fdiff_3.miz
begin
reserve h,h1,h2 for
0
-convergent
non-zero
Real_Sequence,
c,c1 for
constant
Real_Sequence,
f,f1,f2 for
PartFunc of
REAL ,
REAL ,
x0,r,r0,r1,r2,g,g1,g2 for
Real,
n0,k,n,m for
Element of
NAT ,
a,b,d for
Real_Sequence,
x for
set;
theorem ::
FDIFF_3:1
Th1: (ex r st r
>
0 &
[.(x0
- r), x0.]
c= (
dom f)) implies ex h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & for n be
Nat holds (h
. n)
<
0
proof
given r such that
A1: r
>
0 and
A2:
[.(x0
- r), x0.]
c= (
dom f);
reconsider xx0 = x0 as
Element of
REAL by
XREAL_0:def 1;
set a = (
seq_const x0);
reconsider a as
constant
Real_Sequence;
deffunc
F(
Nat) = ((
- r)
/ ($1
+ 2));
consider b such that
A3: for n be
Nat holds (b
. n)
=
F(n) from
SEQ_1:sch 1;
A4:
now
let n be
Nat;
0
< (r
/ (n
+ 2)) by
A1,
XREAL_1: 139;
then (
- (r
/ (n
+ 2)))
< (
-
0 ) by
XREAL_1: 24;
then ((
- r)
/ (n
+ 2))
<
0 by
XCMPLX_1: 187;
hence (b
. n)
<
0 by
A3;
end;
then for n be
Nat holds
0
<> (b
. n);
then
A5: b is
non-zero by
SEQ_1: 5;
b is
convergent & (
lim b)
=
0 by
A3,
SEQ_4: 31;
then
reconsider b as
0
-convergent
non-zero
Real_Sequence by
A5,
FDIFF_1:def 1;
take b;
take a;
thus (
rng a)
=
{x0}
proof
thus (
rng a)
c=
{x0}
proof
let x be
object;
assume x
in (
rng a);
then ex n st x
= (a
. n) by
FUNCT_2: 113;
then x
= x0 by
SEQ_1: 57;
hence thesis by
TARSKI:def 1;
end;
let x be
object;
assume x
in
{x0};
then x
= x0 by
TARSKI:def 1
.= (a
.
0 ) by
SEQ_1: 57;
hence thesis by
VALUED_0: 28;
end;
thus (
rng (b
+ a))
c= (
dom f)
proof
let x be
object;
assume x
in (
rng (b
+ a));
then
consider n such that
A6: x
= ((b
+ a)
. n) by
FUNCT_2: 113;
(
0
+ 1)
< (n
+ 2) by
XREAL_1: 8;
then (r
* 1)
< (r
* (n
+ 2)) by
A1,
XREAL_1: 97;
then (r
* ((n
+ 2)
" ))
< ((r
* (n
+ 2))
* ((n
+ 2)
" )) by
XREAL_1: 68;
then (r
* ((n
+ 2)
" ))
< (r
* ((n
+ 2)
* ((n
+ 2)
" )));
then (r
* ((n
+ 2)
" ))
< (r
* 1) by
XCMPLX_0:def 7;
then (r
/ (n
+ 2))
< r by
XCMPLX_0:def 9;
then (x0
- r)
< (x0
- (r
/ (n
+ 2))) by
XREAL_1: 15;
then (x0
- r)
< (x0
+ (
- (r
/ (n
+ 2))));
then
A7: (x0
- r)
<= (x0
+ ((
- r)
/ (n
+ 2))) by
XCMPLX_1: 187;
0
< (r
/ (n
+ 2)) by
A1,
XREAL_1: 139;
then (x0
- (r
/ (n
+ 2)))
< (x0
-
0 ) by
XREAL_1: 15;
then (x0
+ (
- (r
/ (n
+ 2))))
<= x0;
then (x0
+ ((
- r)
/ (n
+ 2)))
<= x0 by
XCMPLX_1: 187;
then
A8: (x0
+ ((
- r)
/ (n
+ 2)))
in { g1 : (x0
- r)
<= g1 & g1
<= x0 } by
A7;
x
= ((b
. n)
+ (a
. n)) by
A6,
SEQ_1: 7
.= (((
- r)
/ (n
+ 2))
+ (a
. n)) by
A3
.= (x0
+ ((
- r)
/ (n
+ 2))) by
SEQ_1: 57;
then x
in
[.(x0
- r), x0.] by
A8,
RCOMP_1:def 1;
hence thesis by
A2;
end;
thus thesis by
A4;
end;
theorem ::
FDIFF_3:2
Th2: (ex r st r
>
0 &
[.x0, (x0
+ r).]
c= (
dom f)) implies ex h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & for n be
Nat holds (h
. n)
>
0
proof
given r such that
A1: r
>
0 and
A2:
[.x0, (x0
+ r).]
c= (
dom f);
reconsider xx0 = x0 as
Element of
REAL by
XREAL_0:def 1;
set a = (
seq_const x0);
reconsider a as
constant
Real_Sequence;
deffunc
F(
Nat) = (r
/ ($1
+ 2));
consider b such that
A3: for n be
Nat holds (b
. n)
=
F(n) from
SEQ_1:sch 1;
A4:
now
let n be
Nat;
0
< (r
/ (n
+ 2)) by
A1,
XREAL_1: 139;
hence
0
< (b
. n) by
A3;
end;
then for n be
Nat holds
0
<> (b
. n);
then
A5: b is
non-zero by
SEQ_1: 5;
b is
convergent & (
lim b)
=
0 by
A3,
SEQ_4: 31;
then
reconsider b as
0
-convergent
non-zero
Real_Sequence by
A5,
FDIFF_1:def 1;
take b, a;
thus (
rng a)
=
{x0}
proof
thus (
rng a)
c=
{x0}
proof
let x be
object;
assume x
in (
rng a);
then ex n st x
= (a
. n) by
FUNCT_2: 113;
then x
= x0 by
SEQ_1: 57;
hence thesis by
TARSKI:def 1;
end;
let x be
object;
assume x
in
{x0};
then x
= x0 by
TARSKI:def 1
.= (a
.
0 ) by
SEQ_1: 57;
hence thesis by
VALUED_0: 28;
end;
thus (
rng (b
+ a))
c= (
dom f)
proof
let x be
object;
assume x
in (
rng (b
+ a));
then
consider n such that
A6: x
= ((b
+ a)
. n) by
FUNCT_2: 113;
(
0
+ 1)
< (n
+ 2) by
XREAL_1: 8;
then (r
* 1)
< (r
* (n
+ 2)) by
A1,
XREAL_1: 97;
then (r
* ((n
+ 2)
" ))
< ((r
* (n
+ 2))
* ((n
+ 2)
" )) by
XREAL_1: 68;
then (r
* ((n
+ 2)
" ))
< (r
* ((n
+ 2)
* ((n
+ 2)
" )));
then (r
* ((n
+ 2)
" ))
< (r
* 1) by
XCMPLX_0:def 7;
then (r
/ (n
+ 2))
< r by
XCMPLX_0:def 9;
then
A7: (x0
+ (r
/ (n
+ 2)))
<= (x0
+ r) by
XREAL_1: 6;
0
< (r
/ (n
+ 2)) by
A1,
XREAL_1: 139;
then (x0
+
0 )
< (x0
+ (r
/ (n
+ 2))) by
XREAL_1: 8;
then
A8: (x0
+ (r
/ (n
+ 2)))
in { g1 : x0
<= g1 & g1
<= (x0
+ r) } by
A7;
x
= ((b
. n)
+ (a
. n)) by
A6,
SEQ_1: 7
.= ((r
/ (n
+ 2))
+ (a
. n)) by
A3
.= ((r
/ (n
+ 2))
+ x0) by
SEQ_1: 57;
then x
in
[.x0, (x0
+ r).] by
A8,
RCOMP_1:def 1;
hence thesis by
A2;
end;
thus thesis by
A4;
end;
theorem ::
FDIFF_3:3
Th3: (for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & (for n be
Nat holds (h
. n)
<
0 ) holds ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))) is
convergent) &
{x0}
c= (
dom f) implies for h1, h2, c st (
rng c)
=
{x0} & (
rng (h1
+ c))
c= (
dom f) & (for n be
Nat holds (h1
. n)
<
0 ) & (
rng (h2
+ c))
c= (
dom f) & (for n be
Nat holds (h2
. n)
<
0 ) holds (
lim ((h1
" )
(#) ((f
/* (h1
+ c))
- (f
/* c))))
= (
lim ((h2
" )
(#) ((f
/* (h2
+ c))
- (f
/* c))))
proof
assume that
A1: for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & (for n be
Nat holds (h
. n)
<
0 ) holds ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))) is
convergent and
A2:
{x0}
c= (
dom f);
let h1, h2, c such that
A3: (
rng c)
=
{x0} and
A4: (
rng (h1
+ c))
c= (
dom f) and
A5: for n be
Nat holds (h1
. n)
<
0 and
A6: (
rng (h2
+ c))
c= (
dom f) and
A7: for n be
Nat holds (h2
. n)
<
0 ;
deffunc
G(
Element of
NAT ) = (h2
. $1);
deffunc
F(
Element of
NAT ) = (h1
. $1);
consider d such that
A8: for n holds (d
. (2
* n))
=
F(n) & (d
. ((2
* n)
+ 1))
=
G(n) from
SCHEME1:sch 2;
now
let n be
Nat;
consider m such that
A9: n
= (2
* m) or n
= ((2
* m)
+ 1) by
SCHEME1: 1;
now
per cases by
A9;
suppose
A10: n
= (2
* m);
(d
. (2
* m))
= (h1
. m) by
A8;
hence (d
. n)
<>
0 by
A10,
SEQ_1: 5;
end;
suppose
A11: n
= ((2
* m)
+ 1);
(d
. ((2
* m)
+ 1))
= (h2
. m) by
A8;
hence (d
. n)
<>
0 by
A11,
SEQ_1: 5;
end;
end;
hence (d
. n)
<>
0 ;
end;
then
A12: d is
non-zero by
SEQ_1: 5;
A13: h2 is
convergent & (
lim h2)
=
0 ;
h1 is
convergent & (
lim h1)
=
0 ;
then d is
convergent & (
lim d)
=
0 by
A8,
A13,
FDIFF_2: 1;
then
reconsider d as
0
-convergent
non-zero
Real_Sequence by
A12,
FDIFF_1:def 1;
deffunc
F(
Nat) = (2
* $1);
consider a such that
A14: for n be
Nat holds (a
. n)
=
F(n) from
SEQ_1:sch 1;
deffunc
G(
Nat) = ((2
* $1)
+ 1);
consider b such that
A15: for n be
Nat holds (b
. n)
=
G(n) from
SEQ_1:sch 1;
for n holds (b
. n)
=
G(n) by
A15;
then
reconsider b as
increasing
sequence of
NAT by
FDIFF_2: 3;
A16: (
rng (d
+ c))
c= (
dom f)
proof
let x be
object;
assume x
in (
rng (d
+ c));
then
consider n such that
A17: x
= ((d
+ c)
. n) by
FUNCT_2: 113;
consider m such that
A18: n
= (2
* m) or n
= ((2
* m)
+ 1) by
SCHEME1: 1;
A19: x
= ((d
. n)
+ (c
. n)) by
A17,
SEQ_1: 7;
now
per cases by
A18;
suppose n
= (2
* m);
then x
= ((h1
. m)
+ (c
. (2
* m))) by
A8,
A19
.= ((h1
. m)
+ (c
. m)) by
VALUED_0: 23
.= ((h1
+ c)
. m) by
SEQ_1: 7;
then x
in (
rng (h1
+ c)) by
VALUED_0: 28;
hence thesis by
A4;
end;
suppose n
= ((2
* m)
+ 1);
then x
= ((h2
. m)
+ (c
. ((2
* m)
+ 1))) by
A8,
A19
.= ((h2
. m)
+ (c
. m)) by
VALUED_0: 23
.= ((h2
+ c)
. m) by
SEQ_1: 7;
then x
in (
rng (h2
+ c)) by
VALUED_0: 28;
hence thesis by
A6;
end;
end;
hence thesis;
end;
now
let n;
thus ((((d
" )
(#) ((f
/* (d
+ c))
- (f
/* c)))
* b)
. n)
= (((d
" )
(#) ((f
/* (d
+ c))
- (f
/* c)))
. (b
. n)) by
FUNCT_2: 15
.= (((d
" )
(#) ((f
/* (d
+ c))
- (f
/* c)))
. ((2
* n)
+ 1)) by
A15
.= (((d
" )
. ((2
* n)
+ 1))
* (((f
/* (d
+ c))
- (f
/* c))
. ((2
* n)
+ 1))) by
SEQ_1: 8
.= (((d
" )
. ((2
* n)
+ 1))
* (((f
/* (d
+ c))
. ((2
* n)
+ 1))
- ((f
/* c)
. ((2
* n)
+ 1)))) by
RFUNCT_2: 1
.= (((d
. ((2
* n)
+ 1))
" )
* (((f
/* (d
+ c))
. ((2
* n)
+ 1))
- ((f
/* c)
. ((2
* n)
+ 1)))) by
VALUED_1: 10
.= (((h2
. n)
" )
* (((f
/* (d
+ c))
. ((2
* n)
+ 1))
- ((f
/* c)
. ((2
* n)
+ 1)))) by
A8
.= (((h2
" )
. n)
* (((f
/* (d
+ c))
. ((2
* n)
+ 1))
- ((f
/* c)
. ((2
* n)
+ 1)))) by
VALUED_1: 10
.= (((h2
" )
. n)
* ((f
. ((d
+ c)
. ((2
* n)
+ 1)))
- ((f
/* c)
. ((2
* n)
+ 1)))) by
A16,
FUNCT_2: 108
.= (((h2
" )
. n)
* ((f
. ((d
. ((2
* n)
+ 1))
+ (c
. ((2
* n)
+ 1))))
- ((f
/* c)
. ((2
* n)
+ 1)))) by
SEQ_1: 7
.= (((h2
" )
. n)
* ((f
. ((h2
. n)
+ (c
. ((2
* n)
+ 1))))
- ((f
/* c)
. ((2
* n)
+ 1)))) by
A8
.= (((h2
" )
. n)
* ((f
. ((h2
. n)
+ (c
. n)))
- ((f
/* c)
. ((2
* n)
+ 1)))) by
VALUED_0: 23
.= (((h2
" )
. n)
* ((f
. ((h2
+ c)
. n))
- ((f
/* c)
. ((2
* n)
+ 1)))) by
SEQ_1: 7
.= (((h2
" )
. n)
* (((f
/* (h2
+ c))
. n)
- ((f
/* c)
. ((2
* n)
+ 1)))) by
A6,
FUNCT_2: 108
.= (((h2
" )
. n)
* (((f
/* (h2
+ c))
. n)
- (f
. (c
. ((2
* n)
+ 1))))) by
A2,
A3,
FUNCT_2: 108
.= (((h2
" )
. n)
* (((f
/* (h2
+ c))
. n)
- (f
. (c
. n)))) by
VALUED_0: 23
.= (((h2
" )
. n)
* (((f
/* (h2
+ c))
. n)
- ((f
/* c)
. n))) by
A2,
A3,
FUNCT_2: 108
.= (((h2
" )
. n)
* (((f
/* (h2
+ c))
- (f
/* c))
. n)) by
RFUNCT_2: 1
.= (((h2
" )
(#) ((f
/* (h2
+ c))
- (f
/* c)))
. n) by
SEQ_1: 8;
end;
then
A20: ((h2
" )
(#) ((f
/* (h2
+ c))
- (f
/* c))) is
subsequence of ((d
" )
(#) ((f
/* (d
+ c))
- (f
/* c))) by
FUNCT_2: 63;
now
let n be
Nat;
consider m such that
A21: n
= (2
* m) or n
= ((2
* m)
+ 1) by
SCHEME1: 1;
now
per cases by
A21;
suppose
A22: n
= (2
* m);
(d
. (2
* m))
= (h1
. m) by
A8;
hence (d
. n)
<
0 by
A5,
A22;
end;
suppose
A23: n
= ((2
* m)
+ 1);
(d
. ((2
* m)
+ 1))
= (h2
. m) by
A8;
hence (d
. n)
<
0 by
A7,
A23;
end;
end;
hence (d
. n)
<
0 ;
end;
then
A24: ((d
" )
(#) ((f
/* (d
+ c))
- (f
/* c))) is
convergent by
A1,
A3,
A16;
for n holds (a
. n)
=
F(n) by
A14;
then
reconsider a as
increasing
sequence of
NAT by
FDIFF_2: 2;
now
let n;
thus ((((d
" )
(#) ((f
/* (d
+ c))
- (f
/* c)))
* a)
. n)
= (((d
" )
(#) ((f
/* (d
+ c))
- (f
/* c)))
. (a
. n)) by
FUNCT_2: 15
.= (((d
" )
(#) ((f
/* (d
+ c))
- (f
/* c)))
. (2
* n)) by
A14
.= (((d
" )
. (2
* n))
* (((f
/* (d
+ c))
- (f
/* c))
. (2
* n))) by
SEQ_1: 8
.= (((d
" )
. (2
* n))
* (((f
/* (d
+ c))
. (2
* n))
- ((f
/* c)
. (2
* n)))) by
RFUNCT_2: 1
.= (((d
. (2
* n))
" )
* (((f
/* (d
+ c))
. (2
* n))
- ((f
/* c)
. (2
* n)))) by
VALUED_1: 10
.= (((h1
. n)
" )
* (((f
/* (d
+ c))
. (2
* n))
- ((f
/* c)
. (2
* n)))) by
A8
.= (((h1
" )
. n)
* (((f
/* (d
+ c))
. (2
* n))
- ((f
/* c)
. (2
* n)))) by
VALUED_1: 10
.= (((h1
" )
. n)
* ((f
. ((d
+ c)
. (2
* n)))
- ((f
/* c)
. (2
* n)))) by
A16,
FUNCT_2: 108
.= (((h1
" )
. n)
* ((f
. ((d
. (2
* n))
+ (c
. (2
* n))))
- ((f
/* c)
. (2
* n)))) by
SEQ_1: 7
.= (((h1
" )
. n)
* ((f
. ((h1
. n)
+ (c
. (2
* n))))
- ((f
/* c)
. (2
* n)))) by
A8
.= (((h1
" )
. n)
* ((f
. ((h1
. n)
+ (c
. n)))
- ((f
/* c)
. (2
* n)))) by
VALUED_0: 23
.= (((h1
" )
. n)
* ((f
. ((h1
+ c)
. n))
- ((f
/* c)
. (2
* n)))) by
SEQ_1: 7
.= (((h1
" )
. n)
* (((f
/* (h1
+ c))
. n)
- ((f
/* c)
. (2
* n)))) by
A4,
FUNCT_2: 108
.= (((h1
" )
. n)
* (((f
/* (h1
+ c))
. n)
- (f
. (c
. (2
* n))))) by
A2,
A3,
FUNCT_2: 108
.= (((h1
" )
. n)
* (((f
/* (h1
+ c))
. n)
- (f
. (c
. n)))) by
VALUED_0: 23
.= (((h1
" )
. n)
* (((f
/* (h1
+ c))
. n)
- ((f
/* c)
. n))) by
A2,
A3,
FUNCT_2: 108
.= (((h1
" )
. n)
* (((f
/* (h1
+ c))
- (f
/* c))
. n)) by
RFUNCT_2: 1
.= (((h1
" )
(#) ((f
/* (h1
+ c))
- (f
/* c)))
. n) by
SEQ_1: 8;
end;
then ((h1
" )
(#) ((f
/* (h1
+ c))
- (f
/* c))) is
subsequence of ((d
" )
(#) ((f
/* (d
+ c))
- (f
/* c))) by
FUNCT_2: 63;
then (
lim ((h1
" )
(#) ((f
/* (h1
+ c))
- (f
/* c))))
= (
lim ((d
" )
(#) ((f
/* (d
+ c))
- (f
/* c)))) by
A24,
SEQ_4: 17;
hence thesis by
A24,
A20,
SEQ_4: 17;
end;
theorem ::
FDIFF_3:4
Th4: (for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & (for n be
Nat holds (h
. n)
>
0 ) holds ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))) is
convergent) &
{x0}
c= (
dom f) implies for h1, h2, c st (
rng c)
=
{x0} & (
rng (h1
+ c))
c= (
dom f) & (
rng (h2
+ c))
c= (
dom f) & (for n be
Nat holds (h1
. n)
>
0 ) & (for n be
Nat holds (h2
. n)
>
0 ) holds (
lim ((h1
" )
(#) ((f
/* (h1
+ c))
- (f
/* c))))
= (
lim ((h2
" )
(#) ((f
/* (h2
+ c))
- (f
/* c))))
proof
assume that
A1: for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & (for n be
Nat holds (h
. n)
>
0 ) holds ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))) is
convergent and
A2:
{x0}
c= (
dom f);
let h1, h2, c such that
A3: (
rng c)
=
{x0} and
A4: (
rng (h1
+ c))
c= (
dom f) and
A5: (
rng (h2
+ c))
c= (
dom f) and
A6: for n be
Nat holds (h1
. n)
>
0 and
A7: for n be
Nat holds (h2
. n)
>
0 ;
deffunc
G(
Element of
NAT ) = (h2
. $1);
deffunc
F(
Element of
NAT ) = (h1
. $1);
consider d such that
A8: for n holds (d
. (2
* n))
=
F(n) & (d
. ((2
* n)
+ 1))
=
G(n) from
SCHEME1:sch 2;
now
let n be
Nat;
consider m such that
A9: n
= (2
* m) or n
= ((2
* m)
+ 1) by
SCHEME1: 1;
now
per cases by
A9;
suppose n
= (2
* m);
then (d
. n)
= (h1
. m) by
A8;
hence (d
. n)
<>
0 by
SEQ_1: 5;
end;
suppose n
= ((2
* m)
+ 1);
then (d
. n)
= (h2
. m) by
A8;
hence (d
. n)
<>
0 by
SEQ_1: 5;
end;
end;
hence (d
. n)
<>
0 ;
end;
then
A10: d is
non-zero by
SEQ_1: 5;
A11: h2 is
convergent & (
lim h2)
=
0 ;
h1 is
convergent & (
lim h1)
=
0 ;
then d is
convergent & (
lim d)
=
0 by
A8,
A11,
FDIFF_2: 1;
then
reconsider d as
0
-convergent
non-zero
Real_Sequence by
A10,
FDIFF_1:def 1;
deffunc
F(
Nat) = (2
* $1);
consider a such that
A12: for n be
Nat holds (a
. n)
=
F(n) from
SEQ_1:sch 1;
deffunc
G(
Nat) = ((2
* $1)
+ 1);
consider b such that
A13: for n be
Nat holds (b
. n)
=
G(n) from
SEQ_1:sch 1;
for n holds (b
. n)
=
G(n) by
A13;
then
reconsider b as
increasing
sequence of
NAT by
FDIFF_2: 3;
A14: (
rng (d
+ c))
c= (
dom f)
proof
let x be
object;
assume x
in (
rng (d
+ c));
then
consider n such that
A15: x
= ((d
+ c)
. n) by
FUNCT_2: 113;
consider m such that
A16: n
= (2
* m) or n
= ((2
* m)
+ 1) by
SCHEME1: 1;
now
per cases by
A16;
suppose n
= (2
* m);
then x
= ((d
. (2
* m))
+ (c
. (2
* m))) by
A15,
SEQ_1: 7
.= ((h1
. m)
+ (c
. (2
* m))) by
A8
.= ((h1
. m)
+ (c
. m)) by
VALUED_0: 23
.= ((h1
+ c)
. m) by
SEQ_1: 7;
then x
in (
rng (h1
+ c)) by
VALUED_0: 28;
hence thesis by
A4;
end;
suppose n
= ((2
* m)
+ 1);
then x
= ((d
. ((2
* m)
+ 1))
+ (c
. ((2
* m)
+ 1))) by
A15,
SEQ_1: 7
.= ((h2
. m)
+ (c
. ((2
* m)
+ 1))) by
A8
.= ((h2
. m)
+ (c
. m)) by
VALUED_0: 23
.= ((h2
+ c)
. m) by
SEQ_1: 7;
then x
in (
rng (h2
+ c)) by
VALUED_0: 28;
hence thesis by
A5;
end;
end;
hence thesis;
end;
now
let n;
thus ((((d
" )
(#) ((f
/* (d
+ c))
- (f
/* c)))
* b)
. n)
= (((d
" )
(#) ((f
/* (d
+ c))
- (f
/* c)))
. (b
. n)) by
FUNCT_2: 15
.= (((d
" )
(#) ((f
/* (d
+ c))
- (f
/* c)))
. ((2
* n)
+ 1)) by
A13
.= (((d
" )
. ((2
* n)
+ 1))
* (((f
/* (d
+ c))
- (f
/* c))
. ((2
* n)
+ 1))) by
SEQ_1: 8
.= (((d
. ((2
* n)
+ 1))
" )
* (((f
/* (d
+ c))
- (f
/* c))
. ((2
* n)
+ 1))) by
VALUED_1: 10
.= (((h2
. n)
" )
* (((f
/* (d
+ c))
- (f
/* c))
. ((2
* n)
+ 1))) by
A8
.= (((h2
" )
. n)
* (((f
/* (d
+ c))
- (f
/* c))
. ((2
* n)
+ 1))) by
VALUED_1: 10
.= (((h2
" )
. n)
* (((f
/* (d
+ c))
. ((2
* n)
+ 1))
- ((f
/* c)
. ((2
* n)
+ 1)))) by
RFUNCT_2: 1
.= (((h2
" )
. n)
* ((f
. ((d
+ c)
. ((2
* n)
+ 1)))
- ((f
/* c)
. ((2
* n)
+ 1)))) by
A14,
FUNCT_2: 108
.= (((h2
" )
. n)
* ((f
. ((d
+ c)
. ((2
* n)
+ 1)))
- (f
. (c
. ((2
* n)
+ 1))))) by
A2,
A3,
FUNCT_2: 108
.= (((h2
" )
. n)
* ((f
. ((d
. ((2
* n)
+ 1))
+ (c
. ((2
* n)
+ 1))))
- (f
. (c
. ((2
* n)
+ 1))))) by
SEQ_1: 7
.= (((h2
" )
. n)
* ((f
. ((h2
. n)
+ (c
. ((2
* n)
+ 1))))
- (f
. (c
. ((2
* n)
+ 1))))) by
A8
.= (((h2
" )
. n)
* ((f
. ((h2
. n)
+ (c
. ((2
* n)
+ 1))))
- (f
. (c
. n)))) by
VALUED_0: 23
.= (((h2
" )
. n)
* ((f
. ((h2
. n)
+ (c
. n)))
- (f
. (c
. n)))) by
VALUED_0: 23
.= (((h2
" )
. n)
* ((f
. ((h2
+ c)
. n))
- (f
. (c
. n)))) by
SEQ_1: 7
.= (((h2
" )
. n)
* (((f
/* (h2
+ c))
. n)
- (f
. (c
. n)))) by
A5,
FUNCT_2: 108
.= (((h2
" )
. n)
* (((f
/* (h2
+ c))
. n)
- ((f
/* c)
. n))) by
A2,
A3,
FUNCT_2: 108
.= (((h2
" )
. n)
* (((f
/* (h2
+ c))
- (f
/* c))
. n)) by
RFUNCT_2: 1
.= (((h2
" )
(#) ((f
/* (h2
+ c))
- (f
/* c)))
. n) by
SEQ_1: 8;
end;
then
A17: ((h2
" )
(#) ((f
/* (h2
+ c))
- (f
/* c))) is
subsequence of ((d
" )
(#) ((f
/* (d
+ c))
- (f
/* c))) by
FUNCT_2: 63;
for n be
Nat holds (d
. n)
>
0
proof
let n be
Nat;
consider m such that
A18: n
= (2
* m) or n
= ((2
* m)
+ 1) by
SCHEME1: 1;
now
per cases by
A18;
suppose n
= (2
* m);
then (d
. n)
= (h1
. m) by
A8;
hence thesis by
A6;
end;
suppose n
= ((2
* m)
+ 1);
then (d
. n)
= (h2
. m) by
A8;
hence thesis by
A7;
end;
end;
hence thesis;
end;
then
A19: ((d
" )
(#) ((f
/* (d
+ c))
- (f
/* c))) is
convergent by
A1,
A3,
A14;
for n holds (a
. n)
=
F(n) by
A12;
then
reconsider a as
increasing
sequence of
NAT by
FDIFF_2: 2;
now
let n;
thus ((((d
" )
(#) ((f
/* (d
+ c))
- (f
/* c)))
* a)
. n)
= (((d
" )
(#) ((f
/* (d
+ c))
- (f
/* c)))
. (a
. n)) by
FUNCT_2: 15
.= (((d
" )
(#) ((f
/* (d
+ c))
- (f
/* c)))
. (2
* n)) by
A12
.= (((d
" )
. (2
* n))
* (((f
/* (d
+ c))
- (f
/* c))
. (2
* n))) by
SEQ_1: 8
.= (((d
. (2
* n))
" )
* (((f
/* (d
+ c))
- (f
/* c))
. (2
* n))) by
VALUED_1: 10
.= (((h1
. n)
" )
* (((f
/* (d
+ c))
- (f
/* c))
. (2
* n))) by
A8
.= (((h1
" )
. n)
* (((f
/* (d
+ c))
- (f
/* c))
. (2
* n))) by
VALUED_1: 10
.= (((h1
" )
. n)
* (((f
/* (d
+ c))
. (2
* n))
- ((f
/* c)
. (2
* n)))) by
RFUNCT_2: 1
.= (((h1
" )
. n)
* ((f
. ((d
+ c)
. (2
* n)))
- ((f
/* c)
. (2
* n)))) by
A14,
FUNCT_2: 108
.= (((h1
" )
. n)
* ((f
. ((d
+ c)
. (2
* n)))
- (f
. (c
. (2
* n))))) by
A2,
A3,
FUNCT_2: 108
.= (((h1
" )
. n)
* ((f
. ((d
. (2
* n))
+ (c
. (2
* n))))
- (f
. (c
. (2
* n))))) by
SEQ_1: 7
.= (((h1
" )
. n)
* ((f
. ((h1
. n)
+ (c
. (2
* n))))
- (f
. (c
. (2
* n))))) by
A8
.= (((h1
" )
. n)
* ((f
. ((h1
. n)
+ (c
. (2
* n))))
- (f
. (c
. n)))) by
VALUED_0: 23
.= (((h1
" )
. n)
* ((f
. ((h1
. n)
+ (c
. n)))
- (f
. (c
. n)))) by
VALUED_0: 23
.= (((h1
" )
. n)
* ((f
. ((h1
+ c)
. n))
- (f
. (c
. n)))) by
SEQ_1: 7
.= (((h1
" )
. n)
* (((f
/* (h1
+ c))
. n)
- (f
. (c
. n)))) by
A4,
FUNCT_2: 108
.= (((h1
" )
. n)
* (((f
/* (h1
+ c))
. n)
- ((f
/* c)
. n))) by
A2,
A3,
FUNCT_2: 108
.= (((h1
" )
. n)
* (((f
/* (h1
+ c))
- (f
/* c))
. n)) by
RFUNCT_2: 1
.= (((h1
" )
(#) ((f
/* (h1
+ c))
- (f
/* c)))
. n) by
SEQ_1: 8;
end;
then ((h1
" )
(#) ((f
/* (h1
+ c))
- (f
/* c))) is
subsequence of ((d
" )
(#) ((f
/* (d
+ c))
- (f
/* c))) by
FUNCT_2: 63;
then (
lim ((h1
" )
(#) ((f
/* (h1
+ c))
- (f
/* c))))
= (
lim ((d
" )
(#) ((f
/* (d
+ c))
- (f
/* c)))) by
A19,
SEQ_4: 17;
hence thesis by
A19,
A17,
SEQ_4: 17;
end;
definition
let f, x0;
::
FDIFF_3:def1
pred f
is_Lcontinuous_in x0 means x0
in (
dom f) & for a st (
rng a)
c= ((
left_open_halfline x0)
/\ (
dom f)) & a is
convergent & (
lim a)
= x0 holds (f
/* a) is
convergent & (f
. x0)
= (
lim (f
/* a));
::
FDIFF_3:def2
pred f
is_Rcontinuous_in x0 means x0
in (
dom f) & for a st (
rng a)
c= ((
right_open_halfline x0)
/\ (
dom f)) & a is
convergent & (
lim a)
= x0 holds (f
/* a) is
convergent & (f
. x0)
= (
lim (f
/* a));
::
FDIFF_3:def3
pred f
is_right_differentiable_in x0 means (ex r st r
>
0 &
[.x0, (x0
+ r).]
