fdiff_10.miz
begin
reserve x for
Real,
Z for
open
Subset of
REAL ;
theorem ::
FDIFF_10:1
Z
c= (
dom (
tan
*
cot )) implies (
tan
*
cot )
is_differentiable_on Z & for x st x
in Z holds (((
tan
*
cot )
`| Z)
. x)
= ((1
/ ((
cos
. (
cot
. x))
^2 ))
* (
- (1
/ ((
sin
. x)
^2 ))))
proof
assume
A1: Z
c= (
dom (
tan
*
cot ));
A2: for x st x
in Z holds (
cos
. (
cot
. x))
<>
0
proof
let x;
assume x
in Z;
then (
cot
. x)
in (
dom
tan ) by
A1,
FUNCT_1: 11;
hence thesis by
FDIFF_8: 1;
end;
A3: for x st x
in Z holds (
sin
. x)
<>
0
proof
let x;
assume x
in Z;
then x
in (
dom (
cos
/
sin )) by
A1,
FUNCT_1: 11;
hence thesis by
FDIFF_8: 2;
end;
A4: for x st x
in Z holds (
tan
*
cot )
is_differentiable_in x
proof
let x;
assume
A5: x
in Z;
then (
cos
. (
cot
. x))
<>
0 by
A2;
then
A6:
tan
is_differentiable_in (
cot
. x) by
FDIFF_7: 46;
(
sin
. x)
<>
0 by
A3,
A5;
then
cot
is_differentiable_in x by
FDIFF_7: 47;
hence thesis by
A6,
FDIFF_2: 13;
end;
then
A7: (
tan
*
cot )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
tan
*
cot )
`| Z)
. x)
= ((1
/ ((
cos
. (
cot
. x))
^2 ))
* (
- (1
/ ((
sin
. x)
^2 ))))
proof
let x;
assume
A8: x
in Z;
then
A9: (
cos
. (
cot
. x))
<>
0 by
A2;
then
A10:
tan
is_differentiable_in (
cot
. x) by
FDIFF_7: 46;
A11: (
sin
. x)
<>
0 by
A3,
A8;
then
cot
is_differentiable_in x by
FDIFF_7: 47;
then (
diff ((
tan
*
cot ),x))
= ((
diff (
tan ,(
cot
. x)))
* (
diff (
cot ,x))) by
A10,
FDIFF_2: 13
.= ((1
/ ((
cos
. (
cot
. x))
^2 ))
* (
diff (
cot ,x))) by
A9,
FDIFF_7: 46
.= ((1
/ ((
cos
. (
cot
. x))
^2 ))
* (
- (1
/ ((
sin
. x)
^2 )))) by
A11,
FDIFF_7: 47;
hence thesis by
A7,
A8,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_10:2
Z
c= (
dom (
tan
*
tan )) implies (
tan
*
tan )
is_differentiable_on Z & for x st x
in Z holds (((
tan
*
tan )
`| Z)
. x)
= ((1
/ ((
cos
. (
tan
. x))
^2 ))
* (1
/ ((
cos
. x)
^2 )))
proof
assume
A1: Z
c= (
dom (
tan
*
tan ));
A2: for x st x
in Z holds (
cos
. (
tan
. x))
<>
0
proof
let x;
assume x
in Z;
then (
tan
. x)
in (
dom
tan ) by
A1,
FUNCT_1: 11;
hence thesis by
FDIFF_8: 1;
end;
A3: for x st x
in Z holds (
cos
. x)
<>
0
proof
let x;
assume x
in Z;
then x
in (
dom (
sin
/
cos )) by
A1,
FUNCT_1: 11;
hence thesis by
FDIFF_8: 1;
end;
A4: for x st x
in Z holds (
tan
*
tan )
is_differentiable_in x
proof
let x;
assume
A5: x
in Z;
then (
cos
. (
tan
. x))
<>
0 by
A2;
then
A6:
tan
is_differentiable_in (
tan
. x) by
FDIFF_7: 46;
(
cos
. x)
<>
0 by
A3,
A5;
then
tan
is_differentiable_in x by
FDIFF_7: 46;
hence thesis by
A6,
FDIFF_2: 13;
end;
then
A7: (
tan
*
tan )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
tan
*
tan )
`| Z)
. x)
= ((1
/ ((
cos
. (
tan
. x))
^2 ))
* (1
/ ((
cos
. x)
^2 )))
proof
let x;
assume
A8: x
in Z;
then
A9: (
cos
. (
tan
. x))
<>
0 by
A2;
then
A10:
tan
is_differentiable_in (
tan
. x) by
FDIFF_7: 46;
A11: (
cos
. x)
<>
0 by
A3,
A8;
then
tan
is_differentiable_in x by
FDIFF_7: 46;
then (
diff ((
tan
*
tan ),x))
= ((
diff (
tan ,(
tan
. x)))
* (
diff (
tan ,x))) by
A10,
FDIFF_2: 13
.= ((1
/ ((
cos
. (
tan
. x))
^2 ))
* (
diff (
tan ,x))) by
A9,
FDIFF_7: 46
.= ((1
/ ((
cos
. (
tan
. x))
^2 ))
* (1
/ ((
cos
. x)
^2 ))) by
A11,
FDIFF_7: 46;
hence thesis by
A7,
A8,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_10:3
Z
c= (
dom (
cot
*
cot )) implies (
cot
*
cot )
is_differentiable_on Z & for x st x
in Z holds (((
cot
*
cot )
`| Z)
. x)
= ((1
/ ((
sin
. (
cot
. x))
^2 ))
* (1
/ ((
sin
. x)
^2 )))
proof
assume
A1: Z
c= (
dom (
cot
*
cot ));
A2: for x st x
in Z holds (
sin
. (
cot
. x))
<>
0
proof
let x;
assume x
in Z;
then (
cot
. x)
in (
dom
cot ) by
A1,
FUNCT_1: 11;
hence thesis by
FDIFF_8: 2;
end;
A3: for x st x
in Z holds (
sin
. x)
<>
0
proof
let x;
assume x
in Z;
then x
in (
dom (
cos
/
sin )) by
A1,
FUNCT_1: 11;
hence thesis by
FDIFF_8: 2;
end;
A4: for x st x
in Z holds (
cot
*
cot )
is_differentiable_in x
proof
let x;
assume
A5: x
in Z;
then (
sin
. (
cot
. x))
<>
0 by
A2;
then
A6:
cot
is_differentiable_in (
cot
. x) by
FDIFF_7: 47;
(
sin
. x)
<>
0 by
A3,
A5;
then
cot
is_differentiable_in x by
FDIFF_7: 47;
hence thesis by
A6,
FDIFF_2: 13;
end;
then
A7: (
cot
*
cot )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cot
*
cot )
`| Z)
. x)
= ((1
/ ((
sin
. (
cot
. x))
^2 ))
* (1
/ ((
sin
. x)
^2 )))
proof
let x;
assume
A8: x
in Z;
then
A9: (
sin
. (
cot
. x))
<>
0 by
A2;
then
A10:
cot
is_differentiable_in (
cot
. x) by
FDIFF_7: 47;
A11: (
sin
. x)
<>
0 by
A3,
A8;
then
cot
is_differentiable_in x by
FDIFF_7: 47;
then (
diff ((
cot
*
cot ),x))
= ((
diff (
cot ,(
cot
. x)))
* (
diff (
cot ,x))) by
A10,
FDIFF_2: 13
.= ((
- (1
/ ((
sin
. (
cot
. x))
^2 )))
* (
diff (
cot ,x))) by
A9,
FDIFF_7: 47
.= ((
- (1
/ ((
sin
. (
cot
. x))
^2 )))
* (
- (1
/ ((
sin
. x)
^2 )))) by
A11,
FDIFF_7: 47;
hence thesis by
A7,
A8,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_10:4
Z
c= (
dom (
cot
*
tan )) implies (
cot
*
tan )
is_differentiable_on Z & for x st x
in Z holds (((
cot
*
tan )
`| Z)
. x)
= ((
- (1
/ ((
sin
. (
tan
. x))
^2 )))
* (1
/ ((
cos
. x)
^2 )))
proof
assume
A1: Z
c= (
dom (
cot
*
tan ));
A2: for x st x
in Z holds (
sin
. (
tan
. x))
<>
0
proof
let x;
assume x
in Z;
then (
tan
. x)
in (
dom
cot ) by
A1,
FUNCT_1: 11;
hence thesis by
FDIFF_8: 2;
end;
A3: for x st x
in Z holds (
cos
. x)
<>
0
proof
let x;
assume x
in Z;
then x
in (
dom (
sin
/
cos )) by
A1,
FUNCT_1: 11;
hence thesis by
FDIFF_8: 1;
end;
A4: for x st x
in Z holds (
cot
*
tan )
is_differentiable_in x
proof
let x;
assume
A5: x
in Z;
then (
sin
. (
tan
. x))
<>
0 by
A2;
then
A6:
cot
is_differentiable_in (
tan
. x) by
FDIFF_7: 47;
(
cos
. x)
<>
0 by
A3,
A5;
then
tan
is_differentiable_in x by
FDIFF_7: 46;
hence thesis by
A6,
FDIFF_2: 13;
end;
then
A7: (
cot
*
tan )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cot
*
tan )
`| Z)
. x)
= ((
- (1
/ ((
sin
. (
tan
. x))
^2 )))
* (1
/ ((
cos
. x)
^2 )))
proof
let x;
assume
A8: x
in Z;
then
A9: (
sin
. (
tan
. x))
<>
0 by
A2;
then
A10:
cot
is_differentiable_in (
tan
. x) by
FDIFF_7: 47;
A11: (
cos
. x)
<>
0 by
A3,
A8;
then
tan
is_differentiable_in x by
FDIFF_7: 46;
then (
diff ((
cot
*
tan ),x))
= ((
diff (
cot ,(
tan
. x)))
* (
diff (
tan ,x))) by
A10,
FDIFF_2: 13
.= ((
- (1
/ ((
sin
. (
tan
. x))
^2 )))
* (
diff (
tan ,x))) by
A9,
FDIFF_7: 47
.= ((
- (1
/ ((
sin
. (
tan
. x))
^2 )))
* (1
/ ((
cos
. x)
^2 ))) by
A11,
FDIFF_7: 46;
hence thesis by
A7,
A8,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_10:5
Th5: Z
c= (
dom (
tan
-
cot )) implies (
tan
-
cot )
is_differentiable_on Z & for x st x
in Z holds (((
tan
-
cot )
`| Z)
. x)
= ((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 )))
proof
assume
A1: Z
c= (
dom (
tan
-
cot ));
then
A2: Z
c= ((
dom
tan )
/\ (
dom
cot )) by
VALUED_1: 12;
then
A3: Z
c= (
dom
tan ) by
XBOOLE_1: 18;
for x st x
in Z holds
tan
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A3,
FDIFF_8: 1;
hence thesis by
FDIFF_7: 46;
end;
then
A4:
tan
is_differentiable_on Z by
A3,
FDIFF_1: 9;
A5: Z
c= (
dom
cot ) by
A2,
XBOOLE_1: 18;
for x st x
in Z holds
cot
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A5,
FDIFF_8: 2;
hence thesis by
FDIFF_7: 47;
end;
then
A6:
cot
is_differentiable_on Z by
A5,
FDIFF_1: 9;
for x st x
in Z holds (((
tan
-
cot )
`| Z)
. x)
= ((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 )))
proof
let x;
assume
A7: x
in Z;
then
A8: (
sin
. x)
<>
0 by
A5,
FDIFF_8: 2;
A9: (
cos
. x)
<>
0 by
A3,
A7,
FDIFF_8: 1;
(((
tan
-
cot )
`| Z)
. x)
= ((
diff (
tan ,x))
- (
diff (
cot ,x))) by
A1,
A6,
A4,
A7,
FDIFF_1: 19
.= ((1
/ ((
cos
. x)
^2 ))
- (
diff (
cot ,x))) by
A9,
FDIFF_7: 46
.= ((1
/ ((
cos
. x)
^2 ))
- (
- (1
/ ((
sin
. x)
^2 )))) by
A8,
FDIFF_7: 47
.= ((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 )));
hence thesis;
end;
hence thesis by
A1,
A6,
A4,
FDIFF_1: 19;
end;
theorem ::
FDIFF_10:6
Th6: Z
c= (
dom (
tan
+
cot )) implies (
tan
+
cot )
is_differentiable_on Z & for x st x
in Z holds (((
tan
+
cot )
`| Z)
. x)
= ((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 )))
proof
assume
A1: Z
c= (
dom (
tan
+
cot ));
then
A2: Z
c= ((
dom
tan )
/\ (
dom
cot )) by
VALUED_1:def 1;
then
A3: Z
c= (
dom
tan ) by
XBOOLE_1: 18;
for x st x
in Z holds
tan
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A3,
FDIFF_8: 1;
hence thesis by
FDIFF_7: 46;
end;
then
A4:
tan
is_differentiable_on Z by
A3,
FDIFF_1: 9;
A5: Z
c= (
dom
cot ) by
A2,
XBOOLE_1: 18;
for x st x
in Z holds
cot
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A5,
FDIFF_8: 2;
hence thesis by
FDIFF_7: 47;
end;
then
A6:
cot
is_differentiable_on Z by
A5,
FDIFF_1: 9;
for x st x
in Z holds (((
tan
+
cot )
`| Z)
. x)
= ((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 )))
proof
let x;
assume
A7: x
in Z;
then
A8: (
sin
. x)
<>
0 by
A5,
FDIFF_8: 2;
A9: (
cos
. x)
<>
0 by
A3,
A7,
FDIFF_8: 1;
(((
tan
+
cot )
`| Z)
