eulrpart.miz
begin
reserve x,y for
object,
i,j,k,m,n for
Nat;
registration
let r be
ext-real
number;
cluster
<*r*> ->
ext-real-valued;
coherence
proof
A1: (
rng
<*r*>)
=
{r} by
FINSEQ_1: 38;
{r}
c=
ExtREAL by
XXREAL_0:def 1;
hence thesis by
A1,
VALUED_0:def 2;
end;
cluster
<*r*> ->
decreasing
increasing
non-decreasing
non-increasing;
coherence ;
end
theorem ::
EULRPART:1
Th1: for f,g be
non-decreasing
ext-real-valued
FinSequence st (f
. (
len f))
<= (g
. 1) holds (f
^ g) is
non-decreasing
proof
let f,g be
non-decreasing
ext-real-valued
FinSequence such that
A1: (f
. (
len f))
<= (g
. 1);
set fg = (f
^ g);
for e1,e2 be
ExtReal st e1
in (
dom fg) & e2
in (
dom fg) & e1
<= e2 holds (fg
. e1)
<= (fg
. e2)
proof
let e1,e2 be
ExtReal such that
A2: e1
in (
dom fg) & e2
in (
dom fg) & e1
<= e2;
per cases ;
suppose
A3: e1
in (
dom f) & e2
in (
dom f);
then (fg
. e1)
= (f
. e1) & (fg
. e2)
= (f
. e2) by
FINSEQ_1:def 7;
hence thesis by
A2,
A3,
VALUED_0:def 15;
end;
suppose
A4: e1
in (
dom f) & not e2
in (
dom f);
then
consider i such that
A5: i
in (
dom g) & e2
= ((
len f)
+ i) by
A2,
FINSEQ_1: 25;
A6: 1
<= e1 & e1
<= (
len f) & 1
<= i & i
<= (
len g) by
A4,
A5,
FINSEQ_3: 25;
then 1
<= (
len f) & 1
<= (
len g) by
XXREAL_0: 2;
then (
len f)
in (
dom f) & 1
in (
dom g) by
FINSEQ_3: 25;
then
A7: (f
. e1)
<= (f
. (
len f)) & (g
. 1)
<= (g
. i) by
VALUED_0:def 15,
A4,
A5,
A6;
then
A8: (f
. e1)
<= (g
. 1) by
A1,
XXREAL_0: 2;
(fg
. e1)
= (f
. e1) & (fg
. e2)
= (g
. i) by
A5,
A4,
FINSEQ_1:def 7;
hence thesis by
A8,
A7,
XXREAL_0: 2;
end;
suppose not e1
in (
dom f) & e2
in (
dom f);
then not (1
<= e1 & e1
<= (
len f)) & e2
<= (
len f) & 1
<= e1 by
A2,
FINSEQ_3: 25;
hence thesis by
XXREAL_0: 2,
A2;
end;
suppose
A9: not e1
in (
dom f) & not e2
in (
dom f);
then
consider i such that
A10: i
in (
dom g) & e1
= ((
len f)
+ i) by
A2,
FINSEQ_1: 25;
consider j such that
A11: j
in (
dom g) & e2
= ((
len f)
+ j) by
A2,
FINSEQ_1: 25,
A9;
(fg
. e1)
= (g
. i) & (fg
. e2)
= (g
. j) by
A10,
A11,
FINSEQ_1:def 7;
hence thesis by
A10,
A2,
A11,
XREAL_1: 6,
VALUED_0:def 15;
end;
end;
hence thesis by
VALUED_0:def 15;
end;
definition
let R be
Relation;
::
EULRPART:def1
attr R is
odd-valued means
:
Def1: (
rng R)
c=
OddNAT ;
end
theorem ::
EULRPART:2
Th2: n
in
OddNAT iff n is
odd
proof
thus n
in
OddNAT implies n is
odd
proof
assume n
in
OddNAT ;
then ex i be
Element of
NAT st n
= ((2
* i)
+ 1) by
FIB_NUM2:def 4;
hence thesis;
end;
assume n is
odd;
then
consider i such that
A1: n
= ((2
* i)
+ 1) by
ABIAN: 9;
i
in
NAT by
ORDINAL1:def 12;
hence thesis by
A1,
FIB_NUM2:def 4;
end;
registration
cluster
odd-valued ->
non-zero
natural-valued for
Relation;
coherence
proof
let R be
Relation;
assume
A1: R is
odd-valued;
OddNAT
c=
NAT ;
then
A2: (
rng R)
c=
NAT by
A1;
not
0
in (
rng R)
proof
assume
0
in (
rng R);
then
0 is
odd by
A1,
Th2;
hence thesis;
end;
hence thesis by
ORDINAL1:def 15,
A2,
VALUED_0:def 6;
end;
end
definition
let F be
Function;
:: original:
odd-valued
redefine
::
EULRPART:def2
attr F is
odd-valued means
:
Def2: for x st x
in (
dom F) holds (F
. x) is
odd
Nat;
compatibility
proof
thus F is
odd-valued implies for x st x
in (
dom F) holds (F
. x) is
odd
Nat
proof
assume
A1: F is
odd-valued;
let x;
assume x
in (
dom F);
then (F
. x)
in (
rng F) by
FUNCT_1:def 3;
then (F
. x)
in
OddNAT by
A1;
then ex k be
Element of
NAT st (F
. x)
= ((2
* k)
+ 1) by
FIB_NUM2:def 4;
hence thesis;
end;
assume
A2: for x st x
in (
dom F) holds (F
. x) is
odd
Nat;
(
rng F)
c=
OddNAT
proof
let y;
assume y
in (
rng F);
then
consider x such that
A3: x
in (
dom F) & (F
. x)
= y by
FUNCT_1:def 3;
(F
. x) is
odd
Nat by
A2,
A3;
then
consider i such that
A4: (F
. x)
= ((2
* i)
+ 1) by
ABIAN: 9;
i
in
NAT by
ORDINAL1:def 12;
hence thesis by
FIB_NUM2:def 4,
A3,
A4;
end;
hence thesis;
end;
end
registration
cluster
empty ->
odd-valued for
Relation;
coherence
proof
let R be
Relation;
assume R is
empty;
then (
rng R)
c=
OddNAT ;
hence thesis;
end;
let i be
odd
Nat;
cluster
<*i*> ->
odd-valued;
coherence
proof
{i}
c=
OddNAT by
Th2,
ZFMISC_1: 31;
hence thesis by
FINSEQ_1: 38;
end;
end
registration
let f,g be
odd-valued
FinSequence;
cluster (f
^ g) ->
odd-valued;
coherence
proof
A1: (
rng f)
c=
OddNAT & (
rng g)
c=
OddNAT by
Def1;
(
rng (f
^ g))
= ((
rng f)
\/ (
rng g)) by
FINSEQ_1: 31;
hence thesis by
A1,
XBOOLE_1: 8;
end;
end
registration
cluster
OddNAT
-valued ->
odd-valued for
Relation;
coherence by
RELAT_1:def 19;
end
definition
let n be
Nat;
::
EULRPART:def3
mode
a_partition of n ->
non-zero
non-decreasing
natural-valued
FinSequence means
:
Def3: (
Sum it )
= n;
existence
proof
per cases ;
suppose n
<>
0 ;
then not
0
in (
rng
<*n*>);
then
A1:
<*n*> is
non-zero by
ORDINAL1:def 15;
(
Sum
<*n*>)
= n by
RVSUM_1: 73;
hence thesis by
A1;
end;
suppose n
=
0 ;
hence thesis by
RVSUM_1: 72;
end;
end;
end
theorem ::
EULRPART:3
{} is
a_partition of
0 by
RVSUM_1: 72,
Def3;
registration
let n be
Nat;
cluster
odd-valued for
a_partition of n;
existence
proof
per cases ;
suppose n
=
0 ;
then
reconsider N =
{} as
a_partition of n by
RVSUM_1: 72,
Def3;
N is
odd-valued;
hence thesis;
end;
suppose
A1: n is
odd;
(
Sum
<*n*>)
= n by
RVSUM_1: 73;
then
<*n*> is
a_partition of n by
Def3,
A1;
hence thesis by
A1;
end;
suppose
A2: n is
even & n
<>
0 ;
then
consider i such that
A3: n
= (2
* i) by
ABIAN:def 2;
i
<>
0 by
A2,
A3;
then
reconsider i1 = (i
- 1) as
Nat;
A4: (((i1
* 2)
+ 1)
+ 1)
= n by
A3;
A5: 1
= (1
+ (2
*
0 ));
reconsider N1 =
<*1*>, N2 =
<*((i1
* 2)
+ 1)*> as
non-decreasing
natural-valued
FinSequence;
(
len N1)
= 1 by
FINSEQ_1: 39;
then (N1
. (
len N1))
= 1 & (N2
. 1)
= ((i1
* 2)
+ 1) by
FINSEQ_1: 40;
then
A6: (N1
^ N2) is
non-decreasing by
NAT_1: 11,
Th1;
(
rng
<*1, ((i1
* 2)
+ 1)*>)
=
{1, ((i1
* 2)
+ 1)} by
FINSEQ_2: 127;
then
A7:
<*1, ((i1
* 2)
+ 1)*> is
non-zero;
(N1
^ N2)
=
<*1, ((i1
* 2)
+ 1)*>;
then (
Sum (N1
^ N2))
= n by
RVSUM_1: 77,
A4;
then
reconsider N = (N1
^ N2) as
a_partition of n by
A7,
A6,
Def3;
N is
odd-valued by
A5;
hence thesis;
end;
end;
cluster
one-to-one for
a_partition of n;
existence
proof
per cases ;
suppose n
=
0 ;
then
reconsider N =
{} as
a_partition of n by
RVSUM_1: 72,
Def3;
N is
one-to-one;
hence thesis;
end;
suppose n
<>
0 ;
then not
0
in (
rng
<*n*>);
then
A8:
<*n*> is
non-zero by
ORDINAL1:def 15;
(
Sum
<*n*>)
= n by
RVSUM_1: 73;
then
reconsider N =
<*n*> as
a_partition of n by
A8,
Def3;
N is
one-to-one;
hence thesis;
end;
end;
end
registration
let n be
Nat;
sethood of
a_partition of n
proof
take N = (
NAT
* );
let p be
a_partition of n;
(
rng p)
c=
NAT by
VALUED_0:def 6;
then p is
FinSequence of
NAT by
FINSEQ_1:def 4;
hence thesis by
FINSEQ_1:def 11;
end;
end
definition
let f be
odd-valued
FinSequence;
::
EULRPART:def4
mode
odd_organization of f ->
valued_reorganization of f means
:
Def4: ((2
* n)
- 1)
= (f
. (it
_ (n,1))) & ... & ((2
* n)
- 1)
= (f
. (it
_ (n,(
len (it
. n)))));
existence
proof
A1: (
rng f)
c=
NAT by
VALUED_0:def 6;
{1}
c=
NAT by
ZFMISC_1: 31;
then
reconsider D = ((
rng f)
\/
{1}) as
finite non
empty
Subset of
NAT by
A1,
XBOOLE_1: 8;
set m = (
max D);
deffunc
G(
Nat) = ((2
* $1)
-' 1);
consider g be
FinSequence of
NAT such that
A2: (
len g)
= (m
+ 1) & for j st j
in (
dom g) holds (g
. j)
=
G(j) from
FINSEQ_2:sch 1;
reconsider g as non
empty
FinSequence of
NAT by
A2;
(
rng f)
c= (
rng g)
proof
let y;
assume
A3: y
in (
rng f);
then
consider x such that
A4: x
in (
dom f) & (f
. x)
= y by
FUNCT_1:def 3;
reconsider n = y as
odd
Nat by
A4,
Def2;
consider i such that
A5: ((2
* i)
+ 1)
= n by
ABIAN: 9;
n
in D by
A3,
XBOOLE_0:def 3;
then
A6: n
<= m by
XXREAL_2:def 8;
m
<= (m
+ (m
+ 1)) & (m
+ (m
+ 1))
= ((2
* m)
+ 1) by
NAT_1: 11;
then ((2
* i)
+ 1)
<= ((2
* m)
+ 1) by
A6,
A5,
XXREAL_0: 2;
then (2
* i)
<= (2
* m) by
XREAL_1: 6;
then i
<= m by
XREAL_1: 68;
then
A7: 1
<= (i
+ 1) & (i
+ 1)
<= (m
+ 1) by
XREAL_1: 6,
NAT_1: 11;
then
A8: (i
+ 1)
in (
dom g) by
A2,
FINSEQ_3: 25;
A9: (g
. (i
+ 1))
= ((2
* (i
+ 1))
-' 1) by
A7,
A2,
FINSEQ_3: 25;
(2
* 1)
<= (2
* (i
+ 1)) by
NAT_1: 11,
XREAL_1: 64;
then (g
. (i
+ 1))
= ((2
* (i
+ 1))
- 1) by
XXREAL_0: 2,
A9,
XREAL_1: 233;
hence thesis by
A5,
A8,
FUNCT_1:def 3;
end;
then
consider o be (
len g)
-element
DoubleReorganization of (
dom f) such that
A10: (o
. n) is
increasing & ((g
. n)
= (f
. (o
_ (n,1))) & ... & (g
. n)
= (f
. (o
_ (n,(
len (o
. n)))))) by
FLEXARY1: 39;
o is
valued_reorganization of f
proof
thus for n holds ex x st x
= (f
. (o
_ (n,1))) & ... & x
= (f
. (o
_ (n,(
len (o
. n)))))
proof
let n;
(g
. n)
= (f
. (o
_ (n,1))) & ... & (g
. n)
= (f
. (o
_ (n,(
len (o
. n))))) by
A10;
hence thesis;
end;
let n1,n2,i1,i2 be
Nat such that
A11: i1
in (
dom (o
. n1)) & i2
in (
dom (o
. n2)) & (f
. (o
_ (n1,i1)))
= (f
. (o
_ (n2,i2)));
A12: (g
. n1)
= (f
. (o
_ (n1,1))) & ... & (g
. n1)
= (f
. (o
_ (n1,(
len (o
. n1))))) by
A10;
1
<= i1 & i1
<= (
len (o
. n1)) by
A11,
FINSEQ_3: 25;
then
A13: (g
. n1)
= (f
. (o
_ (n1,i1))) by
A12;
A14: (g
. n2)
= (f
. (o
_ (n2,1))) & ... & (g
. n2)
= (f
. (o
_ (n2,(
len (o
. n2))))) by
A10;
1
<= i2 & i2
<= (
len (o
. n2)) by
A11,
FINSEQ_3: 25;
then
A15: (g
. n1)
= (g
. n2) by
A14,
A11,
A13;
(
len o)
= (
len g) by
CARD_1:def 7;
then
A16: (
dom o)
= (
dom g) by
FINSEQ_3: 29;
A17: n1
in (
dom g)
proof
assume not n1
in (
dom g);
then (o
. n1)
=
{} by
A16,
FUNCT_1:def 2;
hence thesis by
A11;
end;
then
A18: (g
. n1)
=
G(n1) by
A2;
A19: n2
in (
dom g)
proof
assume not n2
in (
dom g);
then (o
. n2)
=
{} by
A16,
FUNCT_1:def 2;
hence thesis by
A11;
end;
then
A20:
G(n1)
=
G(n2) by
A2,
A18,
A15;
(2
* 1)
<= (2
* n1) by
A17,
FINSEQ_3: 25,
XREAL_1: 64;
then
A21: ((2
* n1)
-' 1)
= ((2
* n1)
- 1) by
XXREAL_0: 2,
XREAL_1: 233;
(2
* 1)
<= (2
* n2) by
A19,
FINSEQ_3: 25,
XREAL_1: 64;
then ((2
* n2)
-' 1)
= ((2
* n2)
- 1) by
XXREAL_0: 2,
XREAL_1: 233;
hence n1
= n2 by
A20,
A21;
end;
then
reconsider o as
valued_reorganization of f;
take o;
for n holds ((2
* n)
- 1)
= (f
. (o
_ (n,1))) & ... & ((2
* n)
- 1)
= (f
. (o
_ (n,(
len (o
. n)))))
proof
let n;
let i such that
A22: 1
<= i & i
<= (
len (o
. n));
A23: (g
. n)
= (f
. (o
_ (n,1))) & ... & (g
. n)
= (f
. (o
_ (n,(
len (o
. n))))) by
A10;
(
len o)
= (
len g) by
CARD_1:def 7;
then
A24: (
dom o)
= (
dom g) by
FINSEQ_3: 29;
(o
. n)
<>
{} by
A22;
then n
in (
dom o) by
FUNCT_1:def 2;
then
A25: 1
<= n & n
<= (
len o) & (g
. n)
=
G(n) by
A24,
A2,
FINSEQ_3: 25;
then (2
* 1)
<= (2
* n) by
XREAL_1: 64;
then ((2
* n)
-' 1)
= ((2
* n)
- 1) by
XXREAL_0: 2,
XREAL_1: 233;
hence thesis by
A23,
A22,
A25;
end;
hence thesis;
end;
end
theorem ::
EULRPART:4
Th4: for f be
odd-valued
