hilb10_1.miz
begin
reserve i,j,n,n1,n2,m,k,u for
Nat,
r,r1,r2 for
Real,
x,y for
Integer,
a,b for non
trivial
Nat;
Lm1:
[\(((2
* n)
+ 1)
/ 2)/]
= n
proof
(2
* n)
< ((2
* n)
+ 1) by
NAT_1: 13;
then
A1: n
< (((2
* n)
+ 1)
/ 2) by
XREAL_1: 81;
((2
* n)
- 1)
< ((2
* n)
-
0 ) by
XREAL_1: 15;
then ((((2
* n)
+ 1)
- 2)
/ 2)
< n by
XREAL_1: 83;
then ((((2
* n)
+ 1)
/ 2)
- (2
/ 2))
< n;
hence thesis by
A1,
INT_1:def 6;
end;
Lm2:
[/(((2
* n)
+ 1)
/ 2)\]
= (n
+ 1)
proof
((2
* n)
+ 1)
<= (((2
* n)
+ 1)
+ 1) by
NAT_1: 11;
then ((2
* n)
+ 1)
<= (2
* (n
+ 1));
then
A1: (((2
* n)
+ 1)
/ 2)
<= (n
+ 1) by
XREAL_1: 79;
(2
* n)
< ((2
* n)
+ 1) by
NAT_1: 13;
then (n
+ 1)
< ((((2
* n)
+ 1)
/ 2)
+ 1) by
XREAL_1: 6,
XREAL_1: 81;
hence thesis by
A1,
INT_1:def 7;
end;
theorem ::
HILB10_1:1
Th1: for F be
FinSequence of
NAT st for k st 1
< k
<= (
len F) holds ((F
. k)
mod n)
=
0 holds ((
Sum F)
mod n)
= ((F
. 1)
mod n)
proof
defpred
P[
Nat] means for F be
FinSequence of
NAT st (
len F)
= $1 & for k st 1
< k
<= (
len F) holds ((F
. k)
mod n)
=
0 holds ((
Sum F)
mod n)
= ((F
. 1)
mod n);
A1:
P[
0 ]
proof
let F be
FinSequence of
NAT such that
A2: (
len F)
=
0 ;
F
=
{} by
A2;
hence thesis by
RVSUM_1: 72;
end;
A3:
P[k] implies
P[(k
+ 1)]
proof
assume
A4:
P[k];
set k1 = (k
+ 1);
let F be
FinSequence of
NAT such that
A5: (
len F)
= (k
+ 1) and
A6: for i be
Nat st 1
< i
<= (
len F) holds ((F
. i)
mod n)
=
0 ;
per cases ;
suppose k
=
0 ;
then F
=
<*(F
. 1)*> by
A5,
FINSEQ_1: 40;
hence thesis;
end;
suppose
A7: k
>
0 ;
F is non
empty by
A5;
then (
len F)
in (
dom F) by
FINSEQ_5: 6;
then ((F
| k)
^
<*(F
. k1)*>)
= (F
| k1) by
A5,
FINSEQ_5: 10
.= F by
A5;
then
A8: (
Sum F)
= ((
Sum (F
| k))
+ (F
. k1)) by
RVSUM_1: 74;
A9: k
<= k1 by
NAT_1: 11;
A10: (
len (F
| k))
= k by
A5,
NAT_1: 11,
FINSEQ_1: 59;
for i be
Nat st 1
< i
<= (
len (F
| k)) holds (((F
| k)
. i)
mod n)
=
0
proof
let i be
Nat such that
A11: 1
< i
<= (
len (F
| k));
((F
| k)
. i)
= (F
. i) & i
<= (
len F) by
A10,
A11,
A5,
A9,
FINSEQ_3: 112,
XXREAL_0: 2;
hence thesis by
A11,
A6;
end;
then
A12: ((
Sum (F
| k))
mod n)
= (((F
| k)
. 1)
mod n) by
A4,
A10;
A13: ((F
. 1)
mod n)
= ((
Sum (F
| k))
mod n) by
A7,
NAT_1: 14,
A12,
FINSEQ_3: 112;
per cases ;
suppose n
=
0 ;
then ((
Sum F)
mod n)
=
0
= ((F
. 1)
mod n) by
INT_1:def 10;
hence thesis;
end;
suppose
A14: n
>
0 ;
A15: (
Sum (F
| k)) is
Nat & (
Sum F) is
Nat by
TARSKI: 1;
(
0
+ 1)
< k1 by
A7,
XREAL_1: 8;
then
0
= (((
Sum F)
- (
Sum (F
| k)))
mod n) by
A5,
A6,
A8;
hence thesis by
A13,
A15,
A14,
INT_4: 22;
end;
end;
end;
P[k] from
NAT_1:sch 2(
A1,
A3);
hence thesis;
end;
theorem ::
HILB10_1:2
Th2: for f be
complex-valued
FinSequence holds ex e,o be
complex-valued
FinSequence st (
len e)
=
[\((
len f)
/ 2)/] & (
len o)
=
[/((
len f)
/ 2)\] & (
Sum f)
= ((
Sum e)
+ (
Sum o)) & for n holds (e
. n)
= (f
. (2
* n)) & (o
. n)
= (f
. ((2
* n)
- 1))
proof
defpred
P[
Nat] means for f be
complex-valued
FinSequence st (
len f)
= $1 holds ex e,o be
complex-valued
FinSequence st (
len e)
=
[\((
len f)
/ 2)/] & (
len o)
=
[/((
len f)
/ 2)\] & (
Sum f)
= ((
Sum e)
+ (
Sum o)) & for n holds (e
. n)
= (f
. (2
* n)) & (o
. n)
= (f
. ((2
* n)
- 1));
A1:
P[
0 ]
proof
let f be
complex-valued
FinSequence such that
A2: (
len f)
=
0 ;
take f, f;
thus (
len f)
=
[\((
len f)
/ 2)/] & (
len f)
=
[/((
len f)
/ 2)\] by
A2,
INT_1: 25,
INT_1: 30;
f
= (
<*>
REAL ) by
A2;
hence (
Sum f)
= ((
Sum f)
+ (
Sum f)) by
RVSUM_1: 72;
let n;
f
=
{} by
A2;
then (f
. n)
=
0
= (f
. (2
* n)) & (f
. n)
=
0
= (f
. ((2
* n)
- 1));
hence thesis;
end;
A3:
P[n] implies
P[(n
+ 1)]
proof
assume
A4:
P[n];
set n1 = (n
+ 1);
let f be
complex-valued
FinSequence such that
A5: (
len f)
= n1;
set fn = (f
| n);
A6: f
= (fn
^
<*(f
. n1)*>) by
A5,
FINSEQ_3: 55;
n
< n1 by
NAT_1: 13;
then (
len fn)
= n by
A5,
FINSEQ_1: 59;
then
consider e,o be
complex-valued
FinSequence such that
A7: (
len e)
=
[\(n
/ 2)/] & (
len o)
=
[/(n
/ 2)\] and
A8: (
Sum fn)
= ((
Sum e)
+ (
Sum o)) and
A9: for k holds (e
. k)
= (fn
. (2
* k)) & (o
. k)
= (fn
. ((2
* k)
- 1)) by
A4;
per cases ;
suppose n is
even;
then
consider k such that
A10: (2
* k)
= n by
ABIAN:def 2;
take e, oF = (o
^
<*(f
. n1)*>);
A11: (
len oF)
= ((
len o)
+ 1) by
FINSEQ_2: 16;
A12:
[\(n
/ 2)/]
= k
=
[\((n
+ 1)
/ 2)/] &
[/(n
/ 2)\]
= k &
[/((n
+ 1)
/ 2)\]
= (k
+ 1) by
A10,
INT_1: 25,
INT_1: 30,
Lm1,
Lm2;
hence (
len e)
=
[\((
len f)
/ 2)/] & (
len oF)
=
[/((
len f)
/ 2)\] by
FINSEQ_2: 16,
A5,
A7;
thus (
Sum f)
= ((
Sum fn)
+ (f
. n1)) by
A6,
RVSUM_2: 31
.= ((
Sum e)
+ ((
Sum o)
+ (f
. n1))) by
A8
.= ((
Sum e)
+ (
Sum oF)) by
RVSUM_2: 31;
let i be
Nat;
thus (e
. i)
= (f
. (2
* i))
proof
per cases ;
suppose (2
* i)
<= n;
then (fn
. (2
* i))
= (f
. (2
* i)) by
FINSEQ_3: 112;
hence thesis by
A9;
end;
suppose (2
* i)
> n;
then
A13: i
> k by
A10,
XREAL_1: 64;
then i
>= (k
+ 1) by
NAT_1: 13;
then (2
* i)
>= (2
* (k
+ 1)) & (2
* (k
+ 1))
= ((
len f)
+ 1) by
A10,
A5,
XREAL_1: 64;
then (2
* i)
> (
len f) by
NAT_1: 13;
then not (2
* i)
in (
dom f) & not i
in (
dom e) by
FINSEQ_3: 25,
A7,
A12,
A13;
then (f
. (2
* i))
=
0
= (e
. i) by
FUNCT_1:def 2;
hence thesis;
end;
end;
thus (oF
. i)
= (f
. ((2
* i)
- 1))
proof
per cases ;
suppose i
=
0 ;
then not i
in (
dom oF) & not ((2
* i)
- 1)
in (
dom f) by
FINSEQ_3: 25;
then (oF
. i)
=
0
= (f
. ((2
* i)
- 1)) by
FUNCT_1:def 2;
hence thesis;
end;
suppose
A14: i
<>
0 & (2
* i)
<= n;
then 1
<= i
<= k by
A10,
XREAL_1: 68,
NAT_1: 14;
then i
in (
dom o) by
A7,
A12,
FINSEQ_3: 25;
then
A15: (oF
. i)
= (o
. i) by
FINSEQ_1:def 7
.= (fn
. ((2
* i)
- 1)) by
A9;
((2
* i)
- 1)
<= (n
-
0 ) by
XREAL_1: 13,
A14;
hence thesis by
A15,
A14,
FINSEQ_3: 112;
end;
suppose (2
* i)
> n;
then i
> k by
A10,
XREAL_1: 64;
then i
>= (k
+ 1) by
NAT_1: 13;
then (2
* i)
>= (2
* (k
+ 1)) & (2
* (k
+ 1))
= ((
len f)
+ 1) by
A10,
A5,
XREAL_1: 64;
then
A16: ((2
* i)
- 1)
>= (
len f) by
XREAL_1: 19;
per cases by
A16,
XXREAL_0: 1;
suppose ((2
* i)
- 1)
= (
len f);
hence thesis by
A5,
A10,
A7,
A12;
end;
suppose
A17: ((2
* i)
- 1)
> (
len f);
then not ((2
* i)
- 1)
in (
dom f) by
FINSEQ_3: 25;
then
A18: (f
. ((2
* i)
- 1))
=
0 by
FUNCT_1:def 2;
(2
* i)
> ((
len f)
+ 1) by
A17,
XREAL_1: 20;
then (2
* i)
> (2
* (k
+ 1)) by
A10,
A5;
then i
> (k
+ 1) by
XREAL_1: 64;
then not i
in (
dom oF) by
A11,
A12,
A7,
FINSEQ_3: 25;
hence thesis by
A18,
FUNCT_1:def 2;
end;
end;
end;
end;
suppose n is
odd;
then
consider k such that
A19: n
= ((2
* k)
+ 1) by
ABIAN: 9;
take eF = (e
^
<*(f
. n1)*>), o;
A20: (
len eF)
= ((
len e)
+ 1) by
FINSEQ_2: 16;
A21:
[\(n
/ 2)/]
= k &
[\((n
+ 1)
/ 2)/]
= (k
+ 1) &
[/(n
/ 2)\]
= (k
+ 1) &
[/((n
+ 1)
/ 2)\]
= (k
+ 1) by
A19,
INT_1: 25,
INT_1: 30,
Lm1,
Lm2;
hence (
len eF)
=
[\((
len f)
/ 2)/] & (
len o)
=
[/((
len f)
/ 2)\] by
FINSEQ_2: 16,
A5,
A7;
thus (
Sum f)
= ((
Sum fn)
+ (f
. n1)) by
A6,
RVSUM_2: 31
.= (((
Sum e)
+ (f
. n1))
+ (
Sum o)) by
A8
.= ((
Sum eF)
+ (
Sum o)) by
RVSUM_2: 31;
let i be
Nat;
thus (eF
. i)
= (f
. (2
* i))
proof
per cases ;
suppose i
=
0 ;
hence thesis;
end;
suppose i
<>
0 & i
<= k;
then 1
<= i
<= k & (2
* i)
<= (2
* k) by
NAT_1: 14,
XREAL_1: 64;
then i
in (
dom e) & (2
* i)
< n by
A19,
NAT_1: 13,
FINSEQ_3: 25,
A7,
A21;
then (eF
. i)
= (e
. i) & (fn
. (2
* i))
= (f
. (2
* i)) by
FINSEQ_1:def 7,
FINSEQ_3: 112;
hence thesis by
A9;
end;
suppose i
> k;
then
A22: i
>= (k
+ 1) by
NAT_1: 13;
per cases by
A22,
XXREAL_0: 1;
suppose i
= (k
+ 1);
hence thesis by
A19,
A7,
A21;
end;
suppose
A23: i
> (k
+ 1);
then not i
in (
dom eF) by
FINSEQ_3: 25,
A7,
A20,
A21;
then
A24: (eF
. i)
=
0 by
FUNCT_1:def 2;
(2
* i)
> (2
* (k
+ 1)) by
A23,
XREAL_1: 68;
then not (2
* i)
in (
dom f) by
A5,
A19,
FINSEQ_3: 25;
hence thesis by
A24,
FUNCT_1:def 2;
end;
end;
end;
thus (o
. i)
= (f
. ((2
* i)
- 1))
proof
per cases ;
suppose i
=
0 ;
then not i
in (
dom o) & not ((2
* i)
- 1)
in (
dom f) by
FINSEQ_3: 25;
then (o
. i)
=
0
= (f
. ((2
* i)
- 1)) by
FUNCT_1:def 2;
hence thesis;
end;
suppose
A25: i
<>
0 & ((2
* i)
- 1)
<= n;
(fn
. ((2
* i)
- 1))
= (f
. ((2
* i)
- 1)) by
A25,
FINSEQ_3: 112;
hence thesis by
A9;
end;
suppose ((2
* i)
- 1)
> n;
then (2
* i)
> (n
+ 1) by
XREAL_1: 20;
then (2
* i)
> (2
* (k
+ 1)) by
A19;
then
A26: i
> (k
+ 1) by
XREAL_1: 64;
then not i
in (
dom o) by
FINSEQ_3: 25,
A7,
A21;
then
A27: (o
. i)
=
0 by
FUNCT_1:def 2;
i
>= ((k
+ 1)
+ 1) by
A26,
NAT_1: 13;
then (2
* i)
>= (2
* ((k
+ 1)
+ 1)) by
XREAL_1: 64;
then (2
* i)
>= (((
len f)
+ 1)
+ 1) by
A19,
A5;
then (2
* i)
> ((
len f)
+ 1) by
NAT_1: 13;
then not ((2
* i)
- 1)
in (
dom f) by
XREAL_1: 20,
FINSEQ_3: 25;
hence thesis by
A27,
FUNCT_1:def 2;
end;
end;
end;
end;
P[n] from
NAT_1:sch 2(
A1,
A3);
hence thesis;
end;
registration
let a;
cluster ((a
^2 )
-' 1) -> non
square;
coherence
proof
assume
A1: ((a
^2 )
-' 1) is
square;
a
>= 2 by
NAT_2: 29;
then
A2: (a
^2 )
>= (2
* 2) by
XREAL_1: 66;
A3: ((a
^2 )
-' 1)
= ((a
^2 )
- 1) by
XREAL_1: 233,
NAT_1: 14;
then ((a
^2 )
-' 1) is non
zero by
A2;
then (((a
^2 )
-' 1)
+ 1) is non
square by
A1;
hence thesis by
A3;
end;
end
begin
definition
let a,n be
Nat;
assume
A1: a is non
trivial;
::
HILB10_1:def1
func
Px (a,n) ->
Nat means
:
Def1: for b be non
trivial
Nat st b
= a holds ex y be
Nat st (it
+ (y
* (
sqrt ((b
^2 )
-' 1))))
= ((((
min_Pell's_solution_of ((b
^2 )
-' 1))
`1 )
+ (((
min_Pell's_solution_of ((b
^2 )
-' 1))
`2 )
* (
sqrt ((b
^2 )
-' 1))))
|^ n);
existence
proof
reconsider A = a as non
trivial
Nat by
A1;
consider x,y be
Nat such that
A2: (x
+ (y
* (
sqrt ((A
^2 )
-' 1))))
= ((((
min_Pell's_solution_of ((A
^2 )
-' 1))
`1 )
+ (((
min_Pell's_solution_of ((A
^2 )
-' 1))
`2 )
* (
sqrt ((A
^2 )
-' 1))))
|^ n) by
PELLS_EQ: 4;
take x;
thus thesis by
A2;
end;
uniqueness
proof
reconsider A = a as non
trivial
Nat by
A1;
let p1,p2 be
Nat such that
A3: for b be non
trivial
Nat st b
= a holds ex y be
Nat st (p1
+ (y
* (
sqrt ((b
^2 )
-' 1))))
= ((((
min_Pell's_solution_of ((b
^2 )
-' 1))
`1 )
+ (((
min_Pell's_solution_of ((b
^2 )
-' 1))
`2 )
* (
sqrt ((b
^2 )
-' 1))))
|^ n) and
A4: for b be non
trivial
Nat st b
= a holds ex y be
Nat st (p2
+ (y
* (
sqrt ((b
^2 )
-' 1))))
= ((((
min_Pell's_solution_of ((b
^2 )
-' 1))
`1 )
+ (((
min_Pell's_solution_of ((b
^2 )
-' 1))
`2 )
* (
sqrt ((b
^2 )
-' 1))))
|^ n);
set m = (
min_Pell's_solution_of ((A
^2 )
-' 1));
A5: ex y be
Nat st (p1
+ (y
* (
sqrt ((A
^2 )
-' 1))))
= (((m
`1 )
+ ((m
`2 )
* (
sqrt ((A
^2 )
-' 1))))
|^ n) by
A3;
ex y be
Nat st (p2
+ (y
* (
sqrt ((A
^2 )
-' 1))))
= (((m
`1 )
+ ((m
`2 )
* (
sqrt ((A
^2 )
-' 1))))
|^ n) by
A4;
hence thesis by
A5,
PELLS_EQ: 3;
end;
end
definition
let a,n be
Nat;
assume
A1: a is non
trivial;
::
HILB10_1:def2
func
Py (a,n) ->
Nat means
:
Def2: for b be non
trivial
Nat st b
= a holds ((
Px (b,n))
+ (it
* (
sqrt ((b
^2 )
-' 1))))
= ((((
min_Pell's_solution_of ((b
^2 )
-' 1))
`1 )
+ (((
min_Pell's_solution_of ((b
^2 )
-' 1))
`2 )
* (
sqrt ((b
^2 )
-' 1))))
|^ n);
existence
proof
reconsider A = a as non
trivial
Nat by
A1;
consider y be
Nat such that
A2: ((
Px (A,n))
+ (y
* (
sqrt ((A
^2 )
-' 1))))
= ((((
min_Pell's_solution_of ((A
^2 )
-' 1))
`1 )
+ (((
min_Pell's_solution_of ((A
^2 )
-' 1))
`2 )
* (
sqrt ((A
^2 )
-' 1))))
|^ n) by
Def1;
take y;
thus thesis by
A2;
end;
uniqueness
proof
reconsider A = a as non
trivial
Nat by
A1;
let p1,p2 be
Nat such that
A3: for b be non
trivial
Nat st b
= a holds ((
Px (b,n))
+ (p1
* (
sqrt ((b
^2 )
-' 1))))
= ((((
min_Pell's_solution_of ((b
^2 )
-' 1))
`1 )
+ (((