. x)
= ((
diff (
tan ,x))
+ (
diff (
cot ,x))) by
A1,
A6,
A4,
A7,
FDIFF_1: 18
.= ((1
/ ((
cos
. x)
^2 ))
+ (
diff (
cot ,x))) by
A9,
FDIFF_7: 46
.= ((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 ))) by
A8,
FDIFF_7: 47;
hence thesis;
end;
hence thesis by
A1,
A6,
A4,
FDIFF_1: 18;
end;
theorem ::
FDIFF_10:7
(
sin
*
sin )
is_differentiable_on Z & for x st x
in Z holds (((
sin
*
sin )
`| Z)
. x)
= ((
cos
. (
sin
. x))
* (
cos
. x))
proof
A1: for x st x
in Z holds (
sin
*
sin )
is_differentiable_in x
proof
let x;
assume x
in Z;
A2:
sin
is_differentiable_in (
sin
. x) by
SIN_COS: 64;
sin
is_differentiable_in x by
SIN_COS: 64;
hence thesis by
A2,
FDIFF_2: 13;
end;
(
rng
sin )
c=
REAL ;
then
A3: (
dom (
sin
*
sin ))
=
REAL by
RELAT_1: 27,
SIN_COS: 24;
then
A4: (
sin
*
sin )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sin
*
sin )
`| Z)
. x)
= ((
cos
. (
sin
. x))
* (
cos
. x))
proof
let x;
assume
A5: x
in Z;
A6:
sin
is_differentiable_in (
sin
. x) by
SIN_COS: 64;
sin
is_differentiable_in x by
SIN_COS: 64;
then (
diff ((
sin
*
sin ),x))
= ((
diff (
sin ,(
sin
. x)))
* (
diff (
sin ,x))) by
A6,
FDIFF_2: 13
.= ((
cos
. (
sin
. x))
* (
diff (
sin ,x))) by
SIN_COS: 64
.= ((
cos
. (
sin
. x))
* (
cos
. x)) by
SIN_COS: 64;
hence thesis by
A4,
A5,
FDIFF_1:def 7;
end;
hence thesis by
A3,
A1,
FDIFF_1: 9;
end;
theorem ::
FDIFF_10:8
(
sin
*
cos )
is_differentiable_on Z & for x st x
in Z holds (((
sin
*
cos )
`| Z)
. x)
= (
- ((
cos
. (
cos
. x))
* (
sin
. x)))
proof
A1: for x st x
in Z holds (
sin
*
cos )
is_differentiable_in x
proof
let x;
assume x
in Z;
A2:
sin
is_differentiable_in (
cos
. x) by
SIN_COS: 64;
cos
is_differentiable_in x by
SIN_COS: 63;
hence thesis by
A2,
FDIFF_2: 13;
end;
(
rng
cos )
c= (
dom
cos ) by
SIN_COS: 24;
then
A3: (
dom (
sin
*
cos ))
=
REAL by
RELAT_1: 27,
SIN_COS: 24;
then
A4: (
sin
*
cos )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sin
*
cos )
`| Z)
. x)
= (
- ((
cos
. (
cos
. x))
* (
sin
. x)))
proof
let x;
assume
A5: x
in Z;
A6:
sin
is_differentiable_in (
cos
. x) by
SIN_COS: 64;
cos
is_differentiable_in x by
SIN_COS: 63;
then (
diff ((
sin
*
cos ),x))
= ((
diff (
sin ,(
cos
. x)))
* (
diff (
cos ,x))) by
A6,
FDIFF_2: 13
.= ((
cos
. (
cos
. x))
* (
diff (
cos ,x))) by
SIN_COS: 64
.= ((
cos
. (
cos
. x))
* (
- (
sin
. x))) by
SIN_COS: 63;
hence thesis by
A4,
A5,
FDIFF_1:def 7;
end;
hence thesis by
A3,
A1,
FDIFF_1: 9;
end;
theorem ::
FDIFF_10:9
(
cos
*
sin )
is_differentiable_on Z & for x st x
in Z holds (((
cos
*
sin )
`| Z)
. x)
= (
- ((
sin
. (
sin
. x))
* (
cos
. x)))
proof
A1: for x st x
in Z holds (
cos
*
sin )
is_differentiable_in x
proof
let x;
assume x
in Z;
A2:
cos
is_differentiable_in (
sin
. x) by
SIN_COS: 63;
sin
is_differentiable_in x by
SIN_COS: 64;
hence thesis by
A2,
FDIFF_2: 13;
end;
(
rng
sin )
c= (
dom
sin ) by
SIN_COS: 24;
then
A3: (
dom (
cos
*
sin ))
=
REAL by
RELAT_1: 27,
SIN_COS: 24;
then
A4: (
cos
*
sin )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cos
*
sin )
`| Z)
. x)
= (
- ((
sin
. (
sin
. x))
* (
cos
. x)))
proof
let x;
assume
A5: x
in Z;
A6:
cos
is_differentiable_in (
sin
. x) by
SIN_COS: 63;
sin
is_differentiable_in x by
SIN_COS: 64;
then (
diff ((
cos
*
sin ),x))
= ((
diff (
cos ,(
sin
. x)))
* (
diff (
sin ,x))) by
A6,
FDIFF_2: 13
.= ((
- (
sin
. (
sin
. x)))
* (
diff (
sin ,x))) by
SIN_COS: 63
.= ((
- (
sin
. (
sin
. x)))
* (
cos
. x)) by
SIN_COS: 64;
hence thesis by
A4,
A5,
FDIFF_1:def 7;
end;
hence thesis by
A3,
A1,
FDIFF_1: 9;
end;
theorem ::
FDIFF_10:10
(
cos
*
cos )
is_differentiable_on Z & for x st x
in Z holds (((
cos
*
cos )
`| Z)
. x)
= ((
sin
. (
cos
. x))
* (
sin
. x))
proof
A1: for x st x
in Z holds (
cos
*
cos )
is_differentiable_in x
proof
let x;
assume x
in Z;
A2:
cos
is_differentiable_in (
cos
. x) by
SIN_COS: 63;
cos
is_differentiable_in x by
SIN_COS: 63;
hence thesis by
A2,
FDIFF_2: 13;
end;
(
rng
cos )
c=
REAL ;
then
A3: (
dom (
cos
*
cos ))
=
REAL by
RELAT_1: 27,
SIN_COS: 24;
then
A4: (
cos
*
cos )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cos
*
cos )
`| Z)
. x)
= ((
sin
. (
cos
. x))
* (
sin
. x))
proof
let x;
assume
A5: x
in Z;
A6:
cos
is_differentiable_in (
cos
. x) by
SIN_COS: 63;
cos
is_differentiable_in x by
SIN_COS: 63;
then (
diff ((
cos
*
cos ),x))
= ((
diff (
cos ,(
cos
. x)))
* (
diff (
cos ,x))) by
A6,
FDIFF_2: 13
.= ((
- (
sin
. (
cos
. x)))
* (
diff (
cos ,x))) by
SIN_COS: 63
.= ((
- (
sin
. (
cos
. x)))
* (
- (
sin
. x))) by
SIN_COS: 63;
hence thesis by
A4,
A5,
FDIFF_1:def 7;
end;
hence thesis by
A3,
A1,
FDIFF_1: 9;
end;
theorem ::
FDIFF_10:11
Z
c= (
dom (
cos
(#)
cot )) implies (
cos
(#)
cot )
is_differentiable_on Z & for x st x
in Z holds (((
cos
(#)
cot )
`| Z)
. x)
= ((
- (
cos
. x))
- ((
cos
. x)
/ ((
sin
. x)
^2 )))
proof
A1: for x st x
in Z holds
cos
is_differentiable_in x by
SIN_COS: 63;
assume
A2: Z
c= (
dom (
cos
(#)
cot ));
then
A3: Z
c= ((
dom
cos )
/\ (
dom
cot )) by
VALUED_1:def 4;
then
A4: Z
c= (
dom
cot ) by
XBOOLE_1: 18;
for x st x
in Z holds
cot
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A4,
FDIFF_8: 2;
hence thesis by
FDIFF_7: 47;
end;
then
A5:
cot
is_differentiable_on Z by
A4,
FDIFF_1: 9;
Z
c= (
dom
cos ) by
A3,
XBOOLE_1: 18;
then
A6:
cos
is_differentiable_on Z by
A1,
FDIFF_1: 9;
A7: for x st x
in Z holds (
diff (
cot ,x))
= (
- (1
/ ((
sin
. x)
^2 )))
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A4,
FDIFF_8: 2;
hence thesis by
FDIFF_7: 47;
end;
for x st x
in Z holds (((
cos
(#)
cot )
`| Z)
. x)
= ((
- (
cos
. x))
- ((
cos
. x)
/ ((
sin
. x)
^2 )))
proof
let x;
assume
A8: x
in Z;
then (((
cos
(#)
cot )
`| Z)
. x)
= (((
diff (
cos ,x))
* (
cot
. x))
+ ((
cos
. x)
* (
diff (
cot ,x)))) by
A2,
A5,
A6,
FDIFF_1: 21
.= (((
cot
. x)
* (
- (
sin
. x)))
+ ((
cos
. x)
* (
diff (
cot ,x)))) by
SIN_COS: 63
.= (((
cot
. x)
* (
- (
sin
. x)))
+ ((
cos
. x)
* (
- (1
/ ((
sin
. x)
^2 ))))) by
A7,
A8
.= ((((
cos
. x)
/ (
sin
. x))
* (
- ((
sin
. x)
/ 1)))
- ((
cos
. x)
/ ((
sin
. x)
^2 ))) by
A4,
A8,
RFUNCT_1:def 1
.= ((
- ((
cos
. x)
* ((
sin
. x)
/ (
sin
. x))))
- ((
cos
. x)
/ ((
sin
. x)
^2 )))
.= ((
- ((
cos
. x)
* 1))
- ((
cos
. x)
/ ((
sin
. x)
^2 ))) by
A4,
A8,
FDIFF_8: 2,
XCMPLX_1: 60
.= ((
- (
cos
. x))
- ((
cos
. x)
/ ((
sin
. x)
^2 )));
hence thesis;
end;
hence thesis by
A2,
A5,
A6,
FDIFF_1: 21;
end;
theorem ::
FDIFF_10:12
Z
c= (
dom (
sin
(#)
tan )) implies (
sin
(#)
tan )
is_differentiable_on Z & for x st x
in Z holds (((
sin
(#)
tan )
`| Z)
. x)
= ((
sin
. x)
+ ((
sin
. x)
/ ((
cos
. x)
^2 )))
proof
A1: for x st x
in Z holds
sin
is_differentiable_in x by
SIN_COS: 64;
assume
A2: Z
c= (
dom (
sin
(#)
tan ));
then
A3: Z
c= ((
dom
sin )
/\ (
dom
tan )) by
VALUED_1:def 4;
then
A4: Z
c= (
dom
tan ) by
XBOOLE_1: 18;
for x st x
in Z holds
tan
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A4,
FDIFF_8: 1;
hence thesis by
FDIFF_7: 46;
end;
then
A5:
tan
is_differentiable_on Z by
A4,
FDIFF_1: 9;
Z
c= (
dom
sin ) by
A3,
XBOOLE_1: 18;
then
A6:
sin
is_differentiable_on Z by
A1,
FDIFF_1: 9;
A7: for x st x
in Z holds (
diff (
tan ,x))
= (1
/ ((
cos
. x)
^2 ))
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A4,
FDIFF_8: 1;
hence thesis by
FDIFF_7: 46;
end;
for x st x
in Z holds (((
sin
(#)
tan )
`| Z)
. x)
= ((
sin
. x)
+ ((
sin
. x)
/ ((
cos
. x)
^2 )))
proof
let x;
assume
A8: x
in Z;
then (((
sin
(#)
tan )
`| Z)
. x)
= (((
diff (
sin ,x))
* (
tan
. x))
+ ((
sin
. x)
* (
diff (
tan ,x)))) by
A2,
A5,
A6,
FDIFF_1: 21
.= (((
cos
. x)
* (
tan
. x))
+ ((
sin
. x)
* (
diff (
tan ,x)))) by
SIN_COS: 64
.= (((
cos
. x)
* (
tan
. x))
+ ((
sin
. x)
* (1
/ ((
cos
. x)
^2 )))) by
A7,
A8
.= ((((
sin
. x)
/ (
cos
. x))
* ((
cos
. x)
/ 1))
+ ((
sin
. x)
/ ((
cos
. x)
^2 ))) by
A4,
A8,
RFUNCT_1:def 1
.= (((
sin
. x)
* ((
cos
. x)
/ (
cos
. x)))
+ ((
sin
. x)
/ ((
cos
. x)
^2 )))
.= (((
sin
. x)
* 1)
+ ((
sin
. x)
/ ((
cos
. x)
^2 ))) by
A4,
A8,
FDIFF_8: 1,
XCMPLX_1: 60
.= ((
sin
. x)
+ ((
sin
. x)
/ ((
cos
. x)
^2 )));
hence thesis;
end;
hence thesis by
A2,
A5,
A6,
FDIFF_1: 21;
end;
theorem ::
FDIFF_10:13
Z
c= (
dom (
sin
(#)
cot )) implies (
sin
(#)
cot )
is_differentiable_on Z & for x st x
in Z holds (((
sin
(#)
cot )
`| Z)
. x)
= (((
cos
. x)
* (
cot
. x))
- (1
/ (
sin
. x)))
proof
A1: for x st x
in Z holds
sin
is_differentiable_in x by
SIN_COS: 64;
assume
A2: Z
c= (
dom (
sin
(#)
cot ));
then
A3: Z
c= ((
dom
sin )
/\ (
dom
cot )) by
VALUED_1:def 4;
then
A4: Z
c= (
dom
cot ) by
XBOOLE_1: 18;
for x st x
in Z holds
cot
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A4,
FDIFF_8: 2;
hence thesis by
FDIFF_7: 47;
end;
then
A5:
cot
is_differentiable_on Z by
A4,
FDIFF_1: 9;
Z
c= (
dom
sin ) by
A3,
XBOOLE_1: 18;
then
A6:
sin
is_differentiable_on Z by
A1,
FDIFF_1: 9;
A7: for x st x
in Z holds (
diff (
cot ,x))
= (
- (1
/ ((
sin
. x)
^2 )))
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A4,
