fdiff_7.miz
begin
reserve y for
set,
x,r,a,b for
Real,
n for
Element of
NAT ,
Z for
open
Subset of
REAL ,
f,f1,f2,f3 for
PartFunc of
REAL ,
REAL ;
theorem ::
FDIFF_7:1
Th1: (x
#Z 2)
= (x
^2 )
proof
(x
#Z 2)
= (x
|^ 2) by
PREPOWER: 36
.= (x
^2 ) by
NEWTON: 81;
hence thesis;
end;
theorem ::
FDIFF_7:2
Th2: x
>
0 implies (x
#R (1
/ 2))
= (
sqrt x)
proof
assume
A1: x
>
0 ;
then
A2: (x
#R (1
/ 2))
>
0 by
PREPOWER: 81;
x
= (x
#R ((1
/ 2)
* 2)) by
A1,
PREPOWER: 72
.= ((x
#R (1
/ 2))
#R 2) by
A1,
PREPOWER: 91
.= ((x
#R (1
/ 2))
#Q 2) by
A1,
PREPOWER: 74,
PREPOWER: 81
.= ((x
#R (1
/ 2))
to_power 2) by
A1,
POWER: 44,
PREPOWER: 81
.= ((x
#R (1
/ 2))
^2 ) by
POWER: 46;
hence thesis by
A1,
A2,
SQUARE_1:def 2;
end;
theorem ::
FDIFF_7:3
Th3: x
>
0 implies (x
#R (
- (1
/ 2)))
= (1
/ (
sqrt x))
proof
assume
A1: x
>
0 ;
hence (x
#R (
- (1
/ 2)))
= (1
/ (x
#R (1
/ 2))) by
PREPOWER: 76
.= (1
/ (
sqrt x)) by
A1,
Th2;
end;
Lm1: (2
* ((
cos
. (x
/ 2))
^2 ))
= (1
+ (
cos
. x))
proof
((
cos (x
/ 2))
^2 )
= ((1
+ (
cos (2
* (x
/ 2))))
/ 2) by
SIN_COS5: 21
.= ((1
+ (
cos x))
/ 2);
then (2
* ((
cos
. (x
/ 2))
^2 ))
= (2
* ((1
+ (
cos x))
/ 2)) by
SIN_COS:def 19
.= (1
+ (
cos
. x)) by
SIN_COS:def 19;
hence thesis;
end;
Lm2: (2
* ((
sin
. (x
/ 2))
^2 ))
= (1
- (
cos
. x))
proof
((
sin (x
/ 2))
^2 )
= ((1
- (
cos (2
* (x
/ 2))))
/ 2) by
SIN_COS5: 20
.= ((1
- (
cos x))
/ 2);
then (2
* ((
sin
. (x
/ 2))
^2 ))
= (2
* ((1
- (
cos x))
/ 2)) by
SIN_COS:def 17
.= (1
- (
cos
. x)) by
SIN_COS:def 19;
hence thesis;
end;
theorem ::
FDIFF_7:4
Z
c=
].(
- 1), 1.[ & Z
c= (
dom (r
(#)
arcsin )) implies (r
(#)
arcsin )
is_differentiable_on Z & for x st x
in Z holds (((r
(#)
arcsin )
`| Z)
. x)
= (r
/ (
sqrt (1
- (x
^2 ))))
proof
assume that
A1: Z
c=
].(
- 1), 1.[ and
A2: Z
c= (
dom (r
(#)
arcsin ));
A3:
arcsin
is_differentiable_on Z by
A1,
FDIFF_1: 26,
SIN_COS6: 83;
for x st x
in Z holds (((r
(#)
arcsin )
`| Z)
. x)
= (r
/ (
sqrt (1
- (x
^2 ))))
proof
let x;
assume
A4: x
in Z;
then
A5: (
- 1)
< x & x
< 1 by
A1,
XXREAL_1: 4;
(((r
(#)
arcsin )
`| Z)
. x)
= (r
* (
diff (
arcsin ,x))) by
A2,
A3,
A4,
FDIFF_1: 20
.= (r
* (1
/ (
sqrt (1
- (x
^2 ))))) by
A5,
SIN_COS6: 83
.= (r
/ (
sqrt (1
- (x
^2 )))) by
XCMPLX_1: 99;
hence thesis;
end;
hence thesis by
A2,
A3,
FDIFF_1: 20;
end;
theorem ::
FDIFF_7:5
Z
c=
].(
- 1), 1.[ & Z
c= (
dom (r
(#)
arccos )) implies (r
(#)
arccos )
is_differentiable_on Z & for x st x
in Z holds (((r
(#)
arccos )
`| Z)
. x)
= (
- (r
/ (
sqrt (1
- (x
^2 )))))
proof
assume that
A1: Z
c=
].(
- 1), 1.[ and
A2: Z
c= (
dom (r
(#)
arccos ));
A3:
arccos
is_differentiable_on Z by
A1,
FDIFF_1: 26,
SIN_COS6: 106;
for x st x
in Z holds (((r
(#)
arccos )
`| Z)
. x)
= (
- (r
/ (
sqrt (1
- (x
^2 )))))
proof
let x;
assume
A4: x
in Z;
then
A5: (
- 1)
< x & x
< 1 by
A1,
XXREAL_1: 4;
(((r
(#)
arccos )
`| Z)
. x)
= (r
* (
diff (
arccos ,x))) by
A2,
A3,
A4,
FDIFF_1: 20
.= (r
* (
- (1
/ (
sqrt (1
- (x
^2 )))))) by
A5,
SIN_COS6: 106
.= (
- (r
* (1
/ (
sqrt (1
- (x
^2 ))))))
.= (
- (r
/ (
sqrt (1
- (x
^2 ))))) by
XCMPLX_1: 99;
hence thesis;
end;
hence thesis by
A2,
A3,
FDIFF_1: 20;
end;
theorem ::
FDIFF_7:6
Th6: f
is_differentiable_in x & (f
. x)
> (
- 1) & (f
. x)
< 1 implies (
arcsin
* f)
is_differentiable_in x & (
diff ((
arcsin
* f),x))
= ((
diff (f,x))
/ (
sqrt (1
- ((f
. x)
^2 ))))
proof
assume that
A1: f
is_differentiable_in x and
A2: (f
. x)
> (
- 1) & (f
. x)
< 1;
(f
. x)
in
].(
- 1), 1.[ by
A2;
then
A3:
arcsin
is_differentiable_in (f
. x) by
FDIFF_1: 9,
SIN_COS6: 83;
then (
diff ((
arcsin
* f),x))
= ((
diff (
arcsin ,(f
. x)))
* (
diff (f,x))) by
A1,
FDIFF_2: 13
.= ((
diff (f,x))
* (1
/ (
sqrt (1
- ((f
. x)
^2 ))))) by
A2,
SIN_COS6: 83
.= ((
diff (f,x))
/ (
sqrt (1
- ((f
. x)
^2 )))) by
XCMPLX_1: 99;
hence thesis by
A1,
A3,
FDIFF_2: 13;
end;
theorem ::
FDIFF_7:7
Th7: f
is_differentiable_in x & (f
. x)
> (
- 1) & (f
. x)
< 1 implies (
arccos
* f)
is_differentiable_in x & (
diff ((
arccos
* f),x))
= (
- ((
diff (f,x))
/ (
sqrt (1
- ((f
. x)
^2 )))))
proof
assume that
A1: f
is_differentiable_in x and
A2: (f
. x)
> (
- 1) & (f
. x)
< 1;
(f
. x)
in
].(
- 1), 1.[ by
A2;
then
A3:
arccos
is_differentiable_in (f
. x) by
FDIFF_1: 9,
SIN_COS6: 106;
then (
diff ((
arccos
* f),x))
= ((
diff (
arccos ,(f
. x)))
* (
diff (f,x))) by
A1,
FDIFF_2: 13
.= ((
- (1
/ (
sqrt (1
- ((f
. x)
^2 )))))
* (
diff (f,x))) by
A2,
SIN_COS6: 106
.= (
- ((
diff (f,x))
* (1
/ (
sqrt (1
- ((f
. x)
^2 ))))))
.= (
- ((
diff (f,x))
/ (
sqrt (1
- ((f
. x)
^2 ))))) by
XCMPLX_1: 99;
hence thesis by
A1,
A3,
FDIFF_2: 13;
end;
theorem ::
FDIFF_7:8
Z
c= (
dom (
ln
*
arcsin )) & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (
arcsin
. x)
>
0 ) implies (
ln
*
arcsin )
is_differentiable_on Z & for x st x
in Z holds (((
ln
*
arcsin )
`| Z)
. x)
= (1
/ ((
sqrt (1
- (x
^2 )))
* (
arcsin
. x)))
proof
assume that
A1: Z
c= (
dom (
ln
*
arcsin )) and
A2: Z
c=
].(
- 1), 1.[ and
A3: for x st x
in Z holds (
arcsin
. x)
>
0 ;
A4: for x st x
in Z holds (
ln
*
arcsin )
is_differentiable_in x
proof
let x;
assume x
in Z;
then
arcsin
is_differentiable_in x & (
arcsin
. x)
>
0 by
A2,
A3,
FDIFF_1: 9,
SIN_COS6: 83;
hence thesis by
TAYLOR_1: 20;
end;
then
A5: (
ln
*
arcsin )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
ln
*
arcsin )
`| Z)
. x)
= (1
/ ((
sqrt (1
- (x
^2 )))
* (
arcsin
. x)))
proof
let x;
assume
A6: x
in Z;
then
A7: (
- 1)
< x & x
< 1 by
A2,
XXREAL_1: 4;
arcsin
is_differentiable_in x & (
arcsin
. x)
>
0 by
A2,
A3,
A6,
FDIFF_1: 9,
SIN_COS6: 83;
then (
diff ((
ln
*
arcsin ),x))
= ((
diff (
arcsin ,x))
/ (
arcsin
. x)) by
TAYLOR_1: 20
.= ((1
/ (
sqrt (1
- (x
^2 ))))
/ (
arcsin
. x)) by
A7,
SIN_COS6: 83
.= (1
/ ((
sqrt (1
- (x
^2 )))
* (
arcsin
. x))) by
XCMPLX_1: 78;
hence thesis by
A5,
A6,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_7:9
Z
c= (
dom (
ln
*
arccos )) & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (
arccos
. x)
>
0 ) implies (
ln
*
arccos )
is_differentiable_on Z & for x st x
in Z holds (((
ln
*
arccos )
`| Z)
. x)
= (
- (1
/ ((
sqrt (1
- (x
^2 )))
* (
arccos
. x))))
proof
assume that
A1: Z
c= (
dom (
ln
*
arccos )) and
A2: Z
c=
].(
- 1), 1.[ and
A3: for x st x
in Z holds (
arccos
. x)
>
0 ;
A4: for x st x
in Z holds (
ln
*
arccos )
is_differentiable_in x
proof
let x;
assume x
in Z;
then
arccos
is_differentiable_in x & (
arccos
. x)
>
0 by
A2,
A3,
FDIFF_1: 9,
SIN_COS6: 106;
hence thesis by
TAYLOR_1: 20;
end;
then
A5: (
ln
*
arccos )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
ln
*
arccos )
`| Z)
. x)
= (
- (1
/ ((
sqrt (1
- (x
^2 )))
* (
arccos
. x))))
proof
let x;
assume
A6: x
in Z;
then
A7: (
- 1)
< x & x
< 1 by
A2,
XXREAL_1: 4;
arccos
is_differentiable_in x & (
arccos
. x)
>
0 by
A2,
A3,
A6,
FDIFF_1: 9,
SIN_COS6: 106;
then (
diff ((
ln
*
arccos ),x))
= ((
diff (
arccos ,x))
/ (
arccos
. x)) by
TAYLOR_1: 20
.= ((
- (1
/ (
sqrt (1
- (x
^2 )))))
/ (
arccos
. x)) by
A7,
SIN_COS6: 106
.= (
- ((1
/ (
sqrt (1
- (x
^2 ))))
/ (
arccos
. x))) by
XCMPLX_1: 187
.= (
- (1
/ ((
sqrt (1
- (x
^2 )))
* (
arccos
. x)))) by
XCMPLX_1: 78;
hence thesis by
A5,
A6,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_7:10
Th10: Z
c= (
dom ((
#Z n)
*
arcsin )) & Z
c=
].(
- 1), 1.[ implies ((
#Z n)
*
arcsin )
is_differentiable_on Z & for x st x
in Z holds ((((
#Z n)
*
arcsin )
`| Z)
. x)
= ((n
* ((
arcsin
. x)
#Z (n
- 1)))
/ (
sqrt (1
- (x
^2 ))))
proof
assume that
A1: Z
c= (
dom ((
#Z n)
*
arcsin )) and
A2: Z
c=
].(
- 1), 1.[;
A3: for x st x
in Z holds ((
#Z n)
*
arcsin )
is_differentiable_in x
proof
let x;
assume x
in Z;
then
arcsin
is_differentiable_in x by
A2,
FDIFF_1: 9,
SIN_COS6: 83;
hence thesis by
TAYLOR_1: 3;
end;
then
A4: ((
#Z n)
*
arcsin )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds ((((
#Z n)
*
arcsin )
`| Z)
. x)
= ((n
* ((
arcsin
. x)
#Z (n
- 1)))
/ (
sqrt (1
- (x
^2 ))))
proof
let x;
assume
A5: x
in Z;
then
A6: (
- 1)
< x & x
< 1 by
A2,
XXREAL_1: 4;
A7:
arcsin
is_differentiable_in x by
A2,
A5,
FDIFF_1: 9,
SIN_COS6: 83;
((((
#Z n)
*
arcsin )
`| Z)
. x)
= (
diff (((
#Z n)
*
arcsin ),x)) by
A4,
A5,
FDIFF_1:def 7
.= ((n
* ((
arcsin
. x)
#Z (n
- 1)))
* (
diff (
arcsin ,x))) by
A7,
TAYLOR_1: 3
.= ((n
* ((
arcsin
. x)
#Z (n
- 1)))
* (1
/ (
sqrt (1
- (x
^2 ))))) by
A6,
SIN_COS6: 83
.= ((n
* ((
arcsin
. x)
#Z (n
- 1)))
/ (
sqrt (1
- (x
^2 )))) by
XCMPLX_1: 99;
hence thesis;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_7:11
Th11: Z
c= (
dom ((
#Z n)
*
arccos )) & Z
c=
].(
- 1), 1.[ implies ((
#Z n)
*
arccos )
is_differentiable_on Z & for x st x
in Z holds ((((
#Z n)
*
arccos )
`| Z)
. x)
= (
- ((n
* ((
arccos
. x)
#Z (n
- 1)))
/ (
sqrt (1
- (x
^2 )))))
proof
assume that
A1: Z
c= (
dom ((
#Z n)
*
arccos )) and
A2: Z
c=
].(
- 1), 1.[;
A3: for x st x
in Z holds ((
#Z n)
*
arccos )
is_differentiable_in x
proof
let x;
assume x
in Z;
then
arccos
is_differentiable_in x by
A2,
FDIFF_1: 9,
SIN_COS6: 106;
hence thesis by
TAYLOR_1: 3;
end;
then
A4: ((
#Z n)
*
arccos )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds ((((
#Z n)
*
arccos )
`| Z)
. x)
= (
- ((n
* ((
arccos
. x)
#Z (n
- 1)))
/ (
sqrt (1
- (x
^2 )))))
proof
let x;
assume
A5: x
in Z;
then
A6: (
- 1)
< x & x
< 1 by
A2,
XXREAL_1: 4;
A7:
arccos
is_differentiable_in x by
A2,
A5,
FDIFF_1: 9,
SIN_COS6: 106;
((((
#Z n)
*
arccos )
`| Z)
. x)
= (
diff (((
#Z n)
*
arccos ),x)) by
A4,
A5,
FDIFF_1:def 7
.= ((n
* ((
arccos
. x)
#Z (n
- 1)))
* (
diff (
arccos ,x))) by
A7,
TAYLOR_1: 3
.= ((n
* ((
arccos
. x)
#Z (n
- 1)))
* (
- (1
/ (
sqrt (1
- (x
^2 )))))) by
A6,
SIN_COS6: 106
.= (
- ((n
* ((
arccos
. x)