c= (
dom f)) & for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & (for n be
Nat holds (h
. n)
>
0 ) holds ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))) is
convergent;
::
FDIFF_3:def4
pred f
is_left_differentiable_in x0 means (ex r st r
>
0 &
[.(x0
- r), x0.]
c= (
dom f)) & for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & (for n be
Nat holds (h
. n)
<
0 ) holds ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))) is
convergent;
end
theorem ::
FDIFF_3:5
Th5: f
is_left_differentiable_in x0 implies f
is_Lcontinuous_in x0
proof
assume
A1: f
is_left_differentiable_in x0;
A2: for a st (
rng a)
c= ((
left_open_halfline x0)
/\ (
dom f)) & a is
convergent & (
lim a)
= x0 holds (f
/* a) is
convergent & (f
. x0)
= (
lim (f
/* a))
proof
reconsider xx0 = x0 as
Element of
REAL by
XREAL_0:def 1;
set b = (
seq_const x0);
let a such that
A3: (
rng a)
c= ((
left_open_halfline x0)
/\ (
dom f)) and
A4: a is
convergent and
A5: (
lim a)
= x0;
consider r such that
A6:
0
< r and
A7:
[.(x0
- r), x0.]
c= (
dom f) by
A1;
consider n0 be
Nat such that
A8: for k be
Nat st k
>= n0 holds (x0
- r)
< (a
. k) by
A4,
A5,
A6,
LIMFUNC2: 1,
XREAL_1: 44;
deffunc
F(
Nat) = ((a
. $1)
- (b
. $1));
consider d such that
A9: for n be
Nat holds (d
. n)
=
F(n) from
SEQ_1:sch 1;
A10: d
= (a
- b) by
A9,
RFUNCT_2: 1;
then
A11: d is
convergent by
A4;
reconsider c = (b
^\ n0) as
constant
Real_Sequence;
A12: (
rng c)
=
{x0}
proof
thus (
rng c)
c=
{x0}
proof
let x be
object;
assume x
in (
rng c);
then
consider n such that
A13: x
= ((b
^\ n0)
. n) by
FUNCT_2: 113;
x
= (b
. (n
+ n0)) by
A13,
NAT_1:def 3;
then x
= x0 by
SEQ_1: 57;
hence thesis by
TARSKI:def 1;
end;
let x be
object;
assume x
in
{x0};
then
A14: x
= x0 by
TARSKI:def 1;
(c
.
0 )
= (b
. (
0
+ n0)) by
NAT_1:def 3
.= x by
A14,
SEQ_1: 57;
hence thesis by
VALUED_0: 28;
end;
A15:
now
let g be
Real such that
A16:
0
< g;
reconsider n =
0 as
Nat;
take n;
let m be
Nat such that n
<= m;
A17: m
in
NAT by
ORDINAL1:def 12;
(x0
- r)
<= x0 by
A6,
XREAL_1: 44;
then x0
in
[.(x0
- r), x0.] by
XXREAL_1: 1;
then (
rng c)
c= (
dom f) by
A7,
A12,
ZFMISC_1: 31;
then
|.(((f
/* c)
. m)
- (f
. x0)).|
=
|.((f
. (c
. m))
- (f
. x0)).| by
FUNCT_2: 108,
A17
.=
|.((f
. (b
. (m
+ n0)))
- (f
. x0)).| by
NAT_1:def 3
.=
|.((f
. x0)
- (f
. x0)).| by
SEQ_1: 57
.=
0 by
ABSVALUE: 2;
hence
|.(((f
/* c)
. m)
- (f
. x0)).|
< g by
A16;
end;
then
A18: (f
/* c) is
convergent by
SEQ_2:def 6;
(
lim b)
= (b
.
0 ) by
SEQ_4: 26
.= x0 by
SEQ_1: 57;
then (
lim d)
= (x0
- x0) by
A4,
A5,
A10,
SEQ_2: 12
.=
0 ;
then
A19: (
lim (d
^\ n0))
=
0 by
A11,
SEQ_4: 20;
A20: for n holds (d
. n)
<
0 & (d
. n)
<>
0
proof
let n;
A21: (d
. n)
= ((a
. n)
- (b
. n)) by
A9;
(a
. n)
in (
rng a) by
VALUED_0: 28;
then (a
. n)
in (
left_open_halfline x0) by
A3,
XBOOLE_0:def 4;
then (a
. n)
in { r1 : r1
< x0 } by
XXREAL_1: 229;
then
A22: ex r1 st r1
= (a
. n) & r1
< x0;
then ((a
. n)
- x0)
< (x0
- x0) by
XREAL_1: 9;
hence (d
. n)
<
0 by
A21,
SEQ_1: 57;
thus thesis by
A21,
A22,
SEQ_1: 57;
end;
A23: for n be
Nat holds ((d
^\ n0)
. n)
<
0
proof
let n be
Nat;
A24: (n
+ n0)
in
NAT by
ORDINAL1:def 12;
((d
^\ n0)
. n)
= (d
. (n
+ n0)) by
NAT_1:def 3;
hence thesis by
A20,
A24;
end;
for n be
Nat holds ((d
^\ n0)
. n)
<>
0 by
A23;
then (d
^\ n0) is
non-zero by
SEQ_1: 5;
then
reconsider h = (d
^\ n0) as
0
-convergent
non-zero
Real_Sequence by
A11,
A19,
FDIFF_1:def 1;
A25: (
rng a)
c= (
dom f) by
A3,
XBOOLE_0:def 4;
now
let n;
thus ((((f
/* (h
+ c))
- (f
/* c))
+ (f
/* c))
. n)
= ((((f
/* (h
+ c))
- (f
/* c))
. n)
+ ((f
/* c)
. n)) by
SEQ_1: 7
.= ((((f
/* (h
+ c))
. n)
- ((f
/* c)
. n))
+ ((f
/* c)
. n)) by
RFUNCT_2: 1
.= ((f
/* (h
+ c))
. n);
end;
then
A26: (((f
/* (h
+ c))
- (f
/* c))
+ (f
/* c))
= (f
/* (h
+ c)) by
FUNCT_2: 63;
now
let n;
thus ((h
+ c)
. n)
= ((((a
- b)
+ b)
^\ n0)
. n) by
A10,
SEQM_3: 15
.= (((a
- b)
+ b)
. (n
+ n0)) by
NAT_1:def 3
.= (((a
- b)
. (n
+ n0))
+ (b
. (n
+ n0))) by
SEQ_1: 7
.= (((a
. (n
+ n0))
- (b
. (n
+ n0)))
+ (b
. (n
+ n0))) by
RFUNCT_2: 1
.= ((a
^\ n0)
. n) by
NAT_1:def 3;
end;
then
A27: (((f
/* (h
+ c))
- (f
/* c))
+ (f
/* c))
= (f
/* (a
^\ n0)) by
A26,
FUNCT_2: 63
.= ((f
/* a)
^\ n0) by
A25,
VALUED_0: 27;
A28: for n holds ((a
^\ n0)
. n)
in
[.(x0
- r), x0.]
proof
let n;
(a
. (n
+ n0))
in (
rng a) by
VALUED_0: 28;
then ((a
^\ n0)
. n)
in (
rng a) by
NAT_1:def 3;
then ((a
^\ n0)
. n)
in (
left_open_halfline x0) by
A3,
XBOOLE_0:def 4;
then ((a
^\ n0)
. n)
in { g : g
< x0 } by
XXREAL_1: 229;
then
A29: ex g st g
= ((a
^\ n0)
. n) & g
< x0;
0
<= n & (
0
+ n0)
= n0;
then n0
<= (n0
+ n) by
XREAL_1: 6;
then (x0
- r)
<= (a
. (n
+ n0)) by
A8;
then (x0
- r)
<= ((a
^\ n0)
. n) by
NAT_1:def 3;
then ((a
^\ n0)
. n)
in { g : (x0
- r)
<= g & g
<= x0 } by
A29;
hence thesis by
RCOMP_1:def 1;
end;
(
rng (h
+ c))
c=
[.(x0
- r), x0.]
proof
let x be
object;
assume x
in (
rng (h
+ c));
then
consider n such that
A30: x
= ((h
+ c)
. n) by
FUNCT_2: 113;
((h
+ c)
. n)
= ((((a
- b)
+ b)
^\ n0)
. n) by
A10,
SEQM_3: 15
.= (((a
- b)
+ b)
. (n
+ n0)) by
NAT_1:def 3
.= (((a
- b)
. (n
+ n0))
+ (b
. (n
+ n0))) by
SEQ_1: 7
.= (((a
. (n
+ n0))
- (b
. (n
+ n0)))
+ (b
. (n
+ n0))) by
RFUNCT_2: 1
.= ((a
^\ n0)
. n) by
NAT_1:def 3;
hence thesis by
A28,
A30;
end;
then (
rng (h
+ c))
c= (
dom f) by
A7;
then
A31: ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))) is
convergent by
A1,
A23,
A12;
then
A32: (
lim (h
(#) ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)))))
= (
0
* (
lim ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))) by
A19,
SEQ_2: 15
.=
0 ;
now
let n;
A33: (h
. n)
<>
0 by
A23;
thus ((h
(#) ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))
. n)
= ((h
. n)
* (((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)))
. n)) by
SEQ_1: 8
.= ((h
. n)
* (((h
" )
. n)
* (((f
/* (h
+ c))
- (f
/* c))
. n))) by
SEQ_1: 8
.= ((h
. n)
* (((h
. n)
" )
* (((f
/* (h
+ c))
- (f
/* c))
. n))) by
VALUED_1: 10
.= (((h
. n)
* ((h
. n)
" ))
* (((f
/* (h
+ c))
- (f
/* c))
. n))
.= (1
* (((f
/* (h
+ c))
- (f
/* c))
. n)) by
A33,
XCMPLX_0:def 7
.= (((f
/* (h
+ c))
- (f
/* c))
. n);
end;
then
A34: (h
(#) ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))
= ((f
/* (h
+ c))
- (f
/* c)) by
FUNCT_2: 63;
then
A35: ((f
/* (h
+ c))
- (f
/* c)) is
convergent by
A31;
then
A36: (((f
/* (h
+ c))
- (f
/* c))
+ (f
/* c)) is
convergent by
A18;
hence (f
/* a) is
convergent by
A27,
SEQ_4: 21;
(
lim (f
/* c))
= (f
. x0) by
A15,
A18,
SEQ_2:def 7;
then (
lim (((f
/* (h
+ c))
- (f
/* c))
+ (f
/* c)))
= (
0
+ (f
. x0)) by
A32,
A34,
A35,
A18,
SEQ_2: 6
.= (f
. x0);
hence thesis by
A36,
A27,
SEQ_4: 22;
end;
x0
in (
dom f)
proof
consider r such that
A37:
0
< r and
A38:
[.(x0
- r), x0.]
c= (
dom f) by
A1;
(x0
- r)
<= x0 by
A37,
XREAL_1: 44;
then x0
in
[.(x0
- r), x0.] by
XXREAL_1: 1;
hence thesis by
A38;
end;
hence thesis by
A2;
end;
theorem ::
FDIFF_3:6
Th6: f
is_Lcontinuous_in x0 & (f
. x0)
<> g2 & (ex r st r
>
0 &
[.(x0
- r), x0.]
c= (
dom f)) implies ex r1 st r1
>
0 &
[.(x0
- r1), x0.]
c= (
dom f) & for g st g
in
[.(x0
- r1), x0.] holds (f
. g)
<> g2
proof
assume that
A1: f
is_Lcontinuous_in x0 and
A2: (f
. x0)
<> g2;
given r such that
A3: r
>
0 and
A4:
[.(x0
- r), x0.]
c= (
dom f);
defpred
P[
Element of
NAT ,
set] means $2
in
[.(x0
- (r
/ ($1
+ 1))), x0.] & $2
in (
dom f) & (f
. $2)
= g2;
assume
A5: for r1 st r1
>
0 &
[.(x0
- r1), x0.]
c= (
dom f) holds ex g st g
in
[.(x0
- r1), x0.] & (f
. g)
= g2;
A6: for n holds ex g be
Element of
REAL st
P[n, g]
proof
let n;
(x0
- r)
<= x0 by
A3,
XREAL_1: 44;
then
A7: x0
in
[.(x0
- r), x0.] by
XXREAL_1: 1;
(
0
+ 1)
<= (n
+ 1) by
XREAL_1: 7;
then (r
/ (n
+ 1))
<= (r
/ 1) by
A3,
XREAL_1: 118;
then
A8: (x0
- r)
<= (x0
- (r
/ (n
+ 1))) by
XREAL_1: 13;
(x0
- (r
/ (n
+ 1)))
<= x0 by
A3,
XREAL_1: 44,
XREAL_1: 139;
then (x0
- (r
/ (n
+ 1)))
in { g1 : (x0
- r)
<= g1 & g1
<= x0 } by
A8;
then (x0
- (r
/ (n
+ 1)))
in
[.(x0
- r), x0.] by
RCOMP_1:def 1;
then
[.(x0
- (r
/ (n
+ 1))), x0.]
c=
[.(x0
- r), x0.] by
A7,
XXREAL_2:def 12;
then
A9:
[.(x0
- (r
/ (n
+ 1))), x0.]
c= (
dom f) by
A4;
then
consider g such that
A10: g
in
[.(x0
- (r
/ (n
+ 1))), x0.] & (f
. g)
= g2 by
A3,
A5,
XREAL_1: 139;
take g;
thus thesis by
A9,
A10;
end;
consider a such that
A11: for n holds
P[n, (a
. n)] from
FUNCT_2:sch 3(
A6);
A12: (
rng a)
c= ((
left_open_halfline x0)
/\ (
dom f))
proof
let x be
object;
assume x
in (
rng a);
then
consider n such that
A13: x
= (a
. n) by
FUNCT_2: 113;
(a
. n)
in
[.(x0
- (r
/ (n
+ 1))), x0.] by
A11;
then (a
. n)
in { g1 : (x0
- (r
/ (n
+ 1)))
<= g1 & g1
<= x0 } by
RCOMP_1:def 1;
then
A14: ex g1 st g1
= (a
. n) & (x0
- (r
/ (n
+ 1)))
<= g1 & g1
<= x0;
(a
. n)
<> x0 by
A2,
A11;
then (a
. n)
< x0 by
A14,
XXREAL_0: 1;
then (a
. n)
in { g1 : g1
< x0 };
then
A15: (a
. n)
in (
left_open_halfline x0) by
XXREAL_1: 229;
(a
. n)
in (
dom f) by
A11;
hence thesis by
A13,
A15,
XBOOLE_0:def 4;
end;
A16: ((
left_open_halfline x0)
/\ (
dom f))
c= (
dom f) by
XBOOLE_1: 17;
A17: for n holds ((f
/* a)
. n)
= g2
proof
let n;
thus ((f
/* a)
. n)
= (f
. (a
. n)) by
A12,
A16,
FUNCT_2: 108,
XBOOLE_1: 1
.= g2 by
A11;
end;
now
let n be
Nat;
n
in
NAT by
ORDINAL1:def 12;
then ((f
/* a)
. n)
= g2 by
A17;
hence ((f
/* a)
. n)
= ((f
/* a)
. (n
+ 1)) by
A17;
end;
then
A18: (
lim (f
/* a))
= ((f
/* a)
.
0 ) by
SEQ_4: 26,
VALUED_0: 25
.= g2 by
A17;
reconsider xx0 = x0 as
Element of
REAL by
XREAL_0:def 1;
set d = (
seq_const x0);
deffunc
F(
Nat) = (x0
- (r
/ ($1
+ 1)));
consider b such that
A19: for n be
Nat holds (b
. n)
=
F(n) from
SEQ_1:sch 1;
A20:
now
let n be
Nat;
A21: n
in
NAT by
ORDINAL1:def 12;
(a
. n)
in
[.(x0
- (r
/ (n
+ 1))), x0.] by
A11,
A21;
then (a
. n)
in { g1 : (x0
- (r
/ (n
+ 1)))
<= g1 & g1
<= x0 } by
RCOMP_1:def 1;
then ex g1 st g1
= (a
. n) & (x0
- (r
/ (n
+ 1)))
<= g1 & g1
<= x0;
hence (b
. n)
<= (a
. n) & (a
. n)
<= (d
. n) by
A19,
SEQ_1: 57;
end;
A22: (
lim d)
= (d
.
0 ) by
SEQ_4: 26
.= x0 by
SEQ_1: 57;
b is
convergent & (
lim b)
= x0 by
A19,
FCONT_3: 5;
then a is
convergent & (
lim a)
= x0 by
A22,
A20,
SEQ_2: 19,
SEQ_2: 20;
hence contradiction by
A1,
A2,
A12,
A18;
end;
theorem ::
FDIFF_3:7
Th7: f
is_right_differentiable_in x0 implies f
is_Rcontinuous_in x0
proof
assume
A1: f
is_right_differentiable_in x0;
then
consider r such that
A2: r
>
0 and
A3:
[.x0, (x0
+ r).]
c= (
dom f);
A4: for a st (
rng a)
c= ((
right_open_halfline x0)
/\ (
dom f)) & a is
convergent & (
lim a)
= x0 holds (f
/* a) is
convergent & (f
. x0)
= (
lim (f
/* a))
proof
reconsider xx0 = x0 as
Element of
REAL by
XREAL_0:def 1;
set b = (
seq_const x0);
let a such that
A5: (
rng a)
c= ((
right_open_halfline x0)
/\ (
dom f)) and
A6: a is
convergent and
A7: (
lim a)
= x0;
consider r such that
A8: r
>
0 and
A9:
[.x0, (x0
+ r).]
c= (
dom f) by
A1;
(x0
+
0 )
< (x0
+ r) by
A8,
XREAL_1: 6;
then
consider n0 be
Nat such that
A10: for k be
Nat st k
>= n0 holds (a
. k)
< (x0
+ r) by
A6,
A7,
LIMFUNC2: 2;
deffunc
F(
Nat) = ((a
. $1)
- (b
. $1));
consider d such that
A11: for n be
Nat holds (d
. n)
=
F(n) from
SEQ_1:sch 1;
A12: d
= (a
- b) by
A11,
RFUNCT_2: 1;
then
A13: d is
convergent by
A6;
reconsider c = (b
^\ n0) as
constant
Real_Sequence;
A14: (
rng c)
=
{x0}
proof
thus (
rng c)
c=
{x0}
proof
let x be
object;
assume x
in (
rng c);
then
consider n such that
A15: x
= ((b
^\ n0)
. n) by
FUNCT_2: 113;
x
= (b
. (n
+ n0)) by
A15,
NAT_1:def 3;
then x
= x0 by
SEQ_1: 57;
hence thesis by
TARSKI:def 1;
end;
let x be
object;
assume x
in
{x0};
then
A16: x
= x0 by
TARSKI:def 1;
(c
.
0 )
= (b
. (
0
+ n0)) by
NAT_1:def 3
.= x by
A16,
SEQ_1: 57;
hence thesis by
VALUED_0: 28;
end;
A17:
now
let g be
Real such that
A18:
0
< g;
reconsider n =
0 as
Nat;
take n;
let m be
Nat such that n
<= m;
A19: m
in
NAT by
ORDINAL1:def 12;
(x0
+
0 )
<= (x0
+ r) by
A8,
XREAL_1: 7;
then x0
in
[.x0, (x0
+ r).] by
XXREAL_1: 1;
then (
rng c)
c= (
dom f) by
A9,
A14,
ZFMISC_1: 31;
then
|.(((f
/* c)
. m)
- (f
. x0)).|
=
|.((f
. (c
. m))
- (f
. x0)).| by
FUNCT_2: 108,
A19
.=
|.((f
. (b
. (m
+ n0)))
- (f
. x0)).| by
NAT_1:def 3
.=
|.((f
. x0)
- (f
. x0)).| by
SEQ_1: 57
.=
0 by
ABSVALUE: 2;
hence
|.(((f
/* c)
. m)
- (f
. x0)).|
< g by
A18;
end;
then
A20: (f
/* c) is
convergent by
SEQ_2:def 6;
(
lim b)
= (b
.
