fdiff_7.miz
    
    begin
    
    reserve y for
    set, 
    
x,r,a,b for
    Real, 
    
n for
    Element of 
    NAT , 
    
Z for
    open  
    Subset of 
    REAL , 
    
f,f1,f2,f3 for
    PartFunc of 
    REAL , 
    REAL ; 
    
    theorem :: 
    
    FDIFF_7:1
    
    
    
    
    
    Th1: (x 
    #Z 2) 
    = (x 
    ^2 ) 
    
    proof
    
      (x
    #Z 2) 
    = (x 
    |^ 2) by 
    PREPOWER: 36
    
      .= (x
    ^2 ) by 
    NEWTON: 81;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    FDIFF_7:2
    
    
    
    
    
    Th2: x 
    >  
    0 implies (x 
    #R (1 
    / 2)) 
    = ( 
    sqrt x) 
    
    proof
    
      assume
    
      
    
    A1: x 
    >  
    0 ; 
    
      then
    
      
    
    A2: (x 
    #R (1 
    / 2)) 
    >  
    0 by 
    PREPOWER: 81;
    
      x
    = (x 
    #R ((1 
    / 2) 
    * 2)) by 
    A1,
    PREPOWER: 72
    
      .= ((x
    #R (1 
    / 2)) 
    #R 2) by 
    A1,
    PREPOWER: 91
    
      .= ((x
    #R (1 
    / 2)) 
    #Q 2) by 
    A1,
    PREPOWER: 74,
    PREPOWER: 81
    
      .= ((x
    #R (1 
    / 2)) 
    to_power 2) by 
    A1,
    POWER: 44,
    PREPOWER: 81
    
      .= ((x
    #R (1 
    / 2)) 
    ^2 ) by 
    POWER: 46;
    
      hence thesis by
    A1,
    A2,
    SQUARE_1:def 2;
    
    end;
    
    theorem :: 
    
    FDIFF_7:3
    
    
    
    
    
    Th3: x 
    >  
    0 implies (x 
    #R ( 
    - (1 
    / 2))) 
    = (1 
    / ( 
    sqrt x)) 
    
    proof
    
      assume
    
      
    
    A1: x 
    >  
    0 ; 
    
      
    
      hence (x
    #R ( 
    - (1 
    / 2))) 
    = (1 
    / (x 
    #R (1 
    / 2))) by 
    PREPOWER: 76
    
      .= (1
    / ( 
    sqrt x)) by 
    A1,
    Th2;
    
    end;
    
    
    
    
    
    Lm1: (2 
    * (( 
    cos  
    . (x 
    / 2)) 
    ^2 )) 
    = (1 
    + ( 
    cos  
    . x)) 
    
    proof
    
      ((
    cos (x 
    / 2)) 
    ^2 ) 
    = ((1 
    + ( 
    cos (2 
    * (x 
    / 2)))) 
    / 2) by 
    SIN_COS5: 21
    
      .= ((1
    + ( 
    cos x)) 
    / 2); 
    
      
    
      then (2
    * (( 
    cos  
    . (x 
    / 2)) 
    ^2 )) 
    = (2 
    * ((1 
    + ( 
    cos x)) 
    / 2)) by 
    SIN_COS:def 19
    
      .= (1
    + ( 
    cos  
    . x)) by 
    SIN_COS:def 19;
    
      hence thesis;
    
    end;
    
    
    
    
    
    Lm2: (2 
    * (( 
    sin  
    . (x 
    / 2)) 
    ^2 )) 
    = (1 
    - ( 
    cos  
    . x)) 
    
    proof
    
      ((
    sin (x 
    / 2)) 
    ^2 ) 
    = ((1 
    - ( 
    cos (2 
    * (x 
    / 2)))) 
    / 2) by 
    SIN_COS5: 20
    
      .= ((1
    - ( 
    cos x)) 
    / 2); 
    
      
    
      then (2
    * (( 
    sin  
    . (x 
    / 2)) 
    ^2 )) 
    = (2 
    * ((1 
    - ( 
    cos x)) 
    / 2)) by 
    SIN_COS:def 17
    
      .= (1
    - ( 
    cos  
    . x)) by 
    SIN_COS:def 19;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    FDIFF_7:4
    
    Z
    c=  
    ].(
    - 1), 1.[ & Z 
    c= ( 
    dom (r 
    (#)  
    arcsin )) implies (r 
    (#)  
    arcsin ) 
    is_differentiable_on Z & for x st x 
    in Z holds (((r 
    (#)  
    arcsin ) 
    `| Z) 
    . x) 
    = (r 
    / ( 
    sqrt (1 
    - (x 
    ^2 )))) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c=  
    ].(
    - 1), 1.[ and 
    
      
    
    A2: Z 
    c= ( 
    dom (r 
    (#)  
    arcsin )); 
    
      
    
      
    
    A3: 
    arcsin  
    is_differentiable_on Z by 
    A1,
    FDIFF_1: 26,
    SIN_COS6: 83;
    
      for x st x
    in Z holds (((r 
    (#)  
    arcsin ) 
    `| Z) 
    . x) 
    = (r 
    / ( 
    sqrt (1 
    - (x 
    ^2 )))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A4: x 
    in Z; 
    
        then
    
        
    
    A5: ( 
    - 1) 
    < x & x 
    < 1 by 
    A1,
    XXREAL_1: 4;
    
        (((r
    (#)  
    arcsin ) 
    `| Z) 
    . x) 
    = (r 
    * ( 
    diff ( 
    arcsin ,x))) by 
    A2,
    A3,
    A4,
    FDIFF_1: 20
    
        .= (r
    * (1 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) by 
    A5,
    SIN_COS6: 83
    
        .= (r
    / ( 
    sqrt (1 
    - (x 
    ^2 )))) by 
    XCMPLX_1: 99;
    
        hence thesis;
    
      end;
    
      hence thesis by
    A2,
    A3,
    FDIFF_1: 20;
    
    end;
    
    theorem :: 
    
    FDIFF_7:5
    
    Z
    c=  
    ].(
    - 1), 1.[ & Z 
    c= ( 
    dom (r 
    (#)  
    arccos )) implies (r 
    (#)  
    arccos ) 
    is_differentiable_on Z & for x st x 
    in Z holds (((r 
    (#)  
    arccos ) 
    `| Z) 
    . x) 
    = ( 
    - (r 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c=  
    ].(
    - 1), 1.[ and 
    
      
    
    A2: Z 
    c= ( 
    dom (r 
    (#)  
    arccos )); 
    
      
    
      
    
    A3: 
    arccos  
    is_differentiable_on Z by 
    A1,
    FDIFF_1: 26,
    SIN_COS6: 106;
    
      for x st x
    in Z holds (((r 
    (#)  
    arccos ) 
    `| Z) 
    . x) 
    = ( 
    - (r 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A4: x 
    in Z; 
    
        then
    
        
    
    A5: ( 
    - 1) 
    < x & x 
    < 1 by 
    A1,
    XXREAL_1: 4;
    
        (((r
    (#)  
    arccos ) 
    `| Z) 
    . x) 
    = (r 
    * ( 
    diff ( 
    arccos ,x))) by 
    A2,
    A3,
    A4,
    FDIFF_1: 20
    
        .= (r
    * ( 
    - (1 
    / ( 
    sqrt (1 
    - (x 
    ^2 )))))) by 
    A5,
    SIN_COS6: 106
    
        .= (
    - (r 
    * (1 
    / ( 
    sqrt (1 
    - (x 
    ^2 )))))) 
    
        .= (
    - (r 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) by 
    XCMPLX_1: 99;
    
        hence thesis;
    
      end;
    
      hence thesis by
    A2,
    A3,
    FDIFF_1: 20;
    
    end;
    
    theorem :: 
    
    FDIFF_7:6
    
    
    
    
    
    Th6: f 
    is_differentiable_in x & (f 
    . x) 
    > ( 
    - 1) & (f 
    . x) 
    < 1 implies ( 
    arcsin  
    * f) 
    is_differentiable_in x & ( 
    diff (( 
    arcsin  
    * f),x)) 
    = (( 
    diff (f,x)) 
    / ( 
    sqrt (1 
    - ((f 
    . x) 
    ^2 )))) 
    
    proof
    
      assume that
    
      
    
    A1: f 
    is_differentiable_in x and 
    
      
    
    A2: (f 
    . x) 
    > ( 
    - 1) & (f 
    . x) 
    < 1; 
    
      (f
    . x) 
    in  
    ].(
    - 1), 1.[ by 
    A2;
    
      then
    
      
    
    A3: 
    arcsin  
    is_differentiable_in (f 
    . x) by 
    FDIFF_1: 9,
    SIN_COS6: 83;
    
      
    
      then (
    diff (( 
    arcsin  
    * f),x)) 
    = (( 
    diff ( 
    arcsin ,(f 
    . x))) 
    * ( 
    diff (f,x))) by 
    A1,
    FDIFF_2: 13
    
      .= ((
    diff (f,x)) 
    * (1 
    / ( 
    sqrt (1 
    - ((f 
    . x) 
    ^2 ))))) by 
    A2,
    SIN_COS6: 83
    
      .= ((
    diff (f,x)) 
    / ( 
    sqrt (1 
    - ((f 
    . x) 
    ^2 )))) by 
    XCMPLX_1: 99;
    
      hence thesis by
    A1,
    A3,
    FDIFF_2: 13;
    
    end;
    
    theorem :: 
    
    FDIFF_7:7
    
    
    
    
    
    Th7: f 
    is_differentiable_in x & (f 
    . x) 
    > ( 
    - 1) & (f 
    . x) 
    < 1 implies ( 
    arccos  
    * f) 
    is_differentiable_in x & ( 
    diff (( 
    arccos  
    * f),x)) 
    = ( 
    - (( 
    diff (f,x)) 
    / ( 
    sqrt (1 
    - ((f 
    . x) 
    ^2 ))))) 
    
    proof
    
      assume that
    
      
    
    A1: f 
    is_differentiable_in x and 
    
      
    
    A2: (f 
    . x) 
    > ( 
    - 1) & (f 
    . x) 
    < 1; 
    
      (f
    . x) 
    in  
    ].(
    - 1), 1.[ by 
    A2;
    
      then
    
      
    
    A3: 
    arccos  
    is_differentiable_in (f 
    . x) by 
    FDIFF_1: 9,
    SIN_COS6: 106;
    
      
    
      then (
    diff (( 
    arccos  
    * f),x)) 
    = (( 
    diff ( 
    arccos ,(f 
    . x))) 
    * ( 
    diff (f,x))) by 
    A1,
    FDIFF_2: 13
    
      .= ((
    - (1 
    / ( 
    sqrt (1 
    - ((f 
    . x) 
    ^2 ))))) 
    * ( 
    diff (f,x))) by 
    A2,
    SIN_COS6: 106
    
      .= (
    - (( 
    diff (f,x)) 
    * (1 
    / ( 
    sqrt (1 
    - ((f 
    . x) 
    ^2 )))))) 
    
      .= (
    - (( 
    diff (f,x)) 
    / ( 
    sqrt (1 
    - ((f 
    . x) 
    ^2 ))))) by 
    XCMPLX_1: 99;
    
      hence thesis by
    A1,
    A3,
    FDIFF_2: 13;
    
    end;
    
    theorem :: 
    
    FDIFF_7:8
    
    Z
    c= ( 
    dom ( 
    ln  
    *  
    arcsin )) & Z 
    c=  
    ].(
    - 1), 1.[ & (for x st x 
    in Z holds ( 
    arcsin  
    . x) 
    >  
    0 ) implies ( 
    ln  
    *  
    arcsin ) 
    is_differentiable_on Z & for x st x 
    in Z holds ((( 
    ln  
    *  
    arcsin ) 
    `| Z) 
    . x) 
    = (1 
    / (( 
    sqrt (1 
    - (x 
    ^2 ))) 
    * ( 
    arcsin  
    . x))) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom ( 
    ln  
    *  
    arcsin )) and 
    
      
    
    A2: Z 
    c=  
    ].(
    - 1), 1.[ and 
    
      
    
    A3: for x st x 
    in Z holds ( 
    arcsin  
    . x) 
    >  
    0 ; 
    
      
    
      
    
    A4: for x st x 
    in Z holds ( 
    ln  
    *  
    arcsin ) 
    is_differentiable_in x 
    
      proof
    
        let x;
    
        assume x
    in Z; 
    
        then
    arcsin  
    is_differentiable_in x & ( 
    arcsin  
    . x) 
    >  
    0 by 
    A2,
    A3,
    FDIFF_1: 9,
    SIN_COS6: 83;
    
        hence thesis by
    TAYLOR_1: 20;
    
      end;
    
      then
    
      
    
    A5: ( 
    ln  
    *  
    arcsin ) 
    is_differentiable_on Z by 
    A1,
    FDIFF_1: 9;
    
      for x st x
    in Z holds ((( 
    ln  
    *  
    arcsin ) 
    `| Z) 
    . x) 
    = (1 
    / (( 
    sqrt (1 
    - (x 
    ^2 ))) 
    * ( 
    arcsin  
    . x))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A6: x 
    in Z; 
    
        then
    
        
    
    A7: ( 
    - 1) 
    < x & x 
    < 1 by 
    A2,
    XXREAL_1: 4;
    
        
    arcsin  
    is_differentiable_in x & ( 
    arcsin  
    . x) 
    >  
    0 by 
    A2,
    A3,
    A6,
    FDIFF_1: 9,
    SIN_COS6: 83;
    
        
    
        then (
    diff (( 
    ln  
    *  
    arcsin ),x)) 
    = (( 
    diff ( 
    arcsin ,x)) 
    / ( 
    arcsin  
    . x)) by 
    TAYLOR_1: 20
    
        .= ((1
    / ( 
    sqrt (1 
    - (x 
    ^2 )))) 
    / ( 
    arcsin  
    . x)) by 
    A7,
    SIN_COS6: 83
    
        .= (1
    / (( 
    sqrt (1 
    - (x 
    ^2 ))) 
    * ( 
    arcsin  
    . x))) by 
    XCMPLX_1: 78;
    
        hence thesis by
    A5,
    A6,
    FDIFF_1:def 7;
    
      end;
    
      hence thesis by
    A1,
    A4,
    FDIFF_1: 9;
    
    end;
    
    theorem :: 
    
    FDIFF_7:9
    
    Z
    c= ( 
    dom ( 
    ln  
    *  
    arccos )) & Z 
    c=  
    ].(
    - 1), 1.[ & (for x st x 
    in Z holds ( 
    arccos  
    . x) 
    >  
    0 ) implies ( 
    ln  
    *  
    arccos ) 
    is_differentiable_on Z & for x st x 
    in Z holds ((( 
    ln  
    *  
    arccos ) 
    `| Z) 
    . x) 
    = ( 
    - (1 
    / (( 
    sqrt (1 
    - (x 
    ^2 ))) 
    * ( 
    arccos  
    . x)))) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom ( 
    ln  
    *  
    arccos )) and 
    
      
    
    A2: Z 
    c=  
    ].(
    - 1), 1.[ and 
    
      
    
    A3: for x st x 
    in Z holds ( 
    arccos  
    . x) 
    >  
    0 ; 
    
      
    
      
    
    A4: for x st x 
    in Z holds ( 
    ln  
    *  
    arccos ) 
    is_differentiable_in x 
    
      proof
    
        let x;
    
        assume x
    in Z; 
    
        then
    arccos  
    is_differentiable_in x & ( 
    arccos  
    . x) 
    >  
    0 by 
    A2,
    A3,
    FDIFF_1: 9,
    SIN_COS6: 106;
    
        hence thesis by
    TAYLOR_1: 20;
    
      end;
    
      then
    
      
    
    A5: ( 
    ln  
    *  
    arccos ) 
    is_differentiable_on Z by 
    A1,
    FDIFF_1: 9;
    
      for x st x
    in Z holds ((( 
    ln  
    *  
    arccos ) 
    `| Z) 
    . x) 
    = ( 
    - (1 
    / (( 
    sqrt (1 
    - (x 
    ^2 ))) 
    * ( 
    arccos  
    . x)))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A6: x 
    in Z; 
    
        then
    
        
    
    A7: ( 
    - 1) 
    < x & x 
    < 1 by 
    A2,
    XXREAL_1: 4;
    
        
    arccos  
    is_differentiable_in x & ( 
    arccos  
    . x) 
    >  
    0 by 
    A2,
    A3,
    A6,
    FDIFF_1: 9,
    SIN_COS6: 106;
    
        
    
        then (
    diff (( 
    ln  
    *  
    arccos ),x)) 
    = (( 
    diff ( 
    arccos ,x)) 
    / ( 
    arccos  
    . x)) by 
    TAYLOR_1: 20
    
        .= ((
    - (1 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) 
    / ( 
    arccos  
    . x)) by 
    A7,
    SIN_COS6: 106
    
        .= (
    - ((1 
    / ( 
    sqrt (1 
    - (x 
    ^2 )))) 
    / ( 
    arccos  
    . x))) by 
    XCMPLX_1: 187
    
        .= (
    - (1 
    / (( 
    sqrt (1 
    - (x 
    ^2 ))) 
    * ( 
    arccos  
    . x)))) by 
    XCMPLX_1: 78;
    
        hence thesis by
    A5,
    A6,
    FDIFF_1:def 7;
    
      end;
    
      hence thesis by
    A1,
    A4,
    FDIFF_1: 9;
    
    end;
    
    theorem :: 
    
    FDIFF_7:10
    
    
    
    
    
    Th10: Z 
    c= ( 
    dom (( 
    #Z n) 
    *  
    arcsin )) & Z 
    c=  
    ].(
    - 1), 1.[ implies (( 
    #Z n) 
    *  
    arcsin ) 
    is_differentiable_on Z & for x st x 
    in Z holds (((( 
    #Z n) 
    *  
    arcsin ) 
    `| Z) 
    . x) 
    = ((n 
    * (( 
    arcsin  
    . x) 
    #Z (n 
    - 1))) 
    / ( 
    sqrt (1 
    - (x 
    ^2 )))) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom (( 
    #Z n) 
    *  
    arcsin )) and 
    
      
    
    A2: Z 
    c=  
    ].(
    - 1), 1.[; 
    
      
    
      
    
    A3: for x st x 
    in Z holds (( 
    #Z n) 
    *  
    arcsin ) 
    is_differentiable_in x 
    
      proof
    
        let x;
    
        assume x
    in Z; 
    
        then
    arcsin  
    is_differentiable_in x by 
    A2,
    FDIFF_1: 9,
    SIN_COS6: 83;
    
        hence thesis by
    TAYLOR_1: 3;
    
      end;
    
      then
    
      
    
    A4: (( 
    #Z n) 
    *  
    arcsin ) 
    is_differentiable_on Z by 
    A1,
    FDIFF_1: 9;
    
      for x st x
    in Z holds (((( 
    #Z n) 
    *  
    arcsin ) 
    `| Z) 
    . x) 
    = ((n 
    * (( 
    arcsin  
    . x) 
    #Z (n 
    - 1))) 
    / ( 
    sqrt (1 
    - (x 
    ^2 )))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A5: x 
    in Z; 
    
        then
    
        
    
    A6: ( 
    - 1) 
    < x & x 
    < 1 by 
    A2,
    XXREAL_1: 4;
    
        
    
        
    
    A7: 
    arcsin  
    is_differentiable_in x by 
    A2,
    A5,
    FDIFF_1: 9,
    SIN_COS6: 83;
    
        ((((
    #Z n) 
    *  
    arcsin ) 
    `| Z) 
    . x) 
    = ( 
    diff ((( 
    #Z n) 
    *  
    arcsin ),x)) by 
    A4,
    A5,
    FDIFF_1:def 7
    
        .= ((n
    * (( 
    arcsin  
    . x) 
    #Z (n 
    - 1))) 
    * ( 
    diff ( 
    arcsin ,x))) by 
    A7,
    TAYLOR_1: 3
    
        .= ((n
    * (( 
    arcsin  
    . x) 
    #Z (n 
    - 1))) 
    * (1 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) by 
    A6,
    SIN_COS6: 83
    
        .= ((n
    * (( 
    arcsin  
    . x) 
    #Z (n 
    - 1))) 
    / ( 
    sqrt (1 
    - (x 
    ^2 )))) by 
    XCMPLX_1: 99;
    
        hence thesis;
    
      end;
    
      hence thesis by
    A1,
    A3,
    FDIFF_1: 9;
    
    end;
    
    theorem :: 
    
    FDIFF_7:11
    
    
    
    
    
    Th11: Z 
    c= ( 
    dom (( 
    #Z n) 
    *  
    arccos )) & Z 
    c=  
    ].(
    - 1), 1.[ implies (( 
    #Z n) 
    *  
    arccos ) 
    is_differentiable_on Z & for x st x 
    in Z holds (((( 
    #Z n) 
    *  
    arccos ) 
    `| Z) 
    . x) 
    = ( 
    - ((n 
    * (( 
    arccos  
    . x) 
    #Z (n 
    - 1))) 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom (( 
    #Z n) 
    *  
    arccos )) and 
    
      
    
    A2: Z 
    c=  
    ].(
    - 1), 1.[; 
    
      
    
      
    
    A3: for x st x 
    in Z holds (( 
    #Z n) 
    *  
    arccos ) 
    is_differentiable_in x 
    
      proof
    
        let x;
    
        assume x
    in Z; 
    
        then
    arccos  
    is_differentiable_in x by 
    A2,
    FDIFF_1: 9,
    SIN_COS6: 106;
    
        hence thesis by
    TAYLOR_1: 3;
    
      end;
    
      then
    
      
    
    A4: (( 
    #Z n) 
    *  
    arccos ) 
    is_differentiable_on Z by 
    A1,
    FDIFF_1: 9;
    
      for x st x
    in Z holds (((( 
    #Z n) 
    *  
    arccos ) 
    `| Z) 
    . x) 
    = ( 
    - ((n 
    * (( 
    arccos  
    . x) 
    #Z (n 
    - 1))) 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A5: x 
    in Z; 
    
        then
    
        
    
    A6: ( 
    - 1) 
    < x & x 
    < 1 by 
    A2,
    XXREAL_1: 4;
    
        
    
        
    
    A7: 
    arccos  
    is_differentiable_in x by 
    A2,
    A5,
    FDIFF_1: 9,
    SIN_COS6: 106;
    
        ((((
    #Z n) 
    *  
    arccos ) 
    `| Z) 
    . x) 
    = ( 
    diff ((( 
    #Z n) 
    *  
    arccos ),x)) by 
    A4,
    A5,
    FDIFF_1:def 7
    
        .= ((n
    * (( 
    arccos  
    . x) 
    #Z (n 
    - 1))) 
    * ( 
    diff ( 
    arccos ,x))) by 
    A7,
    TAYLOR_1: 3
    
        .= ((n
    * (( 
    arccos  
    . x) 
    #Z (n 
    - 1))) 
    * ( 
    - (1 
    / ( 
    sqrt (1 
    - (x 
    ^2 )))))) by 
    A6,
    SIN_COS6: 106
    
        .= (
    - ((n 
    * (( 
    arccos  
    . x) 
    #Z (n 
    - 1))) 
    * (1 
    / ( 
    sqrt (1 
    - (x 
    ^2 )))))) 
    
        .= (
    - ((n 
    * (( 
    arccos  
    . x) 
    #Z (n 
    - 1))) 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) by 
    XCMPLX_1: 99;
    
        hence thesis;
    
      end;
    
      hence thesis by
    A1,
    A3,
    FDIFF_1: 9;
    
    end;
    
    theorem :: 
    