#Z (n
- 1)))
* (1
/ (
sqrt (1
- (x
^2 ))))))
.= (
- ((n
* ((
arccos
. x)
#Z (n
- 1)))
/ (
sqrt (1
- (x
^2 ))))) by
XCMPLX_1: 99;
hence thesis;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_7:12
Z
c= (
dom ((1
/ 2)
(#) ((
#Z 2)
*
arcsin ))) & Z
c=
].(
- 1), 1.[ implies ((1
/ 2)
(#) ((
#Z 2)
*
arcsin ))
is_differentiable_on Z & for x st x
in Z holds ((((1
/ 2)
(#) ((
#Z 2)
*
arcsin ))
`| Z)
. x)
= ((
arcsin
. x)
/ (
sqrt (1
- (x
^2 ))))
proof
assume that
A1: Z
c= (
dom ((1
/ 2)
(#) ((
#Z 2)
*
arcsin ))) and
A2: Z
c=
].(
- 1), 1.[;
A3: Z
c= (
dom ((
#Z 2)
*
arcsin )) by
A1,
VALUED_1:def 5;
then
A4: ((
#Z 2)
*
arcsin )
is_differentiable_on Z by
A2,
Th10;
for x st x
in Z holds ((((1
/ 2)
(#) ((
#Z 2)
*
arcsin ))
`| Z)
. x)
= ((
arcsin
. x)
/ (
sqrt (1
- (x
^2 ))))
proof
let x;
assume
A5: x
in Z;
then ((((1
/ 2)
(#) ((
#Z 2)
*
arcsin ))
`| Z)
. x)
= ((1
/ 2)
* (
diff (((
#Z 2)
*
arcsin ),x))) by
A1,
A4,
FDIFF_1: 20
.= ((1
/ 2)
* ((((
#Z 2)
*
arcsin )
`| Z)
. x)) by
A4,
A5,
FDIFF_1:def 7
.= ((1
/ 2)
* ((2
* ((
arcsin
. x)
#Z (2
- 1)))
/ (
sqrt (1
- (x
^2 ))))) by
A2,
A3,
A5,
Th10
.= (((1
/ 2)
* (2
* ((
arcsin
. x)
#Z (2
- 1))))
/ (
sqrt (1
- (x
^2 )))) by
XCMPLX_1: 74
.= ((
arcsin
. x)
/ (
sqrt (1
- (x
^2 )))) by
PREPOWER: 35;
hence thesis;
end;
hence thesis by
A1,
A4,
FDIFF_1: 20;
end;
theorem ::
FDIFF_7:13
Z
c= (
dom ((1
/ 2)
(#) ((
#Z 2)
*
arccos ))) & Z
c=
].(
- 1), 1.[ implies ((1
/ 2)
(#) ((
#Z 2)
*
arccos ))
is_differentiable_on Z & for x st x
in Z holds ((((1
/ 2)
(#) ((
#Z 2)
*
arccos ))
`| Z)
. x)
= (
- ((
arccos
. x)
/ (
sqrt (1
- (x
^2 )))))
proof
assume that
A1: Z
c= (
dom ((1
/ 2)
(#) ((
#Z 2)
*
arccos ))) and
A2: Z
c=
].(
- 1), 1.[;
A3: Z
c= (
dom ((
#Z 2)
*
arccos )) by
A1,
VALUED_1:def 5;
then
A4: ((
#Z 2)
*
arccos )
is_differentiable_on Z by
A2,
Th11;
for x st x
in Z holds ((((1
/ 2)
(#) ((
#Z 2)
*
arccos ))
`| Z)
. x)
= (
- ((
arccos
. x)
/ (
sqrt (1
- (x
^2 )))))
proof
let x;
assume
A5: x
in Z;
then ((((1
/ 2)
(#) ((
#Z 2)
*
arccos ))
`| Z)
. x)
= ((1
/ 2)
* (
diff (((
#Z 2)
*
arccos ),x))) by
A1,
A4,
FDIFF_1: 20
.= ((1
/ 2)
* ((((
#Z 2)
*
arccos )
`| Z)
. x)) by
A4,
A5,
FDIFF_1:def 7
.= ((1
/ 2)
* (
- ((2
* ((
arccos
. x)
#Z (2
- 1)))
/ (
sqrt (1
- (x
^2 )))))) by
A2,
A3,
A5,
Th11
.= (
- ((1
/ 2)
* ((2
* ((
arccos
. x)
#Z (2
- 1)))
/ (
sqrt (1
- (x
^2 ))))))
.= (
- (((1
/ 2)
* (2
* ((
arccos
. x)
#Z (2
- 1))))
/ (
sqrt (1
- (x
^2 ))))) by
XCMPLX_1: 74
.= (
- ((
arccos
. x)
/ (
sqrt (1
- (x
^2 ))))) by
PREPOWER: 35;
hence thesis;
end;
hence thesis by
A1,
A4,
FDIFF_1: 20;
end;
theorem ::
FDIFF_7:14
Th14: Z
c= (
dom (
arcsin
* f)) & (for x st x
in Z holds (f
. x)
= ((a
* x)
+ b) & (f
. x)
> (
- 1) & (f
. x)
< 1) implies (
arcsin
* f)
is_differentiable_on Z & for x st x
in Z holds (((
arcsin
* f)
`| Z)
. x)
= (a
/ (
sqrt (1
- (((a
* x)
+ b)
^2 ))))
proof
assume that
A1: Z
c= (
dom (
arcsin
* f)) and
A2: for x st x
in Z holds (f
. x)
= ((a
* x)
+ b) & (f
. x)
> (
- 1) & (f
. x)
< 1;
for y be
object st y
in Z holds y
in (
dom f) by
A1,
FUNCT_1: 11;
then
A3: Z
c= (
dom f) by
TARSKI:def 3;
A4: for x st x
in Z holds (f
. x)
= ((a
* x)
+ b) by
A2;
then
A5: f
is_differentiable_on Z by
A3,
FDIFF_1: 23;
A6: for x st x
in Z holds (
arcsin
* f)
is_differentiable_in x
proof
let x;
assume
A7: x
in Z;
then
A8: (f
. x)
< 1 by
A2;
f
is_differentiable_in x & (f
. x)
> (
- 1) by
A2,
A5,
A7,
FDIFF_1: 9;
hence thesis by
A8,
Th6;
end;
then
A9: (
arcsin
* f)
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
arcsin
* f)
`| Z)
. x)
= (a
/ (
sqrt (1
- (((a
* x)
+ b)
^2 ))))
proof
let x;
assume
A10: x
in Z;
then
A11: (f
. x)
< 1 by
A2;
f
is_differentiable_in x & (f
. x)
> (
- 1) by
A2,
A5,
A10,
FDIFF_1: 9;
then (
diff ((
arcsin
* f),x))
= ((
diff (f,x))
/ (
sqrt (1
- ((f
. x)
^2 )))) by
A11,
Th6
.= (((f
`| Z)
. x)
/ (
sqrt (1
- ((f
. x)
^2 )))) by
A5,
A10,
FDIFF_1:def 7
.= (a
/ (
sqrt (1
- ((f
. x)
^2 )))) by
A4,
A3,
A10,
FDIFF_1: 23
.= (a
/ (
sqrt (1
- (((a
* x)
+ b)
^2 )))) by
A2,
A10;
hence thesis by
A9,
A10,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A6,
FDIFF_1: 9;
end;
theorem ::
FDIFF_7:15
Th15: Z
c= (
dom (
arccos
* f)) & (for x st x
in Z holds (f
. x)
= ((a
* x)
+ b) & (f
. x)
> (
- 1) & (f
. x)
< 1) implies (
arccos
* f)
is_differentiable_on Z & for x st x
in Z holds (((
arccos
* f)
`| Z)
. x)
= (
- (a
/ (
sqrt (1
- (((a
* x)
+ b)
^2 )))))
proof
assume that
A1: Z
c= (
dom (
arccos
* f)) and
A2: for x st x
in Z holds (f
. x)
= ((a
* x)
+ b) & (f
. x)
> (
- 1) & (f
. x)
< 1;
for y be
object st y
in Z holds y
in (
dom f) by
A1,
FUNCT_1: 11;
then
A3: Z
c= (
dom f) by
TARSKI:def 3;
A4: for x st x
in Z holds (f
. x)
= ((a
* x)
+ b) by
A2;
then
A5: f
is_differentiable_on Z by
A3,
FDIFF_1: 23;
A6: for x st x
in Z holds (
arccos
* f)
is_differentiable_in x
proof
let x;
assume
A7: x
in Z;
then
A8: (f
. x)
< 1 by
A2;
f
is_differentiable_in x & (f
. x)
> (
- 1) by
A2,
A5,
A7,
FDIFF_1: 9;
hence thesis by
A8,
Th7;
end;
then
A9: (
arccos
* f)
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
arccos
* f)
`| Z)
. x)
= (
- (a
/ (
sqrt (1
- (((a
* x)
+ b)
^2 )))))
proof
let x;
assume
A10: x
in Z;
then
A11: (f
. x)
< 1 by
A2;
f
is_differentiable_in x & (f
. x)
> (
- 1) by
A2,
A5,
A10,
FDIFF_1: 9;
then (
diff ((
arccos
* f),x))
= (
- ((
diff (f,x))
/ (
sqrt (1
- ((f
. x)
^2 ))))) by
A11,
Th7
.= (
- (((f
`| Z)
. x)
/ (
sqrt (1
- ((f
. x)
^2 ))))) by
A5,
A10,
FDIFF_1:def 7
.= (
- (a
/ (
sqrt (1
- ((f
. x)
^2 ))))) by
A4,
A3,
A10,
FDIFF_1: 23
.= (
- (a
/ (
sqrt (1
- (((a
* x)
+ b)
^2 ))))) by
A2,
A10;
hence thesis by
A9,
A10,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A6,
FDIFF_1: 9;
end;
theorem ::
FDIFF_7:16
Th16: Z
c= (
dom ((
id Z)
(#)
arcsin )) & Z
c=
].(
- 1), 1.[ implies ((
id Z)
(#)
arcsin )
is_differentiable_on Z & for x st x
in Z holds ((((
id Z)
(#)
arcsin )
`| Z)
. x)
= ((
arcsin
. x)
+ (x
/ (
sqrt (1
- (x
^2 )))))
proof
assume that
A1: Z
c= (
dom ((
id Z)
(#)
arcsin )) and
A2: Z
c=
].(
- 1), 1.[;
A3: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
Z
c= ((
dom (
id Z))
/\ (
dom
arcsin )) by
A1,
VALUED_1:def 4;
then
A4: Z
c= (
dom (
id Z)) by
XBOOLE_1: 18;
then
A5: (
id Z)
is_differentiable_on Z by
A3,
FDIFF_1: 23;
A6:
arcsin
is_differentiable_on Z by
A2,
FDIFF_1: 26,
SIN_COS6: 83;
for x st x
in Z holds ((((
id Z)
(#)
arcsin )
`| Z)
. x)
= ((
arcsin
. x)
+ (x
/ (
sqrt (1
- (x
^2 )))))
proof
let x;
assume
A7: x
in Z;
then
A8: (
- 1)
< x & x
< 1 by
A2,
XXREAL_1: 4;
((((
id Z)
(#)
arcsin )
`| Z)
. x)
= (((
arcsin
. x)
* (
diff ((
id Z),x)))
+ (((
id Z)
. x)
* (
diff (
arcsin ,x)))) by
A1,
A5,
A6,
A7,
FDIFF_1: 21
.= (((
arcsin
. x)
* (((
id Z)
`| Z)
. x))
+ (((
id Z)
. x)
* (
diff (
arcsin ,x)))) by
A5,
A7,
FDIFF_1:def 7
.= (((
arcsin
. x)
* 1)
+ (((
id Z)
. x)
* (
diff (
arcsin ,x)))) by
A4,
A3,
A7,
FDIFF_1: 23
.= (((
arcsin
. x)
* 1)
+ (((
id Z)
. x)
* (1
/ (
sqrt (1
- (x
^2 )))))) by
A8,
SIN_COS6: 83
.= ((
arcsin
. x)
+ (x
* (1
/ (
sqrt (1
- (x
^2 )))))) by
A7,
FUNCT_1: 18
.= ((
arcsin
. x)
+ (x
/ (
sqrt (1
- (x
^2 ))))) by
XCMPLX_1: 99;
hence thesis;
end;
hence thesis by
A1,
A5,
A6,
FDIFF_1: 21;
end;
theorem ::
FDIFF_7:17
Th17: Z
c= (
dom ((
id Z)
(#)
arccos )) & Z
c=
].(
- 1), 1.[ implies ((
id Z)
(#)
arccos )
is_differentiable_on Z & for x st x
in Z holds ((((
id Z)
(#)
arccos )
`| Z)
. x)
= ((
arccos
. x)
- (x
/ (
sqrt (1
- (x
^2 )))))
proof
assume that
A1: Z
c= (
dom ((
id Z)
(#)
arccos )) and
A2: Z
c=
].(
- 1), 1.[;
A3: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
Z
c= ((
dom (
id Z))
/\ (
dom
arccos )) by
A1,
VALUED_1:def 4;
then
A4: Z
c= (
dom (
id Z)) by
XBOOLE_1: 18;
then
A5: (
id Z)
is_differentiable_on Z by
A3,
FDIFF_1: 23;
A6:
arccos
is_differentiable_on Z by
A2,
FDIFF_1: 26,
SIN_COS6: 106;
for x st x
in Z holds ((((
id Z)
(#)
arccos )
`| Z)
. x)
= ((
arccos
. x)
- (x
/ (
sqrt (1
- (x
^2 )))))
proof
let x;
assume
A7: x
in Z;
then
A8: (
- 1)
< x & x
< 1 by
A2,
XXREAL_1: 4;
((((
id Z)
(#)
arccos )
`| Z)
. x)
= (((
arccos
. x)
* (
diff ((
id Z),x)))
+ (((
id Z)
. x)
* (
diff (
arccos ,x)))) by
A1,
A5,
A6,
A7,
FDIFF_1: 21
.= (((
arccos
. x)
* (((
id Z)
`| Z)
. x))
+ (((
id Z)
. x)
* (
diff (
arccos ,x)))) by
A5,
A7,
FDIFF_1:def 7
.= (((
arccos
. x)
* 1)
+ (((
id Z)
. x)
* (
diff (
arccos ,x)))) by
A4,
A3,
A7,
FDIFF_1: 23
.= (((
arccos
. x)
* 1)
+ (((
id Z)
. x)
* (
- (1
/ (
sqrt (1
- (x
^2 ))))))) by
A8,
SIN_COS6: 106
.= ((
arccos
. x)
+ (x
* (
- (1
/ (
sqrt (1
- (x
^2 ))))))) by
A7,
FUNCT_1: 18
.= ((
arccos
. x)
- (x
* (1
/ (
sqrt (1
- (x
^2 ))))))
.= ((
arccos
. x)
- (x
/ (
sqrt (1
- (x
^2 ))))) by
XCMPLX_1: 99;
hence thesis;
end;
hence thesis by
A1,
A5,
A6,
FDIFF_1: 21;
end;
theorem ::
FDIFF_7:18
Z
c= (
dom (f
(#)
arcsin )) & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (f
. x)
= ((a
* x)
+ b)) implies (f
(#)
arcsin )
is_differentiable_on Z & for x st x
in Z holds (((f
(#)
arcsin )
`| Z)
. x)
= ((a
* (
arcsin
. x))
+ (((a
* x)
+ b)
/ (
sqrt (1
- (x
^2 )))))
proof
assume that
A1: Z
c= (
dom (f
(#)
arcsin )) and
A2: Z
c=
].(
- 1), 1.[ and
A3: for x st x
in Z holds (f
. x)
= ((a
* x)
+ b);
Z
c= ((
dom f)
/\ (
dom
arcsin )) by
A1,
VALUED_1:def 4;
then
A4: Z
c= (
dom f) by
XBOOLE_1: 18;
then
A5: f
is_differentiable_on Z by
A3,
FDIFF_1: 23;
A6:
arcsin
is_differentiable_on Z by
A2,
FDIFF_1: 26,
SIN_COS6: 83;
for x st x
in Z holds (((f
(#)
arcsin )
`| Z)
. x)
= ((a
* (
arcsin
. x))
+ (((a
* x)
+ b)
/ (
sqrt (1
- (x
^2 )))))
proof
let x;
assume
A7: x
in Z;
then
A8: (
- 1)
< x & x
< 1 by
A2,
XXREAL_1: 4;
(((f
(#)
arcsin )
`| Z)
. x)
= (((
arcsin
. x)
* (