0 ) by
SEQ_4: 26
.= x0 by
SEQ_1: 57;
then (
lim d)
= (x0
- x0) by
A6,
A7,
A12,
SEQ_2: 12
.=
0 ;
then
A21: (
lim (d
^\ n0))
=
0 by
A13,
SEQ_4: 20;
A22: for n holds (d
. n)
>
0 & (d
. n)
<>
0
proof
let n;
A23: (d
. n)
= ((a
. n)
- (b
. n)) by
A11;
(a
. n)
in (
rng a) by
VALUED_0: 28;
then (a
. n)
in (
right_open_halfline x0) by
A5,
XBOOLE_0:def 4;
then (a
. n)
in { r1 : x0
< r1 } by
XXREAL_1: 230;
then
A24: ex r1 st r1
= (a
. n) & x0
< r1;
then ((a
. n)
- x0)
> (x0
- x0) by
XREAL_1: 9;
hence (d
. n)
>
0 by
A23,
SEQ_1: 57;
thus thesis by
A23,
A24,
SEQ_1: 57;
end;
A25: for n be
Nat holds ((d
^\ n0)
. n)
>
0
proof
let n be
Nat;
A26: (n
+ n0)
in
NAT by
ORDINAL1:def 12;
((d
^\ n0)
. n)
= (d
. (n
+ n0)) by
NAT_1:def 3;
hence thesis by
A22,
A26;
end;
for n be
Nat holds ((d
^\ n0)
. n)
<>
0 by
A25;
then (d
^\ n0) is
non-zero by
SEQ_1: 5;
then
reconsider h = (d
^\ n0) as
0
-convergent
non-zero
Real_Sequence by
A13,
A21,
FDIFF_1:def 1;
A27: (
rng a)
c= (
dom f) by
A5,
XBOOLE_0:def 4;
now
let n;
thus ((((f
/* (h
+ c))
- (f
/* c))
+ (f
/* c))
. n)
= ((((f
/* (h
+ c))
- (f
/* c))
. n)
+ ((f
/* c)
. n)) by
SEQ_1: 7
.= ((((f
/* (h
+ c))
. n)
- ((f
/* c)
. n))
+ ((f
/* c)
. n)) by
RFUNCT_2: 1
.= ((f
/* (h
+ c))
. n);
end;
then
A28: (((f
/* (h
+ c))
- (f
/* c))
+ (f
/* c))
= (f
/* (h
+ c)) by
FUNCT_2: 63;
now
let n;
thus ((h
+ c)
. n)
= ((((a
- b)
+ b)
^\ n0)
. n) by
A12,
SEQM_3: 15
.= (((a
- b)
+ b)
. (n
+ n0)) by
NAT_1:def 3
.= (((a
- b)
. (n
+ n0))
+ (b
. (n
+ n0))) by
SEQ_1: 7
.= (((a
. (n
+ n0))
- (b
. (n
+ n0)))
+ (b
. (n
+ n0))) by
RFUNCT_2: 1
.= ((a
^\ n0)
. n) by
NAT_1:def 3;
end;
then
A29: (((f
/* (h
+ c))
- (f
/* c))
+ (f
/* c))
= (f
/* (a
^\ n0)) by
A28,
FUNCT_2: 63
.= ((f
/* a)
^\ n0) by
A27,
VALUED_0: 27;
A30: for n holds ((a
^\ n0)
. n)
in
[.x0, (x0
+ r).]
proof
let n;
(a
. (n
+ n0))
in (
rng a) by
VALUED_0: 28;
then ((a
^\ n0)
. n)
in (
rng a) by
NAT_1:def 3;
then ((a
^\ n0)
. n)
in (
right_open_halfline x0) by
A5,
XBOOLE_0:def 4;
then ((a
^\ n0)
. n)
in { g : x0
< g } by
XXREAL_1: 230;
then
A31: ex g st g
= ((a
^\ n0)
. n) & x0
< g;
0
<= n & (
0
+ n0)
= n0;
then n0
<= (n0
+ n) by
XREAL_1: 6;
then (a
. (n
+ n0))
<= (x0
+ r) by
A10;
then ((a
^\ n0)
. n)
<= (x0
+ r) by
NAT_1:def 3;
then ((a
^\ n0)
. n)
in { g : x0
<= g & g
<= (x0
+ r) } by
A31;
hence thesis by
RCOMP_1:def 1;
end;
(
rng (h
+ c))
c=
[.x0, (x0
+ r).]
proof
let x be
object;
assume x
in (
rng (h
+ c));
then
consider n such that
A32: x
= ((h
+ c)
. n) by
FUNCT_2: 113;
((h
+ c)
. n)
= ((((a
- b)
+ b)
^\ n0)
. n) by
A12,
SEQM_3: 15
.= (((a
- b)
+ b)
. (n
+ n0)) by
NAT_1:def 3
.= (((a
- b)
. (n
+ n0))
+ (b
. (n
+ n0))) by
SEQ_1: 7
.= (((a
. (n
+ n0))
- (b
. (n
+ n0)))
+ (b
. (n
+ n0))) by
RFUNCT_2: 1
.= ((a
^\ n0)
. n) by
NAT_1:def 3;
hence thesis by
A30,
A32;
end;
then (
rng (h
+ c))
c= (
dom f) by
A9;
then
A33: ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))) is
convergent by
A1,
A25,
A14;
then
A34: (
lim (h
(#) ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)))))
= (
0
* (
lim ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))) by
A21,
SEQ_2: 15
.=
0 ;
now
let n;
A35: (h
. n)
<>
0 by
A25;
thus ((h
(#) ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))
. n)
= ((h
. n)
* (((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)))
. n)) by
SEQ_1: 8
.= ((h
. n)
* (((h
" )
. n)
* (((f
/* (h
+ c))
- (f
/* c))
. n))) by
SEQ_1: 8
.= ((h
. n)
* (((h
. n)
" )
* (((f
/* (h
+ c))
- (f
/* c))
. n))) by
VALUED_1: 10
.= (((h
. n)
* ((h
. n)
" ))
* (((f
/* (h
+ c))
- (f
/* c))
. n))
.= (1
* (((f
/* (h
+ c))
- (f
/* c))
. n)) by
A35,
XCMPLX_0:def 7
.= (((f
/* (h
+ c))
- (f
/* c))
. n);
end;
then
A36: (h
(#) ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))
= ((f
/* (h
+ c))
- (f
/* c)) by
FUNCT_2: 63;
then
A37: ((f
/* (h
+ c))
- (f
/* c)) is
convergent by
A33;
then
A38: (((f
/* (h
+ c))
- (f
/* c))
+ (f
/* c)) is
convergent by
A20;
hence (f
/* a) is
convergent by
A29,
SEQ_4: 21;
(
lim (f
/* c))
= (f
. x0) by
A17,
A20,
SEQ_2:def 7;
then (
lim (((f
/* (h
+ c))
- (f
/* c))
+ (f
/* c)))
= (
0
+ (f
. x0)) by
A34,
A36,
A37,
A20,
SEQ_2: 6
.= (f
. x0);
hence thesis by
A38,
A29,
SEQ_4: 22;
end;
(x0
+
0 )
<= (x0
+ r) by
A2,
XREAL_1: 7;
then x0
in
[.x0, (x0
+ r).] by
XXREAL_1: 1;
hence thesis by
A3,
A4;
end;
theorem ::
FDIFF_3:8
Th8: f
is_Rcontinuous_in x0 & (f
. x0)
<> g2 & (ex r st r
>
0 &
[.x0, (x0
+ r).]
c= (
dom f)) implies ex r1 st r1
>
0 &
[.x0, (x0
+ r1).]
c= (
dom f) & for g st g
in
[.x0, (x0
+ r1).] holds (f
. g)
<> g2
proof
assume that
A1: f
is_Rcontinuous_in x0 and
A2: (f
. x0)
<> g2;
given r such that
A3: r
>
0 and
A4:
[.x0, (x0
+ r).]
c= (
dom f);
defpred
P[
Element of
NAT ,
set] means $2
in
[.x0, (x0
+ (r
/ ($1
+ 1))).] & $2
in (
dom f) & (f
. $2)
= g2;
assume
A5: for r1 st r1
>
0 &
[.x0, (x0
+ r1).]
c= (
dom f) holds ex g st g
in
[.x0, (x0
+ r1).] & (f
. g)
= g2;
A6: for n holds ex g be
Element of
REAL st
P[n, g]
proof
let n;
(x0
+
0 )
<= (x0
+ r) by
A3,
XREAL_1: 7;
then
A7: x0
in
[.x0, (x0
+ r).] by
XXREAL_1: 1;
(
0
+ 1)
<= (n
+ 1) by
XREAL_1: 7;
then (r
/ (n
+ 1))
<= (r
/ 1) by
A3,
XREAL_1: 118;
then
A8: (x0
+ (r
/ (n
+ 1)))
<= (x0
+ r) by
XREAL_1: 7;
(x0
+
0 )
= x0;
then x0
<= (x0
+ (r
/ (n
+ 1))) by
A3,
XREAL_1: 7;
then (x0
+ (r
/ (n
+ 1)))
in { g1 : x0
<= g1 & g1
<= (x0
+ r) } by
A8;
then (x0
+ (r
/ (n
+ 1)))
in
[.x0, (x0
+ r).] by
RCOMP_1:def 1;
then
[.x0, (x0
+ (r
/ (n
+ 1))).]
c=
[.x0, (x0
+ r).] by
A7,
XXREAL_2:def 12;
then
A9:
[.x0, (x0
+ (r
/ (n
+ 1))).]
c= (
dom f) by
A4;
then
consider g such that
A10: g
in
[.x0, (x0
+ (r
/ (n
+ 1))).] & (f
. g)
= g2 by
A3,
A5,
XREAL_1: 139;
take g;
thus thesis by
A9,
A10;
end;
consider a such that
A11: for n holds
P[n, (a
. n)] from
FUNCT_2:sch 3(
A6);
A12: (
rng a)
c= ((
right_open_halfline x0)
/\ (
dom f))
proof
let x be
object;
assume x
in (
rng a);
then
consider n such that
A13: x
= (a
. n) by
FUNCT_2: 113;
(a
. n)
in
[.x0, (x0
+ (r
/ (n
+ 1))).] by
A11;
then (a
. n)
in { g1 : x0
<= g1 & g1
<= (x0
+ (r
/ (n
+ 1))) } by
RCOMP_1:def 1;
then
A14: ex g1 st g1
= (a
. n) & x0
<= g1 & g1
<= (x0
+ (r
/ (n
+ 1)));
x0
<> (a
. n) by
A2,
A11;
then x0
< (a
. n) by
A14,
XXREAL_0: 1;
then (a
. n)
in { g1 : x0
< g1 };
then
A15: (a
. n)
in (
right_open_halfline x0) by
XXREAL_1: 230;
(a
. n)
in (
dom f) by
A11;
hence thesis by
A13,
A15,
XBOOLE_0:def 4;
end;
A16: ((
right_open_halfline x0)
/\ (
dom f))
c= (
dom f) by
XBOOLE_1: 17;
A17: for n holds ((f
/* a)
. n)
= g2
proof
let n;
thus g2
= (f
. (a
. n)) by
A11
.= ((f
/* a)
. n) by
A12,
A16,
FUNCT_2: 108,
XBOOLE_1: 1;
end;
now
let n be
Nat;
n
in
NAT by
ORDINAL1:def 12;
then ((f
/* a)
. n)
= g2 by
A17;
hence ((f
/* a)
. n)
= ((f
/* a)
. (n
+ 1)) by
A17;
end;
then
A18: (
lim (f
/* a))
= ((f
/* a)
.
0 ) by
SEQ_4: 26,
VALUED_0: 25
.= g2 by
A17;
deffunc
F(
Nat) = (x0
+ (r
/ ($1
+ 1)));
reconsider xx0 = x0 as
Element of
REAL by
XREAL_0:def 1;
set b = (
seq_const x0);
A19: (
lim b)
= (b
.
0 ) by
SEQ_4: 26
.= x0 by
SEQ_1: 57;
consider d such that
A20: for n be
Nat holds (d
. n)
=
F(n) from
SEQ_1:sch 1;
A21:
now
let n be
Nat;
A22: n
in
NAT by
ORDINAL1:def 12;
(a
. n)
in
[.x0, (x0
+ (r
/ (n
+ 1))).] by
A11,
A22;
then (a
. n)
in { g1 : x0
<= g1 & g1
<= (x0
+ (r
/ (n
+ 1))) } by
RCOMP_1:def 1;
then ex g1 st g1
= (a
. n) & x0
<= g1 & g1
<= (x0
+ (r
/ (n
+ 1)));
hence (b
. n)
<= (a
. n) & (a
. n)
<= (d
. n) by
A20,
SEQ_1: 57;
end;
d is
convergent & (
lim d)
= x0 by
A20,
FCONT_3: 6;
then a is
convergent & (
lim a)
= x0 by
A19,
A21,
SEQ_2: 19,
SEQ_2: 20;
hence contradiction by
A1,
A2,
A12,
A18;
end;
definition
let x0, f;
assume
A1: f
is_left_differentiable_in x0;
::
FDIFF_3:def5
func
Ldiff (f,x0) ->
Real means
:
Def5: for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & (for n be
Nat holds (h
. n)
<
0 ) holds it
= (
lim ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))));
existence
proof
A2:
{x0}
c= (
dom f)
proof
let x be
object;
assume x
in
{x0};
then
A3: x
= x0 by
TARSKI:def 1;
consider r such that
A4: r
>
0 and
A5:
[.(x0
- r), x0.]
c= (
dom f) by
A1;
(x0
- r)
<= x0 by
A4,
XREAL_1: 44;
then x0
in
[.(x0
- r), x0.] by
XXREAL_1: 1;
hence thesis by
A3,
A5;
end;
A6: for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & (for n be
Nat holds (h
. n)
<
0 ) holds ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))) is
convergent by
A1;
ex r st r
>
0 &
[.(x0
- r), x0.]
c= (
dom f) by
A1;
then
consider h1, c1 such that
A7: (
rng c1)
=
{x0} and
A8: (
rng (h1
+ c1))
c= (
dom f) & for n be
Nat holds (h1
. n)
<
0 by
Th1;
take (
lim ((h1
" )
(#) ((f
/* (h1
+ c1))
- (f
/* c1))));
let h, c such that
A9: (
rng c)
=
{x0} and
A10: (
rng (h
+ c))
c= (
dom f) & for n be
Nat holds (h
. n)
<
0 ;
c1
= c by
A7,
A9,
FDIFF_2: 5;
hence thesis by
A7,
A8,
A2,
A10,
A6,
Th3;
end;
uniqueness
proof
ex r st r
>
0 &
[.(x0
- r), x0.]
c= (
dom f) by
A1;
then
consider h, c such that
A11: (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & for n be
Nat holds (h
. n)
<
0 by
Th1;
let g1,g2 be
Real such that
A12: for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & (for n be
Nat holds (h
. n)
<
0 ) holds g1
= (
lim ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)))) and
A13: for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & (for n be
Nat holds (h
. n)
<
0 ) holds g2
= (
lim ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))));
g1
= (
lim ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)))) by
A12,
A11;
hence thesis by
A13,
A11;
end;
end
definition
let x0, f;
assume
A1: f
is_right_differentiable_in x0;
::
FDIFF_3:def6
func
Rdiff (f,x0) ->
Real means
:
Def6: for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & (for n be
Nat holds (h
. n)
>
0 ) holds it
= (
lim ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))));
existence
proof
A2:
{x0}
c= (
dom f)
proof
let x be
object;
assume x
in
{x0};
then
A3: x
= x0 by
TARSKI:def 1;
consider r such that
A4: r
>
0 and
A5:
[.x0, (x0
+ r).]
c= (
dom f) by
A1;
(x0
+
0 )
<= (x0
+ r) by
A4,
XREAL_1: 7;
then x0
in
[.x0, (x0
+ r).] by
XXREAL_1: 1;
hence thesis by
A3,
A5;
end;
A6: for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & (for n be
Nat holds (h
. n)
>
0 ) holds ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))) is
convergent by
A1;
ex r st r
>
0 &
[.x0, (x0
+ r).]
c= (
dom f) by
A1;
then
consider h, c such that
A7: (
rng c)
=
{x0} and
A8: (
rng (h
+ c))
c= (
dom f) & for n be
Nat holds (h
. n)
>
0 by
Th2;
take (
lim ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))));
let h1, c1 such that
A9: (
rng c1)
=
{x0} and
A10: (
rng (h1
+ c1))
c= (
dom f) & for n be
Nat holds (h1
. n)
>
0 ;
c1
= c by
A7,
A9,
FDIFF_2: 5;
hence thesis by
A7,
A8,
A10,
A6,
A2,
Th4;
end;
uniqueness
proof
ex r st r
>
0 &
[.x0, (x0
+ r).]
c= (
dom f) by
A1;
then
consider h, c such that
A11: (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & for n be
Nat holds (h
. n)
>
0 by
Th2;
let g1,g2 be
Real such that
A12: for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & (for n be
Nat holds (h
. n)
>
0 ) holds g1
= (
lim ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)))) and
A13: for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & (for n be
Nat holds (h
. n)
>
0 ) holds g2
= (
lim ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))));
g1
= (
lim ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)))) by
A12,
A11;
hence thesis by
A13,
A11;
end;
end
theorem ::
FDIFF_3:9
Th9: for g be
Real holds f
is_left_differentiable_in x0 & (
Ldiff (f,x0))
= g iff (ex r st
0
< r &
[.(x0
- r), x0.]
c= (
dom f)) & for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & (for n be
Nat holds (h
. n)
<
0 ) holds ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))) is
convergent & (
lim ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))
= g
proof
let g be
Real;
thus f
is_left_differentiable_in x0 & (
Ldiff (f,x0))
= g implies (ex r st
0
< r &
[.(x0
- r), x0.]
c= (
dom f)) & for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & (for n be
Nat holds (h
. n)
<
0 ) holds ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))) is
convergent & (
lim ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))
= g by
Def5;
thus (ex r st
0
< r &
[.(x0
- r), x0.]
c= (
dom f)) & (for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & (for n be
Nat holds (h
. n)
<
0 ) holds ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))) is
convergent & (
lim ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))
= g) implies f
is_left_differentiable_in x0 & (
Ldiff (f,x0))
= g
proof
assume that
A1: ex r st
0
< r &
[.(x0
- r), x0.]
c= (
dom f) and
A2: for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & (for n be
Nat holds (h
. n)
<
0 ) holds ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))) is
convergent & (
lim ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))
= g;
for h, c holds (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & (for n be
Nat holds (h
. n)
<
0 ) implies ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))) is
convergent by
A2;
hence
A3: f
is_left_differentiable_in x0 by
A1;
for h, c holds (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & (for n be
Nat holds (h
. n)
<
0 ) implies (
lim ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))
= g by
A2;
hence thesis by
A3,
Def5;
end;
end;
theorem ::
FDIFF_3:10
f1
is_left_differentiable_in x0 & f2
is_left_differentiable_in x0 implies (f1
+ f2)
is_left_differentiable_in x0 & (
Ldiff ((f1
+ f2),x0))
= ((
Ldiff (f1,x0))
+ (
Ldiff (f2,x0)))
proof
assume that
A1: f1
is_left_differentiable_in x0 and
A2: f2
is_left_differentiable_in x0;
consider r2 such that
A3:
0
< r2 and
A4:
[.(x0
- r2), x0.]
c= (
dom f2) by
A2;
consider r1 such that
A5:
0
< r1 and
A6:
[.(x0
- r1), x0.]
c= (
dom f1) by
A1;
set r = (
min (r1,r2));
A7:
0
< r by
A5,
A3,
XXREAL_0: 15;
then
A8: (x0
- r)
<= x0 by
XREAL_1: 43;
r
<= r2 by
XXREAL_0: 17;
then
A9: (x0
- r2)
<= (x0
- r) by
XREAL_1: 13;
then (x0
- r2)
<= x0 by
A8,
XXREAL_0: 2;
then
A10: x0
in
[.(x0
- r2), x0.] by
XXREAL_1: 1;
(x0
- r)
in { g : (x0
- r2)
<= g & g
<= x0 } by
A8,
A9;
then (x0
- r)
in
[.(x0
- r2), x0.] by
RCOMP_1:def 1;
then
[.(x0
- r), x0.]
c=
[.(x0
- r2), x0.] by
A10,
XXREAL_2:def 12;
then
A11:
[.(x0
- r), x0.]
c= (
dom f2) by
A4;
r
<= r1 by
XXREAL_0: 17;
then
A12: (x0
- r1)
<= (x0
- r) by
XREAL_1: 13;
then (x0
- r1)
<= x0 by
A8,
XXREAL_0: 2;
then
A13: x0
in
[.(x0
- r1), x0.] by
XXREAL_1: 1;
(x0
- r)
in { g : (x0
- r1)
<= g & g
<= x0 } by
A8,
A12;
then (x0
- r)
in
[.(x0
- r1), x0.] by
RCOMP_1:def 1;
then
[.(x0
- r), x0.]
c=
[.(x0
- r1), x0.] by
A13,
XXREAL_2:def 12;
then
[.(x0
- r), x0.]
c= (
dom f1) by
A6;
then
A14:
[.(x0
- r), x0.]
c= ((
dom f1)
/\ (
dom f2)) by
A11,
XBOOLE_1: 19;
A15: for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom (f1
+ f2)) & (for n be
Nat holds (h
. n)
<
0 ) holds ((h
" )
(#) (((f1
+ f2)
/* (h
+ c))
- ((f1
+ f2)
/* c))) is
convergent & (
lim ((h
" )
(#) (((f1
+ f2)
/* (h
+ c))
- ((f1
+ f2)
/* c))))
= ((
Ldiff (f1,x0))
+ (
Ldiff (f2,x0)))
proof
let h, c;
assume that
A16: (
rng c)
=
{x0} and
A17: (
rng (h
+ c))
c= (
dom (f1
+ f2)) and
A18: for n be
Nat holds (h
. n)
<
0 ;
A19: (
rng (h
+ c))
c= ((
dom f1)
/\ (
dom f2)) by
A17,
VALUED_1:def 1;
A20:
now
let n;
A21: (
rng c)
c= ((
dom f1)
/\ (
dom f2))
proof
let x be
object;
assume x
in (
rng c);
then
A22: x
= x0 by
A16,
TARSKI:def 1;
x0
in
[.(x0
- r), x0.] by
A8,
XXREAL_1: 1;
hence thesis by
A14,
A22;
end;
thus ((((f1
/* (h
+ c))
- (f1
/* c))
+ ((f2
/* (h
+ c))
- (f2
/* c)))
. n)
= ((((f1
/* (h
+ c))
+ (
- (f1
/* c)))
. n)
+ (((f2
/* (h
+ c))
- (f2
/* c))
. n)) by
SEQ_1: 7
.= ((((f1
/* (h
+ c))
. n)
+ ((
- (f1
/* c))
. n))
+ (((f2
/* (h
+ c))
+ (
- (f2
/* c)))
. n)) by
SEQ_1: 7
.= ((((f1
/* (h
+ c))
. n)
+ ((
- (f1
/* c))
. n))
+ (((f2
/* (h
+ c))
. n)
+ ((
- (f2
/* c))
. n))) by
SEQ_1: 7
.= ((((f1
/* (h
+ c))
. n)
+ ((f2
/* (h
+ c))
. n))
+ (((
- (f1
/* c))
. n)
+ ((
- (f2
/* c))
. n)))
.= ((((f1
/* (h
+ c))
. n)
+ ((f2
/* (h
+ c))
. n))
+ ((
- ((f1
/* c)
. n))
+ ((
- (f2
/* c))
. n))) by
SEQ_1: 10
.= ((((f1
/* (h
+ c))
. n)
+ ((f2
/* (h
+ c))
. n))
+ ((
- ((f1
/* c)
. n))
+ (
- ((f2
/* c)
. n)))) by
SEQ_1: 10
.= ((((f1
/* (h
+ c))
. n)
+ ((f2
/* (h
+ c))
. n))
- (((f1
/* c)
. n)
+ ((f2
/* c)
. n)))
.= ((((f1
/* (h
+ c))
+ (f2
/* (h
+ c)))
. n)
- (((f1
/* c)
. n)
+ ((f2
/* c)
. n))) by
SEQ_1: 7
.= ((((f1
/* (h
+ c))
+ (f2
/* (h
+ c)))
. n)
- (((f1
/* c)
+ (f2
/* c))
. n)) by
SEQ_1: 7
.= ((((f1
/* (h
+ c))
+ (f2
/* (h
+ c)))
- ((f1
/* c)
+ (f2
/* c)))
. n) by
RFUNCT_2: 1
.= ((((f1
+ f2)
/* (h
+ c))
- ((f1
/* c)
+ (f2
/* c)))
. n) by
A19,
RFUNCT_2: 8
.= ((((f1
+ f2)
/* (h
+ c))
- ((f1
+ f2)
/* c))
. n) by
A21,
RFUNCT_2: 8;
end;
then
A23: (((f1
/* (h
+ c))
- (f1
/* c))
+ ((f2
/* (h
+ c))
- (f2
/* c)))
= (((f1
+ f2)
/* (h
+ c))
- ((f1
+ f2)
/* c)) by
FUNCT_2: 63;
((
dom f1)
/\ (
dom f2))
c= (
dom f2) by
XBOOLE_1: 17;
then
A24: (
rng (h
+ c))
c= (
dom f2) by
A19;
then
A25: (
lim ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))
= (
Ldiff (f2,x0)) by
A2,
A16,
A18,
Th9;
A26: ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))) is
convergent by
A2,
A16,
A18,
A24;
((
dom f1)
/\ (
dom f2))
c= (
dom f1) by
XBOOLE_1: 17;
then
A27: (
rng (h
+ c))
c= (
dom f1) by
A19;
A28: (((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
+ ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))
= ((h
" )
(#) (((f1
/* (h
+ c))
- (f1
/* c))
+ ((f2
/* (h
+ c))
- (f2
/* c)))) by
SEQ_1: 16;
A29: ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c))) is
convergent by
A1,
A16,
A18,
A27;
then (((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
+ ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))) is
convergent by
A26;
hence ((h
" )
(#) (((f1
+ f2)
/* (h
+ c))
- ((f1
+ f2)
/* c))) is
convergent by
A28,
A20,
FUNCT_2: 63;
(
lim ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c))))
= (
Ldiff (f1,x0)) by
A1,
A16,
A18,
A27,
Th9;
hence thesis by
A29,
A26,
A25,
A28,
A23,
SEQ_2: 6;
end;
[.(x0
- r), x0.]
c= (
dom (f1
+ f2)) by
A14,
VALUED_1:def 1;
hence thesis by
A7,
A15,
Th9;
end;
theorem ::
FDIFF_3:11
f1
is_left_differentiable_in x0 & f2
is_left_differentiable_in x0 implies (f1
- f2)
is_left_differentiable_in x0 & (
Ldiff ((f1
- f2),x0))
= ((
Ldiff (f1,x0))
- (
Ldiff (f2,x0)))
proof
assume that
A1: f1
is_left_differentiable_in x0 and
A2: f2
is_left_differentiable_in x0;
consider r2 such that
A3:
0
< r2 and
A4:
[.(x0
- r2), x0.]
c= (
dom f2) by
A2;
consider r1 such that
A5:
0
< r1 and
A6:
[.(x0
- r1), x0.]
c= (
dom f1) by
A1;
set r = (
min (r1,r2));
A7:
0
< r by
A5,
A3,
XXREAL_0: 15;
then
A8: (x0
- r)
<= x0 by
XREAL_1: 43;
r
<= r2 by
XXREAL_0: 17;
then
A9: (x0
- r2)
<= (x0
- r) by
XREAL_1: 13;
then (x0
- r2)
<= x0 by
A8,
XXREAL_0: 2;
then
A10: x0
in
[.(x0
- r2), x0.] by
XXREAL_1: 1;
(x0
- r)
in { g : (x0
- r2)
<= g & g
<= x0 } by
A8,
A9;
then (x0
- r)
in
[.(x0
- r2), x0.] by
RCOMP_1:def 1;
then
[.(x0
- r), x0.]
c=
[.(x0
- r2), x0.] by
A10,
XXREAL_2:def 12;
then
A11:
[.(x0
- r), x0.]
c= (
dom f2) by
A4;
r
<= r1 by
XXREAL_0: 17;
then
A12: (x0
- r1)
<= (x0
- r) by
XREAL_1: 13;
then (x0
- r1)
<= x0 by
A8,
XXREAL_0: 2;
then
A13: x0
in
[.(x0
- r1), x0.] by
XXREAL_1: 1;
(x0
- r)
in { g : (x0
- r1)
<= g & g
<= x0 } by
A8,
A12;
then (x0
- r)
in
[.(x0
- r1), x0.] by
RCOMP_1:def 1;
then
[.(x0
- r), x0.]
c=
[.(x0
- r1), x0.] by
A13,
XXREAL_2:def 12;
then
[.(x0
- r), x0.]
c= (
dom f1) by
A6;
then
A14:
[.(x0
- r), x0.]
c= ((
dom f1)
/\ (
dom f2)) by
A11,
XBOOLE_1: 19;
A15: for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom (f1
- f2)) & (for n be
Nat holds (h
. n)
<
0 ) holds ((h
" )
(#) (((f1
- f2)
/* (h
+ c))
- ((f1
- f2)
/* c))) is
convergent & (
lim ((h
" )
(#) (((f1
- f2)
/* (h
+ c))
- ((f1
- f2)
/* c))))
= ((
Ldiff (f1,x0))
- (
Ldiff (f2,x0)))
proof
let h, c;
assume that
A16: (
rng c)
=
{x0} and
A17: (
rng (h
+ c))
c= (
dom (f1
- f2)) and
A18: for n be
Nat holds (h
. n)
<
0 ;
A19: (
rng (h
+ c))
c= ((
dom f1)
/\ (
dom f2)) by
A17,
VALUED_1: 12;
A20:
now
let n;
A21: (
rng c)
c= ((
dom f1)
/\ (
dom f2))
proof
let x be
object;
assume x
in (
rng c);
then
A22: x
= x0 by
A16,
TARSKI:def 1;
x0
in
[.(x0
- r), x0.] by
A8,
XXREAL_1: 1;
hence thesis by
A14,
A22;
end;
thus ((((f1
/* (h
+ c))
- (f1
/* c))
- ((f2
/* (h
+ c))
- (f2
/* c)))
. n)
= ((((f1
/* (h
+ c))
- (f1
/* c))
. n)
- (((f2
/* (h
+ c))
- (f2
/* c))
. n)) by
RFUNCT_2: 1
.= ((((f1
/* (h
+ c))
. n)
- ((f1
/* c)
. n))
- (((f2
/* (h
+ c))
- (f2
/* c))
. n)) by
RFUNCT_2: 1
.= ((((f1
/* (h
+ c))
. n)
- ((f1
/* c)
. n))
- (((f2
/* (h
+ c))
. n)
- ((f2
/* c)
. n))) by
RFUNCT_2: 1
.= ((((f1
/* (h
+ c))
. n)
- ((f2
/* (h
+ c))
. n))
- (((f1
/* c)
. n)
- ((f2
/* c)
. n)))
.= ((((f1
/* (h
+ c))
- (f2
/* (h
+ c)))
. n)
- (((f1
/* c)
. n)
- ((f2
/* c)
. n))) by
RFUNCT_2: 1
.= ((((f1
/* (h
+ c))
- (f2
/* (h
+ c)))
. n)
- (((f1
/* c)
- (f2
/* c))
. n)) by
RFUNCT_2: 1
.= ((((f1
/* (h
+ c))
- (f2
/* (h
+ c)))
- ((f1
/* c)
- (f2
/* c)))
. n) by
RFUNCT_2: 1
.= ((((f1
- f2)
/* (h
+ c))
- ((f1
/* c)
- (f2
/* c)))
. n) by
A19,
RFUNCT_2: 8
.= ((((f1
- f2)
/* (h
+ c))
- ((f1
- f2)
/* c))
. n) by
A21,
RFUNCT_2: 8;
end;
then
A23: (((f1
/* (h
+ c))
- (f1
/* c))
- ((f2
/* (h
+ c))
- (f2
/* c)))
= (((f1
- f2)
/* (h
+ c))
- ((f1
- f2)
/* c)) by
FUNCT_2: 63;
((
dom f1)
/\ (
dom f2))
c= (
dom f2) by
XBOOLE_1: 17;
then
A24: (
rng (h
+ c))
c= (
dom f2) by
A19;
then
A25: (
lim ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))
= (
Ldiff (f2,x0)) by
A2,
A16,
A18,
Th9;
A26: ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))) is
convergent by
A2,
A16,
A18,
A24;
((
dom f1)
/\ (
dom f2))
c= (
dom f1) by
XBOOLE_1: 17;
then
A27: (
rng (h
+ c))
c= (
dom f1) by
A19;
A28: (((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
- ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))
= ((h
" )
(#) (((f1
/* (h
+ c))
- (f1
/* c))
- ((f2
/* (h
+ c))
- (f2
/* c)))) by
SEQ_1: 21;
A29: ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c))) is
convergent by
A1,
A16,
A18,
A27;
then (((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
- ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))) is
convergent by
A26;
hence ((h
" )
(#) (((f1
- f2)
/* (h
+ c))
- ((f1
- f2)
/* c))) is
convergent by
A28,
A20,
FUNCT_2: 63;
(
lim ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c))))
= (
Ldiff (f1,x0)) by
A1,
A16,
A18,
A27,
Th9;
hence thesis by
A29,
A26,
A25,
A28,
A23,
SEQ_2: 12;
end;
[.(x0
- r), x0.]