    FDIFF_7:12
    
    Z
    c= ( 
    dom ((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arcsin ))) & Z 
    c=  
    ].(
    - 1), 1.[ implies ((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arcsin )) 
    is_differentiable_on Z & for x st x 
    in Z holds ((((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arcsin )) 
    `| Z) 
    . x) 
    = (( 
    arcsin  
    . x) 
    / ( 
    sqrt (1 
    - (x 
    ^2 )))) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom ((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arcsin ))) and 
    
      
    
    A2: Z 
    c=  
    ].(
    - 1), 1.[; 
    
      
    
      
    
    A3: Z 
    c= ( 
    dom (( 
    #Z 2) 
    *  
    arcsin )) by 
    A1,
    VALUED_1:def 5;
    
      then
    
      
    
    A4: (( 
    #Z 2) 
    *  
    arcsin ) 
    is_differentiable_on Z by 
    A2,
    Th10;
    
      for x st x
    in Z holds ((((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arcsin )) 
    `| Z) 
    . x) 
    = (( 
    arcsin  
    . x) 
    / ( 
    sqrt (1 
    - (x 
    ^2 )))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A5: x 
    in Z; 
    
        
    
        then ((((1
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arcsin )) 
    `| Z) 
    . x) 
    = ((1 
    / 2) 
    * ( 
    diff ((( 
    #Z 2) 
    *  
    arcsin ),x))) by 
    A1,
    A4,
    FDIFF_1: 20
    
        .= ((1
    / 2) 
    * (((( 
    #Z 2) 
    *  
    arcsin ) 
    `| Z) 
    . x)) by 
    A4,
    A5,
    FDIFF_1:def 7
    
        .= ((1
    / 2) 
    * ((2 
    * (( 
    arcsin  
    . x) 
    #Z (2 
    - 1))) 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) by 
    A2,
    A3,
    A5,
    Th10
    
        .= (((1
    / 2) 
    * (2 
    * (( 
    arcsin  
    . x) 
    #Z (2 
    - 1)))) 
    / ( 
    sqrt (1 
    - (x 
    ^2 )))) by 
    XCMPLX_1: 74
    
        .= ((
    arcsin  
    . x) 
    / ( 
    sqrt (1 
    - (x 
    ^2 )))) by 
    PREPOWER: 35;
    
        hence thesis;
    
      end;
    
      hence thesis by
    A1,
    A4,
    FDIFF_1: 20;
    
    end;
    
    theorem :: 
    
    FDIFF_7:13
    
    Z
    c= ( 
    dom ((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccos ))) & Z 
    c=  
    ].(
    - 1), 1.[ implies ((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccos )) 
    is_differentiable_on Z & for x st x 
    in Z holds ((((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccos )) 
    `| Z) 
    . x) 
    = ( 
    - (( 
    arccos  
    . x) 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom ((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccos ))) and 
    
      
    
    A2: Z 
    c=  
    ].(
    - 1), 1.[; 
    
      
    
      
    
    A3: Z 
    c= ( 
    dom (( 
    #Z 2) 
    *  
    arccos )) by 
    A1,
    VALUED_1:def 5;
    
      then
    
      
    
    A4: (( 
    #Z 2) 
    *  
    arccos ) 
    is_differentiable_on Z by 
    A2,
    Th11;
    
      for x st x
    in Z holds ((((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccos )) 
    `| Z) 
    . x) 
    = ( 
    - (( 
    arccos  
    . x) 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A5: x 
    in Z; 
    
        
    
        then ((((1
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccos )) 
    `| Z) 
    . x) 
    = ((1 
    / 2) 
    * ( 
    diff ((( 
    #Z 2) 
    *  
    arccos ),x))) by 
    A1,
    A4,
    FDIFF_1: 20
    
        .= ((1
    / 2) 
    * (((( 
    #Z 2) 
    *  
    arccos ) 
    `| Z) 
    . x)) by 
    A4,
    A5,
    FDIFF_1:def 7
    
        .= ((1
    / 2) 
    * ( 
    - ((2 
    * (( 
    arccos  
    . x) 
    #Z (2 
    - 1))) 
    / ( 
    sqrt (1 
    - (x 
    ^2 )))))) by 
    A2,
    A3,
    A5,
    Th11
    
        .= (
    - ((1 
    / 2) 
    * ((2 
    * (( 
    arccos  
    . x) 
    #Z (2 
    - 1))) 
    / ( 
    sqrt (1 
    - (x 
    ^2 )))))) 
    
        .= (
    - (((1 
    / 2) 
    * (2 
    * (( 
    arccos  
    . x) 
    #Z (2 
    - 1)))) 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) by 
    XCMPLX_1: 74
    
        .= (
    - (( 
    arccos  
    . x) 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) by 
    PREPOWER: 35;
    
        hence thesis;
    
      end;
    
      hence thesis by
    A1,
    A4,
    FDIFF_1: 20;
    
    end;
    
    theorem :: 
    
    FDIFF_7:14
    
    
    
    
    
    Th14: Z 
    c= ( 
    dom ( 
    arcsin  
    * f)) & (for x st x 
    in Z holds (f 
    . x) 
    = ((a 
    * x) 
    + b) & (f 
    . x) 
    > ( 
    - 1) & (f 
    . x) 
    < 1) implies ( 
    arcsin  
    * f) 
    is_differentiable_on Z & for x st x 
    in Z holds ((( 
    arcsin  
    * f) 
    `| Z) 
    . x) 
    = (a 
    / ( 
    sqrt (1 
    - (((a 
    * x) 
    + b) 
    ^2 )))) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom ( 
    arcsin  
    * f)) and 
    
      
    
    A2: for x st x 
    in Z holds (f 
    . x) 
    = ((a 
    * x) 
    + b) & (f 
    . x) 
    > ( 
    - 1) & (f 
    . x) 
    < 1; 
    
      for y be
    object st y 
    in Z holds y 
    in ( 
    dom f) by 
    A1,
    FUNCT_1: 11;
    
      then
    
      
    
    A3: Z 
    c= ( 
    dom f) by 
    TARSKI:def 3;
    
      
    
      
    
    A4: for x st x 
    in Z holds (f 
    . x) 
    = ((a 
    * x) 
    + b) by 
    A2;
    
      then
    
      
    
    A5: f 
    is_differentiable_on Z by 
    A3,
    FDIFF_1: 23;
    
      
    
      
    
    A6: for x st x 
    in Z holds ( 
    arcsin  
    * f) 
    is_differentiable_in x 
    
      proof
    
        let x;
    
        assume
    
        
    
    A7: x 
    in Z; 
    
        then
    
        
    
    A8: (f 
    . x) 
    < 1 by 
    A2;
    
        f
    is_differentiable_in x & (f 
    . x) 
    > ( 
    - 1) by 
    A2,
    A5,
    A7,
    FDIFF_1: 9;
    
        hence thesis by
    A8,
    Th6;
    
      end;
    
      then
    
      
    
    A9: ( 
    arcsin  
    * f) 
    is_differentiable_on Z by 
    A1,
    FDIFF_1: 9;
    
      for x st x
    in Z holds ((( 
    arcsin  
    * f) 
    `| Z) 
    . x) 
    = (a 
    / ( 
    sqrt (1 
    - (((a 
    * x) 
    + b) 
    ^2 )))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A10: x 
    in Z; 
    
        then
    
        
    
    A11: (f 
    . x) 
    < 1 by 
    A2;
    
        f
    is_differentiable_in x & (f 
    . x) 
    > ( 
    - 1) by 
    A2,
    A5,
    A10,
    FDIFF_1: 9;
    
        
    
        then (
    diff (( 
    arcsin  
    * f),x)) 
    = (( 
    diff (f,x)) 
    / ( 
    sqrt (1 
    - ((f 
    . x) 
    ^2 )))) by 
    A11,
    Th6
    
        .= (((f
    `| Z) 
    . x) 
    / ( 
    sqrt (1 
    - ((f 
    . x) 
    ^2 )))) by 
    A5,
    A10,
    FDIFF_1:def 7
    
        .= (a
    / ( 
    sqrt (1 
    - ((f 
    . x) 
    ^2 )))) by 
    A4,
    A3,
    A10,
    FDIFF_1: 23
    
        .= (a
    / ( 
    sqrt (1 
    - (((a 
    * x) 
    + b) 
    ^2 )))) by 
    A2,
    A10;
    
        hence thesis by
    A9,
    A10,
    FDIFF_1:def 7;
    
      end;
    
      hence thesis by
    A1,
    A6,
    FDIFF_1: 9;
    
    end;
    
    theorem :: 
    
    FDIFF_7:15
    
    
    
    
    
    Th15: Z 
    c= ( 
    dom ( 
    arccos  
    * f)) & (for x st x 
    in Z holds (f 
    . x) 
    = ((a 
    * x) 
    + b) & (f 
    . x) 
    > ( 
    - 1) & (f 
    . x) 
    < 1) implies ( 
    arccos  
    * f) 
    is_differentiable_on Z & for x st x 
    in Z holds ((( 
    arccos  
    * f) 
    `| Z) 
    . x) 
    = ( 
    - (a 
    / ( 
    sqrt (1 
    - (((a 
    * x) 
    + b) 
    ^2 ))))) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom ( 
    arccos  
    * f)) and 
    
      
    
    A2: for x st x 
    in Z holds (f 
    . x) 
    = ((a 
    * x) 
    + b) & (f 
    . x) 
    > ( 
    - 1) & (f 
    . x) 
    < 1; 
    
      for y be
    object st y 
    in Z holds y 
    in ( 
    dom f) by 
    A1,
    FUNCT_1: 11;
    
      then
    
      
    
    A3: Z 
    c= ( 
    dom f) by 
    TARSKI:def 3;
    
      
    
      
    
    A4: for x st x 
    in Z holds (f 
    . x) 
    = ((a 
    * x) 
    + b) by 
    A2;
    
      then
    
      
    
    A5: f 
    is_differentiable_on Z by 
    A3,
    FDIFF_1: 23;
    
      
    
      
    
    A6: for x st x 
    in Z holds ( 
    arccos  
    * f) 
    is_differentiable_in x 
    
      proof
    
        let x;
    
        assume
    
        
    
    A7: x 
    in Z; 
    
        then
    
        
    
    A8: (f 
    . x) 
    < 1 by 
    A2;
    
        f
    is_differentiable_in x & (f 
    . x) 
    > ( 
    - 1) by 
    A2,
    A5,
    A7,
    FDIFF_1: 9;
    
        hence thesis by
    A8,
    Th7;
    
      end;
    
      then
    
      
    
    A9: ( 
    arccos  
    * f) 
    is_differentiable_on Z by 
    A1,
    FDIFF_1: 9;
    
      for x st x
    in Z holds ((( 
    arccos  
    * f) 
    `| Z) 
    . x) 
    = ( 
    - (a 
    / ( 
    sqrt (1 
    - (((a 
    * x) 
    + b) 
    ^2 ))))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A10: x 
    in Z; 
    
        then
    
        
    
    A11: (f 
    . x) 
    < 1 by 
    A2;
    
        f
    is_differentiable_in x & (f 
    . x) 
    > ( 
    - 1) by 
    A2,
    A5,
    A10,
    FDIFF_1: 9;
    
        
    
        then (
    diff (( 
    arccos  
    * f),x)) 
    = ( 
    - (( 
    diff (f,x)) 
    / ( 
    sqrt (1 
    - ((f 
    . x) 
    ^2 ))))) by 
    A11,
    Th7
    
        .= (
    - (((f 
    `| Z) 
    . x) 
    / ( 
    sqrt (1 
    - ((f 
    . x) 
    ^2 ))))) by 
    A5,
    A10,
    FDIFF_1:def 7
    
        .= (
    - (a 
    / ( 
    sqrt (1 
    - ((f 
    . x) 
    ^2 ))))) by 
    A4,
    A3,
    A10,
    FDIFF_1: 23
    
        .= (
    - (a 
    / ( 
    sqrt (1 
    - (((a 
    * x) 
    + b) 
    ^2 ))))) by 
    A2,
    A10;
    
        hence thesis by
    A9,
    A10,
    FDIFF_1:def 7;
    
      end;
    
      hence thesis by
    A1,
    A6,
    FDIFF_1: 9;
    
    end;
    
    theorem :: 
    
    FDIFF_7:16
    
    
    
    
    
    Th16: Z 
    c= ( 
    dom (( 
    id Z) 
    (#)  
    arcsin )) & Z 
    c=  
    ].(
    - 1), 1.[ implies (( 
    id Z) 
    (#)  
    arcsin ) 
    is_differentiable_on Z & for x st x 
    in Z holds (((( 
    id Z) 
    (#)  
    arcsin ) 
    `| Z) 
    . x) 
    = (( 
    arcsin  
    . x) 
    + (x 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom (( 
    id Z) 
    (#)  
    arcsin )) and 
    
      
    
    A2: Z 
    c=  
    ].(
    - 1), 1.[; 
    
      
    
      
    
    A3: for x st x 
    in Z holds (( 
    id Z) 
    . x) 
    = ((1 
    * x) 
    +  
    0 ) by 
    FUNCT_1: 18;
    
      Z
    c= (( 
    dom ( 
    id Z)) 
    /\ ( 
    dom  
    arcsin )) by 
    A1,
    VALUED_1:def 4;
    
      then
    
      
    
    A4: Z 
    c= ( 
    dom ( 
    id Z)) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A5: ( 
    id Z) 
    is_differentiable_on Z by 
    A3,
    FDIFF_1: 23;
    
      
    
      
    
    A6: 
    arcsin  
    is_differentiable_on Z by 
    A2,
    FDIFF_1: 26,
    SIN_COS6: 83;
    
      for x st x
    in Z holds (((( 
    id Z) 
    (#)  
    arcsin ) 
    `| Z) 
    . x) 
    = (( 
    arcsin  
    . x) 
    + (x 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A7: x 
    in Z; 
    
        then
    
        
    
    A8: ( 
    - 1) 
    < x & x 
    < 1 by 
    A2,
    XXREAL_1: 4;
    
        ((((
    id Z) 
    (#)  
    arcsin ) 
    `| Z) 
    . x) 
    = ((( 
    arcsin  
    . x) 
    * ( 
    diff (( 
    id Z),x))) 
    + ((( 
    id Z) 
    . x) 
    * ( 
    diff ( 
    arcsin ,x)))) by 
    A1,
    A5,
    A6,
    A7,
    FDIFF_1: 21
    
        .= (((
    arcsin  
    . x) 
    * ((( 
    id Z) 
    `| Z) 
    . x)) 
    + ((( 
    id Z) 
    . x) 
    * ( 
    diff ( 
    arcsin ,x)))) by 
    A5,
    A7,
    FDIFF_1:def 7
    
        .= (((
    arcsin  
    . x) 
    * 1) 
    + ((( 
    id Z) 
    . x) 
    * ( 
    diff ( 
    arcsin ,x)))) by 
    A4,
    A3,
    A7,
    FDIFF_1: 23
    
        .= (((
    arcsin  
    . x) 
    * 1) 
    + ((( 
    id Z) 
    . x) 
    * (1 
    / ( 
    sqrt (1 
    - (x 
    ^2 )))))) by 
    A8,
    SIN_COS6: 83
    
        .= ((
    arcsin  
    . x) 
    + (x 
    * (1 
    / ( 
    sqrt (1 
    - (x 
    ^2 )))))) by 
    A7,
    FUNCT_1: 18
    
        .= ((
    arcsin  
    . x) 
    + (x 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) by 
    XCMPLX_1: 99;
    
        hence thesis;
    
      end;
    
      hence thesis by
    A1,
    A5,
    A6,
    FDIFF_1: 21;
    
    end;
    
    theorem :: 
    
    FDIFF_7:17
    
    
    
    
    
    Th17: Z 
    c= ( 
    dom (( 
    id Z) 
    (#)  
    arccos )) & Z 
    c=  
    ].(
    - 1), 1.[ implies (( 
    id Z) 
    (#)  
    arccos ) 
    is_differentiable_on Z & for x st x 
    in Z holds (((( 
    id Z) 
    (#)  
    arccos ) 
    `| Z) 
    . x) 
    = (( 
    arccos  
    . x) 
    - (x 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom (( 
    id Z) 
    (#)  
    arccos )) and 
    
      
    
    A2: Z 
    c=  
    ].(
    - 1), 1.[; 
    
      
    
      
    
    A3: for x st x 
    in Z holds (( 
    id Z) 
    . x) 
    = ((1 
    * x) 
    +  
    0 ) by 
    FUNCT_1: 18;
    
      Z
    c= (( 
    dom ( 
    id Z)) 
    /\ ( 
    dom  
    arccos )) by 
    A1,
    VALUED_1:def 4;
    
      then
    
      
    
    A4: Z 
    c= ( 
    dom ( 
    id Z)) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A5: ( 
    id Z) 
    is_differentiable_on Z by 
    A3,
    FDIFF_1: 23;
    
      
    
      
    
    A6: 
    arccos  
    is_differentiable_on Z by 
    A2,
    FDIFF_1: 26,
    SIN_COS6: 106;
    
      for x st x
    in Z holds (((( 
    id Z) 
    (#)  
    arccos ) 
    `| Z) 
    . x) 
    = (( 
    arccos  
    . x) 
    - (x 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A7: x 
    in Z; 
    
        then
    
        
    
    A8: ( 
    - 1) 
    < x & x 
    < 1 by 
    A2,
    XXREAL_1: 4;
    
        ((((
    id Z) 
    (#)  
    arccos ) 
    `| Z) 
    . x) 
    = ((( 
    arccos  
    . x) 
    * ( 
    diff (( 
    id Z),x))) 
    + ((( 
    id Z) 
    . x) 
    * ( 
    diff ( 
    arccos ,x)))) by 
    A1,
    A5,
    A6,
    A7,
    FDIFF_1: 21
    
        .= (((
    arccos  
    . x) 
    * ((( 
    id Z) 
    `| Z) 
    . x)) 
    + ((( 
    id Z) 
    . x) 
    * ( 
    diff ( 
    arccos ,x)))) by 
    A5,
    A7,
    FDIFF_1:def 7
    
        .= (((
    arccos  
    . x) 
    * 1) 
    + ((( 
    id Z) 
    . x) 
    * ( 
    diff ( 
    arccos ,x)))) by 
    A4,
    A3,
    A7,
    FDIFF_1: 23
    
        .= (((
    arccos  
    . x) 
    * 1) 
    + ((( 
    id Z) 
    . x) 
    * ( 
    - (1 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))))) by 
    A8,
    SIN_COS6: 106
    
        .= ((
    arccos  
    . x) 
    + (x 
    * ( 
    - (1 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))))) by 
    A7,
    FUNCT_1: 18
    
        .= ((
    arccos  
    . x) 
    - (x 
    * (1 
    / ( 
    sqrt (1 
    - (x 
    ^2 )))))) 
    
        .= ((
    arccos  
    . x) 
    - (x 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) by 
    XCMPLX_1: 99;
    
        hence thesis;
    
      end;
    
      hence thesis by
    A1,
    A5,
    A6,
    FDIFF_1: 21;
    
    end;
    
    theorem :: 
    
    FDIFF_7:18
    
    Z
    c= ( 
    dom (f 
    (#)  
    arcsin )) & Z 
    c=  
    ].(
    - 1), 1.[ & (for x st x 
    in Z holds (f 
    . x) 
    = ((a 
    * x) 
    + b)) implies (f 
    (#)  
    arcsin ) 
    is_differentiable_on Z & for x st x 
    in Z holds (((f 
    (#)  
    arcsin ) 
    `| Z) 
    . x) 
    = ((a 
    * ( 
    arcsin  
    . x)) 
    + (((a 
    * x) 
    + b) 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom (f 
    (#)  
    arcsin )) and 
    
      
    
    A2: Z 
    c=  
    ].(
    - 1), 1.[ and 
    
      
    
    A3: for x st x 
    in Z holds (f 
    . x) 
    = ((a 
    * x) 
    + b); 
    
      Z
    c= (( 
    dom f) 
    /\ ( 
    dom  
    arcsin )) by 
    A1,
    VALUED_1:def 4;
    
      then
    
      
    
    A4: Z 
    c= ( 
    dom f) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A5: f 
    is_differentiable_on Z by 
    A3,
    FDIFF_1: 23;
    
      
    
      
    
    A6: 
    arcsin  
    is_differentiable_on Z by 
    A2,
    FDIFF_1: 26,
    SIN_COS6: 83;
    
      for x st x
    in Z holds (((f 
    (#)  
    arcsin ) 
    `| Z) 
    . x) 
    = ((a 
    * ( 
    arcsin  
    . x)) 
    + (((a 
    * x) 
    + b) 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A7: x 
    in Z; 
    
        then
    
        
    
    A8: ( 
    - 1) 
    < x & x 
    < 1 by 
    A2,
    XXREAL_1: 4;
    
        (((f
    (#)  
    arcsin ) 
    `| Z) 
    . x) 
    = ((( 
    arcsin  
    . x) 
    * ( 
    diff (f,x))) 
    + ((f 
    . x) 
    * ( 
    diff ( 
    arcsin ,x)))) by 
    A1,
    A5,
    A6,
    A7,
    FDIFF_1: 21
    
        .= (((
    arcsin  
    . x) 
    * ((f 
    `| Z) 
    . x)) 
    + ((f 
    . x) 
    * ( 
    diff ( 
    arcsin ,x)))) by 
    A5,
    A7,
    FDIFF_1:def 7
    
        .= (((
    arcsin  
    . x) 
    * a) 
    + ((f 
    . x) 
    * ( 
    diff ( 
    arcsin ,x)))) by 
    A3,
    A4,
    A7,
    FDIFF_1: 23
    
        .= (((
    arcsin  
    . x) 
    * a) 
    + ((f 
    . x) 
    * (1 
    / ( 
    sqrt (1 
    - (x 
    ^2 )))))) by 
    A8,
    SIN_COS6: 83
    
        .= ((a
    * ( 
    arcsin  
    . x)) 
    + (((a 
    * x) 
    + b) 
    * (1 
    / ( 
    sqrt (1 
    - (x 
    ^2 )))))) by 
    A3,
    A7
    
        .= ((a
    * ( 
    arcsin  
    . x)) 
    + (((a 
    * x) 
    + b) 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) by 
    XCMPLX_1: 99;
    
        hence thesis;
    
      end;
    
      hence thesis by
    A1,
    A5,
    A6,
    FDIFF_1: 21;
    
    end;
    
    theorem :: 
    
    FDIFF_7:19
    
    Z
    c= ( 
    dom (f 
    (#)  
    arccos )) & Z 
    c=  
    ].(
    - 1), 1.[ & (for x st x 
    in Z holds (f 
    . x) 
    = ((a 
    * x) 
    + b)) implies (f 
    (#)  
    arccos ) 
    is_differentiable_on Z & for x st x 
    in Z holds (((f 
    (#)  
    arccos ) 
    `| Z) 
    . x) 
    = ((a 
    * ( 
    arccos  
    . x)) 
    - (((a 
    * x) 
    + b) 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom (f 
    (#)  
    arccos )) and 
    
      
    
    A2: Z 
    c=  
    ].(
    - 1), 1.[ and 
    
      
    
    A3: for x st x 
    in Z holds (f 
    . x) 
    = ((a 
    * x) 
    + b); 
    
      Z
    c= (( 
    dom f) 
    /\ ( 
    dom  
    arccos )) by 
    A1,
    VALUED_1:def 4;
    
      then
    
      
    