diff (f,x)))
+ ((f
. x)
* (
diff (
arcsin ,x)))) by
A1,
A5,
A6,
A7,
FDIFF_1: 21
.= (((
arcsin
. x)
* ((f
`| Z)
. x))
+ ((f
. x)
* (
diff (
arcsin ,x)))) by
A5,
A7,
FDIFF_1:def 7
.= (((
arcsin
. x)
* a)
+ ((f
. x)
* (
diff (
arcsin ,x)))) by
A3,
A4,
A7,
FDIFF_1: 23
.= (((
arcsin
. x)
* a)
+ ((f
. x)
* (1
/ (
sqrt (1
- (x
^2 )))))) by
A8,
SIN_COS6: 83
.= ((a
* (
arcsin
. x))
+ (((a
* x)
+ b)
* (1
/ (
sqrt (1
- (x
^2 )))))) by
A3,
A7
.= ((a
* (
arcsin
. x))
+ (((a
* x)
+ b)
/ (
sqrt (1
- (x
^2 ))))) by
XCMPLX_1: 99;
hence thesis;
end;
hence thesis by
A1,
A5,
A6,
FDIFF_1: 21;
end;
theorem ::
FDIFF_7:19
Z
c= (
dom (f
(#)
arccos )) & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (f
. x)
= ((a
* x)
+ b)) implies (f
(#)
arccos )
is_differentiable_on Z & for x st x
in Z holds (((f
(#)
arccos )
`| Z)
. x)
= ((a
* (
arccos
. x))
- (((a
* x)
+ b)
/ (
sqrt (1
- (x
^2 )))))
proof
assume that
A1: Z
c= (
dom (f
(#)
arccos )) and
A2: Z
c=
].(
- 1), 1.[ and
A3: for x st x
in Z holds (f
. x)
= ((a
* x)
+ b);
Z
c= ((
dom f)
/\ (
dom
arccos )) by
A1,
VALUED_1:def 4;
then
A4: Z
c= (
dom f) by
XBOOLE_1: 18;
then
A5: f
is_differentiable_on Z by
A3,
FDIFF_1: 23;
A6:
arccos
is_differentiable_on Z by
A2,
FDIFF_1: 26,
SIN_COS6: 106;
for x st x
in Z holds (((f
(#)
arccos )
`| Z)
. x)
= ((a
* (
arccos
. x))
- (((a
* x)
+ b)
/ (
sqrt (1
- (x
^2 )))))
proof
let x;
assume
A7: x
in Z;
then
A8: (
- 1)
< x & x
< 1 by
A2,
XXREAL_1: 4;
(((f
(#)
arccos )
`| Z)
. x)
= (((
arccos
. x)
* (
diff (f,x)))
+ ((f
. x)
* (
diff (
arccos ,x)))) by
A1,
A5,
A6,
A7,
FDIFF_1: 21
.= (((
arccos
. x)
* ((f
`| Z)
. x))
+ ((f
. x)
* (
diff (
arccos ,x)))) by
A5,
A7,
FDIFF_1:def 7
.= (((
arccos
. x)
* a)
+ ((f
. x)
* (
diff (
arccos ,x)))) by
A3,
A4,
A7,
FDIFF_1: 23
.= (((
arccos
. x)
* a)
+ ((f
. x)
* (
- (1
/ (
sqrt (1
- (x
^2 ))))))) by
A8,
SIN_COS6: 106
.= (((
arccos
. x)
* a)
- ((f
. x)
* (1
/ (
sqrt (1
- (x
^2 ))))))
.= ((a
* (
arccos
. x))
- (((a
* x)
+ b)
* (1
/ (
sqrt (1
- (x
^2 )))))) by
A3,
A7
.= ((a
* (
arccos
. x))
- (((a
* x)
+ b)
/ (
sqrt (1
- (x
^2 ))))) by
XCMPLX_1: 99;
hence thesis;
end;
hence thesis by
A1,
A5,
A6,
FDIFF_1: 21;
end;
theorem ::
FDIFF_7:20
Z
c= (
dom ((1
/ 2)
(#) (
arcsin
* f))) & (for x st x
in Z holds (f
. x)
= (2
* x) & (f
. x)
> (
- 1) & (f
. x)
< 1) implies ((1
/ 2)
(#) (
arcsin
* f))
is_differentiable_on Z & for x st x
in Z holds ((((1
/ 2)
(#) (
arcsin
* f))
`| Z)
. x)
= (1
/ (
sqrt (1
- ((2
* x)
^2 ))))
proof
assume that
A1: Z
c= (
dom ((1
/ 2)
(#) (
arcsin
* f))) and
A2: for x st x
in Z holds (f
. x)
= (2
* x) & (f
. x)
> (
- 1) & (f
. x)
< 1;
A3: Z
c= (
dom (
arcsin
* f)) & for x st x
in Z holds (f
. x)
= ((2
* x)
+
0 ) & (f
. x)
> (
- 1) & (f
. x)
< 1 by
A1,
A2,
VALUED_1:def 5;
then
A4: (
arcsin
* f)
is_differentiable_on Z by
Th14;
for x st x
in Z holds ((((1
/ 2)
(#) (
arcsin
* f))
`| Z)
. x)
= (1
/ (
sqrt (1
- ((2
* x)
^2 ))))
proof
let x;
assume
A5: x
in Z;
then ((((1
/ 2)
(#) (
arcsin
* f))
`| Z)
. x)
= ((1
/ 2)
* (
diff ((
arcsin
* f),x))) by
A1,
A4,
FDIFF_1: 20
.= ((1
/ 2)
* (((
arcsin
* f)
`| Z)
. x)) by
A4,
A5,
FDIFF_1:def 7
.= ((1
/ 2)
* (2
/ (
sqrt (1
- (((2
* x)
+
0 )
^2 ))))) by
A3,
A5,
Th14
.= (((1
/ 2)
* 2)
/ (
sqrt (1
- ((2
* x)
^2 )))) by
XCMPLX_1: 74
.= (1
/ (
sqrt (1
- ((2
* x)
^2 ))));
hence thesis;
end;
hence thesis by
A1,
A4,
FDIFF_1: 20;
end;
theorem ::
FDIFF_7:21
Z
c= (
dom ((1
/ 2)
(#) (
arccos
* f))) & (for x st x
in Z holds (f
. x)
= (2
* x) & (f
. x)
> (
- 1) & (f
. x)
< 1) implies ((1
/ 2)
(#) (
arccos
* f))
is_differentiable_on Z & for x st x
in Z holds ((((1
/ 2)
(#) (
arccos
* f))
`| Z)
. x)
= (
- (1
/ (
sqrt (1
- ((2
* x)
^2 )))))
proof
assume that
A1: Z
c= (
dom ((1
/ 2)
(#) (
arccos
* f))) and
A2: for x st x
in Z holds (f
. x)
= (2
* x) & (f
. x)
> (
- 1) & (f
. x)
< 1;
A3: Z
c= (
dom (
arccos
* f)) & for x st x
in Z holds (f
. x)
= ((2
* x)
+
0 ) & (f
. x)
> (
- 1) & (f
. x)
< 1 by
A1,
A2,
VALUED_1:def 5;
then
A4: (
arccos
* f)
is_differentiable_on Z by
Th15;
for x st x
in Z holds ((((1
/ 2)
(#) (
arccos
* f))
`| Z)
. x)
= (
- (1
/ (
sqrt (1
- ((2
* x)
^2 )))))
proof
let x;
assume
A5: x
in Z;
then ((((1
/ 2)
(#) (
arccos
* f))
`| Z)
. x)
= ((1
/ 2)
* (
diff ((
arccos
* f),x))) by
A1,
A4,
FDIFF_1: 20
.= ((1
/ 2)
* (((
arccos
* f)
`| Z)
. x)) by
A4,
A5,
FDIFF_1:def 7
.= ((1
/ 2)
* (
- (2
/ (
sqrt (1
- (((2
* x)
+
0 )
^2 )))))) by
A3,
A5,
Th15
.= (
- ((1
/ 2)
* (2
/ (
sqrt (1
- ((2
* x)
^2 ))))))
.= (
- (((1
/ 2)
* 2)
/ (
sqrt (1
- ((2
* x)
^2 ))))) by
XCMPLX_1: 74
.= (
- (1
/ (
sqrt (1
- ((2
* x)
^2 )))));
hence thesis;
end;
hence thesis by
A1,
A4,
FDIFF_1: 20;
end;
theorem ::
FDIFF_7:22
Th22: Z
c= (
dom ((
#R (1
/ 2))
* f)) & f
= (f1
- f2) & f2
= (
#Z 2) & (for x st x
in Z holds (f1
. x)
= 1 & (f
. x)
>
0 ) implies ((
#R (1
/ 2))
* f)
is_differentiable_on Z & for x st x
in Z holds ((((
#R (1
/ 2))
* f)
`| Z)
. x)
= (
- (x
* ((1
- (x
#Z 2))
#R (
- (1
/ 2)))))
proof
assume that
A1: Z
c= (
dom ((
#R (1
/ 2))
* f)) and
A2: f
= (f1
- f2) and
A3: f2
= (
#Z 2) and
A4: for x st x
in Z holds (f1
. x)
= 1 & (f
. x)
>
0 ;
for y be
object st y
in Z holds y
in (
dom f) by
A1,
FUNCT_1: 11;
then
A5: Z
c= (
dom (f1
+ ((
- 1)
(#) f2))) by
A2,
TARSKI:def 3;
A6: for x st x
in Z holds (f1
. x)
= (1
+ (
0
* x)) by
A4;
then
A7: f
is_differentiable_on Z by
A2,
A3,
A5,
FDIFF_4: 12;
A8: for x st x
in Z holds ((
#R (1
/ 2))
* f)
is_differentiable_in x
proof
let x;
assume x
in Z;
then f
is_differentiable_in x & (f
. x)
>
0 by
A4,
A7,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 22;
end;
then
A9: ((
#R (1
/ 2))
* f)
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds ((((
#R (1
/ 2))
* f)
`| Z)
. x)
= (
- (x
* ((1
- (x
#Z 2))
#R (
- (1
/ 2)))))
proof
let x;
assume
A10: x
in Z;
then
A11: f
is_differentiable_in x & (f
. x)
>
0 by
A4,
A7,
FDIFF_1: 9;
x
in (
dom (f1
- f2)) by
A1,
A2,
A10,
FUNCT_1: 11;
then
A12: ((f1
- f2)
. x)
= ((f1
. x)
- (f2
. x)) by
VALUED_1: 13
.= (1
- (f2
. x)) by
A4,
A10
.= (1
- (x
#Z 2)) by
A3,
TAYLOR_1:def 1;
((((
#R (1
/ 2))
* f)
`| Z)
. x)
= (
diff (((
#R (1
/ 2))
* f),x)) by
A9,
A10,
FDIFF_1:def 7
.= (((1
/ 2)
* ((f
. x)
#R ((1
/ 2)
- 1)))
* (
diff (f,x))) by
A11,
TAYLOR_1: 22
.= (((1
/ 2)
* ((f
. x)
#R ((1
/ 2)
- 1)))
* ((f
`| Z)
. x)) by
A7,
A10,
FDIFF_1:def 7
.= (((1
/ 2)
* ((f
. x)
#R ((1
/ 2)
- 1)))
* (
0
+ ((2
* (
- 1))
* x))) by
A2,
A3,
A5,
A6,
A10,
FDIFF_4: 12
.= (
- (x
* ((1
- (x
#Z 2))
#R (
- (1
/ 2))))) by
A2,
A12;
hence thesis;
end;
hence thesis by
A1,
A8,
FDIFF_1: 9;
end;
theorem ::
FDIFF_7:23
Z
c= (
dom (((
id Z)
(#)
arcsin )
+ ((
#R (1
/ 2))
* f))) & Z
c=
].(
- 1), 1.[ & f
= (f1
- f2) & f2
= (
#Z 2) & (for x st x
in Z holds (f1
. x)
= 1 & (f
. x)
>
0 & x
<>
0 ) implies (((
id Z)
(#)
arcsin )
+ ((
#R (1
/ 2))
* f))
is_differentiable_on Z & for x st x
in Z holds (((((
id Z)
(#)
arcsin )
+ ((
#R (1
/ 2))
* f))
`| Z)
. x)
= (
arcsin
. x)
proof
assume that
A1: Z
c= (
dom (((
id Z)
(#)
arcsin )
+ ((
#R (1
/ 2))
* f))) and
A2: Z
c=
].(
- 1), 1.[ and
A3: f
= (f1
- f2) and
A4: f2
= (
#Z 2) and
A5: for x st x
in Z holds (f1
. x)
= 1 & (f
. x)
>
0 & x
<>
0 ;
A6: Z
c= ((
dom ((
id Z)
(#)
arcsin ))
/\ (
dom ((
#R (1
/ 2))
* f))) by
A1,
VALUED_1:def 1;
then
A7: Z
c= (
dom ((
#R (1
/ 2))
* f)) by
XBOOLE_1: 18;
A8: Z
c= (
dom ((
id Z)
(#)
arcsin )) by
A6,
XBOOLE_1: 18;
then
A9: ((
id Z)
(#)
arcsin )
is_differentiable_on Z by
A2,
Th16;
A10: for x st x
in Z holds (f1
. x)
= 1 & (f
. x)
>
0 by
A5;
then
A11: ((
#R (1
/ 2))
* f)
is_differentiable_on Z by
A3,
A4,
A7,
Th22;
A12: for x st x
in Z holds (x
* ((1
- (x
#Z 2))
#R (
- (1
/ 2))))
= (x
/ (
sqrt (1
- (x
^2 ))))
proof
let x;
assume
A13: x
in Z;
then x
in (
dom (f1
- f2)) by
A3,
A7,
FUNCT_1: 11;
then
A14: ((f1
- f2)
. x)
= ((f1
. x)
- (f2
. x)) by
VALUED_1: 13
.= (1
- (f2
. x)) by
A5,
A13
.= (1
- (x
#Z 2)) by
A4,
TAYLOR_1:def 1;
(f
. x)
>
0 by
A5,
A13;
then
A15: (1
- (x
^2 ))
>
0 by
A3,
A14,
Th1;
((1
- (x
#Z 2))
#R (
- (1
/ 2)))
= ((1
- (x
^2 ))
#R (
- (1
/ 2))) by
Th1
.= (1
/ (
sqrt (1
- (x
^2 )))) by
A15,
Th3;
hence thesis by
XCMPLX_1: 99;
end;
for x st x
in Z holds (((((
id Z)
(#)
arcsin )
+ ((
#R (1
/ 2))
* f))
`| Z)
. x)
= (
arcsin
. x)
proof
let x;
assume
A16: x
in Z;
hence (((((
id Z)
(#)
arcsin )
+ ((
#R (1
/ 2))
* f))
`| Z)
. x)
= ((
diff (((
id Z)
(#)
arcsin ),x))
+ (
diff (((
#R (1
/ 2))
* f),x))) by
A1,
A9,
A11,
FDIFF_1: 18
.= (((((
id Z)
(#)
arcsin )
`| Z)
. x)
+ (
diff (((
#R (1
/ 2))
* f),x))) by
A9,
A16,
FDIFF_1:def 7
.= (((((
id Z)
(#)
arcsin )
`| Z)
. x)
+ ((((
#R (1
/ 2))
* f)
`| Z)
. x)) by
A11,
A16,
FDIFF_1:def 7
.= (((
arcsin
. x)
+ (x
/ (
sqrt (1
- (x
^2 )))))
+ ((((
#R (1
/ 2))
* f)
`| Z)
. x)) by
A2,
A8,
A16,
Th16
.= (((
arcsin
. x)
+ (x
/ (
sqrt (1
- (x
^2 )))))
+ (
- (x
* ((1
- (x
#Z 2))
#R (
- (1
/ 2)))))) by
A3,
A4,
A10,
A7,
A16,
Th22
.= (((
arcsin
. x)
+ (x
/ (
sqrt (1
- (x
^2 )))))
- (x
* ((1
- (x
#Z 2))
#R (
- (1
/ 2)))))
.= (((
arcsin
. x)
+ (x
/ (
sqrt (1
- (x
^2 )))))
- (x
/ (
sqrt (1
- (x
^2 ))))) by
A12,
A16
.= (
arcsin
. x);
end;
hence thesis by
A1,
A9,
A11,
FDIFF_1: 18;
end;
theorem ::
FDIFF_7:24
Z
c= (
dom (((
id Z)
(#)
arccos )
- ((
#R (1
/ 2))
* f))) & Z
c=
].(
- 1), 1.[ & f
= (f1
- f2) & f2
= (
#Z 2) & (for x st x
in Z holds (f1
. x)
= 1 & (f
. x)
>
0 & x
<>
0 ) implies (((
id Z)
(#)
arccos )
- ((
#R (1
/ 2))
* f))
is_differentiable_on Z & for x st x
in Z holds (((((
id Z)
(#)
arccos )
- ((
#R (1
/ 2))
* f))
`| Z)
. x)
= (
arccos
. x)
proof
assume that
A1: Z
c= (
dom (((
id Z)
(#)
arccos )
- ((
#R (1
/ 2))
* f))) and
A2: Z
c=
].(
- 1), 1.[ and
A3: f
= (f1
- f2) and
A4: f2