min_Pell's_solution_of ((b
^2 )
-' 1))
`2 )
* (
sqrt ((b
^2 )
-' 1))))
|^ n) and
A4: for b be non
trivial
Nat st b
= a holds ((
Px (b,n))
+ (p2
* (
sqrt ((b
^2 )
-' 1))))
= ((((
min_Pell's_solution_of ((b
^2 )
-' 1))
`1 )
+ (((
min_Pell's_solution_of ((b
^2 )
-' 1))
`2 )
* (
sqrt ((b
^2 )
-' 1))))
|^ n);
set m = (
min_Pell's_solution_of ((A
^2 )
-' 1));
((
Px (A,n))
+ (p1
* (
sqrt ((A
^2 )
-' 1))))
= (((m
`1 )
+ ((m
`2 )
* (
sqrt ((A
^2 )
-' 1))))
|^ n)
= ((
Px (A,n))
+ (p2
* (
sqrt ((A
^2 )
-' 1)))) by
A3,
A4;
hence thesis by
PELLS_EQ: 3;
end;
end
theorem ::
HILB10_1:3
Th6: (
Px (a,
0 ))
= 1 & (
Py (a,
0 ))
=
0
proof
set A = ((a
^2 )
-' 1), M = (
min_Pell's_solution_of A);
((
Px (a,
0 ))
+ ((
Py (a,
0 ))
* (
sqrt ((a
^2 )
-' 1))))
= (((M
`1 )
+ ((M
`2 )
* (
sqrt A)))
|^
0 ) by
Def2
.= (1
+ (
0
* (
sqrt A))) by
NEWTON: 4;
hence thesis by
PELLS_EQ: 3;
end;
Lm3: for x,y be
Integer, D be
Nat holds ((x
^2 )
- (D
* (y
^2 )))
= 1 iff
[x, y] is
Pell's_solution of D
proof
let x,y be
Integer, D be
Nat;
A1: (
[x, y]
`1 )
= x & (
[x, y]
`2 )
= y;
x
in
INT & y
in
INT by
INT_1:def 2;
then
[x, y]
in
[:
INT ,
INT :] by
ZFMISC_1: 87;
hence ((x
^2 )
- (D
* (y
^2 )))
= 1 implies
[x, y] is
Pell's_solution of D by
A1,
PELLS_EQ:def 1;
assume
[x, y] is
Pell's_solution of D;
hence thesis by
PELLS_EQ:def 1,
A1;
end;
theorem ::
HILB10_1:4
Th7:
[n1, n2] is
Pell's_solution of ((a
^2 )
-' 1) implies ex n st n1
= (
Px (a,n)) & n2
= (
Py (a,n))
proof
set D = ((a
^2 )
-' 1);
assume
A1:
[n1, n2] is
Pell's_solution of D;
then
reconsider N =
[n1, n2] as
Pell's_solution of D;
A2: ((n1
^2 )
- (((a
^2 )
-' 1)
* (n2
^2 )))
= 1 by
A1,
Lm3;
per cases ;
suppose
A3: n2
=
0 ;
then n1
<= 1 & n1
>= 1 by
A2,
SQUARE_1: 51,
NAT_1: 14;
then n1
= 1 by
XXREAL_0: 1;
then n1
= (
Px (a,
0 )) & n2
= (
Py (a,
0 )) by
A3,
Th6;
hence thesis;
end;
suppose n2
>
0 ;
then N is
positive by
A2;
then
consider n be
positive
Nat such that
A4: (n1
+ (n2
* (
sqrt D)))
= ((((
min_Pell's_solution_of D)
`1 )
+ (((
min_Pell's_solution_of D)
`2 )
* (
sqrt D)))
|^ n) by
PELLS_EQ: 21;
consider y be
Nat such that
A5: ((
Px (a,n))
+ (y
* (
sqrt D)))
= ((((
min_Pell's_solution_of D)
`1 )
+ (((
min_Pell's_solution_of D)
`2 )
* (
sqrt D)))
|^ n) by
Def1;
A6: n1
= (
Px (a,n)) by
A5,
A4,
PELLS_EQ: 3;
((
Px (a,n))
+ ((
Py (a,n))
* (
sqrt D)))
= (n1
+ (n2
* (
sqrt D))) by
A4,
Def2;
then n2
= (
Py (a,n)) by
PELLS_EQ: 3;
hence thesis by
A6;
end;
end;
theorem ::
HILB10_1:5
Th8:
[a, 1]
= (
min_Pell's_solution_of ((a
^2 )
-' 1))
proof
set A = ((a
^2 )
-' 1), M = (
min_Pell's_solution_of A);
assume
A1:
[a, 1]
<> M;
((a
^2 )
-' 1)
= ((a
^2 )
- 1) by
XREAL_1: 233,
NAT_1: 14;
then ((a
^2 )
- (((a
^2 )
-' 1)
* (1
^2 )))
= 1;
then
reconsider a1 =
[a, 1] as
Pell's_solution of A by
Lm3;
(M
`1 )
<> a or (M
`2 )
<> 1 by
A1;
then
A2: ((M
`1 )
+ ((M
`2 )
* (
sqrt A)))
<> (a
+ (1
* (
sqrt A))) by
PELLS_EQ: 3;
A3: (
sqrt A)
>=
0 by
SQUARE_1:def 2;
a1 is
positive;
then
A4: (M
`1 )
<= (a1
`1 ) & (M
`2 )
<= (a1
`2 ) by
PELLS_EQ:def 3;
then ((M
`2 )
* (
sqrt A))
<= ((a1
`2 )
* (
sqrt A)) by
A3,
XREAL_1: 64;
then ((M
`1 )
+ ((M
`2 )
* (
sqrt A)))
<= ((a1
`1 )
+ ((a1
`2 )
* (
sqrt A))) by
A4,
XREAL_1: 7;
then
A5: ((M
`1 )
+ ((M
`2 )
* (
sqrt A)))
< ((a1
`1 )
+ ((a1
`2 )
* (
sqrt A))) by
A2,
XXREAL_0: 1;
1
< ((M
`1 )
+ ((M
`2 )
* (
sqrt A))) by
PELLS_EQ: 18;
hence thesis by
NAT_1: 14,
A5,
PELLS_EQ: 19;
end;
theorem ::
HILB10_1:6
Th9: (
Px (a,(n
+ 1)))
= (((
Px (a,n))
* a)
+ ((
Py (a,n))
* ((a
^2 )
-' 1))) & (
Py (a,(n
+ 1)))
= ((
Px (a,n))
+ ((
Py (a,n))
* a))
proof
set A = ((a
^2 )
-' 1), M = (
min_Pell's_solution_of A);
set n1 = (n
+ 1);
A1: ((
sqrt A)
^2 )
= A by
SQUARE_1:def 2;
A2: M
=
[a, 1] by
Th8;
((
Px (a,n1))
+ ((
Py (a,n1))
* (
sqrt A)))
= (((M
`1 )
+ ((M
`2 )
* (
sqrt A)))
|^ n1) by
Def2
.= ((((M
`1 )
+ ((M
`2 )
* (
sqrt A)))
|^ n)
* ((M
`1 )
+ ((M
`2 )
* (
sqrt A)))) by
NEWTON: 6
.= (((
Px (a,n))
+ ((
Py (a,n))
* (
sqrt A)))
* ((M
`1 )
+ ((M
`2 )
* (
sqrt A)))) by
Def2
.= ((((
Px (a,n))
* a)
+ ((
Py (a,n))
* A))
+ (((
Px (a,n))
+ ((
Py (a,n))
* a))
* (
sqrt A))) by
A2,
A1;
hence thesis by
PELLS_EQ: 3;
end;
theorem ::
HILB10_1:7
Th10: (((
Px (a,n))
^2 )
- (((a
^2 )
-' 1)
* ((
Py (a,n))
^2 )))
= 1
proof
set m = (
min_Pell's_solution_of ((a
^2 )
-' 1));
per cases ;
suppose n
=
0 ;
then (
Px (a,n))
= 1 & (
Py (a,n))
=
0 by
Th6;
hence thesis;
end;
suppose
A1: n
>
0 ;
((
Px (a,n))
+ ((
Py (a,n))
* (
sqrt ((a
^2 )
-' 1))))
= (((m
`1 )
+ ((m
`2 )
* (
sqrt ((a
^2 )
-' 1))))
|^ n) by
Def2;
then
reconsider PP =
[(
Px (a,n)), (
Py (a,n))] as
positive
Pell's_solution of ((a
^2 )
-' 1) by
A1,
PELLS_EQ: 20;
(((PP
`1 )
^2 )
- (((a
^2 )
-' 1)
* ((PP
`2 )
^2 )))
= 1 by
PELLS_EQ:def 1;
hence thesis;
end;
end;
theorem ::
HILB10_1:8
Th11: ((
Px (a,n))
+ ((
Py (a,n))
* (
sqrt ((a
^2 )
-' 1))))
= ((a
+ (
sqrt ((a
^2 )
-' 1)))
|^ n) & ((
Px (a,n))
+ ((
- (
Py (a,n)))
* (
sqrt ((a
^2 )
-' 1))))
= ((a
- (
sqrt ((a
^2 )
-' 1)))
|^ n)
proof
set A = ((a
^2 )
-' 1), M = (
min_Pell's_solution_of A);
set n1 = (n
+ 1);
A1: M
=
[a, 1] by
Th8;
A2: ((
Px (a,n))
+ ((
Py (a,n))
* (
sqrt A)))
= (((M
`1 )
+ ((M
`2 )
* (
sqrt A)))
|^ n) by
Def2
.= ((a
+ (1
* (
sqrt A)))
|^ n) by
A1;
then ((
Px (a,n))
- ((
Py (a,n))
* (
sqrt A)))
= ((a
- (1
* (
sqrt A)))
|^ n) by
PELLS_EQ: 6;
hence thesis by
A2;
end;
theorem ::
HILB10_1:9
Th12: ex Fy,Fx be
FinSequence of
NAT st (
Sum Fy)
= (
Py (a,n)) & (
len Fy)
=
[\((n
+ 1)
/ 2)/] & (for i st 1
<= i
<= ((n
+ 1)
/ 2) holds (Fy
. i)
= (((n
choose ((2
* i)
-' 1))
* (a
|^ ((n
+ 1)
-' (2
* i))))
* (((a
^2 )
-' 1)
|^ (i
-' 1)))) & ((a
|^ n)
+ (
Sum Fx))
= (
Px (a,n)) & (
len Fx)
=
[\(n
/ 2)/] & for i st 1
<= i
<= (n
/ 2) holds (Fx
. i)
= (((n
choose (2
* i))
* (a
|^ (n
-' (2
* i))))
* (((a
^2 )
-' 1)
|^ i))
proof
set A = ((a
^2 )
-' 1);
defpred
P[
Nat] means ex Fy,Fx be
FinSequence of
NAT st (
Sum Fy)
= (
Py (a,$1)) & (
len Fy)
=
[\(($1
+ 1)
/ 2)/] & (for i be
Nat st 1
<= i
<= (($1
+ 1)
/ 2) holds (Fy
. i)
= ((($1
choose ((2
* i)
-' 1))
* (a
|^ (($1
+ 1)
-' (2
* i))))
* (A
|^ (i
-' 1)))) & ((a
|^ $1)
+ (
Sum Fx))
= (
Px (a,$1)) & (
len Fx)
=
[\($1
/ 2)/] & for i be
Nat st 1
<= i
<= ($1
/ 2) holds (Fx
. i)
= ((($1
choose (2
* i))
* (a
|^ ($1
-' (2
* i))))
* (A
|^ i));
A1:
P[
0 ]
proof
set F = (
<*>
NAT );
A2: (
len F)
=
0 ;
A3:
0
=
[\(((
0
* 2)
+ 1)
/ 2)/] by
Lm1;
A4: for i be
Nat st 1
<= i
<= ((
0
+ 1)
/ 2) holds (F
. i)
= (((
0
choose ((2
* i)
-' 1))
* (a
|^ ((
0
+ 1)
-' (2
* i))))
* (A
|^ (i
-' 1))) by
XXREAL_0: 2;
A5: (
Sum F)
= (
Py (a,
0 )) by
Th6,
RVSUM_1: 72;
(a
|^
0 )
= 1 by
NEWTON: 4;
then
A6: ((a
|^
0 )
+ (
Sum F))
= (
Px (a,
0 )) by
RVSUM_1: 72,
Th6;
for i be
Nat st 1
<= i
<= (
0
/ 2) holds (F
. i)
= (((
0
choose (2
* i))
* (a
|^ (
0
-' (2
* i))))
* (A
|^ i));
hence thesis by
A2,
A3,
A4,
A5,
A6;
end;
A7: for n be
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n;
set n1 = (n
+ 1);
assume
P[n];
then
consider Fy,Fx be
FinSequence of
NAT such that
A8: (
Sum Fy)
= (
Py (a,n)) & (
len Fy)
=
[\(n1
/ 2)/] and
A9: for i be
Nat st 1
<= i
<= (n1
/ 2) holds (Fy
. i)
= (((n
choose ((2
* i)
-' 1))
* (a
|^ (n1
-' (2
* i))))
* (A
|^ (i
-' 1))) and
A10: ((a
|^ n)
+ (
Sum Fx))
= (
Px (a,n)) & (
len Fx)
=
[\(n
/ 2)/] and
A11: for i be
Nat st 1
<= i
<= (n
/ 2) holds (Fx
. i)
= (((n
choose (2
* i))
* (a
|^ (n
-' (2
* i))))
* (A
|^ i));
set Fxa = (
<*(a
|^ n)*>
^ Fx);
set Fx0 = (Fx
^
<*
0 *>);
set Fy0 = (Fy
^
<*
0 *>);
A12: (
Px (a,n1))
= ((((a
|^ n)
+ (
Sum Fx))
* a)
+ ((
Sum Fy)
* A)) by
Th9,
A8,
A10
.= ((((a
|^ n)
* a)
+ ((
Sum Fx)
* a))
+ ((
Sum Fy)
* A))
.= (((a
|^ n1)
+ ((
Sum Fx)
* a))
+ ((
Sum Fy)
* A)) by
NEWTON: 6
.= (((a
|^ n1)
+ (
Sum (a
* Fx)))
+ ((
Sum Fy)
* A)) by
RVSUM_1: 87;
A13: ((
Sum Fy)
* A)
= (
Sum (A
* Fy)) by
RVSUM_1: 87;
A14: (
Sum Fy0)
= ((
Sum Fy)
+
0 ) by
RVSUM_1: 74;
A15: (
Sum Fx0)
= ((
Sum Fx)
+
0 ) by
RVSUM_1: 74;
A16: (
Sum (a
* Fx0))
= (a
* (
Sum Fx0)) by
RVSUM_1: 87;
A17: (
Py (a,n1))
= ((
Px (a,n))
+ ((
Py (a,n))
* a)) by
Th9
.= ((
Sum Fxa)
+ ((
Sum Fy)
* a)) by
A8,
A10,
RVSUM_1: 76;
per cases ;
suppose
A18: n is
odd;
then
consider k such that
A19: n
= ((2
* k)
+ 1) by
ABIAN: 9;
set k1 = (k
+ 1);
A20:
[\(n1
/ 2)/]
= k1 &
[\(n
/ 2)/]
= k by
A19,
INT_1: 25,
Lm1;
then
A21: (
len Fxa)
= k1 & (
len (a
* Fy))
= k1 by
A10,
FINSEQ_5: 8,
A8,
RVSUM_1: 117;
(
rng Fxa)
c=
REAL & (
rng (a
* Fy))
c=
REAL ;
then Fxa is
FinSequence of
REAL & (a
* Fy) is
FinSequence of
REAL by
FINSEQ_1:def 4;
then
reconsider FxA = Fxa, aFy = (a
* Fy) as
Element of (k1
-tuples_on
REAL ) by
A21,
FINSEQ_2: 92;
(
rng (Fxa
+ (a
* Fy)))
c=
NAT by
VALUED_0:def 6;
then
reconsider FY = (Fxa
+ (a
* Fy)) as
FinSequence of
NAT by
FINSEQ_1:def 4;
A22: (
len (a
* Fx0))
= (
len Fx0)
= k1 & (
len (A
* Fy))
= k1 by
A20,
A8,
A10,
FINSEQ_2: 16,
RVSUM_1: 117;
reconsider AFx0 = (a
* Fx0), AFy = (A
* Fy) as
Element of (k1
-tuples_on
REAL ) by
A22,
FINSEQ_2: 92;
(
rng ((a
* Fx0)
+ (A
* Fy)))
c=
NAT by
VALUED_0:def 6;
then
reconsider FX = ((a
* Fx0)
+ (A
* Fy)) as
FinSequence of
NAT by
FINSEQ_1:def 4;
take FY, FX;
thus (
Sum FY)
= ((
Sum FxA)
+ (
Sum aFy)) by
RVSUM_1: 89
.= (
Py (a,n1)) by
A17,
RVSUM_1: 87;
A23: (n1
+ 1)
= ((2
* k1)
+ 1) by
A19;
(
len (FxA
+ aFy))
= k1 by
CARD_1:def 7;
hence (
len FY)
=
[\((n1
+ 1)
/ 2)/] by
A23,
Lm1;
thus for i be
Nat st 1
<= i
<= ((n1
+ 1)
/ 2) holds (FY
. i)
= (((n1
choose ((2
* i)
-' 1))
* (a
|^ ((n1
+ 1)
-' (2
* i))))
* (A
|^ (i
-' 1)))
proof
let i be
Nat such that
A24: 1
<= i
<= ((n1
+ 1)
/ 2);
set i1 = (i
-' 1);
A25: (i1
+ 1)
= i by
A24,
XREAL_1: 235;
(2
* 1)
<= (2
* i) by
A24,
XREAL_1: 66;
then
A26: ((2
* i)
-' 1)
= ((2
* i)
- 1) by
XREAL_1: 233,
XXREAL_0: 2;
A27: (2
* i)
<= (n1
+ 1) by
A24,
XREAL_1: 83;
then
A28: (2
* i)
< (n1
+ 1) by
A18,
XXREAL_0: 1;
then
A29: (2
* i)
<= n1 by
NAT_1: 13;
A30: i
<= (n1
/ 2) by
A28,
NAT_1: 13,
XREAL_1: 77;
A31: (n1
-' (2
* i))
= (n1
- (2
* i)) by
A29,
XREAL_1: 233;
A32: ((n1
+ 1)
-' (2
* i))
= ((n1
+ 1)
- (2
* i)) by
XREAL_1: 233,
A27;
then
A33: ((n1
+ 1)
-' (2
* i))
= (1
+ (n1
-' (2
* i))) by
A31;
(Fy
. i)
= (((n
choose ((2
* i)
-' 1))
* (a
|^ (n1
-' (2
* i))))
* (A
|^ i1)) by
A24,
A9,
A30;
then
A34: ((a
* Fy)
. i)
= (a
* (((n
choose ((2
* i)
-' 1))
* (a
|^ (n1
-' (2
* i))))
* (A
|^ i1))) by
VALUED_1: 6
.= (((n
choose ((2
* i)
-' 1))
* (a
* (a
|^ (n1
-' (2
* i)))))
* (A
|^ i1))
.= (((n
choose ((2
* i1)
+ 1))
* (a
|^ ((n1
+ 1)
-' (2
* i))))
* (A
|^ i1)) by
A26,
A25,
A33,
NEWTON: 6;
(2
* i)
<= (n1
+ 1) by
A24,
XREAL_1: 83;
then (((2
* i1)
+ 1)
+ 1)
<= (n1
+ 1) by
A25;
then ((2
* i1)
+ 1)
<= n1 by
XREAL_1: 8;
then
A35: (2
* i1)
< n1 by
NAT_1: 13;
then
A36: (2
* i1)
<= n by
NAT_1: 13;
then
A37: (n
-' (2
* i1))
= (n
- (2
* i1)) by
XREAL_1: 233;
A38: (Fxa
. i)
= (((n
choose (2
* i1))
* (a
|^ (n
-' (2
* i1))))
* (A
|^ i1))
proof
per cases ;
suppose
A39: i
> 1;
then
A40: i1
>= 1 by
A25,
NAT_1: 13;
i1
<= (n
/ 2) by
XREAL_1: 77,
A35,
NAT_1: 13;
then
A41: (Fx
. i1)
= (((n
choose (2
* i1))
* (a
|^ (n
-' (2
* i1))))
* (A
|^ i1)) by
A11,
A39,
A25,
NAT_1: 13;
(2
* i1)
< ((2
* k)
+ 1) by
A36,
A19,
XXREAL_0: 1;
then i1
<= k by
XREAL_1: 68,
NAT_1: 13;
then i1
in (
dom Fx) by
A40,
A20,
A10,
FINSEQ_3: 25;
hence thesis by
A41,
A25,
FINSEQ_3: 103;
end;
suppose i
<= 1;
then
A42: i
= 1 by
A24,
XXREAL_0: 1;
A43: (n
choose (2
* i1))
= 1 by
A42,
A25,
NEWTON: 19;
(n
-' (2
* i1))
= (n
-
0 ) by
A42,
A25,
XREAL_1: 233;
hence thesis by
A43,
NEWTON: 4,
A42,
A25;
end;
end;
thus (FY
. i)
= ((FxA
. i)
+ (aFy
. i)) by
RVSUM_1: 11