FinSequence holds for o be
DoubleReorganization of (
dom f) st for n holds ((2
* n)
- 1)
= (f
. (o
_ (n,1))) & ... & ((2
* n)
- 1)
= (f
. (o
_ (n,(
len (o
. n))))) holds o is
odd_organization of f
proof
let f be
odd-valued
FinSequence;
let o be
DoubleReorganization of (
dom f) such that
A1: for n holds ((2
* n)
- 1)
= (f
. (o
_ (n,1))) & ... & ((2
* n)
- 1)
= (f
. (o
_ (n,(
len (o
. n)))));
A2: for n holds ex x st x
= (f
. (o
_ (n,1))) & ... & x
= (f
. (o
_ (n,(
len (o
. n)))))
proof
let n;
take x = ((2
* n)
- 1);
thus thesis by
A1;
end;
for n1,n2,i1,i2 be
Nat st i1
in (
dom (o
. n1)) & i2
in (
dom (o
. n2)) & (f
. (o
_ (n1,i1)))
= (f
. (o
_ (n2,i2))) holds n1
= n2
proof
let n1,n2,i1,i2 be
Nat such that
A3: i1
in (
dom (o
. n1)) & i2
in (
dom (o
. n2)) & (f
. (o
_ (n1,i1)))
= (f
. (o
_ (n2,i2)));
A4: ((2
* n1)
- 1)
= (f
. (o
_ (n1,1))) & ... & ((2
* n1)
- 1)
= (f
. (o
_ (n1,(
len (o
. n1))))) by
A1;
1
<= i1 & i1
<= (
len (o
. n1)) by
A3,
FINSEQ_3: 25;
then
A5: (f
. (o
_ (n1,i1)))
= ((2
* n1)
- 1) by
A4;
A6: ((2
* n2)
- 1)
= (f
. (o
_ (n2,1))) & ... & ((2
* n2)
- 1)
= (f
. (o
_ (n2,(
len (o
. n2))))) by
A1;
1
<= i2 & i2
<= (
len (o
. n2)) by
A3,
FINSEQ_3: 25;
then ((2
* n2)
- 1)
= ((2
* n1)
- 1) by
A6,
A5,
A3;
hence thesis;
end;
then o is
valued_reorganization of f by
A2,
FLEXARY1:def 9;
hence thesis by
A1,
Def4;
end;
theorem ::
EULRPART:5
Th5: for f be
odd-valued
FinSequence, g be
complex-valued
FinSequence holds for o1,o2 be
DoubleReorganization of (
dom g) st o1 is
odd_organization of f & o2 is
odd_organization of f holds ((
Sum (g
*. o1))
. i)
= ((
Sum (g
*. o2))
. i)
proof
let f be
odd-valued
FinSequence, g be
complex-valued
FinSequence;
A1: for o1,o2 be
DoubleReorganization of (
dom g) st o1 is
odd_organization of f & o2 is
odd_organization of f holds (
rng ((f
*. o1)
. n))
c= (
rng ((f
*. o2)
. n))
proof
let o1,o2 be
DoubleReorganization of (
dom g) such that
A2: o1 is
odd_organization of f & o2 is
odd_organization of f;
reconsider O1 = o1 as
odd_organization of f by
A2;
let y be
object;
assume
A3: y
in (
rng ((f
*. o1)
. n));
then
A4: (
rng ((f
*. o1)
. n))
=
{(f
. (o1
_ (n,1)))} & 1
in (
dom (o1
. n)) by
FLEXARY1: 49,
A2;
A5: n
in (
dom o1)
proof
assume not n
in (
dom o1);
then (o1
. n)
=
{} by
FUNCT_1:def 2;
hence thesis by
A3,
FLEXARY1: 49,
A2;
end;
then ((o1
. n)
. 1)
in (
Values o1) by
FLEXARY1: 1,
A4;
then ((o1
. n)
. 1)
in (
dom f) by
FLEXARY1:def 7,
A2;
then ((o1
. n)
. 1)
in (
Values o2) by
FLEXARY1:def 7,
A2;
then
consider j,w be
object such that
A6: j
in (
dom o2) & w
in (
dom (o2
. j)) & ((o2
. j)
. w)
= ((o1
. n)
. 1) by
FLEXARY1: 1;
reconsider j, w as
Nat by
A6;
A7: ((f
*. o1)
. n)
= (f
* (o1
. n)) by
A5,
FOMODEL2:def 6;
(
len ((f
*. O1)
. n))
= (
len (o1
. n)) by
CARD_1:def 7;
then
A8: (
dom ((f
*. o1)
. n))
= (
dom (o1
. n)) by
FINSEQ_3: 29;
A9: ((2
* n)
- 1)
= (f
. (o1
_ (n,1))) & ... & ((2
* n)
- 1)
= (f
. (o1
_ (n,(
len (o1
. n))))) by
A2,
Def4;
A10: 1
<= (
len (o1
. n)) by
A4,
FINSEQ_3: 25;
A11: ((2
* j)
- 1)
= (f
. (o2
_ (j,1))) & ... & ((2
* j)
- 1)
= (f
. (o2
_ (j,(
len (o2
. j))))) by
A2,
Def4;
1
<= w & w
<= (
len (o2
. j)) by
A6,
FINSEQ_3: 25;
then ((2
* j)
- 1)
= (f
. (o2
_ (j,w))) by
A11;
then
A12: ((2
* j)
- 1)
= ((2
* n)
- 1) by
A6,
A10,
A9;
then
A13: y
= (f
. (o2
_ (n,w))) by
A4,
A3,
TARSKI:def 1,
A6;
A14: ((f
*. o2)
_ (n,w))
= (f
. (o2
_ (n,w))) by
FLEXARY1: 42;
A15: ((o2
. n)
. w)
in (
dom f) by
A8,
A4,
A7,
FUNCT_1: 11,
A6,
A12;
((f
*. o2)
. n)
= (f
* (o2
. n)) by
A12,
A6,
FOMODEL2:def 6;
then w
in (
dom ((f
*. o2)
. n)) by
A15,
A6,
A12,
FUNCT_1: 11;
hence thesis by
FUNCT_1:def 3,
A13,
A14;
end;
let o1,o2 be
DoubleReorganization of (
dom g) such that
A16: o1 is
odd_organization of f & o2 is
odd_organization of f;
(
rng ((f
*. o1)
. i))
= (
rng ((f
*. o2)
. i)) by
A1,
A16;
hence thesis by
A16,
FLEXARY1: 51;
end;
theorem ::
EULRPART:6
Th6: for p be
a_partition of n holds ex O be
odd-valued
FinSequence, a be
natural-valued
FinSequence st (
len O)
= (
len p)
= (
len a) & p
= (O
(#) (2
|^ a)) & ((p
. 1)
= ((O
. 1)
* (2
|^ (a
. 1))) & ... & (p
. (
len p))
= ((O
. (
len p))
* (2
|^ (a
. (
len p)))))
proof
let p be
a_partition of n;
defpred
P[
object,
object] means for i, j st (p
. $1)
= ((2
|^ i)
* ((2
* j)
+ 1)) holds $2
=
[((2
* j)
+ 1), i];
A1: (
dom p)
= (
Seg (
len p)) by
FINSEQ_1:def 3;
A2: for k st k
in (
Seg (
len p)) holds ex x st
P[k, x]
proof
let k;
assume k
in (
Seg (
len p));
then (p
. k)
in (
rng p) by
FUNCT_1:def 3,
A1;
then
consider n,m be
Nat such that
A3: (p
. k)
= ((2
|^ n)
* ((2
* m)
+ 1)) by
NAGATA_2: 1;
take x =
[((2
* m)
+ 1), n];
let i, j;
assume (p
. k)
= ((2
|^ i)
* ((2
* j)
+ 1));
then i
= n & j
= m by
A3,
CARD_4: 4;
hence thesis;
end;
consider Oa be
FinSequence such that
A4: (
dom Oa)
= (
Seg (
len p)) & for k st k
in (
Seg (
len p)) holds
P[k, (Oa
. k)] from
FINSEQ_1:sch 1(
A2);
deffunc
P1(
object) = ((Oa
. $1)
`1 );
consider O be
FinSequence such that
A5: (
len O)
= (
len p) & for k st k
in (
dom O) holds (O
. k)
=
P1(k) from
FINSEQ_1:sch 2;
A6: (
dom O)
= (
dom p) by
FINSEQ_3: 29,
A5;
for x st x
in (
dom O) holds (O
. x) is
odd
Nat
proof
let x;
assume
A7: x
in (
dom O);
then (p
. x)
in (
rng p) by
FUNCT_1:def 3,
A6;
then
consider n,m be
Nat such that
A8: (p
. x)
= ((2
|^ n)
* ((2
* m)
+ 1)) by
NAGATA_2: 1;
(Oa
. x)
=
[((2
* m)
+ 1), n] by
A7,
A1,
A8,
A6,
A4;
then
P1(x)
= ((2
* m)
+ 1);
hence thesis by
A7,
A5;
end;
then
reconsider O as
odd-valued
FinSequence by
Def2;
deffunc
P2(
object) = ((Oa
. $1)
`2 );
consider A be
FinSequence such that
A9: (
len A)
= (
len p) & for k st k
in (
dom A) holds (A
. k)
=
P2(k) from
FINSEQ_1:sch 2;
A10: (
dom A)
= (
dom p) by
FINSEQ_3: 29,
A9;
for x st x
in (
dom A) holds (A
. x) is
natural
proof
let x;
assume
A11: x
in (
dom A);
then (p
. x)
in (
rng p) by
FUNCT_1:def 3,
A10;
then
consider n,m be
Nat such that
A12: (p
. x)
= ((2
|^ n)
* ((2
* m)
+ 1)) by
NAGATA_2: 1;
(Oa
. x)
=
[((2
* m)
+ 1), n] by
A11,
A1,
A12,
A10,
A4;
then
P2(x)
= n;
hence thesis by
A11,
A9;
end;
then
reconsider A as
natural-valued
FinSequence by
VALUED_0:def 12;
take O, A;
thus (
len O)
= (
len p)
= (
len A) by
A5,
A9;
set OA = (O
(#) (2
|^ A));
(
dom (2
|^ A))
= (
dom A) by
FLEXARY1:def 4;
then
A13: ((
dom O)
/\ (
dom (2
|^ A)))
= (
dom p) by
A10,
A6;
A14: (p
. 1)
= ((O
. 1)
* (2
|^ (A
. 1))) & ... & (p
. (
len p))
= ((O
. (
len p))
* (2
|^ (A
. (
len p))))
proof
let i;
assume
A15: 1
<= i & i
<= (
len p);
then i
in (
dom p) by
FINSEQ_3: 25;
then (p
. i)
in (
rng p) by
FUNCT_1:def 3;
then
consider n,m be
Nat such that
A16: (p
. i)
= ((2
|^ n)
* ((2
* m)
+ 1)) by
NAGATA_2: 1;
(Oa
. i)
=
[((2
* m)
+ 1), n] & (
[((2
* m)
+ 1), n]
`1 )
= ((2
* m)
+ 1) & (
[((2
* m)
+ 1), n]
`2 )
= n by
A15,
FINSEQ_3: 25,
A1,
A16,
A4;
then (O
. i)
= ((2
* m)
+ 1) & (A
. i)
= n by
A15,
FINSEQ_3: 25,
A5,
A9;
hence thesis by
A16;
end;
for i st i
in (
dom p) holds (p
. i)
= (OA
. i)
proof
let i;
assume
A17: i
in (
dom p);
then 1
<= i & i
<= (
len p) by
FINSEQ_3: 25;
then
A18: (p
. i)
= ((O
. i)
* (2
|^ (A
. i))) by
A14;
((2
|^ A)
. i)
= (2
to_power (A
. i)) by
A17,
A10,
FLEXARY1:def 4;
hence thesis by
VALUED_1: 5,
A18;
end;
hence thesis by
A13,
VALUED_1:def 4,
A14;
end;
theorem ::
EULRPART:7
Th7: for D be
finite
set holds for f be
Function of D,
NAT holds ex h be
FinSequence of D st for d be
Element of D holds (
card (
Coim (h,d)))
= (f
. d)
proof
defpred
P[
Nat] means for D be
finite
set st (
card D)
= $1 holds for f be
Function of D,
NAT holds ex h be
FinSequence of D st for d be
Element of D holds (
card (
Coim (h,d)))
= (f
. d);
A1:
P[
0 ]
proof
let D be
finite
set such that
A2: (
card D)
=
0 ;
let f be
Function of D,
NAT ;
take h = (
<*> D);
let d be
Element of D;
A3: (
Coim (h,d))
= (h
"
{d}) by
RELAT_1:def 17;
not d
in (
dom f) by
A2;
hence thesis by
FUNCT_1:def 2,
A3;
end;
A4:
P[i] implies
P[(i
+ 1)]
proof
assume
A5:
P[i];
set i1 = (i
+ 1);
let D be
finite
set such that
A6: (
card D)
= i1;
let f be
Function of D,
NAT ;
D is non
empty by
A6;
then
consider d be
object such that
A7: d
in D;
set Dd = (D
\
{d});
A8: (
card Dd)
= i by
A6,
A7,
STIRL2_1: 55;
reconsider fd = (f
| Dd) as
Function of Dd,
NAT ;
consider h be
FinSequence of Dd such that
A9: for x be
Element of Dd holds (
card (
Coim (h,x)))
= (fd
. x) by
A5,
A8;
A10: (
rng h)
c= Dd;
Dd
c= D;
then (
rng h)
c= D;
then
reconsider h as
FinSequence of D by
FINSEQ_1:def 4;
reconsider g = ((f
. d)
|-> d) as
FinSequence of D by
A7,
FINSEQ_2: 63;
take hg = (h
^ g);
let x be
Element of D;
(
Coim (hg,x))
= (hg
"
{x}) & (
Coim (h,x))
= (h
"
{x}) & (
Coim (g,x))
= (g
"
{x}) by
RELAT_1:def 17;
then
A11: (
card (
Coim (hg,x)))
= ((
card (h
"
{x}))
+ (
card (g
"
{x}))) by
FINSEQ_3: 57;
per cases ;
suppose
A12: x
<> d;
then x
in Dd by
A7,
ZFMISC_1: 56;
then
A13: (
card (
Coim (h,x)))
= (fd
. x) & (fd
. x)
= (f
. x) by
A9,
FUNCT_1: 49;
not d
in
{x} by
A12,
TARSKI:def 1;
then (g
"
{x})
=
{} by
FUNCOP_1: 16;
hence thesis by
RELAT_1:def 17,
A11,
A13;
end;
suppose
A14: x
= d;
then not x
in (
rng h) by
ZFMISC_1: 56,
A10;
then
A15: (h
"
{x})
=
{} by
FUNCT_1: 72;
d
in
{x} by
A14,
TARSKI:def 1;
then (g
"
{x})
= (
Seg (f
. d)) by
FUNCOP_1: 14;
hence thesis by
FINSEQ_1: 57,
A15,
A11,
A14;
end;
end;
let D be
finite
set;
P[i] from
NAT_1:sch 2(
A1,
A4);
then
P[(
card D)];
hence thesis;
end;
Lm1: for f1,f2,g1,g2 be
complex-valued
FinSequence st (
len f1)
= (
len g1) & (
len f2)
<= (
len g2) holds ((f1
^ f2)
(#) (g1
^ g2))
= ((f1
(#) g1)
^ (f2
(#) g2))
proof
let f1,f2,g1,g2 be
complex-valued
FinSequence such that
A1: (
len f1)
= (
len g1) and
A2: (
len f2)
<= (
len g2);
A3: (
dom f1)
= (
Seg (
len f1)) & (
dom f2)
= (
Seg (
len f2)) & (
dom g1)
= (
Seg (
len g1)) & (
dom g2)
= (
Seg (
len g2)) by
FINSEQ_1:def 3;
A4: (
dom (f1
^ f2))
= (
Seg (
len (f1
^ f2))) & (
dom (g1
^ g2))
= (
Seg (
len (g1
^ g2))) by
FINSEQ_1:def 3;
A5: (
len (f1
^ f2))
= ((
len f1)
+ (
len f2)) & (
len (g1
^ g2))
= ((
len g1)
+ (
len g2)) by
FINSEQ_1: 22;
then ((
dom (f1
^ f2))
/\ (
dom (g1
^ g2)))
= (
dom (f1
^ f2)) by
A1,
A2,
XREAL_1: 6,
A4,
FINSEQ_1: 7;
then (
dom ((f1
^ f2)
(#) (g1
^ g2)))
= (
dom (f1
^ f2)) by
VALUED_1:def 4;
then
A6: (
len ((f1
^ f2)
(#) (g1
^ g2)))
= (
len (f1
^ f2)) by
FINSEQ_3: 29;
((
dom f1)
/\ (
dom g1))
= (
dom f1) by
A1,
A3;
then
A7: (
dom (f1
(#) g1))
= (
dom f1) by
VALUED_1:def 4;
then
A8: (
len (f1
(#) g1))
= (
len f1) by
FINSEQ_3: 29;
A9: ((
dom f2)
/\ (
dom g2))
= (
dom f2) by
A2,
A3,
FINSEQ_1: 7;
then
A10: (
dom (f2
(#) g2))
= (
dom f2) by
VALUED_1:def 4;
then
A11: (
len (f2
(#) g2))
= (
len f2) by
FINSEQ_3: 29;
for i st 1
<= i & i
<= (
