuncdiff ((f1
^ ),(f2
^ ),(f3
^ ),t0))
= (
-
|[((
diff (f1,t0))
/ ((f1
. t0)
^2 )), ((
diff (f2,t0))
/ ((f2
. t0)
^2 )), ((
diff (f3,t0))
/ ((f3
. t0)
^2 ))]|)
proof
assume that
A1: f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0 and
A2: (f1
. t0)
<>
0 & (f2
. t0)
<>
0 & (f3
. t0)
<>
0 ;
set p =
|[((
diff (f1,t0))
/ ((f1
. t0)
^2 )), ((
diff (f2,t0))
/ ((f2
. t0)
^2 )), ((
diff (f3,t0))
/ ((f3
. t0)
^2 ))]|;
A3: (p
. 1)
= ((
diff (f1,t0))
/ ((f1
. t0)
^2 )) & (p
. 2)
= ((
diff (f2,t0))
/ ((f2
. t0)
^2 )) & (p
. 3)
= ((
diff (f3,t0))
/ ((f3
. t0)
^2 )) by
FINSEQ_1: 45;
(
VFuncdiff ((f1
^ ),(f2
^ ),(f3
^ ),t0))
=
|[(
- ((
diff (f1,t0))
/ ((f1
. t0)
^2 ))), (
diff ((f2
^ ),t0)), (
diff ((f3
^ ),t0))]| by
A1,
A2,
FDIFF_2: 15
.=
|[(
- ((
diff (f1,t0))
/ ((f1
. t0)
^2 ))), (
- ((
diff (f2,t0))
/ ((f2
. t0)
^2 ))), (
diff ((f3
^ ),t0))]| by
A1,
A2,
FDIFF_2: 15
.=
|[(
- ((
diff (f1,t0))
/ ((f1
. t0)
^2 ))), (
- ((
diff (f2,t0))
/ ((f2
. t0)
^2 ))), (
- ((
diff (f3,t0))
/ ((f3
. t0)
^2 )))]| by
A1,
A2,
FDIFF_2: 15
.=
|[((
- 1)
* (p
. 1)), ((
- 1)
* (p
. 2)), ((
- 1)
* (p
. 3))]| by
A3
.= (
-
|[((
diff (f1,t0))
/ ((f1
. t0)
^2 )), ((
diff (f2,t0))
/ ((f2
. t0)
^2 )), ((
diff (f3,t0))
/ ((f3
. t0)
^2 ))]|) by
Lm1;
hence thesis;
end;
theorem ::
EUCLID_8:104
f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0 implies (
VFuncdiff ((r
(#) f1),(r
(#) f2),(r
(#) f3),t0))
= ((((r
* (
diff (f1,t0)))
*
<e1> )
+ ((r
* (
diff (f2,t0)))
*
<e2> ))
+ ((r
* (
diff (f3,t0)))
*
<e3> ))
proof
assume f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0;
then (
VFuncdiff ((r
(#) f1),(r
(#) f2),(r
(#) f3),t0))
= (r
* (
VFuncdiff (f1,f2,f3,t0))) by
Th90
.= (r
* ((((
diff (f1,t0))
*
<e1> )
+ ((
diff (f2,t0))
*
<e2> ))
+ ((
diff (f3,t0))
*
<e3> ))) by
Th31
.= (r
* ((
|[(
diff (f1,t0)),
0 ,
0 ]|
+ ((
diff (f2,t0))
*
<e2> ))
+ ((
diff (f3,t0))
*
<e3> ))) by
Th21
.= (r
* ((
|[(
diff (f1,t0)),
0 ,
0 ]|
+
|[
0 , (
diff (f2,t0)),
0 ]|)
+ ((
diff (f3,t0))
*
<e3> ))) by
Th22
.= (r
* ((
|[(
diff (f1,t0)),
0 ,
0 ]|
+
|[
0 , (
diff (f2,t0)),
0 ]|)
+
|[
0 ,
0 , (
diff (f3,t0))]|)) by
Th23
.= (r
* (
|[((
diff (f1,t0))
+
0 ), (
0
+ (
diff (f2,t0))), (
0
+
0 )]|
+
|[
0 ,
0 , (
diff (f3,t0))]|)) by
Lm8
.= (r
*
|[((
diff (f1,t0))
+
0 ), ((
diff (f2,t0))
+
0 ), (
0
+ (
diff (f3,t0)))]|) by
Lm8
.= ((((r
* (
diff (f1,t0)))
*
<e1> )
+ ((r
* (
diff (f2,t0)))
*
<e2> ))
+ ((r
* (
diff (f3,t0)))
*
<e3> )) by
Th32;
hence thesis;
end;
theorem ::
EUCLID_8:105
(f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0) & (g1
is_differentiable_in t0 & g2
is_differentiable_in t0 & g3
is_differentiable_in t0) implies (
VFuncdiff ((r
(#) (f1
+ g1)),(r
(#) (f2
+ g2)),(r
(#) (f3
+ g3)),t0))
= ((r
* (
VFuncdiff (f1,f2,f3,t0)))
+ (r
* (
VFuncdiff (g1,g2,g3,t0))))
proof
assume that
A1: f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0 and
A2: g1
is_differentiable_in t0 & g2
is_differentiable_in t0 & g3
is_differentiable_in t0;
(f1
+ g1)
is_differentiable_in t0 & (f2
+ g2)
is_differentiable_in t0 & (f3
+ g3)
is_differentiable_in t0 by
A1,
A2,
FDIFF_1: 13;
then (
VFuncdiff ((r
(#) (f1
+ g1)),(r
(#) (f2
+ g2)),(r
(#) (f3
+ g3)),t0))
= (r
* (
VFuncdiff ((f1
+ g1),(f2
+ g2),(f3
+ g3),t0))) by
Th90
.= (r
* ((
VFuncdiff (f1,f2,f3,t0))
+ (
VFuncdiff (g1,g2,g3,t0)))) by
A1,
A2,
Th88
.= ((r
* (
VFuncdiff (f1,f2,f3,t0)))
+ (r
* (
VFuncdiff (g1,g2,g3,t0)))) by
EUCLID_4: 6;
hence thesis;
end;
theorem ::
EUCLID_8:106
(f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0) & (g1
is_differentiable_in t0 & g2
is_differentiable_in t0 & g3
is_differentiable_in t0) implies (
VFuncdiff ((r
(#) (f1
- g1)),(r
(#) (f2
- g2)),(r
(#) (f3
- g3)),t0))
= ((r
* (
VFuncdiff (f1,f2,f3,t0)))
- (r
* (
VFuncdiff (g1,g2,g3,t0))))
proof
assume that
A1: f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0 and
A2: g1
is_differentiable_in t0 & g2
is_differentiable_in t0 & g3
is_differentiable_in t0;
(f1
- g1)
is_differentiable_in t0 & (f2
- g2)
is_differentiable_in t0 & (f3
- g3)
is_differentiable_in t0 by
A1,
A2,
FDIFF_1: 14;
then (
VFuncdiff ((r
(#) (f1
- g1)),(r
(#) (f2
- g2)),(r
(#) (f3
- g3)),t0))
= (r
* (
VFuncdiff ((f1
- g1),(f2
- g2),(f3
- g3),t0))) by
Th90
.= (r
* ((
VFuncdiff (f1,f2,f3,t0))
- (
VFuncdiff (g1,g2,g3,t0)))) by
A1,
A2,
Th89
.= ((r
* (
VFuncdiff (f1,f2,f3,t0)))
- (r
* (
VFuncdiff (g1,g2,g3,t0)))) by
EUCLIDLP: 12;
hence thesis;
end;
theorem ::
EUCLID_8:107
(f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0) & (g1
is_differentiable_in t0 & g2
is_differentiable_in t0 & g3
is_differentiable_in t0) implies (
VFuncdiff (((r
(#) f1)
(#) g1),((r
(#) f2)
(#) g2),((r
(#) f3)
(#) g3),t0))
= ((r
*
|[((g1
. t0)
* (
diff (f1,t0))), ((g2
. t0)
* (
diff (f2,t0))), ((g3
. t0)
* (
diff (f3,t0)))]|)
+ (r
*
|[((f1
. t0)
* (
diff (g1,t0))), ((f2
. t0)
* (
diff (g2,t0))), ((f3
. t0)
* (
diff (g3,t0)))]|))
proof
assume that
A1: f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0 and
A2: g1
is_differentiable_in t0 & g2
is_differentiable_in t0 & g3
is_differentiable_in t0;
(r
(#) f1)
is_differentiable_in t0 & (r
(#) f2)
is_differentiable_in t0 & (r
(#) f3)
is_differentiable_in t0 by
A1,
FDIFF_1: 15;
then (
VFuncdiff (((r
(#) f1)
(#) g1),((r
(#) f2)
(#) g2),((r
(#) f3)
(#) g3),t0))
= (
|[((g1
. t0)
* (
diff ((r
(#) f1),t0))), ((g2
. t0)
* (
diff ((r
(#) f2),t0))), ((g3
. t0)
* (
diff ((r
(#) f3),t0)))]|
+
|[(((r
(#) f1)
. t0)
* (
diff (g1,t0))), (((r
(#) f2)
. t0)
* (
diff (g2,t0))), (((r
(#) f3)
. t0)
* (
diff (g3,t0)))]|) by
A2,
Th91
.= (
|[((g1
. t0)
* (r
* (
diff (f1,t0)))), ((g2
. t0)
* (
diff ((r
(#) f2),t0))), ((g3
. t0)
* (
diff ((r
(#) f3),t0)))]|
+
|[(((r
(#) f1)
. t0)
* (
diff (g1,t0))), (((r
(#) f2)
. t0)
* (
diff (g2,t0))), (((r
(#) f3)
. t0)
* (
diff (g3,t0)))]|) by
A1,
FDIFF_1: 15
.= (
|[((g1
. t0)
* (r
* (
diff (f1,t0)))), ((g2
. t0)
* (r
* (
diff (f2,t0)))), ((g3
. t0)
* (
diff ((r
(#) f3),t0)))]|
+
|[(((r
(#) f1)
. t0)
* (
diff (g1,t0))), (((r
(#) f2)
. t0)
* (
diff (g2,t0))), (((r
(#) f3)
. t0)
* (
diff (g3,t0)))]|) by
A1,
FDIFF_1: 15
.= (
|[((g1
. t0)
* (r
* (
diff (f1,t0)))), ((g2
. t0)
* (r
* (
diff (f2,t0)))), ((g3
. t0)
* (r
* (
diff (f3,t0))))]|
+
|[(((r
(#) f1)
. t0)
* (
diff (g1,t0))), (((r
(#) f2)
. t0)
* (
diff (g2,t0))), (((r
(#) f3)
. t0)
* (
diff (g3,t0)))]|) by
A1,
FDIFF_1: 15
.= (
|[((g1
. t0)
* (r
* (
diff (f1,t0)))), ((g2
. t0)
* (r
* (
diff (f2,t0)))), ((g3
. t0)
* (r
* (
diff (f3,t0))))]|
+
|[((r
* (f1
. t0))
* (
diff (g1,t0))), (((r
(#) f2)
. t0)
* (
diff (g2,t0))), (((r
(#) f3)
. t0)
* (
diff (g3,t0)))]|) by
VALUED_1: 6
.= (
|[((g1
. t0)
* (r
* (
diff (f1,t0)))), ((g2
. t0)
* (r
* (
diff (f2,t0)))), ((g3
. t0)
* (r
* (
diff (f3,t0))))]|
+
|[((r
* (f1
. t0))
* (
diff (g1,t0))), ((r
* (f2
. t0))
* (
diff (g2,t0))), (((r
(#) f3)
. t0)
* (
diff (g3,t0)))]|) by
VALUED_1: 6
.= (
|[((g1
. t0)
* (r
* (
diff (f1,t0)))), ((g2
. t0)
* (r
* (
diff (f2,t0)))), ((g3
. t0)
* (r
* (
diff (f3,t0))))]|
+
|[((r
* (f1
. t0))
* (
diff (g1,t0))), ((r
* (f2
. t0))
* (
diff (g2,t0))), ((r
* (f3
. t0))
* (
diff (g3,t0)))]|) by
VALUED_1: 6
.= (
|[((g1
. t0)
* (r
* (
diff (f1,t0)))), ((g2
. t0)
* (r
* (
diff (f2,t0)))), ((g3
. t0)
* (r
* (
diff (f3,t0))))]|
+
|[(r
* ((f1
. t0)
* (
diff (g1,t0)))), (r
* ((f2
. t0)
* (
diff (g2,t0)))), (r
* ((f3
. t0)
* (
diff (g3,t0))))]|)
.= (
|[(r
* ((g1
. t0)
* (
diff (f1,t0)))), (r
* ((g2
. t0)
* (
diff (f2,t0)))), (r
* ((g3
. t0)
* (
diff (f3,t0))))]|
+ (r
*
|[((f1
. t0)
* (
diff (g1,t0))), ((f2
. t0)
* (
diff (g2,t0))), ((f3
. t0)
* (
diff (g3,t0)))]|)) by
Lm6
.= ((r
*
|[((g1
. t0)
* (
diff (f1,t0))), ((g2
. t0)
* (
diff (f2,t0))), ((g3
. t0)
* (
diff (f3,t0)))]|)
+ (r
*
|[((f1
. t0)
* (
diff (g1,t0))), ((f2
. t0)
* (
diff (g2,t0))), ((f3
. t0)
* (
diff (g3,t0)))]|)) by
Lm6;
hence thesis;
end;
theorem ::
EUCLID_8:108
(f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0) & (g1
is_differentiable_in (f1
. t0) & g2
is_differentiable_in (f2
. t0) & g3
is_differentiable_in (f3
. t0)) implies (
VFuncdiff (((r
(#) g1)
* f1),((r
(#) g2)
* f2),((r
(#) g3)
* f3),t0))
= (r
*
|[((
diff (g1,(f1
. t0)))
* (
diff (f1,t0))), ((
diff (g2,(f2
. t0)))
* (
diff (f2,t0))), ((
diff (g3,(f3
. t0)))
* (
diff (f3,t0)))]|)
proof
assume that
A1: f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0 and
A2: g1
is_differentiable_in (f1
. t0) & g2
is_differentiable_in (f2
. t0) & g3
is_differentiable_in (f3
. t0);
(r
(#) g1)
is_differentiable_in (f1
. t0) & (r
(#) g2)
is_differentiable_in (f2
. t0) & (r
(#) g3)
is_differentiable_in (f3
. t0) by
A2,
FDIFF_1: 15;
then (
VFuncdiff (((r
(#) g1)
* f1),((r
(#) g2)
* f2),((r
(#) g3)
* f3),t0))
=
|[((
diff ((r
(#) g1),(f1
. t0)))
* (
diff (f1,t0))), ((
diff ((r
(#) g2),(f2
. t0)))
* (
diff (f2,t0))), ((
diff ((r
(#) g3),(f3
. t0)))
* (
diff (f3,t0)))]| by
A1,
Th92
.=
|[((r
* (
diff (g1,(f1
. t0))))
* (
diff (f1,t0))), ((
diff ((r
(#) g2),(f2
. t0)))
* (
diff (f2,t0))), ((
diff ((r
(#) g3),(f3
. t0)))
* (
diff (f3,t0)))]| by
A2,
FDIFF_1: 15
.=
|[((r
* (
diff (g1,(f1
. t0))))
* (
diff (f1,t0))), ((r
* (
diff (g2,(f2
. t0))))
* (
diff (f2,t0))), ((
diff ((r
(#) g3),(f3
. t0)))
* (
diff (f3,t0)))]| by
A2,
FDIFF_1: 15
.=
|[((r
* (
diff (g1,(f1
. t0))))
* (
diff (f1,t0))), ((r
* (
diff (g2,(f2
. t0))))
* (
diff (f2,t0))), ((r
* (
diff (g3,(f3
. t0))))
* (
diff (f3,t0)))]| by
A2,
FDIFF_1: 15
.=
|[(r
* ((
diff (g1,(f1
. t0)))
* (
diff (f1,t0)))), (r
* ((
diff (g2,(f2
. t0)))
* (
diff (f2,t0)))), (r
* ((
diff (g3,(f3
. t0)))
* (
diff (f3,t0))))]|
.= (r
*
|[((
diff (g1,(f1
. t0)))
* (
diff (f1,t0))), ((
diff (g2,(f2
. t0)))
* (
diff (f2,t0))), ((
diff (g3,(f3
. t0)))
* (
diff (f3,t0)))]|) by
Lm6;
hence thesis;
end;
theorem ::
EUCLID_8:109
(f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0) & (g1
is_differentiable_in t0 & g2
is_differentiable_in t0 & g3
is_differentiable_in t0) & ((g1
. t0)
<>
0 & (g2
. t0)
<>
0 & (g3
. t0)
<>
0 ) implies (
VFuncdiff (((r
(#) f1)
/ g1),((r
(#) f2)
/ g2),((r
(#) f3)
/ g3),t0))
= (r
*
|[((((
diff (f1,t0))
* (g1
. t0))
- ((
diff (g1,t0))
* (f1
. t0)))
/ ((g1
. t0)
^2 )), ((((
diff (f2,t0))
* (g2
. t0))
- ((
diff (g2,t0))
* (f2
. t0)))
/ ((g2
. t0)
^2 )), ((((
diff (f3,t0))
* (g3
. t0))
- ((
diff (g3,t0))
* (f3
. t0)))
/ ((g3
. t0)
^2 ))]|)
proof
assume that
A1: f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0 and
A2: g1
is_differentiable_in t0 & g2
is_differentiable_in t0 & g3
is_differentiable_in t0 and
A3: (g1
. t0)
<>
0 & (g2
. t0)
<>
0 & (g3
. t0)
<>
0 ;
A4: (r
(#) f1)
is_differentiable_in t0 & (r
(#) f2)
is_differentiable_in t0 & (r
(#) f3)
is_differentiable_in t0 by
A1,
FDIFF_1: 15;
then (
VFuncdiff (((r
(#) f1)
/ g1),((r
(#) f2)
/ g2),((r
(#) f3)
/ g3),t0))
=
|[((((
diff ((r
(#) f1),t0))
* (g1
. t0))
- ((
diff (g1,t0))
* ((r
(#) f1)
. t0)))
/ ((g1
. t0)
^2 )), (
diff (((r
(#) f2)
/ g2),t0)), (
diff (((r
(#) f3)
/ g3),t0))]| by
A2,
A3,
FDIFF_2: 14
.=
|[((((
diff ((r
(#) f1),t0))
* (g1
. t0))
- ((
diff (g1,t0))
* ((r
(#) f1)
. t0)))
/ ((g1
. t0)
^2 )), ((((
diff ((r
(#) f2),t0))
* (g2
. t0))
- ((
diff (g2,t0))
* ((r
(#) f2)
. t0)))
/ ((g2
. t0)
^2 )), (
diff (((r
(#) f3)
/ g3),t0))]| by
A2,
A3,
A4,
FDIFF_2: 14
.=
|[((((
diff ((r
(#) f1),t0))
* (g1
. t0))
- ((
diff (g1,t0))
* ((r
(#) f1)
. t0)))
/ ((g1
. t0)
^2 )), ((((
diff ((r
(#) f2),t0))
* (g2
. t0))
- ((
diff (g2,t0))
* ((r
(#) f2)
. t0)))
/ ((g2
. t0)
^2 )), ((((
diff ((r
(#) f3),t0))
* (g3
. t0))
- ((
diff (g3,t0))
* ((r
(#) f3)
. t0)))
/ ((g3
. t0)
^2 ))]| by
A2,
A3,
A4,
FDIFF_2: 14
.=
|[((((r
* (
diff (f1,t0)))
* (g1
. t0))
- ((
diff (g1,t0))
* ((r
(#) f1)
. t0)))
/ ((g1
. t0)
^2 )), ((((
diff ((r
(#) f2),t0))
* (g2
. t0))
- ((
diff (g2,t0))
* ((r
(#) f2)
. t0)))
/ ((g2
. t0)
^2 )), ((((
diff ((r
(#) f3),t0))
* (g3
. t0))
- ((
diff (g3,t0))
* ((r
(#) f3)
. t0)))
/ ((g3
. t0)
^2 ))]| by
A1,
FDIFF_1: 15
.=
|[((((r
* (
diff (f1,t0)))
* (g1
. t0))
- ((
diff (g1,t0))
* ((r
(#) f1)
. t0)))
/ ((g1
. t0)
^2 )), ((((r
* (
diff (f2,t0)))
* (g2
. t0))
- ((
diff (g2,t0))
* ((r
(#) f2)
. t0)))
/ ((g2
. t0)
^2 )), ((((
diff ((r
(#) f3),t0))
* (g3
. t0))
- ((
diff (g3,t0))
* ((r
(#) f3)
. t0)))
/ ((g3
. t0)
^2 ))]| by
A1,
FDIFF_1: 15
.=
|[((((r
* (
diff (f1,t0)))
* (g1
. t0))
- ((
diff (g1,t0))
* ((r
(#) f1)
. t0)))
/ ((g1
. t0)
^2 )), ((((r
* (
diff (f2,t0)))
* (g2
. t0))
- ((
diff (g2,t0))
* ((r
(#) f2)
. t0)))
/ ((g2
. t0)
^2 )), ((((r
* (
diff (f3,t0)))
* (g3
. t0))
- ((
diff (g3,t0))
* ((r
(#) f3)
. t0)))
/ ((g3
. t0)
^2 ))]| by
A1,
FDIFF_1: 15
.=
|[((((r
* (
diff (f1,t0)))
* (g1
. t0))
- ((
diff (g1,t0))
* (r
* (f1
. t0))))
/ ((g1
. t0)
^2 )), ((((r
* (
diff (f2,t0)))
* (g2
. t0))
- ((
diff (g2,t0))
* ((r
(#) f2)
. t0)))
/ ((g2
. t0)
^2 )), ((((r
* (
diff (f3,t0)))
* (g3
. t0))
- ((
diff (g3,t0))
* ((r
(#) f3)
. t0)))
/ ((g3
. t0)
^2 ))]| by
VALUED_1: 6
.=
|[((((r
* (
diff (f1,t0)))
* (g1
. t0))
- ((
diff (g1,t0))
* (r
* (f1
. t0))))
/ ((g1
. t0)
^2 )), ((((r
* (
diff (f2,t0)))
* (g2
. t0))
- ((
diff (g2,t0))
* (r
* (f2
. t0))))
/ ((g2
. t0)
^2 )), ((((r
* (
diff (f3,t0)))
* (g3
. t0))
- ((
diff (g3,t0))
* ((r
(#) f3)
. t0)))
/ ((g3