= (
#Z 2) and
A5: for x st x
in Z holds (f1
. x)
= 1 & (f
. x)
>
0 & x
<>
0 ;
A6: Z
c= ((
dom ((
id Z)
(#)
arccos ))
/\ (
dom ((
#R (1
/ 2))
* f))) by
A1,
VALUED_1: 12;
then
A7: Z
c= (
dom ((
#R (1
/ 2))
* f)) by
XBOOLE_1: 18;
A8: Z
c= (
dom ((
id Z)
(#)
arccos )) by
A6,
XBOOLE_1: 18;
then
A9: ((
id Z)
(#)
arccos )
is_differentiable_on Z by
A2,
Th17;
A10: for x st x
in Z holds (f1
. x)
= 1 & (f
. x)
>
0 by
A5;
then
A11: ((
#R (1
/ 2))
* f)
is_differentiable_on Z by
A3,
A4,
A7,
Th22;
A12: for x st x
in Z holds (x
* ((1
- (x
#Z 2))
#R (
- (1
/ 2))))
= (x
/ (
sqrt (1
- (x
^2 ))))
proof
let x;
assume
A13: x
in Z;
then x
in (
dom (f1
- f2)) by
A3,
A7,
FUNCT_1: 11;
then
A14: ((f1
- f2)
. x)
= ((f1
. x)
- (f2
. x)) by
VALUED_1: 13
.= (1
- (f2
. x)) by
A5,
A13
.= (1
- (x
#Z 2)) by
A4,
TAYLOR_1:def 1;
(f
. x)
>
0 by
A5,
A13;
then
A15: (1
- (x
^2 ))
>
0 by
A3,
A14,
Th1;
((1
- (x
#Z 2))
#R (
- (1
/ 2)))
= ((1
- (x
^2 ))
#R (
- (1
/ 2))) by
Th1
.= (1
/ (
sqrt (1
- (x
^2 )))) by
A15,
Th3;
hence thesis by
XCMPLX_1: 99;
end;
for x st x
in Z holds (((((
id Z)
(#)
arccos )
- ((
#R (1
/ 2))
* f))
`| Z)
. x)
= (
arccos
. x)
proof
let x;
assume
A16: x
in Z;
hence (((((
id Z)
(#)
arccos )
- ((
#R (1
/ 2))
* f))
`| Z)
. x)
= ((
diff (((
id Z)
(#)
arccos ),x))
- (
diff (((
#R (1
/ 2))
* f),x))) by
A1,
A9,
A11,
FDIFF_1: 19
.= (((((
id Z)
(#)
arccos )
`| Z)
. x)
- (
diff (((
#R (1
/ 2))
* f),x))) by
A9,
A16,
FDIFF_1:def 7
.= (((((
id Z)
(#)
arccos )
`| Z)
. x)
- ((((
#R (1
/ 2))
* f)
`| Z)
. x)) by
A11,
A16,
FDIFF_1:def 7
.= (((
arccos
. x)
- (x
/ (
sqrt (1
- (x
^2 )))))
- ((((
#R (1
/ 2))
* f)
`| Z)
. x)) by
A2,
A8,
A16,
Th17
.= (((
arccos
. x)
- (x
/ (
sqrt (1
- (x
^2 )))))
- (
- (x
* ((1
- (x
#Z 2))
#R (
- (1
/ 2)))))) by
A3,
A4,
A10,
A7,
A16,
Th22
.= (((
arccos
. x)
- (x
/ (
sqrt (1
- (x
^2 )))))
+ (x
* ((1
- (x
#Z 2))
#R (
- (1
/ 2)))))
.= (((
arccos
. x)
- (x
/ (
sqrt (1
- (x
^2 )))))
+ (x
/ (
sqrt (1
- (x
^2 ))))) by
A12,
A16
.= (
arccos
. x);
end;
hence thesis by
A1,
A9,
A11,
FDIFF_1: 19;
end;
theorem ::
FDIFF_7:25
Th25: Z
c= (
dom ((
id Z)
(#) (
arcsin
* f))) & (for x st x
in Z holds (f
. x)
= (x
/ a) & (f
. x)
> (
- 1) & (f
. x)
< 1) implies ((
id Z)
(#) (
arcsin
* f))
is_differentiable_on Z & for x st x
in Z holds ((((
id Z)
(#) (
arcsin
* f))
`| Z)
. x)
= ((
arcsin
. (x
/ a))
+ (x
/ (a
* (
sqrt (1
- ((x
/ a)
^2 ))))))
proof
assume that
A1: Z
c= (
dom ((
id Z)
(#) (
arcsin
* f))) and
A2: for x st x
in Z holds (f
. x)
= (x
/ a) & (f
. x)
> (
- 1) & (f
. x)
< 1;
A3: Z
c= ((
dom (
id Z))
/\ (
dom (
arcsin
* f))) by
A1,
VALUED_1:def 4;
then
A4: Z
c= (
dom (
id Z)) by
XBOOLE_1: 18;
A5: Z
c= (
dom (
arcsin
* f)) by
A3,
XBOOLE_1: 18;
for x st x
in Z holds (f
. x)
= (((1
/ a)
* x)
+
0 )
proof
let x;
assume x
in Z;
then (f
. x)
= (x
/ a) by
A2;
hence thesis by
XCMPLX_1: 99;
end;
then
A6: for x st x
in Z holds (f
. x)
= (((1
/ a)
* x)
+
0 ) & (f
. x)
> (
- 1) & (f
. x)
< 1 by
A2;
then
A7: (
arcsin
* f)
is_differentiable_on Z by
A5,
Th14;
A8: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
then
A9: (
id Z)
is_differentiable_on Z by
A4,
FDIFF_1: 23;
A10: for x st x
in Z holds (((
arcsin
* f)
`| Z)
. x)
= (1
/ (a
* (
sqrt (1
- ((x
/ a)
^2 )))))
proof
let x;
assume x
in Z;
then (((
arcsin
* f)
`| Z)
. x)
= ((1
/ a)
/ (
sqrt (1
- ((((1
/ a)
* x)
+
0 )
^2 )))) by
A6,
A5,
Th14
.= ((1
/ a)
/ (
sqrt (1
- ((x
/ a)
^2 )))) by
XCMPLX_1: 99
.= (1
/ (a
* (
sqrt (1
- ((x
/ a)
^2 ))))) by
XCMPLX_1: 78;
hence thesis;
end;
for x st x
in Z holds ((((
id Z)
(#) (
arcsin
* f))
`| Z)
. x)
= ((
arcsin
. (x
/ a))
+ (x
/ (a
* (
sqrt (1
- ((x
/ a)
^2 ))))))
proof
let x;
assume
A11: x
in Z;
then
A12: ((
arcsin
* f)
. x)
= (
arcsin
. (f
. x)) by
A5,
FUNCT_1: 12
.= (
arcsin
. (x
/ a)) by
A2,
A11;
((((
id Z)
(#) (
arcsin
* f))
`| Z)
. x)
= ((((
arcsin
* f)
. x)
* (
diff ((
id Z),x)))
+ (((
id Z)
. x)
* (
diff ((
arcsin
* f),x)))) by
A1,
A9,
A7,
A11,
FDIFF_1: 21
.= ((((
arcsin
* f)
. x)
* (((
id Z)
`| Z)
. x))
+ (((
id Z)
. x)
* (
diff ((
arcsin
* f),x)))) by
A9,
A11,
FDIFF_1:def 7
.= ((((
arcsin
* f)
. x)
* 1)
+ (((
id Z)
. x)
* (
diff ((
arcsin
* f),x)))) by
A4,
A8,
A11,
FDIFF_1: 23
.= ((((
arcsin
* f)
. x)
* 1)
+ (((
id Z)
. x)
* (((
arcsin
* f)
`| Z)
. x))) by
A7,
A11,
FDIFF_1:def 7
.= (((
arcsin
* f)
. x)
+ (x
* (((
arcsin
* f)
`| Z)
. x))) by
A11,
FUNCT_1: 18
.= ((
arcsin
. (x
/ a))
+ (x
* (1
/ (a
* (
sqrt (1
- ((x
/ a)
^2 ))))))) by
A10,
A11,
A12
.= ((
arcsin
. (x
/ a))
+ (x
/ (a
* (
sqrt (1
- ((x
/ a)
^2 )))))) by
XCMPLX_1: 99;
hence thesis;
end;
hence thesis by
A1,
A9,
A7,
FDIFF_1: 21;
end;
theorem ::
FDIFF_7:26
Th26: Z
c= (
dom ((
id Z)
(#) (
arccos
* f))) & (for x st x
in Z holds (f
. x)
= (x
/ a) & (f
. x)
> (
- 1) & (f
. x)
< 1) implies ((
id Z)
(#) (
arccos
* f))
is_differentiable_on Z & for x st x
in Z holds ((((
id Z)
(#) (
arccos
* f))
`| Z)
. x)
= ((
arccos
. (x
/ a))
- (x
/ (a
* (
sqrt (1
- ((x
/ a)
^2 ))))))
proof
assume that
A1: Z
c= (
dom ((
id Z)
(#) (
arccos
* f))) and
A2: for x st x
in Z holds (f
. x)
= (x
/ a) & (f
. x)
> (
- 1) & (f
. x)
< 1;
A3: Z
c= ((
dom (
id Z))
/\ (
dom (
arccos
* f))) by
A1,
VALUED_1:def 4;
then
A4: Z
c= (
dom (
id Z)) by
XBOOLE_1: 18;
A5: Z
c= (
dom (
arccos
* f)) by
A3,
XBOOLE_1: 18;
for x st x
in Z holds (f
. x)
= (((1
/ a)
* x)
+
0 )
proof
let x;
assume x
in Z;
then (f
. x)
= (x
/ a) by
A2;
hence thesis by
XCMPLX_1: 99;
end;
then
A6: for x st x
in Z holds (f
. x)
= (((1
/ a)
* x)
+
0 ) & (f
. x)
> (
- 1) & (f
. x)
< 1 by
A2;
then
A7: (
arccos
* f)
is_differentiable_on Z by
A5,
Th15;
A8: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
then
A9: (
id Z)
is_differentiable_on Z by
A4,
FDIFF_1: 23;
A10: for x st x
in Z holds (((
arccos
* f)
`| Z)
. x)
= (
- (1
/ (a
* (
sqrt (1
- ((x
/ a)
^2 ))))))
proof
let x;
assume x
in Z;
then (((
arccos
* f)
`| Z)
. x)
= (
- ((1
/ a)
/ (
sqrt (1
- ((((1
/ a)
* x)
+
0 )
^2 ))))) by
A6,
A5,
Th15
.= (
- ((1
/ a)
/ (
sqrt (1
- ((x
/ a)
^2 ))))) by
XCMPLX_1: 99
.= (
- (1
/ (a
* (
sqrt (1
- ((x
/ a)
^2 )))))) by
XCMPLX_1: 78;
hence thesis;
end;
for x st x
in Z holds ((((
id Z)
(#) (
arccos
* f))
`| Z)
. x)
= ((
arccos
. (x
/ a))
- (x
/ (a
* (
sqrt (1
- ((x
/ a)
^2 ))))))
proof
let x;
assume
A11: x
in Z;
then
A12: ((
arccos
* f)
. x)
= (
arccos
. (f
. x)) by
A5,
FUNCT_1: 12
.= (
arccos
. (x
/ a)) by
A2,
A11;
((((
id Z)
(#) (
arccos
* f))
`| Z)
. x)
= ((((
arccos
* f)
. x)
* (
diff ((
id Z),x)))
+ (((
id Z)
. x)
* (
diff ((
arccos
* f),x)))) by
A1,
A9,
A7,
A11,
FDIFF_1: 21
.= ((((
arccos
* f)
. x)
* (((
id Z)
`| Z)
. x))
+ (((
id Z)
. x)
* (
diff ((
arccos
* f),x)))) by
A9,
A11,
FDIFF_1:def 7
.= ((((
arccos
* f)
. x)
* 1)
+ (((
id Z)
. x)
* (
diff ((
arccos
* f),x)))) by
A4,
A8,
A11,
FDIFF_1: 23
.= ((((
arccos
* f)
. x)
* 1)
+ (((
id Z)
. x)
* (((
arccos
* f)
`| Z)
. x))) by
A7,
A11,
FDIFF_1:def 7
.= (((
arccos
* f)
. x)
+ (x
* (((
arccos
* f)
`| Z)
. x))) by
A11,
FUNCT_1: 18
.= ((
arccos
. (x
/ a))
+ (x
* (
- (1
/ (a
* (
sqrt (1
- ((x
/ a)
^2 )))))))) by
A10,
A11,
A12
.= ((
arccos
. (x
/ a))
- (x
* (1
/ (a
* (
sqrt (1
- ((x
/ a)
^2 )))))))
.= ((
arccos
. (x
/ a))
- (x
/ (a
* (
sqrt (1
- ((x
/ a)
^2 )))))) by
XCMPLX_1: 99;
hence thesis;
end;
hence thesis by
A1,
A9,
A7,
FDIFF_1: 21;
end;
theorem ::
FDIFF_7:27
Th27: Z
c= (
dom ((
#R (1
/ 2))
* f)) & f
= (f1
- f2) & f2
= (
#Z 2) & (for x st x
in Z holds (f1
. x)
= (a
^2 ) & (f
. x)
>
0 ) implies ((
#R (1
/ 2))
* f)
is_differentiable_on Z & for x st x
in Z holds ((((
#R (1
/ 2))
* f)
`| Z)
. x)
= (
- (x
* (((a
^2 )
- (x
#Z 2))
#R (
- (1
/ 2)))))
proof
assume that
A1: Z
c= (
dom ((
#R (1
/ 2))
* f)) and
A2: f
= (f1
- f2) and
A3: f2
= (
#Z 2) and
A4: for x st x
in Z holds (f1
. x)
= (a
^2 ) & (f
. x)
>
0 ;
for y be
object st y
in Z holds y
in (
dom f) by
A1,
FUNCT_1: 11;
then
A5: Z
c= (
dom (f1
+ ((
- 1)
(#) f2))) by
A2,
TARSKI:def 3;
A6: for x st x
in Z holds (f1
. x)
= ((a
^2 )
+ (
0
* x)) by
A4;
then
A7: f
is_differentiable_on Z by
A2,
A3,
A5,
FDIFF_4: 12;
A8: for x st x
in Z holds ((
#R (1
/ 2))
* f)
is_differentiable_in x
proof
let x;
assume x
in Z;
then f
is_differentiable_in x & (f
. x)
>
0 by
A4,
A7,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 22;
end;
then
A9: ((
#R (1
/ 2))
* f)
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds ((((
#R (1
/ 2))
* f)
`| Z)
. x)
= (
- (x
* (((a
^2 )
- (x
#Z 2))
#R (
- (1
/ 2)))))
proof
let x;
assume
A10: x
in Z;
then
A11: f
is_differentiable_in x & (f
. x)
>
0 by
A4,
A7,
FDIFF_1: 9;
x
in (
dom (f1
- f2)) by
A1,
A2,
A10,
FUNCT_1: 11;
then
A12: ((f1
- f2)
. x)
= ((f1
. x)
- (f2
. x)) by
VALUED_1: 13
.= ((a
^2 )
- (f2
. x)) by
A4,
A10
.= ((a
^2 )
- (x
#Z 2)) by
A3,
TAYLOR_1:def 1;
((((
#R (1
/ 2))
* f)
`| Z)
. x)
= (
diff (((
#R (1
/ 2))
* f),x)) by
A9,
A10,
FDIFF_1:def 7
.= (((1
/ 2)
* ((f
. x)
#R ((1
/ 2)
- 1)))
* (
diff (f,x))) by
A11,
TAYLOR_1: 22
.= (((1
/ 2)
* ((f
. x)
#R ((1
/ 2)
- 1)))
* ((f
`| Z)
. x)) by
A7,
A10,
FDIFF_1:def 7
.= (((1
/ 2)
* ((f
. x)
#R ((1
/ 2)
- 1)))
* (
0
+ ((2
* (
- 1))
* x))) by
A2,
A3,
A5,
A6,
A10,
FDIFF_4: 12
.= (
- (x
* (((a
^2 )
- (x
#Z 2))
#R (
- (1
/ 2))))) by
A2,
A12;
hence thesis;
end;
hence thesis by
A1,
A8,
FDIFF_1: 9;
end;
theorem ::
FDIFF_7:28
Z
c= (
dom (((
id Z)
(#) (
arcsin
* f3))
+ ((
#R (1
/ 2))
* f))) & f
= (f1
- f2) & f2
= (
#Z 2) & (for x st x
in Z holds (f1
. x)
= (a
^2 ) & (f
. x)
>
0 & (f3
. x)
= (x
/ a) & (f3
. x)
> (
- 1) & (f3
. x)
< 1 & x
<>
0 & a
>
0 ) implies (((
id Z)
(#) (
arcsin
* f3))
+ ((
#R (1
/ 2))
* f))
is_differentiable_on Z & for x st x
in Z holds (((((
id Z)
(#) (
arcsin
* f3))
+ ((
#R (1