FDIFF_8: 2;
hence thesis by
FDIFF_7: 47;
end;
for x st x
in Z holds (((
sin
(#)
cot )
`| Z)
. x)
= (((
cos
. x)
* (
cot
. x))
- (1
/ (
sin
. x)))
proof
let x;
assume
A8: x
in Z;
then (((
sin
(#)
cot )
`| Z)
. x)
= (((
diff (
sin ,x))
* (
cot
. x))
+ ((
sin
. x)
* (
diff (
cot ,x)))) by
A2,
A5,
A6,
FDIFF_1: 21
.= (((
cos
. x)
* (
cot
. x))
+ ((
sin
. x)
* (
diff (
cot ,x)))) by
SIN_COS: 64
.= (((
cos
. x)
* (
cot
. x))
+ ((
sin
. x)
* (
- (1
/ ((
sin
. x)
^2 ))))) by
A7,
A8
.= (((
cos
. x)
* (
cot
. x))
- ((
sin
. x)
/ ((
sin
. x)
^2 )))
.= (((
cos
. x)
* (
cot
. x))
- (((
sin
. x)
/ (
sin
. x))
/ (
sin
. x))) by
XCMPLX_1: 78
.= (((
cos
. x)
* (
cot
. x))
- (1
/ (
sin
. x))) by
A4,
A8,
FDIFF_8: 2,
XCMPLX_1: 60;
hence thesis;
end;
hence thesis by
A2,
A5,
A6,
FDIFF_1: 21;
end;
theorem ::
FDIFF_10:14
Z
c= (
dom (
cos
(#)
tan )) implies (
cos
(#)
tan )
is_differentiable_on Z & for x st x
in Z holds (((
cos
(#)
tan )
`| Z)
. x)
= ((
- (((
sin
. x)
^2 )
/ (
cos
. x)))
+ (1
/ (
cos
. x)))
proof
A1: for x st x
in Z holds
cos
is_differentiable_in x by
SIN_COS: 63;
assume
A2: Z
c= (
dom (
cos
(#)
tan ));
then
A3: Z
c= ((
dom
cos )
/\ (
dom
tan )) by
VALUED_1:def 4;
then
A4: Z
c= (
dom
tan ) by
XBOOLE_1: 18;
for x st x
in Z holds
tan
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A4,
FDIFF_8: 1;
hence thesis by
FDIFF_7: 46;
end;
then
A5:
tan
is_differentiable_on Z by
A4,
FDIFF_1: 9;
Z
c= (
dom
cos ) by
A3,
XBOOLE_1: 18;
then
A6:
cos
is_differentiable_on Z by
A1,
FDIFF_1: 9;
A7: for x st x
in Z holds (
diff (
tan ,x))
= (1
/ ((
cos
. x)
^2 ))
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A4,
FDIFF_8: 1;
hence thesis by
FDIFF_7: 46;
end;
for x st x
in Z holds (((
cos
(#)
tan )
`| Z)
. x)
= ((
- (((
sin
. x)
^2 )
/ (
cos
. x)))
+ (1
/ (
cos
. x)))
proof
let x;
assume
A8: x
in Z;
then (((
cos
(#)
tan )
`| Z)
. x)
= (((
diff (
cos ,x))
* (
tan
. x))
+ ((
cos
. x)
* (
diff (
tan ,x)))) by
A2,
A5,
A6,
FDIFF_1: 21
.= (((
tan
. x)
* (
- (
sin
. x)))
+ ((
cos
. x)
* (
diff (
tan ,x)))) by
SIN_COS: 63
.= (((
tan
. x)
* (
- (
sin
. x)))
+ ((
cos
. x)
* (1
/ ((
cos
. x)
^2 )))) by
A7,
A8
.= ((((
sin
. x)
/ (
cos
. x))
* (
- ((
sin
. x)
/ 1)))
+ ((
cos
. x)
/ ((
cos
. x)
^2 ))) by
A4,
A8,
RFUNCT_1:def 1
.= ((
- (((
sin
. x)
^2 )
/ (
cos
. x)))
+ (((
cos
. x)
/ (
cos
. x))
/ (
cos
. x))) by
XCMPLX_1: 78
.= ((
- (((
sin
. x)
^2 )
/ (
cos
. x)))
+ (1
/ (
cos
. x))) by
A4,
A8,
FDIFF_8: 1,
XCMPLX_1: 60;
hence thesis;
end;
hence thesis by
A2,
A5,
A6,
FDIFF_1: 21;
end;
theorem ::
FDIFF_10:15
Z
c= (
dom (
sin
(#)
cos )) implies (
sin
(#)
cos )
is_differentiable_on Z & for x st x
in Z holds (((
sin
(#)
cos )
`| Z)
. x)
= (((
cos
. x)
^2 )
- ((
sin
. x)
^2 ))
proof
A1: for x st x
in Z holds
sin
is_differentiable_in x by
SIN_COS: 64;
A2: for x st x
in Z holds
cos
is_differentiable_in x by
SIN_COS: 63;
assume
A3: Z
c= (
dom (
sin
(#)
cos ));
then
A4: Z
c= ((
dom
sin )
/\ (
dom
cos )) by
VALUED_1:def 4;
then Z
c= (
dom
cos ) by
XBOOLE_1: 18;
then
A5:
cos
is_differentiable_on Z by
A2,
FDIFF_1: 9;
Z
c= (
dom
sin ) by
A4,
XBOOLE_1: 18;
then
A6:
sin
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sin
(#)
cos )
`| Z)
. x)
= (((
cos
. x)
^2 )
- ((
sin
. x)
^2 ))
proof
let x;
assume x
in Z;
then (((
sin
(#)
cos )
`| Z)
. x)
= (((
diff (
sin ,x))
* (
cos
. x))
+ ((
sin
. x)
* (
diff (
cos ,x)))) by
A3,
A6,
A5,
FDIFF_1: 21
.= (((
cos
. x)
* (
cos
. x))
+ ((
sin
. x)
* (
diff (
cos ,x)))) by
SIN_COS: 64
.= (((
cos
. x)
* (
cos
. x))
+ ((
sin
. x)
* (
- (
sin
. x)))) by
SIN_COS: 63
.= (((
cos
. x)
^2 )
- ((
sin
. x)
^2 ));
hence thesis;
end;
hence thesis by
A3,
A6,
A5,
FDIFF_1: 21;
end;
theorem ::
FDIFF_10:16
Z
c= (
dom (
ln
(#)
sin )) implies (
ln
(#)
sin )
is_differentiable_on Z & for x st x
in Z holds (((
ln
(#)
sin )
`| Z)
. x)
= (((
sin
. x)
/ x)
+ ((
ln
. x)
* (
cos
. x)))
proof
A1: for x st x
in Z holds
sin
is_differentiable_in x by
SIN_COS: 64;
assume
A2: Z
c= (
dom (
ln
(#)
sin ));
then
A3: Z
c= ((
dom
ln )
/\ (
dom
sin )) by
VALUED_1:def 4;
then Z
c= (
dom
sin ) by
XBOOLE_1: 18;
then
A4:
sin
is_differentiable_on Z by
A1,
FDIFF_1: 9;
A5: Z
c= (
dom
ln ) by
A3,
XBOOLE_1: 18;
A6: for x st x
in Z holds x
>
0
proof
let x;
assume x
in Z;
then x
in (
right_open_halfline
0 ) by
A5,
TAYLOR_1: 18;
then x
in { g where g be
Real :
0
< g } by
XXREAL_1: 230;
then ex g be
Real st x
= g &
0
< g;
hence thesis;
end;
then for x st x
in Z holds
ln
is_differentiable_in x by
TAYLOR_1: 18;
then
A7:
ln
is_differentiable_on Z by
A5,
FDIFF_1: 9;
A8: for x st x
in Z holds (
diff (
ln ,x))
= (1
/ x)
proof
let x;
assume x
in Z;
then x
>
0 by
A6;
then x
in { g where g be
Real :
0
< g };
then x
in (
right_open_halfline
0 ) by
XXREAL_1: 230;
hence thesis by
TAYLOR_1: 18;
end;
for x st x
in Z holds (((
ln
(#)
sin )
`| Z)
. x)
= (((
sin
. x)
/ x)
+ ((
ln
. x)
* (
cos
. x)))
proof
let x;
assume
A9: x
in Z;
then (((
ln
(#)
sin )
`| Z)
. x)
= (((
sin
. x)
* (
diff (
ln ,x)))
+ ((
ln
. x)
* (
diff (
sin ,x)))) by
A2,
A7,
A4,
FDIFF_1: 21
.= (((
sin
. x)
* (1
/ x))
+ ((
ln
. x)
* (
diff (
sin ,x)))) by
A8,
A9
.= (((
sin
. x)
/ x)
+ ((
ln
. x)
* (
cos
. x))) by
SIN_COS: 64;
hence thesis;
end;
hence thesis by
A2,
A7,
A4,
FDIFF_1: 21;
end;
theorem ::
FDIFF_10:17
Z
c= (
dom (
ln
(#)
cos )) implies (
ln
(#)
cos )
is_differentiable_on Z & for x st x
in Z holds (((
ln
(#)
cos )
`| Z)
. x)
= (((
cos
. x)
/ x)
- ((
ln
. x)
* (
sin
. x)))
proof
A1: for x st x
in Z holds
cos
is_differentiable_in x by
SIN_COS: 63;
assume
A2: Z
c= (
dom (
ln
(#)
cos ));
then
A3: Z
c= ((
dom
ln )
/\ (
dom
cos )) by
VALUED_1:def 4;
then Z
c= (
dom
cos ) by
XBOOLE_1: 18;
then
A4:
cos
is_differentiable_on Z by
A1,
FDIFF_1: 9;
A5: Z
c= (
dom
ln ) by
A3,
XBOOLE_1: 18;
A6: for x st x
in Z holds x
>
0
proof
let x;
assume x
in Z;
then x
in (
right_open_halfline
0 ) by
A5,
TAYLOR_1: 18;
then x
in { g where g be
Real :
0
< g } by
XXREAL_1: 230;
then ex g be
Real st x
= g &
0
< g;
hence thesis;
end;
then for x st x
in Z holds
ln
is_differentiable_in x by
TAYLOR_1: 18;
then
A7:
ln
is_differentiable_on Z by
A5,
FDIFF_1: 9;
A8: for x st x
in Z holds (
diff (
ln ,x))
= (1
/ x)
proof
let x;
assume x
in Z;
then x
>
0 by
A6;
then x
in { g where g be
Real :
0
< g };
then x
in (
right_open_halfline
0 ) by
XXREAL_1: 230;
hence thesis by
TAYLOR_1: 18;
end;
for x st x
in Z holds (((
ln
(#)
cos )
`| Z)
. x)
= (((
cos
. x)
/ x)
- ((
ln
. x)
* (
sin
. x)))
proof
let x;
assume
A9: x
in Z;
then (((
ln
(#)
cos )
`| Z)
. x)
= (((
cos
. x)
* (
diff (
ln ,x)))
+ ((
ln
. x)
* (
diff (
cos ,x)))) by
A2,
A7,
A4,
FDIFF_1: 21
.= (((
cos
. x)
* (1
/ x))
+ ((
ln
. x)
* (
diff (
cos ,x)))) by
A8,
A9
.= (((
cos
. x)
/ x)
+ ((
ln
. x)
* (
- (
sin
. x)))) by
SIN_COS: 63;
hence thesis;
end;
hence thesis by
A2,
A7,
A4,
FDIFF_1: 21;
end;
theorem ::
FDIFF_10:18
Z
c= (
dom (
ln
(#)
exp_R )) implies (
ln
(#)
exp_R )
is_differentiable_on Z & for x st x
in Z holds (((
ln
(#)
exp_R )
`| Z)
. x)
= (((
exp_R
. x)
/ x)
+ ((
ln
. x)
* (
exp_R
. x)))
proof
A1: for x st x
in Z holds
exp_R
is_differentiable_in x by
SIN_COS: 65;
assume
A2: Z
c= (
dom (
ln
(#)
exp_R ));
then
A3: Z
c= ((
dom
ln )
/\ (
dom
exp_R )) by
VALUED_1:def 4;
then Z
c= (
dom
exp_R ) by
XBOOLE_1: 18;
then
A4:
exp_R
is_differentiable_on Z by
A1,
FDIFF_1: 9;
A5: Z
c= (
dom
ln ) by
A3,
XBOOLE_1: 18;
A6: for x st x
in Z holds x
>
0
proof
let x;
assume x
in Z;
then x
in (
right_open_halfline
0 ) by
A5,
TAYLOR_1: 18;
then x
in { g where g be
Real :
0
< g } by
XXREAL_1: 230;
then ex g be
Real st x
= g &
0
< g;
hence thesis;
end;
then for x st x
in Z holds
ln
is_differentiable_in x by
TAYLOR_1: 18;
then
A7:
ln
is_differentiable_on Z by
A5,
FDIFF_1: 9;
A8: for x st x
in Z holds (
diff (
ln ,x))
= (1
/ x)
proof
let x;
assume x
in Z;
then x
>
0 by
A6;
then x
in { g where g be
Real :
0
< g };
then x
in (
right_open_halfline
0 ) by
XXREAL_1: 230;
hence thesis by
TAYLOR_1: 18;
end;
for x st x
in Z holds (((
ln
(#)
exp_R )
`| Z)
. x)
= (((
exp_R
. x)
/ x)
+ ((
ln
. x)
* (
exp_R
. x)))
proof
let x;
assume
A9: x
in Z;
then (((
ln
(#)
exp_R )
`| Z)
. x)
= (((
exp_R
. x)
* (
diff (
ln ,x)))
+ ((
ln
. x)
* (
diff (
exp_R ,x)))) by
A2,
A7,
A4,
FDIFF_1: 21
.= (((
exp_R
. x)
* (1
/ x))
+ ((
ln
. x)
* (
diff (
exp_R ,x)))) by
A8,
A9
.= (((
exp_R
. x)
* (1
/ x))
+ ((
ln
. x)
* (
exp_R
. x))) by
SIN_COS: 65;
hence thesis;
end;
hence thesis by
A2,
A7,
A4,
FDIFF_1: 21;
end;
theorem ::
FDIFF_10:19
Z
c= (
dom (
ln
*
ln )) & (for x st x
in Z holds x
>
0 ) implies (
ln
*
ln )
is_differentiable_on Z & for x st x
in Z holds (((
ln
*
ln )
`| Z)
. x)
= (1
/ ((
ln
. x)
* x))
proof
assume that
A1: Z
c= (
dom (
ln
*
ln )) and
A2: for x st x
in Z holds x
>
0 ;
A3: for x st x
in Z holds (
ln
. x)
>
0
proof
let x;
assume x
in Z;
then
A4: (
ln
. x)
in (
right_open_halfline
0 ) by
A1,
FUNCT_1: 11,
TAYLOR_1: 18;
].