.= ((((n
choose (2
* i1))
+ (n
choose ((2
* i1)
+ 1)))
* (a
|^ ((n1
+ 1)
-' (2
* i))))
* (A
|^ i1)) by
A38,
A34,
A37,
A32,
A25
.= (((n1
choose ((2
* i)
-' 1))
* (a
|^ ((n1
+ 1)
-' (2
* i))))
* (A
|^ i1)) by
A26,
A25,
NEWTON: 22;
end;
(
Sum FX)
= ((
Sum AFx0)
+ (
Sum AFy)) by
RVSUM_1: 89
.= ((
Sum (a
* Fx))
+ (
Sum (A
* Fy))) by
RVSUM_1: 87,
A15,
A16;
hence ((a
|^ n1)
+ (
Sum FX))
= (
Px (a,n1)) by
A12,
A13;
(
len (AFx0
+ AFy))
= k1 by
CARD_1:def 7;
hence (
len FX)
=
[\(n1
/ 2)/] by
A19,
INT_1: 25;
thus for i be
Nat st 1
<= i
<= (n1
/ 2) holds (FX
. i)
= (((n1
choose (2
* i))
* (a
|^ (n1
-' (2
* i))))
* (A
|^ i))
proof
let i be
Nat such that
A44: 1
<= i
<= (n1
/ 2);
set i1 = (i
-' 1);
(i1
+ 1)
= i by
A44,
XREAL_1: 235;
then
A45: (A
* (A
|^ i1))
= (A
|^ i) by
NEWTON: 6;
(Fy
. i)
= (((n
choose ((2
* i)
-' 1))
* (a
|^ (n1
-' (2
* i))))
* (A
|^ i1)) by
A9,
A44;
then
A46: ((A
* Fy)
. i)
= (A
* (((n
choose ((2
* i)
-' 1))
* (a
|^ (n1
-' (2
* i))))
* (A
|^ i1))) by
VALUED_1: 6
.= (((n
choose ((2
* i)
-' 1))
* (a
|^ (n1
-' (2
* i))))
* (A
|^ i)) by
A45;
(2
* i)
<= n1 by
A44,
XREAL_1: 83;
then
A47: (n1
-' (2
* i))
= (n1
- (2
* i)) by
XREAL_1: 233;
A48: ((a
* Fx0)
. i)
= (a
* (Fx0
. i)) by
VALUED_1: 6;
A49: ((a
* Fx0)
. i)
= (((n
choose (2
* i))
* (a
|^ (n1
-' (2
* i))))
* (A
|^ i))
proof
per cases ;
suppose
A50: i
<= k;
then
A51: (2
* i)
< n by
A19,
NAT_1: 13,
XREAL_1: 66;
then i
<= (n
/ 2) by
XREAL_1: 77;
then
A52: (Fx
. i)
= (((n
choose (2
* i))
* (a
|^ (n
-' (2
* i))))
* (A
|^ i)) by
A11,
A44;
A53: i
in (
dom Fx) by
A44,
A50,
A10,
A20,
FINSEQ_3: 25;
A54: (n
-' (2
* i))
= (n
- (2
* i)) by
A51,
XREAL_1: 233;
(n1
-' (2
* i))
= (1
+ (n
-' (2
* i))) by
A54,
A47;
then
A55: (a
|^ (n1
-' (2
* i)))
= (a
* (a
|^ (n
-' (2
* i)))) by
NEWTON: 6;
((a
* Fx0)
. i)
= (a
* (((n
choose (2
* i))
* (a
|^ (n
-' (2
* i))))
* (A
|^ i))) by
A48,
A52,
A53,
FINSEQ_1:def 7
.= (((n
choose (2
* i))
* (a
|^ (n1
-' (2
* i))))
* (A
|^ i)) by
A55;
hence thesis;
end;
suppose i
> k;
then i
>= k1 by
NAT_1: 13;
then
A56: (2
* i)
>= (2
* k1) by
XREAL_1: 66;
then
A57: (2
* i)
>= n1 by
A19;
(2
* i)
<= n1 by
A44,
XREAL_1: 83;
then
A58: (2
* i)
= (2
* k1) by
A56,
A19,
XXREAL_0: 1;
(2
* i)
> n by
A57,
NAT_1: 13;
then (n
choose (2
* i))
=
0 by
NEWTON:def 3;
hence thesis by
A58,
A10,
A20,
A48;
end;
end;
A59: (((2
* i)
-' 1)
+ 1)
= (2
* i) by
XREAL_1: 235,
NAT_1: 14,
A44;
thus (FX
. i)
= ((AFx0
. i)
+ (AFy
. i)) by
RVSUM_1: 11
.= ((((n
choose ((2
* i)
-' 1))
+ (n
choose (2
* i)))
* (a
|^ (n1
-' (2
* i))))
* (A
|^ i)) by
A46,
A49
.= (((n1
choose (2
* i))
* (a
|^ (n1
-' (2
* i))))
* (A
|^ i)) by
A59,
NEWTON: 22;
end;
end;
suppose n is
even;
then
consider k such that
A60: n
= (2
* k) by
ABIAN:def 2;
set k1 = (k
+ 1);
A61:
[\(n1
/ 2)/]
= k &
[\(n
/ 2)/]
= k by
A60,
INT_1: 25,
Lm1;
then
A62: (
len Fxa)
= k1 & (
len Fy0)
= k1 & (
len (a
* Fy0))
= (
len Fy0) by
FINSEQ_2: 16,
FINSEQ_5: 8,
A8,
A10,
RVSUM_1: 117;
(
rng Fxa)
c=
REAL & (
rng (a
* Fy0))
c=
REAL ;
then Fxa is
FinSequence of
REAL & (a
* Fy0) is
FinSequence of
REAL by
FINSEQ_1:def 4;
then
reconsider FxA = Fxa, aFy0 = (a
* Fy0) as
Element of (k1
-tuples_on
REAL ) by
A62,
FINSEQ_2: 92;
(
rng (Fxa
+ (a
* Fy0)))
c=
NAT by
VALUED_0:def 6;
then
reconsider FY = (Fxa
+ (a
* Fy0)) as
FinSequence of
NAT by
FINSEQ_1:def 4;
A63: (
len (a
* Fx))
= (
len Fx)
= k & (
len (A
* Fy))
= k by
A61,
A8,
A10,
RVSUM_1: 117;
reconsider AFx = (a
* Fx), AFy = (A
* Fy) as
Element of (k
-tuples_on
REAL ) by
A63,
FINSEQ_2: 92;
(
rng ((a
* Fx)
+ (A
* Fy)))
c=
NAT by
VALUED_0:def 6;
then
reconsider FX = ((a
* Fx)
+ (A
* Fy)) as
FinSequence of
NAT by
FINSEQ_1:def 4;
take FY, FX;
thus (
Sum FY)
= ((
Sum FxA)
+ (
Sum aFy0)) by
RVSUM_1: 89
.= (
Py (a,n1)) by
A17,
A14,
RVSUM_1: 87;
(
len (FxA
+ aFy0))
= k1 by
CARD_1:def 7;
hence (
len FY)
=
[\((n1
+ 1)
/ 2)/] by
A60,
INT_1: 25;
thus for i be
Nat st 1
<= i
<= ((n1
+ 1)
/ 2) holds (FY
. i)
= (((n1
choose ((2
* i)
-' 1))
* (a
|^ ((n1
+ 1)
-' (2
* i))))
* (A
|^ (i
-' 1)))
proof
let i be
Nat such that
A64: 1
<= i
<= ((n1
+ 1)
/ 2);
set i1 = (i
-' 1);
A65: (i1
+ 1)
= i by
A64,
XREAL_1: 235;
A66: (2
* i)
<= (n1
+ 1) by
A64,
XREAL_1: 83;
then
A67: ((2
* i1)
+ 2)
<= (n
+ 2) by
A65;
then
A68: (2
* i1)
<= n by
XREAL_1: 8;
A69: (n
-' (2
* i1))
= (n
- (2
* i1)) & ((n1
+ 1)
-' (2
* i))
= ((n1
+ 1)
- (2
* i)) by
A67,
A66,
XREAL_1: 8,
XREAL_1: 233;
(2
* 1)
<= (2
* i) by
A64,
XREAL_1: 66;
then
A70: ((2
* i)
-' 1)
= ((2
* i)
- 1) by
XREAL_1: 233,
XXREAL_0: 2;
A71: (FxA
. i)
= (((n
choose (2
* i1))
* (a
|^ ((n1
+ 1)
-' (2
* i))))
* (A
|^ i1))
proof
per cases ;
suppose
A72: i
> 1;
then
A73: i1
>= 1 by
A65,
NAT_1: 13;
i1
<= (n
/ 2) by
A68,
XREAL_1: 77;
then
A74: (Fx
. i1)
= (((n
choose (2
* i1))
* (a
|^ (n
-' (2
* i1))))
* (A
|^ i1)) by
A11,
A72,
A65,
NAT_1: 13;
i1
<= k by
A68,
A60,
XREAL_1: 68;
then i1
in (
dom Fx) by
A73,
A61,
A10,
FINSEQ_3: 25;
hence thesis by
A69,
A74,
A65,
FINSEQ_3: 103;
end;
suppose i
<= 1;
then
A75: i
= 1 by
A64,
XXREAL_0: 1;
A76: (n
choose (2
* i1))
= 1 by
A75,
A65,
NEWTON: 19;
((n1
+ 1)
-' (2
* i))
= ((n
+ 2)
- (2
* 1)) by
A75,
NAT_1: 11,
XREAL_1: 233;
hence thesis by
A76,
NEWTON: 4,
A75,
A65;
end;
end;
A77: ((a
* Fy0)
. i)
= (((n
choose ((2
* i1)
+ 1))
* (a
|^ ((n1
+ 1)
-' (2
* i))))
* (A
|^ i1))
proof
per cases ;
suppose
A78: i
<= k;
then
A79: (2
* i)
<= n1 by
NAT_1: 13,
A60,
XREAL_1: 66;
then
A80: (2
* i)
<= (n1
+ 1) by
NAT_1: 13;
i
<= (n1
/ 2) by
A79,
XREAL_1: 77;
then
A81: (Fy
. i)
= (((n
choose ((2
* i)
-' 1))
* (a
|^ (n1
-' (2
* i))))
* (A
|^ i1)) by
A9,
A64;
i
in (
dom Fy) by
A64,
A78,
A8,
A61,
FINSEQ_3: 25;
then
A82: (Fy
. i)
= (Fy0
. i) by
FINSEQ_1:def 7;
A83: (n1
-' (2
* i))
= (n1
- (2
* i)) & ((n1
+ 1)
-' (2
* i))
= ((n1
+ 1)
- (2
* i)) by
A79,
A80,
XREAL_1: 233;
((n1
+ 1)
-' (2
* i))
= (1
+ (n1
-' (2
* i))) by
A83;
then
A84: (a
|^ ((n1
+ 1)
-' (2
* i)))
= (a
* (a
|^ (n1
-' (2
* i)))) by
NEWTON: 6;
((a
* Fy0)
. i)
= (a
* (((n
choose ((2
* i)
-' 1))
* (a
|^ (n1
-' (2
* i))))
* (A
|^ i1))) by
A81,
A82,
VALUED_1: 6
.= (((n
choose ((2
* i)
-' 1))
* (a
|^ ((n1
+ 1)
-' (2
* i))))
* (A
|^ i1)) by
A84;
hence thesis by
A70,
A65;
end;
suppose
A85: i
> k;
then i1
>= k by
A65,
NAT_1: 13;
then
A86: ((2
* i1)
+ 1)
> n by
NAT_1: 13,
A60,
XREAL_1: 66;
i
>= k1 by
A85,
NAT_1: 13;
then (2
* i)
>= (2
* k1) by
XREAL_1: 66;
then (2
* i)
= (2
* k1) by
A60,
A66,
XXREAL_0: 1;
then (Fy0
. i)
=
0 by
A8,
A61;
then
A87: ((a
* Fy0)
. i)
= (a
*
0 ) by
VALUED_1: 6;
(n
choose ((2
* i1)
+ 1))
=
0 by
A86,
NEWTON:def 3;
hence thesis by
A87;
end;
end;
thus (FY
. i)
= ((FxA
. i)
+ (aFy0
. i)) by
RVSUM_1: 11
.= ((((n
choose (2
* i1))
+ (n
choose ((2
* i1)
+ 1)))
* (a
|^ ((n1
+ 1)
-' (2
* i))))
* (A
|^ i1)) by
A71,
A77
.= (((n1
choose ((2
* i)
-' 1))
* (a
|^ ((n1
+ 1)
-' (2
* i))))
* (A
|^ i1)) by
A70,
A65,
NEWTON: 22;
end;
(
Sum FX)
= ((
Sum AFx)
+ (
Sum AFy)) by
RVSUM_1: 89
.= ((
Sum (a
* Fx))
+ (
Sum (A
* Fy)));
hence ((a
|^ n1)
+ (
Sum FX))
= (
Px (a,n1)) by
A12,
A13;
(
len (AFx
+ AFy))
= k by
CARD_1:def 7;
hence (
len FX)
=
[\(n1
/ 2)/] by
A60,
Lm1;
thus for i be
Nat st 1
<= i
<= (n1
/ 2) holds (FX
. i)
= (((n1
choose (2
* i))
* (a
|^ (n1
-' (2
* i))))
* (A
|^ i))
proof
let i be
Nat such that
A88: 1
<= i
<= (n1
/ 2);
set i1 = (i
-' 1);
(i1
+ 1)
= i by
A88,
XREAL_1: 235;
then
A89: (A
* (A
|^ i1))
= (A
|^ i) by
NEWTON: 6;
(Fy
. i)
= (((n
choose ((2
* i)
-' 1))
* (a
|^ (n1
-' (2
* i))))
* (A
|^ i1)) by
A9,
A88;
then
A90: ((A
* Fy)
. i)
= (A
* (((n
choose ((2
* i)
-' 1))
* (a
|^ (n1
-' (2
* i))))
* (A
|^ i1))) by
VALUED_1: 6
.= (((n
choose ((2
* i)
-' 1))
* (a
|^ (n1
-' (2
* i))))
* (A
|^ i)) by
A89;
A91: (2
* i)
<= n1 by
A88,
XREAL_1: 83;
then
A92: (n1
-' (2
* i))
= (n1
- (2
* i)) by
XREAL_1: 233;
A93: (2
* i)
< n1 by
A91,
A60,
XXREAL_0: 1;
then
A94: (2
* i)
<= n by
NAT_1: 13;
A95: i
<= (n
/ 2) by
A93,
NAT_1: 13,
XREAL_1: 77;
A96: (n
-' (2
* i))
= (n
- (2
* i)) by
A94,
XREAL_1: 233;
(n1
-' (2
* i))
= (1
+ (n
-' (2
* i))) by
A96,
A92;
then
A97: (a
|^ (n1
-' (2
* i)))
= (a
* (a
|^ (n
-' (2
* i)))) by
NEWTON: 6;
A98: ((a
* Fx)
. i)
= (a
* (Fx
. i)) by
VALUED_1: 6
.= (a
* (((n
choose (2
* i))
* (a
|^ (n
-' (2
* i))))
* (A
|^ i))) by
A95,
A11,
A88
.= (((n
choose (2
* i))
* (a
|^ (n1
-' (2
* i))))
* (A
|^ i)) by
A97;
A99: (((2
* i)
-' 1)
+ 1)
= (2
* i) by
XREAL_1: 235,
NAT_1: 14,
A88;
thus (FX
. i)
= ((AFx
. i)
+ (AFy
. i)) by
RVSUM_1: 11
.= ((((n
choose ((2
* i)
-' 1))
+ (n
choose (2
* i)))
* (a
|^ (n1
-' (2
* i))))
* (A
|^ i)) by
A90,
A98
.= (((n1
choose (2
* i))
* (a
|^ (n1
-' (2
* i))))
* (A
|^ i)) by
A99,
NEWTON: 22;
end;
end;
end;
for n holds
P[n] from
NAT_1:sch 2(
A1,
A7);
hence thesis;
end;
begin
theorem ::
HILB10_1:10
Th13: k
<= n implies (
Px (a,k))
<= (
Px (a,n))
proof
assume k
<= n;
then
reconsider nk = (n
- k) as
Nat by
NAT_1: 21;
defpred
P[
Nat] means (
Px (a,k))
<= (
Px (a,(k
+ $1)));
A1:
P[
0 ];
A2: for i be
Nat holds
P[i] implies
P[(i
+ 1)]
proof
let i be
Nat;
assume
A3:
P[i];
A4: (
Px (a,((k
+ i)
+ 1)))
= (((
Px (a,(k
+ i)))
* a)
+ ((
Py (a,(k
+ i)))
* ((a
^2 )
-' 1))) by
Th9;
a
>= 2 by
NAT_2: 29;
then a
>= 1 by
XXREAL_0: 2;
then ((
Px (a,(k
+ i)))
* a)
>= ((
Px (a,(k
+ i)))
* 1) by
XREAL_1: 64;
then (
Px (a,((k
+ i)
+ 1)))
>= (((
Px (a,(k
+ i)))
* 1)
+
0 ) by
A4,
XREAL_1: 7;
hence thesis by
A3,
XXREAL_0: 2;
end;
P[n1] from
NAT_1:sch 2(
A1,
A2);
then
P[nk];
hence thesis;
end;
registration
let a, k;
cluster (
Px (a,k)) ->
positive;
coherence
proof
(
Px (a,
0 ))
= 1 & (
Px (a,
0 ))
<= (
Px (a,k)) by
Th6,
Th13;
hence thesis;
end;
end
theorem ::
HILB10_1:11
Th14: k
< n implies (
Py (a,k))
< (
Py (a,n))
proof
assume
A1: k
< n;
then
reconsider nk = (n
- k) as
Nat by
NAT_1: 21;
A2: nk
<>
0 by
A1;
defpred
P[
Nat] means $1
>
0 implies (
Py (a,k))
< (
Py (a,(k
+ $1)));
A3:
P[
0 ];
A4: for i be
Nat holds
P[i] implies
P[(i
+ 1)]
proof
let i be
Nat;
assume
A5:
P[i];
A6: (
Py (a,((k
+ i)
+ 1)))
= (((
Py (a,(k
+ i)))
* a)
+ (
Px (a,(k
+ i)))) by
Th9;
a
>= 2 by
NAT_2: 29;
then a
>= 1 by
XXREAL_0: 2;
then ((
Py (a,(k
+ i)))
* a)
>= ((
Py (a,(k
+ i)))
* 1) by
XREAL_1: 64;
then
A7: (
Py (a,((k
+ i)
+ 1)))
> (((
Py (a,(k
+ i)))
* 1)
+
0 ) by
A6,
XREAL_1: 8;
i
=
0 or i
>
0 ;
hence thesis by
A7,
A5,
XXREAL_0: 2;
end;
P[n1] from
NAT_1:sch 2(
A3,
A4);
then
P[nk];
hence thesis by
A2;
end;
theorem ::
HILB10_1:12
Th15: (
Py (a,k))
= (
Py (a,n)) implies k
= n
proof
assume (
Py (a,k))
= (
Py (a,n));
then k
>= n
>= k by
Th14;
hence thesis by
XXREAL_0: 1;
end;
theorem ::
HILB10_1:13
Th16: (
Py (a,n))
>= n
proof
defpred
P[
Nat] means (
Py (a,$1))
>= $1;
A1:
P[
0 ];
A2:
P[k] implies
P[(k
+ 1)]
proof
(k
+ 1)
> k by
NAT_1: 13;
then
A3: ((
Py (a,k))
+ 1)
<= (
Py (a,(k
+ 1))) by
Th14,
NAT_1: 13;
assume
P[k];
then (k
+ 1)
<= ((
Py (a,k))
+ 1) by
XREAL_1: 6;
hence thesis by
A3,
XXREAL_0: 2;
end;
P[k] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
Lm4: (
Py (a,k))
=
0 implies k
=
0
proof
assume (
Py (a,k))
=
0 ;
then (
Py (a,k))
= (
Py (a,
0 )) by
Th6;
hence thesis by
Th15;
end;
registration
let a;
let k be non
zero
Nat;
cluster (
Py (a,k)) -> non
zero;
coherence by
Lm4;
end
registration
let a be non
trivial
Nat;
let x be
positive
Nat;
cluster (a
* x) -> non
trivial;
coherence
proof
a
>= 2 & x
>= 1 by
NAT_1: 14,
NAT_2: 29;
then (a
* x)
>= (2
* 1) by
XREAL_1: 66;
then (a
* x)
<> 1;
hence thesis by
NAT_2: 28;
end;
end
theorem ::
HILB10_1:14
Th17: a
<> 2 & k
<= n implies (2
* (
Py (a,k)))
< (
Px (a,n))
proof
set A = ((a
^2 )
-' 1), S = (
sqrt A);
A1: ((a
^2 )
-' 1)