    A4: Z 
    c= ( 
    dom f) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A5: f 
    is_differentiable_on Z by 
    A3,
    FDIFF_1: 23;
    
      
    
      
    
    A6: 
    arccos  
    is_differentiable_on Z by 
    A2,
    FDIFF_1: 26,
    SIN_COS6: 106;
    
      for x st x
    in Z holds (((f 
    (#)  
    arccos ) 
    `| Z) 
    . x) 
    = ((a 
    * ( 
    arccos  
    . x)) 
    - (((a 
    * x) 
    + b) 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A7: x 
    in Z; 
    
        then
    
        
    
    A8: ( 
    - 1) 
    < x & x 
    < 1 by 
    A2,
    XXREAL_1: 4;
    
        (((f
    (#)  
    arccos ) 
    `| Z) 
    . x) 
    = ((( 
    arccos  
    . x) 
    * ( 
    diff (f,x))) 
    + ((f 
    . x) 
    * ( 
    diff ( 
    arccos ,x)))) by 
    A1,
    A5,
    A6,
    A7,
    FDIFF_1: 21
    
        .= (((
    arccos  
    . x) 
    * ((f 
    `| Z) 
    . x)) 
    + ((f 
    . x) 
    * ( 
    diff ( 
    arccos ,x)))) by 
    A5,
    A7,
    FDIFF_1:def 7
    
        .= (((
    arccos  
    . x) 
    * a) 
    + ((f 
    . x) 
    * ( 
    diff ( 
    arccos ,x)))) by 
    A3,
    A4,
    A7,
    FDIFF_1: 23
    
        .= (((
    arccos  
    . x) 
    * a) 
    + ((f 
    . x) 
    * ( 
    - (1 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))))) by 
    A8,
    SIN_COS6: 106
    
        .= (((
    arccos  
    . x) 
    * a) 
    - ((f 
    . x) 
    * (1 
    / ( 
    sqrt (1 
    - (x 
    ^2 )))))) 
    
        .= ((a
    * ( 
    arccos  
    . x)) 
    - (((a 
    * x) 
    + b) 
    * (1 
    / ( 
    sqrt (1 
    - (x 
    ^2 )))))) by 
    A3,
    A7
    
        .= ((a
    * ( 
    arccos  
    . x)) 
    - (((a 
    * x) 
    + b) 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) by 
    XCMPLX_1: 99;
    
        hence thesis;
    
      end;
    
      hence thesis by
    A1,
    A5,
    A6,
    FDIFF_1: 21;
    
    end;
    
    theorem :: 
    
    FDIFF_7:20
    
    Z
    c= ( 
    dom ((1 
    / 2) 
    (#) ( 
    arcsin  
    * f))) & (for x st x 
    in Z holds (f 
    . x) 
    = (2 
    * x) & (f 
    . x) 
    > ( 
    - 1) & (f 
    . x) 
    < 1) implies ((1 
    / 2) 
    (#) ( 
    arcsin  
    * f)) 
    is_differentiable_on Z & for x st x 
    in Z holds ((((1 
    / 2) 
    (#) ( 
    arcsin  
    * f)) 
    `| Z) 
    . x) 
    = (1 
    / ( 
    sqrt (1 
    - ((2 
    * x) 
    ^2 )))) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom ((1 
    / 2) 
    (#) ( 
    arcsin  
    * f))) and 
    
      
    
    A2: for x st x 
    in Z holds (f 
    . x) 
    = (2 
    * x) & (f 
    . x) 
    > ( 
    - 1) & (f 
    . x) 
    < 1; 
    
      
    
      
    
    A3: Z 
    c= ( 
    dom ( 
    arcsin  
    * f)) & for x st x 
    in Z holds (f 
    . x) 
    = ((2 
    * x) 
    +  
    0 ) & (f 
    . x) 
    > ( 
    - 1) & (f 
    . x) 
    < 1 by 
    A1,
    A2,
    VALUED_1:def 5;
    
      then
    
      
    
    A4: ( 
    arcsin  
    * f) 
    is_differentiable_on Z by 
    Th14;
    
      for x st x
    in Z holds ((((1 
    / 2) 
    (#) ( 
    arcsin  
    * f)) 
    `| Z) 
    . x) 
    = (1 
    / ( 
    sqrt (1 
    - ((2 
    * x) 
    ^2 )))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A5: x 
    in Z; 
    
        
    
        then ((((1
    / 2) 
    (#) ( 
    arcsin  
    * f)) 
    `| Z) 
    . x) 
    = ((1 
    / 2) 
    * ( 
    diff (( 
    arcsin  
    * f),x))) by 
    A1,
    A4,
    FDIFF_1: 20
    
        .= ((1
    / 2) 
    * ((( 
    arcsin  
    * f) 
    `| Z) 
    . x)) by 
    A4,
    A5,
    FDIFF_1:def 7
    
        .= ((1
    / 2) 
    * (2 
    / ( 
    sqrt (1 
    - (((2 
    * x) 
    +  
    0 ) 
    ^2 ))))) by 
    A3,
    A5,
    Th14
    
        .= (((1
    / 2) 
    * 2) 
    / ( 
    sqrt (1 
    - ((2 
    * x) 
    ^2 )))) by 
    XCMPLX_1: 74
    
        .= (1
    / ( 
    sqrt (1 
    - ((2 
    * x) 
    ^2 )))); 
    
        hence thesis;
    
      end;
    
      hence thesis by
    A1,
    A4,
    FDIFF_1: 20;
    
    end;
    
    theorem :: 
    
    FDIFF_7:21
    
    Z
    c= ( 
    dom ((1 
    / 2) 
    (#) ( 
    arccos  
    * f))) & (for x st x 
    in Z holds (f 
    . x) 
    = (2 
    * x) & (f 
    . x) 
    > ( 
    - 1) & (f 
    . x) 
    < 1) implies ((1 
    / 2) 
    (#) ( 
    arccos  
    * f)) 
    is_differentiable_on Z & for x st x 
    in Z holds ((((1 
    / 2) 
    (#) ( 
    arccos  
    * f)) 
    `| Z) 
    . x) 
    = ( 
    - (1 
    / ( 
    sqrt (1 
    - ((2 
    * x) 
    ^2 ))))) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom ((1 
    / 2) 
    (#) ( 
    arccos  
    * f))) and 
    
      
    
    A2: for x st x 
    in Z holds (f 
    . x) 
    = (2 
    * x) & (f 
    . x) 
    > ( 
    - 1) & (f 
    . x) 
    < 1; 
    
      
    
      
    
    A3: Z 
    c= ( 
    dom ( 
    arccos  
    * f)) & for x st x 
    in Z holds (f 
    . x) 
    = ((2 
    * x) 
    +  
    0 ) & (f 
    . x) 
    > ( 
    - 1) & (f 
    . x) 
    < 1 by 
    A1,
    A2,
    VALUED_1:def 5;
    
      then
    
      
    
    A4: ( 
    arccos  
    * f) 
    is_differentiable_on Z by 
    Th15;
    
      for x st x
    in Z holds ((((1 
    / 2) 
    (#) ( 
    arccos  
    * f)) 
    `| Z) 
    . x) 
    = ( 
    - (1 
    / ( 
    sqrt (1 
    - ((2 
    * x) 
    ^2 ))))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A5: x 
    in Z; 
    
        
    
        then ((((1
    / 2) 
    (#) ( 
    arccos  
    * f)) 
    `| Z) 
    . x) 
    = ((1 
    / 2) 
    * ( 
    diff (( 
    arccos  
    * f),x))) by 
    A1,
    A4,
    FDIFF_1: 20
    
        .= ((1
    / 2) 
    * ((( 
    arccos  
    * f) 
    `| Z) 
    . x)) by 
    A4,
    A5,
    FDIFF_1:def 7
    
        .= ((1
    / 2) 
    * ( 
    - (2 
    / ( 
    sqrt (1 
    - (((2 
    * x) 
    +  
    0 ) 
    ^2 )))))) by 
    A3,
    A5,
    Th15
    
        .= (
    - ((1 
    / 2) 
    * (2 
    / ( 
    sqrt (1 
    - ((2 
    * x) 
    ^2 )))))) 
    
        .= (
    - (((1 
    / 2) 
    * 2) 
    / ( 
    sqrt (1 
    - ((2 
    * x) 
    ^2 ))))) by 
    XCMPLX_1: 74
    
        .= (
    - (1 
    / ( 
    sqrt (1 
    - ((2 
    * x) 
    ^2 ))))); 
    
        hence thesis;
    
      end;
    
      hence thesis by
    A1,
    A4,
    FDIFF_1: 20;
    
    end;
    
    theorem :: 
    
    FDIFF_7:22
    
    
    
    
    
    Th22: Z 
    c= ( 
    dom (( 
    #R (1 
    / 2)) 
    * f)) & f 
    = (f1 
    - f2) & f2 
    = ( 
    #Z 2) & (for x st x 
    in Z holds (f1 
    . x) 
    = 1 & (f 
    . x) 
    >  
    0 ) implies (( 
    #R (1 
    / 2)) 
    * f) 
    is_differentiable_on Z & for x st x 
    in Z holds (((( 
    #R (1 
    / 2)) 
    * f) 
    `| Z) 
    . x) 
    = ( 
    - (x 
    * ((1 
    - (x 
    #Z 2)) 
    #R ( 
    - (1 
    / 2))))) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom (( 
    #R (1 
    / 2)) 
    * f)) and 
    
      
    
    A2: f 
    = (f1 
    - f2) and 
    
      
    
    A3: f2 
    = ( 
    #Z 2) and 
    
      
    
    A4: for x st x 
    in Z holds (f1 
    . x) 
    = 1 & (f 
    . x) 
    >  
    0 ; 
    
      for y be
    object st y 
    in Z holds y 
    in ( 
    dom f) by 
    A1,
    FUNCT_1: 11;
    
      then
    
      
    
    A5: Z 
    c= ( 
    dom (f1 
    + (( 
    - 1) 
    (#) f2))) by 
    A2,
    TARSKI:def 3;
    
      
    
      
    
    A6: for x st x 
    in Z holds (f1 
    . x) 
    = (1 
    + ( 
    0  
    * x)) by 
    A4;
    
      then
    
      
    
    A7: f 
    is_differentiable_on Z by 
    A2,
    A3,
    A5,
    FDIFF_4: 12;
    
      
    
      
    
    A8: for x st x 
    in Z holds (( 
    #R (1 
    / 2)) 
    * f) 
    is_differentiable_in x 
    
      proof
    
        let x;
    
        assume x
    in Z; 
    
        then f
    is_differentiable_in x & (f 
    . x) 
    >  
    0 by 
    A4,
    A7,
    FDIFF_1: 9;
    
        hence thesis by
    TAYLOR_1: 22;
    
      end;
    
      then
    
      
    
    A9: (( 
    #R (1 
    / 2)) 
    * f) 
    is_differentiable_on Z by 
    A1,
    FDIFF_1: 9;
    
      for x st x
    in Z holds (((( 
    #R (1 
    / 2)) 
    * f) 
    `| Z) 
    . x) 
    = ( 
    - (x 
    * ((1 
    - (x 
    #Z 2)) 
    #R ( 
    - (1 
    / 2))))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A10: x 
    in Z; 
    
        then
    
        
    
    A11: f 
    is_differentiable_in x & (f 
    . x) 
    >  
    0 by 
    A4,
    A7,
    FDIFF_1: 9;
    
        x
    in ( 
    dom (f1 
    - f2)) by 
    A1,
    A2,
    A10,
    FUNCT_1: 11;
    
        
    
        then
    
        
    
    A12: ((f1 
    - f2) 
    . x) 
    = ((f1 
    . x) 
    - (f2 
    . x)) by 
    VALUED_1: 13
    
        .= (1
    - (f2 
    . x)) by 
    A4,
    A10
    
        .= (1
    - (x 
    #Z 2)) by 
    A3,
    TAYLOR_1:def 1;
    
        ((((
    #R (1 
    / 2)) 
    * f) 
    `| Z) 
    . x) 
    = ( 
    diff ((( 
    #R (1 
    / 2)) 
    * f),x)) by 
    A9,
    A10,
    FDIFF_1:def 7
    
        .= (((1
    / 2) 
    * ((f 
    . x) 
    #R ((1 
    / 2) 
    - 1))) 
    * ( 
    diff (f,x))) by 
    A11,
    TAYLOR_1: 22
    
        .= (((1
    / 2) 
    * ((f 
    . x) 
    #R ((1 
    / 2) 
    - 1))) 
    * ((f 
    `| Z) 
    . x)) by 
    A7,
    A10,
    FDIFF_1:def 7
    
        .= (((1
    / 2) 
    * ((f 
    . x) 
    #R ((1 
    / 2) 
    - 1))) 
    * ( 
    0  
    + ((2 
    * ( 
    - 1)) 
    * x))) by 
    A2,
    A3,
    A5,
    A6,
    A10,
    FDIFF_4: 12
    
        .= (
    - (x 
    * ((1 
    - (x 
    #Z 2)) 
    #R ( 
    - (1 
    / 2))))) by 
    A2,
    A12;
    
        hence thesis;
    
      end;
    
      hence thesis by
    A1,
    A8,
    FDIFF_1: 9;
    
    end;
    
    theorem :: 
    
    FDIFF_7:23
    
    Z
    c= ( 
    dom ((( 
    id Z) 
    (#)  
    arcsin ) 
    + (( 
    #R (1 
    / 2)) 
    * f))) & Z 
    c=  
    ].(
    - 1), 1.[ & f 
    = (f1 
    - f2) & f2 
    = ( 
    #Z 2) & (for x st x 
    in Z holds (f1 
    . x) 
    = 1 & (f 
    . x) 
    >  
    0 & x 
    <>  
    0 ) implies ((( 
    id Z) 
    (#)  
    arcsin ) 
    + (( 
    #R (1 
    / 2)) 
    * f)) 
    is_differentiable_on Z & for x st x 
    in Z holds ((((( 
    id Z) 
    (#)  
    arcsin ) 
    + (( 
    #R (1 
    / 2)) 
    * f)) 
    `| Z) 
    . x) 
    = ( 
    arcsin  
    . x) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom ((( 
    id Z) 
    (#)  
    arcsin ) 
    + (( 
    #R (1 
    / 2)) 
    * f))) and 
    
      
    
    A2: Z 
    c=  
    ].(
    - 1), 1.[ and 
    
      
    
    A3: f 
    = (f1 
    - f2) and 
    
      
    
    A4: f2 
    = ( 
    #Z 2) and 
    
      
    
    A5: for x st x 
    in Z holds (f1 
    . x) 
    = 1 & (f 
    . x) 
    >  
    0 & x 
    <>  
    0 ; 
    
      
    
      
    
    A6: Z 
    c= (( 
    dom (( 
    id Z) 
    (#)  
    arcsin )) 
    /\ ( 
    dom (( 
    #R (1 
    / 2)) 
    * f))) by 
    A1,
    VALUED_1:def 1;
    
      then
    
      
    
    A7: Z 
    c= ( 
    dom (( 
    #R (1 
    / 2)) 
    * f)) by 
    XBOOLE_1: 18;
    
      
    
      
    
    A8: Z 
    c= ( 
    dom (( 
    id Z) 
    (#)  
    arcsin )) by 
    A6,
    XBOOLE_1: 18;
    
      then
    
      
    
    A9: (( 
    id Z) 
    (#)  
    arcsin ) 
    is_differentiable_on Z by 
    A2,
    Th16;
    
      
    
      
    
    A10: for x st x 
    in Z holds (f1 
    . x) 
    = 1 & (f 
    . x) 
    >  
    0 by 
    A5;
    
      then
    
      
    
    A11: (( 
    #R (1 
    / 2)) 
    * f) 
    is_differentiable_on Z by 
    A3,
    A4,
    A7,
    Th22;
    
      
    
      
    
    A12: for x st x 
    in Z holds (x 
    * ((1 
    - (x 
    #Z 2)) 
    #R ( 
    - (1 
    / 2)))) 
    = (x 
    / ( 
    sqrt (1 
    - (x 
    ^2 )))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A13: x 
    in Z; 
    
        then x
    in ( 
    dom (f1 
    - f2)) by 
    A3,
    A7,
    FUNCT_1: 11;
    
        
    
        then
    
        
    
    A14: ((f1 
    - f2) 
    . x) 
    = ((f1 
    . x) 
    - (f2 
    . x)) by 
    VALUED_1: 13
    
        .= (1
    - (f2 
    . x)) by 
    A5,
    A13
    
        .= (1
    - (x 
    #Z 2)) by 
    A4,
    TAYLOR_1:def 1;
    
        (f
    . x) 
    >  
    0 by 
    A5,
    A13;
    
        then
    
        
    
    A15: (1 
    - (x 
    ^2 )) 
    >  
    0 by 
    A3,
    A14,
    Th1;
    
        ((1
    - (x 
    #Z 2)) 
    #R ( 
    - (1 
    / 2))) 
    = ((1 
    - (x 
    ^2 )) 
    #R ( 
    - (1 
    / 2))) by 
    Th1
    
        .= (1
    / ( 
    sqrt (1 
    - (x 
    ^2 )))) by 
    A15,
    Th3;
    
        hence thesis by
    XCMPLX_1: 99;
    
      end;
    
      for x st x
    in Z holds ((((( 
    id Z) 
    (#)  
    arcsin ) 
    + (( 
    #R (1 
    / 2)) 
    * f)) 
    `| Z) 
    . x) 
    = ( 
    arcsin  
    . x) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A16: x 
    in Z; 
    
        
    
        hence (((((
    id Z) 
    (#)  
    arcsin ) 
    + (( 
    #R (1 
    / 2)) 
    * f)) 
    `| Z) 
    . x) 
    = (( 
    diff ((( 
    id Z) 
    (#)  
    arcsin ),x)) 
    + ( 
    diff ((( 
    #R (1 
    / 2)) 
    * f),x))) by 
    A1,
    A9,
    A11,
    FDIFF_1: 18
    
        .= (((((
    id Z) 
    (#)  
    arcsin ) 
    `| Z) 
    . x) 
    + ( 
    diff ((( 
    #R (1 
    / 2)) 
    * f),x))) by 
    A9,
    A16,
    FDIFF_1:def 7
    
        .= (((((
    id Z) 
    (#)  
    arcsin ) 
    `| Z) 
    . x) 
    + (((( 
    #R (1 
    / 2)) 
    * f) 
    `| Z) 
    . x)) by 
    A11,
    A16,
    FDIFF_1:def 7
    
        .= (((
    arcsin  
    . x) 
    + (x 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) 
    + (((( 
    #R (1 
    / 2)) 
    * f) 
    `| Z) 
    . x)) by 
    A2,
    A8,
    A16,
    Th16
    
        .= (((
    arcsin  
    . x) 
    + (x 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) 
    + ( 
    - (x 
    * ((1 
    - (x 
    #Z 2)) 
    #R ( 
    - (1 
    / 2)))))) by 
    A3,
    A4,
    A10,
    A7,
    A16,
    Th22
    
        .= (((
    arcsin  
    . x) 
    + (x 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) 
    - (x 
    * ((1 
    - (x 
    #Z 2)) 
    #R ( 
    - (1 
    / 2))))) 
    
        .= (((
    arcsin  
    . x) 
    + (x 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) 
    - (x 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) by 
    A12,
    A16
    
        .= (
    arcsin  
    . x); 
    
      end;
    
      hence thesis by
    A1,
    A9,
    A11,
    FDIFF_1: 18;
    
    end;
    
    theorem :: 
    
    FDIFF_7:24
    
    Z
    c= ( 
    dom ((( 
    id Z) 
    (#)  
    arccos ) 
    - (( 
    #R (1 
    / 2)) 
    * f))) & Z 
    c=  
    ].(
    - 1), 1.[ & f 
    = (f1 
    - f2) & f2 
    = ( 
    #Z 2) & (for x st x 
    in Z holds (f1 
    . x) 
    = 1 & (f 
    . x) 
    >  
    0 & x 
    <>  
    0 ) implies ((( 
    id Z) 
    (#)  
    arccos ) 
    - (( 
    #R (1 
    / 2)) 
    * f)) 
    is_differentiable_on Z & for x st x 
    in Z holds ((((( 
    id Z) 
    (#)  
    arccos ) 
    - (( 
    #R (1 
    / 2)) 
    * f)) 
    `| Z) 
    . x) 
    = ( 
    arccos  
    . x) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom ((( 
    id Z) 
    (#)  
    arccos ) 
    - (( 
    #R (1 
    / 2)) 
    * f))) and 
    
      
    
    A2: Z 
    c=  
    ].(
    - 1), 1.[ and 
    
      
    
    A3: f 
    = (f1 
    - f2) and 
    
      
    
    A4: f2 
    = ( 
    #Z 2) and 
    
      
    
    A5: for x st x 
    in Z holds (f1 
    . x) 
    = 1 & (f 
    . x) 
    >  
    0 & x 
    <>  
    0 ; 
    
      
    
      
    
    A6: Z 
    c= (( 
    dom (( 
    id Z) 
    (#)  
    arccos )) 
    /\ ( 
    dom (( 
    #R (1 
    / 2)) 
    * f))) by 
    A1,
    VALUED_1: 12;
    
      then
    
      
    
    A7: Z 
    c= ( 
    dom (( 
    #R (1 
    / 2)) 
    * f)) by 
    XBOOLE_1: 18;
    
      
    
      
    
    A8: Z 
    c= ( 
    dom (( 
    id Z) 
    (#)  
    arccos )) by 
    A6,
    XBOOLE_1: 18;
    
      then
    
      
    
    A9: (( 
    id Z) 
    (#)  
    arccos ) 
    is_differentiable_on Z by 
    A2,
    Th17;
    
      
    
      
    
    A10: for x st x 
    in Z holds (f1 
    . x) 
    = 1 & (f 
    . x) 
    >  
    0 by 
    A5;
    
      then
    
      
    
    A11: (( 
    #R (1 
    / 2)) 
    * f) 
    is_differentiable_on Z by 
    A3,
    A4,
    A7,
    Th22;
    
      
    
      
    
    A12: for x st x 
    in Z holds (x 
    * ((1 
    - (x 
    #Z 2)) 
    #R ( 
    - (1 
    / 2)))) 
    = (x 
    / ( 
    sqrt (1 
    - (x 
    ^2 )))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A13: x 
    in Z; 
    
        then x
    in ( 
    dom (f1 
    - f2)) by 
    A3,
    A7,
    FUNCT_1: 11;
    
        
    
        then
    
        
    
    A14: ((f1 
    - f2) 
    . x) 
    = ((f1 
    . x) 
    - (f2 
    . x)) by 
    VALUED_1: 13
    
        .= (1
    - (f2 
    . x)) by 
    A5,
    A13
    
        .= (1
    - (x 
    #Z 2)) by 
    A4,
    TAYLOR_1:def 1;
    
        (f
    . x) 
    >  
    0 by 
    A5,
    A13;
    
        then
    
        
    
    A15: (1 
    - (x 
    ^2 )) 
    >  
    0 by 
    A3,
    A14,
    Th1;
    
        ((1
    - (x 
    #Z 2)) 
    #R ( 
    - (1 
    / 2))) 
    = ((1 
    - (x 
    ^2 )) 
    #R ( 
    - (1 
    / 2))) by 
    Th1
    