0 ,
+infty .[
= { g where g be
Real :
0
< g } by
XXREAL_1: 230;
then ex g be
Real st (
ln
. x)
= g &
0
< g by
A4;
hence thesis;
end;
A5: for x st x
in Z holds (
ln
*
ln )
is_differentiable_in x
proof
let x;
assume
A6: x
in Z;
then
A7: (
ln
. x)
>
0 by
A3;
ln
is_differentiable_in x by
A2,
A6,
TAYLOR_1: 18;
hence thesis by
A7,
TAYLOR_1: 20;
end;
then
A8: (
ln
*
ln )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
ln
*
ln )
`| Z)
. x)
= (1
/ ((
ln
. x)
* x))
proof
let x;
A9:
].
0 ,
+infty .[
= { g where g be
Real :
0
< g } by
XXREAL_1: 230;
assume
A10: x
in Z;
then
A11: (
ln
. x)
>
0 by
A3;
x
>
0 by
A2,
A10;
then
A12: x
in (
right_open_halfline
0 ) by
A9;
ln
is_differentiable_in x by
A2,
A10,
TAYLOR_1: 18;
then (
diff ((
ln
*
ln ),x))
= ((
diff (
ln ,x))
/ (
ln
. x)) by
A11,
TAYLOR_1: 20
.= ((1
/ (
ln
. x))
* (1
/ x)) by
A12,
TAYLOR_1: 18
.= (1
/ ((
ln
. x)
* x)) by
XCMPLX_1: 102;
hence thesis by
A8,
A10,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A5,
FDIFF_1: 9;
end;
theorem ::
FDIFF_10:20
Z
c= (
dom (
exp_R
*
exp_R )) implies (
exp_R
*
exp_R )
is_differentiable_on Z & for x st x
in Z holds (((
exp_R
*
exp_R )
`| Z)
. x)
= ((
exp_R
. (
exp_R
. x))
* (
exp_R
. x))
proof
A1: for x st x
in Z holds (
exp_R
*
exp_R )
is_differentiable_in x
proof
let x;
assume x
in Z;
A2:
exp_R
is_differentiable_in (
exp_R
. x) by
SIN_COS: 65;
exp_R
is_differentiable_in x by
SIN_COS: 65;
hence thesis by
A2,
FDIFF_2: 13;
end;
assume
A3: Z
c= (
dom (
exp_R
*
exp_R ));
then
A4: (
exp_R
*
exp_R )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
exp_R
*
exp_R )
`| Z)
. x)
= ((
exp_R
. (
exp_R
. x))
* (
exp_R
. x))
proof
let x;
assume
A5: x
in Z;
A6:
exp_R
is_differentiable_in (
exp_R
. x) by
SIN_COS: 65;
exp_R
is_differentiable_in x by
SIN_COS: 65;
then (
diff ((
exp_R
*
exp_R ),x))
= ((
diff (
exp_R ,(
exp_R
. x)))
* (
diff (
exp_R ,x))) by
A6,
FDIFF_2: 13
.= ((
exp_R
. (
exp_R
. x))
* (
diff (
exp_R ,x))) by
SIN_COS: 65
.= ((
exp_R
. (
exp_R
. x))
* (
exp_R
. x)) by
SIN_COS: 65;
hence thesis by
A4,
A5,
FDIFF_1:def 7;
end;
hence thesis by
A3,
A1,
FDIFF_1: 9;
end;
theorem ::
FDIFF_10:21
Z
c= (
dom (
sin
*
tan )) implies (
sin
*
tan )
is_differentiable_on Z & for x st x
in Z holds (((
sin
*
tan )
`| Z)
. x)
= ((
cos (
tan
. x))
/ ((
cos
. x)
^2 ))
proof
assume
A1: Z
c= (
dom (
sin
*
tan ));
A2: for x st x
in Z holds (
cos
. x)
<>
0
proof
let x;
assume x
in Z;
then x
in (
dom (
sin
/
cos )) by
A1,
FUNCT_1: 11;
hence thesis by
FDIFF_8: 1;
end;
A3: for x st x
in Z holds (
sin
*
tan )
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A2;
then
A4:
tan
is_differentiable_in x by
FDIFF_7: 46;
sin
is_differentiable_in (
tan
. x) by
SIN_COS: 64;
hence thesis by
A4,
FDIFF_2: 13;
end;
then
A5: (
sin
*
tan )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sin
*
tan )
`| Z)
. x)
= ((
cos (
tan
. x))
/ ((
cos
. x)
^2 ))
proof
let x;
A6:
sin
is_differentiable_in (
tan
. x) by
SIN_COS: 64;
assume
A7: x
in Z;
then
A8: (
cos
. x)
<>
0 by
A2;
then
tan
is_differentiable_in x by
FDIFF_7: 46;
then (
diff ((
sin
*
tan ),x))
= ((
diff (
sin ,(
tan
. x)))
* (
diff (
tan ,x))) by
A6,
FDIFF_2: 13
.= ((
cos (
tan
. x))
* (
diff (
tan ,x))) by
SIN_COS: 64
.= ((
cos (
tan
. x))
* (1
/ ((
cos
. x)
^2 ))) by
A8,
FDIFF_7: 46
.= ((
cos (
tan
. x))
/ ((
cos
. x)
^2 ));
hence thesis by
A5,
A7,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_10:22
Z
c= (
dom (
sin
*
cot )) implies (
sin
*
cot )
is_differentiable_on Z & for x st x
in Z holds (((
sin
*
cot )
`| Z)
. x)
= (
- ((
cos (
cot
. x))
/ ((
sin
. x)
^2 )))
proof
assume
A1: Z
c= (
dom (
sin
*
cot ));
A2: for x st x
in Z holds (
sin
. x)
<>
0
proof
let x;
assume x
in Z;
then x
in (
dom (
cos
/
sin )) by
A1,
FUNCT_1: 11;
hence thesis by
FDIFF_8: 2;
end;
A3: for x st x
in Z holds (
sin
*
cot )
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A2;
then
A4:
cot
is_differentiable_in x by
FDIFF_7: 47;
sin
is_differentiable_in (
cot
. x) by
SIN_COS: 64;
hence thesis by
A4,
FDIFF_2: 13;
end;
then
A5: (
sin
*
cot )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sin
*
cot )
`| Z)
. x)
= (
- ((
cos (
cot
. x))
/ ((
sin
. x)
^2 )))
proof
let x;
A6:
sin
is_differentiable_in (
cot
. x) by
SIN_COS: 64;
assume
A7: x
in Z;
then
A8: (
sin
. x)
<>
0 by
A2;
then
cot
is_differentiable_in x by
FDIFF_7: 47;
then (
diff ((
sin
*
cot ),x))
= ((
diff (
sin ,(
cot
. x)))
* (
diff (
cot ,x))) by
A6,
FDIFF_2: 13
.= ((
cos (
cot
. x))
* (
diff (
cot ,x))) by
SIN_COS: 64
.= ((
cos (
cot
. x))
* (
- (1
/ ((
sin
. x)
^2 )))) by
A8,
FDIFF_7: 47
.= (
- ((
cos (
cot
. x))
/ ((
sin
. x)
^2 )));
hence thesis by
A5,
A7,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_10:23
Z
c= (
dom (
cos
*
tan )) implies (
cos
*
tan )
is_differentiable_on Z & for x st x
in Z holds (((
cos
*
tan )
`| Z)
. x)
= (
- ((
sin (
tan
. x))
/ ((
cos
. x)
^2 )))
proof
assume
A1: Z
c= (
dom (
cos
*
tan ));
A2: for x st x
in Z holds (
cos
. x)
<>
0
proof
let x;
assume x
in Z;
then x
in (
dom (
sin
/
cos )) by
A1,
FUNCT_1: 11;
hence thesis by
FDIFF_8: 1;
end;
A3: for x st x
in Z holds (
cos
*
tan )
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A2;
then
A4:
tan
is_differentiable_in x by
FDIFF_7: 46;
cos
is_differentiable_in (
tan
. x) by
SIN_COS: 63;
hence thesis by
A4,
FDIFF_2: 13;
end;
then
A5: (
cos
*
tan )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cos
*
tan )
`| Z)
. x)
= (
- ((
sin (
tan
. x))
/ ((
cos
. x)
^2 )))
proof
let x;
A6:
cos
is_differentiable_in (
tan
. x) by
SIN_COS: 63;
assume
A7: x
in Z;
then
A8: (
cos
. x)
<>
0 by
A2;
then
tan
is_differentiable_in x by
FDIFF_7: 46;
then (
diff ((
cos
*
tan ),x))
= ((
diff (
cos ,(
tan
. x)))
* (
diff (
tan ,x))) by
A6,
FDIFF_2: 13
.= ((
- (
sin (
tan
. x)))
* (
diff (
tan ,x))) by
SIN_COS: 63
.= ((
- (
sin (
tan
. x)))
* (1
/ ((
cos
. x)
^2 ))) by
A8,
FDIFF_7: 46
.= (
- ((
sin (
tan
. x))
/ ((
cos
. x)
^2 )));
hence thesis by
A5,
A7,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_10:24
Z
c= (
dom (
cos
*
cot )) implies (
cos
*
cot )
is_differentiable_on Z & for x st x
in Z holds (((
cos
*
cot )
`| Z)
. x)
= ((
sin (
cot
. x))
/ ((
sin
. x)
^2 ))
proof
assume
A1: Z
c= (
dom (
cos
*
cot ));
A2: for x st x
in Z holds (
sin
. x)
<>
0
proof
let x;
assume x
in Z;
then x
in (
dom (
cos
/
sin )) by
A1,
FUNCT_1: 11;
hence thesis by
FDIFF_8: 2;
end;
A3: for x st x
in Z holds (
cos
*
cot )
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A2;
then
A4:
cot
is_differentiable_in x by
FDIFF_7: 47;
cos
is_differentiable_in (
cot
. x) by
SIN_COS: 63;
hence thesis by
A4,
FDIFF_2: 13;
end;
then
A5: (
cos
*
cot )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cos
*
cot )
`| Z)
. x)
= ((
sin (
cot
. x))
/ ((
sin
. x)
^2 ))
proof
let x;
A6:
cos
is_differentiable_in (
cot
. x) by
SIN_COS: 63;
assume
A7: x
in Z;
then
A8: (
sin
. x)
<>
0 by
A2;
then
cot
is_differentiable_in x by
FDIFF_7: 47;
then (
diff ((
cos
*
cot ),x))
= ((
diff (
cos ,(
cot
. x)))
* (
diff (
cot ,x))) by
A6,
FDIFF_2: 13
.= ((
- (
sin (
cot
. x)))
* (
diff (
cot ,x))) by
SIN_COS: 63
.= ((
- (
sin (
cot
. x)))
* (
- (1
/ ((
sin
. x)
^2 )))) by
A8,
FDIFF_7: 47
.= ((
sin (
cot
. x))
/ ((
sin
. x)
^2 ));
hence thesis by
A5,
A7,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_10:25
Z
c= (
dom (
sin
(#) (
tan
+
cot ))) implies (
sin
(#) (
tan
+
cot ))
is_differentiable_on Z & for x st x
in Z holds (((
sin
(#) (
tan
+
cot ))
`| Z)
. x)
= (((
cos
. x)
* ((
tan
. x)
+ (
cot
. x)))
+ ((
sin
. x)
* ((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 )))))
proof
A1: for x st x
in Z holds
sin
is_differentiable_in x by
SIN_COS: 64;
assume
A2: Z
c= (
dom (
sin
(#) (
tan
+
cot )));
then
A3: Z
c= ((
dom (
tan
+
cot ))
/\ (
dom
sin )) by
VALUED_1:def 4;
then
A4: Z
c= (
dom (
tan
+
cot )) by
XBOOLE_1: 18;
then
A5: (
tan
+
cot )
is_differentiable_on Z by
Th6;
Z
c= (
dom
sin ) by
A3,
XBOOLE_1: 18;
then
A6:
sin
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sin
(#) (
tan
+
cot ))
`| Z)
. x)
= (((
cos
. x)
* ((
tan
. x)
+ (
cot
. x)))
+ ((
sin
. x)
* ((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 )))))
proof
let x;
assume
A7: x
in Z;
then (((
sin
(#) (
tan
+
cot ))
`| Z)
. x)
= ((((
tan
+
cot )
. x)
* (
diff (
sin ,x)))
+ ((
sin
. x)
* (
diff ((
tan
+
cot ),x)))) by
A2,
A5,
A6,
FDIFF_1: 21
.= ((((
tan
. x)
+ (
cot
. x))
* (
diff (
sin ,x)))
+ ((
sin
. x)
* (
diff ((
tan
+
cot ),x)))) by
A4,
A7,
VALUED_1:def 1
.= ((((
tan
. x)
+ (
cot
. x))
* (
cos
. x))
+ ((
sin
. x)
* (
diff ((
tan
+
cot ),x)))) by
SIN_COS: 64
.= ((((
tan
. x)
+ (
cot
. x))
* (
cos
. x))
+ ((
sin
. x)
* (((
tan
+
cot )
`| Z)
. x))) by
A5,
A7,
FDIFF_1:def 7
.= ((((
tan
. x)
+ (
cot
. x))
* (
cos
. x))
+ ((
sin
. x)
* ((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 ))))) by
A4,
A7,
Th6;