len (f1
^ f2)) holds (((f1
^ f2)
(#) (g1
^ g2))
. i)
= (((f1
(#) g1)
^ (f2
(#) g2))
. i)
proof
let i;
assume 1
<= i & i
<= (
len (f1
^ f2));
then
A12: i
in (
dom (f1
^ f2)) by
FINSEQ_3: 25;
per cases ;
suppose
A13: i
in (
dom f1);
then
A14: ((f1
^ f2)
. i)
= (f1
. i) & ((g1
^ g2)
. i)
= (g1
. i) by
A1,
A3,
FINSEQ_1:def 7;
(((f1
(#) g1)
^ (f2
(#) g2))
. i)
= ((f1
(#) g1)
. i) by
A13,
A7,
FINSEQ_1:def 7
.= ((f1
. i)
* (g1
. i)) by
VALUED_1: 5;
hence thesis by
A14,
VALUED_1: 5;
end;
suppose not i
in (
dom f1);
then
consider j such that
A15: j
in (
dom f2) & i
= ((
len f1)
+ j) by
A12,
FINSEQ_1: 25;
A16: ((f1
^ f2)
. i)
= (f2
. j) & ((g1
^ g2)
. i)
= (g2
. j) by
A9,
A15,
A1,
FINSEQ_1:def 7;
(((f1
(#) g1)
^ (f2
(#) g2))
. i)
= ((f2
(#) g2)
. j) by
A15,
A8,
A10,
FINSEQ_1:def 7
.= ((f2
. j)
* (g2
. j)) by
VALUED_1: 5;
hence thesis by
VALUED_1: 5,
A16;
end;
end;
hence thesis by
A5,
A6,
A8,
A11,
FINSEQ_1: 22;
end;
theorem ::
EULRPART:8
Th8: for f1,f2,g1,g2 be
complex-valued
FinSequence st (
len f1)
= (
len g1) holds ((f1
^ f2)
(#) (g1
^ g2))
= ((f1
(#) g1)
^ (f2
(#) g2))
proof
let f1,f2,g1,g2 be
complex-valued
FinSequence such that
A1: (
len f1)
= (
len g1);
(
len f2)
<= (
len g2) or (
len f2)
>= (
len g2);
hence thesis by
A1,
Lm1;
end;
Lm2: for f be
complex-valued
FinSequence holds (((
id (
dom f))
(#) f)
. i)
= (i
* (f
. i))
proof
let f be
complex-valued
FinSequence;
per cases ;
suppose i
in (
dom f);
then ((
id (
dom f))
. i)
= i by
FUNCT_1: 17;
hence thesis by
VALUED_1: 5;
end;
suppose not i
in (
dom f);
then
A1: (f
. i)
=
0 by
FUNCT_1:def 2;
(((
id (
dom f))
(#) f)
. i)
= (((
id (
dom f))
. i)
* (f
. i)) by
VALUED_1: 5;
hence thesis by
A1;
end;
end;
theorem ::
EULRPART:9
Th9: for f,h be
natural-valued
FinSequence st for i holds (
card (
Coim (h,i)))
= (f
. i) holds (
Sum h)
= (((1
* (f
. 1))
+ (2
* (f
. 2)))
+ ((((
id (
dom f))
(#) f),3)
+... ))
proof
defpred
P[
Nat] means for f,h be
natural-valued
FinSequence st (
len f)
= $1 & for i holds (
card (
Coim (h,i)))
= (f
. i) holds (
Sum h)
= ((((
id (
dom f))
(#) f),1)
+... );
A1:
P[
0 ]
proof
let f,h be
natural-valued
FinSequence such that
A2: (
len f)
=
0 and
A3: for i holds (
card (
Coim (h,i)))
= (f
. i);
set L = ((
len h)
|->
0 );
now
let i such that
A4: 1
<= i & i
<= (
len h);
A5: i
in (
dom h) by
A4,
FINSEQ_3: 25;
f
=
{} by
A2;
then (f
. (h
. i))
=
0 ;
then (
card (
Coim (h,(h
. i))))
=
0 by
A3;
then (
Coim (h,(h
. i)))
=
{} ;
then (h
"
{(h
. i)})
=
{} by
RELAT_1:def 17;
then not (h
. i)
in (
rng h) by
FUNCT_1: 72;
hence (h
. i)
= (L
. i) by
A5,
FUNCT_1:def 3;
end;
then
A6: h
= ((
len h)
|->
0 ) by
CARD_1:def 7;
A7: f
=
{} by
A2;
then
reconsider E = ((
id (
dom f))
(#) f) as
complex-valued
FinSequence;
((((
id (
dom f))
(#) f),1)
+... )
= ((E
. 1)
+ ((E,(1
+ 1))
+... )) by
FLEXARY1: 20
.= (
Sum E) by
FLEXARY1: 22
.=
0 by
A7,
RVSUM_1: 72;
hence thesis by
A6,
RVSUM_1: 81;
end;
A8:
P[i] implies
P[(i
+ 1)]
proof
assume
A9:
P[i];
set i1 = (i
+ 1);
let f,h be
natural-valued
FinSequence such that
A10: (
len f)
= i1 and
A11: for i holds (
card (
Coim (h,i)))
= (f
. i);
A12: (
id (
dom f))
= (
idseq i1) by
FINSEQ_1:def 3,
A10;
set fi = (f
| i);
A13: f
= (fi
^
<*(f
. i1)*>) by
A10,
FINSEQ_3: 55;
A14: i
< i1 by
NAT_1: 13;
then
A15: (
len fi)
= i by
A10,
FINSEQ_1: 59;
then
A16: (
id (
dom fi))
= (
idseq i) by
FINSEQ_1:def 3;
A17: (
idseq i1)
= ((
idseq i)
^
<*i1*>) by
FINSEQ_2: 51;
(
len fi)
= (
len (
idseq i)) by
CARD_1:def 7,
A15;
then
A18: ((
id (
dom f))
(#) f)
= (((
idseq i)
(#) fi)
^ (
<*i1*>
(#)
<*(f
. i1)*>)) by
Th8,
A12,
A13,
A17;
A19: ((
Seg 1)
/\ (
Seg 1))
= (
Seg 1);
(
dom
<*i1*>)
= (
Seg 1) & (
dom
<*(f
. i1)*>)
= (
Seg 1) by
FINSEQ_1: 38;
then (
dom (
<*i1*>
(#)
<*(f
. i1)*>))
= (
Seg 1) by
VALUED_1:def 4,
A19;
then
A20: (
len (
<*i1*>
(#)
<*(f
. i1)*>))
= 1 by
FINSEQ_1:def 3;
(
<*i1*>
. 1)
= i1 & (
<*(f
. i1)*>
. 1)
= (f
. i1) by
FINSEQ_1: 40;
then ((
<*i1*>
(#)
<*(f
. i1)*>)
. 1)
= (i1
* (f
. i1)) by
VALUED_1: 5;
then
A21: (
<*i1*>
(#)
<*(f
. i1)*>)
=
<*(i1
* (f
. i1))*> by
A20,
FINSEQ_1: 40;
A22: ((((
id (
dom f))
(#) f),1)
+... )
= (
Sum ((
idseq i1)
(#) f)) by
A12,
FLEXARY1: 21;
per cases ;
suppose
A23: (f
. i1)
=
0 ;
then
A24: ((((
id (
dom f))
(#) f),1)
+... )
= ((
Sum ((
idseq i)
(#) fi))
+
0 ) by
A21,
A12,
A18,
A22,
RVSUM_1: 74;
for j holds (
card (
Coim (h,j)))
= (fi
. j)
proof
let j;
per cases ;
suppose j
in (
dom fi);
then (fi
. j)
= (f
. j) & (f
. j)
= (
card (
Coim (h,j))) by
A11,
FUNCT_1: 47;
hence thesis;
end;
suppose
A25: j
= i1;
then not j
in (
dom fi) by
A14,
A15,
FINSEQ_3: 25;
then (fi
. j)
=
0 & (f
. j)
= (
card (
Coim (h,j))) by
A11,
FUNCT_1:def 2;
hence thesis by
A23,
A25;
end;
suppose
A26: j
<> i1 & not j
in (
dom fi);
then
A27: (fi
. j)
=
0 by
FUNCT_1:def 2;
j
< 1 or j
> i by
A26,
A15,
FINSEQ_3: 25;
then j
< 1 or j
>= i1 by
NAT_1: 13;
then j
< 1 or j
> i1 by
A26,
XXREAL_0: 1;
then not j
in (
dom f) by
A10,
FINSEQ_3: 25;
then (f
. j)
=
0 by
FUNCT_1:def 2;
hence thesis by
A11,
A27;
end;
end;
then (
Sum h)
= ((((
idseq i)
(#) fi),1)
+... ) by
A9,
A16,
A15
.= (
Sum ((
idseq i)
(#) fi)) by
FLEXARY1: 21;
hence thesis by
A24;
end;
suppose (f
. i1)
<>
0 ;
then (
card (
Coim (h,i1)))
<>
0 by
A11;
then (
Coim (h,i1))
<>
{} ;
then
consider xx be
object such that
A28: xx
in (
Coim (h,i1)) by
XBOOLE_0:def 1;
A29: xx
in (
Coim (h,i1)) & (
Coim (h,i1))
= (h
"
{i1}) by
A28,
RELAT_1:def 17;
then
reconsider D = (
dom h) as non
empty
set by
FUNCT_1:def 7;
A30: (
rng h)
c=
REAL ;
then
reconsider H = h as
Function of D,
REAL by
FUNCT_2: 2;
reconsider h1 = H as
FinSequence of
REAL by
A30,
FINSEQ_1:def 4;
set X = (h
"
{i1}), Y = (D
\ X);
(
dom (H
| (Y
\/ X))) is
finite;
then
A31: ((
FinS (H,(Y
\/ X))),((
FinS (H,Y))
^ (
FinS (H,X))))
are_fiberwise_equipotent by
RFUNCT_3: 76,
XBOOLE_1: 79;
A32: D
= (X
\/ Y) by
RELAT_1: 132,
XBOOLE_1: 45;
(H
| D)
= H;
then (H,(
FinS (H,(X
\/ Y))))
are_fiberwise_equipotent by
A32,
RFUNCT_3:def 13;
then
A33: (
Sum h1)
= (
Sum ((
FinS (H,Y))
^ (
FinS (H,X)))) by
A31,
CLASSES1: 76,
RFINSEQ: 9
.= ((
Sum (
FinS (H,Y)))
+ (
Sum (
FinS (H,X)))) by
RVSUM_1: 75;
A34: (
dom (H
| X))
= X & (
dom (H
| Y))
= Y by
RELAT_1: 132,
RELAT_1: 62;
(
rng (H
| X))
c=
{i1}
proof
let y be
object;
assume y
in (
rng (H
| X));
then
consider x be
object such that
A35: x
in X & ((H
| X)
. x)
= y by
A34,
FUNCT_1:def 3;
((H
| X)
. x)
= (H
. x) by
A35,
FUNCT_1: 49;
hence thesis by
A35,
FUNCT_1:def 7;
end;
then (
FinS (H,X))
= ((
card X)
|-> i1) by
A29,
A34,
ZFMISC_1: 33,
RFUNCT_3: 75;
then
A36: (
FinS (H,X))
= ((f
. i1)
|-> i1) by
A29,
A11;
A37: ((H
| Y),(
FinS (H,Y)))
are_fiberwise_equipotent by
A34,
RFUNCT_3:def 13;
then (
rng (H
| Y))
= (
rng (
FinS (H,Y))) by
CLASSES1: 75;
then (
rng (
FinS (H,Y)))
c=
NAT by
VALUED_0:def 6;
then
reconsider F = (
FinS (H,Y)) as
natural-valued
FinSequence by
VALUED_0:def 6;
for j holds (
card (
Coim (F,j)))
= (fi
. j)
proof
let j;
set hY = (h
| Y);
A38: (
card (
Coim (F,j)))
= (
card (
Coim (hY,j))) by
A37,
CLASSES1:def 10;
A39: (hY
"
{j})
= (
Coim (hY,j)) & (h
"
{j})
= (
Coim (h,j)) by
RELAT_1:def 17;
A40: (hY
"
{j})
= (Y
/\ (h
"
{j})) by
FUNCT_1: 70
.= (((h
"
{j})
/\ D)
\ (h
"
{i1})) by
XBOOLE_1: 49
.= ((h
"
{j})
\ (h
"
{i1})) by
RELAT_1: 132,
XBOOLE_1: 28
.= (h
" (
{j}
\
{i1})) by
FUNCT_1: 69;
A41: (
card (
Coim (h,j)))
= (f
. j) by
A11;
per cases ;
suppose
A42: j
in (
dom fi);
then j
<> i1 by
A15,
FINSEQ_3: 25,
A14;
then (
card (
Coim (F,j)))
= (
card (
Coim (h,j))) by
ZFMISC_1: 14,
A38,
A39,
A40;
hence thesis by
A41,
A42,
FUNCT_1: 47;
end;
suppose
A43: j
= i1;
then
A44: not j
in (
dom fi) by
A14,
A15,
FINSEQ_3: 25;
(
card (
Coim (F,j)))
= (
card (h
"
{} )) by
A43,
A38,
A39,
A40;
hence thesis by
A44,
FUNCT_1:def 2;
end;
suppose
A45: not j
in (
dom fi) & j
<> i1;
then
A46: (fi
. j)
=
0 by
FUNCT_1:def 2;
j
< 1 or j
> i by
A45,
A15,
FINSEQ_3: 25;
then j
< 1 or j
>= i1 by
NAT_1: 13;
then j
< 1 or j
> i1 by
A45,
XXREAL_0: 1;
then
A47: not j
in (
dom f) by
A10,
FINSEQ_3: 25;
(
card (
Coim (F,j)))
= (
card (
Coim (h,j))) by
A45,
ZFMISC_1: 14,
A38,
A39,
A40;
hence thesis by
A46,
A47,
FUNCT_1:def 2,
A41;
end;
end;
then
A48: (
Sum F)
= ((((
idseq i)
(#) fi),1)
+... ) by
A9,
A15,
A16
.= (
Sum ((
idseq i)
(#) fi)) by
FLEXARY1: 21;
((((
id (
dom f))
(#) f),1)
+... )
= ((
Sum ((
idseq i)
(#) fi))
+ (i1
* (f
. i1))) by
A21,
A12,
A18,
A22,
RVSUM_1: 74;
hence thesis by
A33,
A48,
A36,
RVSUM_1: 80;
end;
end;
A49:
P[i] from
NAT_1:sch 2(
A1,
A8);
let f,h be
natural-valued
FinSequence such that
A50: for i holds (
card (
Coim (h,i)))
= (f
. i);
set I = ((
idseq (
len f))
(#) f);
A51: (
id (
dom f))
= (
idseq (
len f)) by
FINSEQ_1:def 3;
then
A52: (I
. 1)
= (1
* (f
. 1)) by
Lm2;
A53: (I
. 2)
= (2
* (f
. 2)) by
Lm2,
A51;
(
Sum h)
= ((I,1)
+... ) by
A49,
A51,
A50
.= ((I
. 1)
+ ((I,(1
+ 1))
+... )) by
FLEXARY1: 20
.= ((I
. 1)
+ ((I
. 2)
+ ((I,(2
+ 1))
+... ))) by
FLEXARY1: 20;
hence thesis by
A52,
A53,
A51;
end;
theorem ::
EULRPART:10
Th10: for g be
natural-valued
FinSequence holds for sort be
DoubleReorganization of (
dom g) holds ex h be (2
* (
len sort))
-element
FinSequence of
NAT st for j holds (h
. (2
* j))
=
0 & (h
. ((2
* j)
- 1))
= ((g
. (sort
_ (j,1)))
+ ((((g
*. sort)
. j),2)
+... ))
proof
let g be
natural-valued
FinSequence;
let sort be
DoubleReorganization of (
dom g);
defpred
P[
object,
object] means ($1
= ((2
* j)
- 1) implies $2
= ((g
. (sort
_ (j,1)))
+ ((((g
*. sort)
. j),2)
+... ))) & ($1
= (2
* j) implies $2
=
0 );
set S = (
Seg (2
* (
len sort)));
A1: for k st k
in S holds ex x st
P[k, x]
proof
let k;
assume k
in (
Seg (2
* (
len sort)));
per cases ;
suppose
A2: k is
even;
set j = the
Nat;
take x =
0 ;
thus thesis by
A2;
end;
suppose k is
odd;
then
consider j such that
A4: k
= ((2
* j)
+ 1) by
ABIAN: 9;
set j1 = (j
+ 1);
take x = ((g
. (sort
_ (j1,1)))
+ ((((g
*. sort)
. j1),2)
+... ));
let i;
thus thesis by
A4;
end;
end;
consider f be
FinSequence such that
A5: (
dom f)
= S & for i st i
in S holds
P[i, (f
. i)] from
FINSEQ_1:sch 1(
A1);
A6: (
rng f)
c=
NAT
proof
let y;
assume y
in (
rng f);
then
consider x such that
A7: x
in (
dom f) & (f
. x)
= y by
FUNCT_1:def 3;
reconsider x as
Nat by
A7;
per cases ;
suppose x is
even;
then ex i st x
= (2
* i) by
ABIAN:def 2;
then (f
. x)
=
0 by
A5,
A7;
hence thesis by
A7;
end;
suppose x is
odd;
then
consider i such that
A8: x
= ((2
* i)
+ 1) by
ABIAN: 9;
((2
* (i
+ 1))
- 1)
= x by
A8;
then (f
. x)
= ((g
. (sort
_ ((i
+ 1),1)))
+ ((((g
*. sort)
. (i
+ 1)),2)
+... )) by
A7,
A5;
hence thesis by
A7,
ORDINAL1:def 12;
end;
end;
A9: (
len f)
= (2
* (
len sort)) by
A5,
FINSEQ_1:def 3;
then
reconsider f as (2