= ((a
^2 )
- 1) by
NAT_1: 14,
XREAL_1: 233;
assume
A2: a
<> 2 & k
<= n;
(((
Px (a,k))
^2 )
- (((a
^2 )
-' 1)
* ((
Py (a,k))
^2 )))
= 1 by
Th10;
then
A3: ((A
* ((
Py (a,k))
^2 ))
+ 1)
= ((
Px (a,k))
^2 );
a
>= (2
+ 1) by
A2,
NAT_1: 22,
NAT_2: 29;
then (a
^2 )
>= (3
* 3) by
XREAL_1: 66;
then A
>= (9
- 1) by
A1,
XREAL_1: 9;
then A
>= 4 by
XXREAL_0: 2;
then (4
* ((
Py (a,k))
^2 ))
<= (A
* ((
Py (a,k))
^2 )) by
XREAL_1: 64;
then ((2
* (
Py (a,k)))
^2 )
< ((
Px (a,k))
^2 ) by
A3,
NAT_1: 13;
then
A4: (2
* (
Py (a,k)))
< (
Px (a,k)) by
SQUARE_1: 15;
(
Px (a,k))
<= (
Px (a,n)) by
A2,
Th13;
hence thesis by
A4,
XXREAL_0: 2;
end;
theorem ::
HILB10_1:15
Th18: a
= 2 & k
<= n implies ((
sqrt 3)
* (
Py (a,k)))
< (
Px (a,n))
proof
set A = ((a
^2 )
-' 1), S = (
sqrt A);
A1: ((a
^2 )
-' 1)
= ((a
^2 )
- 1) by
NAT_1: 14,
XREAL_1: 233;
assume
A2: a
= 2 & k
<= n;
(((
Px (a,k))
^2 )
- (((a
^2 )
-' 1)
* ((
Py (a,k))
^2 )))
= 1 by
Th10;
then ((A
* ((
Py (a,k))
^2 ))
+ 1)
= ((
Px (a,k))
^2 );
then
A3: (3
* ((
Py (a,k))
^2 ))
< ((
Px (a,k))
^2 ) by
A1,
A2,
NAT_1: 13;
(3
* ((
Py (a,k))
^2 ))
= (((
sqrt 3)
^2 )
* ((
Py (a,k))
^2 )) by
SQUARE_1:def 2
.= (((
sqrt 3)
* (
Py (a,k)))
^2 );
then
A4: ((
sqrt 3)
* (
Py (a,k)))
< (
Px (a,k)) by
A3,
SQUARE_1: 15;
(
Px (a,k))
<= (
Px (a,n)) by
A2,
Th13;
hence thesis by
A4,
XXREAL_0: 2;
end;
theorem ::
HILB10_1:16
Th19: a
= 2 & k
< n implies ((3
+ (2
* (
sqrt 3)))
* (
Py (a,k)))
< (
Px (a,n))
proof
A1: ((
sqrt 3)
^2 )
= 3 & (
sqrt 3)
>=
0 by
SQUARE_1:def 2;
set A = ((a
^2 )
-' 1), S = (
sqrt A);
assume
A2: a
= 2 & k
< n;
then
A3: (k
+ 1)
<= n by
NAT_1: 13;
(
Py (a,(k
+ 1)))
= ((
Px (a,k))
+ ((
Py (a,k))
* a)) by
Th9;
then
A4: ((
sqrt 3)
* ((
Px (a,k))
+ ((
Py (a,k))
* 2)))
< (
Px (a,n)) by
A3,
A2,
Th18;
((
sqrt 3)
* (
Py (a,k)))
<= (
Px (a,k)) by
A2,
Th18;
then
A5: (((
sqrt 3)
* (
Py (a,k)))
* (
sqrt 3))
<= ((
Px (a,k))
* (
sqrt 3)) by
A1,
XREAL_1: 64;
A6: (((
sqrt 3)
* (
Py (a,k)))
* (
sqrt 3))
= (((
sqrt 3)
* (
sqrt 3))
* (
Py (a,k)))
.= (3
* (
Py (a,k))) by
A1;
((
sqrt 3)
* ((
Px (a,k))
+ ((
Py (a,k))
* 2)))
= (((
Py (a,k))
* (2
* (
sqrt 3)))
+ ((
Px (a,k))
* (
sqrt 3)));
then ((
sqrt 3)
* ((
Px (a,k))
+ ((
Py (a,k))
* 2)))
>= (((
Py (a,k))
* (2
* (
sqrt 3)))
+ (3
* (
Py (a,k)))) by
A5,
A6,
XREAL_1: 7;
hence thesis by
A4,
XXREAL_0: 2;
end;
theorem ::
HILB10_1:17
Th20: ((((2
* a)
- 1)
|^ n)
* (a
- 1))
<= (
Px (a,(n
+ 1)))
<= (a
* ((2
* a)
|^ n)) & (((2
* a)
- 1)
|^ n)
<= (
Py (a,(n
+ 1)))
<= ((2
* a)
|^ n)
proof
defpred
P[
Nat] means (((2
* a)
- 1)
|^ $1)
<= (
Py (a,($1
+ 1)))
<= ((2
* a)
|^ $1) & ((((2
* a)
- 1)
|^ $1)
* (a
- 1))
<= (
Px (a,($1
+ 1)))
<= (a
* ((2
* a)
|^ $1));
A1: ((a
^2 )
-' 1)
= ((a
^2 )
- 1) by
XREAL_1: 233,
NAT_1: 14;
A2: (((2
* a)
- 1)
|^
0 )
= 1 & ((2
* a)
|^
0 )
= 1 by
NEWTON: 4;
A3: (a
- 1)
<= (a
-
0 ) by
XREAL_1: 10;
(
Py (a,
0 ))
=
0 & (
Px (a,
0 ))
= 1 by
Th6;
then (
Py (a,(1
+
0 )))
= (1
+ (
0
* a)) & (
Px (a,(1
+
0 )))
= ((1
* a)
+ (
0
* ((a
^2 )
-' 1))) by
Th9;
then
A4:
P[
0 ] by
A2,
A3;
A5:
P[k] implies
P[(k
+ 1)]
proof
set k1 = (k
+ 1);
assume
A6:
P[k];
A7: (
Py (a,(k1
+ 1)))
= ((
Px (a,k1))
+ ((
Py (a,k1))
* a)) & (
Px (a,(k1
+ 1)))
= (((
Px (a,k1))
* a)
+ ((
Py (a,k1))
* ((a
^2 )
-' 1))) by
Th9;
A8: ((
Py (a,k1))
* a)
<= (((2
* a)
|^ k)
* a) by
A6,
XREAL_1: 64;
A9: ((((2
* a)
|^ k)
* a)
+ (((2
* a)
|^ k)
* a))
= (((2
* a)
|^ k)
* (2
* a))
.= ((2
* a)
|^ k1) by
NEWTON: 6;
A10: ((
Py (a,k1))
* a)
>= ((((2
* a)
- 1)
|^ k)
* a) by
A6,
XREAL_1: 64;
A11: (((((2
* a)
- 1)
|^ k)
* (a
- 1))
+ ((((2
* a)
- 1)
|^ k)
* a))
= ((((2
* a)
- 1)
|^ k)
* ((2
* a)
- 1))
.= (((2
* a)
- 1)
|^ k1) by
NEWTON: 6;
((
Px (a,k1))
* a)
<= ((a
* ((2
* a)
|^ k))
* a) & ((
Py (a,k1))
* ((a
^2 )
-' 1))
<= (((2
* a)
|^ k)
* ((a
^2 )
-' 1)) by
A6,
XREAL_1: 64;
then
A12: (
Px (a,(k1
+ 1)))
<= (((a
* ((2
* a)
|^ k))
* a)
+ (((2
* a)
|^ k)
* ((a
^2 )
-' 1))) by
A7,
XREAL_1: 7;
(((a
^2 )
+ (a
^2 ))
- 1)
<= (((a
^2 )
+ (a
^2 ))
-
0 ) by
XREAL_1: 10;
then
A13: (((2
* a)
|^ k)
* (((a
^2 )
+ (a
^2 ))
- 1))
<= (((2
* a)
|^ k)
* ((a
^2 )
+ (a
^2 ))) by
XREAL_1: 64;
((((2
* a)
- 1)
|^ k)
* ((a
^2 )
-' 1))
<= ((
Py (a,k1))
* ((a
^2 )
-' 1)) & (((((2
* a)
- 1)
|^ k)
* (a
- 1))
* a)
<= ((
Px (a,k1))
* a) by
A6,
XREAL_1: 64;
then
A14: (((((2
* a)
- 1)
|^ k)
* ((a
^2 )
-' 1))
+ (((((2
* a)
- 1)
|^ k)
* (a
- 1))
* a))
<= (
Px (a,(k1
+ 1))) by
A7,
XREAL_1: 7;
(2
* 1)
<= (2
* a) by
XREAL_1: 64,
NAT_1: 14;
then (1
- (
- 1))
<= (2
* a);
then (((2
* (a
^2 ))
- a)
+ (1
- (2
* a)))
<= (((2
* (a
^2 ))
- a)
+ (
- 1)) by
XREAL_1: 6,
XREAL_1: 12;
then ((((2
* a)
- 1)
|^ k)
* (((2
* a)
- 1)
* (a
- 1)))
<= ((((2
* a)
- 1)
|^ k)
* (((a
^2 )
- 1)
+ ((a
- 1)
* a))) by
XREAL_1: 64;
hence thesis by
A8,
A7,
A6,
XREAL_1: 7,
A9,
A10,
A11,
A1,
A13,
A12,
XXREAL_0: 2,
A14;
end;
P[k] from
NAT_1:sch 2(
A4,
A5);
hence thesis;
end;
theorem ::
HILB10_1:18
Th21: for x be
positive
Nat holds ((x
|^ n)
* ((1
- (1
/ ((2
* a)
* x)))
|^ n))
<= ((
Py ((a
* x),(n
+ 1)))
/ (
Py (a,(n
+ 1))))
<= ((x
|^ n)
* (1
/ ((1
- (1
/ (2
* a)))
|^ n)))
proof
let x be
positive
Nat;
set z = n;
(1
- (1
/ ((2
* a)
* x)))
= ((((2
* a)
* x)
/ ((2
* a)
* x))
- (1
/ ((2
* a)
* x))) by
XCMPLX_1: 60
.= ((((2
* a)
* x)
- 1)
/ ((2
* a)
* x)) by
XCMPLX_1: 120;
then (x
* (1
- (1
/ ((2
* a)
* x))))
= ((((2
* a)
* x)
- 1)
/ (2
* a)) by
XCMPLX_1: 92;
then
A1: ((x
|^ z)
* ((1
- (1
/ ((2
* a)
* x)))
|^ z))
= (((((2
* a)
* x)
- 1)
/ (2
* a))
to_power z) by
NEWTON: 7
.= (((((2
* a)
* x)
- 1)
to_power z)
/ ((2
* a)
to_power z)) by
POWER: 31;
A2: (((2
* a)
- 1)
|^ z)
<= (
Py (a,(z
+ 1)))
<= ((2
* a)
|^ z) by
Th20;
A3: (((2
* (a
* x))
- 1)
|^ z)
<= (
Py ((a
* x),(z
+ 1)))
<= ((2
* (a
* x))
|^ z) by
Th20;
(((((2
* a)
* x)
- 1)
|^ z)
* (
Py (a,(z
+ 1))))
<= ((
Py ((a
* x),(z
+ 1)))
* ((2
* a)
|^ z)) by
A2,
A3,
XREAL_1: 66;
hence ((x
|^ z)
* ((1
- (1
/ ((2
* a)
* x)))
|^ z))
<= ((
Py ((a
* x),(z
+ 1)))
/ (
Py (a,(z
+ 1)))) by
A1,
XREAL_1: 102;
a
>= 1 by
NAT_1: 14;
then (a
+ a)
>= (1
+ 1) by
XREAL_1: 7;
then (1
* (2
* a))
> 1 by
NAT_1: 13;
then 1
> (1
/ (2
* a)) by
XREAL_1: 83;
then
A4: (1
- (1
/ (2
* a)))
> ((1
/ (2
* a))
- (1
/ (2
* a))) by
XREAL_1: 14;
A5: ((
Py ((a
* x),(z
+ 1)))
* (((2
* a)
- 1)
|^ z))
<= ((((2
* a)
* x)
|^ z)
* (
Py (a,(z
+ 1)))) by
A2,
A3,
XREAL_1: 66;
((2
* a)
/ (2
* a))
= 1 by
XCMPLX_1: 60;
then (((2
* a)
- 1)
/ (2
* a))
= (1
- (1
/ (2
* a))) by
XCMPLX_1: 120;
then ((2
* a)
/ ((2
* a)
- 1))
= (1
/ (1
- (1
/ (2
* a)))) by
XCMPLX_1: 57;
then (((2
* a)
* x)
/ ((2
* a)
- 1))
= (x
* (1
/ (1
- (1
/ (2
* a))))) by
XCMPLX_1: 74;
then (((2
* a)
* x)
/ ((2
* a)
- 1))
= ((x
* 1)
/ (1
- (1
/ (2
* a)))) by
XCMPLX_1: 74;
then ((((2
* a)
* x)
to_power z)
/ (((2
* a)
- 1)
to_power z))
= ((x
/ (1
- (1
/ (2
* a))))
to_power z) by
POWER: 31
.= ((1
* (x
to_power z))
/ ((1
- (1
/ (2
* a)))
to_power z)) by
A4,
POWER: 31
.= ((x
|^ z)
* (1
/ ((1
- (1
/ (2
* a)))
|^ z))) by
XCMPLX_1: 74;
hence thesis by
A5,
XREAL_1: 102;
end;
Lm5:
0
<= (1
- r)
<= 1 implies ((1
- r)
|^ n)
>= (1
- (n
* r))
proof
defpred
P[
Nat] means (1
- ($1
* r))
>=
0 implies ((1
- r)
|^ $1)
>= (1
- ($1
* r));
assume
A1:
0
<= (1
- r)
<= 1;
(1
-
0 )
= 1;
then
A2: r
>=
0 by
A1,
XREAL_1: 10;
A3:
P[
0 ] by
NEWTON: 4;
A4:
P[k] implies
P[(k
+ 1)]
proof
assume
A5:
P[k];
A6: ((1
- r)
|^ (k
+ 1))
= ((1
- r)
* ((1
- r)
|^ k)) by
NEWTON: 6;
assume (1
- ((k
+ 1)
* r))
>=
0 ;
then (((1
- (k
* r))
- r)
+ r)
>= (
0
+ r) by
XREAL_1: 6;
then (1
- (k
* r))
>=
0 ;
then
A7: ((1
- r)
|^ (k
+ 1))
>= ((1
- r)
* (1
- (k
* r))) by
A5,
A6,
A1,
XREAL_1: 66;
(((1
- (k
* r))
- r)
+ ((r
* r)
* k))
>= (((1
- (k
* r))
- r)
+
0 ) by
A2,
XREAL_1: 7;
hence thesis by
A7,
XXREAL_0: 2;
end;
A8:
P[k] from
NAT_1:sch 2(
A3,
A4);
(1
- (n
* r))
>=
0 or (1
- (n
* r))
<
0 ;
hence thesis by
A8,
A1;
end;
theorem ::
HILB10_1:19
Th22: for x be
positive
Nat st a
> ((2
* n)
* (x
|^ n)) holds ((x
|^ n)
- (1
/ 2))
< ((
Py ((a
* x),(n
+ 1)))
/ (
Py (a,(n
+ 1))))
< ((x
|^ n)
+ (1
/ 2))
proof
let x be
positive
Nat;
A1: ((x
|^ n)
* ((1
- (1
/ ((2
* a)
* x)))
|^ n))
<= ((
Py ((a
* x),(n
+ 1)))
/ (
Py (a,(n
+ 1))))
<= ((x
|^ n)
* (1
/ ((1
- (1
/ (2
* a)))
|^ n))) by
Th21;
assume
A2: a
> ((2
* n)
* (x
|^ n));
A3: (1
- (n
* (1
/ (2
* a))))
= (1
- ((n
* 1)
/ (2
* a))) by
XCMPLX_1: 74;
((2
* (x
|^ n))
* n)
>= (1
* n) by
XREAL_1: 64,
NAT_1: 14;
then a
>= n by
A2,
XXREAL_0: 2;
then (a
- n)
>= (n
- n) by
XREAL_1: 9;
then
A4: ((a
- n)
+ a)
>= (a
+
0 ) by
XREAL_1: 6;
then (n
/ ((2
* a)
- n))
<= (n
/ a) by
XREAL_1: 118;
then (1
+ (n
/ ((2
* a)
- n)))
<= (1
+ (n
/ a)) by
XREAL_1: 6;
then
A5: ((x
|^ n)
* (1
+ (n
/ ((2
* a)
- n))))
<= ((x
|^ n)
* (1
+ (n
/ a))) by
XREAL_1: 64;
A6: ((2
* a)
- n)
>
0 by
A4;
A7: (1
/ 1)
>= (1
/ (2
* a)) by
XREAL_1: 118,
NAT_1: 14;
(2
* a)
> n by
A6,
XREAL_1: 47;
then (n
/ (2
* a))
< 1 by
XREAL_1: 191;
then
A8: (1
- (n
/ (2
* a)))
> (1
- 1) by
XREAL_1: 10;
(1
- 1)
<= (1
- (1
/ (2
* a)))
<= (1
-
0 ) by
A7,
XREAL_1: 10;
then ((1
- (1
/ (2
* a)))
|^ n)
>= (1
- (n
/ (2
* a))) by
Lm5,
A3;
then (1
/ ((1
- (1
/ (2
* a)))
|^ n))
<= (1
/ (1
- (n
/ (2
* a)))) by
A8,
XREAL_1: 118;
then
A9: ((x
|^ n)
* (1
/ ((1
- (1
/ (2
* a)))
|^ n)))
<= ((x
|^ n)
* (1
/ (1
- (n
/ (2
* a))))) by
XREAL_1: 64;
(1
- (n
/ (2
* a)))
= (((2
* a)
/ (2
* a))
- (n
/ (2
* a))) by
XCMPLX_1: 60
.= (((2
* a)
- n)
/ (2
* a)) by
XCMPLX_1: 120;
then
A10: (1
/ (1
- (n
/ (2
* a))))
= ((((2
* a)
- n)
+ n)
/ ((2
* a)
- n)) by
XCMPLX_1: 57
.= ((((2
* a)
- n)
/ ((2
* a)
- n))
+ (n
/ ((2
* a)
- n))) by
XCMPLX_1: 62
.= (1
+ (n
/ ((2
* a)
- n))) by
XCMPLX_1: 60,
A4;
A11: ((x
|^ n)
* (1
/ ((1
- (1
/ (2
* a)))
|^ n)))
<= ((x
|^ n)
* (1
+ (n
/ a))) by
A5,
A9,
A10,
XXREAL_0: 2;
((2
* n)
* (x
|^ n))
= (2
* (n
* (x
|^ n)));
then (n
* (x
|^ n))
< (a
/ 2) by
A2,
XREAL_1: 81;
then (n
* (x
|^ n))
< ((1
/ 2)
* a);
then ((n
* (x
|^ n))
/ a)
< (1
/ 2) by
XREAL_1: 83;
then ((n
/ a)
* (x
|^ n))
< (1
/ 2) by
XCMPLX_1: 74;
then ((x
|^ n)
+ ((x
|^ n)
* (n
/ a)))
< ((x
|^ n)
+ (1
/ 2)) by
XREAL_1: 6;
then
A12: ((x
|^ n)
* (1
/ ((1
- (1
/ (2
* a)))
|^ n)))
< ((x
|^ n)
+ (1
/ 2)) by
A11,
XXREAL_0: 2;
1
>= (1
/ ((2
* a)
* x)) by
XREAL_1: 185,
NAT_1: 14;
then (1
- 1)
<= (1
- (1
/ ((2
* a)
* x)))
<= (1
-
0 ) by
XREAL_1: 10;
then
A13: ((x
|^ n)
* ((1
- (1
/ ((2
* a)
* x)))
|^ n))
>= ((x
|^ n)
* (1
- (n
* (1
/ ((2
* a)
* x))))) by
Lm5,
XREAL_1: 64;
(((x
|^ n)
* (n
* (1
/ ((2
* a)
* x))))
* 2)
= (((x
|^ n)
* ((n
* 1)
/ ((2
* a)
* x)))
* 2) by
XCMPLX_1: 74
.= (((x
|^ n)
* 2)
* (n
/ ((2
* a)
* x)))
.= ((((x
|^ n)
* 2)
* n)
/ ((2
* a)
* x)) by
XCMPLX_1: 74;
then
A14: (((x
|^ n)
* (n
* (1
/ ((2
* a)
* x))))
* 2)
< (a
/ ((2
* a)
* x)) by
A2,
XREAL_1: 74;
((2
* x)
* a)
>= (1
* a) by
XREAL_1: 64,
NAT_1: 14;
then (a
/ ((2
* a)
* x))
<= 1 by
XREAL_1: 183;
then (((x
|^ n)
* (n
* (1
/ ((2
* a)
* x))))
* 2)
< 1 by
A14,
XXREAL_0: 2;
then ((x
|^ n)
* (n
* (1
/ ((2
* a)
* x))))
< (1
/ 2) by
XREAL_1: 81;
then ((x
|^ n)
- ((x
|^ n)
* (n
* (1
/ ((2
* a)
* x)))))
> ((x
|^ n)
- (1
/ 2)) by
XREAL_1: 15;
then ((x
|^ n)
* ((1
- (1
/ ((2
* a)
* x)))
|^ n))
> ((x
|^ n)
- (1
/ 2)) by
A13,
XXREAL_0: 2;
hence thesis by
A12,
A1,
XXREAL_0: 2;
end;
begin
theorem ::
HILB10_1:20
Th23: x
>=
0 implies ((
sgn x)
* (
Py (a,
|.x.|)))
= (
Py (a,
|.x.|))
proof
assume x
>=
0 ;
then x
=
0 or x
>
0 ;
then (
sgn x)
= 1 or ((
sgn x)
=
0 & x
=
0 ) by
ABSVALUE:def 2;
hence thesis by
Th6;
end;
theorem ::
HILB10_1:21
Th24: x
<=
0 implies ((
sgn x)
* (
Py (a,
|.x.|)))
= (
- (
Py (a,
|.x.|)))
proof
A1: (
Py (a,
|.