hence thesis;
end;
hence thesis by
A2,
A5,
A6,
FDIFF_1: 21;
end;
theorem ::
FDIFF_10:26
Z
c= (
dom (
cos
(#) (
tan
+
cot ))) implies (
cos
(#) (
tan
+
cot ))
is_differentiable_on Z & for x st x
in Z holds (((
cos
(#) (
tan
+
cot ))
`| Z)
. x)
= ((
- ((
sin
. x)
* ((
tan
. x)
+ (
cot
. x))))
+ ((
cos
. x)
* ((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 )))))
proof
A1: for x st x
in Z holds
cos
is_differentiable_in x by
SIN_COS: 63;
assume
A2: Z
c= (
dom (
cos
(#) (
tan
+
cot )));
then
A3: Z
c= ((
dom (
tan
+
cot ))
/\ (
dom
cos )) by
VALUED_1:def 4;
then
A4: Z
c= (
dom (
tan
+
cot )) by
XBOOLE_1: 18;
then
A5: (
tan
+
cot )
is_differentiable_on Z by
Th6;
Z
c= (
dom
cos ) by
A3,
XBOOLE_1: 18;
then
A6:
cos
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cos
(#) (
tan
+
cot ))
`| Z)
. x)
= ((
- ((
sin
. x)
* ((
tan
. x)
+ (
cot
. x))))
+ ((
cos
. x)
* ((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 )))))
proof
let x;
assume
A7: x
in Z;
then (((
cos
(#) (
tan
+
cot ))
`| Z)
. x)
= ((((
tan
+
cot )
. x)
* (
diff (
cos ,x)))
+ ((
cos
. x)
* (
diff ((
tan
+
cot ),x)))) by
A2,
A5,
A6,
FDIFF_1: 21
.= ((((
tan
. x)
+ (
cot
. x))
* (
diff (
cos ,x)))
+ ((
cos
. x)
* (
diff ((
tan
+
cot ),x)))) by
A4,
A7,
VALUED_1:def 1
.= ((((
tan
. x)
+ (
cot
. x))
* (
- (
sin
. x)))
+ ((
cos
. x)
* (
diff ((
tan
+
cot ),x)))) by
SIN_COS: 63
.= ((((
tan
. x)
+ (
cot
. x))
* (
- (
sin
. x)))
+ ((
cos
. x)
* (((
tan
+
cot )
`| Z)
. x))) by
A5,
A7,
FDIFF_1:def 7
.= ((((
tan
. x)
+ (
cot
. x))
* (
- (
sin
. x)))
+ ((
cos
. x)
* ((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 ))))) by
A4,
A7,
Th6;
hence thesis;
end;
hence thesis by
A2,
A5,
A6,
FDIFF_1: 21;
end;
theorem ::
FDIFF_10:27
Z
c= (
dom (
sin
(#) (
tan
-
cot ))) implies (
sin
(#) (
tan
-
cot ))
is_differentiable_on Z & for x st x
in Z holds (((
sin
(#) (
tan
-
cot ))
`| Z)
. x)
= (((
cos
. x)
* ((
tan
. x)
- (
cot
. x)))
+ ((
sin
. x)
* ((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 )))))
proof
A1: for x st x
in Z holds
sin
is_differentiable_in x by
SIN_COS: 64;
assume
A2: Z
c= (
dom (
sin
(#) (
tan
-
cot )));
then
A3: Z
c= ((
dom (
tan
-
cot ))
/\ (
dom
sin )) by
VALUED_1:def 4;
then
A4: Z
c= (
dom (
tan
-
cot )) by
XBOOLE_1: 18;
then
A5: (
tan
-
cot )
is_differentiable_on Z by
Th5;
Z
c= (
dom
sin ) by
A3,
XBOOLE_1: 18;
then
A6:
sin
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sin
(#) (
tan
-
cot ))
`| Z)
. x)
= (((
cos
. x)
* ((
tan
. x)
- (
cot
. x)))
+ ((
sin
. x)
* ((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 )))))
proof
let x;
assume
A7: x
in Z;
then (((
sin
(#) (
tan
-
cot ))
`| Z)
. x)
= ((((
tan
-
cot )
. x)
* (
diff (
sin ,x)))
+ ((
sin
. x)
* (
diff ((
tan
-
cot ),x)))) by
A2,
A5,
A6,
FDIFF_1: 21
.= ((((
tan
. x)
- (
cot
. x))
* (
diff (
sin ,x)))
+ ((
sin
. x)
* (
diff ((
tan
-
cot ),x)))) by
A4,
A7,
VALUED_1: 13
.= ((((
tan
. x)
- (
cot
. x))
* (
cos
. x))
+ ((
sin
. x)
* (
diff ((
tan
-
cot ),x)))) by
SIN_COS: 64
.= ((((
tan
. x)
- (
cot
. x))
* (
cos
. x))
+ ((
sin
. x)
* (((
tan
-
cot )
`| Z)
. x))) by
A5,
A7,
FDIFF_1:def 7
.= ((((
tan
. x)
- (
cot
. x))
* (
cos
. x))
+ ((
sin
. x)
* ((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 ))))) by
A4,
A7,
Th5;
hence thesis;
end;
hence thesis by
A2,
A5,
A6,
FDIFF_1: 21;
end;
theorem ::
FDIFF_10:28
Z
c= (
dom (
cos
(#) (
tan
-
cot ))) implies (
cos
(#) (
tan
-
cot ))
is_differentiable_on Z & for x st x
in Z holds (((
cos
(#) (
tan
-
cot ))
`| Z)
. x)
= ((
- ((
sin
. x)
* ((
tan
. x)
- (
cot
. x))))
+ ((
cos
. x)
* ((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 )))))
proof
A1: for x st x
in Z holds
cos
is_differentiable_in x by
SIN_COS: 63;
assume
A2: Z
c= (
dom (
cos
(#) (
tan
-
cot )));
then
A3: Z
c= ((
dom (
tan
-
cot ))
/\ (
dom
cos )) by
VALUED_1:def 4;
then
A4: Z
c= (
dom (
tan
-
cot )) by
XBOOLE_1: 18;
then
A5: (
tan
-
cot )
is_differentiable_on Z by
Th5;
Z
c= (
dom
cos ) by
A3,
XBOOLE_1: 18;
then
A6:
cos
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cos
(#) (
tan
-
cot ))
`| Z)
. x)
= ((
- ((
sin
. x)
* ((
tan
. x)
- (
cot
. x))))
+ ((
cos
. x)
* ((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 )))))
proof
let x;
assume
A7: x
in Z;
then (((
cos
(#) (
tan
-
cot ))
`| Z)
. x)
= ((((
tan
-
cot )
. x)
* (
diff (
cos ,x)))
+ ((
cos
. x)
* (
diff ((
tan
-
cot ),x)))) by
A2,
A5,
A6,
FDIFF_1: 21
.= ((((
tan
. x)
- (
cot
. x))
* (
diff (
cos ,x)))
+ ((
cos
. x)
* (
diff ((
tan
-
cot ),x)))) by
A4,
A7,
VALUED_1: 13
.= ((((
tan
. x)
- (
cot
. x))
* (
- (
sin
. x)))
+ ((
cos
. x)
* (
diff ((
tan
-
cot ),x)))) by
SIN_COS: 63
.= ((((
tan
. x)
- (
cot
. x))
* (
- (
sin
. x)))
+ ((
cos
. x)
* (((
tan
-
cot )
`| Z)
. x))) by
A5,
A7,
FDIFF_1:def 7
.= ((((
tan
. x)
- (
cot
. x))
* (
- (
sin
. x)))
+ ((
cos
. x)
* ((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 ))))) by
A4,
A7,
Th5;
hence thesis;
end;
hence thesis by
A2,
A5,
A6,
FDIFF_1: 21;
end;
theorem ::
FDIFF_10:29
Z
c= (
dom (
exp_R
(#) (
tan
+
cot ))) implies (
exp_R
(#) (
tan
+
cot ))
is_differentiable_on Z & for x st x
in Z holds (((
exp_R
(#) (
tan
+
cot ))
`| Z)
. x)
= (((
exp_R
. x)
* ((
tan
. x)
+ (
cot
. x)))
+ ((
exp_R
. x)
* ((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 )))))
proof
assume
A1: Z
c= (
dom (
exp_R
(#) (
tan
+
cot )));
then Z
c= ((
dom (
tan
+
cot ))
/\ (
dom
exp_R )) by
VALUED_1:def 4;
then
A2: Z
c= (
dom (
tan
+
cot )) by
XBOOLE_1: 18;
then
A3: (
tan
+
cot )
is_differentiable_on Z by
Th6;
A4:
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
for x st x
in Z holds (((
exp_R
(#) (
tan
+
cot ))
`| Z)
. x)
= (((
exp_R
. x)
* ((
tan
. x)
+ (
cot
. x)))
+ ((
exp_R
. x)
* ((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 )))))
proof
let x;
assume
A5: x
in Z;
then (((
exp_R
(#) (
tan
+
cot ))
`| Z)
. x)
= ((((
tan
+
cot )
. x)
* (
diff (
exp_R ,x)))
+ ((
exp_R
. x)
* (
diff ((
tan
+
cot ),x)))) by
A1,
A3,
A4,
FDIFF_1: 21
.= ((((
tan
. x)
+ (
cot
. x))
* (
diff (
exp_R ,x)))
+ ((
exp_R
. x)
* (
diff ((
tan
+
cot ),x)))) by
A2,
A5,
VALUED_1:def 1
.= (((
exp_R
. x)
* ((
tan
. x)
+ (
cot
. x)))
+ ((
exp_R
. x)
* (
diff ((
tan
+
cot ),x)))) by
TAYLOR_1: 16
.= (((
exp_R
. x)
* ((
tan
. x)
+ (
cot
. x)))
+ ((
exp_R
. x)
* (((
tan
+
cot )
`| Z)
. x))) by
A3,
A5,
FDIFF_1:def 7
.= (((
exp_R
. x)
* ((
tan
. x)
+ (
cot
. x)))
+ ((
exp_R
. x)
* ((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 ))))) by
A2,
A5,
Th6;
hence thesis;
end;
hence thesis by
A1,
A3,
A4,
FDIFF_1: 21;
end;
theorem ::
FDIFF_10:30
Z
c= (
dom (
exp_R
(#) (
tan
-
cot ))) implies (
exp_R
(#) (
tan
-
cot ))
is_differentiable_on Z & for x st x
in Z holds (((
exp_R
(#) (
tan
-
cot ))
`| Z)
. x)
= (((
exp_R
. x)
* ((
tan
. x)
- (
cot
. x)))
+ ((
exp_R
. x)
* ((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 )))))
proof
assume
A1: Z
c= (
dom (
exp_R
(#) (
tan
-
cot )));
then Z
c= ((
dom (
tan
-
cot ))
/\ (
dom
exp_R )) by
VALUED_1:def 4;
then
A2: Z
c= (
dom (
tan
-
cot )) by
XBOOLE_1: 18;
then
A3: (
tan
-
cot )
is_differentiable_on Z by
Th5;
A4:
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
for x st x
in Z holds (((
exp_R
(#) (
tan
-
cot ))
`| Z)
. x)
= (((
exp_R
. x)
* ((
tan
. x)
- (
cot
. x)))
+ ((
exp_R
. x)
* ((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 )))))
proof
let x;
assume
A5: x
in Z;
then (((
exp_R
(#) (
tan
-
cot ))
`| Z)
. x)
= ((((
tan
-
cot )
. x)
* (
diff (
exp_R ,x)))
+ ((
exp_R
. x)
* (
diff ((
tan
-
cot ),x)))) by
A1,
A3,
A4,
FDIFF_1: 21
.= ((((
tan
. x)
- (
cot
. x))
* (
diff (
exp_R ,x)))
+ ((
exp_R
. x)
* (
diff ((
tan
-
cot ),x)))) by
A2,
A5,
VALUED_1: 13
.= (((
exp_R
. x)
* ((
tan
. x)
- (
cot
. x)))
+ ((
exp_R
. x)
* (
diff ((
tan
-
cot ),x)))) by
TAYLOR_1: 16
.= (((
exp_R
. x)
* ((
tan
. x)
- (
cot
. x)))
+ ((
exp_R
. x)
* (((
tan
-
cot )
`| Z)
. x))) by
A3,
A5,
FDIFF_1:def 7
.= (((
exp_R
. x)
* ((
tan
. x)
- (
cot
. x)))
+ ((
exp_R
. x)
* ((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 ))))) by
A2,
A5,
Th5;
hence thesis;
end;
hence thesis by
A1,
A3,
A4,
FDIFF_1: 21;
end;
theorem ::
FDIFF_10:31
Z
c= (
dom (
sin
(#) (
sin
+
cos ))) implies (
sin
(#) (
sin
+
cos ))
is_differentiable_on Z & for x st x
in Z holds (((
sin
(#) (
sin
+
cos ))
`| Z)
. x)
= ((((
cos
. x)
^2 )
+ ((2
* (
sin
. x))
* (
cos
. x)))
- ((
sin
. x)
^2 ))
proof
A1: for x st x
in Z holds
sin
is_differentiable_in x by
SIN_COS: 64;
assume
A2: Z
c= (
dom (
sin
(#) (
sin
+
cos )));
then
A3: Z
c= ((
dom (
sin
+
cos ))
/\ (
dom
sin )) by
VALUED_1:def 4;
then
A4: Z
c= (
dom (
sin
+
cos )) by
XBOOLE_1: 18;
then
A5: (
sin
+
cos )
is_differentiable_on Z by
FDIFF_7: 38;
Z
c= (
dom
sin ) by
A3,
XBOOLE_1: 18;
then
A6:
sin
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sin
(#) (
sin
+
cos ))
`| Z)
. x)
= ((((
cos
. x)
^2 )
+ ((2
* (