. t0)
^2 ))]| by
VALUED_1: 6
.=
|[((((r
* (
diff (f1,t0)))
* (g1
. t0))
- ((
diff (g1,t0))
* (r
* (f1
. t0))))
/ ((g1
. t0)
^2 )), ((((r
* (
diff (f2,t0)))
* (g2
. t0))
- ((
diff (g2,t0))
* (r
* (f2
. t0))))
/ ((g2
. t0)
^2 )), ((((r
* (
diff (f3,t0)))
* (g3
. t0))
- ((
diff (g3,t0))
* (r
* (f3
. t0))))
/ ((g3
. t0)
^2 ))]| by
VALUED_1: 6
.=
|[((r
* (((
diff (f1,t0))
* (g1
. t0))
- ((
diff (g1,t0))
* (f1
. t0))))
/ ((g1
. t0)
^2 )), ((r
* (((
diff (f2,t0))
* (g2
. t0))
- ((
diff (g2,t0))
* (f2
. t0))))
/ ((g2
. t0)
^2 )), ((r
* (((
diff (f3,t0))
* (g3
. t0))
- ((
diff (g3,t0))
* (f3
. t0))))
/ ((g3
. t0)
^2 ))]|
.=
|[(r
* ((((
diff (f1,t0))
* (g1
. t0))
- ((
diff (g1,t0))
* (f1
. t0)))
/ ((g1
. t0)
^2 ))), ((r
* (((
diff (f2,t0))
* (g2
. t0))
- ((
diff (g2,t0))
* (f2
. t0))))
/ ((g2
. t0)
^2 )), ((r
* (((
diff (f3,t0))
* (g3
. t0))
- ((
diff (g3,t0))
* (f3
. t0))))
/ ((g3
. t0)
^2 ))]| by
XCMPLX_1: 74
.=
|[(r
* ((((
diff (f1,t0))
* (g1
. t0))
- ((
diff (g1,t0))
* (f1
. t0)))
/ ((g1
. t0)
^2 ))), (r
* ((((
diff (f2,t0))
* (g2
. t0))
- ((
diff (g2,t0))
* (f2
. t0)))
/ ((g2
. t0)
^2 ))), ((r
* (((
diff (f3,t0))
* (g3
. t0))
- ((
diff (g3,t0))
* (f3
. t0))))
/ ((g3
. t0)
^2 ))]| by
XCMPLX_1: 74
.=
|[(r
* ((((
diff (f1,t0))
* (g1
. t0))
- ((
diff (g1,t0))
* (f1
. t0)))
/ ((g1
. t0)
^2 ))), (r
* ((((
diff (f2,t0))
* (g2
. t0))
- ((
diff (g2,t0))
* (f2
. t0)))
/ ((g2
. t0)
^2 ))), (r
* ((((
diff (f3,t0))
* (g3
. t0))
- ((
diff (g3,t0))
* (f3
. t0)))
/ ((g3
. t0)
^2 )))]| by
XCMPLX_1: 74
.= (r
*
|[((((
diff (f1,t0))
* (g1
. t0))
- ((
diff (g1,t0))
* (f1
. t0)))
/ ((g1
. t0)
^2 )), ((((
diff (f2,t0))
* (g2
. t0))
- ((
diff (g2,t0))
* (f2
. t0)))
/ ((g2
. t0)
^2 )), ((((
diff (f3,t0))
* (g3
. t0))
- ((
diff (g3,t0))
* (f3
. t0)))
/ ((g3
. t0)
^2 ))]|) by
Lm6;
hence thesis;
end;
theorem ::
EUCLID_8:110
(f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0) & ((f1
. t0)
<>
0 & (f2
. t0)
<>
0 & (f3
. t0)
<>
0 ) & r
<>
0 implies (
VFuncdiff (((r
(#) f1)
^ ),((r
(#) f2)
^ ),((r
(#) f3)
^ ),t0))
= (
- ((1
/ r)
*
|[((
diff (f1,t0))
/ ((f1
. t0)
^2 )), ((
diff (f2,t0))
/ ((f2
. t0)
^2 )), ((
diff (f3,t0))
/ ((f3
. t0)
^2 ))]|))
proof
assume that
A1: f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0 and
A2: (f1
. t0)
<>
0 & (f2
. t0)
<>
0 & (f3
. t0)
<>
0 and
A3: r
<>
0 ;
A4: (r
(#) f1)
is_differentiable_in t0 & (r
(#) f2)
is_differentiable_in t0 & (r
(#) f3)
is_differentiable_in t0 by
A1,
FDIFF_1: 15;
A5: ((r
(#) f1)
. t0)
= (r
* (f1
. t0)) by
VALUED_1: 6;
A6: ((r
(#) f2)
. t0)
= (r
* (f2
. t0)) by
VALUED_1: 6;
A7: ((r
(#) f3)
. t0)
= (r
* (f3
. t0)) by
VALUED_1: 6;
then (
VFuncdiff (((r
(#) f1)
^ ),((r
(#) f2)
^ ),((r
(#) f3)
^ ),t0))
= (
-
|[((
diff ((r
(#) f1),t0))
/ (((r
(#) f1)
. t0)
^2 )), ((
diff ((r
(#) f2),t0))
/ (((r
(#) f2)
. t0)
^2 )), ((
diff ((r
(#) f3),t0))
/ (((r
(#) f3)
. t0)
^2 ))]|) by
A4,
A5,
A6,
A2,
A3,
Th94
.= (
-
|[((r
* (
diff (f1,t0)))
/ (((r
(#) f1)
. t0)
^2 )), ((
diff ((r
(#) f2),t0))
/ (((r
(#) f2)
. t0)
^2 )), ((
diff ((r
(#) f3),t0))
/ (((r
(#) f3)
. t0)
^2 ))]|) by
A1,
FDIFF_1: 15
.= (
-
|[((r
* (
diff (f1,t0)))
/ (((r
(#) f1)
. t0)
^2 )), ((r
* (
diff (f2,t0)))
/ (((r
(#) f2)
. t0)
^2 )), ((
diff ((r
(#) f3),t0))
/ (((r
(#) f3)
. t0)
^2 ))]|) by
A1,
FDIFF_1: 15
.= (
-
|[((r
* (
diff (f1,t0)))
/ (((r
(#) f1)
. t0)
^2 )), ((r
* (
diff (f2,t0)))
/ (((r
(#) f2)
. t0)
^2 )), ((r
* (
diff (f3,t0)))
/ (((r
(#) f3)
. t0)
^2 ))]|) by
A1,
FDIFF_1: 15
.= (
-
|[(r
* ((
diff (f1,t0))
/ (((r
(#) f1)
. t0)
^2 ))), ((r
* (
diff (f2,t0)))
/ (((r
(#) f2)
. t0)
^2 )), ((r
* (
diff (f3,t0)))
/ (((r
(#) f3)
. t0)
^2 ))]|) by
XCMPLX_1: 74
.= (
-
|[(r
* ((
diff (f1,t0))
/ (((r
(#) f1)
. t0)
^2 ))), (r
* ((
diff (f2,t0))
/ (((r
(#) f2)
. t0)
^2 ))), ((r
* (
diff (f3,t0)))
/ (((r
(#) f3)
. t0)
^2 ))]|) by
XCMPLX_1: 74
.= (
-
|[(r
* ((
diff (f1,t0))
/ (((r
(#) f1)
. t0)
^2 ))), (r
* ((
diff (f2,t0))
/ (((r
(#) f2)
. t0)
^2 ))), (r
* ((
diff (f3,t0))
/ (((r
(#) f3)
. t0)
^2 )))]|) by
XCMPLX_1: 74
.= (
- (r
*
|[((
diff (f1,t0))
/ ((r
^2 )
* ((f1
. t0)
^2 ))), ((
diff (f2,t0))
/ ((r
^2 )
* ((f2
. t0)
^2 ))), ((
diff (f3,t0))
/ ((r
^2 )
* ((f3
. t0)
^2 )))]|)) by
A7,
A6,
A5,
Lm6
.= (
- (r
*
|[(((
diff (f1,t0))
/ (r
^2 ))
/ ((f1
. t0)
^2 )), ((
diff (f2,t0))
/ ((r
^2 )
* ((f2
. t0)
^2 ))), ((
diff (f3,t0))
/ ((r
^2 )
* ((f3
. t0)
^2 )))]|)) by
XCMPLX_1: 78
.= (
- (r
*
|[(((
diff (f1,t0))
/ (r
^2 ))
/ ((f1
. t0)
^2 )), (((
diff (f2,t0))
/ (r
^2 ))
/ ((f2
. t0)
^2 )), ((
diff (f3,t0))
/ ((r
^2 )
* ((f3
. t0)
^2 )))]|)) by
XCMPLX_1: 78
.= (
- (r
*
|[(((
diff (f1,t0))
/ (r
^2 ))
/ ((f1
. t0)
^2 )), (((
diff (f2,t0))
/ (r
^2 ))
/ ((f2
. t0)
^2 )), (((
diff (f3,t0))
/ (r
^2 ))
/ ((f3
. t0)
^2 ))]|)) by
XCMPLX_1: 78
.= (
- (r
*
|[(((
diff (f1,t0))
/ ((f1
. t0)
^2 ))
/ (r
^2 )), (((
diff (f2,t0))
/ (r
^2 ))
/ ((f2
. t0)
^2 )), (((
diff (f3,t0))
/ (r
^2 ))
/ ((f3
. t0)
^2 ))]|)) by
XCMPLX_1: 48
.= (
- (r
*
|[(((
diff (f1,t0))
/ ((f1
. t0)
^2 ))
/ (r
^2 )), (((
diff (f2,t0))
/ ((f2
. t0)
^2 ))
/ (r
^2 )), (((
diff (f3,t0))
/ (r
^2 ))
/ ((f3
. t0)
^2 ))]|)) by
XCMPLX_1: 48
.= (
- (r
*
|[(((
diff (f1,t0))
/ ((f1
. t0)
^2 ))
/ (r
^2 )), (((
diff (f2,t0))
/ ((f2
. t0)
^2 ))
/ (r
^2 )), (((
diff (f3,t0))
/ ((f3
. t0)
^2 ))
/ (r
^2 ))]|)) by
XCMPLX_1: 48
.= (
- (r
*
|[(((
diff (f1,t0))
/ ((f1
. t0)
^2 ))
/ ((1
/ (r
^2 ))
" )), (((
diff (f2,t0))
/ ((f2
. t0)
^2 ))
/ (r
^2 )), (((
diff (f3,t0))
/ ((f3
. t0)
^2 ))
/ (r
^2 ))]|)) by
XCMPLX_1: 217
.= (
- (r
*
|[((1
/ (r
^2 ))
* ((
diff (f1,t0))
/ ((f1
. t0)
^2 ))), (((
diff (f2,t0))
/ ((f2
. t0)
^2 ))
/ (r
^2 )), (((
diff (f3,t0))
/ ((f3
. t0)
^2 ))
/ (r
^2 ))]|)) by
XCMPLX_1: 219
.= (
- (r
*
|[((1
/ (r
^2 ))
* ((
diff (f1,t0))
/ ((f1
. t0)
^2 ))), (((
diff (f2,t0))
/ ((f2
. t0)
^2 ))
/ ((1
/ (r
^2 ))
" )), (((
diff (f3,t0))
/ ((f3
. t0)
^2 ))
/ (r
^2 ))]|)) by
XCMPLX_1: 217
.= (
- (r
*
|[((1
/ (r
^2 ))
* ((
diff (f1,t0))
/ ((f1
. t0)
^2 ))), ((1
/ (r
^2 ))
* ((
diff (f2,t0))
/ ((f2
. t0)
^2 ))), (((
diff (f3,t0))
/ ((f3
. t0)
^2 ))
/ (r
^2 ))]|)) by
XCMPLX_1: 219
.= (
- (r
*
|[((1
/ (r
^2 ))
* ((
diff (f1,t0))
/ ((f1
. t0)
^2 ))), ((1
/ (r
^2 ))
* ((
diff (f2,t0))
/ ((f2
. t0)
^2 ))), (((
diff (f3,t0))
/ ((f3
. t0)
^2 ))
/ ((1
/ (r
^2 ))
" ))]|)) by
XCMPLX_1: 217
.= (
- (r
*
|[((1
/ (r
^2 ))
* ((
diff (f1,t0))
/ ((f1
. t0)
^2 ))), ((1
/ (r
^2 ))
* ((
diff (f2,t0))
/ ((f2
. t0)
^2 ))), ((1
/ (r
^2 ))
* ((
diff (f3,t0))
/ ((f3
. t0)
^2 )))]|)) by
XCMPLX_1: 219
.= (
- (r
* ((1
/ (r
^2 ))
*
|[((
diff (f1,t0))
/ ((f1
. t0)
^2 )), ((
diff (f2,t0))
/ ((f2
. t0)
^2 )), ((
diff (f3,t0))
/ ((f3
. t0)
^2 ))]|))) by
Lm6
.= (
- ((r
* (1
/ (r
^2 )))
*
|[((
diff (f1,t0))
/ ((f1
. t0)
^2 )), ((
diff (f2,t0))
/ ((f2
. t0)
^2 )), ((
diff (f3,t0))
/ ((f3
. t0)
^2 ))]|)) by
EUCLID_4: 4
.= (
- (((r
* 1)
/ (r
^2 ))
*
|[((
diff (f1,t0))
/ ((f1
. t0)
^2 )), ((
diff (f2,t0))
/ ((f2
. t0)
^2 )), ((
diff (f3,t0))
/ ((f3
. t0)
^2 ))]|)) by
XCMPLX_1: 74
.= (
- (((r
/ r)
/ r)
*
|[((
diff (f1,t0))
/ ((f1
. t0)
^2 )), ((
diff (f2,t0))
/ ((f2
. t0)
^2 )), ((
diff (f3,t0))
/ ((f3
. t0)
^2 ))]|)) by
XCMPLX_1: 78
.= (
- ((1
/ r)
*
|[((
diff (f1,t0))
/ ((f1
. t0)
^2 )), ((
diff (f2,t0))
/ ((f2
. t0)
^2 )), ((
diff (f3,t0))
/ ((f3
. t0)
^2 ))]|)) by
A3,
XCMPLX_1: 60;
hence thesis;
end;
theorem ::
EUCLID_8:111
(f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0) & (g1
is_differentiable_in t0 & g2
is_differentiable_in t0 & g3
is_differentiable_in t0) implies (
VFuncdiff (((f2
(#) g3)
- (f3
(#) g2)),((f3
(#) g1)
- (f1
(#) g3)),((f1
(#) g2)
- (f2
(#) g1)),t0))
= (
|[(((f2
. t0)
* (
diff (g3,t0)))
- ((f3
. t0)
* (
diff (g2,t0)))), (((f3
. t0)
* (
diff (g1,t0)))
- ((f1
. t0)
* (
diff (g3,t0)))), (((f1
. t0)
* (
diff (g2,t0)))
- ((f2
. t0)
* (
diff (g1,t0))))]|
+
|[(((
diff (f2,t0))
* (g3
. t0))
- ((
diff (f3,t0))
* (g2
. t0))), (((
diff (f3,t0))
* (g1
. t0))
- ((
diff (f1,t0))
* (g3
. t0))), (((
diff (f1,t0))
* (g2
. t0))
- ((
diff (f2,t0))
* (g1
. t0)))]|)
proof
assume that
A1: f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0 and
A2: g1
is_differentiable_in t0 & g2
is_differentiable_in t0 & g3
is_differentiable_in t0;
(f2
(#) g3)
is_differentiable_in t0 & (f3
(#) g2)
is_differentiable_in t0 & (f3
(#) g1)
is_differentiable_in t0 & (f1
(#) g3)
is_differentiable_in t0 & (f1
(#) g2)
is_differentiable_in t0 & (f2
(#) g1)
is_differentiable_in t0 by
A1,
A2,
FDIFF_1: 16;
then (
VFuncdiff (((f2
(#) g3)
- (f3
(#) g2)),((f3
(#) g1)
- (f1
(#) g3)),((f1
(#) g2)
- (f2
(#) g1)),t0))
= ((
VFuncdiff ((f2
(#) g3),(f3
(#) g1),(f1
(#) g2),t0))
- (
VFuncdiff ((f3
(#) g2),(f1
(#) g3),(f2
(#) g1),t0))) by
Th89
.= ((
|[((g3
. t0)
* (
diff (f2,t0))), ((g1
. t0)
* (
diff (f3,t0))), ((g2
. t0)
* (
diff (f1,t0)))]|
+
|[((f2
. t0)
* (
diff (g3,t0))), ((f3
. t0)
* (
diff (g1,t0))), ((f1
. t0)
* (
diff (g2,t0)))]|)
- (
VFuncdiff ((f3
(#) g2),(f1
(#) g3),(f2
(#) g1),t0))) by
A1,
A2,
Th91
.= ((
|[((g3
. t0)
* (
diff (f2,t0))), ((g1
. t0)
* (
diff (f3,t0))), ((g2
. t0)
* (
diff (f1,t0)))]|
+
|[((f2
. t0)
* (
diff (g3,t0))), ((f3
. t0)
* (
diff (g1,t0))), ((f1
. t0)
* (
diff (g2,t0)))]|)
- (
|[((g2
. t0)
* (
diff (f3,t0))), ((g3
. t0)
* (
diff (f1,t0))), ((g1
. t0)
* (
diff (f2,t0)))]|
+
|[((f3
. t0)
* (
diff (g2,t0))), ((f1
. t0)
* (
diff (g3,t0))), ((f2
. t0)
* (
diff (g1,t0)))]|)) by
A1,
A2,
Th91
.= ((
|[((g3
. t0)
* (
diff (f2,t0))), ((g1
. t0)
* (
diff (f3,t0))), ((g2
. t0)
* (
diff (f1,t0)))]|
-
|[((g2
. t0)
* (
diff (f3,t0))), ((g3
. t0)
* (
diff (f1,t0))), ((g1
. t0)
* (
diff (f2,t0)))]|)
+ (
|[((f2
. t0)
* (
diff (g3,t0))), ((f3
. t0)
* (
diff (g1,t0))), ((f1
. t0)
* (
diff (g2,t0)))]|
-
|[((f3
. t0)
* (
diff (g2,t0))), ((f1
. t0)
* (
diff (g3,t0))), ((f2
. t0)
* (
diff (g1,t0)))]|)) by
Lm10
.= (
|[(((g3
. t0)
* (
diff (f2,t0)))
- ((g2
. t0)
* (
diff (f3,t0)))), (((g1
. t0)
* (
diff (f3,t0)))
- ((g3
. t0)
* (
diff (f1,t0)))), (((g2
. t0)
* (
diff (f1,t0)))
- ((g1
. t0)
* (
diff (f2,t0))))]|
+ (
|[((f2
. t0)
* (
diff (g3,t0))), ((f3
. t0)
* (
diff (g1,t0))), ((f1
. t0)
* (
diff (g2,t0)))]|
-
|[((f3
. t0)
* (
diff (g2,t0))), ((f1
. t0)
* (
diff (g3,t0))), ((f2
. t0)
* (
diff (g1,t0)))]|)) by
Lm11
.= (
|[(((g3
. t0)
* (
diff (f2,t0)))
- ((g2
. t0)
* (
diff (f3,t0)))), (((g1
. t0)
* (
diff (f3,t0)))
- ((g3
. t0)
* (
diff (f1,t0)))), (((g2
. t0)
* (
diff (f1,t0)))
- ((g1
. t0)
* (
diff (f2,t0))))]|
+
|[(((f2
. t0)
* (
diff (g3,t0)))
- ((f3
. t0)
* (
diff (g2,t0)))), (((f3
. t0)
* (
diff (g1,t0)))
- ((f1
. t0)
* (
diff (g3,t0)))), (((f1
. t0)
* (
diff (g2,t0)))
- ((f2
. t0)
* (
diff (g1,t0))))]|) by
Lm11;
hence thesis;
end;
theorem ::
EUCLID_8:112
(f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0) & (g1
is_differentiable_in t0 & g2
is_differentiable_in t0 & g3
is_differentiable_in t0) & (h1
is_differentiable_in t0 & h2
is_differentiable_in t0 & h3
is_differentiable_in t0) implies (
VFuncdiff ((h1
(#) ((f2
(#) g3)
- (f3
(#) g2))),(h2
(#) ((f3
(#) g1)
- (f1
(#) g3))),(h3
(#) ((f1
(#) g2)
- (f2
(#) g1))),t0))
= ((
|[((
diff (h1,t0))
* (((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))), ((
diff (h2,t0))
* (((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))), ((
diff (h3,t0))
* (((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0))))]|
+
|[((h1
. t0)
* (((
diff (f2,t0))
* (g3
. t0))
- ((
diff (f3,t0))
* (g2
. t0)))), ((h2
. t0)
* (((
diff (f3,t0))
* (g1
. t0))
- ((
diff (f1,t0))
* (g3
. t0)))), ((h3
. t0)
* (((
diff (f1,t0))
* (g2
. t0))
- ((
diff (f2,t0))
* (g1
. t0))))]|)
+
|[((h1
. t0)
* (((f2
. t0)
* (
diff (g3,t0)))
- ((f3
. t0)
* (
diff (g2,t0))))), ((h2
. t0)
* (((f3
. t0)
* (
diff (g1,t0)))
- ((f1
. t0)
* (
diff (g3,t0))))), ((h3
. t0)
* (((f1
. t0)
* (
diff (g2,t0)))
- ((f2
. t0)
* (
diff (g1,t0)))))]|)
proof
assume that
A1: f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0 and
A2: g1
is_differentiable_in t0 & g2
is_differentiable_in t0 & g3
is_differentiable_in t0 and
A3: h1
is_differentiable_in t0 & h2
is_differentiable_in t0 & h3
is_differentiable_in t0;
A4: (f2
(#) g3)
is_differentiable_in t0 & (f3
(#) g2)
is_differentiable_in t0 & (f3
(#) g1)
is_differentiable_in t0 & (f1
(#) g3)
is_differentiable_in t0 & (f1
(#) g2)
is_differentiable_in t0 & (f2
(#) g1)
is_differentiable_in t0 by
A1,
A2,
FDIFF_1: 16;
then
A5: ((f2
(#) g3)
- (f3
(#) g2))
is_differentiable_in t0 & ((f3
(#) g1)
- (f1
(#) g3))
is_differentiable_in t0 & ((f1
(#) g2)
- (f2
(#) g1))
is_differentiable_in t0 by
FDIFF_1: 14;
then
A6: ((f2
(#) g3)
- (f3
(#) g2))
is_left_differentiable_in t0 by
FDIFF_3: 22;
A7: t0
in (
dom ((f2
(#) g3)
- (f3
(#) g2)))
proof
consider r such that
A8:
0
< r &
[.(t0
- r), t0.]
c= (
dom ((f2
(#) g3)
- (f3
(#) g2))) by
A6,
FDIFF_3:def 4;
(t0
- r)
<= t0 by
A8,
XREAL_1: 44;
then t0
in
[.(t0
- r), t0.];
hence thesis by
A8;
end;
A9: ((f3
(#) g1)
- (f1
(#) g3))
is_left_differentiable_in t0 by
A5,
FDIFF_3: 22;
A10: t0
in (
dom ((f3
(#) g1)
- (f1
(#) g3)))
proof
consider r1 such that
A11:
0
< r1 &
[.(t0
- r1), t0.]
c= (
dom ((f3
(#) g1)
- (f1
(#) g3))) by
A9,
FDIFF_3:def 4;
(t0
- r1)
<= t0 by
A11,
XREAL_1: 44;
then t0
in
[.(t0