0 .|))
=
0 by
Th6;
assume x
<=
0 ;
then x
=
0 or x
<
0 ;
then (
sgn x)
= (
- 1) or ((
sgn x)
=
0 & x
=
0 ) by
ABSVALUE:def 2;
hence thesis by
A1;
end;
theorem ::
HILB10_1:22
Th25: (
Px (a,
|.(x
+ y).|))
= (((
Px (a,
|.x.|))
* (
Px (a,
|.y.|)))
+ ((((((a
^2 )
-' 1)
* (
sgn x))
* (
Py (a,
|.x.|)))
* (
sgn y))
* (
Py (a,
|.y.|)))) & ((
sgn (x
+ y))
* (
Py (a,
|.(x
+ y).|)))
= ((((
Px (a,
|.x.|))
* (
sgn y))
* (
Py (a,
|.y.|)))
+ (((
sgn x)
* (
Py (a,
|.x.|)))
* (
Px (a,
|.y.|))))
proof
set i = x, j = y, I =
|.x.|, J =
|.y.|, IJ =
|.(x
+ y).|;
set A = ((a
^2 )
-' 1), S = (
sqrt A);
A1: ((a
^2 )
-' 1)
= ((a
^2 )
- 1) by
NAT_1: 14,
XREAL_1: 233;
A2: (S
^2 )
= A by
SQUARE_1:def 2;
A3: 1
= (((a
+ S)
* (a
- S))
|^ I) by
A2,
A1
.= (((a
+ S)
|^ I)
* ((a
- S)
|^ I)) by
NEWTON: 7;
A4: 1
= (((a
+ S)
* (a
- S))
|^ J) by
A2,
A1
.= (((a
+ S)
|^ J)
* ((a
- S)
|^ J)) by
NEWTON: 7;
deffunc
PX(
Integer) = (
Px (a,
|.$1.|));
deffunc
PY(
Integer) = ((
sgn $1)
* (
Py (a,
|.$1.|)));
per cases ;
suppose
A5: i
>=
0 & j
>=
0 ;
then
A6: i
= I & j
= J by
ABSVALUE:def 1;
A7:
PY(i)
= (
Py (a,I)) by
Th23,
A5;
A8:
PY(j)
= (
Py (a,J)) by
A5,
Th23;
A9: IJ
= (i
+ j) by
A5,
ABSVALUE:def 1;
PY(+)
= (
Py (a,IJ)) by
Th23,
A5;
then (
PX(+)
+ (
PY(+)
* S))
= ((a
+ S)
|^ IJ) by
Th11
.= (((a
+ S)
|^ I)
* ((a
+ S)
|^ J)) by
A6,
A9,
NEWTON: 8
.= ((
PX(i)
+ (
PY(i)
* S))
* ((a
+ S)
|^ J)) by
A7,
Th11
.= ((
PX(i)
+ (
PY(i)
* S))
* (
PX(j)
+ (
PY(j)
* S))) by
A8,
Th11
.= (((
PX(i)
*
PX(j))
+ ((A
*
PY(i))
*
PY(j)))
+ (S
* ((
PX(i)
*
PY(j))
+ (
PY(i)
*
PX(j))))) by
A2;
hence thesis by
PELLS_EQ: 3;
end;
suppose
A10: i
<
0 & j
>=
0 ;
then
A11: (
- i)
= I & j
= J by
ABSVALUE:def 1;
A12:
PY(i)
= (
- (
Py (a,I))) by
A10,
Th24;
A13:
PY(j)
= (
Py (a,J)) by
A10,
Th23;
per cases ;
suppose
A14: (i
+ j)
>=
0 ;
then IJ
= (i
+ j) by
ABSVALUE:def 1;
then
A15: (IJ
+ I)
= J by
A11;
PY(+)
= (
Py (a,IJ)) by
A14,
Th23;
then (
PX(+)
+ (
PY(+)
* S))
= (((a
+ S)
|^ IJ)
* (((a
+ S)
|^ I)
* ((a
- S)
|^ I))) by
Th11,
A3
.= ((((a
+ S)
|^ IJ)
* ((a
+ S)
|^ I))
* ((a
- S)
|^ I))
.= (((a
+ S)
|^ J)
* ((a
- S)
|^ I)) by
A15,
NEWTON: 8
.= ((
PX(j)
+ (
PY(j)
* S))
* ((a
- S)
|^ I)) by
A13,
Th11
.= ((
PX(j)
+ (
PY(j)
* S))
* (
PX(i)
+ (
PY(i)
* S))) by
A12,
Th11
.= (((
PX(i)
*
PX(j))
+ ((A
*
PY(i))
*
PY(j)))
+ (S
* ((
PX(i)
*
PY(j))
+ (
PY(i)
*
PX(j))))) by
A2;
hence thesis by
PELLS_EQ: 3;
end;
suppose
A16: (i
+ j)
<
0 ;
then IJ
= (
- (i
+ j)) by
ABSVALUE:def 1;
then
A17: (IJ
+ J)
= I by
A11;
PY(+)
= (
- (
Py (a,IJ))) by
A16,
Th24;
then (
PX(+)
+ (
PY(+)
* S))
= (((a
- S)
|^ IJ)
* (((a
+ S)
|^ J)
* ((a
- S)
|^ J))) by
Th11,
A4
.= ((((a
- S)
|^ IJ)
* ((a
- S)
|^ J))
* ((a
+ S)
|^ J))
.= (((a
- S)
|^ I)
* ((a
+ S)
|^ J)) by
A17,
NEWTON: 8
.= ((
PX(i)
+ (
PY(i)
* S))
* ((a
+ S)
|^ J)) by
A12,
Th11
.= ((
PX(i)
+ (
PY(i)
* S))
* (
PX(j)
+ (
PY(j)
* S))) by
A13,
Th11
.= (((
PX(i)
*
PX(j))
+ ((A
*
PY(i))
*
PY(j)))
+ (S
* ((
PX(i)
*
PY(j))
+ (
PY(i)
*
PX(j))))) by
A2;
hence thesis by
PELLS_EQ: 3;
end;
end;
suppose
A18: i
>=
0 & j
<
0 ;
then
A19: i
= I & (
- j)
= J by
ABSVALUE:def 1;
A20:
PY(i)
= (
Py (a,I)) by
Th23,
A18;
A21:
PY(j)
= (
- (
Py (a,J))) by
A18,
Th24;
per cases ;
suppose
A22: (i
+ j)
>=
0 ;
then IJ
= (i
+ j) by
ABSVALUE:def 1;
then
A23: (IJ
+ J)
= I by
A19;
PY(+)
= (
Py (a,IJ)) by
A22,
Th23;
then (
PX(+)
+ (
PY(+)
* S))
= (((a
+ S)
|^ IJ)
* (((a
+ S)
|^ J)
* ((a
- S)
|^ J))) by
A4,
Th11
.= ((((a
+ S)
|^ IJ)
* ((a
+ S)
|^ J))
* ((a
- S)
|^ J))
.= (((a
+ S)
|^ I)
* ((a
- S)
|^ J)) by
A23,
NEWTON: 8
.= ((
PX(i)
+ (
PY(i)
* S))
* ((a
- S)
|^ J)) by
A20,
Th11
.= ((
PX(i)
+ (
PY(i)
* S))
* (
PX(j)
+ (
PY(j)
* S))) by
A21,
Th11
.= (((
PX(i)
*
PX(j))
+ ((A
*
PY(i))
*
PY(j)))
+ (S
* ((
PX(i)
*
PY(j))
+ (
PY(i)
*
PX(j))))) by
A2;
hence thesis by
PELLS_EQ: 3;
end;
suppose
A24: (i
+ j)
<
0 ;
then IJ
= (
- (i
+ j)) by
ABSVALUE:def 1;
then
A25: (IJ
+ I)
= J by
A19;
PY(+)
= (
- (
Py (a,IJ))) by
A24,
Th24;
then (
PX(+)
+ (
PY(+)
* S))
= (((a
- S)
|^ IJ)
* (((a
- S)
|^ I)
* ((a
+ S)
|^ I))) by
Th11,
A3
.= ((((a
- S)
|^ IJ)
* ((a
- S)
|^ I))
* ((a
+ S)
|^ I))
.= (((a
- S)
|^ J)
* ((a
+ S)
|^ I)) by
A25,
NEWTON: 8
.= ((
PX(j)
+ (
PY(j)
* S))
* ((a
+ S)
|^ I)) by
A21,
Th11
.= ((
PX(j)
+ (
PY(j)
* S))
* (
PX(i)
+ (
PY(i)
* S))) by
A20,
Th11
.= (((
PX(i)
*
PX(j))
+ ((A
*
PY(i))
*
PY(j)))
+ (S
* ((
PX(i)
*
PY(j))
+ (
PY(i)
*
PX(j))))) by
A2;
hence thesis by
PELLS_EQ: 3;
end;
end;
suppose
A26: i
<
0 & j
<
0 ;
then
A27: (
- i)
= I & (
- j)
= J by
ABSVALUE:def 1;
A28:
PY(i)
= (
- (
Py (a,I))) by
A26,
Th24;
A29:
PY(j)
= (
- (
Py (a,J))) by
A26,
Th24;
A30: IJ
= (
- (i
+ j)) by
A26,
ABSVALUE:def 1;
A31: IJ
= (I
+ J) by
A27,
A30;
(
PX(+)
+ (
PY(+)
* S))
= (
PX(+)
+ ((
- (
Py (a,IJ)))
* S)) by
A26,
Th24
.= ((a
- S)
|^ IJ) by
Th11
.= (((a
- S)
|^ I)
* ((a
- S)
|^ J)) by
A31,
NEWTON: 8
.= ((
PX(i)
+ (
PY(i)
* S))
* ((a
- S)
|^ J)) by
A28,
Th11
.= ((
PX(i)
+ (
PY(i)
* S))
* (
PX(j)
+ (
PY(j)
* S))) by
A29,
Th11
.= (((
PX(i)
*
PX(j))
+ ((A
*
PY(i))
*
PY(j)))
+ (S
* ((
PX(i)
*
PY(j))
+ (
PY(i)
*
PX(j))))) by
A2;
hence thesis by
PELLS_EQ: 3;
end;
end;
begin
theorem ::
HILB10_1:23
Th26: ((
Px (a,n)),(
Py (a,n)))
are_coprime
proof
defpred
P[
Nat] means ((
Px (a,$1))
gcd (
Py (a,$1)))
= 1;
(
Px (a,
0 ))
= 1 & (
Py (a,
0 ))
=
0 by
Th6;
then
A1:
P[
0 ];
A2: for n st
P[n] holds
P[(n
+ 1)]
proof
set A = ((a
^2 )
-' 1);
A3: A
= ((a
^2 )
- 1) by
NAT_1: 14,
XREAL_1: 233;
let n such that
A4:
P[n];
A5: (
Px (a,(n
+ 1)))
= (((
Px (a,n))
* a)
+ ((
Py (a,n))
* A)) & (
Py (a,(n
+ 1)))
= ((
Px (a,n))
+ ((
Py (a,n))
* a)) by
Th9;
thus 1
= (((
Px (a,n))
+ ((
Py (a,n))
* a))
gcd (
Py (a,n))) by
A4,
EULER_1: 8
.= ((
Py (a,(n
+ 1)))
gcd (
- (
Py (a,n)))) by
A5,
NEWTON02: 1
.= (((
- (
Py (a,n)))
+ (a
* (
Py (a,(n
+ 1)))))
gcd (
Py (a,(n
+ 1)))) by
NEWTON02: 5
.= ((
Px (a,(n
+ 1)))
gcd (
Py (a,(n
+ 1)))) by
A3,
A5;
end;
for n holds
P[n] from
NAT_1:sch 2(
A1,
A2);
then ((
Px (a,n))
gcd (
Py (a,n)))
= 1;
hence thesis by
INT_2:def 3;
end;
theorem ::
HILB10_1:24
Th27: ((
Py (a,n)),n)
are_congruent_mod (a
- 1)
proof
set A = (a
- 1);
A1: ((a
^2 )
-' 1)
= ((a
^2 )
- 1) by
NAT_1: 14,
XREAL_1: 233;
consider Fy,Fx be
FinSequence of
NAT such that
A2: (
Sum Fy)
= (
Py (a,n)) & (
len Fy)
=
[\((n
+ 1)
/ 2)/] and
A3: for i be
Nat st 1
<= i
<= ((n
+ 1)
/ 2) holds (Fy
. i)
= (((n
choose ((2
* i)
-' 1))
* (a
|^ ((n
+ 1)
-' (2
* i))))
* (((a
^2 )
-' 1)
|^ (i
-' 1))) and ((a
|^ n)
+ (
Sum Fx))
= (
Px (a,n)) & (
len Fx)
=
[\(n
/ 2)/] & for i be
Nat st 1
<= i
<= (n
/ 2) holds (Fx
. i)
= (((n
choose (2
* i))
* (a
|^ (n
-' (2
* i))))
* (((a
^2 )
-' 1)
|^ i)) by
Th12;
per cases ;
suppose
A4: n
=
0 ;
then (
Py (a,n))
=
0 by
Th6;
hence thesis by
A4,
INT_1: 11;
end;
suppose
A5: n
<>
0 ;
for i be
Nat st 1
< i
<= (
len Fy) holds ((Fy
. i)
mod A)
=
0
proof
let i be
Nat such that
A6: 1
< i
<= (
len Fy);
(i
-' 1)
= (i
- 1) by
A6,
XREAL_1: 233;
then (i
-' 1)
<>
0 by
A6;
then
reconsider ii = ((i
-' 1)
- 1) as
Element of
NAT by
NAT_1: 20;
(i
-' 1)
= (ii
+ 1);
then
A7: (((a
^2 )
-' 1)
|^ (i
-' 1))
= ((A
* (a
+ 1))
* (((a
^2 )
-' 1)
|^ ii)) by
A1,
NEWTON: 6;
[\((n
+ 1)
/ 2)/]
<= ((n
+ 1)
/ 2) by
INT_1:def 6;
then i
<= ((n
+ 1)
/ 2) by
A2,
A6,
XXREAL_0: 2;
then (Fy
. i)
= (((n
choose ((2
* i)
-' 1))
* (a
|^ ((n
+ 1)
-' (2
* i))))
* (((a
^2 )
-' 1)
|^ (i
-' 1))) by
A6,
A3
.= (((((n
choose ((2
* i)
-' 1))
* (a
|^ ((n
+ 1)
-' (2
* i))))
* (a
+ 1))
* (((a
^2 )
-' 1)
|^ ii))
* A) by
A7;
then A
divides (Fy
. i) by
INT_1:def 3;
hence thesis by
INT_1: 62;
end;
then ((
Py (a,n))
mod A)
= ((Fy
. 1)
mod A) by
Th1,
A2;
then (((
Py (a,n))
- (Fy
. 1))
mod A)
=
0 by
INT_4: 22;
then A
divides ((
Py (a,n))
- (Fy
. 1)) by
INT_1: 62;
then
A8: ((
Py (a,n)),(Fy
. 1))
are_congruent_mod A by
INT_1:def 4;
n
>= 1 by
A5,
NAT_1: 14;
then (n
+ 1)
>= (1
+ 1) & (1
+ 1)
= (2
* 1) by
XREAL_1: 7;
then
A9: ((n
+ 1)
/ 2)
>= 1 by
XREAL_1: 77;
(1
-' 1)
= (1
- 1) by
XREAL_1: 233;
then
A10: (((a
^2 )
-' 1)
|^ (1
-' 1))
= 1 by
NEWTON: 4;
((2
* 1)
-' 1)
= (2
- 1) by
XREAL_1: 233;
then
A11: (n
choose ((2
* 1)
-' 1))
= n by
A5,
NAT_1: 14,
NEWTON: 23;
A12: (Fy
. 1)
= ((n
* (a
|^ ((n
+ 1)
-' (2
* 1))))
* 1) by
A9,
A10,
A11,
A3;
A13: A
>= (2
- 1) by
NAT_2: 29,
XREAL_1: 9;
per cases by
A13,
XXREAL_0: 1;
suppose A
= 1;
then (A
* ((
Py (a,n))
- n))
= ((
Py (a,n))
- n);
hence thesis by
INT_1:def 5;
end;
suppose
A14: A
> 1;
a
= ((A
* 1)
+ 1);
then (a
mod A)
= (1
mod A) by
PEPIN: 10
.= 1 by
A14,
PEPIN: 5;
then ((a
|^ ((n
+ 1)
-' (2
* 1)))
mod A)
= 1 by
A14,
PEPIN: 35;
then ((a
|^ ((n
+ 1)
-' (2
* 1))),1)
are_congruent_mod A by
A14,
PEPIN: 39;
then ((Fy
. 1),(1
* n))
are_congruent_mod A by
A12,
INT_4: 11;
hence thesis by
A8,
INT_1: 15;
end;
end;
end;
theorem ::
HILB10_1:25
Th28: ((
Px (a,n)),(
Px (b,n)))
are_congruent_mod (a
- b) & ((
Py (a,n)),(
Py (b,n)))
are_congruent_mod (a
- b)
proof
defpred
P[
Nat] means ((
Px (a,$1)),(
Px (b,$1)))
are_congruent_mod (a
- b) & ((
Py (a,$1)),(
Py (b,$1)))
are_congruent_mod (a
- b);
(
Px (a,
0 ))
= 1
= (
Px (b,
0 )) & (
Py (a,
0 ))
=
0
= (
Py (b,
0 )) by
Th6;
then
A1:
P[
0 ] by
INT_1: 11;
A2: for n st
P[n] holds
P[(n
+ 1)]
proof
set A = ((a
^2 )
-' 1), B = ((b
^2 )
-' 1);
A
= ((a
^2 )
- 1) & B
= ((b
^2 )
- 1) by
NAT_1: 14,
XREAL_1: 233;
then (A
- B)
= ((a
- b)
* (a
+ b));
then
A3: (A,B)
are_congruent_mod (a
- b) by
INT_1:def 5;
(a
- b)
= (1
* (a
- b));
then
A4: (a,b)
are_congruent_mod (a
- b) by
INT_1:def 5;
let n such that
A5:
P[n];
A6: (
Px (a,(n
+ 1)))
= (((
Px (a,n))
* a)
+ ((
Py (a,n))
* A)) & (
Px (b,(n
+ 1)))
= (((
Px (b,n))
* b)
+ ((
Py (b,n))
* B)) by
Th9;
A7: (((
Py (a,n))
* A),((
Py (b,n))
* B))
are_congruent_mod (a
- b) by
A5,
A3,
INT_1: 18;
(((
Px (a,n))
* a),((
Px (b,n))
* b))
are_congruent_mod (a
- b) by
A5,
A4,
INT_1: 18;
hence ((
Px (a,(n
+ 1))),(
Px (b,(n
+ 1))))
are_congruent_mod (a
- b) by
A6,
A7,
INT_1: 16;
A8: (
Py (a,(n
+ 1)))
= ((
Px (a,n))
+ ((
Py (a,n))
* a)) & (
Py (b,(n
+ 1)))
= ((
Px (b,n))
+ ((
Py (b,n))
* b)) by
Th9;
(((
Py (a,n))
* a),((
Py (b,n))
* b))
are_congruent_mod (a
- b) by
A4,
A5,
INT_1: 18;
hence ((
Py (a,(n
+ 1))),(
Py (b,(n
+ 1))))
are_congruent_mod (a
- b) by
A8,
A5,
INT_1: 16;
end;
for n holds
P[n] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
HILB10_1:26
Th29: (a,b)
are_congruent_mod k implies ((
Py (a,n)),(
Py (b,n)))
are_congruent_mod k
proof
assume (a,b)
are_congruent_mod k;
then
consider x be
Integer such that
A1: (k
* x)
= (a
- b) by
INT_1:def 5;
consider p be
Integer such that
A2: ((a
- b)
* p)
= ((
Py (a,n))
- (
Py (b,n))) by
Th28,
INT_1:def 5;
(p
* (a
- b))
= (p
* (x
* k)) by
A1
.= ((p
* x)
* k);
hence thesis by
A2,
INT_1:def 5;
end;
Lm6: (((
sgn x)
* (
sgn x))
* (
Py (a,
|.x.|)))
= (
Py (a,
|.x.|))
proof
per cases ;
suppose
A1: x
>=
0 ;
thus (((
sgn x)
* (
sgn x))
* (
Py (a,
|.x.|)))
= ((
sgn x)
* ((
sgn x)
* (
Py (a,
|.x.|))))
.= ((
sgn x)
* (
Py (a,
|.x.|))) by
A1,
Th23
.= (
Py (a,
|.x.|)) by
A1,
Th23;
end;
suppose
A2: x
<=
0 ;
thus (((
sgn x)
* (
sgn x))
* (
Py (a,
|.x.|)))
= ((
sgn x)
* ((
sgn x)
* (
Py (a,
|.x.|))))
.= ((
sgn x)
* (
- (
Py (a,
|.x.|)))) by
A2,
Th24
.= (
- ((
sgn x)
* (
Py (a,
|.x.|))))
.= (
- (
- (
Py (a,
|.x.|)))) by
A2,
Th24
.= (
Py (a,
|.x.|));
end;
end;
theorem ::
HILB10_1:27
Th30: (((
sgn ((2
* x)
+ y))
* (
Py (a,
|.((2
* x)
+ y).|))),(
- ((
sgn y)
* (
Py (a,
|.y.|)))))
are_congruent_mod (
Px (a,
|.x.|))
proof
set i = x, j = y, A = ((a
^2 )
-' 1);
((2
* i)
+ j)
= (i
+ (i
+ j));
then ((
sgn ((2
* i)
+ j))
* (
Py (a,
|.((2
* i)
+ j).|)))
= ((((
Px (a,
|.i.|))
* (
sgn (i
+ j)))
* (
Py (a,
|.(i
+ j).|)))
+ (((
sgn i)
* (
Py (a,
|.i.|)))
* (
Px (a,
|.(i
+ j).|)))) by
Th25;
then (((
sgn ((2
* i)
+ j))
* (
Py (a,
|.((2
* i)
+ j).|)))
- (((
sgn i)
* (
Py (a,
|.i.|)))
* (
Px (a,
|.(i
+ j).|))))
= ((
Px (a,
|.i.|))
* ((
sgn (i
+ j))
* (
Py (a,
|.(i
+ j).|))));
then
A1: (((
sgn ((2
* i)
+ j))
* (
Py (a,
|.((2
* i)
+ j).|))),(((
sgn i)
* (
Py (a,
|.i.|)))
* (
Px (a,
|.(i
+ j).|))))
are_congruent_mod (
Px (a,
|.i.|)) by
INT_1:def 5;
A2: (((
sgn i)
* (
Py (a,
|.i.|)))
* ((((A
* (
sgn i))
* (
Py (a,
|.i.|)))
* (
sgn j))
* (
Py (a,
|.j.|))))
= (((((((
sgn i)
* (
sgn i))
* (
Py (a,
|.i.|)))
* ((a
^2 )
-' 1))
* (
Py (a,
|.i.|)))
* (
sgn j))
* (
Py (a,
|.j.|)))
.= (((((
Py (a,
|.i.|))
* A)
* (
Py (a,
|.i.|)))
* (
sgn j))
* (
Py (a,
|.j.|))) by
Lm6;
A3: (((
Px (a,
|.i.|))
^2 )
- (((a
^2 )
-' 1)
* ((
Py (a,
|.i.|))
^2 )))
= 1 by
Th10;
(
Px (a,
|.(i
+ j).|))
= (((
Px (a,
|.i.|))
* (
Px (a,
|.j.|)))
+ ((((((a
^2 )
-' 1)
* (
sgn i))
* (
Py (a,
|.i.|)))
* (
sgn j))
* (
Py (a,
|.j.|)))) by
Th25;
then ((
Px (a,
|.(i
+ j).|))
- ((((((a
^2 )
-' 1)
* (
sgn i))
* (
Py (a,
|.i.|)))
* (
sgn j))
* (
Py (a,
|.j.|))))
= ((
Px (a,
|.i.|))
* (
Px (a,
|.j.|)));
then ((
Px (a,
|.(i
+ j).|)),((((((a
^2 )
-' 1)
* (
sgn i))
* (
Py (a,
|.i.|)))
* (
sgn j))
* (
Py (a,
|.j.|))))
are_congruent_mod (
Px (a,
|.i.|)) by
INT_1:def 5;
then ((((
sgn i)
* (
Py (a,
|.i.|)))
* (
Px (a,
|.(i
+ j).|))),(((((
Py (a,
|.i.|))
* A)
* (
Py (a,
|.i.|)))
* (
sgn j))
* (
Py (a,
|.j.|))))
are_congruent_mod (
Px (a,
|.i.|)) by
A2,
INT_4: 11;
then
A4: (((
sgn ((2
* i)
+ j))
* (
Py (a,
|.((2
* i)
+ j).|))),(((((
Px (a,
|.i.|))