sin
. x))
* (
cos
. x)))
- ((
sin
. x)
^2 ))
proof
let x;
reconsider xx = x as
Element of
REAL by
XREAL_0:def 1;
assume
A7: x
in Z;
then (((
sin
(#) (
sin
+
cos ))
`| Z)
. x)
= ((((
sin
+
cos )
. x)
* (
diff (
sin ,x)))
+ ((
sin
. x)
* (
diff ((
sin
+
cos ),x)))) by
A2,
A5,
A6,
FDIFF_1: 21
.= ((((
sin
. xx)
+ (
cos
. xx))
* (
diff (
sin ,x)))
+ ((
sin
. x)
* (
diff ((
sin
+
cos ),x)))) by
VALUED_1: 1
.= ((((
sin
. x)
+ (
cos
. x))
* (
cos
. x))
+ ((
sin
. x)
* (
diff ((
sin
+
cos ),x)))) by
SIN_COS: 64
.= ((((
sin
. x)
+ (
cos
. x))
* (
cos
. x))
+ ((
sin
. x)
* (((
sin
+
cos )
`| Z)
. x))) by
A5,
A7,
FDIFF_1:def 7
.= ((((
sin
. x)
+ (
cos
. x))
* (
cos
. x))
+ ((
sin
. x)
* ((
cos
. x)
- (
sin
. x)))) by
A4,
A7,
FDIFF_7: 38;
hence thesis;
end;
hence thesis by
A2,
A5,
A6,
FDIFF_1: 21;
end;
theorem ::
FDIFF_10:32
Z
c= (
dom (
sin
(#) (
sin
-
cos ))) implies (
sin
(#) (
sin
-
cos ))
is_differentiable_on Z & for x st x
in Z holds (((
sin
(#) (
sin
-
cos ))
`| Z)
. x)
= ((((
sin
. x)
^2 )
+ ((2
* (
sin
. x))
* (
cos
. x)))
- ((
cos
. x)
^2 ))
proof
A1: for x st x
in Z holds
sin
is_differentiable_in x by
SIN_COS: 64;
assume
A2: Z
c= (
dom (
sin
(#) (
sin
-
cos )));
then
A3: Z
c= ((
dom (
sin
-
cos ))
/\ (
dom
sin )) by
VALUED_1:def 4;
then
A4: Z
c= (
dom (
sin
-
cos )) by
XBOOLE_1: 18;
then
A5: (
sin
-
cos )
is_differentiable_on Z by
FDIFF_7: 39;
Z
c= (
dom
sin ) by
A3,
XBOOLE_1: 18;
then
A6:
sin
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sin
(#) (
sin
-
cos ))
`| Z)
. x)
= ((((
sin
. x)
^2 )
+ ((2
* (
sin
. x))
* (
cos
. x)))
- ((
cos
. x)
^2 ))
proof
let x;
assume
A7: x
in Z;
then (((
sin
(#) (
sin
-
cos ))
`| Z)
. x)
= ((((
sin
-
cos )
. x)
* (
diff (
sin ,x)))
+ ((
sin
. x)
* (
diff ((
sin
-
cos ),x)))) by
A2,
A5,
A6,
FDIFF_1: 21
.= ((((
sin
. x)
- (
cos
. x))
* (
diff (
sin ,x)))
+ ((
sin
. x)
* (
diff ((
sin
-
cos ),x)))) by
A4,
A7,
VALUED_1: 13
.= ((((
sin
. x)
- (
cos
. x))
* (
cos
. x))
+ ((
sin
. x)
* (
diff ((
sin
-
cos ),x)))) by
SIN_COS: 64
.= ((((
sin
. x)
- (
cos
. x))
* (
cos
. x))
+ ((
sin
. x)
* (((
sin
-
cos )
`| Z)
. x))) by
A5,
A7,
FDIFF_1:def 7
.= ((((
sin
. x)
- (
cos
. x))
* (
cos
. x))
+ ((
sin
. x)
* ((
cos
. x)
+ (
sin
. x)))) by
A4,
A7,
FDIFF_7: 39;
hence thesis;
end;
hence thesis by
A2,
A5,
A6,
FDIFF_1: 21;
end;
theorem ::
FDIFF_10:33
Z
c= (
dom (
cos
(#) (
sin
-
cos ))) implies (
cos
(#) (
sin
-
cos ))
is_differentiable_on Z & for x st x
in Z holds (((
cos
(#) (
sin
-
cos ))
`| Z)
. x)
= ((((
cos
. x)
^2 )
+ ((2
* (
sin
. x))
* (
cos
. x)))
- ((
sin
. x)
^2 ))
proof
A1: for x st x
in Z holds
cos
is_differentiable_in x by
SIN_COS: 63;
assume
A2: Z
c= (
dom (
cos
(#) (
sin
-
cos )));
then
A3: Z
c= ((
dom (
sin
-
cos ))
/\ (
dom
cos )) by
VALUED_1:def 4;
then
A4: Z
c= (
dom (
sin
-
cos )) by
XBOOLE_1: 18;
then
A5: (
sin
-
cos )
is_differentiable_on Z by
FDIFF_7: 39;
Z
c= (
dom
cos ) by
A3,
XBOOLE_1: 18;
then
A6:
cos
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cos
(#) (
sin
-
cos ))
`| Z)
. x)
= ((((
cos
. x)
^2 )
+ ((2
* (
sin
. x))
* (
cos
. x)))
- ((
sin
. x)
^2 ))
proof
let x;
assume
A7: x
in Z;
then (((
cos
(#) (
sin
-
cos ))
`| Z)
. x)
= ((((
sin
-
cos )
. x)
* (
diff (
cos ,x)))
+ ((
cos
. x)
* (
diff ((
sin
-
cos ),x)))) by
A2,
A5,
A6,
FDIFF_1: 21
.= ((((
sin
. x)
- (
cos
. x))
* (
diff (
cos ,x)))
+ ((
cos
. x)
* (
diff ((
sin
-
cos ),x)))) by
A4,
A7,
VALUED_1: 13
.= ((((
sin
. x)
- (
cos
. x))
* (
- (
sin
. x)))
+ ((
cos
. x)
* (
diff ((
sin
-
cos ),x)))) by
SIN_COS: 63
.= ((((
sin
. x)
- (
cos
. x))
* (
- (
sin
. x)))
+ ((
cos
. x)
* (((
sin
-
cos )
`| Z)
. x))) by
A5,
A7,
FDIFF_1:def 7
.= ((((
sin
. x)
- (
cos
. x))
* (
- (
sin
. x)))
+ ((
cos
. x)
* ((
cos
. x)
+ (
sin
. x)))) by
A4,
A7,
FDIFF_7: 39;
hence thesis;
end;
hence thesis by
A2,
A5,
A6,
FDIFF_1: 21;
end;
theorem ::
FDIFF_10:34
Z
c= (
dom (
cos
(#) (
sin
+
cos ))) implies (
cos
(#) (
sin
+
cos ))
is_differentiable_on Z & for x st x
in Z holds (((
cos
(#) (
sin
+
cos ))
`| Z)
. x)
= ((((
cos
. x)
^2 )
- ((2
* (
sin
. x))
* (
cos
. x)))
- ((
sin
. x)
^2 ))
proof
A1: for x st x
in Z holds
cos
is_differentiable_in x by
SIN_COS: 63;
assume
A2: Z
c= (
dom (
cos
(#) (
sin
+
cos )));
then
A3: Z
c= ((
dom (
sin
+
cos ))
/\ (
dom
cos )) by
VALUED_1:def 4;
then
A4: Z
c= (
dom (
sin
+
cos )) by
XBOOLE_1: 18;
then
A5: (
sin
+
cos )
is_differentiable_on Z by
FDIFF_7: 38;
Z
c= (
dom
cos ) by
A3,
XBOOLE_1: 18;
then
A6:
cos
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cos
(#) (
sin
+
cos ))
`| Z)
. x)
= ((((
cos
. x)
^2 )
- ((2
* (
sin
. x))
* (
cos
. x)))
- ((
sin
. x)
^2 ))
proof
let x;
reconsider xx = x as
Element of
REAL by
XREAL_0:def 1;
assume
A7: x
in Z;
then (((
cos
(#) (
sin
+
cos ))
`| Z)
. x)
= ((((
sin
+
cos )
. x)
* (
diff (
cos ,x)))
+ ((
cos
. x)
* (
diff ((
sin
+
cos ),x)))) by
A2,
A5,
A6,
FDIFF_1: 21
.= ((((
sin
. xx)
+ (
cos
. xx))
* (
diff (
cos ,x)))
+ ((
cos
. x)
* (
diff ((
sin
+
cos ),x)))) by
VALUED_1: 1
.= ((((
sin
. x)
+ (
cos
. x))
* (
- (
sin
. x)))
+ ((
cos
. x)
* (
diff ((
sin
+
cos ),x)))) by
SIN_COS: 63
.= ((((
sin
. x)
+ (
cos
. x))
* (
- (
sin
. x)))
+ ((
cos
. x)
* (((
sin
+
cos )
`| Z)
. x))) by
A5,
A7,
FDIFF_1:def 7
.= ((((
sin
. x)
+ (
cos
. x))
* (
- (
sin
. x)))
+ ((
cos
. x)
* ((
cos
. x)
- (
sin
. x)))) by
A4,
A7,
FDIFF_7: 38;
hence thesis;
end;
hence thesis by
A2,
A5,
A6,
FDIFF_1: 21;
end;
theorem ::
FDIFF_10:35
Z
c= (
dom (
sin
* (
tan
+
cot ))) implies (
sin
* (
tan
+
cot ))
is_differentiable_on Z & for x st x
in Z holds (((
sin
* (
tan
+
cot ))
`| Z)
. x)
= ((
cos
. ((
tan
. x)
+ (
cot
. x)))
* ((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 ))))
proof
assume that
A1: Z
c= (
dom (
sin
* (
tan
+
cot )));
(
dom (
sin
* (
tan
+
cot )))
c= (
dom (
tan
+
cot )) by
RELAT_1: 25;
then
A2: Z
c= (
dom (
tan
+
cot )) by
A1,
XBOOLE_1: 1;
then
A3: (
tan
+
cot )
is_differentiable_on Z by
Th6;
A4: for x st x
in Z holds (
sin
* (
tan
+
cot ))
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A5: (
tan
+
cot )
is_differentiable_in x by
A3,
FDIFF_1: 9;
sin
is_differentiable_in ((
tan
+
cot )
. x) by
SIN_COS: 64;
hence thesis by
A5,
FDIFF_2: 13;
end;
then
A6: (
sin
* (
tan
+
cot ))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sin
* (
tan
+
cot ))
`| Z)
. x)
= ((
cos
. ((
tan
. x)
+ (
cot
. x)))
* ((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 ))))
proof
let x;
A7:
sin
is_differentiable_in ((
tan
+
cot )
. x) by
SIN_COS: 64;
assume
A8: x
in Z;
then (
tan
+
cot )
is_differentiable_in x by
A3,
FDIFF_1: 9;
then (
diff ((
sin
* (
tan
+
cot )),x))
= ((
diff (
sin ,((
tan
+
cot )
. x)))
* (
diff ((
tan
+
cot ),x))) by
A7,
FDIFF_2: 13
.= ((
cos
. ((
tan
+
cot )
. x))
* (
diff ((
tan
+
cot ),x))) by
SIN_COS: 64
.= ((
cos
. ((
tan
+
cot )
. x))
* (((
tan
+
cot )
`| Z)
. x)) by
A3,
A8,
FDIFF_1:def 7
.= ((
cos
. ((
tan
+
cot )
. x))
* ((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 )))) by
A2,
A8,
Th6
.= ((
cos
. ((
tan
. x)
+ (
cot
. x)))
* ((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 )))) by
A2,
A8,
VALUED_1:def 1;
hence thesis by
A6,
A8,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_10:36
Z
c= (
dom (
sin
* (
tan
-
cot ))) implies (
sin
* (
tan
-
cot ))
is_differentiable_on Z & for x st x
in Z holds (((
sin
* (
tan
-
cot ))
`| Z)
. x)
= ((
cos
. ((
tan
. x)
- (
cot
. x)))
* ((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 ))))
proof
assume that
A1: Z
c= (
dom (
sin
* (
tan
-
cot )));
(
dom (
sin
* (
tan
-
cot )))
c= (
dom (
tan
-
cot )) by
RELAT_1: 25;
then
A2: Z
c= (
dom (
tan
-
cot )) by
A1,
XBOOLE_1: 1;
then
A3: (
tan
-
cot )
is_differentiable_on Z by
Th5;
A4: for x st x
in Z holds (
sin
* (
tan
-
cot ))
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A5: (
tan
-
cot )
is_differentiable_in x by
A3,
FDIFF_1: 9;
sin
is_differentiable_in ((
tan
-
cot )
. x) by
SIN_COS: 64;
hence thesis by
A5,
FDIFF_2: 13;
end;
then
A6: (
sin
* (
tan
-
cot ))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sin
* (
tan
-
cot ))
`| Z)
. x)
= ((
cos
. ((
tan
. x)
- (
cot
. x)))
* ((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 ))))
proof
let x;
A7:
sin
is_differentiable_in ((
tan
-
cot )
. x) by
SIN_COS: 64;
assume
A8: x
in Z;
then (
tan
-
cot )
is_differentiable_in x by
A3,
FDIFF_1: 9;
then (
diff ((
sin
* (
tan
-
cot )),x))
= ((
diff (
sin ,((
tan
-
cot )
. x)))
* (
diff ((
tan
-
cot ),x))) by
A7,
FDIFF_2: 13
.= ((
cos
. ((
tan
-
cot )
. x))
* (
diff ((
tan
-
cot ),x))) by
SIN_COS: 64
.= ((
cos
. ((
tan
-
cot )
. x))
* (((
tan
-
cot )
`| Z)
. x)) by
A3,
A8,
FDIFF_1:def 7
.= ((
cos
. ((
tan
-
cot )
. x))
* ((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 )))) by
A2,
A8,
Th5
.= ((
cos
. ((
tan
. x)
- (
cot
. x)))
* ((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 )))) by