/ 2))
* f))
`| Z)
. x)
= (
arcsin
. (x
/ a))
proof
assume that
A1: Z
c= (
dom (((
id Z)
(#) (
arcsin
* f3))
+ ((
#R (1
/ 2))
* f))) and
A2: f
= (f1
- f2) & f2
= (
#Z 2) and
A3: for x st x
in Z holds (f1
. x)
= (a
^2 ) & (f
. x)
>
0 & (f3
. x)
= (x
/ a) & (f3
. x)
> (
- 1) & (f3
. x)
< 1 & x
<>
0 & a
>
0 ;
A4: Z
c= ((
dom ((
id Z)
(#) (
arcsin
* f3)))
/\ (
dom ((
#R (1
/ 2))
* f))) by
A1,
VALUED_1:def 1;
then
A5: Z
c= (
dom ((
#R (1
/ 2))
* f)) by
XBOOLE_1: 18;
A6: for x st x
in Z holds (f1
. x)
= (a
^2 ) & (f
. x)
>
0 by
A3;
then
A7: ((
#R (1
/ 2))
* f)
is_differentiable_on Z by
A2,
A5,
Th27;
A8: for x st x
in Z holds (f3
. x)
= (x
/ a) & (f3
. x)
> (
- 1) & (f3
. x)
< 1 by
A3;
A9: Z
c= (
dom ((
id Z)
(#) (
arcsin
* f3))) by
A4,
XBOOLE_1: 18;
then
A10: ((
id Z)
(#) (
arcsin
* f3))
is_differentiable_on Z by
A8,
Th25;
A11: for x st x
in Z holds (((a
^2 )
- (x
#Z 2))
#R (
- (1
/ 2)))
= (1
/ (a
* (
sqrt (1
- ((x
/ a)
^2 )))))
proof
let x;
assume
A12: x
in Z;
then
A13: (f3
. x)
= (x
/ a) by
A3;
(f3
. x)
< 1 by
A3,
A12;
then
A14: (1
- (f3
. x))
> (1
- 1) by
XREAL_1: 10;
(f3
. x)
> (
- 1) by
A3,
A12;
then (1
+ (f3
. x))
> (1
+ (
- 1)) by
XREAL_1: 6;
then
A15: ((1
+ (f3
. x))
* (1
- (f3
. x)))
>
0 by
A14,
XREAL_1: 129;
A16: a
>
0 by
A3,
A12;
then
A17: (a
^2 )
>
0 by
SQUARE_1: 12;
(1
/ (a
* (
sqrt (1
- ((x
/ a)
^2 )))))
= (1
/ ((
sqrt (a
^2 ))
* (
sqrt (1
- ((x
/ a)
^2 ))))) by
A16,
SQUARE_1: 22
.= (1
/ (
sqrt ((a
^2 )
* (1
- ((x
/ a)
^2 ))))) by
A17,
A13,
A15,
SQUARE_1: 29
.= ((((a
^2 )
* 1)
- ((a
* (x
/ a))
^2 ))
#R (
- (1
/ 2))) by
A17,
A13,
A15,
Th3,
XREAL_1: 129
.= (((a
^2 )
- (((x
* a)
/ a)
^2 ))
#R (
- (1
/ 2))) by
XCMPLX_1: 74
.= (((a
^2 )
- ((x
* (a
/ a))
^2 ))
#R (
- (1
/ 2))) by
XCMPLX_1: 74
.= (((a
^2 )
- ((x
* 1)
^2 ))
#R (
- (1
/ 2))) by
A16,
XCMPLX_1: 60
.= (((a
^2 )
- (x
#Z 2))
#R (
- (1
/ 2))) by
Th1;
hence thesis;
end;
for x st x
in Z holds (((((
id Z)
(#) (
arcsin
* f3))
+ ((
#R (1
/ 2))
* f))
`| Z)
. x)
= (
arcsin
. (x
/ a))
proof
let x;
assume
A18: x
in Z;
then (((((
id Z)
(#) (
arcsin
* f3))
+ ((
#R (1
/ 2))
* f))
`| Z)
. x)
= ((
diff (((
id Z)
(#) (
arcsin
* f3)),x))
+ (
diff (((
#R (1
/ 2))
* f),x))) by
A1,
A10,
A7,
FDIFF_1: 18
.= (((((
id Z)
(#) (
arcsin
* f3))
`| Z)
. x)
+ (
diff (((
#R (1
/ 2))
* f),x))) by
A10,
A18,
FDIFF_1:def 7
.= (((((
id Z)
(#) (
arcsin
* f3))
`| Z)
. x)
+ ((((
#R (1
/ 2))
* f)
`| Z)
. x)) by
A7,
A18,
FDIFF_1:def 7
.= (((
arcsin
. (x
/ a))
+ (x
/ (a
* (
sqrt (1
- ((x
/ a)
^2 ))))))
+ ((((
#R (1
/ 2))
* f)
`| Z)
. x)) by
A9,
A8,
A18,
Th25
.= (((
arcsin
. (x
/ a))
+ (x
/ (a
* (
sqrt (1
- ((x
/ a)
^2 ))))))
+ (
- (x
* (((a
^2 )
- (x
#Z 2))
#R (
- (1
/ 2)))))) by
A2,
A5,
A6,
A18,
Th27
.= (((
arcsin
. (x
/ a))
+ (x
/ (a
* (
sqrt (1
- ((x
/ a)
^2 ))))))
- (x
* (((a
^2 )
- (x
#Z 2))
#R (
- (1
/ 2)))))
.= (((
arcsin
. (x
/ a))
+ (x
/ (a
* (
sqrt (1
- ((x
/ a)
^2 ))))))
- (x
* (1
/ (a
* (
sqrt (1
- ((x
/ a)
^2 ))))))) by
A11,
A18
.= (((
arcsin
. (x
/ a))
+ (x
/ (a
* (
sqrt (1
- ((x
/ a)
^2 ))))))
- (x
/ (a
* (
sqrt (1
- ((x
/ a)
^2 )))))) by
XCMPLX_1: 99
.= (
arcsin
. (x
/ a));
hence thesis;
end;
hence thesis by
A1,
A10,
A7,
FDIFF_1: 18;
end;
theorem ::
FDIFF_7:29
Z
c= (
dom (((
id Z)
(#) (
arccos
* f3))
- ((
#R (1
/ 2))
* f))) & f
= (f1
- f2) & f2
= (
#Z 2) & (for x st x
in Z holds (f1
. x)
= (a
^2 ) & (f
. x)
>
0 & (f3
. x)
= (x
/ a) & (f3
. x)
> (
- 1) & (f3
. x)
< 1 & x
<>
0 & a
>
0 ) implies (((
id Z)
(#) (
arccos
* f3))
- ((
#R (1
/ 2))
* f))
is_differentiable_on Z & for x st x
in Z holds (((((
id Z)
(#) (
arccos
* f3))
- ((
#R (1
/ 2))
* f))
`| Z)
. x)
= (
arccos
. (x
/ a))
proof
assume that
A1: Z
c= (
dom (((
id Z)
(#) (
arccos
* f3))
- ((
#R (1
/ 2))
* f))) and
A2: f
= (f1
- f2) & f2
= (
#Z 2) and
A3: for x st x
in Z holds (f1
. x)
= (a
^2 ) & (f
. x)
>
0 & (f3
. x)
= (x
/ a) & (f3
. x)
> (
- 1) & (f3
. x)
< 1 & x
<>
0 & a
>
0 ;
A4: Z
c= ((
dom ((
id Z)
(#) (
arccos
* f3)))
/\ (
dom ((
#R (1
/ 2))
* f))) by
A1,
VALUED_1: 12;
then
A5: Z
c= (
dom ((
#R (1
/ 2))
* f)) by
XBOOLE_1: 18;
A6: for x st x
in Z holds (f1
. x)
= (a
^2 ) & (f
. x)
>
0 by
A3;
then
A7: ((
#R (1
/ 2))
* f)
is_differentiable_on Z by
A2,
A5,
Th27;
A8: for x st x
in Z holds (f3
. x)
= (x
/ a) & (f3
. x)
> (
- 1) & (f3
. x)
< 1 by
A3;
A9: Z
c= (
dom ((
id Z)
(#) (
arccos
* f3))) by
A4,
XBOOLE_1: 18;
then
A10: ((
id Z)
(#) (
arccos
* f3))
is_differentiable_on Z by
A8,
Th26;
A11: for x st x
in Z holds (((a
^2 )
- (x
#Z 2))
#R (
- (1
/ 2)))
= (1
/ (a
* (
sqrt (1
- ((x
/ a)
^2 )))))
proof
let x;
assume
A12: x
in Z;
then
A13: (f3
. x)
= (x
/ a) by
A3;
(f3
. x)
< 1 by
A3,
A12;
then
A14: (1
- (f3
. x))
> (1
- 1) by
XREAL_1: 10;
(f3
. x)
> (
- 1) by
A3,
A12;
then (1
+ (f3
. x))
> (1
+ (
- 1)) by
XREAL_1: 6;
then
A15: ((1
+ (f3
. x))
* (1
- (f3
. x)))
>
0 by
A14,
XREAL_1: 129;
A16: a
>
0 by
A3,
A12;
then
A17: (a
^2 )
>
0 by
SQUARE_1: 12;
(1
/ (a
* (
sqrt (1
- ((x
/ a)
^2 )))))
= (1
/ ((
sqrt (a
^2 ))
* (
sqrt (1
- ((x
/ a)
^2 ))))) by
A16,
SQUARE_1: 22
.= (1
/ (
sqrt ((a
^2 )
* (1
- ((x
/ a)
^2 ))))) by
A17,
A13,
A15,
SQUARE_1: 29
.= ((((a
^2 )
* 1)
- ((a
* (x
/ a))
^2 ))
#R (
- (1
/ 2))) by
A17,
A13,
A15,
Th3,
XREAL_1: 129
.= (((a
^2 )
- (((x
* a)
/ a)
^2 ))
#R (
- (1
/ 2))) by
XCMPLX_1: 74
.= (((a
^2 )
- ((x
* (a
/ a))
^2 ))
#R (
- (1
/ 2))) by
XCMPLX_1: 74
.= (((a
^2 )
- ((x
* 1)
^2 ))
#R (
- (1
/ 2))) by
A16,
XCMPLX_1: 60
.= (((a
^2 )
- (x
#Z 2))
#R (
- (1
/ 2))) by
Th1;
hence thesis;
end;
for x st x
in Z holds (((((
id Z)
(#) (
arccos
* f3))
- ((
#R (1
/ 2))
* f))
`| Z)
. x)
= (
arccos
. (x
/ a))
proof
let x;
assume
A18: x
in Z;
then (((((
id Z)
(#) (
arccos
* f3))
- ((
#R (1
/ 2))
* f))
`| Z)
. x)
= ((
diff (((
id Z)
(#) (
arccos
* f3)),x))
- (
diff (((
#R (1
/ 2))
* f),x))) by
A1,
A10,
A7,
FDIFF_1: 19
.= (((((
id Z)
(#) (
arccos
* f3))
`| Z)
. x)
- (
diff (((
#R (1
/ 2))
* f),x))) by
A10,
A18,
FDIFF_1:def 7
.= (((((
id Z)
(#) (
arccos
* f3))
`| Z)
. x)
- ((((
#R (1
/ 2))
* f)
`| Z)
. x)) by
A7,
A18,
FDIFF_1:def 7
.= (((
arccos
. (x
/ a))
- (x
/ (a
* (
sqrt (1
- ((x
/ a)
^2 ))))))
- ((((
#R (1
/ 2))
* f)
`| Z)
. x)) by
A9,
A8,
A18,
Th26
.= (((
arccos
. (x
/ a))
- (x
/ (a
* (
sqrt (1
- ((x
/ a)
^2 ))))))
- (
- (x
* (((a
^2 )
- (x
#Z 2))
#R (
- (1
/ 2)))))) by
A2,
A5,
A6,
A18,
Th27
.= (((
arccos
. (x
/ a))
- (x
/ (a
* (
sqrt (1
- ((x
/ a)
^2 ))))))
+ (x
* (((a
^2 )
- (x
#Z 2))
#R (
- (1
/ 2)))))
.= (((
arccos
. (x
/ a))
- (x
/ (a
* (
sqrt (1
- ((x
/ a)
^2 ))))))
+ (x
* (1
/ (a
* (
sqrt (1
- ((x
/ a)
^2 ))))))) by
A11,
A18
.= (((
arccos
. (x
/ a))
- (x
/ (a
* (
sqrt (1
- ((x
/ a)
^2 ))))))
+ (x
/ (a
* (
sqrt (1
- ((x
/ a)
^2 )))))) by
XCMPLX_1: 99
.= (
arccos
. (x
/ a));
hence thesis;
end;
hence thesis by
A1,
A10,
A7,
FDIFF_1: 19;
end;
theorem ::
FDIFF_7:30
Z
c= (
dom ((
- (1
/ n))
(#) ((
#Z n)
* (
sin
^ )))) & n
>
0 & (for x st x
in Z holds (
sin
. x)
<>
0 ) implies ((
- (1
/ n))
(#) ((
#Z n)
* (
sin
^ )))
is_differentiable_on Z & for x st x
in Z holds ((((
- (1
/ n))
(#) ((
#Z n)
* (
sin
^ )))
`| Z)
. x)
= ((
cos
. x)
/ ((
sin
. x)
#Z (n
+ 1)))
proof
assume that
A1: Z
c= (
dom ((
- (1
/ n))
(#) ((
#Z n)
* (
sin
^ )))) and
A2: n
>
0 and
A3: for x st x
in Z holds (
sin
. x)
<>
0 ;
A4: Z
c= (
dom ((
#Z n)
* (
sin
^ ))) by
A1,
VALUED_1:def 5;
A5: (
sin
^ )
is_differentiable_on Z by
A3,
FDIFF_4: 40;
now
let x;
assume x
in Z;
then (
sin
^ )
is_differentiable_in x by
A5,
FDIFF_1: 9;
hence ((
#Z n)
* (
sin
^ ))
is_differentiable_in x by
TAYLOR_1: 3;
end;
then
A6: ((
#Z n)
* (
sin
^ ))
is_differentiable_on Z by
A4,
FDIFF_1: 9;
for y be
object st y
in Z holds y
in (
dom (
sin
^ )) by
A4,
FUNCT_1: 11;
then
A7: Z
c= (
dom (
sin
^ )) by
TARSKI:def 3;
for x st x
in Z holds ((((
- (1
/ n))
(#) ((
#Z n)
* (
sin
^ )))
`| Z)
. x)
= ((
cos
. x)
/ ((
sin
. x)
#Z (n
+ 1)))
proof
let x;
assume
A8: x
in Z;
then
A9: (
sin
^ )
is_differentiable_in x by
A5,
FDIFF_1: 9;
A10: ((
sin
^ )
. x)
= ((
sin
. x)
" ) by
A7,
A8,
RFUNCT_1:def 2
.= (1
/ (
sin
. x)) by
XCMPLX_1: 215;
((((
- (1
/ n))
(#) ((
#Z n)
* (
sin
^ )))
`| Z)
. x)
= ((
- (1
/ n))
* (
diff (((
#Z n)
* (
sin
^ )),x))) by
A1,
A6,
A8,
FDIFF_1: 20
.= ((
- (1
/ n))
* ((n
* (((
sin
^ )
. x)
#Z (n
- 1)))
* (
diff ((
sin
^ ),x)))) by
A9,
TAYLOR_1: 3
.= ((
- (1
/ n))
* ((n
* (((
sin
^ )
. x)
#Z (n
- 1)))
* (((
sin
^ )
`| Z)
. x))) by
A5,
A8,
FDIFF_1:def 7
.= ((
- (1
/ n))
* ((n
* (((
sin
^ )
. x)
#Z (n
- 1)))
* (
- ((
cos
. x)
/ ((
sin
. x)
^2 ))))) by
A3,
A8,
FDIFF_4: 40
.= (
- ((((1
/ n)
* n)
* (((
sin
^ )
. x)
#Z (n
- 1)))
* (
- ((
cos
. x)
/ ((
sin
. x)
^2 )))))
.= (
- ((1
* (((
sin
^ )
. x)
#Z (n
- 1)))
* (
- ((
cos
. x)
/ ((
sin
. x)
^2 ))))) by
A2,
XCMPLX_1: 106
.= (
- (((1
/ (
sin
. x))
#Z (n
- 1))
* (
- ((
cos
. x)
/ ((
sin
. x)
#Z 2))))) by
A10,
Th1
.= (
- ((
- ((
cos
. x)
/ ((
sin
. x)
#Z 2)))
* (1
/ ((
sin
. x)
#Z (n
- 1))))) by
PREPOWER: 42
.= (((
cos
. x)
/ ((
sin
. x)
#Z 2))
* (1
/ ((
sin
. x)
#Z (n
- 1))))
.= (((
cos
. x)
/ ((
sin
. x)
#Z 2))
/ ((
sin
. x)
#Z (n
- 1))) by
XCMPLX_1: 99
.= ((
cos
. x)
/ (((
sin
. x)
#Z 2)
* ((
sin
. x)
#Z (n
- 1)))) by
XCMPLX_1: 78
.= ((
cos
. x)
/ ((
sin
. x)
#Z (2
+ (n
- 1)))) by
A3,
A8,
PREPOWER: 44
.= ((
cos
. x)
/ ((
sin
. x)
#Z (n
+ 1)));
hence thesis;
end;
hence thesis by
A1,
A6,
FDIFF_1: 20;
end;
theorem ::
FDIFF_7:31
Z
c= (
dom ((1
/ n)
(#) ((
#Z n)
* (
cos
^ )))) & n
>
0 & (for x st x
in Z holds (
cos
. x)
<>
0 ) implies ((1
/ n)
(#) ((
#Z n)
* (
cos
^ )))
is_differentiable_on Z & for x st x
in Z holds ((((1
/ n)
(#) ((
#Z n)
* (
cos
^ )))
`| Z)
. x)
= ((
sin
. x)
/ ((
cos
. x)
#Z (n
+ 1)))
proof
assume that
A1: Z