- r1), t0.];
hence thesis by
A11;
end;
A12: ((f1
(#) g2)
- (f2
(#) g1))
is_left_differentiable_in t0 by
A5,
FDIFF_3: 22;
A13: t0
in (
dom ((f1
(#) g2)
- (f2
(#) g1)))
proof
consider r2 such that
A14:
0
< r2 &
[.(t0
- r2), t0.]
c= (
dom ((f1
(#) g2)
- (f2
(#) g1))) by
A12,
FDIFF_3:def 4;
(t0
- r2)
<= t0 by
A14,
XREAL_1: 44;
then t0
in
[.(t0
- r2), t0.];
hence thesis by
A14;
end;
(
VFuncdiff ((h1
(#) ((f2
(#) g3)
- (f3
(#) g2))),(h2
(#) ((f3
(#) g1)
- (f1
(#) g3))),(h3
(#) ((f1
(#) g2)
- (f2
(#) g1))),t0))
= (
|[((((f2
(#) g3)
- (f3
(#) g2))
. t0)
* (
diff (h1,t0))), ((((f3
(#) g1)
- (f1
(#) g3))
. t0)
* (
diff (h2,t0))), ((((f1
(#) g2)
- (f2
(#) g1))
. t0)
* (
diff (h3,t0)))]|
+
|[((h1
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0))), ((h2
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0))), ((h3
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0)))]|) by
A3,
A5,
Th91
.= (
|[((((f2
(#) g3)
- (f3
(#) g2))
. t0)
* (
diff (h1,t0))), ((((f3
(#) g1)
- (f1
(#) g3))
. t0)
* (
diff (h2,t0))), ((((f1
(#) g2)
- (f2
(#) g1))
. t0)
* (
diff (h3,t0)))]|
+
|[((h1
. t0)
* ((
diff ((f2
(#) g3),t0))
- (
diff ((f3
(#) g2),t0)))), ((h2
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0))), ((h3
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0)))]|) by
A4,
FDIFF_1: 14
.= (
|[((((f2
(#) g3)
- (f3
(#) g2))
. t0)
* (
diff (h1,t0))), ((((f3
(#) g1)
- (f1
(#) g3))
. t0)
* (
diff (h2,t0))), ((((f1
(#) g2)
- (f2
(#) g1))
. t0)
* (
diff (h3,t0)))]|
+
|[((h1
. t0)
* ((
diff ((f2
(#) g3),t0))
- (
diff ((f3
(#) g2),t0)))), ((h2
. t0)
* ((
diff ((f3
(#) g1),t0))
- (
diff ((f1
(#) g3),t0)))), ((h3
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0)))]|) by
A4,
FDIFF_1: 14
.= (
|[((((f2
(#) g3)
- (f3
(#) g2))
. t0)
* (
diff (h1,t0))), ((((f3
(#) g1)
- (f1
(#) g3))
. t0)
* (
diff (h2,t0))), ((((f1
(#) g2)
- (f2
(#) g1))
. t0)
* (
diff (h3,t0)))]|
+
|[((h1
. t0)
* ((
diff ((f2
(#) g3),t0))
- (
diff ((f3
(#) g2),t0)))), ((h2
. t0)
* ((
diff ((f3
(#) g1),t0))
- (
diff ((f1
(#) g3),t0)))), ((h3
. t0)
* ((
diff ((f1
(#) g2),t0))
- (
diff ((f2
(#) g1),t0))))]|) by
A4,
FDIFF_1: 14
.= (
|[((((f2
(#) g3)
- (f3
(#) g2))
. t0)
* (
diff (h1,t0))), ((((f3
(#) g1)
- (f1
(#) g3))
. t0)
* (
diff (h2,t0))), ((((f1
(#) g2)
- (f2
(#) g1))
. t0)
* (
diff (h3,t0)))]|
+
|[((h1
. t0)
* ((((g3
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g3,t0))))
- (
diff ((f3
(#) g2),t0)))), ((h2
. t0)
* ((
diff ((f3
(#) g1),t0))
- (
diff ((f1
(#) g3),t0)))), ((h3
. t0)
* ((
diff ((f1
(#) g2),t0))
- (
diff ((f2
(#) g1),t0))))]|) by
A1,
A2,
FDIFF_1: 16
.= (
|[((((f2
(#) g3)
- (f3
(#) g2))
. t0)
* (
diff (h1,t0))), ((((f3
(#) g1)
- (f1
(#) g3))
. t0)
* (
diff (h2,t0))), ((((f1
(#) g2)
- (f2
(#) g1))
. t0)
* (
diff (h3,t0)))]|
+
|[((h1
. t0)
* ((((g3
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g3,t0))))
- (((g2
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g2,t0)))))), ((h2
. t0)
* ((
diff ((f3
(#) g1),t0))
- (
diff ((f1
(#) g3),t0)))), ((h3
. t0)
* ((
diff ((f1
(#) g2),t0))
- (
diff ((f2
(#) g1),t0))))]|) by
A1,
A2,
FDIFF_1: 16
.= (
|[((((f2
(#) g3)
- (f3
(#) g2))
. t0)
* (
diff (h1,t0))), ((((f3
(#) g1)
- (f1
(#) g3))
. t0)
* (
diff (h2,t0))), ((((f1
(#) g2)
- (f2
(#) g1))
. t0)
* (
diff (h3,t0)))]|
+
|[((h1
. t0)
* ((((g3
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g3,t0))))
- (((g2
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g2,t0)))))), ((h2
. t0)
* ((((g1
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g1,t0))))
- (
diff ((f1
(#) g3),t0)))), ((h3
. t0)
* ((
diff ((f1
(#) g2),t0))
- (
diff ((f2
(#) g1),t0))))]|) by
A1,
A2,
FDIFF_1: 16
.= (
|[((((f2
(#) g3)
- (f3
(#) g2))
. t0)
* (
diff (h1,t0))), ((((f3
(#) g1)
- (f1
(#) g3))
. t0)
* (
diff (h2,t0))), ((((f1
(#) g2)
- (f2
(#) g1))
. t0)
* (
diff (h3,t0)))]|
+
|[((h1
. t0)
* ((((g3
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g3,t0))))
- (((g2
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g2,t0)))))), ((h2
. t0)
* ((((g1
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g1,t0))))
- (((g3
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g3,t0)))))), ((h3
. t0)
* ((
diff ((f1
(#) g2),t0))
- (
diff ((f2
(#) g1),t0))))]|) by
A1,
A2,
FDIFF_1: 16
.= (
|[((((f2
(#) g3)
- (f3
(#) g2))
. t0)
* (
diff (h1,t0))), ((((f3
(#) g1)
- (f1
(#) g3))
. t0)
* (
diff (h2,t0))), ((((f1
(#) g2)
- (f2
(#) g1))
. t0)
* (
diff (h3,t0)))]|
+
|[((h1
. t0)
* ((((g3
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g3,t0))))
- (((g2
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g2,t0)))))), ((h2
. t0)
* ((((g1
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g1,t0))))
- (((g3
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g3,t0)))))), ((h3
. t0)
* ((((g2
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g2,t0))))
- (
diff ((f2
(#) g1),t0))))]|) by
A1,
A2,
FDIFF_1: 16
.= (
|[((((f2
(#) g3)
- (f3
(#) g2))
. t0)
* (
diff (h1,t0))), ((((f3
(#) g1)
- (f1
(#) g3))
. t0)
* (
diff (h2,t0))), ((((f1
(#) g2)
- (f2
(#) g1))
. t0)
* (
diff (h3,t0)))]|
+
|[((h1
. t0)
* ((((g3
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g3,t0))))
- (((g2
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g2,t0)))))), ((h2
. t0)
* ((((g1
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g1,t0))))
- (((g3
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g3,t0)))))), ((h3
. t0)
* ((((g2
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g2,t0))))
- (((g1
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g1,t0))))))]|) by
A1,
A2,
FDIFF_1: 16
.= (
|[((((f2
(#) g3)
. t0)
- ((f3
(#) g2)
. t0))
* (
diff (h1,t0))), ((((f3
(#) g1)
- (f1
(#) g3))
. t0)
* (
diff (h2,t0))), ((((f1
(#) g2)
- (f2
(#) g1))
. t0)
* (
diff (h3,t0)))]|
+
|[((h1
. t0)
* ((((g3
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g3,t0))))
- (((g2
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g2,t0)))))), ((h2
. t0)
* ((((g1
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g1,t0))))
- (((g3
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g3,t0)))))), ((h3
. t0)
* ((((g2
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g2,t0))))
- (((g1
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g1,t0))))))]|) by
A7,
VALUED_1: 13
.= (
|[((((f2
. t0)
* (g3
. t0))
- ((f3
(#) g2)
. t0))
* (
diff (h1,t0))), ((((f3
(#) g1)
- (f1
(#) g3))
. t0)
* (
diff (h2,t0))), ((((f1
(#) g2)
- (f2
(#) g1))
. t0)
* (
diff (h3,t0)))]|
+
|[((h1
. t0)
* ((((g3
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g3,t0))))
- (((g2
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g2,t0)))))), ((h2
. t0)
* ((((g1
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g1,t0))))
- (((g3
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g3,t0)))))), ((h3
. t0)
* ((((g2
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g2,t0))))
- (((g1
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g1,t0))))))]|) by
VALUED_1: 5
.= (
|[((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h1,t0))), ((((f3
(#) g1)
- (f1
(#) g3))
. t0)
* (
diff (h2,t0))), ((((f1
(#) g2)
- (f2
(#) g1))
. t0)
* (
diff (h3,t0)))]|
+
|[((h1
. t0)
* ((((g3
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g3,t0))))
- (((g2
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g2,t0)))))), ((h2
. t0)
* ((((g1
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g1,t0))))
- (((g3
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g3,t0)))))), ((h3
. t0)
* ((((g2
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g2,t0))))
- (((g1
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g1,t0))))))]|) by
VALUED_1: 5
.= (
|[((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h1,t0))), ((((f3
(#) g1)
. t0)
- ((f1
(#) g3)
. t0))
* (
diff (h2,t0))), ((((f1
(#) g2)
- (f2
(#) g1))
. t0)
* (
diff (h3,t0)))]|
+
|[((h1
. t0)
* ((((g3
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g3,t0))))
- (((g2
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g2,t0)))))), ((h2
. t0)
* ((((g1
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g1,t0))))
- (((g3
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g3,t0)))))), ((h3
. t0)
* ((((g2
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g2,t0))))
- (((g1
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g1,t0))))))]|) by
A10,
VALUED_1: 13
.= (
|[((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h1,t0))), ((((f3
. t0)
* (g1
. t0))
- ((f1
(#) g3)
. t0))
* (
diff (h2,t0))), ((((f1
(#) g2)
- (f2
(#) g1))
. t0)
* (
diff (h3,t0)))]|
+
|[((h1
. t0)
* ((((g3
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g3,t0))))
- (((g2
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g2,t0)))))), ((h2
. t0)
* ((((g1
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g1,t0))))
- (((g3
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g3,t0)))))), ((h3
. t0)
* ((((g2
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g2,t0))))
- (((g1
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g1,t0))))))]|) by
VALUED_1: 5
.= (
|[((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h1,t0))), ((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h2,t0))), ((((f1
(#) g2)
- (f2
(#) g1))
. t0)
* (
diff (h3,t0)))]|
+
|[((h1
. t0)
* ((((g3
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g3,t0))))
- (((g2
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g2,t0)))))), ((h2
. t0)
* ((((g1
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g1,t0))))
- (((g3
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g3,t0)))))), ((h3
. t0)
* ((((g2
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g2,t0))))
- (((g1
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g1,t0))))))]|) by
VALUED_1: 5
.= (
|[((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h1,t0))), ((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h2,t0))), ((((f1
(#) g2)
. t0)
- ((f2
(#) g1)
. t0))
* (
diff (h3,t0)))]|
+
|[((h1
. t0)
* ((((g3
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g3,t0))))
- (((g2
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g2,t0)))))), ((h2
. t0)
* ((((g1
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g1,t0))))
- (((g3
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g3,t0)))))), ((h3
. t0)
* ((((g2
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g2,t0))))
- (((g1
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g1,t0))))))]|) by
A13,
VALUED_1: 13
.= (
|[((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h1,t0))), ((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h2,t0))), ((((f1
. t0)
* (g2
. t0))
- ((f2
(#) g1)
. t0))
* (
diff (h3,t0)))]|
+
|[((h1
. t0)
* ((((g3
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g3,t0))))
- (((g2
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g2,t0)))))), ((h2
. t0)
* ((((g1
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g1,t0))))
- (((g3
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g3,t0)))))), ((h3
. t0)
* ((((g2
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g2,t0))))
- (((g1
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g1,t0))))))]|) by
VALUED_1: 5
.= (
|[((
diff (h1,t0))
* (((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))), ((
diff (h2,t0))
* (((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))), ((
diff (h3,t0))
* (((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0))))]|
+
|[(((((h1
. t0)
* (g3
. t0))
* (
diff (f2,t0)))
- (((h1
. t0)
* (g2
. t0))
* (
diff (f3,t0))))
+ ((((h1
. t0)
* (f2
. t0))
* (
diff (g3,t0)))
- (((h1
. t0)
* (f3
. t0))
* (
diff (g2,t0))))), (((((h2
. t0)
* (g1
. t0))
* (
diff (f3,t0)))
- (((h2
. t0)
* (g3
. t0))
* (
diff (f1,t0))))
+ ((((h2
. t0)
* (f3
. t0))
* (
diff (g1,t0)))
- (((h2
. t0)
* (f1
. t0))
* (
diff (g3,t0))))), (((((h3
. t0)
* (g2
. t0))
* (
diff (f1,t0)))
- (((h3
. t0)
* (g1
. t0))
* (
diff (f2,t0))))
+ ((((h3
. t0)
* (f1
. t0))
* (
diff (g2,t0)))
- (((h3
. t0)
* (f2
. t0))
* (
diff (g1,t0)))))]|) by
VALUED_1: 5
.= (
|[((
diff (h1,t0))
* (((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))), ((
diff (h2,t0))
* (((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))), ((
diff (h3,t0))
* (((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0))))]|
+ (
|[((((h1
. t0)
* (g3
. t0))
* (
diff (f2,t0)))
- (((h1
. t0)
* (g2
. t0))
* (
diff (f3,t0)))), ((((h2
. t0)
* (g1
. t0))
* (
diff (f3,t0)))
- (((h2
. t0)
* (g3
. t0))
* (
diff (f1,t0)))), ((((h3
. t0)
* (g2
. t0))
* (
diff (f1,t0)))
- (((h3
. t0)
* (g1
. t0))
* (
diff (f2,t0))))]|
+
|[((((h1
. t0)
* (f2
. t0))
* (
diff (g3,t0)))
- (((h1
. t0)
* (f3
. t0))
* (
diff (g2,t0)))), ((((h2
. t0)
* (f3
. t0))
* (
diff (g1,t0)))
- (((h2
. t0)
* (f1
. t0))
* (
diff (g3,t0)))), ((((h3
. t0)
* (f1
. t0))
* (
diff (g2,t0)))
- (((h3
. t0)
* (f2
. t0))
* (
diff (g1,t0))))]|)) by
Lm8
.= ((
|[((
diff (h1,t0))
* (((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))), ((
diff (h2,t0))
* (((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))), ((
diff (h3,t0))
* (((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0))))]|
+
|[((h1
. t0)
* (((
diff (f2,t0))
* (g3