A2,
A8,
VALUED_1: 13;
hence thesis by
A6,
A8,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_10:37
Z
c= (
dom (
cos
* (
tan
-
cot ))) implies (
cos
* (
tan
-
cot ))
is_differentiable_on Z & for x st x
in Z holds (((
cos
* (
tan
-
cot ))
`| Z)
. x)
= (
- ((
sin
. ((
tan
. x)
- (
cot
. x)))
* ((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 )))))
proof
assume that
A1: Z
c= (
dom (
cos
* (
tan
-
cot )));
(
dom (
cos
* (
tan
-
cot )))
c= (
dom (
tan
-
cot )) by
RELAT_1: 25;
then
A2: Z
c= (
dom (
tan
-
cot )) by
A1,
XBOOLE_1: 1;
then
A3: (
tan
-
cot )
is_differentiable_on Z by
Th5;
A4: for x st x
in Z holds (
cos
* (
tan
-
cot ))
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A5: (
tan
-
cot )
is_differentiable_in x by
A3,
FDIFF_1: 9;
cos
is_differentiable_in ((
tan
-
cot )
. x) by
SIN_COS: 63;
hence thesis by
A5,
FDIFF_2: 13;
end;
then
A6: (
cos
* (
tan
-
cot ))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cos
* (
tan
-
cot ))
`| Z)
. x)
= (
- ((
sin
. ((
tan
. x)
- (
cot
. x)))
* ((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 )))))
proof
let x;
A7:
cos
is_differentiable_in ((
tan
-
cot )
. x) by
SIN_COS: 63;
assume
A8: x
in Z;
then (
tan
-
cot )
is_differentiable_in x by
A3,
FDIFF_1: 9;
then (
diff ((
cos
* (
tan
-
cot )),x))
= ((
diff (
cos ,((
tan
-
cot )
. x)))
* (
diff ((
tan
-
cot ),x))) by
A7,
FDIFF_2: 13
.= ((
- (
sin
. ((
tan
-
cot )
. x)))
* (
diff ((
tan
-
cot ),x))) by
SIN_COS: 63
.= ((
- (
sin
. ((
tan
-
cot )
. x)))
* (((
tan
-
cot )
`| Z)
. x)) by
A3,
A8,
FDIFF_1:def 7
.= ((
- (
sin
. ((
tan
-
cot )
. x)))
* ((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 )))) by
A2,
A8,
Th5
.= ((
- (
sin
. ((
tan
. x)
- (
cot
. x))))
* ((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 )))) by
A2,
A8,
VALUED_1: 13;
hence thesis by
A6,
A8,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_10:38
Z
c= (
dom (
cos
* (
tan
+
cot ))) implies (
cos
* (
tan
+
cot ))
is_differentiable_on Z & for x st x
in Z holds (((
cos
* (
tan
+
cot ))
`| Z)
. x)
= (
- ((
sin
. ((
tan
. x)
+ (
cot
. x)))
* ((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 )))))
proof
assume that
A1: Z
c= (
dom (
cos
* (
tan
+
cot )));
(
dom (
cos
* (
tan
+
cot )))
c= (
dom (
tan
+
cot )) by
RELAT_1: 25;
then
A2: Z
c= (
dom (
tan
+
cot )) by
A1,
XBOOLE_1: 1;
then
A3: (
tan
+
cot )
is_differentiable_on Z by
Th6;
A4: for x st x
in Z holds (
cos
* (
tan
+
cot ))
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A5: (
tan
+
cot )
is_differentiable_in x by
A3,
FDIFF_1: 9;
cos
is_differentiable_in ((
tan
+
cot )
. x) by
SIN_COS: 63;
hence thesis by
A5,
FDIFF_2: 13;
end;
then
A6: (
cos
* (
tan
+
cot ))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cos
* (
tan
+
cot ))
`| Z)
. x)
= (
- ((
sin
. ((
tan
. x)
+ (
cot
. x)))
* ((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 )))))
proof
let x;
A7:
cos
is_differentiable_in ((
tan
+
cot )
. x) by
SIN_COS: 63;
assume
A8: x
in Z;
then (
tan
+
cot )
is_differentiable_in x by
A3,
FDIFF_1: 9;
then (
diff ((
cos
* (
tan
+
cot )),x))
= ((
diff (
cos ,((
tan
+
cot )
. x)))
* (
diff ((
tan
+
cot ),x))) by
A7,
FDIFF_2: 13
.= ((
- (
sin
. ((
tan
+
cot )
. x)))
* (
diff ((
tan
+
cot ),x))) by
SIN_COS: 63
.= ((
- (
sin
. ((
tan
+
cot )
. x)))
* (((
tan
+
cot )
`| Z)
. x)) by
A3,
A8,
FDIFF_1:def 7
.= ((
- (
sin
. ((
tan
+
cot )
. x)))
* ((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 )))) by
A2,
A8,
Th6
.= ((
- (
sin
. ((
tan
. x)
+ (
cot
. x))))
* ((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 )))) by
A2,
A8,
VALUED_1:def 1;
hence thesis by
A6,
A8,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_10:39
Z
c= (
dom (
exp_R
* (
tan
+
cot ))) implies (
exp_R
* (
tan
+
cot ))
is_differentiable_on Z & for x st x
in Z holds (((
exp_R
* (
tan
+
cot ))
`| Z)
. x)
= ((
exp_R
. ((
tan
. x)
+ (
cot
. x)))
* ((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 ))))
proof
assume that
A1: Z
c= (
dom (
exp_R
* (
tan
+
cot )));
(
dom (
exp_R
* (
tan
+
cot )))
c= (
dom (
tan
+
cot )) by
RELAT_1: 25;
then
A2: Z
c= (
dom (
tan
+
cot )) by
A1,
XBOOLE_1: 1;
then
A3: (
tan
+
cot )
is_differentiable_on Z by
Th6;
A4: for x st x
in Z holds (
exp_R
* (
tan
+
cot ))
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A5: (
tan
+
cot )
is_differentiable_in x by
A3,
FDIFF_1: 9;
exp_R
is_differentiable_in ((
tan
+
cot )
. x) by
SIN_COS: 65;
hence thesis by
A5,
FDIFF_2: 13;
end;
then
A6: (
exp_R
* (
tan
+
cot ))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
exp_R
* (
tan
+
cot ))
`| Z)
. x)
= ((
exp_R
. ((
tan
. x)
+ (
cot
. x)))
* ((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 ))))
proof
let x;
A7:
exp_R
is_differentiable_in ((
tan
+
cot )
. x) by
SIN_COS: 65;
assume
A8: x
in Z;
then (
tan
+
cot )
is_differentiable_in x by
A3,
FDIFF_1: 9;
then (
diff ((
exp_R
* (
tan
+
cot )),x))
= ((
diff (
exp_R ,((
tan
+
cot )
. x)))
* (
diff ((
tan
+
cot ),x))) by
A7,
FDIFF_2: 13
.= ((
exp_R
. ((
tan
+
cot )
. x))
* (
diff ((
tan
+
cot ),x))) by
SIN_COS: 65
.= ((
exp_R
. ((
tan
+
cot )
. x))
* (((
tan
+
cot )
`| Z)
. x)) by
A3,
A8,
FDIFF_1:def 7
.= ((
exp_R
. ((
tan
+
cot )
. x))
* ((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 )))) by
A2,
A8,
Th6
.= ((
exp_R
. ((
tan
. x)
+ (
cot
. x)))
* ((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 )))) by
A2,
A8,
VALUED_1:def 1;
hence thesis by
A6,
A8,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_10:40
Z
c= (
dom (
exp_R
* (
tan
-
cot ))) implies (
exp_R
* (
tan
-
cot ))
is_differentiable_on Z & for x st x
in Z holds (((
exp_R
* (
tan
-
cot ))
`| Z)
. x)
= ((
exp_R
. ((
tan
. x)
- (
cot
. x)))
* ((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 ))))
proof
assume that
A1: Z
c= (
dom (
exp_R
* (
tan
-
cot )));
(
dom (
exp_R
* (
tan
-
cot )))
c= (
dom (
tan
-
cot )) by
RELAT_1: 25;
then
A2: Z
c= (
dom (
tan
-
cot )) by
A1,
XBOOLE_1: 1;
then
A3: (
tan
-
cot )
is_differentiable_on Z by
Th5;
A4: for x st x
in Z holds (
exp_R
* (
tan
-
cot ))
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A5: (
tan
-
cot )
is_differentiable_in x by
A3,
FDIFF_1: 9;
exp_R
is_differentiable_in ((
tan
-
cot )
. x) by
SIN_COS: 65;
hence thesis by
A5,
FDIFF_2: 13;
end;
then
A6: (
exp_R
* (
tan
-
cot ))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
exp_R
* (
tan
-
cot ))
`| Z)
. x)
= ((
exp_R
. ((
tan
. x)
- (
cot
. x)))
* ((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 ))))
proof
let x;
A7:
exp_R
is_differentiable_in ((
tan
-
cot )
. x) by
SIN_COS: 65;
assume
A8: x
in Z;
then (
tan
-
cot )
is_differentiable_in x by
A3,
FDIFF_1: 9;
then (
diff ((
exp_R
* (
tan
-
cot )),x))
= ((
diff (
exp_R ,((
tan
-
cot )
. x)))
* (
diff ((
tan
-
cot ),x))) by
A7,
FDIFF_2: 13
.= ((
exp_R
. ((
tan
-
cot )
. x))
* (
diff ((
tan
-
cot ),x))) by
SIN_COS: 65
.= ((
exp_R
. ((
tan
-
cot )
. x))
* (((
tan
-
cot )
`| Z)
. x)) by
A3,
A8,
FDIFF_1:def 7
.= ((
exp_R
. ((
tan
-
cot )
. x))
* ((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 )))) by
A2,
A8,
Th5
.= ((
exp_R
. ((
tan
. x)
- (
cot
. x)))
* ((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 )))) by
A2,
A8,
VALUED_1: 13;
hence thesis by
A6,
A8,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_10:41
Z
c= (
dom ((
tan
-
cot )
/
exp_R )) implies ((
tan
-
cot )
/
exp_R )
is_differentiable_on Z & for x st x
in Z holds ((((
tan
-
cot )
/
exp_R )
`| Z)
. x)
= (((((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 )))
- (
tan
. x))
+ (
cot
. x))
/ (
exp_R
. x))
proof
A1: for x st x
in Z holds (
exp_R
. x)
<>
0 by
SIN_COS: 54;
assume Z
c= (
dom ((
tan
-
cot )
/
exp_R ));
then Z
c= ((
dom (
tan
-
cot ))
/\ ((
dom
exp_R )
\ (
exp_R
"
{
0 }))) by
RFUNCT_1:def 1;
then
A2: Z
c= (
dom (
tan
-
cot )) by
XBOOLE_1: 18;
then
A3: (
tan
-
cot )
is_differentiable_on Z by
Th5;
A4:
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
then
A5: ((
tan
-
cot )
/
exp_R )
is_differentiable_on Z by
A3,
A1,
FDIFF_2: 21;
for x st x
in Z holds ((((
tan
-
cot )
/
exp_R )
`| Z)
. x)
= (((((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 )))
- (
tan
. x))
+ (
cot
. x))
/ (
exp_R
. x))
proof
let x;
A6:
exp_R
is_differentiable_in x by
SIN_COS: 65;
A7: (
exp_R
. x)
<>
0 by
SIN_COS: 54;
assume
A8: x
in Z;
then
A9: ((
tan
-
cot )
. x)
= ((
tan
. x)
- (
cot
. x)) by
A2,
VALUED_1: 13;
(
tan
-
cot )
is_differentiable_in x by
A3,
A8,
FDIFF_1: 9;
then (
diff (((
tan
-
cot )
/
exp_R ),x))
= ((((
diff ((
tan
-
cot ),x))
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* ((
tan
-
cot )
. x)))
/ ((
exp_R
. x)
^2 )) by
A6,
A7,
FDIFF_2: 14
.= ((((((
tan
-
cot )
`| Z)
. x)
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* ((
tan
-
cot )
. x)))
/ ((
exp_R
. x)
^2 )) by
A3,
A8,
FDIFF_1:def 7
.= (((((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 )))