c= (
dom (f1
- f2)) by
A14,
VALUED_1: 12;
hence thesis by
A7,
A15,
Th9;
end;
theorem ::
FDIFF_3:12
f1
is_left_differentiable_in x0 & f2
is_left_differentiable_in x0 implies (f1
(#) f2)
is_left_differentiable_in x0 & (
Ldiff ((f1
(#) f2),x0))
= (((
Ldiff (f1,x0))
* (f2
. x0))
+ ((
Ldiff (f2,x0))
* (f1
. x0)))
proof
assume that
A1: f1
is_left_differentiable_in x0 and
A2: f2
is_left_differentiable_in x0;
consider r2 such that
A3:
0
< r2 and
A4:
[.(x0
- r2), x0.]
c= (
dom f2) by
A2;
consider r1 such that
A5:
0
< r1 and
A6:
[.(x0
- r1), x0.]
c= (
dom f1) by
A1;
set r = (
min (r1,r2));
A7:
0
< r by
A5,
A3,
XXREAL_0: 15;
then
A8: (x0
- r)
<= x0 by
XREAL_1: 43;
r
<= r2 by
XXREAL_0: 17;
then
A9: (x0
- r2)
<= (x0
- r) by
XREAL_1: 13;
then (x0
- r2)
<= x0 by
A8,
XXREAL_0: 2;
then
A10: x0
in
[.(x0
- r2), x0.] by
XXREAL_1: 1;
(x0
- r)
in { g : (x0
- r2)
<= g & g
<= x0 } by
A8,
A9;
then (x0
- r)
in
[.(x0
- r2), x0.] by
RCOMP_1:def 1;
then
[.(x0
- r), x0.]
c=
[.(x0
- r2), x0.] by
A10,
XXREAL_2:def 12;
then
A11:
[.(x0
- r), x0.]
c= (
dom f2) by
A4;
r
<= r1 by
XXREAL_0: 17;
then
A12: (x0
- r1)
<= (x0
- r) by
XREAL_1: 13;
then (x0
- r1)
<= x0 by
A8,
XXREAL_0: 2;
then
A13: x0
in
[.(x0
- r1), x0.] by
XXREAL_1: 1;
(x0
- r)
in { g : (x0
- r1)
<= g & g
<= x0 } by
A8,
A12;
then (x0
- r)
in
[.(x0
- r1), x0.] by
RCOMP_1:def 1;
then
[.(x0
- r), x0.]
c=
[.(x0
- r1), x0.] by
A13,
XXREAL_2:def 12;
then
A14:
[.(x0
- r), x0.]
c= (
dom f1) by
A6;
A15: for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom (f1
(#) f2)) & (for n be
Nat holds (h
. n)
<
0 ) holds ((h
" )
(#) (((f1
(#) f2)
/* (h
+ c))
- ((f1
(#) f2)
/* c))) is
convergent & (
lim ((h
" )
(#) (((f1
(#) f2)
/* (h
+ c))
- ((f1
(#) f2)
/* c))))
= (((
Ldiff (f1,x0))
* (f2
. x0))
+ ((
Ldiff (f2,x0))
* (f1
. x0)))
proof
let h, c;
assume that
A16: (
rng c)
=
{x0} and
A17: (
rng (h
+ c))
c= (
dom (f1
(#) f2)) and
A18: for n be
Nat holds (h
. n)
<
0 ;
A19: (
rng (h
+ c))
c= ((
dom f1)
/\ (
dom f2)) by
A17,
VALUED_1:def 4;
now
let n;
thus (((f1
/* c)
+ ((f1
/* (h
+ c))
- (f1
/* c)))
. n)
= (((f1
/* c)
. n)
+ (((f1
/* (h
+ c))
- (f1
/* c))
. n)) by
SEQ_1: 7
.= (((f1
/* c)
. n)
+ (((f1
/* (h
+ c))
. n)
- ((f1
/* c)
. n))) by
RFUNCT_2: 1
.= ((f1
/* (h
+ c))
. n);
end;
then
A20: ((f1
/* c)
+ ((f1
/* (h
+ c))
- (f1
/* c)))
= (f1
/* (h
+ c)) by
FUNCT_2: 63;
A21: for m holds (c
. m)
= x0
proof
let m;
(c
. m)
in (
rng c) by
VALUED_0: 28;
hence thesis by
A16,
TARSKI:def 1;
end;
0
<= r by
A5,
A3,
XXREAL_0: 15;
then (x0
- r)
<= x0 by
XREAL_1: 43;
then
A22: x0
in
[.(x0
- r), x0.] by
XXREAL_1: 1;
then
A23: x0
in (
dom f1) by
A14;
A24: (
rng c)
c= (
dom f1) by
A16,
A23,
TARSKI:def 1;
A25: for g be
Real st
0
< g holds ex n be
Nat st for m be
Nat st n
<= m holds
|.(((f1
/* c)
. m)
- (f1
. x0)).|
< g
proof
let g be
Real such that
A26:
0
< g;
take n =
0 ;
let m be
Nat such that n
<= m;
A27: m
in
NAT by
ORDINAL1:def 12;
|.(((f1
/* c)
. m)
- (f1
. x0)).|
=
|.((f1
. (c
. m))
- (f1
. x0)).| by
A24,
FUNCT_2: 108,
A27
.=
|.((f1
. x0)
- (f1
. x0)).| by
A21,
A27
.=
0 by
ABSVALUE:def 1;
hence thesis by
A26;
end;
then
A28: (f1
/* c) is
convergent by
SEQ_2:def 6;
A29: x0
in (
dom f2) by
A11,
A22;
A30: (
rng c)
c= (
dom f2) by
A16,
A29,
TARSKI:def 1;
A31: for g be
Real st
0
< g holds ex n be
Nat st for m be
Nat st n
<= m holds
|.(((f2
/* c)
. m)
- (f2
. x0)).|
< g
proof
let g be
Real such that
A32:
0
< g;
take n =
0 ;
let m be
Nat such that n
<= m;
A33: m
in
NAT by
ORDINAL1:def 12;
|.(((f2
/* c)
. m)
- (f2
. x0)).|
=
|.((f2
. (c
. m))
- (f2
. x0)).| by
A30,
FUNCT_2: 108,
A33
.=
|.((f2
. x0)
- (f2
. x0)).| by
A21,
A33
.=
0 by
ABSVALUE:def 1;
hence thesis by
A32;
end;
then
A34: (f2
/* c) is
convergent by
SEQ_2:def 6;
((
dom f1)
/\ (
dom f2))
c= (
dom f1) by
XBOOLE_1: 17;
then
A35: (
rng (h
+ c))
c= (
dom f1) by
A19;
then
A36: (
lim ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c))))
= (
Ldiff (f1,x0)) by
A1,
A16,
A18,
Th9;
A37: h is
convergent & ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c))) is
convergent by
A1,
A16,
A18,
A35;
then
A38: (
lim (h
(#) ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))))
= ((
lim h)
* (
lim ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c))))) by
SEQ_2: 15
.=
0 ;
((
dom f1)
/\ (
dom f2))
c= (
dom f2) by
XBOOLE_1: 17;
then
A39: (
rng (h
+ c))
c= (
dom f2) by
A19;
then
A40: (
lim ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))
= (
Ldiff (f2,x0)) by
A2,
A16,
A18,
Th9;
A41: ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c))) is
convergent by
A1,
A16,
A18,
A35;
then
A42: (((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
(#) (f2
/* c)) is
convergent by
A34;
A43: (
rng c)
c= ((
dom f1)
/\ (
dom f2)) by
A24,
A30,
XBOOLE_1: 19;
A44:
now
let n;
thus (((h
" )
(#) (((f1
(#) f2)
/* (h
+ c))
- ((f1
(#) f2)
/* c)))
. n)
= (((h
" )
. n)
* ((((f1
(#) f2)
/* (h
+ c))
- ((f1
(#) f2)
/* c))
. n)) by
SEQ_1: 8
.= (((h
" )
. n)
* ((((f1
(#) f2)
/* (h
+ c))
. n)
- (((f1
(#) f2)
/* c)
. n))) by
RFUNCT_2: 1
.= (((h
" )
. n)
* ((((f1
/* (h
+ c))
(#) (f2
/* (h
+ c)))
. n)
- (((f1
(#) f2)
/* c)
. n))) by
A19,
RFUNCT_2: 8
.= (((h
" )
. n)
* ((((f1
/* (h
+ c))
(#) (f2
/* (h
+ c)))
. n)
- (((f1
/* c)
(#) (f2
/* c))
. n))) by
A43,
RFUNCT_2: 8
.= (((h
" )
. n)
* ((((f1
/* (h
+ c))
. n)
* ((f2
/* (h
+ c))
. n))
- (((f1
/* c)
(#) (f2
/* c))
. n))) by
SEQ_1: 8
.= (((h
" )
. n)
* ((((f1
/* (h
+ c))
. n)
* ((f2
/* (h
+ c))
. n))
- (((f1
/* c)
. n)
* ((f2
/* c)
. n)))) by
SEQ_1: 8
.= (((((h
" )
. n)
* (((f2
/* (h
+ c))
. n)
- ((f2
/* c)
. n)))
* ((f1
/* (h
+ c))
. n))
+ ((((h
" )
. n)
* (((f1
/* (h
+ c))
. n)
- ((f1
/* c)
. n)))
* ((f2
/* c)
. n)))
.= (((((h
" )
. n)
* (((f2
/* (h
+ c))
- (f2
/* c))
. n))
* ((f1
/* (h
+ c))
. n))
+ ((((h
" )
. n)
* (((f1
/* (h
+ c))
. n)
- ((f1
/* c)
. n)))
* ((f2
/* c)
. n))) by
RFUNCT_2: 1
.= (((((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))
. n)
* ((f1
/* (h
+ c))
. n))
+ ((((h
" )
. n)
* (((f1
/* (h
+ c))
. n)
- ((f1
/* c)
. n)))
* ((f2
/* c)
. n))) by
SEQ_1: 8
.= (((((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))
. n)
* ((f1
/* (h
+ c))
. n))
+ ((((h
" )
. n)
* (((f1
/* (h
+ c))
- (f1
/* c))
. n))
* ((f2
/* c)
. n))) by
RFUNCT_2: 1
.= (((((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))
. n)
* ((f1
/* (h
+ c))
. n))
+ ((((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
. n)
* ((f2
/* c)
. n))) by
SEQ_1: 8
.= (((((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))
(#) (f1
/* (h
+ c)))
. n)
+ ((((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
. n)
* ((f2
/* c)
. n))) by
SEQ_1: 8
.= (((((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))
(#) (f1
/* (h
+ c)))
. n)
+ ((((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
(#) (f2
/* c))
. n)) by
SEQ_1: 8
.= (((((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))
(#) (f1
/* (h
+ c)))
+ (((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
(#) (f2
/* c)))
. n) by
SEQ_1: 7;
end;
then
A45: ((h
" )
(#) (((f1
(#) f2)
/* (h
+ c))
- ((f1
(#) f2)
/* c)))
= ((((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))
(#) (f1
/* (h
+ c)))
+ (((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
(#) (f2
/* c))) by
FUNCT_2: 63;
now
let n;
A46: (h
. n)
<>
0 by
A18;
thus ((h
(#) ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c))))
. n)
= (((h
(#) (h
" ))
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
. n) by
SEQ_1: 14
.= (((h
(#) (h
" ))
. n)
* (((f1
/* (h
+ c))
- (f1
/* c))
. n)) by
SEQ_1: 8
.= (((h
. n)
* ((h
" )
. n))
* (((f1
/* (h
+ c))
- (f1
/* c))
. n)) by
SEQ_1: 8
.= (((h
. n)
* ((h
. n)
" ))
* (((f1
/* (h
+ c))
- (f1
/* c))
. n)) by
VALUED_1: 10
.= (1
* (((f1
/* (h
+ c))
- (f1
/* c))
. n)) by
A46,
XCMPLX_0:def 7
.= (((f1
/* (h
+ c))
- (f1
/* c))
. n);
end;
then
A47: (h
(#) ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c))))
= ((f1
/* (h
+ c))
- (f1
/* c)) by
FUNCT_2: 63;
(h
(#) ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))) is
convergent by
A37;
then
A48: (f1
/* (h
+ c)) is
convergent by
A28,
A47,
A20;
(
lim (f1
/* c))
= (f1
. x0) by
A25,
A28,
SEQ_2:def 7;
then
A49:
0
= ((
lim (f1
/* (h
+ c)))
- (f1
. x0)) by
A28,
A47,
A48,
A38,
SEQ_2: 12;
A50: ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))) is
convergent by
A2,
A16,
A18,
A39;
then
A51: (((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))
(#) (f1
/* (h
+ c))) is
convergent by
A48;
(
lim ((h
" )
(#) (((f1
(#) f2)
/* (h
+ c))
- ((f1
(#) f2)
/* c))))
= (
lim ((((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))
(#) (f1
/* (h
+ c)))
+ (((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
(#) (f2
/* c)))) by
A44,
FUNCT_2: 63
.= ((
lim (((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))
(#) (f1
/* (h
+ c))))
+ (
lim (((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
(#) (f2
/* c)))) by
A51,
A42,
SEQ_2: 6
.= (((
lim ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))
* (
lim (f1
/* (h
+ c))))
+ (
lim (((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
(#) (f2
/* c)))) by
A50,
A48,
SEQ_2: 15
.= (((
lim ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))
* (f1
. x0))
+ ((
lim ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c))))
* (
lim (f2
/* c)))) by
A41,
A49,
A34,
SEQ_2: 15
.= (((
Ldiff (f1,x0))
* (f2
. x0))
+ ((
Ldiff (f2,x0))
* (f1
. x0))) by
A36,
A40,
A31,
A34,
SEQ_2:def 7;
hence thesis by
A51,
A42,
A45;
end;
[.(x0
- r), x0.]
c= ((
dom f1)
/\ (
dom f2)) by
A14,
A11,
XBOOLE_1: 19;
then
[.(x0
- r), x0.]
c= (
dom (f1
(#) f2)) by
VALUED_1:def 4;
hence thesis by
A7,
A15,
Th9;
end;
Lm1: f1
is_left_differentiable_in x0 & f2
is_left_differentiable_in x0 & (ex r0 st r0
>
0 & for g st g
in (
dom f2) & g
in
[.(x0
- r0), x0.] holds (f2
. g)
<>
0 ) implies (f1
/ f2)
is_left_differentiable_in x0 & (
Ldiff ((f1
/ f2),x0))
= ((((
Ldiff (f1,x0))
* (f2
. x0))
- ((
Ldiff (f2,x0))
* (f1
. x0)))
/ ((f2
. x0)
^2 ))
proof
assume that
A1: f1
is_left_differentiable_in x0 and
A2: f2
is_left_differentiable_in x0;
consider r1 such that
A3:
0
< r1 and
A4:
[.(x0
- r1), x0.]
c= (
dom f1) by
A1;
given r0 such that
A5: r0
>
0 and
A6: for g st g
in (
dom f2) & g
in
[.(x0
- r0), x0.] holds (f2
. g)
<>
0 ;
consider r2 such that
A7:
0
< r2 and
A8:
[.(x0
- r2), x0.]
c= (
dom f2) by
A2;
set r3 = (
min (r0,r2));
A9:
0
< r3 by
A5,
A7,
XXREAL_0: 15;
then
A10: (x0
- r3)
<= x0 by
XREAL_1: 43;
r3
<= r2 by
XXREAL_0: 17;
then
A11: (x0
- r2)
<= (x0
- r3) by
XREAL_1: 13;
then (x0
- r2)
<= x0 by
A10,
XXREAL_0: 2;
then
A12: x0
in
[.(x0
- r2), x0.] by
XXREAL_1: 1;
(x0
- r3)
in { g : (x0
- r2)
<= g & g
<= x0 } by
A10,
A11;
then (x0
- r3)
in
[.(x0
- r2), x0.] by
RCOMP_1:def 1;
then
[.(x0
- r3), x0.]
c=
[.(x0
- r2), x0.] by
A12,
XXREAL_2:def 12;
then
A13:
[.(x0
- r3), x0.]
c= (
dom f2) by
A8;
r3
<= r0 by
XXREAL_0: 17;
then
A14: (x0
- r0)
<= (x0
- r3) by
XREAL_1: 13;
then (x0
- r0)
<= x0 by
A10,
XXREAL_0: 2;
then
A15: x0
in
[.(x0
- r0), x0.] by
XXREAL_1: 1;
(x0
- r3)
in { g : (x0
- r0)
<= g & g
<= x0 } by
A10,
A14;
then (x0
- r3)
in
[.(x0
- r0), x0.] by
RCOMP_1:def 1;
then
A16:
[.(x0
- r3), x0.]
c=
[.(x0
- r0), x0.] by
A15,
XXREAL_2:def 12;
set r = (
min (r1,r3));
A17:
0
< r by
A3,
A9,
XXREAL_0: 15;
then
A18: (x0
- r)
<= x0 by
XREAL_1: 43;
r
<= r3 by
XXREAL_0: 17;
then
A19: (x0
- r3)
<= (x0
- r) by
XREAL_1: 13;
then (x0
- r3)
<= x0 by
A18,
XXREAL_0: 2;
then
A20: x0
in
[.(x0
- r3), x0.] by
XXREAL_1: 1;
(x0
- r)
in { g : (x0
- r3)
<= g & g
<= x0 } by
A18,
A19;
then (x0
- r)
in
[.(x0
- r3), x0.] by
RCOMP_1:def 1;
then
A21:
[.(x0
- r), x0.]
c=
[.(x0
- r3), x0.] by
A20,
XXREAL_2:def 12;
[.(x0
- r), x0.]
c= (
dom (f2
^ ))
proof
assume not thesis;
then
consider x be
object such that
A22: x
in
[.(x0
- r), x0.] and
A23: not x
in (
dom (f2
^ ));
reconsider x as
Real by
A22;
A24: x
in
[.(x0
- r3), x0.] by
A21,
A22;
A25: not x
in ((
dom f2)
\ (f2
"
{
0 })) by
A23,
RFUNCT_1:def 2;
now
per cases by
A25,
XBOOLE_0:def 5;
suppose not x
in (
dom f2);
hence contradiction by
A13,
A24;
end;
suppose
A26: x
in (f2
"
{
0 });
then (f2
. x)
in
{
0 } by
FUNCT_1:def 7;
then
A27: (f2
. x)
=
0 by
TARSKI:def 1;
x
in (
dom f2) by
A26,
FUNCT_1:def 7;
hence contradiction by
A6,
A16,
A24,
A27;
end;
end;
hence contradiction;
end;
then
A28:
[.(x0
- r), x0.]
c= ((
dom f2)
\ (f2
"
{
0 })) by
RFUNCT_1:def 2;
r
<= r1 by
XXREAL_0: 17;
then
A29: (x0
- r1)
<= (x0
- r) by
XREAL_1: 13;
then (x0
- r1)
<= x0 by
A18,
XXREAL_0: 2;
then
A30: x0
in
[.(x0
- r1), x0.] by
XXREAL_1: 1;
(x0
- r)
in { g : (x0
- r1)
<= g & g
<= x0 } by
A18,
A29;
then (x0
- r)
in
[.(x0
- r1), x0.] by
RCOMP_1:def 1;
then
[.(x0
- r), x0.]
c=
[.(x0
- r1), x0.] by
A30,
XXREAL_2:def 12;
then
A31:
[.(x0
- r), x0.]