* (
len sort))
-element
FinSequence of
NAT by
A6,
FINSEQ_1:def 4,
CARD_1:def 7;
take f;
let i;
thus (f
. (2
* i))
=
0
proof
(2
* i)
in (
dom f) or not (2
* i)
in (
dom f);
hence thesis by
A5,
FUNCT_1:def 2;
end;
thus (f
. ((2
* i)
- 1))
= ((g
. (sort
_ (i,1)))
+ ((((g
*. sort)
. i),2)
+... ))
proof
per cases by
FINSEQ_3: 25;
suppose ((2
* i)
- 1)
in (
dom f);
hence thesis by
A5;
end;
suppose
A10: ((2
* i)
- 1)
> (
len f);
then
A11: not ((2
* i)
- 1)
in (
dom f) by
FINSEQ_3: 25;
(((2
* i)
- 1)
+ 1)
> (
len f) by
A10,
NAT_1: 13;
then i
> (
len sort) by
A9,
XREAL_1: 64;
then
A12: not i
in (
dom sort) by
FINSEQ_3: 25;
then (sort
. i)
=
{} by
FUNCT_1:def 2;
then not (sort
_ (i,1))
in (
dom g) by
FINSEQ_3: 25;
then
A13: (g
. (sort
_ (i,1)))
=
{} by
FUNCT_1:def 2;
(
dom (g
*. sort))
= (
dom sort) by
FOMODEL2:def 6;
then ((g
*. sort)
. i)
=
{} by
A12,
FUNCT_1:def 2;
then ((g
. (sort
_ (i,1)))
+ ((((g
*. sort)
. i),2)
+... ))
=
0 by
FLEXARY1: 15,
A13;
hence thesis by
A11,
FUNCT_1:def 2;
end;
suppose
A14: ((2
* i)
- 1)
< 1;
then
A15: not ((2
* i)
- 1)
in (
dom f) by
FINSEQ_3: 25;
(((2
* i)
- 1)
+ 1)
< (1
+ 1) by
A14,
XREAL_1: 6;
then (2
* i)
< (2
* 1);
then
A16: not i
in (
dom sort) by
XREAL_1: 64,
FINSEQ_3: 25;
then (sort
. i)
=
0 by
FUNCT_1:def 2;
then not (sort
_ (i,1))
in (
dom g) by
FUNCT_1:def 2,
FINSEQ_3: 25;
then
A17: (g
. (sort
_ (i,1)))
=
0 by
FUNCT_1:def 2;
(
dom (g
*. sort))
= (
dom sort) by
FOMODEL2:def 6;
then ((g
*. sort)
. i)
=
{} by
A16,
FUNCT_1:def 2;
then ((g
. (sort
_ (i,1)))
+ ((((g
*. sort)
. i),2)
+... ))
=
0 by
FLEXARY1: 15,
A17;
hence thesis by
A15,
FUNCT_1:def 2;
end;
end;
end;
Lm3: for mu be
natural-valued
FinSequence st for j holds (mu
. (2
* j))
=
0 holds ex h be
odd-valued
FinSequence st h is
non-decreasing & for j holds (
card (
Coim (h,j)))
= (mu
. j)
proof
let mu be
natural-valued
FinSequence such that
A1: for j holds (mu
. (2
* j))
=
0 ;
set S = (
Seg (
len mu));
A2: (
rng mu)
c=
NAT by
VALUED_0:def 6;
A3: (
dom mu)
= S by
FINSEQ_1:def 3;
then mu is
Function of S,
NAT by
A2,
FUNCT_2: 2;
then
consider h be
FinSequence of S such that
A4: for d be
Element of S holds (
card (
Coim (h,d)))
= (mu
. d) by
Th7;
A5: (
rng h)
c= S by
FINSEQ_1:def 4;
A6: (
rng h)
c=
OddNAT
proof
let y be
object;
assume
A7: y
in (
rng h);
then
A8: (
card (
Coim (h,y)))
= (mu
. y) by
A4,
A5;
(
Coim (h,y))
= (h
"
{y}) by
RELAT_1:def 17;
then
A9: (
Coim (h,y))
<>
{} by
A7,
FUNCT_1: 72;
consider x such that
A10: x
in (
dom h) & (h
. x)
= y by
A7,
FUNCT_1:def 3;
reconsider y as
Nat by
A10;
y is
odd
proof
assume y is
even;
then ex j st y
= (2
* j) by
ABIAN:def 2;
hence thesis by
A1,
A9,
A8;
end;
hence thesis by
Th2;
end;
then
reconsider h as
odd-valued
FinSequence by
Def1;
(
rng h)
c=
REAL ;
then
reconsider h as
FinSequence of
REAL by
FINSEQ_1:def 4;
set s = (
sort_a h);
(
rng h)
= (
rng s) by
RFINSEQ2:def 6,
CLASSES1: 75;
then
reconsider s as
odd-valued
FinSequence by
A6,
Def1;
take s;
thus s is
non-decreasing;
let i;
per cases ;
suppose i
in S;
then (mu
. i)
= (
card (
Coim (h,i))) by
A4;
hence thesis by
RFINSEQ2:def 6,
CLASSES1:def 10;
end;
suppose
A11: not i
in S;
then
A12: (mu
. i)
=
0 & not i
in (
rng h) by
A5,
A3,
FUNCT_1:def 2;
(h
"
{i})
=
{} by
A11,
A5,
FUNCT_1: 72;
then (
Coim (h,i))
=
{} by
RELAT_1:def 17;
then (
card (
Coim (h,i)))
=
0 ;
hence thesis by
CLASSES1:def 10,
RFINSEQ2:def 6,
A12;
end;
end;
begin
theorem ::
EULRPART:11
Th11: for d be
one-to-one
a_partition of n holds ex e be
odd-valued
a_partition of n st for j be
Nat, O1 be
odd-valued
FinSequence, a1 be
natural-valued
FinSequence st (
len O1)
= (
len d)
= (
len a1) & d
= (O1
(#) (2
|^ a1)) holds for sort be
DoubleReorganization of (
dom d) st (1
= (O1
. (sort
_ (1,1))) & ... & 1
= (O1
. (sort
_ (1,(
len (sort
. 1)))))) & (3
= (O1
. (sort
_ (2,1))) & ... & 3
= (O1
. (sort
_ (2,(
len (sort
. 2)))))) & (5
= (O1
. (sort
_ (3,1))) & ... & 5
= (O1
. (sort
_ (3,(
len (sort
. 3)))))) & for i holds ((2
* i)
- 1)
= (O1
. (sort
_ (i,1))) & ... & ((2
* i)
- 1)
= (O1
. (sort
_ (i,(
len (sort
. i))))) holds (
card (
Coim (e,1)))
= (((2
|^ a1)
. (sort
_ (1,1)))
+ (((((2
|^ a1)
*. sort)
. 1),2)
+... )) & (
card (
Coim (e,3)))
= (((2
|^ a1)
. (sort
_ (2,1)))
+ (((((2
|^ a1)
*. sort)
. 2),2)
+... )) & (
card (
Coim (e,5)))
= (((2
|^ a1)
. (sort
_ (3,1)))
+ (((((2
|^ a1)
*. sort)
. 3),2)
+... )) & (
card (
Coim (e,((j
* 2)
- 1))))
= (((2
|^ a1)
. (sort
_ (j,1)))
+ (((((2
|^ a1)
*. sort)
. j),2)
+... ))
proof
let d be
one-to-one
a_partition of n;
consider O be
odd-valued
FinSequence, a be
natural-valued
FinSequence such that
A1: (
len O)
= (
len d)
= (
len a) & d
= (O
(#) (2
|^ a)) and (d
. 1)
= ((O
. 1)
* (2
|^ (a
. 1))) & ... & (d
. (
len d))
= ((O
. (
len d))
* (2
|^ (a
. (
len d)))) by
Th6;
(
len (2
|^ a))
= (
len O) by
A1,
CARD_1:def 7;
then
reconsider sort = the
odd_organization of O as
DoubleReorganization of (
dom (2
|^ a)) by
FINSEQ_3: 29;
consider mu be (2
* (
len sort))
-element
FinSequence of
NAT such that
A2: for j holds (mu
. (2
* j))
=
0 & (mu
. ((2
* j)
- 1))
= (((2
|^ a)
. (sort
_ (j,1)))
+ (((((2
|^ a)
*. sort)
. j),2)
+... )) by
Th10;
set alpha = (a
* (sort
. 1)), beta = (a
* (sort
. 2)), gamma = (a
* (sort
. 3));
A3: n
= (((((((2
|^ alpha)
. 1)
+ (((2
|^ alpha),2)
+... ))
* 1)
+ ((((2
|^ beta)
. 1)
+ (((2
|^ beta),2)
+... ))
* 3))
+ ((((2
|^ gamma)
. 1)
+ (((2
|^ gamma),2)
+... ))
* 5))
+ ((((
id (
dom mu))
(#) mu),7)
+... ))
proof
reconsider o1 = sort as
DoubleReorganization of (
dom d) by
A1,
FINSEQ_3: 29;
A4: (
dom (d
*. o1))
= (
dom o1) & (
dom ((2
|^ a)
*. sort))
= (
dom sort) by
FOMODEL2:def 6;
A5: for j holds (
Sum ((d
*. o1)
. j))
= (((2
* j)
- 1)
* (mu
. ((2
* j)
- 1)))
proof
let j;
A6: (mu
. ((2
* j)
- 1))
= (((2
|^ a)
. (sort
_ (j,1)))
+ (((((2
|^ a)
*. sort)
. j),2)
+... )) by
A2;
per cases ;
suppose j
in (
dom o1);
set jj = ((2
* j)
- 1);
A7: ((d
*. o1)
. j)
= (d
* (o1
. j)) by
FLEXARY1: 41;
A8: (((2
|^ a)
*. sort)
. j)
= ((2
|^ a)
* (sort
. j)) by
FLEXARY1: 41;
A9: (
len ((d
*. o1)
. j))
= (
len (o1
. j)) by
CARD_1:def 7;
A10: (
len (((2
|^ a)
*. sort)
. j))
= (
len (sort
. j)) by
CARD_1:def 7;
for n st 1
<= n & n
<= (
len (sort
. j)) holds (((d
*. o1)
. j)
. n)
= ((jj
* (((2
|^ a)
*. sort)
. j))
. n)
proof
let n;
assume
A11: 1
<= n & n
<= (
len (sort
. j));
A12: ((2
* j)
- 1)
= (O
. (o1
_ (j,1))) & ... & ((2
* j)
- 1)
= (O
. (o1
_ (j,(
len (o1
. j))))) by
Def4;
thus (((d
*. o1)
. j)
. n)
= (d
. (o1
_ (j,n))) by
A11,
A9,
FINSEQ_3: 25,
A7,
FUNCT_1: 12
.= ((O
. (o1
_ (j,n)))
* ((2
|^ a)
. (o1
_ (j,n)))) by
A1,
VALUED_1: 5
.= (jj
* ((2
|^ a)
. (o1
_ (j,n)))) by
A12,
A11
.= (jj
* ((((2
|^ a)
*. sort)
. j)
. n)) by
A11,
A10,
FINSEQ_3: 25,
A8,
FUNCT_1: 12
.= ((jj
* (((2
|^ a)
*. sort)
. j))
. n) by
VALUED_1: 6;
end;
then
A13: ((d
*. o1)
. j)
= (jj
* (((2
|^ a)
*. sort)
. j)) by
A9,
CARD_1:def 7;
((((2
|^ a)
*. sort)
. j)
. 1)
= (((2
|^ a)
*. sort)
_ (j,1));
then ((2
|^ a)
. (sort
_ (j,1)))
= ((((2
|^ a)
*. sort)
. j)
. 1) by
FLEXARY1: 42;
then (
Sum (((2
|^ a)
*. sort)
. j))
= (((2
|^ a)
. (sort
_ (j,1)))
+ (((((2
|^ a)
*. sort)
. j),2)
+... )) by
FLEXARY1: 22
.= (mu
. jj) by
A2;
hence thesis by
A13,
RVSUM_1: 87;
end;
suppose
A14: not j
in (
dom sort);
then (sort
. j)
=
{} by
FUNCT_1:def 2;
then
A15: not ((sort
. j)
. 1)
in (
dom (2
|^ a)) by
FINSEQ_3: 25;
not j
in (
dom ((2
|^ a)
*. sort)) by
A14,
FOMODEL2:def 6;
then (((2
|^ a)
*. sort)
. j)
=
{} by
FUNCT_1:def 2;
then (((((2
|^ a)
*. sort)
. j),2)
+... )
=
0 by
FLEXARY1: 15;
then (mu
. ((2
* j)
- 1))
=
0 by
A6,
A15,
FUNCT_1:def 2;
hence thesis by
A14,
A4,
FUNCT_1:def 2,
RVSUM_1: 72;
end;
end;
set I = (
idseq (
len mu));
A16: I
= (
id (
dom mu)) by
FINSEQ_1:def 3;
A17: (1
-' 1)
=
0 & (2
-' 1)
= (2
- 1) by
XREAL_1: 233,
XREAL_1: 232;
A18: for j holds (((
Sum (d
*. o1)),(4
+ (j
* 1)))
+...+ ((
Sum (d
*. o1)),((4
+ (j
* 1))
+ (1
-' 1))))
= (((I
(#) mu),(7
+ (j
* 2)))
+...+ ((I
(#) mu),((7
+ (j
* 2))
+ (2
-' 1))))
proof
let j;
set S = (
Sum (d
*. o1));
A19: ((S,(4
+ (j
* 1)))
+...+ (S,((4
+ (j
* 1))
+ (1
-' 1))))
= (S
. (4
+ j)) by
A17,
FLEXARY1: 11
.= (
Sum ((d
*. o1)
. (4
+ j))) by
FLEXARY1:def 8
.= (((2
* (4
+ j))
- 1)
* (mu
. ((2
* (4
+ j))
- 1))) by
A5
.= (((2
* j)
+ 7)
* (mu
. ((2
* j)
+ 7)));
A20: (((I
(#) mu),(7
+ (j
* 2)))
+...+ ((I
(#) mu),((7
+ (j
* 2))
+ (2
-' 1))))
= (((I
(#) mu)
. (7
+ (j
* 2)))
+ (((I
(#) mu),((7
+ (j
* 2))
+ 1))
+...+ ((I
(#) mu),((7
+ (j
* 2))
+ 1)))) by
NAT_1: 11,
FLEXARY1: 13,
A17
.= (((I
(#) mu)
. (7
+ (j
* 2)))
+ ((I
(#) mu)
. ((7
+ (j
* 2))
+ 1))) by
FLEXARY1: 11;
((7
+ (j
* 2))
+ 1)
= (2
* (j
+ 4));
then (mu
. ((7
+ (j
* 2))
+ 1))
=
0 by
A2;
then ((I
(#) mu)
. ((7
+ (j
* 2))
+ 1))
= (((7
+ (j
* 2))
+ 1)
*
0 ) by
A16,
Lm2;
hence thesis by
A19,
A20,
A16,
Lm2;
end;
A21: (((
Sum (d
*. o1)),4)
+... )
= (((I
(#) mu),7)
+... ) from
FLEXARY1:sch 1(
A18);
A22: ((2
* 1)
- 1)
= 1;
then
A23: (1
* (mu
. 1))
= (
Sum ((d
*. o1)
. 1)) by
A5
.= ((
Sum (d
*. o1))
. 1) by
FLEXARY1:def 8;
A24: ((2
* 2)
- 1)
= 3;
then
A25: (3
* (mu
. 3))
= (
Sum ((d
*. o1)
. 2)) by
A5
.= ((
Sum (d
*. o1))
. 2) by
FLEXARY1:def 8;
A26: ((2
* 3)
- 1)
= 5;
then
A27: (5
* (mu
. 5))
= (
Sum ((d
*. o1)
. 3)) by
A5
.= ((
Sum (d
*. o1))
. 3) by
FLEXARY1:def 8;
for j holds ((2
|^ a)
. (sort
_ (j,1)))
= ((2
|^ (a
* (sort
. j)))
. 1) & (((2
|^ a)
*. sort)
. j)
= (2
|^ (a
* (sort
. j)))
proof
let j;
A28: ((2
|^ a)
. (sort
_ (j,1)))
= (((2
|^ a)
*. sort)
_ (j,1)) by
FLEXARY1: 42;
(((2
|^ a)
*. sort)
. j)
= ((2
|^ a)
* (sort
. j)) by
FLEXARY1: 41
.= (2
|^ (a
* (sort
. j))) by
FLEXARY1: 25;
hence thesis by
A28;
end;
then
A29: ((2
|^ a)
. (sort
_ (1,1)))
= ((2
|^ alpha)
. 1) & ((2
|^ a)
. (sort
_ (2,1)))
= ((2
|^ beta)
. 1) & ((2
|^ a)
. (sort
_ (3,1)))
= ((2
|^ gamma)
. 1) & (((2
|^ a)
*. sort)
. 1)
= (2
|^ alpha) & (((2
|^ a)
*. sort)
. 2)
= (2
|^ beta) & (((2
|^ a)
*. sort)
. 3)
= (2
|^ gamma);
thus n
= (
Sum d) by
Def3
.= (
Sum (
Sum (d
*. o1))) by
FLEXARY1: 47
.= ((1
* (mu
. 1))
+ (((
Sum (d
*. o1)),2)
+... )) by
FLEXARY1: 22,
A23
.= ((1
* (mu
. 1))
+ ((3
* (mu
. 3))
+ (((
Sum (d
*. o1)),(2
+ 1))
+... ))) by
A25,
FLEXARY1: 20
.= (((1
* (mu
. 1))
+ (3
* (mu
. 3)))
+ (((
Sum (d
*. o1)),3)
+... ))
.= (((1
* (mu
. 1))
+ (3
* (mu
. 3)))
+ ((5
* (mu
. 5))
+ (((
Sum (d
*. o1)),(3
+ 1))
+... ))) by
FLEXARY1: 20,
A27
.= ((((1
* (mu
. 1))
+ (3
* (mu
. 3)))
+ (5
* (mu
. 5)))
+ ((((
id (
dom mu))
(#) mu),7)
+... )) by
A16,
A21
.= ((((1
* (((2
|^ a)
. (sort
_ (1,1)))
+ (((((2
|^ a)
*. sort)
. 1),2)
+... )))
+ (3
* (mu
. 3)))
+ (5
* (mu
. 5)))
+ ((((
id (
dom mu))
(#) mu),7)
+... )) by
A2,
A22
.= ((((1
* (((2
|^ a)