c= (
dom ((1
/ n)
(#) ((
#Z n)
* (
cos
^ )))) and
A2: n
>
0 and
A3: for x st x
in Z holds (
cos
. x)
<>
0 ;
A4: Z
c= (
dom ((
#Z n)
* (
cos
^ ))) by
A1,
VALUED_1:def 5;
A5: (
cos
^ )
is_differentiable_on Z by
A3,
FDIFF_4: 39;
now
let x;
assume x
in Z;
then (
cos
^ )
is_differentiable_in x by
A5,
FDIFF_1: 9;
hence ((
#Z n)
* (
cos
^ ))
is_differentiable_in x by
TAYLOR_1: 3;
end;
then
A6: ((
#Z n)
* (
cos
^ ))
is_differentiable_on Z by
A4,
FDIFF_1: 9;
for y be
object st y
in Z holds y
in (
dom (
cos
^ )) by
A4,
FUNCT_1: 11;
then
A7: Z
c= (
dom (
cos
^ )) by
TARSKI:def 3;
for x st x
in Z holds ((((1
/ n)
(#) ((
#Z n)
* (
cos
^ )))
`| Z)
. x)
= ((
sin
. x)
/ ((
cos
. x)
#Z (n
+ 1)))
proof
let x;
assume
A8: x
in Z;
then
A9: (
cos
^ )
is_differentiable_in x by
A5,
FDIFF_1: 9;
A10: ((
cos
^ )
. x)
= ((
cos
. x)
" ) by
A7,
A8,
RFUNCT_1:def 2
.= (1
/ (
cos
. x)) by
XCMPLX_1: 215;
((((1
/ n)
(#) ((
#Z n)
* (
cos
^ )))
`| Z)
. x)
= ((1
/ n)
* (
diff (((
#Z n)
* (
cos
^ )),x))) by
A1,
A6,
A8,
FDIFF_1: 20
.= ((1
/ n)
* ((n
* (((
cos
^ )
. x)
#Z (n
- 1)))
* (
diff ((
cos
^ ),x)))) by
A9,
TAYLOR_1: 3
.= ((1
/ n)
* ((n
* (((
cos
^ )
. x)
#Z (n
- 1)))
* (((
cos
^ )
`| Z)
. x))) by
A5,
A8,
FDIFF_1:def 7
.= ((1
/ n)
* ((n
* (((
cos
^ )
. x)
#Z (n
- 1)))
* ((
sin
. x)
/ ((
cos
. x)
^2 )))) by
A3,
A8,
FDIFF_4: 39
.= ((((1
/ n)
* n)
* (((
cos
^ )
. x)
#Z (n
- 1)))
* ((
sin
. x)
/ ((
cos
. x)
^2 )))
.= ((1
* (((
cos
^ )
. x)
#Z (n
- 1)))
* ((
sin
. x)
/ ((
cos
. x)
^2 ))) by
A2,
XCMPLX_1: 106
.= (((1
/ (
cos
. x))
#Z (n
- 1))
* ((
sin
. x)
/ ((
cos
. x)
#Z 2))) by
A10,
Th1
.= ((1
/ ((
cos
. x)
#Z (n
- 1)))
* ((
sin
. x)
/ ((
cos
. x)
#Z 2))) by
PREPOWER: 42
.= (((
sin
. x)
/ ((
cos
. x)
#Z 2))
/ ((
cos
. x)
#Z (n
- 1))) by
XCMPLX_1: 99
.= ((
sin
. x)
/ (((
cos
. x)
#Z 2)
* ((
cos
. x)
#Z (n
- 1)))) by
XCMPLX_1: 78
.= ((
sin
. x)
/ ((
cos
. x)
#Z (2
+ (n
- 1)))) by
A3,
A8,
PREPOWER: 44
.= ((
sin
. x)
/ ((
cos
. x)
#Z (n
+ 1)));
hence thesis;
end;
hence thesis by
A1,
A6,
FDIFF_1: 20;
end;
Lm3: (
right_open_halfline
0 )
= { g where g be
Real :
0
< g } by
XXREAL_1: 230;
theorem ::
FDIFF_7:32
Z
c= (
dom (
sin
*
ln )) & (for x st x
in Z holds x
>
0 ) implies (
sin
*
ln )
is_differentiable_on Z & for x st x
in Z holds (((
sin
*
ln )
`| Z)
. x)
= ((
cos
. (
ln
. x))
/ x)
proof
assume that
A1: Z
c= (
dom (
sin
*
ln )) and
A2: for x st x
in Z holds x
>
0 ;
A3: for x st x
in Z holds (
sin
*
ln )
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A4:
ln
is_differentiable_in x by
A2,
TAYLOR_1: 18;
sin
is_differentiable_in (
ln
. x) by
SIN_COS: 64;
hence thesis by
A4,
FDIFF_2: 13;
end;
then
A5: (
sin
*
ln )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sin
*
ln )
`| Z)
. x)
= ((
cos
. (
ln
. x))
/ x)
proof
let x;
A6:
sin
is_differentiable_in (
ln
. x) by
SIN_COS: 64;
assume
A7: x
in Z;
then x
>
0 by
A2;
then
A8: x
in (
right_open_halfline
0 ) by
Lm3;
ln
is_differentiable_in x by
A2,
A7,
TAYLOR_1: 18;
then (
diff ((
sin
*
ln ),x))
= ((
diff (
sin ,(
ln
. x)))
* (
diff (
ln ,x))) by
A6,
FDIFF_2: 13
.= ((
cos
. (
ln
. x))
* (
diff (
ln ,x))) by
SIN_COS: 64
.= ((
cos
. (
ln
. x))
* (1
/ x)) by
A8,
TAYLOR_1: 18
.= ((
cos
. (
ln
. x))
/ x) by
XCMPLX_1: 99;
hence thesis by
A5,
A7,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_7:33
Z
c= (
dom (
cos
*
ln )) & (for x st x
in Z holds x
>
0 ) implies (
cos
*
ln )
is_differentiable_on Z & for x st x
in Z holds (((
cos
*
ln )
`| Z)
. x)
= (
- ((
sin
. (
ln
. x))
/ x))
proof
assume that
A1: Z
c= (
dom (
cos
*
ln )) and
A2: for x st x
in Z holds x
>
0 ;
A3: for x st x
in Z holds (
cos
*
ln )
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A4:
ln
is_differentiable_in x by
A2,
TAYLOR_1: 18;
cos
is_differentiable_in (
ln
. x) by
SIN_COS: 63;
hence thesis by
A4,
FDIFF_2: 13;
end;
then
A5: (
cos
*
ln )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cos
*
ln )
`| Z)
. x)
= (
- ((
sin
. (
ln
. x))
/ x))
proof
let x;
A6:
cos
is_differentiable_in (
ln
. x) by
SIN_COS: 63;
assume
A7: x
in Z;
then x
>
0 by
A2;
then
A8: x
in (
right_open_halfline
0 ) by
Lm3;
ln
is_differentiable_in x by
A2,
A7,
TAYLOR_1: 18;
then (
diff ((
cos
*
ln ),x))
= ((
diff (
cos ,(
ln
. x)))
* (
diff (
ln ,x))) by
A6,
FDIFF_2: 13
.= ((
- (
sin
. (
ln
. x)))
* (
diff (
ln ,x))) by
SIN_COS: 63
.= ((
- (
sin
. (
ln
. x)))
* (1
/ x)) by
A8,
TAYLOR_1: 18
.= ((
- (
sin
. (
ln
. x)))
/ x) by
XCMPLX_1: 99
.= (
- ((
sin
. (
ln
. x))
/ x)) by
XCMPLX_1: 187;
hence thesis by
A5,
A7,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_7:34
Z
c= (
dom (
sin
*
exp_R )) implies (
sin
*
exp_R )
is_differentiable_on Z & for x st x
in Z holds (((
sin
*
exp_R )
`| Z)
. x)
= ((
exp_R
. x)
* (
cos
. (
exp_R
. x)))
proof
A1: for x st x
in Z holds (
sin
*
exp_R )
is_differentiable_in x
proof
let x;
assume x
in Z;
exp_R
is_differentiable_in x &
sin
is_differentiable_in (
exp_R
. x) by
SIN_COS: 64,
SIN_COS: 65;
hence thesis by
FDIFF_2: 13;
end;
assume
A2: Z
c= (
dom (
sin
*
exp_R ));
then
A3: (
sin
*
exp_R )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sin
*
exp_R )
`| Z)
. x)
= ((
exp_R
. x)
* (
cos
. (
exp_R
. x)))
proof
let x;
exp_R
is_differentiable_in x &
sin
is_differentiable_in (
exp_R
. x) by
SIN_COS: 64,
SIN_COS: 65;
then
A4: (
diff ((
sin
*
exp_R ),x))
= ((
diff (
sin ,(
exp_R
. x)))
* (
diff (
exp_R ,x))) by
FDIFF_2: 13
.= ((
cos
. (
exp_R
. x))
* (
diff (
exp_R ,x))) by
SIN_COS: 64
.= ((
exp_R
. x)
* (
cos
. (
exp_R
. x))) by
SIN_COS: 65;
assume x
in Z;
hence thesis by
A3,
A4,
FDIFF_1:def 7;
end;
hence thesis by
A2,
A1,
FDIFF_1: 9;
end;
theorem ::
FDIFF_7:35
Z
c= (
dom (
cos
*
exp_R )) implies (
cos
*
exp_R )
is_differentiable_on Z & for x st x
in Z holds (((
cos
*
exp_R )
`| Z)
. x)
= (
- ((
exp_R
. x)
* (
sin
. (
exp_R
. x))))
proof
A1: for x st x
in Z holds (
cos
*
exp_R )
is_differentiable_in x
proof
let x;
assume x
in Z;
exp_R
is_differentiable_in x &
cos
is_differentiable_in (
exp_R
. x) by
SIN_COS: 63,
SIN_COS: 65;
hence thesis by
FDIFF_2: 13;
end;
assume
A2: Z
c= (
dom (
cos
*
exp_R ));
then
A3: (
cos
*
exp_R )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cos
*
exp_R )
`| Z)
. x)
= (
- ((
exp_R
. x)
* (
sin
. (
exp_R
. x))))
proof
let x;
exp_R
is_differentiable_in x &
cos
is_differentiable_in (
exp_R
. x) by
SIN_COS: 63,
SIN_COS: 65;
then
A4: (
diff ((
cos
*
exp_R ),x))
= ((
diff (
cos ,(
exp_R
. x)))
* (
diff (
exp_R ,x))) by
FDIFF_2: 13
.= ((
- (
sin
. (
exp_R
. x)))
* (
diff (
exp_R ,x))) by
SIN_COS: 63
.= ((
- (
sin
. (
exp_R
. x)))
* (
exp_R
. x)) by
SIN_COS: 65
.= (
- ((
exp_R
. x)
* (
sin
. (
exp_R
. x))));
assume x
in Z;
hence thesis by
A3,
A4,
FDIFF_1:def 7;
end;
hence thesis by
A2,
A1,
FDIFF_1: 9;
end;
theorem ::
FDIFF_7:36
Z
c= (
dom (
exp_R
*
cos )) implies (
exp_R
*
cos )
is_differentiable_on Z & for x st x
in Z holds (((
exp_R
*
cos )
`| Z)
. x)
= (
- ((
exp_R
. (
cos
. x))
* (
sin
. x)))
proof
A1: for x st x
in Z holds (
exp_R
*
cos )
is_differentiable_in x
proof
let x;
assume x
in Z;
cos
is_differentiable_in x &
exp_R
is_differentiable_in (
cos
. x) by
SIN_COS: 63,
SIN_COS: 65;
hence thesis by
FDIFF_2: 13;
end;
assume
A2: Z
c= (
dom (
exp_R
*
cos ));
then
A3: (
exp_R
*
cos )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
exp_R
*
cos )
`| Z)
. x)
= (
- ((
exp_R
. (
cos
. x))
* (
sin
. x)))
proof
let x;
cos
is_differentiable_in x &
exp_R
is_differentiable_in (
cos
. x) by
SIN_COS: 63,
SIN_COS: 65;
then
A4: (
diff ((
exp_R
*
cos ),x))
= ((
diff (
exp_R ,(
cos
. x)))
* (
diff (
cos ,x))) by
FDIFF_2: 13
.= ((
diff (
exp_R ,(
cos
. x)))
* (
- (
sin
. x))) by
SIN_COS: 63
.= ((
exp_R
. (
cos
. x))
* (
- (
sin
. x))) by
SIN_COS: 65
.= (
- ((
exp_R
. (
cos
. x))
* (
sin
. x)));
assume x
in Z;
hence thesis by
A3,
A4,
FDIFF_1:def 7;
end;
hence thesis by
A2,
A1,
FDIFF_1: 9;
end;
theorem ::
FDIFF_7:37
Z
c= (
dom (
exp_R
*
sin )) implies (
exp_R
*
sin )
is_differentiable_on Z & for x st x
in Z holds (((
exp_R
*
sin )
`| Z)
. x)
= ((
exp_R
. (
sin
. x))
* (
cos
. x))
proof
A1: for x st x
in Z holds (
exp_R
*
sin )
is_differentiable_in x
proof
let x;
assume x
in Z;
sin
is_differentiable_in x &
exp_R
is_differentiable_in (
sin
. x) by
SIN_COS: 64,
SIN_COS: 65;
hence thesis by
FDIFF_2: 13;
end;
assume
A2: Z
c= (
dom (
exp_R
*
sin ));
then
A3: (
exp_R
*
sin )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
exp_R
*
sin )
`| Z)
. x)
= ((
exp_R
. (
sin
. x))
* (
cos
. x))
proof
let x;
sin
is_differentiable_in x &
exp_R
is_differentiable_in (
sin
. x) by
SIN_COS: 64,
SIN_COS: 65;
then
A4: (
diff ((
exp_R
*
sin ),x))
= ((
diff (
exp_R ,(
sin
. x)))
* (
diff (
sin ,x))) by
FDIFF_2: 13
.= ((
diff (
exp_R ,(
sin
. x)))
* (
cos
. x)) by
SIN_COS: 64
.= ((
exp_R
. (
sin
. x))
* (
cos
. x)) by
SIN_COS: 65;
assume x
in Z;
hence thesis by
A3,
A4,
FDIFF_1:def 7;
end;
hence thesis by
A2,
A1,
FDIFF_1: 9;
end;
theorem ::
FDIFF_7:38
Th38: Z
c= (
dom (
sin
+
cos )) implies (
sin
+
cos )
is_differentiable_on Z & for x st x
in Z holds (((
sin
+
cos )
`| Z)
. x)
= ((
cos
. x)
- (
sin
. x))
proof
A1:
sin
is_differentiable_on Z &
cos
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 67,
SIN_COS: 68;
assume
A2: Z
c= (
dom (
sin
+
cos ));
now
let x;
assume x
in Z;
hence (((
sin
+
cos )
`| Z)
. x)
= ((
diff (
sin ,x))
+ (
diff (
cos ,x))) by
A2,
A1,
FDIFF_1: 18
.= ((
cos
. x)
+ (
diff (
cos ,x))) by
SIN_COS: 64
.= ((
cos
. x)
+ (
- (
sin
. x))) by
SIN_COS: 63
.= ((
cos
. x)
- (
sin
. x));
end;
hence thesis by
A2,
A1,
FDIFF_1: 18;
end;
theorem ::
FDIFF_7:39
Th39: Z
c= (
dom (
sin
-
cos )) implies (
sin
-
cos )