c= (
dom f1) by
A4;
A32: for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom (f1
/ f2)) & (for n be
Nat holds (h
. n)
<
0 ) holds ((h
" )
(#) (((f1
/ f2)
/* (h
+ c))
- ((f1
/ f2)
/* c))) is
convergent & (
lim ((h
" )
(#) (((f1
/ f2)
/* (h
+ c))
- ((f1
/ f2)
/* c))))
= ((((
Ldiff (f1,x0))
* (f2
. x0))
- ((
Ldiff (f2,x0))
* (f1
. x0)))
/ ((f2
. x0)
^2 ))
proof
let h, c;
assume that
A33: (
rng c)
=
{x0} and
A34: (
rng (h
+ c))
c= (
dom (f1
/ f2)) and
A35: for n be
Nat holds (h
. n)
<
0 ;
A36: (
rng (h
+ c))
c= ((
dom f1)
/\ ((
dom f2)
\ (f2
"
{
0 }))) by
A34,
RFUNCT_1:def 1;
0
<= r by
A3,
A9,
XXREAL_0: 15;
then (x0
- r)
<= x0 by
XREAL_1: 43;
then
A37: x0
in
[.(x0
- r), x0.] by
XXREAL_1: 1;
then
A38: x0
in (
dom f1) by
A31;
A39: (
rng c)
c= (
dom f1) by
A33,
A38,
TARSKI:def 1;
((
dom f1)
/\ ((
dom f2)
\ (f2
"
{
0 })))
c= (
dom f1) by
XBOOLE_1: 17;
then
A40: (
rng (h
+ c))
c= (
dom f1) by
A36;
then
A41: (
lim ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c))))
= (
Ldiff (f1,x0)) by
A1,
A33,
A35,
Th9;
A42: x0
in ((
dom f2)
\ (f2
"
{
0 })) by
A28,
A37;
(
rng c)
c= ((
dom f2)
\ (f2
"
{
0 })) by
A33,
A42,
TARSKI:def 1;
then
A43: (
rng c)
c= (
dom (f2
^ )) by
RFUNCT_1:def 2;
then
A44: (
rng c)
c= ((
dom f1)
/\ (
dom (f2
^ ))) by
A39,
XBOOLE_1: 19;
A45: ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c))) is
convergent by
A1,
A33,
A35,
A40;
A46: (f2
/* c) is
non-zero by
A43,
RFUNCT_2: 11;
A47:
now
let n;
thus (((h
" )
(#) (((f1
/* (h
+ c))
(#) (f2
/* c))
- ((f1
/* c)
(#) (f2
/* (h
+ c)))))
. n)
= (((h
" )
. n)
* ((((f1
/* (h
+ c))
(#) (f2
/* c))
- ((f1
/* c)
(#) (f2
/* (h
+ c))))
. n)) by
SEQ_1: 8
.= (((h
" )
. n)
* ((((f1
/* (h
+ c))
(#) (f2
/* c))
. n)
- (((f1
/* c)
(#) (f2
/* (h
+ c)))
. n))) by
RFUNCT_2: 1
.= (((h
" )
. n)
* ((((f1
/* (h
+ c))
. n)
* ((f2
/* c)
. n))
- (((f1
/* c)
(#) (f2
/* (h
+ c)))
. n))) by
SEQ_1: 8
.= (((h
" )
. n)
* ((((((f1
/* (h
+ c))
. n)
- ((f1
/* c)
. n))
* ((f2
/* c)
. n))
+ (((f1
/* c)
. n)
* ((f2
/* c)
. n)))
- (((f1
/* c)
. n)
* ((f2
/* (h
+ c))
. n)))) by
SEQ_1: 8
.= (((((h
" )
. n)
* (((f1
/* (h
+ c))
. n)
- ((f1
/* c)
. n)))
* ((f2
/* c)
. n))
- (((f1
/* c)
. n)
* (((h
" )
. n)
* (((f2
/* (h
+ c))
. n)
- ((f2
/* c)
. n)))))
.= (((((h
" )
. n)
* (((f1
/* (h
+ c))
- (f1
/* c))
. n))
* ((f2
/* c)
. n))
- (((f1
/* c)
. n)
* (((h
" )
. n)
* (((f2
/* (h
+ c))
. n)
- ((f2
/* c)
. n))))) by
RFUNCT_2: 1
.= (((((h
" )
. n)
* (((f1
/* (h
+ c))
- (f1
/* c))
. n))
* ((f2
/* c)
. n))
- (((f1
/* c)
. n)
* (((h
" )
. n)
* (((f2
/* (h
+ c))
- (f2
/* c))
. n)))) by
RFUNCT_2: 1
.= (((((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
. n)
* ((f2
/* c)
. n))
- (((f1
/* c)
. n)
* (((h
" )
. n)
* (((f2
/* (h
+ c))
- (f2
/* c))
. n)))) by
SEQ_1: 8
.= (((((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
. n)
* ((f2
/* c)
. n))
- (((f1
/* c)
. n)
* (((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))
. n))) by
SEQ_1: 8
.= (((((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
(#) (f2
/* c))
. n)
- (((f1
/* c)
. n)
* (((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))
. n))) by
SEQ_1: 8
.= (((((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
(#) (f2
/* c))
. n)
- (((f1
/* c)
(#) ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))
. n)) by
SEQ_1: 8
.= (((((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
(#) (f2
/* c))
- ((f1
/* c)
(#) ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))))
. n) by
RFUNCT_2: 1;
end;
now
let n;
thus (((f2
/* c)
+ ((f2
/* (h
+ c))
- (f2
/* c)))
. n)
= (((f2
/* c)
. n)
+ (((f2
/* (h
+ c))
- (f2
/* c))
. n)) by
SEQ_1: 7
.= (((f2
/* c)
. n)
+ (((f2
/* (h
+ c))
. n)
- ((f2
/* c)
. n))) by
RFUNCT_2: 1
.= ((f2
/* (h
+ c))
. n);
end;
then
A48: ((f2
/* c)
+ ((f2
/* (h
+ c))
- (f2
/* c)))
= (f2
/* (h
+ c)) by
FUNCT_2: 63;
((
dom f1)
/\ ((
dom f2)
\ (f2
"
{
0 })))
c= ((
dom f2)
\ (f2
"
{
0 })) by
XBOOLE_1: 17;
then
A49: (
rng (h
+ c))
c= ((
dom f2)
\ (f2
"
{
0 })) by
A36;
then
A50: (
rng (h
+ c))
c= (
dom (f2
^ )) by
RFUNCT_1:def 2;
then
A51: (
rng (h
+ c))
c= ((
dom f1)
/\ (
dom (f2
^ ))) by
A40,
XBOOLE_1: 19;
A52: (f2
/* (h
+ c)) is
non-zero by
A50,
RFUNCT_2: 11;
then
A53: ((f2
/* (h
+ c))
(#) (f2
/* c)) is
non-zero by
A46,
SEQ_1: 35;
((h
" )
(#) (((f1
/ f2)
/* (h
+ c))
- ((f1
/ f2)
/* c)))
= ((h
" )
(#) (((f1
(#) (f2
^ ))
/* (h
+ c))
- ((f1
/ f2)
/* c))) by
RFUNCT_1: 31
.= ((h
" )
(#) (((f1
(#) (f2
^ ))
/* (h
+ c))
- ((f1
(#) (f2
^ ))
/* c))) by
RFUNCT_1: 31
.= ((h
" )
(#) (((f1
/* (h
+ c))
(#) ((f2
^ )
/* (h
+ c)))
- ((f1
(#) (f2
^ ))
/* c))) by
A51,
RFUNCT_2: 8
.= ((h
" )
(#) (((f1
/* (h
+ c))
/" (f2
/* (h
+ c)))
- ((f1
(#) (f2
^ ))
/* c))) by
A50,
RFUNCT_2: 12
.= ((h
" )
(#) (((f1
/* (h
+ c))
/" (f2
/* (h
+ c)))
- ((f1
/* c)
(#) ((f2
^ )
/* c)))) by
A44,
RFUNCT_2: 8
.= ((h
" )
(#) (((f1
/* (h
+ c))
/" (f2
/* (h
+ c)))
- ((f1
/* c)
/" (f2
/* c)))) by
A43,
RFUNCT_2: 12
.= ((h
" )
(#) ((((f1
/* (h
+ c))
(#) (f2
/* c))
- ((f1
/* c)
(#) (f2
/* (h
+ c))))
/" ((f2
/* (h
+ c))
(#) (f2
/* c)))) by
A52,
A46,
SEQ_1: 50
.= (((h
" )
(#) (((f1
/* (h
+ c))
(#) (f2
/* c))
- ((f1
/* c)
(#) (f2
/* (h
+ c)))))
/" ((f2
/* (h
+ c))
(#) (f2
/* c))) by
SEQ_1: 41;
then
A54: ((h
" )
(#) (((f1
/ f2)
/* (h
+ c))
- ((f1
/ f2)
/* c)))
= (((((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
(#) (f2
/* c))
- ((f1
/* c)
(#) ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))))
/" ((f2
/* (h
+ c))
(#) (f2
/* c))) by
A47,
FUNCT_2: 63;
((
dom f2)
\ (f2
"
{
0 }))
c= (
dom f2) by
XBOOLE_1: 36;
then
A55: (
rng (h
+ c))
c= (
dom f2) by
A49;
then
A56: (
lim ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))
= (
Ldiff (f2,x0)) by
A2,
A33,
A35,
Th9;
A57: ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))) is
convergent by
A2,
A33,
A35,
A55;
now
let n;
A58: (h
. n)
<>
0 by
A35;
thus ((h
(#) ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))
. n)
= (((h
(#) (h
" ))
(#) ((f2
/* (h
+ c))
- (f2
/* c)))
. n) by
SEQ_1: 14
.= (((h
(#) (h
" ))
. n)
* (((f2
/* (h
+ c))
- (f2
/* c))
. n)) by
SEQ_1: 8
.= (((h
. n)
* ((h
" )
. n))
* (((f2
/* (h
+ c))
- (f2
/* c))
. n)) by
SEQ_1: 8
.= (((h
. n)
* ((h
. n)
" ))
* (((f2
/* (h
+ c))
- (f2
/* c))
. n)) by
VALUED_1: 10
.= (1
* (((f2
/* (h
+ c))
- (f2
/* c))
. n)) by
A58,
XCMPLX_0:def 7
.= (((f2
/* (h
+ c))
- (f2
/* c))
. n);
end;
then
A59: (h
(#) ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))
= ((f2
/* (h
+ c))
- (f2
/* c)) by
FUNCT_2: 63;
A60: for m holds (c
. m)
= x0
proof
let m;
(c
. m)
in (
rng c) by
VALUED_0: 28;
hence thesis by
A33,
TARSKI:def 1;
end;
A61: for g be
Real st
0
< g holds ex n be
Nat st for m be
Nat st n
<= m holds
|.(((f1
/* c)
. m)
- (f1
. x0)).|
< g
proof
let g be
Real such that
A62:
0
< g;
take n =
0 ;
let m be
Nat such that n
<= m;
A63: m
in
NAT by
ORDINAL1:def 12;
|.(((f1
/* c)
. m)
- (f1
. x0)).|
=
|.((f1
. (c
. m))
- (f1
. x0)).| by
A39,
FUNCT_2: 108,
A63
.=
|.((f1
. x0)
- (f1
. x0)).| by
A60,
A63
.=
0 by
ABSVALUE:def 1;
hence thesis by
A62;
end;
then
A64: (f1
/* c) is
convergent by
SEQ_2:def 6;
then
A65: (
lim (f1
/* c))
= (f1
. x0) by
A61,
SEQ_2:def 7;
(
dom (f2
^ ))
= ((
dom f2)
\ (f2
"
{
0 })) by
RFUNCT_1:def 2;
then
A66: (
dom (f2
^ ))
c= (
dom f2) by
XBOOLE_1: 36;
A67: for g be
Real st
0
< g holds ex n be
Nat st for m be
Nat st n
<= m holds
|.(((f2
/* c)
. m)
- (f2
. x0)).|
< g
proof
let g be
Real such that
A68:
0
< g;
take n =
0 ;
let m be
Nat such that n
<= m;
A69: m
in
NAT by
ORDINAL1:def 12;
|.(((f2
/* c)
. m)
- (f2
. x0)).|
=
|.((f2
. (c
. m))
- (f2
. x0)).| by
A43,
A66,
FUNCT_2: 108,
XBOOLE_1: 1,
A69
.=
|.((f2
. x0)
- (f2
. x0)).| by
A60,
A69
.=
0 by
ABSVALUE:def 1;
hence thesis by
A68;
end;
then
A70: (f2
/* c) is
convergent by
SEQ_2:def 6;
then
A71: (
lim (f2
/* c))
= (f2
. x0) by
A67,
SEQ_2:def 7;
(h
(#) ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))) is
convergent by
A57;
then
A72: (f2
/* (h
+ c)) is
convergent by
A70,
A59,
A48;
then
A73: ((f2
/* (h
+ c))
(#) (f2
/* c)) is
convergent by
A70;
((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))) is
convergent by
A2,
A33,
A35,
A55;
then (
lim (h
(#) ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))))
= ((
lim h)
* (
lim ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))) by
SEQ_2: 15
.=
0 ;
then
0
= ((
lim (f2
/* (h
+ c)))
- (f2
. x0)) by
A70,
A71,
A59,
A72,
SEQ_2: 12;
then
A74: (
lim ((f2
/* (h
+ c))
(#) (f2
/* c)))
= ((f2
. x0)
^2 ) by
A70,
A71,
A72,
SEQ_2: 15;
A75: (
lim ((f2
/* (h
+ c))
(#) (f2
/* c)))
<>
0
proof
assume not thesis;
then (f2
. x0)
=
0 by
A74,
XCMPLX_1: 6;
hence contradiction by
A6,
A8,
A15,
A12;
end;
((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c))) is
convergent by
A1,
A33,
A35,
A40;
then
A76: (((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
(#) (f2
/* c)) is
convergent by
A70;
A77: ((f1
/* c)
(#) ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))) is
convergent by
A57,
A64;
then
A78: ((((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
(#) (f2
/* c))
- ((f1
/* c)
(#) ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))) is
convergent by
A76;
then (
lim ((h
" )
(#) (((f1
/ f2)
/* (h
+ c))
- ((f1
/ f2)
/* c))))
= ((
lim ((((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
(#) (f2
/* c))
- ((f1
/* c)
(#) ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))))
/ (
lim ((f2
/* (h
+ c))
(#) (f2
/* c)))) by
A53,
A73,
A75,
A54,
SEQ_2: 24
.= (((
lim (((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
(#) (f2
/* c)))
- (
lim ((f1
/* c)
(#) ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))))
/ (
lim ((f2
/* (h
+ c))
(#) (f2
/* c)))) by
A77,
A76,
SEQ_2: 12
.= ((((
lim ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c))))
* (
lim (f2
/* c)))
- (
lim ((f1
/* c)
(#) ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))))
/ (
lim ((f2
/* (h
+ c))
(#) (f2
/* c)))) by
A45,
A70,
SEQ_2: 15
.= ((((
Ldiff (f1,x0))
* (f2
. x0))
- ((
Ldiff (f2,x0))
* (f1
. x0)))
/ ((f2
. x0)
^2 )) by
A41,
A57,
A56,
A64,
A65,
A71,
A74,
SEQ_2: 15;
hence thesis by
A53,
A73,
A75,
A78,
A54,
SEQ_2: 23;
end;
[.(x0
- r), x0.]
c= ((
dom f1)
/\ ((
dom f2)
\ (f2
"
{
0 }))) by
A31,
A28,
XBOOLE_1: 19;
then
[.(x0
- r), x0.]
c= (
dom (f1
/ f2)) by
RFUNCT_1:def 1;
hence thesis by
A17,
A32,
Th9;
end;
theorem ::
FDIFF_3:13
f1
is_left_differentiable_in x0 & f2
is_left_differentiable_in x0 & (f2
. x0)
<>
0 implies (f1
/ f2)
is_left_differentiable_in x0 & (
Ldiff ((f1
/ f2),x0))
= ((((
Ldiff (f1,x0))
* (f2
. x0))
- ((
Ldiff (f2,x0))
* (f1
. x0)))
/ ((f2
. x0)
^2 ))
proof
assume that
A1: f1
is_left_differentiable_in x0 and
A2: f2
is_left_differentiable_in x0 and
A3: (f2
. x0)
<>
0 ;
consider r1 such that
A4: r1
>
0 and
[.(x0
- r1), x0.]
c= (
dom f2) and
A5: for g st g
in
[.(x0
- r1), x0.] holds (f2
. g)
<>
0 by
A2,
A3,
Th5,
Th6;
now
take r1;
thus r1
>
0 by
A4;
let g;
assume that g
in (
dom f2) and
A6: g
in
[.(x0
- r1), x0.];
thus (f2
. g)
<>
0 by
A5,
A6;
end;
hence thesis by
A1,
A2,
Lm1;
end;
Lm2: f
is_left_differentiable_in x0 & (ex r0 st r0
>
0 & for g st g
in (
dom f) & g
in
[.(x0
- r0), x0.] holds (f
. g)
<>
0 ) implies (f
^ )
is_left_differentiable_in x0 & (
Ldiff ((f
^ ),x0))
= (
- ((
Ldiff (f,x0))
/ ((f
. x0)
^2 )))
proof
assume
A1: f
is_left_differentiable_in x0;
then
consider r2 such that
A2:
0
< r2 and
A3:
[.(x0
- r2), x0.]
c= (
dom f);
given r0 such that
A4: r0
>
0 and
A5: for g st g
in (
dom f) & g
in
[.(x0
- r0), x0.] holds (f
. g)
<>
0 ;
set r3 = (
min (r0,r2));
A6:
0
< r3 by
A4,
A2,
XXREAL_0: 15;
then
A7: (x0
- r3)
<= x0 by
XREAL_1: 43;
r3
<= r2 by
XXREAL_0: 17;
then
A8: (x0
- r2)
<= (x0
- r3) by
XREAL_1: 13;
then (x0
- r2)
<= x0 by
A7,
XXREAL_0: 2;
then
A9: x0
in
[.(x0
- r2), x0.] by
XXREAL_1: 1;
(x0
- r3)
in { g : (x0
- r2)
<= g & g
<= x0 } by
A7,
A8;
then (x0
- r3)
in
[.(x0
- r2), x0.] by
RCOMP_1:def 1;
then
[.(x0
- r3), x0.]
c=
[.(x0
- r2), x0.] by
A9,
XXREAL_2:def 12;
then
A10:
[.(x0
- r3), x0.]
c= (
dom f) by
A3;
r3
<= r0 by
XXREAL_0: 17;
then
A11: (x0
- r0)
<= (x0
- r3) by
XREAL_1: 13;
then (x0
- r0)
<= x0 by
A7,
XXREAL_0: 2;
then
A12: x0
in
[.(x0
- r0), x0.] by
XXREAL_1: 1;
(x0
- r3)
in { g : (x0
- r0)
<= g & g
<= x0 } by
A7,
A11;
then (x0
- r3)
in
[.(x0
- r0), x0.] by
RCOMP_1:def 1;
then
A13:
[.(x0
- r3), x0.]
c=
[.(x0
- r0), x0.] by
A12,
XXREAL_2:def 12;
A14:
[.(x0
- r3), x0.]
c= (
dom (f
^ ))
proof
assume not thesis;
then
consider x be
object such that
A15: x
in
[.(x0
- r3), x0.] and
A16: not x
in (
dom (f
^ ));
reconsider x as
Real by
A15;
A17: not x
in ((
dom f)
\ (f
"
{
0 })) by
A16,
RFUNCT_1:def 2;
now
per cases by
A17,
XBOOLE_0:def 5;
suppose not x
in (
dom f);
hence contradiction by
A10,
A15;
end;
suppose
A18: x
in (f
"
{
0 });
then (f
. x)
in
{
0 } by
FUNCT_1:def 7;
then
A19: (f
. x)
=
0 by
TARSKI:def 1;
x
in (
dom f) by
A18,
FUNCT_1:def 7;
hence contradiction by
A5,
A13,
A15,
A19;
end;
end;
hence contradiction;
end;
A20: x0
in
[.(x0
- r3), x0.] by
A7,
XXREAL_1: 1;
for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom (f
^ )) & (for n be
Nat holds (h
. n)
<
0 ) holds ((h
" )
(#) (((f
^ )
/* (h
+ c))
- ((f
^ )
/* c))) is
convergent & (
lim ((h
" )
(#) (((f
^ )
/* (h
+ c))
- ((f
^ )
/* c))))
= (
- ((
Ldiff (f,x0))
/ ((f
. x0)
^2 )))
proof
let h, c;
assume that
A21: (
rng c)
=
{x0} and
A22: (
rng (h
+ c))
c= (
dom (f
^ )) and
A23: for n be
Nat holds (h
. n)
<
0 ;
A24: for m holds (c
. m)
= x0
proof
let m;
(c
. m)
in (
rng c) by
VALUED_0: 28;
hence thesis by
A21,
TARSKI:def 1;
end;
A25: ((
dom f)
\ (f
"
{
0 }))
c= (
dom f) by
XBOOLE_1: 36;
(
rng (h
+ c))
c= ((
dom f)
\ (f
"
{
0 })) by
A22,
RFUNCT_1:def 2;
then
A26: (
rng (h
+ c))
c= (
dom f) by
A25;
then
A27: (
lim ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))
= (
Ldiff (f,x0)) by
A1,
A21,
A23,
Th9;
A28: ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))) is
convergent by
A1,
A21,
A23,
A26;
then
A29: (
- ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)))) is
convergent;
x0
in (
dom (f
^ )) by
A20,
A14;
then
A30: x0
in ((
dom f)
\ (f
"
{
0 })) by
RFUNCT_1:def 2;
(
rng c)
c= ((
dom f)
\ (f
"
{
0 })) by
A21,
A30,
TARSKI:def 1;
then
A31: (
rng c)
c= (
dom (f
^ )) by
RFUNCT_1:def 2;
then
A32: (f
/* c) is
non-zero by
RFUNCT_2: 11;
now
let n;
A33: (h
. n)
<>
0 by
A23;
thus ((h
(#) ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))
. n)
= (((h
(#) (h
" ))
(#) ((f
/* (h
+ c))
- (f
/* c)))
. n) by
SEQ_1: 14
.= (((h
(#) (h
" ))
. n)
* (((f
/* (h
+ c))
- (f
/* c))
. n)) by
SEQ_1: 8
.= (((h
. n)
* ((h
" )
. n))
* (((f
/* (h
+ c))
- (f
/* c))
. n)) by
SEQ_1: 8
.= (((h
. n)
* ((h
. n)
" ))
* (((f
/* (h
+ c))
- (f
/* c))
. n)) by
VALUED_1: 10
.= (1
* (((f
/* (h
+ c))
- (f
/* c))
. n)) by
A33,
XCMPLX_0:def 7
.= (((f
/* (h
+ c))
- (f
/* c))
. n);
end;
then
A34: (h
(#) ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))
= ((f
/* (h
+ c))
- (f
/* c)) by
FUNCT_2: 63;
A35: (f
/* (h
+ c)) is
non-zero by
A22,
RFUNCT_2: 11;
then
A36: ((f
/* (h
+ c))
(#) (f
/* c)) is
non-zero by
A32,
SEQ_1: 35;
now
let n;
thus (((f
/* c)
+ ((f
/* (h
+ c))
- (f
/* c)))
. n)
= (((f
/* c)
. n)
+ (((f
/* (h
+ c))
- (f
/* c))
. n)) by
SEQ_1: 7
.= (((f
/* c)
. n)
+ (((f
/* (h
+ c))
. n)
- ((f
/* c)
. n))) by
RFUNCT_2: 1
.= ((f
/* (h
+ c))
. n);
end;
then
A37: ((f
/* c)
+ ((f
/* (h
+ c))
- (f
/* c)))
= (f
/* (h
+ c)) by
FUNCT_2: 63;
(
dom (f
^ ))
= ((
dom f)
\ (f
"
{
0 })) by
RFUNCT_1:def 2;
then
A38: (
dom (f
^ ))
c= (
dom f) by
XBOOLE_1: 36;
A39: for g be
Real st
0
< g holds ex n be
Nat st for m be
Nat st n
<= m holds
|.(((f
/* c)
. m)
- (f
. x0)).|
< g
proof
let g be
Real such that
A40:
0
< g;
take n =
0 ;
let m be
Nat such that n
<= m;
A41: m
in
NAT by
ORDINAL1:def 12;
|.(((f
/* c)
. m)
- (f
. x0)).|
=
|.((f
. (c
. m))
- (f
. x0)).| by
A31,
A38,
FUNCT_2: 108,
XBOOLE_1: 1,
A41
.=
|.((f
. x0)
- (f
. x0)).| by
A24,
A41
.=
0 by
ABSVALUE:def 1;
hence thesis by
A40;
end;
then
A42: (f
/* c) is
convergent by
SEQ_2:def 6;
then
A43: (
lim (f
/* c))
= (f
. x0) by
A39,
SEQ_2:def 7;
(h
(#) ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)))) is
convergent by
A28;
then
A44: (f
/* (h
+ c)) is
convergent by
A42,
A34,
A37;
(
lim (h
(#) ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)))))
= ((
lim h)
* (
lim ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))) by
A28,
SEQ_2: 15
.=
0 ;
then
0
= ((
lim (f
/* (h
+ c)))
- (f
. x0)) by
A42,
A43,
A34,
A44,
SEQ_2: 12;
then
A45: (
lim ((f
/* (h
+ c))
(#) (f
/* c)))
= ((f
. x0)
^2 ) by
A42,
A43,
A44,
SEQ_2: 15;
A46: (
lim ((f
/* (h
+ c))
(#) (f
/* c)))
<>
0
proof
assume not thesis;
then (f
. x0)
=
0 by
A45,
XCMPLX_1: 6;
hence contradiction by
A5,
A3,
A12,
A9;
end;
now
let n;
A47: ((f
/* (h
+ c))
. n)
<>
0 & ((f
/* c)
. n)
<>
0 by
A35,
A32,
SEQ_1: 5;
thus (((h
" )
(#) (((f
^ )
/* (h
+ c))
- ((f
^ )
/* c)))
. n)
= (((h
" )
. n)
* ((((f
^ )
/* (h
+ c))
- ((f
^ )
/* c))
. n)) by
SEQ_1: 8
.= (((h
" )
. n)
* ((((f
^ )
/* (h
+ c))
. n)
- (((f
^ )
/* c)
. n))) by
RFUNCT_2: 1
.= (((h
" )
. n)
* ((((f
/* (h
+ c))
" )
. n)
- (((f
^ )
/* c)
. n))) by
A22,
RFUNCT_2: 12
.= (((h
" )
. n)
* ((((f
/* (h
+ c))
" )
. n)
- (((f
/* c)
" )
. n))) by
A31,
RFUNCT_2: 12
.= (((h
" )
. n)
* ((((f
/* (h
+ c))
. n)
" )
- (((f
/* c)
" )
. n))) by
VALUED_1: 10
.= (((h
" )
. n)
* ((((f
/* (h
+ c))
. n)
" )
- (((f
/* c)
. n)
" ))) by
VALUED_1: 10
.= (((h
" )
. n)
* ((1
/ ((f
/* (h
+ c))
. n))
- (((f
/* c)
. n)
" ))) by
XCMPLX_1: 215
.= (((h
" )
. n)
* ((1
/ ((f
/* (h
+ c))
. n))
- (1
/ ((f
/* c)
. n)))) by
XCMPLX_1: 215
.= (((h
" )
. n)
* (((1
* ((f
/* c)
. n))
- (1
* ((f
/* (h
+ c))
. n)))
/ (((f
/* (h
+ c))
. n)
* ((f
/* c)
. n)))) by
A47,
XCMPLX_1: 130
.= (((h
" )
. n)
* ((
- (((f
/* (h
+ c))
. n)
- ((f
/* c)
. n)))
/ (((f
/* (h
+ c))
(#) (f
/* c))
. n))) by
SEQ_1: 8
.= (((h
" )
. n)
* ((
- (((f
/* (h
+ c))
- (f
/* c))
. n))
/ (((f
/* (h
+ c))
(#) (f
/* c))
. n))) by
RFUNCT_2: 1
.= (((h
" )
. n)
* (
- ((((f
/* (h
+ c))
- (f
/* c))
. n)
/ (((f
/* (h
+ c))
(#) (f
/* c))
. n)))) by
XCMPLX_1: 187
.= (
- (((h
" )
. n)
* ((((f
/* (h
+ c))
- (f
/* c))
. n)
/ (((f
/* (h
+ c))
(#) (f
/* c))
. n))))
.= (
- ((((h
" )
. n)
* (((f
/* (h
+ c))
- (f
/* c))
. n))
/ (((f
/* (h
+ c))
(#) (f
/* c))
. n))) by
XCMPLX_1: 74
.= (
- ((((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)))
. n)
/ (((f
/* (h
+ c))
(#) (f
/* c))
. n))) by
SEQ_1: 8
.= (
- ((((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)))
. n)
* ((((f
/* (h
+ c))
(#) (f
/* c))
. n)
" ))) by
XCMPLX_0:def 9
.= (
- ((((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)))
. n)
* ((((f
/* (h
+ c))
(#) (f
/* c))
" )
. n))) by
VALUED_1: 10
.= (
- ((((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)))
/" ((f
/* (h
+ c))
(#) (f
/* c)))
. n)) by
SEQ_1: 8
.= ((
- (((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)))
/" ((f
/* (h
+ c))
(#) (f
/* c))))
. n) by
SEQ_1: 10
.= (((
- ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))
/" ((f
/* (h
+ c))
(#) (f
/* c)))
. n) by
SEQ_1: 48;
end;
then
A48: ((h
" )
(#) (((f
^ )
/* (h
+ c))
- ((f
^ )
/* c)))
= ((
- ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))
/" ((f
/* (h
+ c))
(#) (f
/* c))) by
FUNCT_2: 63;
A49: ((f
/* (h
+ c))
(#) (f
/* c)) is
convergent by
A42,
A44;
then (
lim ((h
" )
(#) (((f
^ )
/* (h
+ c))
- ((f
^ )
/* c))))
= ((
lim (
- ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)))))
/ ((f
. x0)
^2 )) by
A36,
A45,
A46,
A29,
A48,
SEQ_2: 24
.= ((
- (
Ldiff (f,x0)))
/ ((f
. x0)
^2 )) by
A28,
A27,
SEQ_2: 10
.= (
- ((
Ldiff (f,x0))
/ ((f
. x0)
^2 ))) by
XCMPLX_1: 187;
hence thesis by
A36,
A49,
A46,
A29,
A48,
SEQ_2: 23;
end;
hence thesis by
A6,
A14,
Th9;
end;
theorem ::
FDIFF_3:14
f
is_left_differentiable_in x0 & (f
. x0)
<>
0 implies (f
^ )
is_left_differentiable_in x0 & (
Ldiff ((f
^ ),x0))
= (
- ((
Ldiff (f,x0))
/ ((f
. x0)
^2 )))
proof
assume that
A1: f
is_left_differentiable_in x0 and
A2: (f
. x0)
<>
0 ;
consider r1 such that
A3: r1
>
0 and
[.(x0
- r1), x0.]
c= (
dom f) and
A4: for g st g
in
[.(x0
- r1), x0.] holds (f
. g)
<>
0 by
A1,
A2,
Th5,
Th6;
now
take r1;
thus r1
>
0 by
A3;
let g;
assume that g
in (
dom f) and
A5: g
in
[.(x0
- r1), x0.];
thus (f
. g)
<>
0 by
A4,
A5;
end;
hence thesis by
A1,
Lm2;
end;
theorem ::
FDIFF_3:15
Th15: for g1 be
Real holds f
is_right_differentiable_in x0 & (
Rdiff (f,x0))
= g1 iff (ex r st r
>
0 &
[.x0, (x0
+ r).]
c= (
dom f)) & for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & (for n be
Nat holds (h
. n)
>
0 ) holds ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))) is
convergent & (
lim ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))
= g1
proof
let g1 be
Real;
thus f
is_right_differentiable_in x0 & (
Rdiff (f,x0))
= g1 implies (ex r st r
>
0 &
[.x0, (x0
+ r).]
c= (
dom f)) & for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & (for n be
Nat holds (h
. n)
>
0 ) holds ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))) is
convergent & (
lim ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))
= g1 by
Def6;
assume that
A1: ex r st r
>
0 &
[.x0, (x0
+ r).]
c= (
dom f) and
A2: for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & (for n be
Nat holds (h
. n)
>
0 ) holds ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))) is
convergent & (
lim ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))
= g1;
for h, c holds ((
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & for n be
Nat holds (h
. n)
>
0 ) implies ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))) is
convergent by
A2;
hence
A3: f
is_right_differentiable_in x0 by
A1;
for h, c holds ((
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & for n be
Nat holds (h
. n)
>
0 ) implies (
lim ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))
= g1 by
A2;
hence thesis by
A3,
Def6;
end;
theorem ::
FDIFF_3:16
f1
is_right_differentiable_in x0 & f2
is_right_differentiable_in x0 implies (f1
+ f2)
is_right_differentiable_in x0 & (
Rdiff ((f1
+ f2),x0))
= ((
Rdiff (f1,x0))
+ (
Rdiff (f2,x0)))
proof
assume that
A1: f1
is_right_differentiable_in x0 and
A2: f2
is_right_differentiable_in x0;
consider r2 such that
A3: r2
>
0 and
A4:
[.x0, (x0
+ r2).]
c= (
dom f2) by
A2;
consider r1 such that
A5: r1
>
0 and
A6:
[.x0, (x0
+ r1).]
c= (
dom f1) by
A1;
A7: (x0
+
0 )
= x0;
set r = (
min (r1,r2));
0
<= r by
A5,
A3,
XXREAL_0: 15;
then
A8: x0
<= (x0
+ r) by
A7,
XREAL_1: 7;
r
<= r2 by
XXREAL_0: 17;
then
A9: (x0
+ r)
<= (x0
+ r2) by
XREAL_1: 7;
then (x0
+ r)
in { g : x0
<= g & g
<= (x0
+ r2) } by
A8;
then
A10: (x0
+ r)
in
[.x0, (x0
+ r2).] by
RCOMP_1:def 1;
x0
<= (x0
+ r2) by
A8,
A9,
XXREAL_0: 2;
then x0
in
[.x0, (x0
+ r2).] by
XXREAL_1: 1;
then
[.x0, (x0
+ r).]
c=
[.x0, (x0
+ r2).] by
A10,
XXREAL_2:def 12;
then
A11:
[.x0, (x0
+ r).]