^2 )
- 1)
* (
sgn j))
* (
Py (a,
|.j.|))))
are_congruent_mod (
Px (a,
|.i.|)) by
A3,
A1,
INT_1: 15;
((((((
Px (a,
|.i.|))
^2 )
- 1)
* (
sgn j))
* (
Py (a,
|.j.|)))
- (
- ((
sgn j)
* (
Py (a,
|.j.|)))))
= ((
Px (a,
|.i.|))
* (((
Px (a,
|.i.|))
* (
sgn j))
* (
Py (a,
|.j.|))));
then ((((((
Px (a,
|.i.|))
^2 )
- 1)
* (
sgn j))
* (
Py (a,
|.j.|))),(
- ((
sgn j)
* (
Py (a,
|.j.|)))))
are_congruent_mod (
Px (a,
|.i.|)) by
INT_1:def 5;
hence thesis by
A4,
INT_1: 15;
end;
Lm7: for i,j be
Integer holds (((
sgn ((4
* i)
+ j))
* (
Py (a,
|.((4
* i)
+ j).|))),((
sgn j)
* (
Py (a,
|.j.|))))
are_congruent_mod (
Px (a,
|.i.|))
proof
let i,j be
Integer;
((4
* i)
+ j)
= ((2
* i)
+ ((2
* i)
+ j));
then
A1: (((
sgn ((4
* i)
+ j))
* (
Py (a,
|.((4
* i)
+ j).|))),(
- ((
sgn ((2
* i)
+ j))
* (
Py (a,
|.((2
* i)
+ j).|)))))
are_congruent_mod (
Px (a,
|.i.|)) by
Th30;
(((
- 1)
* ((
sgn ((2
* i)
+ j))
* (
Py (a,
|.((2
* i)
+ j).|)))),((
- 1)
* (
- ((
sgn j)
* (
Py (a,
|.j.|))))))
are_congruent_mod (
Px (a,
|.i.|)) by
Th30,
INT_4: 11;
hence thesis by
A1,
INT_1: 15;
end;
theorem ::
HILB10_1:28
Th31: (((
sgn (((4
* x)
* n)
+ y))
* (
Py (a,
|.(((4
* x)
* n)
+ y).|))),((
sgn y)
* (
Py (a,
|.y.|))))
are_congruent_mod (
Px (a,
|.x.|))
proof
defpred
P[
Nat] means (((
sgn (((4
* x)
* $1)
+ y))
* (
Py (a,
|.(((4
* x)
* $1)
+ y).|))),((
sgn y)
* (
Py (a,
|.y.|))))
are_congruent_mod (
Px (a,
|.x.|));
A1:
P[
0 ] by
INT_1: 11;
A2: for n holds
P[n] implies
P[(n
+ 1)]
proof
let n;
set n1 = (n
+ 1);
assume
A3:
P[n];
(((4
* x)
* n1)
+ y)
= ((4
* x)
+ (((4
* x)
* n)
+ y));
then (((
sgn (((4
* x)
* n1)
+ y))
* (
Py (a,
|.(((4
* x)
* n1)
+ y).|))),((
sgn (((4
* x)
* n)
+ y))
* (
Py (a,
|.(((4
* x)
* n)
+ y).|))))
are_congruent_mod (
Px (a,
|.x.|)) by
Lm7;
hence thesis by
A3,
INT_1: 15;
end;
for n holds
P[n] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
HILB10_1:29
Th32: (((
sgn (x
+ y))
* (
Py (a,
|.(x
+ y).|))),((
sgn (x
- y))
* (
Py (a,
|.(x
- y).|))))
are_congruent_mod (
Px (a,
|.x.|))
proof
(x
+ y)
= ((2
* x)
+ ((
- x)
+ y));
then
A1: (((
sgn (x
+ y))
* (
Py (a,
|.(x
+ y).|))),(
- ((
sgn ((
- x)
+ y))
* (
Py (a,
|.((
- x)
+ y).|)))))
are_congruent_mod (
Px (a,
|.x.|)) by
Th30;
A2:
|.((
- x)
+ y).|
=
|.(
- ((
- x)
+ y)).| by
COMPLEX1: 52;
((
- x)
+ y)
= ((
- 1)
* (x
- y));
then (
sgn ((
- x)
+ y))
= ((
sgn (x
- y))
* (
sgn (
- 1))) & (
sgn (
- 1))
= (
- 1) by
ABSVALUE: 18,
ABSVALUE:def 2;
hence thesis by
A2,
A1;
end;
Lm8:
|.r1.|
< r2 implies (
- r2)
< r1
< r2
proof
assume
A1:
|.r1.|
< r2;
then
A2: (
-
|.r1.|)
> (
- r2) by
XREAL_1: 24;
(
-
|.r1.|)
<= r1
<=
|.r1.| by
ABSVALUE: 4;
hence thesis by
A1,
A2,
XXREAL_0: 2;
end;
theorem ::
HILB10_1:30
Th33: n1
< n2
<= n &
|.x.|
= (
Py (a,n1)) &
|.y.|
= (
Py (a,n2)) & (x,y)
are_congruent_mod (
Px (a,n)) implies x
= y
proof
assume
A1: n1
< n2
<= n &
|.x.|
= (
Py (a,n1)) &
|.y.|
= (
Py (a,n2)) & (x,y)
are_congruent_mod (
Px (a,n));
then
consider i be
Integer such that
A2: (x
- y)
= ((
Px (a,n))
* i) by
INT_1:def 5;
A3: n1
< n by
A1,
XXREAL_0: 2;
(
- (
Px (a,n)))
< (x
- y)
< (
Px (a,n))
proof
per cases ;
suppose
A4: a
= 2;
A5: ((
sqrt 3)
^2 )
= 3 by
SQUARE_1:def 2;
A6: (
sqrt 3)
>
0 by
SQUARE_1: 25;
((3
+ (2
* (
sqrt 3)))
* (
Py (a,n1)))
< (
Px (a,n)) by
A4,
A3,
Th19;
then (
Py (a,n1))
< ((
Px (a,n))
/ (3
+ (2
* (
sqrt 3)))) by
A6,
XREAL_1: 81;
then
A7: (
- ((
Px (a,n))
/ (3
+ (2
* (
sqrt 3)))))
< x
< ((
Px (a,n))
/ (3
+ (2
* (
sqrt 3)))) by
Lm8,
A1;
((
sqrt 3)
* (
Py (a,n2)))
< (
Px (a,n)) by
A4,
Th18,
A1;
then (
Py (a,n2))
< ((
Px (a,n))
/ (
sqrt 3)) by
XREAL_1: 81,
A6;
then (
- ((
Px (a,n))
/ (
sqrt 3)))
< y
< ((
Px (a,n))
/ (
sqrt 3)) by
Lm8,
A1;
then
A8: ((
- ((
Px (a,n))
/ (3
+ (2
* (
sqrt 3)))))
- ((
Px (a,n))
/ (
sqrt 3)))
< (x
- y)
< (((
Px (a,n))
/ (3
+ (2
* (
sqrt 3))))
- (
- ((
Px (a,n))
/ (
sqrt 3)))) by
A7,
XREAL_1: 14;
A9: (((
Px (a,n))
/ (3
+ (2
* (
sqrt 3))))
+ ((
Px (a,n))
/ (
sqrt 3)))
= ((((
Px (a,n))
* (
sqrt 3))
+ ((
Px (a,n))
* (3
+ (2
* (
sqrt 3)))))
/ ((3
+ (2
* (
sqrt 3)))
* (
sqrt 3))) by
XCMPLX_1: 116,
A6
.= (((
Px (a,n))
* (3
+ (3
* (
sqrt 3))))
/ ((3
+ (2
* (
sqrt 3)))
* (
sqrt 3)))
.= ((
Px (a,n))
* ((3
+ (3
* (
sqrt 3)))
/ ((3
* (
sqrt 3))
+ 6))) by
A5,
XCMPLX_1: 74;
(3
+ (3
* (
sqrt 3)))
<= (6
+ (3
* (
sqrt 3))) by
XREAL_1: 7;
then ((3
+ (3
* (
sqrt 3)))
/ ((3
* (
sqrt 3))
+ 6))
<= 1 by
A6,
XREAL_1: 183;
then
A10: ((
Px (a,n))
* ((3
+ (3
* (
sqrt 3)))
/ ((3
* (
sqrt 3))
+ 6)))
<= ((
Px (a,n))
* 1) by
XREAL_1: 64;
then (
- (((
Px (a,n))
/ (3
+ (2
* (
sqrt 3))))
+ ((
Px (a,n))
/ (
sqrt 3))))
>= (
- (
Px (a,n))) by
A9,
XREAL_1: 24;
hence thesis by
A10,
A8,
A9,
XXREAL_0: 2;
end;
suppose
A11: a
<> 2;
(2
* (
Py (a,n1)))
< (
Px (a,n)) by
A11,
A3,
Th17;
then
|.x.|
< ((
Px (a,n))
/ 2) by
A1,
XREAL_1: 81;
then
A12: (
- ((
Px (a,n))
/ 2))
< x
< ((
Px (a,n))
/ 2) by
Lm8;
(2
* (
Py (a,n2)))
< (
Px (a,n)) by
A11,
Th17,
A1;
then
|.y.|
< ((
Px (a,n))
/ 2) by
A1,
XREAL_1: 81;
then (
- ((
Px (a,n))
/ 2))
< y
< ((
Px (a,n))
/ 2) by
Lm8;
then ((
- ((
Px (a,n))
/ 2))
- ((
Px (a,n))
/ 2))
< (x
- y)
< (((
Px (a,n))
/ 2)
- (
- ((
Px (a,n))
/ 2))) by
A12,
XREAL_1: 14;
hence thesis;
end;
end;
then ((
- 1)
* (
Px (a,n)))
< ((
Px (a,n))
* i)
< (1
* (
Px (a,n))) by
A2;
then (
- 1)
< i
< (1
+
0 ) by
XREAL_1: 64;
then
0
<= i
<=
0 by
INT_1: 7,
INT_1: 8;
then (x
- y)
=
0 by
A2;
hence thesis;
end;
Lm9: n1
< n2
<= (2
* n) &
|.x.|
= (
Py (a,n1)) &
|.y.|
= (
Py (a,n2)) & (x,y)
are_congruent_mod (
Px (a,n)) implies n1
= ((2
* n)
- n2)
proof
assume
A1: n1
< n2
<= (2
* n) &
|.x.|
= (
Py (a,n1)) &
|.y.|
= (
Py (a,n2)) & (x,y)
are_congruent_mod (
Px (a,n)) & n1
<> ((2
* n)
- n2);
per cases ;
suppose n2
<= n;
then (
Py (a,n1))
= (
Py (a,n2)) by
A1,
Th33;
hence thesis by
A1,
Th15;
end;
suppose
A2: n2
> n;
then
reconsider m = (n2
- n) as
Nat by
NAT_1: 21;
((n
+ n)
- n2)
>= (n2
- n2) by
A1,
XREAL_1: 9;
then
reconsider nm = (n
- m) as
Element of
NAT by
INT_1: 3;
A3: ((
sgn n2)
* (
Py (a,
|.n2.|)))
= (
Py (a,n2)) & ((
sgn nm)
* (
Py (a,
|.nm.|)))
= (
Py (a,nm)) by
Th23;
n2
= (n
+ m);
then (((
sgn n2)
* (
Py (a,
|.n2.|))),((
sgn nm)
* (
Py (a,
|.nm.|))))
are_congruent_mod (
Px (a,
|.n.|)) by
Th32;
then (((
sgn y)
* (
Py (a,n2))),((
sgn y)
* (
Py (a,nm))))
are_congruent_mod (
Px (a,n)) by
A3,
INT_4: 11;
then (y,((
sgn y)
* (
Py (a,nm))))
are_congruent_mod (
Px (a,n)) by
A1,
ABSVALUE: 17;
then
A4: (x,((
sgn y)
* (
Py (a,nm))))
are_congruent_mod (
Px (a,n)) by
A1,
INT_1: 15;
then
A5: (((
sgn y)
* (
Py (a,nm))),x)
are_congruent_mod (
Px (a,n)) by
INT_1: 14;
nm
= ((n
+ n)
- n2);
then
A6: nm
< ((n
+ n)
- n) by
A2,
XREAL_1: 15;
A7: n1
< nm or nm
< n1 by
A1,
XXREAL_0: 1;
y
<>
0 by
A1;
then y
>
0 or y
<
0 ;
then (
sgn y)
= 1 or (
sgn y)
= (
- 1) by
ABSVALUE:def 2;
then ((
sgn y)
* (
Py (a,nm)))
= (
Py (a,nm)) or ((
sgn y)
* (
Py (a,nm)))
= (
- (
Py (a,nm)));
then
A8:
|.((
sgn y)
* (
Py (a,nm))).|
= (
Py (a,nm));
per cases ;
suppose n1
<= n;
then
A9: (
Py (a,n1))
= (
Py (a,nm)) or (
Py (a,n1))
= (
- (
Py (a,nm))) by
A1,
A4,
INT_1: 14,
A8,
A6,
A7,
Th33;
(
Py (a,n1))
<> (
- (
Py (a,nm)))
proof
assume
A10: (
Py (a,n1))
= (
- (
Py (a,nm)));
n1
=
0 & nm
=
0 by
A10;
hence thesis by
A1;
end;
hence thesis by
A9,
A1,
Th15;
end;
suppose
A11: n1
> n;
then
reconsider k = (n1
- n) as
Nat by
NAT_1: 21;
(n
+ n)
>= n1 by
A1,
XXREAL_0: 2;
then ((n
+ n)
- n1)
>= (n1
- n1) by
XREAL_1: 9;
then
reconsider nk = (n
- k) as
Element of
NAT by
INT_1: 3;
A12: ((
sgn n1)
* (
Py (a,
|.n1.|)))
= (
Py (a,n1)) & ((
sgn nk)
* (
Py (a,
|.nk.|)))
= (
Py (a,nk)) by
Th23;
n1
= (n
+ k);
then (((
sgn n1)
* (
Py (a,
|.n1.|))),((
sgn nk)
* (
Py (a,
|.nk.|))))
are_congruent_mod (
Px (a,
|.n.|)) by
Th32;
then (((
sgn x)
* (
Py (a,n1))),((
sgn x)
* (
Py (a,nk))))
are_congruent_mod (
Px (a,n)) by
A12,
INT_4: 11;
then (x,((
sgn x)
* (
Py (a,nk))))
are_congruent_mod (
Px (a,n)) by
A1,
ABSVALUE: 17;
then
A13: (((
sgn y)
* (
Py (a,nm))),((
sgn x)
* (
Py (a,nk))))
are_congruent_mod (
Px (a,n)) by
A5,
INT_1: 15;
nk
= ((n
+ n)
- n1);
then
A14: nk
< ((n
+ n)
- n) by
A11,
XREAL_1: 15;
A15: nk
<> nm by
A1;
then
A16: nk
< nm or nm
< nk by
XXREAL_0: 1;
x
<>
0 by
A1,
A11;
then x
>
0 or x
<
0 ;
then (
sgn x)
= 1 or (
sgn x)
= (
- 1) by
ABSVALUE:def 2;
then ((
sgn x)
* (
Py (a,nk)))
= (
Py (a,nk)) or ((
sgn x)
* (
Py (a,nk)))
= (
- (
Py (a,nk)));
then
A17:
|.((
sgn x)
* (
Py (a,nk))).|
= (
Py (a,nk));
A18: (
Py (a,nk))
= (
Py (a,nm)) or (
Py (a,nk))
= (
- (
Py (a,nm))) by
Th33,
A16,
A14,
A6,
A13,
INT_1: 14,
A8,
A17;
(
Py (a,nk))
<> (
- (
Py (a,nm)))
proof
assume
A19: (
Py (a,nk))
= (
- (
Py (a,nm)));
nk
=
0 & nm
=
0 by
A19;
hence thesis by
A1;
end;
hence thesis by
A18,
A15,
Th15;
end;
end;
end;
theorem ::
HILB10_1:31
Th34: n1
<= (2
* n) & n2
<= (2
* n) &
|.x.|
= (
Py (a,n1)) &
|.y.|
= (
Py (a,n2)) & (x,y)
are_congruent_mod (
Px (a,n)) implies (n1,n2)
are_congruent_mod (2
* n) or (n1,(
- n2))
are_congruent_mod (2
* n)
proof
assume that
A1: n1
<= (2
* n) & n2
<= (2
* n) and
A2:
|.x.|
= (
Py (a,n1)) &
|.y.|
= (
Py (a,n2)) & (x,y)
are_congruent_mod (
Px (a,n));
n1
= n2 or n1
> n2 or n1
< n2 by
XXREAL_0: 1;
then n1
= n2 or n1
= ((2
* n)
- n2) or n2
= ((2
* n)
- n1) by
Lm9,
A2,
INT_1: 14,
A1;
then (n1
- n2)
= ((2
* n)
*
0 ) or (n1
- (
- n2))
= ((2
* n)
* 1) or (n1
- (
- n2))
= ((2
* n)
* (
- 1));
hence thesis by
INT_1:def 5;
end;
Lm10: n1
<= (2
* n) & (2
* n)
< n2
<= (4
* n) &
|.x.|
= (
Py (a,n1)) &
|.y.|
= (
Py (a,n2)) & (x,y)
are_congruent_mod (
Px (a,n)) implies (n1,n2)
are_congruent_mod (2
* n) or (n1,(
- n2))
are_congruent_mod (2
* n)
proof
assume that
A1: n1
<= (2
* n) & (2
* n)
< n2
<= (4
* n) and
A2:
|.x.|
= (
Py (a,n1)) &
|.y.|
= (
Py (a,n2)) & (x,y)
are_congruent_mod (
Px (a,n));
reconsider m1 = (n2
- (2
* n)) as
Nat by
A1,
NAT_1: 21;
A3: m1
<= ((4
* n)
- (2
* n)) by
A1,
XREAL_1: 9;
m1
> ((2
* n)
- (2
* n)) & n2
>
0 by
XREAL_1: 9,
A1;
then
A4: (
sgn m1)
= 1 & (
sgn n2)
= 1 by
ABSVALUE:def 2;
y
<>
0 by
A2,
A1;
then y
>
0 or y
<
0 ;
then (
sgn y)
= 1 or (
sgn y)
= (
- 1) by
ABSVALUE:def 2;
then
A5:
|.((
sgn y)
* (
- (
Py (a,m1)))).|
= (
Py (a,m1));
((2
* n)
+ m1)
= n2;
then (((
sgn n2)
* (
Py (a,
|.n2.|))),(
- ((
sgn m1)
* (
Py (a,
|.m1.|)))))
are_congruent_mod (
Px (a,
|.n.|)) by
Th30;
then (((
sgn y)
* (
Py (a,
|.n2.|))),((
sgn y)
* (
- (
Py (a,m1)))))
are_congruent_mod (
Px (a,n)) by
A4,
INT_4: 11;
then (y,((
sgn y)
* (
- (
Py (a,m1)))))
are_congruent_mod (
Px (a,n)) by
ABSVALUE: 17,
A2;
then
A6: (x,((
sgn y)
* (
- (
Py (a,m1)))))
are_congruent_mod (
Px (a,n)) by
INT_1: 15,
A2;
per cases by
XXREAL_0: 1;
suppose n1
< m1 or n1
> m1;
then n1
= ((2
* n)
- m1) or m1
= ((2
* n)
- n1) by
A6,
INT_1: 14,
A1,
A2,
A5,
A3,
Lm9;
then (n1
- (
- n2))
= (2
* (2
* n));
hence thesis by
INT_1:def 5;
end;
suppose n1
= m1;
then (n1
- n2)
= ((
- 1)
* (2
* n));
hence thesis by
INT_1:def 5;
end;
end;
Lm11: (2
* n)
< n1
<= (4
* n) & (2
* n)
< n2
<= (4
* n) &
|.x.|
= (
Py (a,n1)) &
|.y.|
= (
Py (a,n2)) & (x,y)
are_congruent_mod (
Px (a,n)) implies (n1,n2)
are_congruent_mod (2
* n) or (n1,(
- n2))
are_congruent_mod (2
* n)
proof
assume that
A1: (2
* n)
< n1
<= (4
* n) & (2
* n)
< n2
<= (4
* n) and
A2:
|.x.|
= (
Py (a,n1)) &
|.y.|
= (
Py (a,n2)) & (x,y)
are_congruent_mod (
Px (a,n));
reconsider m2 = (n2
- (2
* n)) as
Nat by
A1,
NAT_1: 21;
A3: m2
<= ((4
* n)
- (2
* n)) by
A1,
XREAL_1: 9;
m2
> ((2
* n)
- (2
* n)) & n2
>
0 by
XREAL_1: 9,
A1;
then
A4: (
sgn m2)
= 1 & (
sgn n2)
= 1 by
ABSVALUE:def 2;
y
<>
0 by
A2,
A1;
then y
>
0 or y
<
0 ;
then (
sgn y)
= 1 or (
sgn y)
= (
- 1) by
ABSVALUE:def 2;
then
A5:
|.((
sgn y)
* (
- (
Py (a,m2)))).|
= (
Py (a,m2));
reconsider m1 = (n1
- (2
* n)) as
Nat by
A1,
NAT_1: 21;
A6: m1
<= ((4
* n)
- (2
* n)) by
A1,
XREAL_1: 9;
m1
> ((2
* n)
- (2
* n)) & n1
>
0 by
XREAL_1: 9,
A1;
then
A7: (
sgn m1)
= 1 & (
sgn n1)
= 1 by
ABSVALUE:def 2;
x
<>
0 by
A2,
A1;
then x
>
0 or x
<
0 ;
then (
sgn x)
= 1 or (
sgn x)
= (
- 1) by
ABSVALUE:def 2;
then
A8:
|.((
sgn x)
* (
- (
Py (a,m1)))).|
= (
Py (a,m1));
((2
* n)
+ m1)
= n1;
then (((
sgn n1)
* (
Py (a,
|.n1.|))),(
- ((
sgn m1)
* (
Py (a,
|.m1.|)))))
are_congruent_mod (
Px (a,
|.n.|)) by
Th30;
then (((
sgn x)
* (
Py (a,
|.n1.|))),((
sgn x)
* (
- (
Py (a,m1)))))
are_congruent_mod (
Px (a,n)) by
A7,
INT_4: 11;
then (x,((
sgn x)
* (
- (
Py (a,m1)))))
are_congruent_mod (
Px (a,n)) by
ABSVALUE: 17,
A2;
then (((
sgn x)
* (
- (
Py (a,m1)))),x)
are_congruent_mod (
Px (a,n)) by
INT_1: 14;
then
A9: (((
sgn x)
* (
- (
Py (a,m1)))),y)
are_congruent_mod (
Px (a,n)) by
INT_1: 15,
A2;
((2
* n)
+ m2)
= n2;
then (((
sgn n2)
* (
Py (a,
|.n2.|))),(
- ((
sgn m2)
* (
Py (a,
|.m2.|)))))
are_congruent_mod (
Px (a,
|.n.|)) by
Th30;
then (((
sgn y)
* (
Py (a,
|.n2.|))),((
sgn y)
* (
- (
Py (a,m2)))))
are_congruent_mod (
Px (a,n)) by
A4,
INT_4: 11;
then (y,((
sgn y)
* (
- (
Py (a,m2)))))
are_congruent_mod (
Px (a,n)) by
ABSVALUE: 17,
A2;
then
A10: (((
sgn x)
* (
- (
Py (a,m1)))),((
sgn y)
* (
- (
Py (a,m2)))))
are_congruent_mod (
Px (a,n)) by
A9,
INT_1: 15;
per cases by
XXREAL_0: 1;
suppose m1
< m2 or m1
> m2;
then m1
= ((2
* n)
- m2) or m2
= ((2
* n)
- m1) by
A10,
INT_1: 14,
A5,
A3,
A6,
A8,
Lm9;
then (n1
- (
- n2))
= (3
* (2