        .= (1
    / ( 
    sqrt (1 
    - (x 
    ^2 )))) by 
    A15,
    Th3;
    
        hence thesis by
    XCMPLX_1: 99;
    
      end;
    
      for x st x
    in Z holds ((((( 
    id Z) 
    (#)  
    arccos ) 
    - (( 
    #R (1 
    / 2)) 
    * f)) 
    `| Z) 
    . x) 
    = ( 
    arccos  
    . x) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A16: x 
    in Z; 
    
        
    
        hence (((((
    id Z) 
    (#)  
    arccos ) 
    - (( 
    #R (1 
    / 2)) 
    * f)) 
    `| Z) 
    . x) 
    = (( 
    diff ((( 
    id Z) 
    (#)  
    arccos ),x)) 
    - ( 
    diff ((( 
    #R (1 
    / 2)) 
    * f),x))) by 
    A1,
    A9,
    A11,
    FDIFF_1: 19
    
        .= (((((
    id Z) 
    (#)  
    arccos ) 
    `| Z) 
    . x) 
    - ( 
    diff ((( 
    #R (1 
    / 2)) 
    * f),x))) by 
    A9,
    A16,
    FDIFF_1:def 7
    
        .= (((((
    id Z) 
    (#)  
    arccos ) 
    `| Z) 
    . x) 
    - (((( 
    #R (1 
    / 2)) 
    * f) 
    `| Z) 
    . x)) by 
    A11,
    A16,
    FDIFF_1:def 7
    
        .= (((
    arccos  
    . x) 
    - (x 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) 
    - (((( 
    #R (1 
    / 2)) 
    * f) 
    `| Z) 
    . x)) by 
    A2,
    A8,
    A16,
    Th17
    
        .= (((
    arccos  
    . x) 
    - (x 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) 
    - ( 
    - (x 
    * ((1 
    - (x 
    #Z 2)) 
    #R ( 
    - (1 
    / 2)))))) by 
    A3,
    A4,
    A10,
    A7,
    A16,
    Th22
    
        .= (((
    arccos  
    . x) 
    - (x 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) 
    + (x 
    * ((1 
    - (x 
    #Z 2)) 
    #R ( 
    - (1 
    / 2))))) 
    
        .= (((
    arccos  
    . x) 
    - (x 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) 
    + (x 
    / ( 
    sqrt (1 
    - (x 
    ^2 ))))) by 
    A12,
    A16
    
        .= (
    arccos  
    . x); 
    
      end;
    
      hence thesis by
    A1,
    A9,
    A11,
    FDIFF_1: 19;
    
    end;
    
    theorem :: 
    
    FDIFF_7:25
    
    
    
    
    
    Th25: Z 
    c= ( 
    dom (( 
    id Z) 
    (#) ( 
    arcsin  
    * f))) & (for x st x 
    in Z holds (f 
    . x) 
    = (x 
    / a) & (f 
    . x) 
    > ( 
    - 1) & (f 
    . x) 
    < 1) implies (( 
    id Z) 
    (#) ( 
    arcsin  
    * f)) 
    is_differentiable_on Z & for x st x 
    in Z holds (((( 
    id Z) 
    (#) ( 
    arcsin  
    * f)) 
    `| Z) 
    . x) 
    = (( 
    arcsin  
    . (x 
    / a)) 
    + (x 
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 )))))) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom (( 
    id Z) 
    (#) ( 
    arcsin  
    * f))) and 
    
      
    
    A2: for x st x 
    in Z holds (f 
    . x) 
    = (x 
    / a) & (f 
    . x) 
    > ( 
    - 1) & (f 
    . x) 
    < 1; 
    
      
    
      
    
    A3: Z 
    c= (( 
    dom ( 
    id Z)) 
    /\ ( 
    dom ( 
    arcsin  
    * f))) by 
    A1,
    VALUED_1:def 4;
    
      then
    
      
    
    A4: Z 
    c= ( 
    dom ( 
    id Z)) by 
    XBOOLE_1: 18;
    
      
    
      
    
    A5: Z 
    c= ( 
    dom ( 
    arcsin  
    * f)) by 
    A3,
    XBOOLE_1: 18;
    
      for x st x
    in Z holds (f 
    . x) 
    = (((1 
    / a) 
    * x) 
    +  
    0 ) 
    
      proof
    
        let x;
    
        assume x
    in Z; 
    
        then (f
    . x) 
    = (x 
    / a) by 
    A2;
    
        hence thesis by
    XCMPLX_1: 99;
    
      end;
    
      then
    
      
    
    A6: for x st x 
    in Z holds (f 
    . x) 
    = (((1 
    / a) 
    * x) 
    +  
    0 ) & (f 
    . x) 
    > ( 
    - 1) & (f 
    . x) 
    < 1 by 
    A2;
    
      then
    
      
    
    A7: ( 
    arcsin  
    * f) 
    is_differentiable_on Z by 
    A5,
    Th14;
    
      
    
      
    
    A8: for x st x 
    in Z holds (( 
    id Z) 
    . x) 
    = ((1 
    * x) 
    +  
    0 ) by 
    FUNCT_1: 18;
    
      then
    
      
    
    A9: ( 
    id Z) 
    is_differentiable_on Z by 
    A4,
    FDIFF_1: 23;
    
      
    
      
    
    A10: for x st x 
    in Z holds ((( 
    arcsin  
    * f) 
    `| Z) 
    . x) 
    = (1 
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 ))))) 
    
      proof
    
        let x;
    
        assume x
    in Z; 
    
        
    
        then (((
    arcsin  
    * f) 
    `| Z) 
    . x) 
    = ((1 
    / a) 
    / ( 
    sqrt (1 
    - ((((1 
    / a) 
    * x) 
    +  
    0 ) 
    ^2 )))) by 
    A6,
    A5,
    Th14
    
        .= ((1
    / a) 
    / ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 )))) by 
    XCMPLX_1: 99
    
        .= (1
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 ))))) by 
    XCMPLX_1: 78;
    
        hence thesis;
    
      end;
    
      for x st x
    in Z holds (((( 
    id Z) 
    (#) ( 
    arcsin  
    * f)) 
    `| Z) 
    . x) 
    = (( 
    arcsin  
    . (x 
    / a)) 
    + (x 
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 )))))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A11: x 
    in Z; 
    
        
    
        then
    
        
    
    A12: (( 
    arcsin  
    * f) 
    . x) 
    = ( 
    arcsin  
    . (f 
    . x)) by 
    A5,
    FUNCT_1: 12
    
        .= (
    arcsin  
    . (x 
    / a)) by 
    A2,
    A11;
    
        ((((
    id Z) 
    (#) ( 
    arcsin  
    * f)) 
    `| Z) 
    . x) 
    = (((( 
    arcsin  
    * f) 
    . x) 
    * ( 
    diff (( 
    id Z),x))) 
    + ((( 
    id Z) 
    . x) 
    * ( 
    diff (( 
    arcsin  
    * f),x)))) by 
    A1,
    A9,
    A7,
    A11,
    FDIFF_1: 21
    
        .= ((((
    arcsin  
    * f) 
    . x) 
    * ((( 
    id Z) 
    `| Z) 
    . x)) 
    + ((( 
    id Z) 
    . x) 
    * ( 
    diff (( 
    arcsin  
    * f),x)))) by 
    A9,
    A11,
    FDIFF_1:def 7
    
        .= ((((
    arcsin  
    * f) 
    . x) 
    * 1) 
    + ((( 
    id Z) 
    . x) 
    * ( 
    diff (( 
    arcsin  
    * f),x)))) by 
    A4,
    A8,
    A11,
    FDIFF_1: 23
    
        .= ((((
    arcsin  
    * f) 
    . x) 
    * 1) 
    + ((( 
    id Z) 
    . x) 
    * ((( 
    arcsin  
    * f) 
    `| Z) 
    . x))) by 
    A7,
    A11,
    FDIFF_1:def 7
    
        .= (((
    arcsin  
    * f) 
    . x) 
    + (x 
    * ((( 
    arcsin  
    * f) 
    `| Z) 
    . x))) by 
    A11,
    FUNCT_1: 18
    
        .= ((
    arcsin  
    . (x 
    / a)) 
    + (x 
    * (1 
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 ))))))) by 
    A10,
    A11,
    A12
    
        .= ((
    arcsin  
    . (x 
    / a)) 
    + (x 
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 )))))) by 
    XCMPLX_1: 99;
    
        hence thesis;
    
      end;
    
      hence thesis by
    A1,
    A9,
    A7,
    FDIFF_1: 21;
    
    end;
    
    theorem :: 
    
    FDIFF_7:26
    
    
    
    
    
    Th26: Z 
    c= ( 
    dom (( 
    id Z) 
    (#) ( 
    arccos  
    * f))) & (for x st x 
    in Z holds (f 
    . x) 
    = (x 
    / a) & (f 
    . x) 
    > ( 
    - 1) & (f 
    . x) 
    < 1) implies (( 
    id Z) 
    (#) ( 
    arccos  
    * f)) 
    is_differentiable_on Z & for x st x 
    in Z holds (((( 
    id Z) 
    (#) ( 
    arccos  
    * f)) 
    `| Z) 
    . x) 
    = (( 
    arccos  
    . (x 
    / a)) 
    - (x 
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 )))))) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom (( 
    id Z) 
    (#) ( 
    arccos  
    * f))) and 
    
      
    
    A2: for x st x 
    in Z holds (f 
    . x) 
    = (x 
    / a) & (f 
    . x) 
    > ( 
    - 1) & (f 
    . x) 
    < 1; 
    
      
    
      
    
    A3: Z 
    c= (( 
    dom ( 
    id Z)) 
    /\ ( 
    dom ( 
    arccos  
    * f))) by 
    A1,
    VALUED_1:def 4;
    
      then
    
      
    
    A4: Z 
    c= ( 
    dom ( 
    id Z)) by 
    XBOOLE_1: 18;
    
      
    
      
    
    A5: Z 
    c= ( 
    dom ( 
    arccos  
    * f)) by 
    A3,
    XBOOLE_1: 18;
    
      for x st x
    in Z holds (f 
    . x) 
    = (((1 
    / a) 
    * x) 
    +  
    0 ) 
    
      proof
    
        let x;
    
        assume x
    in Z; 
    
        then (f
    . x) 
    = (x 
    / a) by 
    A2;
    
        hence thesis by
    XCMPLX_1: 99;
    
      end;
    
      then
    
      
    
    A6: for x st x 
    in Z holds (f 
    . x) 
    = (((1 
    / a) 
    * x) 
    +  
    0 ) & (f 
    . x) 
    > ( 
    - 1) & (f 
    . x) 
    < 1 by 
    A2;
    
      then
    
      
    
    A7: ( 
    arccos  
    * f) 
    is_differentiable_on Z by 
    A5,
    Th15;
    
      
    
      
    
    A8: for x st x 
    in Z holds (( 
    id Z) 
    . x) 
    = ((1 
    * x) 
    +  
    0 ) by 
    FUNCT_1: 18;
    
      then
    
      
    
    A9: ( 
    id Z) 
    is_differentiable_on Z by 
    A4,
    FDIFF_1: 23;
    
      
    
      
    
    A10: for x st x 
    in Z holds ((( 
    arccos  
    * f) 
    `| Z) 
    . x) 
    = ( 
    - (1 
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 )))))) 
    
      proof
    
        let x;
    
        assume x
    in Z; 
    
        
    
        then (((
    arccos  
    * f) 
    `| Z) 
    . x) 
    = ( 
    - ((1 
    / a) 
    / ( 
    sqrt (1 
    - ((((1 
    / a) 
    * x) 
    +  
    0 ) 
    ^2 ))))) by 
    A6,
    A5,
    Th15
    
        .= (
    - ((1 
    / a) 
    / ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 ))))) by 
    XCMPLX_1: 99
    
        .= (
    - (1 
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 )))))) by 
    XCMPLX_1: 78;
    
        hence thesis;
    
      end;
    
      for x st x
    in Z holds (((( 
    id Z) 
    (#) ( 
    arccos  
    * f)) 
    `| Z) 
    . x) 
    = (( 
    arccos  
    . (x 
    / a)) 
    - (x 
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 )))))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A11: x 
    in Z; 
    
        
    
        then
    
        
    
    A12: (( 
    arccos  
    * f) 
    . x) 
    = ( 
    arccos  
    . (f 
    . x)) by 
    A5,
    FUNCT_1: 12
    
        .= (
    arccos  
    . (x 
    / a)) by 
    A2,
    A11;
    
        ((((
    id Z) 
    (#) ( 
    arccos  
    * f)) 
    `| Z) 
    . x) 
    = (((( 
    arccos  
    * f) 
    . x) 
    * ( 
    diff (( 
    id Z),x))) 
    + ((( 
    id Z) 
    . x) 
    * ( 
    diff (( 
    arccos  
    * f),x)))) by 
    A1,
    A9,
    A7,
    A11,
    FDIFF_1: 21
    
        .= ((((
    arccos  
    * f) 
    . x) 
    * ((( 
    id Z) 
    `| Z) 
    . x)) 
    + ((( 
    id Z) 
    . x) 
    * ( 
    diff (( 
    arccos  
    * f),x)))) by 
    A9,
    A11,
    FDIFF_1:def 7
    
        .= ((((
    arccos  
    * f) 
    . x) 
    * 1) 
    + ((( 
    id Z) 
    . x) 
    * ( 
    diff (( 
    arccos  
    * f),x)))) by 
    A4,
    A8,
    A11,
    FDIFF_1: 23
    
        .= ((((
    arccos  
    * f) 
    . x) 
    * 1) 
    + ((( 
    id Z) 
    . x) 
    * ((( 
    arccos  
    * f) 
    `| Z) 
    . x))) by 
    A7,
    A11,
    FDIFF_1:def 7
    
        .= (((
    arccos  
    * f) 
    . x) 
    + (x 
    * ((( 
    arccos  
    * f) 
    `| Z) 
    . x))) by 
    A11,
    FUNCT_1: 18
    
        .= ((
    arccos  
    . (x 
    / a)) 
    + (x 
    * ( 
    - (1 
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 )))))))) by 
    A10,
    A11,
    A12
    
        .= ((
    arccos  
    . (x 
    / a)) 
    - (x 
    * (1 
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 ))))))) 
    
        .= ((
    arccos  
    . (x 
    / a)) 
    - (x 
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 )))))) by 
    XCMPLX_1: 99;
    
        hence thesis;
    
      end;
    
      hence thesis by
    A1,
    A9,
    A7,
    FDIFF_1: 21;
    
    end;
    
    theorem :: 
    
    FDIFF_7:27
    
    
    
    
    
    Th27: Z 
    c= ( 
    dom (( 
    #R (1 
    / 2)) 
    * f)) & f 
    = (f1 
    - f2) & f2 
    = ( 
    #Z 2) & (for x st x 
    in Z holds (f1 
    . x) 
    = (a 
    ^2 ) & (f 
    . x) 
    >  
    0 ) implies (( 
    #R (1 
    / 2)) 
    * f) 
    is_differentiable_on Z & for x st x 
    in Z holds (((( 
    #R (1 
    / 2)) 
    * f) 
    `| Z) 
    . x) 
    = ( 
    - (x 
    * (((a 
    ^2 ) 
    - (x 
    #Z 2)) 
    #R ( 
    - (1 
    / 2))))) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom (( 
    #R (1 
    / 2)) 
    * f)) and 
    
      
    
    A2: f 
    = (f1 
    - f2) and 
    
      
    
    A3: f2 
    = ( 
    #Z 2) and 
    
      
    
    A4: for x st x 
    in Z holds (f1 
    . x) 
    = (a 
    ^2 ) & (f 
    . x) 
    >  
    0 ; 
    
      for y be
    object st y 
    in Z holds y 
    in ( 
    dom f) by 
    A1,
    FUNCT_1: 11;
    
      then
    
      
    
    A5: Z 
    c= ( 
    dom (f1 
    + (( 
    - 1) 
    (#) f2))) by 
    A2,
    TARSKI:def 3;
    
      
    
      
    
    A6: for x st x 
    in Z holds (f1 
    . x) 
    = ((a 
    ^2 ) 
    + ( 
    0  
    * x)) by 
    A4;
    
      then
    
      
    
    A7: f 
    is_differentiable_on Z by 
    A2,
    A3,
    A5,
    FDIFF_4: 12;
    
      
    
      
    
    A8: for x st x 
    in Z holds (( 
    #R (1 
    / 2)) 
    * f) 
    is_differentiable_in x 
    
      proof
    
        let x;
    
        assume x
    in Z; 
    
        then f
    is_differentiable_in x & (f 
    . x) 
    >  
    0 by 
    A4,
    A7,
    FDIFF_1: 9;
    
        hence thesis by
    TAYLOR_1: 22;
    
      end;
    
      then
    
      
    
    A9: (( 
    #R (1 
    / 2)) 
    * f) 
    is_differentiable_on Z by 
    A1,
    FDIFF_1: 9;
    
      for x st x
    in Z holds (((( 
    #R (1 
    / 2)) 
    * f) 
    `| Z) 
    . x) 
    = ( 
    - (x 
    * (((a 
    ^2 ) 
    - (x 
    #Z 2)) 
    #R ( 
    - (1 
    / 2))))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A10: x 
    in Z; 
    
        then
    
        
    
    A11: f 
    is_differentiable_in x & (f 
    . x) 
    >  
    0 by 
    A4,
    A7,
    FDIFF_1: 9;
    
        x
    in ( 
    dom (f1 
    - f2)) by 
    A1,
    A2,
    A10,
    FUNCT_1: 11;
    
        
    
        then
    
        
    
    A12: ((f1 
    - f2) 
    . x) 
    = ((f1 
    . x) 
    - (f2 
    . x)) by 
    VALUED_1: 13
    
        .= ((a
    ^2 ) 
    - (f2 
    . x)) by 
    A4,
    A10
    
        .= ((a
    ^2 ) 
    - (x 
    #Z 2)) by 
    A3,
    TAYLOR_1:def 1;
    
        ((((
    #R (1 
    / 2)) 
    * f) 
    `| Z) 
    . x) 
    = ( 
    diff ((( 
    #R (1 
    / 2)) 
    * f),x)) by 
    A9,
    A10,
    FDIFF_1:def 7
    
        .= (((1
    / 2) 
    * ((f 
    . x) 
    #R ((1 
    / 2) 
    - 1))) 
    * ( 
    diff (f,x))) by 
    A11,
    TAYLOR_1: 22
    
        .= (((1
    / 2) 
    * ((f 
    . x) 
    #R ((1 
    / 2) 
    - 1))) 
    * ((f 
    `| Z) 
    . x)) by 
    A7,
    A10,
    FDIFF_1:def 7
    
        .= (((1
    / 2) 
    * ((f 
    . x) 
    #R ((1 
    / 2) 
    - 1))) 
    * ( 
    0  
    + ((2 
    * ( 
    - 1)) 
    * x))) by 
    A2,
    A3,
    A5,
    A6,
    A10,
    FDIFF_4: 12
    
        .= (
    - (x 
    * (((a 
    ^2 ) 
    - (x 
    #Z 2)) 
    #R ( 
    - (1 
    / 2))))) by 
    A2,
    A12;
    
        hence thesis;
    
      end;
    
      hence thesis by
    A1,
    A8,
    FDIFF_1: 9;
    
    end;
    
    theorem :: 
    
    FDIFF_7:28
    
    Z
    c= ( 
    dom ((( 
    id Z) 
    (#) ( 
    arcsin  
    * f3)) 
    + (( 
    #R (1 
    / 2)) 
    * f))) & f 
    = (f1 
    - f2) & f2 
    = ( 
    #Z 2) & (for x st x 
    in Z holds (f1 
    . x) 
    = (a 
    ^2 ) & (f 
    . x) 
    >  
    0 & (f3 
    . x) 
    = (x 
    / a) & (f3 
    . x) 
    > ( 
    - 1) & (f3 
    . x) 
    < 1 & x 
    <>  
    0 & a 
    >  
    0 ) implies ((( 
    id Z) 
    (#) ( 
    arcsin  
    * f3)) 
    + (( 
    #R (1 
    / 2)) 
    * f)) 
    is_differentiable_on Z & for x st x 
    in Z holds ((((( 
    id Z) 
    (#) ( 
    arcsin  
    * f3)) 
    + (( 
    #R (1 
    / 2)) 
    * f)) 
    `| Z) 
    . x) 
    = ( 
    arcsin  
    . (x 
    / a)) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom ((( 
    id Z) 
    (#) ( 
    arcsin  
    * f3)) 
    + (( 
    #R (1 
    / 2)) 
    * f))) and 
    
      
    
    A2: f 
    = (f1 
    - f2) & f2 
    = ( 
    #Z 2) and 
    
      
    
    A3: for x st x 
    in Z holds (f1 
    . x) 
    = (a 
    ^2 ) & (f 
    . x) 
    >  
    0 & (f3 
    . x) 
    = (x 
    / a) & (f3 
    . x) 
    > ( 
    - 1) & (f3 
    . x) 
    < 1 & x 
    <>  
    0 & a 
    >  
    0 ; 
    
      
    
      
    
    A4: Z 
    c= (( 
    dom (( 
    id Z) 
    (#) ( 
    arcsin  
    * f3))) 
    /\ ( 
    dom (( 
    #R (1 
    / 2)) 
    * f))) by 
    A1,
    VALUED_1:def 1;
    
      then
    
      
    
    A5: Z 
    c= ( 
    dom (( 
    #R (1 
    / 2)) 
    * f)) by 
    XBOOLE_1: 18;
    
      
    
      
    
    A6: for x st x 
    in Z holds (f1 
    . x) 
    = (a 
    ^2 ) & (f 
    . x) 
    >  
    0 by 
    A3;
    
      then
    
      
    
    A7: (( 
    #R (1 
    / 2)) 
    * f) 
    is_differentiable_on Z by 
    A2,
    A5,
    Th27;
    
      
    
      
    
    A8: for x st x 
    in Z holds (f3 
    . x) 
    = (x 
    / a) & (f3 
    . x) 
    > ( 
    - 1) & (f3 
    . x) 
    < 1 by 
    A3;
    
      
    
      
    
    A9: Z 
    c= ( 
    dom (( 
    id Z) 
    (#) ( 
    arcsin  
    * f3))) by 
    A4,
    XBOOLE_1: 18;
    
      then
    
      
    
    A10: (( 
    id Z) 
    (#) ( 
    arcsin  
    * f3)) 
    is_differentiable_on Z by 
    A8,
    Th25;
    
      
    
      
    
    A11: for x st x 
    in Z holds (((a 
    ^2 ) 
    - (x 
    #Z 2)) 
    #R ( 
    - (1 
    / 2))) 
    = (1 
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 ))))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A12: x 
    in Z; 
    
        then
    
        
    
    A13: (f3 
    . x) 
    = (x 
    / a) by 
    A3;
    
        (f3
    . x) 
    < 1 by 
    A3,
    A12;
    
        then
    
        
    
    A14: (1 
    - (f3 
    . x)) 
    > (1 
    - 1) by 
    XREAL_1: 10;
    
        (f3
    . x) 
    > ( 
    - 1) by 
    A3,
    A12;
    
        then (1
    + (f3 
    . x)) 
    > (1 
    + ( 
    - 1)) by 
    XREAL_1: 6;
    
        then
    
        
    
    A15: ((1 
    + (f3 
    . x)) 
    * (1 
    - (f3 
    . x))) 
    >  
    0 by 
    A14,
    XREAL_1: 129;
    
        
    
        
    
    A16: a 
    >  
    0 by 
    A3,
    A12;
    
        then
    
        
    
    A17: (a 
    ^2 ) 
    >  
    0 by 
    SQUARE_1: 12;
    