. (sort
_ (1,1)))
+ (((((2
|^ a)
*. sort)
. 1),2)
+... )))
+ (3
* (((2
|^ a)
. (sort
_ (2,1)))
+ (((((2
|^ a)
*. sort)
. 2),2)
+... ))))
+ (5
* (mu
. 5)))
+ ((((
id (
dom mu))
(#) mu),7)
+... )) by
A2,
A24
.= (((((((2
|^ alpha)
. 1)
+ (((2
|^ alpha),2)
+... ))
* 1)
+ ((((2
|^ beta)
. 1)
+ (((2
|^ beta),2)
+... ))
* 3))
+ ((((2
|^ gamma)
. 1)
+ (((2
|^ gamma),2)
+... ))
* 5))
+ ((((
id (
dom mu))
(#) mu),7)
+... )) by
A2,
A26,
A29;
end;
A30: n
= (((((mu
. 1)
* 1)
+ ((mu
. 3)
* 3))
+ ((mu
. 5)
* 5))
+ ((((
id (
dom mu))
(#) mu),7)
+... ))
proof
for j holds ((2
|^ a)
. (sort
_ (j,1)))
= ((2
|^ (a
* (sort
. j)))
. 1) & (((2
|^ a)
*. sort)
. j)
= (2
|^ (a
* (sort
. j)))
proof
let j;
A31: ((2
|^ a)
. (sort
_ (j,1)))
= (((2
|^ a)
*. sort)
_ (j,1)) by
FLEXARY1: 42;
(((2
|^ a)
*. sort)
. j)
= ((2
|^ a)
* (sort
. j)) by
FLEXARY1: 41
.= (2
|^ (a
* (sort
. j))) by
FLEXARY1: 25;
hence thesis by
A31;
end;
then
A32: ((2
|^ a)
. (sort
_ (1,1)))
= ((2
|^ alpha)
. 1) & ((2
|^ a)
. (sort
_ (2,1)))
= ((2
|^ beta)
. 1) & ((2
|^ a)
. (sort
_ (3,1)))
= ((2
|^ gamma)
. 1) & (((2
|^ a)
*. sort)
. 1)
= (2
|^ alpha) & (((2
|^ a)
*. sort)
. 2)
= (2
|^ beta) & (((2
|^ a)
*. sort)
. 3)
= (2
|^ gamma);
A33: (((2
|^ a)
. (sort
_ (1,1)))
+ (((((2
|^ a)
*. sort)
. 1),2)
+... ))
= (mu
. ((2
* 1)
- 1)) by
A2;
A34: (((2
|^ a)
. (sort
_ (2,1)))
+ (((((2
|^ a)
*. sort)
. 2),2)
+... ))
= (mu
. ((2
* 2)
- 1)) by
A2;
(((2
|^ a)
. (sort
_ (3,1)))
+ (((((2
|^ a)
*. sort)
. 3),2)
+... ))
= (mu
. ((2
* 3)
- 1)) by
A2;
hence thesis by
A33,
A34,
A3,
A32;
end;
consider h be
odd-valued
FinSequence such that
A35: h is
non-decreasing & for i holds (
card (
Coim (h,i)))
= (mu
. i) by
Lm3,
A2;
A36: n
= (((((
card (
Coim (h,1)))
* 1)
+ ((
card (
Coim (h,3)))
* 3))
+ ((
card (
Coim (h,5)))
* 5))
+ ((((
id (
dom mu))
(#) mu),7)
+... ))
proof
A37: (mu
. 1)
= (
card (
Coim (h,1))) by
A35;
(mu
. 3)
= (
card (
Coim (h,3))) by
A35;
hence thesis by
A35,
A37,
A30;
end;
n
= (
Sum h)
proof
set I = (
idseq (
len mu));
A38: I
= (
id (
dom mu)) by
FINSEQ_1:def 3;
then ((I
(#) mu)
. 3)
= (3
* (mu
. 3)) by
Lm2;
then
A39: (((I
(#) mu),3)
+... )
= ((3
* (mu
. 3))
+ (((I
(#) mu),(3
+ 1))
+... )) by
FLEXARY1: 20
.= ((3
* (
card (
Coim (h,3))))
+ (((I
(#) mu),(3
+ 1))
+... )) by
A35;
A40: ((I
(#) mu)
. 4)
= (4
* (mu
. 4)) & 4
= (2
* 2) by
A38,
Lm2;
then (mu
. 4)
=
0 by
A2;
then
A41: (((I
(#) mu),4)
+... )
= (
0
+ (((I
(#) mu),(4
+ 1))
+... )) by
A40,
FLEXARY1: 20;
((I
(#) mu)
. 5)
= (5
* (mu
. 5)) by
A38,
Lm2;
then
A42: (((I
(#) mu),5)
+... )
= ((5
* (mu
. 5))
+ (((I
(#) mu),(5
+ 1))
+... )) by
FLEXARY1: 20
.= ((5
* (
card (
Coim (h,5))))
+ (((I
(#) mu),(5
+ 1))
+... )) by
A35;
A43: ((I
(#) mu)
. 6)
= (6
* (mu
. 6)) & 6
= (3
* 2) by
A38,
Lm2;
then (mu
. 6)
=
0 by
A2;
then
A44: (((I
(#) mu),6)
+... )
= (
0
+ (((I
(#) mu),(6
+ 1))
+... )) by
A43,
FLEXARY1: 20;
(2
* 1)
= 2;
then (mu
. 2)
=
0 by
A2;
then (2
* (mu
. 2))
=
0 ;
hence (
Sum h)
= (((1
* (mu
. 1))
+
0 )
+ ((((
id (
dom mu))
(#) mu),3)
+... )) by
Th9,
A35
.= ((1
* (
card (
Coim (h,1))))
+ ((((
id (
dom mu))
(#) mu),3)
+... )) by
A35
.= n by
A36,
A39,
A41,
A38,
A42,
A44;
end;
then
reconsider h as
odd-valued
a_partition of n by
A35,
Def3;
take h;
let j;
let O1 be
odd-valued
FinSequence, a1 be
natural-valued
FinSequence such that
A45: (
len O1)
= (
len d)
= (
len a1) & d
= (O1
(#) (2
|^ a1));
let sort1 be
DoubleReorganization of (
dom d) such that
A46: (1
= (O1
. (sort1
_ (1,1))) & ... & 1
= (O1
. (sort1
_ (1,(
len (sort1
. 1)))))) & (3
= (O1
. (sort1
_ (2,1))) & ... & 3
= (O1
. (sort1
_ (2,(
len (sort1
. 2)))))) & (5
= (O1
. (sort1
_ (3,1))) & ... & 5
= (O1
. (sort1
_ (3,(
len (sort1
. 3)))))) & for i holds ((2
* i)
- 1)
= (O1
. (sort1
_ (i,1))) & ... & ((2
* i)
- 1)
= (O1
. (sort1
_ (i,(
len (sort1
. i)))));
for j st 1
<= j & j
<= (
len d) holds (O
. j)
= (O1
. j) & (a
. j)
= (a1
. j)
proof
let j such that
A48: 1
<= j & j
<= (
len d);
A49: ((O1
. j)
* ((2
|^ a1)
. j))
= ((O1
(#) (2
|^ a1))
. j) by
VALUED_1: 5
.= ((O
. j)
* ((2
|^ a)
. j)) by
VALUED_1: 5,
A1,
A45;
j
in (
dom a) by
A48,
FINSEQ_3: 25,
A1;
then
A50: ((2
|^ a)
. j)
= (2
to_power (a
. j)) by
FLEXARY1:def 4
.= (2
|^ (a
. j));
j
in (
dom a1) by
A48,
FINSEQ_3: 25,
A45;
then
A51: ((2
|^ a1)
. j)
= (2
to_power (a1
. j)) by
FLEXARY1:def 4
.= (2
|^ (a1
. j));
j
in (
dom O) by
A48,
FINSEQ_3: 25,
A1;
then (O
. j) is
odd
Nat by
Def2;
then
consider i1 be
Nat such that
A52: (O
. j)
= ((2
* i1)
+ 1) by
ABIAN: 9;
j
in (
dom O1) by
A48,
FINSEQ_3: 25,
A45;
then (O1
. j) is
odd
Nat by
Def2;
then ex i2 be
Nat st (O1
. j)
= ((2
* i2)
+ 1) by
ABIAN: 9;
hence thesis by
A50,
A51,
A52,
A49,
CARD_4: 4;
end;
then
A53: O
= O1 & a
= a1 by
A45,
A1;
A54: for j holds (
card (
Coim (h,((j
* 2)
- 1))))
= (((2
|^ a1)
. (sort1
_ (j,1)))
+ (((((2
|^ a1)
*. sort1)
. j),2)
+... ))
proof
let j;
A55: ((2
|^ a)
. (sort
_ (j,1)))
= (((2
|^ a)
*. sort)
_ (j,1)) by
FLEXARY1: 42;
A56: (
len (2
|^ a))
= (
len a) by
CARD_1:def 7;
then
A57: (
dom O)
= (
dom d) & (
dom d)
= (
dom a) & (
dom (2
|^ a))
= (
dom a) by
A1,
FINSEQ_3: 29;
(
card (
Coim (h,((j
* 2)
- 1))))
= (mu
. ((2
* j)
- 1))
proof
per cases ;
suppose
A58: j
=
0 ;
then
A59: not ((2
* j)
- 1)
in (
dom mu);
not ((2
* j)
- 1)
in (
rng h) by
A58;
then (h
"
{((2
* j)
- 1)})
=
{} by
FUNCT_1: 72;
then (
Coim (h,((j
* 2)
- 1)))
=
{} by
RELAT_1:def 17;
hence thesis by
A59,
FUNCT_1:def 2;
end;
suppose j
>
0 ;
hence thesis by
A35;
end;
end;
then
A60: (
card (
Coim (h,((j
* 2)
- 1))))
= (((((2
|^ a)
*. sort)
. j)
. 1)
+ (((((2
|^ a)
*. sort)
. j),2)
+... )) by
A2,
A55
.= (
Sum (((2
|^ a)
*. sort)
. j)) by
FLEXARY1: 22;
reconsider S = sort1 as
DoubleReorganization of (
dom (2
|^ a)) by
A56,
A1,
FINSEQ_3: 29;
((2
|^ a1)
. (sort1
_ (j,1)))
= (((2
|^ a1)
*. sort1)
_ (j,1)) by
FLEXARY1: 42;
then
A61: (((2
|^ a1)
. (sort1
_ (j,1)))
+ (((((2
|^ a1)
*. sort1)
. j),2)
+... ))
= (
Sum (((2
|^ a)
*. S)
. j)) by
A53,
FLEXARY1: 22;
A62: sort1 is
odd_organization of O by
A57,
Th4,
A46,
A53;
thus (
card (
Coim (h,((j
* 2)
- 1))))
= ((
Sum ((2
|^ a)
*. sort))
. j) by
FLEXARY1:def 8,
A60
.= ((
Sum ((2
|^ a)
*. S))
. j) by
A62,
Th5
.= (((2
|^ a1)
. (sort1
_ (j,1)))
+ (((((2
|^ a1)
*. sort1)
. j),2)
+... )) by
FLEXARY1:def 8,
A61;
end;
((2
* 1)
- 1)
= 1 & ((2
* 2)
- 1)
= 3 & ((2
* 3)
- 1)
= 5;
hence thesis by
A54;
end;
definition
let n be
Nat;
let p be
one-to-one
a_partition of n;
::
EULRPART:def5
func
Euler_transformation p ->
odd-valued
a_partition of n means
:
Def5: for O be
odd-valued
FinSequence, a be
natural-valued
FinSequence st (
len O)
= (
len p)
= (
len a) & p
= (O
(#) (2
|^ a)) holds for sort be
DoubleReorganization of (
dom p) st (1
= (O
. (sort
_ (1,1))) & ... & 1
= (O
. (sort
_ (1,(
len (sort
. 1)))))) & (3
= (O
. (sort
_ (2,1))) & ... & 3
= (O
. (sort
_ (2,(
len (sort
. 2)))))) & (5
= (O
. (sort
_ (3,1))) & ... & 5
= (O
. (sort
_ (3,(
len (sort
. 3)))))) & for i holds ((2
* i)
- 1)
= (O
. (sort
_ (i,1))) & ... & ((2
* i)
- 1)
= (O
. (sort
_ (i,(
len (sort
. i))))) holds (
card (
Coim (it ,1)))
= (((2
|^ a)
. (sort
_ (1,1)))
+ (((((2
|^ a)
*. sort)
. 1),2)
+... )) & (
card (
Coim (it ,3)))
= (((2
|^ a)
. (sort
_ (2,1)))
+ (((((2
|^ a)
*. sort)
. 2),2)
+... )) & (
card (
Coim (it ,5)))
= (((2
|^ a)
. (sort
_ (3,1)))
+ (((((2
|^ a)
*. sort)
. 3),2)
+... )) & (
card (
Coim (it ,((j
* 2)
- 1))))
= (((2
|^ a)
. (sort
_ (j,1)))
+ (((((2
|^ a)
*. sort)
. j),2)
+... ));
existence by
Th11;
uniqueness
proof
let E1,E2 be
odd-valued
a_partition of n such that
A1: for O be
odd-valued
FinSequence, a be
natural-valued
FinSequence st (
len O)
= (
len p)
= (
len a) & p
= (O
(#) (2
|^ a)) holds for sort be
DoubleReorganization of (
dom p) st (1
= (O
. (sort
_ (1,1))) & ... & 1
= (O
. (sort
_ (1,(
len (sort
. 1)))))) & (3
= (O
. (sort
_ (2,1))) & ... & 3
= (O
. (sort
_ (2,(
len (sort
. 2)))))) & (5
= (O
. (sort
_ (3,1))) & ... & 5
= (O
. (sort
_ (3,(
len (sort
. 3)))))) & for i holds ((2
* i)
- 1)
= (O
. (sort
_ (i,1))) & ... & ((2
* i)
- 1)
= (O
. (sort
_ (i,(
len (sort
. i))))) holds (
card (
Coim (E1,1)))
= (((2
|^ a)
. (sort
_ (1,1)))
+ (((((2
|^ a)
*. sort)
. 1),2)
+... )) & (
card (
Coim (E1,3)))
= (((2
|^ a)
. (sort
_ (2,1)))
+ (((((2
|^ a)
*. sort)
. 2),2)
+... )) & (
card (
Coim (E1,5)))
= (((2
|^ a)
. (sort
_ (3,1)))
+ (((((2
|^ a)
*. sort)
. 3),2)
+... )) & (
card (
Coim (E1,((j
* 2)
- 1))))
= (((2
|^ a)
. (sort
_ (j,1)))
+ (((((2
|^ a)
*. sort)
. j),2)
+... )) and
A2: for O be
odd-valued
FinSequence, a be
natural-valued
FinSequence st (
len O)
= (
len p)
= (
len a) & p
= (O
(#) (2
|^ a)) holds for sort be
DoubleReorganization of (
dom p) st (1
= (O
. (sort
_ (1,1))) & ... & 1
= (O
. (sort
_ (1,(
len (sort
. 1)))))) & (3
= (O
. (sort
_ (2,1))) & ... & 3
= (O
. (sort
_ (2,(
len (sort
. 2)))))) & (5
= (O
. (sort
_ (3,1))) & ... & 5
= (O
. (sort
_ (3,(
len (sort
. 3)))))) & for i holds ((2
* i)
- 1)
= (O
. (sort
_ (i,1))) & ... & ((2
* i)
- 1)
= (O
. (sort
_ (i,(
len (sort
. i))))) holds (
card (
Coim (E2,1)))
= (((2
|^ a)
. (sort
_ (1,1)))
+ (((((2
|^ a)
*. sort)
. 1),2)
+... )) & (
card (
Coim (E2,3)))
= (((2
|^ a)
. (sort
_ (2,1)))
+ (((((2
|^ a)
*. sort)
. 2),2)
+... )) & (
card (
Coim (E2,5)))
= (((2
|^ a)
. (sort
_ (3,1)))
+ (((((2
|^ a)
*. sort)
. 3),2)
+... )) & (
card (
Coim (E2,((j
* 2)
- 1))))
= (((2
|^ a)
. (sort
_ (j,1)))
+ (((((2
|^ a)
*. sort)
. j),2)
+... ));
consider O be
odd-valued
FinSequence, a be
natural-valued
FinSequence such that
A3: (
len O)
= (
len p)
= (
len a) & p
= (O
(#) (2
|^ a)) and (p
. 1)
= ((O
. 1)
* (2
|^ (a
. 1))) & ... & (p
. (
len p))
= ((O
. (
len p))
* (2
|^ (a
. (
len p)))) by
Th6;
reconsider sort = the
odd_organization of O as
DoubleReorganization of (
dom p) by
A3,
FINSEQ_3: 29;
A4: ((2
* 1)
- 1)
= 1;
A5: ((2
* 2)
- 1)
= 3;
((2
* 3)
- 1)
= 5;
then
A6: (1
= (O
. (sort
_ (1,1))) & ... & 1
= (O
. (sort
_ (1,(
len (sort
. 1)))))) & (3
= (O
. (sort
_ (2,1))) & ... & 3
= (O
. (sort
_ (2,(
len (sort
. 2)))))) & (5
= (O
. (sort
_ (3,1))) & ... & 5
= (O
. (sort
_ (3,(
len (sort
. 3)))))) & for i holds ((2
* i)
- 1)
= (O
. (sort
_ (i,1))) & ... & ((2
* i)
- 1)
= (O
. (sort
_ (i,(
len (sort
. i))))) by
A4,
Def4,
A5;
A7: for x be
object holds (
card (
Coim (E1,x)))
= (
card (
Coim (E2,x)))
proof
let x be
object;
per cases ;
suppose
A8: not x
in
OddNAT ;
(
rng E1)
c=
OddNAT & (
rng E2)
c=
OddNAT by
Def1;
then (E1
"
{x})
=
{} & (E2
"
{x})
=
{} by
A8,
FUNCT_1: 72;
then (
Coim (E1,x))
=
{} & (
Coim (E2,x))
=
{} by
RELAT_1:def 17;
hence thesis;
end;
suppose x
in
OddNAT ;
then
consider i be
Element of
NAT such that
A9: x
= ((2
* i)
+ 1) by
FIB_NUM2:def 4;