* n));
hence thesis by
INT_1:def 5;
end;
suppose m1
= m2;
then (n1
- n2)
= (
0
* (2
* n));
hence thesis by
INT_1:def 5;
end;
end;
theorem ::
HILB10_1:32
Th35: n1
<= (4
* n) & n2
<= (4
* n) &
|.x.|
= (
Py (a,n1)) &
|.y.|
= (
Py (a,n2)) & (x,y)
are_congruent_mod (
Px (a,n)) implies (n1,n2)
are_congruent_mod (2
* n) or (n1,(
- n2))
are_congruent_mod (2
* n)
proof
assume
A1: n1
<= (4
* n) & n2
<= (4
* n) &
|.x.|
= (
Py (a,n1)) &
|.y.|
= (
Py (a,n2)) & (x,y)
are_congruent_mod (
Px (a,n));
then
A2: (y,x)
are_congruent_mod (
Px (a,n)) by
INT_1: 14;
per cases ;
suppose n1
<= (2
* n) & n2
<= (2
* n) or n1
> (2
* n) & n2
> (2
* n) or n1
<= (2
* n)
< n2;
hence thesis by
A1,
Th34,
Lm10,
Lm11;
end;
suppose n2
<= (2
* n)
< n1;
then (n2,n1)
are_congruent_mod (2
* n) or (n2,(
- n1))
are_congruent_mod (2
* n) by
A1,
A2,
Lm10;
then (n1,n2)
are_congruent_mod (2
* n) or (((
- 1)
* n2),((
- 1)
* (
- n1)))
are_congruent_mod (2
* n) by
INT_1: 14,
INT_4: 11;
hence thesis by
INT_1: 14;
end;
end;
theorem ::
HILB10_1:33
Th36: ((
Py (a,n1)),(
Py (a,n2)))
are_congruent_mod (
Px (a,n)) & n
>
0 implies (n1,n2)
are_congruent_mod (2
* n) or (n1,(
- n2))
are_congruent_mod (2
* n)
proof
assume that
A1: ((
Py (a,n1)),(
Py (a,n2)))
are_congruent_mod (
Px (a,n)) and
A2: n
>
0 ;
reconsider m1 = (n1
mod (4
* n)), d1 = (n1
div (4
* n)) as
Element of
NAT ;
A3: (n1
- (d1
* (4
* n)))
= m1 by
A2,
INT_1:def 10;
then (((
sgn (((4
* d1)
* n)
+ m1))
* (
Py (a,
|.(((4
* d1)
* n)
+ m1).|))),((
sgn m1)
* (
Py (a,
|.m1.|))))
are_congruent_mod (
Px (a,
|.n.|)) by
Th31;
then ((
Py (a,n1)),((
sgn m1)
* (
Py (a,
|.m1.|))))
are_congruent_mod (
Px (a,
|.n.|)) by
A3,
Th23;
then ((
Py (a,n1)),(
Py (a,m1)))
are_congruent_mod (
Px (a,n)) by
Th23;
then
A4: ((
Py (a,m1)),(
Py (a,n1)))
are_congruent_mod (
Px (a,n)) by
INT_1: 14;
reconsider m2 = (n2
mod (4
* n)), d2 = (n2
div (4
* n)) as
Element of
NAT ;
A5: m1
<= (4
* n) & m2
<= (4
* n) by
A2,
INT_1: 58;
A6:
|.(
Py (a,m1)).|
= (
Py (a,m1)) &
|.(
Py (a,m2)).|
= (
Py (a,m2));
A7: (n2
- (d2
* (4
* n)))
= m2 by
A2,
INT_1:def 10;
then (((
sgn (((4
* d2)
* n)
+ m2))
* (
Py (a,
|.(((4
* d2)
* n)
+ m2).|))),((
sgn m2)
* (
Py (a,
|.m2.|))))
are_congruent_mod (
Px (a,
|.n.|)) by
Th31;
then ((
Py (a,n2)),((
sgn m2)
* (
Py (a,
|.m2.|))))
are_congruent_mod (
Px (a,
|.n.|)) by
A7,
Th23;
then ((
Py (a,n2)),(
Py (a,m2)))
are_congruent_mod (
Px (a,n)) by
Th23;
then ((
Py (a,n1)),(
Py (a,m2)))
are_congruent_mod (
Px (a,n)) by
A1,
INT_1: 15;
then ((
Py (a,m1)),(
Py (a,m2)))
are_congruent_mod (
Px (a,n)) by
A4,
INT_1: 15;
then
A8: (m1,m2)
are_congruent_mod (2
* n) or (m1,(
- m2))
are_congruent_mod (2
* n) by
A6,
A5,
Th35;
(n1
- m1)
= ((2
* d1)
* (2
* n)) by
A3;
then (n1,m1)
are_congruent_mod (2
* n) by
INT_1:def 5;
then
A9: (n1,m2)
are_congruent_mod (2
* n) or (n1,(
- m2))
are_congruent_mod (2
* n) by
A8,
INT_1: 15;
(m2
- n2)
= ((
- (2
* d2))
* (2
* n)) & ((
- m2)
- (
- n2))
= ((2
* d2)
* (2
* n)) by
A7;
then (m2,n2)
are_congruent_mod (2
* n) & ((
- m2),(
- n2))
are_congruent_mod (2
* n) by
INT_1:def 5;
hence thesis by
A9,
INT_1: 15;
end;
begin
theorem ::
HILB10_1:34
Th37: (
Py (a,n))
divides (
Py (a,(n
* k)))
proof
defpred
P[
Nat] means (
Py (a,n))
divides (
Py (a,(n
* $1)));
((
Py (a,n))
*
0 )
= (
Py (a,(n
*
0 ))) by
Th6;
then
A1:
P[
0 ] by
INT_1:def 3;
A2: for k holds
P[k] implies
P[(k
+ 1)]
proof
let k;
assume
A3:
P[k];
A4: (
Py (a,((n
* k)
+ n)))
= ((
sgn ((n
* k)
+ n))
* (
Py (a,
|.((n
* k)
+ n).|))) & ((
sgn n)
* (
Py (a,
|.n.|)))
= (
Py (a,n)) & ((
sgn (n
* k))
* (
Py (a,
|.(n
* k).|)))
= (
Py (a,(n
* k))) by
Th23;
then
A5: (
Py (a,
|.((n
* k)
+ n).|))
= ((((
Px (a,
|.(n
* k).|))
* (
sgn n))
* (
Py (a,
|.n.|)))
+ (((
sgn (n
* k))
* (
Py (a,
|.(n
* k).|)))
* (
Px (a,
|.n.|)))) by
Th25
.= (((
Px (a,(n
* k)))
* (
Py (a,n)))
+ ((
Py (a,(n
* k)))
* (
Px (a,n)))) by
A4;
A6: (
Py (a,n))
divides ((
Py (a,(n
* k)))
* (
Px (a,n))) by
A3,
INT_2: 2;
(
Py (a,n))
divides ((
Px (a,(n
* k)))
* (
Py (a,n))) by
NAT_D: 9;
hence thesis by
A5,
A6,
NAT_D: 8;
end;
for k holds
P[k] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
HILB10_1:35
Th38: ((
Py (a,(n
* k))),((k
* ((
Px (a,n))
|^ (k
-' 1)))
* (
Py (a,n))))
are_congruent_mod ((
Py (a,n))
^2 )
proof
set m = (
min_Pell's_solution_of ((a
^2 )
-' 1));
set x = (
Px (a,n)), y = (
Py (a,n)), s = (
sqrt ((a
^2 )
-' 1)), ys = (y
* s);
per cases ;
suppose n
=
0 or k
=
0 ;
then (y
=
0 or k
=
0 ) & (
Py (a,(n
* k)))
=
0 by
Th6;
hence thesis by
INT_1: 11;
end;
suppose
A1: n
>
0 & k
>
0 ;
set I = ((x,ys)
In_Power k);
A2: (x
+ ys)
= (((m
`1 )
+ ((m
`2 )
* s))
|^ n) by
Def2;
A3: ((
Px (a,(n
* k)))
+ ((
Py (a,(n
* k)))
* s))
= (((m
`1 )
+ ((m
`2 )
* s))
|^ (n
* k)) by
Def2
.= ((x
+ ys)
|^ k) by
A2,
NEWTON: 9
.= (
Sum I) by
NEWTON: 30;
consider e,o be
complex-valued
FinSequence such that
A4: (
len e)
=
[\((
len I)
/ 2)/] & (
len o)
=
[/((
len I)
/ 2)\] and
A5: (
Sum I)
= ((
Sum e)
+ (
Sum o)) and
A6: for n holds (e
. n)
= (I
. (2
* n)) & (o
. n)
= (I
. ((2
* n)
- 1)) by
Th2;
A7: (
len I)
= (k
+ 1) by
NEWTON:def 4;
(s
|^ (1
+ 1))
= (s
* (s
|^ 1)) by
NEWTON: 6
.= (s
^2 )
.= ((a
^2 )
-' 1) by
SQUARE_1:def 2;
then
A8: (ys
|^ 2)
= ((y
|^ 2)
* ((a
^2 )
-' 1)) by
NEWTON: 7;
(
rng o)
c=
NAT
proof
let w be
object;
assume w
in (
rng o);
then
consider z be
object such that
A9: z
in (
dom o) & (o
. z)
= w by
FUNCT_1:def 3;
reconsider z as
Nat by
A9;
set Z = ((2
* z)
- 1);
A10: w
= (I
. Z) by
A6,
A9;
A11: 1
<= z
<= (
len o) by
A9,
FINSEQ_3: 25;
A12: (2
* z)
>= (2
* 1) by
XREAL_1: 64,
A9,
FINSEQ_3: 25;
then
A13: Z
>= (2
- 1) by
XREAL_1: 9;
reconsider zz = Z, m = (Z
- 1) as
Nat by
A12;
A14: (((
len I)
/ 2)
+ 1)
= (((
len I)
+ 2)
/ 2);
(
len o)
< (((
len I)
/ 2)
+ 1) by
A4,
INT_1:def 7;
then z
< (((
len I)
/ 2)
+ 1) by
A11,
XXREAL_0: 2;
then (2
* z)
< ((k
+ 1)
+ 2) & ((k
+ 1)
+ 2)
= ((k
+ 2)
+ 1) by
A7,
A14,
XREAL_1: 79;
then
A15: (2
* z)
<= ((k
+ 1)
+ 1) by
NAT_1: 13;
then
A16: Z
<= (k
+ 1) by
XREAL_1: 20;
reconsider l = ((k
+ 1)
- zz) as
Nat by
NAT_1: 21,
XREAL_1: 20,
A15;
A17: Z
in (
dom I) by
A16,
A7,
A13,
FINSEQ_3: 25;
l
= (k
- m);
then
A18: (I
. Z)
= (((k
choose m)
* (x
|^ l))
* (ys
|^ m)) by
A17,
NEWTON:def 4;
reconsider z1 = (z
- 1) as
Nat by
A11;
m
= (2
* z1);
then (ys
|^ m)
= (((y
|^ 2)
* ((a
^2 )
-' 1))
|^ z1) by
A8,
NEWTON: 9;
hence thesis by
A10,
A18,
ORDINAL1:def 12;
end;
then
reconsider o as
FinSequence of
NAT by
FINSEQ_1:def 4;
defpred
E[
object,
object] means $2
in
NAT & for n be
Nat st n
= $2 holds (e
. $1)
= (s
* n) & for N be
Nat st N
= $1 holds (N
- 1) is
Nat & ((2
* N)
- 1) is
Nat & ((k
+ 1)
- (2
* N)) is
Nat & for n1,m,l be
Nat st n1
= (N
- 1) & m
= ((2
* N)
- 1) & l
= ((k
+ 1)
- (2
* N)) holds $2
= (((k
choose m)
* (x
|^ l))
* ((((y
|^ 2)
* ((a
^2 )
-' 1))
|^ n1)
* y));
A19: for n st n
in (
Seg (
len e)) holds ex x be
object st
E[n, x]
proof
let n such that
A20: n
in (
Seg (
len e));
set N = (2
* n);
A21: 1
<= n
<= (
len e) by
A20,
FINSEQ_1: 1;
then N
>= (2
* 1) by
XREAL_1: 64;
then
A22: N
>= 1 by
XXREAL_0: 2;
reconsider m = (N
- 1), n1 = (n
- 1) as
Nat by
A21;
(
len e)
<= ((
len I)
/ 2) by
A4,
INT_1:def 6;
then n
<= ((
len I)
/ 2) by
A21,
XXREAL_0: 2;
then
A23: N
<= (k
+ 1) by
A7,
XREAL_1: 83;
then
reconsider l = ((k
+ 1)
- N) as
Nat by
NAT_1: 21;
take U = (((k
choose m)
* (x
|^ l))
* ((((y
|^ 2)
* ((a
^2 )
-' 1))
|^ n1)
* y));
thus U
in
NAT by
ORDINAL1:def 12;
let u be
Nat such that
A24: u
= U;
A25: N
in (
dom I) by
A23,
A7,
A22,
FINSEQ_3: 25;
l
= (k
- m);
then
A26: (I
. N)
= (((k
choose m)
* (x
|^ l))
* (ys
|^ m)) by
A25,
NEWTON:def 4;
m
= ((2
* n1)
+ 1);
then (ys
|^ m)
= ((ys
|^ (2
* n1))
* ys) by
NEWTON: 6
.= ((((y
|^ 2)
* ((a
^2 )
-' 1))
|^ n1)
* ys) by
A8,
NEWTON: 9;
hence (e
. n)
= (s
* u) by
A6,
A26,
A24;
let nn be
Nat such that
A27: n
= nn;
(nn
- 1)
= n1 & ((2
* nn)
- 1)
= m & ((k
+ 1)
- (2
* nn))
= l by
A27;
hence thesis;
end;
consider p be
FinSequence such that
A28: (
dom p)
= (
Seg (
len e)) & for n st n
in (
Seg (
len e)) holds
E[n, (p
. n)] from
FINSEQ_1:sch 1(
A19);
(
rng p)
c=
NAT
proof
let w be
object;
assume w
in (
rng p);
then ex n be
object st n
in (
dom p) & (p
. n)
= w by
FUNCT_1:def 3;
hence thesis by
A28;
end;
then
reconsider p as
FinSequence of
NAT by
FINSEQ_1:def 4;
A29: (
dom (s
* p))
= (
dom p) & (
dom p)
= (
dom e) by
A28,
VALUED_1:def 5,
FINSEQ_1:def 3;
A30: (
len p)
= (
len e) by
A28,
FINSEQ_1:def 3;
for n st n
in (
dom p) holds (e
. n)
= ((s
* p)
. n)
proof
let n;
assume n
in (
dom p);
hence (e
. n)
= (s
* (p
. n)) by
A28
.= ((s
* p)
. n) by
VALUED_1: 6;
end;
then e
= (s
* p) by
A29,
FINSEQ_1: 13;
then (
Sum I)
= ((
Sum o)
+ (s
* (
Sum p))) by
A5,
RVSUM_1: 87;
then
A31: (
Py (a,(n
* k)))
= (
Sum p) by
A3,
PELLS_EQ: 3;
A32: (
Sum p) is
Nat by
TARSKI: 1;
A33: (y
|^ (1
+ 1))
= (y
* (y
|^ 1)) by
NEWTON: 6
.= (y
* y);
for n st 1
< n
<= (
len p) holds ((p
. n)
mod (y
^2 ))
=
0
proof
let n;
assume
A34: 1
< n
<= (
len p);
then
A35: n
in (
Seg (
len e)) by
A28,
FINSEQ_3: 25;
then
E[n, (p
. n)] by
A28;
then
reconsider n1 = (n
- 1), m = ((2
* n)
- 1), l = ((k
+ 1)
- (2
* n)) as
Nat;
A36: (p
. n)
= (((k
choose m)
* (x
|^ l))
* ((((y
|^ 2)
* ((a
^2 )
-' 1))
|^ n1)
* y)) by
A35,
A28;
A37: (n
- 1)
> (1
- 1) by
A34,
XREAL_1: 9;
(y
^2 )
divides (((y
|^ 2)
* ((a
^2 )
-' 1))
|^ n1) by
A37,
NEWTON02: 14,
A33,
INT_1:def 3;
then (y
^2 )
divides ((((y
|^ 2)
* ((a
^2 )
-' 1))
|^ n1)
* y) by
NAT_D: 9;
then (y
^2 )
divides (p
. n) by
A36,
NAT_D: 9;
hence thesis by
INT_1: 62,
A1;
end;
then ((
Sum p)
mod (y
^2 ))
= ((p
. 1)
mod (y
^2 )) by
Th1;
then (((
Sum p)
- (p
. 1))
mod (y
^2 ))
=
0 by
A32,
INT_4: 22,
A1;
then (y
^2 )
divides ((
Sum p)
- (p
. 1)) by
INT_1: 62,
A1;
then
A38: ((
Sum p),(p
. 1))
are_congruent_mod (y
^2 ) by
INT_1:def 4;
(
len I)
>= (1
+ 1) & (1
+ 1)
= (2
* 1) by
XREAL_1: 6,
A7,
A1,
NAT_1: 14;
then ((
len I)
/ 2)
>= 1 by
XREAL_1: 77;
then (
len p)
>= 1 by
INT_1: 54,
A30,
A4;
then
A39: 1
in (
Seg (
len e)) by
A28,
FINSEQ_3: 25;
then
E[1, (p
. 1)] by
A28;
then
reconsider l = ((k
+ 1)
- (2
* 1)) as
Nat;
A40: (k
choose 1)
= k by
NEWTON: 23,
A1,
NAT_1: 14;
A41: (((y
|^ 2)
* ((a
^2 )
-' 1))
|^
0 )
= 1 by
NEWTON: 4;
A42: l
= (k
- 1);
(1
- 1)
=
0 & ((2
* 1)
- 1)
= 1;
then (p
. 1)
= ((k
* (x
|^ l))
* (1
* y)) by
A39,
A28,
A40,
A41;
hence thesis by
A42,
A31,
A38,
XREAL_0:def 2;
end;
end;
theorem ::
HILB10_1:36
Th39: k
>
0 & (
Py (a,k))
divides (
Py (a,n)) implies k
divides n
proof
set Pk = (
Py (a,k)), Pn = (
Py (a,n));
set r = (n
mod k), q = (n
div k);
assume
A1: k
>
0 & Pk
divides Pn;
reconsider r, q as
Element of
NAT ;
A2: r
= (n
- (q
* k)) by
A1,
INT_1:def 10;
then n
= (r
+ (q
* k));
then ((
sgn n)
* (
Py (a,
|.n.|)))
= ((((
Px (a,
|.r.|))
* (
sgn (q
* k)))
* (
Py (a,
|.(q
* k).|)))
+ (((
sgn r)
* (
Py (a,
|.r.|)))
* (
Px (a,
|.(q
* k).|)))) by
Th25;
then
A3: (
Py (a,n))
= (((
Px (a,
|.r.|))
* ((
sgn (q
* k))
* (
Py (a,
|.(q
* k).|))))
+ (((
sgn r)
* (
Py (a,
|.r.|)))
* (
Px (a,
|.(q
* k).|)))) by
Th23
.= (((
Px (a,
|.r.|))
* (
Py (a,(q
* k))))
+ (((
sgn r)
* (
Py (a,
|.r.|)))
* (
Px (a,
|.(q
* k).|)))) by
Th23
.= (((
Px (a,r))
* (
Py (a,(q
* k))))
+ ((
Py (a,r))
* (
Px (a,(q
* k))))) by
Th23;
A4: Pk
divides (
Py (a,(q
* k))) by
Th37;
Pk
divides ((
Px (a,r))
* (
Py (a,(q
* k)))) by
Th37,
INT_2: 2;
then
A5: Pk
divides ((
Py (a,r))
* (
Px (a,(q
* k)))) by
INT_2: 1,
A1,
A3;
A6: (Pk,(
Px (a,(k
* q))))
are_coprime
proof
(Pk
gcd (
Px (a,(k
* q))))
divides (
Py (a,k)) by
INT_2:def 2;
then
A7: ((
Py (a,k))
gcd (
Px (a,(k
* q))))
divides (
Py (a,(q
* k))) by
A4,
INT_2: 9;
(Pk
gcd (
Px (a,(k
* q))))
divides (
Px (a,(k
* q))) by
INT_2:def 2;
then (Pk
gcd (
Px (a,(k
* q))))
divides ((
Py (a,(q
* k)))
gcd (
Px (a,(k
* q)))) by
A7,
INT_2: 22;
then (Pk
gcd (
Px (a,(k
* q))))
divides 1 by
Th26,
INT_2:def 3;
then (Pk
gcd (
Px (a,(k
* q))))
= 1 by
INT_2: 13;
hence thesis by
INT_2:def 3;
end;
r
=
0
proof
assume r
<>
0 ;
then
|.Pk.|
<=
|.(
Py (a,r)).| by
A6,
INT_4: 6,
A5,
INT_2: 25;
hence thesis by
Th14,
INT_1: 58,
A1;
end;
hence thesis by
A2,
INT_1:def 3;
end;
theorem ::
HILB10_1:37
Th40: ((
Py (a,k))
^2 )
divides (
Py (a,n)) implies (
Py (a,k))
divides n
proof
assume
A1: ((
Py (a,k))
^2 )
divides (
Py (a,n));
per cases ;
suppose k
=
0 ;
then (
Py (a,k))
=
0 by
Th6;
then ex i be
Integer st (
0
* i)
= (
Py (a,n)) by
A1,
INT_1:def 3;
then ((
Py (a,k))
*
0 )
= n;
hence thesis by
INT_1:def 3;
end;
suppose
A2: k
>
0 ;
(
Py (a,k))
divides ((
Py (a,k))
^2 ) by
INT_1:def 3;
then (
Py (a,k))
divides (
Py (a,n)) by
A1,
INT_2: 9;
then
consider w be
Nat such that
A3: (k
* w)
= n by
NAT_D:def 3,
Th39,
A2;
A4: w
divides n by
A3,
NAT_D:def 3;
((
Py (a,k))
^2 )
divides ((
Py (a,n))
-
0 ) by
A1;
then
A5: (
0 ,(
Py (a,n)))
are_congruent_mod ((
Py (a,k))
^2 ) by
INT_1: 14,
INT_1:def 4;
((
Py (a,n)),((w
* ((
Px (a,k))
|^ (w
-' 1)))
* (
Py (a,k))))
are_congruent_mod ((
Py (a,k))
^2 ) by
Th38,
A3;
then
A6: ((
0
* ((
Px (a,k))
|^ (w
-' 1))),((w
* (
Py (a,k)))
* ((
Px (a,k))
|^ (w
-' 1))))
are_congruent_mod ((
Py (a,k))
^2 ) by
A5,
INT_1: 15;
A7: (
Py (a,k))
in
NAT & w
in
NAT by
ORDINAL1:def 12;
A8: ((
Py (a,k))
^2 )
= ((
Py (a,k))
* ((
Py (a,k))
|^ 1))
.= ((
Py (a,k))
|^ (1