. t0))
- ((
diff (f3,t0))
* (g2
. t0)))), ((h2
. t0)
* (((
diff (f3,t0))
* (g1
. t0))
- ((
diff (f1,t0))
* (g3
. t0)))), ((h3
. t0)
* (((
diff (f1,t0))
* (g2
. t0))
- ((
diff (f2,t0))
* (g1
. t0))))]|)
+
|[((h1
. t0)
* (((f2
. t0)
* (
diff (g3,t0)))
- ((f3
. t0)
* (
diff (g2,t0))))), ((h2
. t0)
* (((f3
. t0)
* (
diff (g1,t0)))
- ((f1
. t0)
* (
diff (g3,t0))))), ((h3
. t0)
* (((f1
. t0)
* (
diff (g2,t0)))
- ((f2
. t0)
* (
diff (g1,t0)))))]|) by
RVSUM_1: 15;
hence thesis;
end;
theorem ::
EUCLID_8:113
(f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0) & (g1
is_differentiable_in t0 & g2
is_differentiable_in t0 & g3
is_differentiable_in t0) & (h1
is_differentiable_in t0 & h2
is_differentiable_in t0 & h3
is_differentiable_in t0) implies (
VFuncdiff ((((h2
(#) f2)
(#) g3)
- ((h3
(#) f3)
(#) g2)),(((h3
(#) f3)
(#) g1)
- ((h1
(#) f1)
(#) g3)),(((h1
(#) f1)
(#) g2)
- ((h2
(#) f2)
(#) g1)),t0))
= ((
|[((((h2
. t0)
* (f2
. t0))
* (
diff (g3,t0)))
- (((h3
. t0)
* (f3
. t0))
* (
diff (g2,t0)))), ((((h3
. t0)
* (f3
. t0))
* (
diff (g1,t0)))
- (((h1
. t0)
* (f1
. t0))
* (
diff (g3,t0)))), ((((h1
. t0)
* (f1
. t0))
* (
diff (g2,t0)))
- (((h2
. t0)
* (f2
. t0))
* (
diff (g1,t0))))]|
+
|[((((h2
. t0)
* (
diff (f2,t0)))
* (g3
. t0))
- (((h3
. t0)
* (
diff (f3,t0)))
* (g2
. t0))), ((((h3
. t0)
* (
diff (f3,t0)))
* (g1
. t0))
- (((h1
. t0)
* (
diff (f1,t0)))
* (g3
. t0))), ((((h1
. t0)
* (
diff (f1,t0)))
* (g2
. t0))
- (((h2
. t0)
* (
diff (f2,t0)))
* (g1
. t0)))]|)
+
|[((((
diff (h2,t0))
* (f2
. t0))
* (g3
. t0))
- (((
diff (h3,t0))
* (f3
. t0))
* (g2
. t0))), ((((
diff (h3,t0))
* (f3
. t0))
* (g1
. t0))
- (((
diff (h1,t0))
* (f1
. t0))
* (g3
. t0))), ((((
diff (h1,t0))
* (f1
. t0))
* (g2
. t0))
- (((
diff (h2,t0))
* (f2
. t0))
* (g1
. t0)))]|)
proof
assume that
A1: f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0 and
A2: g1
is_differentiable_in t0 & g2
is_differentiable_in t0 & g3
is_differentiable_in t0 and
A3: h1
is_differentiable_in t0 & h2
is_differentiable_in t0 & h3
is_differentiable_in t0;
A4: (h3
(#) f3)
is_differentiable_in t0 & (h1
(#) f1)
is_differentiable_in t0 & (h2
(#) f2)
is_differentiable_in t0 by
A1,
A3,
FDIFF_1: 16;
then
A5: ((h3
(#) f3)
(#) g1)
is_differentiable_in t0 & ((h3
(#) f3)
(#) g2)
is_differentiable_in t0 & ((h1
(#) f1)
(#) g2)
is_differentiable_in t0 & ((h1
(#) f1)
(#) g3)
is_differentiable_in t0 & ((h2
(#) f2)
(#) g3)
is_differentiable_in t0 & ((h2
(#) f2)
(#) g1)
is_differentiable_in t0 by
A2,
FDIFF_1: 16;
(
VFuncdiff ((((h2
(#) f2)
(#) g3)
- ((h3
(#) f3)
(#) g2)),(((h3
(#) f3)
(#) g1)
- ((h1
(#) f1)
(#) g3)),(((h1
(#) f1)
(#) g2)
- ((h2
(#) f2)
(#) g1)),t0))
= ((
VFuncdiff (((h2
(#) f2)
(#) g3),((h3
(#) f3)
(#) g1),((h1
(#) f1)
(#) g2),t0))
- (
VFuncdiff (((h3
(#) f3)
(#) g2),((h1
(#) f1)
(#) g3),((h2
(#) f2)
(#) g1),t0))) by
A5,
Th89
.= ((
|[((g3
. t0)
* (
diff ((h2
(#) f2),t0))), ((g1
. t0)
* (
diff ((h3
(#) f3),t0))), ((g2
. t0)
* (
diff ((h1
(#) f1),t0)))]|
+
|[(((h2
(#) f2)
. t0)
* (
diff (g3,t0))), (((h3
(#) f3)
. t0)
* (
diff (g1,t0))), (((h1
(#) f1)
. t0)
* (
diff (g2,t0)))]|)
- (
VFuncdiff (((h3
(#) f3)
(#) g2),((h1
(#) f1)
(#) g3),((h2
(#) f2)
(#) g1),t0))) by
A2,
A4,
Th91
.= ((
|[((g3
. t0)
* (
diff ((h2
(#) f2),t0))), ((g1
. t0)
* (
diff ((h3
(#) f3),t0))), ((g2
. t0)
* (
diff ((h1
(#) f1),t0)))]|
+
|[(((h2
(#) f2)
. t0)
* (
diff (g3,t0))), (((h3
(#) f3)
. t0)
* (
diff (g1,t0))), (((h1
(#) f1)
. t0)
* (
diff (g2,t0)))]|)
- (
|[((g2
. t0)
* (
diff ((h3
(#) f3),t0))), ((g3
. t0)
* (
diff ((h1
(#) f1),t0))), ((g1
. t0)
* (
diff ((h2
(#) f2),t0)))]|
+
|[(((h3
(#) f3)
. t0)
* (
diff (g2,t0))), (((h1
(#) f1)
. t0)
* (
diff (g3,t0))), (((h2
(#) f2)
. t0)
* (
diff (g1,t0)))]|)) by
A2,
A4,
Th91
.= ((
|[((g3
. t0)
* (((f2
. t0)
* (
diff (h2,t0)))
+ ((h2
. t0)
* (
diff (f2,t0))))), ((g1
. t0)
* (
diff ((h3
(#) f3),t0))), ((g2
. t0)
* (
diff ((h1
(#) f1),t0)))]|
+
|[(((h2
(#) f2)
. t0)
* (
diff (g3,t0))), (((h3
(#) f3)
. t0)
* (
diff (g1,t0))), (((h1
(#) f1)
. t0)
* (
diff (g2,t0)))]|)
- (
|[((g2
. t0)
* (
diff ((h3
(#) f3),t0))), ((g3
. t0)
* (
diff ((h1
(#) f1),t0))), ((g1
. t0)
* (
diff ((h2
(#) f2),t0)))]|
+
|[(((h3
(#) f3)
. t0)
* (
diff (g2,t0))), (((h1
(#) f1)
. t0)
* (
diff (g3,t0))), (((h2
(#) f2)
. t0)
* (
diff (g1,t0)))]|)) by
A1,
A3,
FDIFF_1: 16
.= ((
|[((g3
. t0)
* (((f2
. t0)
* (
diff (h2,t0)))
+ ((h2
. t0)
* (
diff (f2,t0))))), ((g1
. t0)
* (((f3
. t0)
* (
diff (h3,t0)))
+ ((h3
. t0)
* (
diff (f3,t0))))), ((g2
. t0)
* (
diff ((h1
(#) f1),t0)))]|
+
|[(((h2
(#) f2)
. t0)
* (
diff (g3,t0))), (((h3
(#) f3)
. t0)
* (
diff (g1,t0))), (((h1
(#) f1)
. t0)
* (
diff (g2,t0)))]|)
- (
|[((g2
. t0)
* (
diff ((h3
(#) f3),t0))), ((g3
. t0)
* (
diff ((h1
(#) f1),t0))), ((g1
. t0)
* (
diff ((h2
(#) f2),t0)))]|
+
|[(((h3
(#) f3)
. t0)
* (
diff (g2,t0))), (((h1
(#) f1)
. t0)
* (
diff (g3,t0))), (((h2
(#) f2)
. t0)
* (
diff (g1,t0)))]|)) by
A1,
A3,
FDIFF_1: 16
.= ((
|[((g3
. t0)
* (((f2
. t0)
* (
diff (h2,t0)))
+ ((h2
. t0)
* (
diff (f2,t0))))), ((g1
. t0)
* (((f3
. t0)
* (
diff (h3,t0)))
+ ((h3
. t0)
* (
diff (f3,t0))))), ((g2
. t0)
* (((f1
. t0)
* (
diff (h1,t0)))
+ ((h1
. t0)
* (
diff (f1,t0)))))]|
+
|[(((h2
(#) f2)
. t0)
* (
diff (g3,t0))), (((h3
(#) f3)
. t0)
* (
diff (g1,t0))), (((h1
(#) f1)
. t0)
* (
diff (g2,t0)))]|)
- (
|[((g2
. t0)
* (
diff ((h3
(#) f3),t0))), ((g3
. t0)
* (
diff ((h1
(#) f1),t0))), ((g1
. t0)
* (
diff ((h2
(#) f2),t0)))]|
+
|[(((h3
(#) f3)
. t0)
* (
diff (g2,t0))), (((h1
(#) f1)
. t0)
* (
diff (g3,t0))), (((h2
(#) f2)
. t0)
* (
diff (g1,t0)))]|)) by
A1,
A3,
FDIFF_1: 16
.= ((
|[((g3
. t0)
* (((f2
. t0)
* (
diff (h2,t0)))
+ ((h2
. t0)
* (
diff (f2,t0))))), ((g1
. t0)
* (((f3
. t0)
* (
diff (h3,t0)))
+ ((h3
. t0)
* (
diff (f3,t0))))), ((g2
. t0)
* (((f1
. t0)
* (
diff (h1,t0)))
+ ((h1
. t0)
* (
diff (f1,t0)))))]|
+
|[(((h2
. t0)
* (f2
. t0))
* (
diff (g3,t0))), (((h3
(#) f3)
. t0)
* (
diff (g1,t0))), (((h1
(#) f1)
. t0)
* (
diff (g2,t0)))]|)
- (
|[((g2
. t0)
* (
diff ((h3
(#) f3),t0))), ((g3
. t0)
* (
diff ((h1
(#) f1),t0))), ((g1
. t0)
* (
diff ((h2
(#) f2),t0)))]|
+
|[(((h3
(#) f3)
. t0)
* (
diff (g2,t0))), (((h1
(#) f1)
. t0)
* (
diff (g3,t0))), (((h2
(#) f2)
. t0)
* (
diff (g1,t0)))]|)) by
VALUED_1: 5
.= ((
|[((g3
. t0)
* (((f2
. t0)
* (
diff (h2,t0)))
+ ((h2
. t0)
* (
diff (f2,t0))))), ((g1
. t0)
* (((f3
. t0)
* (
diff (h3,t0)))
+ ((h3
. t0)
* (
diff (f3,t0))))), ((g2
. t0)
* (((f1
. t0)
* (
diff (h1,t0)))
+ ((h1
. t0)
* (
diff (f1,t0)))))]|
+
|[(((h2
. t0)
* (f2
. t0))
* (
diff (g3,t0))), (((h3
. t0)
* (f3
. t0))
* (
diff (g1,t0))), (((h1
(#) f1)
. t0)
* (
diff (g2,t0)))]|)
- (
|[((g2
. t0)
* (
diff ((h3
(#) f3),t0))), ((g3
. t0)
* (
diff ((h1
(#) f1),t0))), ((g1
. t0)
* (
diff ((h2
(#) f2),t0)))]|
+
|[(((h3
(#) f3)
. t0)
* (
diff (g2,t0))), (((h1
(#) f1)
. t0)
* (
diff (g3,t0))), (((h2
(#) f2)
. t0)
* (
diff (g1,t0)))]|)) by
VALUED_1: 5
.= ((
|[((g3
. t0)
* (((f2
. t0)
* (
diff (h2,t0)))
+ ((h2
. t0)
* (
diff (f2,t0))))), ((g1
. t0)
* (((f3
. t0)
* (
diff (h3,t0)))
+ ((h3
. t0)
* (
diff (f3,t0))))), ((g2
. t0)
* (((f1
. t0)
* (
diff (h1,t0)))
+ ((h1
. t0)
* (
diff (f1,t0)))))]|
+
|[(((h2
. t0)
* (f2
. t0))
* (
diff (g3,t0))), (((h3
. t0)
* (f3
. t0))
* (
diff (g1,t0))), (((h1
. t0)
* (f1
. t0))
* (
diff (g2,t0)))]|)
- (
|[((g2
. t0)
* (
diff ((h3
(#) f3),t0))), ((g3
. t0)
* (
diff ((h1
(#) f1),t0))), ((g1
. t0)
* (
diff ((h2
(#) f2),t0)))]|
+
|[(((h3
(#) f3)
. t0)
* (
diff (g2,t0))), (((h1
(#) f1)
. t0)
* (
diff (g3,t0))), (((h2
(#) f2)
. t0)
* (
diff (g1,t0)))]|)) by
VALUED_1: 5
.= ((
|[((g3
. t0)
* (((f2
. t0)
* (
diff (h2,t0)))
+ ((h2
. t0)
* (
diff (f2,t0))))), ((g1
. t0)
* (((f3
. t0)
* (
diff (h3,t0)))
+ ((h3
. t0)
* (
diff (f3,t0))))), ((g2
. t0)
* (((f1
. t0)
* (
diff (h1,t0)))
+ ((h1
. t0)
* (
diff (f1,t0)))))]|
+
|[(((h2
. t0)
* (f2
. t0))
* (
diff (g3,t0))), (((h3
. t0)
* (f3
. t0))
* (
diff (g1,t0))), (((h1
. t0)
* (f1
. t0))
* (
diff (g2,t0)))]|)
- (
|[((g2
. t0)
* (
diff ((h3
(#) f3),t0))), ((g3
. t0)
* (
diff ((h1
(#) f1),t0))), ((g1
. t0)
* (
diff ((h2
(#) f2),t0)))]|
+
|[(((h3
. t0)
* (f3
. t0))
* (
diff (g2,t0))), (((h1
(#) f1)
. t0)
* (
diff (g3,t0))), (((h2
(#) f2)
. t0)
* (
diff (g1,t0)))]|)) by
VALUED_1: 5
.= ((
|[((g3
. t0)
* (((f2
. t0)
* (
diff (h2,t0)))
+ ((h2
. t0)
* (
diff (f2,t0))))), ((g1
. t0)
* (((f3
. t0)
* (
diff (h3,t0)))
+ ((h3
. t0)
* (
diff (f3,t0))))), ((g2
. t0)
* (((f1
. t0)
* (
diff (h1,t0)))
+ ((h1
. t0)
* (
diff (f1,t0)))))]|
+
|[(((h2
. t0)
* (f2
. t0))
* (
diff (g3,t0))), (((h3
. t0)
* (f3
. t0))
* (
diff (g1,t0))), (((h1
. t0)
* (f1
. t0))
* (
diff (g2,t0)))]|)
- (
|[((g2
. t0)
* (
diff ((h3
(#) f3),t0))), ((g3
. t0)
* (
diff ((h1
(#) f1),t0))), ((g1
. t0)
* (
diff ((h2
(#) f2),t0)))]|
+
|[(((h3
. t0)
* (f3
. t0))
* (
diff (g2,t0))), (((h1
. t0)
* (f1
. t0))
* (
diff (g3,t0))), (((h2
(#) f2)
. t0)
* (
diff (g1,t0)))]|)) by
VALUED_1: 5
.= ((
|[((g3
. t0)
* (((f2
. t0)
* (
diff (h2,t0)))
+ ((h2
. t0)
* (
diff (f2,t0))))), ((g1
. t0)
* (((f3
. t0)
* (
diff (h3,t0)))
+ ((h3
. t0)
* (
diff (f3,t0))))), ((g2
. t0)
* (((f1
. t0)
* (
diff (h1,t0)))
+ ((h1
. t0)
* (
diff (f1,t0)))))]|
+
|[(((h2
. t0)
* (f2
. t0))
* (
diff (g3,t0))), (((h3
. t0)
* (f3
. t0))
* (
diff (g1,t0))), (((h1
. t0)
* (f1
. t0))
* (
diff (g2,t0)))]|)
- (
|[((g2
. t0)
* (
diff ((h3
(#) f3),t0))), ((g3
. t0)
* (
diff ((h1
(#) f1),t0))), ((g1
. t0)
* (
diff ((h2
(#) f2),t0)))]|
+
|[(((h3
. t0)
* (f3
. t0))
* (
diff (g2,t0))), (((h1
. t0)
* (f1
. t0))
* (
diff (g3,t0))), (((h2
. t0)
* (f2
. t0))
* (
diff (g1,t0)))]|)) by
VALUED_1: 5
.= ((
|[((g3
. t0)
* (((f2
. t0)
* (
diff (h2,t0)))
+ ((h2
. t0)
* (
diff (f2,t0))))), ((g1
. t0)
* (((f3
. t0)
* (
diff (h3,t0)))
+ ((h3
. t0)
* (
diff (f3,t0))))), ((g2
. t0)
* (((f1
. t0)
* (
diff (h1,t0)))
+ ((h1
. t0)
* (
diff (f1,t0)))))]|
+
|[(((h2
. t0)
* (f2
. t0))
* (
diff (g3,t0))), (((h3
. t0)
* (f3
. t0))
* (
diff (g1,t0))), (((h1
. t0)
* (f1
. t0))
* (
diff (g2,t0)))]|)
- (
|[((g2
. t0)
* (((f3
. t0)
* (
diff (h3,t0)))
+ ((h3
. t0)
* (
diff (f3,t0))))), ((g3
. t0)
* (
diff ((h1
(#) f1),t0))), ((g1
. t0)
* (
diff ((h2
(#) f2),t0)))]|
+
|[(((h3
. t0)
* (f3
. t0))
* (
diff (g2,t0))), (((h1
. t0)
* (f1
. t0))
* (
diff (g3,t0))), (((h2
. t0)
* (f2
. t0))
* (
diff (g1,t0)))]|)) by
A1,
A3,
FDIFF_1: 16
.= ((
|[((g3
. t0)
* (((f2
. t0)
* (
diff (h2,t0)))
+ ((h2
. t0)
* (
diff (f2,t0))))), ((g1
. t0)
* (((f3
. t0)
* (
diff (h3,t0)))
+ ((h3
. t0)
* (
diff (f3,t0))))), ((g2
. t0)
* (((f1
. t0)
* (
diff (h1,t0)))
+ ((h1
. t0)
* (
diff (f1,t0)))))]|
+
|[(((h2
. t0)
* (f2
. t0))
* (
diff (g3,t0))), (((h3
. t0)
* (f3
. t0))
* (
diff (g1,t0))), (((h1
. t0)
* (f1
. t0))
* (
diff (g2,t0)))]|)
- (
|[((g2
. t0)
* (((f3
. t0)
* (
diff (h3,t0)))
+ ((h3
. t0)
* (
diff (f3,t0))))), ((g3
. t0)
* (((f1
. t0)
* (
diff (h1,t0)))
+ ((h1
. t0)
* (
diff (f1,t0))))), ((g1
. t0)
* (
diff ((h2
(#) f2),t0)))]|
+
|[(((h3
. t0)
* (f3
. t0))
* (
diff (g2,t0))), (((h1
. t0)
* (f1
. t0))
* (
diff (g3,t0))), (((h2
. t0)
* (f2
. t0))
* (
diff (g1,t0)))]|)) by
A1,
A3,
FDIFF_1: 16
.= ((
|[((g3
. t0)
* (((f2
. t0)
* (
diff (h2,t0)))
+ ((h2
. t0)
* (
diff (f2,t0))))), ((g1
. t0)
* (((f3
. t0)
* (
diff (h3,t0)))
+ ((h3
. t0)
* (
diff (f3,t0))))), ((g2
. t0)
* (((f1
. t0)
* (
diff (h1,t0)))
+ ((h1
. t0)
* (
diff (f1,t0)))))]|
+
|[(((h2
. t0)
* (f2
. t0))
* (
diff (g3,t0))), (((h3
. t0)
* (f3
. t0))
* (
diff (g1,t0))), (((h1
. t0)
* (f1
. t0))
* (
diff (g2,t0)))]|)
- (
|[((g2
. t0)
* (((f3
. t0)
* (
diff (h3,t0)))
+ ((h3
. t0)
* (
diff (f3,t0))))), ((g3
. t0)
* (((f1
. t0)
* (
diff (h1,t0)))
+ ((h1
. t0)
* (
diff (f1,t0))))), ((g1
. t0)
* (((f2
. t0)
* (
diff (h2,t0)))
+ ((h2
. t0)
* (
diff (f2,t0)))))]|
+
|[(((h3
. t0)
* (f3
. t0))
* (
diff (g2,t0))), (((h1
. t0)
* (f1
. t0))
* (
diff (g3,t0))), (((h2
. t0)
* (f2
. t0))
* (
diff (g1,t0)))]|)) by
A1,
A3,
FDIFF_1: 16
.= (((
|[((g3
. t0)
* (((f2
. t0)
* (
diff (h2,t0)))
+ ((h2
. t0)
* (
diff (f2,t0))))), ((g1
. t0)
* (((f3
. t0)
* (
diff (h3,t0)))
+ ((h3
. t0)
* (
diff (f3,t0))))), ((g2
. t0)
* (((f1
. t0)
* (
diff (h1,t0)))
+ ((h1
. t0)
* (
diff (f1,t0)))))]|
+
|[(((h2
. t0)
* (f2
. t0))
* (
diff (g3,t0))), (((h3
. t0)
* (f3
. t0))
* (
diff (g1,t0))), (((h1
. t0)
* (f1
. t0))
* (
diff (g2,t0)))]|)
-
|[((g2
. t0)
* (((f3
. t0)
* (
diff (h3,t0)))
+ ((h3
. t0)
* (
diff (f3,t0))))), ((g3
. t0)
* (((f1
. t0)
* (
diff (h1,t0)))
+ ((h1
. t0)
* (
diff (f1,t0))))), ((g1
. t0)
* (((f2
. t0)
* (
diff (h2,t0)))
+ ((h2
. t0)
* (
diff (f2,t0)))))]|)
-
|[(((h3
. t0)
* (f3
. t0))
* (
diff (g2,t0))), (((h1
. t0)
* (f1
. t0))
* (
diff (g3,t0))), (((h2
. t0)
* (f2
. t0))
* (
diff (g1,t0)))]|) by
RVSUM_1: 39
.= (((
|[((g3
. t0)
* (((f2
. t0)
* (
diff (h2,t0)))
+ ((h2
. t0)
* (
diff (f2,t0))))), ((g1
. t0)
* (((f3
. t0)
* (
diff (h3,t0)))
+ ((h3
. t0)
* (
diff (f3,t0))))), ((g2
. t0)
* (((f1
. t0)
* (
diff (h1,t0)))
+ ((h1
. t0)
* (
diff (f1,t0)))))]|
-
|[((g2
. t0)
* (((f3
. t0)
* (
diff (h3,t0)))
+ ((h3
. t0)
* (
diff (f3,t0))))), ((g3
. t0)
* (((f1
. t0)
* (
diff (h1,t0)))
+ ((h1
. t0)
* (
diff (f1,t0))))), ((g1
. t0)
* (((f2