        (1
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 ))))) 
    = (1 
    / (( 
    sqrt (a 
    ^2 )) 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 ))))) by 
    A16,
    SQUARE_1: 22
    
        .= (1
    / ( 
    sqrt ((a 
    ^2 ) 
    * (1 
    - ((x 
    / a) 
    ^2 ))))) by 
    A17,
    A13,
    A15,
    SQUARE_1: 29
    
        .= ((((a
    ^2 ) 
    * 1) 
    - ((a 
    * (x 
    / a)) 
    ^2 )) 
    #R ( 
    - (1 
    / 2))) by 
    A17,
    A13,
    A15,
    Th3,
    XREAL_1: 129
    
        .= (((a
    ^2 ) 
    - (((x 
    * a) 
    / a) 
    ^2 )) 
    #R ( 
    - (1 
    / 2))) by 
    XCMPLX_1: 74
    
        .= (((a
    ^2 ) 
    - ((x 
    * (a 
    / a)) 
    ^2 )) 
    #R ( 
    - (1 
    / 2))) by 
    XCMPLX_1: 74
    
        .= (((a
    ^2 ) 
    - ((x 
    * 1) 
    ^2 )) 
    #R ( 
    - (1 
    / 2))) by 
    A16,
    XCMPLX_1: 60
    
        .= (((a
    ^2 ) 
    - (x 
    #Z 2)) 
    #R ( 
    - (1 
    / 2))) by 
    Th1;
    
        hence thesis;
    
      end;
    
      for x st x
    in Z holds ((((( 
    id Z) 
    (#) ( 
    arcsin  
    * f3)) 
    + (( 
    #R (1 
    / 2)) 
    * f)) 
    `| Z) 
    . x) 
    = ( 
    arcsin  
    . (x 
    / a)) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A18: x 
    in Z; 
    
        
    
        then (((((
    id Z) 
    (#) ( 
    arcsin  
    * f3)) 
    + (( 
    #R (1 
    / 2)) 
    * f)) 
    `| Z) 
    . x) 
    = (( 
    diff ((( 
    id Z) 
    (#) ( 
    arcsin  
    * f3)),x)) 
    + ( 
    diff ((( 
    #R (1 
    / 2)) 
    * f),x))) by 
    A1,
    A10,
    A7,
    FDIFF_1: 18
    
        .= (((((
    id Z) 
    (#) ( 
    arcsin  
    * f3)) 
    `| Z) 
    . x) 
    + ( 
    diff ((( 
    #R (1 
    / 2)) 
    * f),x))) by 
    A10,
    A18,
    FDIFF_1:def 7
    
        .= (((((
    id Z) 
    (#) ( 
    arcsin  
    * f3)) 
    `| Z) 
    . x) 
    + (((( 
    #R (1 
    / 2)) 
    * f) 
    `| Z) 
    . x)) by 
    A7,
    A18,
    FDIFF_1:def 7
    
        .= (((
    arcsin  
    . (x 
    / a)) 
    + (x 
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 )))))) 
    + (((( 
    #R (1 
    / 2)) 
    * f) 
    `| Z) 
    . x)) by 
    A9,
    A8,
    A18,
    Th25
    
        .= (((
    arcsin  
    . (x 
    / a)) 
    + (x 
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 )))))) 
    + ( 
    - (x 
    * (((a 
    ^2 ) 
    - (x 
    #Z 2)) 
    #R ( 
    - (1 
    / 2)))))) by 
    A2,
    A5,
    A6,
    A18,
    Th27
    
        .= (((
    arcsin  
    . (x 
    / a)) 
    + (x 
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 )))))) 
    - (x 
    * (((a 
    ^2 ) 
    - (x 
    #Z 2)) 
    #R ( 
    - (1 
    / 2))))) 
    
        .= (((
    arcsin  
    . (x 
    / a)) 
    + (x 
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 )))))) 
    - (x 
    * (1 
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 ))))))) by 
    A11,
    A18
    
        .= (((
    arcsin  
    . (x 
    / a)) 
    + (x 
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 )))))) 
    - (x 
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 )))))) by 
    XCMPLX_1: 99
    
        .= (
    arcsin  
    . (x 
    / a)); 
    
        hence thesis;
    
      end;
    
      hence thesis by
    A1,
    A10,
    A7,
    FDIFF_1: 18;
    
    end;
    
    theorem :: 
    
    FDIFF_7:29
    
    Z
    c= ( 
    dom ((( 
    id Z) 
    (#) ( 
    arccos  
    * f3)) 
    - (( 
    #R (1 
    / 2)) 
    * f))) & f 
    = (f1 
    - f2) & f2 
    = ( 
    #Z 2) & (for x st x 
    in Z holds (f1 
    . x) 
    = (a 
    ^2 ) & (f 
    . x) 
    >  
    0 & (f3 
    . x) 
    = (x 
    / a) & (f3 
    . x) 
    > ( 
    - 1) & (f3 
    . x) 
    < 1 & x 
    <>  
    0 & a 
    >  
    0 ) implies ((( 
    id Z) 
    (#) ( 
    arccos  
    * f3)) 
    - (( 
    #R (1 
    / 2)) 
    * f)) 
    is_differentiable_on Z & for x st x 
    in Z holds ((((( 
    id Z) 
    (#) ( 
    arccos  
    * f3)) 
    - (( 
    #R (1 
    / 2)) 
    * f)) 
    `| Z) 
    . x) 
    = ( 
    arccos  
    . (x 
    / a)) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom ((( 
    id Z) 
    (#) ( 
    arccos  
    * f3)) 
    - (( 
    #R (1 
    / 2)) 
    * f))) and 
    
      
    
    A2: f 
    = (f1 
    - f2) & f2 
    = ( 
    #Z 2) and 
    
      
    
    A3: for x st x 
    in Z holds (f1 
    . x) 
    = (a 
    ^2 ) & (f 
    . x) 
    >  
    0 & (f3 
    . x) 
    = (x 
    / a) & (f3 
    . x) 
    > ( 
    - 1) & (f3 
    . x) 
    < 1 & x 
    <>  
    0 & a 
    >  
    0 ; 
    
      
    
      
    
    A4: Z 
    c= (( 
    dom (( 
    id Z) 
    (#) ( 
    arccos  
    * f3))) 
    /\ ( 
    dom (( 
    #R (1 
    / 2)) 
    * f))) by 
    A1,
    VALUED_1: 12;
    
      then
    
      
    
    A5: Z 
    c= ( 
    dom (( 
    #R (1 
    / 2)) 
    * f)) by 
    XBOOLE_1: 18;
    
      
    
      
    
    A6: for x st x 
    in Z holds (f1 
    . x) 
    = (a 
    ^2 ) & (f 
    . x) 
    >  
    0 by 
    A3;
    
      then
    
      
    
    A7: (( 
    #R (1 
    / 2)) 
    * f) 
    is_differentiable_on Z by 
    A2,
    A5,
    Th27;
    
      
    
      
    
    A8: for x st x 
    in Z holds (f3 
    . x) 
    = (x 
    / a) & (f3 
    . x) 
    > ( 
    - 1) & (f3 
    . x) 
    < 1 by 
    A3;
    
      
    
      
    
    A9: Z 
    c= ( 
    dom (( 
    id Z) 
    (#) ( 
    arccos  
    * f3))) by 
    A4,
    XBOOLE_1: 18;
    
      then
    
      
    
    A10: (( 
    id Z) 
    (#) ( 
    arccos  
    * f3)) 
    is_differentiable_on Z by 
    A8,
    Th26;
    
      
    
      
    
    A11: for x st x 
    in Z holds (((a 
    ^2 ) 
    - (x 
    #Z 2)) 
    #R ( 
    - (1 
    / 2))) 
    = (1 
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 ))))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A12: x 
    in Z; 
    
        then
    
        
    
    A13: (f3 
    . x) 
    = (x 
    / a) by 
    A3;
    
        (f3
    . x) 
    < 1 by 
    A3,
    A12;
    
        then
    
        
    
    A14: (1 
    - (f3 
    . x)) 
    > (1 
    - 1) by 
    XREAL_1: 10;
    
        (f3
    . x) 
    > ( 
    - 1) by 
    A3,
    A12;
    
        then (1
    + (f3 
    . x)) 
    > (1 
    + ( 
    - 1)) by 
    XREAL_1: 6;
    
        then
    
        
    
    A15: ((1 
    + (f3 
    . x)) 
    * (1 
    - (f3 
    . x))) 
    >  
    0 by 
    A14,
    XREAL_1: 129;
    
        
    
        
    
    A16: a 
    >  
    0 by 
    A3,
    A12;
    
        then
    
        
    
    A17: (a 
    ^2 ) 
    >  
    0 by 
    SQUARE_1: 12;
    
        (1
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 ))))) 
    = (1 
    / (( 
    sqrt (a 
    ^2 )) 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 ))))) by 
    A16,
    SQUARE_1: 22
    
        .= (1
    / ( 
    sqrt ((a 
    ^2 ) 
    * (1 
    - ((x 
    / a) 
    ^2 ))))) by 
    A17,
    A13,
    A15,
    SQUARE_1: 29
    
        .= ((((a
    ^2 ) 
    * 1) 
    - ((a 
    * (x 
    / a)) 
    ^2 )) 
    #R ( 
    - (1 
    / 2))) by 
    A17,
    A13,
    A15,
    Th3,
    XREAL_1: 129
    
        .= (((a
    ^2 ) 
    - (((x 
    * a) 
    / a) 
    ^2 )) 
    #R ( 
    - (1 
    / 2))) by 
    XCMPLX_1: 74
    
        .= (((a
    ^2 ) 
    - ((x 
    * (a 
    / a)) 
    ^2 )) 
    #R ( 
    - (1 
    / 2))) by 
    XCMPLX_1: 74
    
        .= (((a
    ^2 ) 
    - ((x 
    * 1) 
    ^2 )) 
    #R ( 
    - (1 
    / 2))) by 
    A16,
    XCMPLX_1: 60
    
        .= (((a
    ^2 ) 
    - (x 
    #Z 2)) 
    #R ( 
    - (1 
    / 2))) by 
    Th1;
    
        hence thesis;
    
      end;
    
      for x st x
    in Z holds ((((( 
    id Z) 
    (#) ( 
    arccos  
    * f3)) 
    - (( 
    #R (1 
    / 2)) 
    * f)) 
    `| Z) 
    . x) 
    = ( 
    arccos  
    . (x 
    / a)) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A18: x 
    in Z; 
    
        
    
        then (((((
    id Z) 
    (#) ( 
    arccos  
    * f3)) 
    - (( 
    #R (1 
    / 2)) 
    * f)) 
    `| Z) 
    . x) 
    = (( 
    diff ((( 
    id Z) 
    (#) ( 
    arccos  
    * f3)),x)) 
    - ( 
    diff ((( 
    #R (1 
    / 2)) 
    * f),x))) by 
    A1,
    A10,
    A7,
    FDIFF_1: 19
    
        .= (((((
    id Z) 
    (#) ( 
    arccos  
    * f3)) 
    `| Z) 
    . x) 
    - ( 
    diff ((( 
    #R (1 
    / 2)) 
    * f),x))) by 
    A10,
    A18,
    FDIFF_1:def 7
    
        .= (((((
    id Z) 
    (#) ( 
    arccos  
    * f3)) 
    `| Z) 
    . x) 
    - (((( 
    #R (1 
    / 2)) 
    * f) 
    `| Z) 
    . x)) by 
    A7,
    A18,
    FDIFF_1:def 7
    
        .= (((
    arccos  
    . (x 
    / a)) 
    - (x 
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 )))))) 
    - (((( 
    #R (1 
    / 2)) 
    * f) 
    `| Z) 
    . x)) by 
    A9,
    A8,
    A18,
    Th26
    
        .= (((
    arccos  
    . (x 
    / a)) 
    - (x 
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 )))))) 
    - ( 
    - (x 
    * (((a 
    ^2 ) 
    - (x 
    #Z 2)) 
    #R ( 
    - (1 
    / 2)))))) by 
    A2,
    A5,
    A6,
    A18,
    Th27
    
        .= (((
    arccos  
    . (x 
    / a)) 
    - (x 
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 )))))) 
    + (x 
    * (((a 
    ^2 ) 
    - (x 
    #Z 2)) 
    #R ( 
    - (1 
    / 2))))) 
    
        .= (((
    arccos  
    . (x 
    / a)) 
    - (x 
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 )))))) 
    + (x 
    * (1 
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 ))))))) by 
    A11,
    A18
    
        .= (((
    arccos  
    . (x 
    / a)) 
    - (x 
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 )))))) 
    + (x 
    / (a 
    * ( 
    sqrt (1 
    - ((x 
    / a) 
    ^2 )))))) by 
    XCMPLX_1: 99
    
        .= (
    arccos  
    . (x 
    / a)); 
    
        hence thesis;
    
      end;
    
      hence thesis by
    A1,
    A10,
    A7,
    FDIFF_1: 19;
    
    end;
    
    theorem :: 
    
    FDIFF_7:30
    
    Z
    c= ( 
    dom (( 
    - (1 
    / n)) 
    (#) (( 
    #Z n) 
    * ( 
    sin  
    ^ )))) & n 
    >  
    0 & (for x st x 
    in Z holds ( 
    sin  
    . x) 
    <>  
    0 ) implies (( 
    - (1 
    / n)) 
    (#) (( 
    #Z n) 
    * ( 
    sin  
    ^ ))) 
    is_differentiable_on Z & for x st x 
    in Z holds (((( 
    - (1 
    / n)) 
    (#) (( 
    #Z n) 
    * ( 
    sin  
    ^ ))) 
    `| Z) 
    . x) 
    = (( 
    cos  
    . x) 
    / (( 
    sin  
    . x) 
    #Z (n 
    + 1))) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom (( 
    - (1 
    / n)) 
    (#) (( 
    #Z n) 
    * ( 
    sin  
    ^ )))) and 
    
      
    
    A2: n 
    >  
    0 and 
    
      
    
    A3: for x st x 
    in Z holds ( 
    sin  
    . x) 
    <>  
    0 ; 
    
      
    
      
    
    A4: Z 
    c= ( 
    dom (( 
    #Z n) 
    * ( 
    sin  
    ^ ))) by 
    A1,
    VALUED_1:def 5;
    
      
    
      
    
    A5: ( 
    sin  
    ^ ) 
    is_differentiable_on Z by 
    A3,
    FDIFF_4: 40;
    
      now
    
        let x;
    
        assume x
    in Z; 
    
        then (
    sin  
    ^ ) 
    is_differentiable_in x by 
    A5,
    FDIFF_1: 9;
    
        hence ((
    #Z n) 
    * ( 
    sin  
    ^ )) 
    is_differentiable_in x by 
    TAYLOR_1: 3;
    
      end;
    
      then
    
      
    
    A6: (( 
    #Z n) 
    * ( 
    sin  
    ^ )) 
    is_differentiable_on Z by 
    A4,
    FDIFF_1: 9;
    
      for y be
    object st y 
    in Z holds y 
    in ( 
    dom ( 
    sin  
    ^ )) by 
    A4,
    FUNCT_1: 11;
    
      then
    
      
    
    A7: Z 
    c= ( 
    dom ( 
    sin  
    ^ )) by 
    TARSKI:def 3;
    
      for x st x
    in Z holds (((( 
    - (1 
    / n)) 
    (#) (( 
    #Z n) 
    * ( 
    sin  
    ^ ))) 
    `| Z) 
    . x) 
    = (( 
    cos  
    . x) 
    / (( 
    sin  
    . x) 
    #Z (n 
    + 1))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A8: x 
    in Z; 
    
        then
    
        
    
    A9: ( 
    sin  
    ^ ) 
    is_differentiable_in x by 
    A5,
    FDIFF_1: 9;
    
        
    
        
    
    A10: (( 
    sin  
    ^ ) 
    . x) 
    = (( 
    sin  
    . x) 
    " ) by 
    A7,
    A8,
    RFUNCT_1:def 2
    
        .= (1
    / ( 
    sin  
    . x)) by 
    XCMPLX_1: 215;
    
        ((((
    - (1 
    / n)) 
    (#) (( 
    #Z n) 
    * ( 
    sin  
    ^ ))) 
    `| Z) 
    . x) 
    = (( 
    - (1 
    / n)) 
    * ( 
    diff ((( 
    #Z n) 
    * ( 
    sin  
    ^ )),x))) by 
    A1,
    A6,
    A8,
    FDIFF_1: 20
    
        .= ((
    - (1 
    / n)) 
    * ((n 
    * ((( 
    sin  
    ^ ) 
    . x) 
    #Z (n 
    - 1))) 
    * ( 
    diff (( 
    sin  
    ^ ),x)))) by 
    A9,
    TAYLOR_1: 3
    
        .= ((
    - (1 
    / n)) 
    * ((n 
    * ((( 
    sin  
    ^ ) 
    . x) 
    #Z (n 
    - 1))) 
    * ((( 
    sin  
    ^ ) 
    `| Z) 
    . x))) by 
    A5,
    A8,
    FDIFF_1:def 7
    
        .= ((
    - (1 
    / n)) 
    * ((n 
    * ((( 
    sin  
    ^ ) 
    . x) 
    #Z (n 
    - 1))) 
    * ( 
    - (( 
    cos  
    . x) 
    / (( 
    sin  
    . x) 
    ^2 ))))) by 
    A3,
    A8,
    FDIFF_4: 40
    
        .= (
    - ((((1 
    / n) 
    * n) 
    * ((( 
    sin  
    ^ ) 
    . x) 
    #Z (n 
    - 1))) 
    * ( 
    - (( 
    cos  
    . x) 
    / (( 
    sin  
    . x) 
    ^2 ))))) 
    
        .= (
    - ((1 
    * ((( 
    sin  
    ^ ) 
    . x) 
    #Z (n 
    - 1))) 
    * ( 
    - (( 
    cos  
    . x) 
    / (( 
    sin  
    . x) 
    ^2 ))))) by 
    A2,
    XCMPLX_1: 106
    
        .= (
    - (((1 
    / ( 
    sin  
    . x)) 
    #Z (n 
    - 1)) 
    * ( 
    - (( 
    cos  
    . x) 
    / (( 
    sin  
    . x) 
    #Z 2))))) by 
    A10,
    Th1
    
        .= (
    - (( 
    - (( 
    cos  
    . x) 
    / (( 
    sin  
    . x) 
    #Z 2))) 
    * (1 
    / (( 
    sin  
    . x) 
    #Z (n 
    - 1))))) by 
    PREPOWER: 42
    
        .= (((
    cos  
    . x) 
    / (( 
    sin  
    . x) 
    #Z 2)) 
    * (1 
    / (( 
    sin  
    . x) 
    #Z (n 
    - 1)))) 
    
        .= (((
    cos  
    . x) 
    / (( 
    sin  
    . x) 
    #Z 2)) 
    / (( 
    sin  
    . x) 
    #Z (n 
    - 1))) by 
    XCMPLX_1: 99
    
        .= ((
    cos  
    . x) 
    / ((( 
    sin  
    . x) 
    #Z 2) 
    * (( 
    sin  
    . x) 
    #Z (n 
    - 1)))) by 
    XCMPLX_1: 78
    
        .= ((
    cos  
    . x) 
    / (( 
    sin  
    . x) 
    #Z (2 
    + (n 
    - 1)))) by 
    A3,
    A8,
    PREPOWER: 44
    
        .= ((
    cos  
    . x) 
    / (( 
    sin  
    . x) 
    #Z (n 
    + 1))); 
    
        hence thesis;
    
      end;
    
      hence thesis by
    A1,
    A6,
    FDIFF_1: 20;
    
    end;
    
    theorem :: 
    
    FDIFF_7:31
    
    Z
    c= ( 
    dom ((1 
    / n) 
    (#) (( 
    #Z n) 
    * ( 
    cos  
    ^ )))) & n 
    >  
    0 & (for x st x 
    in Z holds ( 
    cos  
    . x) 
    <>  
    0 ) implies ((1 
    / n) 
    (#) (( 
    #Z n) 
    * ( 
    cos  
    ^ ))) 
    is_differentiable_on Z & for x st x 
    in Z holds ((((1 
    / n) 
    (#) (( 
    #Z n) 
    * ( 
    cos  
    ^ ))) 
    `| Z) 
    . x) 
    = (( 
    sin  
    . x) 
    / (( 
    cos  
    . x) 
    #Z (n 
    + 1))) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom ((1 
    / n) 
    (#) (( 
    #Z n) 
    * ( 
    cos  
    ^ )))) and 
    
      
    
    A2: n 
    >  
    0 and 
    
      
    
    A3: for x st x 
    in Z holds ( 
    cos  
    . x) 
    <>  
    0 ; 
    
      
    
      
    
    A4: Z 
    c= ( 
    dom (( 
    #Z n) 
    * ( 
    cos  
    ^ ))) by 
    A1,
    VALUED_1:def 5;
    
      
    
      
    
    A5: ( 
    cos  
    ^ ) 
    is_differentiable_on Z by 
    A3,
    FDIFF_4: 39;
    
      now
    
        let x;
    
        assume x
    in Z; 
    
        then (
    cos  
    ^ ) 
    is_differentiable_in x by 
    A5,
    FDIFF_1: 9;
    
        hence ((
    #Z n) 
    * ( 
    cos  
    ^ )) 
    is_differentiable_in x by 
    TAYLOR_1: 3;
    
      end;
    
      then
    
      
    
    A6: (( 
    #Z n) 
    * ( 
    cos  
    ^ )) 
    is_differentiable_on Z by 
    A4,
    FDIFF_1: 9;
    
      for y be
    object st y 
    in Z holds y 
    in ( 
    dom ( 
    cos  
    ^ )) by 
    A4,
    FUNCT_1: 11;
    
      then
    
      
    
    A7: Z 
    c= ( 
    dom ( 
    cos  
    ^ )) by 
    TARSKI:def 3;
    
      for x st x
    in Z holds ((((1 
    / n) 
    (#) (( 
    #Z n) 
    * ( 
    cos  
    ^ ))) 
    `| Z) 
    . x) 
    = (( 
    sin  
    . x) 
    / (( 
    cos  
    . x) 
    #Z (n 
    + 1))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A8: x 
    in Z; 
    
        then
    
        
    
    A9: ( 
    cos  
    ^ ) 
    is_differentiable_in x by 
    A5,
    FDIFF_1: 9;
    
        
    
        
    
    A10: (( 
    cos  
    ^ ) 
    . x) 
    = (( 
    cos  
    . x) 
    " ) by 
    A7,
    A8,
    RFUNCT_1:def 2
    
        .= (1
    / ( 
    cos  
    . x)) by 
    XCMPLX_1: 215;
    
        ((((1
    / n) 
    (#) (( 
    #Z n) 
    * ( 
    cos  
    ^ ))) 
    `| Z) 
    . x) 
    = ((1 
    / n) 
    * ( 
    diff ((( 
    #Z n) 
    * ( 
    cos  
    ^ )),x))) by 
    A1,
    A6,
    A8,
    FDIFF_1: 20
    
        .= ((1
    / n) 
    * ((n 
    * ((( 
    cos  
    ^ ) 
    . x) 
    #Z (n 
    - 1))) 
    * ( 
    diff (( 
    cos  
    ^ ),x)))) by 
    A9,
    TAYLOR_1: 3
    
        .= ((1
    / n) 
    * ((n 
    * ((( 
    cos  
    ^ ) 
    . x) 
    #Z (n 
    - 1))) 
    * ((( 
    cos  
    ^ ) 
    `| Z) 
    . x))) by 
    A5,
    A8,
    FDIFF_1:def 7
    