set i1 = (i
+ 1);
(
card (
Coim (E1,((i1
* 2)
- 1))))
= (((2
|^ a)
. (sort
_ (i1,1)))
+ (((((2
|^ a)
*. sort)
. i1),2)
+... )) by
A1,
A3,
A6
.= (
card (
Coim (E2,((i1
* 2)
- 1)))) by
A6,
A3,
A2;
hence thesis by
A9;
end;
end;
thus E1
= E2
proof
(
rng E1)
c=
REAL ;
then
reconsider e1 = E1 as
FinSequence of
REAL by
FINSEQ_1:def 4;
(
rng E2)
c=
REAL ;
then
reconsider e2 = E2 as
FinSequence of
REAL by
FINSEQ_1:def 4;
e1
= e2 by
RFINSEQ2: 19,
A7,
CLASSES1:def 10;
hence thesis;
end;
end;
end
theorem ::
EULRPART:12
Th12: for n be
Nat, p be
one-to-one
a_partition of n, e be
odd-valued
a_partition of n holds e
= (
Euler_transformation p) iff for O be
odd-valued
FinSequence, a be
natural-valued
FinSequence, sort be
odd_organization of O st (
len O)
= (
len p)
= (
len a) & p
= (O
(#) (2
|^ a)) holds for j holds (
card (
Coim (e,((j
* 2)
- 1))))
= (((((2
|^ a)
*. sort)
. j),1)
+... )
proof
let n be
Nat, p be
one-to-one
a_partition of n, e be
odd-valued
a_partition of n;
thus e
= (
Euler_transformation p) implies for O be
odd-valued
FinSequence, a be
natural-valued
FinSequence, sort be
odd_organization of O st (
len O)
= (
len p)
= (
len a) & p
= (O
(#) (2
|^ a)) holds for j holds (
card (
Coim (e,((j
* 2)
- 1))))
= (((((2
|^ a)
*. sort)
. j),1)
+... )
proof
assume
A1: e
= (
Euler_transformation p);
let O be
odd-valued
FinSequence, a be
natural-valued
FinSequence, sort be
odd_organization of O such that
A2: (
len O)
= (
len p)
= (
len a) & p
= (O
(#) (2
|^ a));
let j;
(
len (2
|^ a))
= (
len a) by
CARD_1:def 7;
then
A3: (
dom O)
= (
dom p) & (
dom p)
= (
dom a) & (
dom (2
|^ a))
= (
dom a) by
A2,
FINSEQ_3: 29;
reconsider S = sort as
DoubleReorganization of (
dom p) by
A2,
FINSEQ_3: 29;
A4: ((2
* 1)
- 1)
= 1;
A5: ((2
* 2)
- 1)
= 3;
((2
* 3)
- 1)
= 5;
then
A6: (1
= (O
. (S
_ (1,1))) & ... & 1
= (O
. (S
_ (1,(
len (S
. 1)))))) & (3
= (O
. (S
_ (2,1))) & ... & 3
= (O
. (S
_ (2,(
len (S
. 2)))))) & (5
= (O
. (S
_ (3,1))) & ... & 5
= (O
. (S
_ (3,(
len (S
. 3)))))) & for i holds ((2
* i)
- 1)
= (O
. (S
_ (i,1))) & ... & ((2
* i)
- 1)
= (O
. (S
_ (i,(
len (S
. i))))) by
A4,
Def4,
A5;
((2
|^ a)
. (sort
_ (j,1)))
= (((2
|^ a)
*. sort)
_ (j,1)) by
FLEXARY1: 42;
then (
card (
Coim (e,((j
* 2)
- 1))))
= (((((2
|^ a)
*. sort)
. j)
. 1)
+ (((((2
|^ a)
*. sort)
. j),(1
+ 1))
+... )) by
A6,
A2,
A1,
Def5
.= (((((2
|^ a)
*. S)
. j),1)
+... ) by
FLEXARY1: 20,
A3;
hence thesis;
end;
assume
A7: for O be
odd-valued
FinSequence, a be
natural-valued
FinSequence, sort be
odd_organization of O st (
len O)
= (
len p)
= (
len a) & p
= (O
(#) (2
|^ a)) holds for j holds (
card (
Coim (e,((j
* 2)
- 1))))
= (((((2
|^ a)
*. sort)
. j),1)
+... );
for j holds for O be
odd-valued
FinSequence, a be
natural-valued
FinSequence st (
len O)
= (
len p)
= (
len a) & p
= (O
(#) (2
|^ a)) holds for sort be
DoubleReorganization of (
dom p) st (1
= (O
. (sort
_ (1,1))) & ... & 1
= (O
. (sort
_ (1,(
len (sort
. 1)))))) & (3
= (O
. (sort
_ (2,1))) & ... & 3
= (O
. (sort
_ (2,(
len (sort
. 2)))))) & (5
= (O
. (sort
_ (3,1))) & ... & 5
= (O
. (sort
_ (3,(
len (sort
. 3)))))) & for i holds ((2
* i)
- 1)
= (O
. (sort
_ (i,1))) & ... & ((2
* i)
- 1)
= (O
. (sort
_ (i,(
len (sort
. i))))) holds (
card (
Coim (e,1)))
= (((2
|^ a)
. (sort
_ (1,1)))
+ (((((2
|^ a)
*. sort)
. 1),2)
+... )) & (
card (
Coim (e,3)))
= (((2
|^ a)
. (sort
_ (2,1)))
+ (((((2
|^ a)
*. sort)
. 2),2)
+... )) & (
card (
Coim (e,5)))
= (((2
|^ a)
. (sort
_ (3,1)))
+ (((((2
|^ a)
*. sort)
. 3),2)
+... )) & (
card (
Coim (e,((j
* 2)
- 1))))
= (((2
|^ a)
. (sort
_ (j,1)))
+ (((((2
|^ a)
*. sort)
. j),2)
+... ))
proof
let j;
let O be
odd-valued
FinSequence, a be
natural-valued
FinSequence;
assume
A8: (
len O)
= (
len p)
= (
len a) & p
= (O
(#) (2
|^ a));
let sort be
DoubleReorganization of (
dom p);
assume
A9: (1
= (O
. (sort
_ (1,1))) & ... & 1
= (O
. (sort
_ (1,(
len (sort
. 1)))))) & (3
= (O
. (sort
_ (2,1))) & ... & 3
= (O
. (sort
_ (2,(
len (sort
. 2)))))) & (5
= (O
. (sort
_ (3,1))) & ... & 5
= (O
. (sort
_ (3,(
len (sort
. 3)))))) & for i holds ((2
* i)
- 1)
= (O
. (sort
_ (i,1))) & ... & ((2
* i)
- 1)
= (O
. (sort
_ (i,(
len (sort
. i)))));
A10: for j holds (
card (
Coim (e,((j
* 2)
- 1))))
= (((2
|^ a)
. (sort
_ (j,1)))
+ (((((2
|^ a)
*. sort)
. j),2)
+... ))
proof
let j;
(
len (2
|^ a))
= (
len a) by
CARD_1:def 7;
then
A11: (
dom O)
= (
dom p) & (
dom p)
= (
dom a) & (
dom (2
|^ a))
= (
dom a) by
A8,
FINSEQ_3: 29;
reconsider S = sort as
DoubleReorganization of (
dom p);
A12: sort is
odd_organization of O by
A11,
A9,
Th4;
((2
|^ a)
. (sort
_ (j,1)))
= (((2
|^ a)
*. sort)
_ (j,1)) by
FLEXARY1: 42;
then (((((2
|^ a)
*. S)
. j),1)
+... )
= (((2
|^ a)
. (sort
_ (j,1)))
+ (((((2
|^ a)
*. sort)
. j),(1
+ 1))
+... )) by
A11,
FLEXARY1: 20;
hence thesis by
A12,
A7,
A8;
end;
((1
* 2)
- 1)
= 1 & ((2
* 2)
- 1)
= 3 & ((3
* 2)
- 1)
= 5;
hence thesis by
A10;
end;
hence thesis by
Def5;
end;
registration
cluster
one-to-one
non-decreasing ->
increasing for
real-valued
Function;
coherence
proof
let f be
real-valued
Function;
assume
A1: f is
one-to-one
non-decreasing;
for e1,e2 be
ExtReal st e1
in (
dom f) & e2
in (
dom f) & e1
< e2 holds (f
. e1)
< (f
. e2)
proof
let e1,e2 be
ExtReal such that
A2: e1
in (
dom f) & e2
in (
dom f) & e1
< e2;
(f
. e1)
<= (f
. e2) by
A1,
A2,
VALUED_0:def 15;
hence thesis by
XXREAL_0: 1,
A2,
A1;
end;
hence thesis by
VALUED_0:def 13;
end;
end
theorem ::
EULRPART:13
Th13: for O be
odd-valued
FinSequence, a be
natural-valued
FinSequence, s be
odd_organization of O st (
len O)
= (
len a) & (O
(#) (2
|^ a)) is
one-to-one holds ((a
*. s)
. i) is
one-to-one
proof
let O be
odd-valued
FinSequence, a be
natural-valued
FinSequence, s be
odd_organization of O;
set p = (O
(#) (2
|^ a));
assume
A1: (
len O)
= (
len a) & p is
one-to-one;
then
reconsider S = s as
DoubleReorganization of (
dom a) by
FINSEQ_3: 29;
A2: ((a
*. S)
. i)
= (a
* (S
. i)) by
FLEXARY1: 41;
thus ((a
*. s)
. i) is
one-to-one
proof
assume not ((a
*. s)
. i) is
one-to-one;
then
consider x1,x2 be
object such that
A3: x1
in (
dom ((a
*. S)
. i)) & x2
in (
dom ((a
*. S)
. i)) & (((a
*. S)
. i)
. x1)
= (((a
*. S)
. i)
. x2) & x1
<> x2;
reconsider x1, x2 as
Nat by
A3;
set s1 = (s
_ (i,x1)), s2 = (s
_ (i,x2));
A4: x1
in (
dom (s
. i)) & s1
in (
dom a) & (a
. s1)
= (((a
*. S)
. i)
. x1) by
A2,
A3,
FUNCT_1: 11,
FUNCT_1: 12;
A5: x2
in (
dom (S
. i)) & s2
in (
dom a) & (a
. s2)
= (((a
*. S)
. i)
. x2) by
A2,
A3,
FUNCT_1: 11,
FUNCT_1: 12;
A6: ((2
* i)
- 1)
= (O
. (s
_ (i,1))) & ... & ((2
* i)
- 1)
= (O
. (s
_ (i,(
len (s
. i))))) by
Def4;
1
<= x1 & x1
<= (
len (s
. i)) by
A4,
FINSEQ_3: 25;
then
A7: ((2
* i)
- 1)
= (O
. s1) by
A6;
1
<= x2 & x2
<= (
len (s
. i)) by
A5,
FINSEQ_3: 25;
then
A8: ((2
* i)
- 1)
= (O
. s2) by
A6;
O is (
len O)
-element by
CARD_1:def 7;
then
A9: (
len p)
= (
len a) by
A1,
CARD_1:def 7;
A10: 1
<= ((s
. i)
. x1) & ((s
. i)
. x1)
<= (
len a) by
A4,
FINSEQ_3: 25;
1
<= ((s
. i)
. x2) & ((s
. i)
. x2)
<= (
len a) by
A5,
FINSEQ_3: 25;
then
A11: s2
in (
dom p) & s1
in (
dom p) by
A9,
A10,
FINSEQ_3: 25;
A12: (p
. s1)
= ((O
. s1)
* ((2
|^ a)
. s1)) by
VALUED_1: 5;
A13: ((2
|^ a)
. s1)
= (2
to_power (a
. s1)) by
A4,
FLEXARY1:def 4;
(p
. s2)
= ((O
. s2)
* ((2
|^ a)
. s2)) by
VALUED_1: 5;
then (p
. s2)
= (p
. s1) by
A5,
FLEXARY1:def 4,
A13,
A12,
A7,
A8,
A4,
A3;
then s2
= s1 by
A11,
A1;
hence thesis by
A4,
A5,
FUNCT_1:def 4,
A3;
end;
end;
Lm4: for p1,p2 be
one-to-one
a_partition of n st (
Euler_transformation p1)
= (
Euler_transformation p2) holds (
rng p1)
c= (
rng p2)
proof
let p1,p2 be
one-to-one
a_partition of n;
assume
A1: (
Euler_transformation p1)
= (
Euler_transformation p2);
consider O1 be
odd-valued
FinSequence, a1 be
natural-valued
FinSequence such that
A2: (
len O1)
= (
len p1)
= (
len a1) & p1
= (O1
(#) (2
|^ a1)) and
A3: (p1
. 1)
= ((O1
. 1)
* (2
|^ (a1
. 1))) & ... & (p1
. (
len p1))
= ((O1
. (
len p1))
* (2
|^ (a1
. (
len p1)))) by
Th6;
set s1 = the
odd_organization of O1;
reconsider S1 = s1 as
DoubleReorganization of (
dom a1) by
FINSEQ_3: 29,
A2;
consider O2 be
odd-valued
FinSequence, a2 be
natural-valued
FinSequence such that
A4: (
len O2)
= (
len p2)
= (
len a2) & p2
= (O2
(#) (2
|^ a2)) and
A5: (p2
. 1)
= ((O2
. 1)
* (2
|^ (a2
. 1))) & ... & (p2
. (
len p2))
= ((O2
. (
len p2))
* (2
|^ (a2
. (
len p2)))) by
Th6;
set s2 = the
odd_organization of O2;
reconsider S2 = s2 as
DoubleReorganization of (
dom a2) by
FINSEQ_3: 29,
A4;
A6: for j holds (
rng ((a1
*. s1)
. j))
= (
rng ((a2
*. s2)
. j))
proof
let j;
A7: (
card (
Coim ((
Euler_transformation p1),((j
* 2)
- 1))))
= (((((2
|^ a1)
*. s1)
. j),1)
+... ) by
A2,
Th12
.= ((((2
|^ a1)
* (s1
. j)),1)
+... ) by
FLEXARY1: 41
.= (((2
|^ (a1
* (s1
. j))),1)
+... ) by
FLEXARY1: 25
.= (((2
|^ (a1
* (S1
. j)))
. 1)
+ (((2
|^ (a1
* (S1
. j))),(1
+ 1))
+... )) by
FLEXARY1: 20;
A8: ((a2
*. S2)
. j)
= (a2
* (S2
. j)) by
FLEXARY1: 41;
then
A9: (a2
* (S2
. j)) is
one-to-one
natural-valued by
A4,
Th13;
((a1
*. S1)
. j)
= (a1
* (S1
. j)) by
FLEXARY1: 41;
then
A10: (a1
* (S1
. j)) is
one-to-one
natural-valued by
A2,
Th13;
(
card (
Coim ((
Euler_transformation p2),((j
* 2)
- 1))))
= (((((2
|^ a2)
*. s2)
. j),1)
+... ) by
A4,
Th12
.= ((((2
|^ a2)
* (s2
. j)),1)
+... ) by
FLEXARY1: 41
.= (((2
|^ (a2
* (s2
. j))),1)
+... ) by
FLEXARY1: 25
.= (((2
|^ (a2
* (S2
. j)))
. 1)
+ (((2
|^ (a2
* (S2
. j))),(1
+ 1))
+... )) by
FLEXARY1: 20;
then (
rng (a2
* (S2
. j)))
= (
rng (a1
* (S1
. j))) by
A7,
A1,
FLEXARY1: 30,
A9,
A10;
hence thesis by
A8,
FLEXARY1: 41;
end;
let y be
object;
assume y
in (
rng p1);
then
consider x be
object such that
A11: x
in (
dom p1) & (p1
. x)
= y by
FUNCT_1:def 3;
reconsider x as
Nat by
A11;
1
<= x & x
<= (
len p1) by
A11,
FINSEQ_3: 25;
then
A12: (p1
. x)
= ((O1
. x)
* (2
|^ (a1
. x))) by
A3;
(
dom p1)
= (
dom O1) by
A2,
FINSEQ_3: 29;
then x
in (
Values s1) by
FLEXARY1:def 7,
A11;
then
consider i,j be
object such that
A13: i
in (
dom s1) & j
in (
dom (s1
. i)) & x
= ((s1
. i)
. j) by
FLEXARY1: 1;
reconsider i, j as
Nat by
A13;
(
len ((a1
*. S1)
. i))
= (
len (S1
. i)) by
CARD_1:def 7;
then
A14: (
dom ((a1
*. S1)
. i))
= (
dom (S1
. i)) by
FINSEQ_3: 29;
then (((a1
*. S1)
. i)
. j)
in (
rng ((a1
*. s1)
. i)) by
A13,
FUNCT_1:def 3;
then (((a1
*. S1)
. i)
. j)
in (
rng ((a2
*. s2)
. i)) by
A6;
then
consider z be
object such that
A15: z
in (
dom ((a2
*. S2)
. i)) & (((a2
*. S2)
. i)
. z)
= (((a1
*. S1)
. i)
. j) by
FUNCT_1:def 3;
reconsider z as
Nat by
A15;
set Z = ((S2
. i)
. z);
A16: ((a1
*. S1)
. i)
= (a1
* (S1
. i)) by
FLEXARY1: 41;
A17: ((a2
*. S2)
. i)
= (a2
* (S2
. i)) by
FLEXARY1: 41;