. t0)
* (
diff (h2,t0)))
+ ((h2
. t0)
* (
diff (f2,t0)))))]|)
+
|[(((h2
. t0)
* (f2
. t0))
* (
diff (g3,t0))), (((h3
. t0)
* (f3
. t0))
* (
diff (g1,t0))), (((h1
. t0)
* (f1
. t0))
* (
diff (g2,t0)))]|)
+ (
-
|[(((h3
. t0)
* (f3
. t0))
* (
diff (g2,t0))), (((h1
. t0)
* (f1
. t0))
* (
diff (g3,t0))), (((h2
. t0)
* (f2
. t0))
* (
diff (g1,t0)))]|)) by
RVSUM_1: 15
.= ((
|[((g3
. t0)
* (((f2
. t0)
* (
diff (h2,t0)))
+ ((h2
. t0)
* (
diff (f2,t0))))), ((g1
. t0)
* (((f3
. t0)
* (
diff (h3,t0)))
+ ((h3
. t0)
* (
diff (f3,t0))))), ((g2
. t0)
* (((f1
. t0)
* (
diff (h1,t0)))
+ ((h1
. t0)
* (
diff (f1,t0)))))]|
-
|[((g2
. t0)
* (((f3
. t0)
* (
diff (h3,t0)))
+ ((h3
. t0)
* (
diff (f3,t0))))), ((g3
. t0)
* (((f1
. t0)
* (
diff (h1,t0)))
+ ((h1
. t0)
* (
diff (f1,t0))))), ((g1
. t0)
* (((f2
. t0)
* (
diff (h2,t0)))
+ ((h2
. t0)
* (
diff (f2,t0)))))]|)
+ (
|[(((h2
. t0)
* (f2
. t0))
* (
diff (g3,t0))), (((h3
. t0)
* (f3
. t0))
* (
diff (g1,t0))), (((h1
. t0)
* (f1
. t0))
* (
diff (g2,t0)))]|
-
|[(((h3
. t0)
* (f3
. t0))
* (
diff (g2,t0))), (((h1
. t0)
* (f1
. t0))
* (
diff (g3,t0))), (((h2
. t0)
* (f2
. t0))
* (
diff (g1,t0)))]|)) by
RVSUM_1: 15
.= ((
|[((g3
. t0)
* (((f2
. t0)
* (
diff (h2,t0)))
+ ((h2
. t0)
* (
diff (f2,t0))))), ((g1
. t0)
* (((f3
. t0)
* (
diff (h3,t0)))
+ ((h3
. t0)
* (
diff (f3,t0))))), ((g2
. t0)
* (((f1
. t0)
* (
diff (h1,t0)))
+ ((h1
. t0)
* (
diff (f1,t0)))))]|
-
|[((g2
. t0)
* (((f3
. t0)
* (
diff (h3,t0)))
+ ((h3
. t0)
* (
diff (f3,t0))))), ((g3
. t0)
* (((f1
. t0)
* (
diff (h1,t0)))
+ ((h1
. t0)
* (
diff (f1,t0))))), ((g1
. t0)
* (((f2
. t0)
* (
diff (h2,t0)))
+ ((h2
. t0)
* (
diff (f2,t0)))))]|)
+
|[((((h2
. t0)
* (f2
. t0))
* (
diff (g3,t0)))
- (((h3
. t0)
* (f3
. t0))
* (
diff (g2,t0)))), ((((h3
. t0)
* (f3
. t0))
* (
diff (g1,t0)))
- (((h1
. t0)
* (f1
. t0))
* (
diff (g3,t0)))), ((((h1
. t0)
* (f1
. t0))
* (
diff (g2,t0)))
- (((h2
. t0)
* (f2
. t0))
* (
diff (g1,t0))))]|) by
Lm11
.= (
|[((((h2
. t0)
* (f2
. t0))
* (
diff (g3,t0)))
- (((h3
. t0)
* (f3
. t0))
* (
diff (g2,t0)))), ((((h3
. t0)
* (f3
. t0))
* (
diff (g1,t0)))
- (((h1
. t0)
* (f1
. t0))
* (
diff (g3,t0)))), ((((h1
. t0)
* (f1
. t0))
* (
diff (g2,t0)))
- (((h2
. t0)
* (f2
. t0))
* (
diff (g1,t0))))]|
+
|[(((g3
. t0)
* (((f2
. t0)
* (
diff (h2,t0)))
+ ((h2
. t0)
* (
diff (f2,t0)))))
- ((g2
. t0)
* (((f3
. t0)
* (
diff (h3,t0)))
+ ((h3
. t0)
* (
diff (f3,t0)))))), (((g1
. t0)
* (((f3
. t0)
* (
diff (h3,t0)))
+ ((h3
. t0)
* (
diff (f3,t0)))))
- ((g3
. t0)
* (((f1
. t0)
* (
diff (h1,t0)))
+ ((h1
. t0)
* (
diff (f1,t0)))))), (((g2
. t0)
* (((f1
. t0)
* (
diff (h1,t0)))
+ ((h1
. t0)
* (
diff (f1,t0)))))
- ((g1
. t0)
* (((f2
. t0)
* (
diff (h2,t0)))
+ ((h2
. t0)
* (
diff (f2,t0))))))]|) by
Lm11
.= (
|[((((h2
. t0)
* (f2
. t0))
* (
diff (g3,t0)))
- (((h3
. t0)
* (f3
. t0))
* (
diff (g2,t0)))), ((((h3
. t0)
* (f3
. t0))
* (
diff (g1,t0)))
- (((h1
. t0)
* (f1
. t0))
* (
diff (g3,t0)))), ((((h1
. t0)
* (f1
. t0))
* (
diff (g2,t0)))
- (((h2
. t0)
* (f2
. t0))
* (
diff (g1,t0))))]|
+
|[(((((g3
. t0)
* (h2
. t0))
* (
diff (f2,t0)))
- (((g2
. t0)
* (h3
. t0))
* (
diff (f3,t0))))
+ ((((g3
. t0)
* (f2
. t0))
* (
diff (h2,t0)))
- (((g2
. t0)
* (f3
. t0))
* (
diff (h3,t0))))), (((((g1
. t0)
* (h3
. t0))
* (
diff (f3,t0)))
- (((g3
. t0)
* (h1
. t0))
* (
diff (f1,t0))))
+ ((((g1
. t0)
* (f3
. t0))
* (
diff (h3,t0)))
- (((g3
. t0)
* (f1
. t0))
* (
diff (h1,t0))))), (((((g2
. t0)
* (h1
. t0))
* (
diff (f1,t0)))
- (((g1
. t0)
* (h2
. t0))
* (
diff (f2,t0))))
+ ((((g2
. t0)
* (f1
. t0))
* (
diff (h1,t0)))
- (((g1
. t0)
* (f2
. t0))
* (
diff (h2,t0)))))]|)
.= (
|[((((h2
. t0)
* (f2
. t0))
* (
diff (g3,t0)))
- (((h3
. t0)
* (f3
. t0))
* (
diff (g2,t0)))), ((((h3
. t0)
* (f3
. t0))
* (
diff (g1,t0)))
- (((h1
. t0)
* (f1
. t0))
* (
diff (g3,t0)))), ((((h1
. t0)
* (f1
. t0))
* (
diff (g2,t0)))
- (((h2
. t0)
* (f2
. t0))
* (
diff (g1,t0))))]|
+ (
|[((((g3
. t0)
* (h2
. t0))
* (
diff (f2,t0)))
- (((g2
. t0)
* (h3
. t0))
* (
diff (f3,t0)))), ((((g1
. t0)
* (h3
. t0))
* (
diff (f3,t0)))
- (((g3
. t0)
* (h1
. t0))
* (
diff (f1,t0)))), ((((g2
. t0)
* (h1
. t0))
* (
diff (f1,t0)))
- (((g1
. t0)
* (h2
. t0))
* (
diff (f2,t0))))]|
+
|[((((g3
. t0)
* (f2
. t0))
* (
diff (h2,t0)))
- (((g2
. t0)
* (f3
. t0))
* (
diff (h3,t0)))), ((((g1
. t0)
* (f3
. t0))
* (
diff (h3,t0)))
- (((g3
. t0)
* (f1
. t0))
* (
diff (h1,t0)))), ((((g2
. t0)
* (f1
. t0))
* (
diff (h1,t0)))
- (((g1
. t0)
* (f2
. t0))
* (
diff (h2,t0))))]|)) by
Lm8
.= ((
|[((((h2
. t0)
* (f2
. t0))
* (
diff (g3,t0)))
- (((h3
. t0)
* (f3
. t0))
* (
diff (g2,t0)))), ((((h3
. t0)
* (f3
. t0))
* (
diff (g1,t0)))
- (((h1
. t0)
* (f1
. t0))
* (
diff (g3,t0)))), ((((h1
. t0)
* (f1
. t0))
* (
diff (g2,t0)))
- (((h2
. t0)
* (f2
. t0))
* (
diff (g1,t0))))]|
+
|[((((g3
. t0)
* (h2
. t0))
* (
diff (f2,t0)))
- (((g2
. t0)
* (h3
. t0))
* (
diff (f3,t0)))), ((((g1
. t0)
* (h3
. t0))
* (
diff (f3,t0)))
- (((g3
. t0)
* (h1
. t0))
* (
diff (f1,t0)))), ((((g2
. t0)
* (h1
. t0))
* (
diff (f1,t0)))
- (((g1
. t0)
* (h2
. t0))
* (
diff (f2,t0))))]|)
+
|[((((g3
. t0)
* (f2
. t0))
* (
diff (h2,t0)))
- (((g2
. t0)
* (f3
. t0))
* (
diff (h3,t0)))), ((((g1
. t0)
* (f3
. t0))
* (
diff (h3,t0)))
- (((g3
. t0)
* (f1
. t0))
* (
diff (h1,t0)))), ((((g2
. t0)
* (f1
. t0))
* (
diff (h1,t0)))
- (((g1
. t0)
* (f2
. t0))
* (
diff (h2,t0))))]|) by
RVSUM_1: 15;
hence thesis;
end;
theorem ::
EUCLID_8:114
(f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0) & (g1
is_differentiable_in t0 & g2
is_differentiable_in t0 & g3
is_differentiable_in t0) & (h1
is_differentiable_in t0 & h2
is_differentiable_in t0 & h3
is_differentiable_in t0) implies (
VFuncdiff (((h2
(#) ((f1
(#) g2)
- (f2
(#) g1)))
- (h3
(#) ((f3
(#) g1)
- (f1
(#) g3)))),((h3
(#) ((f2
(#) g3)
- (f3
(#) g2)))
- (h1
(#) ((f1
(#) g2)
- (f2
(#) g1)))),((h1
(#) ((f3
(#) g1)
- (f1
(#) g3)))
- (h2
(#) ((f2
(#) g3)
- (f3
(#) g2)))),t0))
= ((
|[(((h2
. t0)
* (((f1
. t0)
* (
diff (g2,t0)))
- ((f2
. t0)
* (
diff (g1,t0)))))
- ((h3
. t0)
* (((f3
. t0)
* (
diff (g1,t0)))
- ((f1
. t0)
* (
diff (g3,t0)))))), (((h3
. t0)
* (((f2
. t0)
* (
diff (g3,t0)))
- ((f3
. t0)
* (
diff (g2,t0)))))
- ((h1
. t0)
* (((f1
. t0)
* (
diff (g2,t0)))
- ((f2
. t0)
* (
diff (g1,t0)))))), (((h1
. t0)
* (((f3
. t0)
* (
diff (g1,t0)))
- ((f1
. t0)
* (
diff (g3,t0)))))
- ((h2
. t0)
* (((f2
. t0)
* (
diff (g3,t0)))
- ((f3
. t0)
* (
diff (g2,t0))))))]|
+
|[(((h2
. t0)
* (((
diff (f1,t0))
* (g2
. t0))
- ((
diff (f2,t0))
* (g1
. t0))))
- ((h3
. t0)
* (((
diff (f3,t0))
* (g1
. t0))
- ((
diff (f1,t0))
* (g3
. t0))))), (((h3
. t0)
* (((
diff (f2,t0))
* (g3
. t0))
- ((
diff (f3,t0))
* (g2
. t0))))
- ((h1
. t0)
* (((
diff (f1,t0))
* (g2
. t0))
- ((
diff (f2,t0))
* (g1
. t0))))), (((h1
. t0)
* (((
diff (f3,t0))
* (g1
. t0))
- ((
diff (f1,t0))
* (g3
. t0))))
- ((h2
. t0)
* (((
diff (f2,t0))
* (g3
. t0))
- ((
diff (f3,t0))
* (g2
. t0)))))]|)
+
|[(((
diff (h2,t0))
* (((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0))))
- ((
diff (h3,t0))
* (((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0))))), (((
diff (h3,t0))
* (((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0))))
- ((
diff (h1,t0))
* (((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0))))), (((
diff (h1,t0))
* (((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0))))
- ((
diff (h2,t0))
* (((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))))]|)
proof
assume that
A1: f1
is_differentiable_in t0 & f2
is_differentiable_in t0 & f3
is_differentiable_in t0 and
A2: g1
is_differentiable_in t0 & g2
is_differentiable_in t0 & g3
is_differentiable_in t0 and
A3: h1
is_differentiable_in t0 & h2
is_differentiable_in t0 & h3
is_differentiable_in t0;
A4: (f2
(#) g3)
is_differentiable_in t0 & (f3
(#) g2)
is_differentiable_in t0 & (f3
(#) g1)
is_differentiable_in t0 & (f1
(#) g3)
is_differentiable_in t0 & (f1
(#) g2)
is_differentiable_in t0 & (f2
(#) g1)
is_differentiable_in t0 by
A1,
A2,
FDIFF_1: 16;
then
A5: ((f2
(#) g3)
- (f3
(#) g2))
is_differentiable_in t0 & ((f3
(#) g1)
- (f1
(#) g3))
is_differentiable_in t0 & ((f1
(#) g2)
- (f2
(#) g1))
is_differentiable_in t0 by
FDIFF_1: 14;
then
A6: (h3
(#) ((f2
(#) g3)
- (f3
(#) g2)))
is_differentiable_in t0 & (h3
(#) ((f3
(#) g1)
- (f1
(#) g3)))
is_differentiable_in t0 & (h2
(#) ((f1
(#) g2)
- (f2
(#) g1)))
is_differentiable_in t0 & (h2
(#) ((f2
(#) g3)
- (f3
(#) g2)))
is_differentiable_in t0 & (h1
(#) ((f3
(#) g1)
- (f1
(#) g3)))
is_differentiable_in t0 & (h1
(#) ((f1
(#) g2)
- (f2
(#) g1)))
is_differentiable_in t0 by
A3,
FDIFF_1: 16;
A7: ((f1
(#) g2)
- (f2
(#) g1))
is_left_differentiable_in t0 by
A5,
FDIFF_3: 22;
A8: t0
in (
dom ((f1
(#) g2)
- (f2
(#) g1)))
proof
consider r such that
A9:
0
< r &
[.(t0
- r), t0.]
c= (
dom ((f1
(#) g2)
- (f2
(#) g1))) by
A7,
FDIFF_3:def 4;
(t0
- r)
<= t0 by
A9,
XREAL_1: 44;
then t0
in
[.(t0
- r), t0.];
hence thesis by
A9;
end;
A10: ((f2
(#) g3)
- (f3
(#) g2))
is_left_differentiable_in t0 by
A5,
FDIFF_3: 22;
A11: t0
in (
dom ((f2
(#) g3)
- (f3
(#) g2)))
proof
consider r1 such that
A12:
0
< r1 &
[.(t0
- r1), t0.]
c= (
dom ((f2
(#) g3)
- (f3
(#) g2))) by
A10,
FDIFF_3:def 4;
(t0
- r1)
<= t0 by
A12,
XREAL_1: 44;
then t0
in
[.(t0
- r1), t0.];
hence thesis by
A12;
end;
A13: ((f3
(#) g1)
- (f1
(#) g3))
is_left_differentiable_in t0 by
A5,
FDIFF_3: 22;
A14: t0
in (
dom ((f3
(#) g1)
- (f1
(#) g3)))
proof
consider r2 such that
A15:
0
< r2 &
[.(t0
- r2), t0.]
c= (
dom ((f3
(#) g1)
- (f1
(#) g3))) by
A13,
FDIFF_3:def 4;
(t0
- r2)
<= t0 by
A15,
XREAL_1: 44;
then t0
in
[.(t0
- r2), t0.];
hence thesis by
A15;
end;
(
VFuncdiff (((h2
(#) ((f1
(#) g2)
- (f2
(#) g1)))
- (h3
(#) ((f3
(#) g1)
- (f1
(#) g3)))),((h3
(#) ((f2
(#) g3)
- (f3
(#) g2)))
- (h1
(#) ((f1
(#) g2)
- (f2
(#) g1)))),((h1
(#) ((f3
(#) g1)
- (f1
(#) g3)))
- (h2
(#) ((f2
(#) g3)
- (f3
(#) g2)))),t0))
= ((
VFuncdiff ((h2
(#) ((f1
(#) g2)
- (f2
(#) g1))),(h3
(#) ((f2
(#) g3)
- (f3
(#) g2))),(h1
(#) ((f3
(#) g1)
- (f1
(#) g3))),t0))
- (
VFuncdiff ((h3
(#) ((f3
(#) g1)
- (f1
(#) g3))),(h1
(#) ((f1
(#) g2)
- (f2
(#) g1))),(h2
(#) ((f2
(#) g3)
- (f3
(#) g2))),t0))) by
A6,
Th89
.= ((
|[((((f1
(#) g2)
- (f2
(#) g1))
. t0)
* (
diff (h2,t0))), ((((f2
(#) g3)
- (f3
(#) g2))
. t0)
* (
diff (h3,t0))), ((((f3
(#) g1)
- (f1
(#) g3))
. t0)
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h3
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0))), ((h1
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0)))]|)
- (
VFuncdiff ((h3
(#) ((f3
(#) g1)
- (f1
(#) g3))),(h1
(#) ((f1
(#) g2)
- (f2
(#) g1))),(h2
(#) ((f2
(#) g3)
- (f3
(#) g2))),t0))) by
A3,
A5,
Th91
.= ((
|[((((f1
(#) g2)
- (f2
(#) g1))
. t0)
* (
diff (h2,t0))), ((((f2
(#) g3)
- (f3
(#) g2))
. t0)
* (
diff (h3,t0))), ((((f3
(#) g1)
- (f1
(#) g3))
. t0)
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h3
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0))), ((h1
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0)))]|)
- (
|[((((f3
(#) g1)
- (f1
(#) g3))
. t0)
* (
diff (h3,t0))), ((((f1
(#) g2)
- (f2
(#) g1))
. t0)
* (
diff (h1,t0))), ((((f2
(#) g3)
- (f3
(#) g2))
. t0)
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0))), ((h1
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h2
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0)))]|)) by
A3,
A5,
Th91
.= ((
|[((((f1
(#) g2)
. t0)
- ((f2
(#) g1)
. t0))
* (
diff (h2,t0))), ((((f2
(#) g3)
- (f3
(#) g2))
. t0)
* (
diff (h3,t0))), ((((f3
(#) g1)
- (f1
(#) g3))
. t0)
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h3
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0))), ((h1
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0)))]|)
- (
|[((((f3
(#) g1)
- (f1
(#) g3))
. t0)
* (
diff (h3,t0))), ((((f1
(#) g2)
- (f2
(#) g1))
. t0)
* (
diff (h1,t0))), ((((f2
(#) g3)
- (f3
(#) g2))
. t0)
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0))), ((h1
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h2
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0)))]|)) by
A8,
VALUED_1: 13
.= ((
|[((((f1
(#) g2)
. t0)
- ((f2
(#) g1)
. t0))
* (
diff (h2,t0))), ((((f2
(#) g3)
. t0)
- ((f3
(#) g2)
. t0))
* (
diff (h3,t0))), ((((f3
(#) g1)
- (f1
(#) g3))
. t0)
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h3
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0))), ((h1
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0)))]|)
- (
|[((((f3
(#) g1)
- (f1
(#) g3))
. t0)
* (
diff (h3,t0))), ((((f1
(#) g2)
- (f2
(#) g1))
. t0)
* (
diff (h1,t0))), ((((f2
(#) g3)
- (f3
(#) g2))
. t0)
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0))), ((h1
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h2
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0)))]|)) by
A11,
VALUED_1: 13
.= ((
|[((((f1
(#) g2)
. t0)
- ((f2
(#) g1)
. t0))
* (
diff (h2,t0))), ((((f2
(#) g3)
. t0)
- ((f3
(#) g2)
. t0))
* (
diff (h3,t0))), ((((f3
(#) g1)
. t0)
- ((f1
(#) g3)
. t0))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h3
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0))), ((h1
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0)))]|)