        .= ((1
    / n) 
    * ((n 
    * ((( 
    cos  
    ^ ) 
    . x) 
    #Z (n 
    - 1))) 
    * (( 
    sin  
    . x) 
    / (( 
    cos  
    . x) 
    ^2 )))) by 
    A3,
    A8,
    FDIFF_4: 39
    
        .= ((((1
    / n) 
    * n) 
    * ((( 
    cos  
    ^ ) 
    . x) 
    #Z (n 
    - 1))) 
    * (( 
    sin  
    . x) 
    / (( 
    cos  
    . x) 
    ^2 ))) 
    
        .= ((1
    * ((( 
    cos  
    ^ ) 
    . x) 
    #Z (n 
    - 1))) 
    * (( 
    sin  
    . x) 
    / (( 
    cos  
    . x) 
    ^2 ))) by 
    A2,
    XCMPLX_1: 106
    
        .= (((1
    / ( 
    cos  
    . x)) 
    #Z (n 
    - 1)) 
    * (( 
    sin  
    . x) 
    / (( 
    cos  
    . x) 
    #Z 2))) by 
    A10,
    Th1
    
        .= ((1
    / (( 
    cos  
    . x) 
    #Z (n 
    - 1))) 
    * (( 
    sin  
    . x) 
    / (( 
    cos  
    . x) 
    #Z 2))) by 
    PREPOWER: 42
    
        .= (((
    sin  
    . x) 
    / (( 
    cos  
    . x) 
    #Z 2)) 
    / (( 
    cos  
    . x) 
    #Z (n 
    - 1))) by 
    XCMPLX_1: 99
    
        .= ((
    sin  
    . x) 
    / ((( 
    cos  
    . x) 
    #Z 2) 
    * (( 
    cos  
    . x) 
    #Z (n 
    - 1)))) by 
    XCMPLX_1: 78
    
        .= ((
    sin  
    . x) 
    / (( 
    cos  
    . x) 
    #Z (2 
    + (n 
    - 1)))) by 
    A3,
    A8,
    PREPOWER: 44
    
        .= ((
    sin  
    . x) 
    / (( 
    cos  
    . x) 
    #Z (n 
    + 1))); 
    
        hence thesis;
    
      end;
    
      hence thesis by
    A1,
    A6,
    FDIFF_1: 20;
    
    end;
    
    
    
    
    
    Lm3: ( 
    right_open_halfline  
    0 ) 
    = { g where g be 
    Real : 
    0  
    < g } by 
    XXREAL_1: 230;
    
    theorem :: 
    
    FDIFF_7:32
    
    Z
    c= ( 
    dom ( 
    sin  
    *  
    ln )) & (for x st x 
    in Z holds x 
    >  
    0 ) implies ( 
    sin  
    *  
    ln ) 
    is_differentiable_on Z & for x st x 
    in Z holds ((( 
    sin  
    *  
    ln ) 
    `| Z) 
    . x) 
    = (( 
    cos  
    . ( 
    ln  
    . x)) 
    / x) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom ( 
    sin  
    *  
    ln )) and 
    
      
    
    A2: for x st x 
    in Z holds x 
    >  
    0 ; 
    
      
    
      
    
    A3: for x st x 
    in Z holds ( 
    sin  
    *  
    ln ) 
    is_differentiable_in x 
    
      proof
    
        let x;
    
        assume x
    in Z; 
    
        then
    
        
    
    A4: 
    ln  
    is_differentiable_in x by 
    A2,
    TAYLOR_1: 18;
    
        
    sin  
    is_differentiable_in ( 
    ln  
    . x) by 
    SIN_COS: 64;
    
        hence thesis by
    A4,
    FDIFF_2: 13;
    
      end;
    
      then
    
      
    
    A5: ( 
    sin  
    *  
    ln ) 
    is_differentiable_on Z by 
    A1,
    FDIFF_1: 9;
    
      for x st x
    in Z holds ((( 
    sin  
    *  
    ln ) 
    `| Z) 
    . x) 
    = (( 
    cos  
    . ( 
    ln  
    . x)) 
    / x) 
    
      proof
    
        let x;
    
        
    
        
    
    A6: 
    sin  
    is_differentiable_in ( 
    ln  
    . x) by 
    SIN_COS: 64;
    
        assume
    
        
    
    A7: x 
    in Z; 
    
        then x
    >  
    0 by 
    A2;
    
        then
    
        
    
    A8: x 
    in ( 
    right_open_halfline  
    0 ) by 
    Lm3;
    
        
    ln  
    is_differentiable_in x by 
    A2,
    A7,
    TAYLOR_1: 18;
    
        
    
        then (
    diff (( 
    sin  
    *  
    ln ),x)) 
    = (( 
    diff ( 
    sin ,( 
    ln  
    . x))) 
    * ( 
    diff ( 
    ln ,x))) by 
    A6,
    FDIFF_2: 13
    
        .= ((
    cos  
    . ( 
    ln  
    . x)) 
    * ( 
    diff ( 
    ln ,x))) by 
    SIN_COS: 64
    
        .= ((
    cos  
    . ( 
    ln  
    . x)) 
    * (1 
    / x)) by 
    A8,
    TAYLOR_1: 18
    
        .= ((
    cos  
    . ( 
    ln  
    . x)) 
    / x) by 
    XCMPLX_1: 99;
    
        hence thesis by
    A5,
    A7,
    FDIFF_1:def 7;
    
      end;
    
      hence thesis by
    A1,
    A3,
    FDIFF_1: 9;
    
    end;
    
    theorem :: 
    
    FDIFF_7:33
    
    Z
    c= ( 
    dom ( 
    cos  
    *  
    ln )) & (for x st x 
    in Z holds x 
    >  
    0 ) implies ( 
    cos  
    *  
    ln ) 
    is_differentiable_on Z & for x st x 
    in Z holds ((( 
    cos  
    *  
    ln ) 
    `| Z) 
    . x) 
    = ( 
    - (( 
    sin  
    . ( 
    ln  
    . x)) 
    / x)) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom ( 
    cos  
    *  
    ln )) and 
    
      
    
    A2: for x st x 
    in Z holds x 
    >  
    0 ; 
    
      
    
      
    
    A3: for x st x 
    in Z holds ( 
    cos  
    *  
    ln ) 
    is_differentiable_in x 
    
      proof
    
        let x;
    
        assume x
    in Z; 
    
        then
    
        
    
    A4: 
    ln  
    is_differentiable_in x by 
    A2,
    TAYLOR_1: 18;
    
        
    cos  
    is_differentiable_in ( 
    ln  
    . x) by 
    SIN_COS: 63;
    
        hence thesis by
    A4,
    FDIFF_2: 13;
    
      end;
    
      then
    
      
    
    A5: ( 
    cos  
    *  
    ln ) 
    is_differentiable_on Z by 
    A1,
    FDIFF_1: 9;
    
      for x st x
    in Z holds ((( 
    cos  
    *  
    ln ) 
    `| Z) 
    . x) 
    = ( 
    - (( 
    sin  
    . ( 
    ln  
    . x)) 
    / x)) 
    
      proof
    
        let x;
    
        
    
        
    
    A6: 
    cos  
    is_differentiable_in ( 
    ln  
    . x) by 
    SIN_COS: 63;
    
        assume
    
        
    
    A7: x 
    in Z; 
    
        then x
    >  
    0 by 
    A2;
    
        then
    
        
    
    A8: x 
    in ( 
    right_open_halfline  
    0 ) by 
    Lm3;
    
        
    ln  
    is_differentiable_in x by 
    A2,
    A7,
    TAYLOR_1: 18;
    
        
    
        then (
    diff (( 
    cos  
    *  
    ln ),x)) 
    = (( 
    diff ( 
    cos ,( 
    ln  
    . x))) 
    * ( 
    diff ( 
    ln ,x))) by 
    A6,
    FDIFF_2: 13
    
        .= ((
    - ( 
    sin  
    . ( 
    ln  
    . x))) 
    * ( 
    diff ( 
    ln ,x))) by 
    SIN_COS: 63
    
        .= ((
    - ( 
    sin  
    . ( 
    ln  
    . x))) 
    * (1 
    / x)) by 
    A8,
    TAYLOR_1: 18
    
        .= ((
    - ( 
    sin  
    . ( 
    ln  
    . x))) 
    / x) by 
    XCMPLX_1: 99
    
        .= (
    - (( 
    sin  
    . ( 
    ln  
    . x)) 
    / x)) by 
    XCMPLX_1: 187;
    
        hence thesis by
    A5,
    A7,
    FDIFF_1:def 7;
    
      end;
    
      hence thesis by
    A1,
    A3,
    FDIFF_1: 9;
    
    end;
    
    theorem :: 
    
    FDIFF_7:34
    
    Z
    c= ( 
    dom ( 
    sin  
    *  
    exp_R )) implies ( 
    sin  
    *  
    exp_R ) 
    is_differentiable_on Z & for x st x 
    in Z holds ((( 
    sin  
    *  
    exp_R ) 
    `| Z) 
    . x) 
    = (( 
    exp_R  
    . x) 
    * ( 
    cos  
    . ( 
    exp_R  
    . x))) 
    
    proof
    
      
    
      
    
    A1: for x st x 
    in Z holds ( 
    sin  
    *  
    exp_R ) 
    is_differentiable_in x 
    
      proof
    
        let x;
    
        assume x
    in Z; 
    
        
    exp_R  
    is_differentiable_in x & 
    sin  
    is_differentiable_in ( 
    exp_R  
    . x) by 
    SIN_COS: 64,
    SIN_COS: 65;
    
        hence thesis by
    FDIFF_2: 13;
    
      end;
    
      assume
    
      
    
    A2: Z 
    c= ( 
    dom ( 
    sin  
    *  
    exp_R )); 
    
      then
    
      
    
    A3: ( 
    sin  
    *  
    exp_R ) 
    is_differentiable_on Z by 
    A1,
    FDIFF_1: 9;
    
      for x st x
    in Z holds ((( 
    sin  
    *  
    exp_R ) 
    `| Z) 
    . x) 
    = (( 
    exp_R  
    . x) 
    * ( 
    cos  
    . ( 
    exp_R  
    . x))) 
    
      proof
    
        let x;
    
        
    exp_R  
    is_differentiable_in x & 
    sin  
    is_differentiable_in ( 
    exp_R  
    . x) by 
    SIN_COS: 64,
    SIN_COS: 65;
    
        
    
        then
    
        
    
    A4: ( 
    diff (( 
    sin  
    *  
    exp_R ),x)) 
    = (( 
    diff ( 
    sin ,( 
    exp_R  
    . x))) 
    * ( 
    diff ( 
    exp_R ,x))) by 
    FDIFF_2: 13
    
        .= ((
    cos  
    . ( 
    exp_R  
    . x)) 
    * ( 
    diff ( 
    exp_R ,x))) by 
    SIN_COS: 64
    
        .= ((
    exp_R  
    . x) 
    * ( 
    cos  
    . ( 
    exp_R  
    . x))) by 
    SIN_COS: 65;
    
        assume x
    in Z; 
    
        hence thesis by
    A3,
    A4,
    FDIFF_1:def 7;
    
      end;
    
      hence thesis by
    A2,
    A1,
    FDIFF_1: 9;
    
    end;
    
    theorem :: 
    
    FDIFF_7:35
    
    Z
    c= ( 
    dom ( 
    cos  
    *  
    exp_R )) implies ( 
    cos  
    *  
    exp_R ) 
    is_differentiable_on Z & for x st x 
    in Z holds ((( 
    cos  
    *  
    exp_R ) 
    `| Z) 
    . x) 
    = ( 
    - (( 
    exp_R  
    . x) 
    * ( 
    sin  
    . ( 
    exp_R  
    . x)))) 
    
    proof
    
      
    
      
    
    A1: for x st x 
    in Z holds ( 
    cos  
    *  
    exp_R ) 
    is_differentiable_in x 
    
      proof
    
        let x;
    
        assume x
    in Z; 
    
        
    exp_R  
    is_differentiable_in x & 
    cos  
    is_differentiable_in ( 
    exp_R  
    . x) by 
    SIN_COS: 63,
    SIN_COS: 65;
    
        hence thesis by
    FDIFF_2: 13;
    
      end;
    
      assume
    
      
    
    A2: Z 
    c= ( 
    dom ( 
    cos  
    *  
    exp_R )); 
    
      then
    
      
    
    A3: ( 
    cos  
    *  
    exp_R ) 
    is_differentiable_on Z by 
    A1,
    FDIFF_1: 9;
    
      for x st x
    in Z holds ((( 
    cos  
    *  
    exp_R ) 
    `| Z) 
    . x) 
    = ( 
    - (( 
    exp_R  
    . x) 
    * ( 
    sin  
    . ( 
    exp_R  
    . x)))) 
    
      proof
    
        let x;
    
        
    exp_R  
    is_differentiable_in x & 
    cos  
    is_differentiable_in ( 
    exp_R  
    . x) by 
    SIN_COS: 63,
    SIN_COS: 65;
    
        
    
        then
    
        
    
    A4: ( 
    diff (( 
    cos  
    *  
    exp_R ),x)) 
    = (( 
    diff ( 
    cos ,( 
    exp_R  
    . x))) 
    * ( 
    diff ( 
    exp_R ,x))) by 
    FDIFF_2: 13
    
        .= ((
    - ( 
    sin  
    . ( 
    exp_R  
    . x))) 
    * ( 
    diff ( 
    exp_R ,x))) by 
    SIN_COS: 63
    
        .= ((
    - ( 
    sin  
    . ( 
    exp_R  
    . x))) 
    * ( 
    exp_R  
    . x)) by 
    SIN_COS: 65
    
        .= (
    - (( 
    exp_R  
    . x) 
    * ( 
    sin  
    . ( 
    exp_R  
    . x)))); 
    
        assume x
    in Z; 
    
        hence thesis by
    A3,
    A4,
    FDIFF_1:def 7;
    
      end;
    
      hence thesis by
    A2,
    A1,
    FDIFF_1: 9;
    
    end;
    
    theorem :: 
    
    FDIFF_7:36
    
    Z
    c= ( 
    dom ( 
    exp_R  
    *  
    cos )) implies ( 
    exp_R  
    *  
    cos ) 
    is_differentiable_on Z & for x st x 
    in Z holds ((( 
    exp_R  
    *  
    cos ) 
    `| Z) 
    . x) 
    = ( 
    - (( 
    exp_R  
    . ( 
    cos  
    . x)) 
    * ( 
    sin  
    . x))) 
    
    proof
    
      
    
      
    
    A1: for x st x 
    in Z holds ( 
    exp_R  
    *  
    cos ) 
    is_differentiable_in x 
    
      proof
    
        let x;
    
        assume x
    in Z; 
    
        
    cos  
    is_differentiable_in x & 
    exp_R  
    is_differentiable_in ( 
    cos  
    . x) by 
    SIN_COS: 63,
    SIN_COS: 65;
    
        hence thesis by
    FDIFF_2: 13;
    
      end;
    
      assume
    
      
    
    A2: Z 
    c= ( 
    dom ( 
    exp_R  
    *  
    cos )); 
    
      then
    
      
    
    A3: ( 
    exp_R  
    *  
    cos ) 
    is_differentiable_on Z by 
    A1,
    FDIFF_1: 9;
    
      for x st x
    in Z holds ((( 
    exp_R  
    *  
    cos ) 
    `| Z) 
    . x) 
    = ( 
    - (( 
    exp_R  
    . ( 
    cos  
    . x)) 
    * ( 
    sin  
    . x))) 
    
      proof
    
        let x;
    
        
    cos  
    is_differentiable_in x & 
    exp_R  
    is_differentiable_in ( 
    cos  
    . x) by 
    SIN_COS: 63,
    SIN_COS: 65;
    
        
    
        then
    
        
    
    A4: ( 
    diff (( 
    exp_R  
    *  
    cos ),x)) 
    = (( 
    diff ( 
    exp_R ,( 
    cos  
    . x))) 
    * ( 
    diff ( 
    cos ,x))) by 
    FDIFF_2: 13
    
        .= ((
    diff ( 
    exp_R ,( 
    cos  
    . x))) 
    * ( 
    - ( 
    sin  
    . x))) by 
    SIN_COS: 63
    
        .= ((
    exp_R  
    . ( 
    cos  
    . x)) 
    * ( 
    - ( 
    sin  
    . x))) by 
    SIN_COS: 65
    
        .= (
    - (( 
    exp_R  
    . ( 
    cos  
    . x)) 
    * ( 
    sin  
    . x))); 
    
        assume x
    in Z; 
    
        hence thesis by
    A3,
    A4,
    FDIFF_1:def 7;
    
      end;
    
      hence thesis by
    A2,
    A1,
    FDIFF_1: 9;
    
    end;
    
    theorem :: 
    
    FDIFF_7:37
    
    Z
    c= ( 
    dom ( 
    exp_R  
    *  
    sin )) implies ( 
    exp_R  
    *  
    sin ) 
    is_differentiable_on Z & for x st x 
    in Z holds ((( 
    exp_R  
    *  
    sin ) 
    `| Z) 
    . x) 
    = (( 
    exp_R  
    . ( 
    sin  
    . x)) 
    * ( 
    cos  
    . x)) 
    
    proof
    
      
    
      
    
    A1: for x st x 
    in Z holds ( 
    exp_R  
    *  
    sin ) 
    is_differentiable_in x 
    
      proof
    
        let x;
    
        assume x
    in Z; 
    
        
    sin  
    is_differentiable_in x & 
    exp_R  
    is_differentiable_in ( 
    sin  
    . x) by 
    SIN_COS: 64,
    SIN_COS: 65;
    
        hence thesis by
    FDIFF_2: 13;
    
      end;
    
      assume
    
      
    
    A2: Z 
    c= ( 
    dom ( 
    exp_R  
    *  
    sin )); 
    
      then
    
      
    
    A3: ( 
    exp_R  
    *  
    sin ) 
    is_differentiable_on Z by 
    A1,
    FDIFF_1: 9;
    
      for x st x
    in Z holds ((( 
    exp_R  
    *  
    sin ) 
    `| Z) 
    . x) 
    = (( 
    exp_R  
    . ( 
    sin  
    . x)) 
    * ( 
    cos  
    . x)) 
    
      proof
    
        let x;
    
        
    sin  
    is_differentiable_in x & 
    exp_R  
    is_differentiable_in ( 
    sin  
    . x) by 
    SIN_COS: 64,
    SIN_COS: 65;
    
        
    
        then
    
        
    
    A4: ( 
    diff (( 
    exp_R  
    *  
    sin ),x)) 
    = (( 
    diff ( 
    exp_R ,( 
    sin  
    . x))) 
    * ( 
    diff ( 
    sin ,x))) by 
    FDIFF_2: 13
    
        .= ((
    diff ( 
    exp_R ,( 
    sin  
    . x))) 
    * ( 
    cos  
    . x)) by 
    SIN_COS: 64
    
        .= ((
    exp_R  
    . ( 
    sin  
    . x)) 
    * ( 
    cos  
    . x)) by 
    SIN_COS: 65;
    
        assume x
    in Z; 
    
        hence thesis by
    A3,
    A4,
    FDIFF_1:def 7;
    
      end;
    
      hence thesis by
    A2,
    A1,
    FDIFF_1: 9;
    
    end;
    
    theorem :: 
    
    FDIFF_7:38
    
    
    
    
    
    Th38: Z 
    c= ( 
    dom ( 
    sin  
    +  
    cos )) implies ( 
    sin  
    +  
    cos ) 
    is_differentiable_on Z & for x st x 
    in Z holds ((( 
    sin  
    +  
    cos ) 
    `| Z) 
    . x) 
    = (( 
    cos  
    . x) 
    - ( 
    sin  
    . x)) 
    
    proof
    
      
    
      
    
    A1: 
    sin  
    is_differentiable_on Z & 
    cos  
    is_differentiable_on Z by 
    FDIFF_1: 26,
    SIN_COS: 67,
    SIN_COS: 68;
    
      assume
    
      
    
    A2: Z 
    c= ( 
    dom ( 
    sin  
    +  
    cos )); 
    
      now
    
        let x;
    
        assume x
    in Z; 
    
        
    
        hence (((
    sin  
    +  
    cos ) 
    `| Z) 
    . x) 
    = (( 
    diff ( 
    sin ,x)) 
    + ( 
    diff ( 
    cos ,x))) by 
    A2,
    A1,
    FDIFF_1: 18
    
        .= ((
    cos  
    . x) 
    + ( 
    diff ( 
    cos ,x))) by 
    SIN_COS: 64
    
        .= ((
    cos  
    . x) 
    + ( 
    - ( 
    sin  
    . x))) by 
    SIN_COS: 63
    
        .= ((
    cos  
    . x) 
    - ( 
    sin  
    . x)); 
    
      end;
    
      hence thesis by
    A2,
    A1,
    FDIFF_1: 18;
    
    end;
    
    theorem :: 
    
    FDIFF_7:39
    
    
    
    
    
    Th39: Z 
    c= ( 
    dom ( 
    sin  
    -  
    cos )) implies ( 
    sin  
    -  
    cos ) 
    is_differentiable_on Z & for x st x 
    in Z holds ((( 
    sin  
    -  
    cos ) 
    `| Z) 
    . x) 
    = (( 
    cos  
    . x) 
    + ( 
    sin  
    . x)) 
    
    proof
    
      
    
      
    
    A1: 
    sin  
    is_differentiable_on Z & 
    cos  
    is_differentiable_on Z by 
    FDIFF_1: 26,
    SIN_COS: 67,
    SIN_COS: 68;
    
      assume
    
      
    
    A2: Z 
    c= ( 
    dom ( 
    sin  
    -  
    cos )); 
    
      now
    
        let x;
    
        assume x
    in Z; 
    
        
    
        hence (((
    sin  
    -  
    cos ) 
    `| Z) 
    . x) 
    = (( 
    diff ( 
    sin ,x)) 
    - ( 
    diff ( 
    cos ,x))) by 
    A2,
    A1,
    FDIFF_1: 19
    
        .= ((
    cos  
    . x) 
    - ( 
    diff ( 
    cos ,x))) by 
    SIN_COS: 64
    
        .= ((
    cos  
    . x) 
    - ( 
    - ( 
    sin  
    . x))) by 
    SIN_COS: 63
    
        .= ((
    cos  
    . x) 
    + ( 
    sin  
    . x)); 
    
      end;
    
      hence thesis by
    A2,
    A1,
    FDIFF_1: 19;
    
    end;
    
    theorem :: 
    
    FDIFF_7:40
    
    Z
    c= ( 
    dom ( 
    exp_R  
    (#) ( 
    sin  
    -  
    cos ))) implies ( 
    exp_R  
    (#) ( 
    sin  
    -  
    cos )) 
    is_differentiable_on Z & for x st x 
    in Z holds ((( 
    exp_R  
    (#) ( 
    sin  
    -  
    cos )) 
    `| Z) 
    . x) 
    = ((2 
    * ( 
    exp_R  
    . x)) 
    * ( 
    sin  
    . x)) 
    
    proof
    
      assume
    
      
    
    A1: Z 
    c= ( 
    dom ( 
    exp_R  
    (#) ( 
    sin  
    -  
    cos ))); 
    
      then Z
    c= (( 
    dom ( 
    sin  
    -  
    cos )) 
    /\ ( 
    dom  
    exp_R )) by 
    VALUED_1:def 4;
    
      then
    
      
    