A18: (
len ((a2
*. S2)
. i))
= (
len (S2
. i)) by
CARD_1:def 7;
A19: (((a2
*. S2)
. i)
. z)
= (a2
. Z) & Z
in (
dom a2) by
A17,
A15,
FUNCT_1: 11,
FUNCT_1: 12;
then
A20: Z
in (
dom p2) by
FINSEQ_3: 29,
A4;
1
<= Z & Z
<= (
len p2) by
A19,
A4,
FINSEQ_3: 25;
then
A21: (p2
. Z)
= ((O2
. Z)
* (2
|^ (a2
. Z))) by
A5;
A22: (p2
. Z)
in (
rng p2) by
A20,
FUNCT_1:def 3;
A23: 1
<= j & j
<= (
len (s1
. i)) by
A13,
FINSEQ_3: 25;
((2
* i)
- 1)
= (O1
. (s1
_ (i,1))) & ... & ((2
* i)
- 1)
= (O1
. (s1
_ (i,(
len (s1
. i))))) by
Def4;
then
A24: (O1
. (s1
_ (i,j)))
= ((2
* i)
- 1) by
A23;
A25: 1
<= z & z
<= (
len (s2
. i)) by
FINSEQ_3: 25,
A18,
A15;
((2
* i)
- 1)
= (O2
. (s2
_ (i,1))) & ... & ((2
* i)
- 1)
= (O2
. (s2
_ (i,(
len (s2
. i))))) by
Def4;
then (O2
. (s2
_ (i,z)))
= ((2
* i)
- 1) by
A25;
hence thesis by
A24,
A13,
A22,
A21,
A15,
A16,
A14,
FUNCT_1: 12,
A19,
A12,
A11;
end;
theorem ::
EULRPART:14
Th14: for p1,p2 be
one-to-one
a_partition of n st (
Euler_transformation p1)
= (
Euler_transformation p2) holds p1
= p2
proof
let p1,p2 be
one-to-one
a_partition of n;
assume (
Euler_transformation p1)
= (
Euler_transformation p2);
then
A1: (
rng p1)
= (
rng p2) by
Lm4;
then p1 is
FinSequence of
REAL & p2 is
FinSequence of
REAL by
FINSEQ_1:def 4;
hence thesis by
INTEGRA3: 6,
A1;
end;
theorem ::
EULRPART:15
Th15: for e be
odd-valued
a_partition of n holds ex p be
one-to-one
a_partition of n st e
= (
Euler_transformation p)
proof
let e be
odd-valued
a_partition of n;
A1: (
Sum e)
= n by
Def3;
deffunc
h(
object) = (
card (
Coim (e,$1)));
consider H be
FinSequence such that
A2: (
len H)
= n & for k st k
in (
dom H) holds (H
. k)
=
h(k) from
FINSEQ_1:sch 2;
(
rng H)
c=
NAT
proof
let y be
object;
assume y
in (
rng H);
then
consider x be
object such that
A3: x
in (
dom H) & (H
. x)
= y by
FUNCT_1:def 3;
reconsider x as
Nat by
A3;
(H
. x)
= (
card (
Coim (e,x))) by
A3,
A2;
hence thesis by
A3;
end;
then
reconsider H as
natural-valued
FinSequence by
VALUED_0:def 6;
A4: (
dom H)
= (
Seg (
len H)) by
FINSEQ_1:def 3;
A5: (
Sum e)
= (
Sum ((
idseq n)
(#) H))
proof
A6: for i st i
in (
dom e) holds
0
<= (e
. i);
for i holds (
card (
Coim (e,i)))
= (H
. i)
proof
let i;
per cases by
FINSEQ_3: 25;
suppose i
in (
dom H);
hence thesis by
A2;
end;
suppose i
< 1;
then
A8: not i
in (
rng e) & not i
in (
dom H) by
NAT_1: 14,
FINSEQ_3: 25;
then (H
. i)
=
0 & (e
"
{i})
=
{} by
FUNCT_1:def 2,
FUNCT_1: 72;
then (
Coim (e,i))
=
{} by
RELAT_1:def 17;
hence thesis by
A8,
FUNCT_1:def 2;
end;
suppose
A9: i
> (
len H);
then
A10: not i
in (
dom H) by
FINSEQ_3: 25;
(
Coim (e,i))
=
{}
proof
assume (
Coim (e,i))
<>
{} ;
then (e
"
{i})
<>
{} by
RELAT_1:def 17;
then i
in (
rng e) by
FUNCT_1: 72;
then
consider x be
object such that
A11: x
in (
dom e) & (e
. x)
= i by
FUNCT_1:def 3;
reconsider x as
Nat by
A11;
i
<= (
Sum e) by
A11,
A6,
MATRPROB: 5;
hence thesis by
Def3,
A9,
A2;
end;
hence thesis by
A10,
FUNCT_1:def 2;
end;
end;
hence (
Sum e)
= (((1
* (H
. 1))
+ (2
* (H
. 2)))
+ ((((
id (
dom H))
(#) H),3)
+... )) by
Th9
.= (((1
* (H
. 1))
+ (((
id (
dom H))
(#) H)
. 2))
+ ((((
id (
dom H))
(#) H),3)
+... )) by
Lm2
.= (((((
id (
dom H))
(#) H)
. 1)
+ (((
id (
dom H))
(#) H)
. 2))
+ ((((
id (
dom H))
(#) H),3)
+... )) by
Lm2
.= ((((
id (
dom H))
(#) H)
. 1)
+ ((((
id (
dom H))
(#) H)
. 2)
+ ((((
id (
dom H))
(#) H),(2
+ 1))
+... )))
.= ((((
id (
dom H))
(#) H)
. 1)
+ ((((
id (
dom H))
(#) H),2)
+... )) by
FLEXARY1: 20
.= (
Sum ((
idseq n)
(#) H)) by
A4,
A2,
FLEXARY1: 22;
end;
defpred
F[
Nat,
object] means ex f be
increasing
natural-valued
FinSequence st (H
. $1)
= (((2
|^ f)
. 1)
+ (((2
|^ f),2)
+... )) & $2
= ($1
* (2
|^ f));
ex p be
FinSequence of (
NAT
* ) st (
dom p)
= (
Seg (
len H)) & for k st k
in (
Seg (
len H)) holds
F[k, (p
. k)]
proof
A12: for k st k
in (
Seg (
len H)) holds ex x be
object st
F[k, x]
proof
let k;
assume k
in (
Seg (
len H));
consider f be
increasing
natural-valued
FinSequence such that
A13: (H
. k)
= (((2
|^ f)
. 1)
+ (((2
|^ f),2)
+... )) by
FLEXARY1: 31;
take G = (k
* (2
|^ f));
thus thesis by
A13;
end;
consider p be
FinSequence such that
A14: (
dom p)
= (
Seg (
len H)) & for k st k
in (
Seg (
len H)) holds
F[k, (p
. k)] from
FINSEQ_1:sch 1(
A12);
(
rng p)
c= (
NAT
* )
proof
let y be
object;
assume y
in (
rng p);
then
consider x be
object such that
A15: x
in (
dom p) & (p
. x)
= y by
FUNCT_1:def 3;
reconsider x as
Nat by
A15;
consider f be
increasing
natural-valued
FinSequence such that
A16: (H
. x)
= (((2
|^ f)
. 1)
+ (((2
|^ f),2)
+... )) & (p
. x)
= (x
* (2
|^ f)) by
A15,
A14;
(
rng (x
* (2
|^ f)))
c=
NAT by
VALUED_0:def 6;
then (x
* (2
|^ f)) is
FinSequence of
NAT by
FINSEQ_1:def 4;
hence thesis by
FINSEQ_1:def 11,
A15,
A16;
end;
then p is
FinSequence of (
NAT
* ) by
FINSEQ_1:def 4;
hence thesis by
A14;
end;
then
consider p be
FinSequence of (
NAT
* ) such that
A17: (
dom p)
= (
Seg (
len H)) & for k st k
in (
Seg (
len H)) holds
F[k, (p
. k)];
A18: for k st (p
. k)
<>
{} holds k is
odd
proof
let k;
assume
A19: (p
. k)
<>
{} ;
then
A20: k
in (
dom p) by
FUNCT_1:def 2;
then
consider f be
increasing
natural-valued
FinSequence such that
A21: (H
. k)
= (((2
|^ f)
. 1)
+ (((2
|^ f),2)
+... )) & (p
. k)
= (k
* (2
|^ f)) by
A17;
consider j be
object such that
A22: j
in (
dom (p
. k)) by
A19,
XBOOLE_0:def 1;
reconsider j as
Nat by
A22;
A23: (
dom (p
. k))
= (
dom (2
|^ f)) by
A21,
VALUED_1:def 5;
then j
in (
dom f) by
A22,
FLEXARY1:def 4;
then ((2
|^ f)
. j)
= (2
to_power (f
. j)) by
FLEXARY1:def 4
.= (2
|^ (f
. j));
then
A24: ((2
|^ f)
. j)
>
0 by
NEWTON: 83;
for i st i
in (
dom (2
|^ f)) holds
0
<= ((2
|^ f)
. i);
then
A25: (
Sum (2
|^ f))
>
0 by
A22,
A24,
A23,
RVSUM_1: 85;
A26: (
rng e)
c=
OddNAT by
Def1;
(H
. k)
= (
card (
Coim (e,k))) by
A20,
A4,
A17,
A2;
then (
Coim (e,k))
<>
{} by
FLEXARY1: 22,
A25,
A21;
then (e
"
{k})
<>
{} by
RELAT_1:def 17;
then k
in
OddNAT by
FUNCT_1: 72,
A26;
hence thesis by
Th2;
end;
A27: H is n
-element
complex-valued by
A2,
CARD_1:def 7;
(
len p)
= n by
A17,
A2,
FINSEQ_1:def 3;
then
A28: (
len (
Sum p))
= n by
CARD_1:def 7;
now
let i;
assume 1
<= i & i
<= n;
then i
in (
Seg (
len H)) by
A2;
then
consider f be
increasing
natural-valued
FinSequence such that
A29: (H
. i)
= (((2
|^ f)
. 1)
+ (((2
|^ f),2)
+... )) & (p
. i)
= (i
* (2
|^ f)) by
A17;
thus ((
Sum p)
. i)
= (
Sum (i
* (2
|^ f))) by
A29,
FLEXARY1:def 8
.= (i
* (
Sum (2
|^ f))) by
RVSUM_1: 87
.= (i
* (H
. i)) by
A29,
FLEXARY1: 22
.= (((
idseq n)
(#) H)
. i) by
A4,
A2,
Lm2;
end;
then
A30: (
Sum p)
= ((
idseq n)
(#) H) by
CARD_1:def 7,
A27,
A28;
set NC = (
NAT
-concatenation ), np = (NC
"**" p);
(
NAT
* )
c= (
COMPLEX
* ) by
NUMBERS: 20,
FINSEQ_1: 62;
then
reconsider p1 = p as
FinSequence of (
COMPLEX
* ) by
FINSEQ_2: 24;
(
rng np)
c=
REAL ;
then
reconsider np as
FinSequence of
REAL by
FINSEQ_1:def 4;
set sp = (
sort_a np);
(
Sum ((
COMPLEX
-concatenation )
"**" p1))
= (
Sum np) by
FLEXARY1: 5;
then
A31: (
Sum np)
= n by
FLEXARY1: 48,
A30,
A5,
A1;
A32: (
Sum sp)
= n by
RFINSEQ2:def 6,
RFINSEQ: 9,
A31;
A33: (
rng sp)
= (
rng np) by
RFINSEQ2:def 6,
CLASSES1: 75;
A34: (
rng np)
= (
Values p) by
FLEXARY1: 4;
sp is
one-to-one
a_partition of n
proof
not
0
in (
rng sp)
proof
assume
0
in (
rng sp);
then
consider x,y be
object such that
A35: x
in (
dom p) & y
in (
dom (p
. x)) &
0
= ((p
. x)
. y) by
A33,
A34,
FLEXARY1: 1;
reconsider x, y as
Nat by
A35;
consider f be
increasing
natural-valued
FinSequence such that
A36: (H
. x)
= (((2
|^ f)
. 1)
+ (((2
|^ f),2)
+... )) & (p
. x)
= (x
* (2
|^ f)) by
A35,
A17;
A37: 1
<= x by
A35,
FINSEQ_3: 25;
A38: ((x
* (2
|^ f))
. y)
= (x
* ((2
|^ f)
. y)) by
RVSUM_1: 45;
y
in (
dom (2
|^ f)) by
A35,
A36,
VALUED_1:def 5;
then y
in (
dom f) by
FLEXARY1:def 4;
then ((2
|^ f)
. y)
= (2
to_power (f
. y)) by
FLEXARY1:def 4
.= (2
|^ (f
. y));
then ((2
|^ f)
. y)
>
0 by
NEWTON: 83;
hence thesis by
A35,
A36,
A37,
A38;
end;
then
A39: sp is
non-zero by
ORDINAL1:def 15;
A40: (
Sum sp)
= n by
RFINSEQ2:def 6,
RFINSEQ: 9,
A31;
A41: sp is
natural-valued by
A34,
A33,
VALUED_0:def 6;
sp is
one-to-one
proof
now
let x1,x2 be
set such that
A42: x1
in (
dom sp) & x2
in (
dom sp) & (sp
. x1)
= (sp
. x2);
(sp
. x1)
in
{(sp
. x1)} by
TARSKI:def 1;
then
A43: x1
in (sp
"
{(sp
. x1)}) & x2
in (sp
"
{(sp
. x1)}) by
FUNCT_1:def 7,
A42;
assume x1
<> x2;
then not (sp
"
{(sp
. x1)}) is
trivial by
A43,
SUBSET_1:def 7;
then
A44: (
card (sp
"
{(sp
. x1)}))
>= 2 by
NAT_D: 60;
(
card (
Coim (sp,(sp
. x1))))
= (
card (
Coim (np,(sp
. x1)))) by
CLASSES1:def 10,
RFINSEQ2:def 6;
then (
card (
Coim (np,(sp
. x1))))
>= 2 by
A44,
RELAT_1:def 17;
then
A45: (
card (np
"
{(sp
. x1)}))
>= 2 by
RELAT_1:def 17;
then not (np
"
{(sp
. x1)}) is
trivial by
NAT_D: 60;
then
consider d1,d2 be
Element of (np
"
{(sp
. x1)}) such that
A46: d1
<> d2 by
SUBSET_1:def 7;
(np
"
{(sp
. x1)}) is non
empty by
A45;
then
A47: d1
in (
dom np) & (np
. d1)
in
{(sp
. x1)} & d2
in (
dom np) & (np
. d2)
in
{(sp
. x1)} by
FUNCT_1:def 7;
then
A48: (np
. d1)
= (sp
. x1) & (np
. d2)
= (sp
. x1) by
TARSKI:def 1;
consider n1,k1 be
Nat such that
A49: (n1
+ 1)
in (
dom p) & k1
in (
dom (p
. (n1
+ 1))) & d1
= (k1
+ (
len (NC
"**" (p
| n1)))) by
FLEXARY1: 6,
A47;
set n2 = (n1
+ 1);
A50: (np
. d1)
= ((p
. n2)
. k1) by
FLEXARY1: 8,
A49;
consider f be
increasing
natural-valued
FinSequence such that
A51: (H
. n2)
= (((2
|^ f)
. 1)
+ (((2
|^ f),2)
+... )) & (p
. n2)
= (n2
* (2
|^ f)) by
A49,
A17;
A52: ((p
. n2)
. k1)
= (n2
* ((2
|^ f)
. k1)) by
A51,
RVSUM_1: 45;
k1
in (
dom (2
|^ f)) by
A49,
A51,
VALUED_1:def 5;
then
A53: k1
in (
dom f) by
FLEXARY1:def 4;
then
A54: ((2
|^ f)
. k1)
= (2
to_power (f
. k1)) by
FLEXARY1:def 4
.= (2
|^ (f
. k1));
consider n3,k3 be
Nat such that
A55: (n3
+ 1)
in (
dom p) & k3
in (
dom (p
. (n3
+ 1))) & d2
= (k3
+ (
len (NC
"**" (p
| n3)))) by
FLEXARY1: 6,
A47;
set n4 = (n3
+ 1);
consider g be
increasing
natural-valued
FinSequence such that
A56: (H
. n4)
= (((2
|^ g)
. 1)
+ (((2
|^ g),2)
+... )) & (p
. n4)
= (n4
* (2
|^ g)) by
A55,
A17;
k3
in (
dom (2
|^ g)) by
A55,
A56,
VALUED_1:def 5;
then
A57: k3
in (
dom g) by
FLEXARY1:def 4;
then
A58: ((2
|^ g)
. k3)
= (2
to_power (g
. k3)) by
FLEXARY1:def 4
.= (2
|^ (g
. k3));
A59: (p
. n4)
<>
{} & (p
. n2)
<>
{} by
A55,
A49;
then
consider c2 be
Nat such that
A60: n2
= ((2
* c2)
+ 1) by
A18,
ABIAN: 9;
consider c4 be
Nat such that
A61: n4
= ((2
* c4)
+ 1) by
A59,
A18,
ABIAN: 9;
((p
. n2)
. k1)
= ((p
. n4)
. k3) by
A48,
A50,
FLEXARY1: 8,
A55;
then
A62: (n2
* (2
|^ (f
. k1)))
= (n4
* (2
|^ (g
. k3))) by
A56,
RVSUM_1: 45,
A58,
A52,
A54;
then
A63: c2
= c4 & (f
. k1)
= (g