is_differentiable_on Z & for x st x
in Z holds (((
sin
-
cos )
`| Z)
. x)
= ((
cos
. x)
+ (
sin
. x))
proof
A1:
sin
is_differentiable_on Z &
cos
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 67,
SIN_COS: 68;
assume
A2: Z
c= (
dom (
sin
-
cos ));
now
let x;
assume x
in Z;
hence (((
sin
-
cos )
`| Z)
. x)
= ((
diff (
sin ,x))
- (
diff (
cos ,x))) by
A2,
A1,
FDIFF_1: 19
.= ((
cos
. x)
- (
diff (
cos ,x))) by
SIN_COS: 64
.= ((
cos
. x)
- (
- (
sin
. x))) by
SIN_COS: 63
.= ((
cos
. x)
+ (
sin
. x));
end;
hence thesis by
A2,
A1,
FDIFF_1: 19;
end;
theorem ::
FDIFF_7:40
Z
c= (
dom (
exp_R
(#) (
sin
-
cos ))) implies (
exp_R
(#) (
sin
-
cos ))
is_differentiable_on Z & for x st x
in Z holds (((
exp_R
(#) (
sin
-
cos ))
`| Z)
. x)
= ((2
* (
exp_R
. x))
* (
sin
. x))
proof
assume
A1: Z
c= (
dom (
exp_R
(#) (
sin
-
cos )));
then Z
c= ((
dom (
sin
-
cos ))
/\ (
dom
exp_R )) by
VALUED_1:def 4;
then
A2: Z
c= (
dom (
sin
-
cos )) by
XBOOLE_1: 18;
then
A3: (
sin
-
cos )
is_differentiable_on Z by
Th39;
A4:
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
for x st x
in Z holds (((
exp_R
(#) (
sin
-
cos ))
`| Z)
. x)
= ((2
* (
exp_R
. x))
* (
sin
. x))
proof
let x;
assume
A5: x
in Z;
then (((
exp_R
(#) (
sin
-
cos ))
`| Z)
. x)
= ((((
sin
-
cos )
. x)
* (
diff (
exp_R ,x)))
+ ((
exp_R
. x)
* (
diff ((
sin
-
cos ),x)))) by
A1,
A3,
A4,
FDIFF_1: 21
.= ((((
sin
. x)
- (
cos
. x))
* (
diff (
exp_R ,x)))
+ ((
exp_R
. x)
* (
diff ((
sin
-
cos ),x)))) by
A2,
A5,
VALUED_1: 13
.= ((((
sin
. x)
- (
cos
. x))
* (
exp_R
. x))
+ ((
exp_R
. x)
* (
diff ((
sin
-
cos ),x)))) by
TAYLOR_1: 16
.= ((((
sin
. x)
- (
cos
. x))
* (
exp_R
. x))
+ ((
exp_R
. x)
* (((
sin
-
cos )
`| Z)
. x))) by
A3,
A5,
FDIFF_1:def 7
.= ((((
sin
. x)
- (
cos
. x))
* (
exp_R
. x))
+ ((
exp_R
. x)
* ((
cos
. x)
+ (
sin
. x)))) by
A2,
A5,
Th39
.= ((2
* (
exp_R
. x))
* (
sin
. x));
hence thesis;
end;
hence thesis by
A1,
A3,
A4,
FDIFF_1: 21;
end;
theorem ::
FDIFF_7:41
Z
c= (
dom (
exp_R
(#) (
sin
+
cos ))) implies (
exp_R
(#) (
sin
+
cos ))
is_differentiable_on Z & for x st x
in Z holds (((
exp_R
(#) (
sin
+
cos ))
`| Z)
. x)
= ((2
* (
exp_R
. x))
* (
cos
. x))
proof
assume
A1: Z
c= (
dom (
exp_R
(#) (
sin
+
cos )));
then Z
c= ((
dom (
sin
+
cos ))
/\ (
dom
exp_R )) by
VALUED_1:def 4;
then
A2: Z
c= (
dom (
sin
+
cos )) by
XBOOLE_1: 18;
then
A3: (
sin
+
cos )
is_differentiable_on Z by
Th38;
A4:
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
for x st x
in Z holds (((
exp_R
(#) (
sin
+
cos ))
`| Z)
. x)
= ((2
* (
exp_R
. x))
* (
cos
. x))
proof
let x;
reconsider xx = x as
Element of
REAL by
XREAL_0:def 1;
assume
A5: x
in Z;
then (((
exp_R
(#) (
sin
+
cos ))
`| Z)
. x)
= ((((
sin
+
cos )
. xx)
* (
diff (
exp_R ,x)))
+ ((
exp_R
. x)
* (
diff ((
sin
+
cos ),x)))) by
A1,
A3,
A4,
FDIFF_1: 21
.= ((((
sin
. xx)
+ (
cos
. xx))
* (
diff (
exp_R ,x)))
+ ((
exp_R
. x)
* (
diff ((
sin
+
cos ),x)))) by
VALUED_1: 1
.= ((((
sin
. x)
+ (
cos
. x))
* (
exp_R
. x))
+ ((
exp_R
. x)
* (
diff ((
sin
+
cos ),x)))) by
TAYLOR_1: 16
.= ((((
sin
. x)
+ (
cos
. x))
* (
exp_R
. x))
+ ((
exp_R
. x)
* (((
sin
+
cos )
`| Z)
. x))) by
A3,
A5,
FDIFF_1:def 7
.= ((((
sin
. x)
+ (
cos
. x))
* (
exp_R
. x))
+ ((
exp_R
. x)
* ((
cos
. x)
- (
sin
. x)))) by
A2,
A5,
Th38
.= ((2
* (
exp_R
. x))
* (
cos
. x));
hence thesis;
end;
hence thesis by
A1,
A3,
A4,
FDIFF_1: 21;
end;
theorem ::
FDIFF_7:42
Z
c= (
dom ((
sin
+
cos )
/
exp_R )) implies ((
sin
+
cos )
/
exp_R )
is_differentiable_on Z & for x st x
in Z holds ((((
sin
+
cos )
/
exp_R )
`| Z)
. x)
= (
- ((2
* (
sin
. x))
/ (
exp_R
. x)))
proof
assume Z
c= (
dom ((
sin
+
cos )
/
exp_R ));
then Z
c= ((
dom (
sin
+
cos ))
/\ ((
dom
exp_R )
\ (
exp_R
"
{
0 }))) by
RFUNCT_1:def 1;
then
A1: Z
c= (
dom (
sin
+
cos )) by
XBOOLE_1: 18;
then
A2: (
sin
+
cos )
is_differentiable_on Z by
Th38;
A3:
exp_R
is_differentiable_on Z & for x st x
in Z holds (
exp_R
. x)
<>
0 by
FDIFF_1: 26,
SIN_COS: 54,
TAYLOR_1: 16;
then
A4: ((
sin
+
cos )
/
exp_R )
is_differentiable_on Z by
A2,
FDIFF_2: 21;
for x st x
in Z holds ((((
sin
+
cos )
/
exp_R )
`| Z)
. x)
= (
- ((2
* (
sin
. x))
/ (
exp_R
. x)))
proof
let x;
reconsider xx = x as
Element of
REAL by
XREAL_0:def 1;
A5: ((
sin
+
cos )
. xx)
= ((
sin
. xx)
+ (
cos
. xx)) by
VALUED_1: 1;
A6: (
exp_R
. x)
<>
0 by
SIN_COS: 54;
assume
A7: x
in Z;
then
exp_R
is_differentiable_in x & (
sin
+
cos )
is_differentiable_in x by
A2,
FDIFF_1: 9,
SIN_COS: 65;
then (
diff (((
sin
+
cos )
/
exp_R ),x))
= ((((
diff ((
sin
+
cos ),x))
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* ((
sin
+
cos )
. x)))
/ ((
exp_R
. x)
^2 )) by
A6,
FDIFF_2: 14
.= ((((((
sin
+
cos )
`| Z)
. x)
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* ((
sin
+
cos )
. x)))
/ ((
exp_R
. x)
^2 )) by
A2,
A7,
FDIFF_1:def 7
.= (((((
cos
. x)
- (
sin
. x))
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* ((
sin
+
cos )
. x)))
/ ((
exp_R
. x)
^2 )) by
A1,
A7,
Th38
.= (((((
cos
. x)
- (
sin
. x))
* (
exp_R
. x))
- ((
exp_R
. x)
* ((
sin
. x)
+ (
cos
. x))))
/ ((
exp_R
. x)
^2 )) by
A5,
SIN_COS: 65
.= (((
- (2
* (
sin
. x)))
* (
exp_R
. x))
/ ((
exp_R
. x)
* (
exp_R
. x)))
.= ((
- (2
* (
sin
. x)))
* ((
exp_R
. x)
/ ((
exp_R
. x)
* (
exp_R
. x)))) by
XCMPLX_1: 74
.= ((
- (2
* (
sin
. x)))
* (((
exp_R
. x)
/ (
exp_R
. x))
/ (
exp_R
. x))) by
XCMPLX_1: 78
.= ((
- (2
* (
sin
. x)))
* (1
/ (
exp_R
. x))) by
A6,
XCMPLX_1: 60
.= ((
- (2
* (
sin
. x)))
/ (
exp_R
. x)) by
XCMPLX_1: 99
.= (
- ((2
* (
sin
. x))
/ (
exp_R
. x))) by
XCMPLX_1: 187;
hence thesis by
A4,
A7,
FDIFF_1:def 7;
end;
hence thesis by
A2,
A3,
FDIFF_2: 21;
end;
theorem ::
FDIFF_7:43
Z
c= (
dom ((
sin
-
cos )
/
exp_R )) implies ((
sin
-
cos )
/
exp_R )
is_differentiable_on Z & for x st x
in Z holds ((((
sin
-
cos )
/
exp_R )
`| Z)
. x)
= ((2
* (
cos
. x))
/ (
exp_R
. x))
proof
assume Z
c= (
dom ((
sin
-
cos )
/
exp_R ));
then Z
c= ((
dom (
sin
-
cos ))
/\ ((
dom
exp_R )
\ (
exp_R
"
{
0 }))) by
RFUNCT_1:def 1;
then
A1: Z
c= (
dom (
sin
-
cos )) by
XBOOLE_1: 18;
then
A2: (
sin
-
cos )
is_differentiable_on Z by
Th39;
A3:
exp_R
is_differentiable_on Z & for x st x
in Z holds (
exp_R
. x)
<>
0 by
FDIFF_1: 26,
SIN_COS: 54,
TAYLOR_1: 16;
then
A4: ((
sin
-
cos )
/
exp_R )
is_differentiable_on Z by
A2,
FDIFF_2: 21;
for x st x
in Z holds ((((
sin
-
cos )
/
exp_R )
`| Z)
. x)
= ((2
* (
cos
. x))
/ (
exp_R
. x))
proof
let x;
A5: (
exp_R
. x)
<>
0 by
SIN_COS: 54;
assume
A6: x
in Z;
then
A7: ((
sin
-
cos )
. x)
= ((
sin
. x)
- (
cos
. x)) by
A1,
VALUED_1: 13;
exp_R
is_differentiable_in x & (
sin
-
cos )
is_differentiable_in x by
A2,
A6,
FDIFF_1: 9,
SIN_COS: 65;
then (
diff (((
sin
-
cos )
/
exp_R ),x))
= ((((
diff ((
sin
-
cos ),x))
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* ((
sin
-
cos )
. x)))
/ ((
exp_R
. x)
^2 )) by
A5,
FDIFF_2: 14
.= ((((((
sin
-
cos )
`| Z)
. x)
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* ((
sin
-
cos )
. x)))
/ ((
exp_R
. x)
^2 )) by
A2,
A6,
FDIFF_1:def 7
.= (((((
cos
. x)
+ (
sin
. x))
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* ((
sin
-
cos )
. x)))
/ ((
exp_R
. x)
^2 )) by
A1,
A6,
Th39
.= (((((
cos
. x)
+ (
sin
. x))
* (
exp_R
. x))
- ((
exp_R
. x)
* ((
sin
. x)
- (
cos
. x))))
/ ((
exp_R
. x)
^2 )) by
A7,
SIN_COS: 65
.= (((2
* (
cos
. x))
* (
exp_R
. x))
/ ((
exp_R
. x)
* (
exp_R
. x)))
.= ((2
* (
cos
. x))
* ((
exp_R
. x)
/ ((
exp_R
. x)
* (
exp_R
. x)))) by
XCMPLX_1: 74
.= ((2
* (
cos
. x))
* (((
exp_R
. x)
/ (
exp_R
. x))
/ (
exp_R
. x))) by
XCMPLX_1: 78
.= ((2
* (
cos
. x))
* (1
/ (
exp_R
. x))) by
A5,
XCMPLX_1: 60
.= ((2
* (
cos
. x))
/ (
exp_R
. x)) by
XCMPLX_1: 99;
hence thesis by
A4,
A6,
FDIFF_1:def 7;
end;
hence thesis by
A2,
A3,
FDIFF_2: 21;
end;
theorem ::
FDIFF_7:44
Z
c= (
dom (
exp_R
(#)
sin )) implies (
exp_R
(#)
sin )
is_differentiable_on Z & for x st x
in Z holds (((
exp_R
(#)
sin )
`| Z)
. x)
= ((
exp_R
. x)
* ((
sin
. x)
+ (
cos
. x)))
proof
A1:
sin
is_differentiable_on Z &
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 68,
TAYLOR_1: 16;
assume
A2: Z
c= (
dom (
exp_R
(#)
sin ));
now
let x;
assume x
in Z;
hence (((
exp_R
(#)
sin )
`| Z)
. x)
= (((
sin
. x)
* (
diff (
exp_R ,x)))
+ ((
exp_R
. x)
* (
diff (
sin ,x)))) by
A2,
A1,
FDIFF_1: 21
.= (((
sin
. x)
* (
exp_R
. x))
+ ((
exp_R
. x)
* (
diff (
sin ,x)))) by
TAYLOR_1: 16
.= (((
sin
. x)
* (
exp_R
. x))
+ ((
exp_R
. x)
* (
cos
. x))) by
SIN_COS: 64
.= ((
exp_R
. x)
* ((
sin
. x)
+ (
cos
. x)));
end;
hence thesis by
A2,
A1,
FDIFF_1: 21;
end;
theorem ::
FDIFF_7:45
Z
c= (
dom (
exp_R
(#)
cos )) implies (
exp_R
(#)
cos )
is_differentiable_on Z & for x st x
in Z holds (((
exp_R
(#)
cos )
`| Z)
. x)
= ((
exp_R
. x)
* ((
cos
. x)
- (
sin
. x)))
proof
A1:
cos
is_differentiable_on Z &
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 67,
TAYLOR_1: 16;
assume
A2: Z
c= (
dom (
exp_R
(#)
cos ));
now
let x;
assume x
in Z;
hence (((
exp_R
(#)
cos )
`| Z)
. x)
= (((
cos
. x)
* (
diff (
exp_R ,x)))
+ ((
exp_R
. x)
* (
diff (
cos ,x)))) by
A2,
A1,
FDIFF_1: 21
.= (((
cos
. x)
* (
exp_R
. x))
+ ((
exp_R
. x)
* (
diff (
cos ,x)))) by
TAYLOR_1: 16
.= (((
cos
. x)
* (
exp_R
. x))
+ ((
exp_R
. x)
* (
- (
sin
. x)))) by
SIN_COS: 63
.= ((
exp_R
. x)
* ((
cos
. x)
- (
sin
. x)));
end;
hence thesis by
A2,
A1,
FDIFF_1: 21;
end;
theorem ::
FDIFF_7:46
Th46: (
cos
. x)
<>
0 implies (
sin
/
cos )
is_differentiable_in x & (
diff ((
sin
/
cos ),x))
= (1
/ ((
cos
. x)
^2 ))
proof
assume
A1: (
cos
. x)
<>
0 ;
A2:
sin
is_differentiable_in x &
cos
is_differentiable_in x by
SIN_COS: 63,
SIN_COS: 64;
then (
diff ((