c= (
dom f2) by
A4;
r
<= r1 by
XXREAL_0: 17;
then
A12: (x0
+ r)
<= (x0
+ r1) by
XREAL_1: 7;
then (x0
+ r)
in { g : x0
<= g & g
<= (x0
+ r1) } by
A8;
then
A13: (x0
+ r)
in
[.x0, (x0
+ r1).] by
RCOMP_1:def 1;
x0
<= (x0
+ r1) by
A12,
A8,
XXREAL_0: 2;
then x0
in
[.x0, (x0
+ r1).] by
XXREAL_1: 1;
then
[.x0, (x0
+ r).]
c=
[.x0, (x0
+ r1).] by
A13,
XXREAL_2:def 12;
then
[.x0, (x0
+ r).]
c= (
dom f1) by
A6;
then
A14:
[.x0, (x0
+ r).]
c= ((
dom f1)
/\ (
dom f2)) by
A11,
XBOOLE_1: 19;
then
A15:
[.x0, (x0
+ r).]
c= (
dom (f1
+ f2)) by
VALUED_1:def 1;
A16: for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom (f1
+ f2)) & (for n be
Nat holds (h
. n)
>
0 ) holds ((h
" )
(#) (((f1
+ f2)
/* (h
+ c))
- ((f1
+ f2)
/* c))) is
convergent & (
lim ((h
" )
(#) (((f1
+ f2)
/* (h
+ c))
- ((f1
+ f2)
/* c))))
= ((
Rdiff (f1,x0))
+ (
Rdiff (f2,x0)))
proof
let h, c;
assume that
A17: (
rng c)
=
{x0} and
A18: (
rng (h
+ c))
c= (
dom (f1
+ f2)) and
A19: for n be
Nat holds (h
. n)
>
0 ;
A20: (
rng (h
+ c))
c= ((
dom f1)
/\ (
dom f2)) by
A18,
VALUED_1:def 1;
A21:
now
let n;
A22: (
rng c)
c= ((
dom f1)
/\ (
dom f2))
proof
let x be
object;
assume x
in (
rng c);
then
A23: x
= x0 by
A17,
TARSKI:def 1;
x0
in
[.x0, (x0
+ r).] by
A8,
XXREAL_1: 1;
hence thesis by
A14,
A23;
end;
thus ((((f1
/* (h
+ c))
- (f1
/* c))
+ ((f2
/* (h
+ c))
- (f2
/* c)))
. n)
= ((((f1
/* (h
+ c))
+ (
- (f1
/* c)))
. n)
+ (((f2
/* (h
+ c))
- (f2
/* c))
. n)) by
SEQ_1: 7
.= ((((f1
/* (h
+ c))
. n)
+ ((
- (f1
/* c))
. n))
+ (((f2
/* (h
+ c))
+ (
- (f2
/* c)))
. n)) by
SEQ_1: 7
.= ((((f1
/* (h
+ c))
. n)
+ ((
- (f1
/* c))
. n))
+ (((f2
/* (h
+ c))
. n)
+ ((
- (f2
/* c))
. n))) by
SEQ_1: 7
.= ((((f1
/* (h
+ c))
. n)
+ ((f2
/* (h
+ c))
. n))
+ (((
- (f1
/* c))
. n)
+ ((
- (f2
/* c))
. n)))
.= ((((f1
/* (h
+ c))
. n)
+ ((f2
/* (h
+ c))
. n))
+ ((
- ((f1
/* c)
. n))
+ ((
- (f2
/* c))
. n))) by
SEQ_1: 10
.= ((((f1
/* (h
+ c))
. n)
+ ((f2
/* (h
+ c))
. n))
+ ((
- ((f1
/* c)
. n))
+ (
- ((f2
/* c)
. n)))) by
SEQ_1: 10
.= ((((f1
/* (h
+ c))
. n)
+ ((f2
/* (h
+ c))
. n))
- (((f1
/* c)
. n)
+ ((f2
/* c)
. n)))
.= ((((f1
/* (h
+ c))
+ (f2
/* (h
+ c)))
. n)
- (((f1
/* c)
. n)
+ ((f2
/* c)
. n))) by
SEQ_1: 7
.= ((((f1
/* (h
+ c))
+ (f2
/* (h
+ c)))
. n)
- (((f1
/* c)
+ (f2
/* c))
. n)) by
SEQ_1: 7
.= ((((f1
/* (h
+ c))
+ (f2
/* (h
+ c)))
- ((f1
/* c)
+ (f2
/* c)))
. n) by
RFUNCT_2: 1
.= ((((f1
+ f2)
/* (h
+ c))
- ((f1
/* c)
+ (f2
/* c)))
. n) by
A20,
RFUNCT_2: 8
.= ((((f1
+ f2)
/* (h
+ c))
- ((f1
+ f2)
/* c))
. n) by
A22,
RFUNCT_2: 8;
end;
then
A24: (((f1
/* (h
+ c))
- (f1
/* c))
+ ((f2
/* (h
+ c))
- (f2
/* c)))
= (((f1
+ f2)
/* (h
+ c))
- ((f1
+ f2)
/* c)) by
FUNCT_2: 63;
((
dom f1)
/\ (
dom f2))
c= (
dom f2) by
XBOOLE_1: 17;
then
A25: (
rng (h
+ c))
c= (
dom f2) by
A20;
then
A26: (
lim ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))
= (
Rdiff (f2,x0)) by
A2,
A17,
A19,
Th15;
A27: ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))) is
convergent by
A2,
A17,
A19,
A25;
((
dom f1)
/\ (
dom f2))
c= (
dom f1) by
XBOOLE_1: 17;
then
A28: (
rng (h
+ c))
c= (
dom f1) by
A20;
A29: (((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
+ ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))
= ((h
" )
(#) (((f1
/* (h
+ c))
- (f1
/* c))
+ ((f2
/* (h
+ c))
- (f2
/* c)))) by
SEQ_1: 16;
A30: ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c))) is
convergent by
A1,
A17,
A19,
A28;
then (((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
+ ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))) is
convergent by
A27;
hence ((h
" )
(#) (((f1
+ f2)
/* (h
+ c))
- ((f1
+ f2)
/* c))) is
convergent by
A29,
A21,
FUNCT_2: 63;
(
lim ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c))))
= (
Rdiff (f1,x0)) by
A1,
A17,
A19,
A28,
Th15;
hence thesis by
A30,
A27,
A26,
A29,
A24,
SEQ_2: 6;
end;
0
< r by
A5,
A3,
XXREAL_0: 15;
hence thesis by
A15,
A16,
Th15;
end;
theorem ::
FDIFF_3:17
f1
is_right_differentiable_in x0 & f2
is_right_differentiable_in x0 implies (f1
- f2)
is_right_differentiable_in x0 & (
Rdiff ((f1
- f2),x0))
= ((
Rdiff (f1,x0))
- (
Rdiff (f2,x0)))
proof
assume that
A1: f1
is_right_differentiable_in x0 and
A2: f2
is_right_differentiable_in x0;
consider r2 such that
A3: r2
>
0 and
A4:
[.x0, (x0
+ r2).]
c= (
dom f2) by
A2;
consider r1 such that
A5: r1
>
0 and
A6:
[.x0, (x0
+ r1).]
c= (
dom f1) by
A1;
set r = (
min (r1,r2));
A7:
0
< r by
A5,
A3,
XXREAL_0: 15;
then
A8: (x0
+
0 )
<= (x0
+ r) by
XREAL_1: 7;
r
<= r2 by
XXREAL_0: 17;
then
A9: (x0
+ r)
<= (x0
+ r2) by
XREAL_1: 7;
then (x0
+ r)
in { g : x0
<= g & g
<= (x0
+ r2) } by
A8;
then
A10: (x0
+ r)
in
[.x0, (x0
+ r2).] by
RCOMP_1:def 1;
x0
<= (x0
+ r2) by
A8,
A9,
XXREAL_0: 2;
then x0
in
[.x0, (x0
+ r2).] by
XXREAL_1: 1;
then
[.x0, (x0
+ r).]
c=
[.x0, (x0
+ r2).] by
A10,
XXREAL_2:def 12;
then
A11:
[.x0, (x0
+ r).]
c= (
dom f2) by
A4;
r
<= r1 by
XXREAL_0: 17;
then
A12: (x0
+ r)
<= (x0
+ r1) by
XREAL_1: 7;
then (x0
+ r)
in { g : x0
<= g & g
<= (x0
+ r1) } by
A8;
then
A13: (x0
+ r)
in
[.x0, (x0
+ r1).] by
RCOMP_1:def 1;
x0
<= (x0
+ r1) by
A12,
A8,
XXREAL_0: 2;
then x0
in
[.x0, (x0
+ r1).] by
XXREAL_1: 1;
then
[.x0, (x0
+ r).]
c=
[.x0, (x0
+ r1).] by
A13,
XXREAL_2:def 12;
then
[.x0, (x0
+ r).]
c= (
dom f1) by
A6;
then
A14:
[.x0, (x0
+ r).]
c= ((
dom f1)
/\ (
dom f2)) by
A11,
XBOOLE_1: 19;
A15: for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom (f1
- f2)) & (for n be
Nat holds (h
. n)
>
0 ) holds ((h
" )
(#) (((f1
- f2)
/* (h
+ c))
- ((f1
- f2)
/* c))) is
convergent & (
lim ((h
" )
(#) (((f1
- f2)
/* (h
+ c))
- ((f1
- f2)
/* c))))
= ((
Rdiff (f1,x0))
- (
Rdiff (f2,x0)))
proof
let h, c;
assume that
A16: (
rng c)
=
{x0} and
A17: (
rng (h
+ c))
c= (
dom (f1
- f2)) and
A18: for n be
Nat holds (h
. n)
>
0 ;
A19: (
rng (h
+ c))
c= ((
dom f1)
/\ (
dom f2)) by
A17,
VALUED_1: 12;
A20:
now
let n;
A21: (
rng c)
c= ((
dom f1)
/\ (
dom f2))
proof
let x be
object;
assume x
in (
rng c);
then
A22: x
= x0 by
A16,
TARSKI:def 1;
x0
in
[.x0, (x0
+ r).] by
A8,
XXREAL_1: 1;
hence thesis by
A14,
A22;
end;
thus ((((f1
/* (h
+ c))
- (f1
/* c))
- ((f2
/* (h
+ c))
- (f2
/* c)))
. n)
= ((((f1
/* (h
+ c))
- (f1
/* c))
. n)
- (((f2
/* (h
+ c))
- (f2
/* c))
. n)) by
RFUNCT_2: 1
.= ((((f1
/* (h
+ c))
. n)
- ((f1
/* c)
. n))
- (((f2
/* (h
+ c))
- (f2
/* c))
. n)) by
RFUNCT_2: 1
.= ((((f1
/* (h
+ c))
. n)
- ((f1
/* c)
. n))
- (((f2
/* (h
+ c))
. n)
- ((f2
/* c)
. n))) by
RFUNCT_2: 1
.= ((((f1
/* (h
+ c))
. n)
- ((f2
/* (h
+ c))
. n))
- (((f1
/* c)
. n)
- ((f2
/* c)
. n)))
.= ((((f1
/* (h
+ c))
- (f2
/* (h
+ c)))
. n)
- (((f1
/* c)
. n)
- ((f2
/* c)
. n))) by
RFUNCT_2: 1
.= ((((f1
/* (h
+ c))
- (f2
/* (h
+ c)))
. n)
- (((f1
/* c)
- (f2
/* c))
. n)) by
RFUNCT_2: 1
.= ((((f1
/* (h
+ c))
- (f2
/* (h
+ c)))
- ((f1
/* c)
- (f2
/* c)))
. n) by
RFUNCT_2: 1
.= ((((f1
- f2)
/* (h
+ c))
- ((f1
/* c)
- (f2
/* c)))
. n) by
A19,
RFUNCT_2: 8
.= ((((f1
- f2)
/* (h
+ c))
- ((f1
- f2)
/* c))
. n) by
A21,
RFUNCT_2: 8;
end;
then
A23: (((f1
/* (h
+ c))
- (f1
/* c))
- ((f2
/* (h
+ c))
- (f2
/* c)))
= (((f1
- f2)
/* (h
+ c))
- ((f1
- f2)
/* c)) by
FUNCT_2: 63;
((
dom f1)
/\ (
dom f2))
c= (
dom f2) by
XBOOLE_1: 17;
then
A24: (
rng (h
+ c))
c= (
dom f2) by
A19;
then
A25: (
lim ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))
= (
Rdiff (f2,x0)) by
A2,
A16,
A18,
Th15;
A26: ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))) is
convergent by
A2,
A16,
A18,
A24;
((
dom f1)
/\ (
dom f2))
c= (
dom f1) by
XBOOLE_1: 17;
then
A27: (
rng (h
+ c))
c= (
dom f1) by
A19;
A28: (((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
- ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))
= ((h
" )
(#) (((f1
/* (h
+ c))
- (f1
/* c))
- ((f2
/* (h
+ c))
- (f2
/* c)))) by
SEQ_1: 21;
A29: ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c))) is
convergent by
A1,
A16,
A18,
A27;
then (((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
- ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))) is
convergent by
A26;
hence ((h
" )
(#) (((f1
- f2)
/* (h
+ c))
- ((f1
- f2)
/* c))) is
convergent by
A28,
A20,
FUNCT_2: 63;
(
lim ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c))))
= (
Rdiff (f1,x0)) by
A1,
A16,
A18,
A27,
Th15;
hence thesis by
A29,
A26,
A25,
A28,
A23,
SEQ_2: 12;
end;
[.x0, (x0
+ r).]
c= (
dom (f1
- f2)) by
A14,
VALUED_1: 12;
hence thesis by
A7,
A15,
Th15;
end;
theorem ::
FDIFF_3:18
f1
is_right_differentiable_in x0 & f2
is_right_differentiable_in x0 implies (f1
(#) f2)
is_right_differentiable_in x0 & (
Rdiff ((f1
(#) f2),x0))
= (((
Rdiff (f1,x0))
* (f2
. x0))
+ ((
Rdiff (f2,x0))
* (f1
. x0)))
proof
assume that
A1: f1
is_right_differentiable_in x0 and
A2: f2
is_right_differentiable_in x0;
A3: (x0
+
0 )
= x0;
consider r2 such that
A4: r2
>
0 and
A5:
[.x0, (x0
+ r2).]
c= (
dom f2) by
A2;
consider r1 such that
A6: r1
>
0 and
A7:
[.x0, (x0
+ r1).]
c= (
dom f1) by
A1;
set r = (
min (r1,r2));
0
<= r by
A6,
A4,
XXREAL_0: 15;
then
A8: x0
<= (x0
+ r) by
A3,
XREAL_1: 7;
r
<= r2 by
XXREAL_0: 17;
then
A9: (x0
+ r)
<= (x0
+ r2) by
XREAL_1: 7;
then (x0
+ r)
in { g : x0
<= g & g
<= (x0
+ r2) } by
A8;
then
A10: (x0
+ r)
in
[.x0, (x0
+ r2).] by
RCOMP_1:def 1;
x0
<= (x0
+ r2) by
A8,
A9,
XXREAL_0: 2;
then x0
in
[.x0, (x0
+ r2).] by
XXREAL_1: 1;
then
[.x0, (x0
+ r).]
c=
[.x0, (x0
+ r2).] by
A10,
XXREAL_2:def 12;
then
A11:
[.x0, (x0
+ r).]
c= (
dom f2) by
A5;
r
<= r1 by
XXREAL_0: 17;
then
A12: (x0
+ r)
<= (x0
+ r1) by
XREAL_1: 7;
then (x0
+ r)
in { g : x0
<= g & g
<= (x0
+ r1) } by
A8;
then
A13: (x0
+ r)
in
[.x0, (x0
+ r1).] by
RCOMP_1:def 1;
x0
<= (x0
+ r1) by
A12,
A8,
XXREAL_0: 2;
then x0
in
[.x0, (x0
+ r1).] by
XXREAL_1: 1;
then
[.x0, (x0
+ r).]
c=
[.x0, (x0
+ r1).] by
A13,
XXREAL_2:def 12;
then
A14:
[.x0, (x0
+ r).]
c= (
dom f1) by
A7;
A15:
0
< r by
A6,
A4,
XXREAL_0: 15;
A16: for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom (f1
(#) f2)) & (for n be
Nat holds (h
. n)
>
0 ) holds ((h
" )
(#) (((f1
(#) f2)
/* (h
+ c))
- ((f1
(#) f2)
/* c))) is
convergent & (
lim ((h
" )
(#) (((f1
(#) f2)
/* (h
+ c))
- ((f1
(#) f2)
/* c))))
= (((
Rdiff (f1,x0))
* (f2
. x0))
+ ((
Rdiff (f2,x0))
* (f1
. x0)))
proof
let h, c;
assume that
A17: (
rng c)
=
{x0} and
A18: (
rng (h
+ c))
c= (
dom (f1
(#) f2)) and
A19: for n be
Nat holds (h
. n)
>
0 ;
A20: (
rng (h
+ c))
c= ((
dom f1)
/\ (
dom f2)) by
A18,
VALUED_1:def 4;
(x0
+
0 )
<= (x0
+ r) by
A15,
XREAL_1: 7;
then
A21: x0
in
[.x0, (x0
+ r).] by
XXREAL_1: 1;
then
A22: x0
in (
dom f2) by
A11;
A23: (
rng c)
c= (
dom f2) by
A17,
A22,
TARSKI:def 1;
A24: for m holds (c
. m)
= x0
proof
let m;
(c
. m)
in (
rng c) by
VALUED_0: 28;
hence thesis by
A17,
TARSKI:def 1;
end;
A25: for g be
Real st
0
< g holds ex n be
Nat st for m be
Nat st n
<= m holds
|.(((f2
/* c)
. m)
- (f2
. x0)).|
< g
proof
let g be
Real such that
A26:
0
< g;
take n =
0 ;
let m be
Nat such that n
<= m;
A27: m
in
NAT by
ORDINAL1:def 12;
|.(((f2
/* c)
. m)
- (f2
. x0)).|
=
|.((f2
. (c
. m))
- (f2
. x0)).| by
A23,
FUNCT_2: 108,
A27
.=
|.((f2
. x0)
- (f2
. x0)).| by
A24,
A27
.=
0 by
ABSVALUE:def 1;
hence thesis by
A26;
end;
then
A28: (f2
/* c) is
convergent by
SEQ_2:def 6;
((
dom f1)
/\ (
dom f2))
c= (
dom f2) by
XBOOLE_1: 17;
then
A29: (
rng (h
+ c))
c= (
dom f2) by
A20;
then
A30: (
lim ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))
= (
Rdiff (f2,x0)) by
A2,
A17,
A19,
Th15;
now
let n;
A31: (h
. n)
<>
0 by
A19;
thus ((h
(#) ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c))))
. n)
= (((h
(#) (h
" ))
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
. n) by
SEQ_1: 14
.= (((h
(#) (h
" ))
. n)
* (((f1
/* (h
+ c))
- (f1
/* c))
. n)) by
SEQ_1: 8
.= (((h
. n)
* ((h
" )
. n))
* (((f1
/* (h
+ c))
- (f1
/* c))
. n)) by
SEQ_1: 8
.= (((h
. n)
* ((h
. n)
" ))
* (((f1
/* (h
+ c))
- (f1
/* c))
. n)) by
VALUED_1: 10
.= (1
* (((f1
/* (h
+ c))
- (f1
/* c))
. n)) by
A31,
XCMPLX_0:def 7
.= (((f1
/* (h
+ c))
- (f1
/* c))
. n);
end;
then
A32: (h
(#) ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c))))
= ((f1
/* (h
+ c))
- (f1
/* c)) by
FUNCT_2: 63;
A33: x0
in (
dom f1) by
A14,
A21;
A34: (
rng c)
c= (
dom f1) by
A17,
A33,
TARSKI:def 1;
A35: for g be
Real st
0
< g holds ex n be
Nat st for m be
Nat st n
<= m holds
|.(((f1
/* c)
. m)
- (f1
. x0)).|
< g
proof
let g be
Real such that
A36:
0
< g;
take n =
0 ;
let m be
Nat such that n
<= m;
A37: m
in
NAT by
ORDINAL1:def 12;
|.(((f1
/* c)
. m)
- (f1
. x0)).|
=
|.((f1
. (c
. m))
- (f1
. x0)).| by
A34,
FUNCT_2: 108,
A37
.=
|.((f1
. x0)
- (f1
. x0)).| by
A24,
A37
.=
0 by
ABSVALUE:def 1;
hence thesis by
A36;
end;
then
A38: (f1
/* c) is
convergent by
SEQ_2:def 6;
((
dom f1)
/\ (
dom f2))
c= (
dom f1) by
XBOOLE_1: 17;
then
A39: (
rng (h
+ c))
c= (
dom f1) by
A20;
then
A40: (
lim ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c))))
= (
Rdiff (f1,x0)) by
A1,
A17,
A19,
Th15;
A41: ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c))) is
convergent by
A1,
A17,
A19,
A39;
then
A42: (((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
(#) (f2
/* c)) is
convergent by
A28;
A43: (
rng c)
c= ((
dom f1)
/\ (
dom f2)) by
A34,
A23,
XBOOLE_1: 19;
A44:
now
let n;
thus (((h
" )
(#) (((f1
(#) f2)
/* (h
+ c))
- ((f1
(#) f2)
/* c)))
. n)
= (((h
" )
. n)
* ((((f1
(#) f2)
/* (h
+ c))
- ((f1
(#) f2)
/* c))
. n)) by
SEQ_1: 8
.= (((h
" )
. n)
* ((((f1
(#) f2)
/* (h
+ c))
. n)
- (((f1
(#) f2)
/* c)
. n))) by
RFUNCT_2: 1
.= (((h
" )
. n)
* ((((f1
/* (h
+ c))
(#) (f2
/* (h
+ c)))
. n)
- (((f1
(#) f2)
/* c)
. n))) by
A20,
RFUNCT_2: 8
.= (((h
" )
. n)
* ((((f1
/* (h
+ c))
(#) (f2
/* (h
+ c)))
. n)
- (((f1
/* c)
(#) (f2
/* c))
. n))) by
A43,
RFUNCT_2: 8
.= (((h
" )
. n)
* ((((f1
/* (h
+ c))
. n)
* ((f2
/* (h
+ c))
. n))
- (((f1
/* c)
(#) (f2
/* c))
. n))) by
SEQ_1: 8
.= (((h
" )
. n)
* ((((f1
/* (h
+ c))
. n)
* ((f2
/* (h
+ c))
. n))
- (((f1
/* c)
. n)
* ((f2
/* c)
. n)))) by
SEQ_1: 8
.= (((((h
" )
. n)
* (((f2
/* (h
+ c))
. n)
- ((f2
/* c)
. n)))
* ((f1
/* (h
+ c))
. n))
+ ((((h
" )
. n)
* (((f1
/* (h
+ c))
. n)
- ((f1
/* c)
. n)))
* ((f2
/* c)
. n)))
.= (((((h
" )
. n)
* (((f2
/* (h
+ c))
- (f2
/* c))
. n))
* ((f1
/* (h
+ c))
. n))
+ ((((h
" )
. n)
* (((f1
/* (h
+ c))
. n)
- ((f1
/* c)
. n)))
* ((f2
/* c)
. n))) by
RFUNCT_2: 1
.= (((((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))
. n)
* ((f1
/* (h
+ c))
. n))
+ ((((h
" )
. n)
* (((f1
/* (h
+ c))
. n)
- ((f1
/* c)
. n)))
* ((f2
/* c)
. n))) by
SEQ_1: 8
.= (((((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))
. n)
* ((f1
/* (h
+ c))
. n))
+ ((((h
" )
. n)
* (((f1
/* (h
+ c))
- (f1
/* c))
. n))
* ((f2
/* c)
. n))) by
RFUNCT_2: 1
.= (((((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))
. n)
* ((f1
/* (h
+ c))
. n))
+ ((((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
. n)
* ((f2
/* c)
. n))) by
SEQ_1: 8
.= (((((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))
(#) (f1
/* (h
+ c)))
. n)
+ ((((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
. n)
* ((f2
/* c)
. n))) by
SEQ_1: 8
.= (((((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))
(#) (f1
/* (h
+ c)))
. n)
+ ((((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
(#) (f2
/* c))
. n)) by
SEQ_1: 8
.= (((((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))
(#) (f1
/* (h
+ c)))
+ (((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
(#) (f2
/* c)))
. n) by
SEQ_1: 7;
end;
then
A45: ((h
" )
(#) (((f1
(#) f2)
/* (h
+ c))
- ((f1
(#) f2)
/* c)))
= ((((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))
(#) (f1
/* (h
+ c)))
+ (((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
(#) (f2
/* c))) by
FUNCT_2: 63;
now
let n;
thus (((f1
/* c)
+ ((f1
/* (h
+ c))
- (f1
/* c)))
. n)
= (((f1
/* c)
. n)
+ (((f1
/* (h
+ c))
- (f1
/* c))
. n)) by
SEQ_1: 7
.= (((f1
/* c)
. n)
+ (((f1
/* (h
+ c))
. n)
- ((f1
/* c)
. n))) by
RFUNCT_2: 1
.= ((f1
/* (h
+ c))
. n);
end;
then
A46: ((f1
/* c)
+ ((f1
/* (h
+ c))
- (f1
/* c)))
= (f1
/* (h
+ c)) by
FUNCT_2: 63;
A47: h is
convergent & ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c))) is
convergent by
A1,
A17,
A19,
A39;
then (h
(#) ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))) is
convergent;
then
A48: (f1
/* (h
+ c)) is
convergent by
A38,
A32,
A46;
(
lim (h
(#) ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))))
= ((
lim h)
* (
lim ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c))))) by
A47,
SEQ_2: 15
.=
0 ;
then
A49:
0
= ((
lim (f1
/* (h
+ c)))
- (
lim (f1
/* c))) by
A38,
A32,
A48,
SEQ_2: 12
.= ((
lim (f1
/* (h
+ c)))
- (f1
. x0)) by
A35,
A38,
SEQ_2:def 7;
A50: ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))) is
convergent by
A2,
A17,
A19,
A29;
then
A51: (((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))
(#) (f1
/* (h
+ c))) is
convergent by
A48;
(
lim ((h
" )
(#) (((f1
(#) f2)
/* (h
+ c))
- ((f1
(#) f2)
/* c))))
= (
lim ((((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))
(#) (f1
/* (h
+ c)))
+ (((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
(#) (f2
/* c)))) by
A44,
FUNCT_2: 63
.= ((
lim (((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))
(#) (f1
/* (h
+ c))))
+ (
lim (((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
(#) (f2
/* c)))) by
A51,
A42,
SEQ_2: 6
.= (((
lim ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))
* (
lim (f1
/* (h
+ c))))
+ (
lim (((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
(#) (f2
/* c)))) by
A50,
A48,
SEQ_2: 15
.= (((
lim ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))
* (f1
. x0))
+ ((
lim ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c))))
* (
lim (f2
/* c)))) by
A41,
A49,
A28,
SEQ_2: 15
.= (((
Rdiff (f1,x0))
* (f2
. x0))
+ ((
Rdiff (f2,x0))
* (f1
. x0))) by
A40,
A30,
A25,
A28,
SEQ_2:def 7;
hence thesis by
A51,
A42,
A45;
end;
[.x0, (x0
+ r).]
c= ((
dom f1)
/\ (
dom f2)) by
A14,
A11,
XBOOLE_1: 19;
then
[.x0, (x0
+ r).]
c= (
dom (f1
(#) f2)) by
VALUED_1:def 4;
hence thesis by
A15,
A16,
Th15;
end;
Lm3: f1
is_right_differentiable_in x0 & f2
is_right_differentiable_in x0 & (ex r0 st r0
>
0 & for g st g
in (
dom f2) & g
in
[.x0, (x0
+ r0).] holds (f2
. g)
<>
0 ) implies (f1
/ f2)
is_right_differentiable_in x0 & (
Rdiff ((f1
/ f2),x0))
= ((((
Rdiff (f1,x0))
* (f2
. x0))
- ((
Rdiff (f2,x0))
* (f1
. x0)))
/ ((f2
. x0)
^2 ))
proof
assume that
A1: f1
is_right_differentiable_in x0 and
A2: f2
is_right_differentiable_in x0;
consider r2 such that
A3:
0
< r2 and
A4:
[.x0, (x0
+ r2).]