. k3) by
A60,
A61,
CARD_4: 4;
n4
= n2 by
A62,
A60,
A61,
CARD_4: 4;
then
A64: f
= g by
A51,
A56,
FLEXARY1: 27;
f is
one-to-one;
hence thesis by
A57,
A53,
A64,
A63,
A49,
A55,
A60,
A61,
A46;
end;
hence thesis;
end;
hence thesis by
Def3,
A39,
A41,
A40;
end;
then
reconsider sp as
one-to-one
a_partition of n;
take sp;
for O be
odd-valued
FinSequence, a be
natural-valued
FinSequence, sort be
odd_organization of O st (
len O)
= (
len sp)
= (
len a) & sp
= (O
(#) (2
|^ a)) holds for j holds (
card (
Coim (e,((j
* 2)
- 1))))
= (((((2
|^ a)
*. sort)
. j),1)
+... )
proof
let O be
odd-valued
FinSequence, a be
natural-valued
FinSequence, sort be
odd_organization of O such that
A65: (
len O)
= (
len sp)
= (
len a) & sp
= (O
(#) (2
|^ a));
let j;
A66: (
dom a)
= (
dom sp)
= (
dom O) & (
dom a)
= (
dom (2
|^ a)) by
FLEXARY1:def 4,
FINSEQ_3: 29,
A65;
then
reconsider S = sort as
DoubleReorganization of (
dom (2
|^ a));
A67: ((2
* j)
- 1)
= (O
. (sort
_ (j,1))) & ... & ((2
* j)
- 1)
= (O
. (sort
_ (j,(
len (sort
. j))))) by
Def4;
per cases ;
suppose
A68: j
< 1;
then j
=
0 by
NAT_1: 14;
then not ((2
* j)
- 1)
in (
rng e);
then (e
"
{((2
* j)
- 1)})
=
{} by
FUNCT_1: 72;
then
A69: (
Coim (e,((2
* j)
- 1)))
=
{} by
RELAT_1:def 17;
not j
in (
dom ((2
|^ a)
*. S)) by
FINSEQ_3: 25,
A68;
then (
Sum (((2
|^ a)
*. S)
. j))
=
0 by
FUNCT_1:def 2,
RVSUM_1: 72;
hence (
card (
Coim (e,((j
* 2)
- 1))))
= (((((2
|^ a)
*. sort)
. j),1)
+... ) by
FLEXARY1: 21,
A69;
end;
suppose
A70: ((j
* 2)
- 1)
> n;
A71: (
Coim (e,((j
* 2)
- 1)))
=
{}
proof
assume (
Coim (e,((j
* 2)
- 1)))
<>
{} ;
then (e
"
{((j
* 2)
- 1)})
<>
0 by
RELAT_1:def 17;
then ((2
* j)
- 1)
in (
rng e) by
FUNCT_1: 72;
then
consider w be
object such that
A72: w
in (
dom e) & (e
. w)
= ((2
* j)
- 1) by
FUNCT_1:def 3;
for i st i
in (
dom e) holds
0
<= (e
. i);
hence thesis by
A72,
MATRPROB: 5,
A1,
A70;
end;
(((2
|^ a)
*. S)
. j)
=
{}
proof
set L = (
len (S
. j)), SjL = ((S
. j)
. L);
assume
A74: (((2
|^ a)
*. S)
. j)
<>
{} ;
(
len (((2
|^ a)
*. S)
. j))
= L by
CARD_1:def 7;
then
A75: L
>= 1 by
A74,
NAT_1: 14;
then
A76: ((2
* j)
- 1)
= (O
. (sort
_ (j,L))) by
A67;
(S
. j)
<>
{} by
A74;
then
A77: j
in (
dom S) by
FUNCT_1:def 2;
L
in (
dom (S
. j)) by
A75,
FINSEQ_3: 25;
then
A78: SjL
in (
Values S) by
FLEXARY1: 1,
A77;
then
A79: SjL
in (
dom O) by
FLEXARY1:def 7;
then
A80: (sp
. SjL)
= ((O
. SjL)
* ((2
|^ a)
. SjL)) by
VALUED_1:def 4,
A66,
A65;
A81: ((2
|^ a)
. SjL)
= (2
to_power (a
. SjL)) by
FLEXARY1:def 4,
A66,
A79;
A82: for i st i
in (
dom sp) holds
0
<= (sp
. i);
(2
|^ (a
. SjL))
>
0 by
NEWTON: 83;
then (2
|^ (a
. SjL))
>= 1 by
NAT_1: 14;
then
A83: (sp
. SjL)
>= (1
* ((2
* j)
- 1)) by
A76,
A80,
A81,
XREAL_1: 66;
SjL
in (
dom sp) by
A78,
FLEXARY1:def 7,
A66;
then (sp
. SjL)
<= n by
A82,
MATRPROB: 5,
A32;
hence thesis by
A83,
A70,
XXREAL_0: 2;
end;
hence (
card (
Coim (e,((j
* 2)
- 1))))
= (((((2
|^ a)
*. sort)
. j),1)
+... ) by
RVSUM_1: 72,
FLEXARY1: 21,
A71;
end;
suppose
A84: j
>= 1 & ((j
* 2)
- 1)
<= n;
set J = ((j
* 2)
- 1);
(2
* j)
>= (2
* 1) by
A84,
XREAL_1: 64;
then
A85: J
>= (2
- 1) by
XREAL_1: 9;
then
consider f be
increasing
natural-valued
FinSequence such that
A86: (H
. J)
= (((2
|^ f)
. 1)
+ (((2
|^ f),2)
+... )) & (p
. J)
= (J
* (2
|^ f)) by
A84,
FINSEQ_3: 25,
A2,
A17,
A4;
reconsider j1 = (j
- 1) as
Nat by
A84;
A87: J
= ((2
* j1)
+ 1);
A88: (((2
|^ a)
*. S)
. j) is
FinSequence of
REAL by
RVSUM_1: 145;
A89: (2
|^ f) is
FinSequence of
REAL by
RVSUM_1: 145;
for x be
object holds (
card (
Coim ((((2
|^ a)
*. sort)
. j),x)))
= (
card (
Coim ((2
|^ f),x)))
proof
let y be
object;
set AS = (((2
|^ a)
*. sort)
. j);
A90: (((2
|^ a)
*. S)
. j)
= ((2
|^ a)
* (S
. j)) by
FLEXARY1: 41;
A91: ((a
*. sort)
. j) is
one-to-one by
Th13,
A65;
A92: y
in (
rng AS) implies y
in (
rng (2
|^ f))
proof
assume y
in (
rng AS);
then
consider x be
object such that
A93: x
in (
dom (((2
|^ a)
*. S)
. j)) & ((((2
|^ a)
*. S)
. j)
. x)
= y by
FUNCT_1:def 3;
reconsider x as
Nat by
A93;
set Sjx = ((S
. j)
. x);
A94: x
in (
dom (S
. j)) & Sjx
in (
dom (2
|^ a)) by
A90,
A93,
FUNCT_1: 11;
then
A95: 1
<= x & x
<= (
len (S
. j)) by
FINSEQ_3: 25;
J
= (O
. (sort
_ (j,1))) & ... & J
= (O
. (sort
_ (j,(
len (sort
. j))))) by
Def4;
then
A96: J
= (O
. (sort
_ (j,x))) by
A95;
Sjx
in (
dom a) by
A94,
FLEXARY1:def 4;
then
A97: ((2
|^ a)
. Sjx)
= (2
to_power (a
. Sjx)) by
FLEXARY1:def 4;
(sp
. Sjx)
in (
Values p) by
A66,
A94,
FUNCT_1:def 3,
A33,
A34;
then
consider u,w be
object such that
A98: u
in (
dom p) & w
in (
dom (p
. u)) & (sp
. Sjx)
= ((p
. u)
. w) by
FLEXARY1: 1;
reconsider u, w as
Nat by
A98;
(p
. u)
<>
{} by
A98;
then
consider s be
Nat such that
A99: u
= ((2
* s)
+ 1) by
A18,
ABIAN: 9;
consider fu be
increasing
natural-valued
FinSequence such that
A100: (H
. u)
= (((2
|^ fu)
. 1)
+ (((2
|^ fu),2)
+... )) & (p
. u)
= (u
* (2
|^ fu)) by
A17,
A98;
A101: ((p
. u)
. w)
= (u
* ((2
|^ fu)
. w)) by
A100,
RVSUM_1: 45;
w
in (
dom (2
|^ fu)) by
A100,
A98,
VALUED_1:def 5;
then w
in (
dom fu) by
FLEXARY1:def 4;
then
A102: ((2
|^ fu)
. w)
= (2
to_power (fu
. w)) by
FLEXARY1:def 4;
then
A103: (J
* (2
|^ (a
. Sjx)))
= (((2
* s)
+ 1)
* (2
|^ (fu
. w))) by
A98,
A101,
A99,
A65,
VALUED_1: 5,
A97,
A96;
then
A104: j1
= s & (a
. Sjx)
= (fu
. w) by
CARD_4: 4,
A87;
A105: (u
* (2
|^ fu))
= (J
* (2
|^ f)) by
A103,
CARD_4: 4,
A87,
A100,
A86,
A99;
then
A106: w
in (
dom (2
|^ f)) by
A98,
A100,
VALUED_1:def 5;
(u
* ((2
|^ fu)
. w))
= (J
* ((2
|^ f)
. w)) by
A105,
A100,
A101,
RVSUM_1: 45;
then
A107: ((2
|^ fu)
. w)
= ((2
|^ f)
. w) by
A104,
A99,
XCMPLX_1: 5;
y
= ((2
|^ fu)
. w) by
A102,
A104,
A90,
A93,
FUNCT_1: 12,
A97;
hence thesis by
A106,
A107,
FUNCT_1:def 3;
end;
A108: y
in (
rng (2
|^ f)) implies y
in (
rng AS)
proof
assume y
in (
rng (2
|^ f));
then
consider x be
object such that
A109: x
in (
dom (2
|^ f)) & ((2
|^ f)
. x)
= y by
FUNCT_1:def 3;
reconsider x as
Nat by
A109;
x
in (
dom f) by
A109,
FLEXARY1:def 4;
then
A110: ((2
|^ f)
. x)
= (2
to_power (f
. x)) by
FLEXARY1:def 4;
A111: x
in (
dom (p
. J)) by
A86,
A109,
VALUED_1:def 5;
set pJx = ((p
. J)
. x);
J
in (
dom p) by
A85,
A84,
A2,
A17;
then pJx
in (
rng sp) by
FLEXARY1: 1,
A111,
A33,
A34;
then
consider w be
object such that
A112: w
in (
dom sp) & (sp
. w)
= pJx by
FUNCT_1:def 3;
reconsider w as
Nat by
A112;
A113: (sp
. w)
= ((O
. w)
* ((2
|^ a)
. w)) by
A65,
VALUED_1: 5;
(
Values sort)
= (
dom O) by
FLEXARY1:def 7;
then
consider r,t be
object such that
A114: r
in (
dom S) & t
in (
dom (S
. r)) & ((S
. r)
. t)
= w by
FLEXARY1: 1,
A112,
A66;
reconsider r, t as
Nat by
A114;
1
<= r by
A114,
FINSEQ_3: 25;
then
reconsider r1 = (r
- 1) as
Nat;
set R = ((2
* r)
- 1);
A115: R
= (O
. (sort
_ (r,1))) & ... & R
= (O
. (sort
_ (r,(
len (sort
. r))))) by
Def4;
1
<= t & t
<= (
len (S
. r)) by
A114,
FINSEQ_3: 25;
then
A116: R
= (O
. (sort
_ (r,t))) by
A115;
A117: ((2
|^ a)
. w)
= (2
to_power (a
. w)) by
A112,
A66,
FLEXARY1:def 4;
then (J
* (2
|^ (f
. x)))
= (((2
* r1)
+ 1)
* (2
|^ (a
. w))) by
A110,
A113,
A86,
RVSUM_1: 45,
A112,
A116,
A114;
then
A118: j1
= r1 & (f
. x)
= (a
. w) by
CARD_4: 4,
A87;
then
A119: t
in (
dom ((2
|^ a)
* (S
. j))) by
A112,
A66,
A114,
FUNCT_1: 11;
then (((2
|^ a)
* (S
. j))
. t)
= ((2
|^ f)
. x) by
A114,
A118,
FUNCT_1: 12,
A110,
A117;
hence thesis by
A109,
A119,
A90,
FUNCT_1:def 3;
end;
per cases ;
suppose
A120: (
Coim (AS,y))
=
{} ;
(
Coim ((2
|^ f),y))
=
{}
proof
assume (
Coim ((2
|^ f),y))
<>
{} ;
then ((2
|^ f)
"
{y})
<>
{} by
RELAT_1:def 17;
then (AS
"
{y})
<>
{} by
FUNCT_1: 72,
A108;
hence thesis by
RELAT_1:def 17,
A120;
end;
hence thesis by
A120;
end;
suppose (
Coim (AS,y))
<>
{} ;
then
A121: (AS
"
{y})
<>
{} by
RELAT_1:def 17;
then
A122: y
in (
rng AS) by
FUNCT_1: 72;
A123: (2
+
0 )
= 2;
(((2
|^ a)
*. S)
. j)
= (2
|^ (a
* (S
. j))) by
FLEXARY1: 25,
A90
.= (2
|^ ((a
*. S)
. j)) by
FLEXARY1: 41;
then ex x st (AS
"
{y})
=
{x} by
A91,
A123,
A122,
FUNCT_1: 74;
then
A124: (
card (
Coim (AS,y)))
= 1 by
CARD_2: 42,
RELAT_1:def 17;
ex x st ((2
|^ f)
"
{y})
=
{x} by
A121,
FUNCT_1: 72,
A92,
A123,
FUNCT_1: 74;
hence thesis by
CARD_2: 42,
A124,
RELAT_1:def 17;
end;
end;
then (
Sum (((2
|^ a)
*. S)
. j))
= (
Sum (2
|^ f)) by
CLASSES1:def 10,
A89,
A88,
RFINSEQ: 9
.= (((2
|^ f)
. 1)
+ (((2
|^ f),2)
+... )) by
FLEXARY1: 22
.= (
card (
Coim (e,J))) by
A85,
A84,
FINSEQ_3: 25,
A2,
A86;
hence thesis by
FLEXARY1: 21;
end;
end;
hence thesis by
Th12;
end;
begin
::$Notion-Name
theorem ::
EULRPART:16
(
card the set of all p where p be
odd-valued
a_partition of n)
= (
card the set of all p where p be
one-to-one
a_partition of n)
proof
set OddVall = the set of all p where p be
odd-valued
a_partition of n;
set OneToOne = the set of all p where p be
one-to-one
a_partition of n;
A1: the
odd-valued
a_partition of n
in OddVall;
ex E be
Function of OneToOne, OddVall st for p be
one-to-one
a_partition of n holds (E
. p)
= (
Euler_transformation p)
proof
defpred
P[
object,
object] means for p be
one-to-one
a_partition of n st p
= $1 holds $2
= (
Euler_transformation p);
A2: for x be
object st x
in OneToOne holds ex y be
object st y
in OddVall &
P[x, y]
proof
let x be
object;
assume x
in OneToOne;
then ex q be
one-to-one
a_partition of n st x
= q & not contradiction;
then
reconsider x as
one-to-one
a_partition of n;
take (
Euler_transformation x);
thus thesis;
end;
consider f be
Function of OneToOne, OddVall such that
A3: for x be
object st x
in OneToOne holds
P[x, (f
. x)] from
FUNCT_2:sch 1(
A2);
take f;
let p be
one-to-one
a_partition of n;
p
in OneToOne;
hence thesis by
A3;
end;
then
consider E be
Function of OneToOne, OddVall such that
A4: for p be
one-to-one
a_partition of n holds (E
. p)
= (
Euler_transformation p);
A5: (
dom E)
= OneToOne by
A1,
FUNCT_2:def 1;
OddVall
c= (
rng E)
proof
let p be
object;
assume p
in OddVall;
then ex o be
odd-valued
a_partition of n st o
= p & not contradiction;
then
reconsider p as
odd-valued
a_partition of n;
consider q be
one-to-one
a_partition of n such that
A6: p
= (
Euler_transformation q) by
Th15;
q
in (
dom E) & p
= (E
. q) by
A6,
A4,
A5;
hence thesis by
FUNCT_1:def 3;
end;
then
A7: (
rng E)
= OddVall;
E is
one-to-one
proof
let p1,p2 be
object;
assume
A8: p1
in (
dom E) & p2
in (
dom E) & (E
. p1)
= (E
. p2);
then (ex o be
one-to-one
a_partition of n st o
= p1 & not contradiction) & ex o be
one-to-one
a_partition of n st o
= p2 & not contradiction by
A5;
then
reconsider p1, p2 as
one-to-one
a_partition of n;
(E
. p1)
= (
Euler_transformation p1) & (E
. p2)
= (
Euler_transformation p2) by
A4;
hence thesis by
Th14,
A8;
end;
hence thesis by
A5,
A7,
CARD_1: 70;
end;