sin
/
cos ),x))
= ((((
diff (
sin ,x))
* (
cos
. x))
- ((
diff (
cos ,x))
* (
sin
. x)))
/ ((
cos
. x)
^2 )) by
A1,
FDIFF_2: 14
.= ((((
cos
. x)
* (
cos
. x))
- ((
diff (
cos ,x))
* (
sin
. x)))
/ ((
cos
. x)
^2 )) by
SIN_COS: 64
.= ((((
cos
. x)
* (
cos
. x))
- ((
- (
sin
. x))
* (
sin
. x)))
/ ((
cos
. x)
^2 )) by
SIN_COS: 63
.= ((((
cos
. x)
* (
cos
. x))
+ ((
sin
. x)
* (
sin
. x)))
/ ((
cos
. x)
^2 ))
.= (1
/ ((
cos
. x)
^2 )) by
SIN_COS: 28;
hence thesis by
A2,
A1,
FDIFF_2: 14;
end;
theorem ::
FDIFF_7:47
Th47: (
sin
. x)
<>
0 implies (
cos
/
sin )
is_differentiable_in x & (
diff ((
cos
/
sin ),x))
= (
- (1
/ ((
sin
. x)
^2 )))
proof
assume
A1: (
sin
. x)
<>
0 ;
A2:
sin
is_differentiable_in x &
cos
is_differentiable_in x by
SIN_COS: 63,
SIN_COS: 64;
then (
diff ((
cos
/
sin ),x))
= ((((
diff (
cos ,x))
* (
sin
. x))
- ((
diff (
sin ,x))
* (
cos
. x)))
/ ((
sin
. x)
^2 )) by
A1,
FDIFF_2: 14
.= ((((
- (
sin
. x))
* (
sin
. x))
- ((
diff (
sin ,x))
* (
cos
. x)))
/ ((
sin
. x)
^2 )) by
SIN_COS: 63
.= (((
- ((
sin
. x)
* (
sin
. x)))
- ((
cos
. x)
* (
cos
. x)))
/ ((
sin
. x)
^2 )) by
SIN_COS: 64
.= ((
- (((
cos
. x)
^2 )
+ ((
sin
. x)
* (
sin
. x))))
/ ((
sin
. x)
^2 ))
.= (
- ((((
cos
. x)
^2 )
+ ((
sin
. x)
^2 ))
/ ((
sin
. x)
^2 ))) by
XCMPLX_1: 187
.= (
- (1
/ ((
sin
. x)
^2 ))) by
SIN_COS: 28;
hence thesis by
A2,
A1,
FDIFF_2: 14;
end;
theorem ::
FDIFF_7:48
Z
c= (
dom ((
#Z 2)
* (
sin
/
cos ))) & (for x st x
in Z holds (
cos
. x)
<>
0 ) implies ((
#Z 2)
* (
sin
/
cos ))
is_differentiable_on Z & for x st x
in Z holds ((((
#Z 2)
* (
sin
/
cos ))
`| Z)
. x)
= ((2
* (
sin
. x))
/ ((
cos
. x)
#Z 3))
proof
assume that
A1: Z
c= (
dom ((
#Z 2)
* (
sin
/
cos ))) and
A2: for x st x
in Z holds (
cos
. x)
<>
0 ;
for y be
object st y
in Z holds y
in (
dom (
sin
/
cos )) by
A1,
FUNCT_1: 11;
then
A3: Z
c= (
dom (
sin
/
cos )) by
TARSKI:def 3;
A4: for x st x
in Z holds ((
#Z 2)
* (
sin
/
cos ))
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A2;
then (
sin
/
cos )
is_differentiable_in x by
Th46;
hence thesis by
TAYLOR_1: 3;
end;
then
A5: ((
#Z 2)
* (
sin
/
cos ))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds ((((
#Z 2)
* (
sin
/
cos ))
`| Z)
. x)
= ((2
* (
sin
. x))
/ ((
cos
. x)
#Z 3))
proof
let x;
assume
A6: x
in Z;
then
A7: ((
sin
/
cos )
. x)
= ((
sin
. x)
* ((
cos
. x)
" )) by
A3,
RFUNCT_1:def 1
.= ((
sin
. x)
* (1
/ (
cos
. x))) by
XCMPLX_1: 215
.= ((
sin
. x)
/ (
cos
. x)) by
XCMPLX_1: 99;
A8: (
cos
. x)
<>
0 by
A2,
A6;
then
A9: (
sin
/
cos )
is_differentiable_in x by
Th46;
((((
#Z 2)
* (
sin
/
cos ))
`| Z)
. x)
= (
diff (((
#Z 2)
* (
sin
/
cos )),x)) by
A5,
A6,
FDIFF_1:def 7
.= ((2
* (((
sin
/
cos )
. x)
#Z (2
- 1)))
* (
diff ((
sin
/
cos ),x))) by
A9,
TAYLOR_1: 3
.= ((2
* (((
sin
/
cos )
. x)
#Z (2
- 1)))
* (1
/ ((
cos
. x)
^2 ))) by
A8,
Th46
.= ((2
* (((
sin
/
cos )
. x)
#Z 1))
/ ((
cos
. x)
^2 )) by
XCMPLX_1: 99
.= ((2
* ((
sin
. x)
/ (
cos
. x)))
/ ((
cos
. x)
^2 )) by
A7,
PREPOWER: 35
.= (((2
* (
sin
. x))
/ (
cos
. x))
/ ((
cos
. x)
^2 )) by
XCMPLX_1: 74
.= ((2
* (
sin
. x))
/ ((
cos
. x)
* ((
cos
. x)
^2 ))) by
XCMPLX_1: 78
.= ((2
* (
sin
. x))
/ ((
cos
. x)
* ((
cos
. x)
#Z 2))) by
Th1
.= ((2
* (
sin
. x))
/ (((
cos
. x)
#Z 1)
* ((
cos
. x)
#Z 2))) by
PREPOWER: 35
.= ((2
* (
sin
. x))
/ ((
cos
. x)
#Z (1
+ 2))) by
A2,
A6,
PREPOWER: 44
.= ((2
* (
sin
. x))
/ ((
cos
. x)
#Z 3));
hence thesis;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_7:49
Z
c= (
dom ((
#Z 2)
* (
cos
/
sin ))) & (for x st x
in Z holds (
sin
. x)
<>
0 ) implies ((
#Z 2)
* (
cos
/
sin ))
is_differentiable_on Z & for x st x
in Z holds ((((
#Z 2)
* (
cos
/
sin ))
`| Z)
. x)
= (
- ((2
* (
cos
. x))
/ ((
sin
. x)
#Z 3)))
proof
assume that
A1: Z
c= (
dom ((
#Z 2)
* (
cos
/
sin ))) and
A2: for x st x
in Z holds (
sin
. x)
<>
0 ;
for y be
object st y
in Z holds y
in (
dom (
cos
/
sin )) by
A1,
FUNCT_1: 11;
then
A3: Z
c= (
dom (
cos
/
sin )) by
TARSKI:def 3;
A4: for x st x
in Z holds ((
#Z 2)
* (
cos
/
sin ))
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A2;
then (
cos
/
sin )
is_differentiable_in x by
Th47;
hence thesis by
TAYLOR_1: 3;
end;
then
A5: ((
#Z 2)
* (
cos
/
sin ))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds ((((
#Z 2)
* (
cos
/
sin ))
`| Z)
. x)
= (
- ((2
* (
cos
. x))
/ ((
sin
. x)
#Z 3)))
proof
let x;
assume
A6: x
in Z;
then
A7: ((
cos
/
sin )
. x)
= ((
cos
. x)
* ((
sin
. x)
" )) by
A3,
RFUNCT_1:def 1
.= ((
cos
. x)
* (1
/ (
sin
. x))) by
XCMPLX_1: 215
.= ((
cos
. x)
/ (
sin
. x)) by
XCMPLX_1: 99;
A8: (
sin
. x)
<>
0 by
A2,
A6;
then
A9: (
cos
/
sin )
is_differentiable_in x by
Th47;
((((
#Z 2)
* (
cos
/
sin ))
`| Z)
. x)
= (
diff (((
#Z 2)
* (
cos
/
sin )),x)) by
A5,
A6,
FDIFF_1:def 7
.= ((2
* (((
cos
/
sin )
. x)
#Z (2
- 1)))
* (
diff ((
cos
/
sin ),x))) by
A9,
TAYLOR_1: 3
.= ((2
* (((
cos
/
sin )
. x)
#Z (2
- 1)))
* (
- (1
/ ((
sin
. x)
^2 )))) by
A8,
Th47
.= (
- ((2
* (((
cos
/
sin )
. x)
#Z (2
- 1)))
* (1
/ ((
sin
. x)
^2 ))))
.= (
- ((2
* (((
cos
/
sin )
. x)
#Z 1))
/ ((
sin
. x)
^2 ))) by
XCMPLX_1: 99
.= (
- ((2
* ((
cos
. x)
/ (
sin
. x)))
/ ((
sin
. x)
^2 ))) by
A7,
PREPOWER: 35
.= (
- (((2
* (
cos
. x))
/ (
sin
. x))
/ ((
sin
. x)
^2 ))) by
XCMPLX_1: 74
.= (
- ((2
* (
cos
. x))
/ ((
sin
. x)
* ((
sin
. x)
^2 )))) by
XCMPLX_1: 78
.= (
- ((2
* (
cos
. x))
/ ((
sin
. x)
* ((
sin
. x)
#Z 2)))) by
Th1
.= (
- ((2
* (
cos
. x))
/ (((
sin
. x)
#Z 1)
* ((
sin
. x)
#Z 2)))) by
PREPOWER: 35
.= (
- ((2
* (
cos
. x))
/ ((
sin
. x)
#Z (1
+ 2)))) by
A2,
A6,
PREPOWER: 44
.= (
- ((2
* (
cos
. x))
/ ((
sin
. x)
#Z 3)));
hence thesis;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_7:50
Z
c= (
dom ((
sin
/
cos )
* f)) & (for x st x
in Z holds (f
. x)
= (x
/ 2) & (
cos
. (f
. x))
<>
0 ) implies ((
sin
/
cos )
* f)
is_differentiable_on Z & for x st x
in Z holds ((((
sin
/
cos )
* f)
`| Z)
. x)
= (1
/ (1
+ (
cos
. x)))
proof
assume that
A1: Z
c= (
dom ((
sin
/
cos )
* f)) and
A2: for x st x
in Z holds (f
. x)
= (x
/ 2) & (
cos
. (f
. x))
<>
0 ;
A3: for x st x
in Z holds (f
. x)
= (((1
/ 2)
* x)
+
0 )
proof
let x;
assume x
in Z;
then (f
. x)
= (x
/ 2) by
A2;
hence thesis;
end;
for y be
object st y
in Z holds y
in (
dom f) by
A1,
FUNCT_1: 11;
then
A4: Z
c= (
dom f) by
TARSKI:def 3;
then
A5: f
is_differentiable_on Z by
A3,
FDIFF_1: 23;
A6: for x st x
in Z holds ((
sin
/
cos )
* f)
is_differentiable_in x
proof
let x;
assume
A7: x
in Z;
then (
cos
. (f
. x))
<>
0 by
A2;
then
A8: (
sin
/
cos )
is_differentiable_in (f
. x) by
Th46;
f
is_differentiable_in x by
A5,
A7,
FDIFF_1: 9;
hence thesis by
A8,
FDIFF_2: 13;
end;
then
A9: ((
sin
/
cos )
* f)
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds ((((
sin
/
cos )
* f)
`| Z)
. x)
= (1
/ (1
+ (
cos
. x)))
proof
let x;
assume
A10: x
in Z;
then
A11: f
is_differentiable_in x by
A5,
FDIFF_1: 9;
A12: (
cos
. (f
. x))
<>
0 by
A2,
A10;
then (
sin
/
cos )
is_differentiable_in (f
. x) by
Th46;
then (
diff (((
sin
/
cos )
* f),x))
= ((
diff ((
sin
/
cos ),(f
. x)))
* (
diff (f,x))) by
A11,
FDIFF_2: 13
.= ((1
/ ((
cos
. (f
. x))
^2 ))
* (
diff (f,x))) by
A12,
Th46
.= ((
diff (f,x))
/ ((
cos
. (f
. x))
^2 )) by
XCMPLX_1: 99
.= ((
diff (f,x))
/ ((
cos
. (x
/ 2))
^2 )) by
A2,
A10
.= (((f
`| Z)
. x)
/ ((
cos
. (x
/ 2))
^2 )) by
A5,
A10,
FDIFF_1:def 7
.= ((1
/ 2)
/ ((
cos
. (x
/ 2))
^2 )) by
A3,
A4,
A10,
FDIFF_1: 23
.= (1
/ (2
* ((
cos
. (x
/ 2))
^2 ))) by
XCMPLX_1: 78
.= (1
/ (1
+ (
cos
. x))) by
Lm1;
hence thesis by
A9,
A10,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A6,
FDIFF_1: 9;
end;
theorem ::
FDIFF_7:51
Z
c= (
dom ((
cos
/
sin )
* f)) & (for x st x
in Z holds (f
. x)
= (x
/ 2) & (
sin
. (f
. x))
<>
0 ) implies ((
cos
/
sin )
* f)
is_differentiable_on Z & for x st x
in Z holds ((((
cos
/
sin )
* f)
`| Z)
. x)
= (
- (1
/ (1
- (
cos
. x))))
proof
assume that
A1: Z
c= (
dom ((
cos
/
sin )
* f)) and
A2: for x st x
in Z holds (f
. x)
= (x
/ 2) & (
sin
. (f
. x))
<>
0 ;
A3: for x st x
in Z holds (f
. x)
= (((1
/ 2)
* x)
+
0 )
proof
let x;
assume x
in Z;
then (f
. x)
= (x
/ 2) by
A2;
hence thesis;
end;
for y be
object st y
in Z holds y
in (
dom f) by
A1,
FUNCT_1: 11;
then
A4: Z
c= (
dom f) by
TARSKI:def 3;
then
A5: f
is_differentiable_on Z by
A3,
FDIFF_1: 23;
A6: for x st x
in Z holds ((
cos
/
sin )
* f)
is_differentiable_in x
proof
let x;
assume
A7: x
in Z;
then (
sin
. (f
. x))
<>
0 by
A2;
then
A8: (
cos
/
sin )
is_differentiable_in (f
. x) by
Th47;
f
is_differentiable_in x by
A5,
A7,
FDIFF_1: 9;
hence thesis by
A8,
FDIFF_2: 13;
end;
then
A9: ((
cos
/
sin )
* f)
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds ((((
cos
/
sin )
* f)
`| Z)
. x)
= (
- (1
/ (1
- (
cos
. x))))
proof
let x;
assume
A10: x
in Z;
then
A11: f
is_differentiable_in x by
A5,
FDIFF_1: 9;
A12: (
sin
. (f
. x))
<>
0 by
A2,
A10;
then (
cos
/
sin )
is_differentiable_in (f
. x) by
Th47;
then (
diff (((
cos
/
sin )
* f),x))
= ((
diff ((
cos
/
sin ),(f
. x)))
* (
diff (f,x))) by
A11,
FDIFF_2: 13
.= ((
- (1
/ ((
sin
. (f
. x))
^2 )))
* (
diff (f,x))) by
A12,
Th47
.= (
- ((1
/ ((
sin
. (f
. x))
^2 ))
* (
diff (f,x))))
.= (
- ((
diff (f,x))
/ ((
sin
. (f
. x))
^2 ))) by
XCMPLX_1: 99
.= (
- ((
diff (f,x))
/ ((
sin
. (x
/ 2))
^2 ))) by
A2,
A10
.= (
- (((f
`| Z)
. x)
/ ((
sin
. (x
/ 2))
^2 ))) by
A5,
A10,
FDIFF_1:def 7
.= (
- ((1
/ 2)
/ ((
sin
. (x
/ 2))
^2 ))) by
A3,
A4,
A10,
FDIFF_1: 23
.= (
- (1
/ (2
* ((
sin
. (x
/ 2))
^2 )))) by
XCMPLX_1: 78
.= (
- (1
/ (1
- (
cos
. x)))) by
Lm2;
hence thesis by
A9,
A10,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A6,
FDIFF_1: 9;
end;