+ 1)) by
NEWTON: 6;
((
Py (a,k)),(
Px (a,k)))
are_coprime by
Th26;
then (((
Py (a,k))
|^ 2),(
Px (a,k)))
are_coprime by
WSIERP_1: 10;
then (
0 ,(w
* (
Py (a,k))))
are_congruent_mod ((
Py (a,k))
^2 ) by
A6,
A8,
INT_4: 9,
WSIERP_1: 10;
then ((
Py (a,k))
^2 )
divides ((w
* (
Py (a,k)))
-
0 ) by
INT_1:def 4,
INT_1: 14;
then (
Py (a,k))
divides w or (
Py (a,k))
=
0 by
A7,
PYTHTRIP: 7;
hence thesis by
A4,
A2,
INT_2: 9;
end;
end;
begin
theorem ::
HILB10_1:38
for y,z,a be
Nat holds y
= (
Py (a,z)) & a
> 1 iff ex x,x1,y1,A,x2,y2 be
Nat st a
> 1 &
[x, y] is
Pell's_solution of ((a
^2 )
-' 1) &
[x1, y1] is
Pell's_solution of ((a
^2 )
-' 1) & y1
>= y & A
> y & y
>= z &
[x2, y2] is
Pell's_solution of ((A
^2 )
-' 1) & (y2,y)
are_congruent_mod x1 & (A,a)
are_congruent_mod x1 & (y2,z)
are_congruent_mod (2
* y) & (A,1)
are_congruent_mod (2
* y) & (y1,
0 )
are_congruent_mod (y
^2 )
proof
let y,z,a be
Nat;
thus y
= (
Py (a,z)) & a
> 1 implies ex x,x1,y1,A,x2,y2 be
Nat st a
> 1 &
[x, y] is
Pell's_solution of ((a
^2 )
-' 1) &
[x1, y1] is
Pell's_solution of ((a
^2 )
-' 1) & y1
>= y & A
> y & y
>= z &
[x2, y2] is
Pell's_solution of ((A
^2 )
-' 1) & (y2,y)
are_congruent_mod x1 & (A,a)
are_congruent_mod x1 & (y2,z)
are_congruent_mod (2
* y) & (A,1)
are_congruent_mod (2
* y) & (y1,
0 )
are_congruent_mod (y
^2 )
proof
assume
A1: y
= (
Py (a,z)) & a
> 1;
then
A2: a is non
trivial by
NAT_2: 28;
set x = (
Px (a,z));
A3: a
>= (1
+ 1) by
NAT_1: 13,
A1;
A4: ((a
^2 )
-' 1)
= ((a
^2 )
- 1) by
XREAL_1: 233,
NAT_1: 14,
A1;
((x
^2 )
- (((a
^2 )
-' 1)
* (y
^2 )))
= 1 by
A1,
Th10,
A2;
then
A5:
[x, y] is
Pell's_solution of ((a
^2 )
-' 1) & a
> 1 by
A1,
Lm3;
A6: y
>= z by
Th16,
A1,
A2;
per cases ;
suppose
A7: y
=
0 ;
then
A8: z
=
0 by
A1,
A2;
then
A9: x
= 1 by
Th6,
A2;
set x1 = x, y1 = y, y2 = y, A = 1;
((A
^2 )
-' 1)
= (1
- 1) by
XREAL_1: 233;
then
A10: ((1
^2 )
- (((A
^2 )
-' 1)
* (y2
^2 )))
= 1;
1
in
INT &
0
in
INT by
INT_1:def 2;
then
A11:
[1,
0 ]
in
[:
INT ,
INT :] by
ZFMISC_1: 87;
(
[1,
0 ]
`1 )
= 1 & (
[1,
0 ]
`2 )
=
0 ;
then
A12:
[1, y2] is
Pell's_solution of ((A
^2 )
-' 1) by
A10,
A11,
A7,
PELLS_EQ:def 1;
A13: (y2,y)
are_congruent_mod x1 by
INT_1: 11;
A14: (A,a)
are_congruent_mod x1 by
INT_1: 13,
A9;
A15: (A,1)
are_congruent_mod (2
* y) by
INT_1: 11;
(y1,
0 )
are_congruent_mod (y
^2 ) by
A7,
INT_1: 11;
hence thesis by
A5,
A12,
A13,
A14,
A8,
A7,
A15;
end;
suppose
A16: y
>
0 ;
reconsider B = (((a
^2 )
-' 1)
* ((2
* (y
^2 ))
^2 )) as non
square
Nat by
A2,
A16;
set M = (
min_Pell's_solution_of B);
set x1 = (M
`1 ), Y1 = (M
`2 );
A17: ((x1
^2 )
- (B
* (Y1
^2 )))
= 1 by
PELLS_EQ:def 1;
set y1 = ((2
* (y
^2 ))
* Y1);
A18: x1
= (
[x1, y1]
`1 ) & y1
= (
[x1, y1]
`2 );
x1
in
INT & y1
in
INT by
INT_1:def 2;
then
A19:
[x1, y1]
in
[:
INT ,
INT :] by
ZFMISC_1: 87;
A20: ((x1
^2 )
- (((a
^2 )
-' 1)
* (y1
^2 )))
= ((1
+ (B
* (Y1
^2 )))
- (((a
^2 )
-' 1)
* (y1
^2 ))) by
PELLS_EQ:def 1
.= 1;
then
A21:
[x1, y1] is
Pell's_solution of ((a
^2 )
-' 1) by
A18,
A19,
PELLS_EQ:def 1;
((2
* Y1)
* y)
>= (1
* 1) by
A16,
NAT_1: 14;
then
A22: (((2
* Y1)
* y)
* y)
>= (1
* y) by
XREAL_1: 66;
A23: y1
>
0 by
A22;
then
A24: (y1
^2 )
>= 1 & y1
>= 1 by
NAT_1: 14;
y1
= ((y
^2 )
* (2
* Y1)) & y1
= ((2
* y)
* (y
* Y1));
then
A25: (y
^2 )
divides (y1
-
0 ) & (2
* y)
divides y1 by
INT_1:def 3;
then
A26: (y1,
0 )
are_congruent_mod (y
^2 ) by
INT_1:def 4;
(a
^2 )
>= (2
* a) & (a
+ a)
> (a
+ 1) by
A2,
A1,
NAT_2: 29,
XREAL_1: 8,
XREAL_1: 64;
then (a
^2 )
> (a
+ 1) by
XXREAL_0: 2;
then
A27: ((a
^2 )
-' 1)
> a by
A4,
XREAL_1: 20;
then
A28: B
> (a
* 1) by
A16,
NAT_1: 14,
XREAL_1: 97;
(Y1
^2 )
>= (1
^2 ) by
NAT_1: 14;
then (1
+ (B
* (Y1
^2 )))
> a by
NAT_1: 13,
A28,
XREAL_1: 66;
then ((x1
^2 )
- a)
>= (a
- a) by
A17,
XREAL_1: 9;
then
reconsider x1a = ((x1
^2 )
- a) as
Element of
NAT by
INT_1: 3;
set A = (a
+ ((x1
^2 )
* x1a));
A
>= (2
+
0 ) by
A3,
XREAL_1: 7;
then A
<> 1 & A is non
empty;
then
reconsider A as non
trivial
Nat by
NAT_2: 28;
(A
- a)
= (x1
* (x1
* x1a));
then
A29: (A,a)
are_congruent_mod x1 by
INT_1:def 4,
INT_1:def 3;
A
= (a
+ ((1
+ (((a
^2 )
-' 1)
* (y1
^2 )))
* ((1
+ (((a
^2 )
-' 1)
* (y1
^2 )))
- a))) by
A20;
then
A30: (A
- 1)
= (y1
* (y1
* ((((a
^2 )
-' 1)
+ ((1
+ (((a
^2 )
-' 1)
* (y1
^2 )))
* ((a
^2 )
-' 1)))
- (a
* ((a
^2 )
-' 1)))));
then
A31: y1
divides (A
- 1) by
INT_1:def 3;
then
A32: (2
* y)
divides (A
- 1) by
A25,
INT_2: 9;
A33: (A,1)
are_congruent_mod (2
* y) by
A31,
A25,
INT_2: 9,
INT_1:def 4;
(((a
^2 )
-' 1)
* (y1
^2 ))
>= (a
* 1) by
A27,
A24,
XREAL_1: 66;
then (2
+ (((a
^2 )
-' 1)
* (y1
^2 )))
> ((a
* 1)
+
0 ) by
XREAL_1: 8;
then ((2
+ (((a
^2 )
-' 1)
* (y1
^2 )))
- a)
> (a
- a) by
XREAL_1: 9;
then (y1
* (((a
^2 )
-' 1)
* ((2
+ (((a
^2 )
-' 1)
* (y1
^2 )))
- a)))
>= (1
* 1) by
A2,
A23,
NAT_1: 14;
then (A
- 1)
>= (1
* y1) & (A
-
0 )
> (A
- 1) by
A30,
XREAL_1: 66,
XREAL_1: 10;
then A
> y1 by
XXREAL_0: 2;
then
A34: A
> y by
A22,
XXREAL_0: 2;
set x2 = (
Px (A,z)), y2 = (
Py (A,z));
((x2
^2 )
- (((A
^2 )
-' 1)
* (y2
^2 )))
= 1 by
Th10;
then
A35:
[x2, y2] is
Pell's_solution of ((A
^2 )
-' 1) by
Lm3;
(A
- 1)
divides (y2
- z) by
Th27,
INT_1:def 4;
then (y2,z)
are_congruent_mod (2
* y) by
INT_1:def 4,
A32,
INT_2: 9;
hence thesis by
A5,
A21,
A6,
A35,
A2,
A1,
Th29,
A29,
A33,
A26,
A22,
A34;
end;
end;
given x,x1,y1,A,x2,y2 be
Nat such that
A36: a
> 1 and
A37:
[x, y] is
Pell's_solution of ((a
^2 )
-' 1) and
A38:
[x1, y1] is
Pell's_solution of ((a
^2 )
-' 1) and
A39: y1
>= y & A
> y and
A40: y
>= z and
A41:
[x2, y2] is
Pell's_solution of ((A
^2 )
-' 1) and
A42: (y2,y)
are_congruent_mod x1 and
A43: (A,a)
are_congruent_mod x1 and
A44: (y2,z)
are_congruent_mod (2
* y) and
A45: (A,1)
are_congruent_mod (2
* y) and
A46: (y1,
0 )
are_congruent_mod (y
^2 );
A47: a is non
trivial by
NAT_2: 28,
A36;
per cases ;
suppose
A48: y
=
0 ;
then z
=
0 by
A40;
hence thesis by
A36,
A47,
Th6,
A48;
end;
suppose
A49: y
>
0 ;
then y
>= 1 by
NAT_1: 14;
then
reconsider A as non
trivial
Nat by
A39,
NAT_2: 28;
consider w be
Nat such that
A50: x
= (
Px (a,w)) & y
= (
Py (a,w)) by
A47,
A37,
Th7;
consider u be
Nat such that
A51: x1
= (
Px (a,u)) & y1
= (
Py (a,u)) by
A47,
A38,
Th7;
consider v be
Nat such that
A52: x2
= (
Px (A,v)) & y2
= (
Py (A,v)) by
A41,
Th7;
A53: (y2,(
Py (a,v)))
are_congruent_mod x1 by
A47,
A43,
A52,
Th29;
(y,y2)
are_congruent_mod x1 by
A42,
INT_1: 14;
then
A54: (y,(
Py (a,v)))
are_congruent_mod (
Px (a,u)) by
A51,
A53,
INT_1: 15;
A55: u
<>
0 by
Th6,
A51,
A49,
A39,
A47;
((
Py (A,v)),v)
are_congruent_mod (2
* y)
proof
A56: (2
* y)
divides (A
- 1) by
A45,
INT_1:def 4;
(A
- 1)
divides ((
Py (A,v))
- v) by
Th27,
INT_1:def 4;
hence thesis by
INT_1:def 4,
A56,
INT_2: 9;
end;
then (v,y2)
are_congruent_mod (2
* y) by
A52,
INT_1: 14;
then
A57: (v,z)
are_congruent_mod (2
* y) by
A44,
INT_1: 15;
A58: (y
^2 )
divides (y1
-
0 ) by
A46,
INT_1:def 4;
A59: (z,v)
are_congruent_mod (2
* y) by
A57,
INT_1: 14;
A60: ((
Py (a,v)),(
Py (a,w)))
are_congruent_mod (
Px (a,u)) by
A54,
A50,
INT_1: 14;
consider r be
Integer such that
A61: (y
* r)
= u by
A58,
A51,
A50,
Th40,
INT_1:def 3,
A47;
A62: y
>= w by
A47,
A50,
Th16;
A63: (
0
- y)
<= (z
- w)
<= (y
-
0 ) by
A40,
A62,
XREAL_1: 13;
(y
+
0 )
< (y
+ y) & ((
- y)
- y)
< ((
- y)
-
0 ) by
A49,
XREAL_1: 6,
XREAL_1: 15;
then
A64: ((
- 1)
* (2
* y))
< (z
- w)
< (1
* (2
* y)) by
A63,
XXREAL_0: 2;
A65: (
0
+
0 )
<= (z
+ w)
<= (y
+ y) by
A40,
A62,
XREAL_1: 7;
per cases by
A60,
A55,
Th36,
A47;
suppose (v,w)
are_congruent_mod (2
* u);
then
consider t be
Integer such that
A66: (v
- w)
= ((2
* u)
* t) by
INT_1:def 5;
(v
- w)
= ((2
* y)
* (t
* r)) by
A66,
A61;
then (v,w)
are_congruent_mod (2
* y) by
INT_1:def 5;
then
consider i be
Integer such that
A67: (z
- w)
= ((2
* y)
* i) by
INT_1:def 5,
A59,
INT_1: 15;
(
- 1)
< i
< (
0
+ 1) by
A67,
A64,
XREAL_1: 64;
then ((
- 1)
+ 1)
<= i & i
<=
0 by
INT_1: 7;
then (z
- w)
=
0 by
A67;
hence y
= (
Py (a,z)) & a
> 1 by
A36,
A50;
end;
suppose (v,(
- w))
are_congruent_mod (2
* u);
then
consider t be
Integer such that
A68: (v
- (
- w))
= ((2
* u)
* t) by
INT_1:def 5;
(v
- (
- w))
= ((2
* y)
* (t
* r)) by
A61,
A68;
then (v,(
- w))
are_congruent_mod (2
* y) by
INT_1:def 5;
then
consider i be
Integer such that
A69: (z
- (
- w))
= ((2
* y)
* i) by
INT_1:def 5,
A59,
INT_1: 15;
((2
* y)
*
0 )
<= ((2
* y)
* i)
<= ((2
* y)
* 1) by
A69,
A65;
then
A70:
0
<= i
<= 1 by
A49,
XREAL_1: 68;
i
< 1 or i
= 1 by
A70,
XXREAL_0: 1;
then
A71: i
=
0 or i
= 1 by
A70,
NAT_1: 14;
per cases by
A71,
A69;
suppose (z
+ w)
=
0 ;
then z
=
0
= w;
hence thesis by
A36,
A50;
end;
suppose
A72: (z
+ w)
= (2
* y);
A73: z
= y
proof
assume z
<> y;
then z
< y by
A40,
XXREAL_0: 1;
then (z
+ w)
< (y
+ y) by
A47,
A50,
Th16,
XREAL_1: 8;
hence thesis by
A72;
end;
w
= y
proof
assume w
<> y;
then w
< y by
A62,
XXREAL_0: 1;
then (z
+ w)
< (y
+ y) by
A40,
XREAL_1: 8;
hence thesis by
A72;
end;
hence thesis by
A36,
A73,
A50;
end;
end;
end;
end;
begin
theorem ::
HILB10_1:39
for x,y,z be
Nat holds y
= (x
|^ z) iff (y
= 1 & z
=
0 ) or (x
=
0 & y
=
0 & z
>
0 ) or (x
= 1 & y
= 1 & z
>
0 ) or (x
> 1 & z
>
0 & ex y1,y2,y3,K be
Nat st y1
= (
Py (x,(z
+ 1))) & K
> ((2
* z)
* y1) & y2
= (
Py (K,(z
+ 1))) & y3
= (
Py ((K
* x),(z
+ 1))) & (
0
<= (y
- (y3
/ y2))
< (1
/ 2) or
0
<= ((y3
/ y2)
- y)
< (1
/ 2)))
proof
let x,y,z be
Nat;
thus y
= (x
|^ z) implies (y
= 1 & z
=
0 ) or (x
=
0 & y
=
0 & z
>
0 ) or (x
= 1 & y
= 1 & z
>
0 ) or (x
> 1 & z
>
0 & ex y1,y2,y3,K be
Nat st y1
= (
Py (x,(z
+ 1))) & K
> ((2
* z)
* y1) & y2
= (
Py (K,(z
+ 1))) & y3
= (
Py ((K
* x),(z
+ 1))) & (
0
<= (y
- (y3
/ y2))
< (1
/ 2) or
0
<= ((y3
/ y2)
- y)
< (1
/ 2)))
proof
assume
A1: y
= (x
|^ z);
per cases ;
suppose z
=
0 ;
hence thesis by
A1,
NEWTON: 4;
end;
suppose
A2: z
>
0 ;
per cases by
NAT_1: 53;
suppose x
=
0 or x
= 1;
hence thesis by
A1,
A2,
NAT_1: 14,
NEWTON: 11;
end;
suppose
A3: x
> 1;
then
reconsider x1 = x as non
trivial
Nat by
NAT_2: 28;
ex y1,y2,y3,K be
Nat st y1
= (
Py (x1,(z
+ 1))) & K
> ((2
* z)
* y1) & y2
= (
Py (K,(z
+ 1))) & y3
= (
Py ((K
* x1),(z
+ 1))) & (
0
<= (y
- (y3
/ y2))
< (1
/ 2) or
0
<= ((y3
/ y2)
- y)
< (1
/ 2))
proof
set y1 = (
Py (x1,(z
+ 1))), K = (((2
* z)
* y1)
+ 1), y2 = (
Py (K,(z
+ 1))), y3 = (
Py ((K
* x1),(z
+ 1)));
reconsider K as non
trivial
Nat by
A2;
take y1, y2, y3, K;
(x1
+ (x1
- 1))
> (x1
+
0 ) by
XREAL_1: 6;
then
A4: ((x1
+ (x1
- 1))
to_power z)
> (x1
to_power z) by
A2,
POWER: 37;
(((2
* x1)
- 1)
|^ z)
<= y1 by
Th20;
then y1
>= (x1
|^ z) by
A4,
XXREAL_0: 2;
then K
> ((2
* z)
* (x1
|^ z)) by
NAT_1: 13,
XREAL_1: 64;
then
A5: (y
- (1
/ 2))
< (y3
/ y2)
< (y
+ (1
/ 2)) by
A1,
Th22;
(y
- (y3
/ y2))
>=
0 or (
- (y
- (y3
/ y2)))
>= (
-
0 );
hence thesis by
NAT_1: 13,
XREAL_1: 19,
XREAL_1: 11,
A5;
end;
hence thesis by
A3,
A2;
end;
end;
end;
assume
A6: (y
= 1 & z
=
0 ) or (x
=
0 & y
=
0 & z
>
0 ) or (x
= 1 & y
= 1 & z
>
0 ) or (x
> 1 & z
>
0 & ex y1,y2,y3,K be
Nat st y1
= (
Py (x,(z
+ 1))) & K
> ((2
* z)
* y1) & y2
= (
Py (K,(z
+ 1))) & y3
= (
Py ((K
* x),(z
+ 1))) & (
0
<= (y
- (y3
/ y2))
< (1
/ 2) or
0
<= ((y3
/ y2)
- y)
< (1
/ 2)));
per cases by
A6;
suppose y
= 1 & z
=
0 ;
hence thesis by
NEWTON: 4;
end;
suppose x
=
0 & y
=
0 & z
>
0 ;
hence thesis by
NAT_1: 14,
NEWTON: 11;
end;
suppose x
= 1 & y
= 1 & z
>
0 ;
hence thesis;
end;
suppose
A7: x
> 1 & z
>
0 & ex y1,y2,y3,K be
Nat st y1
= (
Py (x,(z
+ 1))) & K
> ((2
* z)
* y1) & y2
= (
Py (K,(z
+ 1))) & y3
= (
Py ((K
* x),(z
+ 1))) & (
0
<= (y
- (y3
/ y2))
< (1
/ 2) or
0
<= ((y3
/ y2)
- y)
< (1
/ 2));
reconsider x1 = x as non
trivial
Nat by
A7,
NAT_2: 28;
consider y1,y2,y3,K be
Nat such that
A8: y1
= (
Py (x1,(z
+ 1))) and
A9: K
> ((2
* z)
* y1) and
A10: y2
= (
Py (K,(z
+ 1))) and
A11: y3
= (
Py ((K
* x1),(z
+ 1))) and
A12:
0
<= (y
- (y3
/ y2))
< (1
/ 2) or
0
<= ((y3
/ y2)
- y)
< (1
/ 2) by
A7;
((2
* z)
* y1)
>= 1 by
NAT_1: 14,
A8,
A7;
then
reconsider K as non
trivial
Nat by
NAT_2: 28,
A9;
(x1
+ (x1
- 1))
> (x1
+
0 ) by
XREAL_1: 6;
then
A13: ((x1
+ (x1
- 1))
to_power z)
> (x1
to_power z) by
A7,
POWER: 37;
(((2
* x1)
- 1)
|^ z)
<= y1 by
A8,
Th20;
then y1
>= (x1
|^ z) by
A13,
XXREAL_0: 2;
then (y1
* (2
* z))
>= ((x1
|^ z)
* (2
* z)) by
XREAL_1: 64;
then K
> ((2
* z)
* (x1
|^ z)) by
A9,
XXREAL_0: 2;
then
A14: ((x1
|^ z)
- (1
/ 2))
< (y3
/ y2)
< ((x1
|^ z)
+ (1
/ 2)) by
Th22,
A10,
A11;
per cases by
A12;
suppose
0
<= (y
- (y3
/ y2))
< (1
/ 2);
then
A15: (((x1
|^ z)
- (1
/ 2))
+
0 )
< ((y
- (y3
/ y2))
+ (y3
/ y2))
< ((1
/ 2)
+ ((x1
|^ z)
+ (1
/ 2))) by
A14,
XREAL_1: 8;
then y
< ((x1
|^ z)
+ 1);
then
A16: y
<= (x1
|^ z) by
INT_1: 7;
((x1
|^ z)
- 1)
< ((x1
|^ z)
- (1
/ 2)) by
XREAL_1: 10;
then ((x1
|^ z)
- 1)
< y by
A15,
XXREAL_0: 2;
then (((x1
|^ z)
- 1)
+ 1)
<= y by
INT_1: 7;
hence thesis by
A16,
XXREAL_0: 1;
end;
suppose
0
<= ((y3
/ y2)
- y)
< (1
/ 2);
then
A17: (((x1
|^ z)
- (1
/ 2))
- (1
/ 2))
< ((y3
/ y2)
- ((y3
/ y2)
- y))
< (((x1
|^ z)
+ (1
/ 2))
-
0 ) by
A14,
XREAL_1: 14;
then
A18: (((x1
|^ z)
- 1)
+ 1)
<= y by
INT_1: 7;
((x1
|^ z)
+ (1
/ 2))
< ((x1
|^ z)
+ 1) by
XREAL_1: 6;
then y
< ((x1
|^ z)
+ 1) by
A17,
XXREAL_0: 2;
then y
<= (x1
|^ z) by
INT_1: 7;
hence thesis by
A18,
XXREAL_0: 1;
end;
end;
end;