- (
|[((((f3
(#) g1)
- (f1
(#) g3))
. t0)
* (
diff (h3,t0))), ((((f1
(#) g2)
- (f2
(#) g1))
. t0)
* (
diff (h1,t0))), ((((f2
(#) g3)
- (f3
(#) g2))
. t0)
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0))), ((h1
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h2
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0)))]|)) by
A14,
VALUED_1: 13
.= ((
|[((((f1
(#) g2)
. t0)
- ((f2
(#) g1)
. t0))
* (
diff (h2,t0))), ((((f2
(#) g3)
. t0)
- ((f3
(#) g2)
. t0))
* (
diff (h3,t0))), ((((f3
(#) g1)
. t0)
- ((f1
(#) g3)
. t0))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h3
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0))), ((h1
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0)))]|)
- (
|[((((f3
(#) g1)
. t0)
- ((f1
(#) g3)
. t0))
* (
diff (h3,t0))), ((((f1
(#) g2)
- (f2
(#) g1))
. t0)
* (
diff (h1,t0))), ((((f2
(#) g3)
- (f3
(#) g2))
. t0)
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0))), ((h1
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h2
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0)))]|)) by
A14,
VALUED_1: 13
.= ((
|[((((f1
(#) g2)
. t0)
- ((f2
(#) g1)
. t0))
* (
diff (h2,t0))), ((((f2
(#) g3)
. t0)
- ((f3
(#) g2)
. t0))
* (
diff (h3,t0))), ((((f3
(#) g1)
. t0)
- ((f1
(#) g3)
. t0))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h3
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0))), ((h1
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0)))]|)
- (
|[((((f3
(#) g1)
. t0)
- ((f1
(#) g3)
. t0))
* (
diff (h3,t0))), ((((f1
(#) g2)
. t0)
- ((f2
(#) g1)
. t0))
* (
diff (h1,t0))), ((((f2
(#) g3)
- (f3
(#) g2))
. t0)
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0))), ((h1
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h2
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0)))]|)) by
A8,
VALUED_1: 13
.= ((
|[((((f1
(#) g2)
. t0)
- ((f2
(#) g1)
. t0))
* (
diff (h2,t0))), ((((f2
(#) g3)
. t0)
- ((f3
(#) g2)
. t0))
* (
diff (h3,t0))), ((((f3
(#) g1)
. t0)
- ((f1
(#) g3)
. t0))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h3
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0))), ((h1
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0)))]|)
- (
|[((((f3
(#) g1)
. t0)
- ((f1
(#) g3)
. t0))
* (
diff (h3,t0))), ((((f1
(#) g2)
. t0)
- ((f2
(#) g1)
. t0))
* (
diff (h1,t0))), ((((f2
(#) g3)
. t0)
- ((f3
(#) g2)
. t0))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0))), ((h1
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h2
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0)))]|)) by
A11,
VALUED_1: 13
.= ((
|[((((f1
. t0)
* (g2
. t0))
- ((f2
(#) g1)
. t0))
* (
diff (h2,t0))), ((((f2
(#) g3)
. t0)
- ((f3
(#) g2)
. t0))
* (
diff (h3,t0))), ((((f3
(#) g1)
. t0)
- ((f1
(#) g3)
. t0))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h3
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0))), ((h1
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0)))]|)
- (
|[((((f3
(#) g1)
. t0)
- ((f1
(#) g3)
. t0))
* (
diff (h3,t0))), ((((f1
(#) g2)
. t0)
- ((f2
(#) g1)
. t0))
* (
diff (h1,t0))), ((((f2
(#) g3)
. t0)
- ((f3
(#) g2)
. t0))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0))), ((h1
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h2
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0)))]|)) by
VALUED_1: 5
.= ((
|[((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h2,t0))), ((((f2
(#) g3)
. t0)
- ((f3
(#) g2)
. t0))
* (
diff (h3,t0))), ((((f3
(#) g1)
. t0)
- ((f1
(#) g3)
. t0))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h3
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0))), ((h1
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0)))]|)
- (
|[((((f3
(#) g1)
. t0)
- ((f1
(#) g3)
. t0))
* (
diff (h3,t0))), ((((f1
(#) g2)
. t0)
- ((f2
(#) g1)
. t0))
* (
diff (h1,t0))), ((((f2
(#) g3)
. t0)
- ((f3
(#) g2)
. t0))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0))), ((h1
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h2
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0)))]|)) by
VALUED_1: 5
.= ((
|[((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h2,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
(#) g2)
. t0))
* (
diff (h3,t0))), ((((f3
(#) g1)
. t0)
- ((f1
(#) g3)
. t0))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h3
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0))), ((h1
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0)))]|)
- (
|[((((f3
(#) g1)
. t0)
- ((f1
(#) g3)
. t0))
* (
diff (h3,t0))), ((((f1
(#) g2)
. t0)
- ((f2
(#) g1)
. t0))
* (
diff (h1,t0))), ((((f2
(#) g3)
. t0)
- ((f3
(#) g2)
. t0))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0))), ((h1
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h2
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0)))]|)) by
VALUED_1: 5
.= ((
|[((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h2,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h3,t0))), ((((f3
(#) g1)
. t0)
- ((f1
(#) g3)
. t0))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h3
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0))), ((h1
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0)))]|)
- (
|[((((f3
(#) g1)
. t0)
- ((f1
(#) g3)
. t0))
* (
diff (h3,t0))), ((((f1
(#) g2)
. t0)
- ((f2
(#) g1)
. t0))
* (
diff (h1,t0))), ((((f2
(#) g3)
. t0)
- ((f3
(#) g2)
. t0))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0))), ((h1
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h2
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0)))]|)) by
VALUED_1: 5
.= ((
|[((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h2,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h3,t0))), ((((f3
. t0)
* (g1
. t0))
- ((f1
(#) g3)
. t0))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h3
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0))), ((h1
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0)))]|)
- (
|[((((f3
(#) g1)
. t0)
- ((f1
(#) g3)
. t0))
* (
diff (h3,t0))), ((((f1
(#) g2)
. t0)
- ((f2
(#) g1)
. t0))
* (
diff (h1,t0))), ((((f2
(#) g3)
. t0)
- ((f3
(#) g2)
. t0))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0))), ((h1
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h2
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0)))]|)) by
VALUED_1: 5
.= ((
|[((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h2,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h3,t0))), ((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h3
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0))), ((h1
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0)))]|)
- (
|[((((f3
(#) g1)
. t0)
- ((f1
(#) g3)
. t0))
* (
diff (h3,t0))), ((((f1
(#) g2)
. t0)
- ((f2
(#) g1)
. t0))
* (
diff (h1,t0))), ((((f2
(#) g3)
. t0)
- ((f3
(#) g2)
. t0))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0))), ((h1
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h2
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0)))]|)) by
VALUED_1: 5
.= ((
|[((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h2,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h3,t0))), ((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h3
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0))), ((h1
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0)))]|)
- (
|[((((f3
. t0)
* (g1
. t0))
- ((f1
(#) g3)
. t0))
* (
diff (h3,t0))), ((((f1
(#) g2)
. t0)
- ((f2
(#) g1)
. t0))
* (
diff (h1,t0))), ((((f2
(#) g3)
. t0)
- ((f3
(#) g2)
. t0))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0))), ((h1
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h2
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0)))]|)) by
VALUED_1: 5
.= ((
|[((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h2,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h3,t0))), ((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h3
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0))), ((h1
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0)))]|)
- (
|[((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h3,t0))), ((((f1
(#) g2)
. t0)
- ((f2
(#) g1)
. t0))
* (
diff (h1,t0))), ((((f2
(#) g3)
. t0)
- ((f3
(#) g2)
. t0))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0))), ((h1
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h2
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0)))]|)) by
VALUED_1: 5
.= ((
|[((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h2,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h3,t0))), ((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h3
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0))), ((h1
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0)))]|)
- (
|[((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h3,t0))), ((((f1
. t0)
* (g2
. t0))
- ((f2
(#) g1)
. t0))
* (
diff (h1,t0))), ((((f2
(#) g3)
. t0)
- ((f3
(#) g2)
. t0))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0))), ((h1
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h2
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0)))]|)) by
VALUED_1: 5
.= ((
|[((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h2,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h3,t0))), ((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h3
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0))), ((h1
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0)))]|)
- (
|[((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h3,t0))), ((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h1,t0))), ((((f2
(#) g3)
. t0)
- ((f3
(#) g2)
. t0))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0))), ((h1
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h2
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0)))]|)) by
VALUED_1: 5
.= ((
|[((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h2,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h3,t0))), ((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h3
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0))), ((h1
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0)))]|)
- (
|[((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h3,t0))), ((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h1,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
(#) g2)
. t0))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0))), ((h1
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h2
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0)))]|)) by
VALUED_1: 5
.= ((
|[((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h2,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h3,t0))), ((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h3
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0))), ((h1
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0)))]|)
- (
|[((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h3,t0))), ((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h1,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0))), ((h1
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h2
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0)))]|)) by
VALUED_1: 5
.= ((
|[((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h2,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h3,t0))), ((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* ((
diff ((f1
(#) g2),t0))
- (
diff ((f2
(#) g1),t0)))), ((h3
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0))), ((h1
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0)))]|)
- (
|[((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h3,t0))), ((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h1,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0))), ((h1
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h2
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0)))]|)) by
A4,
FDIFF_1: 14
.= ((
|[((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h2,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h3,t0))), ((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* ((
diff ((f1
(#) g2),t0))
- (
diff ((f2
(#) g1),t0)))), ((h3
. t0)
* ((
diff ((f2
(#) g3),t0))
- (
diff ((f3
(#) g2),t0)))), ((h1
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0)))]|)
- (
|[((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h3,t0))), ((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h1,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0))), ((h1
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h2
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0)))]|)) by
A4,
FDIFF_1: 14
.= ((
|[((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h2,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h3,t0))), ((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* ((
diff ((f1
(#) g2),t0))
- (
diff ((f2
(#) g1),t0)))), ((h3
. t0)
* ((
diff ((f2
(#) g3),t0))
- (
diff ((f3
(#) g2),t0)))), ((h1
. t0)
* ((
diff ((f3
(#) g1),t0))
- (
diff ((f1
(#) g3),t0))))]|)
- (
|[((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h3,t0))), ((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h1,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* (