    A2: Z 
    c= ( 
    dom ( 
    sin  
    -  
    cos )) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A3: ( 
    sin  
    -  
    cos ) 
    is_differentiable_on Z by 
    Th39;
    
      
    
      
    
    A4: 
    exp_R  
    is_differentiable_on Z by 
    FDIFF_1: 26,
    TAYLOR_1: 16;
    
      for x st x
    in Z holds ((( 
    exp_R  
    (#) ( 
    sin  
    -  
    cos )) 
    `| Z) 
    . x) 
    = ((2 
    * ( 
    exp_R  
    . x)) 
    * ( 
    sin  
    . x)) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A5: x 
    in Z; 
    
        
    
        then (((
    exp_R  
    (#) ( 
    sin  
    -  
    cos )) 
    `| Z) 
    . x) 
    = (((( 
    sin  
    -  
    cos ) 
    . x) 
    * ( 
    diff ( 
    exp_R ,x))) 
    + (( 
    exp_R  
    . x) 
    * ( 
    diff (( 
    sin  
    -  
    cos ),x)))) by 
    A1,
    A3,
    A4,
    FDIFF_1: 21
    
        .= ((((
    sin  
    . x) 
    - ( 
    cos  
    . x)) 
    * ( 
    diff ( 
    exp_R ,x))) 
    + (( 
    exp_R  
    . x) 
    * ( 
    diff (( 
    sin  
    -  
    cos ),x)))) by 
    A2,
    A5,
    VALUED_1: 13
    
        .= ((((
    sin  
    . x) 
    - ( 
    cos  
    . x)) 
    * ( 
    exp_R  
    . x)) 
    + (( 
    exp_R  
    . x) 
    * ( 
    diff (( 
    sin  
    -  
    cos ),x)))) by 
    TAYLOR_1: 16
    
        .= ((((
    sin  
    . x) 
    - ( 
    cos  
    . x)) 
    * ( 
    exp_R  
    . x)) 
    + (( 
    exp_R  
    . x) 
    * ((( 
    sin  
    -  
    cos ) 
    `| Z) 
    . x))) by 
    A3,
    A5,
    FDIFF_1:def 7
    
        .= ((((
    sin  
    . x) 
    - ( 
    cos  
    . x)) 
    * ( 
    exp_R  
    . x)) 
    + (( 
    exp_R  
    . x) 
    * (( 
    cos  
    . x) 
    + ( 
    sin  
    . x)))) by 
    A2,
    A5,
    Th39
    
        .= ((2
    * ( 
    exp_R  
    . x)) 
    * ( 
    sin  
    . x)); 
    
        hence thesis;
    
      end;
    
      hence thesis by
    A1,
    A3,
    A4,
    FDIFF_1: 21;
    
    end;
    
    theorem :: 
    
    FDIFF_7:41
    
    Z
    c= ( 
    dom ( 
    exp_R  
    (#) ( 
    sin  
    +  
    cos ))) implies ( 
    exp_R  
    (#) ( 
    sin  
    +  
    cos )) 
    is_differentiable_on Z & for x st x 
    in Z holds ((( 
    exp_R  
    (#) ( 
    sin  
    +  
    cos )) 
    `| Z) 
    . x) 
    = ((2 
    * ( 
    exp_R  
    . x)) 
    * ( 
    cos  
    . x)) 
    
    proof
    
      assume
    
      
    
    A1: Z 
    c= ( 
    dom ( 
    exp_R  
    (#) ( 
    sin  
    +  
    cos ))); 
    
      then Z
    c= (( 
    dom ( 
    sin  
    +  
    cos )) 
    /\ ( 
    dom  
    exp_R )) by 
    VALUED_1:def 4;
    
      then
    
      
    
    A2: Z 
    c= ( 
    dom ( 
    sin  
    +  
    cos )) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A3: ( 
    sin  
    +  
    cos ) 
    is_differentiable_on Z by 
    Th38;
    
      
    
      
    
    A4: 
    exp_R  
    is_differentiable_on Z by 
    FDIFF_1: 26,
    TAYLOR_1: 16;
    
      for x st x
    in Z holds ((( 
    exp_R  
    (#) ( 
    sin  
    +  
    cos )) 
    `| Z) 
    . x) 
    = ((2 
    * ( 
    exp_R  
    . x)) 
    * ( 
    cos  
    . x)) 
    
      proof
    
        let x;
    
        reconsider xx = x as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
        assume
    
        
    
    A5: x 
    in Z; 
    
        
    
        then (((
    exp_R  
    (#) ( 
    sin  
    +  
    cos )) 
    `| Z) 
    . x) 
    = (((( 
    sin  
    +  
    cos ) 
    . xx) 
    * ( 
    diff ( 
    exp_R ,x))) 
    + (( 
    exp_R  
    . x) 
    * ( 
    diff (( 
    sin  
    +  
    cos ),x)))) by 
    A1,
    A3,
    A4,
    FDIFF_1: 21
    
        .= ((((
    sin  
    . xx) 
    + ( 
    cos  
    . xx)) 
    * ( 
    diff ( 
    exp_R ,x))) 
    + (( 
    exp_R  
    . x) 
    * ( 
    diff (( 
    sin  
    +  
    cos ),x)))) by 
    VALUED_1: 1
    
        .= ((((
    sin  
    . x) 
    + ( 
    cos  
    . x)) 
    * ( 
    exp_R  
    . x)) 
    + (( 
    exp_R  
    . x) 
    * ( 
    diff (( 
    sin  
    +  
    cos ),x)))) by 
    TAYLOR_1: 16
    
        .= ((((
    sin  
    . x) 
    + ( 
    cos  
    . x)) 
    * ( 
    exp_R  
    . x)) 
    + (( 
    exp_R  
    . x) 
    * ((( 
    sin  
    +  
    cos ) 
    `| Z) 
    . x))) by 
    A3,
    A5,
    FDIFF_1:def 7
    
        .= ((((
    sin  
    . x) 
    + ( 
    cos  
    . x)) 
    * ( 
    exp_R  
    . x)) 
    + (( 
    exp_R  
    . x) 
    * (( 
    cos  
    . x) 
    - ( 
    sin  
    . x)))) by 
    A2,
    A5,
    Th38
    
        .= ((2
    * ( 
    exp_R  
    . x)) 
    * ( 
    cos  
    . x)); 
    
        hence thesis;
    
      end;
    
      hence thesis by
    A1,
    A3,
    A4,
    FDIFF_1: 21;
    
    end;
    
    theorem :: 
    
    FDIFF_7:42
    
    Z
    c= ( 
    dom (( 
    sin  
    +  
    cos ) 
    /  
    exp_R )) implies (( 
    sin  
    +  
    cos ) 
    /  
    exp_R ) 
    is_differentiable_on Z & for x st x 
    in Z holds (((( 
    sin  
    +  
    cos ) 
    /  
    exp_R ) 
    `| Z) 
    . x) 
    = ( 
    - ((2 
    * ( 
    sin  
    . x)) 
    / ( 
    exp_R  
    . x))) 
    
    proof
    
      assume Z
    c= ( 
    dom (( 
    sin  
    +  
    cos ) 
    /  
    exp_R )); 
    
      then Z
    c= (( 
    dom ( 
    sin  
    +  
    cos )) 
    /\ (( 
    dom  
    exp_R ) 
    \ ( 
    exp_R  
    "  
    {
    0 }))) by 
    RFUNCT_1:def 1;
    
      then
    
      
    
    A1: Z 
    c= ( 
    dom ( 
    sin  
    +  
    cos )) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A2: ( 
    sin  
    +  
    cos ) 
    is_differentiable_on Z by 
    Th38;
    
      
    
      
    
    A3: 
    exp_R  
    is_differentiable_on Z & for x st x 
    in Z holds ( 
    exp_R  
    . x) 
    <>  
    0 by 
    FDIFF_1: 26,
    SIN_COS: 54,
    TAYLOR_1: 16;
    
      then
    
      
    
    A4: (( 
    sin  
    +  
    cos ) 
    /  
    exp_R ) 
    is_differentiable_on Z by 
    A2,
    FDIFF_2: 21;
    
      for x st x
    in Z holds (((( 
    sin  
    +  
    cos ) 
    /  
    exp_R ) 
    `| Z) 
    . x) 
    = ( 
    - ((2 
    * ( 
    sin  
    . x)) 
    / ( 
    exp_R  
    . x))) 
    
      proof
    
        let x;
    
        reconsider xx = x as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
        
    
        
    
    A5: (( 
    sin  
    +  
    cos ) 
    . xx) 
    = (( 
    sin  
    . xx) 
    + ( 
    cos  
    . xx)) by 
    VALUED_1: 1;
    
        
    
        
    
    A6: ( 
    exp_R  
    . x) 
    <>  
    0 by 
    SIN_COS: 54;
    
        assume
    
        
    
    A7: x 
    in Z; 
    
        then
    exp_R  
    is_differentiable_in x & ( 
    sin  
    +  
    cos ) 
    is_differentiable_in x by 
    A2,
    FDIFF_1: 9,
    SIN_COS: 65;
    
        
    
        then (
    diff ((( 
    sin  
    +  
    cos ) 
    /  
    exp_R ),x)) 
    = (((( 
    diff (( 
    sin  
    +  
    cos ),x)) 
    * ( 
    exp_R  
    . x)) 
    - (( 
    diff ( 
    exp_R ,x)) 
    * (( 
    sin  
    +  
    cos ) 
    . x))) 
    / (( 
    exp_R  
    . x) 
    ^2 )) by 
    A6,
    FDIFF_2: 14
    
        .= ((((((
    sin  
    +  
    cos ) 
    `| Z) 
    . x) 
    * ( 
    exp_R  
    . x)) 
    - (( 
    diff ( 
    exp_R ,x)) 
    * (( 
    sin  
    +  
    cos ) 
    . x))) 
    / (( 
    exp_R  
    . x) 
    ^2 )) by 
    A2,
    A7,
    FDIFF_1:def 7
    
        .= (((((
    cos  
    . x) 
    - ( 
    sin  
    . x)) 
    * ( 
    exp_R  
    . x)) 
    - (( 
    diff ( 
    exp_R ,x)) 
    * (( 
    sin  
    +  
    cos ) 
    . x))) 
    / (( 
    exp_R  
    . x) 
    ^2 )) by 
    A1,
    A7,
    Th38
    
        .= (((((
    cos  
    . x) 
    - ( 
    sin  
    . x)) 
    * ( 
    exp_R  
    . x)) 
    - (( 
    exp_R  
    . x) 
    * (( 
    sin  
    . x) 
    + ( 
    cos  
    . x)))) 
    / (( 
    exp_R  
    . x) 
    ^2 )) by 
    A5,
    SIN_COS: 65
    
        .= (((
    - (2 
    * ( 
    sin  
    . x))) 
    * ( 
    exp_R  
    . x)) 
    / (( 
    exp_R  
    . x) 
    * ( 
    exp_R  
    . x))) 
    
        .= ((
    - (2 
    * ( 
    sin  
    . x))) 
    * (( 
    exp_R  
    . x) 
    / (( 
    exp_R  
    . x) 
    * ( 
    exp_R  
    . x)))) by 
    XCMPLX_1: 74
    
        .= ((
    - (2 
    * ( 
    sin  
    . x))) 
    * ((( 
    exp_R  
    . x) 
    / ( 
    exp_R  
    . x)) 
    / ( 
    exp_R  
    . x))) by 
    XCMPLX_1: 78
    
        .= ((
    - (2 
    * ( 
    sin  
    . x))) 
    * (1 
    / ( 
    exp_R  
    . x))) by 
    A6,
    XCMPLX_1: 60
    
        .= ((
    - (2 
    * ( 
    sin  
    . x))) 
    / ( 
    exp_R  
    . x)) by 
    XCMPLX_1: 99
    
        .= (
    - ((2 
    * ( 
    sin  
    . x)) 
    / ( 
    exp_R  
    . x))) by 
    XCMPLX_1: 187;
    
        hence thesis by
    A4,
    A7,
    FDIFF_1:def 7;
    
      end;
    
      hence thesis by
    A2,
    A3,
    FDIFF_2: 21;
    
    end;
    
    theorem :: 
    
    FDIFF_7:43
    
    Z
    c= ( 
    dom (( 
    sin  
    -  
    cos ) 
    /  
    exp_R )) implies (( 
    sin  
    -  
    cos ) 
    /  
    exp_R ) 
    is_differentiable_on Z & for x st x 
    in Z holds (((( 
    sin  
    -  
    cos ) 
    /  
    exp_R ) 
    `| Z) 
    . x) 
    = ((2 
    * ( 
    cos  
    . x)) 
    / ( 
    exp_R  
    . x)) 
    
    proof
    
      assume Z
    c= ( 
    dom (( 
    sin  
    -  
    cos ) 
    /  
    exp_R )); 
    
      then Z
    c= (( 
    dom ( 
    sin  
    -  
    cos )) 
    /\ (( 
    dom  
    exp_R ) 
    \ ( 
    exp_R  
    "  
    {
    0 }))) by 
    RFUNCT_1:def 1;
    
      then
    
      
    
    A1: Z 
    c= ( 
    dom ( 
    sin  
    -  
    cos )) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A2: ( 
    sin  
    -  
    cos ) 
    is_differentiable_on Z by 
    Th39;
    
      
    
      
    
    A3: 
    exp_R  
    is_differentiable_on Z & for x st x 
    in Z holds ( 
    exp_R  
    . x) 
    <>  
    0 by 
    FDIFF_1: 26,
    SIN_COS: 54,
    TAYLOR_1: 16;
    
      then
    
      
    
    A4: (( 
    sin  
    -  
    cos ) 
    /  
    exp_R ) 
    is_differentiable_on Z by 
    A2,
    FDIFF_2: 21;
    
      for x st x
    in Z holds (((( 
    sin  
    -  
    cos ) 
    /  
    exp_R ) 
    `| Z) 
    . x) 
    = ((2 
    * ( 
    cos  
    . x)) 
    / ( 
    exp_R  
    . x)) 
    
      proof
    
        let x;
    
        
    
        
    
    A5: ( 
    exp_R  
    . x) 
    <>  
    0 by 
    SIN_COS: 54;
    
        assume
    
        
    
    A6: x 
    in Z; 
    
        then
    
        
    
    A7: (( 
    sin  
    -  
    cos ) 
    . x) 
    = (( 
    sin  
    . x) 
    - ( 
    cos  
    . x)) by 
    A1,
    VALUED_1: 13;
    
        
    exp_R  
    is_differentiable_in x & ( 
    sin  
    -  
    cos ) 
    is_differentiable_in x by 
    A2,
    A6,
    FDIFF_1: 9,
    SIN_COS: 65;
    
        
    
        then (
    diff ((( 
    sin  
    -  
    cos ) 
    /  
    exp_R ),x)) 
    = (((( 
    diff (( 
    sin  
    -  
    cos ),x)) 
    * ( 
    exp_R  
    . x)) 
    - (( 
    diff ( 
    exp_R ,x)) 
    * (( 
    sin  
    -  
    cos ) 
    . x))) 
    / (( 
    exp_R  
    . x) 
    ^2 )) by 
    A5,
    FDIFF_2: 14
    
        .= ((((((
    sin  
    -  
    cos ) 
    `| Z) 
    . x) 
    * ( 
    exp_R  
    . x)) 
    - (( 
    diff ( 
    exp_R ,x)) 
    * (( 
    sin  
    -  
    cos ) 
    . x))) 
    / (( 
    exp_R  
    . x) 
    ^2 )) by 
    A2,
    A6,
    FDIFF_1:def 7
    
        .= (((((
    cos  
    . x) 
    + ( 
    sin  
    . x)) 
    * ( 
    exp_R  
    . x)) 
    - (( 
    diff ( 
    exp_R ,x)) 
    * (( 
    sin  
    -  
    cos ) 
    . x))) 
    / (( 
    exp_R  
    . x) 
    ^2 )) by 
    A1,
    A6,
    Th39
    
        .= (((((
    cos  
    . x) 
    + ( 
    sin  
    . x)) 
    * ( 
    exp_R  
    . x)) 
    - (( 
    exp_R  
    . x) 
    * (( 
    sin  
    . x) 
    - ( 
    cos  
    . x)))) 
    / (( 
    exp_R  
    . x) 
    ^2 )) by 
    A7,
    SIN_COS: 65
    
        .= (((2
    * ( 
    cos  
    . x)) 
    * ( 
    exp_R  
    . x)) 
    / (( 
    exp_R  
    . x) 
    * ( 
    exp_R  
    . x))) 
    
        .= ((2
    * ( 
    cos  
    . x)) 
    * (( 
    exp_R  
    . x) 
    / (( 
    exp_R  
    . x) 
    * ( 
    exp_R  
    . x)))) by 
    XCMPLX_1: 74
    
        .= ((2
    * ( 
    cos  
    . x)) 
    * ((( 
    exp_R  
    . x) 
    / ( 
    exp_R  
    . x)) 
    / ( 
    exp_R  
    . x))) by 
    XCMPLX_1: 78
    
        .= ((2
    * ( 
    cos  
    . x)) 
    * (1 
    / ( 
    exp_R  
    . x))) by 
    A5,
    XCMPLX_1: 60
    
        .= ((2
    * ( 
    cos  
    . x)) 
    / ( 
    exp_R  
    . x)) by 
    XCMPLX_1: 99;
    
        hence thesis by
    A4,
    A6,
    FDIFF_1:def 7;
    
      end;
    
      hence thesis by
    A2,
    A3,
    FDIFF_2: 21;
    
    end;
    
    theorem :: 
    
    FDIFF_7:44
    
    Z
    c= ( 
    dom ( 
    exp_R  
    (#)  
    sin )) implies ( 
    exp_R  
    (#)  
    sin ) 
    is_differentiable_on Z & for x st x 
    in Z holds ((( 
    exp_R  
    (#)  
    sin ) 
    `| Z) 
    . x) 
    = (( 
    exp_R  
    . x) 
    * (( 
    sin  
    . x) 
    + ( 
    cos  
    . x))) 
    
    proof
    
      
    
      
    
    A1: 
    sin  
    is_differentiable_on Z & 
    exp_R  
    is_differentiable_on Z by 
    FDIFF_1: 26,
    SIN_COS: 68,
    TAYLOR_1: 16;
    
      assume
    
      
    
    A2: Z 
    c= ( 
    dom ( 
    exp_R  
    (#)  
    sin )); 
    
      now
    
        let x;
    
        assume x
    in Z; 
    
        
    
        hence (((
    exp_R  
    (#)  
    sin ) 
    `| Z) 
    . x) 
    = ((( 
    sin  
    . x) 
    * ( 
    diff ( 
    exp_R ,x))) 
    + (( 
    exp_R  
    . x) 
    * ( 
    diff ( 
    sin ,x)))) by 
    A2,
    A1,
    FDIFF_1: 21
    
        .= (((
    sin  
    . x) 
    * ( 
    exp_R  
    . x)) 
    + (( 
    exp_R  
    . x) 
    * ( 
    diff ( 
    sin ,x)))) by 
    TAYLOR_1: 16
    
        .= (((
    sin  
    . x) 
    * ( 
    exp_R  
    . x)) 
    + (( 
    exp_R  
    . x) 
    * ( 
    cos  
    . x))) by 
    SIN_COS: 64
    
        .= ((
    exp_R  
    . x) 
    * (( 
    sin  
    . x) 
    + ( 
    cos  
    . x))); 
    
      end;
    
      hence thesis by
    A2,
    A1,
    FDIFF_1: 21;
    
    end;
    
    theorem :: 
    
    FDIFF_7:45
    
    Z
    c= ( 
    dom ( 
    exp_R  
    (#)  
    cos )) implies ( 
    exp_R  
    (#)  
    cos ) 
    is_differentiable_on Z & for x st x 
    in Z holds ((( 
    exp_R  
    (#)  
    cos ) 
    `| Z) 
    . x) 
    = (( 
    exp_R  
    . x) 
    * (( 
    cos  
    . x) 
    - ( 
    sin  
    . x))) 
    
    proof
    
      
    
      
    
    A1: 
    cos  
    is_differentiable_on Z & 
    exp_R  
    is_differentiable_on Z by 
    FDIFF_1: 26,
    SIN_COS: 67,
    TAYLOR_1: 16;
    
      assume
    
      
    
    A2: Z 
    c= ( 
    dom ( 
    exp_R  
    (#)  
    cos )); 
    
      now
    
        let x;
    
        assume x
    in Z; 
    
        
    
        hence (((
    exp_R  
    (#)  
    cos ) 
    `| Z) 
    . x) 
    = ((( 
    cos  
    . x) 
    * ( 
    diff ( 
    exp_R ,x))) 
    + (( 
    exp_R  
    . x) 
    * ( 
    diff ( 
    cos ,x)))) by 
    A2,
    A1,
    FDIFF_1: 21
    
        .= (((
    cos  
    . x) 
    * ( 
    exp_R  
    . x)) 
    + (( 
    exp_R  
    . x) 
    * ( 
    diff ( 
    cos ,x)))) by 
    TAYLOR_1: 16
    
        .= (((
    cos  
    . x) 
    * ( 
    exp_R  
    . x)) 
    + (( 
    exp_R  
    . x) 
    * ( 
    - ( 
    sin  
    . x)))) by 
    SIN_COS: 63
    
        .= ((
    exp_R  
    . x) 
    * (( 
    cos  
    . x) 
    - ( 
    sin  
    . x))); 
    
      end;
    
      hence thesis by
    A2,
    A1,
    FDIFF_1: 21;
    
    end;
    
    theorem :: 
    
    FDIFF_7:46
    
    
    
    
    
    Th46: ( 
    cos  
    . x) 
    <>  
    0 implies ( 
    sin  
    /  
    cos ) 
    is_differentiable_in x & ( 
    diff (( 
    sin  
    /  
    cos ),x)) 
    = (1 
    / (( 
    cos  
    . x) 
    ^2 )) 
    
    proof
    
      assume
    
      
    
    A1: ( 
    cos  
    . x) 
    <>  
    0 ; 
    
      
    
      
    
    A2: 
    sin  
    is_differentiable_in x & 
    cos  
    is_differentiable_in x by 
    SIN_COS: 63,
    SIN_COS: 64;
    
      
    
      then (
    diff (( 
    sin  
    /  
    cos ),x)) 
    = (((( 
    diff ( 
    sin ,x)) 
    * ( 
    cos  
    . x)) 
    - (( 
    diff ( 
    cos ,x)) 
    * ( 
    sin  
    . x))) 
    / (( 
    cos  
    . x) 
    ^2 )) by 
    A1,
    FDIFF_2: 14
    
      .= ((((
    cos  
    . x) 
    * ( 
    cos  
    . x)) 
    - (( 
    diff ( 
    cos ,x)) 
    * ( 
    sin  
    . x))) 
    / (( 
    cos  
    . x) 
    ^2 )) by 
    SIN_COS: 64
    
      .= ((((
    cos  
    . x) 
    * ( 
    cos  
    . x)) 
    - (( 
    - ( 
    sin  
    . x)) 
    * ( 
    sin  
    . x))) 
    / (( 
    cos  
    . x) 
    ^2 )) by 
    SIN_COS: 63
    
      .= ((((
    cos  
    . x) 
    * ( 
    cos  
    . x)) 
    + (( 
    sin  
    . x) 
    * ( 
    sin  
    . x))) 
    / (( 
    cos  
    . x) 
    ^2 )) 
    