c= (
dom f2) by
A2;
consider r1 such that
A5:
0
< r1 and
A6:
[.x0, (x0
+ r1).]
c= (
dom f1) by
A1;
given r0 such that
A7: r0
>
0 and
A8: for g st g
in (
dom f2) & g
in
[.x0, (x0
+ r0).] holds (f2
. g)
<>
0 ;
A9: (
0
+ x0)
= x0;
set r3 = (
min (r0,r2));
0
<= r3 by
A7,
A3,
XXREAL_0: 15;
then
A10: x0
<= (x0
+ r3) by
A9,
XREAL_1: 6;
r3
<= r2 by
XXREAL_0: 17;
then
A11: (x0
+ r3)
<= (x0
+ r2) by
XREAL_1: 7;
then x0
<= (x0
+ r2) by
A10,
XXREAL_0: 2;
then
A12: x0
in
[.x0, (x0
+ r2).] by
XXREAL_1: 1;
(x0
+ r3)
in { g : x0
<= g & g
<= (x0
+ r2) } by
A10,
A11;
then (x0
+ r3)
in
[.x0, (x0
+ r2).] by
RCOMP_1:def 1;
then
[.x0, (x0
+ r3).]
c=
[.x0, (x0
+ r2).] by
A12,
XXREAL_2:def 12;
then
A13:
[.x0, (x0
+ r3).]
c= (
dom f2) by
A4;
r3
<= r0 by
XXREAL_0: 17;
then
A14: (x0
+ r3)
<= (x0
+ r0) by
XREAL_1: 7;
then x0
<= (x0
+ r0) by
A10,
XXREAL_0: 2;
then
A15: x0
in
[.x0, (x0
+ r0).] by
XXREAL_1: 1;
A16: (x0
+
0 )
= x0;
set r = (
min (r1,r3));
A17:
0
< r3 by
A7,
A3,
XXREAL_0: 15;
then
0
<= r by
A5,
XXREAL_0: 15;
then
A18: x0
<= (x0
+ r) by
A16,
XREAL_1: 7;
r
<= r3 by
XXREAL_0: 17;
then
A19: (x0
+ r)
<= (x0
+ r3) by
XREAL_1: 7;
then x0
<= (x0
+ r3) by
A18,
XXREAL_0: 2;
then
A20: x0
in
[.x0, (x0
+ r3).] by
XXREAL_1: 1;
(x0
+ r3)
in { g : x0
<= g & g
<= (x0
+ r0) } by
A10,
A14;
then (x0
+ r3)
in
[.x0, (x0
+ r0).] by
RCOMP_1:def 1;
then
A21:
[.x0, (x0
+ r3).]
c=
[.x0, (x0
+ r0).] by
A15,
XXREAL_2:def 12;
(x0
+ r)
in { g : x0
<= g & g
<= (x0
+ r3) } by
A18,
A19;
then (x0
+ r)
in
[.x0, (x0
+ r3).] by
RCOMP_1:def 1;
then
A22:
[.x0, (x0
+ r).]
c=
[.x0, (x0
+ r3).] by
A20,
XXREAL_2:def 12;
[.x0, (x0
+ r).]
c= (
dom (f2
^ ))
proof
assume not thesis;
then
consider x be
object such that
A23: x
in
[.x0, (x0
+ r).] and
A24: not x
in (
dom (f2
^ ));
reconsider x as
Real by
A23;
A25: x
in
[.x0, (x0
+ r3).] by
A22,
A23;
A26: not x
in ((
dom f2)
\ (f2
"
{
0 })) by
A24,
RFUNCT_1:def 2;
now
per cases by
A26,
XBOOLE_0:def 5;
suppose not x
in (
dom f2);
hence contradiction by
A13,
A25;
end;
suppose
A27: x
in (f2
"
{
0 });
then (f2
. x)
in
{
0 } by
FUNCT_1:def 7;
then
A28: (f2
. x)
=
0 by
TARSKI:def 1;
x
in (
dom f2) by
A27,
FUNCT_1:def 7;
hence contradiction by
A8,
A21,
A25,
A28;
end;
end;
hence contradiction;
end;
then
A29:
[.x0, (x0
+ r).]
c= ((
dom f2)
\ (f2
"
{
0 })) by
RFUNCT_1:def 2;
r
<= r1 by
XXREAL_0: 17;
then
A30: (x0
+ r)
<= (x0
+ r1) by
XREAL_1: 7;
then x0
<= (x0
+ r1) by
A18,
XXREAL_0: 2;
then
A31: x0
in
[.x0, (x0
+ r1).] by
XXREAL_1: 1;
(x0
+ r)
in { g : x0
<= g & g
<= (x0
+ r1) } by
A18,
A30;
then (x0
+ r)
in
[.x0, (x0
+ r1).] by
RCOMP_1:def 1;
then
[.x0, (x0
+ r).]
c=
[.x0, (x0
+ r1).] by
A31,
XXREAL_2:def 12;
then
A32:
[.x0, (x0
+ r).]
c= (
dom f1) by
A6;
then
[.x0, (x0
+ r).]
c= ((
dom f1)
/\ ((
dom f2)
\ (f2
"
{
0 }))) by
A29,
XBOOLE_1: 19;
then
A33:
[.x0, (x0
+ r).]
c= (
dom (f1
/ f2)) by
RFUNCT_1:def 1;
A34: for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom (f1
/ f2)) & (for n be
Nat holds (h
. n)
>
0 ) holds ((h
" )
(#) (((f1
/ f2)
/* (h
+ c))
- ((f1
/ f2)
/* c))) is
convergent & (
lim ((h
" )
(#) (((f1
/ f2)
/* (h
+ c))
- ((f1
/ f2)
/* c))))
= ((((
Rdiff (f1,x0))
* (f2
. x0))
- ((
Rdiff (f2,x0))
* (f1
. x0)))
/ ((f2
. x0)
^2 ))
proof
let h, c;
assume that
A35: (
rng c)
=
{x0} and
A36: (
rng (h
+ c))
c= (
dom (f1
/ f2)) and
A37: for n be
Nat holds (h
. n)
>
0 ;
A38: (
rng (h
+ c))
c= ((
dom f1)
/\ ((
dom f2)
\ (f2
"
{
0 }))) by
A36,
RFUNCT_1:def 1;
0
<= r & (x0
+
0 )
= x0 by
A5,
A17,
XXREAL_0: 15;
then x0
<= (x0
+ r) by
XREAL_1: 7;
then
A39: x0
in
[.x0, (x0
+ r).] by
XXREAL_1: 1;
then
A40: x0
in (
dom f1) by
A32;
A41: (
rng c)
c= (
dom f1) by
A35,
A40,
TARSKI:def 1;
((
dom f1)
/\ ((
dom f2)
\ (f2
"
{
0 })))
c= (
dom f1) by
XBOOLE_1: 17;
then
A42: (
rng (h
+ c))
c= (
dom f1) by
A38;
then
A43: (
lim ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c))))
= (
Rdiff (f1,x0)) by
A1,
A35,
A37,
Th15;
A44: x0
in ((
dom f2)
\ (f2
"
{
0 })) by
A29,
A39;
(
rng c)
c= ((
dom f2)
\ (f2
"
{
0 })) by
A35,
A44,
TARSKI:def 1;
then
A45: (
rng c)
c= (
dom (f2
^ )) by
RFUNCT_1:def 2;
then
A46: (
rng c)
c= ((
dom f1)
/\ (
dom (f2
^ ))) by
A41,
XBOOLE_1: 19;
A47: ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c))) is
convergent by
A1,
A35,
A37,
A42;
A48: (f2
/* c) is
non-zero by
A45,
RFUNCT_2: 11;
A49:
now
let n;
thus (((h
" )
(#) (((f1
/* (h
+ c))
(#) (f2
/* c))
- ((f1
/* c)
(#) (f2
/* (h
+ c)))))
. n)
= (((h
" )
. n)
* ((((f1
/* (h
+ c))
(#) (f2
/* c))
- ((f1
/* c)
(#) (f2
/* (h
+ c))))
. n)) by
SEQ_1: 8
.= (((h
" )
. n)
* ((((f1
/* (h
+ c))
(#) (f2
/* c))
. n)
- (((f1
/* c)
(#) (f2
/* (h
+ c)))
. n))) by
RFUNCT_2: 1
.= (((h
" )
. n)
* ((((f1
/* (h
+ c))
. n)
* ((f2
/* c)
. n))
- (((f1
/* c)
(#) (f2
/* (h
+ c)))
. n))) by
SEQ_1: 8
.= (((h
" )
. n)
* ((((((f1
/* (h
+ c))
. n)
- ((f1
/* c)
. n))
* ((f2
/* c)
. n))
+ (((f1
/* c)
. n)
* ((f2
/* c)
. n)))
- (((f1
/* c)
. n)
* ((f2
/* (h
+ c))
. n)))) by
SEQ_1: 8
.= (((((h
" )
. n)
* (((f1
/* (h
+ c))
. n)
- ((f1
/* c)
. n)))
* ((f2
/* c)
. n))
- (((f1
/* c)
. n)
* (((h
" )
. n)
* (((f2
/* (h
+ c))
. n)
- ((f2
/* c)
. n)))))
.= (((((h
" )
. n)
* (((f1
/* (h
+ c))
- (f1
/* c))
. n))
* ((f2
/* c)
. n))
- (((f1
/* c)
. n)
* (((h
" )
. n)
* (((f2
/* (h
+ c))
. n)
- ((f2
/* c)
. n))))) by
RFUNCT_2: 1
.= (((((h
" )
. n)
* (((f1
/* (h
+ c))
- (f1
/* c))
. n))
* ((f2
/* c)
. n))
- (((f1
/* c)
. n)
* (((h
" )
. n)
* (((f2
/* (h
+ c))
- (f2
/* c))
. n)))) by
RFUNCT_2: 1
.= (((((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
. n)
* ((f2
/* c)
. n))
- (((f1
/* c)
. n)
* (((h
" )
. n)
* (((f2
/* (h
+ c))
- (f2
/* c))
. n)))) by
SEQ_1: 8
.= (((((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
. n)
* ((f2
/* c)
. n))
- (((f1
/* c)
. n)
* (((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))
. n))) by
SEQ_1: 8
.= (((((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
(#) (f2
/* c))
. n)
- (((f1
/* c)
. n)
* (((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))
. n))) by
SEQ_1: 8
.= (((((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
(#) (f2
/* c))
. n)
- (((f1
/* c)
(#) ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))
. n)) by
SEQ_1: 8
.= (((((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
(#) (f2
/* c))
- ((f1
/* c)
(#) ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))))
. n) by
RFUNCT_2: 1;
end;
now
let n;
thus (((f2
/* c)
+ ((f2
/* (h
+ c))
- (f2
/* c)))
. n)
= (((f2
/* c)
. n)
+ (((f2
/* (h
+ c))
- (f2
/* c))
. n)) by
SEQ_1: 7
.= (((f2
/* c)
. n)
+ (((f2
/* (h
+ c))
. n)
- ((f2
/* c)
. n))) by
RFUNCT_2: 1
.= ((f2
/* (h
+ c))
. n);
end;
then
A50: ((f2
/* c)
+ ((f2
/* (h
+ c))
- (f2
/* c)))
= (f2
/* (h
+ c)) by
FUNCT_2: 63;
((
dom f1)
/\ ((
dom f2)
\ (f2
"
{
0 })))
c= ((
dom f2)
\ (f2
"
{
0 })) by
XBOOLE_1: 17;
then
A51: (
rng (h
+ c))
c= ((
dom f2)
\ (f2
"
{
0 })) by
A38;
then
A52: (
rng (h
+ c))
c= (
dom (f2
^ )) by
RFUNCT_1:def 2;
then
A53: (
rng (h
+ c))
c= ((
dom f1)
/\ (
dom (f2
^ ))) by
A42,
XBOOLE_1: 19;
A54: (f2
/* (h
+ c)) is
non-zero by
A52,
RFUNCT_2: 11;
then
A55: ((f2
/* (h
+ c))
(#) (f2
/* c)) is
non-zero by
A48,
SEQ_1: 35;
((h
" )
(#) (((f1
/ f2)
/* (h
+ c))
- ((f1
/ f2)
/* c)))
= ((h
" )
(#) (((f1
(#) (f2
^ ))
/* (h
+ c))
- ((f1
/ f2)
/* c))) by
RFUNCT_1: 31
.= ((h
" )
(#) (((f1
(#) (f2
^ ))
/* (h
+ c))
- ((f1
(#) (f2
^ ))
/* c))) by
RFUNCT_1: 31
.= ((h
" )
(#) (((f1
/* (h
+ c))
(#) ((f2
^ )
/* (h
+ c)))
- ((f1
(#) (f2
^ ))
/* c))) by
A53,
RFUNCT_2: 8
.= ((h
" )
(#) (((f1
/* (h
+ c))
/" (f2
/* (h
+ c)))
- ((f1
(#) (f2
^ ))
/* c))) by
A52,
RFUNCT_2: 12
.= ((h
" )
(#) (((f1
/* (h
+ c))
/" (f2
/* (h
+ c)))
- ((f1
/* c)
(#) ((f2
^ )
/* c)))) by
A46,
RFUNCT_2: 8
.= ((h
" )
(#) (((f1
/* (h
+ c))
/" (f2
/* (h
+ c)))
- ((f1
/* c)
/" (f2
/* c)))) by
A45,
RFUNCT_2: 12
.= ((h
" )
(#) ((((f1
/* (h
+ c))
(#) (f2
/* c))
- ((f1
/* c)
(#) (f2
/* (h
+ c))))
/" ((f2
/* (h
+ c))
(#) (f2
/* c)))) by
A54,
A48,
SEQ_1: 50
.= (((h
" )
(#) (((f1
/* (h
+ c))
(#) (f2
/* c))
- ((f1
/* c)
(#) (f2
/* (h
+ c)))))
/" ((f2
/* (h
+ c))
(#) (f2
/* c))) by
SEQ_1: 41;
then
A56: ((h
" )
(#) (((f1
/ f2)
/* (h
+ c))
- ((f1
/ f2)
/* c)))
= (((((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
(#) (f2
/* c))
- ((f1
/* c)
(#) ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))))
/" ((f2
/* (h
+ c))
(#) (f2
/* c))) by
A49,
FUNCT_2: 63;
((
dom f2)
\ (f2
"
{
0 }))
c= (
dom f2) by
XBOOLE_1: 36;
then
A57: (
rng (h
+ c))
c= (
dom f2) by
A51;
then
A58: (
lim ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))
= (
Rdiff (f2,x0)) by
A2,
A35,
A37,
Th15;
A59: ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))) is
convergent by
A2,
A35,
A37,
A57;
now
let n;
A60: (h
. n)
<>
0 by
A37;
thus ((h
(#) ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))
. n)
= (((h
(#) (h
" ))
(#) ((f2
/* (h
+ c))
- (f2
/* c)))
. n) by
SEQ_1: 14
.= (((h
(#) (h
" ))
. n)
* (((f2
/* (h
+ c))
- (f2
/* c))
. n)) by
SEQ_1: 8
.= (((h
. n)
* ((h
" )
. n))
* (((f2
/* (h
+ c))
- (f2
/* c))
. n)) by
SEQ_1: 8
.= (((h
. n)
* ((h
. n)
" ))
* (((f2
/* (h
+ c))
- (f2
/* c))
. n)) by
VALUED_1: 10
.= (1
* (((f2
/* (h
+ c))
- (f2
/* c))
. n)) by
A60,
XCMPLX_0:def 7
.= (((f2
/* (h
+ c))
- (f2
/* c))
. n);
end;
then
A61: (h
(#) ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))
= ((f2
/* (h
+ c))
- (f2
/* c)) by
FUNCT_2: 63;
A62: for m holds (c
. m)
= x0
proof
let m;
(c
. m)
in (
rng c) by
VALUED_0: 28;
hence thesis by
A35,
TARSKI:def 1;
end;
A63: for g be
Real st
0
< g holds ex n be
Nat st for m be
Nat st n
<= m holds
|.(((f1
/* c)
. m)
- (f1
. x0)).|
< g
proof
let g be
Real such that
A64:
0
< g;
take n =
0 ;
let m be
Nat such that n
<= m;
A65: m
in
NAT by
ORDINAL1:def 12;
|.(((f1
/* c)
. m)
- (f1
. x0)).|
=
|.((f1
. (c
. m))
- (f1
. x0)).| by
A41,
FUNCT_2: 108,
A65
.=
|.((f1
. x0)
- (f1
. x0)).| by
A62,
A65
.=
0 by
ABSVALUE:def 1;
hence thesis by
A64;
end;
then
A66: (f1
/* c) is
convergent by
SEQ_2:def 6;
then
A67: (
lim (f1
/* c))
= (f1
. x0) by
A63,
SEQ_2:def 7;
(
dom (f2
^ ))
= ((
dom f2)
\ (f2
"
{
0 })) by
RFUNCT_1:def 2;
then
A68: (
dom (f2
^ ))
c= (
dom f2) by
XBOOLE_1: 36;
A69: for g be
Real st
0
< g holds ex n be
Nat st for m be
Nat st n
<= m holds
|.(((f2
/* c)
. m)
- (f2
. x0)).|
< g
proof
let g be
Real such that
A70:
0
< g;
take n =
0 ;
let m be
Nat such that n
<= m;
A71: m
in
NAT by
ORDINAL1:def 12;
|.(((f2
/* c)
. m)
- (f2
. x0)).|
=
|.((f2
. (c
. m))
- (f2
. x0)).| by
A45,
A68,
FUNCT_2: 108,
XBOOLE_1: 1,
A71
.=
|.((f2
. x0)
- (f2
. x0)).| by
A62,
A71
.=
0 by
ABSVALUE:def 1;
hence thesis by
A70;
end;
then
A72: (f2
/* c) is
convergent by
SEQ_2:def 6;
then
A73: (
lim (f2
/* c))
= (f2
. x0) by
A69,
SEQ_2:def 7;
(h
(#) ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))) is
convergent by
A59;
then
A74: (f2
/* (h
+ c)) is
convergent by
A72,
A61,
A50;
then
A75: ((f2
/* (h
+ c))
(#) (f2
/* c)) is
convergent by
A72;
((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))) is
convergent by
A2,
A35,
A37,
A57;
then (
lim (h
(#) ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))))
= ((
lim h)
* (
lim ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))) by
SEQ_2: 15
.=
0 ;
then
0
= ((
lim (f2
/* (h
+ c)))
- (f2
. x0)) by
A72,
A73,
A61,
A74,
SEQ_2: 12;
then
A76: (
lim ((f2
/* (h
+ c))
(#) (f2
/* c)))
= ((f2
. x0)
^2 ) by
A72,
A73,
A74,
SEQ_2: 15;
A77: (
lim ((f2
/* (h
+ c))
(#) (f2
/* c)))
<>
0
proof
assume not thesis;
then (f2
. x0)
=
0 by
A76,
XCMPLX_1: 6;
hence contradiction by
A8,
A4,
A15,
A12;
end;
((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c))) is
convergent by
A1,
A35,
A37,
A42;
then
A78: (((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
(#) (f2
/* c)) is
convergent by
A72;
A79: ((f1
/* c)
(#) ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c)))) is
convergent by
A59,
A66;
then
A80: ((((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
(#) (f2
/* c))
- ((f1
/* c)
(#) ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))) is
convergent by
A78;
then (
lim ((h
" )
(#) (((f1
/ f2)
/* (h
+ c))
- ((f1
/ f2)
/* c))))
= ((
lim ((((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
(#) (f2
/* c))
- ((f1
/* c)
(#) ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))))
/ (
lim ((f2
/* (h
+ c))
(#) (f2
/* c)))) by
A55,
A75,
A77,
A56,
SEQ_2: 24
.= (((
lim (((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c)))
(#) (f2
/* c)))
- (
lim ((f1
/* c)
(#) ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))))
/ (
lim ((f2
/* (h
+ c))
(#) (f2
/* c)))) by
A79,
A78,
SEQ_2: 12
.= ((((
lim ((h
" )
(#) ((f1
/* (h
+ c))
- (f1
/* c))))
* (
lim (f2
/* c)))
- (
lim ((f1
/* c)
(#) ((h
" )
(#) ((f2
/* (h
+ c))
- (f2
/* c))))))
/ (
lim ((f2
/* (h
+ c))
(#) (f2
/* c)))) by
A47,
A72,
SEQ_2: 15
.= ((((
Rdiff (f1,x0))
* (f2
. x0))
- ((
Rdiff (f2,x0))
* (f1
. x0)))
/ ((f2
. x0)
^2 )) by
A43,
A59,
A58,
A66,
A67,
A73,
A76,
SEQ_2: 15;
hence thesis by
A55,
A75,
A77,
A80,
A56,
SEQ_2: 23;
end;
0
< r by
A5,
A17,
XXREAL_0: 15;
hence thesis by
A33,
A34,
Th15;
end;
theorem ::
FDIFF_3:19
f1
is_right_differentiable_in x0 & f2
is_right_differentiable_in x0 & (f2
. x0)
<>
0 implies (f1
/ f2)
is_right_differentiable_in x0 & (
Rdiff ((f1
/ f2),x0))
= ((((
Rdiff (f1,x0))
* (f2
. x0))
- ((
Rdiff (f2,x0))
* (f1
. x0)))
/ ((f2
. x0)
^2 ))
proof
assume that
A1: f1
is_right_differentiable_in x0 and
A2: f2
is_right_differentiable_in x0 and
A3: (f2
. x0)
<>
0 ;
consider r1 such that
A4: r1
>
0 and
[.x0, (x0
+ r1).]
c= (
dom f2) and
A5: for g st g
in
[.x0, (x0
+ r1).] holds (f2
. g)
<>
0 by
A2,
A3,
Th7,
Th8;
now
take r1;
thus r1
>
0 by
A4;
let g;
assume that g
in (
dom f2) and
A6: g
in
[.x0, (x0
+ r1).];
thus (f2
. g)
<>
0 by
A5,
A6;
end;
hence thesis by
A1,
A2,
Lm3;
end;
Lm4: f
is_right_differentiable_in x0 & (ex r0 st r0
>
0 & for g st g
in (
dom f) & g
in
[.x0, (x0
+ r0).] holds (f
. g)
<>
0 ) implies (f
^ )
is_right_differentiable_in x0 & (
Rdiff ((f
^ ),x0))
= (
- ((
Rdiff (f,x0))
/ ((f
. x0)
^2 )))
proof
A1: (
0
+ x0)
= x0;
assume
A2: f
is_right_differentiable_in x0;
then
consider r2 such that
A3:
0
< r2 and
A4:
[.x0, (x0
+ r2).]
c= (
dom f);
given r0 such that
A5: r0
>
0 and
A6: for g st g
in (
dom f) & g
in
[.x0, (x0
+ r0).] holds (f
. g)
<>
0 ;
set r3 = (
min (r0,r2));
0
<= r3 by
A5,
A3,
XXREAL_0: 15;
then
A7: x0
<= (x0
+ r3) by
A1,
XREAL_1: 6;
r3
<= r2 by
XXREAL_0: 17;
then
A8: (x0
+ r3)
<= (x0
+ r2) by
XREAL_1: 7;
then x0
<= (x0
+ r2) by
A7,
XXREAL_0: 2;
then
A9: x0
in
[.x0, (x0
+ r2).] by
XXREAL_1: 1;
(x0
+ r3)
in { g : x0
<= g & g
<= (x0
+ r2) } by
A7,
A8;
then (x0
+ r3)
in
[.x0, (x0
+ r2).] by
RCOMP_1:def 1;
then
[.x0, (x0
+ r3).]
c=
[.x0, (x0
+ r2).] by
A9,
XXREAL_2:def 12;
then
A10:
[.x0, (x0
+ r3).]
c= (
dom f) by
A4;
r3
<= r0 by
XXREAL_0: 17;
then
A11: (x0
+ r3)
<= (x0
+ r0) by
XREAL_1: 7;
then x0
<= (x0
+ r0) by
A7,
XXREAL_0: 2;
then
A12: x0
in
[.x0, (x0
+ r0).] by
XXREAL_1: 1;
(x0
+ r3)
in { g : x0
<= g & g
<= (x0
+ r0) } by
A7,
A11;
then (x0
+ r3)
in
[.x0, (x0
+ r0).] by
RCOMP_1:def 1;
then
A13:
[.x0, (x0
+ r3).]
c=
[.x0, (x0
+ r0).] by
A12,
XXREAL_2:def 12;
A14:
[.x0, (x0
+ r3).]