diff (((f3
(#) g1)
- (f1
(#) g3)),t0))), ((h1
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h2
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0)))]|)) by
A4,
FDIFF_1: 14
.= ((
|[((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h2,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h3,t0))), ((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* ((
diff ((f1
(#) g2),t0))
- (
diff ((f2
(#) g1),t0)))), ((h3
. t0)
* ((
diff ((f2
(#) g3),t0))
- (
diff ((f3
(#) g2),t0)))), ((h1
. t0)
* ((
diff ((f3
(#) g1),t0))
- (
diff ((f1
(#) g3),t0))))]|)
- (
|[((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h3,t0))), ((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h1,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* ((
diff ((f3
(#) g1),t0))
- (
diff ((f1
(#) g3),t0)))), ((h1
. t0)
* (
diff (((f1
(#) g2)
- (f2
(#) g1)),t0))), ((h2
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0)))]|)) by
A4,
FDIFF_1: 14
.= ((
|[((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h2,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h3,t0))), ((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* ((
diff ((f1
(#) g2),t0))
- (
diff ((f2
(#) g1),t0)))), ((h3
. t0)
* ((
diff ((f2
(#) g3),t0))
- (
diff ((f3
(#) g2),t0)))), ((h1
. t0)
* ((
diff ((f3
(#) g1),t0))
- (
diff ((f1
(#) g3),t0))))]|)
- (
|[((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h3,t0))), ((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h1,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* ((
diff ((f3
(#) g1),t0))
- (
diff ((f1
(#) g3),t0)))), ((h1
. t0)
* ((
diff ((f1
(#) g2),t0))
- (
diff ((f2
(#) g1),t0)))), ((h2
. t0)
* (
diff (((f2
(#) g3)
- (f3
(#) g2)),t0)))]|)) by
A4,
FDIFF_1: 14
.= ((
|[((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h2,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h3,t0))), ((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* ((
diff ((f1
(#) g2),t0))
- (
diff ((f2
(#) g1),t0)))), ((h3
. t0)
* ((
diff ((f2
(#) g3),t0))
- (
diff ((f3
(#) g2),t0)))), ((h1
. t0)
* ((
diff ((f3
(#) g1),t0))
- (
diff ((f1
(#) g3),t0))))]|)
- (
|[((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h3,t0))), ((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h1,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* ((
diff ((f3
(#) g1),t0))
- (
diff ((f1
(#) g3),t0)))), ((h1
. t0)
* ((
diff ((f1
(#) g2),t0))
- (
diff ((f2
(#) g1),t0)))), ((h2
. t0)
* ((
diff ((f2
(#) g3),t0))
- (
diff ((f3
(#) g2),t0))))]|)) by
A4,
FDIFF_1: 14
.= ((
|[((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h2,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h3,t0))), ((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* ((((g2
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g2,t0))))
- (
diff ((f2
(#) g1),t0)))), ((h3
. t0)
* ((
diff ((f2
(#) g3),t0))
- (
diff ((f3
(#) g2),t0)))), ((h1
. t0)
* ((
diff ((f3
(#) g1),t0))
- (
diff ((f1
(#) g3),t0))))]|)
- (
|[((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h3,t0))), ((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h1,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* ((
diff ((f3
(#) g1),t0))
- (
diff ((f1
(#) g3),t0)))), ((h1
. t0)
* ((
diff ((f1
(#) g2),t0))
- (
diff ((f2
(#) g1),t0)))), ((h2
. t0)
* ((
diff ((f2
(#) g3),t0))
- (
diff ((f3
(#) g2),t0))))]|)) by
A1,
A2,
FDIFF_1: 16
.= ((
|[((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h2,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h3,t0))), ((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* ((((g2
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g2,t0))))
- (((g1
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g1,t0)))))), ((h3
. t0)
* ((
diff ((f2
(#) g3),t0))
- (
diff ((f3
(#) g2),t0)))), ((h1
. t0)
* ((
diff ((f3
(#) g1),t0))
- (
diff ((f1
(#) g3),t0))))]|)
- (
|[((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h3,t0))), ((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h1,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* ((
diff ((f3
(#) g1),t0))
- (
diff ((f1
(#) g3),t0)))), ((h1
. t0)
* ((
diff ((f1
(#) g2),t0))
- (
diff ((f2
(#) g1),t0)))), ((h2
. t0)
* ((
diff ((f2
(#) g3),t0))
- (
diff ((f3
(#) g2),t0))))]|)) by
A1,
A2,
FDIFF_1: 16
.= ((
|[((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h2,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h3,t0))), ((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* ((((g2
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g2,t0))))
- (((g1
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g1,t0)))))), ((h3
. t0)
* ((((g3
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g3,t0))))
- (
diff ((f3
(#) g2),t0)))), ((h1
. t0)
* ((
diff ((f3
(#) g1),t0))
- (
diff ((f1
(#) g3),t0))))]|)
- (
|[((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h3,t0))), ((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h1,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* ((
diff ((f3
(#) g1),t0))
- (
diff ((f1
(#) g3),t0)))), ((h1
. t0)
* ((
diff ((f1
(#) g2),t0))
- (
diff ((f2
(#) g1),t0)))), ((h2
. t0)
* ((
diff ((f2
(#) g3),t0))
- (
diff ((f3
(#) g2),t0))))]|)) by
A1,
A2,
FDIFF_1: 16
.= ((
|[((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h2,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h3,t0))), ((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* ((((g2
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g2,t0))))
- (((g1
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g1,t0)))))), ((h3
. t0)
* ((((g3
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g3,t0))))
- (((g2
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g2,t0)))))), ((h1
. t0)
* ((
diff ((f3
(#) g1),t0))
- (
diff ((f1
(#) g3),t0))))]|)
- (
|[((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h3,t0))), ((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h1,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* ((
diff ((f3
(#) g1),t0))
- (
diff ((f1
(#) g3),t0)))), ((h1
. t0)
* ((
diff ((f1
(#) g2),t0))
- (
diff ((f2
(#) g1),t0)))), ((h2
. t0)
* ((
diff ((f2
(#) g3),t0))
- (
diff ((f3
(#) g2),t0))))]|)) by
A1,
A2,
FDIFF_1: 16
.= ((
|[((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h2,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h3,t0))), ((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* ((((g2
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g2,t0))))
- (((g1
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g1,t0)))))), ((h3
. t0)
* ((((g3
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g3,t0))))
- (((g2
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g2,t0)))))), ((h1
. t0)
* ((((g1
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g1,t0))))
- (
diff ((f1
(#) g3),t0))))]|)
- (
|[((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h3,t0))), ((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h1,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* ((
diff ((f3
(#) g1),t0))
- (
diff ((f1
(#) g3),t0)))), ((h1
. t0)
* ((
diff ((f1
(#) g2),t0))
- (
diff ((f2
(#) g1),t0)))), ((h2
. t0)
* ((
diff ((f2
(#) g3),t0))
- (
diff ((f3
(#) g2),t0))))]|)) by
A1,
A2,
FDIFF_1: 16
.= ((
|[((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h2,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h3,t0))), ((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* ((((g2
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g2,t0))))
- (((g1
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g1,t0)))))), ((h3
. t0)
* ((((g3
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g3,t0))))
- (((g2
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g2,t0)))))), ((h1
. t0)
* ((((g1
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g1,t0))))
- (((g3
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g3,t0))))))]|)
- (
|[((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h3,t0))), ((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h1,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* ((
diff ((f3
(#) g1),t0))
- (
diff ((f1
(#) g3),t0)))), ((h1
. t0)
* ((
diff ((f1
(#) g2),t0))
- (
diff ((f2
(#) g1),t0)))), ((h2
. t0)
* ((
diff ((f2
(#) g3),t0))
- (
diff ((f3
(#) g2),t0))))]|)) by
A1,
A2,
FDIFF_1: 16
.= ((
|[((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h2,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h3,t0))), ((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* ((((g2
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g2,t0))))
- (((g1
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g1,t0)))))), ((h3
. t0)
* ((((g3
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g3,t0))))
- (((g2
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g2,t0)))))), ((h1
. t0)
* ((((g1
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g1,t0))))
- (((g3
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g3,t0))))))]|)
- (
|[((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h3,t0))), ((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h1,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* ((((g1
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g1,t0))))
- (
diff ((f1
(#) g3),t0)))), ((h1
. t0)
* ((
diff ((f1
(#) g2),t0))
- (
diff ((f2
(#) g1),t0)))), ((h2
. t0)
* ((
diff ((f2
(#) g3),t0))
- (
diff ((f3
(#) g2),t0))))]|)) by
A1,
A2,
FDIFF_1: 16
.= ((
|[((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h2,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h3,t0))), ((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* ((((g2
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g2,t0))))
- (((g1
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g1,t0)))))), ((h3
. t0)
* ((((g3
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g3,t0))))
- (((g2
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g2,t0)))))), ((h1
. t0)
* ((((g1
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g1,t0))))
- (((g3
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g3,t0))))))]|)
- (
|[((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h3,t0))), ((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h1,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* ((((g1
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g1,t0))))
- (((g3
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g3,t0)))))), ((h1
. t0)
* ((
diff ((f1
(#) g2),t0))
- (
diff ((f2
(#) g1),t0)))), ((h2
. t0)
* ((
diff ((f2
(#) g3),t0))
- (
diff ((f3
(#) g2),t0))))]|)) by
A1,
A2,
FDIFF_1: 16
.= ((
|[((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h2,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h3,t0))), ((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* ((((g2
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g2,t0))))
- (((g1
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g1,t0)))))), ((h3
. t0)
* ((((g3
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g3,t0))))
- (((g2
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g2,t0)))))), ((h1
. t0)
* ((((g1
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g1,t0))))
- (((g3
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g3,t0))))))]|)
- (
|[((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h3,t0))), ((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h1,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* ((((g1
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g1,t0))))
- (((g3
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g3,t0)))))), ((h1
. t0)
* ((((g2
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g2,t0))))
- (
diff ((f2
(#) g1),t0)))), ((h2
. t0)
* ((
diff ((f2
(#) g3),t0))
- (
diff ((f3
(#) g2),t0))))]|)) by
A1,
A2,
FDIFF_1: 16
.= ((
|[((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h2,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h3,t0))), ((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* ((((g2
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g2,t0))))
- (((g1
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g1,t0)))))), ((h3
. t0)
* ((((g3
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g3,t0))))
- (((g2
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g2,t0)))))), ((h1
. t0)
* ((((g1
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g1,t0))))
- (((g3
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g3,t0))))))]|)
- (
|[((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h3,t0))), ((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h1,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* ((((g1
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g1,t0))))
- (((g3
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g3,t0)))))), ((h1
. t0)
* ((((g2
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g2,t0))))
- (((g1
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g1,t0)))))), ((h2
. t0)
* ((
diff ((f2
(#) g3),t0))
- (
diff ((f3
(#) g2),t0))))]|)) by
A1,
A2,
FDIFF_1: 16
.= ((
|[((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h2,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h3,t0))), ((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* ((((g2