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* ((
tan
-
cot )
. x)))
/ ((
exp_R
. x)
^2 )) by
A2,
A8,
Th5
.= (((((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 )))
* (
exp_R
. x))
- ((
exp_R
. x)
* ((
tan
. x)
- (
cot
. x))))
/ ((
exp_R
. x)
* (
exp_R
. x))) by
A9,
SIN_COS: 65
.= ((((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 )))
- ((
tan
. x)
- (
cot
. x)))
* ((
exp_R
. x)
/ ((
exp_R
. x)
* (
exp_R
. x))))
.= ((((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 )))
- ((
tan
. x)
- (
cot
. x)))
* (((
exp_R
. x)
/ (
exp_R
. x))
/ (
exp_R
. x))) by
XCMPLX_1: 78
.= ((((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 )))
- ((
tan
. x)
- (
cot
. x)))
* (1
/ (
exp_R
. x))) by
A7,
XCMPLX_1: 60
.= ((((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 )))
- ((
tan
. x)
- (
cot
. x)))
/ (
exp_R
. x));
hence thesis by
A5,
A8,
FDIFF_1:def 7;
end;
hence thesis by
A3,
A4,
A1,
FDIFF_2: 21;
end;
theorem ::
FDIFF_10:42
Z
c= (
dom ((
tan
+
cot )
/
exp_R )) implies ((
tan
+
cot )
/
exp_R )
is_differentiable_on Z & for x st x
in Z holds ((((
tan
+
cot )
/
exp_R )
`| Z)
. x)
= (((((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 )))
- (
tan
. x))
- (
cot
. x))
/ (
exp_R
. x))
proof
A1: for x st x
in Z holds (
exp_R
. x)
<>
0 by
SIN_COS: 54;
assume Z
c= (
dom ((
tan
+
cot )
/
exp_R ));
then Z
c= ((
dom (
tan
+
cot ))
/\ ((
dom
exp_R )
\ (
exp_R
"
{
0 }))) by
RFUNCT_1:def 1;
then
A2: Z
c= (
dom (
tan
+
cot )) by
XBOOLE_1: 18;
then
A3: (
tan
+
cot )
is_differentiable_on Z by
Th6;
A4:
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
then
A5: ((
tan
+
cot )
/
exp_R )
is_differentiable_on Z by
A3,
A1,
FDIFF_2: 21;
for x st x
in Z holds ((((
tan
+
cot )
/
exp_R )
`| Z)
. x)
= (((((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 )))
- (
tan
. x))
- (
cot
. x))
/ (
exp_R
. x))
proof
let x;
A6:
exp_R
is_differentiable_in x by
SIN_COS: 65;
A7: (
exp_R
. x)
<>
0 by
SIN_COS: 54;
assume
A8: x
in Z;
then
A9: ((
tan
+
cot )
. x)
= ((
tan
. x)
+ (
cot
. x)) by
A2,
VALUED_1:def 1;
(
tan
+
cot )
is_differentiable_in x by
A3,
A8,
FDIFF_1: 9;
then (
diff (((
tan
+
cot )
/
exp_R ),x))
= ((((
diff ((
tan
+
cot ),x))
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* ((
tan
+
cot )
. x)))
/ ((
exp_R
. x)
^2 )) by
A6,
A7,
FDIFF_2: 14
.= ((((((
tan
+
cot )
`| Z)
. x)
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* ((
tan
+
cot )
. x)))
/ ((
exp_R
. x)
^2 )) by
A3,
A8,
FDIFF_1:def 7
.= (((((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 )))
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* ((
tan
+
cot )
. x)))
/ ((
exp_R
. x)
^2 )) by
A2,
A8,
Th6
.= (((((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 )))
* (
exp_R
. x))
- ((
exp_R
. x)
* ((
tan
. x)
+ (
cot
. x))))
/ ((
exp_R
. x)
* (
exp_R
. x))) by
A9,
SIN_COS: 65
.= ((((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 )))
- ((
tan
. x)
+ (
cot
. x)))
* ((
exp_R
. x)
/ ((
exp_R
. x)
* (
exp_R
. x))))
.= ((((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 )))
- ((
tan
. x)
+ (
cot
. x)))
* (((
exp_R
. x)
/ (
exp_R
. x))
/ (
exp_R
. x))) by
XCMPLX_1: 78
.= ((((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 )))
- ((
tan
. x)
+ (
cot
. x)))
* (1
/ (
exp_R
. x))) by
A7,
XCMPLX_1: 60
.= ((((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 )))
- ((
tan
. x)
+ (
cot
. x)))
/ (
exp_R
. x));
hence thesis by
A5,
A8,
FDIFF_1:def 7;
end;
hence thesis by
A3,
A4,
A1,
FDIFF_2: 21;
end;
theorem ::
FDIFF_10:43
Z
c= (
dom (
sin
*
sec )) implies (
sin
*
sec )
is_differentiable_on Z & for x st x
in Z holds (((
sin
*
sec )
`| Z)
. x)
= (((
cos
. (
sec
. x))
* (
sin
. x))
/ ((
cos
. x)
^2 ))
proof
assume
A1: Z
c= (
dom (
sin
*
sec ));
(
dom (
sin
*
sec ))
c= (
dom
sec ) by
RELAT_1: 25;
then
A2: Z
c= (
dom
sec ) by
A1,
XBOOLE_1: 1;
A3: for x st x
in Z holds (
sin
*
sec )
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A2,
RFUNCT_1: 3;
then
A4:
sec
is_differentiable_in x by
FDIFF_9: 1;
sin
is_differentiable_in (
sec
. x) by
SIN_COS: 64;
hence thesis by
A4,
FDIFF_2: 13;
end;
then
A5: (
sin
*
sec )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sin
*
sec )
`| Z)
. x)
= (((
cos
. (
sec
. x))
* (
sin
. x))
/ ((
cos
. x)
^2 ))
proof
let x;
A6:
sin
is_differentiable_in (
sec
. x) by
SIN_COS: 64;
assume
A7: x
in Z;
then
A8: (
cos
. x)
<>
0 by
A2,
RFUNCT_1: 3;
then
sec
is_differentiable_in x by
FDIFF_9: 1;
then (
diff ((
sin
*
sec ),x))
= ((
diff (
sin ,(
sec
. x)))
* (
diff (
sec ,x))) by
A6,
FDIFF_2: 13
.= ((
cos (
sec
. x))
* (
diff (
sec ,x))) by
SIN_COS: 64
.= ((
cos (
sec
. x))
* ((
sin
. x)
/ ((
cos
. x)
^2 ))) by
A8,
FDIFF_9: 1
.= (((
cos
. (
sec
. x))
* (
sin
. x))
/ ((
cos
. x)
^2 ));
hence thesis by
A5,
A7,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_10:44
Z
c= (
dom (
cos
*
sec )) implies (
cos
*
sec )
is_differentiable_on Z & for x st x
in Z holds (((
cos
*
sec )
`| Z)
. x)
= (
- (((
sin
. (
sec
. x))
* (
sin
. x))
/ ((
cos
. x)
^2 )))
proof
assume
A1: Z
c= (
dom (
cos
*
sec ));
(
dom (
cos
*
sec ))
c= (
dom
sec ) by
RELAT_1: 25;
then
A2: Z
c= (
dom
sec ) by
A1,
XBOOLE_1: 1;
A3: for x st x
in Z holds (
cos
*
sec )
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A2,
RFUNCT_1: 3;
then
A4:
sec
is_differentiable_in x by
FDIFF_9: 1;
cos
is_differentiable_in (
sec
. x) by
SIN_COS: 63;
hence thesis by
A4,
FDIFF_2: 13;
end;
then
A5: (
cos
*
sec )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cos
*
sec )
`| Z)
. x)
= (
- (((
sin
. (
sec
. x))
* (
sin
. x))
/ ((
cos
. x)
^2 )))
proof
let x;
A6:
cos
is_differentiable_in (
sec
. x) by
SIN_COS: 63;
assume
A7: x
in Z;
then
A8: (
cos
. x)
<>
0 by
A2,
RFUNCT_1: 3;
then
sec
is_differentiable_in x by
FDIFF_9: 1;
then (
diff ((
cos
*
sec ),x))
= ((
diff (
cos ,(
sec
. x)))
* (
diff (
sec ,x))) by
A6,
FDIFF_2: 13
.= ((
- (
sin (
sec
. x)))
* (
diff (
sec ,x))) by
SIN_COS: 63
.= ((
- (
sin (
sec
. x)))
* ((
sin
. x)
/ ((
cos
. x)
^2 ))) by
A8,
FDIFF_9: 1
.= (
- (((
sin
. (
sec
. x))
* (
sin
. x))
/ ((
cos
. x)
^2 )));
hence thesis by
A5,
A7,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_10:45
Z
c= (
dom (
sin
*
cosec )) implies (
sin
*
cosec )
is_differentiable_on Z & for x st x
in Z holds (((
sin
*
cosec )
`| Z)
. x)
= (
- (((
cos
. (
cosec
. x))
* (
cos
. x))
/ ((
sin
. x)
^2 )))
proof
assume
A1: Z
c= (
dom (
sin
*
cosec ));
(
dom (
sin
*
cosec ))
c= (
dom
cosec ) by
RELAT_1: 25;
then
A2: Z
c= (
dom
cosec ) by
A1,
XBOOLE_1: 1;
A3: for x st x
in Z holds (
sin
*
cosec )
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A2,
RFUNCT_1: 3;
then
A4:
cosec
is_differentiable_in x by
FDIFF_9: 2;
sin
is_differentiable_in (
cosec
. x) by
SIN_COS: 64;
hence thesis by
A4,
FDIFF_2: 13;
end;
then
A5: (
sin
*
cosec )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sin
*
cosec )
`| Z)
. x)
= (
- (((
cos
. (
cosec
. x))
* (
cos
. x))
/ ((
sin
. x)
^2 )))
proof
let x;
A6:
sin
is_differentiable_in (
cosec
. x) by
SIN_COS: 64;
assume
A7: x
in Z;
then
A8: (
sin
. x)
<>
0 by
A2,
RFUNCT_1: 3;
then
cosec
is_differentiable_in x by
FDIFF_9: 2;
then (
diff ((
sin
*
cosec ),x))
= ((
diff (
sin ,(
cosec
. x)))
* (
diff (
cosec ,x))) by
A6,
FDIFF_2: 13
.= ((
cos (
cosec
. x))
* (
diff (
cosec ,x))) by
SIN_COS: 64
.= ((
cos (
cosec
. x))
* (
- ((
cos
. x)
/ ((
sin
. x)
^2 )))) by
A8,
FDIFF_9: 2
.= (
- (((
cos
. (
cosec
. x))
* (
cos
. x))
/ ((
sin
. x)
^2 )));
hence thesis by
A5,
A7,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_10:46
Z
c= (
dom (
cos
*
cosec )) implies (
cos
*
cosec )
is_differentiable_on Z & for x st x
in Z holds (((
cos
*
cosec )
`| Z)
. x)
= (((
sin
. (
cosec
. x))
* (
cos
. x))
/ ((
sin
. x)
^2 ))
proof
assume
A1: Z
c= (
dom (
cos
*
cosec ));
(
dom (
cos
*
cosec ))
c= (
dom
cosec ) by
RELAT_1: 25;
then
A2: Z
c= (
dom
cosec ) by
A1,
XBOOLE_1: 1;
A3: for x st x
in Z holds (
cos
*
cosec )
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A2,
RFUNCT_1: 3;
then
A4:
cosec
is_differentiable_in x by
FDIFF_9: 2;
cos
is_differentiable_in (
cosec
. x) by
SIN_COS: 63;
hence thesis by
A4,
FDIFF_2: 13;
end;
then
A5: (
cos
*
cosec )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cos
*
cosec )
`| Z)
. x)
= (((
sin
. (
cosec
. x))
* (
cos
. x))
/ ((
sin
. x)
^2 ))
proof
let x;
A6:
cos
is_differentiable_in (
cosec
. x) by
SIN_COS: 63;
assume
A7: x
in Z;
then
A8: (
sin
. x)
<>
0 by
A2,
RFUNCT_1: 3;
then
cosec
is_differentiable_in x by
FDIFF_9: 2;
then (
diff ((
cos
*
cosec ),x))
= ((
diff (
cos ,(
cosec
. x)))
* (
diff (
cosec ,x))) by
A6,
FDIFF_2: 13
.= ((
- (
sin (
cosec
. x)))
* (
diff (
cosec ,x))) by
SIN_COS: 63
.= ((
- (
sin (
cosec
. x)))
* (
- ((
cos
. x)
/ ((
sin
. x)
^2 )))) by
A8,
FDIFF_9: 2;
hence thesis by
A5,
A7,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;