      .= (1
    / (( 
    cos  
    . x) 
    ^2 )) by 
    SIN_COS: 28;
    
      hence thesis by
    A2,
    A1,
    FDIFF_2: 14;
    
    end;
    
    theorem :: 
    
    FDIFF_7:47
    
    
    
    
    
    Th47: ( 
    sin  
    . x) 
    <>  
    0 implies ( 
    cos  
    /  
    sin ) 
    is_differentiable_in x & ( 
    diff (( 
    cos  
    /  
    sin ),x)) 
    = ( 
    - (1 
    / (( 
    sin  
    . x) 
    ^2 ))) 
    
    proof
    
      assume
    
      
    
    A1: ( 
    sin  
    . x) 
    <>  
    0 ; 
    
      
    
      
    
    A2: 
    sin  
    is_differentiable_in x & 
    cos  
    is_differentiable_in x by 
    SIN_COS: 63,
    SIN_COS: 64;
    
      
    
      then (
    diff (( 
    cos  
    /  
    sin ),x)) 
    = (((( 
    diff ( 
    cos ,x)) 
    * ( 
    sin  
    . x)) 
    - (( 
    diff ( 
    sin ,x)) 
    * ( 
    cos  
    . x))) 
    / (( 
    sin  
    . x) 
    ^2 )) by 
    A1,
    FDIFF_2: 14
    
      .= ((((
    - ( 
    sin  
    . x)) 
    * ( 
    sin  
    . x)) 
    - (( 
    diff ( 
    sin ,x)) 
    * ( 
    cos  
    . x))) 
    / (( 
    sin  
    . x) 
    ^2 )) by 
    SIN_COS: 63
    
      .= (((
    - (( 
    sin  
    . x) 
    * ( 
    sin  
    . x))) 
    - (( 
    cos  
    . x) 
    * ( 
    cos  
    . x))) 
    / (( 
    sin  
    . x) 
    ^2 )) by 
    SIN_COS: 64
    
      .= ((
    - ((( 
    cos  
    . x) 
    ^2 ) 
    + (( 
    sin  
    . x) 
    * ( 
    sin  
    . x)))) 
    / (( 
    sin  
    . x) 
    ^2 )) 
    
      .= (
    - (((( 
    cos  
    . x) 
    ^2 ) 
    + (( 
    sin  
    . x) 
    ^2 )) 
    / (( 
    sin  
    . x) 
    ^2 ))) by 
    XCMPLX_1: 187
    
      .= (
    - (1 
    / (( 
    sin  
    . x) 
    ^2 ))) by 
    SIN_COS: 28;
    
      hence thesis by
    A2,
    A1,
    FDIFF_2: 14;
    
    end;
    
    theorem :: 
    
    FDIFF_7:48
    
    Z
    c= ( 
    dom (( 
    #Z 2) 
    * ( 
    sin  
    /  
    cos ))) & (for x st x 
    in Z holds ( 
    cos  
    . x) 
    <>  
    0 ) implies (( 
    #Z 2) 
    * ( 
    sin  
    /  
    cos )) 
    is_differentiable_on Z & for x st x 
    in Z holds (((( 
    #Z 2) 
    * ( 
    sin  
    /  
    cos )) 
    `| Z) 
    . x) 
    = ((2 
    * ( 
    sin  
    . x)) 
    / (( 
    cos  
    . x) 
    #Z 3)) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom (( 
    #Z 2) 
    * ( 
    sin  
    /  
    cos ))) and 
    
      
    
    A2: for x st x 
    in Z holds ( 
    cos  
    . x) 
    <>  
    0 ; 
    
      for y be
    object st y 
    in Z holds y 
    in ( 
    dom ( 
    sin  
    /  
    cos )) by 
    A1,
    FUNCT_1: 11;
    
      then
    
      
    
    A3: Z 
    c= ( 
    dom ( 
    sin  
    /  
    cos )) by 
    TARSKI:def 3;
    
      
    
      
    
    A4: for x st x 
    in Z holds (( 
    #Z 2) 
    * ( 
    sin  
    /  
    cos )) 
    is_differentiable_in x 
    
      proof
    
        let x;
    
        assume x
    in Z; 
    
        then (
    cos  
    . x) 
    <>  
    0 by 
    A2;
    
        then (
    sin  
    /  
    cos ) 
    is_differentiable_in x by 
    Th46;
    
        hence thesis by
    TAYLOR_1: 3;
    
      end;
    
      then
    
      
    
    A5: (( 
    #Z 2) 
    * ( 
    sin  
    /  
    cos )) 
    is_differentiable_on Z by 
    A1,
    FDIFF_1: 9;
    
      for x st x
    in Z holds (((( 
    #Z 2) 
    * ( 
    sin  
    /  
    cos )) 
    `| Z) 
    . x) 
    = ((2 
    * ( 
    sin  
    . x)) 
    / (( 
    cos  
    . x) 
    #Z 3)) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A6: x 
    in Z; 
    
        
    
        then
    
        
    
    A7: (( 
    sin  
    /  
    cos ) 
    . x) 
    = (( 
    sin  
    . x) 
    * (( 
    cos  
    . x) 
    " )) by 
    A3,
    RFUNCT_1:def 1
    
        .= ((
    sin  
    . x) 
    * (1 
    / ( 
    cos  
    . x))) by 
    XCMPLX_1: 215
    
        .= ((
    sin  
    . x) 
    / ( 
    cos  
    . x)) by 
    XCMPLX_1: 99;
    
        
    
        
    
    A8: ( 
    cos  
    . x) 
    <>  
    0 by 
    A2,
    A6;
    
        then
    
        
    
    A9: ( 
    sin  
    /  
    cos ) 
    is_differentiable_in x by 
    Th46;
    
        ((((
    #Z 2) 
    * ( 
    sin  
    /  
    cos )) 
    `| Z) 
    . x) 
    = ( 
    diff ((( 
    #Z 2) 
    * ( 
    sin  
    /  
    cos )),x)) by 
    A5,
    A6,
    FDIFF_1:def 7
    
        .= ((2
    * ((( 
    sin  
    /  
    cos ) 
    . x) 
    #Z (2 
    - 1))) 
    * ( 
    diff (( 
    sin  
    /  
    cos ),x))) by 
    A9,
    TAYLOR_1: 3
    
        .= ((2
    * ((( 
    sin  
    /  
    cos ) 
    . x) 
    #Z (2 
    - 1))) 
    * (1 
    / (( 
    cos  
    . x) 
    ^2 ))) by 
    A8,
    Th46
    
        .= ((2
    * ((( 
    sin  
    /  
    cos ) 
    . x) 
    #Z 1)) 
    / (( 
    cos  
    . x) 
    ^2 )) by 
    XCMPLX_1: 99
    
        .= ((2
    * (( 
    sin  
    . x) 
    / ( 
    cos  
    . x))) 
    / (( 
    cos  
    . x) 
    ^2 )) by 
    A7,
    PREPOWER: 35
    
        .= (((2
    * ( 
    sin  
    . x)) 
    / ( 
    cos  
    . x)) 
    / (( 
    cos  
    . x) 
    ^2 )) by 
    XCMPLX_1: 74
    
        .= ((2
    * ( 
    sin  
    . x)) 
    / (( 
    cos  
    . x) 
    * (( 
    cos  
    . x) 
    ^2 ))) by 
    XCMPLX_1: 78
    
        .= ((2
    * ( 
    sin  
    . x)) 
    / (( 
    cos  
    . x) 
    * (( 
    cos  
    . x) 
    #Z 2))) by 
    Th1
    
        .= ((2
    * ( 
    sin  
    . x)) 
    / ((( 
    cos  
    . x) 
    #Z 1) 
    * (( 
    cos  
    . x) 
    #Z 2))) by 
    PREPOWER: 35
    
        .= ((2
    * ( 
    sin  
    . x)) 
    / (( 
    cos  
    . x) 
    #Z (1 
    + 2))) by 
    A2,
    A6,
    PREPOWER: 44
    
        .= ((2
    * ( 
    sin  
    . x)) 
    / (( 
    cos  
    . x) 
    #Z 3)); 
    
        hence thesis;
    
      end;
    
      hence thesis by
    A1,
    A4,
    FDIFF_1: 9;
    
    end;
    
    theorem :: 
    
    FDIFF_7:49
    
    Z
    c= ( 
    dom (( 
    #Z 2) 
    * ( 
    cos  
    /  
    sin ))) & (for x st x 
    in Z holds ( 
    sin  
    . x) 
    <>  
    0 ) implies (( 
    #Z 2) 
    * ( 
    cos  
    /  
    sin )) 
    is_differentiable_on Z & for x st x 
    in Z holds (((( 
    #Z 2) 
    * ( 
    cos  
    /  
    sin )) 
    `| Z) 
    . x) 
    = ( 
    - ((2 
    * ( 
    cos  
    . x)) 
    / (( 
    sin  
    . x) 
    #Z 3))) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom (( 
    #Z 2) 
    * ( 
    cos  
    /  
    sin ))) and 
    
      
    
    A2: for x st x 
    in Z holds ( 
    sin  
    . x) 
    <>  
    0 ; 
    
      for y be
    object st y 
    in Z holds y 
    in ( 
    dom ( 
    cos  
    /  
    sin )) by 
    A1,
    FUNCT_1: 11;
    
      then
    
      
    
    A3: Z 
    c= ( 
    dom ( 
    cos  
    /  
    sin )) by 
    TARSKI:def 3;
    
      
    
      
    
    A4: for x st x 
    in Z holds (( 
    #Z 2) 
    * ( 
    cos  
    /  
    sin )) 
    is_differentiable_in x 
    
      proof
    
        let x;
    
        assume x
    in Z; 
    
        then (
    sin  
    . x) 
    <>  
    0 by 
    A2;
    
        then (
    cos  
    /  
    sin ) 
    is_differentiable_in x by 
    Th47;
    
        hence thesis by
    TAYLOR_1: 3;
    
      end;
    
      then
    
      
    
    A5: (( 
    #Z 2) 
    * ( 
    cos  
    /  
    sin )) 
    is_differentiable_on Z by 
    A1,
    FDIFF_1: 9;
    
      for x st x
    in Z holds (((( 
    #Z 2) 
    * ( 
    cos  
    /  
    sin )) 
    `| Z) 
    . x) 
    = ( 
    - ((2 
    * ( 
    cos  
    . x)) 
    / (( 
    sin  
    . x) 
    #Z 3))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A6: x 
    in Z; 
    
        
    
        then
    
        
    
    A7: (( 
    cos  
    /  
    sin ) 
    . x) 
    = (( 
    cos  
    . x) 
    * (( 
    sin  
    . x) 
    " )) by 
    A3,
    RFUNCT_1:def 1
    
        .= ((
    cos  
    . x) 
    * (1 
    / ( 
    sin  
    . x))) by 
    XCMPLX_1: 215
    
        .= ((
    cos  
    . x) 
    / ( 
    sin  
    . x)) by 
    XCMPLX_1: 99;
    
        
    
        
    
    A8: ( 
    sin  
    . x) 
    <>  
    0 by 
    A2,
    A6;
    
        then
    
        
    
    A9: ( 
    cos  
    /  
    sin ) 
    is_differentiable_in x by 
    Th47;
    
        ((((
    #Z 2) 
    * ( 
    cos  
    /  
    sin )) 
    `| Z) 
    . x) 
    = ( 
    diff ((( 
    #Z 2) 
    * ( 
    cos  
    /  
    sin )),x)) by 
    A5,
    A6,
    FDIFF_1:def 7
    
        .= ((2
    * ((( 
    cos  
    /  
    sin ) 
    . x) 
    #Z (2 
    - 1))) 
    * ( 
    diff (( 
    cos  
    /  
    sin ),x))) by 
    A9,
    TAYLOR_1: 3
    
        .= ((2
    * ((( 
    cos  
    /  
    sin ) 
    . x) 
    #Z (2 
    - 1))) 
    * ( 
    - (1 
    / (( 
    sin  
    . x) 
    ^2 )))) by 
    A8,
    Th47
    
        .= (
    - ((2 
    * ((( 
    cos  
    /  
    sin ) 
    . x) 
    #Z (2 
    - 1))) 
    * (1 
    / (( 
    sin  
    . x) 
    ^2 )))) 
    
        .= (
    - ((2 
    * ((( 
    cos  
    /  
    sin ) 
    . x) 
    #Z 1)) 
    / (( 
    sin  
    . x) 
    ^2 ))) by 
    XCMPLX_1: 99
    
        .= (
    - ((2 
    * (( 
    cos  
    . x) 
    / ( 
    sin  
    . x))) 
    / (( 
    sin  
    . x) 
    ^2 ))) by 
    A7,
    PREPOWER: 35
    
        .= (
    - (((2 
    * ( 
    cos  
    . x)) 
    / ( 
    sin  
    . x)) 
    / (( 
    sin  
    . x) 
    ^2 ))) by 
    XCMPLX_1: 74
    
        .= (
    - ((2 
    * ( 
    cos  
    . x)) 
    / (( 
    sin  
    . x) 
    * (( 
    sin  
    . x) 
    ^2 )))) by 
    XCMPLX_1: 78
    
        .= (
    - ((2 
    * ( 
    cos  
    . x)) 
    / (( 
    sin  
    . x) 
    * (( 
    sin  
    . x) 
    #Z 2)))) by 
    Th1
    
        .= (
    - ((2 
    * ( 
    cos  
    . x)) 
    / ((( 
    sin  
    . x) 
    #Z 1) 
    * (( 
    sin  
    . x) 
    #Z 2)))) by 
    PREPOWER: 35
    
        .= (
    - ((2 
    * ( 
    cos  
    . x)) 
    / (( 
    sin  
    . x) 
    #Z (1 
    + 2)))) by 
    A2,
    A6,
    PREPOWER: 44
    
        .= (
    - ((2 
    * ( 
    cos  
    . x)) 
    / (( 
    sin  
    . x) 
    #Z 3))); 
    
        hence thesis;
    
      end;
    
      hence thesis by
    A1,
    A4,
    FDIFF_1: 9;
    
    end;
    
    theorem :: 
    
    FDIFF_7:50
    
    Z
    c= ( 
    dom (( 
    sin  
    /  
    cos ) 
    * f)) & (for x st x 
    in Z holds (f 
    . x) 
    = (x 
    / 2) & ( 
    cos  
    . (f 
    . x)) 
    <>  
    0 ) implies (( 
    sin  
    /  
    cos ) 
    * f) 
    is_differentiable_on Z & for x st x 
    in Z holds (((( 
    sin  
    /  
    cos ) 
    * f) 
    `| Z) 
    . x) 
    = (1 
    / (1 
    + ( 
    cos  
    . x))) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom (( 
    sin  
    /  
    cos ) 
    * f)) and 
    
      
    
    A2: for x st x 
    in Z holds (f 
    . x) 
    = (x 
    / 2) & ( 
    cos  
    . (f 
    . x)) 
    <>  
    0 ; 
    
      
    
      
    
    A3: for x st x 
    in Z holds (f 
    . x) 
    = (((1 
    / 2) 
    * x) 
    +  
    0 ) 
    
      proof
    
        let x;
    
        assume x
    in Z; 
    
        then (f
    . x) 
    = (x 
    / 2) by 
    A2;
    
        hence thesis;
    
      end;
    
      for y be
    object st y 
    in Z holds y 
    in ( 
    dom f) by 
    A1,
    FUNCT_1: 11;
    
      then
    
      
    
    A4: Z 
    c= ( 
    dom f) by 
    TARSKI:def 3;
    
      then
    
      
    
    A5: f 
    is_differentiable_on Z by 
    A3,
    FDIFF_1: 23;
    
      
    
      
    
    A6: for x st x 
    in Z holds (( 
    sin  
    /  
    cos ) 
    * f) 
    is_differentiable_in x 
    
      proof
    
        let x;
    
        assume
    
        
    
    A7: x 
    in Z; 
    
        then (
    cos  
    . (f 
    . x)) 
    <>  
    0 by 
    A2;
    
        then
    
        
    
    A8: ( 
    sin  
    /  
    cos ) 
    is_differentiable_in (f 
    . x) by 
    Th46;
    
        f
    is_differentiable_in x by 
    A5,
    A7,
    FDIFF_1: 9;
    
        hence thesis by
    A8,
    FDIFF_2: 13;
    
      end;
    
      then
    
      
    
    A9: (( 
    sin  
    /  
    cos ) 
    * f) 
    is_differentiable_on Z by 
    A1,
    FDIFF_1: 9;
    
      for x st x
    in Z holds (((( 
    sin  
    /  
    cos ) 
    * f) 
    `| Z) 
    . x) 
    = (1 
    / (1 
    + ( 
    cos  
    . x))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A10: x 
    in Z; 
    
        then
    
        
    
    A11: f 
    is_differentiable_in x by 
    A5,
    FDIFF_1: 9;
    
        
    
        
    
    A12: ( 
    cos  
    . (f 
    . x)) 
    <>  
    0 by 
    A2,
    A10;
    
        then (
    sin  
    /  
    cos ) 
    is_differentiable_in (f 
    . x) by 
    Th46;
    
        
    
        then (
    diff ((( 
    sin  
    /  
    cos ) 
    * f),x)) 
    = (( 
    diff (( 
    sin  
    /  
    cos ),(f 
    . x))) 
    * ( 
    diff (f,x))) by 
    A11,
    FDIFF_2: 13
    
        .= ((1
    / (( 
    cos  
    . (f 
    . x)) 
    ^2 )) 
    * ( 
    diff (f,x))) by 
    A12,
    Th46
    
        .= ((
    diff (f,x)) 
    / (( 
    cos  
    . (f 
    . x)) 
    ^2 )) by 
    XCMPLX_1: 99
    
        .= ((
    diff (f,x)) 
    / (( 
    cos  
    . (x 
    / 2)) 
    ^2 )) by 
    A2,
    A10
    
        .= (((f
    `| Z) 
    . x) 
    / (( 
    cos  
    . (x 
    / 2)) 
    ^2 )) by 
    A5,
    A10,
    FDIFF_1:def 7
    
        .= ((1
    / 2) 
    / (( 
    cos  
    . (x 
    / 2)) 
    ^2 )) by 
    A3,
    A4,
    A10,
    FDIFF_1: 23
    
        .= (1
    / (2 
    * (( 
    cos  
    . (x 
    / 2)) 
    ^2 ))) by 
    XCMPLX_1: 78
    
        .= (1
    / (1 
    + ( 
    cos  
    . x))) by 
    Lm1;
    
        hence thesis by
    A9,
    A10,
    FDIFF_1:def 7;
    
      end;
    
      hence thesis by
    A1,
    A6,
    FDIFF_1: 9;
    
    end;
    
    theorem :: 
    
    FDIFF_7:51
    
    Z
    c= ( 
    dom (( 
    cos  
    /  
    sin ) 
    * f)) & (for x st x 
    in Z holds (f 
    . x) 
    = (x 
    / 2) & ( 
    sin  
    . (f 
    . x)) 
    <>  
    0 ) implies (( 
    cos  
    /  
    sin ) 
    * f) 
    is_differentiable_on Z & for x st x 
    in Z holds (((( 
    cos  
    /  
    sin ) 
    * f) 
    `| Z) 
    . x) 
    = ( 
    - (1 
    / (1 
    - ( 
    cos  
    . x)))) 
    
    proof
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom (( 
    cos  
    /  
    sin ) 
    * f)) and 
    
      
    
    A2: for x st x 
    in Z holds (f 
    . x) 
    = (x 
    / 2) & ( 
    sin  
    . (f 
    . x)) 
    <>  
    0 ; 
    
      
    
      
    
    A3: for x st x 
    in Z holds (f 
    . x) 
    = (((1 
    / 2) 
    * x) 
    +  
    0 ) 
    
      proof
    
        let x;
    
        assume x
    in Z; 
    
        then (f
    . x) 
    = (x 
    / 2) by 
    A2;
    
        hence thesis;
    
      end;
    
      for y be
    object st y 
    in Z holds y 
    in ( 
    dom f) by 
    A1,
    FUNCT_1: 11;
    
      then
    
      
    
    A4: Z 
    c= ( 
    dom f) by 
    TARSKI:def 3;
    
      then
    
      
    
    A5: f 
    is_differentiable_on Z by 
    A3,
    FDIFF_1: 23;
    
      
    
      
    
    A6: for x st x 
    in Z holds (( 
    cos  
    /  
    sin ) 
    * f) 
    is_differentiable_in x 
    
      proof
    
        let x;
    
        assume
    
        
    
    A7: x 
    in Z; 
    
        then (
    sin  
    . (f 
    . x)) 
    <>  
    0 by 
    A2;
    
        then
    
        
    
    A8: ( 
    cos  
    /  
    sin ) 
    is_differentiable_in (f 
    . x) by 
    Th47;
    
        f
    is_differentiable_in x by 
    A5,
    A7,
    FDIFF_1: 9;
    
        hence thesis by
    A8,
    FDIFF_2: 13;
    
      end;
    
      then
    
      
    
    A9: (( 
    cos  
    /  
    sin ) 
    * f) 
    is_differentiable_on Z by 
    A1,
    FDIFF_1: 9;
    
      for x st x
    in Z holds (((( 
    cos  
    /  
    sin ) 
    * f) 
    `| Z) 
    . x) 
    = ( 
    - (1 
    / (1 
    - ( 
    cos  
    . x)))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A10: x 
    in Z; 
    
        then
    
        
    
    A11: f 
    is_differentiable_in x by 
    A5,
    FDIFF_1: 9;
    
        
    
        
    
    A12: ( 
    sin  
    . (f 
    . x)) 
    <>  
    0 by 
    A2,
    A10;
    
        then (
    cos  
    /  
    sin ) 
    is_differentiable_in (f 
    . x) by 
    Th47;
    
        
    
        then (
    diff ((( 
    cos  
    /  
    sin ) 
    * f),x)) 
    = (( 
    diff (( 
    cos  
    /  
    sin ),(f 
    . x))) 
    * ( 
    diff (f,x))) by 
    A11,
    FDIFF_2: 13
    
        .= ((
    - (1 
    / (( 
    sin  
    . (f 
    . x)) 
    ^2 ))) 
    * ( 
    diff (f,x))) by 
    A12,
    Th47
    
        .= (
    - ((1 
    / (( 
    sin  
    . (f 
    . x)) 
    ^2 )) 
    * ( 
    diff (f,x)))) 
    
        .= (
    - (( 
    diff (f,x)) 
    / (( 
    sin  
    . (f 
    . x)) 
    ^2 ))) by 
    XCMPLX_1: 99
    
        .= (
    - (( 
    diff (f,x)) 
    / (( 
    sin  
    . (x 
    / 2)) 
    ^2 ))) by 
    A2,
    A10
    
        .= (
    - (((f 
    `| Z) 
    . x) 
    / (( 
    sin  
    . (x 
    / 2)) 
    ^2 ))) by 
    A5,
    A10,
    FDIFF_1:def 7
    
        .= (
    - ((1 
    / 2) 
    / (( 
    sin  
    . (x 
    / 2)) 
    ^2 ))) by 
    A3,
    A4,
    A10,
    FDIFF_1: 23
    
        .= (
    - (1 
    / (2 
    * (( 
    sin  
    . (x 
    / 2)) 
    ^2 )))) by 
    XCMPLX_1: 78
    
        .= (
    - (1 
    / (1 
    - ( 
    cos  
    . x)))) by 
    Lm2;
    
        hence thesis by
    A9,
    A10,
    FDIFF_1:def 7;
    
      end;
    
      hence thesis by
    A1,
    A6,
    FDIFF_1: 9;
    
    end;