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g2,t0))))
- (((g1
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g1,t0)))))), ((h3
. t0)
* ((((g3
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g3,t0))))
- (((g2
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g2,t0)))))), ((h1
. t0)
* ((((g1
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g1,t0))))
- (((g3
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g3,t0))))))]|)
- (
|[((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h3,t0))), ((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h1,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* ((((g1
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g1,t0))))
- (((g3
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g3,t0)))))), ((h1
. t0)
* ((((g2
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g2,t0))))
- (((g1
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g1,t0)))))), ((h2
. t0)
* ((((g3
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g3,t0))))
- (
diff ((f3
(#) g2),t0))))]|)) by
A1,
A2,
FDIFF_1: 16
.= ((
|[((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h2,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h3,t0))), ((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h1,t0)))]|
+
|[((h2
. t0)
* ((((g2
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g2,t0))))
- (((g1
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g1,t0)))))), ((h3
. t0)
* ((((g3
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g3,t0))))
- (((g2
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g2,t0)))))), ((h1
. t0)
* ((((g1
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g1,t0))))
- (((g3
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g3,t0))))))]|)
- (
|[((((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))
* (
diff (h3,t0))), ((((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))
* (
diff (h1,t0))), ((((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))
* (
diff (h2,t0)))]|
+
|[((h3
. t0)
* ((((g1
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g1,t0))))
- (((g3
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g3,t0)))))), ((h1
. t0)
* ((((g2
. t0)
* (
diff (f1,t0)))
+ ((f1
. t0)
* (
diff (g2,t0))))
- (((g1
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g1,t0)))))), ((h2
. t0)
* ((((g3
. t0)
* (
diff (f2,t0)))
+ ((f2
. t0)
* (
diff (g3,t0))))
- (((g2
. t0)
* (
diff (f3,t0)))
+ ((f3
. t0)
* (
diff (g2,t0))))))]|)) by
A1,
A2,
FDIFF_1: 16
.= (((
|[(((h2
. t0)
* (((f1
. t0)
* (
diff (g2,t0)))
- ((f2
. t0)
* (
diff (g1,t0)))))
+ ((h2
. t0)
* (((
diff (f1,t0))
* (g2
. t0))
- ((
diff (f2,t0))
* (g1
. t0))))), (((h3
. t0)
* (((f2
. t0)
* (
diff (g3,t0)))
- ((f3
. t0)
* (
diff (g2,t0)))))
+ ((h3
. t0)
* (((
diff (f2,t0))
* (g3
. t0))
- ((
diff (f3,t0))
* (g2
. t0))))), (((h1
. t0)
* (((f3
. t0)
* (
diff (g1,t0)))
- ((f1
. t0)
* (
diff (g3,t0)))))
+ ((h1
. t0)
* (((
diff (f3,t0))
* (g1
. t0))
- ((
diff (f1,t0))
* (g3
. t0)))))]|
+
|[((
diff (h2,t0))
* (((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))), ((
diff (h3,t0))
* (((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))), ((
diff (h1,t0))
* (((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0))))]|)
-
|[((
diff (h3,t0))
* (((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))), ((
diff (h1,t0))
* (((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))), ((
diff (h2,t0))
* (((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0))))]|)
-
|[(((h3
. t0)
* (((f3
. t0)
* (
diff (g1,t0)))
- ((f1
. t0)
* (
diff (g3,t0)))))
+ ((h3
. t0)
* (((
diff (f3,t0))
* (g1
. t0))
- ((
diff (f1,t0))
* (g3
. t0))))), (((h1
. t0)
* (((f1
. t0)
* (
diff (g2,t0)))
- ((f2
. t0)
* (
diff (g1,t0)))))
+ ((h1
. t0)
* (((
diff (f1,t0))
* (g2
. t0))
- ((
diff (f2,t0))
* (g1
. t0))))), (((h2
. t0)
* (((g3
. t0)
* (
diff (f2,t0)))
- ((g2
. t0)
* (
diff (f3,t0)))))
+ ((h2
. t0)
* (((f2
. t0)
* (
diff (g3,t0)))
- ((f3
. t0)
* (
diff (g2,t0))))))]|) by
RVSUM_1: 39
.= ((
|[(((h2
. t0)
* (((f1
. t0)
* (
diff (g2,t0)))
- ((f2
. t0)
* (
diff (g1,t0)))))
+ ((h2
. t0)
* (((
diff (f1,t0))
* (g2
. t0))
- ((
diff (f2,t0))
* (g1
. t0))))), (((h3
. t0)
* (((f2
. t0)
* (
diff (g3,t0)))
- ((f3
. t0)
* (
diff (g2,t0)))))
+ ((h3
. t0)
* (((
diff (f2,t0))
* (g3
. t0))
- ((
diff (f3,t0))
* (g2
. t0))))), (((h1
. t0)
* (((f3
. t0)
* (
diff (g1,t0)))
- ((f1
. t0)
* (
diff (g3,t0)))))
+ ((h1
. t0)
* (((
diff (f3,t0))
* (g1
. t0))
- ((
diff (f1,t0))
* (g3
. t0)))))]|
+ (
|[((
diff (h2,t0))
* (((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))), ((
diff (h3,t0))
* (((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))), ((
diff (h1,t0))
* (((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0))))]|
-
|[((
diff (h3,t0))
* (((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0)))), ((
diff (h1,t0))
* (((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0)))), ((
diff (h2,t0))
* (((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0))))]|))
-
|[(((h3
. t0)
* (((f3
. t0)
* (
diff (g1,t0)))
- ((f1
. t0)
* (
diff (g3,t0)))))
+ ((h3
. t0)
* (((
diff (f3,t0))
* (g1
. t0))
- ((
diff (f1,t0))
* (g3
. t0))))), (((h1
. t0)
* (((f1
. t0)
* (
diff (g2,t0)))
- ((f2
. t0)
* (
diff (g1,t0)))))
+ ((h1
. t0)
* (((
diff (f1,t0))
* (g2
. t0))
- ((
diff (f2,t0))
* (g1
. t0))))), (((h2
. t0)
* (((g3
. t0)
* (
diff (f2,t0)))
- ((g2
. t0)
* (
diff (f3,t0)))))
+ ((h2
. t0)
* (((f2
. t0)
* (
diff (g3,t0)))
- ((f3
. t0)
* (
diff (g2,t0))))))]|) by
RVSUM_1: 15
.= ((
|[(((h2
. t0)
* (((f1
. t0)
* (
diff (g2,t0)))
- ((f2
. t0)
* (
diff (g1,t0)))))
+ ((h2
. t0)
* (((
diff (f1,t0))
* (g2
. t0))
- ((
diff (f2,t0))
* (g1
. t0))))), (((h3
. t0)
* (((f2
. t0)
* (
diff (g3,t0)))
- ((f3
. t0)
* (
diff (g2,t0)))))
+ ((h3
. t0)
* (((
diff (f2,t0))
* (g3
. t0))
- ((
diff (f3,t0))
* (g2
. t0))))), (((h1
. t0)
* (((f3
. t0)
* (
diff (g1,t0)))
- ((f1
. t0)
* (
diff (g3,t0)))))
+ ((h1
. t0)
* (((
diff (f3,t0))
* (g1
. t0))
- ((
diff (f1,t0))
* (g3
. t0)))))]|
+
|[(((
diff (h2,t0))
* (((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0))))
- ((
diff (h3,t0))
* (((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0))))), (((
diff (h3,t0))
* (((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0))))
- ((
diff (h1,t0))
* (((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0))))), (((
diff (h1,t0))
* (((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0))))
- ((
diff (h2,t0))
* (((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))))]|)
-
|[(((h3
. t0)
* (((f3
. t0)
* (
diff (g1,t0)))
- ((f1
. t0)
* (
diff (g3,t0)))))
+ ((h3
. t0)
* (((
diff (f3,t0))
* (g1
. t0))
- ((
diff (f1,t0))
* (g3
. t0))))), (((h1
. t0)
* (((f1
. t0)
* (
diff (g2,t0)))
- ((f2
. t0)
* (
diff (g1,t0)))))
+ ((h1
. t0)
* (((
diff (f1,t0))
* (g2
. t0))
- ((
diff (f2,t0))
* (g1
. t0))))), (((h2
. t0)
* (((g3
. t0)
* (
diff (f2,t0)))
- ((g2
. t0)
* (
diff (f3,t0)))))
+ ((h2
. t0)
* (((f2
. t0)
* (
diff (g3,t0)))
- ((f3
. t0)
* (
diff (g2,t0))))))]|) by
Lm11
.= ((
|[(((h2
. t0)
* (((f1
. t0)
* (
diff (g2,t0)))
- ((f2
. t0)
* (
diff (g1,t0)))))
+ ((h2
. t0)
* (((
diff (f1,t0))
* (g2
. t0))
- ((
diff (f2,t0))
* (g1
. t0))))), (((h3
. t0)
* (((f2
. t0)
* (
diff (g3,t0)))
- ((f3
. t0)
* (
diff (g2,t0)))))
+ ((h3
. t0)
* (((
diff (f2,t0))
* (g3
. t0))
- ((
diff (f3,t0))
* (g2
. t0))))), (((h1
. t0)
* (((f3
. t0)
* (
diff (g1,t0)))
- ((f1
. t0)
* (
diff (g3,t0)))))
+ ((h1
. t0)
* (((
diff (f3,t0))
* (g1
. t0))
- ((
diff (f1,t0))
* (g3
. t0)))))]|
-
|[(((h3
. t0)
* (((f3
. t0)
* (
diff (g1,t0)))
- ((f1
. t0)
* (
diff (g3,t0)))))
+ ((h3
. t0)
* (((
diff (f3,t0))
* (g1
. t0))
- ((
diff (f1,t0))
* (g3
. t0))))), (((h1
. t0)
* (((f1
. t0)
* (
diff (g2,t0)))
- ((f2
. t0)
* (
diff (g1,t0)))))
+ ((h1
. t0)
* (((
diff (f1,t0))
* (g2
. t0))
- ((
diff (f2,t0))
* (g1
. t0))))), (((h2
. t0)
* (((g3
. t0)
* (
diff (f2,t0)))
- ((g2
. t0)
* (
diff (f3,t0)))))
+ ((h2
. t0)
* (((f2
. t0)
* (
diff (g3,t0)))
- ((f3
. t0)
* (
diff (g2,t0))))))]|)
+
|[(((
diff (h2,t0))
* (((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0))))
- ((
diff (h3,t0))
* (((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0))))), (((
diff (h3,t0))
* (((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0))))
- ((
diff (h1,t0))
* (((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0))))), (((
diff (h1,t0))
* (((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0))))
- ((
diff (h2,t0))
* (((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))))]|) by
RVSUM_1: 15
.= (
|[((((h2
. t0)
* (((f1
. t0)
* (
diff (g2,t0)))
- ((f2
. t0)
* (
diff (g1,t0)))))
+ ((h2
. t0)
* (((
diff (f1,t0))
* (g2
. t0))
- ((
diff (f2,t0))
* (g1
. t0)))))
- (((h3
. t0)
* (((f3
. t0)
* (
diff (g1,t0)))
- ((f1
. t0)
* (
diff (g3,t0)))))
+ ((h3
. t0)
* (((
diff (f3,t0))
* (g1
. t0))
- ((
diff (f1,t0))
* (g3
. t0)))))), ((((h3
. t0)
* (((f2
. t0)
* (
diff (g3,t0)))
- ((f3
. t0)
* (
diff (g2,t0)))))
+ ((h3
. t0)
* (((
diff (f2,t0))
* (g3
. t0))
- ((
diff (f3,t0))
* (g2
. t0)))))
- (((h1
. t0)
* (((f1
. t0)
* (
diff (g2,t0)))
- ((f2
. t0)
* (
diff (g1,t0)))))
+ ((h1
. t0)
* (((
diff (f1,t0))
* (g2
. t0))
- ((
diff (f2,t0))
* (g1
. t0)))))), ((((h1
. t0)
* (((f3
. t0)
* (
diff (g1,t0)))
- ((f1
. t0)
* (
diff (g3,t0)))))
+ ((h1
. t0)
* (((
diff (f3,t0))
* (g1
. t0))
- ((
diff (f1,t0))
* (g3
. t0)))))
- (((h2
. t0)
* (((g3
. t0)
* (
diff (f2,t0)))
- ((g2
. t0)
* (
diff (f3,t0)))))
+ ((h2
. t0)
* (((f2
. t0)
* (
diff (g3,t0)))
- ((f3
. t0)
* (
diff (g2,t0)))))))]|
+
|[(((
diff (h2,t0))
* (((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0))))
- ((
diff (h3,t0))
* (((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0))))), (((
diff (h3,t0))
* (((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0))))
- ((
diff (h1,t0))
* (((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0))))), (((
diff (h1,t0))
* (((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0))))
- ((
diff (h2,t0))
* (((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))))]|) by
Lm11
.= (
|[((((h2
. t0)
* (((f1
. t0)
* (
diff (g2,t0)))
- ((f2
. t0)
* (
diff (g1,t0)))))
- ((h3
. t0)
* (((f3
. t0)
* (
diff (g1,t0)))
- ((f1
. t0)
* (
diff (g3,t0))))))
+ (((h2
. t0)
* (((
diff (f1,t0))
* (g2
. t0))
- ((
diff (f2,t0))
* (g1
. t0))))
- ((h3
. t0)
* (((
diff (f3,t0))
* (g1
. t0))
- ((
diff (f1,t0))
* (g3
. t0)))))), ((((h3
. t0)
* (((f2
. t0)
* (
diff (g3,t0)))
- ((f3
. t0)
* (
diff (g2,t0)))))
- ((h1
. t0)
* (((f1
. t0)
* (
diff (g2,t0)))
- ((f2
. t0)
* (
diff (g1,t0))))))
+ (((h3
. t0)
* (((
diff (f2,t0))
* (g3
. t0))
- ((
diff (f3,t0))
* (g2
. t0))))
- ((h1
. t0)
* (((
diff (f1,t0))
* (g2
. t0))
- ((
diff (f2,t0))
* (g1
. t0)))))), ((((h1
. t0)
* (((f3
. t0)
* (
diff (g1,t0)))
- ((f1
. t0)
* (
diff (g3,t0)))))
- ((h2
. t0)
* (((f2
. t0)
* (
diff (g3,t0)))
- ((f3
. t0)
* (
diff (g2,t0))))))
+ (((h1
. t0)
* (((
diff (f3,t0))
* (g1
. t0))
- ((
diff (f1,t0))
* (g3
. t0))))
- ((h2
. t0)
* (((g3
. t0)
* (
diff (f2,t0)))
- ((g2
. t0)
* (
diff (f3,t0)))))))]|
+
|[(((
diff (h2,t0))
* (((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0))))
- ((
diff (h3,t0))
* (((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0))))), (((
diff (h3,t0))
* (((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0))))
- ((
diff (h1,t0))
* (((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0))))), (((
diff (h1,t0))
* (((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0))))
- ((
diff (h2,t0))
* (((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))))]|)
.= ((
|[(((h2
. t0)
* (((f1
. t0)
* (
diff (g2,t0)))
- ((f2
. t0)
* (
diff (g1,t0)))))
- ((h3
. t0)
* (((f3
. t0)
* (
diff (g1,t0)))
- ((f1
. t0)
* (
diff (g3,t0)))))), (((h3
. t0)
* (((f2
. t0)
* (
diff (g3,t0)))
- ((f3
. t0)
* (
diff (g2,t0)))))
- ((h1
. t0)
* (((f1
. t0)
* (
diff (g2,t0)))
- ((f2
. t0)
* (
diff (g1,t0)))))), (((h1
. t0)
* (((f3
. t0)
* (
diff (g1,t0)))
- ((f1
. t0)
* (
diff (g3,t0)))))
- ((h2
. t0)
* (((f2
. t0)
* (
diff (g3,t0)))
- ((f3
. t0)
* (
diff (g2,t0))))))]|
+
|[(((h2
. t0)
* (((
diff (f1,t0))
* (g2
. t0))
- ((
diff (f2,t0))
* (g1
. t0))))
- ((h3
. t0)
* (((
diff (f3,t0))
* (g1
. t0))
- ((
diff (f1,t0))
* (g3
. t0))))), (((h3
. t0)
* (((
diff (f2,t0))
* (g3
. t0))
- ((
diff (f3,t0))
* (g2
. t0))))
- ((h1
. t0)
* (((
diff (f1,t0))
* (g2
. t0))
- ((
diff (f2,t0))
* (g1
. t0))))), (((h1
. t0)
* (((
diff (f3,t0))
* (g1
. t0))
- ((
diff (f1,t0))
* (g3
. t0))))
- ((h2
. t0)
* (((
diff (f2,t0))
* (g3
. t0))
- ((
diff (f3,t0))
* (g2
. t0)))))]|)
+
|[(((
diff (h2,t0))
* (((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0))))
- ((
diff (h3,t0))
* (((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0))))), (((
diff (h3,t0))
* (((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0))))
- ((
diff (h1,t0))
* (((f1
. t0)
* (g2
. t0))
- ((f2
. t0)
* (g1
. t0))))), (((
diff (h1,t0))
* (((f3
. t0)
* (g1
. t0))
- ((f1
. t0)
* (g3
. t0))))
- ((
diff (h2,t0))
* (((f2
. t0)
* (g3
. t0))
- ((f3
. t0)
* (g2
. t0)))))]|) by
Lm8;
hence thesis;
end;