c= (
dom (f
^ ))
proof
assume not thesis;
then
consider x be
object such that
A15: x
in
[.x0, (x0
+ r3).] and
A16: not x
in (
dom (f
^ ));
reconsider x as
Real by
A15;
A17: not x
in ((
dom f)
\ (f
"
{
0 })) by
A16,
RFUNCT_1:def 2;
now
per cases by
A17,
XBOOLE_0:def 5;
suppose not x
in (
dom f);
hence contradiction by
A10,
A15;
end;
suppose
A18: x
in (f
"
{
0 });
then (f
. x)
in
{
0 } by
FUNCT_1:def 7;
then
A19: (f
. x)
=
0 by
TARSKI:def 1;
x
in (
dom f) by
A18,
FUNCT_1:def 7;
hence contradiction by
A6,
A13,
A15,
A19;
end;
end;
hence contradiction;
end;
A20: x0
in
[.x0, (x0
+ r3).] by
A7,
XXREAL_1: 1;
A21: for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom (f
^ )) & (for n be
Nat holds (h
. n)
>
0 ) holds ((h
" )
(#) (((f
^ )
/* (h
+ c))
- ((f
^ )
/* c))) is
convergent & (
lim ((h
" )
(#) (((f
^ )
/* (h
+ c))
- ((f
^ )
/* c))))
= (
- ((
Rdiff (f,x0))
/ ((f
. x0)
^2 )))
proof
let h, c;
assume that
A22: (
rng c)
=
{x0} and
A23: (
rng (h
+ c))
c= (
dom (f
^ )) and
A24: for n be
Nat holds (h
. n)
>
0 ;
A25: for m holds (c
. m)
= x0
proof
let m;
(c
. m)
in (
rng c) by
VALUED_0: 28;
hence thesis by
A22,
TARSKI:def 1;
end;
A26: ((
dom f)
\ (f
"
{
0 }))
c= (
dom f) by
XBOOLE_1: 36;
(
rng (h
+ c))
c= ((
dom f)
\ (f
"
{
0 })) by
A23,
RFUNCT_1:def 2;
then
A27: (
rng (h
+ c))
c= (
dom f) by
A26;
then
A28: (
lim ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))
= (
Rdiff (f,x0)) by
A2,
A22,
A24,
Th15;
A29: ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))) is
convergent by
A2,
A22,
A24,
A27;
then
A30: (
- ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)))) is
convergent;
x0
in (
dom (f
^ )) by
A20,
A14;
then
A31: x0
in ((
dom f)
\ (f
"
{
0 })) by
RFUNCT_1:def 2;
(
rng c)
c= ((
dom f)
\ (f
"
{
0 })) by
A22,
A31,
TARSKI:def 1;
then
A32: (
rng c)
c= (
dom (f
^ )) by
RFUNCT_1:def 2;
then
A33: (f
/* c) is
non-zero by
RFUNCT_2: 11;
now
let n;
A34: (h
. n)
<>
0 by
A24;
thus ((h
(#) ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))
. n)
= (((h
(#) (h
" ))
(#) ((f
/* (h
+ c))
- (f
/* c)))
. n) by
SEQ_1: 14
.= (((h
(#) (h
" ))
. n)
* (((f
/* (h
+ c))
- (f
/* c))
. n)) by
SEQ_1: 8
.= (((h
. n)
* ((h
" )
. n))
* (((f
/* (h
+ c))
- (f
/* c))
. n)) by
SEQ_1: 8
.= (((h
. n)
* ((h
. n)
" ))
* (((f
/* (h
+ c))
- (f
/* c))
. n)) by
VALUED_1: 10
.= (1
* (((f
/* (h
+ c))
- (f
/* c))
. n)) by
A34,
XCMPLX_0:def 7
.= (((f
/* (h
+ c))
- (f
/* c))
. n);
end;
then
A35: (h
(#) ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))
= ((f
/* (h
+ c))
- (f
/* c)) by
FUNCT_2: 63;
A36: (f
/* (h
+ c)) is
non-zero by
A23,
RFUNCT_2: 11;
then
A37: ((f
/* (h
+ c))
(#) (f
/* c)) is
non-zero by
A33,
SEQ_1: 35;
now
let n;
thus (((f
/* c)
+ ((f
/* (h
+ c))
- (f
/* c)))
. n)
= (((f
/* c)
. n)
+ (((f
/* (h
+ c))
- (f
/* c))
. n)) by
SEQ_1: 7
.= (((f
/* c)
. n)
+ (((f
/* (h
+ c))
. n)
- ((f
/* c)
. n))) by
RFUNCT_2: 1
.= ((f
/* (h
+ c))
. n);
end;
then
A38: ((f
/* c)
+ ((f
/* (h
+ c))
- (f
/* c)))
= (f
/* (h
+ c)) by
FUNCT_2: 63;
(
dom (f
^ ))
= ((
dom f)
\ (f
"
{
0 })) by
RFUNCT_1:def 2;
then
A39: (
dom (f
^ ))
c= (
dom f) by
XBOOLE_1: 36;
A40: for g be
Real st
0
< g holds ex n be
Nat st for m be
Nat st n
<= m holds
|.(((f
/* c)
. m)
- (f
. x0)).|
< g
proof
let g be
Real such that
A41:
0
< g;
take n =
0 ;
let m be
Nat such that n
<= m;
A42: m
in
NAT by
ORDINAL1:def 12;
|.(((f
/* c)
. m)
- (f
. x0)).|
=
|.((f
. (c
. m))
- (f
. x0)).| by
A32,
A39,
FUNCT_2: 108,
XBOOLE_1: 1,
A42
.=
|.((f
. x0)
- (f
. x0)).| by
A25,
A42
.=
0 by
ABSVALUE:def 1;
hence thesis by
A41;
end;
then
A43: (f
/* c) is
convergent by
SEQ_2:def 6;
then
A44: (
lim (f
/* c))
= (f
. x0) by
A40,
SEQ_2:def 7;
(h
(#) ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)))) is
convergent by
A29;
then
A45: (f
/* (h
+ c)) is
convergent by
A43,
A35,
A38;
(
lim (h
(#) ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)))))
= ((
lim h)
* (
lim ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))) by
A29,
SEQ_2: 15
.=
0 ;
then
0
= ((
lim (f
/* (h
+ c)))
- (f
. x0)) by
A43,
A44,
A35,
A45,
SEQ_2: 12;
then
A46: (
lim ((f
/* (h
+ c))
(#) (f
/* c)))
= ((f
. x0)
^2 ) by
A43,
A44,
A45,
SEQ_2: 15;
A47: (
lim ((f
/* (h
+ c))
(#) (f
/* c)))
<>
0
proof
assume not thesis;
then (f
. x0)
=
0 by
A46,
XCMPLX_1: 6;
hence contradiction by
A6,
A4,
A12,
A9;
end;
now
let n;
A48: ((f
/* (h
+ c))
. n)
<>
0 & ((f
/* c)
. n)
<>
0 by
A36,
A33,
SEQ_1: 5;
thus (((h
" )
(#) (((f
^ )
/* (h
+ c))
- ((f
^ )
/* c)))
. n)
= (((h
" )
. n)
* ((((f
^ )
/* (h
+ c))
- ((f
^ )
/* c))
. n)) by
SEQ_1: 8
.= (((h
" )
. n)
* ((((f
^ )
/* (h
+ c))
. n)
- (((f
^ )
/* c)
. n))) by
RFUNCT_2: 1
.= (((h
" )
. n)
* ((((f
/* (h
+ c))
" )
. n)
- (((f
^ )
/* c)
. n))) by
A23,
RFUNCT_2: 12
.= (((h
" )
. n)
* ((((f
/* (h
+ c))
" )
. n)
- (((f
/* c)
" )
. n))) by
A32,
RFUNCT_2: 12
.= (((h
" )
. n)
* ((((f
/* (h
+ c))
. n)
" )
- (((f
/* c)
" )
. n))) by
VALUED_1: 10
.= (((h
" )
. n)
* ((((f
/* (h
+ c))
. n)
" )
- (((f
/* c)
. n)
" ))) by
VALUED_1: 10
.= (((h
" )
. n)
* ((1
/ ((f
/* (h
+ c))
. n))
- (((f
/* c)
. n)
" ))) by
XCMPLX_1: 215
.= (((h
" )
. n)
* ((1
/ ((f
/* (h
+ c))
. n))
- (1
/ ((f
/* c)
. n)))) by
XCMPLX_1: 215
.= (((h
" )
. n)
* (((1
* ((f
/* c)
. n))
- (1
* ((f
/* (h
+ c))
. n)))
/ (((f
/* (h
+ c))
. n)
* ((f
/* c)
. n)))) by
A48,
XCMPLX_1: 130
.= (((h
" )
. n)
* ((
- (((f
/* (h
+ c))
. n)
- ((f
/* c)
. n)))
/ (((f
/* (h
+ c))
(#) (f
/* c))
. n))) by
SEQ_1: 8
.= (((h
" )
. n)
* ((
- (((f
/* (h
+ c))
- (f
/* c))
. n))
/ (((f
/* (h
+ c))
(#) (f
/* c))
. n))) by
RFUNCT_2: 1
.= (((h
" )
. n)
* (
- ((((f
/* (h
+ c))
- (f
/* c))
. n)
/ (((f
/* (h
+ c))
(#) (f
/* c))
. n)))) by
XCMPLX_1: 187
.= (
- (((h
" )
. n)
* ((((f
/* (h
+ c))
- (f
/* c))
. n)
/ (((f
/* (h
+ c))
(#) (f
/* c))
. n))))
.= (
- ((((h
" )
. n)
* (((f
/* (h
+ c))
- (f
/* c))
. n))
/ (((f
/* (h
+ c))
(#) (f
/* c))
. n))) by
XCMPLX_1: 74
.= (
- ((((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)))
. n)
/ (((f
/* (h
+ c))
(#) (f
/* c))
. n))) by
SEQ_1: 8
.= (
- ((((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)))
. n)
* ((((f
/* (h
+ c))
(#) (f
/* c))
. n)
" ))) by
XCMPLX_0:def 9
.= (
- ((((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)))
. n)
* ((((f
/* (h
+ c))
(#) (f
/* c))
" )
. n))) by
VALUED_1: 10
.= (
- ((((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)))
/" ((f
/* (h
+ c))
(#) (f
/* c)))
. n)) by
SEQ_1: 8
.= ((
- (((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)))
/" ((f
/* (h
+ c))
(#) (f
/* c))))
. n) by
SEQ_1: 10
.= (((
- ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))
/" ((f
/* (h
+ c))
(#) (f
/* c)))
. n) by
SEQ_1: 48;
end;
then
A49: ((h
" )
(#) (((f
^ )
/* (h
+ c))
- ((f
^ )
/* c)))
= ((
- ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))
/" ((f
/* (h
+ c))
(#) (f
/* c))) by
FUNCT_2: 63;
A50: ((f
/* (h
+ c))
(#) (f
/* c)) is
convergent by
A43,
A45;
then (
lim ((h
" )
(#) (((f
^ )
/* (h
+ c))
- ((f
^ )
/* c))))
= ((
lim (
- ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)))))
/ ((f
. x0)
^2 )) by
A37,
A46,
A47,
A30,
A49,
SEQ_2: 24
.= ((
- (
Rdiff (f,x0)))
/ ((f
. x0)
^2 )) by
A29,
A28,
SEQ_2: 10
.= (
- ((
Rdiff (f,x0))
/ ((f
. x0)
^2 ))) by
XCMPLX_1: 187;
hence thesis by
A37,
A50,
A47,
A30,
A49,
SEQ_2: 23;
end;
0
< r3 by
A5,
A3,
XXREAL_0: 15;
hence thesis by
A14,
A21,
Th15;
end;
theorem ::
FDIFF_3:20
f
is_right_differentiable_in x0 & (f
. x0)
<>
0 implies (f
^ )
is_right_differentiable_in x0 & (
Rdiff ((f
^ ),x0))
= (
- ((
Rdiff (f,x0))
/ ((f
. x0)
^2 )))
proof
assume that
A1: f
is_right_differentiable_in x0 and
A2: (f
. x0)
<>
0 ;
consider r1 such that
A3: r1
>
0 and
[.x0, (x0
+ r1).]
c= (
dom f) and
A4: for g st g
in
[.x0, (x0
+ r1).] holds (f
. g)
<>
0 by
A1,
A2,
Th7,
Th8;
now
take r1;
thus r1
>
0 by
A3;
let g;
assume that g
in (
dom f) and
A5: g
in
[.x0, (x0
+ r1).];
thus (f
. g)
<>
0 by
A4,
A5;
end;
hence thesis by
A1,
Lm4;
end;
theorem ::
FDIFF_3:21
f
is_right_differentiable_in x0 & f
is_left_differentiable_in x0 & (
Rdiff (f,x0))
= (
Ldiff (f,x0)) implies f
is_differentiable_in x0 & (
diff (f,x0))
= (
Rdiff (f,x0)) & (
diff (f,x0))
= (
Ldiff (f,x0))
proof
assume that
A1: f
is_right_differentiable_in x0 and
A2: f
is_left_differentiable_in x0 and
A3: (
Rdiff (f,x0))
= (
Ldiff (f,x0));
A4: ex N be
Neighbourhood of x0 st N
c= (
dom f)
proof
consider r2 such that
A5: r2
>
0 and
A6:
[.x0, (x0
+ r2).]
c= (
dom f) by
A1;
consider r1 such that
A7: r1
>
0 and
A8:
[.(x0
- r1), x0.]
c= (
dom f) by
A2;
set r = (
min (r1,r2));
r
>
0 by
A7,
A5,
XXREAL_0: 15;
then
reconsider N =
].(x0
- r), (x0
+ r).[ as
Neighbourhood of x0 by
RCOMP_1:def 6;
take N;
let x be
object;
assume x
in N;
then x
in { g : (x0
- r)
< g & g
< (x0
+ r) } by
RCOMP_1:def 2;
then
consider g such that
A9: g
= x and
A10: (x0
- r)
< g and
A11: g
< (x0
+ r);
now
per cases ;
suppose
A12: g
<= x0;
r
<= r1 by
XXREAL_0: 17;
then (x0
- r1)
<= (x0
- r) by
XREAL_1: 13;
then (x0
- r1)
<= g by
A10,
XXREAL_0: 2;
then g
in { g1 : (x0
- r1)
<= g1 & g1
<= x0 } by
A12;
then g
in
[.(x0
- r1), x0.] by
RCOMP_1:def 1;
hence thesis by
A8,
A9;
end;
suppose
A13: g
> x0;
r
<= r2 by
XXREAL_0: 17;
then (x0
+ r)
<= (x0
+ r2) by
XREAL_1: 7;
then g
<= (x0
+ r2) by
A11,
XXREAL_0: 2;
then g
in { g1 : x0
<= g1 & g1
<= (x0
+ r2) } by
A13;
then g
in
[.x0, (x0
+ r2).] by
RCOMP_1:def 1;
hence thesis by
A6,
A9;
end;
end;
hence thesis;
end;
for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) holds ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))) is
convergent & (
lim ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))
= (
Ldiff (f,x0))
proof
let h, c;
assume that
A14: (
rng c)
=
{x0} and
A15: (
rng (h
+ c))
c= (
dom f);
A16: (
rng c)
c= (
dom f)
proof
consider S be
Neighbourhood of x0 such that
A17: S
c= (
dom f) by
A4;
x0
in S by
RCOMP_1: 16;
hence thesis by
A14,
A17,
ZFMISC_1: 31;
end;
now
per cases ;
suppose ex N be
Element of
NAT st for n st n
>= N holds (h
. n)
>
0 ;
then
consider N be
Element of
NAT such that
A18: for n st n
>= N holds (h
. n)
>
0 ;
set h1 = (h
^\ N);
A19: for n be
Nat holds (h1
. n)
>
0
proof
let n be
Nat;
(h1
. n)
= (h
. (n
+ N)) & (N
+
0 )
<= (n
+ N) by
NAT_1:def 3,
XREAL_1: 7;
hence thesis by
A18;
end;
set c1 = (c
^\ N);
A20: (
rng c1)
=
{x0}
proof
thus (
rng c1)
c=
{x0} by
A14,
VALUED_0: 21;
let x be
object;
A21: (c
. N)
in (
rng c) by
VALUED_0: 28;
assume x
in
{x0};
then
A22: x
= x0 by
TARSKI:def 1;
(c1
.
0 )
= (c
. (
0
+ N)) by
NAT_1:def 3
.= (c
. N);
then (c1
.
0 )
= x by
A14,
A22,
A21,
TARSKI:def 1;
hence thesis by
VALUED_0: 28;
end;
A23: (h1
+ c1)
= ((h
+ c)
^\ N) by
SEQM_3: 15;
then
A24: ((h1
" )
(#) ((f
/* (h1
+ c1))
- (f
/* c1)))
= ((h1
" )
(#) (((f
/* (h
+ c))
^\ N)
- (f
/* c1))) by
A15,
VALUED_0: 27
.= ((h1
" )
(#) (((f
/* (h
+ c))
^\ N)
- ((f
/* c)
^\ N))) by
A16,
VALUED_0: 27
.= ((h1
" )
(#) (((f
/* (h
+ c))
- (f
/* c))
^\ N)) by
SEQM_3: 17
.= (((h
" )
^\ N)
(#) (((f
/* (h
+ c))
- (f
/* c))
^\ N)) by
SEQM_3: 18
.= (((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)))
^\ N) by
SEQM_3: 19;
(
rng (h1
+ c1))
c= (
rng (h
+ c)) by
A23,
VALUED_0: 21;
then
A25: (
rng (h1
+ c1))
c= (
dom f) by
A15;
then
A26: ((h1
" )
(#) ((f
/* (h1
+ c1))
- (f
/* c1))) is
convergent by
A1,
A20,
A19;
hence ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))) is
convergent by
A24,
SEQ_4: 21;
(
lim ((h1
" )
(#) ((f
/* (h1
+ c1))
- (f
/* c1))))
= (
Rdiff (f,x0)) by
A1,
A20,
A25,
A19,
Th15;
hence (
lim ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))
= (
Ldiff (f,x0)) by
A3,
A26,
A24,
SEQ_4: 22;
end;
suppose
A27: for N be
Element of
NAT holds ex n st n
>= N & (h
. n)
<=
0 ;
now
per cases ;
suppose ex M be
Element of
NAT st for m st m
>= M holds (h
. m)
<
0 ;
then
consider M be
Element of
NAT such that
A28: for n st n
>= M holds (h
. n)
<
0 ;
set h1 = (h
^\ M);
A29: for n be
Nat holds (h1
. n)
<
0
proof
let n be
Nat;
(h1
. n)
= (h
. (n
+ M)) & (M
+
0 )
<= (n
+ M) by
NAT_1:def 3,
XREAL_1: 7;
hence thesis by
A28;
end;
set c1 = (c
^\ M);
A30: (
rng c1)
=
{x0}
proof
thus (
rng c1)
c=
{x0} by
A14,
VALUED_0: 21;
let x be
object;
A31: (c
. M)
in (
rng c) by
VALUED_0: 28;
assume x
in
{x0};
then
A32: x
= x0 by
TARSKI:def 1;
(c1
.
0 )
= (c
. (
0
+ M)) by
NAT_1:def 3
.= (c
. M);
then (c1
.
0 )
= x by
A14,
A32,
A31,
TARSKI:def 1;
hence thesis by
VALUED_0: 28;
end;
A33: (h1
+ c1)
= ((h
+ c)
^\ M) by
SEQM_3: 15;
then
A34: ((h1
" )
(#) ((f
/* (h1
+ c1))
- (f
/* c1)))
= ((h1
" )
(#) (((f
/* (h
+ c))
^\ M)
- (f
/* c1))) by
A15,
VALUED_0: 27
.= ((h1
" )
(#) (((f
/* (h
+ c))
^\ M)
- ((f
/* c)
^\ M))) by
A16,
VALUED_0: 27
.= ((h1
" )
(#) (((f
/* (h
+ c))
- (f
/* c))
^\ M)) by
SEQM_3: 17
.= (((h
" )
^\ M)
(#) (((f
/* (h
+ c))
- (f
/* c))
^\ M)) by
SEQM_3: 18
.= (((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)))
^\ M) by
SEQM_3: 19;
(
rng (h1
+ c1))
c= (
rng (h
+ c)) by
A33,
VALUED_0: 21;
then
A35: (
rng (h1
+ c1))
c= (
dom f) by
A15;
then
A36: ((h1
" )
(#) ((f
/* (h1
+ c1))
- (f
/* c1))) is
convergent by
A2,
A30,
A29;
hence ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))) is
convergent by
A34,
SEQ_4: 21;
(
lim ((h1
" )
(#) ((f
/* (h1
+ c1))
- (f
/* c1))))
= (
Ldiff (f,x0)) by
A2,
A30,
A35,
A29,
Th9;
hence (
lim ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))
= (
Ldiff (f,x0)) by
A36,
A34,
SEQ_4: 22;
end;
suppose
A37: for M be
Element of
NAT holds ex m st m
>= M & (h
. m)
>=
0 ;
set s = ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)));
defpred
R[
Real] means $1
>
0 ;
defpred
P[
Real] means $1
<
0 ;
A38: for N be
Element of
NAT holds ex n st n
>= N &
P[(h
. n)]
proof
let m;
consider n such that
A39: n
>= m and
A40: (h
. n)
<=
0 by
A27;
take n;
thus n
>= m by
A39;
(h
. n)
<>
0 by
SEQ_1: 5;
hence thesis by
A40;
end;
consider q1 be
increasing
sequence of
NAT such that
A41: (for n be
Nat holds
P[((h
* q1)
. n)]) & for n st (for r st r
= (h
. n) holds
P[r]) holds ex m st n
= (q1
. m) from
FDIFF_2:sch 1(
A38);
A42: for N be
Element of
NAT holds ex n st n
>= N &
R[(h
. n)]
proof
let m;
consider n such that
A43: n
>= m and
A44: (h
. n)
>=
0 by
A37;
take n;
thus n
>= m by
A43;
(h
. n)
<>
0 by
SEQ_1: 5;
hence thesis by
A44;
end;
consider q2 be
increasing
sequence of
NAT such that
A45: (for n be
Nat holds
R[((h
* q2)
. n)]) & for n st (for r st r
= (h
. n) holds
R[r]) holds ex m st n
= (q2
. m) from
FDIFF_2:sch 1(
A42);
set h1 = (h
* q1);
reconsider h1 as
subsequence of h;
A46: h1 is
convergent by
SEQ_4: 16;
A47: (
lim h)
=
0 ;
then
A48: (
lim h1)
=
0 by
SEQ_4: 17;
set h2 = (h
* q2);
A49: h2 is
convergent by
SEQ_4: 16;
(
lim h2)
=
0 by
A47,
SEQ_4: 17;
then
reconsider h2 as
0
-convergent
non-zero
Real_Sequence by
A49,
FDIFF_1:def 1;
set c2 = (c
* q2);
A50: (
rng c2)
=
{x0} by
A14,
VALUED_0: 26;
reconsider c2 as
constant
Real_Sequence;
(
rng ((h
+ c)
* q2))
c= (
rng (h
+ c)) by
VALUED_0: 21;
then (
rng ((h
+ c)
* q2))
c= (
dom f) by
A15;
then (
rng (h2
+ c2))
c= (
dom f) by
RFUNCT_2: 2;
then
A51: ((h2
" )
(#) ((f
/* (h2
+ c2))
- (f
/* c2))) is
convergent & (
lim ((h2
" )
(#) ((f
/* (h2
+ c2))
- (f
/* c2))))
= (
Ldiff (f,x0)) by
A1,
A3,
A45,
A50,
Th15;
A52: ((h2
" )
(#) ((f
/* (h2
+ c2))
- (f
/* c2)))
= ((h2
" )
(#) ((f
/* ((h
+ c)
* q2))
- (f
/* c2))) by
RFUNCT_2: 2
.= ((h2
" )
(#) (((f
/* (h
+ c))
* q2)
- (f
/* c2))) by
A15,
FUNCT_2: 110
.= (((h
" )
* q2)
(#) (((f
/* (h
+ c))
* q2)
- (f
/* c2))) by
RFUNCT_2: 5
.= (((h
" )
* q2)
(#) (((f
/* (h
+ c))
* q2)
- ((f
/* c)
* q2))) by
A16,
FUNCT_2: 110
.= (((h
" )
* q2)
(#) (((f
/* (h
+ c))
- (f
/* c))
* q2)) by
RFUNCT_2: 2
.= (((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)))
* q2) by
RFUNCT_2: 2;
reconsider h1 as
0
-convergent
non-zero
Real_Sequence by
A46,
A48,
FDIFF_1:def 1;
set c1 = (c
* q1);
A53: (
rng c1)
=
{x0} by
A14,
VALUED_0: 26;
reconsider c1 as
constant
Real_Sequence;
(
rng ((h
+ c)
* q1))
c= (
rng (h
+ c)) by
VALUED_0: 21;
then (
rng ((h
+ c)
* q1))
c= (
dom f) by
A15;
then (
rng (h1
+ c1))
c= (
dom f) by
RFUNCT_2: 2;
then
A54: ((h1
" )
(#) ((f
/* (h1
+ c1))
- (f
/* c1))) is
convergent & (
lim ((h1
" )
(#) ((f
/* (h1
+ c1))
- (f
/* c1))))
= (
Ldiff (f,x0)) by
A2,
A41,
A53,
Th9;
A55: ((h1
" )
(#) ((f
/* (h1
+ c1))
- (f
/* c1)))
= ((h1
" )
(#) ((f
/* ((h
+ c)
* q1))
- (f
/* c1))) by
RFUNCT_2: 2
.= ((h1
" )
(#) (((f
/* (h
+ c))
* q1)
- (f
/* c1))) by
A15,
FUNCT_2: 110
.= (((h
" )
* q1)
(#) (((f
/* (h
+ c))
* q1)
- (f
/* c1))) by
RFUNCT_2: 5
.= (((h
" )
* q1)
(#) (((f
/* (h
+ c))
* q1)
- ((f
/* c)
* q1))) by
A16,
FUNCT_2: 110
.= (((h
" )
* q1)
(#) (((f
/* (h
+ c))
- (f
/* c))
* q1)) by
RFUNCT_2: 2
.= (((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c)))
* q1) by
RFUNCT_2: 2;
A56: for g1 be
Real st
0
< g1 holds ex n be
Nat st for m be
Nat st n
<= m holds
|.((s
. m)
- (
Ldiff (f,x0))).|
< g1
proof
let g1 be
Real;
assume
A57:
0
< g1;
then
consider n1 be
Nat such that
A58: for m be
Nat st n1
<= m holds
|.(((s
* q1)
. m)
- (
Ldiff (f,x0))).|
< g1 by
A54,
A55,
SEQ_2:def 7;
consider n2 be
Nat such that
A59: for m be
Nat st n2
<= m holds
|.(((s
* q2)
. m)
- (
Ldiff (f,x0))).|
< g1 by
A51,
A52,
A57,
SEQ_2:def 7;
take n = (
max ((q1
. n1),(q2
. n2)));
let m be
Nat such that
A60: n
<= m;
A61: m
in
NAT by
ORDINAL1:def 12;
A62: n
>= (q2
. n2) by
XXREAL_0: 25;
A63: n
>= (q1
. n1) by
XXREAL_0: 25;
per cases ;
suppose (h
. m)
>
0 ;
then for r st r
= (h
. m) holds r
>
0 ;
then
consider k such that
A64: m
= (q2
. k) by
A45,
A61;
A65: n2
in
NAT by
ORDINAL1:def 12;
(
dom q2)
=
NAT & (q2
. k)
>= (q2
. n2) by
A60,
A62,
A64,
FUNCT_2:def 1,
XXREAL_0: 2;
then not k
< n2 by
VALUED_0:def 13,
A65;
then
|.(((s
* q2)
. k)
- (
Ldiff (f,x0))).|
< g1 by
A59;
hence thesis by
A64,
FUNCT_2: 15;
end;
suppose
A66: (h
. m)
<=
0 ;
(h
. m)
<>
0 by
SEQ_1: 5;
then for r st r
= (h
. m) holds r
<
0 by
A66;
then
consider k such that
A67: m
= (q1
. k) by
A41,
A61;
A68: n1
in
NAT by
ORDINAL1:def 12;
(
dom q1)
=
NAT & (q1
. k)
>= (q1
. n1) by
A60,
A63,
A67,
FUNCT_2:def 1,
XXREAL_0: 2;
then not k
< n1 by
VALUED_0:def 13,
A68;
then
|.(((s
* q1)
. k)
- (
Ldiff (f,x0))).|
< g1 by
A58;
hence thesis by
A67,
FUNCT_2: 15;
end;
end;
hence s is
convergent by
SEQ_2:def 6;
hence (
lim s)
= (
Ldiff (f,x0)) by
A56,
SEQ_2:def 7;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
hence thesis by
A3,
A4,
FDIFF_2: 12;
end;
theorem ::
FDIFF_3:22
f
is_differentiable_in x0 implies f
is_right_differentiable_in x0 & f
is_left_differentiable_in x0 & (
diff (f,x0))
= (
Rdiff (f,x0)) & (
diff (f,x0))
= (
Ldiff (f,x0))
proof
assume
A1: f
is_differentiable_in x0;
then
consider N be
Neighbourhood of x0 such that
A2: N
c= (
dom f) by
FDIFF_2: 11;
consider g1 be
Real such that
A3: g1
>
0 and
A4: N
=
].(x0
- g1), (x0
+ g1).[ by
RCOMP_1:def 6;
A5: g1
> (g1
/ 2) by
A3,
XREAL_1: 216;
A6: ex r st r
>
0 &
[.x0, (x0
+ r).]
c= (
dom f)
proof
take r = (g1
/ 2);
thus r
>
0 by
A3,
XREAL_1: 215;
|.((x0
+ (g1
/ 2))
- x0).|
= (g1
/ 2) by
A3,
ABSVALUE:def 1;
then
A7: (x0
+ r)
in
].(x0
- g1), (x0
+ g1).[ by
A5,
RCOMP_1: 1;
x0
in
].(x0
- g1), (x0
+ g1).[ by
A4,
RCOMP_1: 16;
then
[.x0, (x0
+ r).]
c=
].(x0
- g1), (x0
+ g1).[ by
A7,
XXREAL_2:def 12;
hence thesis by
A2,
A4;
end;
A8: ex r st
0
< r &
[.(x0
- r), x0.]
c= (
dom f)
proof
take r = (g1
/ 2);
thus r
>
0 by
A3,
XREAL_1: 215;
|.((x0
- (g1
/ 2))
- x0).|
=
|.((
- (g1
/ 2))
+
0 ).|
.=
|.(g1
/ 2).| by
COMPLEX1: 52
.= (g1
/ 2) by
A3,
ABSVALUE:def 1;
then
A9: (x0
- r)
in
].(x0
- g1), (x0
+ g1).[ by
A5,
RCOMP_1: 1;
x0
in
].(x0
- g1), (x0
+ g1).[ by
A4,
RCOMP_1: 16;
then
[.(x0
- r), x0.]
c=
].(x0
- g1), (x0
+ g1).[ by
A9,
XXREAL_2:def 12;
hence thesis by
A2,
A4;
end;
(
diff (f,x0))
= (
diff (f,x0));
then (for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & (for n be
Nat holds (h
. n)
>
0 ) holds ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))) is
convergent & (
lim ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))
= (
diff (f,x0))) & for h, c st (
rng c)
=
{x0} & (
rng (h
+ c))
c= (
dom f) & (for n be
Nat holds (h
. n)
<
0 ) holds ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))) is
convergent & (
lim ((h
" )
(#) ((f
/* (h
+ c))
- (f
/* c))))
= (
diff (f,x0)) by
A1,
FDIFF_2: 12;
hence thesis by
A6,
A8,
Th9,
Th15;
end;